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ABSTRACT

This research develops methods of self-reorganization which
can provide a complex linear dynamic system with the ability to re-
structure itself to compensate for failures in its effectors and sensors
and changes in the linear dynamics. The approach taken is to identify
the failure or change in the system and use that information to re-
structure a feedback control loop to maintain closed-loop stability if
possible. Controllability and observability criterion are used to
evaluate the potential ability of a system to tolerate failures in its
effectors and sensors. A lower bound is established for the number
of effectors and sensors a linear time-invariant system reguires for
complete controllability and observability. The problem of identifying
failures and changes in the system is solved through the use of detec-
tion filters, which produce error signals indicating the location of a
failure or change. It is shown that it is always possible to construct a
filter capable of detecting any single failure or change in the observable
dynamics of the system. Extensive results are developed on the design
of a filter capable of detecting a substantial number of different failures
or changes. When the state of the system is fully measurable, a single
filter can provide information about all effector and sensor failures and
all changes in dynamics. Practical design algorithms are presented.
To deal with the feedback restructuring problem several algorithms
are presented for determining a linear time-invariant state feedback
law. These algorithms can be used on-line to produce any desired
closed-loop poles for the controllable portion of the system.
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GENERAL NOTATION

Lower case letters indicate vector or scalar quantities;
upper case letters indicate matrix quantities or Laplace

transforms.
The following quantities are general n-vectors: w, x, z, Z,.

The following quantities are general integers: i, j, k, ki’

£, p.
The following are general matrix quantities: Q, S.

T is a general coordinate transformation; a subscripted T
is a specific coordinate transformation defined in the
vicinity of its use. Tisa general triangular matrix;

a subscripted 'Z’E‘ is a specific triangular matrix defined

in the vicinity of its use.

Subscripted vector and matrix quantities not appearing
explicitly in the table of symbols are partitions or elements
of the unscripted quantity, e. g.', Aij is a partition of A.

A lowe;' casge letter is used when the partition is a vector
or scalar guantity, e.g., bi is the ith column of B.

Underscores are used occasionally to indicate a vector

quantity which may be confused with a scalar quantity.



VII. The following notational rules apply to any quantities not

appearing explicitly in the table of symbols:

1. ( )T indicates a transposed quantity.
—— P
2. ( )Yand ( ) indicate transformed quantities

resulting from coordinate transformations.

ud
3. ( ) indicates an augmented matrix.
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CHAPTER 1

INTRODUCTION

1.1 Background

A self-reorganizing system is a system capable of altering its
own internal structure in order to maintain a satisfactory performance
level in spite of changes or failures in its components or changes in the
environment. The goal of self -reorganization is reliability. As
engineering systems become more complex, the problem of achieving
reliability becomes increasingly difficult. When a large number of
components is involved, the chance that one or more of them will fail
can be significant even if the components are highly reliable as indi-
viduals. One way of increasing overall reliability is to increase the
reliability of individual components. Often such improvements must
await technological developments and scientific advances in areas
related to the theory, design, construction of specific components.
Usually the systems engineer is concerned with another approach to
achieving reliability, which is the use of redundancy. Redundancy can
take many forms, but basically it may be regarded as ''padding'’, or
providing somewhat more than is necessary for the system to function
satisfactorily. In this way certain component failures can be tolerated
without causing the failure of the system as a whole.

One of the simplest kinds of redundancy is what might be called

stanldby redundancy. ' This type of redundancy is seen in the use of spare

13



components and backup systems. In case of failure, the malfunctioning
component or system is simply replaced by the spare component or
backup system. When this replacement process is carried out auto-
matically, the system exhibits an elementary form of self-reorganization.

One of the appealing features of standby redundancy is its rela-
tive simplicity, both in design and implementation. Design of a spare
component, for example, may be a simple matter of duplicating the
primary component. Implementation is normally accomplished by
isolat ing a defective component and switching in a spare. Seldom is it
necessary to significantly alter other parts of the system to obtain
compatibility with the spare component. Therefore, no extensive
logical capacity is necessary to implement a replacement. However,
even in this elementary form of reorganization,one part of the process
which is not always simple is the detection or localization of a failure
in time to deal with it before it causes the failure of the entire system.
Some kinds of failure can be detected and located immediately by simple
sensory information; for example, loss of pressure in a hydraulic
system. In other cases the problem of locating a defective component
is circumvented by grouping a number of components into a single unit
whose failure can be detected easily. Then, instead of trying to locate
a particular defective component in the unit, the entire unif is replaced.
A backup system is an extreme example of this approach. It is a rather
inefficient use of hardware, since a number of good components are
discarded along with the defective one.

Although it can be an effective means of achieving reliability,

standby redundancy with replacement reorganization has certain limita-
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tions. In many cases, providing spare components is not the most
efficient use of hardware. Better performance can often be achieved

by making simultaneous use of all redundant components instead of
allowing them to remain idle until failure of the primary component.

For instance, a number of redundant sensors measuring the same
quantity can produce a more accurate estimate (i.e., a smaller variance)
than a single sensor. A number of devices whose total output is the sum
of individual outputs (such as force-applying devices or parallel
connected amplifiers) can also be used more effectively in concert than
individually. Not only is the total capacity or saturation level increased,
but the average operating level of each device is reduced. A lower
o;laerating level may yield a longer average lifetime for each device.

The same argument applies to a group of components whose total output
is the product of individual outputs, such as cascaded amplifiers.
Admittedly, in the case of components with limited lifetimes which are
not much affected by operating levels, standby redundancy may still be
the most effective way to achieve acceptable reliability.

A second limitation of standby redundancy is that it provides
little protection against degradation of performance due to changes in
operating characteristics; for example, changes in dynamic behavior
such as might be caused by environmental conditions. If the changes
can be predicted prior to putting the system into operation, and they are
not 1:0.0 numerous, it may be possible to incorporate several operating
modes in the system. As changes oécur, the system could be switched
to the mode appropriate for existing conditions. However, determining

when such changes occur may still be a significant problem. If the
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changes are not known ahead of time, then a more general restructuring
capability will be necessary to deal with them.

The motivation, then, for turning to more sophisticated self-
reorganization schemes is to produce a system with a greater capa-
bility for coping with changes in the system and in the environment, and
to make more efficient use of redundancy. With greater restructuring
capabilities it becomes possible to employ a kind of redundancy which
is more active than the standby redundancy described above. Instead of
providing spare components, redundancy is obtained by designing the
active components to supplement each other, or to serve overlapping
functions. Then when a component fails it is not replaced by a spare,
but its function is taken over by other active components.

An important special case of this kind of redundancy is seen in
the use of redundant multi-dimensional arrays of like components which
measure or control a vector quantity. For example, the inertial
angular velocity of a body can be measured by three orthogonal single-
degree-of-freedom inertial reference gyros. By arranging more than
three such gyros in a three-dimensional array, a certain degree of
supplementary redundancy among the sensors is obtained. This example
is a simple illustration of the more efficient use of hardware afforded by
supplementary redundancy as opposed to standby redundancy. If a
single redundant gyro were added to a set of three orthogonal gyros to be
used purely as a replacement, it would be mounted with its input axis
colinear with that of one of the first three gyros. If could then serve as
a backup to that gyro only. But if it were mounted so that its input axis

had a nonzero projection on all three input axis for the first gyros, then
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it would be supplementary to all three and complete information would
be retained if any one of the gyros failed. However, the required data '
- processing is more complex than in the standby case. Gilmore [ 8]
has investigated such redundant gyro arrays. Another example of
redundant like-component arrays can be found in multi-jet reaction
control systems. Crawford [ 6 ] has considered the design and
implementation of redundant reaction jet arrays in spacecraft control
systems.

The use of supplementary components requires more re-

- structuring capability than standby redundancy, because when a compo-
nent fails the system must reorganize itself to function with fewer
active components. Having been provided with an expanded capacity

for reorganization, a system then has a potential for dealing with other
changes in the system or in the environment. Some changes might be
similar to a failure in that a component becomes unusable; for instance,
the target of a star tracker being occulted by another body. Other
changes, such as in dynamic behavior, are more subtle.

In order to administer the more sophisticated restructuring
schemes, greater logical and computational capacities are required.
These greater capacities have become feasible with the rapidly growing
capabilities of special purpose computers. This growth has stimulated
an inc_reasing interest in various on-line restructuring schemes,
exemplified by "adaptive", "self-organizing”, and "self-optimizing"
systems. It is difficult to make sharp distinctions among these terms,
so a definitive categorization will not be attempted here. All the terms )

suggest a certain restructuring capability, and therefore such systems
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may exhibit some of the characteristics which have been used to
describe self-reorganizing behavior. The approaches to restructuring
used in these systems frequently bear on some of the same kinds of
problems encountered in self-reorganization. Chapter 3 discusses
some of the fundamental concepts on which many of the restructuring

methods are hased.

1.2 General Problem Description

The basic system considered in this research is a linear plant
with feedback. Control forces are applied by effectors which are
subject to failure. The outputs of the plant are measured by sensors
which are also subject to failure. The linear dynamics are assumed to
be either piecewise time-invariant or slowly time-varying. A com-
pletely reliable data processing capability is presumed. The problem
is to maintain satisfactory closed-loop performance in spite‘of failures
in the effectors and sensofs and changes in the linear dynamics. Satis-
factory performance means at least closed-loop stability. Some
additional properties of the closed-loop dynamic behavior are also
considered in situations where time is available for more extensive
computation.

The sensors and effectors are assumed to be supplementary, so
there are no spare components (although some of the results on failure
detection can be used with standby redundancy). In case of failure, the
system is expected to function with a reduced number of effectors or
sensors. Chapter 2 introduces some concepts for describing more
specifically the idea of supplementation as applied to sensors and

effectors for a linear plant. A guantitative measure for the degree of
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supplementation among these components is also suggested.

The remaining chapters deal with the problem of implementing
a self-reorganization scheme assuming the basic plant is given.
Chapter 3, in addition to discussing some basic approaches to reorgani-
zation, presents a detailed formulation of the problem, describes the
method of approach used in this research, and introduces the subject

matter of the remaining chapters.
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CHAPTER 2

COMPONENT SUPPLEMENTATION

2.1 General Discussion

The concept of supplementary redundancy was discussed in
Chapter 1. Supplementary components were described in a general
way as those which perform overlapping functions so that when one
component fails its function can be taken over by others. Before one
can proceed to construct systems with supplementary components, it
is necessary to have more specific definitions of the properties of
supplementation. This chapter investigates the supplementary
properties of effectors and sensors for a linear time-invariant system.

To discuss supplementation one must first define the functions
of the various components. Effectors are control devices, so it is
natural to define their function in terms of controllability. Sensors
are measuring devices, so it is likewise natural to define their fun.ction
in terms of observabilitj. Fortunately controllability and observa- |
bility are already well-established concepts in the theory of linear
systems. Sections 2.2 and 2.3 apply these concepts to individual
effectors and sensors. They illustrate how the function of an effector,
for example, can be defined in terms of that portion of the state space
which the effector can control. A similar definition can be applied to a
sensor. The remaining sections in the chapter use these results to

develop several ways of defining more specifically the idea of supple-
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mentation as applied to effectors and sensors. Attention is given to
the problem of how to measure degrees of supplementation among
components. Such ideas provide a measure of the potential ability of

a system to cope with failures of its effectors and sensors.

2.2 Partial Controllability

In this section some results concerning the concept of
controllability are reviewed. The primary purpose is to illustrate
how these resulis can be used to describe the control function of each
individual effector. The ideas presented here will be used in the 1ater-
sections of this chapter and also in Chapters 4 and 6 in a different
context.

Consider the linear time-invariant system described by
x(t) = Ax(t) + Bult) (2-1)
y{t) = Cx(1) (2-2)

where x(t) is an n-dimensional state vector, u{t) is an r-dimensional
control vector, and y(t} is an m-dimensional sensor output vector. The
matrices A, B, and C are of dimension n X n, n X r, and m X b
respectively. Employing the definition used by Athans and Falb [ 1 |,

a state X is defined to be controllable at time to if the state of the
system can be driven from x(to) =x to the origin in a finite time
interval by some control u(t}. Athans .and Falb show that for the
syst.em described by (2-1) the set of controllable states is a subspace
of the state space, R". Moreover, this subspace is spanned by the

columns (considered as vectors in R?) of the matrix
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W = [B, AB, ..., A" B] (2-3)

or equivalently, the controllable subspace is the range space of W.
Hereafter the range space of W will be referred to as the controllable
space of B (with respect to A). Since by definition a state trajectory
joins every state in the controllable space with the origin, this space
can also be viewed as that portion of the state space which is reachable
by some control u(t) starting from the origin. The matrix W has
dimension n X (n-r), so the number of independent columns in W, and
thus the rank of W, can be no greater than n. If the rank of W is n,
the system given by {2-1) is said to be controllable and (A, B) is a
controllable pair. If the rank of W is less than n, the system is only
partially controllable.

Each component of the control vector in (2-1) is considered to
be the control force applied by one effector. To clearly indicate the

action of each of the r effectors (2-1} can be written as

x(t) = Ax(t)+ biul(t) + ...+ brur(t) (2_-4)
where u.l(t) is the ith component of u(t) and b, is the {th column of B
. u,{t)
at) = | - (2-5)
0, ()
B = [bl’ ...,br] (2-6)

Now suppose the system is being controlled by only one effector, say

th

the i"" effector. Then the state equation is

22



x(t) = Ax(t)+biui(t) (2-7)

The statements concerning the controllability of (2-1) with the full
control vector can be applied to (2-7) as well by simply replacing B

with bi‘ Define

_ n-1
Wi = [bi’ Abi’ ey A bi] (2-8)

The range space of W, is that part of the state space which is control-

lable by the ith

effector. This means that acting alone the ith effector
can drive any state in the range space of Wi to the origin, or can reach
any state in that space starting from the origin. The range space of
W.l is the controllable space of bi'

The matrix Wi has several important properties which are due
to the manner in which the columns of W.1 are generated. If the rank
of W.l is k, then the first k columns of Wi (from the left) are
independent and form a basis for the range space of Wi' This is

verified by noting that if any column of Wi is linearly dependent on the

previous columns, say
k
k _ j-1 _
A bi = Z O’bijA bi (2-9)
j=1

{(where the afb .

i3 are scalars) then by premultiplying (2-9) repeatedly

by A it can be shown that A:Jb_.L for any j 2 k is alsoc dependent on the

first k columns, {bi’ ey Aknl

bi}' It can also be shown from (2-9)
that the range space of W.1 is an invariant subspace with respect to A.

A subspace is invariant with respect to A if for any vector x in that
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subspace, Ax is also in the subspace. A subspace which has a set of

basis vectors of the form {bi’ Ab,, ..., ak-1

bi} is called a cyclic
subspace because of the cyclic manner in which the basis is generated
from b,. The vector b.1 is called the generator of the subspace. A
cyclic subspace is always invariant. The concept of cyclic subspaces
and their generators play an important role in the study of the structure
of linear spaces and canonical matrix forms. -A complete development
of the results stated above can be found in Gantmacher [7] . Since

the first k columns of Wi form a basis for its range space, it follows

k-1

that the range space of [bi’ Ab., ..., A bi] is equivalent to that of

W., and
i

rk W, = rklb.,, ..., A b.] = k (2-10)

The set of all vectors orthogonal to the range space of Wi (more
precisely, orthogonal to every vector in the range space of Wi) also
forms a subspace. This subspace is the null space of W'iI‘_ If x is any

vector in this subspace, then
wix = 0 (2-11)

The null space of W:.Lr will be -~eferred to as the uncontrollable space of
bi' This terminology is motivated by the following observation. Con-

sider a linear scalar function of the state variable given by
I
v () = ho x(t) (2-12)

where h is a time-invariant n-vector. If h lies in the uncontrellable

h

space of bi’ then the action of the it effector can have no effect on the
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dynamic behavior of vh(t).

The general solution of (2-T7} is

x(t) = @ (t,to) x{t, ) + g G (t.7) biui('r)d'r (2-13)
1
o

where (P (t, to) i8 the transition- matrix defined by

2oty = APty  (2-14)

¢ t,.t) = I (2-15)

(I is the identity matrix.) Since A is fime-invariant, (I) (t,to) can be

replaced by the matrix exponential

(I)(t,to) Y

o0

Iig - .3
z Al - to) (2-16)
EU

Using this series expansion for { (t, 7) the integral on the right hand

gide of (2-13) becomes

t ol t j
S ) {t.7) bu(r)dr =z AJbi gﬂ;_‘fr_)_ u (7 )d7

t, =0 t

0 {(2-17)

The vectors Allbi for all j are in the range space of W.1 so (2-17) can

be expressed as
t
¢ (t, 1) bu(r)dr) = W.g(t) (2-18)

%
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where g{t) is some n-vector which depends on ui(t). { g(t) is not

unique if rk W'.1 < n). Using (2-18), (2-13) becomes

x(t) = @ t.t)x(t) + W.glt) (2-19)
and

T

v = hTx) = hT @t ) xt )+ hT Wgt) (2-20)

T

If h is in the null space of WIT then W'iI' h = g or h W.1 = 0, and {2-20)

reduces to
v = n' §tt) () (2-21)

Clearly ui(t) has no effect on vh(t). In this sense the quantity vh(t)

th effector. These observations

is uncontrollable with respect to the i
concerning the controlilable and uncontrollable spaces of bi describe
the capabilities and limitations of individual effectors. They will be
used in Section 2.4 to determine the influence of effector failures on

system control capabilities and to define more precisely the idea of

complementary effectors.

2.3 Partial Observability

The results on observability presented in this section are
primarily intended to serve as a basis for evaluating the capabilities
of sensors and the effect of their failures on overall system capa-
bilities. Some -of the results will be used extensively in Chapter 4
as well.

The system given by (2-1) and (2-2) is said to be observable if

given y(t) and u(t) over some time interval [to, tl ] it is possible to
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determine uniquely the starting state x(to). Substituting the general

solution for x(tl) into (2-2) yields
vt = C et ) x(t)

b1
+ C g‘ (I_)(tl,T)Bu(T)dT

t
o

To determine x(to) it must be possible to solve the equation

CQt.t,) ) = yolt,)
h
where t)
y(t) = yit))-C «( $ ¢, 7) Bulr) dr
t
O

(2-22)

(2-23)

(2-24)

is a known quantity. Brockett [ 4 ] proves that for a linear time-

invariant system x(to) can he determined to within an additive constant

which lies in the null space of the matrix

c 1T [c¢ 7]
CA CA
.on-1 T |

lcat | caPTH

S
C
M = .
(ca

(2-25)



The system is observable then if and only if the {m-:n)x n matrix M
has no null space. This is true if andonly if rk M=n. Ifrk M<n
the system is only partially observable.

The range space of MT will be referred to as the observable
space of C. This subspace of the state space determines the ability
of the sensors to ohserve a scalar linear function of the state variables.

Consider the scalar

v i) = nt x(t_) (2-26)

Given y{t} and u(t) over a time interval [to, ty 1, x(t_) can be deter-
mined to within an additive constant in the null space of M. Then x(to)

can be expressed as

x(to) = xp+z (2-27)

where xp is a particular solution of (2-23), and z is some unknown

vector such that
Mz = 0 {(2-28)

Substituting (2-27) into {(2-28) gives

- T T
vh(to) = h xp + h'z (2-29)

Now hT xp is known, but hTz is, in general, unknown because z is
unknown. Therefore vh(to) cannot be determined unless it is known
with certainty that hiz = 0. This will be the case if and only if h is
orthogonal to every vector in the null space of M, or equivalently, if h

lies in the range space of M7,
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It will become clear in later chapters that in a reorganization
scheme sensor outputs are used not only to determine the state of a
system, but also to provide information about failures and changes
which may have occurred. One part of the reorganization problem is
to detect changes in the dynamics of the system described by (2-1),
e.g., changes in A or B. The null space of M plays an important part
in determining the ability of the sensors to furnish information about
such changes. This interpretation of the null space of M will be demon-
strated after some basic results are established.

By reasoning similar to that used in Section 2.2 it can be shown
that if rk M = g < n the matrix can be truncated after (m-q) rows

without altering the null space. That is,

¢ )
CA

rkM = rk . = q {2-30)
Lcad™]

and the null space of the truncated matrix is the same as the null space
of M. From this fact it is easily established that the null space of M
is an invariant subspace with respect to A. Suppose x is in the null

space of M. Then

C [ca ]
CA ca?
) Ax = . x = 0 (2-31)
cad1 LlCAq
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since all the rows of the matrix on the right are included in M (recall
g < n). If Ax is in the null space of the truncated matrix, it is also in
the null space of M. Therefore the null space is invariant with respect
to A. A subspace which is invariant with respect to A is also invariant
with respect to (I) (t, to) for any t and to' This follows from the series
expansion for @ (t, to) given by (2-16).

An invariant subspace with respect to (t.t ) is associated
with what will be called a free-trajectory subsystem. A free

trajectory is a homogeneous {undriven) solution of {2-1) and is given by
x(t) = @ (t,t,) x(t) (2-32)

From this equation it is clear that if x(to) is in an invariant subspace
with respect to @ (t,t_), then the free trajectory x(t) remains in that
subspace for all t. Because the trajectory never leaves the subspace,
it can be completely described by a reduced state vector whose dimen-
sion is the dimension of the subspace. Suppose the subspace has
dimension £ and the set of vectors {WI f +++» Wy} is a basis for it.

Any x(t) in the subspace can be uniquely expressed as

x{t} = ty + ... + wuoﬂ(t) {(2-33)

Y1191
for some scalar time functions {o(t), ..., 0,{t)}. On the other hand,

this set of O'i(-t) uniquely determines x(t). The f-vector

oy (t)

g, (t)
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therefore uniquely determines the trajectory x(t) and can be considered
the state vector of a subsystem of the original system. The undriven
dynamic behavior of this subsystem corresponds to the dynamic
behavior of a portion of the complete system given by (2-1).

The null space of M7, being invariant with respect to § (t, t).
can be associated with a free-trajectory subsystem. This subsystem
is unobservable in several senses. First, for any trajectory in the

null space of M
yi&) = Cxtt) = 0 (2-34)°

so y(t) provides no information about the state.of the associated sub-
system. Moreover, since the dynamic behavior of this system produces
no effect on the output y(t), it is clear that any scheme to identify the
dynamics of the system from y(t} can never produce any information
about that portion of the dynamics associated with the null space of MT.
In light of these observations the null space of MT will be referred to
as the unobservable space of C.

These results are concerned with the capabilities of the com-
plete set of m sensors modeled by (2-2). The same developments can
be applied to each row of C to determine the capabilities of each indi-

vidual sensor.

2.4 Invulnerability to Effector Failures

The material in this section is an attempt to provide some
answers to the question of how many effector failures can be tolerated

before a system becomes unable to function. Such a question is of
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interest because one would like to be able to design a self-reorganizing
system so that it can cope with the largest possible number of effector
failures. There ig no unique answer to this question because there are
different ways of defining the stage at which a system becomes "unable
to function'. In this section the concept of controllability will be used

to define stages of failure.

2.4.1 Minimum Number of Effectors for Controllability

Consider the system described by (2-1). As in
Section 2.2, each component of the control vector will be considered
the output of one effector. Each effector is associated with the
corresponding column of B. The question to be answered here is,
what is the minimum number of effectors necessary to completely
control the system? Or in other words, what is the smallest value of
r for which there exists an n X r matrix B such that (A,B) is a
controllable pair?

The answer to this question can be obtained from
results concerning the invariant polynomials of a square matrix.
Extensive results on invariant polynomials can be found in [ 7 ]. Only
those properties necessary for present purposes will be presented
here. Any n X n matrix A has associated with it a unique set of n
invariant polynomials {il(s), cen, in(s)} of orders ky, ..., k_
respectively. The polynomials have the following properties:

(1) They are monic, i.e., the coefficient of the
highest power in s is unity.
(2) The product of all the invariant polynomials

of A yields the characteristic polynomial of A
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Is - Al = il(s) . iz(s) et in(s) (2-35)

Since the characteristic polynomial of & is of

order n, it follows that
k,+ ...+ k = N {2-36)

(3) Each ij(s) is evenly divigible by ij+1(s). This

implies

k., 2k, 2 ... 2k (2-37)

Normally the polynomials become trivial (equal to 1} at some point in

the sequence. A typical set might look like

kl kl-l
) = s 7+ “Ik, ® Foeeet Oy
_ kz kz-l
12(5) = 5 ~+ aIZkz s + + 0!121

kf- k, -1
12(3) = g +C2I£k£ s + +QI£1

(2-38)
in(s) = 1
where the aIij are scalars. For this set kf +1 = k£ 4p = e = k.n =0
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and

k.+...+k. = n (2-39)

It will not be proven here, but the only matrices which have all non-
trivial invariant polynomials are of the form oI, where ¢ is a scalar
and I is the identity matrix.

The angwer to the question posed at the beginning of the
section is obtained by counting the number of nontrivial polynomials.
Specifically, the minimum number of effectors necessary to make (2-1)
a controllable system is equal to the number of nontrivial invariant
polynomials of A. To see why this is true it is necessary to investigate
the way in which the invariant polynomials are obtained. The first
polynomial il(s) is the minimal polynomial for the entire state space.

This means that for any vector x in the state space

kl kl-l
11(A)x = A x+a11k1A X+ ...+ anlx=g
{(2-40)
This, in fact, implies il(A) = 0. Equation (2-40) can be solved for
k kq-1
A 1 x in terms of the vectors {x, Ax, ..., A 1 x}. This implies
that
k,.-1
rk [ x, Ax, ..., A%l x] = rk[x, ..., A 1 x] < ky

(2-41)
for any x. Réplacing % in this expression by the vecior b.1 associated
with any effector shows that the controllable space of any effector
cannot have dimension larger than kl' In other words, the largest

possible subspace which is controllable by a single effector can have
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dimension no larger than k It can be shown that there always existis

1
a vector for which the equality in {2-41) holds. By taking b, equal to

that vector, the ith effector will have a controllable space of dimension

kl. Denote such a subspace by E From Section 2.2 it is known that

1
k-

the vectors {bi’ Ab,, ..., A 1 b, } form a basis for E,.

The second polynomial iz(s) is the minimal polynomial

for the state space modulo El' That is, for any vector x in the state

space

iz(A)x = =z (2-42)-

k
where z is some vector in El' This equation can be solved for A 2 X
ko-1
2

in terms of the vectors {x, Ax, ..., A x}and z. But z can be

ky-1
expressed in terms of the basis vectors {bi’ Abi’ ., A 1 bi}
k
for El' Therefore A < x can be expressed as a linear combination
k,-1 k-1
of the vectors (x, Ax, ..., A © x, b, Ab, ..., A = b }. This

together with (2-41) implies

1

rk[x, Ax, ..., A" ' x, b, Abi,...,.An_lbi]

ky-1 k
rkfx, Ax, ..., A X, by, Aby, ..., A

< kot ok (2-43)

for any x. Replacing x by the vector bj associated with any second

effector and reordering the columns in (2-43) yields

n-1
rk[(bi,bj), A(bi,bj), vea, A (bi’bj)] < k1+ kz

(2+44)
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This construction demonstrates that the largest possible subspace
which is controllable by two effectors can have dimension no larger
than (kl + kz). Again it can be shown it is possible to find a bj for
which equality holds in (2-44). The same reasoning can be applied to
13(8) and so on. In general, the largest possible subspace which is
controllable by r effectors has dimension (k1 + ...t kr)' The entire

state space (and the system) is controllable by r effectors if and only if
k.+...+k, = n (2-45)

Comparing this with (2-35) one can conclude that the minimum value of

r for which (2-41) is satisfied is
r i = ﬂ (2'46)

Gantmacher [ 7 ] discusses several methods for generating the
invariant polynomials from which r_ip can be determined. One
method is to reduce the characteristic matrix (Is ~ A) to a diagonal
matrix by elementary row and column operations. Then the invariant
polynomials of A appear as the diagonal elements.

A minimal set of vectors {bl‘ cees by } capable of
min

controlling the entire state space is by no means unique -~ in fact,
there is an infinity of such sets. No systematic procedure for deter-
mining all possible minimal sets is presented here. However, one
way of selecting at least one minimal set is to transform A to one of
the block diagonal standard forms derived by Gantrmacher. When this

is done it is possible to select a minimal set of bi by inspection.
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2.4.2 Supplementary Effectors

The previous section dealt with the question of control-
ability of the complete system given by (2-1). In this section attention
will be focused on the ability to control a scalar linear function of the

state, as given by
T
vipt) = hox(t) (2-47)

A subset of j effectors associated with the vectors {b.l s wees by 1

1 i
will be considered supplementary with respect to control of the scalar
vh(t) if they are each alone capable of controlling Vh(t). Applying the

results of Section 2.2, it can be seen that the ith effector is capable of

controlling vh(t) if and only if

T

YW, # 0 (2-48)

where W, is defined by (2-8). The subset of vectors {bil, cees bi.}
{from the full set {bl’ e, br}) which satisfy (2-48) corresponds taa
the subset of effectors which are supplementary with respect to control
of vh(t). The number of effectors in this subset is a measure of the
invulnerability of the quantity vh(t) to effector failures. Vh(t) will be
controllable as long as any one of the effectors in the above subset is
functioning. Therefore at least j effector failures (specifically,
failure of all effectors in the supplementary subset) are necessary
before vh(t) becomes uncontrollable. One can also associate this
degree of invulnerability with the vector h. When investigating the
invulnerability of a particular h, a more convenient relation which is

equivale.nf to (2-48} is
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M b, # 0 (2-49)

h™i
where
’hT A
hia
Mh = . (2-50)
_-hTAn_l_J

{Note that Wi can be truncated after the kth

column, where k = rk Wi'
Similarly, M, can be truncated after the gth row, where £ = rk M, .)
An invulnerability degree can be associated with every
direction in the state space. The direction with the least degree of
invulnerability is in a sense the "weakest link" of the system with
regard to controllability. This least degree of invulnerability is this

minimum number of effector failures necessary for the system to

become not controllable.

2.5 Invulnerability to Sensor Failures

The material in this section is analogous to the observations
made in Section 2.4 concerning effector failures. The purpose is to
provide some answers to the question of how many sensor failures a
system can tolerate and still continue to function. Again the answer
depends on how one chooses to define the point at which a system is
unable to function. Obs ervability criterion will be used for this purpose

in the following sections.
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2.5.1 Minimum Number of Sensors for Observability

The results of this section are most eagily developed by
referring to Section 2.4.1 and recognizing the duality relationship
between observability and controllability. Let c, be the i row of C.
The unobservable space of N with respect to A coincides with the
uncontrollable space of C'iI‘ with respect to AT. Similarly, the
observable space of ¢y with respect to A coincides with the controllable
space of c'ir with respect to AT. The invariant polynomials of A and aT
are identical [ 7 ]. Therefore themsults of Section 2.4.1 show that the-
largest subspace which is controllable {(with respect to AT) by m
effectors has a dimension (k1 + ... F km). It follows by duality that
the largest subspace which is observable (with respect to A) by m
sensors has dimension (kl + ...+ km). For a system matrix A with
invariant polynomials (2-38}, the minimum number of sensors
necessary for observability is m o= £. The minimum number of
sensors for observability is ‘equal to the minimum number of effectors

for controllability.

2.5.2 Supplementary Sensors

This section presents two viewpoints of supplementation
among sensors. The first is based on the ability to observe a scalar
linear function of the state. The second is based on the ability to
provide information about the subsystem dynamics.

Consider the system (2-1) with sensor outputs given by
(2-2). Each component of the output vector y({t) will be considered the

output of one sensor. The ith sensor is associated with Cys the ith
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row of C. The obgervations of Section 2.3 can be applied to each c,

The scalar function vh(to) given by (2-26) is observable by the ith

sensor if and only if h lies in the range space of M?, where

I—C1 ‘}
c.A
M, = t (2-51)
[cA™ ]

If rk M.1 = d; then there are n - a; independent solutions of the

eguation
Miz = 0 {(2-52)

Let {Zil’ cers } be a set of such independent solutions. These

Zi,n-qi
vectors form a basis for the null space of Mi' Now h is in the range
space of M;T if and only if it is orthogonal to every vector in the null
space of M. . This will be the case if hTzig =0 for £ =1, ..., n-q.,

or equivalently,

N. = 0 (2-53)
where

Nyo= lzgys -ees

z; n-q ] (2-54)

By forming the subset {c. , ..., ¢c; } of all rows of C for which (2-53)
, 1 ]
is satisfied, one obtains the set of sensors which are supplementary

with respect to the observation of vh(to). The number of sensors in

this set is a measure of the invulnerability of vh(to) with respect to

40



sensor failures. This invulnerability can be associated with the vector
h ag well. As in the case of effector failures, an (observation)
invulnerability can be associated with every direction in the state space.
The direction (or directions) with the least degree of invulnerability

is the weakest part of the system in terms of observability. This

least degree of cbservation invulnerability is the minimum number of
sensor failures necessary for the system to become not observable.

It is also possible to interpret invulnerability in terms
of determining subsystem dynamics. As indicated in Section 2.2, an
invariant subspace with respect to A can be associated with a free-
trajectory subsysteni. Suppose the subsystem of interest is associated
with a certain f-dimensional invariant subspace defined by the basis

vectors {w Define the n X £ matrix

LRERER4T

X, = [w w (2-55)

) B R IE]

The invariant subspace is the range space of XI. It can be shown that
if r'k(l\/I.1 XI) < £, then the ith sensor can provide information about
only a portion of the dynamics of the subsystem associated with the

range space of XI' Assume

! - rk(Mi XI) k >0 (2-56)
Then there are k independent solutions of the equation
Mi XIB I = 0 {2-57)

where BI is an f£-vector. Let {BH, Ce BIk} be a set of such
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independent solutions. Define an n X k matrix

1 p LBy oo Bl (2-58)

Note that the range space of Z_ consists of all vectors which are both

I
in the null space of M, and in the range space of XI. In other words,

the range space of Z. is the intersection of the null space of Mi and

I

the range space of X.. Since it is the intersection of two invariant

T
subspaceg, the range space of ZI is itself an invariant subspace. A
second free-trajectory subsystem can be associated with the range
space of Z;. It is, in fact, a subsystem of the first subsystem

because the range space of ZI is contained in the range space of XI'
The range space of ZI is algo in the null space of Mi’ SO one may
conclude from the results of Section 2.2 that the output of the ith sensor
can never yield any information about the dynamics of this secc;,nd sub-
system. In this sense, a portion of the dynamics of the first subsystem
is unobservable by the ith sensor. By counting the number of sensors

for which rk(l\/’[i Xi) = f one can obtain the degree of invulnerability to

sensor failures for the subsystem associated with the range space of X1

2.6 Summary

This chapter uses the concepis of partial controllability and
observability as the basis for some criteria for evaluating the ability of
a system to cﬁpe with effector and sensor failures. These criteria are
offered as possible design goals for the basic system in a self-reorga-
nizing scheme. However, they measure only a potential ability. The

actual ability of a system to withstand component failures and other
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changes depends also on the effectiveness of the self-reorganizing
loops whose function is to make advantageous use of the supplementary
features built into the basic system. These seli-reorganizing loops

are the subject of the remaining chapters.
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CHAPTER 3

SELF-RECORGANIZATION

3.1 General Principles

This chapter outlines some general concepts concerning self-
reorganization schemes. Specific areas to-which the major results of
this research apply are described in more detail. The formulations
of the problems considered and the methods of attack are presented as
an introduction to the following chapters.

Reorganization of a system is made necessary when a malfunction
or change in the system or in the environment causes an unacceptable
deterioration in the performance level. (Such an occurrence will be
referred to as simply an "event''.) The object of the reorganization or
restructuring is, of course, to restore the performance to an acceptable
level. One is quickly led to the observation that any restructuring
decision is based upon information about either the performance of the
system or the event which has occurred. Without at least one of these
two types of information available, there is no logical basis for selecting
a new siructure.

Information about the performance of a system might be obtained
directly from sensor outputs or it may be obtainable only indirectly by
inference from measurable quantities. For example, accessible outputs
of the system might be compared to a reference model. The most
common types of performance information are performance level and

performance gradient with respect to some structural parameters.
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Higher derivatives of the performance function are usually too difficult

. to generate for on-line use. Knowing the performance and performance
gradient for a certain system structure amounts to a local knowledge of
a performance as a function of structure. Structure-changing algorithms
based on such information will be local searching techniques. The local
knowledge of the performance surface is used to guide small changes in
structure to achieve higher performance levels. Many techniques for
locally directed searches have been developed in connectfion with
maximizing (or minimizing) a function of several variables and more
recently in connection with finding optimal controls for dynamic systems.
Many of the adaptive systems proposed in the literature over the past
decade use performance information and locally directed searching
techniques [ 12, 13, 22, 25].

Perhaps the greatest appeal of this appreach to reorganization is
that it is not necessary to make a detailed analysis of the relationships
between performance and structure. The search process takes the place
of such analyses, and therefore this approach is most useful in cases
where accurate analysis is difficult or impossible in the design stage.
Moreover, a substantial amount of imperfect knowledge about the basic
system can usually be tolerated when only performance level information
is required. As one would expect, a more complete knowledge of the
system characteristics is required to generate performance gradient
information. If these characteristics are themselves subject to change,
it may be necessary to identify them before reliable performance
gradient information can be generated. Thus a reorganization scheme
based on performance information may also require a certain amount

of event information (about system characteristics) as well.
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Performance-directed searching methods have several limita-
tions. One limitation is that it is not always possible to determine
system performance. This is the case when a performance index is
based on inaccessible quantities. For instance, the performance index
of an inertial navigation system might be the error magnitude between
estimated and true position. Since true position is not known, the
performance cannot be determined on-line.

In other cases it may be possible to define a performance
measure that is accessible, but which in practice becomes unsatis-
factory because it is influenced too much by inaccessible effects. This
may happen, for example, when comparison with a reference model
is taken as a performance measure for a plant subject to unknown
disturbances. If there are significant disturbances acting on the plant
but not on the model, the performance measure may be too sensitive to
these disturbances to be useful for reorganization.

Performance information measured on-line indicates present or
past performance, whereas the information is used to determine
structural changes which affect only future performance (because of
delays in the restructuring process and in the system itself). This is
not a serious problem provided the performance surface (performance
as a function of structure) remains relatively stable in time. However,
if the performance measure is significantly influenced by time-varying
effects other than the restructuring process, then the performance
surface may be altered too rapidly for the reorganization process to
follow. The resulting performance can be poorer than if no reorganiza-

tion were attempted.
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Another limitation of performance-directed reorganization is
concerned with the speed of the reorganization process and related
questions of stability. Gradient information usually produces consider-
ably faster convergence in the search process. However, additional
delays associated with the use of gradient information can be sub-
stantial. The structural reorganization must proceed slowly enough to
allow the changes to be properly reflected in the gradient information,
otherwise the gradient information will be invalid. This usually means
the adjustments must be made slowly with respect to the dynamic
response of the basic system. Because of this, excessive searching
times may result when major events occur which require large
structurél changes. In the meantime serious stability problems can
arise. In these situations it would appear to be advantageous to try fo
make large changes initially which put the system structure at least in
the general area of the ideal one. This leads to the concept of reorgani-
zation based upon event information.

The second basic approach to reorganization is to attempt to
determine what event has occurred and to select a new structure to

compensate for it. This approach can be viewed in two steps:

(1) Processing the raw data from the system to obtain
information about the event which may have

occurred.

(2) Using the event information to select a new

structure.
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The techniques used to accomplish the second step will depend on the
type of event information which is generated in the first step.

Asg noted in Chapter 1 with the example of pressure loss in a
hydraulic system, some events can be identified immediately by simple
sensory information. Another source of event information is comparison
of redundant data. For example, a substantial discrepancy among the
outputs of several duplicate sensors might ihdicate that one {or more) is
defective. A "majority rule' decision can be made if there is sufficient
redundancy (e.g., if two out of three sensors agree). In the area of
digital logic design considerable attention has been devoted to the
problem of detecting errors in redundant data [10,11,18,24]. If
discrepancies can be traced back to a particular component, this would
be an indication of malfunction.

When redundant data is not available, comparison with data from
a reliable model might be used to detect discrepancies. In many cases
the outputs or inputs of individual componen{s are not accessible. This
makes the localization of a failure or change a more difficult problem
than simple comparison (unless, as suggested in Chapter 1, components
are grouped into easily diagnosable units). Inferences must be made
from observable effects on other parts of the system. Model comparison
is often used in the identification of dynamic systems from input and
output data. Identification of dynamic systems has received substantial
attention in connection with adaptive schemes, as mentioned earlier,
and also in the off-line design of process control. One technique which
has been employed extensively for this purpose is the use of an adaptive

model [12,14,16,17,27]. Parameters of the model are adjusted to
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minimize some measure of the difference between the system and
the model.

If the event information identifies a specific event, then
determining a new structure is a matter of establishing a connection
or asgsociation between the appropriate structure and the event. The
association between event and structure could be a direct association
or a logical one. The use of standby redundancy and replacement
reorganization described in Chapter 1 is a simple example of direct
association. Failure of a component is associated directly with the
new structure -~ replacement of the failed component by a spare.
Direct association can also be used with supplementary redundancy.
One example is simply a table listing all events and their associated
structures. Or a direct association could consist of a fixed functional
relationship between event parameters and structural parameters. A
logical agsociation would establish a connection between event and
structure on-line through the use of logical algorithms. Such an
algorithm might be a kind of quick redesign process shortened by prior
anhalysis of the basic properties of the general type of system. Direct
association would be faster but less flexible than logical association.

The event information could be in the form of a set of properties
or features which categorize evenits. Of course, if the features are
sufficient to identify a specific event, then the restructuring process
could be the same as described above. Instead of attempting to identify
a specific event, an alternative approach would be to associate each
event feature with some appropriate property or feature which the new

structure should possess. These associations between event features
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and structural features could be established as described previously.
They might also be established by a learning process. Such a learning
process would amount to discovering high correlations between
particular event features and structural features. To achieve learning,
some feedback must be available which would indicate whether the re-
structuring has been successful or unsuccessful. If a training period

is provided, this information would be supplied by the trainer or teacher.
For on-line learning reinforcement some kind of performance informa-
tion would be necessary.

Another approach to reorganization based on event information
is to formulate the problem in a statistical framework. Events can be
modeled as statistical events. Then the whole theory of hypothesis-
testing can be brought to bear on the problem of event idenfication.

Once a decision is made about the occurrence of an event the restructur-
ing process can proceed as previously described. Or in some cases,
instead of making a yes or no decision about the occurrence of an event,
a probability of occurrence conditioned on available information can be
used as a basis for restructuring. A new structure could be selected

to maximize the expected performance or minimize an expected risk.
For example, the confidence in a sensor (i.e., the weight placed on its
measurement in arriving at a statistical estimate) could be based on the
probability that it has failed. The statistical viewpoint has been taken
by Rockwell [ 21] in obtaining a state estimate of a system in the face of
possible sensor malfunctiions.

An aid to event identification which has not been considered here
is the possibility of performing tests or experiments on a system or its

components. Fault-detection experiments are of considerable interest
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in digital logic design [ 9,10,11]. The identification of finite-state
sequential machines is often based on the construction of test input
sequences which take the machine through all its transitions [ 3, 11].

A wide-band input is often used as an aid to identification of a continuous
dynamic system. For purposes of self-reorganization one is normally
concerned with the problem of identifying failures and changes while the
system is functioning. This usually precludes the use of any extensive
tests or experiments because test inputs tend to disturb the normal
operation of the system. This is not necessarily always the case,
however. Sometimes it is possible to apply low-power test signals
which do not adversely affect operational performance. Or, during
intermittent periods of idleness a component might be isolated and
tested.

in the preceding discussion greater attention has been devoted
to passive event identification because it is more widely applicabtle to
on-line use. Moreover, techniques designed for passive event identifi-
cation can be used in active testing as well. The information provided
by a passive event identification scheme is often enhanced when
judiciously chosen test inputs can be applied to the system.

One advantage offered by reorganization based on event informa-
tion is the possibility of guiding large discontinuous structural changes
in a system. In this way it is possible to achieve quickly a system
structure which is relatively close to the ideal one. Implementing this
sub-ideal structure will hopefully achieve a sufficiently high temporary
performance level to allow additional time for making smaller 'fine
tuning’' adjustments in the structure. A second advantage of being able

to make large structural changes is that it is possible to jump over
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areas of unstable structures. Local adjustment techniques, on the
other hand, may have to go around or through unstable areas which lie
in the path from the old structure to the new one. Reorganizration based
on performance and event information should be considered comple-
mentary techniques. When both types of information are available, the
most successful reorganization scheme will be a combination of the two.
Some adaptive systems presently proposed employ performance and
event information at different levels in the adaptive hierarchy. For
example, the adjustment of a model (based on performance information)
to determine system characteristics (event information) which is then
used to generate the primary system performance gradient information.
From a general viewpoint it would appear that event information is most
useful for initial gross restructuring, and performance information best

used for subsequent ''fine tuning'.

3.2 Method of Approach

The remaining chapters will be concerned with reorganization
based on event information. The greatest emphasis will be on obtaining
event information from raw system data. Taken together, the results
provide a basis for a coherent self-reorganization scheme. However,
in so far as is possible, the several areas have been developed inde-
pendently so they each may be of independent interest.

The bésis system configuration is shown in Figure 3-1. The

quantities shown ar= delined as follows:

x{t) -~ (n-dimensional) plant state vector.
u({t) — (r-dimensional) actual control vector. This is the
actual control applied to the plant by the effectors.

Each component of u(t) corresponds to one effector.
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y(t) — (m-dimensional) sensor output vector. Each

component of y(t) corresponds to one sensor.

2{t) -- (n-dimensional) estimated state vector.
ud(t) -- {r-dimensional) desired control signal.
c{t) — (rc-dimensional) command signal. This may be

zero for a regulator type control system or nonzero

for servomechanism type control.

The plant (enclosed in the dotted line) is defined to include plant
dynamics, effectors, and sensors. The following set of equations

describe the plant behavior (excluding plant disturbances and sensor

noise).
Plant dynamics: x(t) = Ax(t) + Buflt) (3-1)
Effectors: ult) = uylt) (3-2)
Sensors: vt) = Cx() (3-3)

The matrices A, B, and C are time-invariant and have dimensions

(n X n), (nXr), and (m X n) respectively. The significant feature of
this plant description is that the effectors and sensors are assumed to
be nondynamic. In situations where effectors or sensors have s-ignifi—
cant dynamics, such dynamics may be included in the linear plant
dynamics (S-i) through the use of an enlarged state vector. The simple
identity relationship (3-2) assumed for the effectors is taken for con-

venience. A more general functional relationship such as
a® = £(uy®) (3-4)

54



can be brought into the form of (3-2) by defining a new desired control

vector

W () = f(ud(t)) (3-5)

The feedback loop consists of a state estimating filter and a
feedback control law generator. The filter may be designed to minimize
some statistical measure of the error between x(t) and %(t), such as in
a Kalman filter, or it may be designed deterministically so that (1)
approaches x{(t) asymptotically in the absence of.disturbances. The
latter is often referred to as an ''observer' [15] . This particular
configuration for the feedback loop is usually seen in an optimal control
formulation. The separation theorem [ 20] suggests this kind of
structure, and it has been heuristically extended with the proposed use
of observers [15,19] . Briefly, the idea is to solve the optimal control
problem, assuming the state vector is known, to obtain a state feedback
control law. Then since the state vector is not completely known, an
estimate of the state (from a Kalman filter or an observer) is used
instead to generate the control signal. In these formulations there is
no external command signal, c(t). By allowing c(t) to be nonzero, a
servomechanism type formulation is possible, and the state feedback
control law can be designed to satisfy classical servoanalysis criteria.

For the purpose of this research it will be assumed that all events
occur in the plant and restructuring takes place in the feedback loop.

A reliable data processing capability is presumed. The data processing
equipment may have internal redundancy and self-correcting capabilities
of its own in order to achieve reliability. The design of reliable data

processing equipment is the subject of considerable (and continuing)
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research [ 8, 10,11, 18,24], so it will not be belabored here. The

following events will be considered:

(1)

(2}

Effector failure — a departure from the intended
operation of the effectors described by Equation {3-2).
A failure in the ith effector is modeled mathematically

as
u(t) = uylt) + grin(t) (3-6)

A . , ] .th .
where €. is a unit r-vector in the i coordinate

direction
o
0
A .th .
e = 1 | -=—— i position (3-7)
0
L 0

and n(t) is an arbitrary scalar time function.

Sensor failure — a departure from the intended
operation of the sensors as described by Equation (3-3).

A failure in the 'Lth sensor is modeled as

y{t) = Cx(t) + 8min(t) (3-8)

. . . .th )
where emi is a unit m-vector in the i~ coordinate
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direction and nft) is an arbitrary scalar time

function.

(3) Changes in plant dynamics -- changes in the elements

of the matrices A, B, or C.

The problem of detecting and identifying these evenis is discussed in
greater detail in Section 3.3.

The restructuring problem is concerned with altering the feed-
back control law and the state-estimating filter tc compensate for the

events described above. This problem is discussed in Section 3.4.

3.3 Detection and Identification Problem

The problem of identifying events from raw systiem data is con-

sidered in two steps — detection and identification.

3.3.1 Detection and the Detection Filter

Detection refers to the process of obtaining event informa-
tion based on accessible signals from the plant. The desired control
vector ud(t) and the sensor output vector y(t) are assumed to be
accessible signals. Since all events are assumed tc occur in the plant,
the feedback loop is not considered in the detection process.

A solution to the detection problem is developed in
Chapter 4 in the form of a detection filter. The detection filter is a
linear filter driven by the accessible signals u,(t) and y(t). The output
of the filter is an "e_xpected” sensor output vector. It represents the
sensor outputs which would be obtained if there were no failures,
changes, or other disturbances. That is, if there are no disturbances,

the filter output will approach the actual sensor output vector

57



asymptotically as the effect of initial condition errors settles out.
When disturbances do occur there will be a difference between the
expected output from the filter and the actual output from the sensors.
This difference or error signal is the source of the desired event
information. The detection filter is designed so that when particular
events occur the resulting error signal behaves in a manner which is
unusual and easily recognizable. Event information is obtained by
looking for these unusual error responses.

It happens that in the absence of any disturbances, not
only does the filter output approach thel sensor output, but the state of
the filter approaches the state of the plant. In this sense the detection
filter is also a state-estimating filter. In some cases it may even be
desirable to allow the detection filter to serve also as a state estimator.
However, a filter designed for state estimation will not be a successful
detection filter except by mere coincidence. Whereas a state-estimating
filter is designed to suppress all errors as much as possible, the
detection filter is desighed to enhance and make easily recognizable
those errors which result from certain events. The filter musf be
specifically designed to achieve this. The reason a detection filter may
also be a successful state estimator is that it can (and should) be
designed to suppress errors other than those associated with the events
it is designed to detect. Therefore, in the absence of those particular

events the errors should be small.

3.3.2 Identification Decisions

The event information obtained from the detection process,

although highly correlated with the related event, may not be sufficient

58



to identify a specific event with absolute certainty. Such uncertainty
may be the result of noise disturbances, simultaneous multiple events,
or events which are simply not distinguishable from each other based
on the available data. Identification decisions are concerned with the
problem of identifying the most likely event or events in the face of
these uncertainties. Chapter 5 discusses some standard techniques for

making such decisions.

3.4 Feedback Restructuring

Feedback restructuring is concerned with finding a suitable
feedback control law and state-estimating filter to compensate for the
events defined in Section 3.2. As was mentioned in Section 3.3.1, it is
possible to use the state of a detection filter as a state estimate,
eliminating the need for a separate state-estimating filter. In this case
restructuring of the filter is taken care of in the solution to the detection
problem and need not be considered as a separate restructuring problem.
Even if a separate observer is used, the detection filter results of
Chapter 4 can be used as the basis for restructuring algorithms for the
observer. If a true, statistically optimal Kalman filter is desired, the
Riccati equation for it will have to be resolved in whole or in part. If
the speed of convergence of the Riccati equation solution is doubtful, the
use of a detection filter as a temporary state-estimating filter is
suggested.

Chapter 6 deals with the problem of restructuring a linear state
feedback law. The main objective will be to achieve closed-loop
stability with a minimum of calculation. Several secondary objectives

will also be considered, however. Although the original feedback law
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may have been determined optimally, the time required presently to
solve most optimal control problems seems to preclude the use of
on-line optimal solutions as a basis for reorganization. The quadratic
cost, linear regulator problem, which involves solving a matrix Riccati
equation, may be one exception. But a linear feedback law, quickly
obtained, could be used to achieve a stable operating condttioh while the
more time-consuming optimal control solution is obtained. Or, a
performance-directed search might be used to arrive at the final

restructuring.
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CHAPTER 4

DETECTION FILTERS

4.1 General Discussion

The background and basic formulation of the detection problem
was discussed in Sections 3.2 and 3.3 of the previous chapter. A
proposed solution -- the detection filter -- was briefly described in
Section 3.3.1. This chapter deals with the design of these filters and
the information they produce.

The special case in which the plant state vector is fully
measurable is treated separately in the next section. It serves as an
introduction to the more general case of a partially measurable state

vector.

4.2 Fully Measurzable State Vector

The plant being considered is the linear time-invariant system,

including effectors and sensors, described by the equations

x(t) = Ax(t) + Bult) (4-1)
u{t) = uylt) (4-2}
y(t) = Cx(t) (4-3)

The quantities in this plant description are defined and discussed in
detail in Section 3.2. A fully measurable state vector means that for

any time t Equation (4-3) can be solved uniquely for x(t), given y(t).
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Equation (4-3) is so invertible only if
rkC = n (4-4)

This implies that there are at least n independent sensors and m 2 n.
The detection filter is a linear time-invariant system driven by

the accessible signals ud(t) and y(t). It is described by

z(t) = Gz(t) + Dy(t) + Bpuylt) (4-5)

where z(t) is the n-dimensional state vector of the filter. The matrices
G, D, and Bf (of dimension {(n X n), (n X m), and (n X r) respectively)
are to be chosen to produce the desired event information. The error
signal which will be the source of this information is defined as the

difference between the plant state and the filter state
ety = =x(t) - z(t) (4-6)

From (4-1) to (4-3) and (4-5)

ety = x(t) - z{t)
= Ax(t) + Bu(t) - Gz(t) - Dy(t) - Byu,(t)
= (A - DC)x(t) - Gz(t) + (B - Bf)u(t) + Bf (u(t) - ud(t))
= (A - DCHx(t) - Gz(t) + (B - Bf)u(t)
(4-17)
Now let
Bf = B {4-8)
A-DC = G | (4-9)



Then the error equation becomes
€(t) = Gelt) (4-10)

If G is a stable matrix (i.e., if all its eigenvalues have negative real
parts) then

lim et) = 0 (4-11)

{—sm

and z(t) will approach x(t) asymptotically provided there are no dis-
turbances. Satisfaction of (4-8) and (4-9) with a stable G therefore
yields a state estimating filter. Equation (4-8), of course, can always
be satisfied by choice of B;. Because of condition (4-4), there always
exists a D satisfying (4-9) for any G. If m =n, then C_1 exists and the

solution is unique
D = (A-ac?! (4-12)

If m >n, a {(nonunique) solution is

T

D = (A-0)«cToylc (4-13)

which can be verified by substitution into (4-8). Condition {4-4)
guarantees that (cTcy ! exists.

Having satisfied (4-8) and (4-9) by choice of Bf and D, G can
now be selected to produce the additional properties desired of a
detection filter. The next three subsections will demonstrate that a

judicious choice for G is

G' = - UfI (4_14)



where I is the n X n identity matrix and 0, is a positive scalar. It
will be shown that this choice for G results in an error signal whose

direction and magnitude are directly and simply related to the event

which caused the error.

4.2.1 Effector Failure Information

Assume a failure occurs in the ith effector as modeled

in Section 3.2 by

a(t) = uylt) + ’e}n n(t) (4-15)

. . . . . .th .
where /éri ie an r-dimensional unit vector in the i coordinate

direction, and n(t) is an arbitrary scalar time function. Replacing

(4-2) with (4-15) and assuming (4-8) and (4-9) are satisfied, the error

equation becomes

e(t)

Gelt) + B@rin(t)

Ge(t) + bin(t) (4-16)

where bi is the ith column of B. Taking G as in {4-14), the solution of

(4-186) is

t
-0 (t-t ) -0 {t-T)
e = o e(to) + \S‘ e f b.ln('r) dr

t
o}

e(t)

_ _ t
of(t t 0)

‘Uf(t'T)
= e E(tO) + bl €

n{7) d7r

(4-17)
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Since 0, is positive, the initial condition term asymptotically approaches

Zero s0

1

t —crf(t-‘r)
e(t) =~ b, S. e n(t) dr for {t-t ) >> — (4-18)
i o) g
t
o

Note that

U crf(t—'r)
S e n(t) dr
tO

is a gcalar time function, so that for sufficiently large t, e{t) maintains
a fixed direction in state space — namely the direction of bi' An error
signal which maintains a fixed direction in the state space corresponding
to some bi is therefore indicative of a malfunction in the ith effector.
In the strict sense €f(t) is not an accessible signal
because x(t}) is not accessible. However, €(t) can be generated since
(4-3) can be solved uniquely for x(t). It is not necessary to solve for

x(t) if one defines an output error signal.
€'(t) = Cet) = ylt) - Cz(t) (4-19)
which is directly accessible. From (4-18)

f

—Uf(t-T) 1
c'(t) =~ Cbi S—\ e n{t) dr for (t-to) >> = {(4-20)
f
t
o)

so €'(t) maintains a fixed direction, Cb;, in the m-dimensional output
space. Condition (4-4) ensures that each direction in the n-dimensional

state space corresponds to a unique direction in the output space.
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Whereas the direction of €'(t) or e(t) indicates which
effector has failed, the error magnitude contains information about the
nature of the failure, specifically information about n(t}. The magni-
tude of €'(t) or e(t) is proportional to the output of a first-order linear

system (with time constant -0—.1{) driven by n(t).

4.2.2 Plant Dynamics Information

The detection filter also can produce information about
changes in the elements of the matrices A, B, and C. However, there
are certain changes equivalent to coordinate transformations which can
never be detected from the accessible signals y(t) and ud(t). Even
when detectable, coordinate transformation type changes can be inter-
preted as changes in initial conditions. This will suggest the use of a
standard form for modeling plant dynamics.

Consider a plant whose describing matrices {A,B,C }
undergo a change amounting to a coordinate transformation of the state

space. The new matrices are

A = T laT (4-21)
= -1

B = T B (4-22)
C = CT (4-23)

where T is an n X n nonsingular matrix. Assume the change occurs

at time t when the state of the plant is x(to} = x,- The output for

t>1 is
(8]
_ At-t) T R
y® = Te O x +C g AT Burrydr (4-24)
£
(o]
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If the change had not occurred, the output would have been

Alt-t ) £
y'(t} = Ce © x, + C S‘eA(t—T)Bu(T)dT (4-25)

t
0

Using (4-21) to (4-23), Equation (4-24) can be expressed in terms of

the old matrices

-1 t
T “AT(t-t )
y{t) = CTe ° x_+ CT g T IATE-7) ot Bu(r )T
t
(o]
L Aty b A-T)
= CTT “e TXO+CT_ gT TT Bu(T)d‘r
t
o]
Alt-t )
= Ce ° Tx,+ C geA(t-T) Bu{7)dT
t
o)
(4-28)
Subtracting (4-25) from (4-26) yields
| Alt-t,)
yt) - y'@t) = Ce (Tx, - %) (4-27)

If x, is an eigenvector of T with eigenvalue 1, then TXO =X, and
y{t) = y'(t) for all t > t,- In this case the changed plant produces the
same output as the old plant would have, so it is impossible to detect

the change based on y{t) and u,(t). If Tx * x, there will be a

67



transient difference between the two outputs. In either case the control
u{t) causes no output differences.

Comparing (4-25) with (4-26) it is clear that the change
given by (4-21) to (4-23) could instead be considered a difference in
initial conditions starting at t . In the present context of self-
reorganization the latter interpretation is preferred. Changes in A, B,
or C would initiate a restructuring process, whereas a difference in
initial conditions is taken care of automatically by the feedback loop.
For this reason all plant descriptions which differ only by a coordinate
transformation of the state space will be considered equivalent. The
set of all such equivalent descriptions forms an equivalence class.

Any member of an equivalence class can be taken as
representative of the entire class. For the purpose of identifying
plant dynamics it is convenient to take as the representative member
that description which puts the matrix C in the simplest form. In the
case where there are exactly n independent sensors, C is n X n and
the most convenient plant description is the one for which C is the

identity matrix
cC = 1 (4-28)

With C as in (4-28) the plant equations are

x(t) = Ax{t) + Bu(t) (4-29)
ult) = ud(t) (4-30)
y{t) = x(t) (4-31)
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In this description all plant dynamics changes appear as changes in the
elements of A or B. The use of equivalence properties allows changes
in C to be interpreted as changes in A and B while retaining C = I. This
presumes the change in C does not reduce its rank to less than n. If
such a change does occur, condition {4-4) is violated and the state
vector is no longer fully measurable. This situation is dealt with in
Section 4.3 where the state vector is not assumed to be fully measurable.
Assume A and B change at time t_ by an amount AA and

AB, so the plant dynamics then become
x(t) = (A+A4aA)x{t) + (B+ AB) uft) (4-32)

Using (4-30), (4-31), and (4-32) for the plant description and the

detection filter as previously developed, the error equation is

€(t) x(t) - z(t)

= (A +AA)x(t) + (B+AB)ult) - Gz(t)
- Dy(t) - Bpuylt)

= (A -D+AA)x{t) - Gzlt) + B(u(t) - ud(t))
+ ABult)

= Geft) + AAx(t) + ABuflt)

-O'fe(t) + A Ax(t) + ABuft) (4-33)
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The solution of (4-33) is

-0 {t-t ) ¢ -0(t-7)
€t) = e e(to) + AA ‘g e x{(7)dT
to
¢ —crf(t—‘r)
+ AB 9 e u(r)dr (4-34)
f ‘
O

By virtue of (4-30) and (4-31) this can also be written

t

-0 (t-t ) -0.(t-7)
eft) = e e(to) + AA 5 e y(T)dT
' i
8]
boogt-T)
+ AB g e ud(‘r)dT (4-35)
t
o)

Note that AA and AB have been assumed time-invariant in obtaining
(4-34) and (4-35). After the initial condition term has died out, the

settled-out error is

t t ~oplt-7)
ety = AA S e y(T)dT + AB S‘ e ud('r)d'r

to to

-O'f(t—T)

(4-36)

1
for (t-to) > O.—f
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With C = I the accessible output error signal defined by (4-19) is

simply
e'(t) = Celt) = et} (4-37)
The components of the vector-valued time functions

t

-cfﬁ-T)
plt) = § e y(r)ar (4-38)
t
Q
£
-0 .(t-7)
wit) = ge f uy(7 )dr (4-39)
t
8]

can be generated as the outputs of first-order linear systems driven by
the components of y(t) and ud(t). Identifying changes in A and B can
now be viewed as the problem of solving
¢ (|
€'(t) = AAo(t) + ABY(t) = [AA.AB] (4-40)
g (t)
given €'(t), ¢ (t), and ¢(t).
Another useful viewpoint is to consider the error pro-

duced by a change in one element of A or B. Let aij be the ijth

element of A. Assume aij under goes a change to aij + Aaij at time .

Then
_ AAT
AA = Aaij e.le:i (4-41)
AB = 0 (4-42)
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where 'é\.L and Qj are unit n-vectors in the ith and jth coordinate

directions respectively. The settled-out error for this situation is

T
A A
a.. e ej ¢ (t)

€' (t) i

A
25 & Q.’Jj(t) (4-43)

where ¢J.(t) = 'e\;jr ¢ (t) is the jth component of ¢ (t).

For a change Abij in the ijth element of B
AA = 0 (4-44)

AB = ADb,. & & . (4-45)

and the settled-out error is

A aT
€' (t) Abij e erj G(t)

An error signal in the direction of &, with magnitude
proportional to ¢ j(t) is indicative of a change in 357 An error in the
same direction with magnitude proportional to qu(t) indicates a change
in bij' The use of error information to determine AA and AB, or
otherwise model the plant dynamics, is discussed in more detail in
Chapter 5.

In case there are more than n sensors {m > n) one can

I
c = ‘: jl (4-47)
C2 :

72

take



where 1 is n X n and C2 is {m - n)X n. This presumes that the
first n sensors are independent (i.e., the first n rows of C are
independent). If this is not the case, the output vector y(t) can be

reordered to make it so. The output relation is

x(t)
y(t)y = (4-48)
sz(t)

Partition y(t) into two vectors

¥4 ()
y(t) = {4-49)

Yolt)

where 11(1:) is n-dimensgional and lz(t) is {m - n)-dimensional. Then

{(4-48) is equiva.-lent to
7,8 = xt) (4-50)

Tolt) = Coxlt) (4-51)

The output il(t) can be used to generate an error signal
for AA and AB in exactly the same manner as for the case C =1,
Changes in C, must now be considered in addition to changes in A and B.
.Xz(t) can be used to produce an error signal for this possibility. Define

a second error vector

€,(t) = yo(B) - Cox() = y,t) - Coy,(t) (4-52)
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If C2 changes to C2 + AC2

Xz(t) = {C,y,+aCy) x(t) = (Cy + AC,) 7, (1) (4-53)
and

€, = AC,y (t) (4-54)

Determining AC, is then a matter of solving (4-54) for AC, given g,ft)
and y, (t), both of which are accessible signals.

This development assumes that C does not change in
such a way that the first n sensors become dependent. If that happens,
the first n rows of C would no loenger be linearly independent, and therge
would be no coordinate transformation which could produce the form of
(4-47). This technique for handling the case m > n is appropriate only
if there exists n sensors which can be counted upon to remain always
independent, thus ensuring the state vector will always be fully
measurable by those n sensors. If this is not possible, the techniques

of Section 4. 3.6 can be used to obtain plant dynamics information.

4.2.3 Sensor Failure Information

It was shown in Section 4.2.1 that an effector failure
produces an error signal whose direction is associated with the
malfunctioning effector. The situation is similar for sensor failures,
except that the information provided by the error direction is not as
precise. It will be shown that, in general, the error produced by a
sensor failure will lie in a two-dimensional plane.

Assume a failure occurs in the ith sensor as modeled in

Section 3.2 by
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y{t) = Cx(t) + é‘mi n(t) (4-55)

where é\mi is a unit m-vector in the ith coordinate direction, and n(t)

is an arbitrary scalar time function. Replacing {4-3) with {4-55) in the

plant description, and using the same detection filter as before, the

error equation is

€(t)

The solution

e(t)

x(t) - z(t) = Ax(t) + Bu(t) - Gz(t) - Dy(t) - Bpuy(t)
(4 - DC) x(t) - Gz(t) + B(u(t) - ud(t)) - D&_ . nlt)

Ge(t) - Demi n(t}

= -opelt) - D’émi nft) (4-56)
of (4-56) is
-0 {t-t) . oo tt-1)
e e(tD) - Demi Y e n{7)dr (4-57)
t
O

and the settled-ocut error is

e(t)

A ' -Uf(t-T)
—Dem.l S‘ e n(7)dr {4-58)

t
o]

Note that €{t) is not an accessible gsignhal, nor can it be generated from

accessible signals. Fquation (4-55) cannot be solved for x{t) because

n(t) is an unknown. Howéver, the output error
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A

€'ty = ylt) - Cz(t) = Celt) + &_. nlt)
A ! _of(t-T) A
= - CDeIrli S. e nf{7T)}d7 + € i n(t)
t
o

(4-59)
t -o.(t-7)
is accessible. nf(t) and S‘ e n(T )d7T are scalars, so this
t .
settled-out error always lies in the plane formed in the output space by
the two m-vectors, Cngi and gmi' In general, ¢'(t) will move

around in this plane. The only cases in which €'(t) maintains a fixed

direction are

. . A _ A _
(i) if CDemi = e (4-60)
or
{ii) if n(t) satisfies the integral equation
boolteT)
nft) = atg e n{7)dr (4-61)
t

O

where ¢« is an arbiftrary scalar constant.
. A A .
The error plane defined by CDem.1 and e i 18 the same
for all equivalent plant descriptions. Equivalent descriptions are
related by the coordinate transformation equations {4-21) to (4-23).

The transformation relation for D is
D = T D ' (4-62)
which may be verified by transforming Equation (4-9) for D. Then

;—A _ - A _ A
CDemi = CTT Demi = CD € i ‘ (4-63)



When m =n and C is taken as the identity matrix as in

Section 4.2.2, (4-9) and {(4-14) can be solved uniquely for D to obtain

D = A 4+ UfI (4-64)
Then
A _ A
ehi T & (4-65)
and
A _ A A
CDemi = De. = (A+ GfI) e
= a, + 0, ’é.l (4-66)

where a; is the ith column of A. Then (4-59) can be written

t

: -crf(t-‘r)
ety = —(a.1+0'f@.1) S\ e

n{7)dT + ’e‘i n(t)

(4-67)
The two-dimensional error plane is uniquely determined by a; and féi'
(1f a; happens to lie along the direction of Qi then the error plane is
degenerate, and the settled-out error will lie in the fixed direction of ’e\.l.)
A settled-out output error which remains confined to a plane formed by

e . . . .th
a.L and ’e\.l is indicative of a failure in the i~ sensor.
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Each of the m sensors can be associated with an error
plane in the output space. An error signal which remains in one of
these error planes is indicative of a failure in the associated sensor.
Since there are m error planes in the m-dimensional output space,
these planes will intersect {unless all m planes are degenerate).
However, even when the error planes associated with two different
sensors intersect, it is still possible to differentiate between failure

of the two sensors, except in the following special cases:

(1) The two error planes are coincident, or in effect,

both sensors have the same error plane.

(2) The error signal maintains a fixed direction
coincident with the intersection of the two error
planes. In order for this to occur, the scalar nft)
representing the sensor failure in (4-55) must

satisfy a particular equation of the form of (4-61).

Sections 4.2.1, 4.2.2, and 4.3.3 have described the
error signal which the detection filter produces in response to
individual effector failures, changes in plant dynamics, and sensor
failures. Chapter 5 discusses the problem of processing the error
signal to identify the most likely event (or events) in the face of
uncertainties resulting from noise disturbances, simultaneous
multiple events, or events which are indistinguishable based on error
direction alone. The exceptional cases mentioned above are examples

of the latter.
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4.3 Partially Measurable State Vector

A partially measurable state vector means that
rk C <n (4-68)

so (4-3) cannot be solved for x(t). In the previous section it was shown
that when the state vector is fuliy measurable, a single detection filter
can produce information about all three types of events — effector
failure, sensor failure, and dynamic changes. When the state vector
is only partially measurable, the capabilities of a detection filter are
more limited. A single filter, in general, will not be able to produce
all the information that the filter in Section 4.2 does. However, the re-
sults of this section will show that if the plant is observable, i.e., if
(A, C) is an observable pair, any piece of event information found in
Section 4.2 can be produced by some detection filter. The limited
capacity lies in the fact that it may take a number of different filters to
provide all the event information.

In order that the results which follow will be generally applicable
to all three types of event information, a detection problem will be
defined in formal mathematical terms. The detection filter will still be
described by Equations (4-5), (4-8), and (4-9). Throughout Section 4.2

the state error defined by (4-6) always satisfied an equation of the form

e(t) = Ge(t) + fv (1) (4-69)

where f ig a time-invariant n-vector and Ve(t) is a scalar. Specifically, ‘

(i) f= b.l and V€(t) = n(t) for an effector failure,
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(ii) f= 3.1 and ve(t} = Aaijxj(t) or
ve(t) = Abijuj(t) for a dynamics change, and
(iii} f= -ngi and ve(t) = n(t) for a sensor failure.
Equation (4-69) describes the state error for what will be considered
a '"'simple' event — one effector failure, one sengor failure, or a
change in one element of A or B.
As before e(t) is not an accessible signal. The accessible error

signal is the output error
et(t)y = y(ty - Cz(t) (4-70)
For effector failures and dynamic changes, (4-3) is valid and
€'(t) = Celt) (4-71)
For sensor failures (4-55) replaces (4-3) and

€'(t) = Celt) + €_.n(t) (4-72)

The key feature of the detection filter in Section 4.2 is that the settled-
out error €(t) for a single event maintains a fixed direction in the state
space. Of course, this also means that Ce(t) maintains a fixed

direction in the output space. This is accomplished by choosing G = -o 1.

T
Under conditibn (4-68), however, Equation (4-9) no longer has a solution,
D, for every G, and in particular may not have a solution for G = -0 L

To make the limitations on G more explicit the state error equation

{4-69) can be rewritten as

€t) = (A-DC)elt) + v (t) (4-73)
by use of (4-9). . ‘
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The design of detection filters is primarily concerned with being
able to specify certain properties of the matrix (A - DC) by choice of D.
It is known that if (A, C) is an observable pair, then all n eigenvalues
of {A - DC) can be arbitrarily specified by choice of D{24] . The
following definition concerning specification of eigenvalues of a matrix

will be useful in what follows.

Definition 4.1 . The eigenvalues of an n X n matrix can be
specified almost arbitrarily if there exists a set of integers {nl, ceenony
with

ng oo + n, = n (4-74)

such that the eigenvalues can be specified n, at a time.

For a real matrix this imposes a slight restriction on the
specification of complex eigenvalues, because they must appear in
complex conjugate pairs. For example, in the case of a real 4 X 4
matrix {n = 4) with n, = 3 and ngy = 1, three of the eigenvalues must b_e
specified as a group, then the final one is specified separately. Since
complex eigenvalues must occur in conjugate pairs, the group of three
eigenvalues can have at most one complex pair with one real eigenvalue.
The final eigenvalue specified separately (as a group of one) must be
real. The possibility of two complex conjugate pairs of eigenvalues is
therefore excluded.

A formalized definition of detectability can now be stated.

Definition 4.2. The event associated with the vector f in (4-73)

is detectable (or simply, f is detectable) if there exists a matrix D

such that
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(1) Ce(t) maintains a fixed direction in the output space
(where €(t) is the settled-out solution of (4-73) with
Ve(t) an arbitrary scalar time function), and

(2) at the same time, all eigenvalues of (A - DC) can be

specified almost arbitrarily.

Condition (1) is the distinguishing feature of a detection filter
and is the source of the event information. There are several reasons
for condition (2). The matrix (A - DC} should at least be stable so
that the initial condition term in the solution of (4-73) will die out.
Otherwise Ce(t) will not settle out to a fixed direction. But beyond
this, it would be desirable {o have enocugh control over the eigenvalues
of (A - DC) to be able to influence the time required for Ce(t) to settle
out. A second reason for wanting to control the eigenvalues of (A - DC)
is that it would then be possible to tailor the dynamics of the system
(4-73) to the expected dynamic characteristics of the drive function
ve(t), thereby enhancing the output error signal. Finally, condition (2)
is somewhat easier to deal with mathematically than some alternative
possibilities. What can be gained (and lost) by weakening condition {2)
will become clear later in this chapter.

The next section deals with the detectability of a simple event.
Sections 4.3.2, 4.3.3, and 4.3.4 are concerned with the problem of
detecting a number of events with a single filter. The final three sections

adapt the general results to the three types of events.

4.3.1 Detection Theorem

The main result of this secticonis the following theorem.
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Theorem 4.1. Every vector in the state space RY is

detecta‘ple in the sense of Definition 4.2 if and only if (A, C) is an
observable pair.

The proof of this theorem is based on a number of inter-
mediate results ;:o:ncer.ni.ng properties of finite-dimensional linear
vector spaces. The following lemma establishes the connection between
these vector épaces and condition (1) in the definition of detectability.

Lemma 4.1. Condition (1) of Definition 4.2 is satisfied

if and only if
rk C[f, (A -DC)E, ..., (A-DC)P Y] = 1 (4-175)
Proof: The settled-out solution of (4-73) is

t
ety = S o~ [A-DC] (t-7) £ v (7)dr (4-76)

t
o}

Applying the remarks of Section 2.2 to the present situation, one may
conciude that €(t) in (4-78) lies in the controllable space of f with

respect to (A - DC), or equivalently in the range space of

W, = [f, (A -DC)f, ..., (A - pC)?! f] (4-77)

Therefore_ €(t) may be expressed in the form of (2-18),
€ft) = Weglt) (4-78)

for some n-vector g{(t) which depends on VE(t). Then
Celt) = Cng(t) (4-79)
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If rk CWf = 1, then the range space of CWf is one-dimensional and it
follows immediately that Ce(t) lies in a fixed direction for any g(t).
Therefore (4-75) is suificient.

By the definition in Section 2. 2, all states in the
controllable space of f can be driven to zero by some (control) Ve(t).
But a state trajectory for (4-73) can be followed in either direction,
so it is also possible to reach every state in the controllable space of f
starting from the origin. This means €(t) can be driven to any state
in the range space of Wf. Therefore condition (1) can be guaranteed
for arbitrary ve(t) only if rk CWf = 1. This establishes necessity and
completes the proof.

Finding a D which satisfies (4-75) is the first step in
designing a detection filter. The following definition is made for future
ease of reference.

Definition 4.3. An n X m matrix, D, satisfying (4-75)

will be referred to as a detector gain for f.

The next lemma introduces a type of vector associated
with f which will be important not only in the proof of Theorem 4.1 but
also in the actual design of detection filters.

Lemma 4.2. If

(i) (A,C) is an observable pair,
(ti) rk W, = k, and
(iit) rk CW, = 1
where Wf is defined by (4-77), then there exists an n-vector, g, in the

controllable space of f (with respect to [A - DC] ) such that
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C
CA
. g = 0 (4-80)
cak-2
and
cak'lg % 0 (4-81)
Proof: Now
C(A -DC) = CA - CDC (4-82)
C(A - DC)® = CA(A - DC) - CDC(A - DC)
= cA? - CADC - CDC{(A - DC)
(4-83)
and, in gene_ral,
ca -pey = cal - ca¥lpe - cal 2pea - Doy -
i-1
- CDC{A - DC) (4-84)

for any j. This sequence of equations is equivalent to the single

matrix equation

—“C T —C = r"C =
C(A - DC) CA ~ | CA - DC)
. = ) - T .
]
_é(A - DC)j_ | éAj | i é(A - Dc)j 1
(4-85)
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where ’/I\‘j is an m+(j+ 1) m«j+ 1) triangular matrix given by

N 0]
CD.
?j = | CAD f
cal’lp ... cap ‘cp 0
(4-86)
From (4-85)1
[~ - =
c 1 C
R C(A - DC) CA
[I+T,] . = .
j
| ca - po) cal
(4-87)

From the form of 'if\'j in (4-86) it is clear that {I+ %j] is nonsingular.

Taking j = k - 2, {4~-87) implies that (4-80) is satisfied if and only if
e ]

C(A - DC)

_é(A B Ye) Rt |
(4-88)

As was noted in Section 2.2, condition (ii) implies that

the range space of the truncated matrix
_ k-1
Wep = (£, (A-DC)E, ..., (A - DQC) f] {4-89)

has dimension k and coincides with the controllable space of f. Any
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vector in this space can be expressed (uniquely) as

g = WfT B (4-90)
where 8 is a k-vector. Substituting (4-90) into (4-88) yields
C ] [ cw,.
C(A - DC) C(A - DC) W
. WfTB = . g= 0
: k-2 - k-2
i C(A - DC) B i C(A - DC) Wer |
(4-91)

Since B is a k-vector, {(4-91) will have a nonzero solution if and only if

— —

CW

£T
C(A - DC)W
rk . T < k-1
| Cla - DC)k_2WfT
(4-92)
Now
B T
CW
C(A - DOW, gl -
rk | . < Z rk [C(A - DOV W]
j=1
Cla - DC)k'zwa
L - (4-93)

Recall that the controllable space of f is an invariant subspace.
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. Therefore

(A-DC)Wpp = W P (4-94)

for some k X k matrix P. Then

(A - DCY Wep = Wpr pl (4-95)

for any j 2 0. From condition {iii)

rk CWfT = rkCW, = 1 (4-96)
S0

- pcy - ] ' -
rk C{A - DCY Wy rk CWer P) < rk CW,. 1

(4-97)
Applying (4-97) to (4-93}),

o —

C(A - DC) WfT
rk .

1A
—t
L]
~
i
p—

A k-2

i C(A - 2C) WfT ]
(4-98)

and therefore {4-91) does have a nonzero solution for 8. Then g pgiven

by (4-90) is also nonzero and satisfies (4-88) and (4-80).

Relation (4-81) follows from condition (i). Suppose

cak'lg = o (4-99)

Together with (4-80) and (4-87) this would imply
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o C T

C(A - DC)

. g = 0 (4-100)

c(a - o)t |
or equivalently,

k-1
Clg, (A-DCYg, ..., (A-DC) " g] = 0
(4-101}

Now g is in the controllable space of f, which is an invariant subspace
of dimension k. The cyclic space generated by g therefore can have

dimension no larger than k. Then (4-101) would imply

clg, (A-DC)g ... (A - pc)lgl = o
(4-102)
or
. -
C(A - DC)
. g = 0 (4-103)
- n-1
LC(A - DC)
But with (4-87) this would mean
c B
CA :
‘ g = 0 (4-104)
'éAn—l
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which contradicts condition (i). One must conclude that (4-99) is not
true. This completes the proof.

Relation (4-81) guarantees that the cyclic space
generated by g (the controllable space of g with respect to [A-DCh is
of dimension k, and so coincides with the controllable space of . Note

also that (4-80) yields

[g, (A-DCg ..., (A-DC¥ gl = [g ag ..., A% 1g]
{4-105)
so the set of vectors {g, Ag. ..., Ak_lg} form a basis for the
controllable space of f. It should not be construed from (4-105) that

the cyclic space generated by g with respect to A also has dimension k.

It can be larger. Now f can be expressed as
f o= g+ QyAg + ... b A g (4-1086)

for some set of scalars {al, coes O }. The magnitude of g is not
restricted by (4-80) and (4-81). It will be convenient to take the magni-
tude so that the (nonzerc} term in (4-106) with the highest power'of A
has a coefficient of unity. Premultiplying (4-106) by C and using (4-80)

gives
ct = a CcA g (4-107)

If Cf # 0 then @_# 0 and the magnitude of g is taken so that @, = 1.

In general, if for some nonnegative integer u

{4-108)
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then

(4-109)

and g is taken so that ak'u = 1. The fact that (A, C) is an observable
pair guarantees that (4-108) is true for some u <k - 1. This follows
by the same reasoning used to prove (4-81). With the magnitude of g

taken as above,

f = ag+ ...+ C}!k_lAk_zg + Ak_lg if Ct# 0
{4-110)
or
_ k- -2 k-p-1
f = a1g+...+ak_u_1A g + A g
if (4-108) applies (4-111)

Definition 4. 4. An n-vector, g, satisfying (4-80),

(4-81), and either (4-110) or {(4-111) is defined to be a kP order

detection generator for f.

This terminology is motivated by the role which detection
generators play in the design of detection filters. Specifically, a
detection generator for f can be used to generate a detector gain for f.
Lemma 4.2 demonstrates that there always exists a detection generator
associated with a detector gain. The construction of the detection

generator in that lemma is based on knowledge of D, since Wer and

T

in {4-90) depend on D. However, the definition of a detection generator
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depends only on A, C, and f, so conceptually it is independent of any
particular D. The next theorem shows that if a detection generator

can be found by some means based only on A, C, and f, then if is
possible to write down immediately a solvable equation for D which

not only yields a detector gain, but also allows arfaitrary specification

of k eigenvalues of (A - DC}, where k is the order of the detection
generator. The construction in Lemma 4.2 is not an appropriate

method for finding a detection generator because it is based on knowledge
of D. The problem of finding a‘detection generatér will be discussed
later.

Theorem 4.2. If the conditions of Lemma 4.2 are

satisfied, and the k eigenvalues of [A - DC] associated with the

controllable space of f are given by the roots of

K P, 514 4 ps tp = 0 (4-112)

where the p, are scalars and s is a complex variable, then D must be

a solution of

k- k-1 k
DCA 1g=p1g+pzAg+...+pkA g + Ag

(4-113)
where g is a kth order detection generator for f. Conversely, if there
exists a kth order detection generator, g, then any solution of (4-113)
is a detector gain for f, and k eigenvalues of [A - DC] will be given by

the roots of (4-112).
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Proof:
Assume the hypothesis for the first part of the theorem.
Applying the remarks of Section 2.2 to this situation with (4-112) given

implies

(A -DC)t = -p,f - pylA - DOM-...- plA - pe)s 1
(4-114)

Lemma 4.2 establishes the existence of a kth

order detection generator
g. Since g as well as f is a generator of the controllable space of f,

(4-114) applies to g also

(a - DC)¥g = -plg-pﬂA-Iﬂﬂg-.ha—pgA-IX3kdg
(4-115)

Using (4-105), (4-115) reduces to

k- k- -
(A - DCA 1g = Akg-DCA 1g = - PE--.- —pkAk lg

(4-116)
which is equivalent to (4-113). This proves the first part of the theorem.
Assume how there exists a kth order detection generator,
g. Let D be any solution of (4-113). Equation (4-115) follows from (4-113)
by reversing the development above. Therefore g generates a cyclic
space of dimension k with associated eigenvalues given by (4-112).

Moreover,

rkClg (& -DCg ..., (a-DO¥ 'g) = rkclg, Ag ..., A% g

k-1

= rk[0, ..., 0, CA™ "g] =1

(4-117)
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so D is a detector gain for g. But f is contained in the controllable
space of g by virtue of (4-110) or (4-111). Hence the controllable
space of f is contained in that of g, and so D is a detector gain for f
as well as g. If the controllable space of f has dim ension k , then it
coincides with the controllable space of g and has associated eigenvalues
given by (4-112). But the fact that g is a kth order detection generator
and D satisfies (4-113) does not necessarily mean that the controllable
space of f has dimension k. For certain values of the coefficients P;
it may have dimension less than k. In ithat case the eigenvalues
agsociated with it are a subset of the k roots of (4-112). In either case,
k eigenvalues of [A - DC] are given by (4-112). This completes the
proof of Theorem 4.2.

With the use of (4-110) or (4-111), Equation (4-113) may

be put in a more convenient form. Premultiplying (4-110) by C yields

ca¥ly = ¢t (4-118)

which gives

DCt = 4+p,g+ ... +p Ak_lg + Akg (4-119)
1 k

as the equation for a detector gain when Cf #+ 0. Premultiplying (4-111)
by CA* yields

cakly < caft (4-120)

which gives

DCAME = +pyg + ... + pASTlg + alg (4-121)
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for the detector gain when {4-108} applies. It is cumbersome and

unnecessary to carry along results from both (4-110) and (4-111),

since (4-110) can be viewed as a special case of (4-111) with u = 0.
But rather than using the general form, the algebra will be simpler and
more readable if (4-110) is used and (4-111} is brought into the form of

(4-110). This can be done by premultiplying (4-111) by A¥ to get

e o= e AFg e+ Lo ak_“_lAk-zg + aklg
(4-122)
All the results which follow from (4-110) can be applied to the general
case by replacing f with AMf and di with C!.l_u for i=1, ..., k
(defining a.l_“ =0 for i < u).
The solution of {4-119) is developed in the lemma below.
Because the results will be used again later, it is presented in a

general form.

Lemma 4.3. Let D, S, and @ be matrices of dimension

nX m, mX £, and n X respectively. If rk S =2 then the general

solution of the equation

DS = @ {4-123)
is

p = sTs)1sT + pr1-s6Ts) tsT) (4-124)

where D' is an arbitrary n X m matrix.
Proof:
The general solution of (4-123) can be expressed in the

form

D = D + D (4-125)



where Dp is a particular solution of (4-123) and D, is the general

solution of the homogeneous equation

DS = 0 (4-126)

Since rk S =1, rk(STS) =f and (S’TS)_1 exists. A particular solution

of (4-123) is

D = QTs)tsT

b {4-127)

which can be verified by direct substitution.
It can be shown that the general solution of (4-126) can be

expressed in the form

D = D'I-ssTts)

-1 T
. st (4-128)

where D' is an arbitrary n X m matrix. Let Dc') be any solution of

(4-126). Take D' = D(‘;. Then
pil1-s6Ts 7] = prlr-seTsys™l = bl @120

Therefore, all solutions of (4-126} can be expressed in the form of

(4-128). On the other hand, D'[T - S(S¥S)"1ST] is a solution of (4-126)

for any D', since
pti1-86Ts)"1sTis = pUs-s] = o (4-130)

Substituting (4-127) and (4-128) into (4-125) gives (4-124) and com-
pletes the proof.

Specializing this result to (4-119) gives
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D = [pg+ ...+ pkAk'lg + a%g) [enTer tenT

+ D [1 - ctf ()T cf] '1(cf)T]
(4-131)
as the general solution of (4-119). Note that [(Cf)TCf] is a nonzero

scalar since Cf # 0. For D given by (4-131)
A-DC = A-lpg+ ... + A% [(enTer HenTe

- D’[I - cf[(cn Tt '1(Cf)T:| C

= A'-D'C’ , (4-132)
where
AT = A-lpg + ... + p A lg + A% 1 [enTenl ThenTe
(4-133)
and
cr = [1 - cilien Tt ‘1(Cf)T] C (4-134)

A brief summary of what has been accomplished up to
this point is probably useful. The [A - DC] given by (4-132) satisfies
(4-75) which is equivalent to condition (1) for the detection of f.
Condition {2} remains to be dealt with. In the process of finding a
detector gain given by (4-131), k eigenvalues of [A - DC] can be
specified arbitrarily by selecting the set of coefficients {pl, cee, pk}
as desired'. Condition (2) will be satisfied only if there is enough
freedom left in the choice of D to almost arbitrarily specify the
remaining {n - k) eigenvalues of [A - DC] . The arbitrary matrix D'

represents the freedom left in the choice of D after having satisfied
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(4-119). Regardless of the choice of D', condition (1) will be satisfied

and k eigenvalues of [A - DC] will be given by (4-112). The question

which now must be answered is, how many additional eigenvalues of

[A-DC] =[A'-D'C'] can be specified by free choice of D'?

following lemma answers this question.

Lemma 4.4.

The

IfA', C', and D' are real matrices cof

dimension n X n, m X n, and n X m respectively, the number of

eigenvalues of [A'- D'C']which can be arbitrarily specified by free

choice of D' is equal to q', where

"o -
C rAr
qf rk| . (4-135)
é'A n-1
Moreover, for any D' the remaining (n - q') eigenvalues of {A' - D'C']

are equal to corresponding eigenvalues of A'.

Proof:

This lemma can be proved using the fact mentioned

earlier that all eigenvalues of[ A'- D'C'] can be arbitrarily specified

if and only if {A',C'") is an observable pair.

_C1

CIAI

é,A,n-l
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Since rk M' = q', there are (n ~ q') independent solutions of
M'z = 0 (4-137)

Let {zl, ce ey '} be a set of such independent solutions and define

z
n-gq

the n X(n - q") matrix

N' o= [zy, ...,zn_q,] (4-138)

Then
rk N' = n-gqgf (4-139)

and
M'N' = 0 (4-140)

The range space of N' coincides with the null space of M'. The
results in Section 2.3 show that the null space of M' is an invariant
subspace with respect to A'. It follows that the range space of N' is an

invariant space and therefore
A'N' = N1PII\I (4-141)

for some (n - q') X (n - g') matrix Pl'\T' Let N(': be any n X q' matrix

such that the n X n composite matrix

T = [Né,N'] | (4-142)

Nl

is nonsingular. TN' can be used to define a coordinate transformation

_ -1

At = Ty, A' Ty, (4-143)
C' = C'Ty, (4-144)
_ -1
D' = Tp:D' (4-145)



Then

— R -1 -1
A‘ - ]D‘(:1 = TN' A!TN' TN! DIC| TN[
- 1l [a-plc'] T (4-146)
N' N'
so[A' -D'C'] and [A' - D'C'] are similar matrices and have
identical eigenvalues. Also
T C' Ty
. C'a" C'A' Ty
M = . = . = M'Ty,
== n-1 ' -1
| TR el S v
(4-147)
and since TN‘ is nonsigular
rk M' = rk[M'TN,] = rk M' = q' (4-148)
From (4-143)
Ty A' = ATy (4-149)
If A' is partitioned into
A A1
All A12
Al = (4-150)
A’ Al
21 22

with block dimensions
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Ay - et xal

Al - - ] _ r
Agq (n-q') X(n-qg")
Ay - q'X (n-q'")
At - - ! r
Agy n-q'YX q
then
- _—
Al Ag
TN,E' = [N(': »N'J
Al Al
i 21 .22_I
= tA T ‘Rt 1R TR
(NGB +N'BS)), (NBL, + N'Ej))]
(4-151)
Using (4-141)
t = 17! Ing! = BN P!
ATy, [A N!. A'N'] [A Nl, N'P]
(4-152)
Substituting (4-151) and (4-152) into (4-149) yields
TR 1At 1A ! [l — 1 ! ' t
[(NCAH +N'Ay) (NAI,+ N'AL)] = [A NI, N'PL]
(4-153)
Taking just the last {n - q') columns of this matrix equation
| tA ) = 1ot -
NCA12 + N A22 N PN {4-154)
or
- _ - -
1 1
Ay | A,
! t - =
[NC’ N ] TNl 2
Er _Pl K' - P!
B 22 N_] _ 29 I\L
(4-155)



But TN' is nonsingular, sco this implies

- -
412
= 0 (4-158)
‘gr - P
| 22 N |
In particular
Al, = 0 _ (4-157)
S50
B3 ]
A1y o
AT = (4-158)
At At
| A2 fa
Partitioning C' and D' to conform with A'
el = ' ! -
C [Cl, C,] (4-159)
r f)' .
1
D! = (4-160)
!
D,
L. -
Now by (4-140)
C' = C'Ty, = [C'N], C'N']
= [Cc'N, 0] (4-161)
so
Ei = C'N} (4-162)
¢, =0 ‘ (4-163)
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Then

|o

=

(4-164)

From the block triangular form of (4-164} it is clear that the eigenvalues

Of[K' _'f)r‘Cr]

eigenvalues of [Kil - I_Diai] and A

50

rk

227

rk M!
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[

(and therefore of [A' - D'C']) are the combined

(4-165)

(4-166)



Since Eil is ' X q', this implies that (Eil, C]) is an observable

pair. Therefore, all q' eigenvalues of the q' X gq' matrix [Eil - ﬁi—él']

can be specified arbitrarily by choice of ﬁi. The remaining (n - q')
eigenvalues of [A' - D'C'}, and thus of [A' - D'C'], are the eigen-
values of Ez’z which are not affected by any choice of D'. From (4-158)
it can be seen that the (n - q') eigenvalues of E2’2 are eigenvalues of A"
and thus of A'. This completes the proof of the lemma.

With the result of Lemma 4.4 it is now po-ssible to
conclude that the total number of eigenvalues of A - DC = A' = D'C!
which can be specified while satisfying (4-119) is (k.+ g') where q' is
given by (4-135) and k is the order of the detection generator in (4-118).
Condition (2} of detectability will be satisfied if and only if k + q' = n.
The next problem is to find under what circumstances (e.g., for which
detection generators of what order) is k+ q' = n. Since A' depends on g,
it appears that M' given by (4-136) and q' = rk M' also must depend
on g. The following theorem shows that this is not the case. It
establishes the very significant fact that the number of additional
eigenvalues of [A - DC] which can be specified after satisfying (4-119)

does not depend on the particular detection generator g or its order k.

Theorem 4. 3. If D is constrained to be a solution of

(4-119) (or equivalently (4-113) }, then the number of eigenvalues of
[A - DC] which can be arbitrarily specified, in addition to those given

by (4-112), is equal to
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_C' :
C'K
rk .
n-1
_C‘K i

where C' is defined by (4-134) and
K = A-af[nT o] (enlc (4-167)

Proof:

By Lemma 4.3 all possible solutions of (4-119) are given
by (4-131) with D' arbitrary. The number of additional eigenvalues
which can be specified is therefore the number of eigenvalues of
[A' - D'C'] which can be specified by free choice of D', where A’ is
defined by (4-133). By Lemma 4.4 this number is q' given by (4-135).

Premultiplying (4-110} by A yields

Af = oAg+ ... +a k-ly 4+ aKg (4-168)

k-1 A

Solving this equation for Akg and substituting the result into (4-133) for

A gives
_ k-1
A = A—[p1g+ ...+pkA g
+ af-a Ag- ... - A TgrrenTen HenTe
= K-zglenTer] HenTe (4-169)
where
z. = pg+ (p,- @)Ag + + (p. -a, ) akl
d 5] Pa ™ & Pr ~ %k-1 g
(4-170)
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By (4-80)

@
2
o
n

[1 - cil tenTer) 'I(Cf)T] calg

0 for j=0, ..., k-2 (4-171)

and with cA¥ 1g = Cf from (4-118)

crak 1y [:1 - ctl(enTer) —I(Cf)T:l caklg

[1 - cil (chTet] ‘I(Cf)T] ct

= C'f = Cf-Ct = 0 (4-172)
Then
cxalg = craltly - catfenTer) "enToalg
= 0 for j=0, ..., k-2 (4-173)
and solving (4-110) for Ak_lg gives
c'ka®lg = C'K(f- ag- ... - ak_lﬂk'zg]
= C'Kf = 0 (4-174)
since
Kf = Af-Af = 0 (4-175)
Assume now
c'k'alg = 0 for j=0, ..., k-1 (4-176)
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Then

cklaly = oAl - orklar [(enTer] HienTealg
c'kal™ly = 0 for j=o0, ..., k-2
(4-177)
and
ekt IaR g = ekl ag - o AN
= cxls = ¢ (4-178)

since Kf = 0. Therefore, by induction, (4-176) is valid for all i > 0
and j=0, ..., k-1. Since z4 in (4-170) is a linear combination of

the vectors {Ajg; j=0, ..., k-1}, it follows that

ctklz. = 0 forall i»0 | (4-179)
d =
Then
crat = c'k-c'zg[enTer) HenTe = ok (4-180)
and, in general,
ctat = c'kY forall i>0 (4-181)
Therefore
_C' N '_CI' T
C'A! C'K
MT = : - .
crarnl c'x™ ! |
B (4-182)
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Substituting this into (4-135) gives the desired result and completes the
proof.

Note that K and C' do not depend on g or k. Therefore,
M' and ' = rkM' are independent of g and k. This means that regard-
less of what detection generator is used to solve for a detector gain and
regardless of its order, the amount of freedom left in D for specifying
additional eigenvalues is always the same. It depends only on A, C,
and f. Recall that the number of eigenvalues which can be specified in
the process of satisfying (4-119) is equal to the order of the detection
generator. It now becomes clear that condition (2) of detectability can
be satisfied if and only if it is possible to find a detection generator of
order {n - q'").. Note also that a detection generator can never have
order larger than (n - q'), because this would imply specification of
more than n eigenvalues, which is impossible for an n X n matrix.
This motivates the following definitions.

Definition 4.5. The null space of M' given by (4-182)

is defined to be the detection space of f.

Definition 4.86. The dimension of detection space of £

is defined to be the detection order of f.

Definition 4.7. A detection generator for f whose

order is equal to the detection order of f is defined to be a2 maximal

detection generator (or simply, maximal generator) for f.

Let the detection order of f be denoted by v. The
detection order of f is equal to the dimension of the null space of M', so
v = n-rkM' = n-gq' (4-183)
where q' = rk M' with M' given by (4-182). The detectability of f now
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depends on being able to find a maximal generator. The next theorem
establishes the conditions under which this is possible.

Theorem 4.4. If (A,C) is an observable pair, then

every n-vector f has a maximal detection generator and it is unique.

Proof:

For an arbitrary n-vector f, let K, M', and N' be
defined by (4-167), (4-182), and (4-138) respectively with rk M' = q'.

The detection order of f is ¥ = n - q'. Let

g = N'B (4-184)

where B' is a v-vector to be determined. For a maximal generator

it is necessary that

g = 0 (4-185)

Note that K in (4-1617) has the same form as [A - DC] with
D = Af[ (C’f)TCf]_1 (Cf)T. Therefore, Equation (4-87) can be applied

to K to obtain

c C

' A CK CA

[1+7T) 5] . = . (4-1886)
CKV—Z _CAV_Z_

where %1'/—2 has the form of (4-86) with D replaced by Af[(Cf)TCf]_l(Cf)rI:
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Since [+ f‘ is nonsingular, {4-185) is equivalent to

1
r-2

- .
CK
. g = 0 (4-187}
CKV—Z
L —
or with {(4-184)
K ] N ]
CK CKN'
] N'g' = . B! = 0
CKV’2J | __CKy'zN'_
(4-188)

This equation will have a nonzero solution if and only if

[oN

CKN'
rk ) < v-1 (4-189)
cK? 2Nt
Now
- _
CIN'
CKN' yo9
. S rkCN'"+rk CEKN'+ ... +rk CK N!
-2
| CK™ °N' |
(4-190)
Since M'N' =0,
C'K'N' = 0 for i=0, ..., n-1 (2-191)



Substituting (4-134) into {(4-121} gives

ck'N' - ctf(enTes] HenTek!n' = o (4-192)
or
ck'n' = cifenTer] HenTok'ne (4-193)
Then
rk[ckIN'] = r'kECf[(Cf)TCf]”l(Cf)TCKiN']
< rik{Cf) = 1 fori=0, ..., n-1
(4-194)

Applying (4-194) to (4-190) yields {(4-189) and proves that (4-188) has a
nonzero solution. Since rk N' = n - q' = v, ggivenby (4-184) is also
nonzero and satisfies (4-187) and (4-185).

It will now be shown that

ca¥ g £ 0 (4-195)

First note that with (4-185)

Kg = Ag- atlchHTet] NenTeg = Ag (4-196)
k% = kag = A%g-at[cnTeiTlenTcag = a2
(4-197)

and, in general,

K'g = Alg for i=0, ..., v-1 (4-198)

Then (4-195) is equivalent to CKV'lg # 0. From the form of M!' in
{4-182) it follows {from Section 2.3) that the null space of M' is an

(n - q'}-dimensional invariant subspace with respect to K. Therefore,
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g, which is in the null space of M', can generate a cyclic subspace with

the range space of [g, Kg,

“lg7.

Again applying {(4-87) to K with j = n - 1, (4-199) would imply

respect to K of dimension no larger than {n - gq'} = v.

of [ g, Kg,

gives Clg, Kg,

or

., KY

L]

v-1

K*"*g] = 0 which implies Clg, Kg, ..

CK

CK

C
CA

.y

n-1

éA'n_l

n-1

K

Now if CK

r-1

o

5 K

This means that
gl coincides with the range space

g = 0, this together with (4-187)

n-1

(4-199)

(4-200)

which would mean (A, C} is not an observable pair, since g is nonzero.

But this contradicts the hypothesis, so one must conclude that

-1

CK

which by (4-198) gives (4-195).

since by (4-187) K"~

i

=0,

1

rkl[g, Kg, ..

g
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0

v-1

Relation (4-201) guarantees that

g]

v

(4-201)

(4-202)

g must be independent of the vectors {K'g

., ¥ - 2} in order to satisfy (4-201). Therefore, the set of

g] =0,



vectors {K'g; i=0, ..., v - 1} form a basis for the null space of M’

(or equivalently, the detection space of f), By (4-198) this set of basis

vectors is the same as the set {Alg;' i=0, ..., v-1}. Now
C'f = Cf-Cf = 0 (4-203)

and C'K'f = 0 for alli >0 because Kf

[ ¢ ]

C'K

0. Therefore,

f = M'f = 0 " (4-204)

yn =1
LC

-

so f is in its own detection space. Then f can be expressed as a linear

combination of the basis vectors {A'g; i=1, ..., v - 1}

f o= ag+ ayAg+ ... 4 aVqulg (4-205)

It has been shown that g is nonzero and satisfies (4-80), (4-81), and (4-106)
with k = ¥. By the same argument used previously, the magnitude of g
can be taken so that g satisfies (4-110) or (4-111), thus making it a Vth
order detection generator for f. By Definition 4.7 this g is a maximal
detection generator for f.

For completeness, some clarifying remarks should be
made concerning the general case described by (4-108). As mentioned

earlier, this case is obtained by replacing f by A¥f. Equation (4-204)

then becomes

M'A¥e = 0 {4-206)
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which shows only that AMf is in the detection space of f. However, it
can be shown that f is in this space as well. By the same development

used to obtain (4-198) from (4-185), it follows from (4-108) that

kKl = Al for i=0, ..., 4 (4-207)
Substituting this back into (4-108} yields
Co

CK
. f = 0 (4-208)

T,
| CK™

which in turn gives

C'K
. f = 0 (4-209)

C KM

Substituting (4-207) into {(4-206) yields
c'K* |

M'AaHt = M'KME = | . f = 0 (4-210)

c! K" 1+

— -t

Combining (4-209) and (4-210) gives
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[ o ]

C'K
. f = M'f = 0 (4-211)

and proves that f is in the detection space. Equation (4-205) therefore
is valid for the general case.
The observability condition guarantees that g is unique.

Suppose g4 and g, are both maximal generatolr's forf. Let Ag = gy "~ By

Then
- - - _
CA CA
. Ag = . (g, -8y = 0 (4-212)
ca?2 ca?2

by (4-185). But

V-1 rv-1

ca¥ tag = ca 1

g -CA"lg, = Ct-Cf =0 (4-213)

If Ag # 0 (4-212) and (4-213) would imply (A, C) is not observable by

the same argument used to show CAV_1 g # 0. Therefore, Ag =0 and

gl = gz : {4-214)

which establishes uniqueness of g. This completes the proof of
Theorem 4.4.

Theorem 4.1 follows quite simply from Theorems 4.2,
4.3, and 4.4. By Theorem 4.4 observability of the pair (A, C} is

sufficient to guarantee existence of the maximal generator, which by
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Theorems 4.2 and 4.3 makes it possible to satisfy both conditions (1)
and (2) of detectability. Moreover, the observability of (A, C) is
neceséary in order to satisfy condition (2). This follows from Lemma 4. 4.

The following observations are made to reemphasize
several important points and to highlight some additional facts which
are of interest.

1) For a given observable pair (A, C) each n-vector f
has one and only one detection space, detection order, and maximal
generator. Moreover, if A is replaced by A" =[A - D"C] for arbitrary
D' (with appropriate dimension), the détection space, the detection order,
and maximal generator for f remain invariant. This property can be of
considerable value in determining the detection order and maximal
generator of a vector. As will be seen later, when A and C have a
certain standard form, it is a simple matter to choose a D' which
produces an A" with all elements zero or one, thus making computations
much simpler.

It should be noted also that the developments in this
section remain valid under a coordinate transformation of the state
space. Therefore, the detection order of f is invariant under a
coordinate transformation. The detection space and maximal generator
transform in the same way as f.

2) Theorem 4.2 states that in order to be a detector gain
D must be a solution of (4-113) for some detection generator. By con-
straining D to be a solution (4-113), (n - q') = v eigenvalues of [A - DC]
are completely fixed. Of these, k eigenvalues can be arbitrarily

specified by choice of the coefficients {pi; i=1, ..., k} in (4-113).
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If a nonmaximal detection generator is used {i.e., k <?) then (v - k) =
(n - q' - k) eigenvalues are fixed without the control of the designer.
In any case, the remaining q' eigenvalues can be specified arbitrarily
by choice of D' in the general solution of (4~113).

3) All detection generators for f {of all orders up to the
maximal} lie in the detection space of £. This follows from the fact,
established in the proof of Theorem 4.3, that C‘KiAjg =0 foralliz0
and j=0, ..., k-1 where g is a kth order detection generator for f.
In fact, this shows that all the vectors {Ajg; j=0, ..., k-1} are in
the detection space of f. By the same reasoning used to obtain (4-198)
from (4-185), it can be shown that any kth order detection generator
gatisfies (4-188),

It should also be noted that every n-vector contained in
the detection space of f has the same detection order and detection space
as f. Suppose f has detection order ¥ and g is its maximal generator.
Clearly, g satisfies (4-80) and (4-81) with k = v. Let f, be any other
vector in the detection space of f. Since the set of vectors {Ajg;
j=0,..., ¥ -1} span the detection space, ’f2 can be expressed as a
linear combination of these vectors. Then, with the possible exception
of magnitude, g satisfies the requirements to be a Vth order detection

generator for fz. This implies the detection order of f, is greater than

2
or equal to ¥. Also, by the remarks in the preceding paragraph, the
vectors {AJg; j=0, ..., ¥ -1} all lie in the detection space of £y
Since these vectors span the detection space of f, one may conclude

that the detection space of f is contained in the detection space of f2.
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This means f is contained in the detection space of f2. But by the above
argument (with the roles of f and f2 reversed) this implies the detection
order of f is greater than or equal to the detection crder of fz, and the
detection space of f contains the detection space of f2. Therefore, one
must conclude that f and f2 have the same detection order, and their
detection spaces coincide.

4} Although observability of (A, C) is necessary to
satisfy condition (2) of detectability, it i$ not necessary for condition (1}).
A detector gain can always be found provided f does not lie in the
unobservable space of C. This can be shown by employing a coordinate
transformation similar to that used in the proof of Lemma 4.4, which

transforms A and C into the forms

iy 0
E = tlar = | M7 (4-215)
Aa1 B
¢ = cTr = [T 0] (4-216)
where (Ell’ '(31) is an observable pair. Partitioning f and D to conform
with A and C

—_— _1 1

o= 1Tl - (4-217)
£y

— -1 Py

b = Tlp = (4-218)
B,
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it is easily shown from the form of A and C that

clt, .... (& - DOy 1] CIT, ..., @ -y 1ir

1]
@l
i

(4-219)
Thecrem 4.1 can be applied to the observable pair (Kll’ El) to show

there exists a D and thus a D, which satisfies condition (1). If f lies

1’
in the unobservable space of C, then the settled-out output error is
zero for any D. Lemma 4.4 shows that if (A, C) is not observable then
there will be a number of eigenvalues of [A - DC] which will be egual
to those of A and which cannot be changed by any D (specifically, the

eigenvalues of A o in (4-215) ). Nothing can be gained by accepting a

2
weaker control over the eigenvalues which can be changed. Therefore,
the observability condition can be relaxed only if one is willing to give
up all control over a certain number of eigenvalues of A,

5) It was suggested previously that it would be desirable
to tailor the detection filter dynamics to the dynamic characteristics
of the drive ve(t). It is of interest therefore to determine the resulting

error dynamics when D is a detector gain. The Laplace transform is

a convenient tool for studying the settled-out output error. Consider

E'(z) = Z{Cet)} = cL{elt)} = chs-(A-Dcﬂ"lfvem)

where (4-220)

vV (s) = lf{vtfﬂ} (4-221)

Let D be a solution of (4-113). The transfer from VE(S) to E'(s) is
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invariant under a coordinate transformation of the state space. Define

a coordinate transformation by the n X n matrix

Ty = [Tp Typl (4-222)
with
k- -
Tfl = [g; Ag, e e, A lg] = [g: (A = DC)g: LIRS} (A - Dck 1g]
(4-223)
where gis a kP order detection generator for f and T, is any
n X (n ~ k) matrix which makes T, nonsingular. Lét
g = .l -por
f f
¢ = cr; (4-224)
T o= Tl
Now,
(A - DO)T; = [(a - DC)Tg;, (A - DC)sz] (4-225)
From (4-115)
- k - 2
(A - DC)Tfl = [(A = DC)g; « v ey (A = DC) g] - TflGll
(4-226)
where
B - ]
0 O 0 Py
1 0
G11 = 0 1 ) - (4-227)
. 0o .
i 0 0 1- Py |
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50

®))

11

|o

127 T

(A - DC)Tf = T,
where
(A - DC) T4y T, G
Premultiplying (4-228) by T yields
-Ya -DC)T, = G =
£ f |
Also
cC = [CTfl, CT
with
CTy = [0, ,
= Cffo,

P
A 1
o= Tt [Ty Tegl
0
with
*y
. .
Fo- .
k-1
1

[9))

P

~

f2

G

12

22

22

@)

(4-228)

(4-229)

(4-230)

{4-231)

(4-232)

(4-233)

(4-234)



50

fon )
f = {4-235)
9
Now
clis-(-po)] " = Qls-G)
-1
)
(Is - Gll) G12 fl
= [CTgy, CTyy) R
0 (Is - Gy5) |0
- CT.. (s - G,,) T
f1 11 1
_ _A Gy le
= cf{[o0, ..., 0, 1] (s G, "1}
(sk‘1 + o K24 @)
= Cf -
k k-1 + N
{s™ + Dy S Py )
{4-2386)
So
Ef(s) = Cf H(s) VE(S) {4-237)
where
s‘,k-]L + ak—l sk-2 + ... + ae1
H(s) = T ) (4-238)
s +p.s TH...+py
for Cf # 0. For the general case of (4-108),
D'(s) = CAMf H(s) v (s) (4-239)
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with

shHly @ _ 4 s5E24 4 a
H(s) = = = (4-240)
5 + pk 8 + ...+ pl

The direction of E'(s) is, of course, fixed and given by Cf or CAHf,
The magnitude of I'(s) can be considered the output of a k-dimensional
single-input, single-output linear system with dynamics given by (4-238)
or (4-240). The significant fact to note here is that whereas the
denominator of H(s) -- the poles of the system -- are under the
complete control of the designer, the numerator - the zeroes of the
system -- cannot be altered by any D. Once a detection generator is
found, (4-113) can be solved to obtain a detector gain without knowing
the coefficients @, in (4-110) or (4-111). However, if time allows

it may be desirable to find these coefficients and determine where the
zeroes of the system lie before deciding where to put the poles.

6) The construction used in Theorem 4.4 to show the
existence of the maximal generator is a feasible method for finding the
maximal generator for f, because all the quantities used in that con-
struction depend only on A, C, and f. Note C' and K are defined in
terms of A, C, and f only. The matrix N' is constructed from M'
which in turn can be defined in terms of C' and K by (4-182). Therefore,
M' and N' also can be constructed from A, C, and f. Appendix A
describes an algorithm for finding the maximal generator of a vector.
The algorithm is based on the construction in Theorem 4.4, but is

somewhat more direct.
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The results of this section show that if (A, C) is
observable, any n-vector f in the state space has a unigue maximal
detection generator, which can be constructed from A, C, and f only.

It has not been proven, in general, that f has detection generators of
orders less than the maximal. Lemma 4.2 proved only that a kth order
detection generator must exist if a detector gain D exists which satisfies
the conditions of the lemma. It was noted previously that the construc-
tion used in that lemma is not an appropriate method for finding a
detection generator, because prior knowledge of D is assumed. It is
eagily verified, however, that f is a unique first order detection
generator for itself. This suggests a tentative speculation that f has a
unique detection generator of every order from one up to the maximal.

7} There is a duality relationship between these results
on detection and the design of linear state feedback control, which is
concerned with the properties of the matrix (A + BL) with A and B given
and L to be selected. The dual significance of the results in this
section and later sections in this chapter are discussed in Chapter 6.

The results of this section deal only with the detection
of a single event. One of the appealing features of the detection filter
for the case of a fully measurable state vector was that a single filter
could provide all types of event information. As noted at the beginning
of Section 4.3, this will not be possible, in general, when the state
vector is only partially measurable. The next three sections consider
the problem of detecting a number of events with a single filter.

Before proceeding to the next section, a simple example

will serve to illustrate some of the preceding remarks.
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Example E1:

Suppose
(0 3 4]
A = 1 2 3 (E1-1)
0 2 5

C = (El_z)

L_0 0 1_
I

f = 1 {E1-3)
LO

Note the (A, C) is an observable pair. As noted in remark 1), the maxi-
mal generator, detection order, and detection space of f remain un-

changed if A is replaced by A" = A - D"'C for any D". It is convenient

to take
3 4
D" = 2 3 (E1-4)
2 5

0 0 0
Al = 1 0 0 (E1-5)
0 0 0
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Now
Cf = 1 =

and from the definition of C*

c-ctlwenTer] tienTe

cr =
[0 1 o] 1
= - o 1 0]
0o 0 1 0
0 0 0]
= (E1-6)
0 0 1
Using A to form K
K = a"-A"t[(c)Tct] HenTe
"0 0 0 0
= 1 0 0 - -3 [0 1 0]
L0 0 0 0
o 0o o]
= |1 3 o0 (E1-7)
|_0 0 0_

Then
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0 0 0
0 0 1
0 0 0
M' = (E1-8)
0- 0 O
0 0 0
__0 0 0 N
and
rkM" = g = 1 (E1-9)
The detection order of f is

v = n-q' = 3-1 = 2 {(E£1-10)

Consider the three~dimensional state space shown in

Figure 4-1. Note that

cf = 8, (E1-11)
cg = 2, (E1-12)

so the output vector
y{t) = Cx(t) (E1-13)

is simply the projection of the state vector x(t} on the (32 - 33)- plane.
From M" it can be seen that the detection space of f
{the null space of M') is the (‘@1 - @2)— plane. The maximal generator

of f must be in this plane and in addition satisfy

Cg = g = 0 (E1-14)



Figure 4-1.
and
1 0 0
CA”g - g - Cf
0 0 1]

These two equations imply that

o>
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Now

A's = Kg = Ag = 1 = @ (E1-17)
0

Note that g and Ag span the detection space of f, as illustrated in Figure

4-2, and
f = -3g+Ag (E1-18)
"‘3
g
Xy
Figure 4-2.
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The 3 X 2 matrix

d14 dyg
D = |dy, dyy (£1-19)
daq d32J

will be a detector gain for f if it satisfies

. di4
— = A 2 -
DCf = D 7| g |7 eiEtgae A’ (E1-20)
daq

for arbitrary Py and Py From remark 5) and {E1-18) it is known that

if D satisfies (E1-20) the output error transfer function will be

E'(s) (s - 3)
T 16 Cf H(s} = (E1-21)
Ve 5 0 (s2 + Pys + pl)

If poles of H(s) are desired at s = -2 and s = -3, for example, then

(s+2){s+3) = sz+5s+ 6 {(E1-22)

and
Py = 5 {(E1-23)
Py, = 5 (E1-24)

The transfer is then

Ef(s) _ _ § -3
V.E—-(g)- = Cf H(S) = 0 (S ¥ 2) (S ¥ 3j (E1—25)
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To produce this transfer the first column of D must satisfy

d11W 1 0 3 9
dyy | = 8l O }+ 5 1+l 2} = |7 (E1-26)
| gy 0 0 2 2
Then
9 dys
D = | 7 dgs (E1-27)
2 dgs,
and
0 -8 4-dy,
A-DC =11 -5 3 - d,, (E1-28)
0 0 5 - dy,

Note that after constraining D to satisfy (E1-20), the entire second
column of D is still arbitrary. The same result is obtained if Lemma

4.3 is used to obtain a solution of (E1~20). In that case

9
-1 1 -1
D = | 7|y [1 0] + D*|I- (y " [1 0]
2
2 0
0 0
= |7 o + DI (E1-29)
0 1
2 0
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and

0 -6 4
0 0 0
A -DC = 1 -5 3 - D'
0 0 1
|0 0 5
B _ L oar
0 6 4-dj,
—_ - - T -
= 1 5 3 d22 (E1-30)
- r
|0 0 5 - di,
where
4 T
di4 415
S t -
D doq doy (E1-31)
T T
434 dgg

is arbitrary.

Two eigenvalues of (A - DC) are s = -2 and s = -3 by virtue
of the choice of p, and Py. From the block diagonal form of (A -~ DC) in
(E1-28) it is easily seen that the third eigenvalue is (5 - d32), so it can
be arbitrarily specified by choice of d32. Therefore, all three eigen-
values of (A - DC) can be specified.

This will not be the case if a nonmaximal detection
generator is used to find a detector gain. Note that f is a first order
detection generator for itself. Hence, a detector gain for f can be

found by solving

DCf = p,f + Af (E1-32)

This will yield an error transfer of
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w—s—r = CfH(s) = 0 g pl {(F1-33)
Equation (E1-32) yields
dll -3 3 —3p1 + 3
dyy | = by 1| * |-1) = py - 1 (E1-34)
d31 0 2 2
Then
-3p1 + 3 d12
D = Py - 1 d22 {E1-35)
2 d32
and
0 Spl 4 - d12
A-DC = 1 -p1+3 3 - d22 (E1-36)
0 0 5 - d32
The eigenvalues of (A - DC) are given by the roots of
- 2 - - -
Is - (A - DC) I = (s + (p1 3)s 3p1) (s - 5+ d32)
= (S+p1)(s-3)(s-5+d32)
= 0 (E1-37)

Two eigenvalues of (A - DC) are s = Py and s = 5 - d32, and can be

arbitrarily specified by choice of Py and d However, the third

32°
eigenvalue of (A - DC) is always s = 3. This eigenvalue is automatically
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determined when D is constrained to satisfy (E1-32), and it cannot be
altered by any choice of Py d12’ d22, or d32. This is an example of
the uncontrolled eigenvalues which result when a nonmaximal detection
generator is used to solve for a detector gain, as noted in remark 2).
In this example the uncontrolled eigenvalue produces an unstable filter,
but this is not necessarily always the case. For some other f the un-
controlled eigenvalue may yield a stable filter. However, to maintain
control over all eigenvalues of (A - DC), the maximal generator must
be used in determining D.

Consider again the matrix (A - DC) in (E1-28) obtained
with the use of the maximal generator. Even after specifying the third
eigenvalue of (A - DC) by choice of d32, there is still freedom left
in the choice of d12 and d22. One might ask if this freedom can be
used to make D a detector gain for a second vector, fZ’ as well as for f.
In this case the answer to that question is yes. First, assume f, lies

2
in the detection space of f -- the (@1 - J'e\z) plane. Then

f = a21g+oz

3 22Ag (E1-38)

for some scalars Qny and Togs and it is easily shown that a detector
gain for f, determined with the use of the maximal generator g, is a
detector gain for f2 as well. However, the output error direction

cannot digtinguish between events associated with f and f2, because
sz = a22 Cf (£1-39)
so the output error direction is the same for both f and f2. Some
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possible methods for distinguishing such events are discussed later.

As a matter of interest, the error transfer function for f2 in the
detection space of f is
o
s+ g 1 +
E'(s) . o %32 . @925 T Uy
V€Zs5 2 (s+ 2) (s + 3) 0 (s + 2) (s + 3)
(E1-40)

When f2 lies in the detection space of f, the freedom in the choice of

d,. and d

12 29 is not necessary to obtain a detector gain for both f and fé.

Now suppose f, does not lie in the (31 - 32) plane.

2

Suppose, for example,

1
f, = -1/2 (E1-41)
1/2

It will be found for this example that the detection order of £y {and, in
fact, of any vector not in the (31 - @2) plane} is Vo = 1. This means

that the maximal generator for f2 is f2' To be a detector gain for f

2J
D must satisfy
-1/2 Pyy F 1/2
DCf, = D = pyyfy + Afy = -1/2 Pyy + 3/2
1/2 “1/2p,, + 3/2
(E1-42)
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for arbitrary p,,. The third eigenvalue of (A - DC) will then be

S = - Pgyq- Let

Py = 4 (E1-43)
Then (E1-42) yields
411 dig| | 92
1 1 -
- 3| dgy | * o5 | dgg = | -1/2 (E1-44)
dgy d32_ i 7/2_

Substituting (E1-26) into this equation yields

d12 9 9 18
d22 = 7 + | -1 = B8 {(E1-45)
d32 2 7 9
Then
9 18
D = |7 6 (E1-46)
2 9
and
0 -6 -14
G = A-DC = 1 -5 -3 (E1-47)
0 0 -4

It is easily verified that for f
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E's) = ClIs-G] ' 1V (s)
- 5 - 3 V_(s) (E1-48)
- 0 (s +2) 8+ 3) €
and for f2
: _ -1
E'(s) = C[Is - G] fy Ve(s)
-1/2 1
= s == Ve(s) (E1-49)

so D given by (E1-46) is a detector gain for both f and { The

5
settled-out output error produced by the event associated with f always

1
lies in the direction [ ]m the output space. The event associated

-1/2
with f2 produces a settled-out output error lying in the direction [ / :;
1/2

In addition to making D a detector gain for f,, it was

2!
possible to specify all three eigenvalues of (A - DC). Unfortunately,
this is not always posgible. Consider what happens when D is constrained

to be a detector gain for f, given by (E1-41) and fl given by
f = 0 (E1-50)

The detection order of fiisv, =1, and fl is the maximal generator.

A detector gain for f1 must satisfy

f1+Af

1
[dv]

P11 1
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Tor arbitrary Pyy- This together with Equation (E1-42) for a detector

gain for f2 gives

4 Po. + 1/2
0 -1/2 21
D = 3 -1/2 p,, + 3/2
1 1/2 21
P+ D 1/2 py, + 3/2
(E1-52)
which has the unique solution
- 2p21 + 3 4
D = Pyy -3 (EE1-53)
Pap TPyt 2 Py T 0
Then
0 2Dy, o |
A-DC = 1 Pyt 2 0 (E1-54)
0 Pa1 " P11 7Py
The D given by (E1-53) is a detector gain for both f1 and f2. The
eigenvalues of (A - DC) are given by the roots of
= 2 - -
Is - {A - DC) | = (s + (p21 2)s 2p21) (s + pll)
= (s-2)(s+ p21) (s + pu)
= 0 (E1-54)

Two eigenvalues of (A - DC) can be specified by choice of Py and Poq-

However, the third eigenvalue is always s = 2 regardless of the choice
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for P4 and Poy- This eigenvalue is automatically determined when
D is constrained to be a detector gain for both fl and fz. In this
example the uncontrolled eigenvalue produces an unstable filter.
This implies that it is not possible to detect both fl and f2 with a
single filter. It is necessary to use two separate filters -- one for fl
and another for f2'

The uncontrolled eigenvalues do not always cause

instability. If, for example, instead of (E1-41) fz' is

1
£, = 1/2 (E1-55)
1/2
then the detector gain for fl and fz is
21921 + 3 4
D = p21 + 4 3 (E1-56)
Pgy ~ Pyt 2 Py ¥ o
and
0 —2p21 0
A-DC = 1 gy - 2 0 (E1-57)
0 “Pyy t Py Py

In this case the uncontrolled eigenvalue of (A - DC) is s = -2. 1If a pole

at s = -2 yields an acceptable settling time for the filter, then f1 and fz
can be detected by a single filter with a detector gain given by (E1-56).
The next three sections investigate the problem of detecting a number

of events with a single filter.
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4.3.2 Mutual Detectability

Consider a set of r n-vectors {fl, e fr} associated
with a set of r events. The problem considered here is, given such a
set, to determine if it is possible to detect all vectors in the set with a
single detection filter.

Definition 4.8. The vectors {fl, v, fr} are defined

to be mutually detectable if there exists a D which satisfies the

conditions of Definition 4.2 for all the fi’ i=1, ..., r.
An important special case of this problem is encountered

when the vectors are "output separable' as defined below.

Definition 4.9. The vectors {fl, -++, £} are defined

to be output separable if

rkCF = r (4-241)
where F is ann X r matrix given by

F = [A“f,A°f, ....,A " f] (4-242)

with My for each i defined by

calt; = 0 e PN T
" (4-243)
calt # 0

Note that (4-241) implies r £ m where C is m X n. This definition

is motivated by the following observation. Suppose two vectors f1 and
1 2

I
f1 and CA “f

lie in the same direction in the output space. This means that even if

M
f2 are not output separable. Then rk CF =1 and CA 9
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a D' can be found which is a detector gain for both f1 and f2 the output
error for both events will lie in the same direction. Thus the output
error direction will not separate these two events. More will be said
about nonseparable vectors at the end of this section.

The next theorem provides a test for mutual detecta-
bility of output separable vectors. Before stating the theorem, some
preliminary results and definitions are necessary. By Theorem 4.2

a detector gain for the vectors {fl’ ..., £} must satisfy a set of r

equations of the form

k.-1
i _ k.-1 k.
DCA = g = P& T TP Al gralyg

fori=1, ..., r (4-244)

where g.l is a k.lth order detection generator for fi' Using the form of

(4-121) this set of equations can be written as a single matrix equation

DCF = Qd (4-245)

where F is defined by {(4-242) and

Qq = [wyy vvvs wy] (4-246)
with
| k-1 k,
Yai T Puf tooee toPg A gt A g
fori=1, ..., r (4-247)

When the f; are mutually separable (4-245) always has a solution. If

D is a solution of (4-244} each g; generates a cyclic subspace of dimension
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ki with respect to (A - DC}. The eigenvalues associated with each of
these invariant subspaces can be specified, ki at a time, by choice of
the coefficients {p.Lj; j=1, ..., k;; i=1, ..., r}. The fact that
the eigenvalues for each invariant subspace can be specified inde-
pendently of the remaining subspaces implies that these subspaces are
all nonintersecting. This is verified independently by the following

lemma.

Lemma 4.5. Let {fl, cees fr} be a set of output

separable vectors. If, for each i, g; is a kith order detection
k,-1
generator for f., then the (k. + ... + k) vectors {gl, e, A 1 g 2o,
k-1 ' ! r 1 =2
., AT g.} are all linearly independent.

Proof:

Suppose the above vectors are linearly dependent. Then
for some set of scalars {U.Lj; i=1, ..., k.l; i=1, ..., r}, notall
Zero,

k.
r i

ZE 25 o A lg = 9 (4-248)

ij i -

i=1 j=1 _

Premultiplying this equation by C and using the properties of a detection

generator gives

r k-1 r
i . i _
Zi ik, CA g = 25 Uik, ca'f = 0
i=1 i=1
(4-249)
H1q Ho. _
But the vectors {CA fi, +-0, CA fr} are linearly independent
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because the fi are output separable. Therefore, (4-249) implies

criki = 0 for i=1, ..., r (4-250)

Premultiplying (4-248) by CA and using (4-250)

I I
S s - 3 s o
Ui,ki~1 CA g = Ui,ki-l calf =0
i=1 i=1
(4-251)
which implies
Ui,ki_l = 0 fori=1, ..., r (4-252)

This procedure can be continued until all the g, are shown t6 be zero.

k,-1
It must therefore be concluded that the vectors {gl, vea, A 1 gl, gz,
k -1 :
AT gr} are all linearly independent. This proves the lemma.
Lemma 4.3 gives the general solution of (4-245) as
D = Qyckicr] temT + D'[I - crl(cmTcr) -l(CF)T:I

(4-253)
When this D is put into (A - DC) the resultis A -DC=A'-D'C"',

where

At = A-qlemer] HemTe (4-254)

and

cr = |:1 - crl(cm T cr] ‘I(CFT] c (4-255)

Fquation (4-111) for each fi can be used to obtain an expression for A'

corresponding to (4-169),
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A = K-zylecr)Ter] HemTe (4-256)

where
K = A-ar[(cr)Ter] YerTe (4-257)
and
Zg = legp s gyl
with
pi'l'].
2 = Wa AL (4-258)

[T
The expression analogous to (4-122) for each A ! fi is

My My ki-Z ki_l
f. = a., A gi+”.+ai’ki-“i_1A g.l+A
(4-259)
Premultiplying this equation by A and substituting into (4-258) yields

uitl
Zgi T Pp&toee-F (pi,;u.l-i-Z T A TR

ki-l
) A g.

ey g - %k u-1 i

i
(4-260)

By the same development used to obtain (4-182) it can be shown that

[ ! 1 [e ]
C'A! C'K :
. = . = M' (4-261)
é'A |..I.’1-]_ é,Kn'l

The following definition is a generalization of the definition of the

detection order for a single vector.

144



Definition 4.10. The dimension of the null space of

M', {n - rk M'"), is defined to be the gLr.ouR detection order of the set

{fl, R A

A necessary and sufficient condition for mutual detecta-
bility can now be presenfed.

Theorem 4.5. The output separable vectors {fl’ e, fr}

are mutually detectable if and only if the sum of the individual detection

orders of the fi is equal to the group detection order.

Proof:

Let M',K, and C' be defined by (4-261), (4-257), and
(4-255). The group detection order of {fl’ cee, fr} is (n - q") where
g'=rk M'. Let v, be the detection order of fi' If the maximal
generator for each f‘1 is used in Equation {(4-245) for D then (V1 . > Vr)
eigenvalues of (A - DC) can be specified, vy at a time, by the selection
of the coefficients pij' An additional q' eigenvalues can be arbitrarily
specified by the choice of D' in (4-253). The total number of eigen-
values which can be almost arbitrarily specified is therefore
{q' + vitoee. + Vr). This is the maximum number of eigenvalues
which can be specified while constraining D to be a detector gain for
all the f;.  Condition (2) of detectability will be satisfied if and only if

q'+v +...+vr=n, or

1

v,+ ...+v._ = n-q' (4-2862)

This completes the proof.
When (q’+u1+ +vr)<n, there are n - {(q' + V1+

.+ Vr) eigenvalues over which the designer has no conirol after D is
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constrained to be a solution of {4-245). It will be shown in Section 4.3.4
that these uncontrolled eigenvalues depend only on A, C, and F. They
do not depend on the coefficients pij or D' in (4-253). Therefore, it
is not possible to gain even partial control over these eigenvalues by
relaxing control over the other (q' + v et vr) eigenvalues. As in
the case of a single event, nothing is gained by relaxing condition (2)
unless one is willing to accept the uncontrolled eigenvalues which
result when (g" + vl + ...+ Vr) <n. This may be desirable if the
uncontrolled eigenvalues are such that they do not adversely affect the
dynamic behavior of the detection filter. Identifying the uncontrolled
eigenvalues in the case of nonmutually detectable vectors is discussed
in Section 4.3.4.

Example E1 at the end of the previous section illustrates
the above remarks. Each pair of event vectors considered in that
example has a group detection order of three, becaﬁse inh every case
the C' defined by (4-255} is a zero matrix, which means that M' given
by (4-261) is also a zero matrix with rank zero. For the first pair of
vectors {f’ f,} given by (E1-3) and (E1-41), the sum of the individual
detection orders is v + vy = 2+ 1 =3, which is equal to the group
detection order. As shown in the example, all eigenvalues of (A - DC)
can be specified while constraining D to be a detector gain for both f and fz.
For the second pair {fl, fo} given by (E1-50) and (E1-41), the sum of
the individual detection orders is only vy + Vo = 1+1 =2, and as {(E1-54)
verifies, one eigenvalue of (A - DC) is automatically fixed at s = 2 when
D is constrained to be a detector gain for both £, and f,. For the third

1 2
pair {f,, f,} given by (E1-50) and (E1-55), the sum of the individual

146



detection orders is again only two. But in this case the uncontrolled
eigenvalue is s = -2, so it is possible to obtain a stable detection filter
which detects both f1 and f2 in spite of the fact that these two vectors
are not mutually detectable. |

Results on the mutual detectability of nonseparable
vectors are inhcomplete, but a few useful facts are available. " If a
number of vectors have identical detection spaces, then a detection
filter for one will be a detection filter for all. Since the error signal
for all the vectors will lie in the same direction in the output space;
the output error direction will not distinguish between the events
associated with these vectors. However, the error magnitude may
provide additional distinguishing information. This special ca;se of
nonseparable vectors is important in the detection of dynamic changes
and is discussed in more detail in Section 4.3.6. For the general case
of nonseparable vectors Equation {4-245) for D may or may not have a
solution. A necessary condition for it to be a consistent matrix

equation is that
rk Qd <rkCF <r {4-263)

Each column W 3 in Qd ig in a subspace spanned by the vectors

{Aj g: 10,1, ..., k.}. This subspace contains the detection sEace
of fi and can be one dimension larger because of the presence of A i g;-
Condition (4-263) implies that these subspaces cannot all be independent

because if they were, rk Qd would be equal to r. Since Qd depends on

the coefficients pij’ it appears that (4-263) imposes some restrictions
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on these coefficients. It is not clear at this point what restrictions, if
any, this places on the specification of eigenvalues.

It is possible to show that if (A, C) is observable, then D
cannot be a detector gain for two nonseparable vectors unless their
and f

detection spaces coincide. Let £ 9 be nonseparable. Assume for

1
simplicity that Cf, # 0. (The same development is valid for the

general case given by (4-243).) Since f1 and f2 are nonseparable

rk{C[fl,fz]} = rk[Cfl,sz] = 1 (4-264)

This implies that the m-vectors Cf1 and sz have the same direction.

Suppose D is a detector gain for both f, and fzo Then by Lemma 4.1

1
rk (CWfl) = 1 (4-265)
rk (Csz) = 1 (4-266)
where
= - . n-1
Wfl = [fl’ (A DC)fl, e, (A - DC) fl]
(4-267)
~ n-1
sz [f2’ (A - DC)fZ, ..., (A - DC) f2]
{4-268)

By (4-265) the range space of CW,, is one-dimensional and, in fact,

coincides with the direction of Cfl (Cf1 is the first column of CWfl)'

Similarly, the range space of CW,, is one-dimensional and coincides
with the direction of Cf2. Since C‘f1 and sz have the same direction,

the range spaces of CWf1 and CWf2 must coincide. Therefore

rk [CW,,, CW = rk{C[Wg, Weol } = 1 (4-269)

f1* f2]

148



Define

kyg = rk {(We, Wpl (4-2170)

Now form ann X k12 matrix, Wfl.?.’ whose columns consist of k

12
independent columns from [Wg,, W;,] . Then the range space of W

f12

coincides with the range space of [Wfl’ sz] . In particular, fl and fz
are both in the range space of Wﬂze By virtue of {4-269)

rk CW = 1 : (4-271)

12

The development of Lemma 4.2 can be applied to Wﬂ2 to construct

an n-vector g such that

C
CA
. g = 0 (4-272)
k-2
ca 12 ]
Ky p1
CA g # 0 (4-273)

The set of vectors {AJg; i=0, ..., k12-1} gpan the range space of

Wflz' Therefore, both fl and f2 can be expressed as linear combina-
tions of these vectors. This means that g, with an appropriate adjust-
ment in magnitude, can be made a klzth order detection gemerator for

either £, or fz. Let g be a detection generator for fl. By remark 3)

1
at the end of Section 4. 3.1, the vectors {AJg; i=0, ..., klz—l} are
contained in the detection space of fl' Then f2 must be contained in the

detection space of fl' Again by remark 3) this implies the detection
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space of fl and f2 coincide. This result does not generalize to sets of
more than two nonseparable vectors.

Theorem 4.5 offers only a pass-fail type of test for
mutual detectability. If the vectors in a given set are found to be not
all mutually detectable, there is no way to discover which vectors are
mutually detectable except by repeated application of Theorem 4.5 to
all subsets of vectors in the original set. It would be desirable to have
a systematic way of forming subsets of vectors which are mutually
detectable. The next section is addressed to this problem.

4.3.3 Constructing Sets of Mutually Detectable Vectors

This section deals with the following problem. Given a
set of output separable vectors {fl, ceny fr} which are not all mutually
detectable, determine which vectors can be removed from the set to
leave a subset whose members are all mutually detectable. Each fi has
a detection space of dimension Ve the detection order of fi' It will be
shown that each of these detection spaces is an invariant subspace with
respect to K given by (4-257) and is contained in the null space of M'
given by (4-261). Since the f. are output separable, Lemma 4.5
guarante.es that the detection spaces are all nonintersecting. Together
they make up a subspace of dimension (Vl + ... +V ) contained in the
(n - g")-dimensional null space of M'(q' = rk M'). When the f.1 are not
all mutually detectable (n - q') > (ul + L.+ vr) and it is possible to

define an "excess'' subspace of dimension

- - r _ - - -
k., = n-gq Py~ eee -V (4-274)

which is contained in the null space of M' and does not intersect any of
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thé detection spaces. The precise definition of this space will be
presénted shortly. Its special properties and relationship to the
detection spaces are of central concern in the investigation of the
problem stated above.

First it will be verified that the detection space for each

fi is an invariant subspace with respect to K and is in the null space of

M'. Let g; be the maximal generator for f.- Then
Crad g = [1 - crl(cF)TcrF) ‘I(CF)T] cAl g = 0
_ (4-275)
forj=0,1, ..., V.L-Z and by (4-120)
Vi—l ~1

@]

o
m

1

. v, -
[I - crl(cF)TcF] _I(CF)T] cal g

n

. M
[I - cFL(CF)TCF] 1(CFT] ca 1,

jT H.
CA 1f.l - cat

1}

f. = 0
i =

(4-2786)

Similarly

c'kal g = c'a™ g - crarlenTer) HermTeal g = 0

(4-277)
forj=0,1, ..., Vi—2 and with (4-259)
V-1 i M- v.-2
C'KA ' = ¢c'kK[A 'f.-a. A lg - - @ Al g]
| i~ % e N O TToE. G
Hi
= C'KA 'f, = 0 . (4-2178)

7

since KA ! fi = 0. This development can be repeated any number of
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times to show that

crrlal g = 0 (4-279)

for j=0,1, ..., Vi_l and all integers £ > 0. Then

M'AJ g = 0 for j=0, ..., v-landi=1, ...,  (4-280)

which shows that the basis vectors {AJ g;; i=0, ..., Vi-l} for each
detection space all lie in the null space of M'. From (4-80) and the

form of K in {4-257) is follows that

K'g, = Alg for j=0, ..., -1 (4-281)

so {K/ g i=0, ..., Vi-l} form a basis for the detection space of fi.

Substituting (4-281) into (4-159)

pi ,ui v.-2 v,-1

f, = o, K gi+"'+aia1’i'ui'1K g+ K g
(4-282)

u.
Premultiplying this equation by K and recalling KA ! f. =0 yields

“i+1 v.-1 v,
.. K gt...+ta g.l-!—K gi=0

. K
LVimu-1

(4-283)
which shows that g; generates an V.l—dimensional cyclic subspace with
respect to K. For each i define ann X v matrix

v.-1 v.-1

— 1 —
W = lg,.Ag, ... A" gl = [g.Kg, .... K

(4-284)
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Then using (4-283)

: v,
— 1 —
ngi = [Kg.l, ..., K gi] = ngpm (4-285)
where P . is an V, X . matrix of the form
o i i _
0 0 0 0 ]
1 0 .
Pai = 0 1 . 1 {4-288)
. 0
Q 0 1 -,
L 1, Vi-'ui-l ]
Now let the set of n-vectors {Z,ei’ s B } be a basis
e

for the excess subspace mentioned earlier. These vectors are linearly

independent of each other and of the basis vectors for the detection

v,-1
space of the f;. The complete set of vectors {gl, oAl g
v -1
r . .
., A 8or Zop c oo Zeke} forms a basis for the null space of M'.
Define the n X ke matrix
z, = [Zel‘ e, Zeke] (4~287)
Since the z . are in the null space of M
M'Z, = 0 (4-288)
and
cwilz, = 0 forall j21 (4-289)
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With (4-255) this gives

crd! zZ, = crl(cF)Ter] Hem Teki! z,

I
By
= Z CA ' f v, {4-290)
i=1

where the ‘Yi. are 1X ke row vectors and

[ =

- [cmTer T Y erFer!! z, (4-291)

‘Yrj

— -

The basis vectors {ze o Zgg } are to be chosen so that

1 e

Vg T 0. forjslo... vy (4-202)

It must now be demonstrated that this is, in fact,
possible. Let {zlr, +++, z } be any set of independent vectors which
. e
together with the set {A?E{ 1 i=0, ..., Vi—l; i=1, ..., r} form a

1
basis for the null space of M'. Define

z' = [Zi, cony 2y ] (4-293)

An equation analogous to (4-290) can be written for Z'

Ir

: u.

cel 'tz = Z CA lfi’y{j (4-294)
i=1
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where

= [(cmTer] YR Texi! 7

yi (4-295)

Let

r

= r -

Ze Z' 4+ Z ng '_Ii (4-298)
i=1

where the Ji are Vi X ke matrices chosen so that

r

Jpo= -y for i=1, ..., - (4-297)

with Pai defined by (4—28'6) and ﬁi a 1X Vi unit row vector

Gi = [0, ..., 0, 1] (4-298)

The set of equations (4-297) defines J5 uniquely as can be seen when

they are combined into a single matrix equation

- A T '
Yy Yi1
N
u.P . .
oo o= - {4-299)
Vi_l .
u.P_. v
X1 V.
- a LY

The v, X v, matrix on the left has the triangular form

155



and is clearly nonsingular (o denotes possible nonzero elements).

Jiso defined

Noting that

cxil z
e

Cng =

[0,

Equation (4-301) then becomes

cx’l z

e

(4-300)

With

(4-301)

(4-302)

(4-~303)

(4-304})



Comparing this with (4-290) one may conclude that
vo. = b o+ 4, P J. (4-305)

since the CAM.l fi are linearly independent. Then (4-292) follows
directly from (4-297).

Equation (4-285) shows that the range space of each ng
is an invariant space with respect to K. The range space of Z_ is not
an invariant space itself, but is at least contained in the null space of
M', which is an invariant space. Therefore KZ_ is also in the null
space of M' and can be expressed as a linear combination of Z and
the Wg , since the combined range spaces of these matrices coincide

with the null space of M'. So
KZe = Z A + z ngri {(4-306)
for some ke X ke matrix A and some v, X ke matrices Fi' Then

J
CK'Z

Ir
ckJ! Z A+ Z o< lW T
' i=1

r
- . 1
= ZCA 1fi[‘r--A + 4P | (4-307)
i_:



Comparing this expression with (4-280) with (j - 1) replaced by j, one

may conclude that

— A l
Yippr T Yy T u Py L (4-308)
j

This along with (4-292) implies that

) 0 . J=L ., V-1
A J-1 T - !
U, Pai .= {4-309)
Tipl 1=y
The row vectors Yi v+l will be referred to frequently in what follow‘s,
U

so it will be convenient to introduce a simpler notation for them

9 = vy, v+l (4-310)
Writing (4-309) in matrix form,
A T [0 ]
I —_
A .
u.pP . .
e - . (4-311)
1
0
U’iPai _ | 9'1 _

Noting the triangular form of (4-309) this equation is easily solved for

T to yield
(o ] [ 1]
i
0 0
1"i = | . = . 8, (4-312)
L.g - . 9 -
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Then (4-308) reduces to

r
KZ, = ZA + z N (4-313)
i=1

The ke X ke matrix A and the 1 X ke row vector Gi associated with each
f.l is sufficient to determine which vectors in the set can be removed to
leave all the remaining vectors mutually detectable. The following
theorem is the basis for that determination.

‘Theorem 4.6. Let Ze,A , and the 9.1 for each fi be

defined as above. Assume £ vectors {fi s eess f.l } are removed from
1 1
the original set of r, {fl’ e fr}' Then for the remaining (r - 1)

vectors the new excess subspace has dimension

®

QA
k = k. - rk|{ . (4-314)

where @ is an £ X ke matrix whose rows are the 9.1 corresponding to

the fi which were removed

@ = . (4-315)

Furthermore, a basis for the new excess subspace is formed by the set

of vectors
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vy, = Zeﬁel for i=1, ..., k (4-316)

where the set of k_-vectors {Bel, Cee, Bek} is any basis for the null

space of

The following corollary demonstrates the effect of
removing a single vector from the original set.

Corollary 4.6.1. If f. is removed from the set of

vectors, then the dimension of the excess subspace will be reduced by

an amount equal to

rk

Proof:
Simply take @ = 8, in Theorem 4.6. The next corollary
provides an answer to the problem stated at the beginning of this section.

Corollary 4.6.2, The vectors remaining after the

removal of I vectors {f_.L ;e f.L } are mutually detectable if and
1 £

only if (A, @) is an observable pair.
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Proof:

The remaining vectors are mutually detectable if and

only if the new excess subspace has zero dimension.

this will be the case if and only if

[

rk

L.

®
@A

. k
QA

-1
e

which is the condition for (A, ®) to be an observable pair.

Proof of Theorem 4. 6;

By Theorem 4.6

(4-317)

For convenience of notation, assume that the first ¢

vectors are removed from the original set to leave {f

Define

[A

Mpa

f

£+

®

u
A

r'f]

r

T -1 T
A - AF,[(CF,)"CF,] (CF,)"C

T -1 T
E-—CFZHCFZ)CEE] (CFQ Jc

n

£+ 0

SRR

(4-318)
(4-319)

(4-320)

(4-321)

which are analogous to F, K, C', and M' for the original set. The
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detection spaces of {f ., fr} are contained in the null space of

£+1°
M,. These vectors are mutually detectable if and only if the dimension
of this null space is exactly (V£+1+ .. vr). Suppose its dimension
is larger than this. Then there will exist some n-vector z in the null
space of Mé which is independent of the detection spaces. Any vector

in the null space of Mé is also in the null space of M'. Moreover, M'2 z

= 0 if and only if

z = 0 (4-322)

These two facts follow from the lemma below,

Lemma 4.6, If Cé z = 0 for some n-vector z then
Kz = K,z (4-323)
and
C'z = 0 {4-324)
Proof:
Now
_ T -1 T _
Ciz = Cz - CF,[(CF,) "CF,] (CFy)"Cz = 0
{4-325)
S0
Cz = C‘Fz’f;’2 (4-3286)



where

From the definitions of F and F

where & is defined as

Then

and thus

C'z = C(C=z

Also

z = Az

which completes the

- T -1 T
£, = [(CF,)"CF,] (CF,)"Cz
2
Fo€, = TE
9
g =
*2
Cz = CF§

- ¢c¥ [{ch)TeF) “LemTez
- cF [(emTer] YermTere

- CFE = 0

- aF,[(cF)Ter,) er,)Tes

- AF.E, = Az - AFE

- ar[cmTer] iemTeore

- arlchmTer] YemTez = kz

proof.
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Successive application of (4-323) to K%z and sz with
j=0,1 ..., n-1yields (4-322). The fact that z is in the null space
of M' follows from {4-322) and (4-324). It is therefore possible to

express z as

i

z = Z B+ W 8. (4-333)

for some ke-vector Be and Vi—vectors Bi' With (4-290) and (4-302)

r
1L il Z i-1
CK' "z = CK ZB, + CK ngﬁ.l
i=1
p = [ 1
= i i P
= ZCA fi'y.ljﬁe +Z ca 't iPai B,
i=1 i=1
(4-334)
. T -1 T
Premultiplying by - CF,[(CF,) CF,] (CF,)
r
. M j-1
vl — | 1 4 _
C,K' 'z = C2A £ [‘yijﬁe P, ’81] (4-335)
i=1
Ky
Because the f, are output separable, the vectors {ca foi=h ..., r}

are linearly independent. (These vectors make up the columns of CF

[T
which has rank r.) Equation (4-326) shows that if CJ A "f, = 0 then

'u.
ca ' fi can be expressed as a linear combination of the columns of CFz,

uif_;
1,

i,
i=g+1, ..., r}. But the vectors {CA 1fi; i=1 ..., £}are

or in other words a linear combination of the vectors { CA
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[TH M.
independent of the vectors {CA ' fi ; i=441, ..., r}, socral f.l *0

2
for i=1, ..., 4. Consequently,
K. Ty I
' i _ i _ T -1 T t
CjA " f CA "f. - CF, [(CF,) CF,] “(CFy"CA £,
=0 ifi=£+1, , I .
(4-336)
#0 ifi=1 ..., 4
Then (4-335) reduces to _
£ .
cigily = z catis [y g 4B p 8. 1 (4-337)
2 2 i Vi e i i Fi
i=1
But from (4-332) CéKJ-lz = 0 for all j 21. Therefore
v.. B o+ 0 Pj_l B. = 0 for i=1 2 (4-338)
ij Ye itai Pl = s

(7R
and for all j >1, since the Cz',A ! fi are independent. By (4-292)

this reduces io
-1
4. P B = 0 for j=1, «u., v, (4-339)
or
Loal . = 0 fori=1, ..., ¢

u.P _, (4-340)

which implies
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B. = 0 for i=1, ..., I (4-341)

by virtue of (4-300). Then (4-338) becomes

VijBe = 0 for i=1, ..., £and j2v, +1
(4-342)
Define
— y =
_ 1, Vit
Sj = . (4-343)
L ‘Yf ,V£+j
Then (4-342) can be written
SjBe = 0 for j2>1 (4-344)
Now from (4-308) and (4-312)
- ! -
i, i+1 'YijA + aij 8i (4-345)
where
- -
1
._.1 0
aij u; Pai . . (4-3486)
0
Repeated application of (4-345) starting with j = vy + 1 and Tipal 91
, '

yields the general expression
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= e.lAj'1+ @) oA 2 4w

1
i, v A4 i,v4+1 % i,v+j-1 0
{4-34"7)
for all j > 1. Using this expression in the definition of Sj
- 31 J-2 -
Sj SAT T+ QS| AT T4 Lt Qj—l S (4-348)
where
i 1 - . - - . - ]
@, Vl-!-j 0 0
0 ' .
Q. = . .
. 0
0 . 0 o) .
_ £, V£+J_j
(4-349)
Noting that S1 =®
- 2 — - —~ -
Sl 51 &
) % SlA ) % ) BA
IV T T
. ke~1 « k-1
S S,A © eA ¢
k 1
. e e - — -
(4-350)
where
I o D
Q ,
A
0
_Qk -1 .Qy Q@ I |
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Now (4-344) for j=1, ..., k_ canbe writien

B, = 0 (4~352)

which is equivalent to

B, = 0 (4-353)

since TQ is nonsingular. If (4-353) is satisfied, then SjBe =0 for all

j =2 1 because

- - -
[ s,
. ®A
rk . o= rk . < kg (4-354)
J | onl™!

for any j > 1. With (4-341), Equation (4-333) reduces to

Be
- B
- : - 1+1
z = Z B, + z Waifi = 1200 Wy pige +os Wl
i=g+1 :
_BI‘ _
(4-355)
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where Be must satisfy (4-353). The only constraint placed on z in
arriving at (4-355) was that it lie in the null space of Mé. All vectors
in this null space can therefore be expressed in the form of (4-355).
Since the rk[ze"wg,ﬂﬂ’ cee, wgr] ={(k g+ V¥V, * .-+ V) the

dimension of the null space of M:'2 is gsimply the number of independent

(ke + v!+1 4+ ...+ vr)-vectors of the form

8, |

6£+1

where Be must satisfy (4-353). The Bi (i=2+1, ..., r) are
unconstrained so there are at least (V1+1 + ...+ Vr) such vectors.
This was expected because the detection spaces of {f_£+1’ e, fr} are
known to lie in the null space of Mé The number of additional

independent vectors in the null space is the number of independent

solutions of (4-353). This number is

This, then, is the dimension of the excess subspace for {f£+1’ e, fr}.

Let {Bel, cees Bek} be k independent solutions of (4-353). Define
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Y = [’Bel' Bek] {4-356)

e
and
1 - - 1 I
zl = Z.Y, = [Zel’ cees 2l ] (4-357)
with
[} — ] = -
zy = Zeﬁei for i=1, ..., k (4-358)

The columns of Zé are in the form of {4-355) (with the Bi = 0) and are
therefore in the null space of Mé. Then by Lemma 4.6

I
K.,Z' = KZzZ' = KZ Y = Z AY +ZW.T‘.Y
e e e’ e e e g1 17 €
i=1

(4-359)
Now the range space of Y, is an invariant subspace with respect to A

because it coincides with the null space of

— —_

®
®A

Thus

AYe = YeA' (4-360)

for some k X k matrix A'. Note alsothatfori=1, ..., f
1]

0
'y = . 8.Y =
1 1

|

- (4-3861)
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For i=2t+1, ¢ce,

- - _
1 1]
0 0
- - ' -
riYe = . eiYe = . 9.1 {4-362)
| 0] | 0
where
r - -
Bi = giYe _ (4-363)

Substituting (4-360), (4-361) and (4-362) into (4-358) gives

r.

1 - 1
KoZ) = Z Y A' + Z W LY,
i=1+]1
I
—_ 1 1 ' _
= ZlA 4 z g.0; (4-364)
i=2+1

This equation is analogous to (4-313).

Thé columns of Z  form a basis for the new excess
subspace for {f1+1' e fr}. To see this, first note that the columns
of Zé are indeed independent of the detection spaces of {f£+1’ . fr}’
since by (4-357) the range space of Zé is contained in the range space
of Ze’ which by construction is independent of all the detection spaces.
It was noted earlier that the columns of Z_ are in the null space of M,
and therefore KZ_ = K,Z_, by Lemma 4,6. Since the null space of Mé

is invariant with respect to KZ’ the range space of K23-1 Zé is also in

null space of Mé for all j > 1, and
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K3~z K™

z' (4-365)

Then

j-1

CK2

z' = ckilz = ckilzy (4-366)
e e e £
Substituting (4-290) into this equation yields

r

ckilzr - Z ca iy v.. Y (4-3617)
2 e i e .
{21

Now the columns of Y, satisfy (4-353) which is equivalent to (4-342).

Also i =0 for j=1, ..., ¥, soonemay conclude that
71j e = 0 for =1, , £
and for allj>1 - (4-368)

Then (4-367) reduces to
r
j'l [ - L -
CK2 Ze = z CA f.l'y..Y {4-369)

The row vectors (y..Y ) for i = £+1, ..., r play the same role as the
ijTe Y

Yij for the original excess subspace. From (4-292)

~y.lee = 0 for j=1, ..., V. (4-370)

SO Zé satisfies the condition analogous to (4-292) used to define the

excess subspace. This completes the proof of Theorem 4.6.
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Appendix B describes an algorithm for generating a basis
for the excess subspace, plus the A matrix and the row vectors 91.
Corollary 4. 6.2 reduces the problem of consiructing a subset of
mutually detectable vectors to the problem of finding a subset of the
row vectors 8, which form a @ suph that (A, ®) is an observable pair.
At first glance this may seem to be only a pass-fail type test such as
provided by Theorem 4.5. However, A and the 9_.1 can provide additional
information to guide the choice of which vectors to remove from the
original set. Corollary 4.6.1, for example, can be used to identify
those vectors whose removal would achieve the greatest reduction in
the size of the excess subspace. More information can be obtained
from a systematic analysis of A and the Gi as will be seen in the next
section. In addition to providing a2 way of analyzing the problem of
detecting a set of vectors with a single filter, Theorem 4.6 has
achieved a potentially significant reduction in the dimensionality of the
problem. Mutual detectability as originally formulated in Section 4.3.3
deals with an n-dimensional vector space. Theorem 4.6 reduces the
problem to considerations in a vector space of dimension ke, which one
might reasonably expect to be significantly smaller than n (recall
k. =n-q-v, - ... - V).

e 1 r

4.3.4 Detection of Nonmutually Detectable Vectors

with a Single Filter

By definition, a set of vectors which are mutually detectable
can be detected with a single filter while retaining control over all the
eigenvalues of {A - DC). If one encounters a set of vectors which are

not all mutually detectable, the results of the previous section can be
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used to break up this set into a group of two or more subsets, each of
which is made up of only mutually detectable vectors. One detection
filter can then be designed for each subset. If this is done, one need
consider only the pfoblem of designing a detection filter for mutually
detectable vectors. However, if one allows the possibility of using a
single filter for nonmutually detectable vectors, it may be possible to
reduce the number of detection filters, since a potentially greater
number of vectors could be assigned to each filter.

This section investigates the problem of using a single
detection filter for a set of output separable but nonmutually detectable
vectors. The results of the last two sections show that when this is
attempted the resulting (A - DC} matrix will have ke eigenvalues fixed
without the control of the designer, where ke is the dimension of the
excess subspace for the set of vectors. To decide if detection of the
set with a single filter is feasible, one must be able to identify these
uncontrolled eigenvalues to see if the filter will have satisfactory
dynamics. It will be shown in this section that these eigenvalues are
indeed uncontrollable -- that they depend only on A, C, and F and are
not influenced by the designer's choice of the remaining (n - ke)
eigenvalues of (A - DC). Further, they will be shown to be equal to
the eigenvalues of the ke X k, matrix A introduced in fhe previous
section. From Qi it will be possible to determine which of the
uncontrolied eigenvalues are eliminated by removing the corresponding
fi from the original set. With this information the designer can
eliminate specific undesirable eigenvalues by removing certain fi'from

the set.
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Suppose D is chosen to be a detector gain for the set of
output separable vectors {fl’ cees fr}. Define an n X n coordinate

transformation matrix

T. = [W

F y W, 24, T

UREE gr Ze Fz] (4-371)

where Ze and the ng are defined as in the last section, and TF2 18
any n X q' matrix such that Ty is nonsingular {q' + kgtv ..ty = n).

Let

G = T'l(A DC) T (4-372
B F -372)

Now by {4-115)

v,
— - - 1 =
(A - DC) wgi = [(A-DC)g, ..., (& - DC) gi] WP
(4-373)
where
0 0 0 Piq
1 0
P, = 0 1, . . (4-374)
0 0 1 “Piy
From (4-290) and (4-292) with j = 1
CZe = 0 (4-375)

(Note that Ve the detection order of fi’ is always greater than zero
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because the null space of M' defined by (4-182) contains f.l and there-

fore has dimension greater than or equal to one.) Then

I
(A-DC)Z, = AZ, = KZ, = Z A+ ngiri (4-376)
i=1
With (4-373) and (4-376)
I
(A-DC)Tp = [Wy Py, ooy WP (Z A+ ZngI“i),(A - DC)Tp,]
i1
Py 0 Ty Gy
9-
.0
=T , .
¥ p T
r r
0 A
8 8 0 r+2, r+2

(4-377)

where the G; are defined by

r+2

r
(A-DC)Tg, = z WoiGi e T AGmg, 2 ¥ Tr2Griz, re2
i=1
(4-378)
Premultiplying (4-377) by Ti_‘,l and comparing the result with (4-372)

yields
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P, 0
9_ .

_ 0
G = -
P

o

0 0

T
r r
A

0

ol

Gr+2, r+2

l,r+2

(4-379)

Since G and (A - DC) are similar, they have identical eigenvalues..

From the block diagonal form of G one can conclude that the eigenvalues.

of (A - DC) are equal to the combined eigenvalues of A, the Pi’ and

Gr+2,r+2'

Recall from Section 4. 3.3 that the construction of A depends

only on A, C, and the detection spaces of the fi' It does not depend on

the coefficients p,. which appear in the P.. Therefore, the k_ eigen-
ij i e ©18

values of A, which are equal to ke gigenvalues of (A - DC), are inde-

pendent of the eigenvalues of the P,. The eigenvalues of G

determined by the choice of D' in (4~253).

r+2,r+2

are

By Lemma 4.4, D' does

not influence the eigenvalues of the Pi or A. This shows that the eigen-

values of A are, in fact, the uncontrolled eigenvalues which result when

D is constrained to be a detector gain for the set of output separable,

nonmutually detectable vectors.

Consider Gi, as defined in Section 4. 3.3, which is

associated with one vector, f‘i, in the get {fl,

‘s fr}' If that vector

is removed from the set, the new excess subspace will have dimension

[ 9.
1

8.A
i

(4-380)



Equation (4-350)} means that

[ o,
1
a.A
rk | .1 = k,-k (4-381)
+ ka-k-1
g.A ©
| i
and
ke—k oA 0 Ake—k—l
8; A B AT At S W S
(4-382)
for some set of scalars {ael’ cees ae,ke-k}' Moreover, (ke - k)
eigenvalues of A are given by the roots of the equation
ko -k ke—k-l
g +ae,k~ks +...+aezs+ael=0
(4-383)

It will be shown that these (ke - k) eigenvalues are exactly the ones
which are eliminated when fi is removed from the original set.
Removal of fi results in a new excess subspace of
dimension k. The mairix A is replaced by the k X k matrix A' satis-
fying (4-360). By the development at the first of this section it is known
that the remaining uncontrolled eigenvalues are the eigenvalues of A'.

Now define a ke X ke coordinate transformation matrik

T = [Ye,T

v (4-384)

v2!

with Y _ given by (4-356) and T any ke X k matrix which makes T

Y2 Y

nonsingular.
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Let

— -1
A= Ty ATy {4-385)
and
6. = e{ry. (4-386)
By (4-360)
ATy = [AY,, ATy, ]
— ¥
= [Y A", AT,]
1 -
A A12
[Yé,TYz] _
e Aoy
(4-387)
where
ATyy = Y, A1, + Tygho, (4-388)

Premultiplying {4-387) by Ty

and comparing the result with (4-385

gives

A A

=g
u

(4-389)
1] A

The eigenvalues of A, and thus of A, are egqual to the combined eigen-
of A' and K22' The eigenvalues of A" remain after removal of fi’ 850

the eigenvalues which are eliminated are the eigenvalues of A It

22°
must now be shown that these eigenvalues are given by (4-383).
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By the definition of Y_ and (4-353), 0.AY_=0 for allj20, so

(4-390)
where
i9 = G{TY2 {4-391)
and also
TR ] - 7 =) ;
8. A oA Ty [0, 8,5, A%, ] (4-392)
Then
ei 91 912 T
0;A | %A = |o 2899
. - 0, .
- ke'l * k _1 » k -].
—_ e -_— =g
i A | i 8;A j i 812 ag |
(4-393)
Since TY is nonsingular, this implies
. . _ —
92 9
8., A 8. A
rk | 12722 = rk| .t = k -k
—_— _ke-l . k '1
e
| ®iafan | 8 B
(4-394)
by (4-380). Postmultiplying (4-382) by TY and using (4-392) yields
_k.-k k.-k-1
e - a 7 * e
8iahgyg = 08 °

%o,k -k i2haa

(4-395)
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Equations (4-394) and {4-395) prove that the eigenvalues of 1_\22 are
given by the roots of (4-383). This establishes the earlier claim that
the eigenvalues given by (4-383) are eliminated by removing fi from the
set {fl’ cee, fr}

From A one can determine the uncontrolled eigenvalues.
If some of these are found to be ﬁndesirable, the Qi will identify that
vector (or vectors) whose removal will eliminate those particular
eigenvalues. The following example illustrates the result of this and

the previous sections.

Example E2:

Suppose

A = {E2-1)

C = (E2-2)

and there are four event vectors
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1 0 0 0
0 2 0 0
0 1 0 0
f1= . f2= -1 f3= s f4= .
0 0 1 0
_0_ _04 _O_ _ld

(E2-3)
Since Cf, # O0for i=1, 2, 3, 4 the matrix F defined by (4-232) is

1 0 0 0 ]

F = [f ,f.,f.,f

1) 2: 33 4] (E2-4)

Then

CF = =1 (E2-5)

LO 0 0 1_

Now replace A by the simpler form
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"0 0 0 0 0 0

0 0 0 0 0 0

0 1 0 0 0 0
A"=A"D”C -

0 0 0 0 0 0

0 0 0 1 ) 0

0 1 0 5 0 0 |

(E2-6)
which is obtained by taking the first, second, third, and fourth columns
of D" equal to the first, third, fifth, and sixth columns of A respectively.

Using A" to form K yields

K = A"-A"F[(cF)TcF] HemTe = an-a're

0 1 -2 0 0 0

= (E2'7)
0 ] 0 0 0 0
0 (] 1 1 3 0

For the full set of event vectors, C' defined by (4-255)

becomes

¢’ = c¢-crlchler] MemTe = c-c = o
(E2-8)
and therefore M' defined by (4-249) is

M' = 0 (B2-9)
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Hence, the group detection order of the set {fl‘fz’fS’f4} is six, the
dimension of the state space. When the resulis of Section 4.3.1 are

applied to each fi‘ it will be found that the detection order is

v, = 1 for i=1,2, 3,4 (E2-10)

and each fi is its own maximal generator. The sum of the individual

detection orders is

v1+v2+v3+v4 = 4 (E2-11)

which means that the vectors {fl, £y fqs f,} are not mutually detectable

and the excess subspace has dimension

ke = 6-~-4 = 2 (E2-12)

To determine if it is necessary or desirable to remove
one or more vectors from the set, A and Bi will be generated with the
algorithm presented in Appendix B. Since M' = 0, the reduction
procedure applied to the rows of this matrix produce no reductions.
The terminating matrix which results from processing M' is simply the
symmetric, positive-definite starting matrix. Let this matrix be the

6 X 6 identity matrix '
Q. = 1 (E2-13)

According to Appendix B the reduction procedure now starts with Ql

and is applied fo the rows of the matrix M defined by (B-2).
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Now C defined by (B-5) is

¢ = HemTer] " YermTc = ¢ (E2-14)
Recalling that ¥, = 1 for i=1, 2, 3, 4, the M, defined by (B-3) is
simply
- 51 5
- <, -
M, = | _ = C = C (E2-15)
€3
€4
- —
and ﬂ'fIz defined by (B-4)} is
CK
M, = (E2-16)
=2
CK
So
- C
M o= | o = | ck (E2-17)
M, 2

CK

o

The first reduction cccurs at the first row in M1

{(i.e., at cy = cl)
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and

-
0
0
w., = QCT = cT = (E2-18)
1 1“1 1
0
0
0--
and
o 0 0 0 0 0]
0 1 0 0 0 0
—_— o 0 1 o 0 0
_ 11
Q2 - Ql_ W -
“1™1 o 0 0 1 0 0
0 0 0 0 1 0
K 0 0 0 0 i

(E2-19)
Reductions also occur at each of the next three rows, Cg Cg, and Cy
The positive semi-definite matrix which results after these reductions

is

(E2-20)
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This completes the reduction process applied to ITJI. The first row of

S

M, is ¢;K =0, so wg =0 and .= &'25. No reduction occurs at this

row, So cy i8 terminated. The second row of M2 is

c,K = [¢c 1 -2 0 0 0]
Then
- 0]
1
T T 0
LA QS(CZK) = 95(::21() = .
0
[0
and
0 0 0 0 0 0]
0 0 0 0 0 0
0 0 0 0 0 0
Q, =
0 0 0 1 0 0
0 0 0 0 0 0
| 0 0 0 0 0 0 |
The third row of I“:'/I2 is
cgK = [o 0 1 1 3 0]
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Then

97(C3K)T = (E2-25)

and

Q, = 0 (E2-26)

so the reduction process is fully terminated. The two final nonzero

auxiliary vectors needed to generate A and the Qi are

(0] 0]
1 0
- 0 - 0
Weo = Wo = Weg = Wo = (E2-27)
0 1
0 0
O_ I_0

These two vectors occurred at rows EZK =¢,K and ¢,K =c_K in 1\712.

2 3 3

Therefore

v, + k -1 =1 (E2-28)

ahd

k = 2-v, = 2-~-1 =1 (E2-29)
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also

Then from (B-28)

From (B-32)

since ClK = 0.

n

kgg = 2-v3 = 2-1 = 1 (E2-30)
Ky l-v = 0 (E2-31)
kyy = l-v, = 0 (E2-32)
- 0
1 0
. - 0 0
Z, = [sz‘ wf3] = (E2-33)
, 0 1
0 0
0 0
1
8 = oK Z, = ¢KZ, = 0 (E2-34)
Similariy
Y2
oK © Z, = cKZ
0 0
1 0
0 0
[01-2000]01 = [1 0]
0 0
0 0
- = (E2-35)
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9 = ¢3K ° Z_ = cKZ_
0 0'}
1 0
0 0
= [o 0 1 1 3 0] = [0 1]
0 1
0 0
(E2-36)
Y4
8, = K" 2 = ¢ KZ,
o0 o"
1 ©
0 0
= [o 1 3 5 15 0] = [1 5]
0 1
0 0
0 0
L —
(E2-37)
From (B-~36)
o0 o]
1 0
0 0 $
Z A = A = K=Z z 8. f.
0 ]. e 1
i=1
0 0
0 0 |
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[0 o] [o o] [e o7 [o o
0 o 2 0 0 0 0 0
1 0 1 0 0 0 0 0
o ol |- o] le -3 ]o o
0 1 0 o 0 1 0 o0
(1 5 |0 o] [0 o) |1 5]
0 o-
-2 0
0 0
= (E2-38)
1 3
0 0
_.0 0_.

The first, third, fifth, and sixth rows of this vector equation are
identically zero and may be discarded. The second and fourth rows

vield

A = A = (E2-39)

Note that the eigenvalues of A are s = -2 and s = 3.
These are the uncontrolled eigenvalues which (A - DC) will have if D
is constrained to be a detector gain for all four vectors {fl’ f2’f3’ f4}.
This A and the Gi given by (E2-34) to (E2-37) yield the following

conclusions;
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1) Since 9, = 0, removing f, from the set of event vectors

will not reduce the excess subspace.

2) Since
9,4 = [-2 0] = -28, (£2-40)
92 1 0

rk = rk =1 (E2-41)
92A -2 0

This means that removal of f2 from the set will reduce the excess sub;
space by one dimension. The eigenvalue s = -2 will be eliminated and
the uncontrolled eigenvalue which will remain for the set {fl’ f3,f4} is

s = 3.

3) Since

rk = = 2 {F2-42)

the removal of f3 from the set will eliminate the excess subspace

entirely. Therefore, the vectors {fl,fz,f4} are mutually detectable.

4} Since
941\ = [3 15] = 394 {(E2-43)
94 1 5
rk = = 1 {FE2-44)
941\ 3 15
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This means that removal of f4 from the set will reduce the excess
subspace by one dimension. The eigenvalue s = 3 will be eliminated,
and the uncontrolled eigenvalue which will remain for the set {fl, f2,f3}
is s =-2.
5) From Corollary 4.6.2 it may be concluded that the

following (nontrivial) subsets of vectors are mutually detectable:

(a) {fl’ f2’ f4}

{b) _ Any subset of {a)

(c) {f;, £3}
Detection of all four event vectors requiresr a minimum of two detection
filters. The set {fl’ f2’ f3, f4} can be subdivided into two subsets of
mutually detectable vectors. All the vectors in each such suEset can
be detected by one detection filter. The possible subdivisions are:

@ {f, 5 £} 0 {5)

i) {f, £} 5 {f, £}
Although the vectors {fl’ f2. fs} are not mutually detectable, they can
all be detected by a single stable detection filter, since the uncontrolled
eigenvalue is s = -2. If this eigenvalue is acceptable, two additional
subdivisions are possible:

(i) {f, £, f3} 5 {f,}

(V) {1, 1) 5 {f,, 15}
In case (iti) the detection filter for {fl’ f2, f3} will have the unconirolled
eigenvalue s = ~2. In case (iv} the detection filter for {f2, f3} wiil

have the uncontrolled eigenvalue s = -2.
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4.3.5 Effector Failure Information

The results of the previous four sections can be applied
directly to the design of filters which detect effector failures. For the
system described by (4-1) to (4-3), failure of the ith effector is
associated with bi’ the ith column of B. This bi replaces the fi in the
previous sections as the vector associated with a particular event. The
design of the detection filter proceeds as follows:

1) For each column vector b, in B =[b), ..., b_]
determine the maximal generator with the algorithm of Appendix A.

If two or more b.1 have the same detection space, then only one of those
vectors need be considered in the remaining steps. Any detection

filter for one such vector will be a detection filter for all vectors having
the same detection space.

2) Form F as defined by (4-242) with f; replaced by b..
If vk CF = r, the b.1 are output separable. If rk CF < r, subdivide the
bi into two or more subsets so that each subset consists of output
separable vectors.

3) Generate the 8, and A for each of the subsets from
step 2) using the algorithm of Appendix B. If a A exists (i.e., has
nonzero dimension), identify the eigenvalues and decide if they are
satisfactory. If not, use the results of Section 4. 3.4 to subdivide that
set further so that the undesirable eigenvalues are eliminated.

| 4) A detector gain for each subset of vectors from
step 3) can be found by solving an equation of the form of (4-245) with
the pij selected to give the desired eigenvalues. If the subset has

fewer vectors than rk C,  then the remaining eigenvalues of (A - DC)
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are specified by choice of D'. Appendix A presents a comvenient
method for doing this. The resulting detection filter has a state

equation

z(t} = (A -DC)z(t) + Bu,lt) + Dy(t) (4-396)

Suppose a failure as modeled by (4-15) occurs in the ith

effector. The detection filter for that effector will produce a settled-

out output error of

t
[T
€'(t) = Cet) = CA 1bi y hbi(t - TYn(T)dT (4-3097)
t
0

where M is defined by condition (4-243) for bi and
-1
hy () = Z {Hbi(s)} (4-398)

with Hbi(s) given by (4-240) for f = bi' This result follows from
remark 5) at the end of Section 4.3.1. The failure can then be
identified by the fixed direction (CAJui b.) of the error signal.

If there are other detection filters, they will also
produce error signals, but these errors will not lie in a fixed direction
for arbitrary n(t) as the error given by (4—-397) does. Note the qualifi-
cation, ''for arbitrary n(t)"". For any filter there always exists a
specific .ﬁ(t) which can make the error lie in a fixed direction. An
example which works for all stable filters is n{t) = constant. Even

with the qualification there is still one possible exception to the above

statement. A detection filter gain D designed for another set of vectors
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could, by coincidence, happen to be a detector gain for the bi in (4-397).
In that case this filter also would produce a fixed direction output error.
However, no confusion should result, because to interpret the error
signal from a detection filter one compares its direction with those
directions for which the filter was designed. FKven though the signal
from another filter by coincidence lies in a fixed direction, that
direction will not match any direction for whirch the filter was designed.
This fact is assured by the following observation. If there is a
detection filter designed for another vector b:.| for which CAM:i bj has
the same direction as CA'ui bi’ but bi and bj have different detection
spaces, then the remarks at the end of Section 4.3.2 guarantee that the
gain D for this second filter (for bj) cannot be a detector gain for bi‘
Therefore, the error signal from this filter (resulting from a failure

of the ith effector) will not lie in a fixed direction for arbitrary nft).

If bi and bj have the same detection space, they would
be assigned to the same detection filter by the procedure suggested in
step 1). As mentioned in Section 4.3.2, events associated with such
vectors cannot be differentiated on the basis of error direction alone.
Error magnitude may provide additional information if something is
known about the dynamic characteristics of such failures. If, for
example, the n(t) for different events is expected to have different
frequency spectra, then the frequency spectrum of the error magnitude
may identify the most likely event. Chapter 5 discusses the problem
of identifying effector failures from detect ion filter error signals when
those signals are corrupted by errors caused by other simultaneous

events or noise disturbances.
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4.3.6 Plant Dynamics Information

For reasons discussed in Section 4.2.2, it will be
convenient to model the plant dynamics given by (4-1) to (4-3) in a form
for which all dynamics changes appear as changes in A or B, leaving C
in fixed and simple form. Additional considerations will suggest a
standard form for A as well. For the resulting plant description it will
be especially simple to design a detection filter to detect dynamics
changes. The detector gain can, in fact, be determined by inspection
and the algorithms of Appendices A and B will be unnecessary for this
situation.

The error equation for a change in the ijth element of A

is obtained as in the development of (4——33) using (4-41) and (4—42.).
€(t) =. (A - DC) e(t) + Ay e % (t) (4-399)
The detection filter for this event should be designed to detect the
vector Si’ in which case the settled-out output error is
t

") = Ceft) = cala S‘h(t () d
€ = € = Aa.lj e ; -'J‘)xj T) d7T

t, (4-400)

where u. is defined by condition (4-243) for 3‘1 and

h.(t) z! {H(s)} . (4-401)

i

with Hi(s) given by (4-240) for f = 3.1. Note that the direction of the

output error in (4-400) is the same for all j. A knowledge of the
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error magnitude factor

1

t;:ij(t) = S. hi(t -7) xj('r) dr (4-402)

t
o

is necessary to be able to decide which element in the ith row of A

has undergone a change. When the state vector is fully measurable,
xj(t) can be determined directly from the sensor outputs (assuming
noiseless sensors) as shown by (4-31). When the state vector is
partially measurable only a part of it is so available. The remainder
of the state vector must be reconstructed by a state-estimating filter.
But when the model of the plant is inaccurate, as it will be if A or B
undergo changes as assumed here, the state estimate will be unreliable
even if there are no noise disturbances in the plant or sensors. This
suggests the use of a standard form for A in which all the elements
subject to change appear only in those columns, j, for which the
corresponding state component, xj(t), can be determined directly from

the sensor outputs. Such a standard form is

A - - A |
A = . . {n X n) (4-403)
A ... . A 7
ml mm
- -

where
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0 0 0 a.. |
iil
1 0
Aii = 0 1_ . . (.nani)
. 0
- (4~404)
and for i # j
~
g . 0 aijl T
Aij = . . . (nanj)
0. . . . . O a.,
i ijo; |
{4~405)
with
ny + ... + n. =n {(4-406)
and
é\s
s |
c = |. (m X n) (4-407)
AT
e
s
L. m
where
s, = g + ... + n, {4-408)

(Note sy =1y and 8, = n.) The form of (4-407) implies that rk C = m.
This point will be mientionéd later. The process of producing this

atandard form for A and C is also discussed later in this section.
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With A and C in the above form, plant dynamics changes
appear as changes in the scalars {aijl; Li=L «...m; =1 ..., n}
and the elements of B. The results of the previous sections can be
applied to A and C given by {4-403) to (4-408) to design a detection
filter for all 'é\.L, i=1, ..., n. Inthis situation the maximal generators
for the 'é\i have a simple form, and the equation for the detector gain
can be solved by inspection. When the steps for designing a detection
filter given in Section 4.3.5 are followed, the results below are easily
established.

1} Taking advantage of the fact that A can be replaced
by A''= A . D'"C for arbitrary D', as mentioned at the end of

Section 4.3.1, let

g
D" = . . (4-409)
d'll d.l'l
ml rm'n_J
where
2151
" - . -
dij = . {4-410)
R
Then
-
FA” R AH
11 Im
A" = . . (4-411)
AT! }\‘IF
- ml ' mm |
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with

[0 0 0o 0]
1 0
Al = |0 1 R (4-412)
. o
0 0 1 0
and
A;'j = 0 for i # j (4-413)
2) The detection order of gi is 'nj+1 where sj < i "<'Sj+1

(sj given by (4-408)),and its maximal generator is 'és +1° {For

0 < i< n; the detection order of Qi is 1y and the maximal generator is

31.) This means that all "éi for which sj < i< 8. 1 have the same

I+

maximal generator and detection space. By the remark in step 1) of

Section 4.3.5, only one of these 31._ need be considered. Then let &

S,
j+l
be retained as the representative of all 3.1 for sj <ig sj+1' The
set of vectors remaining is then {'és g e 'e\s }.
1 m
3) All vectors in the set {"e\s R 'és } are output
1 m
separable and mutually detectable. The F for this set is
Fo= (8 ,...,8 1 = T (4-414)
s
1 m
S0
= T _
CF = CC = I (4-415)

Then Equation (4-245) for D can be solved by inspection
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— -1
- Um
DCF = D = . . (4-418)
d .. . d
| ml mm_J
where
&1 T P
di,i = . (4-417)
a,. + p.
i iin, miJ
and dij = d'l'J given by (4-410) for i # j. Then
P 0 0 |
2 - 2
. g . .
A-DC = . . . (4-418)
: -0
0 0 P
L - = m
with
0 0 0 _?11
1 0
P, = 0 1 . . (4-419)
0
0 0 1 -D.
| mi_J

This filter is a detection filter for all the coordihate directions
A s 1. . .
e, t= l; ..., n. A change Aaij,! in one element aij,! of A given by

(4-403) to (4-405) produces a settled-out error of
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1 = = A -
') = cew = aa B | o, T xg (1) ar
t, (4-420)
where
ool -1
h, ) = n n-1
s +pins + ... +pi2s+pil

(4-421)

Xg (t) is the sjth component of the state vector x(t), and emi is a unit

J
m-vector in the ith coordinate direction. From the form of C in (4-407)

x, (1) = yj()  (4-422)
J

where yj(t) is the jth component of the sensor output vector. Then

{4-420) can be written

A

€'ty = Aays, ¢ij£(t) I (4-423)
where
t
c,bijf(t) = S‘ hig & - 7) y;(7) a7 (4-424)
t
o

The pij iﬁ (4-421) are at the discretion of the designer and are known.
Since yj(t) is an accessible signal, the scalar function ¢ij1 {t) can be
generated on-line from sensor output without knowledge of the plant

dynamics. For consistency of notation the B matrix can be partitioned
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to conform with A

oy P1p
B = . . (n X r) {4-425)
B - - ..b
ml mr
where
byt |
bij = . (nixl) (4-4286)
L F%
A change bij! in bijl produces a settled-out error signal of
T — - A -
€'(t) = Celt) = Abijquijz(t) e i (4-427)
with
t
Lpijf(t) = ‘g hu(t -T) udj(T) dr (4-428)
t
0

where udj(t) is the jﬂr1 component of u,(t) and h,, (t) is given by (4-421).
As in the case of (pijl t), v ij¢ (t) can be generated on-line from
accessible signals (ud(t)) without knowledge of the plant dynamics.

It has been shown that (4-403) to (4-408) are especially
convenient forms for A and C. In Section 4.2.2 it was demonstrated
that all plant descriptions which are related by a state space coordinate
" transformation can be considered equivalent. Unfortunately it is not
always possible, in general, to put A and C into lthe form of (4-403) to

(4-408) by a coordinate transformation. However, it can be shown
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that these standard forms can always be obtained by augmenting
(enlarging) the state space. Appendix C presenis a way of constructing
a coordinate transformation which puts A and C into the form of (4-403)

to (4-408) except that the off-diagonal blocks of A in general have the

form
0 0 ajil T
. . ajin ‘
Aji = . . ) i (nj X .n.l) (4-429)
LO . 0 0
and
0 0 0 aijl
A.. = . . . (n. X n.)
ij _ ) a i j
0. ..0 a" a,.
ij ijn,

(4-430)
where ny > 0. It o =1y (i #+ j) then Aij and Aji have the form of
(4-405). The appearance of the nonzero element a; in (4-430)
violates the form of (4-405). For a general A and C, (4~430) is as
close as one can get to the form of (4-405) by a coordinate transforma-
tion which does not change the dimension of the state space. To
explain the appearance of the elements aTj and determine how they may
be eliminated (made zero) by enlarging the state space, it will be

convenient to introduce the concept of output decoupling.
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Definition 4.11. The matrix pair (A, C) is defined

to be output decouplable if A and C can be put into the forms of (4-403)

to (4-408) by a state space coordinate transformation.

This terminology is motivated by the fact that with
proper choice of D the observable spaces of the c; (ith row of C) with
respect to (A - DC) can all be made nonintersecting (which is, in a
sense, output decoupled). The (A - DC) given by (4-418) is an example.
Note that this definition implies that an ocutput decouplable pair is also
observable and rk C = m. The definition could be generalized to
include nonobservable pairs, but that is unnecessary for purposes of
plant dynamics identification. This point is discussed later.

Definition 4.12. Consider the pair (A, C), and let c;

be the ith row of C. The output decoupling order (or simply,

decoupling order) of ¢y is defined to be the largest integer value of j

such that
MT,j—l
rk - = rk MT,j-l +1 {4-431}
C.A‘]
i
where
e
CA
MT,j—l = . (4-432)
cal?

(For j=1, M’I’O is taken as the zero matrix.)
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An equivalent definition is the smallest positive integer value of j

such that

M
rk

rk Mn,. (4-433)
c.AJ.
i

It can be shown from (4-431) or (4-433) that decoupling
order is invariant with respect to coordinate transformations of the
state space. Note that for A and C in (4-403) to (4-408) the decoupling
order of each c; is n, and n, + ...+ n. =n. From the algorithm used
to obtain the form of {4-429) and (4-430) it can be verified that the
decoupling order of each c; is greater than or equal to ., a.rl1d the'
equality holds if and only if al:| =0 forallj=1, ..., m. These
observations establish the following theorem.

Theorem 4.7. The pair (A, C), with A of dimension

n X n and C of dimension m X n, is output decouplable if and only if
q, +...tq =n where q; is the decoupling order of Css the ith row
of C. If this is the casge, then n, = q; for the standard forms (4-403)
to (4-408). |
Qutput decoupling order has an interesting and useful

relationship to detection order which is stated in the following theorem.

Theorem 4.8. If f is any n-vector for which c.f # 0
(or c.APf # 0 inthe case of (4-108) ), then the detection order of f

cannot exceed the decoupling order of c,

Proof:

Let ¥ be the detection order of f. Then f has a maximal
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generator g which satisfies

- o - o
CA 0
. e = | . (4-434)
éAV—Z

_ca¥l ] =i

But ciAv-l g = .cif # 0, which means that ciAV_l must be independent
of the rows of
[ ¢ h
CA
. éAv_z -

This implies that (4-431) is satisfied for j = v. Therefore, v must be
less than or equal to the decoupling order of c. since that is the
largest integer satisfying (4-431). This completes the proof.

I is easy to show that there always exists a vector
which has a detection order equal to the decoupling order of Ce If q;
is the decoupling order of Css condition (4-431) irnplies—tlhat there must
exist some vector f such that MT,qi-—lf = 0 and ciAqi. f# 0. The
detection order of this f must be at least q; because f is a qith order
detection generator for itself. On the other hand, Theorem 4.8 shows
that the detection order of f cannot exceed q;- The only consistent |

conclusion is that the detection order of f is equal to q;- The fact that

such an { exists shows that decoupling order has the same invariance
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properties as detection order. Specifically, decoupling order is
invariant with respect to replacement of A by (A - D''C) for any D",
The posgsibility of obtaining an output decouplable pair
by augmenting the state space will now be investigated. A plan
description given by (4-1) to (4-3) is represented by the matrix triplet
(A, B, C). Referring back to Equations (4-24) and (4-25), from which
the notion of equivalent plant descriptions was developed, it can be seen
that the property which makes two descriptions, (A, B, C) and (:B:,ﬁ, 5),
equivalent is that

o~ Kt -t.)
e OB

cflt-t)g - E (4-435)

for all t. When this condition is satisfied, both (4, B, C) and (&, B, ©)
have the same dynamic transfer from ud(t) to y(t), i.e., starting from
zero initial conditions, ud(t) elicits the same output y(t) from both
descriptions. In Section 4.2.2 only coordinate transformations were
considered, for which A and A have the same dimensions. However,
(4-435) can also be satisfied for A and A of different dimensions.
Using the terminology of Brockett [ 4 ], a representation (A, B, C) of
the plant dyvnamics with the smallest possible state space dimension

{i.e., smallest n where A is n X n) will be referred to as a minimatl

representation. Any equivalent representation (A,B,8) (i.e., satis-
fying (4-455) ) having a larger state is considered nonminimal. Brockett
shows that a minimal representation is both controllable and observable.
If (K, ﬁ, E) is nonminimal it can be controllable or observable, but not

both.
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It must now be shown that it is possible to obtain a
decouplable representation of the plant by allowing augmentations which
preserve the equivalence property (4-435). The following theorem
places a lower bound on the dimension of the state space which is -
necessary for an equivalent, decouplable representation.

Theorem 4.8. If (A, B, C) is a minimal representation

and (g,ﬁ, 6) is any other equivalent represe.ntatio.n, then the decoupling
order of the ith row of C cannot be less than the decoupling order of the

"Lth row of C.

Proof:

Both matrix exponentials in (4-435) can be expanded in
an infinite serieg of the form (2-16). Since (4-435) must be satisfied
for all t, the series expansions must be equal term by term.

Equation (4-435) is therefore equivalent to

calg = GXIB  tforallj>o0 (4-436)

This implies that

C & ]
CA Cx | o .. B
. {IB, AB, ..., A" 5] = (8, B, ..., 2§
i AR ]
| cal | C&I|
(4-437)
for all j > 0. |
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Define

W = [B, AB, ..., A" Ig] (4-438)

w = [B, X8, ..., Av1g; (4-439)
- -
CA

My = . (4-440)
call
&

" C&

fp = .  (4-441)
gxi-t

Let Cs be the ith row of C, and gi the ith row of 6 Also let q; be the

decoupling order of ¢ Suppose the decoupling order of E’i is less than

.4:-1
q;- Then (4-433) implies that ?:'iA 1 can be expressed as a linear
combination of the rows of 1\7T , that is
T) qi-l
o371 e
CiA = TMT,q.-l (4-442)

i
for some 1 Xm '(qi - 1) row vector ¥. Now (4-437) implies that

qi—l g.-1

w = A' W (4-443)

c.A
i i

Since (A, B, C} is minimal, (A, B) is a controllable pair and rk W = n.

q.-1
Therefore, (4-443) can be solved uniquely for ciA !
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g,-1 g.-1

¢, - ZAT W wl [wwT] 1 (4-444)

and similarly (4-437) with j = q, - 2 yields

M - . WwiwwT]! (4-445)

Substituting (4-442) and (4-445) into (4-444) gives

qi_l ~ ~
CiA = v MT,q.-l W W

= Y M (4-446)
But this contradicts the fact that the decoupling order of <; is q; -
Therefore, the decoupling order of E'.l cannot be less than q;- This
completes the proof.

By this theorem the decoupling order of any row of C
cannot be decreased when the state space is made larger than the
minimal one. Therefore, to obtain a decouplable representatioﬁ (if the
minimal one is not decouplable) the state space must be enlarged to a
dimension of at least (q.l + ...t qm), where q; is the decoupling order
of the ith row of C in a minimal representation. Appendix C demon-
strates that this lower bound is, in fact, reachable. It presenté a way
of augmenting a representation to obtain an equivalent decouplable |
representation with dimension (q1 + ...+ qm).

To reiterate, a plant representation in the form of (4-403)

to (4-408) was shown to be desirable for the detection of changes in
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plant dynamics. The extended development on output decoupling and
augmented representations was necessary because it is essential to be
aware of the assumptions tacitly made about the plant when it is
represented in the form of (4-403) to (4-408). Specifically the assump-
tions are as follows:
(1) The plant is observable.
(2) The output decoupling order of the ith sensor (i.e.,

the dec_oupling order of 4 in the minimal representa-

tion) does not exceed n,.

The first assumption is entirely reasonable when
dealing with the identification of plant dynamics from sensor outputs.
It was noted in Chapter 2 that the unobservable portion of the dynamics
cannot be determined from the output (and input). It does not make
sense, then, to model the plant with an unobservable representation
when the unobservable portion cannot be identified. The second
assumption places a restriction on the kind of dynamics changes which
the standard form model can handle. To be specific, the plant dynamics
should not change in such a way that the decoupling order of the ith
sensor exceeds n.. If this happens (4-403) to (4-408) cannot be a valid
model (i.e., an equivalent representation) of the plant for any values
of the elements aijl' This means that the less prior knowledge one has
about the possible plant dynamics changes, the larger the model will
have to be to guarantee a valid representation. Suppose, for example,

it is known that the decoupling orders of the sensors will remain fixed

at known values (n.l for the ith sensor). Then the plant can be safely
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modeled by a representation of the form (4-403) to (4-408) with a state
space of dimension (n1 + ...t nm). If the decoupling orders of the
sensors do not necessarily remain fixed, but an upper bound Ht is
known for each sensor, then the plant can be modeled in the form of
(4-403) to (4-408) with a state space of dimension (El + ...+ r_fm). If
the dimension of the minimal plant representation is known to be fixed
at (or at least does not exceed) n, and it is further known that the
sensors all remain independent {i.e., that rk C = m in the minimal
representation), then an upper bound on the decoupling order of any
sensor is (n - m + 1). In this case the plant can be modeled with a
state space dimension of m(n - m+ 1). It is interesting to note that
this number attains a maximum value for m near % and approaches n
as m approaches 1 or n. Finally, if it is known only that for the
minimal representation rk C is at least k and the dimension of the state
space does not exceed n, then the upper bound on the decoupling order
of any sensor is (n - k + 1). In this case a model with an [m *(n - k + 1}]
dimensional state space will always be valid.

The standard form of (4-403) to (4-408) can be inter-
preted in a different way which may have more physical meaning in
many cases. The state space description of the plant given by (4-1} to
(4-3) is equivalent to a set of m linear, coupled, scalar differential |
equations relating the output variables {yi(t) :i=1, ..., m} tothe
input variables {udj(t); j=1, ..., r}. In Chapter 5 this set of
differential equations is developed for the case in which A and C are
in the form of (4-403) to (4-408) (Equations (5-52) to (5-55) ). From

these equations it can be seen that each row of blocks of A in (4-403)
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corresponds to one differential equation. TFor example, the blocks

{A o Aim} (and the corresponding row of block is B) are

i1’
associated with a differential equation for the output component yi(t)'
This differential equation is of order ni(where Aii is n, X .ni). The
highest derivative of y.l(t) in this equation is n,. The gignificant feature
of this equation is that the highest derivative of any other variables

( yj(t) for j # i and ugy,(t) for all £ =1, ..., r) is less than n.. In
other words, the driv_'mg terms, involving udf(t) fort =1, ..., r,

and the cross-coupling terms, involving yj(t) for all j # i, all have

lower order derivatives than the highest order derivative of yi(t),

which is

n,
d

y;{t)

at
If the plant dynamics can be described by a set of input-output equations
having this property, then the state space description can be put into
the form of (4-403) to (4-408), and vice versa. The meaning of the
general form of (4-430) is that if some a;J # 0 then there exists a
cross-coupling term involving

g

In.
dt t

yj(t)

whose order is equal to the highest derivative of y.l(t).

In closing this section, some final observations should

be made.
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1) Although it was not proven, it will be found that if the
form of {(4-430) with a’.fj # 0 is used for a plant model then, in addition
to the objections already noted, more than one detection filter may be
necessary to detect all of the coordinate directions. This happens
because the presence of a nonzero a’.fj makes certain nonseparable
coordinate directions have nonidentical detection spaces. This results
in uncontrolled eigenvalues which must then be investigated for satis-
factory filter dynamics.

2) The form of C in (4-407) implies rk C = m where
m is the number of sensors. It may happen that in the minimal
representation for the plant rk C <m. Appendix C considers this
possibility, and in any case the C in the augmented representation will
have full rank m.

3) Because of the form of h,, (t) in (4-421), the ¢ij£ (t)
fort =1, ..., n, in (4-424) are the components of the state vector

for the ni-dimensional system

o
. T -
0.t = Py g, ¥ ; y;(t) (4-447)
- 1 -
with
B0 = | . (4-448)
i ¢ijni(t) |




where Pi is given by (4-419). Similarly the quji (t) in (4-428) are the

components of the state vector for

0
‘ I
:E.lj(t) = P; gi.lj(t) + : udj(t) (4-449)
T
with
“is,t0
gJ_ij(t) = (4-450)
LPijni(t)

Chapter 5 discusses several methods for processing the error signals
given by (4-423) and (4-427) to determine Aaijﬂ and Abijl .

4. 3.7 Sensor Failure Information

In Section 4.2.3 it was found that the bes-t information a
detection filter could provide about the sensor failures was an error
signal constrained to a two-dimensional plane. It will be shown in this
section that this can also be achieved in the case of a partially
measurable state vector.

When the ith sensor of the plant given by (4-1) to (4-3)
suffers a ‘failur'e as described by {(4-55) the equation for the state error

can be obtained from (4-56)

E(t) = (A - DC) elt) + d, n(t) (4-451)
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where d.1 is the ith column of D.

d. = Dé . (4-452)

The accessible output error is defined by (4-72) as

eT(t) = yt) - Cz{t) = Celt) + gmin(t) (4-453)

Theorem 4.1 is not directly applicable to (4—-451} because di corre-
sponding to f is not fixed, but depends on the detector gain D which is
under the control of the designer. Therefore, some additional results
are necessary to show that a detector gain does exist which will |
constrain the output error to a plane. In previous sections an event has
been associated with the drive term of the state error equation; for
example, f in Equation (4-73). It is not satisfactory to associate a
sensor failure with di‘ however, because this vector can he changed
at will and has no inherent relationship to the sensor. For this reason
failure of the ith sensor will be associated with C;» the ith row of C,
and detectability of this event will be defined accordingly.

h

Definition 4.13. The it row of C, ¢, =% C, is

i mi
defined to be sensor detectable if there exists a matrix D such that

(1) € '(t) is constrained to lie in a two-dimensional plane
in the output space, where €'{t) is given by (4-453) and
€(t) is the settled-out solution of (4-451) with n{t) an
arbitrary scalar time function, and

(2) at the same time, all eigenvalues of (A - DC) can be

specified almost arbitrarily.
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The following theorem provides sufficient conditions for
sensor detectability. Its proof will lead to the design procedure for a
sensor failure detection filter.

Theorem 4.10. If (A, C) is an observable pair and c;

the ith row of C, is linearly independent of all the other rows in C,

Then c; is sensor detectable.

Proof:

Let f be an n-vector satisfying

cf = 8 . (4-454)
mil

Note that a necessary and sufficient condition for the existence of such
an f is that c. be linearly independent of all the other rows of C. By
Theorem 4.1, f is detectable. Let v be the detection order of f, and g
its maximal generator. First choose D to be a detector gain for f by
constraining it to be a solution of (4-113), or equivalently (4-119). Then
as shown in Section 4.3.1, A -DC = A" - D'C' where A' and C' are
given by (4-133) and (4-134), and D' is arbitrary. With (4-454),

Equation (4-119) for D reduces to

A . r-1 v
DCtf = Demi = d; = p1g+...+pVA g+A'g
(4-455)
or using (4-168)
d; = zg+Af ' (4-4586)

where z, is given by (4-170).

219



The purpose of making D a detector gain for f is that
d.1 has been fixed, as shown by(4-456). The sensor failure detection
filter can now be obtained by making D' a detector gain for di' Note
carefully, however, that in determining this second detector gain
one must start with the matrix pair (A", C") instead of (A,C). In
applying the results of Section 4.3.1, A and C must be replaced by
A' and C'. The only additional consideration necessary is the fact

that (A", C") is not an observable pair, since

_C' _1
CrAr
rk . = n-v {(4-457)

era =1
LCA

=

It was shown at the end of Section 4. 3.1 that even for a nonobservable
pair a detector gain can be found for any vector which does not lie in
the unobservable space. Assume first that di does not lie in the
unobservable space of C" with respect to A'. Then it is possible to
find a D' which is a detector gain for d; (with respectto (A',C') ), and
at the same time specify almost arbitrarily {n - v) eigenvalues of

A' -D!C' = A - DC. The remaining v eigenvalues are associated
with the unobservable space of C' (the detection space of f) and have
already been specified by constraining D to be a solution of (4-455).
Therefore, all the eigenvalues of (A - DC) can be almost arbitrarily

specified.
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It must now be verified that the output error given by
(4-453) will be constrained to lie in a plane. With D' selected to be a
detector gain for di with respect to (A',C"), it is known that C'e(t)

must lie in a fixed direction, where €(t) is the settled-out solution of

e(t)

(A* -D'C") elt) + d; nlt)

(A - DC) €(t) + d n(t) (4-458)

Let the fixed direction be represented by an m-vector y ;. Then C'e(t)

can be expressed as

Clelt) = yqo4t)  (4-459)

where ¢ ,(t) is a scalar function depending on n(t). Now from (4-134)

cr = ¢ - cefenTer] YenTe
. A AT - . A _
= C - € i Cmi cC = C € S (4-460)

T
where c, = g c is the it row of C. (Note that C' is simply C
mi

with the ith row set to zero.) Then

Celt) C'elt) + é‘mi c; €lt)

Tq04) + € c; €lt) (4-461)

and the output error is
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€' (t)

Celt) + é\mi alt)
yd¢d(t) + ’émi(n(t) + cie(t)) (_4-462)

Since (n(t) + Cie(t)) is a scalar function, it is clear that €'({t) lies in
the two-dimensional plane formed by ¥4 and em1

In obtaining this result it was assumed that di did not
lie .in the unobservable space of C'. Suppose now that d.1 does lie in

this space. Then

F‘Cr

CrAt
. d. = g (4—463)

crarnl

By (4-182) and Definition 4.5 this means that di lies in the detection
space of f. This, in turn, means that D satisfying (4-455) is a detector
gain for d.1 as well as f. In this case the second step of making D' a
detector gain for di is unnecessary, and one can immediately conclude
that Ce(t) lies in a fixed direction. If this direction is represented By
I then € '(t) lies in the two-dimensional plane formed by ¥4 and gmi'
The choice of D' is unconstrained and can be selected to arbitrarily
specify {n - ) eigenvalues of (A - DC). As before, the remaining v
eigenvalues are specified by choice of the coefficients in (4-455). This
completes the formal proof of the theorem.

This proof shows in a general way how to proceed in

designing a detection filter for sensor failures. Some additional-
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material will now be presented which is of significant value in develop-
ing practical design procedures for these detection filters. In remark 4)
at the end of Section 4.3.1, a coordinate transformation was used to
demonstrate how a detector gain could be found for a nonobservable pair.
In effect the problem was transformed so that the unobservable part of
the state space was eliminated from consideration, and the results of
Section 4.3.1 could be applied to a subspace which was observable —
specifically the observable pair (Ell’ _él)' In practice it is neither
necessary nor desirable to actually perform a coordinate transformation
to find a detector gain D'. The same result can be achieved with the
notion of vector equivalence classes. A complete formal development
of this concept can be found in [ 7] . Only a brief 'mtroductioﬁ will be
given here.

Denote the unobservable space of C' with respect to A"
by E. Two vectors x, and x, ih the state space are defined to be

1 2

equivalent modulo E (denoted x, = X, (mod E) ) if their difference lies

1

in E. The set of all equivalent vectors forms an equivalence class.

The equivalence classes themselves can then be considered members
of a new vector space replacing the criginal state space. Because E is
an invariant subspace with respect to A", it can be shown that A' is a
linear operator in the vector space of equivalence classes (mod E).
Also, C' can be viewed as a linear operator from the space of
equivalence classes into the ordinary m-vector outpﬁt space. All the
results of Section 4.3.1 can then be applied to this new state space
(with A and C replaced by A" and C'). The end result is that all vector

equations in the state space (i.e., vector equations with n rows) remain
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valid except that "=" is replaced by "= (mod E)"'. All other equations
(for example, (4-80) and (4-91) retain the true equality sign. There is
one exception to this rule. An equation in the state space retains the
true equality sign if it is derived entirely from equations in which true
equality holds. An example is (4-105) which is derived from (4-80).
Let v' be the detection order of di with respect to
(A',C') and g' its maximal generator {mod E). In this situation the
maximal generator (mod E) is not unique because any vector equivalent
to g' is also a maximal generator. The uniqueness assertion of
Theorem 4.4 applies to the equivalence class of maximal generators
rather than a specific n-vector. The algorithm of Appendix A for finding
a maximal generator is applicable to nonobservable pairs, so it can be
used to generate a g'. Specific note is made of the nonobservable case

in the appendix. The equation for D' corresponding to (4-113) is

v'-1

prerar?' ol g' = p' gr-{~pr A'g' 4+ ... +p' A g'
. 1 2 L
V'I
+ A' g'{mod E) (4-464)
This is equivalent to the equation
V'_l V"_l v‘l'
chlAl ,gl - pl g-|_|_»-'_.|_pl Al gl+A| gI+Z
1 V' E
(4-465)

where Zp is any vector in E. The coefficients p{ and the vector Zh

can be arbitrarily specified by the designer except that Zg must lie in

E. A simple choice for z_, is 0.

E
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When a D' satisfying (4-465) is used to form (A' - D'C!')

= (A - DC), this matrix will have V eigenvalues given by the roots of

v v-1 =
s + P, S + ... + PyS + Py = 0 (4-466)

and v' eigenvalues given by the roots of

v! v'-1
s +p'v,s + ... +p'zs+p'1 = 0

(4-46"7)

This fact can be verified by introducing the coordinate transformation

G = T_gl (A - DC) Tg (4-468)
where
Tg = [Wg, wW!, ng] (4-469)
with
W, = [g (4-DOg ..., (4-DO! gl (4-470)
'—
Wé‘ = [glj (A -D'C‘)g', ce., (AT “D'C')V 1g1]
= [g'. (A-DOg', ..., (a-DC) g
' (4-471)

and ng is any n X (n - ¥ - ¢') matrix which makes Tg nonsingular.

From (4-115)

(A -DC)W

P -
Wg (4-472)

where
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o0 o 0 -p, ]
1 0 :
P = |0 1 : . (v X v) (4-473)
. -
0 0 i Py

The equation with D' corresponding to (4-115) is
(AT_DIC1)I)'gr = -plg' -. -p! (A'-D'C‘)Vr"l g 4z
1 .. L 5
(4-474)

where Zg is the same vector appearing in {(4-465). Then

(A—DC)Wé = M’-IVCWWé = WéP’+ W@w
(4-475)
where
0 o o -p; ]
1 0 :
P' = 0 1 : : (v' X v')
L. o
Lo o 1 -p,
(4-476)
and
— .
0 . . 0 ?El
G, - |- L W)
|__E} ’ 0 ‘;’Ev -
(4-477)
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The scalars {a ., ap, } are defined by

EY

Ag + ... t a Av_lg

z = aElg toa Ev

E E2

| (4-478)
Any vector in E can be expressed uniquely in this form because the set

v-1

of vectors {g, Ag, ..., A g} form a basis for E. Using these

results the coordinate transformation yields

B G, Gy
G = 0 P’ Gyq (4-479)
I_g g 633 -
where
(A - DC)Tgz = wgf;w + WéE% + ngc_}33 (4-480)

From the block triangular form of G it is clear that (v + V') eigan-
values of G, and thus (A - DC), are given by (4-466) and {(4-467). The
remaining (n ~ ¥ - ') eigenvalues can be gpecified by the freedom left
in D' after constraining it to satisfy (4-4865).

The design procedure suggested by the above material
is quite straightforward. First g, the maximal generator of f, is found.
The coefficients p; are selected and together with g, A' and di can be
formed. Then starting with A', C', and di the standard design
procedure for an ordinary detection filter can be followed to determine
a suitable D' fo detect di' The only difference is that the designer has
some additional free choices to make, such as the vector Zg inl
(4-465).
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By taking advantage of equivalence properties arising
from the vector equivalence classes it is possible to introduce a nurnber
of simplifications in the procedure described above. To begin with,

d, can be replaced by any vector which is equivalent (mod E). Since
z4 in (4-426) is in E, Af is such a vector. Besides being simpler to
form, Af does not depend on the coefficients P;- The matrix A' can
also be replaced by any other which is equivaient (mod E). The matrix
K given by (4-167) is equivalent to A'. Like Af, it is simpler to form
and does not depend on the P;- To show that K and A' are equivalent

{mod E), let x be an arbitrary n-vector, and note from (4-169) that

(K-Ax = z4 [enTer] HenT cox
= zd(cix) (4-481)
since Cf = Smi. But (CiX) is a scalar so the vector on the right is
always in E. Hence
(K-A")x = 0 (modE) (4-482)

for arbitrary x. This implies that K - A' = 0 {mod E} or

A' = K {(modE) (4-483)

Equation (4-465) can be written in terms of K as

vt-1 , P!

_ '
D'C'K g' = pig' + L.+ p’v,K 1g‘+ K” g'+z!

E
(4-484)

where Z'E is any vector in E.
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Replacement of A' and di by K and Af, which do not
depend on the P, also allows certain steps in the design procedure to be
performed in a different order. In particular it becomes possible to
generate g' during the same sequence of operations in which g is
generated. (Previously, g had to be found and the P; selected before
A' and di could be formed to generate g'.) Generating g and g' in
the same operation is more efficient computationally than the two-step
process necessary when g' is found using A' and di' The procedure
is described in Appendix A.

Returning to (4-459), the vector yq €an now be more

precisely identified. If C'Af # 0 then

- 1 1
yd—Cd.1 C'Af

Ia)
CAf - emi(ciAf) (4-485)

using (4-460). Then the output error €'(t) given by (4-462) lies in the
plane formed by CAf and & .. In general, if C'A"Af = C'KIAf =0
for =0, 1, ..., 2 -1 and C'A" Af = C'KIAf # 0, then

_ vt _ - ‘_ A i _
yg = C'K'Af = CK'Af - &_.(cK Af)  (4-486)

and €'(t) will lie in the plane formed by CK'Af and &_.. Note that the
error plane does not depend on the eigenvalues specified for (A - DC)
(i.e., on the p, or.pj'). A Laplace transform analysis of the complete
error dynamics can be performed in a manner similar to that in

remark 5) at the end of Section 4.3.1. The coordinate transformation
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given by (4-469) to (4-471) can be used for this purpose. If this is

done it will be found that, in addition to results corresponding to those

in remark 5), the error dynamics also depend, in part, on zgp in (4-465)
and even on the particular g' used in that same equation (recall g' is
not unique). Unfortunately the complete results of the Laplace transform
analysis in this case are considerably more complicated than those
obtained in remark 5). The significantly greater amount of computation
required to obtain and interpret the results reduces their practical
usefulness.

Up to this point the design of a filter to detect only a
single sensor failure has been considered. With the use of equivalence
classes (mod E) the results of Sections 4.3.2, 4.3.3, and 4.3.4 can be
applied to the problem of designing a detection filter to detect a number
of sensor failures. The steps in design correspond in a general way to
those listed in Section 4.3.5 with some additional considerations.

Below is a brief description of a straightforward design procedure. It
is not necessarily the most efficient computationally.

1) Consider k rows of C, each of which is independent

of all other rows in C. For convenience of notation let these be the

first k rows {cl, “hay ck}' For each c; determine fi such that
_ N
Cfi =e -

2} Form F = [fl, e, fk] . By construction in step 1)
the fi are all putput separable vectors. Generate the Qi and as
described in Appendix B. If A does not exist (has zero dimension), the

fi are mutually detectable. If A does exist, identify its eigenvalues

and decide if they are satisfactory. If not, apply the results of
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Section 4.3.4 to subdivide the set {fl, e, fk} so that the undesirable
eigenvalues are eliminated. If the standard form model of the plant
suggested in Section 4.3.6 is used, the fi will always be mutually

detectable. This step can be skipped in that case.

3) Let {fl, e, fkl} be a set resulting from step 2).
Form the vectors {Afl, cee, Afkl} and the matrices A' and C'
defined by (4-254) and (4-255) with F = [fl, e fkl] . For each
vector Afi one of three possibilities must hold.
(i) Af.1 does not lie in the unobservable space of C'
with respect to A'.
(ii} Afi does lie in the unobservable space of C',

and any detector gain satisfying (4-245) is also
a detector gain for Afi'

{iii) Afi lies in the unobservable space of C', but
a detector gain satisfying (4-245) is not a

detector gain for Afi'

Case (ii) will result if Afi lies in the detection space of some f.. It
may also result when Afi lies in a subspace made up of several
detection spaces which have s—ome identical eigenvalues. The chance
of this special situation occurring is made more likely by specifying a
large number of identical eigenvalues for the detection space of the fj.
In any case, one way to check for the occurrence of case (ii) for any
Afi lying in the unobservable space of C' is to determine if the
sequence of vectors {CAfi, CA'Af, ..., CA 'n_lAfi} all lie in one

direction. If they do, case (ii) applies, if not case (iii) applies.
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Retain all ’f.1 for which (i) or (ii) holds and remove any others from
the set.

4) Let {fl, cens sz} be a set resulting from step 3).
Define A' and C' by (4-254) and (4-255} with F = [fl, e, sz] . The
Afi in category (i) of step 3) must now be checked for mutual detecta-
bility with respect to (A',C'"). This means essentially repeating
step 2) with A, C, and the £, replaced by A', C', and the Af.. For
any Afi which produces undesirable eigenvalues, the corresponding f.1
is removed from the set {fl’ cee sz}. If some vectors are removed, -
some Af, may move from category (iil) to category (i). Then mutual
detectability of the Afi must be rechecked with the new members.

5} Let {fl’ cees fka} be a set resulting from step 4).
A detector gain for the Af; in category (i) can be found by solving a
set of equations for D' of the form of (4~245). The remaining freedom '
in D', if any, is used to specify the remaining eigenvalues of (A' - D'C"').
A procedure analogous to that mentioned in step 4) of Section 4.3.5 can
be used to do this. The resulting matrix (A" - D'C') = (A - DC) yields
a detection filter which will detect the failure of any of the k3 sensors
associated with the vectors {fl, ceen By 1.

It should be emphasized that when the plant is modeled
in the standard form suggested in Section 4.3.6, many of these steps
are considerably simplified and can often be completed by simple

inspection. Chapter 5 discusses the processing of detection filter

error signals to diagnose sensor failures.
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4.4 Summary

The concept of a detection filter and the motivation for its
development was discussed in Chapter 3. Basically it is designed to
provide information which will aid in the detection and identification of
effector and sensor failures and changes in the linear plant dynamics
as described in Chapter 3. The detection filter produces an output
estimate which asymptotically approaches the actual output of the
sensors when there are no failures, plant changes, or other disturb-
ances. A deviation from the undisturbed cbnditio.n produces an
accessible error signal which is the difference between the actual
sensor outputs and the filter estimate of those outputs. The essehtial
feature of a detection filter is that it is designed to respond in a special
way to certain failures or changes. Of course any other disturbance
may also elicit an error response from the filter, but by knowing and
looking for the special responses it is possible to detect and identify
the occurrence of a failure or change even though it is obscured by the
ambient disturbance level.

When a failure or change occurs which a certain filter has been
designed to detect, that filter will produce an output error signal which
has a fixed direction (the out;:;ut error is a vector-valued signal). That
fixed direction is identified with a certain failure or plant change.
There are two gualifications to this ideal situation. First, sevefal
failures or changes may be associated with a single error direction.
Often additional information (e.g., dynamic properties of the error
magnitude) can help to differentiate among such possibilities. Second,

it is not possible, in general, to construct a filter which produces a

233



fixed-direction error in the case of a sensor failure. The best that
can be done is to constrain the error to a two-dimensional plane.

When there are a sufficient number of independent sensors to
be able to determine instantaneously the state of the plant (assuming
perfect measurements), the state vector is considered to be fully
measurable. In this case, as is shown in Section 4.2, a single
detection filter can provide information abbut all the events described
in Chapter 3 -- eff.ector failures, sensor failures, and changes in plant
dynamics. This filter is of the same order (state vector dimension)
as the plant. In response to a single failure or change it produces an
error signal fixed in direction, with a magnitude equivalent to the response
of a first order linear system driven by the magnitude of the failure or
change (i.e., the magnitude of the deviation from the normal operating
characteristics of the plant). The time constant of this first order
response can be arbitrarily specified by the designer, but is the same
for all events. Of course it is not necessary to use a single all-purpose
filter. In some situations it may be preferable to use several filters
and tailor their dynamic characteristics to match the characteristics
of different events. It would seem desirable, however, to keep the
number of detection filters small.

When the state vector of the plant is not fully measurable, it is
not possible to construct a single all-purpose filter which provides
information about all events. It is not difficult to show that even in this
case it is possible to construct a filter which produces the characteristic
fixed-direction error signal in response to one event at least. But there

are two other important considerations in the design of a detection filter.
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The first is the ability to control certain dynamic properties of the
filter while achieving the fixed-direction error characteristic. Not
only is it important to be able to avoid undesirable {e.g., unstable)
filter dynamics, but also to be able to tailor those dynamics to enhance
the response to the events of interest and suppress the response to other
disturbances. The results of Section 4.3.1 show how it is possible to
obtain the fixed-direction error response for one event and at the same
time retain control over the poles of the detection filter. It is found
that the error magnitude response is not necessarily that of a first
order system as it was in the case of a fully measurable state vector.
However, for each event there is a maximum system order for the
magnitude response beyond which the fixed-direction property cannot
be achieved. This order is defined as the detection order of the event.
It is found that the order of the error magnitude response should be
made a maximum, i.e., equal to the detection order, if one wishes

to remain control over as many poles Qflthe filter as possible. The
poles associated with the magnitude response can be arbitrarily
gpecified by the designer, but the zeros cannot. It is possible to
determine the location of the zeros before specifying the poles, so zeros
in the left half of the complex’plane can be cancelled with poles if
desired.

Because the control of the detection filter poles is included in
the problem of detection, the condition of observability of the plant
appears in the results. When a plant model is not observable, then a
detection filter which considers the full plant will have a certain number

of poles equal to those of the plant, and these cannot be controlled by

235



the designer of the filter. In a practical sense observability plays
only a superficial role, however. The whole subject of detection here
is based on obtaining information from only accessible sigﬁals. As
noted in Chapter 2, when a plant is not observable, the unobservable
portion has no effect on the accessible signals. That portion then is
"unknowable'' with respect to accessible signals, so for the purpose of
detection it does not make sense to model the piant dynamics with an
unobservable representation.

The second important consideration in the design of a detection
filter is to make the filter as versatile as possible, i.e., able to
provide information about as many events as possible. This problem
is the subject of Sections 4.3.2, 4.3.3, and 4.3.4. It is found that in
constructing a filter to detect a number of events it is not always
possible to retain control over all the poles of the filter. Section 4.3.3
shows how to determine which events can be detected by the same
filter while still retaining control over all poles. Section 4. 3.4 takes
a broader view and allows the possibility of uncontrolled poles in the
filter. It demonstrates how to identify such poles and how undesirable
poles can be eliminated by removing certain events from the set of
events which the filter is required to detect.

The final three sections in the chapter specialize the previous
general results to the three types of events described in Chapter 3.
Section 4.3.5 deals with the detection of effector failures. A brief
step-by-step design procedure is presented, and the error response of
the resulting filter is discussed. Section 4.3.6 considers the use of

detection filters to determine changes in plant dynamics. It describes
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a standard form model for the plant which simplifies the design process
and makes it possible to produce information about all changes in plant
dynamics. This model may have a larger state vector dimension than
the minimum dimension necessary to represent the plant when the
dynamics are completely determined. The enlarged state vector
reflects the uncertainty introduced by the possibility of changes in the
plant dynamics. Section 4.3.7 deals with the most complex problem

in detection filter design — the detection of sensor failures. It is shown
that the error response to a sensor failure can be restricted to a two-
dimensional plane if that sensor output is modeled as being independent
of the other outputs driving the filter. In the standard form suggested
in Section 4.3.6, every sensor output is modeled as independent of all
the others. If in the minimal plant representation some sensors are
dependent and are so modeled, then a more direct way of detecting a
failure is by a simple comparison of outputs. This point is illustrated
in Section 4.2.3. The detection-filter method of detecting sensor
failures complements the direct-comparison method. The direct-
comparison method can be used only if the sensor is dependent on other
sensors, whereas for the detection-filter method the sensor is assumed
to be independent of the other sensors.

A detection filter for any type of event is of course based on a
model of the plant dynamics. One detection filter, at least, will have
the responsibility for detecting and ide,ﬁtifying changes in these
dynamics — in effect forming a new plant model. Having obtained a
new plant model,all the other detection filters must be rechecked and

adjusted, if necessary, to fit the new model. Therefore, it is important
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to the overall reorganization scheme to have efficient filter design
algorithms which can be carried out by on-line computers. For this
reason reference is made throughout Chapter 4 to Appendices A and B
which describe algorithms for obtaining the various vector and matrix
gnaitities necessary in the filter design process. These algorithms
are developed for a general linear plant description. When a standard

form plant model is used, a number of significant simplifications result.
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CHAPTER 5

IDENTIFICATION DECISIONS

5.1 General Discussion

This chapter investigates the problem of identifying events from
the error signals produced by detection filters. The detection filter is
designed to produce a fixed-direction error in response to certain events.
Ideally the identification problem is a simple matter of noticing the
fixed-direction error and associating it with a specific event. The
actual identification problem is more difficult than this for two reasons.
The first is that the detection filter may be responding to other disturb-
ances besides the specific event produciﬁg a fixed-direction error. When
these extraneous errors are added to the fixed-direction error the
result is an error signal not fixed in direction. The total error must be
processed somehow to recover the fixed-direction signal from the
extraneous errors. Noise disturbance in the sensor outputs or entering
througﬁ the plant dynamics is one source of extraneous errors. A
second source is the occurrence of multiple events which must be
detected by different filters. For example, changes in plant dynamics
will cause extraneous errors in the output of a filter designed to detect
effector failures.

The second complicating factor in the identification problem is
the case of nonseparable events which cannot be distinguished on the
basis of error direction alone. The most important example of this

arises in the detection of changes in plant dynamicg. As was seen in
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Sections 4.2.2 and 4.3.8, error direction alone is not sufficient to
determine which elements of A or B have changed. Error magnitude
information is also necessary. The identification of plant dynamics is
treated as a special case in the next section. The identification of

effector and sensor failures is investigated in the final section.

5.2 Plant Dynamies Identification

This section discusses the problem of determining changes in
plant dynamics from the error signal produced by a detection filter.
The problem will be considered first in a formal mathematical frame-
work. This will show, in theory, what 'mforméﬁon the errof éignal can
and cannot provide about plant dynamics. Such results will establish
the limitations on what can be expected from any dynamics identification
scheme based on detection filters. Section 5.2.2 compares the detection-

filter method of dynamics identification to some other methods.

5.2.1 Conditions for Identifiability

This section investigates the conditions under which the
plant dynamics can (and cannot) be uniquely determined from the informa-
tion provided by a detection filter, assuming perfect lknowledge of the
input and output vectors of the plant.

It will be assumed that the plant is modeled by

x(t) = Ax(t) + Bult) (5-1) |
ult) = uylt) {5-2)
y{t) = Cxlt) | (5-3)

with A and C in the standard form suggested in Section 4.3.6
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and

oy + ... + n = n (5-10)

The matrix B is partitioned to conform to the blocks of A as in Section

4.3.6

b11 : blr
B = . . (n X r) (5-11)
bml' e e . 'brr
— M
ij1
by o< | - (n; X 1) (5-12)
ijni

The error response to changes in individual elements of A and B is
given by {4-423) and (4-427) respectively. Adding together the effects

of all allowable changes in A and B yields a total settled-out output

error of
..
m m i
1 - fa )
€'(t) z Z Aaggy 855 M) &5

i=1  j=1 12=1

n,

m r i

~ .
i=1 =1 t=1

with ¢ij£ {t) and quJ.! (t) given by (4-424) and (4-428). In the first term

on the right side of {5-13) the summation on £ has the upper limit of

Ny = min {ni, nj}' (5-14)
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instead of simply n; because nonsquare blocks of A have the form of
(5-7) in which 351 is identically zero for all £ > Eij' This results
from the algorithm of Appendix C for obtaining the standard form. The

ith component of €'(t) is

I.. n,
m ij r i
Sl = ) ) Aay, 6,0 + Z by by (0
=1 2=1 j=1 =1
(5-15)
Define the following vectors
A2
LFTI . forj=1, .... m (5-16)
Aa,.
] lJnij |
- b m
Abiq
Wi,m+j = . for j=1, , T (5-17)
Ab,.
i ijo; |
¢ij1(t)
Eij(t) = . for j =1, , m (5-18)
¢iJH {t)
| ij .
Vit
Ei,rn-i-j(t) = for j=1, ..., r {5-19)
qujni(t)
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and with these vectors form the composite vectors

”’fﬂ
m,o= . (5-20)
7Ti,m+r'
Sqlt) |
Ei(t) = . {5-21)
E'i, m+r(t)
Now (5-15) can be written as
T .
E'i(t) = E-l {t) ™ (5-22)

The basic problem in identification of plant dynamics is
to solve (5-22) for gy given e‘i(t) and E.l(t). The question of interest
here is to determine under what circumstances this is theoretically
possible. Equation (5-22) can be viewed as a linear mapping from
Euclidean space into the vector space of continuous scalar functions
over some time interval t

<tg tz. From the theory of linear mappings

1
(Section 12 in [4]) it is known that 7. in (5-22) can be determined to
within an additive constant vector which lies in the null space of E? (t).
The null space of E’ir(t) is the set of all vectors LN for which Er.lr(t) :'ro_is
identically zero on the interval [tl, t2] . A time-invariant vector
equation can be obtained from (5-22) by multiplying by E.l{t) and

integrating over [t), t This yields

2]

Eei = Mi(tl’ t2) T, ' (5-23)
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where

ty
Eei = S\ Si(t)e'i(t) dt (5-24)
b
and
ty
M, (), 1)) = § g £ at (5-25)
Y

Any 7, which satisfies (5-23) also satisfies (5-22) and conversely.
The null space of Erir(t) over [tl,.tz] coincides with the null space of
Mi(tl, tz). This result is proven by Brockett (Lemma 1, Section 14 in
[4]). It is clear from (5-23) that 7; can be determined uniquely if and
only if Mi(tl’ tz) is nonsingular. If Mi(tl’ t2) is singular then for any
s which lies in the null space, e'.l(t) will be zero over the interval

[t

t This means that all standard form models whose parameters

bl
have a vector difference 7 _ lying in the null space of Mi(tl’ tz) can
reproduce exactly the output of the ith gensor over the interval [tl, ;cz] .
All such models adequately explain the dynamic behavior of the plant
over [tl, t,] as measured by the " sensor. Without additional
information there is no basis for choosing among these models. In other
words, any T which satisfies (5-23) will yield a model which can dupli-
cate the plant behavior over [tl, t2] as seen by the ith sensor. Of
course the rnain purpose of having a plant model is to be able to predict
future plant behavior. It is of interest, therefore, to determine the

conditions under which differences between plant and model are

indeterminant and to investigate the nature of those differences. For
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this purpose it is necessary to determine what circumstances produce

a singular Mi(tl’ t2). Suppose Mi(tl’ t2) is singular and 7_ is a

nonzero vector in the null space. Since, as noted above, the null spaces

of Mi(tl’ tz) and E’rir(t) coincide

T -
Ei (t) T, = 0 for all t

1Sttty (5-26)

Partition ™, into {m + r) vectors conforming to E.l(t).

ki

ol
T, = . {5-27)
"o, mtr
with
Tojl
Woj = . for j=1, ..., m {5-28)
ﬂ-Ojﬁij
and
Tojl
T . = . for j=m, ..., m+r
0]
T . -
030y (5-29)
where the T oit are scalars. From the definition of Ei(t) (5-26) can be
written as
n,. n,
m ij r i
Z W0j1¢ijl(t) + z Z WO,I‘I‘H’_‘],.ELIJij-E(t) = 0 {(5-30)
j=1 =1 j=1 2=1
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This equation is equivalent to a linear differential equation for ¢ij1(t)
and Lb.l].l(t). To see this, note from the definition of hi_ﬂ (t) (4-421)

used in forming ¢ij£ (t) and ¢ij£(t) it follows that

-1
. d . - -
q&ijl(t) = dtl—l q)ijl(t) forg =1, ..., n, (5-3D)
and
d!—l
L|J.1j£(t) = F- lil:Il(t) for £ = 1, “ewy ni (5-'32)
Then (5-30} becomes
n.. n
= i -1 - < 4l
z Tojt AT Pipn® 7 zz To,mt g 2T i = o
j=l 2=1 j=1 £=1
(5-33)
To simplify notation define
!
I (5-34)
dt ,
Then (5~33) can be written
m r
z_ n.j(?u) q)ijl(t) + Z pj(?t) LIJi.j].(t) = 0 (5-35)
i=1 =1
where
i
_ 1-1
£=1



and

n.
1

£-1
P00} = Z o, mti, 2 (5-37)
£=1

By their definitions d)ijl(t) and q;ijl(t) are related to yj(t) and udj(t)

through the differential equations

B0 00 =y (5-38)
where
n.
i
o 1-1
pixy = 2 + Py A (5'.40)
£1=1

The Py which appear in (5-40) are the same as those appearing in
(4-419). These are the coefficients chosen by the designer to specify
the poles of the detection filter. Applying the differential operator

ui(l) to (5-35) gives

I

IT)
Z i 100 @458+ Z #i0) P ) =0 (5-41)
j=1 =1

Interchanging the order of the differential operators and using (5-38)

and (5-39) yields

m r

21 nj(h) yj(t) +Z1 Pj(h) udj(t) = 0 (5-42)
J: J:

This shows that (5-42) is a necessary condition for Mi(tl," t,) to be
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singular. If can also be shown that it is sufficient. Suppose (5-30) is
satisfied for any nj()t) and pj(x) having the form of {(5-36) and (5-37)
with arbitrary coefficients Woj! (not all zero). Substituting (5-38) and
(5-39) into (5-42) and interchanging the order of the differential

operators gives (5-41). Defining

m r
a0 = ) m) g F ) e b (5-43)
j:l j:l

equation (5-41) can be written as

w0 at) = o (5-44)

Recall that for the error signal given by (5-15) it was assumed that the
initial condition effects in the detection filter had settled out. The n.
roots of pi(S) = 0 are poles of the detection filter. This means that
the initial condition effects of any solution of (5-44) have the same
settling times as those of the detection filter. If t is large enough so
that the filter has settled out, then the solution of {5-44) will have

getiled out also. Since (5-44) is undriven, the settled-out solution is
qft) = 0 (5-45)

which gives (5-35) be definition of g{t). The development from (5-26)
to (5-35) is equally valid in reverse so {5-35) implies (5-26) which in
turn implies Mi(tl, t2) is singular. This shows that condition (5-42)
is both necessary and sufficient for Mi(tl’ t2) to be singular.

To see clearly what condition (5-42) means, it must be

interpreted in terms of the dynamic behavior of the plant. This
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condition is a differential equation relating the control signal ud(t)
and the sensor output vector y(t). These quantities are of course
already related by Equations (5-1) to (5-3) describing the plant
dynamies. These relationships must be clearly delineated before
(5-42) can be properly interpreted. Consider the plant representation
(5-1) to (5-3) with A and C in the form of (5-4) to (5-10). Partition

the state vector x(t) into m n.-vectors to conform with the partitioning

of A,
Xl(t)
x) = | . (5-46)
x_{t)
with
kal(t) |
x () = | . (5-47)
X, (t)
B knk _J
Then
v () = xknk(t) (5-48)
and
_ m 1m
}'_{_k(t) = Akk_}_c_k(t) + z Akj Ej(” + z bkj udj(t)
j:]_ k=
i#k
Il m
= Akkxk(t) + Z Ekj yj(t) + Z bkj udj(t)
j:]_ k=1
i#Fk

(5-49)



where

ki1
ikj = . {5-50)
A akjnk ]
and
akjl = 0 if 1> nj (5-51)

Equations (5-48) and (5-49) are equivalent to the scalar differential

equation
m r
=1 j=1
where nk
Ay 1-1
£=1
nkj
= -1 i+ -
vkj(h) = Z akjf X for j # k {5-54)
=1
n,
Vi) z by iy Al (5-55)
£-1

Note that ka(s) is the characteristic polynomial of Akk and always has
order n, . The order of ij(s) (j # k) is less than or equal to (ij -1)

and ykj(s) has order no larger than (nk - 1). Equation (5-52) for any

k does not satisfy condition (5-42) because vkk(x) has order n, whereas

k

the operator .nk(x) associated with yk(t) in (5-42) must have order no

L]
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larger than (nk - 1) as can be seen from (5-36). This means that
Mi(tl’ tz) for all i will be nonsingular as long as the dynamic behavior
of ud(t) and y(t) cannot be described by any equations of lower order
than those given by (5-52) for k =1, ..., m. I[n other words, the
plant should exhibit the full dynamic properties attributed to it by the
representation (5-1) to (5-3).

It is possible to agsociate the singularities of Mi(tl’ t2)
with several specific situations. A nonminimal model may yield a

singular Mi(tl, t It was noted in Section 4.3.6 that a nonminimal

2)'
representation cannot be both controllable and chservable. The standard
form model is constructed to be observable, so if it is nonminimal it

must be noncontrollable. When a representation is not minimal it Iis
possible to reduce the dimension of the state space to obtain a representa-
tion which is minimal and which has the same dynamic relationship between
input and output. In effect the uncontrollable part of the system is dis-
carded to obtain the minimal representation. The reduced representation
yields a set of differential equations relating y{t) and ud(t) to replace

those given by (5-52) for k=1, ..., m. One or more of these |

equations will be of lower order than (5-52) for some k since the state
vector has been made smaller. Any such equation will fit the form of
(5-42) suggesting that some Mi(tl, t2) can be singular if the nonminimal
model is used. This may or may not be the case depending on the initial
conditions. The reason a nonminimal representation can be reduced is
because the uncontrollable portion of the dynamics is never excited by

the input. As far as the relationship between input and output is cén-
cerned, this portion of the dynamics can be ignored. However, this

does not mean that the effect of the uncontrollable portion is never seen
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in the output. Because the model is observable, the full effect of the
uncontrollable portion can be evident in the output provided the initial
conditions are such that the uncontrollable modes are excited by
transients. In this case the reduced minimal representation will not

be adequate to explain all the dynamics appearing in the output. The
lower order equations suggested by the reduced representation will not
be valid and Mi(tl’ t2) will not be singular. The lower order equations
are valid only if the initial conditions for the uncontrollable modes are
zero or their effect has settled out by the time tl.

There are two reasons why the model may be non-
minimal. As noted in Section 4. 37. 6, it may be necessary to enlarge the
state space in order to achieve the standard form of (5-4) to {5-10).

If this is done the model will be nonminimal. The method described in
Appendix C for enlarging the state space demonstrates the arbitrary
nature of the added portion of the augmented model. Because of this

an augmented model is not unigque, and this nonuniqueness is reflected
in the singularity of certain Mi(tl’ tz) {implying the solution of {5-23}
is not unique). Singularities in Mi(tl’ t2) which result from an augmented
model present no theoretical problem because any solution of (5-23) will
yield a plant representation which correctly models the plant behavior.
The multiple solutions of (5-23) simply correspond to the arbitrary
portion of the augmented model, which is not related to any dynamics

in the actual plant.

A second reason for a nonminimal representation is that
the actual plant may be nonminimal. This could be the result of effector
failures, sensor failures, or dynamics changes which have caused the

plant to become unobservable or uncontrellable. In this case a portion
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of the actual plant dynamics may be unidentifiable. An unobservable
plant may result from sensor failures or changes in dynamics. In this
case Mi(tl, tz) for some i will be singular. Ag shown in Chapter 2,
the unobservable portion of the plant dynamics will never appear in the
output. This means that the plant behavior as seen by the detection
filter can be fully explained by a reduced state vector which results
when the unobservable portion of the plant is ignored. This implies

the relationship between input and output satisfies a differential equation
of lower order than those derived from the original state vector, which
is the same size as the state vector of the model. This means

condition (5-42) is satisfied, and therefore some IVIi(t

1’ t2) will bé

singular.

An uncontrollable plant may result from effector failures
or changes in dynamics. In this case Mi(tl, tz) may be singular or
nonsingular. The uncontrollable modes of the plant dynamics will be
seen in the output if and only if they are excited by the initial conditions.
If some uncontrollable modes of the plant are not excited by the initial
conditions, then some Mi(tl’ t2) will be singular. If the uncontrollable
portion of the plant is fully excited by initial conditions, and the
controllable portion is fully excited either by the inputs or initial
conditions or both, then Mi(tl’ tz) will be nonsingular. Of course,
initial condition transients can identify uncontrollable modes of the
plant only if their settling times are significantly longer than the
settling time of the detection filter. Otherwise the transients will
settle to zero in the time allowed for the filter to settle out.

Even for a minimal plant and model M;(t;, t,) may be

singular if there is external low-order coupling between y(t) and ud(t)
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or between components of ud(t). External low-order coupling means
dynamic coupling of the form given by (5-42) caused by effects external
to the plant. The most obvious example of external coupling is a feed-
back loop. If y(t) and ud(t) are related through feedback by a low-order
relation in the form of {5-42), then some Mi(tl’ tz) will be singular.
Coupling between components of ud(t) may also cause a
singular Mi(tl’ tz). It can be shown that for a minimal representation
some Mi(tl’ tz) will be singular only if there exists a set of poly-
nomials {xj(s} , j=1, ..., r} (not all identically zero) each with

order no larger than {n+ n - 1), such that
r -
. At = 0 5-56
Z XJ(R) udj( ) ( )
j=1

where n is the state dimension of the minimal representation and

n = max {nl, ..., n_} (5-57)

Define the matrices of polynomials

z.zll(s) Ce e I.Jlm(S)

Ni{s) = (5-58)
B vml(s) e e . me(s)
—711(5). .. '.}/1r(s)

I'(s) = (5-59)
_:le(s)' Trr(s)
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Then the equations (5-52) for j=1, ..., m can all be written in one

vector egquation

NG y@®) + ) uylt) = 0 (5-60)
Let N(s) be the matrix of cofactors of N(s) having the property

Mo Ns) = [Ne)|1 = vye 1 (5-61)

( VO(S) is the characteristic polynomial of A.) Applying the operator

N(x) to (5-60) yields
N(2) N() y(t) + N T uyt)

= v )y + NOO T uyt) = 0
{5-62)
Agsume y(t) and ud(t) also satisfy (5-42) for some nj(:\) and pj().).

Define the vectors of polynomials

[ ny(s)
n(s) = | . (5-63)

nnﬁs)

[ py(s)
p(s) = (5-64)

p_(s)

Then (5-42) can be written

nT(A) y(t) + pT(A) uylt) = 0 . (5-65)
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Applying the operator vo(x) to this equation and using (5-62) yields

v (00T y® + v () p T uylh)

Nt Y () g+ p LD v (M) uyt)

[TV RO T + pTOU v (] ugt) = 0
(5-66)
Now Vo(s) has order n because it is the characteristic polynomial of
A which is nX n. By (5-37) the highest order polynomial in p(s) can
have order no larger than n - 1| where n = max {nl, .o+, n_}. Then
the polynomial elements of pT(S) Vo(s) are of order no larger than
{n+n-~1). The matrix N(s) I'(s) has no polynomial element with order
larger than (n - 1). This can be shown from (5-62). Taking the Laplace
transform of both (5-62) and (5-1) to (5-3) and equating the transfer
functions from ‘Z{ud(t)} to Z{y(t}} yields

N(s) I (s)
v (s
o

C[Is—A]_lB (5-67)
The elements of C[Is - A ]-1 B are rational polynomials each with a
larger order denominator than numerator. The same must be true of
N(s) T'(s) /Vo(s). Hence, no polynomial element of N{s) I' (s} can have
order greater than (n - 1), since V _(s) has order n. From (5-36) it is
clear that (m - 1) is the highest order polynomial allowable in n{s). The
complete differential operator [—nT(A) N(OTO) + pT(A) VO(PL)] has

order no larger than (n + n - 1), and therefore (5-66) has the form of

{53-56) where
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[xy(8)s -os (8] = xT(e) = - 0T (s) M) T(s) + p " (s) ¥ (8)
(5-68)
T = T .
The case where [~ n (s) N(s) I'(s) + p “(s) ¥ (s)] is
identically zero corresponds to a nonminimal representation. If

[- nT(s) N(s) T'(s) + pT(s) vo(s)] = 0 for all complex values of s, then

-0t 0 RO TOD + pT0 0] ugwr = 0
(5-68)
for any ud(t). From (5-62) this implies
v ) [Ty + o7 ugd] = 0 (5-70)

for any ud(t). This means that, ignoring initial condition transients,
(5-65) is a valid relationship between y(t) and ud(t), for any ui('i){_
which in turn implies that a reduction is possible in the order of
Equations {5-52).

The above development shows that if (5-42) is satisfied
for some nj(;\) and pj(h) then (5-56) is satisfied for the Xj()“) given
by (5-68). Since (5-42) is a necessary and sufficient condition for
Mi(tl’ ty) to be singular, one may conclude that (5-56) is. a necessary
condition for some Mi(tl’ t2) to be singular if the model is minimal.
It is not a sufficient condition in general. The negation of (5-56) is a
sufficient condition for all Mi(tl’ tz) to be nonsingular. That is, if
(5-56) is not satisfied for any xj()L) (not all zero) with order less than
or equal to (n + n - 1), then all M.ty ty) for i=1, ..., m will be

nonsingular, provided the model is minimal.
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In the case of a scalar-input plant (r = 1), these remarks
can be made more tangible if the result is interpreted in the case where
the input ud(t) is assumed to be a periodic signal made up of a number

of discrete frequency components. For r = 1, (5-56) reduces to
x(A) ugt) = 0 (5-71)

where ud(t) is a scalar and x(s) is a polynomial of order no larger
than (n+n - 1). If ud(t) is a periodic signal with discrete frequency
components, (5-71) will be satisfied for some x()) only if the number
of distinct frequency components in ud(t) is less than or equal to

(n+n - 1)/2. Therefore, a sufficient condition for all Mi(t tz) to

1
be nonsingular (and the minimal representation to be completely
identifiable) is that ud(t) have at least (n + H)/Z different frequency
components. For a scalar-output plant n = n, so one may conclude that
the minimal representation of a scalar-input, scalar-output plant can
be completely identified if the periodic input has at least n distinct
frequency components. This agrees with a similar statement made
by Young [27] .

The results of this section have been derived for the
general case where all 3j4¢
in B given by (5-11) and (5-12) are subject to change. If in a particular

in A given by (5-4} to (5-7) and all bijf

situation only a limited number of CH and bi are subject to change,

il
then it is necessary to identify only those particular elements. In that
case in (5-20) should include only those elements subject to change,
and Si(t) should be shortened accordingly. Conditions for identifiability

of a limited number of elements can be derived in the same way as
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shown here for the general case. For a limited number of changeable

elements sufficient conditions for identifiability should be less restrictive.

0.2.2 On-Line Identification Methods

The previous section demonstrated how the plant
dynamics can be determined after observing the detection filter error
signal over a finite period of time. The method used in that analytical
development involved generating the vector Eei and the matrix Mi(tl’ t2)
for a given time interval [tl’ tz] , then solving (5-23) for the difference
between plant parameters and model parameters. This may be a
feasible method for determining changes in plant dynamics on-line,
provided there is sufficient time and computing capacity to solve the
equation (5-23). The actual dimension of the vector equation (5-21‘3)
depends on the number of changeable parameters in A and B, since, as
noted in the previous section, only changeable parameters need to be
considered in the identification process. Determining the plant parameters
by analytical solution of (5-23) would be most effective in situations where
the number of changeable parameters is small and the changes are
expected to occur in sudden jumps (as might be expected in the event of
a failure).

In situations where the number of changeable parameters
is large, and the changes are nearly continuous and slowly time-varying,
a more suitable method for on-line identification is a reference model
approach. There are several reference model identification methods
which have received considerable attention in the literature. The
detection filter can also be used in a reference model approach. In

the remainder of this section certain properties of the detection filter
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method will be compared to the properties of some other reference
model techniques.

The basic philosophy of reference model identification
is to adjust certain parameters in the model to null or minimize some
measure of the error between plant and model. Two basic distinguishing
features of a reference model identification scheme are the error signal
and the parameter adjustment process. The goal of the parameter
adjustment process is simply to null or minimize some measure of the
error signal. Many algorithms for parameter optimization can be used
to obtain a parameter adjustment law which attempts to minimize the
error measure. Gradient or ”steépest descent' methods are the most
common example [ 12,14,25] . Such gradient adjustment laws may be
discrete [ 12] or continuous [12,14] . In some cases a recursive
solution of a linear least squares problem may be used to update
parameter estimates at discrete points in time [27] . Another method
for determining a parameter adjustment law is based on Liapunov
functions [17] . Most of these techniques can also be used with the
detection filter error signal. There is a substantial body of literature
on the theory and use of such methods of parameter adjustment and
their application to reference model identification, so they will not be
analyzed further here. It will be instructive, however, to compare
some important properties of the error signal from a detection filter
with those produced by other reference model methods.

Moe t reference model identification schemes are variants
on one of two basic methods. The first method is often referred to as
the response error method [ 14] , or sometimes the '"closed"” method

by Russian authors [ 16] . The basic philosophy of this method is to
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apply to the model the same observed input that is acting on the plant,
and to observe the difference between the plant output vector (as
measured by the sensors) and the model output vector. This output or
response error vector is taken as the error between plant and model.
The second basic method is usually referred to as the equation error
method [ 14,27] , or the "open’ method [ 16] . The basic philosophy of
this method is to substitute the observed input and output vectors of the
plant into an equation describing the estimated plant behavior (the
equation is the model in this case). If the equation accurately describes
the plant behavior {and there are no unobservable disturbances), then
the observed input and output vectors should satisfy the eguation. If
they do not, the discrepancy is taken as the error between plant and
model. The model equation is chosen so that the error signal is an
algebraic function of the parameters. This means that the error signal
at any instant in time depends on the parameter values only at that same
instant. This is not the case for the response error. In general the
response error depends on past values of the parameters as well. This
is an important distinction between these two basic methods.

An important variant on the equation error method is the
generalized equation error method [14,27] . One of the difficulties of
the equation error method is that substitution of the observed input and
' output vectors into the model equation often involves performing
operations (e.g., pure time derivatives) which are undesirable with
regard to noise suppression. This problem is avoided by the generalized
equation error method. The equation describing the plant is replaced

by a generalized equation which involves no pure time derivatives of the
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input and output vectors. Satisfaction of the generalized equation implies
satisfaction of the original model equation.

The use of a detection filter for plant identification is a
variant on the response error method. The error signal produced by a
detection filter is a kind of response error -- the observed difference
between the plant and model outputs when the same observed input is
applied to both plant and model. The distinction between the detection
filter method and the response error method is that the error signal
from the detection filter is fed back into the model. This interpretation

can be seen from the state equaticon for the detection filter

z(t)

(A - DC) z(t) + Dyft) + Buylt)

Az(t) + Buylt) + D(y(t) _ Cz(t))

Az(t) + Bud(t) + De'{t) (5-72)
where

e't) = ylt) - Cz(t) (5-73)

is the observed or accessible error signal. Equation (5-72) represents
a model of the plant with the error feedback term De'(t), as illustrated
in Figure 5-1. If the detector gain D is made zero, then the error
feedback would be eliminated and the result would be a true response
error configuration. The effects of the error feedback on the identifi-
cation process will become apparent as the detection filter method is
compared with the other methods.

One advantage of the equation error method and its
variants is a result of the fact that the error signal is an algebraic func-

tion of the parameters. Because of this fact, the effect of parameter
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changes is reflected immediately in the error signal. This means

that parameter adjustments can be made rapidly without destroying

the validity of the error signal. On the other hand, the response error
signal does not, in general, reflect accurately the eifect of parameter
changes instantaneously. If parameter changes in the model are made
too rapidly without waiting for the effect to appear in the response
error, the meaning of the response error becomes doubtful and
stability problems may arise [12,17] .

The parameter adjustment law often involves partial
derivatives of the error signal with respect to the parameters. In this
case the above remarks can be made more specific. For the equation
error signal the partial derivatives with respect to the parameters are
true instantaneous partial derivatives (i.e., holding time constant).

For the response error method such an interpretation is not appropriate
because the error signal depends on past values of the parameters.

The parfial derivative of the response error with respect to a parameter
is usually interpreted as a sensitivity function [12,13,22] . It is the
relative change in the error trajectory over some finite time interval
which would result if the parameter were subjected to an infinitesimal

time- invariant change over that same time interval. This means that

the parameters should be time-invariant during the time interval in
which the partial derivatives (sensitivity functions) are being generated.
This condition will be satisfied if the pafameter adjustments are made
at discrete points in time and the partial derivatives are generated in
the intervening intervals. If the parameter adjustments are made
continuously, they should be made slowly enough so that the parameters

appear to be approximately time invariant compared to the response
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time of the model (which is comparable to the response time of the
plant). The equation error method and its variants have no such
theoretical limitation on speed of parameter adjustment.

As a variant on the response error method, the detection
filter method also has a limitation on the speed of parameter adjustment.
Specifically, the parameters should be adjusted slowly enough so that
they appear approximately time invariant compared to the response time
of the detdction filter. This limitation is much less restrictive than for
the response error method. For the response error method the response
time of the model is approximately the same as that of the plant {(assuming
the identification process is successful) and is determined by the eigen-
values of the matrix A in the plant representation (5-1). But the response
time of the detection filter is determined by the eigenvalues of G = (A - DC)
which, as shown in Chapter 4, can be arbitrarily specified if the model is
observable. This means that the response time of the detection filter can
be made arbitrarily fast consistent with other practical considerations
such as gain magnitudes and noise suppression. Therefore, the speed of
parameter adjustment is not limited by the response time of the plant as
in the case of the response error method.

These remarks ca‘.n be made more specific by referring to
Equation (5-22) with 7, and E.l(t) defined by Equations (5-16) to {5-21).
Recall the vector T represents the difference between model parameters
and plant parameters. A similar equation obtains for the equation error
method. (Equation (5-22) represents just one component of the vector
error-signal. Since all the references mentioned in this section deal
only with identification of a scalar-input, scalar-output system, the
remarks which follow will be specifically directed to that case.. Then
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the error signal is a scalar as in (5-22). The remarks, however,
generalize to the case of a multiple-input, multiple-output system.)
For the equation error method, the equation corresponding to {(5-22) is
valid even if T is fime varying. Recall for the detection filter method
T, was assumed time-invariant in obtaining (5-22). In a practical
sense, then, the parameter adjustments should be made slowly enough
so that (5-22) is a valid approximation for the observed error signal.
Then the detection filter error signal will have approximately the same
interpretation as ih the case of the equation error method.

Although the equation error method has no theoretical
limitation on the speed of parameter adjustment, it has been shown
experimentally that increasing the speed of parameter adjustfnent
beyond a certain level does not necessarily increase (and may decrease)
the speed of convergence of the identification process [14] . It was
noted above that the erfor signal for the equation error method can be
expressed in a form similar to (5-22). Ideally the parameter adjust-
ment process is intended to converge to the point M= 0 which, in the
absence of sensor noise and plant disturbances, will null the error signal.
However, at any time t, any vector T which is orthogonal to § i('s) will
yield an error signal which is instantaneously zero. The set of all such
TS orthogonal to Si(‘t) at time t form a hyperplane of dimension (n?r - 1)
where n_ is the dimension of m,» The hyperplane moves with time
(but always contains the origin, 7. = 0) since &,(t) is a time-varying
vector. Now if the parameter adjustments are made rapidly enough,
the vector T could follow approximately the movement of the time-
varying hyperplane. This means that T could remain near the moving
hyperplane, thus producing an approximately nulled error signal without
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being close to the desired convergence point 7. = 0. Such behavior
would retard the convergence of the identification process. It is only
when ™ is unable to keep up with the motion of the hyperplane that it is
forced to converge toward the origin as desired. Lion|[14] has demon-
strated that the speed of convergence can be substéntially increased with
the use of multiple generalized equations. KEach generalized equation
produces an error signal expressible in the form of (5-22). By intro-
ducing n_ independent generalized equations {(where n, is the dimension
of 7r.1), n_ independent error equations in the form of (5-22) are obtained.
In theory, this implies T, can be solved for instantaneously (nw equa-
tions, n_ unknowns). In practice, it means that T is forced to converge
toward the origin regardless of how fast parameter adjustments are
made, because there is no nonzero =, which can null all n_error signals
simultaneously. Of course, this improved convergence is purchased at
the expense of substantially increased complexity. KEach independent
generalized equation requires the equivalent of a plant model.

Assuming parameter adjustments are made slowly enough
so that (5-22) is valid, the above remarks can be applied to the detection
filter method also. Multiple detection filters, each with different
dynamics, can be used to achieve the same effect that Lion has obtained
with the use of multiple generalized equations. A similar increase in
complexity is the price of the improved convergence. The speed of
parameter adjustment is still limited by the response time of the
detection filters.

It has been noted in the literature that for the equation
error method, disturbances in the observed plant output vector (i.e.,
sensor noise) will produce an asymptotic bias in the estimate of the
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plant parameters [ 16,27] . The magnitude of the bias depends on the
signal-to-noise ratio [ 27] . In the true response error method the
estimate of the plant parameters is not biased if, as is often the case,
the output of the model and the sensor noise are uncorrelated. In the
case of a detection filter, the output error signal is fed back into the
model through the detector gain. Hence, the output of the model will be
correlated with the sensor noise, producing a bias in the parameter
estimates. However, in this case the size of the bias depends on the
detector gain as well as the sighal-to-noise ratio. To see this, note
that if the detector gain is reducec_l to zero the bias is reduced to zero,
because the detection filter becomes simply a response error model.

Norkin [ 16] has suggested that the equation error method
with its faster parameter adjustment potential would be more desirable
for initial gross parameter estimat es, and the slower but unbiased
response error method would be more suitable for final fine tuning.
This philosophy would be relatively easy to implement with a detection
filter. Adjustment of the detector gain can produce a smooth transition
Irom a fast detection filter with properties similar to the equation error
method (i.e., fast parameter adjustment, biased by noise) to the
response error method {with detector gain zero).

The purpose of this section has been to compare the
potential of the detection filter method of identifying plant dyﬁamics to
other related methods. Various techniques for adjusting the model
parameters were mentioned briefly., They have not been discussed in
detail here because extensive literature already exists in this area.
Representative parameter adjustment schemes may be found in [ 12, 14,

17,22,25,27] as previously noted.
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9.3  Identification of Effector and Sensor Failures by Correlation

This section discusses the problem of identifying the occurrence
of effector or sensor failures in the presence of other diéturbing
influences. Consider a detection filter designed to detect the failure
of any one of a set of r effectors associated with the vectors {bl’ P br}'
Failure of the ith effector of this set will produce a fixed-direction error
signal from the detection filter as given by (4-397). If no other disturb-
ances are acting on the plant or sensors, this error signal is easily
identified with the failure of the ith effector. As noted in Section 5.1,
the fixed-direction error sig.nal may be obscured by other disturbances
such as sensor or plant noise, uncertainties in plant dynamics, and
failures the filter is not designed to detect. These extraneous erfors
in general will not have a fixed direction in the output space. 1If the
fixed-direction error signal makes up a significant portion of the total
error, one would expect the error vector to be biased toward that
direction. One way of identifying such a directional bias is to form a

correlation matrix

t2
1 t t T
R(t,, t,) = ——— ett) e'{t)” dat (5-73)
1’ "2 t, -t .
2 1 t
1
over some time interval [tl, t2] . R(tl, t;) is an m X m positive semi-

definite matrix. It is helpful to associate this matrix with an ellipsoid
in m-dimensional Euclidean space. The ellipsoid is defined as the set of
all m-vectors y such that yTn < 1 for any m-vector n satisfying

n~ Rn =1. This defines an ellipsoid centered at the origin and having
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principal axes along the eigenvector directions of R(tl, tz) with length

equal to twice the corresponding eigenvalues. If Rt t2) is singular,

1’
the ellipsoid will be degenerate, i.e., one or more principal axes will
have zero length. When €'({t) maintains an exact fixed direction over
[t

t the ellipsoid consists of a single straight line. If other

e
disturbances are present, the additional error signals will fill out the
ellipsoid by producing nonzero principal axes in other directions.
Because the fixed~direction error signal has all its power concentrated
in a single vector direction the ellipsoid will tend to be cigar-shaped
with a dominant principal axis in that direction. A scheme for identi-
fying effector failures in the presence of other disturbances is to look
for a dominant axis ellipsoid with the major axis near a direction
associated with an effector failure (i.e., the direction of €'(t) in
(4-3927) ). Since the failure directions are known, it is not necegsary
fo analyze completely the shape of the error correlation ellipsoid. It
is sufficient to simply check for a dominant axis in one of the known
directions. If the failure directions are linearly independent, one way
of doing this is to transform the error signal to a coordinate frame
where the effector failure directions are along orthogonal coordinate
axes. Then a particular effector failure would be indicated by a single
large diagonal element in R(tl, t2) relative to all the other elements.
The correlation matrix can be used in a similar way to identify
sensor failures. The error response td a sensor failure is restricted

to a two-dimensional plane. In this case one would expect an error

ellipsoid having two dominant axes, i.e., having the shape of a pancake.
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CHAPTER 6

FEEDBACK RESTRUCTURING

6.1 General Discussion

After an event as described in Section 3.2 is detected and identi-
fied, the next problem is to restructure the system to compensate for it.
For the system configuration shown in Figure 3-1, the restructuring
takes place in the feedback loop. The plant, which includes effectors,
sensors, and plant dynamics, is assumed to be inaccessible for
restructuring. This means that effectors and sensors are considered
nonrepairable. When the decision is made that an effector or sensor
has failed, two courses of action are possible. One is to continue to
use the failed component with some appropriate compensation for its
irregular behavior. The second possibility is to remove the component
from further use and restructure the feedback loop to function without
it. The first course of action in general requires more precise
information or some a priori assumptions about the nature of the
failure in order to determine the appropriate compensation. In the
latter course of action knowledge of the exact nature of the failure is
not necessary. It is only necessary to identify the failed component.
This chapter will be concerned with the second "surgical' restructuring
method. Failed effectors and sensors are removed from service and |
restructuring compensates for the reduction in active components.
Some attention has been given to the nonsurgical method. Chien [5]

has used this approach in dealing with failures in redundant gyro arrays.
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When a malfunctioning gyro has been detected (by a sophisticated
method of comparison of redundant information), it is removed from
service temporarily while the malfunction is investigated further to
determine if it is possible to compensate for it {e.g., a biased sensor
output can be compensated for if the bias can be determined). If
compensation is possible, the gyro is returned to service after the
appropriate compensation has been implemented.

The feedback loop consists of two basic functional parts — the
state-estimating filter and the state feedback law generator. If these
two parts are designed independently of each other (Section 3.2 describes
the separation philosophy),the restructuring problem for each part may
also be considered independently. This leads to some simplification
because some events may require restructuring of only one part of the
feedback loop. Another part of a self-reorganizing system which may
reqguire restructuring is the detection filters. It is of interest to note
the types of restructuring required by each type of event.

1) An effector failure requires restructuring of the feedback
law only.

2) A sensor failure requires restructuring of both the detection
gnd state-estimating filters. It rnay or may not require changes in the
feedback law depending on the changes made in the plant model. The
only necessary change in the plant model is to delete from the C matrix
the row corresponding to the failed sensor. In this case only the
detection and state-estimating filters need be restructured for the re-
duced number of sensor outputs. If the plant model is to be kept in the

standard form of Section 4.3.86, a coordinate transformation of the
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state space will be necessary in addition to deletion of the appropriate
row of the C matrix. In this case the same transformation must be
applied to the feedback law.

3) Changes in plant dynamics may, in general, require
restructuring of the detection filters, state-estimating filter, and the
feedback law. The detection filter which identifies the plant dynamics
is automatically adjusted in the process of identification, so it does
not require any further restructuring. The extent of restructuring
necessary in the other detection filters (for effector and sensor failures)
and the state-estimating filter depends on where the changes in plant
dynamics appear. For purposes of the following discussion, detection
filters for sensor failures and detection filters for effector failurés are
referred to separately because they have different restructuring
requirements. In fact, one filter may detect both sensor and effector
failures, in which case the restructuring requirements include both
those necessary for sensor failure detection and those for effector

failure detection. Changes in the B matrix of the plant state equation
x(t) = Ax{t) + Bult) (6-1)

require simple adjustments in the state-estimating filter and detection
filters for sensor failures. For these filters it is only necessary to

adjust the filter state equation
z(t) = (A - DC)z(t) + Dy(t} + Buylt) (6-2)

by replacing the old B matrix with the new one. Detection filters for

effector failures may require more extensive restructuring because
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defection orders, detection generators, and the mutual detectability of
the columns of the new B matrix may be different. When the change in
plant dynamics occurs in the A matrix, the restructuring will be
simplest if A ahd C are in the standard form suggested in previous
chapters (e.g., Eguations (5-4) to {(5-10) ). In this case the changed

matrix (A + AA) can be expressed as
A+ aAA = A+ aACTC (6-3)

because the changes in A occur only in the last column of each block

of A in (5-4). Note from (6-3) that (A + A A) has the form (A - D'C)
with D" = ~AACT. As noted in Chapter 4, detection filter properties
{detection orders, detection generators, mutual detectability, etc.)
are invariant with respect to replacement of A by (A - D''C} for any D"
Furthermore, if the event vectors (e.g., the columns of B for effector
failure detection) are unchanged, it is necessary to make. only a simple
adjustment in the detector gain D to keep G = (A - DC) unchanged.

Specifically, the adjustment AD in D is taken to be

T

AD = AAC (6-4)

Then

(A+ AA) - (D+ AD)C (A + AACTC) - (D + AACT)C

= A-DC = G
(6-5)
With this adjustment in the detector gain, G remains unchanged and the
detection filter detects the same event vectors that it did before the

change in A. Therefore, if the columns of B do not change, the adjust-
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ment given by (6-4) is all that is necessary for the effector failure
detection filters. Detection filters designed fo detect sensor failures
may require more extensive restructuring. Recall that in order to
detect a failure in the ith sensor, a filter must detect di’ the ith
column of the detector gain matrix D. If this column is changed by
the adjustment AD given by (6-4), then the filter may no longer detect
the ith column of the new detector gain matrix. In this case the filter
must be partially redesigned so that the filter does detect the new di'
If the state-estimating filter has the same Kalman-type configuration
as a detection filter (Figure 5.1), then the simplest and fastest way to
compensate for changes in A is to adjust the feedback gain D by the
amount given in {(6-4). This adjustment will keep the poles of the filter
unchanged and thus guarantee stability, at least. Of course, this may
not he the best filter for noise suppression. If the adjustment given by
{6-4) increases the feedback gains, then the effect of sensor noise on
the state estimate will be increased. If the original filter was statis-
tically optimum (Kalman filter), the adjusted filter will not be optimum
in general. If a new Kalman filter is desired, then a Riccati equation
must be solved in whole or in part to obtain the new feedback gains.
But whatever kind of restructuri,ng is used in the state-estimating
filter, the adjustment in the feedback gain matrix given by (6-4) is a
quick, simple way to ensure filter stability. It can at least be used as
a temporary measure until more sophisticated restructuring can be
implemented where necessary.

Beyond the simple adjustments discussed above, the redesign

or restructuring of detection filkers is a matter of impleménting the
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theory in Chapter 4 with the algorithms presented in Appendices A, B,
and C. It has been noted pr-keviou.sly that a detection filter can alse
serve as a state-estimating filter. (In Chapter 4 it was shown that the
state of a detection filter approaches the state of the plant asymptot-
ically in the absence of disturbances.) If the state estimate for feed-
back control is taken from one or more detection filiters, then the
problem of restructuring a state-estimating filter is taken care of
automatically in the restructuring of the detection filter. Even if a
separate state-estimating filter is used, detection filter theory can be
applied to the restructuring of a state-estimating filter in order to
gpecify its pole locations. As noted above, if a true Kalman filter is
desired, it will be necessary to resolve a R.iccati equation. If this is
attempted, detection filter design algorithms can be used for inter-
mediate restructuring {pole assignment) to serve until a new optimal
solution is obtained. For these reasons restructuring of a state-
estimating filter will not be considered separately.

The remainder of this chapter will be devoted toc restructuring
of feedback control law for the primary purpose of maintaining stabi_lity
of the closed loop system. For reasong stated in the next section, the
feedback control to be considered is a linear time-invariant state

feedback law of the form
uylt) = LE(t) + L, c(t) (6-8)

where L and Lc are time-invariant matrices of dimension r X n and
rXr, respectively. Section 6.2 discusses the linear state feedback

control problem and shows how the detection filter theory in Chapter 4
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can be applied in dual form to produce some interesting designs for
linear state feedback control. Section 6.3 discusses several algorithms
for generating a linear state feedback control law. Two of these

algorithms implement the feedback designs in Section 6. 2.

6.2 Detection Results Applied to State Feedback Control

When a change or failure occurs in a system, the primary
immediate concern is usually to achieve stability as quickly as possible.
The central focus of the remainder of this chapter will be the restructur-
ing of the feedback law to achieve closed-loop stability for the system
shown in Figure 3-1. The linear time-invariant state feedback law
given by (6-6) is particularly suited for this purpose. It is one of the
more widely used feedback laws. The optimal solution to the infinite
interval regulator problem is such a feedback law (without the command
input c(t) ). In addition, this law yields a linear time-invariant closed-
loop system whose stability properties are well defined and can be
determined analytically. Even if the original and final restructured
feedback laws are not of the form of {6-6), the linear constant form
can still serve as a temporary law to maintain stability while a more
sophisticated law is derived. Therefore, (6-6) is a reasonable starting
point for the development of restructuring methods.

It will be assumed that the detection filters have identified the
plant dynamics, and any failed effectors or sensors have been detected
and removed from service. The information at hand is an up-to-date

description of the plant

x(t) = Ax(t) + Buft) (6-7)
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n

ult) ud(t) {(6-8)

Cx(t) (6-9)

y(t)

The restructuring problem to be considered here is to develop methods

for selecting the L, matrix in {6-6) so that the closed-loop system

X(t) = Ax(t) + BLR(t) + BL_ct) C (6-10)

is at least stable (if that is possible).

If the state-estimating filter dynamics are given by
é(t) = (A - DC) R(t) + Buylt) + Dy (t) ‘ (6-11)
then the state error
€®) = =) - ) | (6-12)
obeys the equation
€(t) = (A -DC)elt) (6-13)
Then (6-6) can be written as
uy(t) = Lx(t) - Le(t) + L, c(t) (6-14)
and the complete closed-loop system dynamics are given by
x(t) (A + BL) -BL x(t) BL,

= + elt)
e(t) 0 (A - DC) elt) 0

(6-15)
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- The poles of the complete closed-loop system are given by the eigen-
values of the matrices (A + BL} and (A - DC). The eigenvalues of

(A - DC) are the poles of the state-estimating filter. Restructuring

of the state-estimating filter was discussed in the previous section.
Asgsuming this restructuring is successful, the eigenvalues of (A - DC)
are known to be stable, so the stability of the closed-loop system
depends on the eigenvalues of (A + BL). TFurthermore, in the absence
of digturbances the state error satisfying (6-13) will settle to zero,

and the closed-loop system dynamics reduce to
x(t) = (A+BL)x(t) + BL, c(t) (6-16)

The restructuring problem may now be simplified to the problem of
choosing L so that the system given by (6-16) is stable. Note that L,
does not affect the stability of the closed-loop system, so it is of
secondary concern in the restructuring problem. Of course, LC does
not affect the dynamic response of the system to the command e (t).
One way of selecting LC is discussed in Section 6.2.1.

The problem of selecting L to control the dynamics of {(6-16)
is related by duality to certain aspects of detection filter design. The
problem of choosing L fo obtain stable eigenvalues for {A + BL) is the
dual to the problem of choosing LT to obtain stable eigenvalues for
(A + BL)T = (AT + LTBT). Selecting LT to specify eigenvalues of

TBT) is one of the considerations in detection filter design. In

the notation of Chapter 4, AT, BT, and LT correspond to A, C, and -D.

aT+1,

Since (A + BL) and (A + BL)T have identical eigenvalues, some results

of Chapter 4 are immediately applicable to the feedback restructuring
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problem. From Lemma 4.4 it can be concluded that by choice of L
it is possible to specify arbitrarily exactly « eigenvalues of (A + BL)

where

n-1

x = rk[B, AB, ..., A B] (6-1T)

If x<n (A is n X n), the remaining {n - ) eigenvalues of (A + BL) are
always equal to corresponding eigenvalues of A and are not influenced
by any choice of L. The methods developed in Chapter 4 for finding a
detector gain can be applied in their dual form to the problem of
selecting I, to specify eigenvalues of (A + BL). The design of detection
filters involves more than just stability and specification of eigenvalues.
The special properties of detection filters and the concept of sensor
decoupling in Chapter 4 have interesting dual interpretations in the
context of linear feedback control. For the reader's information these
interpretations are discussed in Sections 6.2.1 and 6.2.2. It should

be repeated, however, that the first objective in feedback restructuring
is to generate as quickly as possible a feedback matrix L. which ensures
stability of the closed-loop system. Hence, the subject of primary
concern is the computation involved in the algorithms for generating L.
As will be seen in Section 6.3, algorithms based on detection filter
theory usually require more computation than algorithms which are

concerned solely with ensuring stable closed-loop poles.

6.2.1 Consiruction of Scalar-Input, Scalar-Cutput Subsystems

by State Feedback

In dual form the basic results for detection filter design
in Section 4.3.1 show how it is possible through state feedback to
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obtain scalar-input control over a scalar oufput of the plant. It is
easiest to explain scalar-input control in terms of Laplace transforms.

Let

v = hT x) (6-18)

be the scalar output of interest, where h is a time-invariant n-vector.
The simplified closed-loop system dynamics given by (6-16) may

rewritten as

x(t) = (A + BL) x(t) + Bu, (t) (6-19)
where

ug () = L_cft) | (6-20)

is that portion of the desired control signal which is due to the command
signal c{t). Then the transfer from control signal to output in Laplace

transforms is

V() = h'[Is - (a+BL)] ! BU, (s) (6-21)

where
Vpls) = Z{v ()} (6-22)
Uyels) = Z{uy (0} (6-23)

The right side of (6~21) can be expanded to yield

r

Vy(s) = ) Fi(e) Uggle) (6-24)
i=1

282



. .th
where Udci(s) is the i component of Udc(s) and
T -1
F(s) = h [Is - (A + BL)] b, (6-25)

with bi the ith column of B. Fi(s) is a scalar rational function of &
representing the closed-loop transfer from the ith component of the

control vector to the output. In general, the F.l(s) are different and
the complete control vector must be known in order to determine "the

output. Suppose, however, the Fi(s) differ by only a constant, e.g.,

F.(s) = Fl(s) ”iUdci(S)
- T ‘
= F(s) n Udc(S) | - (8-2T)
where
N
n = : (6-28)
ﬁr

In this case the output vh(t) does not depend on the full control vector
udc(t), but only on the linear scalar function r;T udc(t). This situation
will be referred to as scalar control of vh(t).

Comparison of (6-24) and (6-27) makes it clear that
scalar control yields a simpler input-output transfer function. In
effect a multiple-input, scalar-output relationship is reduced to a
scalar-input, scalar-output relationship. Furthermore, the fact that
vh(t) depends only on a scalar, linear combination of the components

of udc(t) implies that there is freedom left in udc(t) to perform
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additional control actions without disturbing vh(t). For example,
suppose I"c is selected so that all its columns except the first are
orthogonal to n. Let n and the first column of Lc have an inner

product of one. Then

nt L, = [1, 0, ..., O] (6-29)
and
AT oug () = T Le® = [L 0, ..., 0lclt) = o)
| (6-30)

where cl(t) is the first component of c(t). This result shows that vh(t)
responds only to the first component of c(t). It is not influenced by
any other component of the command signal. Since n and the columns

of LC are r-vectors, Lc can have as many as (r - 1) independent

columns which are orthogonal to n. Suppose c(t) is an r-vector (1:-c r)
and L is chosen to satisfy (6-30) with all columns of L, independent
(Lc is r X r}). Then the command components {cz(t), ve e, cr(t)} can
produce (r - 1} independent control actions, none of which affect the
output vh(t).

The scalar control property is the dual to the fixed-
direction error property of a detection filter. The results of Chapter 4
show that for any controllable output of the form of {6-18) (i.e., for any
h not lying in the uncontrollable space of B) it is always possible to find
an L. which achieves scalar control. The dual of Theorem 4.1 shows
that in addition to obtaining scalar control, all the eigenvalues of

(A + BL) can be almost arbitrarily specified if (A, B) is a controllable

pair. If (A, B) is not controllable then « eigenvalues can be specified
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where « is given by (6-17). This follows from remark 4) in Section
4.3.1. In other words scalar control can be achieved while still
maintaining control over the maximum number of eigenvalues of
(A + BL). This result is most easily verified by considering the

transpose of the transfer function in (6-21)

[hT[ Is - (A + BL)] ’1B:|T = 8T[1s - AT+ .T8T)] 1 h
(6-31)

T T

Let AT, BT, LT

Let v be the detection order of h with respect to (AT, BT) and let g

be its maximal generator. If L satisfies the equation

- -1
- LT ATV 1 g - pg t .. P _I[AT]V g+ {aTy
(6-32)
T
and B h # 0, then
BT [1s - (aT+LTBT)) "1n = BTur(s) (6-33)
with
sv'1+ogy_1 s¥7ia 4 a,
F(s) = ” 51 (6-34)
5 + PS5 + .t Py

where thea, are determined by the relation

h = a2+ ... +a (AT 244 ATV "1,

v-1
(6-35)
and the p; are arbitrary. Transposing (6-33), it is clear that for L.

satisfying (6-32), (6-21) reduces to the form of (6-27) with
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1 = h™B (6-38)
In general if
BT[aT]i n = o isl ., p-1
(6-37)
BI[AT1#H n 4 o0
then
T v-u-2 T, v-u-1
ho= ag+ ... @, 1 [A7] Boe g+ [ar]VH™ ¢
(6-38)
sVl 4 o sV M2 +
F(s) = o
s +p s + . -+ pl
(6-39)
hT[1s - (a+BL)] !B = nTA*B F(s) " (6-40)
and
T = nTatp (6-41)

If (6-37) is not satisfied for any u, then h lies in the uncontrollable
space of B, and vh(t) is not controllable regardless of L.

The results of Sections 4.3.2, 4.3.3, and 4.3.4 are
applicable to feedback design for control of multiple outputs. Consider

-~

an f -dimensional output vector

VH(t) = Hx(t) (6-42)

where H is an f X n time-invariant matrix

286



H = ) (6-43)

If £ < r and the set of vectors {hl’ caes hl} are output separable with
respect to (AT, BT) {Definition 4.9), it is possible to find a feedback

gain L which produces a closed loop transfer of the form

Fl]'(s-) o. ... . .0
0 R .
VH(S) = . | . 0 H BUdC(S)
LO' e« 4 . . .0 ‘F“(sl
{6-44)
where
[ iz
nT a1 ]
.1
qH o= | (6-45)
T e
_hl A _

with the My defined by condition (6-37) for each hi' The Fii(s) are
scalar rational functions of S of the form of (6-39). If the hi are
mutually detectable with respect to (AT, BT) x eigenvalues of (A + BL)
can be specified almost arbitrarily. If the hi are not mutually detect-
able, control over certain eigenvalues will be lost i..n achieving (6-44).

Such uncontrolled eigenvalues can be identified as described in

Section 4. 3. 4.

Now let ¢ (t) be an ! -vector and choose Lc to be a
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solution of
H' BL = 1 (6-46)

This equation always has a solution for L_ because the h, are output

separable, which implies rk [H'T B] = 1. One solution is

L, = BTy T[u' BB

Ty Ty-1 (6-47)

The inverse exists because rk[H'B] = £. With this L. and the

-Laplace transform of (6-20), {6-44) becomes

FH(?)- S ¢ 0
0 - .
Ve sy = . - . C(g)
H . : 0
! 0. ... ... 0 "Fy, (s)_
(6-48)
where
C(s) = Z{cth} (6-49)
Or in component form
Vi(s) = Fyi(s) Cy(s) (6-50)

This means that each component of VH(t) is controlled exclusively by
the corresponding component of c(t). A multiple-input, multiple-output
system has thus been reduced to a set of scalar-input, scalar-output

subsystems.
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6.2.2 Effector Decoupling

The concept of output decoupling introduced in Section
4.3.6 has a dual interpretation which leads io the idea of effector
decoupling. The results on output decoupling are presented in this
section in their dual form and interpreted in the context of linear state
feedback control. The main reason for discussing this material is to
call the reader's attention to the interesting dual interpretations of
previous results. A second reason is that the algorithm for generating
effector decoupling feedback control is somewhat simpler and more
generally applicable than the algc_)rithm necessgary to implement the
scalar-input, scalar-output control described in Section 6.2.1, as will
be seen in Section 6. 3.

Loosely speaking, effector decoupling means that
individual effectors control independent parts of the system. The
following two definitions formalize the concept of effector decoupling.

Definition 6.1. The system described by (6-19) is de-

fined to be effector decoupled if the controllable space of each bi

(the ith column of B) does not intersect the conirollable space of any
other column.

Definition 6.2. The matrix pair (A, B) is defined to be

effector decouplable if there exists some feedback gain matrix L such

that the closed-loop system {6-19) is effector decoupled.

The dynamic behavior of an effectorl' decoupled system
is best illustrated by transforming the state space to a special
coordinate frame. The transformation can be generated by using the

dual form of the algorithm of Appendix C. The same result is obtained
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if the algorithm as given is applied to the transposed matrix pair

(A + BL;, BT) . The transformed matrices have the form

A+ BL) = T Ma+BLT

with
Pl =
1
L
and
8 = 77!
with

il

T
Py,
0
0.
0.
1. .
. 0
b1p 0
g
_{J_. .
-
(Kin)
o
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0.

o

|2

-'C)

o -

rr

]

(0o X n)

lo: -

(6-51}

(k; X %)

(6-52)

(n X r)

(6-53)

(6-54)



where «. is the dimension of the controllable space of bi with respect
to (A + BL). The block diagonal form of (6-51) is a result of the fact
that the controllable spaces for the bi are all nonintersecting. 1If the

transformed state vector is partitioned to conform with the blocks in

(6-51)

El(t)
x(t) = T'lx(t) = : (6-55)

X (1)
then the equation for each decoupled subsystem is
X.(t) = PIX(t) + b, u, (t)  (6-56)
i i 7 ii “dei

The form of (6-51) assumes that (A + BL, B} (or equivalently (A, B))
is a controllable pair. If (A, B) is not controllable, the controllable
portion of the system can be isolated by applying the dual form of the
transformation used in Lemma 4.4, Then the above transformation

can be applied to the controllable portion. The general form in this

case is
- T _
P2 o B
o
B+ BL) = 0 (6-57)
pL
r
9- L] ‘-0_ Rr+1
e -l
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- - .
bp 2 9
0 :

B = |. BRI} (6-58)
0 o B

0. v v v 0

b —

with Eii given by (6-54) and P’iI‘ by (6-52). The R, are associated
with the uncontrollable portion of the system.

The results of Section 4.3.6 concern'mg output
decouplable systems can be applied in their dual forms to the study of
effector decoupling. The following definition is the dual of Definition
4.12 for output decoupling order.

Definition 6.3. The effector decoupling order of bi’

the ith column of B, is defined to be the smallest positive integer

value of j such that

rk[B, AB, ..., al7!B, ATb] = ru[B, aB, ..., AVl
- (6-59)
It is clear that decoupling order is invariant under
coordinate transformations, since the ranks of the matrices in (6-59)
are so invariant. It was noted in Section 4. 3.6 that output decoupling
order is invariant under replacement of A by (A + D''C) for any D"'.
In the present context this means that effector decoupling order is
invariant under replacement of A by (A + BL) for any L. Note that
for the decoupled system given by (6-57) to (6-58) the effector

decoupling order of the ith column of B is ks and
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K, + ... + «x = K {(6-60)

where

k = rk[B, (A+BI)B, ..., (A+BL)“"1E] (6-61)

By invariance under coordinate transformations the effector decoupling

order of b.l must likewise be Ky Further,

rk[B, ATBOE, .... AFBD B

L
i

rk[B, (A+ BL)B, ..., {A+ BL)‘“'1 B]

rk[B, AB, ..., A"l g] (6-62)

This is true for any L and follows from the dual of (4-87).

Now if (A, B) is effector decouplable, there exists some
L. which produces a decoupled closed-loop system. Since condition
(6-60) holds for the decoupled system, it must hold for the pair (A, B)
as well by virtue of the invariance properties of the ks and «. This
means that a necessary condition for (A, B) to be effector decouplable
is that the sum of the decoupling orders of all the bi must be equal to
the dimension of the controllable space of B. This condition can be
shown to he sufficient by transforming to a standafd form. If the
above condition holds, the dual of the transformation in Appendix C

will transform A and B into the form

K- .-+ A, Ry |

A = TlaT = _ _ (nh X n)
Al"l' Arr .
L2 9 Bri1

(6-63)
293



with

0
_ 9
E. =
11
i1 -
|
0 .
A.. = )
L 0 .
ij1
it

ijx

L ajil «

 where xj2 x; and B is given by (6-58).

. -
0
"1
a..
11 K.
L j
_
0
0
a'ix
s

(k. X )

(6-64)

(xi X KJ)

(6-65)

(Kjxxi)

{6-66)

It is easy to see now that the

decoupled form (6-57) can be obtained from (6-63) to (6-66) by choosing

111 .
L =
Llrl
with
1i1 = [_pil_

111:'

-

11,r+1

Tr,r+1 |

ic, ~ ik
i i

(6-—.67)

] (6-68)



|
1]
—

“a.., ey =2 , 0, ..., 0] (6-69)

1] ijl 1]
Tji = [-a .., - a ] (6-70)
jizr - jii(i
fori, j=1, ..., r. The ']L_.ljr‘_F1 for i=1, ..., r are arbitrary.

These observations establish the following theorem.

Theorem 6.1. The matrix pair (A, B} is effector

decouplable if and only if

K + ...+ ok = K (6-71)

where «, is the effector decoupling order of b.1 and « (given by (6-56} )
is the dimension of the controllable space of B.

This theorem is the dual of Theorem 4.7 with a slight
generalization to include noncontrollable systems.

In Section 4.3.6 it was shown that a system representa-
tion could be enlarged to obtain a decouplable form. Such enlargement
is not appropriate here. It was noted in Section 4.3.6 that the added
portion of the representation would not be controllable. In this
situation the added portion of the system would not be cbservable. But
obtaining an effector decoupled system depends on state feedback.
State feedback in furn depends on knowing the state of the system.
Nothing ié gained by enlarging the representation, because there will
be no information available about the state of the added portion of the
representation, which is unobservable.

The transformation of Appendix C was convenient for

establishing Theorem 6.1, but in practice it is not necessary to apply
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this transformation to find a feedback gain which produces a decoupled
system. In the next section various algorithms for generating feedback
gains will be discussed. Among them is an algorithm which produces

a decoupled closed-loop system when the open-loop system is
decouplable. If the system is not decouplable, the algorithm will

achieve decoupling for as many effectors as possible.

6.3 Algorithms for Generating State Feedback Gains

This section discusses three algorithms for generating constant
linear state feedback gains. They all have the capability for achieving
the primary goal stated at the beginning of this chapter, namely closed-
loop stability for the controllable portion of the systern. More specifi-
cally, any of the algérithms can be used to specify almost arbitrarily
all of the closed-loop poles of the controllable portion of the system.
The algorithms differ in two respects. First, the computational
requirements for implementing them are different. Second, the closed-
loop systems they produce will have different structural characteristics,
i.e., the structure of subsystems and dynamic coupling among them.

The first algorithm is simply the dual of the method developed
in Chapter 4 {and Appendix A) for generating a detector gain. The
structure of the resulting closed-‘loop system is described in Section
6.2.1. Central attention is focused on a set of outputs as given by (6-42).
In the closed-loop system each component of the output is independently
controlled by a scalar input. The amount of computation involved in
implementing this algorithm is evident from the step-by-step outline

in Section 4.3.5. As will be seen later, it appears that this algorithm
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is the most time-consuming of the three if separability and mutual
detectability must be investigated.

The second algorithm produces the effector decoupling described
in Section 6.2.2. If the system is decouplable the resulting closed-loop
system will be fully effector decoupled. This algorithm is based on the
same orthogonal reduction procedure used in Appendix A. The general
procedure and its properties are fully described in Appendix A. Only a
brief review specialized to the present situation will be presented here.
Basically the null space of a symmetric positive semi-definite matrix
is sequentially enlarged to contain the vectors from an ordered set. In

thig case the columns of the matrix
W = [B, AB, ..., A"l B] (6-72)

taken from left to right form the ordered set of vectors. The procedure
begins with any n X n symmetric positive definite matrix 911 (the

identity matrix is a simple choice). An auxiliary vector is defined by

LA T Qll b1 (6-73)

This vector is nonzero because bl is nonzero and 911 is positive
definite. A new symmetric positive semi-definite matrix which

contains b, in its anull space is defined by

w

w
_ 1 "1
Q, = @ - —r (6-74)
11 °1
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The next auxiliary vector is

Woy 921 b2 (6-75)

and if Wo1 * 0 a new symmetric pogitive semi-definite matrix which

contains both b1 and b2 in its null space is

Va1 Wal
Q = Q - (6'76)
31 21 WT b
21 72
If w,) =0, b, is already inthe null space of 2,, and
R4, = 99 (6-77)

For notational convenience the matrices and auxiliary vectors are
double subscripted for easy association with the columns of W. The
first subscript refers to the column of B, and the second subscript
refers to the power of A (plus one). For example, Qij and Wij are
asgociated with the vector Aj_1 bi' A general iteration in the reduc-
tion procedure is as follows:

1) With Qij from the previous iteration form the auxiliary

vector

w. = @ allty (6-78)
i ij i
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2) Define the new matrix by

: ra
W wowT
0 : if w,. 0
i GTarl, U 0
- ij i .
QHLj < (6-179)
Q.. ifw..=0
1_] -_
.

for i <r (r is the nurmber of columns in B)
or

(it) ifi=r

4 Wr. WE h
AL L) ifw L+ 0
J rj T ally % 2
rj i & |
€ = (6-80)
Q if w .=0
rj rj =
- ./

and return to step 1).

Using the Schwarz inequality and induction it can be shown that
every gij | is positive semi-definite if the initial matrix is at least
positive semi-definite. In this case the initial matrix was taken to be

positive definite. The positive semi-definiteness of Qij ensures that

T

wL aAl"lp =0 if and only if w.. = 0.
ij i ij =

J
The orthogonal reduction process terminates when all inde-
pendent columns of W have been considered. The termination point is
signaled in one of two ways. The process is obviously terminated if
at some point Qij = 0. This means that n independent vectors have
been processed. Since W is nX (r- n), there can be no more than n

independent columns. When the process terminates with a zero matrix

it implies that (A, B) is a controllable pair. The process can terminate
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on a nonzero matrix if it becomes clear that there are no additional inde-
pendent vectors in the remaining columns of W. The cyclic property
of the columns of W make it possible to identify such a termination

point. For example, if at some point ij = 0, this means that Ak_l

7
is linearly dependent on the preceding columns in W. But then Al bj
for all i 2 k - 1 will also be dependent on the preceding solumns in W,
and as a result Wji =0 for all i > k - 1. Since jS remains unchanged
if Wi 0, it is not necessary to even consider the vectors Al bj for
i>k-1. Inshort, if wkj = 0, the reduction process terminates for bj
and all remaining columns in W generated by bj can be deleted from the
ordered set. When the process has so terminated for every column of
B, it is completely terminated. If at this point Qij # 0, then (A, B) is
not a c:ontrollabie pair. The range space of the final Qij is the
uncontrollable space of B with respect to A. By counting the number of
actual reductions (the number of times Wij # 0) one obtains the
dimension of the controllable space of B (rk W).

The last nonzero auxiliary vector for each column of B has
properties similar to the detection generator of Chapter 4. These
vectors can be used to generate the equation for the feedback gain

matrix. Let kj be the integer for which
Wik * 0 (6-81)

and

) (6-82)
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To simplify notation define

(6-83}

It should be noted here that if bj is linearly depend.ent on the other
columns of B, then le = 0 and there will be no gr:i for that bj° In this
case (A, B) cannot be decouplable because those columns of B which
are dependent will always have intersecting controllable spaces
regardless of the feedback. This algorithm can still be used to
generate a feedback gain. To avoid unnecessary complication this
case will be discussed separately later. Until then it will be assumed

that all the columns of B are independent so that
rkB = r (6-84)

and there is a nonzero gj for every bj'

From the reduction procedure it is known that gj
‘ k.-1
to all the columns of W preceding A J bj. Specifically

is orthogonal

g;iTAi-lB =0 =Lkl (6-85)
and if j>1

T k.-1 :

ngJ b, = 0 £=1, ..., j-1 (6-86)
As noted earlier, the positive semi-definiteness of ij and (6-81)

i
ensures that
k.-1
ngA I b 40 (6-87)
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This fact along with (6-85) shows that the vectors {gj, Ang, cee

k-1
oo, (AT

easily seen from (6-85) that

gj} are all linearly independent. Furthermore, it is

T

g a+BLT < glalTh ek (6-88)
and
k. k.-1
ng(A +BLY ) = g'jr A1 (a+BL)
k. k.-1
- g;.rA b g;.TA J " BL (6-89)
for any L. Suppose L is chosen to satisfy the equation
k.-1 k.-1 k.
T Ao ] T T A ] T , ]
S A BL = - p..g. - - P 85 A - g A
& Pj18; Pk & |
(6-90)
for some scalars pji' Then
k. k.-1
T j T T , ]
S {A+ BL = - p. S — eee - P A
g; | ) Pi1 &; kaj g
_ T _ _ k.~1
= TP g ¥ pjkj ng a + BL) J
(6-91)

from which it can be seen that kj eigenvalues of (A + BL) are given

by the roots of

k. k

=1
st + s

Pik.
%5

+...+pj1= 0

(6-92)
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It is possible to specify (k1 + ...+ kr) eigenvalues (kj at a time)
by choosing L to satisfy r equations of the form of (6-90). Combining

these equations into a single matrix equation yields

k,-1 B ]
1 T
gl A B Zfl
. L = . {6-923)
. k -1 .
T T
gr AT B ZfrA
where
k.~-1 k.
T _ T T ] T ]
Za = =D, T e ee. = D. A - g, A 6-94
£ le g:l Pka gJ gJ { )

From (6-81) it can be verified that the matrix premultiplying L in (6-93)

has the triangular form

- _ k-1 k-1
k-1 g A " b giA " b
g A B . r

9 -
o k-1 R

g;:A ' B - g k-l

o _J 0 . 0 g-A b
[ = - r r
(6-95)

By virtue of (6-87} the main diagonal elements in this matrix are all
nonzero, so the matrix is always nonsingular. This proves that {6-93)
always has a unique solution. The diagonal form of (6-95) makes it

possible to solve (6-93) most easily by starting with the bottom row

and working up. Now

k1 + ... + Kk = « = rkW (6-96)



so the number of eigenvalues which can be specified by this method is
the maximum possible number.

It will be shown shortly that the closed-loop system with feed-
back gain L given by the solution of {(6-93) will be completely effector
decoupled if a.ng only if ngkj-l b, = 0 for all j and £ such that j * £.
But even if ng j_l b, # 0 for some # # j this does not necessarily
mean that the system cannot be decoupled. In some cases it is possible
to modify gj and form a new g].‘ which has the same orthogonality
properties as gj in (6-85) and (6-86) and in addition satisfies
ngA I b, =0 for all £ #j. By making this modification in g where
.pg‘)ssible, one ensures that the L given by (6-93) achieves as much
effector _deco upling as possible. Specifically, gj can (and should) be

modified if the following two conditions hold:

T k.-1
(i) ngJ bl%O for some £ > j

and

(ii) k, > kj

Let {bi s ey b! } be the set of all vectors for which (i} and (ii) hold.

1 P
Define a new vector

p (k —kj)

L.
gj'T - ng+z n.llg;r_A ' (6-97)
.=1 1

The scalars ni‘ are the components of the p-vector

n' = . (6-98)
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which satisfies the matrix equation

B k -1 |
T . 5
g, A
LI [b b, ] = - TAkj-l[b b
n k, -1 Ly : By E- £y + Py
s T P p
i

This equation always has a unigue solution because the product matrix
postmultiplying n'T has the same triangular form as (6-95). The gj'

defined by (6-97) is used in place of gj in {(6-93). Note that gj' has the |
same orthogonality properties as 'gj in (6-85) and (6-86) and in

addition even for £ > j

g& A b, = 0 if k, >k, (6-100)

From these properties it can be shown that the algorithm will
produce an effector decoupled closed-loop system when (A, B) is
decouplable. From (6-85) and (6-87) it is clear that Akj—l b, is
independent of the columns of [B, AB, ..., AkjdzB] . This shows
that the decoupling order of bj is greater than or equal to kj' If xj is

the decoupling order of bj’ then
k. < « {6-101)
and

k, + ... + k < «x, + ... *t «x (6-102)

From (6-96) and Theorem 6.1 it may be concluded that (A, B) is
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decouplable if and only if equality holds in (6-102). But by (6-101)

equality holds in (6-102) if and only if

k., = «, i=1, ., r (6-103)

Hence, (A, B) is decouplable if and only if (6~103) holds. If (6-103)

holds then

k.-1

gj'TA 17b, =0  forallt 4] (6-104)

by the following reasoning. In view of (6-86) and (6-100) the only b,

for which (6-104) could be violated is if £ > j and kj > kﬂ . Baut if
k.-1
‘IT ]
gj A bg % 0, then Ky
xj > kj. This would imply Ky > kﬂ
fore (6-103) implies (6-104), and one may conclude that (A, B) is

> kj by the same reasoning used to establish

which contradicts (6-103). There-

decouplable only if (6-104) holds.
If (A, B) is decouplable, the closed-loop system with L given
by (6-93) (with gj replaced by gj' where appropriate) can now be

shown to be effector decoupled by introducing a transformation defined

by

T, = g | (6-105)




T
d2

form a bagis for the uncontrollable space of B. When this transforma-

where sz is an (n - x) X n matrix chosen so that the columns of T

tion is applied to (A + BL)) and B, the resulting forms are

_ - -
pl ] g' .9
__ 4| e
(A+BL) = TA+BL)T = . T .
‘P 0
r‘ —
0 0 R
. - .
{(6-106)
Py 2 o]
— 9_ - -
B = TB = ] © L . - (6-107)
; . 0
l_g ) g rr |
where
0 1 0. 0o |
0 0 1 0
T T
Pi = - (k.LXk.L)
0 0 1
“Piq “Pik.
L il
(6-108)
and -
-, .
T ; (kix 1) (6-109)
k.-1
' T i
I_gi A bl
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k.l—l

(recall giTA b, # 0) and R is an (n - «) X (n - «¥) matrix satisfying

sz(A+BL) = Tgeh = RTy, (6-110.)

From the block diagonal forms of (A + BL ) and B it can be seen that
the algorithm has produced an effector decoupled system.

If (A, B) is not a decouplable pair (6-104) will be violated for
some bﬂ for which £ > j and - kj > kf. When the transformation
(6-105) is applied in this case, (A + BL.)} will have the same form as

(6-106) but B will have the more general form

b11 e e e blr
B = (6-111)
brl s brr
with
-
0 7]
b, = : k., X1 6-112
it 0 ( JX ) ( )
k.-1
Thad
A b
L & ‘.
The equation for each subsystem is
r
- _ T — —_ —~
£=1
2¥]
Note that Ejj can be nonzero only if kg > kl . This means if K, = kz

then udcﬁ.(t) controls only the !th subsystem and has no influence on

the other subsystems.
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In the case where rk B < r, indicating a linear dependence
among the columns of B, the algorithm can still be used to generate
an L. Suppose rk B =r' <r. There will then be only r' nonzero
generators gj and only r' equations such as (6-80) for L. The matrix
premultiplying L, in (6-93) will no longer be square, but will have
dimension r' X r. It can be shown from (6-85) and (6-86) that this
matrix always has rank r'. This ensures that the equation for L will
always have a solution, but it will not be unique. 'As mentioned earlier,
this situation precludes the possibility of obtaining an effector
decoupled system because (A, B) is not decouplable.

It seems certain that this algorithm will require less computa-
tion than the first one. It is not necessary to generate the auxiliary
matrices corresponding to K and C' of Chapter 4. Nor is it necessary
to worry about separability and mutual detectability. The solution of
the equation for L is made simpler by the triangular form of (6-95).
The modification of the gj seems to require some additional computa-
tion, but this is not certain because the use of the modified generators
g'j introduces additional zeros in off-diagonal elements of the matrix
in (6-95). In fact, if the system is decouplable, this matrix will be
purely diagonal. It should be mentioned that the most efficient way to
modify the gj is to start with j=r - 1 (gr never needs modification}
and work backward replacing gj with g':j at each step. In this way
one obtains the largest number of off-diagonal zeros in the matrix
postmultiplying n'T in (6-99). It is possible to show that none of the
gj will need modification if the starting matrix for the reduction
procedure 911 is properly chosen. Unfortunately no simple way of

finding such a £, is yet available.
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The third algorithm for generating a feedback gain matrix is
concerned only with specifying poles of the closed-loop system, rather
than producing any specific kind of subsystem structure (e.g., decoupled
effectors). It is of interest for feedback restructuring because it allows
the possibility of specifying some poles of the closed-loop system as
the algorithm proceeds, rather than having to wait until all the computa-
tion is completed as in the previous two algorithms. This feature will
be described in more detail later.

The third algorithm is computationally very similar to the
decoupling algorithm just presented. The orthogonal reduction
procedure is again employed. The columns of W make up the ordered
set of vectors except the ordering of the set is different. In this case
o AT b by, L, AT )
The reduction process proceeds as before with appropriate changes in

the ordered set of vectors is {bl, Ab

the condition for termination. After starting with b, the first inter-

1’

mediate termination point is reached when w.. =0 for some j (the

1j
double subscripts on Wij and Qij have the same significance as
previously). All further vectors generated by b1 may be disregarded
and the process continues with b2. The process is completely termi-
nated when either Qij = 0 or the termination point associated with br is
reached (i.e., er = 0 for some j}. The terminating Qij has the same
significance as in the decoupling algorithm. Feedback generating
vectors are again defined as the last nonzero auxiliary vectors
associated with the columns of B

g. = w,

k.
J ZlJ

# 0 (6-114)
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Wika+1 - 2 (6-115)
J
In general the kj here are different from those in the decoupling
algorithm, but it is still true that k1 + ... + kr = « = rk W. The
equations for L have the same form as (6-80}. It is not necessary to
modify the gj. For this algorithm it is more likely that there will be
less than r generating vectors gj. This will certainly be the case if
rk B<r. Even when rk B = r there will be fewer than r generating
vectors if bj, for example, is contained in the combined controllable
spaces of the previous columns of B (i.e., the controllable space of

[b ., b]’—l] }. In this case Wip T 0 and there will be no g- As

1’
noted previously, the presence of less than r generating vectbrs simply
means the solution of the matrix equation for L is not unique.

Just as for the decoupling algorithm the total number of eigen-
values of (A + BL) which can be specified is the maximum possible
number, « = rk W. The significant feature of this algorithm which
makes it worthy of mention is that it is possible to specify some eigen-
values of (A + BL) before the orthogonal reduction procedure is
completed and without fear of introducing unwanted eigenvalues. To
clarify this statement some background information is necessary. At
any point in the reduction procedure for either of the last two algorithms
it is possible to use the auxiliary vectors to immediately write down an
equation for L which will specify a certéi n number of eigenvalues of
(A + BL). For example, at any point in the decoupling algorithm one

has at hand the last nonzero auxiliary vectors for each b,, say

wjk'. # 0. These vectors have the same orthogonality properties as
J
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the gj in (6-85) and (6-86) except that kj is replaced by k'j. By using
the ij,' in the same way that the gj were used it is possible to write
down an equation for L corresponding to (6-93). The solution of this
equation will yield a matrix (A + BL) in which (k' 1 + ... F k'r) eigan-
values can be specified by choice of the coefficients pij' The problem
with this premature specification of eigenvalues is that when the
reduction procedure is not complete (k'1 + . .+ k'r) < «, and the
number of eigenvalues so specified is less than «. The (n - «) eigen-
values of A associated with the uncontrollable space of B cannot be
altered by the feedback. But this still leaves « - (k'1 + ...+ k'r_)
eigenvalues of (A + BL) which are determined by the feedback and yet
are not explicitly specified by the pij' There is no simple way of
ensuring these uncontrolled eigenvalues will be stable.

Using the third algorithm it is possible to specify a number of
eigenvalues at each intermediate termination point without introducing
uncontrolled eigenvalues. Suppose the first intermediate termination
point has been reached, so gl is known. Now introduce feedback in
just the first control component so the closed-loop system matrix is
(A+Db

) where 1,is an (1X n) row vector given by

1L

1
k k
_ 1 T T, 1-1 T, 1
47 T E [-py:8] - .- TP B8 -g A ]
(glA bl)
(6-1186)
Then

k T k k,-1
T 1 _ 1 |
g4 (A + blll) = glA + g1 A blll

312



T T K71

P18y T T p11<:1“=’1 A

k

1
T
gy A+ byl

1"

T
- P8 T cer TPy (6-117)

1

which shows that k., eigenvalues of (A + bll_l) are given by the roots of

1
kl kl_l
3 + plkls + ... + p11 = 0
(6-118)
But
- n-1 -
k, = rk [bl, , A b1] (6-119)

and this is the maximum number of eigenvalues which can be influenced
by feedback in only the first control component. All the remaining

(n - kl) eigenvalues of (A + b Ll) must be the same as those of A.

1
Therefore no uncontrolled eigenvalues have been introduced. When
the second intermediate termination point is reached, feedback can be

allowed in the first two control components and the number of eigen-

values which can be specified is

k,+ky = rk[(b),b,), Alb.by), ..., A" b, by)]
(6-120)
Again no uncontrolled eigenvalues are introduced because all remaining
eigenvalues remain unchanged. The pr;ocess can be repeated at each
intermediate termination point. The intermediate specification of eigen-
values may be valuable in situations where instabilities in the open-loop

system threaten to exceed accepiable bounds before the orthogonal
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reduction process can be completed. By specifying eigenvalues at
intermediate termination points unstable eigenvalues may be eliminated.

Of course, the algorithm need not start with b The columns of B

1
can be arranged in any order. If an unstable eigenvalue of A is known
or suspected to be associated with the controllable space of a particular
column of B, then the algorithm should begin with that columan.

The structure of the closed-loop syst.em produced by the third
algorithm is more obvious if a transformation of the form of (6-105) is
applied. When this is done, (5 ¥ BL) = T(A+ BL)T ! has the same

form as (6-106), but B has the form

bl'1 e e e e e e blr
— 0 . .
B = TB = . - . (6-121)
0 . 0 b
b - rr —
where
_0 -
bli = 0 (kix 1) (6-122)
k.-1
T, 1
[ &4 Py

The off-diagonal vectors Eij have no simple form, in general. If there
are fewer than r generating vectors, say r' < r, then there are only r'

of the P; blocks in (A + BL) and B has the form
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bll""""""'blr
_ 0 T
B = .

_Q- 9 brr' brr‘_

(6-123)

Although this algorithm is not designed to yield any specific
subsystem structure, it is possible to make some general remarks about
the type of structure it tends to produce. For this algorithm the columns
of W are reordered so that all vectors generated by b1 are considered
first, and so on. This tends to make the dimensions of the eartier
(lower indexed) P.lT smaller. On the other hand, the decoupling
algorithm tends to make the Pi roughly equal in size. In ferms of
system structure this means that the decoupling algorithm tends to
produce a parallel type of structure, whereas the third algorithm leads
to a cascade-type structure. As a simple illustration of this consider
a third order system controlled by three independent control inputs,
each of which can control the system acting alone. Suppose the three
closed-loop poles are specified to lie on the negative real axis at
= 0y: = Oy, and - 0g- The decoupling algorithm would produce a system
of three independent first order subsystems as shown in Figure 6-1(a).
The third algorithm would produce the cascade-type structure shown
in Figure 6-1(b).

It would appear that the cascade algorithm compares favorably
with other pole assignment algorithms discussed in the literature. It
is certainly computationally simpler than the straightforward approach

of determining the characteristic polynomial of (A + BL) by expanding
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(a) Decoupling Algorithm

(b) Cascade Algorithm

Figure 6-1,

316



the determinant |[Is - (A + BL}| , setting the coefficients equal to
some desired values, then solving the set of n nonlinear equations for
the n-r elements of .. It is also simpler than algorithms based on
transformations which produce certain canonical rﬁatrix forms (such

as suggested in (23] ). Although it is not necessary to actually perform
a complete state space transformation in such an algorithm, it is
necessary to compute certain parameters appearing in the canonical
form of A, and then transform the feedback gain matrix back to the
original coordinate frame.

There is another pole assignment algorithm discussed in the
literature (referred to as the spectral algorithm in [23]), which may
be useful for feedback restructuring. It is based on the Jordan form
of the A matrix (the system matrix for normal mode state variables).
This algorithm allows assignment of a small number of closed-loop
poles (in some cases a single pole) while leaving the remaining poles
of the system undisturbed. Hence, the algorithm can be applied
recursively, specifying a small number of closed-loop poles at step.
As noted previously in introducing the cascade algorithm, this would
seem to be a desirable feature for an on-line restructuring process.
The spectral algorithm has some computational disadvantages, however.
In order to specify a certain number of closed-loop poles, one must
first determine an equal number of open-loop poles (eigenvalues of the
A matrix) plus the corresponding eigenvectors of A. In general,
determining eigenvalues of A will require solving the characteristic
equation for A, which is an nth order polynomial equation. None of
the algorithms discussed previously in this section require knowledge
of any eigenvalues of A,
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Another disadvantage of the spectral algorithm is that it must _
be modified if A has repeated eigenvalues. This suggests that for a
general A matrix it will be necessary to determine all the eigenvalues
in order to check for repeated eigenvalues before the correct algorithm
can be implemented. This requirement would increase the computation
time necessary before specifying the first group of closed-loop poles,
thus reducing the speed advantage offered by recursive specification
of poles. The cascade algorithm is applicable to a general A matrix,
and it is not necessary to have information about repeated eigenvalues
or other structural properties in order to implement it.

Because of the necessity for computing eigenvectors of AT, the
computation required in the spectral algorithm increases significantly
when specifying a large number of poles. (Simon and Mitter {23 ]
claim the increase is exponential.) Therefore, the cascade algorithm
seems better suited to specifying a large number of peles. It would
appear, however, that if A happens to be in a form in which some
eigenvalues can be readily identified, then the spectral algorithm
would probably be the fastest way of changing those particular eigen-
values. The spectral technique would be especially valuable if some
way could be found to identify quickly any unstable poles in the existing
system, since it would provide a way of concentrating the feedback

restructuring efforts on stabilizing those unstable modes.
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CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusions

The purpose of this research was to develop practical methods
of self-reorganization which can give a complex linear dynamic system
the ability to restructure itself to compensate for failures in its effectors
and sensors and changes in dynamics. The ultimate goal of self-
reorganization is to achieve the maximum reliability with the minimum
amount of hardware by restructuring the system to make effective use
of all hardware available at any given time. The basic approach taken
in this research is to identify the failure or change and then restructure
the system based on that information. This approach is in contrast to
reorganization based on performance information.

Chapter 2 demonstrates how the concepts of controllability and
observability may be used to evaluate the potential ability of a linear
system to tolerate failures of its effectors and sensors. A lower bou.nd
is established for the number of effectors and sensors a linear time-
invariant system requires for complete controllability and observability.

Since the reorganization process is based on information about
the failures or changes occurring in the system, the greatest attention
wag devoted to the problem of detecting and identifying such events. The
major contribution of this research is the theory and design of detection

filters developed in Chapter 4. Detection filters provide a practical
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way of detecting and identifying effector failures, sensor failures, and
dynamic changes in a complex multiple-input, multiple-output linear
system. The important features of a detection filter include the
following:

1) When a failure or change occurs the detection filter produces
a vector error signal whose direction indicates the location of the
failure or change, or at least narrows the location down to a small
number of possibilities. An effector failure or a change in some
parameter in the dynamic equations of the system produces an error
signal in a fixed vector direction. This invariant direction indicates
which effector is malfunctioning or which parameter has changed. In
some cases the invariant direction may be associated with more than
one effector or parameter, in which case the location of the failure or
change is narrowed down to those effectors or parameters associated
with the invariant direction. In this situation the time-varying behavior
of the error magnitude often provides enough additional information to
identify a particular effector or parameter from the set of possibilities
indicated by the invariant error direction. A sensor failure does not
produce a fixed-direction error signal, but the error vector is
constrained to lie in a two-dimensional invariant plane. This plane
identifies the malfunctioning sensor.

2) In the absence of failures or changes in dynamics (or after
they have been identified and compensated for) the detection filter
produces an estimate of the state of the system. The estimate is
asymptotically stable in the sense that in the absence of disturbances

the error in the estimate approaches zero asymptotically. The
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detection filter may therefore serve also as a state estimating
filter.

3) The poles of the detection filter are under the control of
the designer. This means the response time of the filter can be
made as fast as desired, consistent with other considerations such as
noise disturbances and gain magnitudes. It also means that the filter
may be designed to enhance the response to failures or changes it is
supposed to detect, while suppressing the response to sensor noise
and plant disturbances.

4) A detection filter (whose state dimension is equal to that of
the system) has the t)otential to detect a substantial number O.f different
events (failures and changes in dynamics). When a single detection
filter is not capable of detecting all possible events, it is merely
necessary to use additional filters, each designed to detect a subset
of the set of all possible events. Because each filter has the potential
to detect a substantial number of events, it should be possible to
detect all possible events with a small number of filters. For the
special case in which the state vector of the system is fully measurable,
a single detection filter can provide information about all possible
events -- effector failures, sensor failures, and changes in dynamics.
For the more general case of a partially measurable state vector, the
number of different failures a detection filter is capable of detecting is,
loosely speaking, approximately equal to the number of independent
sensors in the gsystem. In particular situations it may be more or less.
In any case a single detection filter can provide information about all

changes in the dynamics of a linear system.
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5) The same basic theory is applicable to designing detection
filters for effector failures, sensor failures, and changes in dynamics.
For detecting changes in dynamics, the detection filter is especially
effective when the possible changes are limited to a small number of
parameters. Even when applied to the general problem of identifying
or tracking unknown linear system dynamics, detection filter theory
yields an identification method which appears comparable to the best
tracking model methods now proposed in the literature.

6) The computation required to design detection filters involves
mainly the solution of sets of linear algebraic equations. It is not
necessary to solve differential equations -~ either linear or nonlinear.
The computation is substantially less than that required for a Kalman
filter, for example, which requires the solution of a Riccati equation.

Chapter 4 develops a substantial body of analytical results on
the structure of detection filters. The results have been developed
from the viewpoint of actually constructing a detection filter. As a
result, some of the algebra may be more extensive than would be
necessary if more sophisticated methods of mathematical analysis were
used. However, the constructure viewpoint provided a good basis for
the development of the design algorithms presented in Appendices A, B,
and C. The material in Chapter 4 should continue to provide a good
basis for the future development of even more efficient design algorithms.
Some of the more important results of Chapter 4 are listed below.

1) Theorem 4.1 is the basic result of detection filter theory.

It guarantees that there always exists some detection filter, with poles

arbitrarily specified by the designer, which will detect any single
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failure or change in the observable dynamics of a system. The other
theorems and lemmas in Section 4.3.1 are intermediate resulis
leading to the proof of Theorem 4.1. However, some of them are
important in filter design, and these are mentioned in the next item.

2) Lemma 4.2 establishes the existence of detection generators,
the vectors which play a central role in the actual design of detection
filters. Theorem 4.2 introduces the hasic linear algebraic equation
for the error feedback gain matrix which gives a -detection filter the
invariant direction property. The results of Theorems 4.3 and 4.4 show
how it is possible to arbitrarily specify all the poles of the detection
filter while achieving the invariant direction property. In addition, the
proof of Theorem 4.4 shows how to actually determine the m;aximal
detection generator, which allows full specification of the poles of the
filter. The algorithm in Appendix A is based on the construction used
in that proof.

3) Theorem 4.5 establishes the conditions under which it is
possible for a single detection filter to detect a number of different
events while allowing the poles of the filter to be arbitrarily specified.
(Such events are defined to be mutually detectable.}

4) Theorem 4.6 establishes a method for dividing the set of all
possible events into subsets of mutually detectable events. All the
events in each subset can then be detected by one detection filter. Often
events which are not mutually detectable can still be detected with a
single filter by allowing certain poles of the filter to be fixed by the
design process rather than specified by the designer. Theorem 4.6

provides the basis for identifying these unspecified poles and regrouping
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sets of events so that any undesirable poles are eliminated. This
material is developed in Section 4. 3. 4.

When detection filter theory is interpreted in its dual form
the results yield design techniques for determining linear state
feedback laws for linear time-invariant systems. It is well known
that if a linear time-invariant system is controllable, then a linear
state feedback law can always be found which produces closed-loop
poles in any desired location in the complex plane {(complex poles
must appear in complex conjugate pairs). The techniques introduced
in this research not only provide for specification of the closed-loop
poles of the system, but also can produce several interesting types
of subsystem structure such as scalar-input, scalar-output decoupled
subsystems or effector decoupled subsystems. Chapter 6 presents
the algorithms for implementing these feedback control designs. Also
presented is a third algorithm which is concerned only with fast specifi-
cation of closed-loop poles. These algorithms form the basis for
restructuring of the feedback control loop to compensate for failures
and changes in the system. The computation involved in implementing
these techniques seems sufficiently simple to make their use feasible
for on-line restructuring. The results may also be of interest for

off-line feedback design.

7.2 Recommendations for Further Study

The next logical step for further research is to substantiate the
theoretical analysis of detection filters and test the feasibility of the

feedback restructuring algorithms through computer simulation. It
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would also be most valuable to design detection filter reorganization
systems for some example systems to demonstrate computational
feasibility and performance in the presence of realistic disturbances.
Areas for further analytical studies include the following:

1) The concepts introduced in Chapter 2 merely evaluate the
supplementary redundancy of a system after it is constructed. It
should be possible to develop these concepts to aid in the actual design
of supplementary redundant systems.

2) It would be useful to obtain more general results on the
detection of nonseparable events as defined in Chapter 4. Such results
could lead to methods for substantially increasing the number of
different events a single filter is capable of detecting. For tﬁe general
case of a partially measurable state vector the number of simple
events (e.g., one effector failure) detectable by a single filter is, with
present design methods, roughly the same as the number of independent
sensors. Recall that for the case of the fully measurable state vector
a single filter could detect all the events being considered —- effector
failures, sensor failures, and changes in dynamics — potentially a
much larger number of events than the number of independent sensors.
It seems reasonable to speculate that as the number of independent
sensors increases, it should be possible to construct a detection filter
capable of detecting substantially more events than the number of
independent sensors.

3) The algorithms in Appendices A and B for implementing the
design of detection filters are not intended to be the last word in compu-

tational efficiency. It seems reasonable to expect that they can be
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improved upon in this respect. The extensive analytical results in
Chapter 4 should be useful in developing new methods of implementing
the theory of detection filters. Rapid computational algorithms will
also be valuable for the design of linear state feedback laws for time-
invariant linear systems.

4) Chapter 5 discusses some simple methods for processing
the detection filter error information to identify the most likely event
(or events) in the face of uncertainties caused by noise disturbances
or simultaneous multiple events. It should be possible to develop more
sophisticated methods for processing the detection filter information.
For example, if statistical information is available on noise disturb-
ances or on the occurrence of events, then this information might be
used to develop decision rules which are statistically optimum in
some sense.

5) This research has been primarily directed toward designing
reorganization methods for an existing dynamic system. A related
area which seems lucrative for further research is the design of the
basic system (e.g., placement of effectors and sensors) to make
failures easy to identify. The material in Chapter 4 should provide a

good basis for such research.
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APPENDIX A
ALGORITHM FOR DETERMINING

THE MAXIMAL GENERATOR

Determination of the maximal generator for a vector f is

divided into two basic steps:

I. Finding the null space of M defined by (4-182),

i.e., all independent solutions of

M'w = 0 (a-1)
II. Finding a vector g in the null space of M'
satisfying
&
. g=0 (A-2)
CAV—Z
caV lg = cabs (A-3)

where v is the detection order of f and u is defined by condition
{4-108). ‘Note the similiarity of these two steps. They both involve
finding vectors lying in the null space of a given matrix. The following
algorithm, referred to as the orthogonal reduction procedure, is a
general method for solving such a problem.

Consider an n'X n matrix
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vV = . (A-4)

where the v, are arbitrary n-vectors. The orthogonal reduction
procedure is an iterative process which generates an n X n positive
semi-definite matrix whose range space coincides with the null space
of V. In each iteration a row of V is tested to determine if it is
orthogonal to the range space of the symmetric matrix. If not, the
range space of the matrix is reduced so that this is the case. The
procedure begins with any symmetric positive-definite matrix 91 . An

auxiliary n-vector is defined by
(A-5)

If vy is nonzero Wy will be nonzero, since Ql is positive definite.

Furthermore, W'lI‘ vy will be nonzero. A new symmetric positive

semi-definite matrix is defined by
(A-6)

The procedure continues according to the following general iteration:

(i) With Q.l from the previous iteration, form the

auxiliary vector

w, = Qi v, (A-T)



(i) M w, 40 set

\.’i."]..W'.1
Ry = & - -1 — (A-8)
w, V.
1 1
or if w, = 0 set
Qi1 = (A-9)

and return to (i)

The algorithm has the following important properties:

T

1)y If {2, is positive semi-definite, w. v, =0 if and only if

W, = 0. This follows from the definition of wi.

2) If £, is positive semi-definite, so is §3,,,- This is trivially
true if w, = 0. Assume W, + 0. For any arbitrary n-vector z and

any scalar «
T
{z - avi) ﬂ.l (z - Ozvi) > 0 (A-10)

In particular, this must be true for

oI
e (A-11)
WwW. V.
1 1

Expanding (A-10) and substituting (A-11) yields

(z - av.)T QA(z - av.) = ZTQ.Z - Zav'.TQ.z + G.'ZVTQ.V.
i i i i 1% 177171
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= zﬂz~20[wiz+azvv.vi
T (Wr.rz)2

i

= z 0.2 T

t Wi V.

i i

_ T _

= z QH-IZ > 0 : (A-12)

By induction this shows that all Q. are positive semi-definite if the
starting matrix Ql is at least positive semi-definite.

3) If W, # 0, then

r'kﬂi_H = eri -1 (A-13)

and the null space of Qi+1 is the subspace formed by A and the null

space of Qi' In Equation (A-12) equality holds (and thus £ w1 2= 0

1
if and only if {(z - av.l) lies in the null space of Qi' But this implies

z must lie in the subspace formed by vy and the null space of Qi'
4) At any point in the process the range space of S'Z.l is made

up of all vectors orthogonal to the vectors {vl, rees Vi }- This

follows from property 3) and the fact that the starting matrix 2, is
positive definite. If .Ql is only positive semi-definite, the range

space of 9.1 is made up of all vectors from the range space of Ql

which are orthogonal to {v,, ..., v, ;}. When all the rows of V

have been processed the final matrix Q has a range space which

n'+i
coincides with the null space of V (for Ql positive definite). The
number of reductions made (i.e., the number of times (A-8) is

performed) is equal to the rank of V.
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5) If 2, is positive definite and W, = 0, then Vi is linearly

1
dependent on the preceding vectors {vl, ey Vi-l}' By virtue of
property 4) the vectors {vl, cees Vi 1]- span the null space of Qi.
Since w, = 0 implies v, is in the null space of Qi, it must be
expressible as a linear combination of the vectors {vl, e, Vi-l}'
The first step in finding the maximal generator for f can now
be accomplished by applying the reduction algorithm to the matrix M'
defined by (4-182). The algorithm begins with a symmetric positive
definite matrix, such as the identity matrix. The rows of M' corre-
spond to the v.lT in (A-4). Because of the cyclic manner in which the
rows of M' are generated it is not necessary to process all the rows.
A row can be skipped if it is known that it is linearly dependent on
preceding rows, because the auxiliary vector in that case will be zero.
When a particular auxiliary vector is found fo be zero, for example,
Kﬂ.)T

w, = ., (c',
1 ]

; = 0 (A-14)

{where c'j is the jth row of C") it is then known that C'j k! is

linearly dependent onh the preceding rows in M'. But if this is so,

then all remaining rows of M' generated by c'j (i.e., c'j Kk for all

k > 1) will also be dependent on preceding rows of M'. The auxiliary
vectors associated with these rows will all be zero, so there is no need
to consid;er them in the reduction procédure. The appearance of the
first zero auxiliary vector, as in {(A-14), will be referred to as the
intermediate termination point for c'j. The reduction process is

completely terminated for M' when the intermediate termination points
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for all rows of C' have been reached. It is of interest to note that
since rk C' <rk C, there is a linear dependence among the rows of C',
and at least one row of C' will be terminated when it is first processed.
When the algorithm is completely terminated the final matrix, denoted
by Qf, will have a range space which coincides with the null space of
M'. At that point q' = rk M' is given by the number of reductions
performed,

The second step in finding the maximal generator is accomplished

by applying the reduction procedure fo the rows of the matrix

C

=
]

KT = . (A-15)
-1

ck? 4’
gstarting with the final matrix Qf from the first reduction process. The
rows of C span a subspace which contains and is exactly one dimension
larger than the subspace spanned by the rows of C'. Since the range
space of Qf is orthogonal to éll the rows of C', all rows of C except
one will be terminated when first encountered in the reduction process.
The process will be completely terminated when the termination point
for this one row, say Cj’ is reached. The final symmetric matrix at
termination will be the zero matrix if (A, C) is an observable pair. The
maximal generator is formed from the last nonzero auxiliary vector
before termination,

v-l)T o

w, = Q. (c.K

. ; (e 0 (A-16)

where v =n - g' is the detection order of f. By construction w, lies
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in the null space of M' andsatisfies

C
: w,o= 0 (A-17)
V2
and
ek’ tw, - CA"‘lwi £ 0 (A-18)

These are all the requirements for the maximal generator except the
magnitude of w. must be adjusted to satisfy (A-3). The maximal

generator for { is then given by
g = [~ | W, (A-19)

It should be mentioned that the matrix

C

MT = . (A'ZO)
cata’-l

can be used in place of MKT for the second reduction process. In fact,
any matrix of the form A" = A - D"C with D" arbitrary can be used in
place of K in (A-15). The matrix K was shown because it is usually
simpler than A. As noted in Section 4.3.1, A may be in a form {e.g.,
the standard form (4-403) to (4-405) ) which makes it possible to
determine by inspection a D" which yields an A" = A - D"'C considerably

simpler than A. In this case A" can be used in place of A in finding the
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maximal generator. This includes using A" in defining K. When such
an A" is available it can also be used in A-15) in place of K.

If the final symmetric matrix at termination is not the zero
matrix, then (A, C) is not an observable pair and the range space of the
final matrix is the unobservable space of C. The maximal generator
was defined in Chapter 4 only for the case where (A, C) was an observable
pair. However, it was noted in remark 4) at the end of Section 4.3.1
that condition (1) of detectability can be achieved for an unobservable
pair if f does not lie in the unobservable space of C. For this case the
g given by (A-19) can be used in exactly the same way as the maximal
generator to achieve condition (1}. If (k - 1) is the power of A associated
with the last nonzero auxiliary vector, then (k + g') is equal to the
dimension of the observable space of C, which in this case is less than
n. The {n - q' - k) eigenvalues of A associated with the unobservable
space of C cannot be altered and will always appear as eigenvalues of
(A - DC).

When using this algorithm to find maximal generators for a set

of vectors {fl’ .+., £}, the following procedure is suggested:

(0 Starting with a symmetric positive definite matrix,
apply the reduction process to M' given by (4-261)
with K and C' defined by (4~257) and (4-2595) for
the full set of fi'

(ii) For each fi apply the algorithm as presented, except
replace the starting matrix 91 with the final termi-

nating matrix from (i).
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This procedure requires fewer total reductions than simply repeating
the complete algorithm for each fi'

The last nonzero auxiliary vectors obtained at the intermediate
termination points in the first orthogonal reduction process can be used
to specify the q' eigenvalues of {A - DC) = (A' - D'C') which remain
unspecified after D is constrained to be a detector gain. It was noted
earlier that at least one row of C' will be terminated when first
encountered in the reduction process. For this row there will be no
nonzero auxiliary vector. Additional rows of C' will also be terminated
at first encounter if rk C < m, implying a linear dependence among
some rows of C (recall C is m X n}). Assume, then, there are 1
independent rows in C' where £ < (m - 1). Each of these rows will
have a final nonzero auxiliary vector. Let {c'j s eves C ‘jl} be the
first £ independent rows of C'. Denote by Wei the final nonzero
auxiliary vector associat?d with C'j. and assume the termination point
i o

occurs at the row c 'j K Then

f i - y 1qi.
c' K Weo = c.'A Wt # 0 (A-21)

(A-22)

and
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C'p K ! We. = c'pA’ L Wee = 0 for all p <
(A-23)
From (A-21) and (A-22) it can be seen that the W e have orthogonality
properties similar to those in (4-80) and (4-81) for a detection
generator. They can therefore be used in like manner to specify

eigenvalues of (A' - D'C'). By arguments similar to those used for

detection generators it can be shown that

P

A w,. = (A'—D'Ci)pwfi for p=0, ..., q', -1

fi i
(A-24)
and that these q'.1 vec;cors are linearly independent. Further, (A-23)
can be used in a development similar to the proof of Lemma 4.5 to
show that the entire set of (q'l +...+q',))=q' vectors {w

ql_l qll-]'
., AT Weps Wegs eees Al

f1’

w“} are all linearly independent.

Now if D' is chosen to satisfy the equation

.q'i-l q'i-l
I ¥ = I ! 1
D'C'K W, D'C'A Wei
-1 %
- L 1 1
= pilwfi+ +p.1q,iA wﬁ+A Wes
(A-25)
then
q'i. q!i q’i_l
v Ty et = [ LM AL
(A D'C") W A Wes D'C'A W
qti-l
= - ¥ - - 1 1
Py Wy = oer T Pl A Wi
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q'i-]-
-n! - -7 "o [Fall
Pl Wey = e piq'i(A D'C"} Wes
(A-286)
which shows that q', eigenvalues of (A' - D'C') are given by the roots

of

q; q';-1
T t - -
s+ piq,is + ...+ Py o= 0 (A-27)

By requiring D' to satisfy equations such as (A-25)fori=1, ..., ¢
a total of (q'1 + ...+ q'l) = q' eigenvalues can be specified by choice

of the p'ip. Combining all these equations into a single matrix equation

yvields
ay-1 -1
1 ) - 1 1
D'C'[K Wers , K Wﬂ] [Wl’ ,wl]
(A-28)
where
-1 q'.
1 — 1 L] 1 1 ] 1
Wi PVt + piq'iA Wep TOAT Wy
(A-29)
Relation (A-23) ensures that
a1 a1
1 -
rk {C [K wflx L] K Wf,E]} = -E (A'30)

and therefore by Lemma 4.3, (A-28) always has a solution.
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APPENDIX B

ALGORITHM FOR GENERATING A AND THE 9i

FOR NONMUTUALLY DETECTABLE VECTOCRS

It is agsumed that the maximal detection generators for the set
of output separable vectors {fl’ ey fr} have been found. The
detection order of fi is v.. If these vectors are not mutually detect-

able the dimension of the excess subspace is

ke = n—q'-(v1+...+vr) (B-1)

where (n - q') is the group detection order of the above set of vectors.
The orthogonal reduction procedure described in Appendix A can be
used to generate a basis for the excess subspace as defined in Section
4,3.3. The algorithm begins with the terminating matrix which
results from step (i) in the procedure suggested in Appendix A for
finding the maximal generators for a set of vectors. Specifically, this
is the terminating matrix which results when the reduction procedure
is applied to M' given by (4-261). Starting with this positive semi-
definite matrix the reduction process is applied to the rows of the

matrix

=
1}
2t

(B-2)

¢

where
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and

2

=

(B-3)

(B-4)

with K given by (4-257). The Ei i=1, ..., r are the rows of the

r X n matrix

with F given by (4-242).

[ickyTer] 1 «erfe
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It can be shown that the rule presented in Appendix A for identi-
fying intermediate termination points is also valid for this algorithm.
The reasoning is somewhat different, however. Let g; be the maximal
generator for fi‘ From the properties of a maximal generator it can

be verified that

< B - i} i

CiK g, = 0 if p< U.l 1 (B-6)
v.-1

¢.K ' g F 0 (B-7)

Eij g = 0 forall P >0 if j#i (B-8)

These relations can be used in a development similar to the proof of

Lemma 4.5 to show that all (V1 + .0+ vr) rows of M, are linearly

1
independent of each other and all rows of M' as well. This means that

‘rk M = VY, + ... + Vv (B-9)

and

— N7 - !
rk = rkM+rkM1-q+u1+...+Vr

(B-10)
All auxiliary vectors associated with the rows of 1\\‘/I1 must be nonzero
because a zero auxiliary vector implies the associated row is dependent
on previous rows. Assume the final nonzero auxiliary vector for cs

- - "H:(ei"l

occurs at row CiK 1 , i.e., the intermediate termination point

~ ~ V.+kei . 2z
for c; occurs at row CiK . Since no nonzero auxiliary vectors

-
can be associated with rows in Ml’
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kei > 0 forall i=1, ..., r {(B-11)

If kei >0, let \\{ri denote the final nonzero auxiliary vector for ?:'.1.

Then

&, LW Ao - (B-12)

When k_; >0, \R’r.l must appear during processing of 1\712. It is ortho-

gonal to all preceding rows in 1\7’12 as well as all rows of P7I1 and M',

S50
M'W, = 0 (B-13)
cxkP%. = 0 for P=0, ..., v.+k .-2 andall
] 1 ei
j=1, eeu, T (B-14)
and
- v.+k i—lv
ch3 ow,o= 0 i j<i (B-15)

Now consider the set of (kel + ...+ ker) vectors

ko1, k, -1 _

{wl, ey K Wi Wo, s K

It is assumed here that all the kei are greater than zero. If some kei
is zero the corresponding \\'a\'r.l does not appear in this set at all. But
even if some kei are zero and the corresponding ﬁ'.l do not appear,
there is still (kel + ...+ ker) vectors in the set. All \‘i'ri for

i=1, ..., r are shown in the set to avoid complicating the notation.
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The case where some kei = 0 is discussed later. Relations (B-12)to
(B-15) can be used in a development similar to the proof of Lemma 4.5
to show that all vectors in the above set are linearly independent. It
can also be shown that they all lie in the null spaces of M' and ff[l. By
construction each \‘ifi lies in the null space M', and since this subspace
is invariant with respect to K, all other vectors in the set must also be
contained in the null space of M'. The fact that all the vectors lie in

the null space of M, follows from (B-14) and the assumption that

1

kei > 0. The maximum possible number of independent veciors

contained in the null of M' and 11711 is
M'.
- - - 1 - -
n - rk g n-g (v1+...+vr) k
1

M e

(B- 16)
Therefore

kel + ...+ ko < kg (B-17)

It can be shown that if (A, C) is an observable pair, the final terminating
matrix for this algorithm is the zere matrix ( the case (A, C) not
observable will be discussed later). If § is the final terminating

matrix, it must satisfy

Cl
M'Q = Q = o (B-18)
C,Kn-l
and
M = . 2 =0 (B-19)
M,



which implies

¢
) ﬁ = g (B-.
o el
Observing that
C = C'+ CFC (B-
it may be concluded that (B-18) and {B-20) imply
C
- 8 = o0 . (B-
'CKn-l
which also implies
C
, G = o (B-
cat !
If (A, C) is observable, this implies
9 = 0 (B-

The positive semi-definite matrix which remains after processing

has a rank of

n-rk = n-q’-(v1+...+v) = k
~ r
My

(B-
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Since each reduction reduces the rank of the positive semi-definite
matrix by one, ke reductions must be performed during the processing
of I\712 in order to produce a final terminating matrix of rank zero (the
zero matrix}. This means that at least ke rows of 1\712 must be
processed before termination. Excluding the rows &KP for

p > kei + (because termination of Ei occurs at EiK I}i‘-‘-k'ai) the total

number of rows of 1\7[2 processed before termination is (kel + ...+ ker)'

Therefore

(kel + ... + k) > k (B-26)

This result together with {B-17) implies that

kel + ...+ ker‘ = ke (B-27)

and shows that the number of reductions is, in fact, equal to the number
of rows processed before termination. This means that a reduction is
performed for every row processed before termination. WNo zero
auxiliary vector can occur before termination because that row would
not produce a reduction. Hence the termination point for each Ei is
signaled by the first zero auxiliary vector just as for _the algorithm in
- Appendix A.

By virtue of (B-6) to (B-8) no vector lying in the subspace
formed by the vectors

Vl-l Vr-l
{gl, .--,K gl: gz.v -":K gr}

can be in the null space of M,. On the other hand all vectors in the set

1"
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oy, e el

are in the null space of 1\711_. Therefore, the composite set of vectors
{gl-' "‘!K ) ng wl: n-.,K

are linearly independent and form a basis for the null space of M'.

Define the n X ke matrix

— el o Kep~ly
Ze = [Wl, ..., K Wi Wy, +-es K wr]
(B-28)
Using (B-5), Equation (4-268) can be written
. “ j-1
. CK' " Z, (B-29)
'Yr'j
and then
_ 2=l _
71‘] = CiK Ze (B-30)
From (B-14) and (B-28) it is clear that
'Yij = 0 for j=1, ..., v (B-31)
- e1”! - Ko
and so the vectors {Wl’ ..., K \'Xrl, Wor «oes K \‘(rr} form a

basis for the excess subspace as described in Section 4.3.3. The 91

are given by

= ¢K'2z (B-32)



From (B-14) it can be seen that the Gi have the form

8, = (8, » 8] Xk (B-33)
where
.= [0, ..., 0, sk G ] ax )
ij i _ e]j
(B-34)
and in view of (B-15)
0 = 0 if j>i (B-35)

The A matrix can be obtained from the equation

r
KZ, = ZA +z 0, g (B-36)

.Since rk Ze ke’ this equation can be solved for A in the closed form

r

A = [z;f ze]'1 z:f[Kze - Z 8, gi] (B-37)

i=1

This form is more general than is necessary, however, because from

the form of Ze in (B-28) it can be seen that A has the form

Au......Alrd”\
A= . . -k Xk )
Aprs = = 0 0 Bpy

(B-38)
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APPENDIX C

STANDARD MATRIX FORM

AND DECOUPLABLE REPRESENTATION

In this appendix a transformation rmatrix which produces the
standard form described in Section 4.3.6 is derived. Also, it will be
shown how a system representation may be augmented to produce a
decouplable representation.

Let the matrices A and C be n X n and m X n respectively.

Assume that (A, C) is an observable pair and that
rk C=m {(C-1)

so all rows of C are linearly independent. A set of n independent row
(1 X n) vectors is to be generated as follows. Consider each row of

the matrix
M = . {C-2)

starting with the top row and working downward. Retain only those

rows which are independent of all preceding rows. Let {Cl’

nq{-1 ne-1 n.-1
1 2 m
"ClA ,cz,...,czA  eee; €, wee, C_A } be the

set of basis vectors so obtained, where c; is the ith row of C (the

vectors are not shown in the order in which they were obtained). Since
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(A,C) is observable, there must be n independent rows, so

n, + ... + n, = n (C-3)

n.
The row CiA ! for each i does not appear in the set, so it must be
n.
dependent of the preceding rows. Then CiA 1 can be expressed in

terms of those basis vectors which precede it in M

n

n m i i-1 n
cCA L = z Z w c Ap_l + Z w¥ c Al (C-4)
i 2o 2 i2 “#
£=1 p=1 £-1

The final summation appears only for i>1. The terms CzAp-l appear
in (C-4) only if they are members of the basis, i.e., only if p <n,.
This fact can be recognized without changing the summation limits by

requiring that

wilp = 0 if o> n, (C-5)
Similarly for £ < i
< _ . _
wi,, =0 if n,2n, (C-6)

The second summation in (C-4) is written separately in order to call

attention to the significance of the w From the way in which the

e
e
basis vectors were selected it is clear that n, cannot be larger than
the decoupling order of ¢;. On the other hand, it can be verified from
(C-4) and Equation (4-433) in the alternate definition of decoupling
order that if the second term in (C-4) is zero (i.e., w;"f = 0 for all

£ <1i) then n, is at least as large as the decoupling order of c;» This
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implies that ny is equal to the decoupling order of ¢ if wz‘ﬂ = 0 for
all £ <i (note w;kﬂ is defined only for 2 <1i). If w;k! # 0 for some

2 < i, then Equation (4-433) is not satisfied for n., implying that n, is
less than the decouplingrorder of C;- This shows, incidently, that n,
is always equal to the decoupling order of cq because the second

summation does not appear in (C-4) when i = 1,

Now define a new set of n independent basis vectors as follows:

ein.l = o (C-T)

i= . 0]
- 2 Wy cﬂA (C-8)
1=1

for j=1, ..., n; -1 (if n; > 1) and i =1, ..., m. Define the trans-

formation matrix

€11

elnl
€21
T = . {(C-9)
2n

ml

i mnmJ
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The transformed matrices are

A = TeATe (C-10)

C = CT (C-11)

To identify the forms of A and C, it is necessary to determine
expressions for the basis vectors eij when post-multiplied by A. Now

forj=2, ..., n. -1

7
n.-j+1
= 1 - p"'_]
®i, j-1 ¢ Z z Wigp S8
=1 p=]
=1 n.-j+1
- w* c, Al
if2 ~2
e=1
n,
n. - 171 1
_ i _ P-j-1
= [cpa Wipp Cph
£=1 p=j*+1
i-1 . n.~j m
} wigcA 1A z “iej C
=1 £=1
m
= eijA - z wuj c, (C-12)
£=1
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or

m
e T %1 T z Wig3Cp for 1=2 ooy - 1
I=1
(C-13)
For j=1
m 0y
n.-1
- - p-2
e A = [CiA z z wi.tp c,A
1=1 p=2
].'—1 . .l’l.'-l
- Wy c[A ] A
1=1

n.
n m i

- 1 p-1
= CiA - z Z wﬂ.p cﬂA

=1 p=2

i-1 0

- z W, cﬂA
£=1
n

(C-14)

Substituting (C-4) for ciA‘ 1, all terms cancel except those involving

Cy» and the result is

m
e A = z Wig1 & T Z W1 %n
1

m

=1 2=1
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Finally

m i-1
®i,n-1 ° cyfh Z “in, ©2 Wip Cp A
1=] =1
m i-1
= e A - Z “ign ef_nﬂ B 12 “fn, A
£=1 1=1
(C-16)
or
i- m
Z @y ®n, ® 7 ®in-17 z Wien, Cen
= L = i £
= I=1
(C-17)

Combining all such equations for i = 1, ..., m into a single matrix

equation yields

p—

1 0. . e e 0 ] e, A ] re ]
| . _iny .l,nl-l
Y . _
. . -0
_(;’:;1 ’ ~wp m—l. 1 ®mn_ & ®m,n_ -1
- m, - . m _J L. *"m "
[ w ) T [e 7]
) 1 1n1 lrn.n1 . 1.:11
+ - . (C"].S)
c"’mln 7 "mmn mn
| mJ] L m |

The triangular matrix on the left is clearly nonsingular and its inverse

also has a triangular form
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where

N

11ln

mln

] lmnl

ammn

355

(1 0. 0]
. 421
-0
a* . 'a* 1
m1 m,m-1
L —
{C-19)
? ' F‘.al’nfl
Y .
;l’n"]. '1 em,.t‘l _1
4 L m " _
El1 n i reln
Ly |
E.lmmn é n
‘ mJ | m mJ
(C-20)
o . . 0 qunl. wlmn
. . . 1
0 . .
* . . 1 - -
" "m,m-1 mln 'wmm.n
Jr m |
(C-21)



The it! row of (C-20) is

i=1 m
- s
ein.lA = ei,ni-l + z iy e1,:1’!-1 + Z 2ign eﬂnﬂ
£=1 =1
(C-22)
Post-multiplying (C-10} by T, yields
P —
ellA
e A
e _ _ 1n
ATe = TeA = 1 (C-23)
e21A
mn A
. m |

From Equations (C-13), (C-15), and (C-22) the form of A is seen

All . e e e e _Alm
A = . . {n X n)
LAml * mm _|
(C-24)
with
0 0 0 8501
1 0 .
Aii = 0 1 . . . (rJLi X ni)
- 0 »
1] 0 1 a..
B uni_ (C-25)
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0 0 0 ':;lijl
o . 0 a,. a..
ij ijn,
L 14
(C-28)
— —
0 t] ajil
- . . ajin ]
Aj'l = 0 i (HJ X .ni) (C-27)
_0 B | 0 B}

where nj > n,. The aijf are defined as follows:

- = 3 i ‘= L I = LI -_1
aiJ! wi;jﬂ i,j=1, , M 2 . 1, s By

The elements aijn and a;‘j are given by (C-21) and (C-19) respectively.
i
Post-multiplying (C-11) by T, yields

cT = ¢ (C-28)

and from (C-7) it is easily seen that

G T
_ 1]
c = | T . (m X n) (C-29)
. " g
0. 0o "=
. - - m -
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with

c. = [0. . .0 1] (1 X ny) (C-30)

The final zeros in the last column of Kji appear when n:i > n, and are
a result of (C-5). From the form of the defining equation (C-192) for
the a;} it can be verified that the conditions on w;kﬂ given in (C-6)

apply to the a;k as well, i.e.,

2
ar, = 0 if n, > n, (C-31)
It is for this reason that there is no a;:i in Eji given by (C-27). Also
from (C-19)
a, = 0 for 1< (C-32)

If the a;: are zero for all £ < i, then n, is equal to the decoupling
order of C- If all the a; are zero then (A,C) is a -decouplable pair,
and A and C have the standard form presented in Section 4.3.6.

It will nhow be demonstrated how a system representation may
be augmented to achieve a decouplable representation. Let (A, B, C)
be a minimal plant representation where A, B, and C have dimensions
nXn, nXr, and m X n respectively. An equivalent representation is
any triplet (A', ﬁ, ) (with dimensions A XN, DX r, and m X 1)
satisfying

calB = CAIB forallj> 0 (C-33)

Since (A, B, C) is minimal, {A, C) is an observable pair. Let q; be the

decoupling order of c the ith row of C. Suppose

94 + ... + d > n (C-34)‘_
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s0 by Theorem 4.7 (A, C) is not a decouplable pair. The triplet (A, B, C)
will be augmented to obtain an equivalent observable representation

(K,ﬁ, C) with E’i having the same decoupling order as c; and with

q1+...+qm = 7 (C-35)
First assume
rk C=m : (C-36)
nl-l
The case rk C <m will be considered later. Let {cl, e, clA , ©
n_ -1
., cmA m } be the set of n independent basis vectors obtained as

described at the beginning of this appendix. It was noted earlier that

ni_<_q.l i=1, ..., m (C-37)
Let

» A A1 .

A = (& X &) (C-38)
9 Agg
B

B = (f X r) (C-39)
L0

~ ~F

cC = [C, 0] (mxH®) (C-40)

where % is given by (C-35). The matrices 2\’22 and KlZ have dimen-

sions (il - n) X (8 - n) and n X (& - n) respectively, where

m .
-n = Z (q-1 - ni) (C-41)
i=1l
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It is easily verified from the form of A, B, and € that they satisfy the
requirement for an equi{ralent representation for any Klz and KZZ' It

must now be shown that X 9 and A

1 9 can be chosen so as to make

2
(:ﬂ;, 6) a decouplable pair.

Before selecting K12 and Kzz a simplification can be made
which will considerably reduce the amount of algebra involved. First
assume that A and C are in the standard forms (C-24) to (C-30) derived
in this appendix. It was shown in Section 4.3.6 that decoupling order,
and thus the property of decouplability, is invariant with respect to
replacement of A by (A - DC). In the present context this means that
if ([ & - ﬁ”('f] , &) can be shown to be a decouplable pair for any D", then

(8, €) is also decouplable. Let

~n

g
H
51
<
3

(C-42)

[[=]

where D' is an n X m matrix. Then

A-D'¢ = (C-43)

Now with A and C in the form of (C-24) to (C-30) it is easy to see that

D" can be chosen to cancel all the a,.

T elements in A, yielding

11 1
Al e e A" L
A-D''Cc = . . (C-44)
'H -l"l
L S
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with

0 0 0 0
1 0
1t _ ’ )
A ioc 0 1 ' . . (nani)
. 0
LO 0 1 OJ
(C-45)
[0 0 0 0
AY = n. X n.
ij 0 ( i 3)
0 .0 a* 0
L 1 _
{(C-46)
11 - -
A i c 0 (nj X ni) (C-47)
where nj 2n;. Define
A" = R-DE (C-48)
A" = A -D'C {C-49)
Now for each i for which
g;-n, >0 (C-50)

let there be an associated 1 X (R - n) row vector t;i. These r;i and K22

can be chosen arbitrarily except for the following two requirements:
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(i) The (& - n) row vectors

~qi—ni_ 1

{2;.1, ce e, ;iA22 ;  allisuch that q; - n; > 0}

are linearly independent.

q.-n,
i i
. i z ~ 7P 1
(i) 5 Aag = -/ G, b Ay
p=1
i=1, qi-n
~ ~ ‘j__'
wuqi t Agg (C-51)
1 =2
where the &ip are arbitrary scalars. The &'qu are scalar functions

of the a:fj in the A”ij and will be defined later. 1'I‘he prime on the second
summation sign in (C-51} is to indicate that the sum is to include only
those £ for which d, - 1, > 0. The summation starts at £ = 2 because,
as noted near the beginning of this appendix,

n, = qy {C-52)

Note that (C-51) implies the eigenvalues of KZZ are given by the roots

of the equations

2
]

-n, i i )
s + ¥ q.-n, S t .. @y = 0 (C-53)

for those i such that q; = n; > 0. Since the &ip are arbitrary, the

eigenvalues of :5:22 are almost arbitrary. The 312 matrix is constrained

to satisfy the equations
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C.A”J-IK = 0 for j: ]_, e, . - 1 (C_54)

-1 4',.1 if a, < qa;
c A A12 = (C-55)
0 if n; =q

These make up a total of n independent equations which uniquely
determine A12.

It must now be shown that the decoupling order of E’i, the ith
row of O, is q; foralli=1, ..., m. To establish this it is necessary

to develop a general expression for E'i A, Forjx> 1

] - 1] wp -1l ~i-p _
CA [ca™, i CA A, Agy ] (C-586)
p=1
80
- j 1
GAV-SEE [ciA”J,z ciA”p— A, AJ 2] (C-5T)
p=1
Using (C-54) this reduces to
G And = [c; A", 0] forj=1, ..., n, -1 (C-58)
and
J
s ”11j = nj Hp'l J P
¢, A [ciA , Z c; A Ay Ay ]
p=ny
for j2 n, (C-59)
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From the form of A" and C it can be verified that

i=]
ciA”p = Z —up c, A"f for p2n;
1=}

with

Wip g

The scalars cﬁu
P

exact functional relationship between &

prove decouplability, but as a matter of interest the cBi 0

the matrix equation

0
2lp
currllp m,m-1, p
where
%
ar. =
ijp
0
Incidentally, (Bilni is equal to
reduces to
c. A"P
i
Then
Y A’n.] -

0

are functions of the a’

if

if

*
@iy

0

if p 20,

1]

i2p

o [ 1 0
IRE

ol <| .

| L;nﬂp'

p <n

p 2n

%
am: m"]-: p

(C-60)

(C-861)

appearing in the A”ij. The

and aij is not necessary to

are given by

(C-62)

(C-63)

in (C-4). When n, =4q;, (C-60)

for all p 2 n,

for all j = n,
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which implies the decoupling order of E'i cannot be larger than n, =g..
By Theorem 4.9 the decoupling order of E'i cannot be smaller than d.
so one may conclude immediately that if n, =g then the decoupling

order for ?:’i is g;. Now consider the case where n, <gq.. Post-

multiplying (C-60) by KIZ yields
i-1
npw - — npg % _
CiA A12 = Z wi!p ¢, A A12 for p Zn.l (C-66)
=1

Equations (C-54), (C-55), and (C-61) indicate that the only nonzero

terms in the above summation are those £ for which p = n, - 1 and
n, < - Then
i-1
npe x _ - _
ci AT A = Z ®p.n,-1 Yigp by for pzmy (C6D)
=2
where § is the Kronecker delta
p:-nl-]-
1 if 1=
6ij = (C-68)
0 i j
Then {C-59) becomes
‘ . . n.-1 j-n.
~ ] 1] ol .Y 1
ciA l:c.lA s c_.lA A12 929
J
RT I j-o
+ z c.A A12 K22 ]
p=ni+1



Z J Oy :
+ L” gj 95 for j2n,

(C-69)
where the Kronecker delta was used to eliminate the summation over p
and

wi.!,nl-l if ni-i-lSn!SJ.

0 otherwise

Letting j = q; and using (C-51), (C-69) becomes

i-
q. q. Q-'n
- %t TR R
ciA [ciA ,?; E 22 ]

q;-n,

I:Ci Z o 5i A%y 1} (C-71)

=1

Now define the following set of 1 X n row vectors:
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Y - [ciA”j_l, 0] foralljx1 (C-12)
If ni<qi let
[e,a", 0]  for1gign,
Vij = j-ni"l | (C-73)
[0, LAy i for j > n,
Then if n, = q;
8'.1 A1 ’{;ij for all j > 1 (C-74)
If n, < a;
AL - %, fori<jisn (C-75)
and for j >ni
i-1
o~ "’lrj'l _ ni=1 ~ et ~ -
¢; A = [c; A , 0] TVt Z ©ig, -1 Y5 (C-76)
=2

Using (C-60) this becomes
i-1

. i-1
~ wnj=l _ o~ - ~ ! ~
i A - vij * Zl wip,j-l Vpj + Z wil,j-l V.!j (C-77)
p:

Now define the m X n matrices
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<R

V..
1]

a—~
v

mj

(C-78)

From the form of (C-74), (C-75), and (C-77) it can be verified that for

any j
- 8 = [~ o~y
V1
CA" N v,
. = ij . (C-79)
. ri=1 A
CA”J V
_ _ Y]
where ”I\’Vj is an (m - j) X (m - j} triangular matrix of the form
1 o. .. .. 90
T (C-80)
Vi t. .0
Mp
— °1 _
A
The lower left half of T is made up of the w. . and w. in (C-77).

Vi P
A
For present purposes the significant feature of TVj

—

]
is its triangular

form. From (C-71)

il
A G [ ¢ za”qi 0] - a. v (C-81)
i i ’ ip 'i,m+p
p=1
Because of the special form of A"
g.
1l _
ciA = 0
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80

4 970
~ w0 M _ _ ~ ~ _
c; A = z aip Vi,ni+p (C-82)
p=1

1

This implies that & A" ! ig linearly dependent on the rows of the matrix

Vi
.'{'r’
L9
Since
Vi C |
) . )
= TV . (C-SB)
94 .., q,-1
¥ CAn !
9]

c
. ~1
Ex
Therefore
—— ~ h
& ] [ &
rk .Egnqi-l = rk . (C-84)
q. . g.-1
~ 2y L oo tl
| ciA _ I_.CA _

which shows that the decoupling order of E’i is no larger than Q;-

Since by Theorem 4.9 the decoupling order of 'c‘:’i cannot be less than
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q;: it may be concluded that it is, in fact, equal to q;- To establish
that (8", C) is decouplable it is only necessary to show that this pair

is observable. Because of requirement (i) on the t"i and the fact that
ny-1 -1
1

n
1 nm
the n row vectors {cl, eee, clA ) €y oeee, C A } are

linearly independent, it follows that the § row vectors

{Vll’ , qul’ Vop reeo mqm} are likewise linearly independent.
This means
M
rk . = A (C-85)
T—
fn
And by (C-79) this implies
¢
Ex"
gx -l
This shows that (A", ) is an observable pair, and is therefore
decouplable. Consequently, (A’, €) is also decouplable.
When
rk C<m (C-87)

the development proceeds in a similar way except that for the dependent

rows of C the associated f;i appear in C. To clarify this, suppose

rkC = m' (C-88)
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and assume the first m' rows of C are independent. Partition C so

that

C = (C-89)

where Cl is m'X n and

rkC, = m' ' (C-90)

et

The rows of C2 are dependent on the rows of Cl' Now & and B have
the same forms as previously given in (C-38) and (C-39), but € has

the form

0

C = (C-91)
Caz

The rows of 622 are chosen to be linearly independent. They play the

same role as the ;i in the previous development. Note that this makes
rk €& = m (C-92)

It is again easily verified that this is an equivalent representation. Now
A and C| can be put into the standard forms (C-24) to (C-30). A
simplification similar to the previous case is achieved by taking
1y
. “n g
D" = (C-93)
Y

o
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where D”11 is n X m' and is selected so that (A - D”11 Cl) has the
form of A" given by (C-44) to (C-48) (except that (C-44) has m' 2

blocks instead of mz). Then

B 1" ~
o e A-Dy G Ay
A-DE =
2 Agg
B " -~
A Ao
= (C-94)
| £ A9

From this point on, the development follows the previous case with

ni = 0 for the rows of Cz.
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