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ABSTRA CT

This research develops methods of self-reorganization which
can provide a complex linear dynamic system with the ability to re-
structure itself to compensate for failures in its effectors and sensors
and changes in the linear dynamics. The approach taken is to identify
the failure or change in the system and use that information to re-
structure a feedback control loop to maintain closed-loop stability if
possible. Controllability and observability criterion are used to
evaluate the potential ability of a system to tolerate failures in its
effectors and sensors. A lower bound is established for the number
of effectors and sensors a linear time-invariant system requires for
complete controllability and observability. The problem of identifying
failures and changes in the system is solved through the use of detec-
tion filters, which produce error signals indicating the location of a
failure or change. It is shown that it is always possible to construct a
filter capable of detecting any single failure or change in the observable
dynamics of the system. Extensive results are developed on the design
of a filter capable of detecting a substantial number of different failures
or changes. When the state of the system is fully measurable, a single
filter can provide information about all effector and sensor failures and
all changes in dynamics. Practical design algorithms are presented.
To deal with the feedback restructuring problem several algorithms
are presented for determining a linear time-invariant state feedback
law. These algorithms can be used on-line to produce any desired
closed-loop poles for the controllable portion of the system.
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GENERAL NOTATION

I. Lower case letters indicate vector or scalar quantities;

upper case letters indicate matrix quantities or Laplace

transforms.

II. The following quantities are general n-vectors: w, x, z, z .

III. The following quantities are general integers: i, j, k, k.,1

I, p.

IV. The following are general matrix quantities: Q, S.

V. T is a general coordinate transformation; a subscripted T

is a specific coordinate transformation defined in the

A
vicinity of its use. T is a general triangular matrix;

A

a subscripted T is a specific triangular matrix defined

in the vicinity of its use.

VI. Subscripted vector and matrix quantities not appearing

explicitly in the table of symbols are partitions or elements

of the unscripted quantity, e. g., A is a partition of A.

A lower case letter is used when the partition is a vector

th
or scalar quantity, e.g., b. is the i column of B.

Underscores are used occasionally to indicate a vector

quantity which may be confused with a scalar quantity.
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VII. The following notational rules apply to any quantities not

appearing explicitly in the table of symbols:

1. ( )T indicates a transposed quantity.

2. )and ) indicate transformed quantities

resulting from coordinate transformations.

3. () indicates an augmented matrix.
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CHAPTER 1

INTRODUCTION

1.1 Background

A self-reorganizing system is a system capable of altering its

own internal structure in order to maintain a satisfactory performance

level in spite of changes or failures in its components or changes in the

environment. The goal of self -reorganization is reliability. As

engineering systems become more complex, the problem of achieving

reliability becomes increasingly difficult. When a large number of

components is involved, the chance that one or more of them will fail

can be significant even if the components are highly reliable as indi-

viduals. One way of increasing overall reliability is to increase the

reliability of individual components. Often such improvements must

await technological developments and scientific advances in areas

related to the theory, design, construction of specific components.

Usually the systems engineer is concerned with another approach to

achieving reliability, which is the use of redundancy. Redundancy can

take many forms, but basically it may be regarded as "padding", or

providing somewhat more than is necessary for the system to function

satisfactorily. In this way certain component failures can be tolerated

without causing the failure of the system as a whole.

One of the simplest kinds of redundancy is what might be called

standby redundancy. This type of redundancy is seen in the use of spare
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components and backup systems. In case of failure, the malfunctioning

component or system is simply replaced by the spare component or

backup system. When this replacement process is carried out auto-

matically, the system exhibits an elementary form of self-reorganization.

One of the appealing features of standby redundancy is its rela-

tive simplicity, both in design and implementation. Design of a spare

component, for example, may be a simple matter of duplicating the

primary component. Implementation is normally accomplished by

isolating a defective component and switching in a spare. Seldom is it

necessary to significantly alter other parts of the system to obtain

compatibility with the spare component. Therefore, no extensive

logical capacity is necessary to implement a replacement. However,

even in this elementary form of reorganization,one part of the process

which is not always simple is the detection or localization of a failure

in time to deal with it before it causes the failure of the entire system.

Some kinds of failure can be detected and located immediately by simple

sensory information; for example, loss of pressure in a hydraulic

system. In other cases the problem of locating a defective component

is circumvented by grouping a number of components into a single unit

whose failure can be detected easily. Then, instead of trying to locate

a particular defective component in the unit, the entire unit is replaced.

A backup system is an extreme example of this approach. It is a rather

inefficient use of hardware, since a number of good components are

discarded along with the defective one.

Although it can be an effective means of achieving reliability,

standby redundancy with replacement reorganization has certain limita-

14



tions. In many cases, providing spare components is not the most

efficient use of hardware. Better performance can often be achieved

by making simultaneous use of all redundant components instead of

allowing them to remain idle until failure of the primary component.

For instance, a number of redundant sensors measuring the same

quantity can produce a more accurate estimate (i. e., a smaller variance)

than a single sensor. A number of devices whose total output is the sum

of individual outputs (such as force-applying devices or parallel

connected amplifiers) can also be used more effectively in concert than

individually. Not only is the total capacity or saturation level increased,

but the average operating level of each device is reduced. A lower

operating level may yield a longer average lifetime for each device.

The same argument applies to a group of components whose total output

is the product of individual outputs, such as cascaded amplifiers.

Admittedly, in the case of components with limited lifetimes which are

not much affected by operating levels, standby redundancy may still be

the most effective way to achieve acceptable reliability.

A second limitation of standby redundancy is that it provides

little protection against degradation of performance due to changes in

operating characteristics; for example, changes in dynamic behavior

such as might be caused by environmental conditions. If the changes

can be predicted prior to putting the system into operation, and they are

not too numerous, it may be possible to incorporate several operating

modes in the system. As changes occur, the system could be switched

to the mode appropriate for existing conditions. However, determining

when such changes occur may still be a significant problem. If the
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changes are not known ahead of time, then a more general restructuring

capability will be necessary to deal with them.

The motivation, then, for turning to more sophisticated self-

reorganization schemes is to produce a system with a greater capa-

bility for coping with changes in the system and in the environment, and

to make more efficient use of redundancy. With greater restructuring

capabilities it becomes possible to employ a kind of redundancy which

is more active than the standby redundancy described above. Instead of

providing spare components, redundancy is obtained by designing the

active components to supplement each other, or to serve overlapping

functions. Then when a component fails it is not replaced by a spare,

but its function is taken over by other active components.

An important special case of this kind of redundancy is seen in

the use of redundant multi-dimensional arrays of like components which

measure or control a vector quantity. For example, the inertial

angular velocity of a body can be measured by three orthogonal single-

degree-of-freedom inertial reference gyros. By arranging more than

three such gyros in a three-dimensional array, a certain degree of

supplementary redundancy among the sensors is obtained. This example

is a simple illustration of the more efficient use of hardware afforded by

supplementary redundancy as opposed to standby redundancy. If a

single redundant gyro were added to a set of three orthogonal gyros to be

used purely as a replacement, it would be mounted with its input axis

colinear with that of one of the first three gyros. It could then serve as

a backup to that gyro only. But if it were mounted so that its input axis

had a nonzero projection on all three input axis for the first gyros, then

16



it. would be supplementary to all three and complete information would

be retained if any one of the gyros failed. However, the required data

processing is more complex than in the standby case. Gilmore [ 8 3

has investigated such redundant gyro arrays. Another example of

redundant like-component arrays can be found in multi-jet reaction

control systems. Crawford [ 6 ] has considered the design and

implementation of redundant reaction jet arrays in spacecraft control

systems.

The use of supplementary components requires more re-

structuring capability than standby redundancy, because when a compo-

nent fails the system must reorganize itself to function with fewer

active components. Having been provided with an expanded capacity

for reorganization, a system then has a potential for dealing with other

changes in the system or in the environment. Some changes might be

similar to a failure in that a component becomes unusable; for instance,

the target of a star tracker being occulted by another body. Other

changes, such as in dynamic behavior, are more subtle.

In order to administer the more sophisticated restructuring

schemes, greater logical and computational capacities are required.

These greater capacities have become feasible with the rapidly growing

capabilities of special purpose computers. This growth has stimulated

an increasing interest in various on-line restructuring schemes,

exemplified by "adaptive", "self-organizing", and "self-optimizing"

systems. It is difficult to make sharp distinctions among these terms,

so a definitive categorization will not be attempted here. All the terms

suggest a certain restructuring capability, and therefore such systems

17



may exhibit some of the characteristics which have been used to

describe self-reorganizing behavior. The approaches to restructuring

used in these systems frequently bear on some of the same kinds of

problems encountered in self-reorganization. Chapter 3 discusses

some of the fundamental concepts on which many of the restructuring

methods are based.

1.2 General Problem Description

The basic system considered in this research is a linear plant

with feedback. Control forces are applied by effectors which are

subject to failure. The outputs of the plant are measured by sensors

which are also subject to failure. The linear dynamics are assumed to

be either piecewise time-invariant or slowly time-varying. A com-

pletely reliable data processing capability is presumed. The problem

is to maintain satisfactory closed-loop performance in spite of failures

in the effectors and sensors and changes in the linear dynamics. Satis-

factory performance means at least closed-loop stability. Some

additional properties of the closed-loop dynamic behavior are also

considered in situations where time is available for more extensive

computation.

The sensors and effectors are assumed to be supplementary, so

there are no spare components (although some of the results on failure

detection can be used with standby redundancy). In case of failure, the

system is expected to function with a reduced number of effectors or

sensors. Chapter 2 introduces some concepts for describing more

specifically the idea of supplementation as applied to sensors and

effectors for a linear plant. A quantitative measure for the degree of

18



supplementation among these components is also suggested.

The remaining chapters deal with the problem of implementing

a self-reorganization scheme assuming the basic plant is given.

Chapter 3, in addition to discussing some basic approaches to reorgani-

zation, presents a detailed formulation of the problem, describes the

method of approach used in this research, and introduces the subject

matter of the remaining chapters.

19



CHAPTER 2

COMPONENT SUPPLEMENTATION

2.1 General Discussion

The concept of supplementary redundancy was discussed in

Chapter 1. Supplementary components were described in a general

way as those which perform overlapping functions so that when one

component fails its function can be taken over by others. Before one

can proceed to construct systems with supplementary components, it

is necessary to have more specific definitions of the properties of

supplementation. This chapter investigates the supplementary

properties of effectors and sensors for a linear time-invariant system.

To discuss supplementation one must first define the functions

of the various components. Effectors are control devices, so it is

natural to define their function in terms of controllability. Sensors

are measuring devices, so it is likewise natural to define their function

in terms of observability. Fortunately controllability and observa-

bility are already well-established concepts in the theory of linear

systems. Sections 2.2 and 2. 3 apply these concepts to individual

effectors and sensors. They illustrate how the function of an effector,

for example, can be defined in terms of that portion of the state space

which the effector can control. A similar definition can be applied to a

sensor. The remaining sections in the chapter use these results to

develop severalways of defining more specifically the idea of supple-

20



mentation as applied to effectors and sensors. Attention is given to

the problem of how to measure degrees of supplementation among

components. Such ideas provide a measure of the potential ability of

a system to cope with failures of its effectors and sensors.

2.2 Partial Controllability

In this section some results concerning the concept of

controllability are reviewed. The primary purpose is to illustrate

how these results can be used to describe the control function of each

individual effector. The ideas presented here will be used in the later

sections of this chapter and also in Chapters 4 and 6 in a different

context.

Consider the linear time-invariant system described by

:(t) = Ax(t) + Bu(t) (2-1)

y(t) = Cx(t) (2-2)

where x(t) is an n-dimensional state vector, u(t) is an r-dimensional

control vector, and y(t) is an m-dimensional sensor output vector. The

matrices A, B, and C are of dimension n X n, n X r, and m x n

respectively. Employing the definition used by Athans and Falb [ 1 ]

a state x0 is defined to be controllable at time to if the state of the

system can be driven from x(to) = x0 to the origin in a finite time

interval by some control u(t). Athans and Falb show that for the

system described by (2-1) the set of controllable states is a subspace

n
of the state space, R' . Moreover, this subspace is spanned by the

columns (considered as vectors in Rn) of the matrix

21



W =[B,AB, .. a., A'n-1 B] (2-3)

or equivalently, the controllable subspace is the range space of W.

Hereafter the range space of W will be referred to as the controllable

space of B (with respect to A). Since by definition a state trajectory

joins every state in the controllable space with the origin, this space

can also be viewed as that portion of the state space which is reachable

by some control u(t) starting from the origin. The matrix W has

dimension n X (n-r), so the number of independent columns in W, and

thus the rank of W, can be no greater than n. If the rank of W is n,

the system given by (2-1) is said to be controllable and (A, B) is a

controllable pair. If the rank of W is less than n, the system is only

partially controllable.

Each component of the control vector in (2-1) is considered to

be the control force applied by one effector. To clearly indicate the

action of each of the r effectors (2-1) can be written as

i(t) = Ax(t) + + . u (t) (2-4)

where u.(t) is the ith component of u(t) and bi is the 1th column of B

u (Mu tM L::)1(2-5)
_ r _

B = [b1 , .. br ] (2-6)

Now suppose the system is being controlled by only one effector, say

the ith effector. Then the state equation is
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i(t) = Ax(t) + b.u.(t)

The statements concerning the controllability of (2-1) with the full

control vector can be applied to (2-7) as well by simply replacing B

with b.. Define

W. = [b., Ab., ... , An-1bl ] (2-8)
1 1 

The range space of W. is that part of the state space which is control-

lable by the ith effector. This means that acting alone the ith effector

can drive any state in the range space of W. to the origin, or can reach

any state in that space starting from the origin. The range space of

W. is the controllable space of b..

The matrix Wi has several important properties which are due

to the manner in which the columns of W. are generated. If the rank

of W. is k, then the first k columns of W. (from the left) are

independent and form a basis for the range space of W.. This is

verified by noting that if any column of Wi is linearly dependent on the

previous columns, say

k

k . A 1 b.A b.A bbij 1(2-9)

j=1

(where the a bI are scalars) then by premultiplying (2-9) repeatedly

by A it can be shown that Adb. for any j ;:. k is also dependent on the

first k columns, {b., .. ., Ak-1 b.}. It can also be shown from (2-9)

that the range space of W. is an invariant subspace with respect to A.

A subspace is invariant with respect to A if for any vector x in that
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subspace, Ax is also in the subspace. A subspace which has a set of

basis vectors of the form {b., Ab., ... , Ak-1 b I is called a cyclic

subspace because of the cyclic manner in which the basis is generated

from b.. The vector b. is called the generator of the subspace. A
1 1

cyclic subspace is always invariant. The concept of cyclic subspaces

and their generators play an important role in the study of the structure

of linear spaces and canonical matrix forms. A complete development

of the results stated above can be found in Gantmacher [ 711. Since

the first k columns of W. form a basis for its range space, it follows

that the range space of [ b , Ab, . ... , Ak-1 bi] is equivalent to that of

W., and

rkW. = rk[b., ... , Ak-1b.] = k (2-10)

The set of all vectors orthogonal to the range space of W. (more

precisely, orthogonal to every vector in the range space of W.) also

T
forms a subspace. This subspace is the null space of WT. If x is any

vector in this subspace, then

WTx = 0 (2-11)
1 -

The null space of W. will be .ferred to as the uncontrollable space of

b.. This terminology is motivated by the following observation. Con-

sider a linear- scalar function of the state variable given by

vh(t) = hT x(t) (2-12)

where h is a time-invariant n-vector. If h lies in the uncontrollable

space of b., then the action of the ith effector can have no effect on the
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dynamic behavior of vh(t).

The general solution of (2-7) is

t

x(t) = 4 (t, t0 ) x(t0 ) + 4 (tvr-) biu(T)dr (2-13)

t
0

where 4 (t, t0) is the transition matrix defined by

d o (t, t A (t, t (2-14)

( (t,t0) = I (2-15)

(I is the identity matrix.) Since A is time-invariant, t (t, t0 ) can be

replaced by the matrix exponential

( (t,t0 ) = eA(t-to)

A (t - to) 3  
(2-16)

j=0

Using this series expansion for } (t, T) the integral on the right hand

side of (2-13) becomes

t CO t

tt-((t, T ) biui(T ) dT = A b ( ) ui (T )dT

t 0 j=0 to (2-17)

The vectors Ab for all j are in the range space of Wi so (2-17) can

be expressed as

t

(tr)biu(T)d'r) = W g(t)(2-18)
Wtot
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where g(t) is some n-vector which depends on u(t). ( g(t) is not

unique if rk W < n). Using (2-18), (2-13) becomes

x(t) = (t, t0 ) x(t ) + Wig(t) (2-19)

and

vh(t) = hTx(t) hT (t, t) x(t ) + hT Wig(t) (2-20)

T T T
If h is in the null space of WY then W h = 0 or hT W = 0, and (2-20)

reduces to

vh(t) - hT 1 (t, t0 ) x(t0 ) (2-21)

Clearly u (t) has no effect on vh(t). In this sense the quantity vh(t)

is uncontrollable with respect to the ith effector. These observations

concerning the controllable and uncontrollable spaces of bi describe

the capabilities and limitations of individual effectors. They will be

used in Section 2.4 to determine the influence of effector failures on

system control capabilities and to define more precisely the idea of

complementary effectors.

2.3 Partial Observability

The results on observability presented in this section are

primarily intended to serve as a basis for evaluating the capabilities

of sensors and the effect of their failures on overall system capa-

bilities. Some of the results will be used extensively in Chapter 4

as well.

The system given by (2-1) and (2-2) is said to be observable if

given y(t) and u(t) over some time interval [t0 , t1 3 it is possible to
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determine uniquely the starting state x(t0). Substituting the general

solution for x(t1 ) into (2-2) yields

y(t1 ) = C ( (t1Vt 0 ) x(to)

ti

+ C 5% {(t 1 , T) Bu(r) dr (2-22)

t
0

To determine x(t0) it must be possible to solve the equation

C ( (t1 , to) x(t0 ) = y0 (t1 ) (2-23)

where t

yD(t1) = y(t1) - C ( (t,7T) B u (7) dr7 (2-24)

t
0

is a known quantity. Brockett [ 4 ] proves that for a linear time-

invariant system x(t0) can be determined to within an additive constant

which lies in the null space of the matrix

-- T -
C C

CA CA

n-1n-1

or equivalently, the null space of

C

C
M = .(2-25)

Cn-
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The system is observable then if and only if the (m.n) x n matrix M

has no null space. This is true if and only if rk M = n. If rk M < n

the system is only partially observable.

The range space of MT will be referred to as the observable

space of C. This subspace of the state space determines the ability

of the sensors to observe a scalar linear function of the state variables.

Consider the scalar

vh(tO) = hT x(t0) (2-26)

Given y(t) and u(t) over a time interval [t t ], x(to) can be deter-

mined to within an additive constant in the null space of M. Then x(t0)

can be expressed as

x(t0 ) = xp + z (2-27)

where xp is a particular solution of (2-23), and z is some unknown

vector such that

Mz = 0 (2-28)

Substituting (2-27) into (2-26) gives

vh(tO) = hT xP + hTz (2-29)

Now hT x is known, but hT z is, in general, unknown because z is

unknown. Therefore vh(to) cannot be determined unless it is known

with certainty that hTz - =0. This will be the case if and only if h is

orthogonal to every vector in the null space of M, or equivalently, if h

lies in the range space of MT
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It will become clear in later chapters that in a reorganization

scheme sensor outputs are used not only to determine the state of a

system, but also to provide information about failures and changes

which may have occurred. One part of the reorganization problem is

to detect changes in the dynamics of the system described by (2-1),

e.g., changes inA or B. The null space of M plays an important part

in determining the ability of the sensors to furnish information about

such changes. This interpretation of the null space of M will be demon-

strated after some basic results are established.

By reasoning similar to that used in Section 2. 2 it can be shown

that if rk M = q < n the matrix can be truncated after (m- q) rows

without altering the null space. That is,

C

CA
rkM = rk . = q (2-30)

q-1
CA

and the null space of the truncated matrix is the same as the null space

of M. From this fact it is easily established that the null space of M

is an invariant subspace with respect to A. Suppose x is in the null

space of M. Then

C CA

CA CA2

Ax = . x = 0 (2-31)

LCA q-1J L-CA q 9
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since all the rows of the matrix on the right are included in M (recall

q < n). If Ax is in the null space of the truncated matrix, it is also in

the null space of M. Therefore the null space is invariant with respect

to A . A subspace which is invariant with respect to A is also invariant

with respect to (} (t, to) for any t and t . This follows from the series

expans ion for D (t, t0) given by (2-16).

An invariant subspace with respect to ( (t, t0) is associated

with what will be called a free-trajectory subsystem. A free

trajectory is a homogeneous (undriven) solution of (2-1) and is given by

x(t) = (t, to) x(t0 ) (2-32)

From this equation it is clear that if x(t0) is in an invariant subspace

with respect to ( (t, t0), then the free trajectory x(t) remains in that

subspace for all t. Because the trajectory never leaves the subspace,

it can be completely described by a reduced state vector whose dimen-

sion is the dimension of the subspace. Suppose the subspace has

dimension i and the set of vectors {w 1 1 , ... , w1l} is a basis for it.

Any x(t) in the subspace can be uniquely expressed as

x(t) = w1 1 o(t) + ... + w 2 (t) (2-33)

for some scalar time functions {u1 (t), ... , o-(t)}. On the other hand,

this set of g(t) uniquely determines x(t). The f-vector

(t)

t)]
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therefore uniquely determines the trajectory x(t) and can be considered

the state vector of a subsystem of the original system. The undriven

dynamic behavior of this subsystem corresponds to the dynamic

behavior of a portion of the complete system given by (2-1).

The null space of MT, being invariant with respect to Q (t, t0 ),

can be associated with a free-trajectory subsystem. This subsystem

is unobservable in several senses. First, for any trajectory in the

null space of M

y(t) = Cx(t) = 0 (2-34)'

so y(t) provides no information about the state-of the associated sub-

system. Moreover, since the dynamic behavior of this system produces

no effect on the output y(t), it is clear that any scheme to identify the

dynamics of the system from y(t) can never produce any information

T
about that portion of the dynamics associated with the null space of M

In light of these observations the null space of MT will be referred to

as the unobservable space of C.

These results are concerned with the capabilities of the com-

plete set of m sensors modeled by (2-2). The same developments can

be applied to each row of C to determine the capabilities of each indi-

vidual sensor.

2.4 Invulnerability to Effector Failures

The material in this section is an attempt to provide some

answers to the question of how many effector failures can be tolerated

before a system becomes unable to function. Such a question is of
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interest because one would like to be able to design a self-reorganizing

system so that it can cope with the largest possible number of effector

failures. There is no unique answer to this question because there are

different ways of defining the stage at which a system becomes "unable

to function". In this section the concept of controllability will be used

to define stages of failure.

2. 4.1 Minimum Number of Effectors for Controllability

Consider the system described by (2-1). As in

Section 2.2, each component of the control vector will be considered

the output of one effector. Each effector is associated with the

corresponding column of B. The question to be answered here is,

what is the minimum number of effectors necessary to completely

control the system? Or in other words, what is the smallest value of

r for which there exists an n X r matrix B such that (A, B) is a

controllable pair?

The answer to this question can be obtained from

re.sults concerning the invariant polynomials of a square matrix.

Extensive results on invariant polynomials can be found in [ 7 1. Only

those properties necessary for present purposes will be presented

here. Any n X n matrix A has associated with it a unique set of n

invariant polynomials { i1 (s), ... , in(s)} of orders k,. . kn

respectively. -The polynomials have the following properties:

(1) They are monic, i. e., the coefficient of the

highest power in s is unity.

(2) The product of all the invariant polynomials

of A yields the characteristic polynomial of A
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Is - A = iI(s) -i 2 (s) ... in(s)

Since the characteristic polynomial of A is of

order n, it follows that

k1 + R..0+ kn = n

Each il(s) is evenly divisible by ij+1(s) This

implies

k >k >...>k1- 2- -n

Normally the

the sequence.

polynomials become trivial (equal to 1) at some point in

A typical set might look like

ks +I k1 -1
i1 (s) = s +&11lk s + ... + a1 1

s2+k 2 -1
i2 (s) = s +a I2k2 s5 + ... + a12 1

k k, -1
i (s) = s I + afk s

il +1 1

(2-38)

in(s) = 1

where the a are scalars. For this set k 1+1 = k+2 = kn = 0
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and

k1+ ... +k = n (2-39)

It will not be proven here, but the only matrices which have all non-

trivial invariant polynomials are of the form I, where u is a scalar

and I is the identity matrix.

The answer to the question posed at the beginning of the

section is obtained by counting the number of nontrivial polynomials.

Specifically, the minimum number of effectors necessary to make (2-1)

a controllable system is equal to the number of nontrivial invariant

polynomials of A. To see why this is true it is necessary to investigate

the way in which the invariant polynomials are obtained. The first

polynomial i1 (s) is the minimal polynomial for the entire state space.

This means that for any vector x in the state space

1k 1 -
i(A)x = A x + ailk A x+...+ a i x = 0

(2-40)

This, in fact, implies i1 (A) = 0. Equation (2-40) can be solved for

kg k1 -1
A x in terms of the vectors {x, Ax, ... , A x}. This implies

that

rk [ x, Ax, ... , An 1 x] = rk[x, ... , A x ] .k

(2-41)

for any x. Replacing x in this expression by the vector b associated

with any effector shows that the controllable space of any effector

cannot have dimension larger than k1 . In other words, the largest

possible subspace which is controllable by a single effector can have
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dimension no larger than k. It can be shown that there always exists

a vector for which the equality in (2-41) holds. By taking b. equal to

that vector, the ith effector will have a controllable space of dimension

k1 . Denote such a subspace by E. From Section 2.2 it is known that

{b.,Ab. . ., k1-1
the vectors {b., Ab. , b.} form a basis for E.

1 1 1.

The second polynomial i 2 (s) is the minimal polynomial

for the state space modulo E1 That is, for any vector x in the state

space

i2 (A)x = z (2-42)

where z is some vector in E. This equation can be solved for A x

k21
in terms of the vectors {x, Ax, . .. , A x} and z. But z can be

ki
expressed in terms of the basis vectors {bi, Abv ... , A b }

for E. Therefore A 2 x can be expressed as a linear combination

k2--1 k1-1
of the vectors {x, Ax, . . ., A 2x, b 1., Ab.. A b This

together with (2-41) implies

rk[x, Ax, ... , An- 1x, b., Ab., ... , An-lIb. ]1 11

= rk[x, Ax, ... , A2 x, bi. Abi, ... , Ak -bj

. k1 + k2  (2-43)

for any x. Replacing x by the vector b. associated with any second

effector and reordering the columns in (2-43) yields

rk [ (b.,b.), A(bVb.), ... , 1 (bi, b.) .k + k2

(2-44)
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This construction demonstrates that the largest possible subspace

which is controllable by two effectors can have dimension no larger

than (k1 + k2 ). Again it can be shown it is possible to find a b. for

which equality holds in (2-44). The same reasoning can be applied to

i3 (s) and so on. In general, the largest possible subspace which is

controllable by r effectors has dimension (k1 + ... + kr). The entire

state space (and the system) is controllable by r effectors if and only if

k1 + . .. + kr = n (2-45)

Comparing this with (2-35) one can conclude that the minimum value of

r for which (2-41) is satisfied is

rmin = (2-46)

Gantmacher [ 7 ] discusses several methods for generating the

invariant polynomials from which rmin can be determined. One

method is to reduce the characteristic matrix (Is - A) to a diagonal

matrix by elementary row and column operations. Then the invariant

polynomials of A appear as the diagonal elements.

A minimal set of vectors {bV, ... , br } capable of
min

controlling the entire state space is by no means unique -- in fact,

there is an infinity of such sets. No systematic procedure for deter-

mining all possible minimal sets is presented here. However, one

way of selecting at least one minimal set is to transform A to one of

the block diagonal standard forms derived by Gantmacher. When this

is done it is possible to select a minimal s& of b. by inspection.
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2.4.2 Supplementary Effectors

The previous section dealt with the question of control-

ability of the complete system given by (2-1). In this section attention

will be focused on the ability to control a scalar linear function of the

state, as given by

vh(t) = hTx(t) (2-47)

A subset of j effectors associated with the vectors {b. , ... , 1 b.}

will be considered supplementary with respect to control of the scalar

vh(t) if they are each alone capable of controlling vh(t). Applying the

results of Section 2.2, it can be seen that the 1th effector is capable of

controlling vh(t) if and only if

hT W. 0(2-48)

where W. is defined by (2-8). The subset of vectors {b. , ... , b. }
1. 1j

(from the full set {b ,, br}) which satisfy (2-48) corresponds to

the subset of effectors which are supplementary with respect to control

of vh(t). The number of effectors in this subset is a measure of the

invulnerability of the quantity vh(t) to effector failures. vh(t) will be

controllable as long as any one of the effectors in the above subset is

functioning. Therefore at least j effector failures (specifically,

failure of all effectors in the supplementary subset) are necessary

before vh(t) becomes uncontrollable. One can also associate this

degree of invulnerability with the vector h. When investigating the

invulnerability of a particular h, a more convenient relation which is

equivalent to (2-48) is
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Mhbi 0 (2-49)

where

hT

hTA
Mh = (2-50)

kTAn-1

th(Note that W. can be truncated after the k column, where k = rk W..

Similarly, Mh can be truncated after the Ith row, where I = rk Mh')

An invulnerability degree can be associated with every

direction in the state space. The direction with the least degree of

invulnerability is in a sense the "weakest link" of the system with

regard to controllability. This least degree of invulnerability is this

minimum number of effector failures necessary for the system to

become not controllable.

2.5 Invulnerability to Sensor Failures

The material in this section is analogous to the observations

made in Section 2.4 concerning effector failures. The purpose is to

provide some answers to the question of how many sensor failures a

system can tolerate and still continue to function. Again the answer

depends on how one chooses to define the point at which a system is

unable to function. Observability criterion will be used for this purpose

in the follow ing sections.
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2. 5.1 Minimum Number of Sensors for Observability

The results of this section are most easily developed by

referring to Section 2.4.1 and recognizing the duality relationship

between observability and controllability. Let ci be the 1th row of C.

The unobservable space of c. with respect to A coincides with the

T Tuncontrollable space of cT with respect to AT. Similarly, the

observable space of c. with respect to A coincides with the controllable

T T Tspace of cS with respect to AT. The invariant polynomials of A and A

are identical [ 7 3. Therefore theiesults of Section 2.4.1 show that the

largest subspace which is controllable (with respect to A T) by m

effectors has a dimension (k1 + . . . + km). It follows by duality that

the largest subspace which is observable (with respect to A) by m

sensors has dimension (k1 + ... + km). For a system matrix A with

invariant polynomials (2-38), the minimum number of sensors

necessary for observability is mmin = I. The minimum number of

sensors for observability is equal to the minimum number of effectors

for controllability.

2. 5. 2 Supplementary Sensors

This section presents two viewpoints of supplementation

among sensors. The first is based on the ability to observe a scalar

linear function of the state. The second is based on the ability to

provide information about the subsystem dynamics.

Consider the system (2-1) with sensor outputs given by

(2-2). Each component of the output vector y(t) will be considered the

output of one sensor. The ith sensor is associated with ci, the 1th
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row of C. The observations of Section 2.3 can be applied to each c..

The scalar function vh(to) given by (2-26) is observable by the 1th

Tsensor if and only if h lies in the range space of M , where

C..

I

c.A
M. = (2-51)

c.An-1.A

If rk M. = q., then there are n - q. independent solutions of the

equation

M z = 0 (2-52)

Let {z. ,.., z. } be a set of such independent solutions. These

vectors form a basis for the null space of M. Now h is in the range

T
space of Mi if and only if it is orthogonal to every vector in the null

space of M.. This will be the case if hTz = 0 for = 1, .. ,n-qi,

or equivalently,

hTN. = 0 (2-53)
1 -

where

N. = [z. , ., z. ] (2-54)

By forming the subset { c , .. , c } of all rows of C for which (2-53)
1 II

is satisfied, one obtains the set of sensors which are supplementary

with respect to the observation of vh(tO). The number of sensors in

this set is a measure of the invulnerability of vh(tO) with respect to
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sensor failures. This invulnerability can be associated with the vector

h as well. As in the case of effector failures, an (observation)

invulnerability can be associated with every direction in the state space.

The direction (or directions) with the least degree of invulnerability

is the weakest part of the system in terms of observability. This

least degree of observation invulnerability is the minimum number of

sensor failures necessary for the system to become not observable.

It is also possible to interpret invulnerability in terms

of determining subsystem dynamics. As indicated in Section 2.2, an

invariant subspace with respect to A can be associated with a free-

trajectory subsystem. Suppose the subsystem of interest is associated

with a certain I -dimensional invariant subspace defined by the basis

vectors {wI, ... , wi } . Define the n X f matrix

XI= [wil, ... , wi ] (2-55)

The invariant subspace is the range space of X . It can be shown that

if rkM X)K ,then thif rk(M 1Xh ) < , then the i sensor can provide information about

only a portion of the dynamics of the subsystem associated with the

range space of X1 . Assume

- rk(M.XI) = k > 0 (2-56)

Then there are k independent solutions of the equation

M. X O1= 0 (2-57)
i I-11 9

where #5is an 2 -vector. Let {/31,. . .fl~} be a set of such
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independent solutions. Define an n X k matrix

zI =x[ 1 1:..., 0 Ik ](2-58)

Note that the range space of ZI consists of all vectors which are both

in the null space of M. and in the range space of X . In other words,

the range space of ZI is the intersection of the null space of M. and

the range space of X . Since it is the intersection of two invariant

subspaces, the range space of ZI is itself an invariant subspace. A

second free-trajectory subsystem can be associated with the range

space of Z1 . It is, in fact, a subsystem of the first subsystem

because the range space of ZI is contained in the range space of X .

The range space of ZI is also in the null space of M, so one may

th
conclude from the results of Section 2.2 that the output of the i sensor

can never yield any information about the dynamics of this second sub-

system. In this sense, a portion of the dynamics of the first subsystem

is unobservable by the ith sensor. By counting the number of sensors

for which rk(M. XI) = / one can obtain the degree of invulnerability to
] 1i

sensor failures for the subsystem associated with the range space of X .

2.6 Summary

This chapter uses the concepts of partial controllability and

observability as the basis for some criteria for evaluating the ability of

a system to cope with effector and sensor failures. These criteria are

offered as possible design goals for the basic system in a self-reorga.'

nizing scheme. However, they measure only a potential ability. The

actual ability of a system to withstand component failures and other
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changes depends also on the effectiveness of the self-reorganizing

loops whose function is to make advantageous use of the supplementary

features built into the basic system. These self-reorganizing loops

are the subject of the remaining chapters.
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CHAPTER 3

SE LF - RE OR GA NIZA TION

3.1 General Principles

This chapter outlines some general concepts concerning self-

reorganization schemes. Specific areas to which the major results of

this research apply are described in more detail. The formulations

of the problems considered and the methods of attack are presented as

an introduction to the following chapters.

Reorganization of a system is made necessary when a malfunction

or change in the system or in the environment causes an unacceptable

deterioration in the performance level. (Such an occurrence will be

referred to as simply an "event".) The object of the reorganization or

restructuring is, of course, to restore the performance to an acceptable

level. One is quickly led to the observation that any restructuring

decision is based upon information about either the performance of the

system or the event which has occurred. Without at least one of these

two types of information available, there is no logical basis for selecting

a new structure.

Information about the performance of a system might be obtained

directly from sensor outputs or it may be obtainable only indirectly by

inference from measurable quantities. For example, accessible outputs

of the system might be compared to a reference model. The most

common types of performance information are performance level and

performance gradient with respect to some structural parameters.
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Higher derivatives of the performance function are usually too difficult

to generate for on-line use. Knowing the performance and performance

gradient for a certain system structure amounts to a local knowledge of

a performance as a function of structure. Structure-changing algorithms

based on such information will be local searching techniques. The local

knowledge of the performance surface is used to guide small changes in

structure to achieve higher performance levels. Many techniques for

locally directed searches have been developed in connection with

maximizing (or minimizing) a function of several variables and more

recently in connection with finding optimal controls for dynamic systems.

Many of the adaptive systems propos ed in the literature over the past

decade use performance information and locally directed searching

techniques [12, 13, 22, 25].

Perhaps the greatest appeal of this approach to reorganization is

that it is not necessary to make a detailed analysis of the relationships

between performance and structure. The search process takes the place

of such analyses, and therefore this approach is most useful in cases

where accurate analysis is difficult or impossible in the design stage.

Moreover, a substantial amount of imperfect knowledge about the basic

system can usually be tolerated when only performance level information

is required. As one would expect, a more complete knowledge of the

system characteristics is required to generate performance gradient

information. If these characteristics are themselves subject to change,

it may be necessary to identify'them before reliable performance

gradient information can be generated. Thus a reorganization scheme

based on performance information may also require a certain amount

of event information (about system characteristics) as well.
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Performance-directed searching methods have several limita-

tions. One limitation is that it is not always possible to determine

system performance. This is the case when a performance index is

based on inaccessible quantities. For instance, the performance index

of an inertial navigation system might be the error magnitude between

estimated and true position. Since true position is not known, the

performance cannot be determined on-line.

In other cases it may be possible to define a performance

measure that is accessible, but which in practice becomes unsatis-

factory because it is influenced too much by inaccessible effects. This

may happen, for example, when comparison with a reference model

is taken as a performance measure for a plant subject to unknown

disturbances. If there are significant disturbances acting on the plant

but not on the model, the performance measure may be too sensitive to

these disturbances to be useful for reorganization.

Performance information measured on-line indicates present or

past performance, whereas the information is used to determine

structural changes which affect only future performance (because of

delays in the restructuring process and in the system itself). This is

not a serious problem provided the performance surface (performance

as a function of structure) remains relatively stable in time. However,

if the performance measure is significantly influenced by time-varying

effects other than the restructuring process, then the performance

surface may be altered too rapidly for the reorganization process to

follow. The resulting performance can be poorer than if no reorganiza-

tion were attempted.
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Another limitation of performance-directed reorganization is

concerned with the speed of the reorganization process and related

questions of stability. Gradient information usually produces consider-

ably faster convergence in the search process. However, additional

delays associated with the use of gradient information can be sub-

stantial. The structural reorganization must proceed slowly enough to

allow the changes to be properly reflected in the gradient information,

otherwise the gradient information will be invalid. This usually means

the adjustments must be made slowly with respect to the dynamic

response of the basic system. Because of this, excessive searching

times may result when major events occur which require large

structural changes. In the meantime serious stability problems can

arise. In these situations it would appear to be advantageous to try to

make large changes initially which put the system structure at least in

the general area of the ideal one. This leads to the concept of reorgani-

zation based upon event information.

The second basic approach to reorganization is to attempt to

determine what event has occurred and to select a new structure to

compensate for it. This approach can be viewed in two steps:

(1) Processing the raw data from the system to obtain

information about the event which may have

occurred.

(2) Using the event information to select a new

structure.
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The techniques used to accomplish the second step will depend on the

type of event information which is generated in the first step.

As noted in Chapter 1 with the example of pressure loss in a

hydraulic system, some events can be identified immediately by simple

sensory information. Another source of event information is comparison

of redundant data. For example, a substantial discrepancy among the

outputs of several duplicate sensors might indicate that one (or more) is

defective. A "majority rule" decision can be made if there is sufficient

redundancy (e. g., if two out of three sensors agree). In the area of

digital logic design considerable attention has been devoted to the

problem of detecting errors in redundant data [10, 11, 18, 24]. If

discrepancies can be traced back to a particular component, this would

be an indication of malfunction.

When redundant data is not available, comparison with data from

a reliable model might be used to detect discrepancies. In many cases

the outputs or inputs of individual components are not accessible. This

makes the localization of a failure or change a more difficult problem

than simple comparison (unless, as suggested in Chapter 1, components

are grouped into easily diagnosable units). Inferences must be made

from observable effects on other parts of the system. Model comparison

is often used in the identification of dynamic systems from input and

output data. Identification of dynamic systems has received substantial

attention in connection with adaptive schemes, as mentioned earlier,

and also in the off-line design of process control. One technique which

has been employed extensively for this purpose is the use of an adaptive

model [12, 14,-16, 17, 27]. Parameters of the model are adjusted to
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minimize some measure of the difference between the system and

the model.

If the event information identifies a specific event, then

determining a new structure is a matter of establishing a connection

or association between the appropriate structure and the event. The

association between event and structure could be a direct association

or a logical one. The use of standby redundancy and replacement

reorganization described in Chapter 1 is a simple example of direct

association. Failure of a component is associated directly with the

new structure -- replacement of the failed component by a spare.

Direct association can also be used with supplementary redundancy.

One example is simply a table listing all events and their associated

structures. Or a direct association could consist of a fixed functional

relationship between event parameters and structural parameters. A

logical association would establish a connection between event and

structure on-line through the use of logical algorithms. Such an

algorithm might be a kind of quick redesign process shortened by prior

analysis of the basic properties of the general type of system. Direct

association would be faster but less flexible than logical association.

The event information could be in the form of a set of properties

or features which categorize events. Of course, if the features are

sufficient to identify a specific event, then the restructuring process

could be the same as described above. Instead of attempting to identify

a specific event, an alternative approach would be to associate each

event feature with some appropriate property or feature which the new

structure should possess. These associations between event features
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and structural features could be established as described previously.

They might also be established by a learning process. Such a learning

process would amount to discovering high correlations between

particular event features and structural features. To achieve learning,

some feedback must be available which would indicate whether the re-

structuring has been successful or unsuccessful. If a training period

is provided, this information would be supplied by the trainer or teacher.

For on-line learning reinforcement some kind of performance informa-

tion would be necessary.

Another approach to reorganization based on event information

is to formulate the problem in a statistical framework. Events can be

modeled as statistical events. Then the whole theory of hypothesis

testing can be brought to bear on the problem of event idenfication.

Once a decision is made about the occurrence of an event the restructur-

ing process can proceed as previously described. Or in some cases,

instead of making a yes or no decision about the occurrence of an event,

a probability of occurrence conditioned on available information can be

used as a basis for restructuring. A new structure could be selected

to maximize the expected performance or minimize an expected risk.

For example, the confidence in a sensor (i. e., the weight placed on its

measurement in arriving at a statistical estimate) could be based on the

probability that it has failed. The statistical viewpoint has been taken

by Rockwell [21] in obtaining a state estimate of a system in the face of

possible sensor malfunctions.

An aid to event identification which has not been considered here

is the possibility of performing tests or experiments on a system or its

components. Fault-detection experiments are of considerable interest
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in digital logic design [ 9, 10, 11]. The identification of finite-state

sequential machines is often based on the construction of test input

sequences which take the machine through all its transitions [ 3, 11].

A wide-band nput is often used as an aid to identification of a continuous

dynamic system. For purposes of self-reorganization one is normally

concerned with the problem of identifying failures and changes while the

system is functioning. This usually precludes the use of any extensive

tests or experiments because test inputs tend to disturb the normal

operation of the system. This is not necessarily always the case,

however. Sometimes it is possible to apply low-power test signals

which do not adversely affect operational performance. Or, during

intermittent periods of idleness a component might be isolated and

tested.

In the preceding discussion greater attention has been devoted

to passive event identification because it is more widely applicable to

on-line use. Moreover, techniques designed for passive event identifi-

cation can be used in active testing as well. The information provided

by a passive event identification scheme is often enhanced when

judiciously chosen test inputs can be applied to the system.

One advantage offered by reorganization based on event informa-

tion is the possibility of guiding large discontinuous structural changes

in a system. In this way it is possible to achieve quickly a system

structure which is relatively close to the ideal one. Implementing this

sub-ideal structure will hopefully achieve a sufficiently high temporary

performance level to allow additional time for making smaller "fine

tuning" adjustments in the structure. A second advantage of being able

to make large structural changes is that it is possible to jump over
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areas of unstable structures. Local adjustment techniques, on the

other hand, may have to go around or through unstable areas which lie

in the path from the old structure to the new one. Reorganization based

on performance and event information should be considered comple-

mentary techniques. When both types of information are available, the

most successful reorganization scheme will be a combination of the two.

Some adaptive systems presently proposed employ performance and

event information at different levels in the adaptive hierarchy. For

example, the adjustment of a model (based on performance information)

to determine system characteristics (event information) which is then

used to generate the primary system performance gradient information.

From a general viewpoint it would appear that event information is most

useful for initial gross restructuring, and performance information best

used for subsequent "fine tuning".

3.2 Method of Approach

The remaining chapters will be concerned with reorganization

based on event information. The greatest emphasis will be on obtaining

event information from raw system data. Taken together, the results

provide a basis for a coherent self-reorganization scheme. However,

in so far as is possible, the several areas have been developed inde-

pendently so they each may be of independent interest.

The basis system configuration is shown in Figure 3-1. The

quantities shown are defined as follows:

x(t) -- (n-dimensional) plant state vector.

u(t) - (r-dimensional) actual control vector. This is the

actual control applied to the plant by the effectors.

Each component of u(t) corresponds to one effector.
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y(t) - (m-dimensional) sensor output vector. Each

component of y(t) corresponds to one sensor.

x(t) -- (n-dimensional) estimated state vector.

ud(t) -- (r-dimensional) desired control signal.

c(t) - (r c-dimensional) command signal. This may be

zero for a regulator type control system or nonzero

for servomechanism type control.

The plant (enclosed in the dotted line) is defined to include plant

dynamics, effectors, and sensors. The following set of equations

describe the plant behavior (excluding plant disturbances and sensor

nois e).

Plant dynamics: x(t) = Ax(t) + Bu(t) (3-1)

Effectors: u(t) = ud(t) (3-2)

Sensors: y(t) = Cx(t) (3-3)

The matrices A, B, and C are time-invariant and have dimensions

(n X n), (n X r), and (m X n) respectively. The significant feature of

this plant description is that the effectors and sensors are assumed to

be nondynamic. In situations where effectors or sensors have signifi-

cant dynamics, such dynamics may be included in the linear plant

dynamics (3-1) through the use of an enlarged state vector. The simple

identity relationship (3-2) assumed for the effectors is taken for con-

venience. A more general functional relationship such as

u(t) = fud(t)) (3-4)
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can be brought into the form of (3-2) by defining a new desired control

vector

u'd(t) = f ud)(3-5)

The feedback loop consists of a state estimating filter and a

feedback control law generator. The filter may be designed to minimize

some statistical measure of the error between x(t) and x(t), such as in

a Kalman filter, or it may be designed deterministically so that x(t)

approaches x(t) asymptotically in the absence of disturbances. The

latter is often referred to as an "observer" [15] . This particular

configuration for the feedback loop is usually seen in an optimal control

formulation. The separation theorem [ 20] suggests this kind of

structure, and it has been heuristically extended with the proposed use

of observers [15, 19] . Briefly, the idea is to solve the optimal control

problem, assuming the state vector is known, to obtain a state feedback

control law. Then since the state vector is not completely known, an

estimate of the state (from a Kalman filter or an observer) is used

instead to generate the control signal. In these formulations there is

no external command signal, c(t). By allowing c(t) to be nonzero, a

servomechanism type formulation is possible, and the state feedback

control law can be designed to satisfy classical servoanalysis criteria.

For the purpose of this research it will be assumed that all events

occur in the plant and restructuring takes place in the feedback loop.

A reliable data processing capability is presumed. The data processing

equipment may have internal redundancy and self-correcting capabilities

of its own in order to achieve reliability. The design of reliable data

processing equipment is the subject of considerable (and continuing)
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research [ 9, 10, 11, 18, 24] , so it will not be belabored here. The

following events will be considered:

(1) Effector failure -- a departure from the intended

operation of the effectors described by Equation (3-2).

th
A failure in the i effector is modeled mathematically

as

u(t) = ud (t) + Srin(t)
d ri

(3-6)

A
where e . is a

ri

direction

A
e. =

th
unit r-vector in the i coordinate

0

0

1

0

0

.thI- - .position (3-7)

and n(t) is an arbitrary scalar time function.

Sensor failure - a departure from the intended

-operation of the sensors as described by Equation (3-3).

Ath
A failure in the L. sensor is modeled as

y(t) = Cx(t) + emin(t) (3-8)

A .th
where em . is a unit m-vector in the ih coordinate
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direction and n(t) is an arbitrary scalar time

function.

(3) Changes in plant dynamics -- changes in the elements

of the matrices A, B, or C.

The problem of detecting and identifying these events is discussed in

greater detail in Section 3.3.

The restructuring problem is concerned with altering the feed-

back control law and the state-estimating filter to compensate for the

events described above. This problem is discussed in Section 3.4.

3. 3 Detection and Identification Problem

The problem of identifying events from raw system data is con-

sidered in two steps -- detection and identification.

3.3. 1 Detection and the Detection Filter

Detection refers to the process of obtaining event informa-

tion based on accessible signals from the plant. The desired control

vector ud(t) and the sensor output vector y(t) are assumed to be

accessible signals. Since all events are assumed to occur in the plant,

the feedback loop is not considered in the detection process.

A solution to the detection problem is developed in

Chapter 4 in the form of a detection filter. The detection filter is a

linear filter driven by the accessible signals ud(t) and y(t). The output

of the filter is an "expected" sensor output vector. It represents the

sensor outputs which would be obtained if there were no failures,

changes, or other disturbances. That is, if there are no disturbances,

the filter output will approach the actual sensor output vector
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asymptotically as the effect of initial condition errors settles out.

When disturbances do occur there will be a difference between the

expected output from the filter and the actual output from the sensors.

This difference or error signal is the source of the desired event

information. The detection filter is designed so that when particular

events occur the resulting error signal behaves in a manner which is

unusual and easily recognizable. Event information is obtained by

looking for these unusual error responses.

It happens that in the absence of any disturbances, not

only does the filter output approach the sensor output, but the state of

the filter approaches the state of the plant. In this sense the detection

filter is also a state-estimating filter. In some cases it may even be

desirable to allow the detection filter to serve also as a state estimator.

However, a filter designed for state estimation will not be a successful

detection filter except by mere coincidence. Whereas a state-estimating

filter is designed to suppress all errors as much as possible, the

detection filter is designed to enhance and make easily recognizable

those errors which result from certain events. The filter must be

specifically designed to achieve this. The reason a detection filter may

also be a successful state estimator is that it can (and should) be

designed to suppress errors other than those associated with the events

it is designed to detect. Therefore, in the absence of those particular

events the errors should be small.

3. 3. 2 Identification Decisions

The event information obtained from the detection process,

although highly correlated with the related event, may not be sufficient
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to identify a specific event with absolute certainty. Such uncertainty

may be the result of noise disturbances, simultaneous multiple events,

or events which are simply not distinguishable from each other based

on the available data. Identification decisions are concerned with the

problem of identifying the most likely event or events in the face of

these uncertainties. Chapter 5 discusses some standard techniques for

making such decisions.

3.4 Feedback Restructurin

Feedback restructuring is concerned with finding a suitable

feedback control law and state-estimating filter to compensate for the

events defined in Section 3.2. As was mentioned in Section 3.3. 1, it is

possible to use the state of a detection filter as a state estimate,

eliminating the need for a separate state-estimating filter. In this case

restructuring of the filter is taken care of in the solution to the detection

problem and need not be considered as a separate restructuring problem.

Even if a separate observer is used, the detection filter results of

Chapter 4 can be used as the basis for restructuring algorithms for the

observer. If a true, statistically optimal Kalman filter is desired, the

Riccati equation for it will have to be resolved in whole or in part. If

the speed of convergence of the Riccati equation solution is doubtful, the

use of a detection filter as a temporary state-estimating filter is

suggested.

Chapter 6 deals with the problem of restructuring a linear state

feedback law. The main objective will be to achieve closed-loop

stability with a minimum of calculation. Several secondary objectives

will also be considered, however. Although the original feedback law
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may have been determined optimally, the time required presently to

solve most optimal control problems seems to preclude the use of

on-line optimal solutions as a basis for reorganization. The quadratic

cost, linear regulator problem, which involves solving a matrix Riccati

equation, may be one exception. But a linear feedback law, quickly

obtained, could be used to achieve a stable operating condition while the

more time-consuming optimal control solution is obtained. Or, a

performance-directed search might be used to arrive at the final

restructuring.
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CHAPTER 4

DETECTION FILTERS

4.1 General Discussion

The background and basic formulation of the detection problem

was discussed in Sections 3.2 and 3.3 of the previous chapter. A

proposed solution -- the detection filter -- was briefly described in

Section 3.3. 1. This chapter deals with the design of these filters and

the information they produce.

The special case in which the plant state vector is fully

measurable is treated separately in the next section. It serves as an

introduction to the more general case of a partially measurable state

vector.

4.2 Fully Measurable State Vector

The plant being considered is the linear time-invariant system,

including effectors and sensors, described by the equations

xt= Ax(t) + Bu(t) (4-1)

u(t) = ud(t) (4-2)

y(t) = Cx(t) (4-3)

The quantities in this plant description are defined and discussed in

detail in Section 3.2. A fully measurable state vector means that for

any time t Equation (4-3) can be solved uniquely for x(t), given y(t).
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Equation (4-3) is so invertible only if

rk C = n (4-4)

This implies that there are at least n independent sensors and m 2. n.

The detection filter is a linear time-invariant system driven by

the accessible signals ud(t) and y(t). It is described by

z(t) = Gz(t) + Dy(t) + Bfud(t) (4-5)

where z(t) is the n-dimensional state vector of the filter. The matrices

G, D. and Bf (of dimension (n X n), (n X m), and (n X r) respectively)

are to be chosen to produce the desired event information. The error

signal which will be the source of this information is defined as the

difference between the plant state and the filter state

E(t) = x(t) - Z(t) (4-6)

From (4-1) to (4-3) and (4-5)

= Ax(t) + Bu(t) - Gz(t) - Dy(t) - Bfud(t)

= (A - DC)x(t) - Gz(t) + (B - B)u(t) + Bf f(t - ud(t)

= (A - DC)x(t) - Gz(t) + (B - Bf)U(t)

BD = GB

A - DC =G
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Then the error equation becomes

Ht) = GE(t) (4-10)

If G is a stable matrix (i. e., if all its eigenvalues have negative real

parts) then

M E (t) = 0 (4-11)
t -*OD

and z(t) will approach x(t) asymptotically provided there are no dis-

turbances. Satisfaction of (4-8) and (4-9) with a stable G therefore

yields a state estimating filter. Equation (4-8), of course, can always

be satisfied by choice of Bf. Because of condition (4-4), there always

exists a D satisfying (4-9) for any G. If m = n, then C 1 exists and the

solution is unique

D = (A - G) C 1  (4-12)

If m > n, a (nonunique) solution is

D = (A - G) (CTC)~1 CT (4-13)

which can be verified by substitution into (4-9). Condition (4-4)

guarantees that (CTC)-1 exists.

Having satisfied (4-8) and (4-9) by choice of Bf and D, G can

now be selected to produce the additional properties desired of a

detection filter. The next three subsections will demonstrate that a

judicious choice for G is

G = -cUfI (4-14)
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where I is the n X n identity matrix and Cf is a positive scalar. It

will be shown that this choice for G results in an error signal whose

direction and magnitude are directly and simply related to the event

which caused the error.

4.2.1 Effector Failure Information

Assume a failure occurs in the ith effector as modeled

in Section 3.2 by

u(t) = Ud(t) + eri n(t) (4-15)

where 0'ri is an r-dimensional unit vector in the ith coordinate

direction, and n(t) is an arbitrary -scalar time function. Replacing

(4-2) with (4-15) and assuming (4-8) and (4-9) are satisfied, the error

equation becomes

Et) = GE(t) + Berin(t)

= GE(t) + b.n(t) (4-16)1

where b. is the ith column of B. Taking G as in (4-14), the solution of

(4-16) is.

E(t) = e9f(tt0 E(t )+ )Y eaf(tT)bn(T) dT

t
0

-cd- (t-t0 ) t - f (t - T
= e E(t) + b e n(Tr) dr

t
0

(4-17)
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Since cf is positive, the initial condition term asymptotically approaches

zero so

t - C (t-7)

E(t) ~ b.o e n(-r) dT for (t-t) >> --f (4-18)

to

Note that

t - f (t-T)

5e ft)n(T) d-r
t

0

is a scalar time function, so that for sufficiently large t, E(t) maintains

a fixed direction in state space - namely the direction of b.. An error

signal which maintains a fixed direction in the state space corresponding

to some b. is therefore indicative of a malfunction in the ith effector.

In the strict sense c(t) is not an accessible signal

because x(t) is not accessible. However, E(t) can be generated since

(4-3) can be solved uniquely for x(t). It is not necessary to solve for

x(t) if one defines an output error signal.

E'(t) = Cc(t) = y(t) - Cz(t) (4-19)

which is directly accessible. From (4-18)

t
t - 9 f(t- 7 )

E'(t) : Cb. Y e n(Tr) dT for (t-t) >> - (4-20)

t

so E '(t) maintains a fixed direction, Cb., in the m-dimensional output

space. Condition (4-4) ensures that each direction in the n-dimensional

state space corresponds to a unique direction in the output space.
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Whereas the direction of E 'I(t) or E(t) indicates which

effector has failed, the error magnitude contains information about the

nature of the failure, specifically information about n(t). The magni-

tude of E '(t) or E(t) is proportional to the output of a first-order linear

system (with time constant -) driven by n(t).
f

4.2.2 Plant Dynamics Information

The detection filter also can produce information about

changes in the elements of the matrices A, B, and C. However, there

are certain changes equivalent to coordinate transformations which can

never be detected from the accessible signals y(t) and ud(t). Even

when detectable, coordinate transformation type changes can be inter-

preted as changes in initial conditions. This will suggest the use of a

standard form for modeling plant dynamics.

Consider a plant whose describing matrices { A, B, C }

undergo a change amounting to a coordinate transformation of the state

space. The new matrices are

A = T~AT (4-21)

B = T B (4-22)

C = CT (4-23)

where T is an n X n nonsingular matrix. Assume the change occurs

at time to when the state of the plant is x(t0) = x0 . The output for

t > t is
0

X(t-t ) At
y(t) = Ce x0 + 5 e (t -T) Bu() dr (4-24)

t
0
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If the change had not occurred, the output would have been

A(t-to)
y '(t) = Ce x9 + C

5' A (t-7-)
e Bu(Tr)dr

to

Using (4-21) to (4-23), Equation (4-24) can be expressed in terms of

the old matrices

y(t) CTe 1 AT(t-t 0 )x + CT eTIAT(t-T) TIBu(T)dr

t
0

1A (t -to) t 1 t- ) -1
= CTT'e A Tx 0 + CT T eA(tT) Bu(r)dr

t
0

A (t-t 0) t At
= CeAt Tx 0 + C eA Bu(T)dT

t
0

(4-26)

Subtracting (4-25) from (4-26) yields

y(t) - y'(t) = CeA(t-t (Tx0 - x 0 )

If x0 is an eigenvector of T with eigenvalue 1, then Tx0 = x0 and

y(t) = y'(t) for all t > to. In this case the changed plant produces the

same output as the old plant would have, so it is impossible to detect

the change based on y(t) and ud(t). If Tx0 * x0 there will be a
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transient difference between the two outputs. In either case the control

u(t) causes no output differences.

Comparing (4-25) with (4-26) it is clear that the change

given by (4-21) to (4-23) could instead be considered a difference in

initial conditions starting at to. In the present context of self-

reorganization the latter interpretation is preferred. Changes in A, B,

or C would initiate a restructuring process, whereas a difference in

initial conditions is taken care of automatically by the feedback loop.

For this reason all plant descriptions which differ only by a coordinate

transformation of the state space will be considered equivalent. The

set of all such equivalent descriptions forms an equivalence class.

Any member of an equivalence class can be taken as

representative of the entire class. For the purpose of identifying

plant dynamics it is convenient to take as the representative member

that description which puts the matrix C in the simplest form. In the

case where there are exactly n independent sensors, C is n X n and

the most convenient plant description is the one for which C is the

identity matrix

C=I (4-28)

With C as in (4-28) the plant equations are

x(t) = Ax(t) + Bu(t) (4-29)

u(t) = ud(t) (4-30)

y(t) = x(t) (4-31)
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In this description all plant dynamics changes appear as changes in the

elements of A or B. The use of equivalence properties allows changes

in C to be interpreted as changes in A and B while retaining C = I. This

presumes the change in C does not reduce its rank to less than n. If

such a change does occur, condition (4-4) is violated and the state

vector is no longer fully measurable. This situation is dealt with in

Section 4. 3 where the state vector is not assumed to be fully measurable.

Assume A and B change at time to by an amount AA and

LB, so the plant dynamics then become

(t) = (A + AA) x(t) + (B + AB) u(t) (4-32)

Using (4-30), (4-31), and (4-32) for the plant description and the

detection filter as previously developed, the error equation is

E~ = x"(t) -Z*(t)

= (A + AA) x(t) + (B + AB) u(t) - Gz(t)

- Dy(t) - Bfud(t)

= (A - D + AA) x(t) - Gz(t) + B(u(t) - ud(t))

+ ABu(t)

= GE(t) + AAx(t) + ABu(t)

- -- f E(t) + A Ax(t) + ABu(t) (4-33)
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The solution of (4-33) is

= e E(tt0 )E(t) + AA t e-f(t7)

t
0

u(- )dr (4-34)+ AB e

to

By virtue of (4-30) and (4-31) this can also be written

-9- (t-t 0) t _ er f(t-T)

= e E(t) + AA e

t0

IB t - - (t-T)
+ A B 5 eft7

t0

y(Tr)dr

Ud(T )d-r (4-35)

Note that AA and AB have been assumed time-invariant in obtaining

(4-34) and (4-35). After the initial condition term has died out, the

settled-out error is

AA t e- c- (t-T)
Ec(t) = A A 5 e fT

t0

t

y(Tr)dm + ARB e

to

(4-36)

for (t-t)>>
0 9 f
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With C = I the accessible output error signal defined by (4-19) is

s imply

E '(t) = CE(t) = E(t) (4-37)

The components of the vector-valued time functions

t -_C.(t-T )

(t) = e y(T)dT (4-38)

t
0

4(t) = 5e ( ud(T)dT (4-39)

t
0

can be generated as the outputs of first-order linear systems driven by

the components of y(t) and ud(t). Identifying changes in A and B can

now be viewed as the problem of solving

E'(t) = AAst(t) + AB4(t) = [ A A,A B] [(4-40)
L j (t)j

given c'(t), p(t), and p(t).

Another useful viewpoint is to consider the error pro-

duced by a change in one element of A or B. Let a be the ijth

element of A. Assume a undergoes a change to a + Aa q at time to.

Then

AA = Aa.e. $e(4-41)

AB =0 (4-42)
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A A th th
where e. and e. are unit n-vectors in the i and j coordinate

L J

directions respectively. The settled-out error for this situation is

AT

= a.. $. (t) (4-43)
i1j t j

=t) T i h th
where 0 e(t) = (t) is the j component of (t).

th
For a change Ab.. in the ij element of B

AA =0 (4-44)

AB i . r (4-45)

and the settled-out error is

E'(t) = Ab.. . i ()

= Ab.e . .(t) (4-46)

ii AA

An error signal in the direction of e. with magnitude

proportional to 4 (t) is indicative of a change in a 1 . An error in the

same direction with magnitude proportional to LP (t) indicates a change

in b... The use of error information to determine AA and AB, or
ii

otherwise model the plant dynamics, is discussed in more detail in

Chapter 5.

In case there are more than n sensors (m> n) one can

take

C = (4-47)

7C2
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where I is n X n and C2 is (m - n)X n. This presumes that the

first n sensors are independent (i. e., the first n rows of C are

independent). If this is not the case, the output vector y(t) can be

reordered to make it so. The output relation is

~ x (t)

y(t) = (4-48)

_C 2x(t)_

Partition y(t) into two vectors

F1(t)
y(t) = (4-49)

L : 2 (t)

where fy(t) is n-dimensional and Y2 (t) is (m - n)-dimensional. Then

(4-48) is equivalent to

11(t) = x(t) (4-50)

y2(t) = C 2 x(t) (4-51)

The output y1 (t) can be used to generate an error signal

for AA and AB in exactly the same manner as for the case C = I.

Changes in C2 must now be considered in addition to changes in A and B.

L2(t) can be used to produce an error signal for this possibility. Define

a second error vector

E 2 (t) = 2 (t) - C 2 x(t) = a 2 (t) - C2Y 1 (t) (4-52)
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If C 2 changes to C2 + AC 2

Y2 (t) = (C 2 + AC2 ) x(t) = (C2 + AC2 ) &1 (t) (4-53)

and

E2 (t) = AC y1 (t) (4-54)

Determining AC is then a matter of solving (4-54) for AC 2 -given2(t)222

and yj(t), both of which are accessible signals.

This development assumes that C does not change in

such a way that the first n sensors become dependent. If that happens,

the first n rows of C would no longer be linearly independent, and there

would be no coordinate transformation which could produce the form of

(4-47). This technique for handling the case m> n is appropriate only

if there exists n sensors which can be counted upon to remain always

independent, thus ensuring the state vector will always be fully

measurable by those n sensors. If this is not possible, the techniques

of Section 4. 3. 6 can be used to obtain plant dynamics information.

4. 2.3 Sensor Failure Information

It was shown in Section 4.2.1 that an effector failure

produces an error signal whose direction is associated with the

malfunctioning effector. The situation is similar for sensor failures,

except that the information provided by the error direction is not as

precise. It will be shown that, in general, the error produced by a

sensor failure will lie in a two-dimensional plane.

Assume a failure occurs in the ith sensor as modeled in

Section 3.2 by

74



y(t) = Cx(t) + emi n(t)

where e mi.is a unit m-vector in the ith coordinate direction, and n(t)

is an arbitrary scalar time function. Replacing (4-3) with (4-55) in the

plant description, and using the same detection filter as before, the

error equation is

E(t) = k(t) - z(t) = Ax(t) + Bu(t) - Gz(t) - Dy(t) - Bfudt)

= (A - DC) x(t) - Gz(t) + B u(t) - ud(t))
A

- De mi n(t)

A
= GE(t) - De. n(t)

- -o-fE(t) -- Demi n(t)

The solution of (4-56) is

-- Uf(t-t)
E (t) = e *

A
E(t) De m

U .f (t-T)
e

t

and the settled-out error is

t -_ .f(t -T)
tE W)= Doe 5L eft)

t
0

Note that E(t) is not

accessible signals.

n(t) is an unknown.

an accessible signal, nor can it be generated from

Equation (4-55) cannot be solved for x(t) because

However, the output error
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A
E~t =y~t -C Z~t CEWt + e mi n(t)

t - Cr-f(t-T )

= - CD . e ftT)n(-r)dT + e. n(t)

t
0

(4-59)

is accessible. n(t) and 5'ef n(7-)dr are scalars, so this

to

settled-out error always lies in the plane formed in the output space by

A A
the two m-vectors, CDemi and em. In general, E'(t) will move

around in this plane. The only cases in which E '(t) maintains a fixed

direction are

A A
(i) if CDe. = aemi (4-60)

or

(ii) if n(t) satisfies the integral equation

n(t) = tef5' e n(T)dr (4-61)

t
0

where a is an arbitrary scalar constant.

A A
The error plane defined by CDe mi and e mi is the same

for all equivalent plant descriptions. Equivalent descriptions are

related by the coordinate transformation equations (4-21) to (4-23).

The transformation relation for D is

D=T 1 D (4-62)

which may be verified by transforming Equation (4-9) for D. Then

CDe .- CTT~Demi = CD e9. (4-63)
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When m = n and C is taken as the identity matrix as in

Section 4.2.2, (4-9) and (4-14) can be solved uniquely for D to obtain

D = A + c-fI (4-64)

Then

A A
e. - e. (4-65)

and

A A A
CDe .=De. = (A +cafI)e.

CrA
= a. + f e. (4-66)

where a. is the ith column of A. Then (4-59) can be written

t -r f(t-T A

cr(t) = - (a. + CfP) 3Y e n()dr + e n(t)

t0

= - a. st e-f(t7) n(O-)dr

t0

- t a_ ( --

+ t [n(t) - Cf5 e n(T )dT

t0

(4-67)

The two-dimensional error plane is uniquely determined by a and e1.

ofA.

(If a happens to lie along the direction of e then the error plane is

ofA
degenerate, and the settled-out error will lie in the fixed direction of eC.)

A settled-out output error which remains confined to a plane formed by

aandA.tha. and e. is tndicative of a failure in the i sensor.
I 1
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Each of the m sensors can be associated with an error

plane in the output space. An error signal which remains in one of

these error planes is indicative of a failure in the associated sensor.

Since there are m error planes in the m-dimensional output space,

these planes will intersect (unless all m planes are degenerate).

However, even when the error planes associated with two different

sensors intersect, it is still possible to differentiate between failure

of the two sensors, except in the following special cases:

(1) The two error planes are coincident, or in effect,

both sensors have the same error plane.

(2) The error signal maintains a fixed direction

coincident with the intersection of the two error

planes. In order for this to occur, the scalar n(t)

representing the sensor failure in (4-55) must

satisfy a particular equation of the form of (4-61).

Sections 4.2.1, 4.2.2, and 4.3.3 have described the

error signal which the detection filter produces in response to

individual effector failures, changes in plant dynamics, and sensor

failures. Chapter 5 discusses the problem of processing the error

signal to identify the most likely event (or events) in the face of

uncertainties resulting from noise disturbances, simultaneous

multiple events, or events which are indistinguishable based on error

direction alone. The exceptional cases mentioned above are examples

of the latter.
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4.3 Partially Measurable State Vector

A partially measurable state vector means that

rk C < n (4-68)

so (4-3) cannot be solved for x(t). In the previous section it was shown

that when the state vector is fully measurable, a single detection filter

can produce information about all three types of events - effector

failure, sensor failure, and dynamic changes. When the state vector

is only partially measurable, the capabilities of a detection filter are

more limited. A single filter, in general, will not be able to produce

all the information that the filter in Section 4. 2 does. However, the re-

sults of this section will show that if the plant is observable, i. e., if

(A, C) is an observable pair, any piece of event information found in

Section 4.2 can be produced by some detection filter. The limited

capacity lies in the fact that it may take a number of different filters to

provide all the event information.

In order that the results which follow will be generally applicable

to all three types of event information, a detection problem will be

defined in formal mathematical terms. The detection filter will still be

described by Equations (4-5), (4-8), and (4-9). Throughout Section 4.2

the state error defined by (4-6) always satisfied an equation of the form

(t) = GE(t) + fvE (t) (4-69)

where f is a time-invariant n-vector and vE(t) is a scalar. Specifically,

(i) f = b. and v (t) = n(t) for an effector failure,
1 E
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(ii) f = e. and v (t) = Aa..x.(t) or
1 E ij]]

v (t) = Ab. .u.(t) for a dynamics change, and
E l]J

A
(iii) f = -Demi and v (t) = n(t) for a sensor failure.

ml E

Equation (4-69) describes the state error for what will be considered

a "simple" event - one effector failure, one sensor failure, or a

change in one element of A or B.

As before E(t) is not an accessible signal. The accessible error

signal is the output error

E(t) = y(t) - Cz(t) (4-70)

For effector failures and dynamic changes, (4-3) is valid and

E'(t) = CE(t) (4-71)

For sensor failures (4-55) replaces (4-3) and

A
E(t) = CE(t) + e .n(t) (4-72)

The key feature of the detection filter in Section 4.2 is that the settled-

out error E(t) for a single event maintains a fixed direction in the state

space. Of course, this also means that CEt) maintains a fixed

direction in the output space. This is accomplished by choosing G = -cI.

Under condition (4-68), however, Equation ,(4-9) no longer has a solution,

D, for every G, and in particular may not have a solution for G = --gfI.

To make the limitations on G more explicit the state error equation

(4-69) can be rewritten as

E(t) = (A - DC) E(t) + fv(t) (4-73)

by use of (4-9).
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The design of detection filters is primarily concerned with being

able to specify certain properties of the matrix (A - DC) by choice of D.

It is known that if (A, C) is an observable pair, then all n eigenvalues

of (A DC) can be arbitrarily specified by choice of D [24] . The

following definition concerning specification of eigenvalues of a matrix

will be useful in what follows.

Definition 4.1.. The eigenvalues of an n X n matrix can be

specified almost arbitrarly if there exists a set of integers (n 1 , ... , n }

with

n+ ... + n1  = n (4-74)

such that the eigenvalues can be specified n. at a time.

For a real matrix this imposes a slight restriction on the

specification of complex eigenvalues, because they must appear in

complex conjugate pairs. For example, in the case of a real 4 X 4

matrix (n = 4) with n1 = 3 and n2 = 1, three of the eigenvalues must be

specified as a group, then the final one is specified separately. Since

complex eigenvalues must occur in conjugate pairs, the group of three

eigenvalues can have at most one complex pair with one real eigenvalue.

The final eigenvalue specified separately (as a group of one) must be

real. The possibility of two complex conjugate pairs of eigenvalues is

therefore -excluded.

A formalized definition of detectability can now be stated.

Definition 4.2. The event associated with the vector f in (4-73)

is detectable (or simply, f is detectable) if there exists a matrix D

such that
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(1) CEt) maintains a fixed direction in the output space

(where E(t) is the settled-out solution of (4-73) with

vE(t) an arbitrary scalar time function), and

(2) at the same time, all eigenvalues of (A - DC) can be

specified almost arbitrarily.

Condition (1) is the distinguishing feature of a detection filter

and is the source of the event information. There are several reasons

for condition (2). The matrix (A - DC) should at least be stable so

that the initial condition term in the solution of (4-73) will die out.

Otherwise CE(t) will not settle out to a fixed direction. But beyond

this, it would be desirable to have enough control over the eigenvalues

of (A - DC) to be able to influence the time required for CEt) to settle

out. A second reason for wanting to control the eigenvalues of (A - DC)

is that it would then be possible to tailor the dynamics of the system

(4-73) to the expected dynamic characteristics of the drive function

v (t), thereby enhancing the output error signal. Finally, condition (2)

is somewhat easier to deal with mathematically than some alternative

possibilities. What can be gained (and lost) by weakening condition (2)

will become clear later in this chapter.

The next section deals with the detectability of a simple event.

Sections 4. 3. 2, 4. 3. 3, and 4. 3. 4 are concerned with the problem of

detecting a number of events with a single filter. The final three sections

adapt the general results to the three types of events.

4.3.1 Detection Theorem

The main result of this section is the following theorem.

82



Theorem 4.1. Every vector in the state space (Rn) is

detectable in the sense of Definition 4.2 if and only if (A, C) is an

observable pair.

The proof of this theorem is based on a number of inter-

mediate results concerning properties of finite-dirmensional linear

vector spaces. The followLng lemma establishes the connection between

these vector spaces and condition (1) in the definition of detectability.

Lemma 4.1. Condition (1) of Definition 4.2 is satisfied

if and only if

rk C[f, (A - DC)f, ... , (A - DC)n-1f] = 1 (4-75)

Proof: The settled-out solution of (4-73) is

t

E(t) = 5e-[A-DC] (t-T) f V T) d T (4-76)

t
0

Applying the remarks of Section 2.2 to the present situation, one may

conclude that E(t) in (4-76) lies in the controllable space of f with

respect to (A - DC), or equivalently in the range space of

Wf = [f, (A - DC) f, ... , (A - DC)n-1 f] (4-77)

Therefore E(t) may be expressed in the form of (2-18),

E(t) = Wfg(t) (4,-78)

for some n-vector g(t) which depends on vE(t). Then

CE(t) = CWfg(t) (4-79)
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If rk CWf = 1, then the range space of CWf is one-dimensional and it

follows immediately that CEt) lies in a fixed direction for any g(t).

Therefore (4-75) is sufficient.

By the definition in Section 2. 2, all states in the

controllable space of f can be driven to zero by some (control) vE(t).

But a state trajectory for (4-73) can be followed in either direction,

so it is also possible to reach every state in the controllable space of f

starting from the origin. This means E(t) can be driven to any state

in the range space of Wf. Therefore condition (1) can be guaranteed

for arbitrary vE(t) only if rk CWf a 1. This establishes necessity and

completes the proof.

Finding a D which satisfies (4-75) is the first step in

designing a detection filter. The following definition is made for future

ease of reference.

Definition 4. 3. An n X m matrix, D, satisfying (4-75)

will be referred to as a detector gain for f.

The next lemma introduces a type of vector associated

with f which will be important not only in the proof of Theorem 4.1 but

also in the actual design of detection filters.

Lemma 4.2. If

(i) (A, C) is an observable pair,

(ii) rk W f k, and

(iii) rk CWf = 1

where Wf is defined by (4-77), then there exists an n-vector, g, in the

controllable space of f (with respect to [A - DC] ) such that
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C

CA

C. jg =20
k-2

CA

Proof: Now

C(A - DC)

C(A - DC) 2

= CA - CDC

= CA(A - DC) - CDC(A - DC)

= CA 2 - CADC - CDC(A - DC)

(4-83)

and, in general,

C(A - DC)3 = CAJ - CAJ 1DC - CA j-2DC(A - DC) -

CDC(A - (4-84)

for any j. This sequence of equations is equivalent to the single

matrix equation

C

C(A - DC)

C(A - DC)

C

CA

CAJ

A,

- T.

C

C(A - DC)

C(A - DC)J

(4-85)
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A

where T . is an rn'(j + 1)
Ii

M(j + 1) triangular matrix given by

0...

CD.

CAD

CA 1 D ... CAD

0

0CD

From (4-85) ,

EI+ Tj
21

C

C(A - DC)

C(A - DC)P

C

CA

CAJ

(4-87)

From the form of T. in (4-86) it is clear that [ I+ '. is nonsingular.

Taking j = k - 2, (4-87) implies that (4-80) is satisfied if and only if

C

C(A - DC)
g=0

C(A - DC)k 2

(4,-88)

As was noted in Section 2. 2, condition (ii) implies that

the range space of the truncated matrix

WfT
= Ef, (A - DC)f. .. , (A - DC)k- 1 f] (4-89)

has dimension k and coincides with the controllable space of f. Any
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vector in this space can be expressed (uniquely) as

g = W 0. (4-90)

where 0 is a k-vector. Substituting (4-90) into (4-88) yields

C 7

C(A - DC)

C(A - DC)k 2

CWfT

C(A -

C(A -

DC) WfT

DC) k-2Wf

Since 0 is a k-vector, (4-91) will have a nonzero solution if and only if

CWfT

C(A - DC)WfT

C(A - DC)k-2wfT

(4-92)

Now

CWfT

C(A - DC)WfT

Ca k-2C(A - DC) W fT

k-1

j=1
rk [ C(A - DC)3~ WfTI

Recall that the controllable space of f is an invariant subspace.
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rk ; k-I

rk

(4-93)
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Therefore

(A - DC) WfT = WfTP (4-94)

for some kX k matrix P. Then

(A - DC)3 WfT - WfT P (4-95)

for any j > 0. From condition (iii)

rk CWfT = rk CWf = 1 (4-96)

so

rk C(A - DC) WfT rk CWfT PI < rk CWfT

(4-97)

Applying (4-97) to (4-93),

CWfT

C(A -DC) W fT k-1
rk .< 1 1 = k - 1

j=1
k-2

C(A - DC)k WfTj

(4-98)

and therefore (4-91) does have a nonzero solution for #. Then g given

by (4-90) is also nonzero and satisfies (4-88) and (4-80).

Relation (4-81) follows from condition (i). Suppose

CAk-1 g = 0 (4-99)

Together with (4-80) and (4-87) this would imply
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C

S- DQ)g = 0 (4-100)

C(A - DC)k-1

or equivalently,

C[ g, (A -DC)g,...,(A-DC)gk- Jg 0

(4-101)

Now g is in the controllable space of f, which is an invariant subspace

of dimension k. The cyclic space generated by g therefore can have

dimension no larger than k. Then (4-101) would imply

C[ g, (A - DC)g, ... , (A-DC)- g] _=g]

(4-102)

or

C

C(A-DC)
g = 0 (4-103)

LC(A -DC)n-I

But with (4-87) this would mean

C

CA
g = 0 (4-104)

CAn-1
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which contradicts condition (i). One must conclude that (4-99) is not

true. This completes the proof.

Relation (4-81) guarantees that the cyclic space

generated by g (the controllable space of g with respect to [A - DC]) is

of dimension k, and so coincides with the controllable space of f. Note

also that (4-80) yields

[g, (A - DC)g, ... , (A-DC)k -1g) [g, Ag..,Ak-1g]

(4-105)

so the set of vectors {g, Ag, ... , Ak- 1 g} form a basis for the

controllable space of f. It should not be construed from (4-105) that

the cyclic space generated by g with respect to A also has dimension k.

It can be larger. Now f can be expressed as

f = a g + a2 Ag + ... + akAgk-1 (4-106)

for some set of scalars ,. .. , ak }. The magnitude of g is not

restricted by (4-80) and (4-81). It will be convenient to take the magni-

tude so that the (nonzero) term in (4-106) with the highest power of A

has a coefficient of unity. Premultiplying (4-106) by C and using (4-80)

gives

Cf = ak CAgk-1 (4-107)

If Cf f 0 then clk 0 and the magnitude of g is taken so that ak = 1

In general, if for some nonnegative integer M

CA3 f = 0for j = 0,...,p-1

(4-108)

CAuf f 0
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then

ak-j = 0 for j = 0, ... p -1

ak- 0 ](4-109)

and g is taken so that = 1. The fact that (A, C) is an observable

pair guarantees that (4-108) is true for some p _K k - 1. This follows

by the same reasoning used to prove (4-81). With the magnitude of g

taken as above,

f = a1 g + ... + ak-1 Ak-2 g + Ak-1 g if Cf # 2

(4-110)

or

f = a 1 g + ... + ak-p-l Ak--2g + Ak--1g

if (4-108) applies (4-111)

Definition 4.4. An n-vector, g, satisfying (4-80),

th(4-81), and either (4-110) or (4-111) is defined to be a k order

detection generator for f.

This terminology is motivated by the role which detection

generators play in the design of detection filters. Specifically, a

detection generator for f can be used to generate a detector gain for f.

Lemma 4.2 demonstrates that there always exists a detection generator

associated with a detector gain. The construction of the detection

generator in that lemma is based on knowledge of D, since WfT and

in (4-90) depend on D. However, the definition of a detection generator
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depends only on A, C, and f, so conceptually it is independent of any

particular D. The next theorem shows that if a detection generator

can be found by some means based only on A, C, and f, then it is

possible to write down immediately a solvable equation for D which

not only yields'a detector gain, but also allows arbitrary specification

of k eigenvalues of (A - DC), where k is the order of the detection

generator. The construction in Lemma 4.2 is not an appropriate

method for finding a detection generator because it is based on knowledge

of D. The problem of finding a detection generator will be discussed

later .

Theorem 4.2. If the conditions of Lemma 4.2 are

satisfied, and the k eigenvalues of [A - DC] associated with the

controllable space of f are given by the roots of

sk + pk sk-1 + + p 2 s + p1  = 0(4-112)

where the p. are scalars and s is a complex variable, then D must be

a solution of

DCAk-1g -pg+ p2 A g + . + pkA-1g + Ak

(4-113)

where g is a k order detection generator for f. Conversely, if there

exists a kth order detection generator, g, then any solution of (4-113)

is a detector gain for f, and k eigenvalues of [A - DC] will be given by

the roots of (4-112).
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Proof:

Assume the hypothesis for the first part of the theorem.

Applying the remarks of Section 2.2 to this situation with (4-112) given

implies

(A - DC)kf _ p1f - p2 (A - DC)f-... - pk(A - DC)k-1f

(4-114)

Lemma 4.2 establishes the existence of a kth order detection generator

g. Since g as well as f is a generator of the controllable space of f,

(4-114) applies to g also

(A - DC)g = -P 1 g-P 2 (A - DC)g-P..-Pk(A-DC)k-1

(4-115)

Using (4-105), (4-115) reduces to

(A - DC)Ak-1kgAk - DCAk-i _1_P9_ _kAk-1

(4-116)

which is equivalent to (4-113). This proves the first part of the theorem.

Assume now there exists a k th order detection generator,

g. Let D be any solution of (4-113). Equation (4-115) follows from (4-113)

by reversing the development above. Therefore g generates a cyclic

space of dimension k with associated eigenvalues given by (4-112).

Moreover,

rk C[ g, (A - DC)g, ... ,(A-DC)k-1g] = rk C[ g, A g, ..-. ,Ag]

= rk[0, ... ,0,CAk-lg =1

(4-117)
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so D is a detector gain for g. But f is contained in the controllable-

space of g by virtue of (4-110) or (4-111). Hence the controllable

space of f is contained in that of g, and so D is a detector gain for f

as well as g. If the controllable space of f has dimension k, then it

coincides with the controllable space of g and has associated eigenvalues

given by (4-112). But the fact that g is a kth order detection generator

and D satisfies (4-113) does not necessarily mean that the controllable

space of f has dimension k. For certain values of the coefficients pi,

it may have dimension less than k. In that case the eigenvalues

associated with it are a subset of the k roots of (4-112). In either case,

k eigenvalues of [A - DC] are given by (4-112). This completes the

proof of Theorem 4.2.

With the use of (4-110) or (4-111), Equation (4-113) may

be put in a more convenient form. Premultiplying (4-110) by C yields

CA k-1g=Cf (4-118)

which gives

DCf = + p1 g + ... + PkAk-1g + Ak g(4-119)

as the equation for a detector gain when Cf 0. Premultiplying (4-111)

by CAM yields

CAk-1g = CAP f (4-120)

which gives

DCAf = +Apgk-1g + Akg (4-121)
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for the detector gain when (4-108) applies. It is cumbersome and

unnecessary to carry along results from both (4-110) and (4-111),

since (4-110) can be viewed as a special case of (4-111) with p = 0.

But rather than using the general form, the algebra will be simpler and

more readable if (4-110) is used and (4-111) is brought into the form of

(4-110). This can be done by premultiplying (4-111) by A to get

A" f = AP g + . + ak- -1 Ak-2g + Ak-1

(4-122)

All the results which follow from (4-110) can be applied to the general

case by replacing f with Allf and a. with a._ for i= 1, ... , k

(defining a. = 0 for i <1 p).
I-y

The solution of (4-119) is developed in the lemma below.

Because the results will be used again later, it is presented in a

general form.

Lemma 4. 3. Let D, S, and Q be matrices of dimension

n X m, m X I, and n XI respectively. If rk S = I then the general

solution of the equation

DS=Q (4-123)

is

D = Q(STS)-1ST + DF[_I - S(S T S) -1ST] (4-124)

where D' is an arbitrary n X m matrix.

Proof:

The general solution of (4-123) can be expressed in the

form

D = D + D (4-125)
p o
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where Dp is a particular solution of (4-123) and D0 is the general

solution of the homogeneous equation

D0S = 0 (4-126)

Since rk S = I, rk(STS) = and (STiS) exists. 'A particular solution

of (4-123) is

D =Q(STS)-1 S (4-127)

which can be verified by direct substitution.

It can be shown that the general solution of (4-126) can be

expressed in the form

D0=D'r[ I - ( T S T-1T] (4-128)

where D' is an arbitrary n X m matrix. Let D' be any solution of0

(4-126). Take D t = D' . Then
0

D [ (TS)-1 T]= D' [I - S(S S)-1S = D' (4-129)

Therefore, all solutions of (4-126) can be expressed in the form of

(4-128). On the other hand, D'r[ I - (5 TS)-1STj is a solution of (4-126)

for any Dr, since

Dr[ - (S T y-13T jS= Dr[S -S] = 0 (4-130)

Substituting (4-127) and (4-128) into (4-125) gives (4-124) and com-

pletes the proof.

Specializing this result to (4-119) gives
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D = [plg + ... + pkA k-1g + Akg] [(Cf)TCfl(Cf)T

+ Dr I - Cf[ (Cf)T Cf] 1(Cf)T

(4-131)

as the general solution of (4-119). Note that [ (Cf)TCfJ is a nonzero

scalar since Cf 0. For D given by (4-131)

A - DC = A- [p1 g + ... + AkgJ [(Cf)TCfJ l (Cf)TC

Dr[I - Cf [ (Cf)TCf] 1(Cf)T C

= A t -D t Cr (4-132)

where

A' = A- [p1 g + ... + pkAk-1g + Akg j [(Cf)TCf] 1 (Cf)TC

(4-133)

and

C t  = [I - Cf[(Cf)TCf] 1(Cf)T] C (4-134)

A brief summary of what has been accomplished up to

this point is probably useful. The [A - DC] given by (4-132) satisfies

(4-75) which is equivalent to condition (1) for the detection of f.

Condition (2) remains to be dealt with. In the process of finding a

detector gain given by (4-131), k eigenvalues of [A - DC] can be

specified arbitrarily by selecting the set of coefficients {p1 , ... , Pk

as desired. Condition (2) will be satisfied only if there is enough

freedom left in the choice of D to almost arbitrarily specify the

remaining (n - k) eigenvalues of [A - DC] . The arbitrary matrix D'

represents the freedom left in the choice of D after having satisfied

97



(4-119). Regardless of the choice of D', condition (1) will be satisfied

and k eigenvalues of [A - DC] will be given by (4-112). The question

which now must be answered is, how many additional eigenvalues of

[A - DC] = [A' - D'C'] can be specified by free choice of D'? The

following lemma answers this question.

Lemma 4.4. If A ', C', and D' are real matrices of

dimension n X n, m X n, and n X m respectively, the number of

eigenvalues of [A '- D'C ']which can be arbitrarily specified by free

choice of D' is equal to qr, where

Cr

C'A'
qr = rk . (4-135)

Ct A ,n-1

Moreover, for any D' the remaining (n - q') eigenvalues of [AT - D'C]

are equal to corresponding eigenvalues of A'.

Proof:

This lemma can be proved using the fact mentioned

earlier that all eigenvalues of[A'- D'C'] can be arbitrarily specified

if and only if (A ', C') is an observable pair. Let

C'

C'A'
M = . (4-136)

C'A 'n-1
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Since rk M' = q', there are (n - q') independent solutions of

M'z = 0 (4-137)

Let {z, ... , zn-q be a set of such independent solutions and define

the n X (n - q) matrix

Nt  = [zn, ... -q] (4-138)

Then

rk N' = n -q (4-139)

and

M'N' = 0 (4-140)

The range space of N' coincides with the null space of M'. The

results in Section 2. 3 show that the null space of M' is an invariant

subspace with respect to AI'. It follows that the range space of N' is an

invariant space and therefore

A ' N' N P(4-141)

for some (n - q') X (n - q') matrix P. Let N' be any n X q' matrixNT C

such that the n X n composite matrix

TN = [N,N (4-142)
N' c

is nonsingular. TN! can be used to define a coordinate transformation

At ~-1 M
ATN A' TN' (4-143)

C' = C'TN'(4-144)

-1
= TND' (4-145)
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A' -D't'
-1

= TNt A'TN
-1

-TN, D'C' TN'

-1
= TN'I[A'-

so [T' -D'C]

D'C'j TN t (4-146)

and [A' - D'C'] are similar matrices and have

identical eigenvalues. Also

.r t

T'X ' kn-1

C'TN'

C'A'TNT
= M'TN'

8 'A n- 1 TN'

(4-147)

and since TN, is nonsigular

rkMI' = rk[M'TN'] = rkM' (4-148)

From (4-143)

TN' A' = A'TN'

If A' is partitioned into

A'

A'
21

A'12

A'
22

with block dimensions
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All - q' x q'

- (n - q') X (n - q')

- q' x (n - q')

A21 - ( - q') X q

then

TN r t [N' ,N'] [ 12

2221

= (N'A' + N'21I),c 1 21' (N'A'2+N' 2
c 1242)

(4-151)

Using (4-141)

= [A'N' A'N'] = [A'N', N'P'
c N]

(4-152)

Substituting (4-151) and (4-152) into (4-149) yields

N + N'Ak 1 ), (N'A 2 + N'Ak 2 )] = [zA'N', N' P]

(4-153)

Taking just the last -in - q') columns of this matrix equation

N'A ' + NA' = N'PC 12 22 N

A'12

22 NJ

0

12

TN'

L 2 N

(4-155)
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or
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But TN' is nonsingular, so this implies

A'
12

= 0 (4-156)

22 N

In particular

A' = 0 (4-157)12

so

X' 0

=XA22] (4-158)

21 22

Partitioning ' and iS' to conform withA'

= [C, C (4-159)

1'42]
1' =(4-160)

2

Now by (4-140)

C' = C'T N = [C'N', C'N']

S[C'N', o] (4-161)c-

so

1'= C N'(4-162.)
S(1c

C 1= 0_(4-163)
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Then

A' -151C'

A' o 111 -

21 22

X21 2 1

From the block triangular form of (4-164) it is clear that the eigenvalues

of [AX' -DW T'] (and therefore of [A' - D'C']) are the combined

eigenvalues of [A{t - D{C{] and A2 2 .

0)

(C'X' ,0)

n-1 11

1

C IA

CA

(4-165)

so

1

= rk M' = q' = rk

1

~1 11

-- l-

C A11
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1 1 01
-]

2I

2 J (4-164)

Now

C'

R)

0

rk

C1

1 11 (4-166)



Since A' is q' x q', this implies that (A{ 1 . C{) is an observable

pair. Therefore, all q' eigenvalues of the q' X q' matrix [A' I-DII

can be specified arbitrarily by choice of D{. The remaining (n- q')

eigenvalues of [A' - , and thus of [A' - D'C'], are the eigen-

values of A2 which are not affected by any choice of D'. From (4-158)22

it can be seen that the (n - q') eigenvalues of A 2 are eigenvalues of22areievleofA

and thus of A r. This completes the proof of the lemma.

With the result of Lemma 4.4 it is now possible to

conclude that the total number of eigenvalues of A - DC = AI' - D'C'

which can be specified while satisfying (4-119) is (k.+ q') where q' is

given by (4-135) and k is the order of the detection generator in (4-119).

Condition (2) of detectability will be satisfied if and only if k + q' = n.

The next problem is to find under what circumstances (e.g., for which

detection generators of what order) is k + q' = n. Since A ' depends on g,

it appears that M' given by (4-136) and q' = rk M' also must depend

on g. The following theorem shows that this is not the case. It

establishes the very significant fact that the number of additional

eigenvalues of [A - DC] which can be specified after satisfying (4-119)

does not depend on the particular detection generator g or its order k.

Theorem 4.3. If D is constrained to be a solution of

(4-119) (or equivalently (4-113) ), then the number of eigenvalues of

[A - DC] which can be arbitrarily specified, in addition to those given

by (4-112), is equal to
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C'

C'K
rk

C'n-1

where C! is defined by (4-134) and

K = A - Af [ (Cf)T cf] -1 (Cf)TC (4-167)

Proof:

By Lemma 4.3 all possible solutions of (4-119) are given

by (4-131) with D' arbitrary. The number of additional eigenvalues

which can be specified is therefore the number of eigenvalues of

[A! - D'C'] which can be specified by free choice of D', where A ' is

defined by (4-133). By Lemma 4.4 this number is q' given by (4-135).

Premultiplying (4-110) by A yields

Af= aAg +... + a Ak-1g + Ak (4-168)1 k-i1+A

Solving this equation for Akg and substituting the result into (4-133) for

A' gives

A ' = A - [plg + ... + pkAk-1

+ Af-a1 Ag- ... - a Ak-1 g [ (Cf)TCf] ~I(Cf)TC

= K - zd [(cfTCf3 1(Cf)TC (4-169)

where

Zd P1 g + (p2 - a) Ag + ... + k - ak-1) Ak-1
(4-170)
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By (4-80)

C 'AJg = I - Cf[iCf)TCf] 1(Cf)] CAig

= 0 for j=0, ... , k-2

and with CA k-1g = Cf from (4-118)

CAk-i

C'KA3g

=- I - Cf[(Cf)TCf] (Cf) CAk-i

I - Cf[(Cf)TCfJ i(cf)T Cf

= C'f = Cf - Cf = 0

= C'Aj+1 g - C'Af [(Cf) TCf]1(Cf)TCAJg

= 0 for j = 0,...,k-2

and solving (4-110) for Ak-1g gives

C'KAk-1g = C'K [f - aig - ... - ak-1-Ak-2

= C'Kf = 0

Kf = Af - Af = 0

Assume now

C 'K A3g =-0_ for j=0, ... , k-1
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C'Khi+iAg = C'KiAj+1 g - C'KAf [(Cf)TCf'] 1(Cf)TCAjg

= C'KIAg+lg = 0 for j = 0, ..., k - 2

(4-177)

and

CtKi+1A k-1g = CrKi+1[f - a1 g - ... - "k-1 Akg-2

= CrKi+1f = 0

since Kf = 0. Therefore, by induction, (4-176) is valid for all i> 0

and j = 0, ... , k - 1. Since zd in (4-170) is a linear combination of

the vectors {A g ; j = 0, . . ., k - 1 }, it follows that

CK d = 0 for all i;>0

CA = CtK - C'zd [(Cf)TCf] i(Cf)TC = C'K

and, in general,

- CKL for all i;>0

Therefore

Cr

C'A'

5C'A rn-i

(4-182)
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Substituting this into (4-135) gives the desired result and completes the

proof.

Note that K and C' do not depend on g or k. Therefore,

M' and q' = rkM' are independent of g and k. This means that regard-

less of what detection generator is used to solve for a detector gain and

regardless of its order, the amount of freedom left in D for specifying

additional eigenvalues is always the same. It depends only on A, C,

and f. Recall that the number of eigenvalues which can be specified in

the process of satisfying (4-119) is equal to the order of the detection

generator. It now becomes clear that condition (2) of detectability can

be satisfied if and only if it is possible to find a detection generator of

order (n - q'). Note also that a detection generator can never have

order larger than (n - q'), because this would imply specification of

more than n eigenvalues, which is impossible for an n X n matrix.

This motivates the following definitions.

Definition 4. 5. The null space of M' given by (4-182)

is defined to be the detection space of f.

Definition 4. 6. The dimension of detection space of f

is defined to be the detection order of f.

Definition 4. 7. A detection generator for f whose

order is equal to the detection order of f is defined to be a maximal

detection generator (or simply, maximal generator) for f.

Let the detection order of f be denoted by v. The

detection order of f is equal to the dimension of the null space of M', so

= n - rk M' = n-q' (4-183)

where q' = rk M' with M' given by (4-182). The detectability of f now
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depends on being able to find a maximal generator. The next theorem

establishes the conditions under which this is possible.

Theorem 4.4. If (A, C) is an observable pair, then

every n-vector f has a maximal detection generator and it is unique.

Proof:

For an arbitrary n-vector f, let K, M', and N' be

defined by (4-167), (4-182), and (4-138) respectively with rk M' = q'.

The detection order of f is V = n - q'. Let

g = N'1' (4-184)

where 0' is a v-vector to be determined. For a maximal generator

it is necessary that

C

CA
g = 0 (4-185)

CAv-2CA 2

Note that K in (4-167) has the same form as [A - DC] with

D = Af [ 1Cf)TCf} (Cf)T. Therefore, Equation (4-87) can be applied

to K to obtain

C C

CK CA
[I + T . (4-186)

v-2 C -2
LCK - LCA -

A T
where T' has the form of (4-86) with D replaced by Af[(Cf)TCf] 1 (Cf)T

V-2
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A
SinceI+T is nonsingular, (4-185) is equivalent to

C

CK

V-2
CK

g= 0 (4-187)

or with (4-184)

C

CK

K-2

N' /'

CN'

CKN'

v-2
CK N'

/ =30

(4-188)

This equation will have a nonzero solution if and only if

rk

CN'

CKN'

CK- 2 N'

CN'

CKN'

Kv- 2 N

< v -i1 (4-189)

< rk CN' + rk CKN' +...+ rk CKV- 2 N'

(4-190)

Since M'N' = 0

= 0 for i = 0, n - 1
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Substituting (4-134) into (4-191) gives

CKiN' - Cf[(Cf)TCf]~1(Cf)TCKi N' 0 (4-192)

or

CK 1N' = Cf[(Cf)TCf ]U(Cf)TCKN' (4-193)

Then

rk [CKN'] = rk [Cf[(Cf)TCf]i(Cf)TCKN]

< rk(Cf) = 1 for i = 0, ... , n-1

(4-194)

Applying (4-194) to (4-190) yields (4-189) and proves that (4-188) has a

nonzero solution. Since rk N' = n - q' = , g given by (4-184) is also

nonzero and satisfies (4-187) and (4-185).

It will now be shown that

CA V-1 g 0 (4-195)

First note that with (4-185)

Kg = Ag - Af[(Cf)TCfj-l(Cf)TCg = Ag (4-196)

K 2 g = KAg = A 2 g - Af[(Cf)TCf ]-(Cf)TCAg A 2g

(4-197)

and, in general,

K g = A g for i= 0, ... , -i (4-198)

Then (4-195) is equivalent to CK ~1g * 0. From the form of M' in

(4-182) it follows (from Section 2.3) that the null space of M' is an

(n - q')-dimensional invariant subspace with respect to K. Therefore,
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g, which is in the null space of M, can generate a cyclic subspace with

respect to K of dimension no larger than (n - q') = V. This means that

the range space of [ g, Kg, . .. , Kn-1g] coincides with the range space

of [ g, Kg, . .. , K g ] . Now if CK"~ g = 0, this together with (4-187)

gives C[ g, Kg, . .. , K g 0] = which implies Ct[g, Kg, .. ., Kn-Ig=0

or

C

CK

CKn-

(4-199)

Again applying (4-87) to K with j = n - 1, (4-199) would imply

C

CA

n-1CA

g = 0 (4-200)

which would mean (A, C) is not an observable pair, since g is nonzero.

But this contradicts the hypothesis, so one must conclude that

(4-201)

which by (4-198) gives (4-195).

Relation (4-201) guarantees that

rk[g, Kg, .... % K-1 g] = v (4-202)

since by (4-187) K'g must be independent of the vectors {K g;

i = 0, ... , v - 2} in order to satisfy (4-201). Therefore, the set of
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vectors {Ktg; i = 0, . . ., V - 1} form a basis for the null space of M'

(or equivalently, the detection space of f). By (4-198) this set of basis

vectors is the same as the set {A'g; i =0, . .. , i- 1}. Now

C'f = Cf-Cf = 0 (4-203)

i
and C 'K f = 0 for all i > 0 because Kf = 0. Therefore,

C'

C ' K
f = M'f = 0 (4-204)

8en-i

so f is in its own detection space. Then f can be expressed as a linear

combination of the basis vectors {A'g; i = 1, . . ., v - 1)

f=cag+ a2Ag+ ... + a01AV- g (4-205)

It has been shown that g is nonzero and satisfies (4-80), (4-81), and (4-106)

with k = V. By the same argument used previously, the magnitude of g

can be taken so that g satisfies (4-110) or (4-111), thus making it a vth

order detection generator for f. By Definition 4.7 this g is a maximal

detection generator for f.

For completeness, some clarifying remarks should be

made concerning the general case described by (4-108). As mentioned

earlier, this case is obtained by replacing f by A~f. Equation (4-204)

then becomes

M'A~f = 0 (4-206)
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which shows only that Alf is in the detection space of f. However, it

can be shown that f is in this space as well. By the same development

used to obtain (4-198) from (4-185), it follows from (4-108) that

K f = A f for i = 0, ... , yW (4-207)

Substituting this back into (4-108) yields

C

CK

CKA

f =0 (4-208)

which in turn gives

C'

C'K

8 'Ki

f =0_ (4-209)

Substituting (4-207) into (4-206) yields

M'Af = M'Kpf

C'K4

K 

f = 0 (4-210)

Combining (4-209) and (4-210) gives
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C'

C t K
f = M'f = 0 (4-211)

n-1C'K

and proves that f is in the detection space. Equation (4-205) therefore

is valid for the general case.

The observability condition guarantees that g is unique.

Suppose g1 and g2 are both maximal generators for f. Let A g = g1 - g 2

Then

C C

CA CA
Ag = . (g - g2 ) 0 (4-212)

v-2 vCA
LCA jvLCA 2

by (4-185). But

CAV-1Ag = CA- 1 g-CAV- g2 = Cf-Cf = 0 (4-213)

If Ag * 0 (4-212) and (4-213) would imply (A, C) is not observable by

the same argument used to show CA Vi1g # 0. Therefore, Ag = 0 and

1= g2  
(4-214)

which establishes uniqueness of g. This completes the proof of

Theorem 4.4.

Theorem 4.1 follows quite simply from Theorems 4.2,

4.3, and 4.4. By Theorem 4.4 observability of the pair (A, C) is

sufficient to guarantee existence of the maximal generator, which by
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Theorems 4.2 and 4. 3 makes it possible to satisfy both conditions (1)

and (2) of detectability. Moreover, the observability of (A, C) is

necessary in order to satisfy condition (2). This follows from Lemma 4.4.

The following observations are made to reemphasize

several important points and to highlight some additional facts which

are of interest.

1) For a given observable pair (A, C) each n-vector f

has one and only one detection space, detection order, and maximal

generator. Moreover, if A is replaced by A" = [A - D"C ] for arbitrary

D" (with appropriate dimension), the detection space, the detection order,

and maximal generator for f remain invariant. This property can be of

considerable value in determining the detection order and maximal

generator of a vector. As will be seen later, when A and C have a

certain standard form, it is a simple matter to choose a D" which

produces an A" with all elements zero or one, thus making computations

much simpler.

It should be noted also that the developments in this

section remain valid under a coordinate transformation of the state

space. Therefore, the detection order of f is invariant under a

coordinate transformation. The detection space and maximal generator

transform in the same way as f.

2) Theorem 4. 2 states that in order to be a detector gain

D must be a solution of (4-113) for some detection generator . By con-,

straining D to be a solution (4-113), (n - q') = v eigenvalues of [A - DC]

are completely fixed. Of these, k eigenvalues can be arbitrarily

specified by choice of the coefficients {pi; i = 1, . . ., k} in (4-113).
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If a nonmaximal detection generator is used (i.e., k < v) then (V - k) =

(n - q' - k) eigenvalues are fixed without the control of the designer.

In any case, the remaining q' eigenvalues can be specified arbitrarily

by choice of D' in the general solution of (4-113).

3) All detection generators for f (of all orders up to the

maximal) lie in the detection space of f. This follows from the fact,

established in the proof of Theorem 4. 3, that C IK'AJg = 0 for all i >0

and j = 0, ... , k - 1 where g is a kth order detection generator for f.

In fact, this shows that all the vectors {Ajg; j = 0, . . ., k - 1} are in

the detection space of f. By the same reasoning used to obtain (4-198)

from (4-185), it can be shown that any kth order detection generator

satisfies (4-198).

It should also be noted that every n-vector contained in

the detection space of f has the same detection order and detection space

as f. Suppose f has detection order v and g is its maximal generator.

Clearly, g satisfies (4-80) and (4-81) with k = V. Let f2 be any other

vector in the detection space of f. Since the set of vectors {Adg;

j = 0, ..., v - 1} span the detection space, f2 can be expressed as a

linear combination of these vectors. Then, with the possible exception

of magnitude, g satisfies the requirements to be a Vth order detection

generator for f 2 . This implies the detection order of f2 is greater than

or equal to v. Also, by the remarks in the preceding paragraph, the

vectors {A g; j = 0, ... , V - 1} all lie in the detection space of f2'

Since these vectors span the detection space of f, one may conclude

that the detection space of f is contained in the detection space of f26
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This means f is contained in the detection space of f2. But by the above

argument (with the roles of f and f2 reversed) this implies the detection

order of f is greater than or equal to the detection order of f2, and the

detection space of f contains the detection space of f 2 . Therefore, one

must conclude that f and f2 have the same detection order, and their

detection spaces coincide.

4) Although observability of (A, C) is necessary to

satisfy condition (2) of detectability, it is not necessary for condition (1).

A detector gain can always be found provided f does not lie in the

unobservable space of C. This can be shown by employing a coordinate

transformation similar to that used in the proof of Lemma 4. 4, which

transforms A and C into the forms

A = <AT = [ 1  A (4-215)

_A 21 A 22 j

C = CT = [ C, 0 ] (4-216)

where (A 1 , C1 ) is an observable pair. Partitioning fTand D to conform

withA and C

= Tif = (4-217)

D = T D (4-218)

L 2
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it is easily shown from the form of A and C that

C[f ... ,(A - DC)n-1 f] =CT. .. ,(A )Dn-1 T

CT f, .j5. J yn-1 T,

(4-219)

Theorem 4.1 can be applied to the observable pair (A C1 ) to show

there exists a D1 ., and thus a D, which satisfies condition (1). If f lies

in the unobservable space of C, then the settled-out output error is

zero for any D. Lemma 4.4 shows that if (A, C) is not observable then

there will be a number of eigenvalues of [A - DC] which will be equal

to those of A and which cannot be changed by any D (specifically, the

eigenvalues of A22 in (4-215) ). Nothing can be gained by accepting a

weaker control over the eigenvalues which can be changed. Therefore,

the observability condition can be relaxed only if one is willing to give

up all control over a certain number of eigenvalues of A.

5) It was suggested previously that it would be desirable

to tailor the detection filter dynamics to the dynamic characteristics

of the drive vE(t). It is of interest therefore to determine the resulting

error dynamics when D is a detector gain. The Laplace transform is

a convenient tool for studying the settled-out output error. Consider

E '(s) = /{CE(t)} = CX{c(t)} = C[ Is - (A - DC)] 1 f V (s)

whiere (4-220)

VE(s) = /{vE(t)} (4-221)

Let D be a solution of (4-113). The transfer from VE(s) to E'(s) is
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invariant under a coordinate transformation of the state space. Define

a coordinate transformation by the n X n matrix

Tf = [Tf1 , Tf2 J (4-222)

with

Tf = [g, Ag., =Ak-1g] g, (A - DC)g...,(A - DCk-1g

(4-223)

where g is a kth order detection generator for f and Tf2 is any

n X (n - k) matrix which makes Tf nonsingular. Let

10% -1
G = Tf (A - DC)Tf

C = CTf (4-224)

r"% -1
f= Tf f

Now,

(A - DC)T = (A - DC)Tf, (A - DC)Tf 2 ] (4-225)

From (4-115)

k
(A - DC)Tf = (A - DC)g, ... , (A - DC) g] = Tf1 G11

(4-226)

where

0 0 O-p1

1 0

G11  01 . . (4-227)

0. . 0.

0 0 '
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(A - DC)T f

(A - DC) Tf2

= T f

= T fG1 2 + Tf2G22

-1
Premultiplyirig (4-228) by Tf yields

= G =
F
_1

T (A -DC)Tf f

a1 1

0_

C = [CTf 1 . CTf2 ]

CT f - [0, ... , 0, Cf]

= Cf[0, ... , 0, i]

by (4-80) and (4-118) for Cf f 0. Finally, using (4-110)

T
f =T f f =[Tf1,19T f2] =T f f

1

.1

ak-1

1

(4-232)

(4-233)

(4-234)
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where

a1 1  a 1 2

a 2 2

(4-228)

(4-229)

Also

a1 2

a22]_

with

(4-230)

(4-231)

with



so

(4-235)

Now

C[ Is - (A - DC)] 1f = C[ris - a] f

= [CTf1 ,CTf2 1
[(Is

= CT f(Is - G11) f1

= Cf{[0, .. , 0, 1] (Is - G y)~ fl}

- a f) @ 12 1

0 (I -

(k-1 +0!k-1s k-2+..+k-i1k-

sk k-
p1 )

(4-236)

So

Cf H(s) VE(s)

+ ak
k-2

H(s) =
k 5 k-1 +

s5 ks + .

for Cf * 0. For the general case of (4-108),

D'(s) = CA~f H(s) VE(s)
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a )

where

E r(s) =

k-1
s

(4-237)

(4-238)

(4-239)



with

s--+ s--+ +. 1 420

H(s) = s k + 1k-l -+ +1(4-240)
sk + P k sk- + . .. + pg

The direction of Er(s) is, of course, fixed and given by Cf or CAT f.

The magnitude of E r(s) can be considered the output of a k-dimensional

single-input, single-output linear system with dynamics given by (4-238)

or (4-240). The significant fact to note here is that whereas the

denominator of H(s) -- the poles of the system - are under the

complete control of the designer, the numerator -- the zeroes of the

system -- cannot be altered by any D. Once a detection generator is

found, (4-113) can be solved to obtain a detector gain without knowing

the coefficients a. in (4-110) or (4-111). However, if time allows

it may be desirable to find these coefficients and determine where the

zeroes of the system lie before deciding where to put the poles.

6) The construction used in Theorem 4. 4 to show the

existence of the maximal generator is a feasible method for finding the

maximal generator for f, because all the quantities used in that con-

struction depend only on A, C, and f. Note C' and K are defined in

terms of A, C, and f only. The matrix N' is constructed from M'

which in turn can be defined in terms of C' and K by(4-182). Therefore,

M' and N' also can be constructed from A, C, and f. Appendix A

describes an algorithm for finding the maximal generator of a vector.

The algorithm is based on the construction in Theorem 4. 4, but is

somewhat more direct.
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The results of this section show that if (A, C) is

observable, any n-vector f in the state space has a unique maximal

detection generator, which can be constructed from A, C, and f only.

It has not been proven, in general, that f has detection generators of

orders less than the maximal. Lemma 4. 2 proved only that a kth order

detection generator must exist if a detector gain D exists which satisfies

the conditions of the lemma. It was noted previously that the construc-

tion used in that lemma is not an appropriate method for finding a

detection generator, because prior knowledge of D is assumed. It is

easily verified, however, that f is a unique first order detection

generator for itself. This suggests a tentative speculation that f has a

unique detection generator of every order from one up to the maximal.

7) There is a duality relationship between these results

on detection and the design of linear state feedback control, which is

concerned with the properties of the matrix (A + BL) with A and B given

and L to be selected. The dual significance of the results in this

section and later sections in this chapter are discussed in Chapter 6.

The results of this section deal only with the detection

of a single event. One of the appealing features of the detection filter

for the case of a fully measurable state vector was that a single filter

could provide all types of event information. As noted at the beginning

of Section 4. 3, this will not be possible, in general, when the state

vector is only partially measurable. The next three sections consider

the problem of detecting a number of events with a single filter.

Before proceeding to the next section, a simple example

will serve to illustrate some of the preceding remarks.
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Example El:

Suppose

0 3 4

A = 1 2 3 (E1-)

0 2 5

0 1 0

C = (121-2)
0 0 1

-3

f = 1(EI-3)

Note the (A, C) is an observable pair. As noted in remark 1), the maxi-

mal generator, detection order, and detection space of f remain un-

changed if A is replaced by A" = A - D"C for any D". It is convenient

to take

3 4

D = 2 3 (El-4)

L2 5j

since this yields the simple form

0 0 0

A"l=l 0 0 (E1-5)

S0 0
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Now

Cf = [1o13 =I[1

0 01 1 0 LO

and from the definition of Cr

Cr = C - Cf [(Cf)TCfJ l(Cf)TC

r 011 01
= B o [i] 1 oJL0 0 1 1 L0j

0 0 0
(E1-6)

L0 0 1

Using A" to form K

K = A"- A"f [ (Cf)TCf] (Cf)TC

F0 0 0, 0

= 1 0 0 - -3 [0 1 02

r0 0 0

= 1 3 0 (E1-7)

0 0 0

Then
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0 0 0

0 0 1

0 0 0
Mt= 0(E1-8)

0 0 0

0 0 0

0 0 0

and

rk T  = qr = 1 (E1-9)

The detection order of f is

V = n - q = 3-1 2 (El-10)

Consider the three-dimensional state space shown in

Figure 4-1. Note that

C T P e(El-11)1 2

C T = (El-12)

so the output vector

y(t) = Cx(t) (E1-13)

is simply the projection of the state vector x(t) on the (a 2  e3 )- plane.

From Mr it can be seen that the detection space of f

(the null space of M') is the (e1 - 2)- plane. The maximal generator

of f must be in this plane and in addition satisfy

Cg =[: g = 0 (El-14)
0 0 1
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^A
e3

A

Xel

Xxi

t
C2

y(t)
Ci92 0

A
c

00000

Figure 4-1.

and

CA"g B0

0
= Cf =

L01

These two equations imply that

'1:1 A

g = [
128

(E1-15)
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Now

Ag = Kg = Ag

[01

0J

A
e (El--17)

Note that g and Ag span the detection space of f, as illustrated in Figure

4-2, and

f = - 3g+ Ag (El-18)

Figure 4-2.
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The 3 X 2 matrix

d =

d131

d 12

d 22

d 32

will be a detector gain for f if it satisfies

d 
2DCf = DL =dp21 1 g + p2Ag+A g

_ 31 j

for arbitrary p1 and p2. From remark 5) and (E1-18) it is known that

if D satisfies (E1-20) the output error transfer function will be

ETr(s)
VX(s) = Cf H(s)

E (S

(s - 3)
2(s + p2s +p 1 )

If poles of H(s) are desired at s = -2 and s = -3, for example, then

(s + 2)(s+3) =

P1

P2

= 6

= 5

The transfer is then

Er(s) Cf H(s)

vE(S)
(E1-25)s+-+3)
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(E1-20)

(E1-21)

and

s2 + 5s + 6 (E1-22)

(E1-23)
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To produce this transfer the first column of D must satisfy

d 110- 3 9

d215 6 0 + 5 1 + 2 = 7 (E1-26)

Ld31- 0 0 2 2

Then

9 d 12

D =[7 d22(E1-27)

2 d 3

and

0 -6 4- d12

A-DC = 1 -5 3-d 2 2  (E1-28)

-0 0 5 -d 32

Note that after constraining D to satisfy (E1-20), the entire second

column of D is still arbitrary. The same result is obtained if Lemma

4.3 is used to obtain a solution of (E1-20). In that case

9

D = 7 (1) 1 0) + D'LI L 1 (1)~[1 0]

21+0

9 0
0 0

= 7 0 + D' (El-29)
0 1

2 0 ~--
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and

0 -6 4

0 0 0

A-DC = 1 -5 3D
0 0 1

0 0 5

0 -6 4 -d'2

1 -5 3-d' (E1-30)

0 0 5 -dr
- 32-

where

d r dt
11 12

D'= [d d2] (E1-31)

dt dr
_ 31 32 _

is arbitrary.

Two eigenvalues of (A - DC) are s = -2 and s = -3 by virtue

of the choice of p1 and p2 . From the block diagonal form of (A - DC) in

(E1-28) it is easily seen that the third eigenvalue is (5 - d3 2 ), so it can

be arbitrarily specified by choice of d 32. Therefore, all three eigen-

values of (A - DC) can be specified.

This will not be the case if a nonmaximal detection

generator is used to find a detector gain. Note that f is a first order

detection generator for itself. Hence, a detector gain for f can be

found by solving

DCf = pif + Af (E1-32)

This will yield an error transfer of
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(El- 33)E'(s) = Cf H(s) = [i] ivE S) 0 J

Equation (E1-32) yields

d ;-3 3

d21 + L-:i]
Ld 31jL0 1 L2

- 31

-3p1 + 3

p 2 1

2]

Then

D = [
and

A-DC = L1
0

-3p + 3

p1 - 1

2

3p,

-Pi +3

0

d12

d22J

d 32 .

4

3

5 ]
The eigenvalues of (A - DC) are given by the roots of

Is - (A - DC) = (s2+(p-3)s - 3p,) (s- 5+ d32

= (s+p 1 )(s-3)(s- 5+ d 3 2 )

=0

Two eigenvalues of (A - DC) are s = -p 1 and s = 5 - d32, and can be

arbitrarily specified by choice of p1 and d32. However, the third

eigenvalue of (A - DC) is always s = 3. This eigenvalue is automatically
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(E1-37)
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- d22
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determined when D is constrained to satisfy (E1-32), and it cannot be

altered by any choice of p1 , d 1 2 , d2 2 , or d 3 2 . This is an example of

the uncontrolled eigenvalues which result when a nonmaximal detection

generator is used to solve for a detector gain, as noted in remark 2).

In this example the uncontrolled eigenvalue produces an unstable filter,

but this is not necessarily always the case. For some other f the un-

controlled eigenvalue may yield a stable filter. However, to maintain

control over all eigenvalues of (A - DC), the maximal generator must

be used in determining D.

Consider again the matrix (A - DC) in (E1-28) obtained

with the use of the maximal generator. Even after specifying the third

eigenvalue of (A - DC) by choice of d32, there is still freedom left

in the choice of d12 and d22. One might ask if this freedom can be

used to make D a detector gain for a second vector, f2, as well as for f.

In this case the answer to that question is yes. First, assume f2 lies

in the detection space of f-- the (/e - 2) plane. Then

f2 =a 2 1 g + c2 2Ag (E1-38)

for some scalars a2 1 and a2 2 , and it is easily shown that a detector

gain for f, determined with the use of the maximal generator g, is a

detector gain for f2 as well. However, the output error direction

cannot distinguish between events associated with f and f2 , because

Cf2 =a 2 2 Cf (E1-39)

so the output error direction is the same for both f and f2. Some
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possible methods for distinguishing such events are discussed later.

As a matter of interest, the error transfer function for f2 in the

detection space of f is

5+ 21

E'(s) a 2 2  F _22s+__21

VE(s) 2 (s + 2) (s + 3) L ] (s + 2) (s + 3)

(E 1-40)

When f2 lies in the detection space of f, the freedom in the choice of

d12 and d2 2 is not necessary to obtain a detector gain for both f and f2 .

Now suppose f2 does not lie in the ( I - e2) plane.

Suppose, for example,

F 1
f2 = -1/2 (El-41)

1/2

It will be found for this example that the detection order of f2 (and, in

fact, of any vector not in the ( I - e2) plane) is v2 = 1. This means

that the maximal generator for f2 is f2 . To be a detector gain for f2'

D must satisfy

-1/2 p21 + 1/2

DCf2  = D = P21f2 + Af2 = -1/2 p2 1 + 3/2

1/2i .2 -1/2 p2 1 + 3/2

(E1-42)
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for arbitrary p2 1 . The third eigenvalue of (A - DC) will then be

s = - P21.- Let

P 2 1 = 4 (E1-43)

Then (E1-42) yields

d I yd 12 9/2

2 d21 + 2 [22 =[-5/

S d31( 6 i tdi3e2q ye l 7/2

Substituting (El-26) into this equation yields

d 1 2]

22

d32 j

9[59

+ I1

7

18

6

-9 j
Then

D =

9

7

2

18

6

9

and

G = A-DC = [-
0

1

0

]
-6

-5

0

-14

-3j

- 4

It is easily verified that for f
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C[Is - G]- f V E(s)

1] ________

I V(s)-L j (s+2)(s+3) E

C[Is - G] -1f2 vE(S)

-1/2

1/2 s+4 E(s)
(El-49)

so D given by (E1-46) is a detector gain for both f and f2 The

settled-out output error produced by the event associated with f always
1 -~

lies in the direction in the output space. The event associated
_.. _j~-1/21

with f2 produces a settled-out output error lying in the direction j .2
L1/2J

In addition to making D a detector gain for f2, it was

possible to specify all three eigenvalues of (A - DC). Unfortunately,

this is not always possible. Consider what happens when D is constrained

to be a detector gain for f2 given by (EI-41) and fI given by

ft = [0] (El-50)

The detection order of f1 isv1 = 1,

A detector gain for f1 must satisfy

DCf1 = D K =

and f1 is the maximal generator.

PI f 1+ Af1

F

= 3

p+
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for arbitrary p, 1 . This together with Equation (El-42) for a detector

gain for f 2 gives

H -1/21

1/2]

4+

= [ 1 3

pil 5

p 21 + 1/2

-1/2 p21 + 3/2

1/2 p21 + 3/2

(E1-52)

which has the unique solution

-2p 21 + 3

D =P21

-P21 + p1 1 + 2

Then

A-DC = E Q1

_0U

2p
2 1

-P21 + 21

P21 ~- 11

(El-53)

4

3

pil+

0

0

~Pi1-_

(E1-54)

The D given by (El-53) is a detector gain for both f1 and f2. The

eigenvalues of (A - DC) are given by the roots of

Is - (A - DC) = (2 + (p21 - 2)s - 2p 2 1  (s +p1)

= (s -2)(s+ p2 1) (s+ p 1 )

=-0 (E1- 54)

Two eigenvalues of (A - DC) can be specified by choice of p1 1 and p2 1 .

However, the third eigenvalue is always s = 2 regardless of the choice
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for p11 and p21 . This eigenvalue is automatically determined when

D is constrained to be a detector gain for both f1 and f2. In this

example the uncontrolled eigenvalue produces an unstable filter.

This implies that it is not possible to detect both f1 and f2 with a

single filter. It is necessary to use two separate filters -- one for f

and another for f2'

The uncontrolled eigenvalues do not always cause

instability. If, for example, instead of (E1-41) f2 is

f2 1/2 (E1-55)

1/2

then the detector gain for fI and f2 Is

2P21 + 3 4

D = P21 + 4 3 (El-56)

P21 - 11 + 2 pil + 5_

and

0 - 2p2 1  0

A - DC = 1 p21 - 2 0 (E1-57)

-0 ~P21 + p 11 -pi

In this case the uncontrolled eigenvalue of (A - DC) is s = -2. If a pole

at s = -2 yields an acceptable settling time for the filter, then f1 and f2

can be detected by a single filter with a detector gain given by (El-56).

The next three sections investigate the problem of detecting a number

of events with a single filter.
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4. 3.2 Mutual Detectability

Consider a set of r n-vectors {f, ... , f} associated

with a set of r events. The problem considered here is, given such a

set, to determine if it is possible to detect all vectors in the set with a

single detection filter.

Definition 4.8. The vectors {f,. fr are defined

to be mutually detectable if there exists a D which satisfies the

conditions of Definition 4.2 for all the f., i = 1, .. , r.

An important special case of this problem is encountered

when the vectors are "output separable" as defined below.

Definition 4.9. The vectors {f, ... , fr are defined

to be output separable if

rk CF = r (4-241)

where F is an n X r matrix given by

F = [ A"' f1, A2 2'f 2'P A rjr (4-242)

with pi for each i defined by

CAdf. = 0
1C-

CAW f ._

; j = 1, .. , .- 1

(4-243)

Note that (4-241) implies r <m where C is m X n. This definition

is motivated by the following observation. Suppose two vectors f1 and

f are not output separable. Then rk CF = 1 and CA f and CA 2f2 1 2
lie in the same'direction in the output space. This means that even if
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a D' can be found which is a detector gain for both f1 and f2 the output

error for both events will lie in the same direction. Thus the output

error direction will not separate these two events. More will be said

about nonseparable vectors at the end of this section.

The next theorem provides a test for mutual detecta-

bility of output separable vectors. Before stating the theorem, some

preliminary results and definitions are necessary. By Theorem 4.2

a detector gain for the vectors {ff, . . ., fr} must satisfy a set of r

equations of the form

k-1 k.-1 k.
DCA i= pigg+Pik. A =g + A i

for i = 1, ... , r (4-244)

where g is a kLth order detection generator for fi. Using the form of

(4-121) this set of equations can be written as a single matrix equation

DCF = Qd (4-245)

where F is defined by (4-242) and

Qd [wdl' . 'wdr] (4-246)

w ith
k.-1 k.

wd = pigi ... + Pik. A g + A gi

for i = 1, ... , r (4-247)

When the f. are mutually separable (4-245) always has a solution. If

D is a solution of (4-244) each g generates a cyclic subspace of dimension
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k. with respect to (A - DC). The eigenvalues associated with each of

these invariant subspaces can be specified, k at a time, by choice of

the coefficients {p..; j = 1, . . ., k. ; i = 1, . . ., r}. The fact that

the eigenvalues for each invariant subspace can be specified inde-

pendently of the remaining subspaces implies that these subspaces are

all nonintersecting. This is verified independently by the following

lemma.

Lemma 4. 5. Let {f 1 , ... , fr} be a set of output -

separable vectors. If, for each i, g. is a k th order detection

generator for f., then the (k. + ... + kr) vectors {g1 , ... , A 1 g, g2 'kr-1
A r ) are all linearly independent.

Proof:

Suppose the above vectors are linearly dependent. Then

for some set of scalars {r..; j = 1, ... , k.; i =1, .. , r}, not all

zero,

k.
r

r.. A3  g. =0 (4-248)

i=1 j=1

Premultiplying this equation by C and using the properties of a detection

generator gives

r k.-1r

aik. CA 1 ig = 2 .lkCA if = 20

1=1 i=l
(4-249)

But the vectors {CA f . ., CAr fr are linearly independent
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because the fi are output separable. Therefore, (4-249) implies

crik. = 0 for i = 1,...,r (4-250)

Premultiplying (4-248) by CA and using (4-250)

r Ck.-1

I k-1CA'I
i=1

g=
P,

cr CA 1 f

which implies

i,k-1 = 0 for i = 1 ... ,r (4-252)

This procedure can be continued until all the o.. are shown t6 be zero.
k1-1

It must therefore be concluded that the vectors {g1 , ... , A g1 , g2 'k -1
A r g } are all linearly independent. This proves the lemma.

Lemma 4.3 gives the general solution of (4-245) as

D = Qd[ (CF)TCF] - (CF)T + D'[I - CF[ (CF)TCF] ~1(CF)T

(4-253)

When this D is put into (A - DC) the result is A - DC = A' - C

where

A' = A - Qd[(CF)T CF] ~1(CF)T C

C = [I - CF[ (CF)TCF] ~1(CF TC

(4-254)

(4-255)

Equation (4-111) for each f. can be used to obtain an expression for A'

corresponding to (4-169),
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= K ZdI[(CF)T CF] - (CF)T C

K = A-AF[(CF)TCF] - (CF)TCT

Zd

zdi

= [zdl a ... z ]dr

.di +1
= wd - A f.

The expression analogous to (4-122) for each A f. is

A'I =ai. A0i g+...+ a. Ai g.1 +
1 1

k.-i
A'I

(4-259)

Premultiplying this equation by A and substituting into (4-258) yields

Zdi
p.+ 1

+ i,pi+2 - ai1 ) Ai1= 5+. g+

k.-1
A g,. .+ (Pi, k.-aL., k. .- )A g

1 1 1

(4-260)

By the same development used to obtain (4-182) it can be shown that

C'

C'A'

C'A 'n-l

C'

C'K

5 FKnl

(4-261)

The following definition is a generalization of the definition of the

detection order for a single vector.
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Definition 4. 10. The dimension of the null space of

M' (n - rk M 1), is defined to be the group detection order of'the set

{ff, . ,

A necessary and sufficient condition for mutual detecta-

bility can now be presented.

Theorem 4. 5. The output separable vectors {ff, ...

are mutually detectable if and only if the sum of the individual detection

orders of the f. is equal to the group detection order.

Proof:

Let M1,K, and C' be defined by (4-261), (4-257), and

(4-255). The group detection order of {fis . . . fr} is (n - q') where

q' = rk M'. Let V. be the detection order of f. If the maximal

generator for each f. is used in Equation (4-245) for D then (v + ... + Vr)

eigenvalues of (A - DC) can be specified, V. at a time, by the selection

of the coefficients p... An additional qr eigenvalues can be arbitrarily

specified by the choice of D' in (4-253). The total number of eigen-

values which can be almost arbitrarily specified is therefore

(q' + V1 + . . . + Vr). This is the maximum number of eigenvalues

which can be specified while constraining D to be a detector gain for

all the f7. Condition (2) of detectability will be satisfied if and only if

q' + V + +V =n, or

V 1 +...+ r n - q' (4-262)

This completes the proof.

When (qt + V 1 + ... + V) n, there are n - (q' + V+
. . .I

.. + Vr ) eigenvalues over which the designer has no control after D is
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constrained to be a solution of (4-245). It will be shown in Section 4.3.4

that these uncontrolled eigenvalues depend only on A, C, and F. They

do not depend on the coefficients p.. or D' in (4-253). Therefore, it

is not possible to gain even partial control over these eigenvalues by

relaxing control over the other (qt + V1 + . . . + Vr) eigenvalues. As in

the case of a single event, nothing is gained by relaxing condition (2)

unless one is willing to accept the uncontrolled eigenvalues which

result when (qr + v1 + . . . + Vr) < n. This may be desirable if the

uncontrolled eigenvalues are such that they do not adversely affect the

dynamic behavior of the detection filter. Identifying the uncontrolled'

eigenvalues in the case of nonmutually detectable vectors is discussed

in Section 4. 3. 4 .

Example El at the end of the previous section illustrates

the above remarks. Each pair of event vectors considered in that

example has a group detection order of three, because in every case

the C' defined by (4-255) is a zero matrix, which means that M' given

by (4-261) is also a zero matrix with rank zero. For the first pair of

vectors {ff 2 } given by (EI-3) and (E1-41), the sum of the individual

detection orders is v + v2 = 2 + 1 = 3, which is equal to the group

detection order. As shown in the example, all eigenvalues of (A - DC)

can be specified while constraining D to be a detector gain for both f and f2 .

For the second pair {f1 , f2 } given by (E1-50) and (E1-41), the sum of

the individual detection orders is only v 1 + V 2 = 1 + 1 = 2, and as (El-54)

verifies, one eigenvalue of (A - DC) is automatically fixed at s = 2 when

D is constrained to be a detector gain for both f1 and f2. For the third

pair {f 1 , f2 } given by (El-50) and (E1-55), the sum of the individual
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detection orders is again only two. But in this case the uncontrolled

eigenvalue is s = -2, so it is possible to obtain a stable detection filter

which detects both f1 and f2 in spite of the fact that these two vectors

are not mutually detectable.

Results on the mutual detectability of nonseparable

vectors are incomplete, but a few useful facts are available. ' If a

number of vectors have identical detection spaces, then a detection

filter for one will be a detection filter for all. Since the error signal

for all the vectors will lie in the same direction in the output space,

the output error direction will not distinguish between the events

associated with these vectors. However, the error magnitude may

provide additional distinguishing information. This special case of

nonseparable vectors is important in the detection of dynamic changes

and is discussed in more detail in Section 4. 3. 6. For the general case

of nonseparable vectors Equation (4-245) for D may or may not have a

solution. A necessary condition for it to be a consistent matrix

equation is that

rk Qd _<< rk CF < r (4-263)

Each column wdin Qd is in a subspace spanned by the vectors

{A g; = 0, 1, ... , ki}. This subspace contains the detection space
k.

of f and can be one dimension larger because of the presence of A i gi.

Condition (4-263) implies that these subspaces cannot all be independent

because if they were, rk Qd would be equal to r. Since Qd depends on

the coefficients pij, it appears that (4-263) imposes some restrictions
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on these coefficients. It is not clear at this point what restrictions, if

any, this places on the specification of eigenvalues.

It is possible to show that if (A, C) is observable, then D

cannot be a detector gain for two nonseparable vectors unless their

detection spaces coincide. Let f1 and f2 be nonseparable. Assume for

simplicity that Cf1 * 0. (The same development is valid for the

general case given by (4-243).) Since f1 and f2 are nonseparable

rk {C[ff,f 23 } = rk [Cf1 ,Cf 2 J = 1 (4-264)

This implies that the m-vectors Cf 1 and Cf2 have the same direction.

Suppose D is a detector gain for both f and f2 Then by Lemma 4.1

rk (CW f) = 1 (4-265)

rk (CWf 2) = 1 (4-266)

where

Wf = [f1 , (A - DC)f1 , ... , (A - DC)n- 1 f]

(4-267)

Wf2 = [f 2 , (A - DC)f 2 , ... , (A - DC)n-1 f 2

(4-268)

By (4-265) the range space of CWft is one- dimensional and, in fact,

coincides with the direction of Cf 1 (Cf 1 is the first column of CWf 1 ).

Similarly, the range space of CWf2 is one-dimensional and coincides

with the direction of Cf 2 . Since Cf 1 and Cf2 have the same direction,

the range spaces of CW f and CWf 2 must coincide. Therefore

rk [CWf 1 , CWf2 J = rk {C [Wf 1 , Wf2 ] } = 1 (4-269)
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Define

k = rk {Wfi, Wf2 ] (4-270)

Now form an n X k1 2 matrix, Wf l 2 , whose columns consist of k12

independent columns from [Wf1 , Wf2 J . Then the range space of Wf1 2

coincides with the range space of [Wf 1 , Wf2 ] . In particular, f1 and f2

are both in the range space of Wf 1 2 . By virtue of (4-269)

rk CWf1 2  = 1 (4-271)

The development of Lemma 4.2 can be applied to Wf1 2 to construct

an n-vector g such that

C

CA
g = 0 (4-272)

. 12-
CA

_1

CA g 0 (4-273)

The set of vectors {Ajg; j = 0, ... , k1 2 -1} span the range space of

Wf 1 2 . Therefore, both f1 and f2 can be expressed as linear combina-

tions of these vectors. This means that g, with an appropriate adjust-

ment in magnitude, can be made a k1 2 th order detection generator for

either f 1or f2. Let g be a detection generator for f. By remark 3)

at the end of Section 4. 3.1, the vectors {Ag; j = 0, ... , k 12-1} are

contained in the detection space of f 1. Then f2 must be contained in the

detection space of f. Again by remark 3) this implies the detection
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space of fI and f2 coincide. This result does not generalize to sets of

more than two nonseparable vectors.

Theorem 4. 5 offers only a pass-fail type of test for

mutual detectability. If the vectors in a given set are found to be not

all mutually detectable, there is no way to discover which vectors are

mutually detectable except by repeated application of Theorem 4. 5 to

all subsets of vectors in the original set. It would be desirable to have

a systematic way of forming subsets of vectors which are mutually

detectable. The next section is addressed to this problem.

4. 3. 3 Constructing Sets of Mutually Detectable Vectors

This section deals with the following problem. Given a

set of output separable vectors {f1 , . ., fr which are not all mutually

detectable, determine which vectors can be removed from the set to

leave a subset whose members are all mutually detectable. Each f. has
1

a detection space of dimension v., the detection order of f.. It will be

shown that each of these detection spaces is an invariant subspace with

respect to K given by (4-257) and is contained in the null space of Mi'

given by (4-261). Since the f are output separable, Lemma 4. 5

guarantees that the detection spaces are all nonintersecting. Together

they make up a subspace of dimension (Vl1 + ... + Vr) contained in the

(n - q')-dimensional null space of M'(q' = rk M'). When the f. are not

all mutually detectable (n - q') > (v + ... + vr) and it is possible to

define an "excess" subspace of dimension

ke = n - q r-v 1 -1..--Vr (4-274)

which is contained in the null space of M' and does not intersect any of
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the detection spaces. The precise definition of this space will be

presented shortly. Its special properties and relationship to the

detection spaces are of central concern in the investigation of the

problem stated above.

First it will be verified that the detection space for each

f. is an invariant subspace with respect to K and is in the null space of

M'. Let g1 be the maximal generator for f.. Then

CrAJgi = 1- CF[ (CF)TCF] 1(CF) CA gi = 0

(4-275)

for j = 0, 1, .. ., U-2 and by (4-120)

C'A g = L T- CF[ ( F) CFI(CF) CA g

I - CF[ (CF)T CF] (CF TCAif

-CA f. - CA f. = 0
L1 -

(4-276)

Similarly

C'KA g. = C'Aj+1 g. - C'AF[ (CF)T CF] 1(CF)TCAJ g. = 0

(4-277)

for j = 0, 1, ... , and with (4-259)

.Iv -1 1.v -
C'KA'f = 'K Af.--. g. - ... -.. AVi-2 gi ii 1.,P - .-

1. 1

i-.
Ct KA f. = 0 (4-278)

since KA f = 0. This development can be repeated any number of
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times to show that

CrK Ad g. = 0 (4-279)

for j = 0, 1, ... , i>-1 and all integers I > 0. Then

MrAJ . = 0 for j = 0, ... , v-1 and i = 1, ... , r (4-28Q)
M r- I

which shows that the basis vectors {A3 g.; j =0, ... , C-l} for each

detection space all lie in the null space of M'. From (4-80) and the

form of K in (4-257) is follows that

K gi = A g. for j=0, ... , v-i (4-281)

so {K g j =03... .V-1} form a basis for the detection space of f.

Substituting (4-281) into (4-159)

v.-2 v.-
A f = a. K Ig.+ ... + 1. K 1g.+K g.ii1 i 1 t-p- 1  gi+K

(4-282)

Premultiplying this equation by K and recalling KA f. 0 yields

c. K i+ g+ . . . V+a. 1K g. + K g. = 0

(4-283)

which shows that gi generates an vt-dimensional cyclic subspace with

respect to K. For each i define an n X Vi matrix

i.-i v.-i
Wgi = [gi,Agi ... , A gi ] = [gi,Kgi, ... , K 'g.]

(4-284)
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Then using (4-283)

KWgi = [Kg,

where P . is an V. X V. matrix
21 1

P .=

0

1

0

.0

of the form

0

0

1

.0

0 0

0
1

Now let the set of n-vectors {z., . *. 9zek } be a basis
e

for the excess subspace mentioned earlier. These vectors are linearly

independent of each other and of the basis vectors for the detection

space of the f,. The complete set of vectors {g1 , ... , A V1 g,

.. A r ,rZ ,V...,pz } forms a basis for the null space of M'.r~i el' .Z ek
e

Define the n X k matrix

Z = [ z e, . J ,Zk]Se Vek Ie
(4-287)

Since the z ei are in the null space of M'

M'Ze

C'K- Ze

= 0

= 0 for all j :.1
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V.
. . .i , K g = w .p

igi eal
(4-285)

(4-286)

-a._
1 1 _

and

(4-288)

(4-289)



With (4-255) this gives

CK - Ze

where the T .. are 1 X k e13 e

ij

= CF [ (CF)TCF]1(CF)TCKj-lZ

r

- 31
i=1

row vectors and

S[(CF)T 1CF1(CFTCK 1 Z

(4-290)

(4-291)

The basis vectors {z , ... , zek } are to be chosen so that
e

.. = 0 , for j = 1, .... , V.
IKI - 1

(4-292)

It must now be demonstrated that this is, in fact,

possible. Let {z{, ... , zI } be any set of independent vectors which
e

together with the set {A3; j = 0, ... , i= 1, ... , r} form a

basis for the null space of M'. Define

(4-293)zr =zi
e

An equation analogous to (4-290) can be written for Z'

CK' Zr = CA f. y..

i= 1
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7 ..
1J

r

ri

= (CF)TCFi(CF)TCKiZ'

(4-295)

r

Z = Zr + w gJi
i= 1

(4-296)

where the J. are v. X k matrices chosen so thatSi e

Aj-AU P = y for j = 1 .. ,(4-29

with Pa. defined by (4-286) and u. a 1 X Vi unit row vector

A
u = [O, .. , 0, 1] (4-29

The set of equations (4-297) defines Ji uniquely as can be seen when

they are combined into a single matrix equation

U.P
1 G

u.P .1icvi

J.

-!IV.i

37)

'8)

(4-299)

The i X v. matrix on the left has the triangular form
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U.

u.

d.P I.
I ai

0 ... 0

.0 0

1 -'. 0r

(4-300)

and is clearly nonsingular (o- denotes possible nonzero elements).

J. so defined

= CK1Z'+

With

CK 1 Wg .J.

i=1

= CApi f.y'.
I 1]

i= 1

CKJ~'W . J,gi I

(4-301)

Noting that

Kj 1 Wgj = w . .gi ai

by repeated application of (4-285) and also

= [0, ... , 0, CA f.]
CI^

= CA f.Au
i i

(4-303)

Equation (4-301) then becomes

CK-
1 e

= 3CA
i= 1

CA
i= 1

r
f. T. +YCW.
S13 i.,gii= 1

f. [{ + A.P 
1
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CK 1
z e

(4-302)

Cw

P.J.al 1=

(4-304)Ji



Comparing this with (4-290) one may conclude that

Sj-l
7.. = y!. + U. P . J. (4-305)

i 1 I 4i3

since the CAP. f. are linearly independent. Then (4-292) follows

directly from (4-297).

Equation (4-285) shows that the range space of each Wgj

is an invariant space with respect to K. The range space of Ze is not

an invariant space itself, but is at least contained in the null space of

Mtr. which is an invariant space. Therefore KZ e is also in the null

space of M' and can be expressed as a linear combination of Ze and

the W gi, since the combined range spaces of these matrices coincide

with the null space of M'. So

r

KZe = ZeA +3W .gi r (4-306)

i=l

for some k X k matrix A and some vW. X ke matrices I., Then

r

CKZ = CKj. Z A + CK 1 W ..

r r

= CA Pi f. .A + CW. P j- 1.e e j g ai i
i=1i =

r
i i 

CA fA >=1(4-307)
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Comparing this expression with (4-290) with (j - 1) replaced by j, one

may conclude that

.. =L, j) L]j
A j-+ A. PL.l .,

1 YL

This along with (4-292) implies that

u.P =
i at

j=l, . . ., V. --1
1

(4-309)

The row vectors y ,.+1 will be referred to frequently in what follows,

so it will be convenient to introduce a simpler notation for them

K = (4-310)

Writing (4-309) in matrix form,

U.

1 mA

.p

A 1
u.P.

P =
L

0

0
(4-311)

Noting the triangular form

F. to yield

1. =

of (4-309) this equation is easily solved for

9.
0.L

0

10

I

0

0

9.
L

(4-312)
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Then (4-306) reduces to

r

KZ e= ZeA + 3g. .(4-313)

i=l

The k X k matrix A and the IX k row vector 9. associated with each
e e e

f. is sufficient to determine which vectors in the set can be removed to

leave all the remaining vectors mutually detectable. The following

theorem is the basis for that determination.

Theorem 4.6. Let Z ,A , and the 9. for each f. bee

defined as above. Assume I vectors f, ... , f. } are removed from
1 1

the original set of r, f . , f}. Then for the remaining (r - )

vectors the new excess subspace has dimension

e
@A

k = ke - rk . (4-314)

k -1
OA e

where @ is an X ke matrix whose rows are the 9 corresponding to

the f. which were removed

1..

= .(4-315)

Furthermore, a basis for the new excess subspace is formed by the set

of vectors
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y. = Z/3 ei for i=l, ... ,k

where the set of k -vectors { e ... , k is any basis for the null

space of

@A

k -1
@A e

The following corollary demonstrates the effect of

removing a single vector from the original set.

Corollary 4. 6.1. If f. is removed from the set of

vectors, then the dimension of the excess subspace will be reduced by

an amount equal to

rk

9.

9. A
L

. k-l
9.A e

I

Proof:

Simply take ® = 9. in Theorem 4.6. The next corollary

provides an answer to the problem stated at the beginning of this section.

Corollary 4.6.2. The vectors remaining after the

removal of I vectors {ff, ... , } are mutually detectable if and

only if (A, E) is an observable pair.
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Proof:

The remaining vectors are mutually detectable if and

only if the new excess subspace has zero dimension. By Theorem 4. 6

this will be the case if and only if

eA
rk . =k (4-317)

k -l
Ae

which is the condition for (A, G) to be an observable pair

Proof of Theorem 4. 6:

For convenience of notation; assume that the first I

vectors are removed from the original set to leave f 1 + ',. .,f4

Define

F2  = A +1 .. Arfr] (4-318)

K2  = A- AF2[(CF2 )
T CF2 ] - F TC (4-319)

C = I -CF 2 CF2)TCF2 ] I1(CF 2 )T]C (4-320)

C

C 2 (4-321)2

C Knl
22

which are analogous to F, K, C', and MI for the original set. The
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detection spaces of {f .fr} are contained in the null space of

Mk. These vectors are mutually detectable if and only if the dimension

of this null space is exactly (+1+ . . . + Vr). Suppose its dimension

is larger than this. Then there will exist some n-vector z .n the null

space of M' which is independent of the detection spaces. Any vector2

in the null space of M is also in the null space of M'. Moreover, M' z
2 2

=0 if and only if

C'
2

C'K2

Cni

I

z = 0 (4-322)

These two facts follow from

Lemma 4.6.

the lemma below.

If CI z =0 for some n-vector z then

Kz = K2z (4-323)

and

C'z = 0 (4-324)

Proof:

Now

Cjz = Cz - CF 2 [(CF2 )TCF 2 ] (CF2 ) Cz = 0

(4-325)

so

Cz = CF 2 2
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where

2= [(CF2 )TCF 2 ] 1(CF 2 )TCz

From the definitions of F and F 2

F 202=2 F

where ( is defined as

and thus

C'z = Cz

= Cz

- Cz

Cz = CF

- CF [(CF)TCF] (CF)TCz

- CF [(CF)TCF] (CF)TCF

- CF = 0

K 2 z = Az - AF 2 [(CF2 )TCF 2 ] (CE 2 )TCz

= Az-AF 2 %2 = Az - AF

= Az - AF[(CF)TCF] (CF)TCF

= Az - AF[(CF)TCF]I(CF)TCz = Kz

which completes the proof.
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(4-328)

(4-329)

Then

(4-330)

Also

(4-331)

(4-332)

0_

L =



Successive application of (4-323) to Kz and K3 z with

j = 0, 1, . .. , n - 1 yields (4-322). The fact that z is in the null space

of M' follows from (4-322) and (4-324). It is therefore possible to

express z as

r

z = Ze3 + iW .gii (4-333)

i=1

for some ke -vector 03 and v.-vectors /.. With (4-290) and (4-302)
ee i

r

CK~1 z = CK- Ze + 3CK~ 1 W .3e e gi. i
i=1

- CAfi fYij +3 CAQPf.A. P .

i=l i=1

(4-334)

Premultiplying by I - CF 2 [ (CF2)TCF2J 2(CF2 )T

K 1 z r A j-1
C2K z = IC A " f. [/e + u. P .P #. ](4-335)

i=l

Because the f.i are output separable, the vectors {CA 'f.; i = , . . ., r }

are linearly independent. (These vectors make up the columns of CF

which has rank r.) Equation (4-326) shows that if CI A f = 0 then2i

CA f. can be expressed as a linear combination of the columns of CF2 '

or in other words a linear combination of the vectors { CA f.;

i = I + 1, r}. But the vectors {CA fi; i =11 ... , f}are
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independent of the vectors {CA ' f. ; i = 1+1, *.., r}, so C' A' V f 0
12 .

for i = 1, .*,as. Consequently,

C' A 1 f.
2 1

CA f . 2 [(CF 2)TCF2 I(CF2 )TCA f.

K=0 ifi=1+1, ... , r
(4-336)

Then (4-335) reduces to

= C'Ai2 f. y .. /P
1ij1 e

But from (4-332) C'Kj1z = 0 f
2

A j-1
l.. + u. P.b3. = 0

13 e1 O1 I.-

and for all j ;>_1,

this reduces to

A
U.

1

A j-1
ul ai (4-337)

or all j >1. Therefore

for i=l, ... ,I (4-338)

since the C5 A 'f are independent. By (4-292)
1

j-1
ai i = 0 for j=l, ...,v. (4-339)

-A-
1 ai

u.P .
_ 1 ai

7
p. - 0 for i= 1, ... ,1 I

which implies
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C'Kj z
2

or

(4-340)

r

S if i= , . .



#3. = 0
I

for i = 1, ... , I

by virtue of (4-300). Then (4-338) becomes

'Y = 0 for i=1, ... ,iand j>v. l

(4-342)

Define

S.i . +j (4-343)

Then (4-342) can be written

S ge S0 for j >1 (4-344)

Now from (4-308) and (4-312)

yi.l . = y.-.A+ a!...1 +1 13 13 I

where

i-I
a.'. = c.xP .

ij 1 a

Repeated application of (4-345) starting with

yields the general expression

i = v +andYi + 9.
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(4-346)
H
0

(4-341)



T = 9.A. 1 + a! 9.A j+ .. +a.' 9.., v.i+j 1 1,9 v.i+1 11. i, +j-

(4-347')

I. Using this expression in the definition of S.

S+ =+Q S A-2+ + Q SJ I 1 1 j-

where

Q.

1 +j
0

0

0 . .
.06

~a'1 +j

(4-348)

(4-349)

Noting that SI = 8

Si

Sk
e_

A

A
TQ

Sl

SA

S1 A e

A
TQ

0

QI

Q 2

-
e

eA

- k e
eA

.0

0

% Qi

(4-350)

(4-351)
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Now (4-344) for j = 1, . k

e =

which is equivalent to

8A

8A

ge =

since TQ is nonsingular.

j > 1 because

rk.

S.

S.

If (4-353) is

rk

e

eA

satisfied, then S./ = 0 for allj e w

Kk (4-354)

for any j > 1. With (4-341), Equation (4-333) reduces to

z = Z/+3 Wgj/.j= [ z , wgi, .. wg]gi 1. e g, I+ 1 0 gr

(4-355)
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(4--353)

+ .

.,1 ke can be written

-k



where je must satisfy (4-353). The only constraint placed on z in

arriving at (4-355) was that it lie in the null space of M'. All vectors

in this null space can therefore be expressed in the form of (4-355).

Since the rk[Z ,W g,1+1,..., Wgr] = (ke+ V + ... + vr), the

dimension of the null space of M is simply the number of independent

(ke + v 1+. .+ + vr )-vectors of the form

e

-Or_

where Oe must satisfy (4-353). The # (i= 1 + 1, . .. , r) are

unconstrained so there are at least (u,++ ... + Vd) such vectors.

This was expected because the detection spaces of {f 1 ' f '' r} )are

known to lie in the null space of Mk. The number of additional

independent vectors in the null space is the number of independent

solutions of (4-353). This number is

e

eA
k = k - rk

e

. k -1
GA

This, then, is the dimension of the excess subspace for If,+1 ' f'' r

Let {0,el' . . .-,ek} be k independent solutions of (4-353). Define
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Y = I eV' , . .,J ek]

Z' = Z Ye e e = [z' ,...,z ek3

with

Z'.= Z . for i=, ... ,k
ei e ei

The columns of Z are in the form of (4-355) (with the 3. 0)e

therefore in the null space of M' Then by Lemma 4. 62

K Z' = KZ' = KZ Y2 e e e e

r

= Z AY + w AVYe e Ligibe
i=l

(4-359)

Now the range space of Ye is an invariant subspace with respect to A

because it coincides with the null space of

eA

ke-1
@A

Thus

AYe = YeA'e e (4-360)

for some k X k matrix A'.

r.Y =

Note also that fori=l, ... , I

1

0
. 9.Y = 0i e

0
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(4-356)

(4-357)

(4-358)

and are

(4-361)



For i=1+1, ... , r

0 0
Y = .Y = . 9 (4-362)
i e i e

0 jL0 -

where

y = 9.Y (4-363)
i e

Substituting (4-360), (4-361) and (4-362) into (4-359) gives

r

K2Z eYA' + W r Y
2Ze' ZeYeA' I gi e

i=1V+l

r

= Z'lA' + 3 g.9. (4-364)
e II

This equation is analogous to (4-313).

The columns of Z' form a basis for the new excess

subspace for {f +, ... , fr}. To see this, first note that the columns

of Z' are indeed independent of the detection spaces of {ff+ 1 ' **''r'

since by (4-357) the range space of Z' is contained in the range space

of Z e, wh-ich by construction is independent of all the detection spaces.

It was noted earlier that the columns of Z are in the null space of M'

and therefore KZ' = K2Z' by Lemma 4.6. Since the null space of M'
e 2 e 2

is invariant with respect to K2 , the range space of K2 Z is also in

null space of M for all j > 1, and
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K Z' = K'
2 e e

Then

CK2 Z' = CK5~IZ' = CK~1 Z Y
2 e e e e

Substituting (4-290) into this equation yields

r

CK~ Z' = CApi f.-y.. Y
2 e Ii 13 e

(4-365)

(4-366)

(4-367)

Now the columns of Ye satisfy (4-353) which is equivalent to (4-342).

A lso Y .. =0 for j =1, .. ., V. so one may conclude that

y. .Y3 e
= Ofor i = 1, .. .,fI

and for all j > 1 (4-368)

Then (4-367) reduces to

CK 1 Z'
2 e

1=1+1

A .
CAif. y.. Y

i ig e
(4-369)

The row vectors (y.ijYe for i = 1+1, ... , r play the same role as the

y for the original excess subspace. From (4-292)

y eY = 0 for j = 1, ... , V.-1 (4-370)

so Z' satisfies the condition analogous to (4-292) used to define the
e

excess subspace. This completes the proof of Theorem 4.6.
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Appendix B describes an algorithm for generating a basis

for the excess subspace, plus the A matrix and the row vectors 9..

Corollary 4. 6.2 reduces the problem of constructing a subset of

mutually detectable vectors to the problem of finding a subset of the

row vectors 9. which form a ® such that (A, ®) is an observable pair.

At first glance this may seem to be only a pass-fail type test such as

provided by Theorem 4.5. However, A and the 9. can provide additional

information to guide the choice of which vectors to remove from the

original set. Corollary 4. 6. 1, for example, can be used to identify

those vectors whose removal would achieve the greatest reduction in

the size of the excess subspace. More information can be obtained

from a systematic analysis of A and the 9. as will be seen in the next

section. In addition to providing a way of analyzing the problem of

detecting a set of vectors with a single filter, Theorem 4.6 has

achieved a potentially significant reduction in the dimensionality of the

problem. Mutual detectability as originally formulated in Section 4. 3. 3

deals with an n-dimensional vector space. Theorem 4. 6 reduces the

problem to considerations in a vector space of dimension ke,, which one

might reasonably expect to be significantly smaller than n (recall

ke =n-q-VI - ..- Vr )

4. 3.4 Detection of Nonmutually Detectable Vectors

with a Single Filter

By definition, a set of vectors which are mutually detectable

can be detected with a single filter while retaining control over all the

eigenvalues of (A - DC). If one encounters a set of vectors which are

not all mutually detectable, the results of the previous section can be
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used to break up this set into a group of two or more subsets, each of

which is made up of only mutually detectable vectors. One detection

filter can then be designed for each subset. If this is done, one need

consider only the problem of designing a detection filter for mutually

detectable vectors. However, if one allows the possibility of using a

single filter for nonmutually detectable vectors, it may be possible to

reduce the number of detection filters, since a potentially greater

number of vectors could be assigned to each filter.

This section investigates the problem of using a single

detection filter for a set of output separable but nonmutually detectable

vectors. The results of the last two sections show that when this is

attempted the resulting (A - DC) matrix will have k eigenvalues fixed

without the control of the designer, where k is the dimension of the

excess subspace for the set of vectors. To decide if detection of the

set with a single filter is feasible, one must be able to identify these

uncontrolled eigenvalues to see if the filter will have satisfactory

dynamics. It will be shown in this section that these eigenvalues are

indeed uncontrollable -- that they depend only on A, C, and F and are

not influenced by the designer's choice of the remaining (n - ke)

eigenvalues of (A - DC). Further, they will be shown to be equal to

the eigenvalues of the k X k matrix A introduced in the previouse e

section. From 9. it will be possible to determine which of the

uncontrolled eigenvalues are eliminated by removing the corresponding

f. from the original set. With this information the designer can

eliminate specific undesirable eigenvalues by removing certain f. from

the set.
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Suppose D is chosen to be a detector gain for the set of

output separable vectors {fa, ... , fr}. Define an n X -ncoordinate

transformation matrix

TF [wg ,...apW gr, ZeITF 2 ] (4-371)

where Z and the W are defined as in the last section, and T 2 is
e gi F2

any n X q' matrix such that TF is nonsingular (q' + k + v + ... + vr = n).

Let

-1
G = T (A-DC)TF

F F
(4-372)

Now by (4-115)

(A - DC) W. = [(A - DC)g, ... , (A - DC) g] = W .P.
g i gi 1

(4-373)

where

P.i=

0

1

0

0

0

0

1.

0

0 -P

.0

'1 -piv.
1

(4-374)

From (4-290) and (4-292) with j = I

Cz e - (4-375)

(Note that v., the detection order of f., is always greater than zero
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because the null space of M' defined by (4-182) contains f. and there-

fore has dimension greater than or equal to one.) Then

r

(A - DC)Ze =AZe =KZe ZeA + WgjF.j

i=1

(4-376)

With (4-373) and (4-376)

= [w g p ,1.a..,wgrpr,.

=TF

P1

0'-

0

' P r

* 0
o -o

r

(ZeA + w giri(A-DC)TF
2

i=1

1 1,r+2

t
r

A

0 r+2,r+2

(4.-377)

where the Gi, r+2 are defined by

r

(A-DC)T2WF2 = glL,r+2 + A Gr+1, r+2 + T F2 r+2, r+2
i= 1

(4-378)

Premultiplying (4-377) by T 1 and comparing the result with (4-372)
F

yie lds
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P 0 r, Gr+1 - *1 l,r+2

0

* 0
G = . . . (4-379)

P r
r r

o A

0 0 0 G r--- r+2, r 2

Since l and (A - DC) are similar, they have identical eigenvalues.

From the block diagonal form of G one can conclude that the eigenvalues

of (A - DC) are equal to the combined eigenvalues of A, the Pi, and

Gr+2,r+2. Recall from Section 4. 3. 3 that the construction of A depends

only on A, C, and the detection spaces of the f. It does not depend on

the coefficients p.. which appear in the P.. Therefore, the k e eigen-
13 e

values of A, which are equal to k e eigenvalues of (A - DC), are inde-

pendent of the eigenvalues of the P. The eigenvalues of Gr+2, r+2 are

determined by the choice of D' in (4-253). By Lemma 4. 4, D' does

not influence the eigenvalues of the Pi or A. This shows that the eigen-

values of A are, in fact, the uncontrolled eigenvalues which result when

D is constrained to be a detector gain for the set of output separable,

nonmutually detectable vectors.

Consider 9., as defined in Section 4. 3. 3, which is

associated with one vector, fL, in the set {f1 , ... 'fr>} If that vector

is removed from the set, the new excess subspace will have dimension

9.
1

9. A
k = ke- rk . (4-380)

- k -1
9.A e

1
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Equation (4-350) means that

.

.A

rk L = ke -k (4-381)

- k-k-
e.A

and
k -k k -k-I.

9.A e = -a 9-a Oe29 Aee....- ae0k k 9.A e

(4-382)

for some set of scalars {aC, ... , , kV , Moreover, (k - k)

eigenvalues of A are given by the roots of the equation

k -k k -k-I.
s kk + a e, k -k Ske + + ae2 s + ael = 0

(4-38 3)

It will be shown that these (k - k) eigenvalues are exactly the ones

which are eliminated when f. is removed from the original set.

Removal of f. results in a new excess subspace of

dimension k. The matrix A is replaced by the k X k matrix A' satis-

fying (4-360). By the development at the first of this section it is known

that the remaining uncontrolled eigenvalues are the eigenvalues of A'.

Now define a k X k coordinate transformation matrix

e e

TY = [YeTY2 1 (4-384)

with Ye given by (4-356) and TY2 any ke X k matrix which makes TY

nonsingular.
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Let

-1
y- AT (4-385)
Y Y

and

8. = 8.T (4-386)

By (4-360)

ATY = [AYe, ATY2-

= [YeA', ATY2]

A A12

=Y eY, T Y21I

[ TA22_

(4-387)

where

A TY2 e 12 + TY2A 2 2  (4-388)

-I
Premultiplying (4-387) by T1 and comparing the result with (4-385

gives

A' A 12

A = (4-389)

0 A 2

The eigenvalues of A, and thus of A, are equal to the combined eigen-

of A' and A 2 2 . The eigenvalues of A' remain after removal of f., so

the eigenvalues which are eliminated are the eigenvalues of A22. It

must now be shown that these eigenvalues are given by (4-383).
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By the definition of Ye and (4-353), 9A3 Y = 0 for

. = .TI i Y

all j > 0, so

= [9.Ye, 9.TY2 ]

iTY2

and also

= 9.Ai1 TSY = [0, 9.A]
-i2 22

9.

1A

- k -l
9.A eI

1

9.

iA 2 2

0,

- ke-
i2A 22

(4-393)

Since Ty is nonsingular, this implies

i2

9i2 A22

ke-K
. A2

K 9 2 22

rk

9.

9. A

* k e-l
O.A

= k -ke

(4-394)

by (4-380). Postmultiplying (4-382) by TY and using (4-392) yields

k,-k
9 A 22 el 12

- - ke-k-
.- ek -k i2 22

e

(4-395)
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where

9i2

(4-390)

(4-391)

.A

Then

(4-392)

9.

1ke-
9. A

I

rk



Equations (4-394) and (4-395) prove that the eigenvalues of K 22are

given by the roots of (4-383). This establishes the earlier claim that

the eigenvalues given by (4-383) are eliminated by removing fi from the

set {fi ... ,fr

From A one can determine the uncontrolled eigenvalues.

If some of these are found to be undesirable, the 9. will identify that

vector (or vectors) whose removal will eliminate those particular

eigenvalues. The following example illustrates the result of this and

the previous sections.

Example E2:'

Suppose

-.3

0

1

0

2

0

I

0

0

0

0

0

1

0

0

1

0

0

0

0

2

-l

-1.

0

0

4

0

1

0

0

0

0

0

0

1

5

0

0

0

0

0

3

-2

-4

2

1

0

0

1

0

1

0

0

-5

6

3

0

0

0

1

(E2-1)

(E2-2)

and there are four event vectors
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f =
1

1

0

0

0

0

f =
2

0

2

1

_1

0

Since Cf. O for j = 1, 2, 3,

I f =-3

0

0

0

-3

1

4 the matrix F

f =4

0

0

0

0

0

(E2-3)

defined by (4-232) is

F = [f -f2 3'f41

1

0

0

0

0

0

Then

CF =

1

0

0

0

0

1

0

0

Now replace A by the simpler form
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0

2

1

-1

0

0

0

0

0

-3

1

0

0~

0

0

0

0

1

(E2-4)

70

0

1

0

0

0

0

1

=1I (E2-5)



A" = A - D"C =

0

0

0

0

0

0

0

0

1

0

0

1

0

0

0

0

0

0

0

0

0

0

1

5

0

0

0

0

0

0

0

0

0

0

0

0

(E2-6)

which is obtained by taking the first, second, third, and fourth columns

of D" equal to the first, third, fifth, and sixth columns of A respectiVely.

Using A" to form K yields

K = Al - A 1F[(CF)TCF]l ~(CF)TC

0

0

0

0

0

0

0

1

0

0

1

0

0

-2

0

1

3

0

0

0

0

1

5

0

0

0

0

3

15

= A" A "FC

0

0

0

0

0

0

For the full set of event vectors, C' defined by (4-255)

C' = C-CF[(CF)T-CF1 T (CF)T C C- C=_

(E2-8)

and therefore MI defined by (4-249) is

Mr = 0 (E2-9)
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Hence, the group detection order of the set {f 1 ,f 2 'f 3 f 4 } is six, the

dimension of the state space. When the results of Section 4. 3. 1 are

applied to each f , it will be found that the detection order is

v. = 1 for i=1, 2, 3,4 (E2-10)

and each f. is its own maximal generator. The sum of the individual

detection orders is

V + V2+ V 3 + V = 4 (E2-11)

which means that the vectors {f 1 ,f 2 'f3 f 4 } are not mutually detectable

and the excess subspace has dimension

k = 6-4 = 2 (E2-12)e

To determine if it is necessary or desirable to remove

one or more vectors from the set, A and 9. will be generated with the

algorithm presented in Appendix B. Since M' = 0, the reduction

procedure applied to the rows of this matrix produce no reductions.

The terminating matrix which results from processing MI is simply the

symmetric, positive-definite starting matrix. Let this matrix be the

6 X 6 identity matrix

Q =I (E2-13)

According to Appendix B the reduction procedure now starts with Q

and is applied to the rows of the matrix Mi defined by (B-2).
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Now C defined by (B-5) is

C = (CF)TCF I(CF)TC = C

Recalling that v. = 1

simply

for i= 1, 2, 3, 4, theM 1 defined by (B-3) is

Ci
c

C
2

c
3

c4

(E2-15)

and M 2 defined by (B-4) is

CK

2CK

(E2-16)

So

m

C

= CK

[2]CK
(E2,-17)

The first reduction occurs at the first row in M

(i.e., at C = c1 )
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= cT = i

o 0

0 1

Tw 0

2 1 c w1 0

0

0

0

0

0

0

0

0

0

I

0

0

0

(E2-18)

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

1

(E2- 19)

Reductions also occur at each of the next three rows, 2, c3, and c 4 .

The positive semi-definite matrix which results after these reductions

is

R2

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

(E2-20)
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This completes the reduction process applied to M The first row of
%1W

M is cK= _, sow 5 =O and l6 =05. No reduction occurs at this

row, so c 1 is terminated. The second row of 2is

c2K = [0 1 -a 0 0 0)

$616 (c2 K)T = 5(c 2 K)T =

and

a =7

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

L
0

0

0

0

0

0

The third row of M2 is

c3 K = [0 0 1 1 3 0]
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Then

(E2-21)

0

1

0

0

0

0

0

0

0

0

0_

(E2-22)

(E2-23)

(E2-24)



w7 = 27 (c 3 K)T

t8 =0

so the reductLon process is fully terminated. The two final nonzero

auxiliary vectors needed to generate A and the 9. are

wf=wf2 W 6

0

I

0

0

0

w = w =

These two vectors occurred at rows c2K = c2K and c3K = c3K in M 2

Therefore

(E2-28)v 2 + ke2 -1 = 1

and

= 2 - v = 2 -1 = 1 (E2-.29)
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Then

0

0

0

0

0

and

(E2-25)

(E2-26)

0

0

0

1

0

(E2- 27)

W



= 2 -1 = 1

I.

1-v4 =

Then from (B-28)

Z = [Wf 2 , wf33 ]

From (B-32)

U= ~ 1eK1 z = CiKZe

since c1IK = 0. Similarly

= c2 K Z = c2KZ

[o 1 -2 0 0 0]

0
1

0

0

0

0

0

0
9

1

0

0

- [1 0]

(E2-35)
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also

0

0

(E2-30)

(E2-31)

(E2-32)

o 0

1 0

o o

o 1

o 0

o 0

(E2-33)

(E2-34)

ke3



3 3K3 Ze =c3eK Z

= [ 0 1 1 3 0]

o 0

1 0

o 0

o i

o 0

= [o 1]

(E2- 36)

94 = eK= Z

= [o 1 3 5 15 0]

~0 0T

1 0

~0 0

0 1

A 0

~0 0

[1 5]

From (B-36)

0 0

1 0

.0 0

0 1

0 0

0 0

A = KZ - 9.f.

i= 1
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0 0 0 0 0 0 0 0

0 0 2 0 0 0 0 0

1 0 1 0 0 0 0 0

0 0 -1 0 0 -3 0 0

0 1 0 0 0 1 0 0

1 5 0 0 0 0 1 5

O 0-

-2 0

0 0
(E2-38)

1 3

0 0

o 0

The first, third, fifth, and sixth rows of this vector equation are

identically zero and may be discarded. The second and fourth rows

yield

1 0-2 0

A = A(= (E2-39)

0 1 1 3

Note that the eigenvalues of A are s = -2 and s = 3.

These are the uncontrolled eigenvalues which (A - DC) will have if D

is constrained to be a detector gain for all four vectors {fl, f2 ' f3' f 4 }'

This A and the 9. given by (E2-34) to (E2-37) yield the following

conclusions:
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1) Since 9= 0, removing f1 from the set of event vectors

will not reduce the excess subspace.

2) Since

9 = [-2 0] = -292 (E2-40)

(E2-41)
92

rk rk

2 r[2 1
This means that removal of f2 from the set will reduce the excess sub-

space by one dimension. The eigenvalue s = -2 will be eliminated and

the uncontrolled eigenvalue which will remain for the set {f, f3 ' f 4 } is

s = 3.

3) Since

9 3 7 '

rk [ =

L93 A 1 3

the removal of f 3 from the set will eliminate

entirely. Therefore, the vectors {f1 , f2 ' f 4 }

4) Since

(E2-42)

the excess subspace

are mutually detectable.

9 4 A = [3 15] = 394

F9 41 F 1 51
rk = = 1

9 A 3 15

(E2-43)

(E2-44)
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This means that removal of f4 from the set will reduce the excess

subspace by one dimension. The eigenvalue s = 3 will be eliminated,

and the uncontrolled eigenvalue which will remain for the set {fl, 2f 3 }

is s = -2.

5) From Corollary 4. 6. 2 it may be concluded that the

following (nontrivial) subsets of vectors are mutually detectable:

(a) {f1, f2, 41

(b) Any subset of (a)

(c) {fl, f3}

Detection of all four event vectors requires a minimum of two detection

filters. The set {fV, f2 ' f 3 ' f 4 } can be subdivided into two subsets of

mutually detectable vectors. All the vectors in each such subset can

be detected by one detection filter. The possible subdivisions are:

(i) {f1 , f2' f4} {f3}

(ii) {f1 , f3  ' f2' f 4 }

Although the vectors {f1 , f 32' f3 are not mutually detectable, they can

all be detected by a single stable detection filter, since the uncontrolled

eigenvalue is s = -2. If this eigenvalue is acceptable, two additional

subdivisions are possible:

(iii) {fl, f 2' f3) ' f41

(iv) {f 1, f 4} ; f2' f31

In case (iii) the detection filter for {f, f2 ' f 3 } will have the uncontrolled

eigenvalue s = -2. In case (iv) the detection filter for {f 2 , f 3 } will

have the uncontrolled eigenvalue s = -2.
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4. 3.5 Effector Failure Information

The results of the previous four sections can be applied

directly to the design of filters which detect effector failures. For the

th
system described by (4-1) to (4-3), failure of the i effector is

thassociated with b., the i column of B. This b. replaces the f. in the

previous sections as the vector associated with a particular event. The

design of the detection filter proceeds as follows:

1) For each column vector b1 in B = [by . .br

determine the maximal generator with the algorithm of Appendix A.

If two or more b. have the same detection space, then only one of those

vectors need be considered in the remaining steps. Any detection

filter for one such vector will be a detection filter for all vectors having

the same detection space.

2) Form F as defined by (4-242) with fi replaced by b .

If rk CF = r, the b. are output separable. If rk CF < r, subdivide the

b. into two or more subsets so that each subset consists of output

separable vectors.

3) Generate the 9. and A for each of the subsets from

step 2) using the algorithm of Appendix B. If a A exists (i. e., has

nonzero dimension), identify the eigenvalues and decide if they are

satisfactory. If not, use the results of Section 4. 3.4 to subdivide that

set further so that the undesirable eigenvalues are eliminated.

4) A detector gain for each subset of vectors from

step 3) can be found by solving an equation of the form of (4-245) with

the p.. selected to give the desired eigenvalues. If the subset has

fewer vectors than rk C, then the remaining eigenvalues of (A - DC)
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are specified by choice of D'. Appendix A presents a comvenient

method for doing this. The resulting detection filter has a state

equation

z(t) = (A - DC) z(t) + Bud(t) + Dy(t) (4-396)

Suppose a failure as modeled by (4-15) occurs in the 1th

effector. The detection filter for that effector will produce a- settled-

out output error of

t

E'(t) = CE = CA bY hbi(t - 7) n(T ) d 7 (4-397)

t

where is defined by condition (4-243) for bi and

hbi(t) = 1 {Hbi(s)} (4-398)

with Hbi(s) given by (4-240) for f = b. This result follows from

remark 5) at the end of Section 4. 3.1. The failure can then be

identified by the fixed direction (CA b.) of the error signal.

If there are other detection filters, they will also

produce error signals, but these errors will not lie in a fixed direction

for arbitrary n(t) as the error given by (4-397) does. Note the qualifi-

cation, "for arbitrary n(t)". For any filter there always exists a

specific n(t) which can make the error lie in a fixed direction. An

example which works for all stable filters is n(t) = constant. Even

with the qualification there is still one possible exception to the above

statement. A detection filter gain D designed for another set of vectors
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could, by coincidence, happen to be a detector gain for the b. in (4-397).

In that case this filter also would produce a fixed direction output error.

However, no confusion should result, because to interpret the error

signal from a detection filter one compares its direction with those

directions for which the filter was designed. Even though the signal

from another filter by coincidence lies in a fixed direction, that

direction will not match any direction for which the filter was designed.

This fact is assured by the following observation. If there is a

detection filter designed for another vector b. for which CAb b. has

the same direction as CA b., but b. and b. have different detection

spaces, then the remarks at the end of Section 4.3.2 guarantee that the

gain D for this second filter (for b.) cannot be a detector gain for b.

Therefore, the error signal from this filter (resulting from a failure

of the ith effector) will not lie in a fixed direction for arbitrary n(t).

If b. and b. have the same detection space, they would
1 3

be assigned to the same detection filter by the procedure suggested in

step 1). As mentioned in Section 4. 3.2, events associated with such

vectors cannot be differentiated on the basis of error direction alone.

Error magnitude may provide additional information if something is

known about the dynamic characteristics of such failures. If, for

example, the n(t) for different events is expected to have different

frequency spectra, then the frequency spectrum of the error magnitude

may identify the most likely event. Chapter 5 discusses the problem-

of identifying effector failures from detect ion filter error signals when

those signals are corrupted by errors caused by other simultaneous

events or noise disturbances.
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4. 3. 6 Plant Dynamics Information

For reasons discussed in Section 4.2.2, it will be

convenient to model the plant dynamics given by (4- 1) to (4-3) in a form

for which all dynamics changes appear as changes in A or fl, leaving C

in fixed and simple form. Additional considerations will suggest a

standard form for A as well. For the resulting plant description it will

be especially simple to design a detection filter to detect dynamics

changes. The detector gain can, in fact, be determined by inspection

and the algorithms of Appendices A and B will be unnecessary for this

situation.

The error equation for a change in the ijth element of A

is obtained as in the development of (4-33) using (4-41) and (4-42).

E(t) = (A - DC) E(t) + Aa.. e. x.(t) (4-399)
1]

The detection filter for this event should be designed to detect the

A
vector e , in which case the settled-out output error is

t

E T (t) = CEt) = Aa.. CA e. Yh(t- T ) X.(T) dT

t 0(4-400)

where p. is defined by condition (4-243) for e. and

h.(t) = r1 {H.(s)} (4-401)

A
with Hi(s) given by (4-240) for f = e. Note that the direction of the

output error in (4-400) is the same for all j. A knowledge of the
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error magnitude factor

t

0 it)= h(t - T) x(r-) dT (4-402)

t
0

is necessary to be able to decide which element in the ith row of A

has undergone a change. When the state vector is fully measurable,

x.(t) can be determined directly from the sensor outputs (assuming

noiseless sensors) as shown by (4-31). When the state vector is

partially measurable only a part of it is so available. The remainder

of the state vector must be reconstructed by a state-estimating filter.

But when the model of the plant is inaccurate, as it will be if A or B

undergo changes as assumed here, the state estimate will be unreliable

even if there are no noise disturbances in the plant or sensors. This

suggests the use of a standard form for A in which all the elements

subject to change appear only in those columns, j, for which the

corresponding state component, x.(t), can be determined directly from

the sensor outputs. Such a standard form is

A'A

A (n X n) (4-403)

where
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0

1

0

0

0 a..10

0

1

0

0

-1 a..
1im

(n. xn.

(4-404)

and for i j

0 .. .. .0O

0. .0

K .. O

ni + ...m+fnm

C

where

AT

a T

a..ijn~

(n. x n.)
IIJ

(4-405)

= n

= 1 (m X n)

AT
e

L m

s. = n + ... + n
1 1.i

(Note s 1 = n and sM = n.) The form of (4-407) implies that rk C = m.

This point will be mentioned later. The process of producing this

standard form for A and C is also discussed later in this section.
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with

and

(4-406)

(4-407)

(4-408)



With A and C in the above form, plant dynamics changes

appear as changes in the scalars (a 1 ; i, j = 1, ... ', m; 2=1,..., ni}

and the elements of B. The results of the previous sections can be

applied to A and C given by (4-403) to (4-408) to design a detection

A
filter for all e., i = 1, . ., n. In this situation the maximal generators

for the e. have a simple form, and the equation for the detector gain
1

can be solved by inspection. When the steps for designing a detection

filter given in Section 4. 3. 5 are followed, the results below are easily

established.

1) Taking advantage of the fact that A can be replaced

by A" = A - D"C for arbitrary D", as mentioned at the end of

Section 4.3.1, let

D"= (4-409)

d" - - -d"
[c mmm]

where

aij I

d .= (4-410)

a..
1n.

Then

A" = (4-411)

ml* Jmm
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with

0 0 0 0

1 0

Al = 0 1 (4-412)

. . - 0 .

0 0 1 0

and

A' T. = 0 forij (4-413)

A
2) The detection order of e. is n. where s. < i <.s.

.s A
(s. given by (4-408) ), and its maximal generator is e 5 A. (For

of A
0 < iv< nI the detection order of e is nI and the maximal generator is

A A
eQ.) This means that all e for which s. < i <s have the same

maximal generator and detection space. By the remark in step 1) of

A tA
Section 4.3.5, only one of these e. need be considered. Then letes

Ajl
be retained as the representative of all e. for s. < i . s .The

set of vectors remaining is then { s .. '.,' st
rA A

3) All vectors in the set {es ' , e } are output
1 m

separable and mutually detectable. The F for this set is

F = .. ,$e = C(4-414)
s s m

so

CF = CCT = (4-415)

Then Equation (4-245) for D can be solved by inspection
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DCF = D

d ml. .. d mm

where

ai + p

d.. =.

un. in.11

and d.. = . given by (4-410) for i f j. Then
13 11

A -DC =

P. =

P1

0

0

1

0

0
-'0 . '..P

- rn
o 0

0 p
- m

0 0-pi

0

10 0

This filter is a detection filter for all the coordinate directions

,i = m1; .. ., n. A change Aa in one element a ijl of A given by

(4-403) to (4-405) produces a settled-out error of
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(4-419)
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t

c'(t) = Cdt) = a. A hC t7-X -r'-

t 0 i(4-420)

where

i-i
h.,(t) =s

s +in s + ... + Pi2s+Pil}

(4-421)

th A
x s(t) is the s.t component of the state vector x(t), and e is a unit

J .th
m-vector in the i coordinate direction. From the form of C in (4-407)

x(t) = y(t) (4-422)

th
where y.(t) is the j component of the sensor output vector. Then

(4-420) can be written

E'(t) = Aa 2 @(t) mi (4-423)

where

t

() S=Mh1 (t-rT) yj(T))d-r (4-424)
t
0

The P.. in (4-421) are at the discretion of the designer and are known.

Since y.(t) is an accessible signal, the scalar function O (t) can be

generated on-line from sensor output without knowledge of the plant

dynamics. For consistency of notation the B matrix can be partitioned
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to conform with A

B = . (n X r) (4-425)

_b m l,. . . .

where

Fb iji1
b.. = . (n. x1) (4-426)

b..
in

A change b.. in b.. produces a settled-out error signal of

E'(t) = CE(t) = Ab. .P(t) emi (4-427)

with

t

y 1 (t)W =YSh i (t - 7-) U d(T-) dT7 (4-428)
t
0

th

where udj(t) is the jth component of udW and h if(t) is given by (4-421).

As in the case of Opj(t), ii(t) can be generated on-line from

accessible signals (ud(t)) without knowledge of the plant dynamics.

It has been shown that (4-403) to (4-408) are especially

convenient forms for A and C. In Section 4.2.2 it was demonstrated

that all plant descriptions which are related by a state space coordinate

transformation can be considered equivalent. Unfortunately it is not

always possible, in general, to put A and C into the form of (4-403) to

(4-408) by a coordinate transformation. However, it can be shown

204



that these standard forms can always be obtained by augmenting

(enlarging) the state space. Appendix C presents a way of constructing

a coordinate transformation which puts A and C into the form of (4-403)

to (4-408) except that the off-diagonal blocks of A in general have the

form

0...O a..

. . a..

Aji.. . 0ni (n X n.(4-429)

0... 0 0

and

0 . . . 0 0 a..1

A.. = . . . . (n.Xn.)

0 . . . 0 a.. a..
lJ Un.

(4-430)

where n. > n.. If n. = n.(i j) then A.. and A.. have the form of
j 1 j 3J

*
(4-405). The appearance of the nonzero element a.. in (4-430)

violates the form of (4-405). For a general A and C, (4-430) is as

close as one can get to the form of (4-405) by a coordinate transforma-

tion which does not change the dimension of the state space. To

explain the appearance of the elements a and determine how they may

be eliminated (made zero) by enlarging the state space, it will be

convenient to introduce the concept of output decoupling.
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Definition 4. 11. The matrix pair (A, C) is defined

to be output decouplable if A and C can be put into the forms of (4-403)

to (4-408) by a state space coordinate transformation.

This terminology is motivated by the fact that with

proper choice of D the observable spaces of the c (ith row of C) with

respect to (A - DC) can all be made nonintersecting (which is, in a

sense, output decoupled). The (A - DC) given by (4-418) is an example.

Note that this definition implies that an output decouplable pair is also

observable and rk C = m. The definition could be generalized to

include nonobservable pairs, but that is unnecessary for purposes of

plant dynamics identification. This point is discussed later.

Definition 4.12. Consider the pair (A, C), and let c.
th.

be the ith row of C. The output decoupling order (or simply,

decoupling order) of c. is defined to be the largest integer value of j

such that

MT, j-1
rkLc.Aj = rk MT, j-1 + 1 (4-431)

1

where

C

CA
MT, j-1 . (4-432)

CA-2

(For j = 1, MTO is taken as the zero matrix.)
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An equivalent definition is the smallest positive integer value of j

such that

M T.

rk ] - rk MT (4-433)

It can be shown from (4-431) or (4-433) that decoupling

order is invariant with respect to coordinate transformations of the

state space. Note that for A and C in (4-403) to (4-408) the decoupling

order of each c. is n. and n + ... + nm = n. From the algorithm used
1. 1 '1m

to obtain the form of (4-429) and (4-430) it can be verified that the

decoupling order of each ci is greater than or equal to n , and the

equality holds if and only if a. = 0 for all j = 1, .. ., m. These
i

obs ervations establish the follow ing theorem.

Theorem 4.7. The pair (A, C), with A of dimension

n X n and C of dimension m X n, is output decouplable if and only if

.th
q1 + . . . + qM = n where q is the decoupling order of c , the i row

of C. If this is the case, then n. = q. for the standard forms (4-403)
1I 1

to (4-408).

Output decoupling order has an interesting and useful

relationship to detection order which is stated in the following theorem.

Theorem 4.8. If f is any n-vector for which cif 0

(or c.Af 0 in the case of (4-108) ), then the detection order of f

cannot exceed the decoupling order of c.

Proof:

Let V be the detection order of f. Then f has a maximal
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generator g which satisfies

C 0

CA 0

- g = (4-434)
CAV-2
CA C

I-1i v-But ciA g = c f 0 , which means that c.A must be independent

of the rows of

C

CA

D

CV-2

This implies that (4-431) is satisfied for j = V. Therefore, v must be

less than or equal to the decoupling order of c., since that is the

largest integer satisfying (4-431). This completes the proof.

It is easy to show that there always exists a vector

which has a detection order equal to the decoupling order of c.. If q.
1 1

is the decoupling order of ci, condition (4-431) implies that there must
q.-1

exist some vector f such that M f = 0 and c.A . f 0. The
T, q.-1 - 1 -

detection order of this f must be at least q1 because f is a q th order

detection generator for itself. On the other hand, Theorem 4.8 shows

that the detection order of f cannot exceed qi. The only consistent

conclusion is that the detection order of f is equal to q.. The fact that

such an f exists shows that decoupling order has the same invariance
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properties as detection order. Specifically, decoupling order is

invariant with respect to replacement of A by (A - D"C) for any D".

The possibility of obtaining an output decouplable pair

by augmenting the state space will now be investigated. A plan

description given by (4-1) to (4-3) is represented by the matrix triplet

(A, B, C). Referring back to Equations (4-24) and (4-25), from which

the notion of equivalent plant descriptions was developed, it can be seen

that the property which makes two descriptions, (A, B, C) and (AB, C),

equivalent is that

A(t-t)0 A(t - to)
Ce o B = Ce B (4-435)

for all t. When this condition is satisfied, both (A, B, C) and (A, &, C)

have the same dynamic transfer from ud(t) to y(t), i. e., starting from

zero initial conditions, ud(t) elicits the same output y(t) from both

descriptions. In Section 4.2.2 only coordinate transformations were

considered, for which A and A have the same dimensions. However,

(4-435) can also be satisfied for A and A of different dimensions.

Using the terminology of Brockett [ 4 J , a representation (A, B, C) of

the plant dynamics with the smallest possible state space dimension

(i. e., smallest n where A is n X n) will be referred to as a minimal

representation. Any equivalent representation (A,B, C ) (i. e. , satis-

fying (4-435) ) having a larger state is considered nonminimal. Brockett

shows that a minimal representation is both controllable and observable.

If (A, B, C) is nonminimal it can be controllable or observable, but not

both.
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It must now be shown that it is possible to obtain a

decouplable representation of the plant by allowing augmentations which

preserve the equivalence property (4-435). The following theorem

places a lower bound on the dimension of the state space which is

necessary for an equivalent, decouplable representation.

Theorem 4.9. If (A, B, C) is a minimal representation

and (A, B, C) is any other equivalent representation, then the decoupling

th
order of the 1 row of C cannot be less than the decoupling order of the

i row ofC.

Proof:

Both matrix exponentials in (4-435) can be expanded in

an infinite series of the form (2-16). Since (4-435) must be satisfied

for all t, the series expansions must be equal term by term.

Equation (4-435) is therefore equivalent to

CA1B = C A B for all j > 0 (4-436)

This implies that

C C

CA n-iCA,
[B,AB,...,A B] = . [B,AB,...,A B]

CA]LCXJ

(4-437)

for all j > 0.
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Def ine

W = [B, AB, ., An-1B] (4-438)

"Vn-1

W = [B, AB ... , A B (4-439)

C

CA
MT .. (4-440)

CA 1

C

C

M .= (4-441)
Tj

j.X-1

th -~ th
Let c. be the i row of C, and c. the i row of C. Also let q. be the

decoupling order of c. Suppose the decoupling order of c. is less than
, I ^ q .- 1

q.. Then (4-433) implies that c.% i can be expressed as a linear
/V

combination of the rows of M T, qi-1, that is

q.-1 .
C.q-AI. = TM 1(4-442)

for some 1 X m %(q - 1) row vector 5". Now (4-437) implies that

c.A W = c.A W (4-443)

Since (A, B, C) is minimal, (A, B) is a controllable pair and rk W = n.

Therefore, (4-443) can be solved uniquely for c.A 1
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q.- IV .- 1 ^ ww
c.A= c tXA WT W wT -1 (4_444)

and similarly (4-437) with j = qi - 2 yields

M T T -1
T, q = 1 M T WWq[ W1WW]W(4-445)

Substituting (4-442) and (4-445) into (4-444) gives

q.-1M.T, Th m..-1c.A 1 = M\qf lW WTEW WT-

= WMTq1 (4-446)

But this contradicts the fact that the decoupling order of c is q.

Therefore, the decoupling order of C cannot be less than qi. This

completes the proof.

By this theorem the decoupling order of any row of C

cannot be decreased when the state space is made larger than the

minimal one. Therefore, to obtain a decouplable representation (if the

minimal one is not decouplable) the state space must be enlarged to a

dimension of at least (q + ... + qm), where q1 is the decoupling order

of the ith-row of C in a minimal representation. Appendix C demon-

strates that this lower bound is, in fact , reachable. It presents a way

of augmenting a representation to obtain an equivalent decouplable

representation with dimension (q1 + . . . + qM

To reiterate, a plant representation in the form of (4-403)

to (4-408) was shown to be desirable for the detection of changes in
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plant dynamics. The extended development on output decoupling and

augmented representations was necessary because it is essential to be

aware of the assumptions tacitly made about the plant when it is

represented in the form of (4-403) to (4-408). Specifically the assump-

tions are as follows:

(1) The plant is observable.

(2) The output decoupling order of the 1th sensor (i. e.,

the decoupling order of c. in the minimal representa-

tion) does not exceed n .

The first assumption is entirely reasonable when

dealing with the identification of plant dynamics from sensor outputs.

It was noted in Chapter 2 that the unobservable portion of the dynamics

cannot be determined from the output (and input). It does not make

sense, then, to model the plant with an unobservable representation

when the unobservable portion cannot be identified. The second

assumption places a restriction on the kind of dynamics changes which

the standard form model can handle. To be specific, the plant dynamics

should not change in such a way that the decoupling order of the Lth

sensor exceeds n. If this happens (4-403) to (4-408) cannot be a valid

model (i. e., an equivalent representation) of the plant for any values

of the elements ap1 . This means that the less prior knowledge one has

about the possible plant dynamics changes, the larger the model will

have to be to guarantee a valid representation. Suppose, for example,

it is known that the decoupling orders of the sensors will remain fixed

at known values (n. for the ith sensor). Then the plant can be safely
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modeled by a representation of the form (4-403) to (4-408) with a state

space of dimension (n1 + ... + nm). If the decoupling orders of the

sensors do not necessarily remain fixed, but an upper bound nh is

known for each sensor, then the plant can be modeled in the form of

(4-403) to (4-408) with a state space of dimension (1 + ... + mn).if

the dimension of the minimal plant representation is known to be fixed

at (or at least does not exceed) n, and it is further known that the

sensors all remain independent (i. e., that rk C = m in the minimal

representation), then an upper bound on the decoupling order of any

sensor is (n - m + 1). In this case the plant can be modeled with a

state space dimension of m -(n - m + 1). It is interesting to note that

n
this number attains a maximum value for m near and approaches n

as m approaches 1 or n. Finally, if it is known only that for the

minimal representation rk C is at least k and the dimension of the state

space does not exceed n, then the upper bound on the decoupling order

of any sensor is (n - k + 1). In this case a model with an [m *(n - k+ 1)]

dimensional state space will always be valid.

The standard form of (4-403) to (4-408) can be inter-

preted in a different way which may have more physical meaning in

many cases. The state space description of the plant given by (4-1) to

(4-3) is equivalent to a set of m linear, coupled, scalar differential

equations relating the output variables {yi(t) ; i = 1, ... , m} to the

input variables {udj(t); j = 1, ... , r}. In Chapter 5 this set of

differential equations is developed for the case in which A and C are

in the form of (4-403) to (4-408) (Equations (5-52) to (5-55) ). From

these equations it can be seen that each row of blocks of A in (4-403)
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corresponds to one differential equation. For example, the blocks

{A ... ,A. } (and the corresponding row of block is B) are

associated with a differential equation for the output component y(t).

This differential equation is of order n.(where A.. is n. X n.). The
1 11 1 i

highest derivative of y.(t) in this equation is n. The significant feature

of this equation is that the highest derivative of any other variables

( y (t) for j i and udl (t) for all I = 1, . . ., r) is less than n. In

other words, the driving terms, involving udl(t) for I = 1, ... , r,

and the cross-coupling terms, involving y.(t) for all j f i, all have

lower order derivatives than the highest order derivative of y (t),

which is

n.

dI
y (t)

dtn (

If the plant dynamics can be described by a set of input-output equations

having this property, then the state space description can be put into

the form of (4-403) to (4-408), and vice versa. The meaning of the

general form of (4-430) is that if some at 0 then there exists a
ii

cross-coupling term involving

n.

di
n y (t)

dt

whose order is equal to the highest derivative of yi(t).

In closing this section, some final observations should

be made.
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1) Although it was not proven, it will be found that if the

form of (4-430) with a* * 0 is used for a plant model then, in addition

to the objections already noted, more than one detection filter may be

necessary to detect all of the coordinate directions. This happens

because the presence of a nonzero a makes certain nonseparable

coordinate directions have nonidentical detection spaces. This results

in uncontrolled eigenvalues which must then be investigated for satis-

factory filter dynamics.

2) The form of C in (4-407) implies rk C = m where

m is the number of sensors. It may happen that in the minimal

representation for the plant rk C <im. Appendix C considers this

possibility, and in any case the C in the augmented representation will

have full rank m.

3) Because of the form of hU (t) in (4-421), the Ob. (t)

for I = 1, . . ., n in (4-424) are the components of the state vector

for the n -dimensional system

0

i.(t) = P ..(t) + . y.(t) (4-447)
Ii 0

1

w ith

.. = (4- 448)

'4.. (t)
tin.I
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where P. is given by (4-419). Similarly the qj 1 (t) in (4-428) are the

components of the state vector for

0

j(t) = PT j(t) + u dj(t) (4-449)

1

with

ij 1(t)

y(t) =(4-450)

in. (t)
'in.
_1 _

Chapter 5 discusses several methods for processing the error signals

given by (4-423) and (4-427) to determine Aa.. and A b

4.3.7 Sensor Failure Information

In Section 4.2. 3 it was found that the best information a

detection filter could provide about the sensor failures was an error

signal constrained to a two-dimensional plane. It will be shown in this

section that this can also be achieved in the case of a partially

measurable state vector.

When the ith sensor of the plant given by (4-1) to (4-3)

suffers a failure as described by (4-55) the equation for the state error

can be obtained from (4-56)

E(t) (A - DC) E(t) + d n(t) (4-451)
1-
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where di is the ith column of D.

d. = De . (4-452)

The accessible output error is defined by (4-72) as

E 't) y(t) - Cz(t) = CE(t) + e. n(t) (4-453)

Theorem 4. 1 is not directly applicable to (4-451) because di corre-

sponding to f is not fixed, but depends on the detector gain D which is

under the control of the designer. Therefore, some additional results

are necessary to show that a detector gain does exist which will

constrain the output error to a plane. In previous sections an event has

been associated with the drive term of the state error equation; for

example, f in Equation (4-73). It is not satisfactory to associate a

sensor failure with d , however, because this vector can be changed

at will and has no inherent relationship to the sensor. For this reason

~t ilb soitdwith h thfailure of the i sensor will be associated with cr, the i row of C,

and detectability of this event will be defined accordingly.

th ATDefinition 4.13. The i. row of C, c. = e C, is
Smi

defined to be sensor detectable if there exists a matrix D such that

(1) E r(t) is constrained to lie in a two-dimensional plane

in the output space, where E0(t) is given by (4-453) and

E(t) is the settled-out solution of (4-451) with n(t) an

arbitrary scalar time function, and

(2) at the same time, all eigenvalues of (A - DC) can be

specified almost arbitrarily.
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The following theorem provides sufficient conditions for

sensor detectability. Its proof will lead to the design procedure for a

sensor failure detection filter.

Theorem 4.10. If (A, C) is an observable pair and c.,

the 1th row of C, is linearly independent of all the other rows in C,

Then c. is sensor detectable.

Proof:

Let f be an n-vector satisfying

Cf = A .(4-454)mi

Note that a necessary and sufficient condition for the existence of such

an f is that c. be linearly independent of all the other rows of C. By

Theorem 4.1, f is detectable. Let V be the detection order of f, and g

its maximal generator. First choose D to be a detector gain for f by

constraining it to be a solution of (4-113), or equivalently (4-119). Then

as shown in Section 4.3.1, A - DC=Ar - DICI where A ' and C' are

given by (4-133) and (4-134), and D' is arbitrary. With (4-454),

Equation (4-119) for D reduces to

DCf = D - d = +g . + p A g+iAg

(4-455)

or using (4-168)

d = zd + Af (4-456)

where zd is given by (4-170).
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The purpose of making D a detector gain for f is that

d. has been fixed, as shown by(4-456). The sensor failure detection

filter can now be obtained by making D' a detector gain for d. Note

carefully, however, that in determining this second detector gain

one must start with the matrix pair (A r, C ') instead of (A, C). In

applying the results of Section 4.3.1, A and C must be replaced by

A ' and C'. The only additional consideration necessary is the fact

that (ACr,C) is not an observable pair, since

C r

rk . = n - (4-457)

V A rfll

It was shown at the end of Section 4. 3. 1 that even for a nonobservable

pair a detector gain can be found for any vector which does not lie in

the unobservable space. Assume first that d. does not lie in the

unobservable space of Cr with respect to A '. Then it is possible to

find a D' which is a detector gain for di (with respect to (A T', C') ), and

at the same time specify almost arbitrarily (n - v) eigenvalues of

A' - D!C' = A - DC. The remaining v eigenvalues are associated

with the unobservable space of Ct' (the detection space of f) and have

already been specified by constraining D to be a solution of (4-455).

Therefore, all the eigenvalues of (A - DC) can be almost arbitrarily

specified.
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It must now be verified that the output error given by

(4-453) will be constrained to lie in a plane. With D' selected to be a

detector gain for d. with respect to (A1', C'), it is known that C'E(t)

must lie in a fixed direction, where E(t) is the settled-out solution of

E(t) = (A' - D'C') E(t) + d1 n(t)

= (A - DC) E(t) + d. n(t) (4-458)

Let the fixed direction be represented by an m-vector y,. Then C'E(t)

can be expressed as

C'E(t) = Yd d(t) 1 (4-459)

where Pd(t) is a scalar function depending on n(t). Now from (4-134)

C' = C - Cf[(Cf)TCf]~(Cf)TC

A AT A
C- ei.emi C = C e- .c (4-460)

AT th
where c. = e C is the i row of C.

I mi

with the 1th row set to zero.) Then

(Note that C' is simply C

A
CE(t) = C'E(t) + e c. E(t)

- yd d(t) + ec E(t) (4-461)

and the output error is
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E' (t) = CE(t) + 9m n(t)

= Ydc(t) + emin(t) + CiE(t)) (4-462)

Since ((t) + c p E (t)) is a scalar function, it is clear that E'(t) lies in

Athe two-dimensional plane formed by Yd and em .

In obtaining this result it was assumed that d. did not

lie in the unobservable space of Ct. Suppose now that d. does lie in
1

this space. Then

Cr

Ct A'
d. 0(4-463)

C n-1

By (4-182) and Definition 4.5 this means that d. lies in the detection

space of f. This, in turn, means that D satisfying (4-455) is a detector

gain for d. as well as f. In this case the second step of making D' a

detector gain for d. is unnecessary, and one can immediately conclude

that C E(t) lies in a fixed direction. If this direction is represented by

A

Yd, then e '(t) lies in the two-dimensional plane formed by Yd and em .

The choice of D' is unconstrained and can be selected to arbitrarily

specify (n - V) eigenvalues of (A - DC). As before, the remaining v

eigenvalues are specified by choice of the coefficients in (4-455). This

completes the formal proof of the theorem.

This proof shows in a general way how to proceed in

designing a detection filter for sensor failures. Some additional-
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material will now be presented which is of significant value in develop-

ing practical design procedures for these detection filters. In remark 4)

at the end of Section 4. 3. 1, a coordinate transformation was used to

demonstrate how a detector gain could be found for a nonobservable pair.

In effect the problem was transformed so that the unobservable part of

the state space was eliminated from consideration, and the results of

Section 4.3. 1 could be applied to a subspace which was observable -

specifically the observable pair (A1 1 , C1 ). In practice it is neither

necessary nor desirable to actually perform a coordinate transformation

to find a detector gain Dr. The same result can be achieved with the

notion of vector equivalence classes. A complete formal development

of this concept can be found in [ 7 ] . Only a brief introduction will be

given here.

Denote the unobservable space of C' with respect to A'

by E. Two vectors x1 and x2 in the state space are defined to be

equivalent modulo E (denoted x, x2 (mod E) ) if their difference lies

in E. The set of all equivalent vectors forms an equivalence class.

The equivalence classes themselves can then be considered members

of a new vector space replacing the original state space. Because E is

an invariant subspace with respect to A'I, it can be shown that A ' is a

linear operator in the vector space of equivalence classes (mod E).

Also, Cr can be viewed as a linear operator from the space of

equivalence classes into the ordinary m-vector output space. All the

results of Section 4.3. 1 can then be applied to this new state space

(with A and C replaced by A I and C'). The end result is that all vector

equations in the state space (i. e., vector equations' with n rows) remain
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valid except that "=" is replaced by " (mod E)". All other equations

(for example, (4-80) and (4-91) retain the true equality sign. There is

one exception to this rule. An equation in the state space retains the

true equality sign if it is derived entirely from equations in which true

equality holds. An example is (4-105) which is derived from (4-80).

Let v' be the detection order of d. with respect to

(A ' C') and g' its maximal generator (mod E). In this situation the

maximal generator (mod E) is not unique because any vector equivalent

to g' is also a maximal generator. The uniqueness assertion of

Theorem 4.4 applies to the equivalence class of maximal generators

rather than a specific n-vector. The algorithm of Appendix A for finding

a maximal generator is applicable to nonobservable pairs, so it can be

used to generate a g'. Specific note is made of the nonobservable case

in the appendix. The equation for D t' corresponding to (4-113) is

r 
' -'1 D'C'A' g' =pIg +p 2 Arg +... + p A' g

+ A' g'(modE) (4-464)

This is equivalent to the equation

V-i V1iV
D'C'A' 1g' = p1g' + ... +p', A' g'+ A' g' + zE

(4-465)

where z is any vector in E. The coefficients p! and the vector zE
E1 E

can be arbitrarily specified by the designer except that z E must lie in

E. A simple choice for zE is 0.
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When a D' satisfying (4-465) is used to form (A ' - D 'C')

= (A - DC), this matrix will have u eigenvalues given by the roots of

s + pvs + + P2 s + p. = (4-466)

and v' eigenvalues given by the roots of

s + p',sV'-1 + ... +p' 2 s+ p'1  = 0

(4-467)

This fact can be verified by Introducing the coordinate transformation

G = T~ (A-DC) T
g g

(4-468)

where

Tg [w w)g g Tg2
(4-469)

with

W
g

W'I
g

and Tg2 is any n X

From (4-115)

u-1
= [ g, (A -DC)g, . . ., (A -DC) g] (4-470)

v'-u
- [ g', (A ' - D'C')g', ... , (A' - D'C') g']

- [g', (A -DC)g', ... , (A -DC) g']

(4-471)

(n - v - v') matrix which makes T nonsingular.

(A -DC)Wg =W P (4-472)

where
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P =

0 0

1 0

0

0 -p1

1

0 0

0.

-1 -p12

The equation with D' corresponding to (4-115) is

(A' - DC') ' - pg' - - p',(A' - D'C') g' + z
j2E

(4-474)

where zE is the same vector appearing in (4-465). Then

(A - DC) W'
g

= (A'- D'C')W'
g

W' P' + WG
g912

(4-475)

where

P' =

0 0 I70 -

1 0

0

0

1

0

-10

(V x v')

(4-476)

and

.0.0.0
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(v x v) (4-473)

El
0 .

0.-

(V X v')

(4-477)
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The scalars fcEla..., E } are defined by

zE = g + aE2 Ag + .. +a .V

(4-478)

Any vector in E can be expressed uniquely in this form because the set

of vectors {g, Ag, ... , A" 1 g} form a basis for E. Using these

results the coordinate transformation yields

Pl2, G 13

G = 0 P23 (4479)

0 0 G
- - 33_

where

(A - DC)Tg 2  = W G13 + WG + Tg2 G33 (4-480)

From the block triangular form of G it is clear that (V + v') eigan-

values of G, and thus (A - DC), are given by (4-466) and (4-467). The

remaining (n - v - v') eigenvalues can be specified by the freedom left

in D' after constraining it to satisfy (4-465).

The design procedure suggested by the above material

is quite straightforward. First g, the maximal generator of f, is found.

The coefficients p, are selected and together with g, A ' and d. can be

formed. Then starting with A ', C', and di the standard design

procedure for an ordinary detection filter can be followed to determine

a suitable D' to detect d. The only difference is that the designer has

some additional free choices to make, such as the vector zEin

(4-465).
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By taking advantage of equivalence properties arising

from the vector equivalence classes it is possible to introduce a number

of simplifications in the procedure described above. To begin with,

d. can be replaced by any vector which is equivalent (mod E). Since

z d in (4-426) is in E, Af is such a vector. Besides being simpler to

form, Af does not depend on the coefficients p. The matrix A ' can

also be replaced by any other which is equivalent (mod E). The matrix

K given by (4-167) is equivalent to A'. Like Af, it is simpler to form

and does not depend on the p. To show that K and A ' are equivalent

(mod E), let x be an arbitrary n-vector, and note from (4-169) that

(K - A ')x = zd [(Cf)TCf] 1(Cf)T Cx

= zd(c.x) (4-481)

A
since Cf = emi. But (c.x) is a scalar so the vector on the right is

always in E. Hence

(K - A ')x 0 (mod E) (4-482)

for arbitrary x. This implies that K - A' E 0 (mod E) or

A' E K (mod E) (4-483)

Equation (4-465) can be written in terms of K as

D'C'KV g' = pg' + ... + p'y, K g' + K g+z

(4-484)

where z'E is any vector in E.
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Replacement of A' and d. by K and Af, which do not

depend on the pi, also allows certain steps in the design procedure to be

performed in a different order. In particular it becomes possible to

generate g' during the same sequence of operations in which g is

generated. (Previously, g had to be found and the p, selected before

A' and di could be formed to generate g'.) Generating g and g' in

the same operation is more efficient computationally than the two-step

process necessary when g' is found using A ' and d. The procedure

is described in Appendix A.

Returning to (4-459), the vector Yd can now be more

precisely identified. If C'Af f 0 then

Yd= C'd = C'Af

= CAf - e .(c.Af) (4-485)mi 1

using (4-460). Then the output error E'(t) given by (4-462) lies in the

A
plane formed by CAf and e .mi In general, if C'A'3 Af = C'KjAf = 0

for j = 0, 1, ... , - 1 and C'A' Af = C'K1 Af 4 0, then

Yd= C'KAf = CK Af - e .(c.K Af) (4-486)
d ml i

I A

and E '(t) will lie in the plane formed by CK Af and em. Note that the
mi.

error plane does not depend on the eigenvalues specified for (A - DC)

(i. e., on the p, or p'). A Laplace transform analysis of the complete

error dynamics can be performed in a manner similar to that in

remark 5) at the end of Section 4.3.1. The coordinate transformation
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given by (4-469) to (4-471) can be used for this purpose. If this is

done it will be found that, in addition to results corresponding to those

in remark 5), the error dynamics also depend, in part, on zE in (4-465)

and even on the particular g' used in that same equation (recall g' is

not unique). Unfortunately the complete results of the Laplace transform

analysis in this case are considerably more complicated than those

obtained in remark 5). The significantly greater amount of computation

required to obtain and interpret the results reduces their practical

usefuLness.

Up to this point the design of a filter to detect only a

single sensor failure has been considered. With the use of equivalence

classes (mod E) the results of Sections 4.3.2, 4.3.3, and 4.3.4 can be

applied to the problem of designing a detection filter to detect a number

of sensor failures. The steps in design correspond in a general way to

those listed in Section 4. 3. 5 with some additional considerations.

Below is a brief description of a straightforward design procedure. It

is not necessarily the most efficient computationally.

1) Consider k rows of C, each of which is independent

of all other rows in C. For convenience of notation let these be the

first k rows {c, ... , c}. For each c. determine f. such that

A
Cf. = e ..

i mi

2) Form F = [f, k] . By construction in step 1)

the f. are all output separable vectors. Generate the 9. and as

described in Appendix B. If A does not exist (has zero dimension), the

f. are mutually detectable. If A does exist, identify its eigenvalues

and decide if they are satisfactory. If not, apply the results of
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Section 4. 3.4 to subdivide the set {f1 , ... If so that the undesirable

eigenvalues are eliminated. If the standard form model of the plant

suggested in Section 4. 3. 6 is used, the f. will always be mutually

detectable. This step can be skipped In that case.

3) Let {f1 , ... ,fk} be a set resulting from step 2).

Form the vectors {Af 1 , ... I Af k} and the matrices A ' and C'

defined by (4-254) and (4-255) with F = [fi, ... , fk . For each

vector Af. one of three possibilities must hold.
1

(i) Af. does not lie in the unobservable space of C'

with respect to A'.

(ii) Af. does lie in the unobservable space of C',

and any detector gain satisfying (4-245) is also

a detector gain for Af.

(iii) Af lies in the unobservable space of C', but

a detector gain satisfying (4-245) is not a

detector gain for Af..

Case (ii) will result if Af. lies in the detection space of some f.. It

may also result when Af. lies in a subspace made up of several

detection spaces which have some identical eigenvalues. The chance

of this special situation occurring is made more likely by specifying a

large number of identical eigenvalues for the detection space of the f..

In any case, one way to check for the occurrence of case (ii) for any

Afi lying in the unobservable space of C' is to determine if the

sequence of vectors {CAf., CA 'Af., . . ., CA'n- 1Af.} all lie in one
1 1t

direction. If they do, case (ii) applies, if not case (iii) applies.
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Retain all f. for which (i) or (ii) holds and remove any others from

the set.

4) Let {f, . fk2 } be a set resulting from step 3).

Define A' and C' by (4-254) and (4-255) with F = [fV, . Y , fk2] . The

Af. in category (L) of step 3) must now be checked for mutual detecta-

bility with respect to (A ', C'). This means essentially repeating

step 2) with A, C, and thef. replaced by A ', C', and the Af.. For

any Af. which produces undesirable eigenvalues, the corresponding f.

is removed from the set {ff, . k If some vectors are removed,

some Af. may move from category (ii) to category (i). Then mutual

detectability of the Af. must be rechecked with the new members.

- 5) Let {f1 , ... , f k} be a set resulting from step 4).

A detector gain for the Af. in category (i) can be found by solving a

set of equations for D' of the form of (4-245). The remaining freedom

in D', if any, is used to specify the remaining eigenvalues of (A,' - D'C').

A procedure analogous to that mentioned in step 4) of Section 4. 3. 5 can

be used to do this. The resulting matrix (A ' - D'C') = (A - DC) yields

a detection filter which will detect the failure of any of the k3 sensors

associated with the vectors {f 1 , .8 . }fk3

It should be emphasized that when the plant is modeled

in the standard form suggested in Section 4. 3.6, many of these steps

are considerably simplified and can often be completed by simple

inspection. Chapter 5 discusses the processing of detection filter

error signals to diagnose sensor failures.
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4.4 Summary

The concept of a detection filter and the motivation for its

development was discussed in Chapter 3. Basically it is designed to

provide information which will aid in the detection and identification of

effector and sensor failures and changes in the linear plant dynamics

as described in Chapter 3. The detection filter produces an output

estimate which asymptotically approaches the actual output of the

sensors when there are no failures, plant changes, or other disturb-

ances. A deviation from the undisturbed condition produces an

accessible error signal which is the difference between the actual

sensor outputs and the filter estimate of those outputs. The ?ssential

feature of a detection filter is that it is designed to respond in a special

way to certain failures or changes. Of course any other disturbance

may also elicit an error response from the filter, but by knowing and

looking for the special responses it is possible to detect and identify

the occurrence of a failure or change even though it is obscured by the

ambient disturbance level.

When a failure or change occurs which a certain filter has been

designed to detect, that filter will produce an output error signal which

has a fixed direction (the output error is a vector-valued signal). That

fixed direction is identified with a certain failure or plant change.

There are two qualifications to this ideal situation. First, several

failures or changes may be associated with a single error direction.

Often additional information (e. g., dynamic properties of the error

magnitude) can help to differentiate among such possibilities. Second,

it is not possible, in general, to construct a filter which produces a
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fixed-direction error in the case of a sensor failure. The best that

can be done is to constrain the error to a two-dimensional plane.

When there are a sufficient number of independent sensors to

be able to determine instantaneously the state of the plant (assuming

perfect measurements), the state vector is considered to be fully

measurable. In this case, as is shown in Section 4.2, a single

detection filter can provide information about all the events described

in Chapter 3 -- effector failures, sensor failures, and changes in plant

dynamics. This filter is of the same order (state vector dimension)

as the plant. In response to a single failure or change it produces an

error signal fixed in direction, with a magnitude equivalent to the response

of a first order linear system driven by the magnitude of the failure or

change (i. e., the magnitude of the deviation from the normal operating

characteristics of the plant). The time constant of this first order

response can be arbitrarily specified by the designer, but is the same

for all events. Of course it is not necessary to use a single all-purpose

filter. In some situations it may be preferable to use several filters

and tailor their dynamic characteristics to match the characteristics

of different events. It would seem desirable, however, to keep the

number of detection filters small.

When the state vector of the plant is not fully measurable, it is

not possible to construct a single all-purpose filter which provides

information about all events. It is not difficult to show that even in this

case it is possible to construct a filter which produces the characteristic

fixed-direction error signal in response to one event at least. But there

are two other important considerations in the design of a detection filter.
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The first is the ability to control certain dynamic properties of the

filter while achieving the fixed-direction error characteristic. Not

only is it important to be able to avoid undesirable (e. g. , unstable)

filter dynamics, but also to be able to tailor those dynamics to enhance

the response to the events of interest and suppress the response to other

disturbances. The results of Section 4.3. 1 show how it ispossible to

obtain the fixed-direction error response for one event and at the same

time retain control over the poles of the detection filter. It is found

that the error magnitude response is not necessarily that of a first

order system as it was in the case of a fully measurable state vector.

However, for each event there is a maximum system order for the

magnitude response beyond which the fixed-direction property cannot

be achieved. This order is defined as the detection order of the event.

It is found that the order of the error magnitude response should be

made a maximum, i.e., equal to the detection order, if one wishes.

to remain control over as many poles of lthe filter as possible. The

poles associated with the magnitude response can be arbitrarily

specified by the designer, but the zeros cannot. It is possible to

determine the location of the zeros before specifying the poles, so zeros

in the left half of the complex plane can be cancelled with poles if

desired.

Because the control of the detection filter poles is included in

the problem of detection, the condition of observability of the plant

appears in the results. When a plant model is not observable, then a

detection filter which considers the full plant will have a certain number

of poles equal to those of the plant, and these cannot be controlled by
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the designer of the filter. In a practical sense observability plays

only a superficial role, however. The whole subject of detection here

is based on obtaining information from only accessible signals. As

noted in Chapter 2, when a plant is not observable, the unobservable

portion has no effect on the accessible signals. That portion then is

"unknowable" with respect to accessible signals, so for the purpose of

detection it does not make sense to model the plant dynamics with an

unobservable representation.

The second important consideration in the design of a detection

filter is to make the filter as versatile as possible, i. e. , able to

provide information about as many events as possible. This problem

is the subject of Sections 4.3.2, 4.3.3, and 4.3.4. It is found that in

constructing a filter to detect a number of events it is not always

possible to retain control over all the poles of the filter. Section 4. 3. 3

shows how to determine which events can be detected by the same

filter while still retaining control over all poles. Section 4. 3.4 takes

a broader view and allows the possibility of uncontrolled poles in the

filter. It demonstrates how to identify such poles and how undesirable

poles can be eliminated by removing certain events from the set of

events which the filter is required to detect.

The final three sections in the chapter specialize the previous

general results to the three types of events described Ln Chapter 3.

Section 4. 3.5 deals with the detection of effector failures. A brief

step-by-step design procedure is presented, and the error response of

the resulting filter is discussed. Section 4. 3.6 considers the use of

detection filters to determine changes in plant dynamics. It describes
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a standard form model for the plant which simplifies the design process

and makes it possible to produce information about all changes in plant

dynamics. This model may have a larger state vector dimension than

the minimum dimension necessary to represent the plant when the

dynamics are completely determined. The enlarged state vector

reflects the uncertainty introduced by the possibility of changes in the

plant dynamics. Section 4. 3.7 deals with the most complex problem

in detection filter design -- the detection of sensor failures. It is shown

that the error response to a sensor failure can be restricted to a two-

dimensional plane if that sensor output is modeled as being independent

of the other outputs driving the filter. In the standard form suggested

in Section 4. 3. 6, every sensor output is modeled as independent of all

the others. If in the minimal plant representation some sensors are

dependent and are so modeled, then a more direct way of detecting a

failure is by a simple comparison of outputs. This point is illustrated

in Section 4. 2. 3. The detection-filter method of detecting sensor

failures complements the direct-comparison method. The direct-

comparison method can be used only if the sensor is dependent on other

sensors, whereas for the detection-filter method the sensor is assumed

to be independent of the other sensors.

A detection filter for any type of event is of course based on a

model of the plant dynamics. One detection filter, at least, will have

the responsibility for detecting and identifying changes in these

dynamics - in effect forming a new plant model. Having obtained a

new plant model,all the other detection filters must be rechecked and

adjusted, if necessary, to fit the new model. Therefore, it is important
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to the overall reorganization scheme to have efficient filter design

algorithms which can be carried out by on-line computers. For this

reason reference is made throughout Chapter 4 to Appendices A and B

which describe algorithms for obtaining the various vector and matrix

qnaitities necessary in the filter design process. These algorithms

are developed for a general linear plant description. When a standard

form plant model is used, a number of significant simplifications result.
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CHAPTER 5

IDENTIFICATION DECISIONS

5.1 General Discussion

This chapter investigates the problem of identifying events from

the error signals produced by detection filters. The detection filter is

designed to produce a fixed-direction error in response to certain events.

Ideally the identification problem is a simple matter of noticing the

fixed-direction error and associating it with a specific event. The

actual identification problem is more difficult than this for two reasons.

The first is that the detection filter may beresponding to other disturb-

ances besides the specific event producing a fixed-direction error. When

these extraneous errors are added to the fixed-direction error the

result is an error signal not fixed in direction. The total error must be

processed somehow to recover the fixed-direction signal from the

extraneous errors. Noise disturbance in the sensor outputs or entering

through the plant dynamics is one source of extraneous errors. A

second source is the occurrence of multiple events which must be

detected by different filters. For example, changes in plant dynamics

will cause extraneous errors in the output of a filter designed to detect

effector failures.

The second complicating factor in the identification problem is

the case of nonseparable events which cannot be distinguished on the

basis of error direction alone. The most important example of this

arises in the detection of changes in plant dynamics. As was seen in
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Sections 4.2.2 and 4.3.6, error direction alone is not sufficient to

determine which elements of A or B have changed. Error magnitude

information is also necessary. The identification of plant dynamics is

treated as a special case in the next section. The identification of

effector and sensor failures is investigated in the final section.

5.2 Plant Dynamics Identification

This section discusses the problem of determining changes in

plant dynamics from the error signal produced by a detection filter.

The problem will be considered first in a formal mathematical frame-

work. This will show, in theory, What information the error signal can

and cannot provide about plant dynamics. Such results will establish

the limitations on what can be expected from any dynamics identification

scheme based on detection filters. Section 5. 2.2 compares the detection-

filter method of dynamics identification to some other methods.

5. 2. 1 Conditions for Identifiability

This section investigates the conditions under which the

plant dynamics can (and cannot) be uniquely determined from the informa-

tion provided by a detection filter, assuming perfect knowledge of the

input and output vectors of the plant.

It will be assumed that the plant is modeled by

i(t) = Ax(t) + Bu(t) (5-1)

u(t) = ud(t) (5-2)

y(t) = Cx(t) (5-3)

with A and C in the standard form suggested in Section 4.3.6
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0 0

1 0

(5-4)

(5-5)0

0

1

0

A..A .

0

0
(n. X n.)

3

(n. X n.)A..
3p.

(5-6)

(5-7)

0

0

where

(5-8)

(5-9)



and

n1 + ... + nm = n (5-10)

The matrix B is partitioned to conform to the blocks of A as in Section

4.3.6

by . . . .b 1r

B = (n X r) (5-11)

_ m l., . . . .

ii 1
b.. = (n. X 1) (5-12)

b..
ijn.

The error response to changes in individual elements of A and B is

given by (4-423) and (4-427) respectively. Adding together the effects

of all allowable changes in A and B yields a total settled-out output

error of

m m 1

E'(t) 3Aa 1  (t) e

i=1 j=1 1=1

M r I

+ 3 31 b., i% (t) ^. (5-13)

i=1 j= 1=1

with q (t) and Yj (t) given by (4-424) and (4-428). In the first term

on the right side of (5-13) the summation on I has the upper limit of

n = min {n., n.} (5-14)
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instead of simply n. because nonsquare blocks of A have the form of

(5-7) in which a.. 1 is identically zero for all I >~nr. This results

from the algorithm of Appendix C for obtaining the standard form. The

ith component of E(t) IS

c' g(t)

m=1.
j=l

3
1=1

r

j=l /=1

(5-15)

Define the following vectors:

1LA a..

A b..

bijt

L qS

9..- (t)j
1.n.i.

for j =1, ... , m

for j= , . r

for j=l,...,m

( .r(t) =. 1)

M, m j

ij_

for j = 1, . . . , r
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7r , m+j

S () =

(5-16)

(5-17)

(5-18)

(5--19)

A b iji (t)j



and with these vectors form the composite vectors

7r

7r = (5-20)

(5-21)
_",m+ r

Now (5-15) can be written as

E' '(t) = T (5-22)

The basic problem in identification of plant dynamics is

to solve (5-22) for 7ri, given cK(t) and gi(t). The question of interest

here is to determine under what circumstances this is theoretically

possible. Equation (5-22) can be viewed as a linear mapping from

Euclidean space into the vector space of continuous scalar functions

over some time interval t I t t2 . From the theory of linear mappings

(Section 12 in [4] ) it is known that 7r. in (5-22) can be determined to

within an additive constant vector which lies in the null space of . (t).

The null space of 1 (t) is the set of all vectors 7r for which . (t) 7r is

identically zero on the interval [t., t2 J . A time-invariant vector

equation can be obtained from (5-22) by multiplying by (t) and

integrating over [t., t2 ] . This yields

E Mi(t t 2)w 1 (5-23)
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where

t2

.El= 5 (t) E.(t) dt (5-24)

t

and

t2

Mi(tv,1t) )i(t)(t (t) dt (5-25)

t

Any ir which satisfies (5-23) also satisfies (5-22) and conversely.

The null space ofET (t) over [t1 ,t 2 ] coincides with the null space of

M 2(t ,1t2) This result is proven by Brockett (Lemma 1, Section 14 in

[ 4] ). It is clear from (5-23) that 7r can be determined uniquely if and

only if M (t1 , t2 ) is nonsingular. If Mi(t1 , t2) is singular then for any

r . which lies in the null space, E '(t) will be zero over the interval

[t1 , t2 ] . This means that all standard form models whose parameters

have a vector difference ir0 lying in the null space of Mi(t, t2) can

reproduce exactly the output of the 1th sensor over the interval [t1 , t2 ]

All such models adequately explain the dynamic behavior of the plant

over [t), t2 ] as measured by the ith sensor. Without additional

information there is no basis for choosing among these models. In other

words, any 7 which satisfies (5-23) will yield a model which can dupli-

th
cate the plant behavior over [t1 , t2 ] as seen by the i sensor. Of

course the main purpose of having a plant model is to be able to predict

future plant behavior. It is of interest, therefore, to determine the

conditions under which differences between plant and model are

indeterminant and to investigate the nature of those differences. For
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this purpose it is necessary to determine what circumstances produce

a singular Mi (t ,1t2 Suppose M (ti, t2) is singular and 7r0 is a

nonzero vector in the null space. Since, as noted above, the null spaces

of M (t , t2) and ET(W)coincide

T (t) 7r = 0 for all t 1 't t2  (5-26)

Partition 7T 0 into (m + r) vectors conforming to (t).

7ol 1
r = .(5-27)

7o, m+r_

w ith

ojl

7r. = . for j=1, ... , m (5-28)

Loj i. .
and

iojl

7r. = . for j=m,. M+r

ojn. (5-29)

where the 7rI 1 are scalars. From the definition of (t) (5-26) can be

written as

n.. n.
m 13r I

I 7oj @j(t) + 3r T t P (t) = 0 (5-30)
j=1 1=1 j=1 1=1
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This equation is equivalent to a linear differential equation for '4 (t)

and ij I(t). To see this, note from the definition of hU(t) (4-421)

used in forming 0,,(t) and . (t) it follows that

A-(t) = d (t) fori = 1, ... , n. (5-31)
dt

and

1(t) - d_) for I = 1, ... , n (5-32)TijA dtt -I (t

Then (5-30) becomes

7TojI dt 1  (t) + rom ,I dt -1 (t)=0

j=1 1=1 j=1 1=1

(5-33)

To simplify notation define

A=-d (5-34)
dt

Then (5-33) can be written

m r

/ (x) O..1 (t) + p (x) (t)=0 (5-35)
j=l j=1

where

n..

oj()i7r(5-36)

1=1
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and

n.

p (x) = 3 0 X

I=1

By their definitions 4 (t) and i (t) are related t

through the diff erential equations

Mi(x) Pt) = y.(t)

p (X) Y (t) = Udi(t)

(5-37)

Sy(t) and udj(t)

(5-38)

(5-39)

where

n.

(<x) = x + 1?
(=1

(5-40)

The p which appear in (5-40) are the same as those appearing in

(4-419). These are the coefficients chosen by the designer to specify

the poles of the detection filter. Applying the differential operator

pg(X) to (5-35) gives

m r

Y W(x) n(x) sb (t) + I (Hx) p.(x) (t) = 0

j=l j=l

(5-41)

Interchanging the order of the differential operators and using (5-38)

and (5-39) yields

(5-42)

m r,

r i(x) y (t) + p(x) udj )=0

j=1 j=l

This shows that (5-42) is a necessary condition for Mi(t, t2) to be
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singular. It can also be shown that it is sufficient. Suppose (5-30) is

satisfied for any ru(X) and p (x) having the form of (5-36) and (5-37)

with arbitrary coefficients 7rojA (not all zero). Substituting (5-38) and

(5-39) into (5-42) and interchanging the order of the differential

operators gives (5-41). Defining

m r

q(t)TX nj() O(t) + p.(x) L (t) (5-43)

j=l j=l

equation (5-41) can be written as

y (X) q(t) = 0 (5-44)

Recall that for the error signal given by (5-15) it was assumed that the

initial condition effects in the detection filter had settled out. The n.

roots of y (s) = 0 are poles of the detection filter. This means that

the initial condition effects of any solution of (5-44) have the same

settling times as those of the detection filter. If t is large enough so

that the filter has settled out, then the solution of (5-44) will have

settled out also. Since (5-44) is undriven, the settled-out solution is

q(t) = 0 (5-45)

which gives (5-35) be definition of q(t). The development from (5-26)

to (5-35)-is equally valid in reverse so (5-35) implies (5-26) which in

turn implies M (t1, t2) is singular. This shows that condition (5-42)

is both necessary and sufficient for M (t1, t2) to be singular.

To see clearly what condition (5-42) means, it must be

interpreted in terms of the dynamic behavior of the plant. This
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condition is a differential equation relating the control signal ud(t)

and the sensor output vector y(t). These quantities are of course

already related by Equations (5-1) to (5-3) describing the plant

dynamics. These relationships must be clearly delineated before

(5-42) can be properly interpreted. Consider the plant representation

(5-1) to (5-3) with A and C in the form of (5-4) to (5-10). Partition

the state vector x(t) into m ni-vectors to conform with the partitioning

of A,

X1(

x(t) = .

L::]

~k(t) =

x;k z

- k ..k

(5-46)

(5-47)

(5-48)yk(t) = x k(t)

-k(t) = AkkEk(t) +

= Akk Ek(t) +

m

I A kjj(t) +

j= 1
i k

m

I kj yj(t) +

j= 1
j k

m

Z bkj udj(t)
k=1

m

2I bkj udj(t)
k=1

(5-49)
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kj1

-kj

La kjnk_

akj = 0 if I > n

Equations (5-48) and (5-49) are

equation

m

L v kj(X j(t)
j =1

where

vkk(x)

equivalent to the scalar differential

r

+ ' kj Udj(t) = 0

j=1

nk
_ n k +kiX 1

=na=kkx

vkj) =

Ykj(X)

nkj

=1

nk

=1
'f-i

x forj k

bkjf X-

(5-54)

(5-55)

Note that V kk(s) is the characteristic polynomial of Akk and always has

order nk. The order of Vkj(s) (i + k) is less than or equal to (ikj

and Y kj(s) has order no larger than (nk - 1). Equation (5-52) for any

k does not satisfy condition (5-42) because vkk(X) has order nk whereas

the.operator nk(X) associated with yk(t) in (5-42) must have order no
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larger than (nk - 1) as can be seen from (5-36). This means that

M (ti, t2 ) for all i will be nonsingular as long as the dynamic behavior

of ud(t) and y(t) cannot be described by any equations of lower order

than those given by (5-52) for k = 1,. . ., m. In other words, the

plant should exhibit the full dynamic properties attributed to it by the

representation (5-1) to (5-3).

It is possible to associate the singularities of M (t, t2 )

with several specific situations. A nonminimal model may yield a

singular M(t 1 , t2 ). It was noted in Section 4. 3. 6 that a nonminimal

representation cannot be both controllable and observable. The standard

form model is constructed to be observable, so if it is nonminimal it

must be noncontrollable. When a representation is not minimal it is

possible to reduce the dimension of the state space to obtain a representa-

tion which is minimal and which has the same dynamic relationship between

input and output. In effect the uncontrollable part of the system is dis-

carded to obtain the minimal representation. The reduced representation

yields a set of differential equations relating y(t) and ud(t) to replace

those given by (5-52) for k = 1, ... , m. One or more of these

equations will be of lower order than (5-52) for some k since the state

vector has been made smaller. Any such equation will fit the form of

(5-42) suggesting that some M (t1 t2) can be singular if the nonminimal

model is used. This may or may not be the case depending on the initial

conditions. The reason a nonminimal representation can be reduced is

because the uncontrollable portion of the dynamics is never excited by

the input. As far as the relationship between input and output is con-

cerned, this portion of the dynamics can be ignored. HoweVer, this

does not mean that the effect of the uncontrollable portion is never seen
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in the output. Because the model is observable, the full effect of the

uncontrollable portion can be evident in the output provided the initial

conditions are such that the uncontrollable modes are excited by

transients. In this case the reduced minimal representation will not

be adequate to explain all the dynamics appearing in the output. The

lower order equations suggested by the reduced representation will not

be valid and M (t1, t2) will not be singular. The lower order equations

are valid only if the initial conditions for the uncontrollable modes are

zero or their effect has settled out by the time t1 .

There are two reasons why the model may be non-

minimal. As noted in Section 4. 3. 6, it may be necessary to enlarge the

state space in order to achieve the standard form of (5-4) to (5-10).

If this is done the model will be nonminimal. The method described in

Appendix C for enlarging the state space demonstrates the arbitrary

nature of the added portion of the augmented model. Because of this

an augmented model is not unique, and this nonuniqueness is reflected

in the singularity of certain M (t1 t2 ) (implying the solution of (5-23)

is not unique). Singularities in Mi(ti, t2 ) which result from an augmented

model present no theoretical problem because any solution of (5-23) will

yield a plant representation which correctly models the plant behavior.

The multiple solutions of (5-23) simply correspond to the arbitrary

portion of the augmented model, which is not related to any dynamics

in the actual plant.

A second reason for a nonminimal representation is that

the actual plant may be nonminimal. This could be the result of effector

failures, sensor failures, or dynamics changes which have caused the

plant to become unobservable or uncontrollable. In this case a portion
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of the actual plant dynamics may be unidentifiable. An unobservable

plant may result from sensor failures or changes in dynamics. In this

case Mi(t ,9t2) for some i will be singular. As shown in Chapter 2,

the unobservable portion of the plant dynamics will never appear in the

output. This means that the plant behavior as seen by the detection

filter can be fully explained by a reduced state vector which results

when the unobservable portion of the plant is ignored. This implies

the relationship between input and output satisfies a differential equation

of lower order than those derived from the original state vector, which

is the same size as the state vector of the model. This means

condition (5-42) is satisfied, and therefore some Mi(t1, t2) will be

singular.

An uncontrollable plant may result from effector failures

or changes in dynamics. In this case Mi(t1 . t2 ) may be singular or

nonsingular. The uncontrollable modes of the plant dynamics will be

seen in the output if and only if they are excited by the initial conditions.

If some uncontrollable modes of the plant are not excited by the initial

conditions, then some M (t1 , t2 ) will be singular. If the uncontrollable

portion of the plant is fully excited by initial conditions, and the

controllable portion is fully excited either by the inputs or initial

conditions or both, then Mi(ti, t2 ) will be nonsingular. Of course,

initial condition transients can identify uncontrollable modes of the

plant only if their settling times are significantly longer than the

settling time of the detection filter. Otherwise the transients will

settle to zero in the time allowed for the filter to settle out.

Even for a minimal plant and model M (t1, t ) may be

singular if there is external low-order coupling between y(t) and ud(t)
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or between components of ud(t). External low-order coupling means

dynamic coupling of the form given by (5-42) caused by effects external

to the plant. The most obvious example of external coupling is a feed-

back loop. If y(t) and ud(t) are related through feedback by a low-order

relation in the form of (5-42), then some M (tiI t2 ) will be singular.

Coupling between components of ud(t) may also cause a

singular Mi(t1 , t2 ). It can be shown that for a minimal representation

some Mi(ty, t2) will be singular only if there exists a set of poly-

nomials { Xj(s) , j = 1, ... , r} (not all identically zero) each with

order no larger than (n + i - 1), such that

r

X (X) udj(t) = 0 (5-56)

j=1

where n is the state dimension of the minimal representation and

n = max {nn, . .. , nm} (5-57)

Define the matrices of polynomials

V1 1 (s) . . .. m(s)

N(s) = (5-58)

Vml(s) . . . . V MM(s)

11(s) . . Y. 1r(s)

r(s) = .. (5-59)

. rr(s)
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Then the equations (5-52) for j = 1, . . ., m can all be written in one

vector equation

N(x) y(t) + P~(N) Ud(t) = 0 (5-60)

Let N(s) be the matrix of cofactors of N(s) having the property

N(s) N(s) = N(s) I = V0(s) I (5-61)

( (s) is the characteristic polynomial of A.) Applying the operator

N(X ) to (5-60) yields

N(x N(x) y(t) + N(x) Ix Ud(t)

= v (x) y(t) + N() r(x) ud(t) = 0

(5-62)

Assume y(t) and ud(t) also satisfy (5-42) for some r(X) and p.(X).

Define the vectors of polynomials

q(s) =L :](5-63)

P(s)

p(s) = r (5-64)

Pr (S)

Then (5-42) can be written

T(T ) y(t) + p T(T ) Ud(t) = 0 (5-65)
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Applying the operator v0(N.) to this equation and using (5-62) yields

vO(x ) T(X ) y(t) + v()p T(x) ud(t)

= 7T(M V (x) y(t) + PT(W V()Ud(t)

= T(N) N() r() + p T() vj(i) ]ud(t) = 0

(5-66)

Now VOs has order n because it is the characteristic polynomial of

A which is n X n. By (5-37) the highest order polynomial in p (s) can

have order no larger than n - I where n = max fni, ... , n m }. Then

the polynomial elements of p T(S) V (s) are of order no larger than

(n + n - 1). The matrix N(s) F(s) has no polynomial element with order

larger than (n - 1). This can be shown from (5-62). Taking the Laplace

transform of both (5-62) and (5-1) to (5-3) and equating the transfer

functions from Z{ud(t)} to Z{y(t)} yields

C[ Is - A] B = N(s) F(s) (5-67)

-l

The elements of C [Is - A] B are rational polynomials each with a

larger order denominator than numerator. The same must be true of

N(s) F (s) / v0 (s). Hence, no polynomial element of N(s) F (s) can have

order greater than (n - 1), since V0(s) has order n. From (5-36) it is

clear that (Iff - 1) is the highest order polynomial allowable in p(s). The

complete differential operator [-qrT( x) N() F(x) + p T(x) v(x)] has

order no larger than (n + n - 1), and therefore (5-66) has the form of

(5-56) where
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[xs), . . . ,Xr(s)] = T(s) = - T(s)) N(s) F(s) + T(s) VO(s)

(5-68)

The case where [T- rT(s) N(s) F(s) + p T(s) v (s)] is73 0

identically zero correspbnds to a nonminimal representation. If

[T Ts) N(s) F(s) + T(s) v(s)] =0 for all complex values of s, then

[- T(X)N(x)rx) + p T(X) O(x)I ud(t) 0

(5-69)

for any ud(t). From (5-62) this implies

O(x) [ n T(X) y(t) + PT(W) Ud(t) ] = 0 (5-70)

for any ud(t). This means that, ignoring initial condition transients,

(5-65) is a valid relationship between y(t) and ud(t), for any u3(t),

which in turn implies that a reduction is possible in the order of

Equations (5-52).

The above development shows that if (5-42) is satisfied

for some n(x) and p .(X) then (5-56) is satisfied for the X,(x) given

by (5-68). Since (5-42) is a necessary and sufficient condition for

Mi(t 1, t2 ) to be singular, one may conclude that (5-56) is a necessary

condition for some M (ti, t2) to be singular if the model is minimal.

It is not a sufficient condition in general. The negation of (5-56) is a

sufficient condition for all M(t1 . t2 ) to be nonsingular. That is, if

(5-56) is not satisfied for any x.(x) (not all zero) with order less than

or equal to (n + n - 1), then all Mi(t , t 2 ) for i = 1, ... , m will be

nonsingular, provided the model is minimal.
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In the case of a scalar-input plant (r = 1), these remarks

can be made more tangible if the result is interpreted in the case where

the input ud(t) is assumed to be a periodic signal made up of a number

of discrete frequency components. For r = 1, (5-56) reduces to

x(\) ud(t) = 0 (5-71)

where ud(t) is a scalar and X(s) is a polynomial of order no larger

than (n + n - 1). If ud(t) is a periodic signal with discrete frequency

components, (5-71) will be satisfied for some x(x) only if the number

of distinct frequency components in ud(t) is less than or equal to

(n + n - 1)/2. Therefore, a sufficient condition for all Mi(t , t2) to

be nonsingular (and the minimal representation to be completely

identifiable) is that ud(t) have at least (n + n) 2 different frequency

components. For a scalar-output plant n = n, so one may conclude that

the minimal representation of a scalar-input, scalar-output plant can

be completely identified if the periodic input has at least n distinct

frequency components. This agrees with a similar statement made

by Young [27].

The results of this section have been derived for the

general case where all a in A given by (5-4) to (5-7) and all b

in B given by (5-11) and (5-12) are subject to change. If in a particular

situation-only a limited number of a.. and b.. 1 are subject to change,

then it is necessary to identify only those particular elements. In that

case 7i in (5-20) should include only those elements subject to change,

and .(t) should be shortened accordingly. Conditions for identifiability

of a limited number of elements can be derived in the same way as
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shown here for the general case. For a limited number of changeable

elements sufficient conditions for identifiability should be less restrictive.

5. 2. 2 On-Line Identification Methods

The previous section demonstrated how the plant

dynamics can be determined after observing the detection filter error

signal over a finite period of time. The method used in that analytical

development involved generating the vector E. and the matrix M.(t ,1t2)
c 1, t2 )

for a given time interval [t1 ., t2 ] , then solving (5-23) for the difference

between plant parameters and model parameters. This may be a

feasible method for determining changes in plant dynamics on-line,

provided there is sufficient time and computing capacity to solve the

equation (5-23). The actual dimension of the vector equation (5-23)

depends on the number of changeable parameters in A and B, since, as

noted in the previous section, only changeable parameters need to be

considered in the identification process. Determining the plant parameters

by analytical solution of (5-23) Would be most effective in situations where

the number of changeable parameters is small and the changes are

expected to occur in sudden jumps (as might be expected in the event of

a failure).

In situations where the number of changeable parameters

is large, and the changes are nearly continuous and slowly time-varying,

a more suitable method for on-line identification is a reference model

approach. There are several reference model identification methods

which have received considerable attention in the literature. The

detection filter can also be used in a reference model approach. In

the remainder of this section certain properties of the detection filter
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method will be compared to the properties of some other reference

model techniques.

The basic philosophy of reference model identification

is to adjust certain parameters in the model to null or minimize some

measure of the error between plant and model. Two basic distinguishing

features of a reference model identification scheme are the error signal

and the parameter adjustment process. The goal of the parameter

adjustment process is simply to null or minimize some measure of the

error signal. Many algorithms for parameter optimization can be used

to obtain a parameter adjustment law which attempts to minimize the

error measure. Gradient or "steepest descent" methods are the most

common example [ 12, 14, 25] . Such gradient adjustment laws may be

discrete [ 12] or continuous [12, 14] . In some cases a recursive

solution of a linear least squares problem may be used to update

parameter estimates at discrete points in time [ 27] . Another method

for determining a parameter adjustment law is based on Liapunov

functions [ 17] . Most of these techniques can also be used with the

detection filter error signal. There is a substantial body of literature

on the theory and use of such methods of parameter adjustment and

their application to reference model identification, so they will not be

analyzed further here. It will be instructive, however, to compare

some important properties of the error signal from a detection filter

with those produced by other reference model methods.

Mos t reference model identification schemes are variants

on one of two basic methods. The first method is often referred to as

the response error method [14] , or sometimes the "closed" method

by Russian authors [ 16] . The basic philosophy of this method is to
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apply to the model the same observed input that is acting on the plant,

and to observe the difference between the plant output vector (as

measured by the sensors) and the model output vector. This output or

response error vector is taken as the error between plant and model.

The second basic method is usually referred to as the equation error

method [ 14, 27] , or the "open" method [ 16] . The basic philosophy of

this method is to substitute the observed input and output vectors of the

plant into an equation describing the estimated plant behavior (the

equation is the model in this case). If the equation accurately describes

the plant behavior (and there are no unobservable disturbances), then

the observed input and output vectors should satisfy the equation. If

they do not, the discrepancy is taken as the error between plant and

model. The model equation is chosen so that the error signal is an

algebraic function of the parameters. This means that the error signal

at any instant in time depends on the parameter values only at that same

instant. This is not the case for the response error. In general the

response error depends on past values of the parameters as well. This

is an important distinction between these two basic methods.

An important variant on the equation error method is the

generalized equation error method [ 14, 27] . One of the difficulties of

the equation error method is that substitution of the observed input and

output vectors into the model equation often involves performing

operations (e.g., pure time derivatives) which are undesirable with

regard to noise suppression. This problem is avoided by the generalized

equation error method. The equation describing the plant is replaced

by a generalized equation which involves no pure time derivatives of the
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input and output vectors. Satisfaction of the generalized equation implies

satisfaction of the original model equation.

The use of a detection filter for plant identification is a

variant on the response error method. The error signal produced by a

detection filter is a kind of response error -- the observed difference

between the plant and model outputs when the same observed input is

applied to both plant and model. The distinction between the detection

filter method and the response error method is that the error signal

from the detection filter is fed back into the model. This interpretation

can be seen from the state equation for the detection filter

z(t) = (A - DC) z(t) + Dy(t) + Bud(t)

= Az(t) + Bud(t) + D (Y(t) - Cz(t)

= Az(t) + Bud(t) + Dcr(t) (5-72)

where

E(t) = y(t) - Cz(t) (5-73)

is the observed or accessible error signal. Equation (5-72) represents

a model of the plant with the error feedback term DE'(t), as illustrated

in Figure 5-1. If the detector gain D is made zero, then the error

feedback would be eliminated and the result would be a true response

error configuration. The effects of the error feedback on the identifi-

cation process will become apparent as the detection filter method is

compared with the other methods.

One advantage of the equation error method and its

variants is a result of the fact that the error signal is an algebraic func-

tion of the parameters. Because of this fact, the effect of parameter
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changes is reflected immediately in the error signal. This means

that parameter adjustments can be made rapidly without destroying

the validity of the error signal. On the other hand, the response error

signal does not, in general, reflect accurately the effect of parameter

changes instantaneously. If parameter changes in the model are made

too rapidly without waiting for the effect to appear in the response

error, the meaning of the response error becomes doubtful and

stability problems may arise [ 12, 17]

The parameter adjustment law often involves partial

derivatives of the error signal with respect to the parameters. In this

case the above remarks can be made more specific. For the equation

error signal the partial derivatives with respect to the parameters are

true instantaneous partial derivatives (i. e., holding time constant).

For the response error method such an interpretation is not appropriate

because the error signal depends on past values of the parameters.

The partial derivative of the response error with respect to a parameter

is usually interpreted as a sensitivity function [ 12, 13, 22] . It is the

relative change in the error trajectory over some finite time interval

which would result if the parameter were subjected to an infinitesimal

time- invariant change over that same time interval. This means that

the parameters should be time-invariant during the time interval in

which the partial derivatives (sensitivity functions) are being generated.

This condition will be satisfied if the parameter adjustments are made

at discrete points in time and the partial derivatives are generated in

the intervening intervals. If the parameter adjustments are made

continuously, they should be made slowly enough so that the parameters

appear to be approximately time invariant compared to the response
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time of the model (which is comparable to the response time of the

plant). The equation error method and its variants have no such

theoretical limitation on speed of parameter adjustment.

As a variant on the response error method, the detection

filter method also has a limitation on the speed.of parameter adjustment.

Specifically, the parameters should be adjusted slowly enough so that

they appear approximately time invariant compared to the response time

of the detdction filter. This limitation is much less restrictive than for

the response error method. For the response error method the response

time of the model is approximately the same as that of the plant (assuming

the identification process is successful) and is determined by the eigen-

values of the matrix A in the plant representation (5-1). But the tesponse

time of the detection filter is determined by the eigenvalues of G = (A - DC)

which, as shown in Chapter 4, can be arbitrarily specified if the model is

observable. This means that the response time of the detection filter can

be made arbitrarily fast consistent with other practical considerations

such as gain magnitudes and noise suppression. Therefore, the speed of

parameter adjustment is not limited by the response time of the plant as

in the case of the response error method.

These remarks can be made more specific by referring to

Equation (5-22) with 7r and .(t) defined by Equations (5-16) to (5-21).
1

Recall the vector ri represents the difference between model parameters

and plant parameters. A similar equation obtains for the equation error

method. (Equation (5-22) represents just one component of the vector

error signal. SLnce all the references mentioned in this section deal

only with identification of a scalar-input, scalar-output system, the

remarks which follow will be specifically directed to that case. Then
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the error signal is a scalar as in (5-22). The remarks, however,

generalize to the case of a multiple-input, multiple-output system.)

For the equation error method, the equation corresponding to (5-22) is

valid even if i is time varying. Recall for the detection filter method

it1 was assumed time-invariant in obtaining (5-22). In a practical

sense, then, the parameter adjustments should be made slowly enough

so that (5-22) is a valid approximation for the observed error signal.

Then the detection filter error signal will have approximately the same

interpretation as in the case of the equation error method.

Although the equation error method has no theoretical

limitation on the speed of parameter adjustment, it has been shown

experimentally that increasing the speed of parameter adjustment

beyond a certain level does not necessarily increase (and may decrease)

the speed of convergence of the identification process [14] . It was

noted above that the error signal for the equation error method can be

expressed in a form similar to (5-22). Ideally the parameter adjust-

ment process is intended to converge to the point in = 0 which, in the

absence of sensor noise and plant disturbances, will null the error signal.

However, at any time t, any vector i which is orthogonal to i(t) will

yield an error signal which is instantaneously zero. The set of all such

i. orthogonal to (t) at time t form a hyperplane of dimension (n - 1)

where n . is the dimension of r.. The hyperplane moves with time

(but always contains the origin, 7r = 0) since (t) is a time-varying

vector. Now if the parameter adjustments are made rapidly enough,

the vector 7. could follow approximately the movement of the time-

varying hyperplane. This means that i7r could remain near the moving

hyperplane, thus producing an approximately nulled error signal without
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being close to the desired convergence point ri = 0. Such behavior

would retard the convergence of the identification process. It is only

when w. is unable to keep up with the motion of the hyperplane that it is

forced to converge toward the origin as desired. Lion [14] has demon-

strated that the speed of convergence can be substantially increased with

the use of multiple generalized equations. Each generalized equation

produces an error signal expressible in the form of (5-22). By intro-

ducing n independent generalized equations (where n is the dimension

of 7i.), n independent error equations in the form of (5-22) are obtained.
1

In theory, this implies 7r. can be solved for instantaneously (n equa-

tions, n unknowns). In practice, it means that 7. is forced to converge

toward the origin regardless of how fast parameter adjustments are

made, because there is no nonzero 7T. which can null all n error signals

simultaneously. Of course, this improved convergence is purchased at

the expense of substantially increased complexity. Each independent

generalized equation requires the equivalent of a plant model.

Assuming parameter adjustments are made slowly enough

so that (5-22) is valid, the above remarks can be applied to the detection

filter method also. Multiple detection filters, each with different

dynamics, can be used to achieve the same effect that Lion has obtained

with the use of multiple generalized equations. A similar increase in

complexity is the price of the improved convergence. The speed of

parameter adjustment is still limited by the response time of the

detection filters.

It has been noted in the literature that for the equation

error method, disturbances in the observed plant output vector (i. e.,

sensor noise) will produce an asymptotic bias in the estimate of the
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plant parameters [ 16, 27] . The magnitude of the bias depends on the

signal-to-noise ratio [ 27] . In the true response error method the

estimate of the plant parameters is not biased if, as is often the case,

the output of the model and the sensor noise are uncorrelated. In the

case of a detection filter, the output error signal is fed back into the

model through the detector gain. Hence, the output of the model will be

correlated with the sensor noise, producing a bias in the parameter

estimates. However, in this case the size of the bias depends on the

detector gain as well as the signal-to-noise ratio. To see this, note

that if the detector gain is reduced to zero the bias is reduced to zero,

because the detection filter becomes simply a response error model.

Norkin [16] has suggested that the equation error method

with its faster parameter adjustment potential would be more desirable

for initial gross parameter estimat es, and the slower but unbiased

response error method would be more suitable for final fine tuning.

This philosophy would be relatively easy to implement with a detection

filter. Adjustment of the detector gain can produce a smooth transition

from a fast detection filter with properties similar to the equation error

method (i. e., fast parameter adjustment, biased by noise) to the

response error method (with detector gain zero).

The purpose of this section has been to compare the

potential of the detection filter method of identifying plant dynamics to

other related methods. Various techniques for adjusting the model

parameters were mentioned briefly. They have not been discussed in

detail here because extensive literature already exists in this area.

R epresentative parameter adjustment schemes may be found in [12, 14,

17, 22, 25, 27] as previously noted.
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5.3 Identification of Effector and Sensor Failures by Correlation

This section discusses the problem of identifying the occurrence

of effector or sensor failures in the presence of other disturbing

influences. Consider a detection filter designed to detect the failure

of any one of a set of r effectors associated with the vectors {bV, ... , b

Failure of the 1th effector of this set will produce a fixed-direction error

signal from the detection filter as given by (4-397). If no other disturb-

ances are acting on the plant or sensors, this error signal is easily

identified with the failure of the th effector. As noted in Section 5.1,

the fixed-direction error signal may be obscured by other disturbances

such as sensor or plant noise, uncertainties in plant dynamics, and

failures the filter is not designed to detect. These extraneous errors

in general will not have a fixed direction in the output space. If the

fixed-direction error signal makes up a significant portion of the total

error, one would expect the error vector to be biased toward that

direction. One way of identifying such a directional bias is to form a

correlation matrix

t2

R(t, t2  =t-t E '(t) E'(t)T dt (5-73)
t

over some time interval [t1 , t2 ] . R(t1 , t2 ) is an m X m positive semi-

definite matrix. It is helpful to associate this matrix with an ellipsoid

in m-dimensional Euclidean space. The ellipsoid is defined as the set of

all m-vectors y such that yT - < 1 for any m-vector -q satisfying

T R,0 = 1. This defines an ellipsoid centered at the origin and having
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principal axes along the eigenvector directions of R(t1 , t2 ) with length

equal to twice the corresponding eigenvalues. If R(t1 , t2 ) is singular,

the ellipsoid will be degenerate, i. e., one or more principal axes will

have zero length. When E'(t) maintains an exact fixed direction over

[ ti1 t2 ] , the ellipsoid consists of a single straight line. If other

disturbances are present, the additional error signals will fill out the

ellipsoid by producing nonzero principal axes in other directions.

Because the fixed-direction error signal has all its power concentrated

in a single vector direction the ellipsoid will tend to be cigar-shaped

with a dominant principal axis in that direction. A scheme for identi-

fying effector failures in the presence of other disturbances is to look

for a dominant axis ellipsoid with the major axis near a direction

associated with an effector failure (i.e., the direction of c '(t) in

(4-397) ). Since the failure directions are known, it is not necessary

to analyze completely the shape of the error correlation ellipsoid. It

is sufficient to simply check for a dominant axis in one of the known

directions. If the failure directions are linearly independent, one way

of doing this is to transform the error signal to a coordinate frame

where the effector failure directions are along orthogonal coordinate

axes. Then a particular effector failure would be indicated by a single

large diagonal element in R(t1 , t2 ) relative to all the other elements.

The correlation matrix can be used in a similar way to identify

sensor failures. The error response to a sensor failure is restricted

to a two-dimensional plane. In this case one would expect an error

ellipsoid having two dominant axes, i. e., having the shape of a pancake.
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CHAPTER 6

FEEDBACK RESTRUCTURING

6.1 General Discussion

After an event as described in Section 3.2 is detected and identi-

fied, the next problem is to restructure the system to compensate for it.

For the system configuration shown in Figure 3-1, the restructuring

takes place in the feedback loop. The plant, which includes effectors,

sensors, and plant dynamics, is assumed to be inaccessible for

restructuring. This means that effectors and sensors are considered

nonrepairable. When the decision is made that an effector or sensor

has failed, two courses of action are possible. One is to continue to

use the failed component with some appropriate compensation for its

irregular behavior. The second possibility is to remove the component

from further use and restructure the feedback loop to function without

it. The first course of action in general requires more precise

information or some a priori assumptions about the nature of the

failure in order to determine the appropriate compensation. In the

latter course of action knowledge of the exact nature of the failure is

not necessary. It is only necessary to identify the failed component.

This chapter will be concerned with the second "surgical" restructuring

method. Failed effectors and sensors are removed from service and

restructuring compensates for the reduction in active components.

Some attention has been given to the nonsurgical method. Chien [5]

has used this approach in dealing with failures in redundant gyro arrays.
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When a malfunctioning gyro has been detected (by a sophisticated

method of comparison of redundant information), it is removed from

service temporarily while the malfunction is investigated further to

determine if it is possible to compensate for it (e. g., a biased sensor

output can be compensated for if the bias can be determined). If

compensation is possible, the gyro is returned to service after the

appropriate compensation has been implemented.

The feedback loop consists of two basic functional parts -- the

state-estimating filter and the state feedback law generator. If these

two parts are designed independently of each other (Section 3.2 describes

the separation philosophy), the restructuring problem for each part may

also be considered independently. This leads to some simplification

because some events may require restructuring of only one part of the

feedback loop. Another part of a self-reorganizing system which may

require restructuring is the detection filters. It is of interest to note

the types of restructuring required by each type of event.

1) An effector failure requires restructuring of the feedback

law only.

2) A sensor failure requires restructuring of both the detection

and state-estimating filters. It may or may not require changes in the

feedback law depending on the changes made in the plant model. The

only necbssary change in the plant model is to delete from the C matrix

the row corresponding to the failed sensor. In this case only the

detection and state-estimating filters need be restructured for the re-

duced number of sensor outputs. If the plant model is to be kept in the

standard form of Section 4. 3. 6, a coordinate transformation of the
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state space will be necessary in addition to deletion of the appropriate

row of the C matrix. In this case the same transformation must be

applied to the feedback law.

3) Changes in plant dynamics may, in general, require

restructuring of the detection filters, state-estimating filter, and the

feedback law. The detection filter which identifies the plant dynamics

is automatically adjusted in the process of identification, so it does

not require any further restructuring. The extent of restructuring

necessary in the other detection filters (for effector and sensor failures)

and the state-estimating filter depends on where the changes in plant

dynamics appear. For purposes of the following discussion, detection

filters for sensor failures and detection filters for effector failures are

referred to separately because they have different restructuring

requirements. In fact, one filter may detect both sensor and effector

failures, in which case the restructuring requirements include both

those necessary for sensor failure detection and those for effector

failure detection. Changes in the B matrix of the plant state equation

Ht) = Ax(t) + Bu(t) (6-1)

require simple adjustments in the state-estimating filter and detection

filters for sensor failures. For these filters it is only necessary to

adjust the filter state equation

z(t) = (A - DC) z(t) + Dy(t) + Bud(t) (6-2)

by replacing the old B matrix with the new one. Detection filters for

effector failures may require more extensive restructuring because
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detection orders, detection generators, and the mutual detectability of

the columns of the new B matrix may be different. When the change in

plant dynamics occurs in the A matrix, the restructuring will be

simplest if A and C are in the standard form suggested in previous

chapters (e. g., Equations (5-4) to (5-10) ). In this case the changed

matrix (A + AA) can be expressed as

A + AA = A + AACTC (6-3)

because the changes in A occur only in the last column of each block

of A in (5-4). Note from (6-3) that (A + AA) has the form (A - D"C)

with D" = -AACT. As noted in Chapter 4, detection filter properties

(detection orders, detection generators, mutual detectability, etc.)

are invariant with respect to replacement of A by (A - D"C) for any D".

Furthermore, if the event vectors (e. g., the columns of B for effector

failure detection) are unchanged, it is necessary to make only a simple

adjustment in the detector gain D to keep G = (A - DC) unchanged.

Specifically, the adjustment AD in D is taken to be

AD = AACT (6-4)

Then

(A + A A) - (D + A D)C = (A + AACTC) - (D + AACT)C

= A-DC = G

(6-5)

With this adjustment in the detector gain, G remains unchanged and the

detection filter detects the same event vectors that it did before the

change in A. Therefore, if the columns of B do not change, the adjust-
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ment given by (6-4) is all that is necessary for the effector failure

detection filters. Detection filters designed to detect sensor failures

may require more extensive restructuring. Recall that in order to

detect a failure in the th sensor, a filter must detect d., the ith

column of the detector gain matrix D. If this column is changed by

the adjustment AD given by (6-4), then the filter may no longer detect

the ith column of the new detector gain matrix. In this case the filter

must be partially redesigned so that the filter does detect the new d..

If the state-estimating filter has the same Kalman-type configuration

as a detection filter (Figure 5. 1), then the simplest and fastest way to

compensate for changes in A is to adjust the feedback gain D by the

amount given in (6-4). This adjustment will keep the poles of the filter

unchanged and thus guarantee stability, at least. Of course, this may

not be the best filter for noise suppression. If the adjustment given by

(6-4) increases the feedback gains, then the effect of sensor noise on

the state estimate will be increased. If the original filter was statis-

tically optimum (Kalman filter), the adjusted filter will not be optimum

in general. If a new Kalman filter is desired, then a Riccati equation

must be solved in whole or in part to obtain the new feedback gains.

But whatever kind of restructuring is used in the state-estimating

filter, the adjustment in the feedback gain matrix given by (6-4) is a

quick, simple way to ensure filter stability. It can at least be used as

a temporary measure until more sophisticated restructuring can be

implemented where necessary.

Beyond the simple adjustments discussed above, the redesign

or restructuring of detection filters is a matter of implementing the
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theory in Chapter 4 with the algorithms presented in Appendices A, B,

and C. It has been noted previously that a detection filter can also

serve as a state-estimating filter. (In Chapter 4 it was shown that the

state of a detection filter approaches the state of the plant asymptot-

ically in the absence of disturbances.) If the state estimate for feed-

back control is taken from one or more detection filters, then the

problem of restructuring a state-estimating filter is taken care of

automatically in the restructuring of the detection filter. Even if a

separate state-estimating filter is used, detection filter theory can be

applied to the restructuring of a state-estimating filter in order to

specify its pole locations. As noted above, if a true Kalman filter is

desired, it will be necessary to resolve a Riccati equation. If this is

attempted, detection filter design algorithms can be used for inter-

mediate restructuring (pole assignment) to serve until a new optimal

solution is obtained. For these reasons restructuring of a state-

estimating filter will not be considered separately.

The remainder of this chapter will be devoted to restructuring

of feedback control law for the primary purpose of maintaining stability

of the closed loop system. For reasons stated in the next section, the

feedback control to be considered is a linear time-invariant state

feedback law of the form

ud(t) = Lx) + LC c(t) (6-6)

where L and Lc are time-invariant matrices of dimension r X n and

r X rc respectively. Section 6.2 discusses the linear state feedback

control problem and shows how the detection filter theory in Chapter 4
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can be applied in dual form to produce some interesting designs for

linear state feedback control. Section 6. 3 discusses several algorithms

for generating a linear state feedback control law. Two of these

algorithms implement the feedback designs in Section 6.2.

6.2 Detection Results Applied to State Feedback Control

When a change or failure occurs in a system, the primary

immediate concern is usually to achieve stability as quickly as possible.

The central focus of the remainder of this chapter will be the restructur-

ing of the feedback law to achieve closed-loop stability for the system

shown in Figure 3-1. The linear time-invariant state feedback law

given by (6-6) is particularly suited for this purpose. It is one of the

more widely used feedback laws. The optimal solution to the infinite

interval regulator problem is such a feedback law (without the command

input c(t) ). In addition, this law yields a linear time-invariant closed-

loop system whose stability properties are well defined and can be

determined analytically. Even if the original and final restructured

feedback laws are not of the form of (6-6), the linear constant form

can still serve as a temporary law to maintain stability while a more

sophisticated law is derived. Therefore, (6-6) is a reasonable starting

point for the development of restructuring methods.

It will be assumed that the detection filters have identified the

plant dynamics, and any failed effectors or sensors have been detected

and removed from service. The information at hand is an up-to-date

description of the plant

k(t) = Ax(t) + Bu(t) (6-7)
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u(t) = Ud(t) (6-8)

y(t) = Cx(t) (6-9)

The restructuring problem to be considered here is to develop methods

for selecting the L matrix in (6-6) so that the closed-loop system

(t) = Ax(t) + BL A(t) + BLc c(t) (6-10)

is at least stable (if that is possible).

If the state-estimating filter dynamics are given by

x(t) = (A - DC) x(t) + Bud(t) + Dy(t) (6-11)

then the state error

E(t) = x(t) - (t) (6-12)

obeys the equation

c(t) = (A - DC) E(t) (6-13)

Then (6-6) can be written as

Ud(t) = Lx(t) - LE(t) + LC c(t) (6-14)

and the complete closed-loop system dynamics are given by

[ t) (A + BL) -BL x(t) BLC
+ c W)

LHj [o (A - DC) c(t) L0
(6-15)
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The poles of the complete closed-loop system are given by the eigen-

values of the matrices (A + BL) and (A - DC). The eigenvalues of

(A - DC) are the poles of the state-estimating filter. Restructuring

of the state-estimating filter was discussed in the previous section.

Assuming this restructuring is successful, the eigenvalues of (A - DC)

are known to be stable, so the stability of the closed-loop system

depends on the eigenvalues of (A + BL). Furthermore, in the absence

of disturbances the state error satisfying (6-13) will settle to zero,

and the closed-loop system dynamics reduce to

(t) = (A + BL) x(t) + BLc c(t) (6-16)

The restructuring problem may now be simplified to the problem of

choosing L so that the system given by (6-16) is stable. Note that Lc

does not affect the stability of the closed-loop system, so it is of

secondary concern in the restructuring problem. Of course, Lc does

not affect the dynamic response of the system to the command c(t).

One way of selecting Lc is discussed in Section 6.2.1.

The problem of selecting L to control the dynamics of (6-16)

is related by duality to certain aspects of detection filter design. The

problem of choosing L to obtain stable eigenvalues for (A + BL) is the

dual to the problem of choosing L T to obtain stable eigenvalues for

(A + BL)T = (AT + LTBT). Selecting LT to specify eigenvalues of

(AT + LTBT) is one of the considerations in detection filter design. In

the notation of Chapter 4, A BT, and L T correspond to A, C, and -D.

Since (A + BL) and (A + BL)T have identical eigenvalues, some results

of Chapter 4 are immediately applicable to the feedback restructuring
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problem. From Lemma 4. 4 it can be concluded that by choice of L

it is possible to specify arbitrarily exactly K eigenvalues of (A + BL)

where

K = rk [ B, AB, ... , An- 1 B] (6-17)

If K < n (A is n X n), the remaining (n - K) eigenvalues of (A + BL) are

always equal to corresponding eigenvalues of A and are not influenced

by any choice of L. The methods developed in Chapter 4 for finding a

detector gain can be applied in their dual form to the problem of

selecting L to specify eigenvalues of (A + BL). The design of detection

filters involves more than just stability and specification of eigenvalues.

The special properties of detection filters and the concept of sensor

decoupling in Chapter 4 have interesting dual interpretations in the

context of linear feedback control. For the reader 's information these

interpretations are discussed in Sections 6.2.1 and 6.2.2. It should

be repeated, however, that the first objective in feedback restructuring

is to generate as quickly as possible a feedback matrix L which ensures

stability of the closed-loop system. Hence, the subject of primary

concern is the computation involved in the algorithms for generating L.

As will be seen in Section 6.3, algorithms based on detection filter

theory usually require more computation than algorithms which are

concerned solely with ensuring stable closed-loop poles.

6. 2.1 Construction of Scalar-Input, Scalar-Output Subsystems

by State Feedback

In dual form the basic results for detection filter design

in Section 4.3.1 show how it is possible through state feedback to
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obtain scalar-input control over a scalar output of the plant. It is

easiest to explain scalar-input control in terms of Laplace transforms.

Let

Vh(t) = hT x(t) (6-18)

be the scalar output of interest, where h is a time-invariant n-vector.

The simplified closed-loop system dynamics given by (6-16) may

rewritten as

x(t) = (A + BL) x(t) + Bud(t) (6-19)

Udc(t) = Lc c(t) (6-20)

is that portion of the desired control signal which is due to the

signal c(t). Then the transfer from control signal to output in

transforms is

Vh(S) - hT[Is - (A + BL)] -1 BUdc(s)

command

Laplace

(6-21)

where

Vh(s) = Z{vh(t)}

Udc(s) = Z{udc(t)}

The right side of (6-21) can be expanded to yield

r

vh(s) = F(s) Udi(s)

i=1

(6-22)

(6-23)

(6-24)
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where Udci(s) is the ith component of Udc(s) and

F.(s) = hT[ Is - (A + BL) ] - b. (6-25)

with b. the ith column of B. F.(s) is a scalar rational function of s

representing the closed-loop transfer from the ith component of the

control vector to the output. In general, the F.(s) are different and

the complete control vector must be known in order to determine the

output. Suppose, however, the F.(s) differ by only a constant, e. g.,

F.(s) = F(s) r7 Udci(s)

= F(s) nT Udc(s) (6-27)

where

T] (6-28)

In this case the output vh(t) does not depend on the full control vector

udc(t), but only on the linear scalar function 7T udc(t). This situation

will be referred to as scalar control of vh(t).

Comparison of (6-24) and (6-27) makes it clear that

scalar control yields a simpler input-output transfer function. In

effect a multiple-input, scalar-output relationship is reduced to a

scalar-input, scalar-output relationship. Furthermore, the fact that

vh(t) depends only on a scalar, linear combination of the components

of udc(t) implies that there is freedom left in u dc(t) to perform

283



additional control actions without disturbing vh(t). For example,

suppose Lc is selected so that all its columns except the first are

orthogonal to q. Let -0 and the first column of LC have an inner

product of one. Then

T LC [loo...,0] (6-29)

and

7T udc(t) = fT Lcc(t) = [1, 0, ... , 0] c(t) = c(t)

(6-30)

where c(t) is the first component of c(t). This result shows that vh(t)

responds only to the first component of c(t). It is not influenced by

any other component of the command signal. Since q and the columns

of Lc are r-vectors, Lc can have as many as (r - 1) independent

columns which are orthogonal to r7. Suppose c (t) is an r-vector (rC = r)

and L is chosen to satisfy (6-30) with all columns of L independent
C C

(Lc is r X r). Then the command components {c 2 (t), ... , cr(t)} can

produce (r - 1) independent control actions, none of which affect the

output vh(t).

The scalar control property is the dual to the fixed-

direction error property of a detection filter. The results of Chapter 4

show that for any controllable output of the form of (6-18) (i. e., for any

h not lying in the uncontrollable space of B) it is always possible to find

an L which achieves scalar control. The dual of Theorem 4.1 shows

that in addition to obtaining scalar control, all the eigenvalues of

(A + BL) can be almost arbitrarily specified if (A, B) is a controllable

pair. If (A, B) is not controllable then K eigenvalues can be specified
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where K is given by (6-17). This follows from remark 4) in Section

4. 3.1. In other words scalar control can be achieved while still

maintaining control over the maximum number of eigenvalues of

(A + BL). This result is most easily verified by considering the

transpose of the transfer function in (6-21)

hT[ Is1 (A + BL)j 1B T = B T[ Is - (AT + LTBT) -1 h

(6-31)

Let A T,9BT, LT, and h correspond to A, C, -D, and f of Section 4. 3.1.

Let v be the detection order of h with respect to (A T, BT) and let g

be its maximal generator. If L satisfies the equation

- LTBT[AT] V-1g = pig + .. + p _-[ATv-1 g+ {AT v g

(6-32)

and BTh # 0, then

BT[Is - (AT + LTBT) -1 h = BThF(s) (6-33)

with

v-i v-2

F(s) = S1+& v 5 +.+a 1  (6-34)
sV + p VsV1 + . .. + p

where the a are determined by the relation

h = a1 g + ... + V [AT v-2g + [A TIV-1

(6-35)

and the p. are arbitrary. Transposing (6-33), it is clear that for L

satisfying (6-32), (6-21) reduces to the form of (6-27) with
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T = hTB (6-36)

In general if

BT[ATj h = 0

BT[AT]P h f 0

j=l1, ..
(6-37)

then

h = alg + ... + a [AT]v--2g+[ATJV--1

(6-38)

s M~+ a w-pI-2 + ... a
F(s) = + V l+ n

u-i
s + ps + ... + p

hT[Is - (A + BL)] B = hTAPB F(s)

rT = hTAPB

(6-39)

(6-40)

(6-41)

If (6-37) is not satisfied for any p, then h lies in the uncontrollable

space of B, and vh(t) is not controllable regardless of L.

The results of Sections 4. 3. 2, 4. 3. 3, and 4. 3. 4 are

applicable to feedback design for control of multiple outputs. Consider

an I -dimensional output vector

vH(t) = Hx(t) (6-42)

where H is an I X n time-invariant matrix
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hT

(6-43)

'T

If I < r and the set of vectors {h, . .. , h,} are output separable with

respect to (AT, BT) (Definition 4. 9), it is possible to find a feedback

gain L which produces a closed loop transfer of the form

F1 (s) 0 . . . . . . 0

0 -

VH(s) = . . H' BUd(s)
* . 0

0 . . . . . . . 0 -F (s)

(6-44)

where

hT A A

HI' = .2(6-45)

T I..T T

h IA

with the pi defined by condition (6-37) for each h. The Fii(s) are

scalar rational functions of S of the form of (6-39). If the h are

mutually detectable with respect to (AT, BT) K eigenvalues of (A + BL)

can be specified almost arbitrarily. If the h. are not mutually detect-

able, control over certain eigenvalues will be lost in achieving (6-44).

Such uncontrolled eigenvalues can be identified as described in

Section 4. 3. 4.

Now let c (t) be an I -vector and choose L to be a
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solution of

H' BL
c

(6-46)= I

This equation always has a solution for Lc because the h. are output

separable, which implies rk [H'T B] = I. One solution is

Lc = BTHIT[H'1BBTHI ~TI (6-47)

The inverse exists because rk [H 'B] = 1. With this L and thec

Laplace transform of (6-20), (6-44) becomes

VH(s) =

Fgps).. ...... .0

0 -

0.... ..-.. 0

0

0
C(s)

(6-48)

where

C(s) = z {c (t)} (6-49)

Or in component form

VHi(s) = Fii(s) Ct(s) (6-50)

This means that each component of vH(t) is controlled exclusively by

the corresponding component of c (t). A multiple-input, multiple-output

system has thus been reduced to a set of scalar-input, scalar-output

subsystems.
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6.2.2 Effector Decoupling

The concept of output decoupling introduced in Section

4. 3. 6 has a dual interpretation which leads to the idea of effector

decoupling. The results on output decoupling are presented in this

section in their dual form and interpreted in the context of linear state

feedback control. The main reason for discussing this material is to

call the reader rs attention to the interesting dual interpretations of

previous results. A second reason is that the algorithm for generating

effector decoupling feedback control is somewhat simpler and more

generally applicable than the algorithm necessary to implement the

scalar-input, scalar-output control described in Section 6.2.1, as will

be seen in Section 6.3.

Loosely speaking, effector decoupling means that

individual effectors control independent parts of the system. The

following two definitions formalize the concept of effector decoupling.

Definition 6.1. The system described by (6-19) is de-

fined to be effector decoupled if the controllable space of each b.

(the ith column of B) does not intersect the controllable space of any

other column.

Definition 6.2. The matrix pair (A, B) is defined to be

effector decouplable if there exists some feedback gain matrix L such

that the .closed-loop system (6-19) is effector decoupled.

The dynamic behavior of an effector decoupled system

is best illustrated by transforming the state space to a special

coordinate frame. The transformation can be generated by using the

dual form of the algorithm of Appendix C. The same result is obtained
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if the algorithm as given is applied to the transposed matrix pair

((A + BLT, BT) . The transformed matrices have the form

-((A +BL) = T (A +BL)T =

- T00. . . . 01 -

0 -.

- r

(6-51)

with

I

0

0 .

1 .

0 1
..... .... ... .-

(6-52)

and

B = T B =
0 -

(6-53)

with

b. =

0

0
(K. XI)
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(n x n)

TP.
1.

0

0

0.

-PI

(K. X K.)1 1

0

0

rr

(n x r)

(6-54)



where K. is the dimension of the controllable space of b. with respect

to (A + BL). The block diagonal form of (6-51) is a result of the fact

that the controllable spaces for the b. are all nonintersecting. If the

transformed state vector is partitioned to conform with the blocks in

(6-51)

x IMt

x(t) = T x(t) (6-55)

r

then the equation for each decoupled subsystem is

x.(t) = P M.(t) + i.. u .(t) (6-56)
1 1 i ii dci

The form of (6-51) assumes that (A + BL, B) (or equivalently (A, B) )

is a controllable pair. If (A, B) is not controllable, the controllable

portion of the system can be isolated by applying the dual form of the

transformation used in Lemma 4.4. Then the above transformation

can be applied to the controllable portion. The general form in this

case is

P 0 - .0 R

0 '.

(A + BL) = 0 . (6-57)
0 T

-P.
r

0....... . .0 Rr+1
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0 .

B = . 0 (6-58)

0 . . . 0 O ' rrr

_ 0 . . . . . . . 0

with K.. given by (6-54) and P. by (6-52). The R. are associated
1 1~

with the uncontrollable portion of the system.

The results of Section 4.3.6 concerning output

decouplable systems can be applied in their dual forms to the study of

effector decoupling. The following definition is the dual of Definition

4.12 for output decoupling order.

Definition 6. 3. The effector decoupling order of b.,

the ith column of B, is defined to be the smallest positive integer

value of j such that

rk[B, AB, ... , A~1 B, A b.] = rk[B, AB, ... , A~ 1B]

(6-59)

It is clear that decoupling order is invariant under

coordinate transformations, since the ranks of the matrices in (6-59)

are so invariant. It was noted in Section 4.3. 6 that output decoupling

order is invariant under replacement of A by (A + D"C) for any D".

In the present context this means that effector decoupling order is

invariant under replacement of A by (A + BL) for any L. Note that

for the decoupled system given by (6-57) to (6-58) the effector

th
decoupling order of the i column of B is K. and
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Kl+ ... + K = K (6-60)
I r

where

K = rk[B, (A + BL)B, ... , (A+BL)n-B (6-61)

By invariance under coordinate transformations the effector decoupling

order of b. must likewise be K.. Further,

K = rk[ B, (A + BL)B, ... , (A+BL)n-B

= rkflB, (A + BL)B, ... , (A+BL)n-1 B]

= rk[B, AB, ... , An-l B] (6-62)

This is true for any L and follows from the dual of (4-87).

Now if (A, B) is effector decouplable, there exists some

L which produces a decoupled closed-loop system. Since condition

(6-60) holds for the decoupled system, it must hold for the pair (A, B)

as well by virtue of the invariance properties of the K. and K . This

means that a necessary condition for (A, B) to be effector decouplable

is that the sum of the decoupling orders of all the b. must be equal to

the dimension of the controllable space of B. This condition can be

shown to be sufficient by transforming to a standard form. If the

above condition holds, the dual of the transformation in Appendix C

will transform A and B into the form

A . . . . Ar R

A = T-AT - . (nXn)
A .* . . . A.

(6rr

_-.. iz+r1 (6-63)
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with

0 1 0

0
.. = ~. (K. X K.)

(6-64)

0 . . . . . . . . . . . . . . . . 0

A.. = .. (.XK.)
0 . . . . . . . . . . . . . . . . 0

a.. 1.. .. a.. 0. . . . . . 0

L a,,,aj ii

(6-65)

A .. = . . (K. XK.)
31.... . 0 J 1

a. . . . . a..
jil 31 K.

(6-66)

where K K and B is given by (6-58). It is easy to see now that the

decoupled form (6-57) can be obtai.ned from (6-63) to (6-66) by choosing

11 r 1, r+1

F = .(6-67)

Lrl rr r, r+ 1

w ith

12. = [- p -a.. 1 , . .. , - p. - a.. ] (6-68)
1. 1
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. = [-a - .JKi 0, ... , 0] (6-69)

ji = [- a.., - jK.(6-70)

for i, j = 1, . .. , r. The 1 1, r+1 for i = 1, ... , r are arbitrary.

These observations establish the following theorem.

Theorem 6.1. The matrix pair (A, B) is effector

decouplable if and only if

K + ... + K = K (6-71)
1 r

where K. is the effector decoupling order of b. and K (given by (6-56) )
L.

is the dimension of the controllable space of B.

This theorem is the dual of Theorem 4.7 with a slight

generalization to include noncontrollable systems.

In Section 4. 3. 6 it was shown that a system representa-

tion could be enlarged to obtain a decouplable form. Such enlargement

is not appropriate here. It was noted in Section 4.3. 6 that the added

portion of the representation would not be controllable. In this

situation the added portion of the system would not be observable. But

obtaining an effector decoupled system depends on state feedback.

State feedback in turn depends on knowing the state of the system.

Nothing is gained by enlarging the representation, because there will

be no information available about the state of the added portion of the

representation, which is unobservable.

The transformation of Appendix C was convenient for

establishing Theorem 6. 1, but in practice it is not necessary to apply
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this transformation to find a feedback gain which produces a decoupled

system. In the next section various algorithms for generating feedback

gains will be discussed. Among them is an algorithm which produces

a decoupled closed-loop system when the open-loop system is

decouplable. If the system is not decouplable, the algorithm will

achieve decoupling for as many effectors as possible.

6.3 Algorithms for Generating State Feedback Gains

This section discusses three algorithms for generating constant

linear state feedback gains. They all have the capability for achieving

the primary goal stated at the beginning of this chapter, namely closed-

loop stability for the controllable portion of the system. More specifi-

cally, any of the algorithms can be used to specify almost arbitrarily

all of the closed-loop poles of the controllable portion of the system.

The algorithms differ in two respects. First, the computational

requirements for implementing them are different. Second, the closed-

loop systems they produce will have different structural characteristics,

i. e., the structure of subsystems and dynamic coupling among them.

The first algorithm is simply the dual of the method developed

in Chapter 4 (and Appendix A) for generating a detector gain. The

structure of the resulting closed-loop system is described in Section

6.2.1. Central attention is focused on a set of outputs as given by (6-42).

In the closed-loop system each component of the output is independently

controlled by a scalar input. The amount of computation involved in

implementing this algorithm is evident from the step-by-step outline

in Section 4. 3. 5. As will be seen later, it appears that this algorithm
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is the most time-consuming of the three if separability and mutual

detectability must be investigated.

The second algorithm produces the effector decoupling described

in Section 6.2.2. If the system is decouplable the resulting closed-loop

system will be fully effector decoupled. This algorithm is based on the

same orthogonal reduction procedure used in Appendix A. The general

procedure and its properties are fully described in Appendix A. Only a

brief review specialized to the present situation will be presented here.

Basically the null space of a symmetric positive semi-definite matrix

is sequentially enlarged to contain the vectors from an ordered set. In

this case the columns of the matrix

W = [B, AB, ... , An-1 B] (6-72)

taken from left to right form the ordered set of vectors. The procedure

begins with any n X n symmetric positive definite matrix 0S11 (the

identity matrix is a simple choice). An auxiliary vector is defined by

w = 11b (6-73)

This vector is nonzero because bI is nonzero and is positive

definite. A new symmetric positive semi-definite matrix which

contains bI in its null space is defined by

w 1 T
=11(6-74)

21 11 w Tb
11 1
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The next auxiliary vector is

w21 2 1 b 2  (6-75)

and if w 2 1  0 a new symmetric positive semi-definite matrix which

contains both bI and b2 in its null space is

w wT
21= 21-(6-76)

31 21 Tb
w2j b2

If W =21=0,b2 is already in the null space of Q221 and

031 21 (6-77)

For notational convenience the matrices and auxiliary vectors are

double subscripted for easy association with the columns of W. The

first subscript refers to the column of B, and the second subscript

refers to the power of A (plus one). For example, Q.. and w.. are

associated with the vector A b.. A general iteration in the reduc-
1

tion procedure is as follows:

1) With Q.. from the previous iteration form the auxiliary

vector

w.. = Q.. A-b.(6-78)
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2) Define the new matrix by

(i)'~

S2..
IJ

Q..
i~j

w.. W..
- I .-if w .. 0

wTAj~ b. I ~
(6-79)

if w.. =0
l;J.-

for i < r (r is the number of columns in B)

or

(ii) i f i = r

0 1 .=
I, j+l

rj

rj

Tw. w .
- -TAilifb wW. 0

w TAj- b. rj -
rj

(6-80)

if w=0
rj -

and return to step 1).

Using the Schwarz inequality and induction it can be shown that

every 0.. is positive semi-definite if the initial matrix is at least

positive semi-definite. In this case the initial matrix was taken to be

positive definite. The positive semi-definiteness of Q.. ensures that

T j-wT A ' b. = 0 if and only ifw..=0.

The orthogonal reduction process terminates when all inde-

pendent columns of W have been considered. The termination point is

signaled in one of two ways. The process is obviously terminated if

at some point C> =0. This means that n independent vectors have

been processed. Since W is n X (r'- n), there can be no more than n

independent columns. When the process terminates with a zero matrix

it implies that (A, B) is a controllable pair. The process can terminate
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on a nonzero matrix if it becomes clear that there are no additional inde-

pendent vectors in the remaining columns of W. The cyclic property

of the columns of W make it possible to identify such a termination

point. For example, if at some point w . = 0 , this means that A b.

is linearly dependent on the preceding columns in W. But then A' b

for all i . k - 1 will also be dependent on the preceding solumns in W,

and as a result w.. = 0 for all i > k - 1. Since Q.. remains unchanged
1 - - 3i

if w = 0, it is not necessary to even consider the vectors Ai b. for

i > k - 1. In short, if wkj = 0, the reduction process terminates for b

and all remaining columns in W generated by b. can be deleted from the

ordered set. When the process has so terminated for every column of

B, it is completely terminated. If at this point E.. 2 0 , then (A, B) is

not a controllable pair. The range space of the final Q.. is the

uncontrollable space of B with respect to A. By counting the number of

actual reductions (the number of times w . 0) one obtains the

dimension of the controllable space of B (rk W).

The last nonzero auxiliary vector for each column of B has

properties similar to the detection generator of Chapter 4. These

vectors can be used to generate the equation for the feedback gain

matrix. Let k. be the integer for which

wjk. 0(6-81)

and

w j,k.+1 = 0_ (6-82)
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To simplify notation define

g = Wjk. (6-83)

It should be noted here that if b. is linearly dependent on the other

columns of B, then w. = 0 and there will be no g. for that b.. In this

case (A, B) cannot be decouplable because those columns of B which

are dependent will always have intersecting controllable spaces

regardless of the feedback. This algorithm can still be used to

generate a feedback gain. To avoid unnecessary complication this

case will be discussed separately later. Until then it will be assumed

that all the columns of B are independent so that

rk B = r (6-84)

and there is a nonzero g. for every b..
3 3

From the reduction procedure it is known that g. is orthogonal
k.-l

to all the columns of W preceding A J b.. Specifically
3

gTA B = 0 i = 1, ... , k - 1 (6-85)

and if j > 1
k.-l

gA b, = 0 1 = 1, ... ,j-1 (6-86)

As noted earlier, the positive semi-definiteness of Qjk and (6-81)

ensures that

k.-l
gfA 3 b. / 0 (6-87)
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T
This fact along with (6-85) shows that the vectors {g., A T j

k.-i I I
9 . [AT] j g.} are all linearly independent. Furthermore, it is

easily seen from (6-85) that

- g AT
i

i = 1,...,k.

T k.
g (A + BL) J

k.-i
= gRAk (A+ BL)9-

T k.j T k.-I
= gTAkj + gTAkj BL

I I

for any L. Suppose L

T k.-i
g A 3 BL=

for some scalars p..

is chosen

- T -
p~jj9gj

to satisfy the equation

T k.- Tk.
. .-pj k. J iA .- g j A I

Then

T k.
(A + BL) 3

T T k.-l

= -pag - ... pjkj AJ

T k.-l
jk gY(A + BL)

(6-91)

from which it can be seen that k. eigenvalues of (A + BL) are given

by the roots of

k. k.-i
s51 + s 9 jk. p = 0 (6-92)
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It is possible to specify (kI + ... + kr) eigenvalues (k. at a time)

by choosing L to satisfy r equations of the form of (6-90). Combining

these equations into a single matrix equation yields

9 T AkC B zT. ]L = .
T kr-I

gr A B z f

where

(6-93)

K = - p gr- . -pjk. giA k - - Aki k
JJ

From (6-81) it can be verified that the matrix premultiplying L in (6-93)

has the triangular form

Kkgf1 B
.T A k ~

k AgA B

k9-T
g1 A b1  ....

0- .

0....................0

T k1 bI
I1

A k Ib
rr

(6-95)

By virtue of (6-87) the main diagonal elements in this matrix are all

nonzero, so the matrix is always nonsingular. This proves that (6-93)

always has a unique solution. The diagonal form of (6-95) makes it

possible to solve (6-93) most easily by starting with the bottom row

and working up. Now

+ . +kr = K = rk W
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so the number of eigenvalues which can be specified by this method is

the maximum possible number.

It will be shown shortly that the closed-loop system with feed-

back gain L given by the solution of (6-93) will be completely effector
k.-l

decoupled if and only if g.A b, = 0 for all j and I such that j I.
k.-1

But even if g. A 3 b 0 for some I * j this does not necessarily

mean that the system cannot be decoupled. In some cases it is possible

to modify g. and form a new g' which has the same orthogonality

properties as g. in (6-85) and (6-86) and in addition satisfies
k.-l 3

g ITAki lb2 = 0 for all I #j. By making this modification in g where

possible, one ensures that the L given by (6-93) achieves as much

effector decoupling as possible. Specifically, g. can (and should) be
3

modified if the following two conditions hold:

k.-l
(M.) g A b 0 for some I > j

and

(ii) k >k

Let {b , . . ., b } be the set of all vectors for which (i) and (ii) hold.
1. p

Define a new vector

p (k 1 -k.)

g = T + g A (6-97)

The scalars n are the components of the p -vector

-7 1

'= (6-98)
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which satisfies the matrix equation

k -1
T 1

g1 Ak -l [b2 , ... , b1 ] = - gTAki[b ,...bi]11 p. 1p
.7 k , I [bI J b 9 [ b

A PP

p (6-99)

This equation always has a unique solution because the product matrix

postmultiplying r;T has the same triangular form as (6-95). The gj'

defined by (6-97) is used in place of g. in (6-93). Note that g! has the

same orthogonality properties as g. in (6-85) and (6-86) and in

addition even for II> j

gT A k b = 0 if kk

From these properties it can be shown that the algorithm will

produce an effector decoupled closed-loop system when (A, B) is
k.-1

decouplable. From (6-85) and (6-87) it is clear that A 3 b. is
k.-2

independent of the columns of [B, AB, ... , A B] . This shows

that the decoupling order of b. is greater than or equal to k.. If K is
3

the decoupling order of b., then

(6-101)k. < K.
3 ~~ 3

and

k +...+k <K + .+K
1 r - 1 r

(6-102)

From (6-96) and Theorem 6.1 it may be concluded that (A.,B) is
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decouplable if and only if equality holds in (6-102). But by (6-101)

equality holds in (6-102) if and only if

k. = K. j1, ... ,r (6-103)
3 3

Hence, (A, B) is decouplable if and only if (6-103) holds. If (6-103)

holds then

k.-1
gIA b, = 0 for allJ j (6-104)

by the following reasoning. In view of (6-86) and (6-100) the only b

for which (6-104) could be violated is if I > j and k. > k. But if
k.-i

g' A j b1 * 0, then KI .k by the same reasoning used to establish

K.> k.. This would imply K > k1 which contradicts (6-103). There-

fore (6-103) implies (6-104), and one may conclude that (A, B) is

decouplable only if (6-104) holds.

If (A,B) is decouplable, the closed-loop system with L given

by (6-93) (with g. replaced by g! where appropriate) can now be
3 3

shown to be effector decoupled by introducing a transformation defined

by

gIT

T k1 -1
g, A

Td = gT (6-105)

r

Td2

306



where Td is an (n K-) X n matrix chosen so that the columns of TdTd2 d2

form a basis for the uncontrollable space of B. When this transforma-

tion is applied to (A + BL) and B, the resulting forms are

(A+BL) = T(A + BL)T 1

B= TB =
0

0 .

T
p 1 0 . . . ..

0 -

r

0. . . . . 0

0.. .

- 0
0

. . . -brr

0

0 0

0 .

-Piu

... .... 0

(6-108)

and

0

L gTk 1 b
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0
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(6-106)

where

(6-107)

T
P.

0 .

1 .

. 0

.0O

(k. X k.)
L L

'1

-pik.
1_

b.. =iL (k. x 1) (6,-109)



k.-1
(recall g7A 'b7 * 0) and R is an (n-K) X (n-K) matrix satisfying

Td2 (A + BL) = Td2 A = RTd 2  (6-110)

From the block diagonal forms of (A + BL) and B it can be seen that

the algorithm has produced an effector decoupled system.

If (A, B) is not a decouplable pair (6-104) will be violated for

some b for which I > j and K > k > k1 . When the transformation

(6-105) is applied in this case, (A + BL') will have the same form as

(6-106) but B will have the more general form

b11 b 
' ' 1r

= [T. :(6-111)
_ r1 ' 'b'' rr _

with

0

b = .0(k.X1) (6-112)

k.-1
g Ak-ib

The equation for each-subsystem is

r

)= PTx(t) + . udcj(t) + Fudcl(t) (6-113)

1=1

Note that b can be nonzero only if K 1 > k,. This means if K 1 =k

then udi(t) controls only the th subsystem and has no influence on

the other subsystems.
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In the case where rk B <Kr, indicating a linear dependence

among the columns of B, the algorithm can still be used to generate

an L. Suppose rk B = r <r. There will then be only r' nonzero

generators g. and only r' equations such as (6-90) for L. The matrix

premultiplying L in (6-93) will no longer be square, but will have

dimension r' X r. It can be shown from (6-85) and (6-86) that this

matrix always has rank r '. This ensures that the equation for L will

always have a solution, but it will not be unique. As mentioned earlier,

this situation precludes the possibility of obtaining an effector

decoupled system because (A, B) is not decouplable.

It seems certain that this algorithm will require less computa-

tion than the first one. It is not necessary to generate the auxiliary

matrices corresponding to K and C' of Chapter 4. Nor is it necessary

to worry about separability and mutual detectability. The solution of

the equation for L is made simpler by the triangular form of (6-95).

The modification of the g. seems to require some additional computa-
3

tion, but this is not certain because the use of the modified generators

g'. introduces additional zeros in off-diagonal elements of the matrix

in (6-95). In fact, if the system is decouplable, this matrix will be

purely diagonal. It should be mentioned that the most efficient way to

modify the g is to start with j = r - 1 (gr never needs modification)

and work backward replacing g. with g'. at each step. In this way

one obtains the largest number of off-diagonal zeros in the matrix

postmultiplying 77'IT in (6-99). It is possible to show that none of the

g. will need modification if the starting matrix for the reduction

procedure 1 is properly chosen. Unfortunately no simple way of

finding such aE21 is yet available.
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The third algorithm for generating a feedback gain matrix is

concerned only with specifying poles of the closed-loop system, rather

than producing any specific kind of subsystem structure (e. g., decoupled

effectors). It is of interest for feedback restructuring because it allows

the possibility of specifying some poles of the closed-loop system as

the algorithm proceeds, rather than having to wait until all the computa-

tion is completed as in the previous two algorithms. This feature will

be described in more detail later.

The third algorithm is computationally very similar to the

decoupling algorithm just presented. The orthogonal reduction

procedure is again employed. The columns of W make up the ordered

set of vectors except the ordering of the set is different. In this case

the ordered set of vectors is {b1 , Ab1 , ... , An-1 bi, b2 , ... ,An-1 br

The reduction process proceeds as before with appropriate changes in

the condition for termination. After starting with b., the first inter-

mediate termination point is reached when w1j = 0 for some j (the

double subscripts on w.. and 6C.. have the same significance as

previously). All further vectors generated by b1 may be disregarded

and the process continues with b2 . The process is completely termi-

nated when either Q.. = 0 or the termination point associated with b is
13- r

reached (i. e., wrj = 0 for some j). The terminating Q has the same

significance as in the decoupling algorithm. Feedback generating

vectors are again defined as the last nonzero auxiliary vectors

associated with the columns of B

g. = w. 1 0 (6-114)
k.
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w = 0 (6-115)j, k.+1-

In general the k. here are different from those in the decoupling

algorithm, but it is still true that k1 + ... + kr = K = rk W. The

equations for L have the same form as (6-90). It is not necessary to

modify the g.. For this algorithm it is more likely that there will be

less than r generating vectors g.. This will certainly be the case if

rk B < r. Even when rk B = r there will be fewer than r generating

vectors if b., for example, is contained in the combined controllable

spaces of the previous columns of B (i. e., the controllable space of

[b1 , ... , b.] ). In this case w. = 0 and there will be no g.. As
1 -1 iii -

noted previously, the presence of less than r generating vectors simply

means the solution of the matrix equation for L is not unique.

Just as for the decoupling algorithm the total number of eigen-

values of (A + BL) which can be specified is the maximum possible

number, K = rk W. The significant feature of this algorithm which

makes it worthy of mention is that it is possible to specify some eigen-

values of (A + BL) before the orthogonal reduction procedure is

completed and without fear of introducing unwanted eigenvalues. To

clarify this statement some background information is necessary. At

any point in the reduction procedure for either of the last two algorithms

it is possible to use the auxiliary vectors to immediately write down an

equation for L which will specify a certain number of eigenvalues of

(A + BL). For example, at any point in the decoupling algorithm one

has at hand the last nonzero auxiliary vectors for each b., say

w jk'. 0. These vectors have the same orthogonality properties as
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the g. in (6-85) and (6-86) except that k. is replaced by k'.. By using

the wjk r in the same way that the g. were used it is possible to write

down an equation for L corresponding to (6-93). The solution of this

equation will yield a matrix (A + BL) in which (k' 1 + + k' ) eigan-

values can be specified by choice of the coefficients p... The problem

with this premature specification of eigenvalues is that when the

reduction procedure is not complete (k 1 + ... + k'r) < K , and the

number of eigenvalues so specified is less than K. The (n - K) eigen-

values of A associated with the uncontrollable space of B cannot be

altered by the feedback. But this still leaves K - (k' + ... + kr)

eigenvalues of (A + BL) which are determined by the feedback and yet

are not explicitly specified by the p . There is no simple way of

ensuring these uncontrolled eigenvalues will be stable.

Using the third algorithm it is possible to specify a number of

eigenvalues at each intermediate termination point without introducing

uncontrolled eigenvalues. Suppose the first intermediate termination

point has been reached, so g, is known. Now introduce feedback in

just the first control component so the closed-loop system matrix is

(A + b1 ) where ' is an (1X n) row vector given by

1 Tkg kg
TAk -1 T - ' 1k TAl-gTAk]

11(gfA 11b 1

(6-116)

Then

T k T k1  T k-1
g1 (A + b 11 1 ) 1 = g 1 A + g 1 A b 1
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T Tk1
= - p 1 gi1 - - Plk g1 A

1

k -.1
T T 1(61

P119 -. - P1k g 1 (A + bi 1 )(6-117)
1

which shows that k1 eigenvalues of (A + b1 11 ) are given by the roots of

S + 1Pk s + . + Pi =0

1
(6-118)

But

k = rk [b1 , ... , An- 1 b (6-119)

and this is the maximum number of eigenvalues which can be influenced

by feedback in only the first control component. All the remaining

(n - k1 ) eigenvalues of (A + bk1 ) must be the same as those of A.

Therefore no uncontrolled eigenvalues have been introduced. When

the second intermediate termination point is reached, feedback can be

allowed in the first two control components and the number of eigen-

values which can be specified is

k1 +k 2  = rk[(b1 ,b 2 ), A(b 1 ,b 2 ), ... , An-1(b 1 .,b2 )]

(6-120)

Again no-uncontrolled eigenvalues are introduced because all remaining

eigenvalues remain unchanged. The process can be repeated at each

intermediate termination point. The intermediate specification of eigen-

values may be valuable in situations where instabilities in the open-loop

system threaten to exceed acceptable bounds before the orthogonal
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reduction process can be completed. By specifying eigenvalues at

intermediate termination points unstable eigenvalues may be eliminated.

Of course, the algorithm need not start with b . The columns of B

can be arranged in any order. If an unstable eigenvalue of A is known

or suspected to be associated with the controllable space of a particular

column of B, then the algorithm should begin with that column.

The structure of the closed-loop system produced by the third

algorithm is more obvious if a transformation of the form of (6-105) is

applied. When this is done, (A + BL) = T(A+ BL)T~ has the same

form as (6-106), but B has the form

b .11.b1r

0
B = TB = ~ . (6-121)

- - rr

where

0

= . (k. X 1) (6-122)
0

k.-1
g[At b

The off-diagonal vectors bi have no simple form, in general. If there

are fewer than r generating vectors, say rt <r, then there are only r'

of the Pi blocks in (A + BL) and B has the form
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b . .b1r

0

0 . 0... br,. .. b
rrrr

(6-123)

Although this algorithm is not designed to yield any specific

subsystem structure, it is possible to make some general remarks about

the type of structure it tends to produce. For this algorithm the columns

of W are reordered so that all vectors generated by b1 are considered

first, and so on. This tends to make the dimensions of the earlier

T
(lower indexed) P. smaller. On the other hand, the decoupling

algorithm tends to make the P. roughly equal in size. In terms of

system structure this means that the decoupling algorithm tends to

produce a parallel type of structure, whereas the third algorithm leads

to a cascade-type structure. As a simple illustration of this consider

a third order system controlled by three independent control inputs,

each of which can control the system acting alone. Suppose the three

closed-loop poles are specified to lie on the negative real axis at

- c-1, - 92, and - g-3 . The decoupling algorithm would produce a system

of three independent first order subsystems as shown in Figure 6-1(a).

The third algorithm would produce the cascade-type structure shown

in Figur6 6-1(b).

It would appear that the cascade algorithm compares favorably

with other pole assignment algorithms discussed in the literature. It

is certainly computationally simpler than the straightforward approach

of determining the characteristic polynomial of (A + BL) by expanding
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the determinant IIs - (A + BL)I , setting the coefficients equal to

some desired values, then solving the set of n nonlinear equations for

the n - r elements of L. It is also simpler than algorithms based on

transformations which produce certain canonical matrix forms (such

as suggested in [23] ). Although it is not necessary to actually perform

a complete state space transformation in such an algorithm, it is

necessary to compute certain parameters appearing in the canonical

form of A, and then transform the feedback gain matrix back to the

original coordinate frame.

There is another pole assignment algorithm discussed in the

literature (referred to as the spectral algorithm in [23] ), which may

be useful for feedback restructuring. It is based on the Jordan form

of the A matrix (the system matrix for normal mode state variables).

This algorithm allows assignment of a small number of closed-loop

poles (in some cases a single pole) while leaving the remaining poles

of the system undisturbed. Hence, the algorithm can be applied

recursively, specifying a small number of closed-loop poles at step.

As noted previously in introducing the cascade algorithm, this would

seem to be ,a desirable feature for an on-line restructuring process.

The spectral algorithm has some computational disadvantages, however.

In order to specify a certain number of closed-loop poles, one must

first determine an equal number of open-loop poles (eigenvalues of the

A matrix) plus the corresponding eigenvectors of A. In general,

determining eigenvalues of A will require solving the characteristic

equation for A, which is an nth order polynomial equation. None of

the algorithms discussed previously in this section require knowledge

of any eigenvalues of A.
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Another disadvantage of the spectral algorithm is that it must

be modified if A has repeated eigenvalues. This suggests that for a

general A matrix it will be necessary to determine all the eigenvalues

in order to check for repeated eigenvalues before the correct algorithm

can be implemented. This requirement would increase the computation

time necessary before specifying the first group of closed-loop poles,

thus reducing the speed advantage offered by recursive specification

of poles. The cascade algorithm is applicable to a general A matrix,

and it is not necessary to have information about repeated eigenvalues

or other structural properties in order to implement it.

Because of the necessity for computing eigenvectors of A T, the

computation required in the spectral algorithm increases significantly

when specifying a large number of poles. (Simon and Mitter [23]

claim the increase is exponential.) Therefore, the cascade algorithm

seems better suited to specifying a large number of poles. It would

appear, however, that if A happens to be in a form in which some

eigenvalues can be readily identified, then the spectral algorithm

would probably be the fastest way of changing those particular eigen-

values. The spectral technique would be especially valuable if some

way could be found to identify quickly any unstable poles in the existing

system, since it would provide a way of concentrating the feedback

restructuring efforts on stabilizing those unstable modes.
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CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusions

The purpose of this research was to develop practical methods

of self-reorganization which can give a complex linear dynamic system

the ability to restructure itself to compensate for failures in its effectors

and sensors and changes in dynamics. The ultimate goal of self-

reorganization is to achieve the maximum reliability with the minimum

amount of hardware by restructuring the system to make effebtive use

of all hardware available at any given time. The basic approach taken

in this research is to identify the failure or change and then restructure

the system based on that information. This approach is in contrast to

reorganization based on performance information.

Chapter 2 demonstrates how the concepts of controllability and

observability may be used to evaluate the potential ability of a linear

system to tolerate failures of its effectors and sensors. A lower bound

is established for the number of effectors and sensors a linear time-

invariant system requires for complete controllability and observability.

Since the reorganization process is based on information about

the failures or changes occurring in the system, the greatest attention

was devoted to the problem of detecting and identifying such events. The

major contribution of this research is the theory and design of detection

filters developed in Chapter 4. Detection filters provide a practical
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way of detecting and identifying effector failures, sensor failures, and

dynamic changes in a complex multiple-input, multiple-output linear

system. The important features of a detection filter include the

following:

1) When a failure or change occurs the detection filter produces

a vector error signal whose direction indicates the location of the

failure or change, or at least narrows the location down to a small

number of possibilities. An effector failure or a change in some

parameter in the dynamic equations of the system produces an error

signal in a fixed vector direction. This invariant direction indicates

which effector is malfunctioning or which parameter has changed. In

some cases the invariant direction may be associated with more than

one effector or parameter, in which case the location of the failure or

change is narrowed down to those effectors or parameters associated

with the invariant direction. In this situation the time-varying behavior

of the error magnitude often provides enough additional information to

identify a particular effector or parameter from the set of possibilities

indicated by the invariant error direction. A sensor failure does not

produce a fixed-direction error signal, but the error vector is

constrained to lie in a two-dimensional invariant plane. This plane

identifies the malfunctioning sensor.

2) In the absence of failures or changes in dynamics (or after

they have been identified and compensated for) the detection filter

produces an estimate of the state of the system. The estimate is

asymptotically stable in the sense that in the absence of disturbances

the error in the estimate approaches zero asymptotically. The
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detection filter may therefore serve also as a state estimating

filter.

3) The poles of the detection filter are under the control of

the designer. This means the response time of the filter can be

made as fast as desired, consistent with other considerations such as

noise disturbances and gain magnitudes. It also means that the filter

may be designed to enhance the response to failures or changes it is

supposed to detect, while suppressing the response to sensor noise

and plant disturbances.

4) A detection filter (whose state dimension is equal to that of

the system) has the potential to detect a substantial number of different

events (failures and changes in dynamics). When a single detection

filter is not capable of detecting all possible events, it is merely

necessary to use additional filters, each designed to detect a subset

of the set of all possible events. Because each filter has the potential

to detect a substantial number of events, it should be possible to

detect all possible events with a small number of filters. For the

special case in which the state vector of the system is fully measurable,

a single detection filter can provide information about all possible

events -- effector failures, sensor failures, and changes in dynamics.

For the more general case of a partially measurable state vector, the

number Of different failures a detection filter is capable of detecting is,

loosely speaking, approximately equal to the number of independent

sensors in the system. In particular situations it may be more or less.

In any case a single detection filter can provide information about all

changes in the dynamics of a linear system.

321



5) The same basic theory is applicable to designing detection

filters for effector failures, sensor failures, and changes in dynamics.

For detecting changes in dynamics, the detection filter is especially

effective when the possible changes are limited to a small number of

parameters. Even when applied to the general problem of identifying

or tracking unknown linear system dynamics, detection filter theory

yields an identification method which appears comparable to the best

tracking model methods now proposed in the literature.

6) The computation required to design detection filters involves

mainly the solution of sets of linear algebraic equations. It is not

necessary to solve differential equations -- either linear or nonlinear.

The computation is substantially less than that required for a Kalman

filter, for example, which requires the solution of a Riccati equation.

Chapter 4 develops a substantial body of analytical results on

the structure of detection filters. The results have been developed

from the viewpoint of actually constructing a detection filter. As a

result, some of the algebra may be more extensive than would be

necessary if more sophisticated methods of mathematical analysis were

used. However, the constructure viewpoint provided a good basis for

the development of the design algorithms presented in Appendices A, B,

and C. The material in Chapter 4 should continue to provide a good

basis for the future development of even more efficient design algorithms.

Some of the more important results of Chapter 4 are listed below.

1) Theorem 4.1 is the basic result of detection filter theory.

It guarantees that there always exists some detection filter, with poles

arbitrarily specified by the designer, which will detect any single
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failure or change in the observable dynamics of a system. The other

theorems and lemmas in Section 4. 3.1 are intermediate results

leading to the proof of Theorem 4.1. However, some of them are

important in filter design, and these are mentioned in the next item.

2) Lemma 4.2 establishes the existence of detection generators,

the vectors which play a central role in the actual design of detection

filters. Theorem 4.2 introduces the basic linear algebraic equation

for the error feedback gain matrix which gives a -detection filter the

invariant direction property. The results of Theorems 4.3 and 4.4 show

how it is possible to arbitrarily specify all the poles of the detection

filter while achieving the invariant direction property. In addition, the

proof of Theorem 4.4 shows how to actually determine the maximal

detection generator, which allows full specification of the poles of the

filter. The algorithm in Appendix A is based on the construction used

in that proof.

3) Theorem 4. 5 establishes the conditions under which it is

possible for a single detection filter to detect a number of different

events while allowing the poles of the filter to be arbitrarily specified.

(Such events are defined to be mutually detectable.)

4) Theorem 4. 6 establishes a method for dividing the set of all

possible events into subsets of mutually detectable events. All the

events in- each subset can then be detected by one detection filter. Often

events which are not mutually detectable can still be detected with a

single filter by allowing certain poles of the filter to be fixed by the

design process rather than specified by the designer. Theorem 4. 6

provides the basis for identifying these unspecified poles and regrouping
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sets of events so that any undesirable poles are eliminated. This

material is developed in Section 4.3.4.

When detection filter theory is interpreted in its dual form

the results yield design techniques for determining linear state

feedback laws for linear time-invariant systems. It is well known

that if a linear time-invariant system is controllable, then a linear

state feedback law can always be found which produces closed-loop

poles in any desired location in the complex plane (complex poles

must appear in complex conjugate pairs). The techniques introduced

in this research not only provide for specification of the closed-loop

poles of the system, but also can produce several interesting types

of subsystem structure such as scalar-input, scalar-output decoupled

subsystems or effector decoupled subsystems. Chapter 6 presents

the algorithms for implementing these feedback control designs. Also

presented is a third algorithm which is concerned only with fast specifi-

cation of closed-loop poles. These algorithms form the basis for

restructuring of the feedback control loop to compensate for failures

and changes in the system. The computation involved in implementing

these techniques seems sufficiently simple to make their use feasible

for on-line restructuring. The results may also be of interest for

off-line feedback design.

7.2 Recommendations for Further Study

The next logical step for further research is to substantiate the

theoretical analysis of detection filters and test the feasibility of the

feedback restructuring algorithms through computer simulation. It
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would also be most valuable to design detection filter reorganization

systems for some example systems to demonstrate computational

feasibility and performance in the presence of realistic disturbances.

Areas for further analytical studies include the following:

1) The concepts introduced in Chapter 2 merely evaluate the

supplementary redundancy of a system after it is constructed. It

should be possible to develop these concepts to aid in the actual design

of supplementary redundant systems.

2) It would be useful to obtain more general results on the

detection of nonseparable events as defined in Chapter 4. Such results

could lead to methods for substantially increasing the number of

different events a single filter is capable of detecting. For the general

case of a partially measurable state vector the number of simple

events (e. g., one effector failure) detectable by a single filter is, with

present design methods, roughly the same as the number of independent

sensors. Recall that for the case of the fully measurable state vector

a single filter could detect all the events being considered -- effector

failures, sensor failures, and changes in dynamics -- potentially a

much larger number of events than the number of independent sensors.

It seems reasonable to speculate that as the number of independent

sensors increases, it should be possible to construct a detection filter

capable of detecting substantially more events than the number of

independent sensors.

3) The algorithms in Appendices A and B for implementing the

design of detection filters are not intended to be the last word in compu-

tational efficiency. It seems reasonable to expect that they can be
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improved upon in this respect. The extensive analytical results in

Chapter 4 should be useful in developing new methods of implementing

the theory of detection filters. Rapid computational algorithms will

also be valuable for the design of linear state feedback laws for time-

invariant linear systems.

4) Chapter 5 discusses some simple methods for processing

the detection filter error information to identify the most likely event

(or events) in the face of uncertainties caused by noise disturbances

or simultaneous multiple events. It should be possible to develop more

sophisticated methods for processing the detection filter information.

For example, if statistical information is available on noise disturb-

ances or on the occurrence of events, then this information might be

used to develop decision rules which are statistically optimum in

some sense.

5) This research has been primarily directed toward designing

reorganization methods for an existing dynamic system. A related

area which seems lucrative for further research is the design of the

basic system (e.g., placement of effectors and sensors) to make

failures easy to identify. The material in Chapter 4 should provide a

good basis for such research.
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APPENDIX A

ALGORITHM FOR DETERMINING

THE MAXIMAL GENERATOR

Determination of the maximal generator for a vector f is

divided into two basic steps:

I. Finding the null space of M defined by (4-182),

i. e. , all independent solutions of

M'w = 0 (A-1)

II. Finding a vector g in the null space of M'

satisfying

C

. I g= 0 (A-2)

CV-2

CAV- g = CAf (A-3)

where V is the detection order of f and M is defined by condition

(4-108). -Note the similiarity of these two steps. They both involve

finding vectors lying in the null space of a given matrix. The following

algorithm, referred to as the orthogonal reduction procedure, is a

general method for solving such a problem.

Consider an n'rX n matrix
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T

V = .(A -4)

'T
v nI

where the v. are arbitrary n-vectors. The orthogonal reduction

procedure is an iterative process which generates an n X n positive

semi-definite matrix whose range space coincides with the null space

of V. In each iteration a row of V is tested to determine if it is

orthogonal to the range space of the symmetric matrix. If not, the

range space of the matrix is reduced so that this is the case. The

procedure begins with, any symmetric positive-definite matrix 2 An

auxiliary n-vector is defined by

w = 1 v1  (A -5)

If v1 is nonzero w1 will be nonzero, since 1 is positive definite.

TFurthermore, wT v1 will be nonzero. A new symmetric positive

semi-definite matrix is defined by

T
w wy1 1-(A-6)

2 1 T
w vi1 1

The procedure continues according to the following general iteration:

(i) With 2. from the previous iteration, form the

auxiliary vector

w. = Q.v. (A-7)
1 1 1
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(ii) If w. 4 0 set
1.-

T

= w. - (A-8)i+l T
w. V.

1 1

orifw. = 0 set
1.

.=2. (A -9)
i+1

and return to (i)

The algorithm has the following important properties:

1) If Q is positive semi-definite, wY v. = 0 if and only ifi I 1

w. = 0. This follows from the definition of w.

2) If 2. is positive semi-definite, so is i+. This is trivially

true if wi = 0. Assume wi 0. For any arbitrary n-vector z and

any scalar a

(z - avi) . (z - aV) > 0 (A -10)

In particular, this must be true for

Tw. z
1

a T(A-11)wT. v.
1 1

Expanding (A-10) and substituting (A-11) yields

(z - av.)T T .(z - av.) = zTQ.z - 2av. T2.z + Jv[ .v.
1 i l i1 1
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T T 2 T= zT&2 z - 2afw.z + a w.v.

T2
T (w. z)

= zT .Z - 1
I Tw. V.

1. 1

= zTni+1 z ;> 0 (A-12)

By induction this shows that all Q2. are positive semi-definite if the

starting matrix Q1 is at least positive semi-definite.

3) If wi 0, then

rk- rkQ. - I (A-13)

and the null space of i+ is the subspace formed by v. and the null

space of L. In Equation (A-12) equality holds (and thus Q z = 0)I i+l
if and only if (z - av.) lies in the null space of Q n. But this implies

z must lie in the subspace formed by vi and the null space of Q.

4) At any point in the process the range space of 2. is made

up of all vectors orthogonal to the vectors {v1 , . .. , v. 1 }. This

follows from property 3) and the fact that the starting matrix E2Iis

positive definite. If 2 is only positive semi-definite, the range

space of 2. is made up of all vectors from the range space of E2i

which are orthogonal to {v1 , ..-. 4, vi_l}. When all the rows of V

have been processed the final matrix E2n'+l has a range space which

coincides with the null space of V (for 21 positive definite). The

number of reductions made (1. e., the number of times (A-8) is

performed) is equal to the rank of V.
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5) IfQ1 is positive definite and w. = 0, then v. is linearly

dependent on the preceding vectors {vI, ... , Vi}. By virtue of

property 4) the vectors {v , ... , v.} span the null space of .

Since w. = 0 implies v is in the null space of Q2., it must be

expressible as a linear combination of the vectors {v,0..., v }.

The first step in finding the maximal generator for f can now

be accomplished by applying the reduction algorithm to the matrix M'

defined by (4-182). The algorithm begins with a symmetric positive

definite matrix, such as the identity matrix. The rows of M' corre-

spond to the vY in (A -4). Because of the cyclic manner in which the

rows of M' are generated it is not necessary to process all the rows.

A row can be skipped if it is known that it is linearly dependent on

preceding rows, because the auxiliary vector in that case will be zero.

When a particular auxiliary vector is found to be zero, for example,

w. = Q. (c'. K )T = 0 (A-14)

(where c'. is the jth row of C') it is then known that c'. K is

linearly dependent on the preceding rows in M'. But if this is so,

then all remaining rows of M' generated by c' (i.e., c' Kk for all

k > 1) will also be dependent on preceding rows of M'. The auxiliary

vectors associated with these rows will all be zero, so there is no need

to consider them in the reduction procedure. The appearance of the

first zero auxiliary vector, as in (A-14), will be referred to as the

intermediate termination point for c'j.. The reduction process is

completely terminated for MI' when the intermediate termination points
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for all rows of C' have been reached. It is of interest to note that

since rk C' < rk C, there is a linear dependence among the rows of C',

and at least one row of C' will be terminated when it is first processed.

When the algorithm is completely terminated the final matrix, denoted

by Q , will have a range space which coincides with the null space of

M'. At that point q' = rk M' is given by the number of reductions

performed.

The second step in finding the maximal generator is accomplished

by applying the reduction procedure to the rows of the matrix

C

MKT = (A -15)

Cn-q'-

starting with the final matrix Q from the first reduction process. The

rows of C span a subspace which contains and is exactly one dimension

larger than the subspace spanned by the rows of C'. Since the range

space of Q is orthogonal to all the rows of C ', all rows of C except

one will be terminated when first encountered in the reduction process.

The process will be completely terminated when the termination point

for this one row, say c., is reached. The final symmetric matrix at

termination will be the zero matrix if (A, C) is an observable pair. The

maximal generator is formed from the last nonzero auxiliary vector

before termination,

w. = . (c.K )T T 0 (A-16)

where V = n - q r is the detection order of f. By construction w . lies
1
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in the null space of M' and satisfies

C

.K w. = 0 (A -17)
-2-

LCK"

and

CKVl~ w. = CAVI w. f 0 (A -18)
1 1 -

These are all the requirements for the maximal generator except the

magnitude of wi must be adjusted to satisfy (A-3). The maximal

generator for f is then given by

c. A~f

g (= iL1 w (A -19)
c.K w.

It should be mentioned that the matrix

C

MT = (A -20)

LCAn-

can be used in place of MKT for the second reduction process. In fact,

any matrix of the form A" = A - D"C with D" arbitrary can be used in

place of K in (A-15). The matrix K was shown because it is usually

simpler than A. As noted in Section 4.3.1, A may be in a form (e.g.,

the standard form (4-403) to (4-405) ) which makes it possible to

determine by inspection a D" which yields an A" = A - D"C considerably

simpler than A. In this case A" can be used in place of A in finding the
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maximal generator. This includes using A" in defining K. When such

an A" is available it can also be used in A-15) in place of K.

If the final symmetric matrix at termination is not the zero

matrix, then (A, C) is not an observable pair and the range space of the

final matrix is the unobservable space of C. The maximal generator

was defined in Chapter 4 only for the case where (A, C) was an observable

pair. However, it was noted in remark 4) at the end of Section 4.3.1

that condition (1) of detectability can be achieved for an unobservable

pair if f does not lie in the unobservable space of C. For this case the

g given by (A-19) can be used in exactly the same way as the maximal

generator to achieve condition (1). If (k - 1) is the power of A associated

with the last nonzero auxiliary vector, then (k + q') is equal to the

dimension of the observable space of C, which in this case is less than

n. The (n - q' - k) eigenvalues of A associated with the unobservable

space of C cannot be altered and will always appear as eigenvalues of

(A - DC).

When using this algorithm to find maximal generators for a set

of vectors {fl, .. a, fr}, the following procedure is suggested:

(i) Starting with a symmetric positive definite matrix,

apply the reduction process to M' given by (4-261)

with K and C' defined by (4-257) and (4-255) for

the full set of f..

(ii) For each f. apply the algorithm as presented, except

replace the starting matrix Q2 with the final termi-

nating matrix from (i).
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This procedure requires fewer total reductions than simply repeating

the complete algorithm for each f.

The last nonzero auxiliary vectors obtained at the intermediate

termination points in the first orthogonal reduction process can be used

to specify the q' eigenvalues of (A - DC) = (A' - D'C') which remain

unspecified after D is constrained to be a detector galn. It was noted

earlier that at least one row of C' will be terminated when first

encountered in the reduction process. For this row there will be no

nonzero auxiliary vector. Additional rows of C' will also be terminated

at first encounter if rk C < m, implying a linear dependence among

some rows of C (recall C is m X n). Assume, then, there are I

independent rows in C' where I < (m - 1). Each of these rows will

have a final nonzero auxiliary vector. Let {cI' ,. . ., c' . } be the
$1 31

first I independent rows of C'. Denote by wf the final nonzero

auxiliary vector associated with c'. and assume the termination point

occurs at the row c' K . Then
Ji

c ' . K I w . = c'. A' I wf. 0 (A-21)
1. f 3.f -

and wf is orthogonal to all preceding rows of M'. Specifically

C' C'

wr = .wf. = 0
. q.- 2 . q.-2

C'K IC 'A'

(A-22)

and
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q'.-1 q.-
c' K -w . =wC'PA' I w. = 0 for allp<j.

p ~ fi p fi -1

(A-23)

From (A-21) and (A-22) it can be seen that the wfi have orthogonality

properties similar to those in (4-80) and (4-81) for a detection

generator. They can therefore be used in like manner to specify

eigenvalues of (A ' - D'C'). By arguments similar to those used for

detection generators it can be shown that

A'wf = (A' - D'C') wfi for p = 0, ... , q'. -1

(A -24)

and that these q' vectors are linearly independent. Further, (A-23)

can be used in a development similar to the proof of Lemma 4. 5 to

show that the entire set of (q' 1 + ... + q' 1 ) = q' vectors {w fv,...

q-1  q'1-.... , A' wf1. wf2 , ... , A' wf 1 } are all linearly independent.

Now if D' is chosen to satisfy the equation

q'g -1 q'. - I

D'C'K w. D'C'A' I wfi

fi fi
q'. -I q'.

=p iWf i+ .. + P'iq, iA' w f+ A' 'w f
1

(A-25)

then
q'. ~q'. q.-

(A' - D'C') I wf. = A' I wf. - D'C'A' I wf.

q'. -l
- - p wg.. - -' ,A ' 1wf
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q'. -1
= -p' w~ V. - . .. -p'. , (A' - D' C') I w.pIil Wfi pIiq.( ? - ' 'Wfi

(A-26)

which shows that q'. eigenvalues of (A' - D'C') are given by the roots
o

of

q.' q
s + p1. i + ...+ p' = 0 (A-27)

By requiring D' to satisfy equations such as (A-25) for i = 1, ... , 1I

a total of (q'j + ... + q'I) = q' eigenvalues can be specified by choice

of the pt. . Combining all these equations into a single matrix equation

yields

D'C'[K wfV, ... , K wj] = [w',1 . .. , w']

(A-28)

where
q. i-Iq'.

WI = P w f + ... + p'. ,A' ' f. + A' 'w .1 il i iq fiLi

(A-29)

Relation (A-23) ensures that

rk {C'[K 1 f1wf, .. K K l wfj]} = I

and therefore by Lemma 4. 3, (A-28) always has a solution.
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APPENDIX B

ALGORITHM FOR GENERATING A AND THE 9.

FOR NONMUTUALLY DETECTABLE VECTORS

It is assumed that the maximal detection generators for the set

of output separable vectors {f1 , .0. ., f)r have been found. The

detection order of f. is Vi. If these vectors are not mutually detect-
1 1

able the dimension of the excess subspace is

k = n-q'-(v+...+vr) (B-1)

where (n - q') is the group detection order of the above set of vectors.

The orthogonal reduction procedure described in Appendix A can be

used to generate a basis for the excess subspace as defined in Section

4. 3. 3. The algorithm begins with the terminating matrix which

results from step (i) in the procedure suggested in Appendix A for

finding the maximal generators for a set of vectors. Specifically, this

is the terminating matrix which results when the reduction procedure

is applied to M' given by (4-261). Starting with this positive semi-

definite matrix the reduction process is applied to the rows of the

matrix

M

M %= (B-2)

whe2r

where
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c

I

c K

c2

MK (B-3)

C2

c
r

, -1
c K

r

and

c K
r

V +1
c K

M V = +1 (B-4) 2 r
r

- vy+ke-1

c K

c 1 e

1 +k-1
c Kr

with K given by (4-257). The c. i = , . .. , r are the rows of the

r X n matrix

=T -1 T
C [(CF) CFJ (CF) C (B-5)

with F given by (4-242).
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It can be shown that the rule presented in Appendix A for identi-

fying intermediate termination points is also valid for this algorithm.

The reasoning is somewhat different, however. Let g. be the maximal

generator for f. From the properties of a maximal generator it can

be verified that

c.K g. = 0 if p<V. -1 (B-6)

P. -1
c K g./ 0 (B-7)

U.K g = 0 for all P> 0 if jti (B-8)
Ii 1~

These relations can be used in a development similar to the proof of

Lemma 4.5 to show that all (v 1 + + r+ r) rows of MI are linearly

independent of each other and all rows of M' as well. This means that

-rkM = + +...+ Vr(B-9)

and

M'
rk = rk M + rkM, = + V +.+ r

M

(B- 10)

All auxiliary vectors associated with the rows of M1 must be nonzero

because a zero auxiliary vector implies the associated row is dependent

on previous rows. Assume the final nonzero auxiliary vector for c.

%# +ke--1
occurs at row cK kei, i. e., the intermediate termination point

%Pv*+ke
for ci occurs at row c.K g ei. Since no nonzero auxiliary vectors

can be associated with rows in M V
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ke .> 0 for all il,..,,r
ei

If k ei> 0, let w. denote the final nonzero auxiliary vector for c..

Then

v.+k .- 1
c.K . r 0

l 1
(B-12)

When kei> 0, w. must appear during processing of M2 . It is ortho-

gonal to all preceding rows in M2 as well as all rows of M and M',

so

1
= 0 (B-13)

Spc.K w. = 0 for P = 0,
1.i

. 0 pv. + k .- 2 and all
J el

j l= 1, . .,r

V.+k .- l
e ic.K 3  w. = 0

J 1
if j < i

Now consider the set of (kel + . .. + k)er vectors

k -1 k -1el er
wP, ... ,K e W w ... ,Kk lw)

It is assumed here that all the k are greater than zero. If some ke.
ei ei

is zero the corresponding vv* does not appear in this set at all. But

even if some kei are zero and the corresponding w. do not appear,F1

there is still (k el + ... + k)er vectors in the set. All w. for

i = 1, ... , r are shown in the set to avoid complicating the notation.
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The case where some kei = 0 is discussed later. Relations (B-12) to

(B-1 5) can be used in a development similar to the proof of Lemma 4. 5

to show that all vectors in the above set are linearly independent. It

can also be shown that they all lie in the null spaces of M' and M 1 . By

construction each W. lies in the null space M', and since this subspace

is invariant with respect to K, all other vectors in the set must also be

contained in the null space of M' The fact that all the vectors lie in

the null space of M 1 follows from (B-14) and the assumption that

k ei > 0. The maximum possible number of independent vectors

contained in the null of M' and M1 is

m'
n - rk = n- q'I-(v1 +...+vr) = k

(B- 16)

Therefore

k 1 + . +..+k < k (B-17)

It can be shown that if (A, C) is an observable pair, the final terminating

matrix for this algorithm is the zero matrix ( the case (A, C) not

observable will be discussed later). If is the final terminating

matrix, it must satisfy

C'

Mt 0 = (B-18)

[C'Knl=-1

and

MA2 = W n = 0_(B-19)

M2
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which implies

C

0(B-20)

'-n-1
LnCK ]=

Observing that

C = C' + CF C (B-21)

it may be concluded that (B-18) and (B-20) imply

C

= 0 (B-22)

LCK

which also implies

C

= 0 (B-23)

If (A, C) is observable, this implies

0(B-24)

The posit-ive semi-definite matrix which remains after processing iMr,
has a rank of

M'

n - rk = -qr -(V +*..+Vr) = k
e

(B-25)
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Since each reduction reduces the rank of the positive semi-definite

matrix by one, k e reductions must be performed during the processing

of M 2 in order to produce a final terminating matrix of rank zero (the

zero matrix). This means that at least ke rows of M 2 must be

processed before termination. Excluding the rows EiKP for

V.+k
P > k +V. (because termination of 6. occurs at S.K ie) the total

- et 1 i

number of rows of ]VI processed before termination is (ke + ... + ker)'2 el+ er)

Therefore

(k el+ .. + ker) ;ke (B-26)

This result together with (B-17) implies that

kei + .... + k = ke (B-27)

and shows that the number of reductions is, in fact, equal to the number

of rows processed before termination. This means that a reduction is

performed for every row processed before termination. No zero

auxiliary vector can occur before termination because that row would

not produce a reduction. Hence the termination point for each c. is

signaled by the first zero auxiliary vector just as for the algorithm in

Appendix A.

By virtue of (B-6) to (B-8) no vector lying in the subspace

formed by the vectors

{g,...K 1 g9,g2 , ... , K r grl

can be in the null space of M 1 . On the other hand all vectors in the set
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k - k -1
{ww, ... , K WV W, ... , K w}

are in the null space of M 1. Therefore, the composite set of vectors

v -I k -lr - er O
gl1, .,K gr, w ,J..K w r

are linearly independent and form a basis for the null space of M'.

Define the n X k matrix
e

k -l k -1
e =[ Kwl er

(B-28)

Using (B-5), Equation (4-268) can be written

ij

= CK 1 
Z[ci e

rjj

S.Z. = K Zeii 1. e

and then

From (B-14) and (B-28) it is clear that

= 0 for j=l,...,v.
1i -

(B-29)

(B-30)

(B-31)

k -1 k -1el er aand so the vectors{IvA .,K vI, w,..., K r*r} form a

basis for the excess subspace as described in Section 4.3.3. The 9.
1

are given by

9. = = ciK Z
1

(B-32)
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From (B-14) it can be seen that the 9. have the form

ei = 0 il10 irI

9..
13

(lxk ) (B-33)

v.+k .-I
= [0, ... , 03 c.K w ej j. ] (X k .) 1 . j ej

(B-34)

and in view of (B-15)

9..13
= 0 if j>i

The A matrix can be obtained from the equation

KZ

r
= ZA+

i=e

Since rk Z = k , this equation can be solved for
e c

A = [ZT Z le e ZT [ KZe e
4
i=l

A in the closed form

(B-37)9. ]I

This form is more general than is necessary, however, because from

the form of Z e in (B-28) it can be seen that A has the form

(k X ke)e e

(B-38)
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APPENDIX C

STANDARD MATRIX FORM

AND DECOUPLABLE REPRESENTATION

In this appendix a transformation matrix which produces the

standard form described in Section 4.3.6 is derived. Also, it will be

shown how a system representation may be augmented to produce a

decouplable representation.

Let the matrices A and C be n X n and m X n respectively.

Assume that (A, C) is an observable pair and that

rk C = m (C-1)

so all rows of C are linearly independent. A set of n independent row

(1 X n) vectors is to be generated as follows. Consider each row of

the matrix

C

M = (C-2)

CAn-1

starting with the top row and working downward. Retain only those

rows which are independent of all preceding rows. Let {c1 ,

A 1  n- n -1
... , c 1An1,c 2 , .... , c2A,2 ... ,icm,...,C mA m  }be the

set of basis vectors so obtained, where c. is the ith row of C (the

vectors are not shown in the order in which they were obtained). Since
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(A, C) is observable, there must be n independent rows, so

n + ... + n = n (C-3)m

n.
The row c.A 1 for each i does not appear in the set, so it must be

dependent of the preceding rows. Then c.A - can be expressed in

terms of those basis vectors which precede it in M

m 

n
cA = U, cA + 3 wc 1 A (C-4)

1=1 P=l 2-i

The final summation appears only for i>1. The terms c1 A ~- appear

in (C-4) only if they are members of the basis, i. e., only if P - n.

This fact can be recognized without changing the summation limits by

requiring that

ilP = 0 if P > n (C-5)

Similarly for I < i

= 0 if n. >n (C-6)

The second summation in (C-4) is written separately in order to call

attention to the significance of the w ) From the way in which the

basis vectors were selected it is clear that n. cannot be larger than

the decoupling order of c. On the other hand, it can be verified from

(C-4) and Equation (4-433) in the alternate definition of decoupling

order that if the second term in (C-4) is zero (i.e., *= 0 for all

I < i) then ni is at least as large as the decoupling order of c. This
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implies that n. is equal to the decoupling order of c. if CO* = 0 for

all 2< i (note wv is defined only for 1< i). If W 0 for some

I < i, then Equation (4-433) is not satisfied for n., implying that n. is

less than the decoupling order of c. This shows, incidently, that n1

is always equal to the decoupling order of c 1 because the second

summation does not appear in (C-4) when i = 1.

Now define a new set of n independent basis vectors as follows:

e.
in.

= c.
1.

(C-7)

n. 
e.. = c.A '

13 1
1=1

i= I-I
1=1

for j = 1, ... , n. - 1 (if n. >

formation matrix

T =

n.

P=j+l

* A.-

1) and i = 1. ., m. Define the trans-

eg

e 1 .ny

e 2 1

2n

em 1

emn
35
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The transformed matrices are

-- -1A = T ATe e

C = CT 1
e

To identify the forms of A and C, it is necessary to determine

expressions for the basis vectors e1i when post-multiplied by A. Now

for j = 2, ... , n. - 1

n. -j+1
= c.A I

1

.in. -j
= [c.A

'3

m

-2
2 =1

i-i-z
e= 1

-7
1=1

4-1

1=1

n.

Pi c. c A ~3
ip I

n.-j+1
co cA1I

n.

Pj+1

ilp I P -j-1o.cAI1

cot c A iI
2=1

cci clil. .I

ifj

(C-12)
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(C-10)

(C-il)

e. .
1, j-1

mn



e..A = e. . +

1=1

w c1  for j= 2..., n. -
ilj 1

For j=1

= [c.A' - S
1=1

i-i-3
L=1

= c.A 1
I.

n.

P=2

o. c A
li p I

n. -1
co* c A

1A 1

n.

p=2

W. c A 1

i-i1n
- o* c1 A

1=1

Substituting (C-4) for

CV ,and the result is

n.
c.A ', all terms cancel except those involving

1

eA =

1=1

.
ct

ill 1

m

- 3W 1 1 e1 n
1=1 *

(C-15)
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m i-i
e. = c.A - 7 . 7-tliAIn. i - Lc

1 1=1 1=1

m

= e.i Ac- . e, -n

1=1

*cc. c A
ii 1t

i-IZ.wr e A
if in1

1=1

(C-16)

or

1-1

e. A- *e A = e. +in if In 1,n. -l
1=1 1

S .l e
1=1 ' I

Combining all such equations for

equation yields

1

-L2 1

-CL)
_ml

o.........

m,) m- 1

0

-*0

.*1

i=l, ... , m into

e. A
in

e mAmn
- m ..

(C-17)

a single matrix

1,n-1
. 1

e
m, nm -1

+

cci.........Wom
w11n 1mn
. 1 . 1

m ln mmnm m

e in

mn

(C-18)

The triangular matrix on the left is clearly nonsingular and its inverse

also has a triangular form
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21

- . ...- w'Mma m, 1 rn-i

-1
1 01.0

a 'a2 1 '

a
ra1 a, M-i

(C-.19)

Then (C-18) yields

10..... . .. .... 0

a21

a .11  . . , a- i

m1 m1

a. . . . a rn

,a amn

a . . . . a r~
- m m_

e1 n -1.1

e
mlnm-1

e

mn
ra

(C-20)

where

a . . a11n rmn

a . . . aIm1n rmmn- ra ra

1~ 0.... .. ......

*
a2 1

ml M,rm-1a 1 . . _

11ny mni

w Co

mn rmmnm M

(C-21)
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The ith row of (C-20) is

a=1 m

e. A = e 1 + e a ein.L, n.-1 =1 i=,n-1if n.In

(C-22)

Post-multiplying (C-10) by T yields

Te = TA =

egA

e in A
1

eA
21

en A
m

C-23)

From Equations (C-13)., (C-15), and (C-22) the form of A is seen

A .1 ..1 .A IM

A = (nXn)

(C-24)

with

.. =

0 0

1 0

0

0

1

.0

0

0

' 1 a.. in.
1 -

(n. X -i.)

(C-25)
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0

0

. . . . 0 0 a..1

. 0 .

. . . . 0 a.'. a..
ii Ufn.

(n. X n.)
1 3

(C-26)

. . . 0O

0

a..

a..

0

0 0

(n. X n.)
I; (C-27)

where n. > n.. The a.. are defined as follows:
3 1 ij1

a 0 i, j = :i, . .. , rn I = 1, ... ,n.-l

The elements a and a'. are given by (C-21) and (C-19) respectively.
in (C-1

Post -multiplying (C-li) by Te yields

C T =-C (C-28)

and from (C-7) it is easily seen that

S 0 . . . .1 - .

0 *
.S- .

. . . -0

0 .. .. 0 c-m
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A ..
Jii

(m Xn) (C-29)



with

C = [0. . . 0 1] (1 X n) (C-30)

The final zeros in the last column of A.. appear when n. > n. and are
ii II 1

a result of (C-5). From the form of the defining equation (C-19) for

the a it can be verified that the conditions on w* given in (C-6)iit

apply to the a as well, i. e.,

a. = 0 if n. n (C-31)

It is for this reason that there is no a.. in A given by (C-27). A lso

from (C-19)

a = 0 for i<s;.I (C-32)

If the a i are zero for all I < i, then n. is equal to the decoupling
if I

*
order of c. If all the ai are zero then (A, C) is a decouplable pair,

and A and C have the standard form presented in Section 4. 3. 6.

It will now be demonstrated how a system representation may

be augmented to achieve a decouplable representation. Let (A, B, C)

be a minimal plant representation where A, B, and C have dimensions,

n X n, n X r, and m X n respectively. An equivalent representation is

any triplet (X, B, F5) (with dimensions n X n, n X r, and m Xn)

satisfying

CA B = CAjB for all j . 0 (C-33)

Since (A, B, C) is minimal, (A, C) is an observable pair. Let q1 be the

decoupling order of c1, the 1th row of C. Suppose

q + + q > n (C-34)
1 m
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so by Theorem 4.7 (A, C) is not a decouplable pair. The triplet (A, B, C)

will be augmented to obtain an equivalent observable representation

(A, B, C) with ' having the same decoupling order as ci, and with

q +.+ qM = n(C-35)

First assume

rk C = m (C-36)

The case rk C <m will be considered later. Let {c1 , ... , c1 A - c2'
n -1

.. , cmA m } be the set of n independent basis vectors obtained as

described at the beginning of this appendix. It was noted earlier that

.< q i 1, ... , m (C-37)

Let

A A 12
A =(h Xn) (C-38)

0 A 2-22 i

B

B = (n (Xr) (C- 39)
0

C = [ C, 0] (m X i) (C-40)

where n is given by (C-35). The matrices A2 2 and A12 have dimen-

sions ("n - n) X (iS - n) and n X (E - n) respectively, where

m

n-n= (q -n) (C-41)

1=1
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It is easily verified from the form of A, B, and C that they satisfy the

requirement for an equivalent representation for any A 1 2 and A 2 2 9 It

must now be shown that K12 and A2 2 can be chosen so as to make

(A, C) a decouplable pair.

Before selecting K1 2 and A22 a simplification can be made

which will considerably reduce the amount of algebra involved. First

assume that A and C are in the standard forms (C-24) to (C-30) derived

in this appendix. It was shown in Section 4.3.6 that decoupling order,

and thus the property of decouplability, is invariant with respect to

replacement of A by (A - DC). In the present context this means that

if ([A - DCJ , C) can be shown to be a decouplable pair for any D", then

(A', C) is also decouplable. Let

D"

D( = nX m) (C-42)

0

where D" is an n X m matrix. Then

(A-D"C) A 12

A D C (C-43)

0 A 2

Now with A and C in the form of (C-24) to (C-30) it is easy to see that

D" can be chosen to cancel all the a elements in A, yielding

A - D"C = (C-44)

A'ml ''' mm
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w ith

A "..= L

A" =

1L

where n. > n.. Define
3J- 1.

0

1

0

0

0

0

0

0

1

0

.. 0

A".. =0

A" = A - DifC

A" = A -D"C

(C-48)

(C-49)

Now for each i for which

q - n. > 0
S1 (C-50)

let there be an associated 1 X (in - n) row vector c,.. These . and A
caefo 22

can be chosen arbitrarily except for the following two requirements;
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0.

- 1 0

(n. Xn.)

(C-45)

0 0

(n ixn.)
I I0

a'..
ii

.0

(n. X n.)

(C-46)

(C-47)



(i) The (.n - n).row vect'

qi-ni-1
{f , .. , A 22 all i such that q -ni> 0}

are linearly independent.

#Fq -,n
(ii) i.AS22 --I

p =1

p-i
. Alp i 22

- =2
1 =2

where the a. are arbitrary scalars. The Vi are scalar functions

of the a?. in the A ". and will be defined later. The prime on the second

summation sign in (C-51) is to indicate that the sum is to include only

those I for which q, - n1 > 0. The summation starts at I = 2 because,

as noted near the beginning of this appendix,

(C-52)n =

Note that (C-51) implies the eigenvalues of A22 are given by the roots

of the equations

n -n qi-ni-i
s + . s

1., q -ni
+ ...+ a. = 0

ii (C-53)

for those i such that q. - n. > 0. Since the a. are arbitrary, the

eigenvalues of A22 are almost arbitrary. The A 1 2 matrix is constrained

to satisfy the equations
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qi-n
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c.A" A1
1. 12

= 0

n.-1
A. A" A =
i 12

ti

for j=1, ... , n. - 1

if n.<q.

ifi
if n. = q.

1. 1 I
These make up a total of n independent equations which uniquely

determine A 1 2 9

It must now be shown that the decoupling order of 't, the ith

row of C, is q for all i = 1, ... , m. To establish this it is necessary

to develop a general expression for 't A". For j >. 1

C "% = CA' , CA A p]= CA"J. ll A12 22
p =1

(C-56)

= [c. A"t {
p =1

A 12 22

Using (C-54) this reduces to

.A = [ c.A"d, 0]1 -

and

c'.A" = [ .A ,

j

p =n.

for j=, ... , n. -1

c. A - 1 11 12 22

for j . n.
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(C-54)

(C-55)

so

0' AtAll (C-57)

(C-58)

(C-59)



From the form of A" and C it can be verified that

i=l

- I1 up c A"
1=1

for p > n.
-1

~. = 0 tf p n (C-GD)

The scalars WU are functions of the at appearing in the A" The

exact functional relationship between W-. and a.. is not necessary toIP 1

prove decouplability., but as a matter of interest the CO are given by

the matrix equation

1 0 . . . . . . .

2 1p

Mlp m,m-1,p

a.

lip =

0

1 0.. .... . ... 0

a 2 1

0

mlp M, m-l1, p

(C-62)

if p

ifp .

(C-63)

Incidentally, C

reduces to

*
is equal to 0)Ui in (C-4). When n. = q., (C-60)

cA"P =0

Then

. = 0
1 -

for all p n.

for all j i n.
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(C-60)

-1

where

(C-64)

(C-65)



which implies the decoupling order of 6'. cannot be larger than n. = q..11 1

By Theorem 4.9 the decoupling order of 'c. cannot be smaller than q.,

so one may conclude immediately that if n, = qi then the decoupling
1~

order for 'c. is q.. Now consider the case where n. < q. Post-

multiplying (C-60) by A 1 2 yields

A AP A1 12

i-I1

-j py c1  " A 2  for p . 7
1=1-

(C-66)

Equations (C-54), (C-55), and (C-61) indicate that the only nonzero

terms in the above summation are those I for which p = nI- 1 and

n < qI. Then

6p,n1 -l 5 3 1p
for p n.

--

where _- is the Kronecker delta

= if i;j

0 if i fj

Then (C-59) becomes

= n -1

Al ci Al
A 1 j-niA2 A1222

1A 12 22

I 12
1=2

(C-67)

(C-68)

1

4
p =n.+1
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Al.
,n-n.

i 22

p =n.+l
1

= [c.Alu,]

i-

2=2
prn1 Olp-ll 2 2 j

A-n.

i 22

i-i

+ I Wj

2=2

A.n
A 22 ] for j;>n

where the Kronecker delta was used to eliminate the summation over p

and

if n.+l<n .

(C-70)
otherwise

Letting j = q and using (C-51), (C-69) becomes

A 1
~,q.-n

i 22
.1=2

Wj. [ j

q.

-[

p =1

5 -ip -Ui i A 22

Now define the following set of I X n row vectors:

366

(C-69)

t = 0it j

q -n

22

(C-71)

ci Al



If n. = q. let

= [c.A113 01
1 --

for all j :. 1

If n. < q. let
1 1

[c. A"'~, ]

i-n. -1
[03 , .A ]

- 1 22

for 1 ;. j <n

for j > n I

Then if n. = q.
1 1.

= Vi for all j > 1

= .. for 1.j.n.
1;J 1

and for j >n

'. A 'Y
1-

c.Aj-1= [c.A" , 0] +Y.. +
1- 1.3

i-l

1 =2

Using (C-60) this becomes

i- I

't' i-~1
1.

+ %
1=2

.o V .
il,j-l lj

Now define the m X n matrices
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V..
I..]

(C-72)

V..
13

(C-73)

#. ~ I

If n. K q.
1 1

(C-74)

~. Ali (C-75)

(C-76)

(C-77)



V.-

V. = (C-78)

From the form of (C-74), (C-75), and (C-77) it can be verified that for

any j

CA
CA" A V 2 (C )

= Tv. .(C-79)

L J

where T is an (m - j) X (m-j)

Vj

Ty =

A

The lower left half of Tv.

For present purposes the

form. From (C-71)

c.A

triangular matrix of the form

0 0......

t. 0
.f .- 0

(C-80)

is made up of the . .jand o. . in (C-77).

A
s ignif icant f eature of T v is its triangular

q=
= [ c.A" 1,0] -

q

p =1

y. v. +
lp i,fl.+p

(C-81)

Because of the special form of A"

c A"
1 = 0
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q.-n
i cA" = -

p =1

This implies that ~' "~ is linearly

a. v.
1p 1,fl.+p

(C-82)

dependent on the rows of the matrix

V

q.

Since

vT C

TVq. 
,

v q L qC-A

(C-83)

this also implies clA' is linearly dependent on the rows of the matrix

KA -]

Therefore

rk

6
C ~1

CA
= rk

76

a I-

(C-84)

which shows that the decoupling order of '. is no larger than q..

Since by Theorem 4.9 the decoupling order of 'c. cannot be less than
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qi ,it may be concluded that it is, in fact, equal to qi. To establish

that (A", C) is decouplable it is only necessary to show that this pair

is observable. Because of requirement (i) on the C. and the fact that

the n row vectors {cv . ... , c All 1 , c2 , ... , c A" m } areI m
linearly independent, it follows that the " row vectors

, ... 1q, v2 v, . .. , vm } are likewise linearly independent.

This means

V I

rk . = n (C-85)

V-
- n _

And by (C-79) this implies

C

rk . - 2n (C-86)

This shows that (A", C) is an observable pair, and is therefore

d,ecouplable. Consequently, (A, C) is also decouplable.

When

rk C < m (C-87)

the development proceeds in a similar way except that for the dependent

rows of C the associated j appear in C. To clarify this, suppose

rk C = m' (C-88)
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and assume the first m' rows of C are independent. Partition C so

that

Cy

C = (C-89)

C
[2_

where C1 is m'X n and

rk C1  = m (C-90)

The rows of C2 are dependent on the rows of C1 . Now A and '- have

the same forms as previously given in (C-38) and (C-39), but C has

the form

C 0

C = (C-91)

LC 2 C22

The rows of C2 2 are chosen to be linearly independent. They play the

same role as the in the previous development. Note that this makes

rk C = m (C-92)

It is again easily verified that this is an equivalent representation. Now

A and C1 can be put into the standard forms (C-24) to (C-30). A

simplification similar to the previous case is achieved by taking

(11C
D" = (C-93)

L0 0
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where D" is n X m! and is selected so that (A - D' C1 ) has the

form of A" given by (C-44) to (C-48) (except that (C-44) has m' 2

blocks instead of m2). Then

Dn f

AD

0

Al"

0

A 12

A22

AA12

A 2

(C-94)

From this point on, the development follows the previous case with

n. = 0 for the rows of C 2 .
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