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ABSTRACT

A nonlinear theory of finite amplitude, time-periodic oscillations

in a narrow harbor is developed, starting from the Boussinesq equations

for shallow water waves. The narrowness of the harbor permits a linear

treatment of radiation damping and a one-dimensional treatment of the

nonlinear harbor response. The wave field in the harbor is expanded in

harmonics, whose spatial dependence is governed by a set of coupled,

nonlinear ordinary differential equations, subject to two-point boundary

conditions. Solutions are obtained by analytical perturbation tech-

niques and by an iterative numerical procedure. Results indicate sig-

nificant nonlinear effects at large amplitudes.

Harbor resonance experiments were carried out using a model

harbor placed in a large, shallow wave basin. The effects of boundary

layer dissipation, flow separation, and spurious reflections in the

wave basin are analyzed. The experimental observations are found to

agree reasonably well with the proposed nonlinear theory.
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Finally, the nonlinear theory is applied to large-scale harbors

and some theoretical predictions are presented.

Thesis Supervisor: Chiang C. Mei, Professor of Civil Engineering
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CHAPTER 1

INTRODUCTION

1.1 Description of the Problem and Review of Literature

A harbor is a partially enclosed body of water which is joined to

the sea by a relatively narrow entrance. The entrance, which is quite

often a man-made system of breakwaters, serves to shield the harbor from

the most common disturbances, namely wind-generated waves of the open

sea. Because it limits the amount of energy exchange between the harbor

and the sea, a narrow entrance occasionally has the damaging effect of

trapping long waves, which may be originated by tsunamis, surf beats or

other sources, and of creating within the harbor large oscillations which

may persist for days. This is the phenomenon of harbor resonance or

"seiching." The deleterious effects of these oscillations are well-

known--ships are torn loose from their moorings causing damage to dock

facilities and neighboring vessels, and strong currents in the harbor

entrance prevent the safe passage of incoming and outgoing ships, cf.

Wilson (1957).

From a theoretical standpoint, the study of harbor oscillations

begins with the determination of the frequencies at which resonance

occurs and the wave profiles of the resonant modes. Much of the work to

date uses linearized, inviscid wave theory, in which the wave amplitude

is presumed so small that nonlinear effects are negligible. Rectangular

harbors were studied by Miles and Munk (1961), Ippen and Raichlen (1962),

Ippen and Goda (1963), Raichlen and Ippen (1965), and Mei and Unluata

- 15 -



(1976). Miles and Munk discovered the peculiar phenomenon, referred to

as the "harbor paradox," that the amplitude of monochromatic resonant

oscillations actually increases with decreasing width of the harbor

entrance. For harbors of arbitrary shape, numerical solution procedures

have been developed by Hwang and Tuck (1970), Lee (1971), and Chen and

Mei (1974).

The validity of all treatments based upon linearized wave theory is

necessarily limited by the assumption of small wve amplitudes. Fre-

quently, the resonated wave heights predicted by these theories are so

large that it is no longer justifiable to neglect nonlinear effects.

Some attempt to include nonlinear effects in the analysis of harbor

resonance was made by Gaillard (1960) and Biesel (1963), but complete

solutions were not obtained. The general properties of nonlinear waves,

and of water waves in particular, have been studied extensively by

Phillips (1960), Longuet-Higgins (1962), Benney and Luke (1964),

Whitham (1965, 1967 a,b), Benjamin and Feir (1967), Chu and Mei (1970),

Kim and Hanratty (1971), Mei and Unluata (1972), Bryant (1972), etc.

A review article by Phillips (1974) is especially useful. For the most

part, these authors restrict their attention to progressive waves travel-

ling in an infinite medium having no obstacles in the path of propaga-

tion. Finite amplitude standing waves in a basin have been treated by

Tadjbakhsh and Keller (1960), Benney and Niell (1962), and by Verhagen

and van Wijngaarden (1965), who also performed several experiments.

Laboratory investigations of harbor resonance have been hampered by

several difficulties, among them inadequate modelling of the ocean

- 16 -



domain and Reynolds number dissimilarity. Biesel (1954) discusses the

similitude of scale models for the study of harbor oscillations. Ippen

and Raichlen (1962) and Raichlen and Ippen (1965) investigate the prob-

lem of coupling between a large but finite ocean basin and a smaller

harbor basin. Ippen and Goda (1963) and Lee (1971) performed experi-

ments to corroborate their theoretical work on harbor resonance. Much

of this experimental work is indirectly predicated on the assumptions

of linearized theory. For example, it is assumed that the response of

a harbor to monochromatic incident waves is itself monochromatic so that

wave records need not be Fourier analyzed. Further, the experiments are

often conveniently performed in deep water, because the extrapolation

to shallow water is trivial in the context of linearized theory. For

nonlinear theory, this extrapolation cannot be made.

1.2 Elements of Water Wave Theory

In a wide variety of water wave problems, the fluid motion is

essentially incompressible, inviscid, and irrotational. For constant

depth, the governing equations are

V2 +ezz = 0 in fluid -h < z <_ n(x,y,t)

z=0 on z=-h

t + 4'xx + yfny = z on z = n(x,y,t)

+ 12 + (vfl2) + gn = 0 on z = n(x,y,t) (1.2.1)

where

- 17 -



n(x,y,t) = displacement of the free surface from its undisturbed

position

U(x,y,z,t) = (y ,z) = fluid velocity

(x,y,z,t) = velocity potential

g = acceleration of gravity

h = water depth

Subscripts are used to denote differentiation. (1.2.la) is the conse-

quence of continuity for an incompressible fluid and irrotationality;

(1.2.lb) states that the vertical component of velocity must vanish at

the bottom; (1.2.lc) is the kinematic free surface boundary condition

which ensures that particles on the free surface move tangentially to

it; and (1.2.ld) is the dynamic boundary condition stating that atmos-

pheric pressure is constant (e.g., zero) on the free surface and that

surface tension is negligible. Note that the two boundary conditions

on the free surface are nonlinear because both p and n are unknown.

In linearized wave theory, the wave amplitude is assumed to be

infinitesimal and (1.2.lc,d) are replaced by

1t ~1 z =0 on z = 0

t + gn = 0 on z = 0 (1.2.2)

In an infinite ocean of constant depth h, one solution to (1.2.la,b)

and (1.2.2a,b) is the monochromatic progressive wave

n(x,y,t) = Re {Aei(kx - wt)I

p(x,y,z,t) = Re {-igA cosh k(z+h) ei(kx - wt)} (1.2.3)W cosh kh

- 18 -



where

W2h/g = kh tanh kh =..1p2 (1.2.4)

is the dispersion relation. In deep water, p 2 >> 1, the dispersion

relation is approximately w2h/g = kh, and the phase velocity is twice

the group velocity. In shallow water, p 2 «<1,

2h/g = (kh) 2[1 - ]-(kh) 2 + (kh) 4  (kh) 2  (1.2.5)3]

the dispersion relation is approximately linear; the phase and group

velocities are both equal to gi (1 + O(kh)2); and the waves are said

to be non-dispersive. For intermediate values of p, w is a transcen-

dental function of kh, and the waves are highly dispersive.

When the assumption of infinitesimal wave amplitudes is removed,

the nonlinearity parameter

E_= A/h = wave height/water depth

is also needed to characterize the wave. Different wave motions are

2possible depending on the relative magnitudes of E and p2. In deep

water, the combination sp 2, which is a measure of the slope of the

free surface, is found to be of great importance in determining when a

wave will break. In shallow water, the combination E/ 2, known as

Stokes' number, is used to identify three qualitatively different

kinds of waves:

/P2 << 1 : Linear, dispersive waves (Linearized theory)

6/12 n 0(1) : Nonlinear dispersive waves, including cnoidal and

solitary waves (Boussinesq and Korteweg-de Vries

equations)

- 19 -



E/y2 >> : Nonlinear, nondispersive waves (Airy's equations)

In treating harbor resonance, we deal almost exclusively with

shallow water, or "long" waves. This is because the wavelengths of

resonant harbor oscillations are on the scale of the horizontal dimen-

sions of the harbor, which are normally much greater than the water

depth. For example, a harbor might be two kilometers long and only

twenty meters deep, so that p 2 10~4 for the lower resonant modes. It

is useful then to have a theory in which the assumption of shallow water

is built-in, but the assumption of infinitesimal wave amplitudes is not.

To derive such a theory, we introduce scaled variables so that

the relative magnitudes of terms in the equations of motion appear ex-

plicitly. For a shallow water wave of frequency w, an appropriate

choice of variables is

t' = ot

(x',y' = tO (xy)

Z' = z/h (1.2.6)

-n =/h

U' = u//gh

$' = o4/gh

where primes denote dimensionless variables. Henceforth, all variables

are dimensionless, and for convenience, the primes will be omitted.

Substituting (1.2.6) into (1.2.1), the equations of motion take the

dimensionless form:

2 1v P (- <z<n)
1y

- 20 -



(z=0 on z = -1

at +$' +cyn=ynz on z = n (1.2.7)

$0 + 2) O + 02 + fl= 0 on z=2

2w 2  -+ a- a a 2  2
where p2 wh/g, V 2 ( , ), and V s . Expanding

a ayax ay

c(x,y,z,t) = X 2n 0(n)(xyzt)(1.2.8)
n=o

we find from (1.2.7a) that

0(0)=0zz 0(1.2.9)

(n) =-V2 (n-1) n = 1,2,3...
zz

Integrating twice with respect to z and applying the bottom boundary

condition (1.2.7b), we have

(0) (x,y,z,t) = (0(x'y't) independent of z

(n) (-1)n(z+1)2n 2n (0)p (x,y,z,t) = (2n)! n() x,y,t)

n = 1,2,3... (1.2.10)

where integration constants are independent of z and have been grouped

into (O(. From (1.2.8)

Cpxyzt O (-1 )n 2n z+l)2nV 2n (0)(xyt
(xnzt)= ( (x,y,t) (1.2.11)

n=o

Note that the leading term in the expansion for the vertical velocity

(z is 0(.P2

So far, we have made no assumption as to the magnitude of c(O) and
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no use of the nonlinear boundary conditions on the free surface,

(1.2.7c,d). Denoting the magnitude of (0) by e, several approxima-

tions to the free surface boundary conditions are possible, depending

on the relative magnitudes of e and p2 and the degree of accuracy

desired. In Airy's approximation, for example, pc2 << and terms of

0( 2) are neglected. In the Boussinesq approximation, e «2 << 1 and

2 2 4relative errors of 0(E ,pE ,4 ) are neglected. A detailed treatment

of the various types of approximations and their domains of validity is

found in Peregrine (1972).

The Boussinesq approximation has several advantages over Airy's

approximation. First, Airy's equations can be formally derived from

the Boussinesq equations by taking the limit p2 - 0. Secondly, it is

well known that dispersion tends to counteract the wave steepening

effect of nonlinearity, and thus to inhibit wave breaking. Airy's

equations contain no dispersive terms and lead to shock formation even

in physical situations where shocks are not observed experimentally.

By contrast, the Boussinesq equations, which contain the leading order

effect of dispersion, are found to agree well with experiments so long

as the ratio of peak-to-trough wave height to water depth is less than

.5. This is quite close to the onset of breaking, which occurs in

shallow water when the above ratio is roughly .7. Thus, the Boussinesq

approximation has a greater range of validity, so long as breaking

does not occur.

Substituting (1.2.11) into (1.2.7c,d), and neglecting relative

2 2 4errors of 0(S ,EP ,s ), one arrives, after some algebra, at the follow-

ing form for the Boussinesq equations: -

- 22 -



"t + V.u + V.(nt) = 0

ut+ ÷ l+y 2) I 2tt =(1.2.12)

where t(x,y,t) is the depth-averaged horizontal velocity, defined by

iu(x,y,t) = 1: J$ dz

-l
÷(0) 2 2-+( 2

~-i() 2 ( )) (Z + 1)2dz

-l

vq(O) -112 V2(vqi 0)) (1.2.13)

In the limit p2-+-0, (1.2.12) reduces to Airy's equations.

The fluid pressure, which is found by integrating the vertical

equation over z, is given by (pgh)p where p is the density of the fluid

and

2 2 4-p = (n - z) + p2(z + z2/2)(7.ut) (1.2.14)

The term (n - z) is simply the hydrostatic pressure beneath the wave;

the additional term reflects the influence of vertical motion, which is

0(20(i 2).

One consequence of the nonlinearity of (1.2.12) is that monochroma-

tic waves are no longer possible solutions. If one begins with a wave

of the form (n1(x,y), t1(x,y))e-it, one finds that the nonlinear terms

generate second harmonics, having the time dependence e 2it. Interac-

tion of the first and second harmonics produces third harmonics, having

the time dependence e-3it. This process, if continued, leads to a

time periodic wave of the form:
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TI(xgy gt)= Re 00 n , - int

I (x,y,t) n=0 u nxy -

R O fLn ]e-flt 
(1.2.15)

n=o Ln(xYJ

where, by convention, (n , it - ( n* ). Substituting (1.2.15)n -n = n n ~ siutn 1..5

into (1.2.12), the n-th harmonic is found to satisfy

-inan + i~ ~I (sC-O

1 2 ,) +

-in u +-(l P2 n2)$n +sU- s n-s=u n(1.2.16)

Combining the divergence of (1.2.16b) with (1.2.16a) and neglecting

2 2 4relative errors of O(E ,et ,p2 ),

(2+ k =)nn sn-s 2 usa n-s) (1.2.17)
s=-o

where

2 2 1 2 2
kn = n/(l - Pyn)

= n2.[ + n2V2 + 0(ny)4] (1.2.18)

is the dispersion relation in dimensionless form. Note that the dis-

persion relation may be written as

n2 = k ( - 4-k2A + O(k-P) 4)

k 4
-n- tanh k p + O(k k) (1.2.19)
P n n

which shows clearly itsconnection to the exact dispersion relation
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(1.2.4). The error in the Boussinesq dispersion relation is 0(k n) 4

and can be quite large for the higher harmonics.

The near linearity of the dispersion curve when p2 << I leads to

the phenomenon of resonant linear interactions, which has been studied

by Kim and Hanratty (1971), Mei and Unluata (1972), and Bryant (1972).

Consider two plane waves

n1 = Re {EA1 e X(k1I - n2t) I (n1,9k1 > 0)

(1.2.20)

n2 = Re {EA2 ei(k2x - n2t)} (n2, k2 > 0)

where, from (1.2.17),

k1 = n1 + 0( 2)
(1.2.21)

k2 = n2 + o(V2

Through nonlinear interaction, a third wave is formed

T3 = Re {EA3 ei[(k1+k2)x - (n+n2)t] + ei[(k1-k2)x- (n1-n2)t

(1.2.22)

Since k1 +k2 = n1 -1+ n2 + 0(p2 ) n3 represents a propagating wave which

travels with approximately the same phase velocity as n and n2; thus,

the three waves maintain the same relative phases as they propagate.

The magnitude of n3 is found to increase linearly with distance so long

as the three waves are in phase and jn3j « 1'n111n21. This is known

as a resonant three-wave interaction. Eventually, the influence of

dispersion limits the distance of coherent propagation to 0(1/u2). The

net result is that nonlinear interactions of 0(s2) add constructively

-over a distance of 0(1/p2), and the magnitudes of sA3 and EB3 are
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found to be sO(s/p2). The Stokes parameter, E/p2, therefore governs

the extent of harmonic generation. The subject of resonant nonlinear

interactions is discussed at length in Chapter 3.

When e/p2 << 1, higher harmonics are generated in profusion, and

the horizontal length scales used in (1.2.6) are no longer appropriate.

This is the situation just before breaking. The Boussinesq equations

cannot be expected to apply to such cases because the scales used in

their derivation are no longer the correct physical scales.

1.3 Linearized Theory of the Long Narrow Bay

The harbor we shall consider is a long, narrow bay of width 2a,

length L, and constant depth h. The geometry of the ocean-harbor system

is shown in Fig. 1.1. The coastline and harbor walls are taken to be

rigid, impermeable, vertical surfaces along which the normal component

of velocity must vanish, viz.

u=xgySt)-n= 0 (1.3.1)

where (x5,yS) is a point on the surface, and 'As is a vector normal to

the surface.

The presence of finite boundaries in the fluid introduces new

length scales, in addition to those which characterize the wave length

and amplitude. We shall see that the dimensionless parameters

2 L(w/gii)
(1.3.2)

6 2 vr-h
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determine the linear resonance properties of the harbor basin. For a

narrow bay (a/L << 1), resonant oscillations typically occur when

z = 0(1) and 6 = t-(a/L) << 1.

Because 6 << 1, the ocean-harbor system can be split into three

distinct regions: the far field of the ocean, r =/x2 + Y2 >> 6; the

near field of the entrance, r r 0(6); and the far field of the harbor,

-z < x << -6. In the far field of the ocean, the fluid motion varies

on the scale of the wavelength and (x,y) are suitable horizontal coord-

inates. In the near field of the junction, the scale of motion is 6

and the coordinates

(x*,y*) = (x,y) / 6 (1.3.3)

are most appropriate. Finally, in the far field of the harbor, the

natural choice for coordinates is (x, y*).

Before embarking on a nonlinear treatment of the resonance proper-

ties of a long, narrow bay, we summarize known results from linearized

theory. The geometry of Fig. 1.1 has been studied by Miles and Munk

(1960) and Unluata and Mei (1973). Starting from linearized water

wave theory, Unluata and Mei obtain asymptotic expansions for the wave

field in each of the three regions. By matching the asymptotic solutions

in adjacent regions, they determine the response of the harbor in terms

of the incident wave amplitude and frequency. For an incident wave of

the form

n (x,y,t) = Re(4A e i(k1x-t) (1.3.4)

where k1 is the dimensionless wave number satisfying the dispersion

relation (1.2.19), the response in the far field of the harbor is found

- 28 -



to be

H (xt) = Re (T cos k1 (x + z)e-it

uH(x,t) = Re ( T sin k 1(x + z)e-it
k11

where

T E A[cos k I- sin k k]~(1.3.6)A[o k1  k1

and

(k1 6)[l + -in k16 + zn )] (1.3.7)

zny E .577216 = Euler's constant

Z is the radiation impedance of the harbor entrance; its real and

imaginary parts are the radiation damping and mass reactance, respective-

ly.

Letting Z1 = Z R + iZ 1P, we have from (1.3.6),

Max nH(x,t) = jT1 I
x,t

- A1 I[(cos kz + Zjj sin k1k)2 + (ZiR sin k 1)21-1/2

(1.3.8)

When kI satisfies the "resonance condition"

cos k1zk + Z11 sin k1 z = 0 (1.3.9)

k

(1.3.8) yields
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Max n(xt) = ZR IAI kT (1.3.10)
x~t I1Rsn 1;

k,

so that the incident wave amplitude is amplified by a factor proportional

to 1/ZlR, which is in turn proportional to 1/6. As the width of the

harbor entrance is made smaller, 6 decreases and the resonant amplifica-

tion increases; this is the so-called "harbor paradox.'

Since Z 1 ' u 0(6 zn) << 1, the resonance condition (1.3.9) can be

written as

cos (k1 Z - Z 1) 0 (1.3.11)

F-k1

which yields the resonance criterion

k1  = (m + 1)r +-Z m = 0,1,2... (1.3.12)
1

The lowest mode, m = 0, is often called the quarter-wave mode because

1]_ 2w7T 1kz i/2 or z~ (A)(T) = 4-, where xl is the dimensionless wave-

length.

Notice that, in (1.3.5)., nH and uH are independent of y; that is,

the far field of the long, narrow bay is essentially one-dimensional.

This allows a great simplification in the nonlinear treatment of the

harbor, as will be seen in Chapter 3.

1.4 Scope of this Investigation '

The theoretical part of this study analyzes the response of a long
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narrow harbor to time-periodic incident waves. In Chapter 2, the wave

field of the ocean is shown to be of sufficiently small amplitude that

it may be treated as linear. Assuming the entrance width to be small,

e.g. << 1, the interaction of the ocean with the harbor is then

approximated by an impedance boundary condition applied at the harbor

entrance. The advantage of this approach lies in its mathematical

simplicity; its disadvantage is that higher harmonics have larger

values of knS and are therefore less accurately represented. Where

greater accuracy is required, a semi-numerical method, such as that of

Lee (1971) or Chen and Mei (1974), should be used. In Chapter 3, the

nonlinear response of a long, narrow harbor is examined. With the

assumption 6 << 1, the wave field far from the harbor entrance is

shown to be essentially one-dimensional, allowing a simplification of

the nonlinear equations. The field variables are Fourier analyzed into

time harmonics, and an infinite set of coupled, second-order, ordinary

differential equations is found to govern the spatial variation of the

complex harmonic amplitudes. Perturbation techniques and direct numeri-

cal methods are used to solve these equations.

Laboratory experiments were carried out using a model harbor placed

in a large shallow wave basin. Chapter 4 deals with the experimental

apparatus and procedures, and with the effects of friction and multiple

reflections from the walls of the wave basin.

Results of the theoretical and experimental work are compared in

Chapter 5. In addition, some theoretical predictions for large scale

harbors are presented. A summary of the main conclusions and suggestions

for future research are found in Chapter 6.
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CHAPTER II

WAVE SYSTEM OF THE OCEAN

2.1 Motivation for a Linear Treatment

The wave field of the ocean consists of three parts; the incident

wave, n(x,y,t); the wave reflected from the coastline, nr(x,y,t); and

the wave radiated away from the harbor entrance, nR(x,y,t). To a first

approximation, the total wave field, nT(x,y,t), is simply a linear

superposition of these three, viz.

nT i + nr + nR (2.1.1)

+T
The total velocity field, u (x,y,t), satisfies a similar relation.

In analyzing the ocean, we begin with the linear approach of (2.1.1).

After the linear solution is obtained, the magnitude of the nonlinear

terms will be estimated, and the assumption of linearity will be reexam-

ined. We shall find that, when the harbor entrance is narrow (6 << 1),

the radiation damping is 0(6). It is then possible for an incident

wave of O(sa) to excite a resonant harbor response of 0(E). To determine

a solution that is accurate to 0(62), one need only account for nonlinear

effects in the harbor, not in the ocean. This is the motivation for a

linear treatment of the ocean.

Deleting nonlinearterms in (1.2.16) and (1.2.17), we have for the

n-th harmonic

-inpn + v-u = 0
n n

-in n + nn = 0 (2.1.2)
n
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and

(72 + k2))n = 0 (2.1.3)nfn

2 2 1 2 2where k2 = n (1 + n P ). Note that n (x,y) is proportional to then 3n

velocity potential for t (x,y). From (2.1.2b), $n = 0 so that n (x,y)veoiyptnilfrun 0 0

is a constant everywhere in the ocean. By properly defining the water

depth, the constant can be set to zero, to the leading order, without

loss of generality. The term t0(x,y) represents a steady current and

will be presumed to be zero, to the leading order. Thus, the zeroth

harmonic may be deleted.

2.2 The Radiated Wave

If the harbor entrance were sealed, the boundary condition at the

coastline would be

T
u= .(o,y) = < y < ) (2.2.1)

k
n

and the total wave field would be given by

Tii
n (xy) = n (xy) + ny(-x,y) (2.2.2)

where n1(-x,y) is simply the reflection of the incident wave about then

y-axis. The function n4(x,y) can be any solution of the Helmholtz

equation in the domain x > 0, - co < y < o. For example, n(x,y)

might be an obliquely incident wave

-iaX' iyn ( 2 n 2)
r$(x,y) = cne nXe (n'n > 0, an +$g 2 = k2 (2.2.3)
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in which case

T nis
Tn(x,y) = 2cn cos ax e (2.2.4)

represents a standing wave whose amplitude varies sinusoidally in the

y direction.

With the harbor entrance open, the boundary condition on the y-axis

is more complicated:

T
T= ian T(o,y) 0 jyj > 6
ux(oy)x 1 (2.2.5)

kn Un(y) ly < 6

where Un(y) is the unknown velocity distribution in the harbor entrance.

The total wave field

nT(x,y) = n (xy) + n (-xy) + n (x,y) (2.2.6)

contains a radiated wave component which is the solution to the

following boundary value problem:

(V2 + k2)n = 0n n

an (o,y) 0 |yl > 6
n x f .A2 (2.2.7)

9X ik2

nnU(Y) lyI < 6
RR

lim 1,r ('-n ik ) = 0ar n n

where r x2 + y Equation (2.2.7c), known as the radiation condi-

tion, ensures that the radiated wave will propagate away from the har-

bor entrance, as required by causality. In essence, the radiation
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condition replaces the initial conditions that would be present in a

fully time-dependent treatment of wave scattering. For a detailed

derivation of the radiation condition, see Stoker (1957), pp. 174-181.

A formal solution for the radiated wave can be constructed using

Green's functions. The appropriate Green's function, which satisfies

(2.2.7) with Un(y) replaced by the unit singularity 6(y-y'), is found

to be

Gn(xyy') = ( n2)( H x2 + (-y'))) (2.2.8)

(1)where H is the zeroth order Hankel function of the first kind.

Since

6

Un(y) =f Un(y) 6(y-y') dy' (2.2.9)

-6

R
the solution for qn(x,y) is given by

k2 6

(xyH(k + (-y) 2)U (y)dy' (2.2.10)n2n 0on / + __)ny
-6

Let us examine (2.2.10) in the "far field" of the ocean, that is,

2 22
where r = x + y2 >> 6. Substituting the Taylor series

(1) (1)
H)(kn x2 + (-y1 2) = H 1 (knr) + y'[Hl + 2.2.11)

(2.2.11)

into (2.2.10), we have

R k2  6 aH(1) 6
n (xy) = --- {H)(knr)f U(y')dy' + [0 ] { y'U=(y'dy'+...

-6 -6

(2.2.12)
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The first term on the right hand side represents the field of a mono-
6

pole whose strength is proportional to the total flux, {Un(y)dy. The

second term is that of a dipole whose strength is proportional to the
6

dipole moment of the velocity distribution, f YUn(y)dy. When 6 << 1,

-6
the dipole term is smaller than the monopole term by a factor of 6, and

higher terms in the multipole expansion are still smaller. Defining

tte average velocity by

U n Un(y)dy' (2.2.13)
-6

we have

(-~k( )(kn6U )Hl) (knr)-[l + 0(6)] (2.2.14)

Note that, if U is 0(s), the radiated wave is O(skn6) in the farn n

field. We turn our attention now to the near field of the harbor

entrance.

2.3 The Impedance Boundary Condition

In the near field of the harbor entrance, r is 0(S) and, assuming

k n6 << 1,

H l)(knx2 + (y-)y) ) 1 + 2n( 2 + 7 -y-)2) + O(kn6znk6)2

(2.3.1)

where any 2 Euler's constant = .57722... . Substitution of (2.3.1) into
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(2.2.10) yields

k n yT, (x3,Y) ~- 1I+ in( /x2 + G-y_ )2)U (y')dy'* (2.3.2)

-6

Defining the average wave amplitude in the entrance by

6

Tin {R(o,y)dy (2.3.3)

-6

we have

2

= {I + n( f )(y)dy'y(2.3.4)n n n 1T 26jf j 2 ''n
-6 -6

SZ n Un

where

k2C 6 yk U (y')
Z n = ( 2 ){l J{n( 2ny-y') dy'dy} (2.3.5)

n -2 6 -6n

is called the "radiation impedance" of the ocean-harbor junction. The

real and imaginary parts of Zn are the radiation resistance and mass

reactance of the junction, respectively. Note that only the mass

reactance depends upon the details of the velocity profile, Un(y).

Introducing the variable v = y/6, and using (2.2.13), we arrive at the

following expression for the radiation impedance:

k .

Zn ( f)(kn6) [1 + -v (Zn kn6 + cn)] (2.3.6)

where

1 1

cn =zin + < nlv-v'(Un(V')/n)dv'dv (2.3.7)
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Observe that the radiation resistance and mass reactance are O(kn6)

and O(kn6znk n6), respectively. In deriving (2.3.6), we assumed that

k 6 << 1. This assumption is progressively worse for the higher har-

monics, which have larger value of k n6. We accept this deterioration

of accuracy in the hope that the magnitudes of the higher harmonics

are progressively smaller. Where greater accuracy is required in treat-

ing the high harmonics, the impedance approach can be abandoned in

favor of a semi-numerical method such as that of Lee (1971) or Chen

and Mei (1974). To predict the essential features, we choose to avoid

these elaborate alternatives.

The form of the velocity profile, Un(y), depends upon the geometry

of the harbor entrance and upon the wave field in the harbor, which is,

of course, still undetermined. In the linearized theory of harbor

resonance, the wave field in the harbor is expressible as an integral

over the Green's function for the harbor, in exact analogy with (2.2.10).

The requirement that rn(x,y) be continuous at x=o leads to a linear

integral equation for Un(y). The integral equation can then be solved

by variational approximation or a numerical quadrature procedure. This

approach is only feasible when the harbor is treated as linear, because

the use of Green's functions relies upon the principle of superposition.

To solve the nonlinear problem, a different approach must be found.

When flow spearation at sharp corners is not significant, one

may exploit the assumption that kn << I and determine an approximate

form for the velocity profile, without prior knowledge of the wave

field of the harbor. This has been recognized long ago by Rayleigh and

is easily demonstrated as follows: In the near field of the junction,
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the appropriate length scale is 6, and the terms in the Helmholtz

equation are in the ratio,

(k )n v2) ' 2 O(kn6)2 (2.3.8)'nan''n' n

It follows that

V2 n = 0 + O(kn6)2 (2.3.9)

so that Laplace's equation governs the motion in the near field with

a relative error of O(kn&)2. This is called the "quasi-static"

approximation. The name derives from the fact that an observer in the

near field sees steady flow and is unaware that it is being driven by

oscillatory wave motion.

To solve Laplace's equation, it is only necessary to specify the

geometry of the harbor entrance; the details of the adjacent wave

fields are irrelevant. For the geometry of Fig. 1.1, the potential

flow field can be found by applying a Schwartz-Christoffel transforma-

tion. Details are given in Unluata and Mei (1973). The radiation

impedance is then found to be

Z2 . )f(kl6)[l +- nkn6 + zn ](2.3.10)

where Zny = Euler's constant = .5772.

From (2.2.6), the average total wave amplitude at x=o is given by

T= 2H1(0) + = A + Zn U (2.3.11)
n n n nn

where
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A =2n 
1(O) 2n i r(o,y)dy (2.3.12)

-6

Equation (2.3.11) will be referred to as the "impedance boundary condi-

tion." Observe that it was derived without even specifying the geometry

of the harbor basin.

2.4 On the Validity of the Linear Approximation

Having obtained the linear solution for the wave field in the

ocean, we now estimate the magnitude of the neglected nonlinear terms.

The following table shows the orders of magnitude of the n-th harmonic

incident, reflected, and radiated waves in both the near and far fields

of the ocean.

Table 2.1

i r R
n n n

Far Field A A k 6U
n n n n

Near Field A A (k 6znk 6)U
n n n n n

The magnitude of Un/An is thus far arbitrary.

In section 1.3, Eq. (1.3.6), we have seen that, when the n-th

harmonic is resonated,

Un/An 10(g16) (2.4.1)
n

This result can be anticipated if one thinks of the harbor as a damped
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harmonic oscillator, with damping coefficient k 6, being driven by
n

an externally applied force of magnitude An. The response of the

nn
oscillator U at its natural frequency, is then given by (2.4.1).

Of course, a harbor is a continuous system and therefore has many

resonant frequencies, rather than just one.

In analyzing the harbor, we shall require that the maximum

value of U n be 0(c). Equation (2.4.1) then constrains An to be O(cekn6).

From Table A, the largest wave amplitude in the ocean occurs in the

near field, whereTi is O(ekn6znkn6). Thus, the largest nonlinearn n n

terms are O(ekn6znkn 6)2 in the ocean and 0(c2) in the harbor. It is

consistent to treat the harbor as nonlinear and the ocean as linear

only if

(skn6znkn6)2 «E2 (2.24.2)

which is the case whenever kn6 << 1. The conclusion, therefore, is

that, so long as kn << 1, it is consistent to neglect nonlinear effects

in the ocean, and to include leading order nonlinear effects in the

harbor.
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CHAPTER III

RESONANT OSCILLATIONS OF A LONG, NARROW BAY

3.1 Reduction to One Space Dimension

The harbor domain, -k < x < 0, consists of two regions: the near

field, lx| O 0(6), and the far field, -z < x << -6. We shall show that

the waves in the far field are essentially plane waves varying only in

the x-direction. Intuitively, this is because oscillations in the y-

direction have a minimum cutoff frequency given by a = 7r/2. Since

the frequencies under investigation are far below this cutoff, the y-

dependence of the near field disturbance cannot propagate outward into

the far field of the harbor.

A more rigorous demonstration of the fact that, for low frequency

oscillations, the far field of the harbor is one-dimensional, proceeds

as follows: Let us define a velocity potential q(x,y,t) for the

depth-averaged horizontal velocity u(x,y,t) by the relation u E v.

Integrating the momentum equation (1.2.12b) over space, the Boussinesq

equations take the form

t + VY.[(1 + T)0V] = 0

$t+ n +12tt +1V 2 =C(t) (3.1.1)

The integration constant C(t) can be absorbed into the term it by re-

defining c; hence we may set C(t) equal to zero, without loss of

generality. The boundary conditions in the far field of the bay are
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x (-z,y,t) = 0

y (x,6,t) = 0 (3.1.2.)

y)(x,-6,t) = 0

(3.1.2b,c) suggest that we rescale y, viz.

y* = y/6

From (3.1.1), with C(t) = 0, we then have

((1 +nf*)*2 = 62{t + [0 +n)( ] }

(3.1 .3)
1 2 = 2 + 1 2 + 12
7 * = -62 ft + n + } V 24tt + x

Integrating (3.1.3a) over y* and using the boundary conditions (3.1.2b,c)

we find

4Y)(xy*,t) = 0 + 0(62) (3.1.4)

so that, to 0(62), (x,y*,t) is independent of y*. From (3.1.1b), it

follows that n(x,y*,t) is also independent of y*, to 0(62).

We conclude, therefore, that to 0(62), n, 4, and u = +xare

independent of y and that the transverse velocity component v = 4Y is

zero. To be consistent with the neglect of 0(62) terms in the quasi-

static approximation of the near field (section 2.3), we shall terminate

the demonstration of the one-dimensionality of the far field at 0(62
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3.2 Equations Governing Time-Periodic Solutions

The one-dimensionality of the far field of the harbor greatly

simplifies the equations governing harmonic interactions. In one

dimension, equations (1.2.16) and (1.2.17) reduce to

-inn + u' + (nsun-s

(3.2.1)
2 1

-inun + k(n + (Uu0
an

and

1" + k 2 -in I snn n n 2 s n-s sl sn-s)"
(3.2.2)

where primes denote differentiation with respect to x. From (3.2.1),

u'= inn*(1 + 0(c)), and u - n (1+ 0(sp)), for n 0. Ton n n nsn

within the accuracy of the Boussinesq approximation

(nsuYn-s
s su-s + n'un-s5

-(i(n - s)n sTin-s
s

1
(usun-ss

(3.2.3)

i - . . )
s-s

(n f s)

=(usus + sn-s

(3.2.4)

~ n-s s n-s - s(n - s)fsfn-s
s

(n /s)

so that (3.2.2) can be written as
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Til 2 =1 n -5 s2)nn I1Iz(n +s),_,_ (3.2.5)n"+k ln(2 2 sn-s ~2s n-s s n-s

(n f s)

(3.2.5) is a second-order ordinary differential equation governing

the spatial variation of the n-th harmonic.

To solve (3.2.5), we require two boundary conditions on fn. The

no flux condition at x = -Z provides one boundary condition:

n(-z) = 0 (3.2.6)

The other boundary condition is obtained by requiring that, at x = 0,

the wave field in the harbor match smoothly with that in the ocean.

This matching will only be performed in an average way. Equation

(2.3.11), which expresses the average wave amplitude at x = 0 in terms

of the incident wave amplitude and the horizontal fluid velocity at

x = 0, yields the "impedance boundary condition,"

in(0) = An + ZnUn(0) (3.2.7)

Since Zn is O(knSznkn6) and un = in- + 0( 2), we have
kn

(0)=A nk + 0(sk nk) (3.2.8)
n

(3.2.5), (3.2.6), and (3.2.8) comprise the boundary value problem for

link().

The zeroth harmonic can be found directly by integrating (3.2.1),

viz.
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1u0(x) = - jns(x) u-s(x) +C0s (3.2.9)

n0(x) = -1 us 2 + D0 us (x)

Since all velocities, us(x), vanish at x = -z, it follows that C = 0

and u (x) is at most of O(c2). In fact, by the following argument,

u0(x) is seen to be at most of 0(s3): Multiplying (3.2.la) by n- and

(3.2.1b) by u-n and summing n from -co to CO, we have:

I -in (nnf-n + unu-n) + I (nu- =0(s
3,52C 2) (3.2.10)

nn n

where we have used the fact that k = n2 + 0( 2). Replacing then

summation index n by -p, we see that

Y -in (fn n, + uu)-n =X pNGpn + u uP) = 0 (3.2.11)
n pp-

so that

S ('nUn)' = 0(63) (3.2.12)
n

Integrating over x and using the boundary condition un(-k) = 0 for all

n, it follows that

I (nnu-n) = OCs3)(3.2.13)
n

and, from (3.2.9a), with CO = 0,

u=(x) - 0(33) (3.2.14)

The constant D in (3.2.9b) is determined by the impedance condi-

tion at the entrance, (3.2.7). In section 2.1, we noted that, by
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properly defining the mean depth in the ocean, A0 = 0. From (2.3.5),

Z= 0, so that i1(0) = 0 and

D0 = IY us(0)I2 (3.2.15)
s

From (3.2.9b), nO(x) is then

,n(x) = Jus(0)1 2 - I Ius(x) 2 (3.2.16)
s s

Thus n0 is Q(c2). At the back wall of the harbor, all velocities

us(-) vanish and no takes on its maximum value, viz.

IO(-k)= I us(0)j > 0 (3.2.17)

which shows that there is a mean set-up at the back wall.

Since n0 and u0 are strictly 0(c2) and O(c3) , they do not have

any feedback to other harmonics up to 0( 2). Thus, they can be calculat-

ed after all the other harmonics are obtained. For this reason, we

shall discuss the zeroth harmonic separately.

Equation (3.2.5) represents a system of coupled, nonlinear,

second-order differential equations for the harmonic amplitudes fl 1(x),

n2(x), '3(x),... . When -n (x) is 0(s), the coupling terms are 0(s2)

and are thus relatively small. By earlier theories, i.e., Mei and

Unluata (1972) and Bryant (1972), it is known that weak nonlinearity

does not produce first order effects within a distance of 0(1). There-

fore, for the first few resonant harbor modes, for which z = 0(1), the

effect of weak nonlinearity may be treated as a perturbation, as in

the next section.
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3.3 Regular Perturbation Analysis for the Lowest Resonant Modes or for

Very Small Amplitude Waves

Substituting the perturbation series

nn(x) = En (x + s2rj2) (x) + .. (3.3.1)

into (3.2.5), we obtain a sequence of linear problems. At 0(E),

(1) " + -k (1 ) = 0
n n n

(1)
n '(-z) = 0

(1) (0) = An - Zn1l)'(0) (3.3.2)

n
For simplicity, we shall assume that the incident wave is monochromatic,

so that only A1 is nonzero. Then,

n1 (x) = T1 cos k1(x + z)
1 1 1

T = [cos k1zY - (i/k1 )ZI sin k k]~ A1

n () = 0 n=2,3,4... (3.3.3)n

This is just the solution of linearized theory, which exhibits resonances

whenever cos kIz + (IM(Z)/k 1 ) sin k2 = 0.

At ( 2)

"(2) + (2)= 0
T11 + k11

"(2) + k2 n(2) _ 3 (1) (1) 3 (1 ) ,(1)
2222 2 I l ~2 l (3.3.4)

=3 2 2 + 211'+24
- T [cos2 k(x+ k) - k2 sin2 k(x +01
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l"(2) +k (2) =0
n n

n = 3,4,5...

with the homogeneous boundary conditions

(2)( 0n

ri(2) (0) + Zn( 2)-(0) = 0
k n
n

The solution to (3.3.4) and (3.3.5) is

(2)rj =0n n = 1,3,4,5...

(2) T2 {f(x) - (

f(0) + 2i. 2 2f -'O)
) cos k2x +

cos k2Z - 2- Z2 sin k2z
2

(3.3.6)

I+ k222 1-k2
f(x) 2 2 2) cos 2k (x + ) + 2

k2 .4k1 2k2

The solution for n2)(x) is comprised

term, a forced oscillation having the form

oscillation having the form cos k2(x + O)j.

of three parts: a constant

cos 2kI(x + z), and a free

Since

k - 4k2 = 4(l + Aw2) - 4(l+p 2) = 4p2

k2 -2k ~=2(1 + + i2) - 2(1 + y2 =2 (3.3.7)

it follows that the constant term is 0(p2) and the forced term is

0(1/12). Thus, the magnitude of e n2 )(x) is generally of order

E a(E/2) , in which case the perturbation series of (3.3.1) is valid only

for e/p 2 <<I1
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For a harbor which is not too long, e.g., one for which p2<< I,

the perturbation series of (3.3.1) is in fact valid even when e/p2 is

0(1). To show this, we expand

cos 2k1(x + Z) = cos (k2 ~ 2 )(x + )

cos k2(x + Z) + P2(x + k) sin k2(x+ z) (3.3.8)

and, from (3.3.6),

g(0) + 2 Z2 g

n 2) (x) 1 T {g(x -t 2 /cos k2(x + W)+} ()
cos k2k - -2- Zsin k2i

k2

g(x) =.(x + z) sink + ) (3.3.9)

so that, for a harbor having v29 an1, C 2  2)(x) is 0(s 2

In summary, the regular perturbation expansion is valid for

(i) E/p2 << 1 (small amplitudes) and any length harbor, or (ii)

E/P2 = 0(1) and "short" harbors having p2 << 1. To be consistent with

the Boussinesq approximation which neglects terms of o(33), we terminate

the perturbation series at (s 2

From (3.2.16), the zeroth harmonic first appears at O(E2) and is

given by

n(2) ) = 1 (1 (0)|2 - ( 1 2

1 (1),'(O) 2 _I(1) 2)(3.3.10)

2k1
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(3.3.3) yields

n 2)(x) = 2IT1 |2 (sin2 k z - sin2 k1(x +
2k12

= 12 fT1j2 (cos 2k1(x + z) - cos 2kgz) (3.3.11)
4k1

Figures 3.1(a), (b), and (c) show the frequency dependence ofjn 1j,

In2I, and no evaluated at the back wall of the harbor (x = -t), for a

harbor having the fixed dimensions a = 50 m., h = 20 m., and L = 1000 m.

The incident wave is taken to be monochromatic, viz. A2 = A3 = A4... = 0.

with A1 = .03. The large peaks occurring at z = 1.41, 4.36, and 7.36

correspond to linear resonances of the first harmonic. In Figure 3.1(b),

the smaller peaks flanking each of these large peaks correspond to

linear resonances of the second harmonic. As frequency increases,

dispersion has the effect of shifting the smaller peaks to the right

relative to the central peaks. Eventually, the small peak to the left

of the central peak overlaps the central peak. When this occurs, the

first and second harmonics are resonated simultaneously, and the

amplitude of the second harmonic can be a large fraction of the first.

As a result of this phenomenon, the peaks in Figure 3.1(b) do not

diminish with z as fast as the first harmonic peaks of Figure 3.1(a).

In Figure 3.1(c), the only peaks in n0 occur at values of k for

which the first harmonic is resonated. In contrast with the second

harmonic, the zeroth harmonic has no additional peaks because it has

no linear resonances of its own. Since n0 is generated by the square of

ag , the peaks in Figure 3.1(c) diminish with k more rapidly than the

first harmonic peaks of Figure 3.1(a).
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Figures 3.2(a), (b), 3.3(a), (b), and 3.4(a), (b) show the

spatial dependence of the harbor response for the first three resonant

modes, occurring at z = 1.41, 4.36, and 7.36, respectively. The (a)

figures show the spatial variation of the harmonic amplitudes n(x) I,

1n2(x)l, and no(x). (Recall that n, and n2 are complex quantities

whereas n 0 is real.) Observe that the amplitude of the second harmonic

increases with increasing distance from the back wall, in accordance

with (3.3.9), and that the zeroth harmonic is largest at the back wall

and zero at the entrance, in accordance with (3.3.11). In figures 3.3(a)

and 3.4(a), the zeroth harmonic is slightly less than zero, indicating

a mean set-down, at places where the first harmonic is smallest. This

slight set-down, however, is considerably smaller than the mean set-up

which exists over most of the harbor.

Figures 3.2(b), 3.3(b) and 3.4(b) show the total surface elevation,

n(x,t), at times t = mr/4, m = 0,1,2...7, for each of the first three

resonant modes. Note that, in each figure, maximum height of the wave

crest is greater than the maximum depth of the wave trough. Further,

in contrast with linearized theory, the free surface has no nodal points

and is at no time perfectly flat. These characteristics are also found

in the study of finite amplitude standing waves.

3.4 An Energy Theorem and Relation to the Korteweg-de Vries Equation

The regular perturbation method of section 3.3 breaks down when

s/12 and ex are 0(1) because resonant nonlinear interactions lead to

significant growth of higher harmonics. The remedy is to include higher
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harmonics at 0(E) in the perturbation procedure. Some consequences of

physical interest can be deduced by using the technique of "multiple

scales." From section 3.3, the spatial growth rate of the second har-

monic is Q(y-2) or 0(e71), so we introduce a slow spatial variable

x = Ex and assume

nx) E -n(1) (xi) + 62n2)(xi) + ... (3.4.1)

where x and x are treated as separate independent variables. Then

d a
dx ax

d2  a2  a2  2 a2  (3.4.2)
= + 2 _2dx ax axax ax

For the sake of clarity in identifying secular terms, we shall take

p2 to be 0(E) and rewrite (3.2.5) as

2 1 24 12 2 -2 1 n +s
n + nnn2nn+s2 -s n-s2sn sn-s

(3.4.3)

Substituting (3.4.1) and (3.4.2) into (3.4.3), we have at 0(e)

(4.+ n2 )l(xx) = 0 (3.4.4)
ax

and at 0(e2)

2 + 2(2) (x-) = - I P2n4n(l) - 2 2n (l)

ax Eaxa

aCl) a(1)
1 2 2 (1) (1)ln + s1 sa an-s

sj s n-s 2 ) -s ax ax

(3.4.5)
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The general solution to (3.4.4) is

1) (xk) = c+(x)ef+inx + &(i)einx (3.4.6)n n n

where c (x) and c(x) are so far arbitrary. The boundary conditions onn n
n (x) will be imposed at the end of the calculation.

Substituting (3.4.6) into (3.4.5), we have

( +2(2)+ +nx + f x einx

Dx n ~xx n n

+ terms with e i(n-2s)x (3.4.7)

where

dc 2 4+ 1 2 S2) 1 I(n + ss]cc

f (x) = 12in - - n c + [y (n - ) + n- s(n - s)ccn-s

(3.4.8)

In (3.4.7), the forcing terms f+e nx and f-e-inx are secular, that is,

they lead to solutions for n(2) x) which are unbounded in x. To

eliminate these terms, we set f (j) = 0, viz.n

dc . 2
+ - n3c + (n + s) +sn-s =0 (3.4.9)

dx 6ss

Equation (3.4.9) governs the spatial variation of the coefficients

Cn(~x), which first appeared at 0(E) in the expression for n l)(x,i).n n
The boundary conditions (3.2.6) and (3.2.8) yield, at 0(E);

in(c (-p)e inz - C(-,s)ein) = 0
n n

+ 2 (3.4.10)
cn(0) + c~(0) = An + nZ(c+(0) - C(0))

knn
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These two conditions, together with the two first-order differential

equations (3.4.9), completely determine c(X) and c~(i).

The system of coupled, nonlinear differential equations (3.4.9) is

no easier to solve than the original system (3.2.5). However, without

actually solving (3.4.9), we can make several important observations.

First, note that the differential equation for c+(x) does not involve
n

c (x) and vice versa. This means that, to 0(s), there is no resonantn

interaction between the right-going wave c ()ein(x-t) and the left-n
going wave cn)ein(x+t). Further, by multiplying (3.4.9) by cn and

summing from n = -O to n = +o, we obtain

c2 -i2 n3 c|2 + i (n + s)c csc- = 0 (3.4.11)2 - cn n6ns n sn-s

Replacing the summation indices by p = -n and q = -s, we have

n3 2 _ P3IC+|2=0
~n cnn- Z jcn n p (3.4.12)

I (n + s)c-ncsc=n-s=- (p + q)c qcpc _ = 0n s p q p-

so that (3.4.11) leads to

SIc (i)I|2 = 2E+
n 

(3.4.13)

SIc~(x)I2 = 2E_
n

where E+ and E_ are constants, independent of x. From (3.4.10a), it

follows that Ic+(-sz)I = icn(-sk)I for all n, and therefore E+ = E_ = E.

(3.4.13) can be interpreted as a statement of energy conservation.

To Q( 2), the time-averaged energy density at position x is given by
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27r

ED(x) =L (q2(x,t) + u2(x,t))dt

D~2r2

= 2 2r1{(' (lx)e-int)2 + ( (1 (x)e-int 2}dt
27 8 nn n n

E 21In ()x)I2 + |u l (x)2 + O(3) (3.4.14)

From (3.4.6)

r7 (x) = c (x)einx + c(~x)e-inxnn n

(1) ~ 1 )
uO (x) = n = c+(i)einx - c(x)e~inx (3.4.15)nan x n n

so that

D(X) = c2 + Ic()2 2 (3.4.16)
ED 4 n nn

where, from (3.4.13), E = E+ = E~ is independent of x. Thus, the total

energy, which is a sum of the energies contained in all the harmonics, is

independent of x. This means that an increase in the energy content of

the higher harmonics must necessarily decrease the energy content of

the first harmonic by the same amount.

Next, we shall establish a connection between (3.4.9) and the

Korteweg-de Vries equation. Consider the total wave amplitude, at

leading order,

nno x intn( X9t) = 1- n -int
n=-a>
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= c7()e in(x-t) + 0~(i)e-in(x+t)

E E F +(,x-t) + e F~(x,x+t) (3.4.17)

where

F (x,) E 0 c (R)e ine (3.4.18)
-00

Using the fact that

(n + s)cscn-s = I (n - s)csc n-s + I 2scscn-s
s S S

= 3 1 scs c(3.4.19)
s

we find from (3.4.9)

+ 2 3F 3+ aF
FF + +3F = 0 (3.4.20)6s E: 3  2 as

(3.4.20), which is known as the Korteweg-de Vries (or KdV) equation,

describes the propagation of nonlinear, weakly dispersive, shallow

water waves progressing in one direction.

In the limit of no dispersion, p2 + 0, (3.4.20) becomes

+ 1 F a = 0 (3.4.21)
2 as

which is a quasi-linear, first order partial differential equation

possessing the general solution

F = g(e - F X) (3.4.22)
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where g is an arbitrary differentiable function. (3.4.22) is an

implicit relation for F. The characteristic curves, along which F(x,e)

is constant, are given by

3
C = g(e - Z- ci) (3.4.23)

where c is a constant. If the function g(e) possesses a maximum at a

finite value of e, then the characteristics of (3.4.23) can be shown to

intersect. At the point of intersection, say (x0,e0), F takes on two or

more different values. In physical terms, a shock is formed at (X0,o0).

Therefore, in the limit of no dispersion, the KdV equation leads to

the formation of shocks.

When 12 is not zero, (3.4.20) is a third-order partial differential

equation, and its solutions are radically different from those of

(3.4.21); in fact, no shocks have been found in all the known solutions,

analytical or numerical. One special class of solutions, known as perm-

anent waves, is of the form

F(x,e) = G(e - yx) (3.4.24)

where y is a constant, and, from (3.4.20), G(o) satisfies the ordinary

differential equation

dG 2 3 3 d

-Y + =4p-4+ G d o = 0 (3.4.25)

(3.4.25) can be solved exactly in terms of the Jacobi elliptic function

"cn"; hence the name "cnoidal waves." These waves typically have sharp

crests, shallow troughs, and phase velocities which depend on amplitude.
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From (3.4.20), the equation for FC does not involve F_ and vice

versa. This means that the oppositely directed waves F+ and F do not

interact resonantly to 0(s) in our perturbation analysis. Benney and

Luke (1964) have used this fact to suggest that nonlinear standing waves

can be constructed by superposing two cnoidal waves of equal amplitude

travelling in opposite directions. Such waves differ from linear stand-

ing waves in that they do not have fixed nodal points and the free sur-

face is at no time perfectly flat.

The solution to (3.4.9), which satisfies the complicated impedance

boundary conditions at x = 0, in general will bear no simple resemblance

to cnoidal waves or nonlinear standing waves. In the next section, we

present a numerical procedure for obtaining the solution for the wave

field in the harbor.

3.5 Numerical Solution by Iteration

The infinite set of differential equations (3,2.5) is truncated at

the N-th harmonic, yielding the system

n + k n = R ns'n- +)Y S '%s
s s

n'(-z) = 0

nnnilO) = A - =3 Z -'Z~(Q)
n n k 2 n n

n = 1,2,3...N (3.5.1)

where
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k2 En 2(l 1-P2 2
kn ( 3~-

S 1 2 2
R =ns= (n -s)

Si (n + s)
ns2 n - s

Zn = k6 [ + 2i en k 6 - Zn ) ( ) (3.5.2)

(3.5.1) is as a nonlinear, two-point, boundary value problem. Unlike

an initial value problem, which can be solved by direct numerical inte-

gration, the solution of (3.5.1) requires an iterative procedure.

At the (p + l)-th iteration, we solve the linear boundary value

problem

(p+l)" + k2 (p+l) = R n(p)I(p+) V Sn'(P)n(P+l)
n n n ns s n-s + s ns s n-s

ryjp+-) (-s)4=O0
n

(p+) (0) = A - (ln)Z p+i)

n

n = 1,2,3...N (3.5.3)

using finite difference methods. The rate of convergence of successive

solutions can be increased by using a relaxation technique, which

consists of replacing n (Pl)(x) by

7-(p-I)(x) = Xn (x) + (1 - X)fn (x) (3.5.4)

With X = 1, convergence of successive iterates was found to be slow and

oscillatory; with X = .5, convergence was much faster and, in most cases,
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monotonic. The iterative procedure is terminated when successive solu-

tions for nn(x) differ by less than .001, that is, when

Max ) (x) - 4P(x)I < .001
x

n = 1,2,3...N (3.5.5)

If the maximum value of InN(x)I exceeds .001, truncation at the N-th

harmonic is deemed inadequate and the system of differential equations is

expanded to include the (N + 1) harmonic. The expanded system is then

solved by iteration. This procedure is continued until a "penultimate"

solution is found, for which

Max In,*(x)I < .001 (3.5.6)
x

where N* is the highest harmonic in the solution.

In the finite difference solution of (3.5.3), the domain -z < x < 0

is represented by NPT equally spaced points located at positons

x = -P + (J - l)-H, J = 1,2,3...NPT, where H is the interval size

H = Z/(NPT - 1) (3.5.7)

When the solution requires many harmonics, the choice for H must be

made correspondingly small. For example, if we insist that one wave-

length of the highest harmonic shall be represented by at least ten

points, then the requirement on H is

2w
kN*H<W-o= .628 (3.5.8)

Since the number of harmonics in the solution, N*, is not known a priori,
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it is necessary to make some initial choice for H, to solve the problem,

and then to check to see if (3.5.8) is satisfied. If it is not, the

problem must be solved again with a smaller value for H.

The finite difference representation of (3.5.3) is a system of

(N-NPT) linear algebraic equations for the complex amplitudes n+ )(x

n 1,2,3.. .N, J = 1,2,3...NPT. In principle, the solution can be

found by direct Gaussian elimination or matrix inversion, in O(N-NPT) 3

operations. A more efficient method is to first calculate N "basis

solutions" en(x,q) n = 1,2,3...N, q = 1,2,3...N, which are solutions to

the initial value problem for en(x,q) defined by

e" + k2e = Rs s$ e + yI s sn nn ns s n-s Snss n-s

e(-)0

en
1

0

if n = q

if n f q

n = ,2,3...N

q = ,2,3...N (3.5.9)

The solution to (3.5.9) can be rapidly calculated by "stepping" through

the difference mesh from x1 to xNPT. This requires 0(N2-NPT) operations

for each basis solution, using the differencing scheme of (3.5.13)

below. Altogether, 0(N3-NPT) operations are needed to calculate all

N basis solutions.

The complete solution to the boundary value problem (3.5.3) is a

linear superposition
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(p+l ) N
n (x) = aqen(x,q) (3.5.10)

q=q

The boundary condition (3.5.3c) leads to the system of N equations

N+.
1 [en(0,q) + ! Ze(0,q)]-a = A

q=l n k nn q An
n

n = i,2,3...N (3.5.11)

which determines the N coefficients aq, q = 1,2,3...N. The solution of

(3.5.11) by Gaussian elimination requires 0(N3) operations, which is in-

3
significant as compared with the Q(N3*NPT) operations needed to calculate

en(xq).

Thus, by this method, the total number of operations required to

solve the boundary value problem for p+ Cx) is 0(N3.NPT). On the

IBM 370 computer at the M.I.T. Information Processing Center, the compu-

tation time per iteration was found to be

Time (in P sec)~ 8(NPT).N3  (3.5.12)

This compares quite favorably with the O(N-NPT) 3 operations that would

be required if direct Gaussian elimination were used.

The finite difference approximation to (3.5.9) and (3.5.11) was

chosen to be

k2

A2en(x3) + [en($x+) + en (xJ-1)] =

Rns 4 )n(x-)e s(x3) + S An (x) Ae (x)
ns $ J n-s J s 5 - J
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en(x ) = n q
0 ntq

en(x) enxl +H2 [ R nsrs (x.)en(xi) knen(xP] (3.5.13)

and

N .
q= [e(x q) +i Aen Tq) Aq = (3.5.14)

where

Ae(x3) N-[e(xJ) - e(xj) ] = - e(x)] +0(H)

A2e(x3) H [e(x3 ) - 2e(x3) + e(xJ 1)]

2

= d2  e(x)] + 2(H2 (3.5.15)
dx 2 =

This finite difference representation was chosen for stability, accuracy,

and computation efficiency. In (3.5.13a), the advantage of

1 k2 [en(xj) + en(XJ-)] in place of simply knen(XJ) is that it yields

an unconditionally stable scheme for the initial value problem, in which

the right hand side of (3.5.13a) is zero. The expression for en (x2) is

derived from the Taylor series

en(X n(x) + He'(x1 ) + H2e"(x) + H3eg(x) + 0(H4) (3.5.16)

i n whichn 1eix e 
) =

in which e'n(x ) = 0 by the boundary condition (3.5.9b), and the values

of en(x ) and e" (x 1) are found directly from the differential equation,
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(3.5.9a). The relatively high accuracy in e nX2) is desirable for

solving initial value problems with en (x) and en(x2 as starting

values. The use of backward rather than central differences for A

increases the overall truncation error from 0(H2) to 0(H), but has the

advantage of increased efficiency in the computational algorithm. If

central differencing is used, a system of NxN linear equations for

en(XJ), n = 1,2...N must be solved at each point x3 of the finite

difference mesh. This would require an additional 0(N3.NPT) operations

for each basis solution and O(N4-NPT) operations for the N basis solu-

tions needed to solve the boundary value problem.

A printout of the computer program, with complete documentation,

is found in Appendix A.
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CHAPTER IV

EXPERIMENTAL STUDY OF THE LONG, NARROW BAY

4.1 Equipment and Procedures

4.1.1 Wave Basin

The wave basin, schematically shown in Figure 4.1, measures

43 ft. long by 25 ft. wide by 1.5 ft. deep and is made of concrete.

Care was taken to make the basin floor horizontal. The interior of

the basin is lined with two layers of plastic to prevent leakage and

to provide a smooth inner surface.

The wave generator consists of two aluminum plates, each 12.5 ft.

long by 1.5 ft. wide by .25 in. thick. The plates are connected to

each other by a thin plexiglas strip and are hinged at the bottom to

an eight inch wide plate which is bolted to the floor. Each plate is

connected to a separate flywheel by a bar whose point of attachment

can be adjusted to give different stroke lengths. A rotary drive

shaft connects the flywheels to a 1.5 horsepower motor whose maximum

output torque is 515 in.-lbs. and whose period is continuously variable

from .6 to 3.0 sec. The motor and flywheel assembly are mounted on

the basin wall behind the wave generator. A row of closely spaced

concrete blocks is placed behind and parallel to the aluminum plates

in order to dampen waves generated behind the wave maker.

The open-sea condition is simulated by placing absorbers along

the three walls facing the wave generator. The wave absorbers consist

of a 4 in. layer of rubberized horsehair mounted on a plywood base
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having a 1:5 slope. In preliminary tests, the wave absorbers were

found to have a reflection coefficient of 20% for a wave period of 1.5

sec. and a water depth of 6 in.

Two metal rails, mounted on the side walls of the basin, support

a movable aluminum carriage. Measuring instruments can be placed on

the carriage and swept along the entire length of the basin.

To inhibit the growth of algae, a dilute solution of CuSO4 was

added once every two weeks. The basin was completely emptied every

two months; the liner was washed clean; and deposits of aluminum

hydroxide were scraped from the wave generator.

4.1.2 Wave Gauges

Resistance wave gauges were used in conjunction with a Model 296

Sanborn recorder. A typical wave gauge consists of two parallel

stainless steel wires, measuring 5/64" in diameter and 8" long, separa-

ted by approximately .5". A bridge circuit is used to measure the

resistance between the parallel wires, which is proportional to their

depth of immersion in the water, with an error of roughly 3%. The

stylus of the Sanborn recorder deflects by an amount proportional to

the probe resistance and produces a permanent record on heat-sensitive

paper. Typical calibration curves are shown in Fig. 4.2.

4.1.3 On-Line Digital Computer

In order to analyze nonlinear wave profiles, the voltage output

terminal of the Sanborn recorder is connected by a long coaxial cable
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to a Hewlett Packard 3450A Multi-Function Meter, which has a maximum

sampling rate of 14 counts per sec. The output values of the digital

voltmeter are read directly into the central processing unit of the

computer, where they are used as input to a BASIC language program.

The computer program is remotely controlled by means of a switch

inserted in the coaxial cable joining the recorder to the computer.

In one position the switch allows the voltage of the recorder, which is

always less than three volts, to pass directly to the computer. In

the other position, the voltage across the terminals of a six volt

battery is fed into the computer. In each program for data reduction

and analysis, a special subroutine directs the execution of the program

in accordance with the position of this switch. (See Appendix B.)

4.1.4 Model Harbor

The model harbor consists of two L-shaped sections placed adjacent

to each other to form a narrow channel, as shown in Fig. 4.1. Two by

four in. beams join the legs of each L for structural rigidity. The

model is made of 3/4 in. marine plywood and is coated with epoxy based

paint, to increase its durability in water. Each leg of the L's is

eight ft. long and consists of a one ft. high wall attached to a six

in. wide foundation. Concrete blocks are placed on the foundations to

ensure that the model does not move under the action of incident waves.

To reduce flow separation, the right angle corner of each L was sanded

to a radius of curvature of roughly .5 in. After the harbor was

placed in position, strips of sponge rubber were used to seal any gaps
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between the basin floor and the harbor walls.

The back wall of the harbor consists of a four in. wide by one ft.

high by 3/8 in. thick plexiglas strip which is mounted on a wooden

foundation. The back wall is inserted between the two L's at any

desired position and clamped into place.

In the harbor resonance experiments, the wave amplitude in the

harbor was Fourier analyzed at intervals of two inches along the center-

line of the harbor channel. While the flow field in the vicinity of

the harbor entrance was observed to be two-dimensional, no lateral vari-

ation in the wave amplitude was observed beyond a distance of roughly

four inches into the harbor.

4.2 Multiple Reflections from Wavemaker

In the laboratory, the infinite ocean is modelled by a large but

finite wave basin. We must therefore consider to what extent reflec-

tions from the walls of the basin will perturb the steady-state wave

field in the "ocean." Raichlen and Ippen (1965) have found that the

effect of wall reflections is quite pronounced when all sides of the

basin are perfectly reflective. In our experimental set-up, wave

absorbers suppress reflections from three sides of the wave basin.

However, the aluminum wavemaker on the fourth side is an almost per-

fectly reflective surface.

To estimate the effect of multiple reflections from the wavemaker,

consider the geometry of Fig. 4.3. We shall treat the ocean as linear

and confine our attention to waves of a single frequency, w. The wave
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field in the ocean satisfies the Helmholtz equation

(V2 + k2 )n(x,y) = 0 (4.2.1)

where

n(x,y,t) = Re(n(x,y)e-it)

2 1 2 (4.2.2)
k = 1 +F(w h/g)

For simplicity, the harbor entrance will be replaced by a point source

located at (0,0), so that

= 2iQ6(y) at x = 0 (4.2.3)

where Q is proportional to the source strength. Denoting the depth-

averaged, horizontal velocity of the wavemaker by Um, we have

"x Urm2Um at x = km (4.2.4)

where kmZ= (w//gT) -Lm. When the harbor is shut (Q = 0), the solution

to (4.2.1) subject to (4.2.3), (4.2.4) is simply the standing wave

-i kU
ns(xy) = sin km ) cos kx (4.2.5)

m

Note that ls is theoretically infinite whenever km = (integer)e-r; in

practice, nonlinearity and viscous dissipation will limit ns to a

finite value.

When Q is nonzero, we must add to rs(x,y) the field due to the

radiating point source at (0,0). If there were no wall at x = zm, the

radiated wave would be
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R (xy) = QH( kr) (4.2.6)

just as it is in the infinite ocean. In order to satisfy the boundary

condition

= 0 at x = (4.2.7)
ax k

we place an "image" source of strength Q at position (2m,0). But now,

to satisfy the zero flux condition at x = 0, we must place another

image source of strength Q at position (-2zm,0). Proceeding in this

way, we obtain an infinite string of image sources, all of strength Q,

located on the x-axis at x = 2zm' 4 m, 6,..., as shown in Fig. 4.3.

The total wave field due to all these image sources is

fi(x,y) = Q IH (kr - 2nzmxI) + H(l)(klit + 2nzmx|) (4.2.8)
n=l 0 m

Along the x-axis

i(x,o) = E(-x) + E(+x) (4.2.9)

where

E(x) = Q H0l(2nkzm + kx) (4.2.10)
n=l

To approximate E(x), we follow Morse and Feshbach (1953) and assume

kim >> 1, so that, in the domain 0 < x < zm all Hankel functions may

be represented by their asymptotic forms. Then

CO 2inkp,

E(x) -/fQeikx ei m (4.2.11)
n=1 v'2nkkm + kx
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Except in the case k'm = (integer)-w, for which the sum in (4.2.11)

diverges, we may approximate E(x) by

Co i(2kz )v

E(x) ~ Qedikx d e r (4.2.12)
Q7jdv 2kkmv + kx

m

The integral in (4.2.12) can be evaluated explicitly in terms of Fresnel

integrals; but, for the purpose of estimation, we simply integrate

once by parts to obtain

2ikt

E(x) 7 Qeikx f(2ikz) e } + 0(k.m)-5/2 (4.2.13)
m 2kkM + kx

From (4.2.9), the net result of all multiple reflections is

i(2kz + kx) i(2kz - kx)

ii(x,o) ~ {L " m e m )+0k -/
/ZXo) k m /2kim + kx v2kz -kx m

(4.2.14)

The interesting feature of (4.2.14) is that, whereas the effect of a

single reflected wave is O(kmF)- 1/2 , the combined effect of all reflec-

tions is only of O(kkm)-

Our conclusion therefore is that, so long as

kk >> *I

(4.2.15)

kkm t (integer)-w

successive reflections from the wavemaker add destructively to produce

a net effect whose magnitude is only 0(kM)3/2 When (4.2.15) is

satisfied, the total wave field in the laboratory "ocean" is
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n(x,y) = (si k )cos kx + QH(l)(kr) + 0(kzm)-3/2 (4.2.16)n~~) sin ky 0m (..6

and the effect of multiple reflections is small.

When either of the conditions in (4.2.15) is violated, the effect

of multiple reflections can be quite significant. When this occurs,

the harbor basin and ocean basin are said to be strongly coupled.

Condition (4.2.15) states that strong coupling will occur unless (a)

the ocean basin is very much larger than a wavelength and (b) the

frequency of oscillation is not close to a resonant frequency of the

ocean basin.

Figs. 4.4 (a),(b),(c)show experimental measurements of the wave

field in the model ocean, along the centerline x = 0. The experimental

values

Lm = 31'2"

o = 2f/(1.545 sec) = 4.067 sec 1

h = .5'

yield

km = 32.96 = 10.49n

so that (4.2.15) is satisfied. The graph at the top shows the standing

wave amplitude ns(x,o) in the ocean, when the harbor entrance is

closed; the solid curve is (4.2.5). The middle graph shows the total

wave field when the harbor entrance is open, and the first resonant

- 85 -



.0

Co0

2f 'itrrf Sir /Orr

Fig. 4.4a. Experiment (.) vs. theory (-) for the wave amplitude in the ocean (h = .5 ft., 2a =
.33 ft., L = 1.211 ft., w = 4.067 sec-1 , L = 31.17 ft.). Top: harbor closed.
Middle: harbor open. Bottom: the radiatei wave. A1 = .015.



I 5

CO .0

.5

2r '-r 4w trr

Fig. 4.4b. Experiment () vs. theory (-) for the wave amplitude in the ocean (h = .5 ft., 2a =
.33 ft., L = 1.211 ft., w = 4.067 sec~ , L = 31.17 ft.). Top: harbor closed.
Middle: harbor open. Bottom: the radiatd wave. A1 = .027.



ofo

O..
CO

Fig. 4.4c. Experiment () vs. theory (-) for the wave amplitude in the ocean (h = .5 ft, 2a =

.33 ft., L = 1.211 ft., w = 4.067 sec-, L = 31.17 ft.). Top: harbor closed.
Middle: harbor open. Bottom: the radiat~d wave. A1 = .040.



harbor mode (having L = 1.211 ft.) is excited; the solid curve is

(4.2.16). The bottom graph shows the component of the total wave field

which is the radiated wave, nR(x,o) = QH l)(kx). Since the agreement

is fairly good, it confirms experimentally that (i) the ocean can be

treated linearly and (ii) reflection from the wavemaker is not signi-

ficant.

4.3 Real Fluid Effects

In the following two sections, all variables and coordinates are

dimensional.

4.3.1 Viscous Dissipation in Wall Boundary Layers

In a laboratory setting, the damping of surface waves in a slightly

viscous fluid is a well-known problem. For infinitesimal waves of

frequency w, propagating in a fluid of viscousity v, the fluid motion

is essentially irrotational except near boundaries, where viscous

boundary layers of thickness

6v = /2v/w(4.3.1.1)

are formed. Viscous energy dissipation occurs in (a) the boundary

layers near solid walls, (b) the boundary layer near the free surface,

and (c) the main body of the fluid. Ursell (1952) has shown that the

solid wall boundary layers account for most of the dissipated energy.

For oscillatory boundary layers, the transition from laminar to

turbulent flow on a smooth flat surface occurs at the critical
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Reynolds number (see Phillips (1966), p. 43)

R - 6 -~160c v (4.3.1.2)

where U is the particle velocity. In shallow water,

U9 = A-/iY (4.3.1.3)

where A is the wave amplitude, and

c vw (4.3.1.4)

In the experiments, h = .5 ft., gh = 16 ft2/sec2, w = 4.067 sec" 1,

v = l0-5 ft2/sec, and

R = (g)-887 (4.3.1 .5)

so that the transition to turbulence occurs when

(c) c = .18 (4.3.1.6)

In all but one of the harbor resonance experiments, the value of A/h was

below this critical value; therefore, laminar flows prevailed.

Batchelor (1976, pp. 353-358) derives the following expression for

the time-averaged power loss per unit area in an oscillatory laminar

boundary layer:

dP vP 1 2
S - p IUTI

v
(4.3.1.7)

where Re(UTe-ut ) is the local tangential velocity at the boundary

according to inviscid theory and p is the fluid density.
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To estimate the viscous losses in the far field of the long, narrow

bay, we shall use the linear expressionsfor the wave field,

n(x,y,t) = Re(T cos k(x + L)e-iwt)

(4.3.1.8)
tI(x,y,t) = Re(i gkT sin k(x + L)e-lwt)x + Q(y2)

where 0(p2) terms include the vertical component of velocity and the

depth-dependent terms of the horizontal velocity. The expression for T

in terms of the incident wave amplitude is found in Equation (1.3.6).

From (4.3.1.7), the power loss per unit area on all surfaces parallel

to the x-axis is

dPvv 1 PVgkT12 sin2 k(x + L) (4.3.1.9)dA 2 v6 xW Lv

Integrating over the side walls and bottom of the channel, we obtain

for the total power loss

P = (2a + 2h) f()dx
-L

=I pv |w2(2a + 2h) -L(kL - } sin 2kL)

~-jgkT|2(a + h)L (4.3.1.10)v

Let us compare P v with the energy loss due to radiation damping at

the harbor entrance. The time-averaged radiated power is given by

27T/c

P= (2a-h).- dt pgn(ot)u(o,t)
0

= (ah)pg(g9)Tj2 sin 2kL
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!~ah)pg(9K) Tj 2  (4.3.1.11)

and, from (4.3.1.10),

P /P L(k) a +h L
yRR a a

= (a2h)(kL)(v) (4.3.1.11)

In the harbor resonance experiments, a = 2 in., h = 6 in., W = 4.067

sec , v =10- ft2/sec and

- =/- 2.22 x 10-3ft.

kL (n + )Tr n = 0,1,2 (4.3.1.12)

so that

P RR=~(n + )-(2.79 x 102 (4.3.1.13)

Thus, the effect of laminar viscous damping is relatively unimportant

for the first few modes. It should be noted, however, that a small

amount of surface roughness can lead to the formation of turbulent

boundary layers, for which v is effectively much larger than its

laminar value. For this reason, care was taken to make the walls of

the harbor as smooth as possible.

In a large scale harbor, surface roughness and the Reynolds

number in (4.3.1.4) are much greater than in the laboratory, and so,

the boundary layers can be turbulent. From the experiments of Jonsson

and Carlsen (1976), the effective viscosity ve is typically of 0(100v).
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Taking the following typical values for a large scale harbor

h = 20 m

2a = 100 m

L = 1 km

Ve = 100V = 10r4 m2/sec

kL(1/4 wave mode) = 1.41

w(1/4 wave mode) = .02 sec 1

we obtain

= .1 m

P RP~R(.7)(1.41)(.005) ~ .005

so that the power loss in the turbulent boundary layers is again

negligible.

4.3.2 Separation Loss at the Entrance

Except at very low velocities, flow separation occurs at the sharp

corners of the harbor entrance, and energy is expended in the production

of eddies. The mechanism of flow separation is related to the adverse

pressure gradient caused by the sharp curvature of the boundary. If

the flow in the entrance is assumed to be quasi-static, then the

pressure drop due to flow separation can be described by the hydraulic

formula for steady flow

n(0~,t) - (0+,t) = |%Iu(0,t)Iu(0,t) (4.3.2.1)
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where 0 is on the harbor side of the entrance and 0+ is on the ocean

side. The constant f is an empirical friction factor whose value

depends on the Reynolds number and the geometry of the entrance. For

an asymmetrical entrance, f may take on different values depending on

whether u(0,t) is positive or negative.

An expression similar to (4.3.2.1) was used by Ingard and Ising

(1967) and Ingard (1970) in studying nonlinear sound transmission

through an orifice, with application to the absorption of sound at

high pressure levels. Experimental measurements of both the energy

loss and the distortion of the frequency spectrum of the transmitted

sound were found to agree with the hydraulic, steady-flow formula. In

particular, for a monochromatic wave incident on a symmetrical orifice,

only odd harmonics are generated by the nonlinear term fuful; whereas,

for an asymmetrical orifice, both even and odd harmonics are generated.

A reduction in the mass reactance, or inertia, of the orifice was

also observed by Ingard and Ising (1967), but this is not accounted for

in (4.3.2.1). The magnitude of the mass reactance depends on the

details of the velocity field, which is difficult to calculate when

the flow is separated. Since the inertia of the orifice is associated

primarily with the irrotational part of the flow, it is expected to be

smaller when flow separation occurs. At high sound pressure levels,

the mass reactance is observed to be one half its unseparated value,

which suggests that, at any given time, the flow field on one side of

the orifice is fully separated.

In water wave problems, separation loss has been studied in

connection with the construction of perforated breakwaters; see
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Jarlan (1965); Terrett, Osorio, and Lean (1968); and Mei, Liu, and

Ippen (1974). The separation loss at a narrow harbor entrance has

been studied numerically by Ito (1970) and analytically by Unluata and

Mei (1975). The latter show that the higher harmonics generated by the

nonlinear term -!-Ju(O,t)|u(0,t) in (4.3.2.1) are not large under usual2g

circumstances; rather, the primary effect of separation is to reduce

the amplitude of the fundamental harmonic. We shall therefore present

a simplified treatment of flow separation based on a monochromatic

entrance velocity, u(0,t).

To allow for an asymmetrical harbor entrance, we shall approximate

f by

f 1 when u(0,t) > 0
f = { (4.3.2.2.)

f 2 when u(0,t) < 0

This is a mathematical simplification since f is more likely to be a

continuous function of time. We then have

f-uluj = uju + +fu2 (4.3.2.3)

where

I f +f2 (1  f2)
(4.3.2.4)

2 1

Next, we Fourier analyze each term of (4.3.2.3):

-u | = UI L Y eint2g lul -2g n

- 95 -



fU2= nXf - int (4.3.2.5)2g 2g _0n
If we assume that u(0,t) has the simple form

u 'Ue-it + U*eit) = jul cos(t-t) (4.3.2.6)2

where is the phase of U, viz. U =uele then the Fourier coefficients

in (4.3.2.5) are found to be

fi f ,T u Iueint dt
0

4 sin(nir/2) fUJ2 ein
'r n(4-nt )

2 2 . (4.3.2.7)
f = -L f u2 e'nt dt

(o1/2 for n = 0
= fjUl 2 ein . 1/4 for n = +2

0 for all other n

Observe that fn is zero for even values of n; thus, we retrieve the known

result that, for a symmetric entrance (f=O), only odd harmonics are

generated by separation. For an asymmetrical entrance, the second and

zeroth harmonics are also generated; higher even harmonics would also be

generated if u(O,t) were more complicated than in (4.3.2.6).

For steady flow through the entrance of Fig. 1.1, the values of

f and f2 are found to be 1.0 and .4, respectively, according to Daily

and Harleman (1966), pp. 314-319. For oscillatory flows, the separation

zone on either side of x = 0 has only a half wave period during which

to develop. It may therefore be expected that the effective friction

factors are smaller for oscillatory flow. Moreover, in the experimental
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harbor model, the sharp corners at x = 0 are slightly rounded, which

further reduces flow separation. Thus, the average friction factor

1(f1 + f2) in the experiments is expected to be smaller than .7.

We shall see in section 5.1 that the value of f in the experiments is

roughly half this value. Taking f1 = .5 and f2 = .2 in the experiments,

we have f = .35, f = .15 and

f = TIU|2 1 - .15|UU1 3'T .j

f3 = 4.f|Ui2e3i4 = .03 U3/JUJ3 157T
(4.3.2.8)

f 0 = 2f UI = .075jUI

f2 = If IU 2e2 ic1 = .0375 U2

Since U is 0(s), the above coefficients are all 0(62). Note that the

main effect of separation is to alter the first harmonic, through the

coefficient f1. The term fi will lead to a slight increase in the

mean set-up, n0(x).

Taking the first harmonic component of (5.3.2.1) and using the

impedance condition, n1O(0+) = A1 + Z1U, on the ocean side, we obtain

YO(0) = A1 + Z1U + T/g

(4.3.2.9)

A I+ (Z1 + c )U

where

c, = $ TU|/g (4.3.2.10)
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The constant ce is an effective damping constant due to separation.

Eq. (4.3.2.9) is an effective harbor boundary condition which includes

(i) the forcing of the incident wave, A.; (ii) the inertia of the har-

bor entrance, Im(Z); (iii) the damping due to the radiated wave,

Re(Z1); and (iv) the damping due to separation loss at the entrance, ce.
Using (4.3.1.8) for the wave field in the harbor, we have

ri (0~) = T cos kL (4.3.2.11)

U = i T sin kL (4.3.2.12)

and, from (4.3.2.9),

T = A[cos kL - i9kS(Z + c ) sin kL]co 1 e

= A[(cos kL + 9k Im(Z1) sin kL) - i9 (Re(Z ) + 4 k T|T|) sin kL 1-~
W 1 W 1 37r w

(4.3.2.13)

Resonance occurs, as before, when cos kL + Im( Z1) sin kL = 0. At

resonance,

ITI = IAl[ (Re(Z 1) + - k K |TI) Isin kL|]~I

= ITJ|[l + aT/|Tfol] (at resonance) (4.3.2.14)

where

T| =AJ(9 t Re(Z 1)|sin kL)~

= ITI when f = 0 (no separation)

S-ky |T/Re(Z) (4.3.2.15)37JTJwRe
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Physically, a measures the amount of energy loss due to separation as

compared with that due to radiation damping. When a >> 1, separation

losses dominate radiation losses.

Solving (4.3.2.14) for ITI/ITJ|, we find

|Tj/jTo| = 1 1 + 4cc

~ a-1/2 when a >> 1/4 (4.3.2.16)

A plot of fT/IT vs. a is shown in Fig. 4.5. Suppose we allow Re(Z)

to approach zero while maintaining f and A constant (and nonzero). This

corresponds to the well-known harbor paradox, in which Re(ZI) is made

smaller by decreasing the width of the harbor entrance and JT0j is

observed to increase without limit. From (4.3.2.16), we see that

|TI/IT0! + 0 and that, specifically,

IT! jT a-1/2

= (4 f)-/2 (Re(Z)fTf)1/2

= (I 4k -/2 (JJAl 1/2 (4.3.2.17)
37 r w kisin kLj

Instead of increasing without limit, ITI approaches a finite value

proportional to (IAI/f)l/2. Thus, the presence of separation losses

effectively removes the harbor paradox.
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CHAPTER V

EXPERIMENTAL AND THEORETICAL RESULTS

5.1 Comparison of Theory with Experiment

The experimental set-up is shown in Fig. 4.1, where the coordinates

are defined.

Five length scales are involved in the study of the long, narrow

bay: harbor width, 2a; mean water depth, h; harbor length, L; wave-

length of the first harmonic of the incident wave, approximately

vg"hi-2ir/w; and incident wave amplitude, |A1 Jh. In the experiments,

these had the values

2a = 1/3 ft.

h = 1/2 ft.

L = 1.211, 4.173, and 7.136 ft.

/gh.(2w/w) = (4.0125 ft/sec) (1.545 sec) = 6,200 ft.

A1 -h = .0075, .0135, and .020 ft.

Three harbor lengths and three incident wave amplitudes were tested.

The corresponding dimensionless parameters are

6 E a-(w//gh) = .169

9 E L.(w/vg-h) = 1.227, 4.230, and 7.233

2 2
P = W h/g = .257

A1J = .015, .027, and .040

The values of z were chosen so as to produce the first three linearly
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resonant harbor modes. Each resonant mode was studied for three

different values of 1A1 I; so, altogether, nine resonant harbor

oscillations were examined.

The incident waves produced by the wave generator are not per-

fectly monochromatic. With the harbor entrance closed, the standing

wave amplitude in the ocean was measured at x = y = 0 and was found to

have the harmonic composition given in Table 5.1. The phases, Pn, are

defined by An E aAnt n and are given in radians.

Table 5.1

|A1 1 .015 .027 .040

A21 .001 .003 .012

A31 .000 (2) .001 .003

2 - 21 6,210 5.646 5.506

3 - 3 .671 1.795 5.314

These are used as inputs in the numerical calculations.

Table 5.2 compares the wavenumbers kn calculated by the approximate

Boussinesq dispersion relation

(knh)2 =n2 2(1 +TI n 2) + 0(np)6n3

2 = ,2where p = W h/g = .257, with those calculated by the exact dispersion

relation

n2 2 = (knh) tanh (knh)
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which is valid for arbitrary depth, e.g. arbitrary (np).

Table 5.2

n Exact kn (ft:.) Boussinesq kn (ft:1 )

1 1.060 1.056

2 2.448 2.350

3 4.710 4.048

4 8.228 6.244

5 12.850 8.986

Note that the error in the Boussinesq values for kn is quite large for

the higher harmonics.

The theoretical assumption that the far field of the harbor is one-

dimensional is only valid when transverse modes of oscillation, or

"cross modes," are not present. The minimum wavenumber, kc, for which

cross modes are possible, is given by

(kC).(2a) = T

so that, with 2a = 1/3 ft.,

kc = 9.42 ft:1

From Table 5.2, we see that cross modes can exist for the fifth harmonic

or higher. In the experiments, the amplitudes of these harmonics were

negligible, and the far field of the harbor was observed to be approx-

imately one-dimensional.
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The wave amplitude in the harbor was Fourier analyzed at intervals

of two inches along the centerline of the harbor channel. The zeroth

harmonic, or mean set-up, was removed by the Fourier analysis. The vari-

ation of the first three harmonic amplitudes with distance from the back

wall of the harbor is shown, for each of the nine experimenal cases,

in Figs. 5.1(a) through 5.1(i). The horizontal dotted line indicates

the maximum amplitude of the first harmonic predicted by linearized

theory. The solid lines are theoretical curves based on the inviscid

nonlinear theory of Chapter 3. These solutions were computed by the

numerical procedure of Section 3.5, with the incident wave composition

given in Table 5.1 and the Boussinesq values of kn given in Table 5.2.

Convergence of the iteration scheme was achieved in all cases with five

harmonics or less.

For the shortest harbor (L = 1.211 ft.) the higher harmonics are

small, owing to the short distance over which nonlinear interactions

take place, and the inviscid nonlinear theory agrees closely with

linearized theory. The reduction of the first harmonic amplitude is

due primarily to separation loss at the entrance, rather than to

nonlinearity, and will be discussed later.

In the two longer harbors (L = 4.173 ft. and 7.136 ft.), there is

considerable harmonic generation; in some instances, the second harmonic

is as large as fifty percent of the first. In such cases, the second

harmonic siphons an appreciable amount of energy from the first harmonic,

and therefore, the maximum amplitude of the first harmonic is observed

to be significantly less than that predicted by linearized theory. For

the longest harbor (L = 7.136 ft.), the agreement between experiment and
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and inviscid theory is fairly good. In particular, the significant

reduction of the first harmonic and the presence of higher harmonics

are well accounted for by the nonlinear theory. However, for the second

harbor (L = 4.173 ft.), we note the qualitative feature that the ob-

served second harmonic is higher than calculated, and that the observed

reduction of the first harmonic is larger than that calculated. These

discrepancies cannot be attributed to harmonic generation by flow separa-

tion at the entrance, as this was shown to be quite small, in Section

4.3.2.

We believe that part of the discrepancy between theoretical and

experimental values of the higher harmonics is most likely due to errors

in the Boussinesq values for kn, cf. Table 5.2. Errors in the values

of k n lead to corresponding errors in the positions of nodes and anti-

nodes of the harmonic amplitudes. These errors increase with increasing

distance from the back wall of the harbor. Furthermore, because the

harbor response is large at resonant values of knL, a small error in

k n can significantly alter the absolute magnitude of the n-th harmonic.

We suspect that this happens for the second harbor (L = 4,173 ft.). In

this case, the Boussinesq value of k2L is 9.807 which does not lie close

to a resonant mode; whereas the exact value of k2L is 10.216, which

7coincides with the fourth resonant mode, having kL = f + Im(Z).

Because of this, the second harmonic predicted by Boussinesq theiry is

expected to be smaller than that observed in the laboratory. The

energy conservation theorem of Section 3.4 implies that the first har--

monic must also be affected.

Figures 5.2(a), (b), and (c) show the results of a numerical
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calculation in which the exact values of kn are used instead of the

Boussinesq values, for the second harbor. Note that the second har-

monic is now larger and the first harmonic smaller than that obtained

previously (cf. Figs. 5.l(d),(e),(f)). This improves the agreement

between theory and experiment, though the quantitative agreement is still

not as good as for the long harbor (L = 7.136 ft.) case. Of course,

this ad hoc correction of the values of kn must await rigorous justifica-

tion by a nonlinear theory which is valid for arbitrary depth.

We have used the shortest harbor to determine the average friction

factor, ? = (f + f2), which appears in the entrance loss theory of2 1

Section 4.3.2. The value f = .35, which is half the upper limit expect-

ed on the basis of steady flow values for f1 and f2, was found to give

good agreement with the experimental data on the shortest harbor. In

Figs. 5.3(a) through 5.3(i), the experimental data for all nine harbor

resonances is compared with theoretical curves computed using the

entrance loss theory of Section 4.3.2, with ? = .35. Since harmonic

generation by separation has been shown to be small, only the main

effect of separation, e.g. reduction of the first harmonic, has been

included in the numerical computation.

The inclusion of entrance loss does not significantly improve the

agreement between experiment and theory for the second and third harbor

lengths. In particular, the quantitative agreement is still better

for the longest harbor than for the medium -ength harbor. By using

T = .35 and an ad hoc application of the exact dispersion relation, as

explained previously, we obtain the theoretical curves shown in Figs.

5.4(a),(b),(c) for the medium length harbor.
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5.2 Some Theoretical Predictions for a Large Scale Harbor

Having obtained some experimental confirmation of the nonlinear

theory, we shall investigate theoretically the response of a harbor

having the practical dimensions 2a = 100 m, h = 20 m, and L = 1000 m.

The first three lineary resonant modes occur for z = wL//g-i = 1.41, 4,36,

and 7.36 corresponding to wave periods of 5.305, 1.716, and 1.016

minutes, respectively. Table 5.3 summarizes the linear results per-

taining to these harbor modes.

Table 5.3

_ p_ Amplification (.n1C-z)/A1 )

1.41 7.95 x 10-4 .0705 14.35

4.36 7.60 x 10-3 .218 4.83

7.36 2.17 x 10-2 .368 2.99

Note that each value of P 2 is much smaller than the corresponding value

of 6; this is typical for large scale harbors. In practice then, the

assumption 6 << 1 is likely to be more restrictive than the assumption

P2 << 1.
p2

Consider the response of the harbor to monochromatic incident

waves, with normalized amplitude A1 = .03, A2 = A3 = A4... = 0.

Linearized theory predicts that, for the first resonant mode (z = 1.41),

the normalized wave amplitude at the back wall of the harbor will be

,nl(-k) = .430. This corresponds to a peak-to-trough wave height of .86

times the depth, which is greater than the value at which waves break in
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shallow water.

The predictions of inviscid nonlinear theory are shown in Figs.

5.5(a) through 5.5(d), for the case A = .03. Fig. 5.5(a) shows the

number of harmonics required in the numerical solution, N*, versus the

normalized incident wave frequency, z = wL/vgW. As expected, the

greatest number of harmonics are required at values of z corresponding

to resonant harbor modes, for which the wave amplitude in the harbor

is large.

Fig. 5.5(b) shows the variation of the first harmonic amplitude

at the back wall, (rI(-9J), with incident wave frequency, w. The solid

line is the prediction of linearized theory (and regular perturbation

theory, also); the points are nonlinear results. According to nonlinear

theory, the first resonant mode occurs at z = 1.37 and has a peak height

of .382; as compared with z = 1.41 and a peak height of .430 in linear-

ized theory. For the second and third resonant modes, the resonant

&mplification is smaller, and the discrepancy between nonlinear and

linear theory is therefore smaller.

Fig. 5.5(c) shows second harmonic generation due to nonlinearity.

The solid line is calculated from the regular perturbation theory of

section 3.3; the points are numerically-generated results. From

Table 5.3, we see that, in the range of z covering the first three

2resonant modes, z << 1/B2. Therefore, we expect that regular

perturbation will adequately describe second harmonic generation so long

as the wave amplitudes are not too large. Comparing 5.5(c) and 5.5(a),

we see that the major discrepancies between regular perturbation and

numerical theory occur where the numerical solution required many more
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than two harmonics. The various peaks in second harmonic generation

have been discussed in Section 3.3; here we simply recall that the

three central peaks correspond to linear resonance of the first har-

monic, whereas the two small peaks flanking each central peak correspond

to linear resonance of the second harmonic. The effect of dispersion

increases with increasing k and tends to shift the small peaks to the

right relative to the central peak. At k = 7.36, one of the small

peaks has almostoverlapped its adjacent central peak; this corresponds

to a situation in which both the first and second harmonics are reson-

ated simultaneously. As a result of this phenomenon, the peaks in

Fig. 5.5(c) do not diminish with z as fast as the first harmonic peaks

of Fig. 5.5(b).

The variation of J|l 3 (-z)J with z is shown in Fig. 5.5(d). Note

that the largest peak in Ir3(-R)| occurs at z = 1.41, corresponding to

the first resonant harbor mode, and has a magnitude of .023, which is

comparable to the magnitude of n2(-0). This is contrary to the usual

situation in which the higher harmonics are progressively smaller. The

reason for this can be seen from Table 5.3. Since the second resonant

harbor mode (z = 4.36) occurs at a frequency very nearly three times that

of the first resonant harbor mode (z = 1.41), we see that, when z = 1.41,

both the first and third harmonics are resonated simultaneously. This

is quite generally true for the long, narrow bay, because its resonant

modes appear at roughly odd multiples of '/2. This resonance mechanism

for the third harmonic is similar to the one occurring at z = 7.36 for

the second harmonic, though the underlying reasons are different for the

two cases.
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Fig. 5.5(e) shows the mean set-up at the back wall, n(-z), vs. Z.

The solid line is the prediction of regular perturbation theory, cf.

Fig. 3.1(c); the points are calculated from the numerical solutions

using (3.2.17). Note that the peaks occur at values of z for which the

first harmonic is linearly resonated. Since no depends primarily on

the square of nl, the peaks of no diminish in height more rapidly than

thoseof T,.

The numerically-predicted spatial dependence of the harbor response

is shown in Figs. 5.6(a)-(c), 5.7(a)-(c), and 5.8(a)-(c) for each of

the first three resonant modes. These figures may be compared with the

predictions of regular perturbation theory, shown in Figs. 3.2, 3.3, and

3.4, Note that the higher harmonics are progressively smaller; this

is the a posteriori justification for truncating the numerical solution

at a finite number of harmonics. The differences between the numerical

solutions and regular perturbation theory are mainly due to the fact

that the latter overestimates the first harmonic amplitude.

For incident waves with amplitudes greater than A1 = .03, the

numerical schemefrequern1y requires more than ten harmonics to achieve

convergence. This is not entirely satisfactory because the value of 6

associated with the tenth harmonic, at say k = 4.36, is 2.18. This

exceeds the value 6 =7T/2 = 1.5708 at which cross modes first appear in

the bay. Thus, at larger amplitudes, the assumption of one-dimension-

ality in the far field of the harbor is no longer tenable. Further-

more, the peak-to-trough wave heights predicted by the nonlinear theory

exceed half the depth. At such large amplitudes, the waves are no longer

correctly described by the Boussinesq equations.
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Thus far, we have not accounted for entrance loss due to separation,

whose primary effect is to reduce the resonant amplitude of the first

harmonic. The magnitude of this reduction depends upon the average

friction factor f, which in turn depends strongly upon the particular

shape of the harbor entrance. As argued in Section 4.3.2, we expect

? to be less than .7 for the long narrow bay. To estimate the influence

of separation, we shall use the conservative value f = .35, which

coincides with the value chosen for the laboratory experiments.

Of practical interest is the relative importance of nonlinearity

and separation in reducing the resonant amplitudes of the first harmonic.

Fig. 5.9 shows the variation of 1n1(-z| with increasing incident

wave amplitudes, A1 I) for each of the first three resonant harbor modes.

The dashed lines represent linearized theory; their slopes are just the

amplification factors of Table 5.3. The symbols "A" and "x" indicate

the values of Inj-z)I according to inviscid nonlinear theory (f = 0)

and nonlinear theory with separation (f = .35), respectively. Note

that, for the first resonance mode (t = 1.41),, the combined reduction

due to both separation and nonlinearity is roughly twice that due to

nonlinearity alone; thus both effects are of roughly equal importance.

For the second and third harbor modes (z = 4.37 and 7.36), the effect

of nonlinearity dominates the effect of separation. This is reasonable

since nonlinearity increases with increasing z, whereas separation does

not.

The spatial dependence of the harbor response according to numerical

theory with f = .35 and |A1 | = .03 is shown in Figs. 5.10(a)-(c),

5.11(a)-(c), and 5.12(a)-(c), for each of the first three resonant
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modes. These figures may be compared with the predictions of inviscid

nonlinear theory, shown in Figs. 5.6, 5.7, and 5.8. As expected, the

inclusion of separation losses leads to a reduction in the predicted

wave heights. For the first resonant mode, this reduction is sub-

stantial; for the second and third resonant modes, the viscous theory

agrees fairly closely with the inviscid theory.

When the incident wave is not monochromatic, nonlinear interactions

generate a great many new frequencies, some of which may be resonated by

the linear mechanism. Consider, for example, an incident wave having

A1 = 0 but A2 and A3 nonzero, as in Fig. 5.13(a). The incident wave

spectrum is dominated by two frequencies, 2w and 3w, where w coincides

with the first resonant harbor mode, viz. z= wL//gh = 1.41. The

harbor response according to linearized theory is simply an amplification

of A3, corresponding to the resonant mode with k = 4.36, and is shown in

Fig. 5.13(b). However, nonlinear theory allows for the generation of

additional harmonics; among them the first and fifth harmonics, both

of which coincide with resonant harbor modes. Fig. 5.13(c) shows the

harbor response at x = -z predicted by inviscid nonlinear theory. Nine

harmonics are present in the numerical solution. This means that the

wave spectrum of an incident wave can be significantly changed by non-

linearity. This possibility, somewhat similar to subharmonic resonance

in simpler physical systems, can be important to the design of mooring

systems for ships in the harbor.
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5.104.. Nonlinear theory with separation loss (f .35): First resonant mode of large-scale
harbor (h = 20 m., 2a = 100 m., L = 1000 m., A1 = .03, 9, = 1.41). Spatial variation
of the lower harmonics.
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5.1Oc. Surface profiles at times t = m7/4, m = 0,1,2...7. (See Fig. 5.10a).
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Fig. 5.12a. Nonlinear theory with separation loss (f = .35): Third resonant mode of large-
scale harbor (h = 20 m. , 2a = 100 m., L = 1000 m., A1 = .03, = 7.36).
Spatial variation of the lower harmonics.
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CHAPTER VI

CONCLUDING REMARKS

6.1 Validity of the Various Approximations

The proposed nonlinear theory for harbor resonance hinges on the

smallness of three parameters--E, 2, and 6--corresponding to the

assumptions of weak nonlinearity, weak dispersion, and a narrow harbor

entrance. The assumption c n p2 << 1 is required by the depth-averaged

Boussinesq equations; the smallness of 6 permits a linear treatment of

the radiated wave in the ocean and a one-dimensional treatment of the

nonlinear response in the long, narrow bay.

Two major approximations are made in the present work, namely to

decompose the solution into a finite number of harmonics and to use

an impedance boundary condition at the harbor entrance. The impedance

boundary condition is, however, only valid for the lowest few harmonics,

hence the calculated higher harmonics may be quantitatively unreliable

even if numerical convergence is achieved by including many harmonics.

Nonetheless, the lowest few harmonics are expected to be substantially

correct.

In a large scale harbor, the depth is usually comparable to or

smaller than the entrance width, so that p2<s 62 << 6. Therefore the

condition 6 << 1 is generally more restrictive than the condition

P2 << 1; in other words, the assumption 6 <<1 is likely to break down

before the assumption «2 << 1. For this reason, future efforts should

2first be directed at removing the restriction on 6, rather than on p
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More will be said about this in Section 6.3.

6.2 On the Importance of Nonlinear and Frictional Effects

For monochromatic waves incident on a long, narrow bay, the princi-

pal effect of nonlinearity is to transfer energy from the linearly

resonated first harmonic to higher harmonics. The efficiency with which

higher harmonics are generated depends upon e for a harbor having

2 2 2
z << l/2 and upon s/2 for a harbor with z 1/p 2. In some cases,

harmonic generation is enchanced by linear resonance occurring at an

integral multiple of the fundamental frequency. For example, when the

quarter-wave mode is excited by the incident wave, odd harmonics of

the incident wave frequency generally lie close to the higher harbor

modes and are therefore amplified. Similarly, when the fundamental

frequency resonates one of the higher harbor modes, the influence of

dispersion may cause the second harmonic to be linearly resonated also.

This phenomenon gives partial explanation for some observed features in

the experiments, for the second and third harbor lengths studied.

The energy relation of Section 3.4 indicates that energy is trans-

ferred to the higher harmonics at the expense of the first harmonic.

The resonant amplification of the first harmonic, fn1(-z)/A1J, is

therefore found to decrease with increasing incident wave amplitudes.

Thus, linearized theory overestimates the resonant response of a harbor

subject to monochromatic incident waves.

When the incident wave is not monochromatic, the difference tone

of two high frequency components may excite a highly resonant harbor
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mode occurring at a low frequency. In this case, nonlinear theory

indicates that the harbor response may in fact be more severe than that

predicted by linearized theory.

In all cases, harmonic distortion is to be expected from nonlin-

earity. In particular, the existence of a mean set-up, n(x), which

is highest at the back wall of the bay, is of practical importance,

even though it is usually quite small. Further, the details of the

frequency spectrum in the harbor may be important in designing mooring

systems for ships in the harbor.

The primary effect of friction is to increase the total damping in

the harbor. Boundary-layer dissipation is shown to be small compared

to radiation damping, except in unusually long harbors. The effect

of separation loss depends largely on the shape of the harbor entrance.

For an entrance with sharp corners, separation loss may be as important

as nonlinearity in damping the fundamental harmonic. For an asymmetrical

harbor entrance, separation may contribute substantially to the mean

set-up, nr(x); however, the generation of higher harmonics is usually

much less than that due to nonlinearity in the far field of the harbor.

Finally, separation is known to reduce the mass reactance of the entrance

and this may slightly increase the characteristic frequencies of the

resonant harbor modes.

6.3 Suggestions for Future Research

In this investigation, the long, narrow bay was chosen for its

simplicity, and certain assumptions were made for convenience in the
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mathematical formulation. Below we sketch how some of these limitations

might be removed:

(1) Extension to harbors of arbitrary shape:

For a two-dimensional harbor, there is a greater variety of possible

nonlinear interactions than in the one-dimensional, long, narrow bay.

In particular, nonlinearity will couple waves intersecting at oblique

angles. Since the density of linearly resonant modes (in frequency

space) is greater in a two-dimensional harbor, harmonics generated by

nonlinearity are more likely to be linearly resonated. Thus, nonlinear

effects are expected to be even more important in a two-dimensional

harbor than in the long, narrow bay.

At present, numerical procedures exist for solving the linear theory

for harbors of arbitrary shape, see Lee (1971) and Chen and Mei (1975).

The latter employ a hybrid analytical-finite element technique which is

based upon a variational principle; in this regard, it may be useful to

note that the Boussinesq equation can also be cast in variational form;

see Whitham (1967b).

(2) Extension to slowly varying depth:

This involves a slight modification of the constant-depth

Boussinesq equations and should present no theoretical difficulty; see

Peregrine (1972).

The extension of the present theory to water of arbitrary depth

involves the complete, three-dimensional theory sketched in Section 1.2.

This is both difficult and unnecessary for most large harbors, which
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typically resonate at frequencies that are well covered by the shallow-

water approximation.

(3) Extension to harbor with wide entrances:

In the present theory, the matching conditions at the entrance are

satisfied in an average way using an effective radiation impedance. This

is unsuitable for wide entrances or for high frequency waves, such as

might be generated through nonlinearity. A numerical procedure could

be used to ensure exact matching at every point in the entrance.

(4) Entrance Loss:

When flow separation at sharp corners is significant, inviscid

theory cannot be used to describe the flow field in the entrance. At

present, an understanding of separation is perhaps more accessible through

experiment than theory.
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APPENDIX A

NUMERICAL ITERATION PROCEDURE FOR SOLVING A NONLINEAR,

TWO-POINT BOUNDARY VALUE PROBLEM

The following is a FORTRAN IV computer program which solves

the boundary value problem posed in Section 3.5. The variable names

follow closely the notation used in Section 3.5. The principal variables

are:

XLONG -- harbor length (L)

XWIDE -- Harbor width (2a)

XDEEP -- harbor depth (h)

FRICT -- friction factor (?) in separation loss theory

NHMAX -- maximum number of harmonics

NH -- number of harmonics at a given point in the iteration
procedure. NH < NHMAX.

Z -- an array of size NHMAX containing the radiation
impedance for each harmonic

A -- an array of size NHMAX containing twice the incident
wave amplitude for each harmonic

R,DR -- arrays of size (NHMAX)2 containing the coupling
constants for the nonlinear equations

B an array of size (NPT)(NHMAX) containing the current
solution for in(xj), n = 1.2...NH, J = 1,2...NPT

E -- an array of size (NPT)(NHMAX)2 containing the NH
basis solutions en(xj), n = 1,2...NH, J = 1,2...NPT

On the IBM 370 computer at the M.I.T. Information Processing

Center, the total storage required by the program was found to be

Storage (in Kilobytes) = 52 + 8(NPT)(NHMAX)(NHMAX + 1)/1024
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The execution time for an iteration with NH harmonics was found to be

approximately

Time (in psec) = 8 (NPT)(NH)3

For example, with NPT = 135 and NH = NHMAX = 10, the total storage

required is 168 kilobytes, and the execution time per iteration is

approximately 1.08 seconds.
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C*****MAIN EPOGRAM: CCMPUTES INPUTS TO SUBROUTINE BVP
CCMPLFX A (20)jZ (20)
REAL W(2C)
CCMMCN /AREA 1/AIZ,Wr,H,NPTNHMAXFRICT
DATA XDEEP,XWIDE,XLONG/20.,100.,1000./
CALL TIMING (ISTART)
READ(5,*) ITIMF
ISTART=ISTART+6000*ITIME
NHMAX=10
WPITE(6,902) NUNAXXDEFPXWIDE,XLCNG
WFITE (7,902) NHMAXXDFEPXWIDEXLONG

902 FORMAT(' NiMAKXDEEP,XWIDE,XLCNG=',I3,3F10.1)
DO 1 T=2,NHMAX

1 A(I)= (0.,0.)
CALL COUJLE

5 READ(5,*) XL1,XL2,NXLXHIGHIPT,NH1,FRICT
IF (NXL .LT. 0) G0 TC 999
FRICT=FRICT*4./(3.*3.1415926)
A(1)=(1.,0.)*XHIGH/XDEEP
DO 20 J=1,NXL
XL = XL1+(J-1)*XL2
XA = XL*.5*XWIDE/XLCNG
XH = XL*XDEEP/XLONG
NPT=2+IPT*XL/.0628
HXL/ (NPT-i)
WFIT"El(6,901) NPT,XEIG,XLXAXH,H,FRICT
W RIT E (7, 901) NPTFXHIGH,XLXA,XHfH,FRICT

901 FORMAT (' NPT, XH IGH, XL,XAXH ,H=',I3,F6.2, 4F10.6/' FRICT='F10.6)
DO 10 I=1,NHMAX
Q=I*SQRT(1.+I*I*XH*XH/3.)
Z(i)=(0.,-1.)*XAt+.637*XA*(ALOG(Q*XA)-.875)
W (I) =1.+. 5*H*H*o*Q
Q=1./CABS (COS (Q*XL) +Q*Z (I) *SIN (Q*XL))

10 WPITF(6,900) I,Q
900 FORMAT (' AMPLIFICATICN OF HARMONIC I,12,'=',F8.4)

CALL PVP(NH1,ISTART)

MAIN0001
MAIN0002
MAIN0003
MAIN0004
MAIN0005
MAIN0006
MAIN0007
MAIN0008
MAIN0009
MAIN0010
MAIN0011
MAIN0012
MAIN0013
MAIN0014
MAIN0015
MAIN0016
MAIN0017
MAIN0018
MAIN0019
MAIN0020
MAIN0021
MAIN0022
MAIN0023
MAIN0024
MAIN0025
MAIN0026
MAIN0027
MAIN0028
MAIN0029
MAINO030
MAIN0031
MAIN0032
MAIN0033
MAIN0034
MAIN0035
MAIN0336



IF (NPT .LT. 0) GO TO 999
20 CONTINUE

GC TO 5
999 STOP

END

MAIN0037
MAIN0038
HAIN0039
MAIN0040
MAIN0041
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SUBROUTINE CCUPLL
C*****COMPUTES COUPLING CCNSTANTS FOR TH'r NONLINEAR EQUATIONS

REAL R(20,20),DR(20,20)
COMMCN /AiEA2/R,DR
DC 10 1=1,20
DC 5 L=1,20
IF (L .EQ. I) GO TC 5
Q=.5-.25* (1/(1+3*(2*L-I)))
R (I,L)=Q*(I*I-2*L*L+2*I*L)
DR(I,)=-(I+L)*Q/(I-L)-(2*T-L)*Q/L

5 CCNTINUE
10 CONTINUE

fETUEN
END

COUP0001
COUP0002
COUP0003
COUP0004
COUP0005
COUP0006
COUP0007
COUPOO08
COUPOO09
COUPO010
Coupooll
COUP0012
COUP0013
COUP0014

C,,



SUBROUTINE BVP(NH1,ISTART)
C*****SOLVES A BOUNDARY VALUL PROBLEN CONSISTING OF N COUPLED,
C*****NONLINEAF, SFCONE-CREEP LIFFERENTIAL EQUATIONS SUBJECT TO
C*****TWO-POINT BCUNDARY CONDITIONS

COMPLEX B(1350),E(13500)
COMPLEX S(20,20),C(20),Z(20),CCNJGCQ,A(20)
REAL W (20) , P(20 ,20) ,DR(20,20)
REAL BPRINT(10)
COMMON /ALEA1/A,Z,W,H,NPTNHMAX,FRICT/AREA2/RDR/AREA3/SC

IF (NH1 .GT. 0) G TO 5
Dc 10 J=1,NPT
JX= (J-1)*NHIIAX
DO 10 I=1,NHMAX

10 B(I+JX)=(O.,0.)
S NP=NPT-1

NHP=NHMAX*NPT
DO 80 NH=1,NIIMAX
QRELAX=1.
ITER=O

15 ITER=ITEE+1
IF (ITEB .GT. 50) GO TO 62
CALL TIMING(ISTCP)
ILEFT=ISIART-ISTOP
WRITE(6,899) ILEfT,NH

899 FORMAT(115X,I10,2X,13)
IF (ILEFT .LT. 1000) GC TO 81
DC 50 K=1,NH
KX=NHAP* (K-1)
DO 20 I=1,NH

20 E(T+KX)=1/(1+3* (I-K))
DO 35 J=1,NP
JX= (J-1)*t NHMAX
NX=NHMAX*(1-1/J)
10 35 I=1,NH
IX=I+JX+KX
CQ= (0.,O.)

BVP 0001
BVP 0002
BVP 0003
BVP 0004
BVP 0005
BVP 0006
BVP 0007
BVP 0008
BVP 0009
BVP 0010
BVP 0011
BVP 0012
BVP 0013
BVP 0014
BVP 0015
BVP 0016
BVP 0017
BVP 0018
BVP 0019
BVP 0020
BVP 0021
BVP 0022
BVP 0023
BVP 0024
BVP 0025
BVP 0026
BVP 0027
BVP 0028
BVP 0029
BVP 0030
BVP 0031
BVP 0032
BVP 0033
BVP 0034
BVP 0035
BVP 0036



12=1/2

DC 300 L=1,NH
IF ((I2/L)-(L/(I+l))) 200,303,100

100 CQ=CQ+R (IL)*13(L+JX)*E(IX-L)+DR(IL)*(B(L+Jh)-B(L+JX-NX))*(E(TX-L)
* -E (IX-L-NX))/(H*H)

GO TO 300
203 LX=T+JX

CQ=CQ+P(1,L)*CONJG(B(LX-T))*E(LX+KX)
* +D(IL)*CONJG(B(LX-I) -B(LX-I-NX))*(E(LX+KX)-E (LX+KX-NX))/(H*H)

300 CONTINUE
CQ=(.5*H*H*CQ+L (IX))/W(I)

35 E (IX+N'iMAX)=CQ+(NX/NH iMAX)*(CQ-r (IX-NX))
C (K)=h(K)
DO 50 =1,NH
JX=I+ NBP-NHIAX
IX=JX+(K-1)*NHP
CQ=Z (I)+FRICT*9. ,-1.) *CABS (B(JX) -B(JX-NHMAX) )/(H*T*I)

50 S(IK)=E(IX)-CQ*(E(IX)-E(IX-NH4AX))/H
CALL SYSN(NH)
Q=QRELAX
ICVRG=O
IGCOD=O
DO 70 J=1,NPT
JX=(J-1)* NHMAX
DC 65 T=1,NH
IX=T+JX

CQ=-Q*t B(IX) +Q'rC(1)*E(IX)
IF (NH .LT. 2) GO TC 61
DC 60 K=2,NH

60 CQ=CQ+Q*C(K)*F(IX+ (K-1) *NfHP)
61 ICVRG=CVRG+CABS(CQ)/.001
65 B(IX)=B(IX)+CQ
70 IGOOD=IGCCD+CABS (B (NH+JX))/.001

WFITE(6,900) (B (I),I=1,NH)
900 FORYMAT(1X,3P10F12.6)

QRELAX=.5

BVP 0037
BVP 0038
BVP 0039
BVP 0040
BVP 0041
BVP 0042
BVP 0043
BVP 0044
BVP 0045
BVP 0046
BVP 0047
BVP 0048
BVP 0049
BVP 0050
BVP 0051
BVP 0052
BVP 0053
BVP 0054
BVP 0055
BVP 0056
BVP 0057
BVP 0058
BVP 0059
BVP 0060
BVP 0061
BVP 0062
BVP 0063
BVP 0064
BVP 0065
BVP 0066
BVP 0067
BVP 0068
BVP 0069
BVP 0070
BVP 0071
BVP 0072



IF (ICVRG .GT. 0) GC TO 15 BVP 0073
IF (IGCOD .EQ. 0) GC TO d5 BVP 0074

30 CONTINUF BVP 0075
NH=NMAX BVP 0076
WRITE(6,%80) BVP 0077
WRITE(7,980) BVP 0078

980 FORMAT(' MOrE HARMONICS UFPDED') BVP 0079
GO TO 85 BVP 0080

81 WRITE(6,961) BVP 0081
WRITE(7,981) BVP 0082

981 FOtPMAT(' TIME RAN CUI') BVP 0083
NPT=-1 BVP 0084
GC TO 85 BVP 0085

82 WRITE(6,$82) BVP 0086
WRITE (7,982) BVP 0087

982 FORMAT (' NOT CONVERGFNT') BVP 0088
85 WRITE(6,901) Nil BVP 0089

WRITE(7,901) NH BVP 0090
901 FCJRMAT(' NH=',13) BVP 0091

o 9C J=1,NPT BVP 0092
DO 91 I=1,NH BVP 0093

91 BPRINT(I)=CAES(B(I+(J-1)*NHMAX)) BVP 0094
WRITF(6,902) (BPINT(I),B(I+(J-1)*NHMAX), 1=1,NP) BVP 0095

902 FORMAT(1X,3P15F8.3) BVP 0096
90 CONTINUE BVP 0097

WRITE(6,903) BVP 0098
903 FCRMAT(1HI1) BVP 0099

RETURN BVP 0100
END BVP 0101

00



SUBROUTINE SYSN (NH)
C*****SOLVES A SYSTEM OF N LINEAR ALGEERAIC EQUATIONS

COMPLEX S (20,20) ,C (2C) ,PVT
COMMON /AREA3/S,C
D0 50 K=1,NH
PVT=S(K,K)
IF (CABS (PVT) .LI. 1.E-5) WPTTE(1,90)
C (K)=C (K) /PVT
D0 20 J=K,NH

20 S(K,J)=S(K,J)/PVT
DO 40 1=1,NH
IF (I .EQ. K) GO TO 40
PVT=S (1,4)
C(I)=C(I)-PVT*C(K)
DO 30 J=K,N]

30 S(I,J)=s(IJ)-PVT*S(K,J)
40 CONTINUE
50 CONTINUE
90 FCRMAT (' **SYSN SINGULAR**')

RETURN
END

SYSN0001
SYSNO002
SYSNO003
SYSNO004
SYSN0005
SYSNO006
SYSNO007
SYSNO008
SYSNO009
SYSNO010
SYSN0011
SYSN0012
SYSNO013
SYSNO014
SYSNO015
SYSNO016
SYSNO017
SYSNO018
SYSNO019
SYSNO020
SYSNO021

to



C*****SAMPLE INPUT DAT
20
.25 .25 4 .6 1 -1 *35
1.21 .04 11 .6 1 -1 .35
1.75 .25 8 .6 1 -1 .35
3.72 .12 11 .6 1 -1 .35
5.25 .25 5 .6 1 -1 .35
6.36 .20 11 .6 1 -1 .35
1.41 1. 1 .6 1 -1 0.
1.41 1. 1 .5 1 -1 0.
1.41 1. 1 .4 1 -1 0.
1.41 1. 1 .3 1 - 1 0.
1.41 1. 1 .2 1 -1 0.
1.41 1. 1 .1 1 -1 0.
1.41 1. 1 .6 1 -1 .35
1.41 1. 1 .5 1 -1 .35
1.41 1. 1 .4 1 -1 .35
1.41 1. 1 .3 1 -1 .35
1.41 1. 1 .2 1 -1 .35
1.41 1. 1 .1 1 -1 .35
4.36 1. 1 .6 1 -1 0.
4.36 1. 1 .5 1 -1 0.
4.36 1. 1 .4 1 -1 0.
4.36 1. 1 .3 1 -1 0.
4.36 1. 1 .2 1 -1 0.
4.36 1. 1 .1 1 -1 0.
4.36 1. 1 .6 1 -1 .35
4.36 1. 1 .5 1 -1 .35
4.36 1. 1 .4 1 -1 .35
4.36 1. 1 .3 1 -1 .35
4.36 1. 1 .2 1 -1 .35
4.36 1. 1 .1 1 -1 .35
7.36 1. 1 .6 1 -1 0.
7.36 1. 1 .5 1 -1 0.
7.36 1. 1 .4 1 -1 0.
7.36 1. 1 .3 1 -1 0.

(output for this case on p. 181)

DATA0001
DATA0002
DATA0003
DATA0004
DATA0005
DATA0006
DATA0007
DATA0008
DATA0009
DATA0010
DATA0011
DATA0 012
DATA0013
DATA0014
DATA0015
DATA0016
DATA0017
DATAO18
DATA0019
DATA0020
DATA0021
DATA0022
DATA0023
DATA0024
DATA0025
DATA0026
DATA0027
DATA0028
DATA0029
DATA0030
DATA0031
DATA0032
DATA0033
DATA0034
DATA0035
DATA0036



NFT,XHIGIXLXAXH,H= 24
FRICT= 0.0
AMPLIFICATION OF HARMONIC
AMPLIFICATION OF HARMONIC
AMPLIFICATION OF HARMONIC
AMPLIFICATION OF HARMONIC
AMPLIFICATION OF HARMONIC
AMPLIFICATION OF HARMONIC
AMPLIFICATION OF HARMONIC
AMPLIFICATION OF HARMONIC
AMPLIFICATION OF HARMONIC
AMPLIFICATION OF HARMONIC

18.729173 215.369761

18.729173 215.369761

-20.925488 209.342420

-19.937202 209.556282

-19.463349 209.658980

-19.661296 208.032846

-19.409839 208.172917

-19.073937 208.113015

-19.061219 208.125353

-19.050982 208.125830
NH= 5
208.996 -19.051 208.126
208.602 -19.016 207.734
207.423 -18.912 206.559
205.462 -18.739 204.606
202.724 -18.496 201.879
199.218 -18.184 198.387
194.955 -17.804 194.140
189.948 -17.356 189.153
184.212 -16.840 183.440
177.767 -16.258 177.022
170.634 -15.612 169.919
162.840 -14.901 162.157
154.412 -14.130 153.764
145.382 -13.300 144.772
135.785 -12.413 135.217
125.661 -11.474 125.136
115.050 -10.486 114.571
103.998 -9.453 103.567
92.551 -8.379 92.171
80.760 -7.269 80.432
68.677 -6.127 68.403
56.355 -4.960 56.137
43.850 -3.772 43.687
31.217 -2.570 31.111

0.30 1.410000 0.070500 0.028200 0.061304

1=
2=
3=
4=
5=
6=
7=
8=
9=

10=

14.3488
0.9706
3.5589
0.9543
2.1271
0.9675
1.4810
0.9950
1.1839
1.0105

-3.293194

-3.307885

SAMPLE OUTPUT

108635 1

108634 1

108634 2

.108631 2

108629 2

2.618542

2.323011

-3.315073 2.182728

-3.134884 1.597423 3.473077 -1.074277

-3.127156 1.602835 3.448527 -1.062287

108626 3

108621 3

108614
-3.032238 1.585308 3.693797 -0.573599 0.079876 0.300598

108601
-3.032259 1.588185 3.690494 -0.579309 0.080550 0.300239

108588
-3.027946 1.591547 3.683764 -0.564491 0.058331 0.301515 -0.156799 -0.128566

3.421
3.492
3.714
4.098
4.654
5.374
6.240
7.220
8.276
9.366

10.444
11.464
12.378
13.142
13.711
14.044
14.105
13.865
13.299

-3.028
-3.125
-3.414
-3.886
-4.526
-5.314
-6.222
-7.219
-8.270
-9.335

-10.373
-11.339
-12. 189
-12.881
-13.373
-13.626
-13.606
-13.284
-12.640

12.394 -11.658
11.144 -10.332

9.559 -8.666
7.667 -6.669
5.540 -4.363

1.592
1.559
1.462
1.301
1.080
0.803
0.474
0.099

-0.314
-0.756
-1.218
-1.688
-2.155
-2.606
-3.026
-3.402
-3.721
-3.970
-4.135
-4.207
-4.176
-4.035
-3.782
-3.414

3.727
3.663
3.473
3.166
2.755
2.262
1.716
1.175
0.793
0.885
1.341
1.875
2.384
2.828
3.185
3.440
3.586
3.617
3.532
3.332
3.018
2.595
2.070
1.458

3.684
3.619
3.428
3.117
2.699
2.190
1.610
0.983
0.334

-0.310
-0.1924
-1.481
-1.961
-2.342
-2.610
-2.756
-2.776
-2.672
-2.454
-2.136
-1.737
-1.282
-0.797
-0.309

-0.564
-0.563
-0.559
-0.556
-0.556
-0.567
-0.593
-0.642
-0.719
-0.829
-0.973
-1.150
-1.357
-1.586
-1.825
-2.059
-2.270
-2.438
-2.540
-2.557
-2.468
-2.256
-1.911
-1.425

0.307
0.314
0.332
0.360
0.390
0.414
0.425
0.414,
0.373
0.299
0.192
0.092
0.189
0.382
0.593
0.800
0.985
1.131
1.223
1.247
1.195
1.064
0.859
0.593

0.058
0.058
0.055
0.051
0.047
0.042
0.037
0.035
0.036
0.043
0.059
0.085
0.125
0.178
0.245
0.325
0.412
0.501
0.583
0.648
0.683
0.678
0.622
0.506

0.302
0.308
0.328
0.356
0. 397
0.412
0. 424
0.413
0.372
0.296
0.183
0.035

-0.142
-0.338
-0.540
-0.731
-0.895
-1.014
-1.075
-1.065
-0.980
-0.820
-0.592
-0.310

0.203
0. 195
0. 173
0. 139
0.099
0.063
0.053
0.075
0.101
0. 120
0.129
0.127
0.118
0.106
0.103
0.118
0.149
0. 188
0.227
0.257
0.269
0.258
0.217
0.148

-0.157
-0.152
-0. 138
-0.117
-0.091
-0.063
-0.037
-0.015

0.002
0.013
0.021
0.028
0.037
0.052
0.074
0.106
0.144
0.186
0.225
0.253
0.262
0.244
0.196
0.114

4

4

5

-0.129
-0.122
-0. 104
-0.076
-0.040
-0.001
0.038
0.073
0.101
0.120
0.127
0.124
0.112
0.093
0.072
0.052
0.037
0.031
0.034
0.046
0.064
0.082
0.095
0.094

-D
00,--I



APPENDIX B

FOURIER ANALYSIS OF EXPERIMENTAL DATA

The following is a BASIC computer program which Fourier

analyzes the experimental data, while the experiment is in progress.

The execution of the program is remotely controlled by a switch, as

explained in section 4.1.3. The principal variables in the program are:

T -- number of'voltage readings taken in one complete
wave period

KI -- number of harmonics analyzed

C -- a calibration factor

F -- an array containing (T+l) voltage readings

A -- a discrete Fourier cosine transform

B -- a discrete Fourier sine transform

The instruction CALL(1,D,F) reads the external Hewlett Packard 3450A

Multi-Function Meter and stores the voltage reading under the variable

name D.
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10 DIM F[30J
20 READ T,KI,C
30 DATA 22,4,1
40 LET T1=T+1
50 LET I=-2
55 LET 1=1+2
60 GOSUB 1000
70 FOR J=1 TO TI
80 CALL (1,D,F)
90 LET F[J]:D
100 NEXT J
110 GOSUB 3000
120 GOTO 55
130 STOP
1000 REM ****************** SWITCHING ROUTINE *************
1010 CALL (1,D,F)

1020 IF D >= 5 THEN 1040
1030 GOTO 1010
1040 CALL (I,D,F)
1050 IF D <= 5 THEN 1070
1060 GOTO 1040
1070 WAIT (500)
1080 RETURN
3000 REM ******************** FOURIER ANALYSIS *********
3010 PRINT I

3020 LET F[IJ1=(F(1J1+F[ TI1) /2
3030 LET H=6.28318/T
3040 FOR K= TO K!
3050 LET A=B:0
3060 FOR J=1 TO TI-1
3070 LET A=A+F[J]*COS((J-1)*K*H)
3080 LET B=B+F[JI*SIN(CJ-1)*K*H)
3090 NEXT J
3100 PRINT 2*SQR(A*A+B*B)/T/C,
3110 LET P[K]=ATN(B/A)+(1-SGN(A))*1.5708
3120 NEXT K
3130 PRINT
3140 PRINT " ",
3150 FOR K=2 TO K1
3160 LET P=P[K]-K*P[1]
3170 PRINT P-6.28318*INT(P/6.28318),
3180 NEXT K
3190 PRINT
3200 RETURN
9999 END
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