THE ROLE OF TECHNOLOGY IN THE PRODUCTIVITY OF HIGHWAY CONSTRUCTION IN THE UNITED STATES

by

JANET ANN KOCH ROSSOW

S.B., Massachusetts Institute of Technology (1971)

S.M., Massachusetts Institute of Technology (1974)

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

FEBRUARY 1977

Signature of Author. Department of Civil Engineering, January 13, 1977 Signature redacted Certified by. Certified by. Chairman, Departmental Committee on Graduate Students of the Department of Civil Engineering Archives MAR 30 1977

LIBRARIED

ABSTRACT

THE ROLE OF TECHNOLOGY IN THE PRODUCTIVITY OF HIGHWAY CONSTRUCTION IN THE UNITED STATES

bу

JANET ANN KOCH ROSSOW

Submitted to the Department of Civil Engineering on January 13, 1977 in partial fulfillment of the requirements for the degree of Doctor of Philosophy.

The construction industry holds a prominent position in the U.S. economy, not only in terms of its direct contributions to the gross national product and to employment, but also through its provision of physical facilities satisfying a wide variety of social, economic, and technical needs. In light of this, the tendency of construction, over the past fifteen years or so, to consistently exhibit higher price escalation than is the case in industry in general, has generated widespread concern among industry and government officials alike. Rising factor prices without commensurate increases in factor productivities is a frequently cited contributory condition. Productivity is a complex issue in construction where even labor productivity, let alone capital, materials, or total factor productivity, is extremely difficult to measure, due to the heterogeneity of the industry's products as well as of its inputs. A1though progress is being made, particularly in the development of measures of labor and materials productivity in individual sectors of construction, measures of capital and total factor productivity are still lacking, and the process of determining the factors influencing this productivity still remains a speculative one.

The role of technology in the construction industry and its influence on productivity and efficiency and product quality and cost is the general focus of the current research. For the U.S. and other developed countries, this is of importance in terms of indicating the direction in which technology has advanced in the past and might do so or be encouraged to do so in the future; as for the developing countries, it is of importance in terms of assessing the potential appropriateness of various technology and its progression over time, efforts are concentrated on the identification and quantification of the magnitude and nature of the technology change that has occurred. The issue of particular interest is whether the observed technology change has been characterized by increasing efficiency or by factor substitution (equipment for labor) or, more likely, a little of both, in which case the extent of their contributions is of interest. The highway sector of the construction industry in the U.S. provides a good basis for this study.

A micro-study approach is pursued in this investigation of technology and productivity in highway construction in the U.S. The basic analytic procedure thus entails first observing and recording the inputs required for and influences impacting the various tasks of production, for alternative means of producing a given output, and then using this data to synthesize a production isoquant for the good which is subjected to further economic analysis. Since it is obviously impossible to actually observe the technologies of the past in the field today, historical data used in a simulation framework must suffice, whereby the various stages of highway construction and complete road projects can be hypothetically built and operated, by means of alternative technical packages and project designs. This is accomplished in two levels of analysis: (1) the stage-level, wherein each stage is considered separately in the analysis of technology and its change; and (2) the projectlevel, wherein the stages are brought together to form various projects such that the interaction of design and technology in highway construction and operation might be taken into account.

The role of technology in the productivity of highway construction over the years in the U.S. appears indeed to have been a significant one. Highways can be constructed today using considerably less labor and even less capital than was possible in the second and third decades of this century. These advances in highway construction technology appear to have played a major part in keeping project costs down over the years.

Efficiency seems to have played a major role in the observed technology change, although the magnitude and rate of the decrease in resource requirements attributable to efficiency has lessened over time. Substitution brought about by factor price changes, on the other hand, seems to have had effectively no part in the technology change, although it seems likely that expectations of labor's cost rising relative to that of capital, among other conditions, may have tended to induce technology change in the direction of saving labor as was observed.

Increased mechanization and the introduction of new types of equipment appear to constitute the primary means of accomplishment of such technology change before the fifties, while since then it has been largely just improving the equipment and the effectiveness with which it is used. As for the future, although the same basic motivations may be expected to continue, perhaps in a somewhat dampened state, gains in productivity and efficiency achieved by a simple continuation of past means of accomplishing change may be expected to be somewhat less than those previously, if past trends can be taken as indicative of those of the future. As for the developing countries, it appears that the development of technical packages since the early part of this century has been focused on the capital-intensive end of the production isoquant; the labor and animal-intensive packages of the past seem to have been essentially forgotten, although they still appear to be efficient and, under some conditions, economic and their use potentially worth considering.

Thesis Supervisor: Title:

4

Fred Moavenzaden Professor of Civil Engineering

ACKNOWLEDGEMENTS

My first acknowledgement must, of course, go to my thesis advisor, Professor Fred Moavenzadeh. His constructive criticism and, perhaps more importantly, his encouragement and patience provided much guidance and support. My next acknowledgements go to the members of my thesis advisory committee, Professors Robert D. Logcher and D. Quinn Mills. They read the manuscript and conducted my final examination under considerable time constraints.

Over the course of this research effort, so many people provided moral and intellectual support that it is impossible to cite them all individually. I would like to single out some of them, however, for service above and beyond the call of duty. Susan Burkhardt and Dianne Glennon, two Undergraduate Research Assistants, aided in the collection and compilation of data and in computer programming. My debt to them is considerable. I would also like to express my thanks to the members of Professor Moavenzadeh's various research projects, especially Fred Berger, Brian Brademeyer, Mike Markow, John Potter, Bruce Van Every, and Bob Wyatt. They provided general consultations, critiques, and advice on many aspects of my research.

My final acknowledgement is to my spouse, Peter Rossow. The mere fact that he has survived three theses, several research reports, and my general exams is a tribute to his extraordinary patience and understanding.

TABLE OF CONTENTS

	Page
CHAPTER 1: INTRODUCTION	14
1.1 Productivity in Construction in the United States	14
1.2 The Situation in Developing Countries	29
1.3 Purpose and Scope of Research	31
CHAPTER 2: RESEARCH APPROACH	35
2.1 Brief Review of Studies of Productivity and Technology	
in Other Industries	37
2.2 Brief Review of Related Research in the Highway Field	54
2.21 Some Case Studies Evaluating Alternative Technica	T
Packages for Highway Construction	55
2.22 Some Models Evaluating Alternative Designs for	
Highway Projects	73
2.3 Method of Approach Used in Research	77
2.31 Stage-Level Analysis	78
2.32 Project-Level Analysis	89
CHAPTER 3: DATA COLLECTION AND ANALYSIS	93
3.1 Construction Technologies and Costs	93
3.11 Identification of Technical Packages	94
3.12 Evaluation of Resource Productivities and Costs	119
3.13 Alternative Technical Packages and Their Costs	133

,

3.21 Selection of Projects	160
3.22 Estimation of Project Quantities and Costs	166
3.23 Alternative Projects and Their Costs	180
CHAPTER 4: DISCUSSION OF THE RESULTS	199
4.1 Change in Highway Construction Technology Over Time	199
4.11 The Efficient Technical Packages	206
4.12 The Best-Practice Technical Packages	223
4.13 Summary and Implications of the Results	243
4.2 Interaction of Design and Technology in Highway Con-	
struction and Use	250
4.21 Comparison of Alternative Projects	251
4.22 Summary and Implications of the Results	263
CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER	
RESEARCH	268
5.1 Conclusions	268
5.2 Recommendations for Further Research	272
APPENDIX A: RESEARCH REFERENCES	277
APPENDIX B: CONSTRUCTION TECHNOLOGIES AND COSTS	288

APPENDIX C: PROJECT DESIGNS AND COSTS

LIST OF TABLES

		Page
1.1	Percentage distribution of construction costs, by type of construction, in the U.S.	23
2.1	A list of the case studies which are reviewed	56
3.la	Technical packages for site preparation in the 1920's, 1950's, and 1970's	96
3.1b	Technical packages for excavation/hauling in the 1920's, 1950's, and 1970's	97
3.1c	Technical packages for spreading/compaction in the 1920's, 1950's, and 1970's	103
3.1d	Technical packages for gravel surfacing in the 1920's, 1950's, and 1970's	107
3.1e	Technical packages for waterbound macadam surfacing in the 1920's, 1950's, and 1970's	110
3.1f	Technical packages for double bituminous surface treat- ment in the 1920's, 1950's, and 1970's	116
3.2	The categories of labor, equipment, and materials used in highway construction	120
3.3	The set of economic conditions used in the efficiency analysis at the stage level	132
3.4	Graphical efficiency analysis results the set of effi- cient technical packages for each stage of construction, from among those available in each technology period alone and in all periods combined	143
3.5	Numerical efficiency analysis results the set of effi- cient technical packages for each stage of construction, from among those available in each technology period alone and in all periods combined	144
3.6	The set of least-cost technical packages for each stage of construction, at the prices of 1930, 1956, and 1974, from among those available in each technology period	147

.

.

(List of Tables Continued)

3.7	Distribution of the percentage change in the quantity of labor and capital required by the best-practice packages, for each stage of construction, in the 1920's to the 1950's and the 1950's to 1970's transitions	157
3.8	A list of the projects considered in the analysis and their basic characteristics	161
3.9	Quantities of each stage of construction for each project	167
3.10	Least-cost technical packages for each stage of construc- tion, for each technology period alone and over all per- iods, at the prices of 1930, 1974, and developing countries	174
3.1la	Least-cost projects at each design standard from among the surface materials alternatives, under various tech- nology and price conditions, for the various cost com- ponents	189
3.11b	Least-cost projects at each design standard from among the subgrade strength/surface design alternatives, under various technology and price conditions, for the various cost components	192
3.11c	Least-cost projects at each design standard from among the alternative excavation/hauling scenarios, under var- ious technology and price conditions, for the various cost components	193
4.1	Testing the sensitivity of the percentage change due to efficiency to various means of pricing the labor and capital inputs in the case of excavation/hauling at 100 meters	237
4.2	Least-cost technical packages and their unit costs (dol- lars per 100 BCM) for excavation/hauling at 100 meters, for two technology and price periods, under various modif- ications of the productivity data and heavy equipment characteristics	249
4.3	Incremental costs (in \$1000), over the base case at each design standard, of each project/technology combination, for all surface materials alternatives and all technology periods, at the prices of 1974, for the various cost components	265

Page

LIST OF FIGURES

1.1	Price trends exhibited by industry in general and the construction and highway construction sectors over the past sixty years	16
1.2	Trends in output per man-hour exhibited by industry in general and the construction and highway construction sectors over the past thirty years or so	18
1.3	Cost and labor usage trends for highway construction since 1950	21
1.4	Average annual percentage change in on-site labor requirements,by type of construction, for selected periods 1958-1973	26
1.5	Bid price trend for highway construction, both as it actually occurred and as it would have occurred had technology remained constant at that of 1923	28
2.1a	Schematic representation of three forms of technological change	41
2.16	Schematic representation of increasing returns to scale	42
2.2	Capital and labor inputs of the various technical pack- ages for the earthwork stage of the Nepal project., valued at standard prices for Nepal	66
2.3	Notional representation of the derivation of an aggregate production isoquant	68
2.4	Basic structure of the HCM	76
2.5	Schematic representation of dividing technology change, represented by movements over time of best-practice techniques, into its component parts	86
3.la	Labor and capital requirements of each technical pack- age for site preparation at the rate of 1 hectare per hour, for each technology period	134
3.1ba	Labor and capital requirements of each technical package for excavation/hauling at 6 meters at the rate of 100 bank cubic meters per hour, for each technology period	135

(List of Figures continued)

3.1bb	Labor and capital requirements of each technical package for excavation/hauling at 100 meters at the rate of 100 bank cubic meters per hour, for each technology period	136
3.1bc	Labor and capital requirements of each technical package for excavation/hauling at 800 meters at the rate of 100 cubic meters per hour, for each technology period	137
3.1c	Labor and capital requirements of each technical package for spreading/compaction at the rate of 100 bank cubic meters per hour, for each technology period	138
3.1d	Labor and capital requirements of each technical package for gravel surfacing at the rate of 100 compacted cubic meters per hour, for each technology period	139
3.1e	Labor and capital requirements of each technical package for waterbound macadam surfacing at the rate of 100 ctanpacted cubic meters per hour, for each technology period	140
3.lf	Labor and capital requirements of each technical package for double bituminous surface treatment over gravel at the rate of 100 square meters per hour, for each tech- nology period	141
3.2a	Unit costs of the best-practice technical packages of each technology period for each stage of construction, at the prices of 1930, 1956, and 1974	148
3.2b	Labor and capital components of the unit costs of the best-practice technical packages of each technology period for each stage of construction, at the prices of 1974	150
3.3a	Labor and capital requirements of the best-practice tech- nical packages of each technology period as a percentage of those of the 1920's, for each stage of construction	153
3.3b	Labor and capital requirements of the best-practice tech- nical packages of each technology period as a percentage of those of the 1950's, for each stage of construction	155

.

_

(List of Figures continued)

1

.

3.4a	Construction costs and lifetime maintenance and user costs, expressed in equivalent annual cost terms, of each project/ technology combination at each design standard/traffic volume, for all project groups and all technology periods, at the prices of 1974	181
3.4b	Construction costs and lifetime maintenance and user costs, expressed in equivalent annual cost terms, of each project/ technology combination at each design standard/traffic volume, for all project groups and all technology periods, at the prices of 1930	183
3.4c	Construction costs and lifetime maintenance and user costs, expressed in equivalent annual cost terms, of each project/ technology combination at each design standard/traffic volume, for all project groups and all technology periods, at developing countries prices	185
3.5a	Various components of project costs for a low standard, gravel road (p L114), under various technology and price conditions	196
3.5b	Various components of project costs for a high standard, double bituminous surface treated road on a gravel base (p H315), under various technology and price conditions	198
4.la	Labor, in unskilled men where the skilled are weighted by the wage ratio at the time of the technology, and capital, in investment costs at 1974, required by each technical package for excavation/hauling at 100 meters at the rate of 100 bank cubic meters per hour, for the 1920's and 1970's technologies	208
4.1b	Labor, in unskilled men where the skilled are weighted by the 1974 wage ratio, and capital, in investment costs at 1974, required by each technical package for excavation/ hauling at 100 meters at the rate of 100 bank cubic meters per hour, for the 1920's and 1970's technologies	209
4.1c	Labor, in unskilled man-hours where the skilled are weighted by the wage ratio at the time of the technology, and capital, in depreciation costs at 1974, required by each technical package for 100 bank cubic meters of excavation/hauling, at 100 meters, for the 1920's and 1970's technologies	210

11

.

(List of Figures continued)

4.1d Labor, in unskilled man-hours where the skilled are weighted by the wage ratio at the time of the technology, and capital, in ownership and operating costs at 1974, required by each technical package for 100 bank cubic meters of excavation/hauling at 100 meters, for the 1920's and 1970's technologies 211

- 4.1e Labor, in unskilled men where the skilled are weighted by the wage ratio at the time of the technology, and capital, in investment costs at 1930, required by each technical package for excavation/hauling at 100 meters at the rate of 100 bank cubic meters per hour, for the 1920's and 1970's technologies
- 4.1f Labor, in unskilled men where the skilled are weighted by the wage ratio at the time of the technology, and capital, in investment costs under developing conditions, required by each technical package for excavation/hauling at 100 meters at the rate of 100 bank cubic meters per hour, for the 1920's and 1970's technologies
- 4.2 Labor and capital components of the unit costs of the bestpractice technical packages of each technology period for excavation/hauling at 100 meters, at the prices of 1974 and 1930
- 4.3 Labor and capital requirements of the best-practice technical packages of each technology period as a percentage of those of the 1920's, for excavation/hauling at 100 meters using various measures of labor and capital 230
- 4.4 Construction costs and maintenance and user costs, expressed in net present value terms, per standard axle over project life of each project/technology combination at each design standard/traffic volume, for all project groups and all technology periods, at the prices of 1974 253

12

Page

212

LIST OF ABBREVIATIONS

			2		
site prep	=	site preparation	sf,ft [∠]	=	square foot
exc/haul	=	excavation/hauling	sy	=	square yard
spr/comp	=	spreading/compaction			
grvl	=	gravel	СМ	=	cubic meter
wbm	=	waterbound macadam	LCM	=	loose cubic meter
dbst	=	double bituminous	BCM	=	bank cubic meter
		surface treatment	ССМ	=	compacted cubic meter
dbst/g	=	double bituminous surface treatment on a gravel base	ft ³	=	cubic foot
dbst/w	=	double bituminous	су	=	cubic yard
		surface treatment	lcy	=	loose cubic yard
		macadam base on a	bcy	=	bank cubic yard
		gravel subbase	ссу	=	compacted cubic yard
tp	=	technical package	fnm	=	feet per minute
р	=	project	moh	=	miles per hour
			mp : r		
men	=	millimeter	hp	=	horsepower
CfT	=	centimeter	dbhp	=	drawbar horsepower
м	=	meter	fwhp	=	flywheel horsepower
km	=	kilometer			
			ct	=	count
in.	=	inch	qty	=	quantity
ft,'	=	foot	sngl	=	single
yd	=	yard	dbl	=	double
ิฑาํ	=	mile	max	=	maximum
			int/dep	=	interest and depreciation
SM ha	=	square meter hectare	maint/misc	=	maintenance and mis- cellaneous items
			ADT	=	average daily traffic

= Highway Cost Model - citation: Moavenzadeh, Fred, Fredric Berger, Brian Brademeyer, and Robert Wyatt, <u>The Highway Cost Model - General Framework</u>, Report No. 75-4, Technology Adaptation Program, Massachusetts Institute of Technology, Cambridge, September 1975.

HCM

Į.

1

CHAPTER 1

INTRODUCTION

1.1 Productivity in Construction in the United States

The construction industry's role in the overall functioning of the U.S. economy is one of considerable importance. In recent years, the value of new construction put in place has accounted for some 9 to 11 percent of the gross national product, while the industry has provided some 4 to 6 percent of the nation's nonagricultural employment. Highway construction's share is some 7 to 11 percent of the output and 8 to 10 percent of the employment generated by the industry. At the same time, variations in the rate and level of investment in the industry's various activities have served as a stabilizing influence on the overall economy. Finally, through the provision of physical facilities, the construction industry plays a major role in satisfying society's needs for shelter, infrastructural services, and institutional, commercial, and manufacturing services; in fact, the overall ability of other industries to produce and distribute goods and services for consumers is heavily dependent upon the construction industry.

In light of the industry's prominent position, its tendency, over the past fifteen years or so, to consistently exhibit higher price escalation than is the case in industry in general, has generated widespread concern among industry and government officials alike. The price trends* exhibited

^{*} The term price trend is used somewhat loosely here in the case of the construction industry, in that the index is actually based on the costs of the inputs rather than the price of the output and may, therefore, have a certain upward bias (71).

by industry in general and the construction and highway construction sectors over the last sixty years are given in Figure 1.1. As for general trends exhibited by the three categories of industry, up to about World War II the peaks and valleys in the prices essentially balance out, yielding only a slightly upward trend; at that time a distinctly upward trend begins, which continues at a moderate rate to the mid-sixties, when the prices begin a rapid ascent. In the particular case of highway construction's price, it is of interest to note that it generally moves in line with all industry's until the post-war period, at which time it fluctuates around a bit until 1960, when it begins its rapid ascent, similar to that of construction and even exceeding it.

A condition commonly cited as contributing to such price escalation is rising factor prices without commensurate increases in factor productivities. As labor generally constitutes a sizeable share of the costs and is more readily measurable than is capital or materials, output per man-hour is commonly used as a measure of productivity; Figure 1.2 gives the trends in labor productivity exhibited by the three industry categories over the past thirty years or so. For construction in general and highway construction in particular, labor productivity on the average rises steeply until the late fifties or early sixties, at which point it fluctuates for construction, with the peaks and valleys essentially balancing out to no further growth, while it continues a steady upward trend at asomewhat reduced pace for highway construction; it should be noted that this is the same point at which prices began to rapidly escalate in both sectors. As for all industry, its labor productivity exhibits exactly opposite trends; it might be remembered that its recent price escalation has not been quite as rapid as that of the

15

Figure 1.1: Price trends exhibited by industry in general and the construction and highway construction sectors over the past sixty years (source: ref. 19, 86, 91, 104).

Note:

••••• Highway construction industry index is the U.S. Federal Highway Administration's composite contract bid price index for 1922-75, the breaks in the curve representing points in time when the quantities of common excavation, surfacing, and structures used in the derivation of the composite index have been changed; the U.S. Department of Commerce extrapolated the data back to 1915 by means of weighted averaging of various relevant indexes (19, 86, 104).

---- Construction industry index is the U.S. Department of Commerce's composite cost index, which is a combination of various indexes weighted by the relative importance of the major classes of construction; as the index is ultimately based on costs of inputs rather than the price of output, it is more properly termed a cost, rather than price, index. The U.S. Department of Commerce revised the index at the time the base was changed to 1967, but did so only back to 1958 (19, 86).

---- All industry index is the U.S. Bureau of Labor Statistics wholesale price index for industrial commodities (91).

Figure 1.2: Trends in output per man-hour exhibited by industry in general and the construction and highway construction sectors over the past thirty years or so (source: ref. 86, 87, 39, 91, 101, 103).

(Figure 1.2 continued)

- Note: Highway construction industry index is based on the U.S. Federal Highway Administration's figures on man-hours per thousand dollars of construction, adjusted to 1954 constant dollars, for 1950-73; prior to 1950, it is based on their figures for man-hours used per thousand dollars of construction, award or job-started basis, in current dollars, inflated to 1954 constant dollars using their composite bid price index. This output per man-hour index thus covers only on-site employees (86, 101, 103).
 - ---- Construction industry index is the U.S. Bureau of Labor Statistics' output per man-hour index for all persons in the construction industry (89).
 - All industry index is the U.S. Bureau of Labor Statistics' output per man-hour index for all persons in the nonfarm sector of the economy, based on establishment data (87, 91).

construction sectors. Figure 1.2 also shows that prior to the sixties, highway construction exhibits the highest average rate of productivity growth, with general construction coming in second; after the early sixties turning point, highway construction's rate of growth drops to below that of all industry, while general construction's essentially goes to zero.

The implication of this is that productivity growth prior to the sixties in construction in general and highway construction in particular is reasonably successful at offsetting factor price increases, but since then its reduced rate of growth in conjunction with the increased rate of inflation in factor prices results in productivity's being less successful at offsetting price changes. Figure 1.3 suggests that this is indeed the case for highway construction, showing labor costs (i.e., the product of average hourly wages and manhours required per 1,000 constant dollars of construction) as reasonably constant from 1950 to 1964, at which time they be gin to rise.

It might also be noted that although composite contract bid prices follow labor costs reasonably closely in Figure 1.3, it is, not surprisingly, not an exact match, especially in recent years. There are other factors of production, namely materials and capital, the prices and productivities of which have also changed over time, as well as other conditions, such as the magnitude and nature of demand for the product, which influence the final price. Table 1.1 shows the percentage distribution of construction costs among the various factors of production for different types of construction, demonstrating the significance of these other input factors in overall project costs.

Setting aside for the moment concerns over the incompleteness of labor productivity and price as an indicator of productivity and price trends in

Figure 1.3: Cost and labor usage trends for highway construction since 1950 (source: ref.101).

1.2

.

Note: •••• Composite contract bid price index, converted from award to expenditure basis.

--- Average hourly wage index.

----Labor factors, man-hours used per thousand dollars worth of construction, adjusted to 1954 constant dollars.

- ---- Labor cost index, based on product of average hourly wages and labor factors.
- —— Material price index, based on weighted average of unit prices for Portland cement, asphalt, aggregates, steel, and lumber.

Type of Construction	and Year	On-Site Wages	Materials	Equipment	Overhead and Profit ^a
Federally-aided high	iways				
	1973 1970 1967 1964 1961 195 8	24.6 25.6 24.8 26.0 24.7 23.9	44.5 45.0 47.8 50.3 52.6 50.6	_Б _Б 11.1 11.7 12.0	30.9 ^D 29.4 ^b 27.4 ^b 12.6 11.0 13.5
Elementary & seconda	ary schools				_
	1964-65 1959	25.8 26.7	54.2 54.1	1.0 1.4	19.0 17.8
Hospitals				_	
	1965-66 1959-60	29.6 28.2	50.4 53.2	1.3 1.2	18.7 17.4
Public housing					
	1968 1959-60	32.4 35.5	41.9 45.0	1.5 2.5	24.2 17.0
Private single-fami	ly housing ^C			1	
	1969 1962	20.4 22.1	43.4 47.2	0.9 1.0	35.3 29.7
Sewer works lines plants	1962-63 1962-63	24.3 26.6	44.5 49.2	11.2 8.2	20.0 16.0
Civil works (Corps.	of Eng.)				_
land operations dredging	:1959-60 1959-60	26.0 32.3	35.0 17.3	19.3 24.9	19.7 25.5
Federal office buildings					
	1959	29.0	51.4	1.9	17.7
College housing			50.5		
	1960-61	29.3	52.6	1.6	10.5
Multi-family housing	9 1971	27.9	44.2	3.0	24.8

.

Table 1.1: Percentage distribution of construction costs, by type of construction, in the U.S. (source: ref. 28, 93, 108).

(Table 1.1 continued)

^aIncludes off-site wages, fringes, construction financing costs, inventory, and other overhead and administrative expenses as well as profits.

^bEquipment included in overhead and profit.

^CConstruction costs include selling expenses in addition to construction contract costs (selling expenses were 2.9 percent in 1969).

ī

construction, considerable disagreement still remains as to the appropriate means by which to measure labor productivity in the construction industry. The results of six different methods of estimating output per man-hour indexes for contract construction, for example, are five different figures, ranging from 1.6 to 3.0 percent, for the average annual rate of growth over about a twenty-year period beginning around 1947 (16, 22, 30, 89). The primary difficulty is the heterogeneous nature of the industry's output, ranging from single-family homes to skyscrapers, industrial plants, and highways, each of which is distinct in its own right in terms of its function, size, quality, performance characteristics, and so forth, while each also has rather different requirements in terms of the type and quantity of labor, let alone the other factors of production; moreover, the nature and mix of products in a single sector of construction is continuously changing, let alone that in the industry as a whole. Such features make the derivation of a reliable output measure, such as the deflated price of a reasonably constant product set, very diffi ic and also make the meaning and usefulness of a measure of the industry's labor productivity somewhat questionable. Another area of difficulty lies in the measurement of the inputs, in that labor is not homogeneous either, although it is generally assumed to be thus.

As a result of these difficulties, certain agencies have begun working with the individual sectors of construction; the U.S. Bureau of the Census, for example, has begun developing price indexes for each sector, while the U.S. Bureau of Labor Statistics since the late fifties has been studying the labor and materials requirements of the various sectors. Figure 1.4 gives some of the results of these efforts, in the form of a chart of average annual percentage changes during the **s**ixties in on-site man-hours

Figure 1.4: Average annual percentage change in on-site labor requirements, by type of construction, for selected periods 1958-1973 (source: ref. 28, 88).

Type of Construction	Period	Percentage Change
		-4 -3 -2 -1 0
Federally-aided highways ^b	1958-73	-2.5
	1958-64	-3.8
	1964-73	-1.8
Sewer worksb	1963-71	-2.2
Lines		-2.3
Plants ^b		-2.2
Elementary & secondary schools ^C	1959-65	-2.7
Hospitals ^C	1960-66	-1.0
Federal office buildings ^b	1959-73	-2.0
Public housing ^b	1960-68	-2.2
Private single-family housing ^b	1962-69	-1.9

^aCompound interest method.

^bDeflated dollars output measure.

^CSquare feet output measure.

required per unit of output for various types of construction. In line with Figure 1.2, Figure 1.4 suggests that the growth of highway construction's labor productivity has slowed significantly in recent years, although over the full analysis period it still appears to be higher than that of the other sectors of construction, excepting schools. The results for the industry as a whole, however, look much more favorable in terms of the construction industry's exhibiting productivity growth during the sixties, than do those of Figure 1.2. The validity of these new measures will be considerably strengthened by frequent follow-up studies, as have been done for highways at three-year intervals, and by further work in the area of deriving price indexes and other means to achieving reliable measures of output.

Although these new measures of productivity appear promising, measures of capital and total factor productivity are still lacking, and the process of determining the factors influencing this productivity still remains a speculative one. Of primary interest in the current research, for example, is an investigation of the role of technology in the productivity of highway construction in the U.S. Figure 1.5, which shows the trend over time of highway construction bid prices, both as it actually occurred and as it would have occurred had technology not changed as it did, suggests that technology did, indeed, have a significant influence on project costs and presumably factor productivities. Knowing this and knowing that the industry's man-hours requirements dropped over time give little insight into the nature of this technology change however. Labor productivity over time might, for example, have appeared to improve as a result of substituting the cheaper resource, capital, for the more expensive one, labor, as factor

Figure 1.5: Bid price trend for highway construction, both as it actually occurred and as it would have occurred had technology remained constant at that of 1923 (source: ref.100).

prices changed, resulting in a lowering of capital productivity; or labor's productive efficiency might actually have improved, perhaps as a result of implementing technological innovations, such that requirements for both labor and capital were reduced; or both events might have occurred. It is issues of this sort that the current research tries to address. Such knowledge and understanding of the nature of technology change of the past is of utmost importance to industry and government alike if they are to take an active part in guiding technology's course in the future.

1.2 <u>The Situation in Developing Countries</u>

The levels of open unemployment and underemployment and more particularly the growing gap between the rate of new entries to the labor force and the capacity of the economy to absorb them, even in countries where the growth of output is reasonably high, is a problem of increasing concern to many planners in developing countries. Closely akin to this problem is that of inequitable income distribution and poverty in the developing world. At the same time, their supply of capital, by and large, is very limited, forcing them to rely heavily on external loans and grants-in-aid for capital formation. With conditions as they now stand in developing countries, the labor surplus which currently exists, and is expected to grow, cannot be fully utilized without an increase in the supply of capital. A perhaps more feasible solution is to substitute the abundant labor for the scarce capital, thereby generating more employment and output than would be possible other-The developed and developing countries and international agencies in wise. their search for sectors of the economy where substitution might be possible have focused considerable attention on construction, particularly the public works area and even more specifically highways.

Public works facilities play an early and major role in economic development, and represent a large and visible portion of government investment. This makes them a rather natural target for labor-capital substitution. Moreover, being in the public domain, the work can more readily be monitored by the government which can thus enforce the use of labor-intensive techniques and perhaps adjust project timing, for example, to coincide with seasonal surpluses. Finally, the potential for employment in this sector appears promising, especially for the unskilled which is where the surplus lies and the rural underemployed, in that such activities were executed by labor using simple tools and animal power in the past.

Regardless of the labor abundance and capital scarcity in the developing world, the more mechanized techniques developed in the labor-scarce, capital-abundant countries of the developed world have been transferred to and adopted by the developing countries for use in public works and particularly highway construction. Two possible explanations may account for this apparent contradiction: (1) the set of efficient technical alternatives is not, or at least appears not to be, fully defined over the range of possible labor/capital mixes: and (2) inappropriate factor prices (i.e., market prices rather than prices reflecting the relative scarcity and thus the social cost of the various resources) are used in the selection of the labor/ capital mix. It is the first alternative which can conveniently be investigated to a limited extent in the course of the current research. If technology change over time in the U.S. is found to be primarily in the direction of increasing efficiency, for example, the more capital-intensive packages of today may comprise the only set of efficient alternatives currently available, although new developments in the direction of utilizing

labor may still be possible. Alternatively, it may be that some of the more labor-intensive packages of the past are equally efficient (e.g., technology change may have been largely in the direction of simple substitution of equipment for labor), but that they have been forgotten in the laborscarce developed countries, or that institutional biases and rigidities in the developing countries themselves prevent their use. Such insights into the progression of technology over time in the U.S. are thus potentially of value to those concerned with the issue of labor-capital substitution, particularly in terms of ascertaining the feasibility of certain developing countries' returning to the use of some of the more labor and animalintensive techniques of the past.

1.3 Purpose and Scope of Research

The general focus of the research is the role of technology in the construction industry, and its influence on productivity and efficiency and product quality and cost. For the U.S. and other developed countries, this is of importance in terms of indicating the direction in which technology has advanced in the past and might do so or be encouraged to do so in the future; as for the developing countries, it is of importance in terms of assessing the potential appropriateness of various technologies in light of their local technical, economic, and social conditions.

In this analysis of technology and its progression over time, efforts are concentrated on the identification and quantification of the magnitude and nature of the technology change that has occurred. The issue of particular interest is whether the observed technology change has been characterized by increasing efficiency or by factor substitution (equipment

for labor) or, more likely, a little of both, in which case the extent of their contributions is of interest. Finding technology change to have been primarily in the direction of substitution, for example, indicates, for the U.S. and other developed countries, the necessity of redirecting efforts in the future toward developing new technical alternatives more able to cope with the upcoming shortages in the materials and energy areas and perhaps also to increase efficiency rather than just substitute. The implication of change characterized by increased efficiency, on the other hand, is that there really has been technological advance, and there is no reason to try to alter its course in the future, as long as the means by which it has been achieved remain viable. For the developing countries, technology change in the direction of increased efficiency suggests that technology may not be too reversible, and that new alternatives in the software and/or hardware areas may need to be developed. The implication of change characterized by substitution, however, is that technology may potentially be reversible, and that it may be worthwhile to begin to more seriously consider and evaluate some of the older, more labor-intensive techniques for use in the developing countries.

The highway sector of the construction industry in the U.S. provides a good basis for this research. Narrowing the scope to a single sector of the construction industry follows directly from the discussion above of the heterogeneity of the industry's products; limiting it to a single country seems only appropriate in view of the wide variation in both inputs and outputs in this single sector from one country to another, making comparisons, for example, of technical alternatives and associated productivities difficult. The highway sector is a particularly

interesting sector of the construction industry to study in the U.S., in that its technology has undergone considerable change over the past fifty years or so. Furthermore, it has certain advantages over other sectors of the construction industry in terms of such a study, including: (1) only a few basic steps constitute the construction process, thereby lessening the number of possible interactions and making more possible the study of both the individual steps and the overall project; and (2) its output is more readily measurable in quantity, quality, and use terms. Finally, data also appear to be reasonably available for the highway sector, stemming largely from the U.S. Federal Highway Administration's production studies of alternative highway construction methods carried out in the 1920's, 1950's, and 1970's. In summary then, the focus of the current research is the investigation, in both qualitative and quantitative terms, of the role of technology in the productivity of highway construction over the years in the U.S.

Chapter Two begins with a brief review of the economic concepts and tools pertinent to the analysis of technology and productivity and their change over time; this is followed by a review of related research in the highway field itself, including a series of case studies evaluating alternative technical packages for highway construction and some models for evaluation of alternative designs for highway projects. The literature cited in these reviews, as well as all other references cited in the main body of this study, are given in Appendix A. Drawing upon the literature reviewed in the first two sections, the final section of Chapter Two outlines the method of approach to be followed in the research; a two-step approach is developed: (1) stage-level analysis, wherein each stage is considered separately

in the analysis of technology and its change; and (2) project-level analysis, wherein the stages are brought together to form various projects such that the interaction of design and technology in highway construction and operation might be taken into account.

Chapters Three and Four, then, respectively present and discuss the results of the research, each being divided into two parts, the first covering the stage-level and the second the project-level analysis. Before giving the results in each part, Chapter Three covers some largely definitional points pertaining to the level of analysis and briefly describes the actual collection and preliminary work-up of the data. Further details pertaining to the data collection and analysis procedures, as well as presentation of the basic data and some results, can be found in Appendices B and C. Included with the comprehensive discussion of the results given in Chapter Four is the identification of the potential implications of the study's findings for both the U.S. and developing countries. The presentation of the conclusions and recommendations for further research in Chapter Five completes the study.

CHAPTER 2

RESEARCH APPROACH

It is the purpose of this chapter to outline the method of approach employed in this research. It is appropriate to begin with a brief review of some of the literature in the area of technology, productivity, and factor proportions, starting with some of the more general theoretical and macro-study approaches used in a range of industries and ending with some more specific, applied micro-studies in the highway field itself. The final section of the chapter discusses the research approach pursued in the study at hand, in particular the application of some of the methodologies reviewed.

Almost as vast as the array of literature, pertaining to the topics of technique and technology, technical and technological change, and production function and isoquant, is the level of confusion regarding the terminology (27). For the purposes of the research at hand, a certain number of terms and interpretations are necessary. Technical package is used to refer to any factor or resource mix (i.e., labor, equipment, and materials) which can produce a given product (e.g., excavation and hauling of soil twenty feet or gravel surfacing). Technology is defined as the pool of knowledge pertaining to the production of a given product or, alternatively, as the complete set of existing technical packages which can produce this product; often, too, and particularly for the purposes of the research at hand, technology also has a time dimension, such as the

1920's technology of gravel surfacing. Production set is the full set of technical packages representing a particular technology; all existing efficient and inefficient packages are included in this set. Production function is taken as the set of efficient technical packages of a particular production set; that is, those technical packages which produce the most output for the least input. Production isoquant, then, is a part of a production function in that it represents a given amount of a given product. Best-practice technical package is that package which is least-cost when factor prices of a particular period are applied to the resource requirements of the efficient set representing a particular technology.

Finally, technological change relates to the development, due to improved knowledge, of a new set of technical packages which can produce a given product (i.e., a new production function or isoquant) and again to a new time period, such as the technology of the 1950's as opposed to that of the 1920's. Technical change, on the other hand, relates to changes amongst available technical packages or to factor substitution (i.e., a movement along the production isoquant) due to altered factor prices. The term technology change, then, refers to the complete process of changing from a particular technical package, the best-practice one, in one time period to that of a new one, a process which may include both technological and technical change; movements over time of best-practice technical packages thus represent technology change.

36

Br.
2.1 <u>Brief Review of Studies of Productivity and Technology in Other</u> Industries

The identification and more particularly the measurement of technology change in a quantitative sense is an elusive concept which has long plagued economists and engineers alike. Factor productivity, in one form or another, is the oldest and probably still the most commonly used indicator of technology change, and consequently is the first approach generally mentioned by authors reviewing the subject (12, 47, 50, 52, 53, 58). Single factor indexes, defined as average product output per unit of input such as labor or capital, are of limited usefulness in that their dynamic behavior is difficult to interpret. Leaving aside for the moment the problems inherent in measuring inputs and outputs, a change in the index may indicate technological change but it may, alternatively or at the same time, indicate a change in the use of the other factors of production as well as the factor being measured (i.e., technical change).

Multifactor indexes, defined most often as average product output per unit of combined labor and capital input, make up the second and perhaps more useful form of productivity indexes. It was in the late fifties and early sixties that the use of these multifactor productivity indexes in a variety of forms was developed by people like Abramovitz, Solow, Fabricant, and Kendrick. Nadiri (58), as well as others, cites Kendrick's arithmetic measure and Solow's geometric index as the two most often used in empirical research. Kendrick implicitly assumes a homogeneous production function and the Euler condition to obtain the following measure of total productivity change:

$$\frac{dA}{A} = \frac{X_1 / X_0}{(wL_1 + rK_1) / (wL_0 + rK_0)} - 1$$

where X = product output L = labor input K = capital input Subscript 1 = current period Subscript 0 = base period w = wage rate, changing over time r = rate of return on capital, changing over time

Solow, in turn, essentially assumes a Cobb-Douglas production function with constant returns to scale and autonomous and neutral technological change and derives the following relation:

 $\frac{dA}{A} = \frac{dX}{X} - \left[\alpha \frac{dL}{L} + \beta \frac{dK}{K}\right], \alpha + \beta = 1$

where dX, dL, dK = time derivatives of X, L, K respectively α = share of labor in output β = share of capital in output

It is Brown's (12) observation, however, that the use of moving weights for combining labor and capital as in Kendrick's measure results in an underestimate of the productivity index because change in efficiency, an important aspect of technological change, has no effect on the index. As for Solow's measure, Brown presents an even simpler form:

$$\frac{dA}{A} = \frac{dx}{x} - \frac{d\kappa}{\kappa}$$

where

κ = K/L

 $\chi = X/L$

He, among others, still has serious reservations about the measure, however, because of Solow's assuming away all technological change except pure efficiency, although some of it is done with some justification. Nadiri (58), Kennedy and Thirlwall (47), and others cite three possible sources of bias in the use of $\frac{dA}{A}$ as a measure of technological change: (1) the particular form of the production function governing the relation; (2) errors in the measurement of labor and capital and changes in their quality; and (3) relative importance of variables other than labor and capital (e.g., entrepreneurial ability) not included in the measure.

The methodologies discussed thus far have been concerned solely with measuring the change in factor productivity; that is, the change in output not accounted for by changes in inputs, frequently termed the residual and used as a measure of technological change. Salter (73) is probably the first person to make a concerted effort to divide the residual into its component parts. Before proceeding with Salter's analysis,

however, it is appropriate to review the general economic characterization of technology and its change as it is discussed by several authors (12, 58, 73). Measures of efficiency, returns to scale, factor bias, and elasticity of factor substitution are the four standardly cited characteristics of a technology and can be conveniently expressed in terms of a production function. The first two are classified as neutral properties in that they affect labor and capital equally, the last two are termed non-neutral properties since they affect the inputs in a biased manner in the sense, for example, of being labor-saving or labor-using.

According to Brown (12), "the efficiency of a technology determines the output that results for given inputs and given the other characteristics of an abstract technology....[The] efficiency characteristic is a scale transformation of inputs into output." Increased efficiency brought about by technological advance, then, results in equal, in a relative sense, across-the-board, factor productivity increases or unit cost decreases. It can be depicted by parallel shifts of the production isoquant toward the origin, such as a shift from T_1 to T_2 in Figure 2.1a, where the T's represent different technologies producing the same amount of output.

Brown (12), in turn, defines technologically-determined returns to scale as "the extent to which a proportionate change in inputs generates a proportionate change in output due to technology and not the scale of operations of the firm." A technology exhibits increasing returns to scale, or economies of scale, for example, if, for a given proportional

Figure 2.1a: Schematic representation of three forms of technological change.

- <u>Note</u>: Production isoquants T_1 through T_4 represent different technologies producing the same amount of output. A shift from: T_1 to T_2 demonstrates increasing efficiency.
 - T_1 to T_3 demonstrates capital-using bias.
 - T_1 to T_4 demonstrates decreasing elasticity of factor substitution.

Note: The production isoquants represent the same technology but increasing levels of output, beginning with-X units near the origin out to 3X units.

increase in all inputs, output is increased by a larger proportion; Figure 2.1b, where the isoquants represent the same technology but increasing levels of output as they move away from the origin, thus demonstrates economies of scale. Technological change, then, may alter the returns to scale characteristic of a set of technical packages, changing it perhaps from decreasing to constant returns to scale.

Factor bias* is most readily defined in a comparative context; that is, given constant elasticity of substitution and relative factor prices, the technology with the higher capital-labor ratio is the more capitalintensive and exhibits a capital-using bias. Bias in technological change denotes greater savings in one input than in the other for all technical packages. A change in the position of the isoquant, more toward one axis than the other, thus represents such bias; that is, a move from T_1 to T_3 in Figure 2.1a results in a proportionately greater increase in the productivity of labor than of capital for all technical packages.

The fourth and final technological characteristic is elasticity of factor substitution; it measures "the ease of exchanging factors of production in the course of the production process" (58) and "thus the extent to which changing factor prices influence techniques" (73). Elasticity of factor substitution is represented by the degree of curvature of the production isoquant; that is, a movement of the isoquant from T_1

^{*}There is considerable controversy over the definition of factor bias, the two primary schools of thought being Hicks and Harrod, the above definition being basically Hicks; for further discussion see references 47, 58, 72, 73.

to T₄ depicts a decrease in the ease of substitution. Two limiting cases are evident: (1) a right-angle isoquant which has an elasticity of zero and on which factor prices have no influence; and (2) an isoquant approaching a straight line which has an elasticity approaching infinity and on which factor prices have a substantial impact.

There is much discussion throughout the literature (14, 47, 58, 73) of the case of non-neutral change in technology, and the fact that, in most developed countries at least, increases in labor productivity over time have generally been greater than those in capital productivity. Two explanations are commonly presented: (1) technological advance is inherently biased toward labor-saving; and (2) technological advance is largely unbiased but substitution is induced by technological progress in the manufacture of capital goods. Arguments for both views abound, but relatively little progress has been made toward a definitive settlement of the issue.

The nature of the technology itself, as depicted by the technological characteristics discussed above, and relative factor prices are commonly recognized as the primary determinants of factor productivity. In combination, these factors determine the best-practice technique for any particular period. Movements over time of the best-practice technique, then, represent technology change, and it is this which Salter (73) tries to decompose. He begins by assuming constant returns to scale over the range of capacity outputs being considered and then defines quantitative measures for the remaining technological characteristics.

His first parameter is technical advance which measures the rate of

movement of the production isoquant toward the origin, basically looking at the effects of efficiency, as defined above, on unit costs. Formally defined, "the extent of the technical advance from one period to another is defined and measured by the relative change in total unit costs when the techniques in each period are those which would minimize unit costs when factor prices are constant" (73); that is:

$$E = \frac{L_{n+1}w_n + K_{n+1}g_n}{L_{n}w_n + K_{n}g_n}$$
 for the discrete case, and

$$E_r = \frac{wdL + gdK}{Lw + Kg}$$
 for the continuous case

where	Subscript n	=	initial period		
	w	=	wage rate		
	g	=	price of capital services		
	dL, dK	=	time derivatives of L, K		
	Subscript r	=	proportionage rate of change, e.g., T _r = dT/T		

<u>Note</u>: Either period's prices can be used in the discrete case, each giving a slightly different result, due to the inevitable index-number ambiguity problem.

Salter's second parameter is that of factor bias as defined above. Formally, "the labor or capital-saving biases of technical advance are measured by the relative change in capital per labour unit when relative factor prices are constant" (73); that is:

$$D = \frac{K_{n+1}/L_{n+1}}{K_n/L_n}$$
 for the discrete case, and

$$D_r = \frac{d(K/L)}{K/L}$$
 for the continuous case

<u>Note</u>: D < 1, $D_r < 0$, capital-saving bias D = 1, $D_r = 0$, neutral or no bias D > 1, $D_r > 0$, labor-saving bias

His third parameter is elasticity of factor substitution, which is important in determining the effectiveness of changes in relative factor prices in increasing or decreasing the rates of productivity increase established by technological change alone. Elasticity of substitution "measures the proportional change in capital per head in response to a small proportionate change in the relative marginal products (or factor prices) of labour and capital" (73); that is:

$$\sigma = \frac{d(K/L)}{K/L} \cdot \frac{w/g}{d(w/g)}, \text{ measured at a point on each production isoquant appropriate to the measures of E and D.}$$

Salter finally combines these three parameters to yield a quantitative description of the growth of best-practice productivity in terms of the nature of technological change and changing factor prices. The rate of change of unit labor and capital requirements are thus:

		technical advance effect		bias effect		substitution effect	
^L r	=	Ĕŗ	-	πD _r	÷	σπ(g/w) _r	
K _r	=	Er	÷	(1-π)D _r	+	σ(1-π)(w/g) _r	

where

 π = share of capital costs in total costs

Salter criticizes his own work from the standpoint that the measures represent a drastic and only approximate summary, resulting in such difficulties as the index-number problem inherent in such work and the failure to consider returns to scale, although he does propose a means to alleviate this latter simplification. Brown (12) sees Salter's work as producing well thought out measures, but questions their applicability due to the difficulty of holding each constant while measuring the others. Little empirical testing of these measures has been done, although in the second part of his book Salter does perform an analysis of a range of British and American industries; in this he concludes that neutral technological advances and potential and realized economies of

scale are primarily, and factor substitution less so, responsible for the differing rates of labor productivity increase in the industries studied.

The production function, a tool repeatedly mentioned above particularly in conjunction with factor productivity indexes, constitutes yet another approach to the analysis of technology and its change, as reviewed by various authors (12, 47, 50, 58). Dating back nearly fifty years, the Cobb-Douglas production function is probably the most famous, noted for its simplicity in terms of both understanding and applying it and for its possession of certain desirable neoclassical properties (e.g., it does not specify <u>a priori</u> the returns to scale). It was not until about twenty years ago, however, that the Cobb-Douglas function was used in the measurement of technological change. The two-factor Cobb-Douglas production function in its unrestricted form is:

 $X = AL^{\alpha}K^{\beta}$ where A, α , β = constants to be determined empirically

The technological characteristics, as defined above, can be expressed by various combinations of the empirically determined parameters of the function. A change in the parameter, A, thus indicates a change in efficiency. The sum of the partial elasticities of production, α and β , is an indicator of the returns to scale characteristic (i.e., $\alpha + \beta < 1$ indicates decreasing returns to scale; =1, constant; and > 1, increasing).

The ratio of these same two parameters indicates the factor bias of the technology represented by the Cobb-Douglas function; an increase in β relative to α , for example, demonstrates a capital-using technological change. The fourth and final characteristic, elasticity of factor substitution is fixed at unity in any Cobb-Douglas relation, a feature which severely restricts the applicability of this production function.

Some fifteen years ago a more general form of a production function was developed, the Constant Elasticity of Substitution (CES) function, in which the elasticity of substitution is held constant for any particular technology but can change as technology changes. The CES relation has the basic properties of a neoclassical production function and includes the Cobb-Douglas function as a special case. The two-factor CES production function is:

 $X = \gamma [\delta K^{-\rho} + (1-\delta)L^{-\rho}]^{-\mu/\rho}$

where γ , μ , δ , β = constants to be determined empirically

As in the case of the Cobb-Douglas relation, the characteristics of any technology can be expressed in terms of these empirically determined parameters. An increase in γ represents an upward shift in efficiency; the value of μ indicates the degree of returns to scale, and a change in μ may be attributable to some change in technology. As for the non-neutral technological characteristics, the factor bias parameter is δ ,

which is defined over the interval 0 to 1 and measures the extent to which the technology is capital-using; the elasticity of factor substitution, σ , is represented by $1/(1+\sigma)$ in the CES relation, a change in σ indicating a change in technology.

Attempts to use aggregate production function theory in the estimation of total factor productivity or the parameters representing the characteristics of technology and its change have encountered various difficulties and criticisms, which have often been countered with potential solutions. The data base for such studies is generally an industry as a whole or even the entire economy of a country, which leads to many problems in the measurement of factor inputs and product outputs. The factors of production and the products themselves are heterogeneous elements with divergent characteristics, and yet they are standardly aggregated into labor and capital inputs and a single output. In an effort to avoid measuring capital, which has to be done in value terms, Johansen and others, cited by various writers (1, 47, 50, 63), have derived indirect production relations requiring at most a measure of the elasticity of output with respect to capital. An aspect of labor and capital conventionally ignored is that of quality, resulting in changes in factor quality potentially being responsible for a large share of the change in total factor productivity. Attempts to deal with this issue have gone in three directions: (1) models of capital-embodied technological change have been developed (12, 47, 52, 58); (2) the idea of quality adjustment of labor has been pursued by Denison, Griliches, and Kendrick, among others

(47, 58, 107); and (3) the growth accountancy approach has received attention from Denison, Jorgenson, and Griliches, among others (12, 47, 50, 58, 107). One final area of controversy pertaining to the data base is the type of data series used, time-series or cross-sectional, each having its own particular problems (9, 12, 47, 58, 63).

The other major area of difficulties and criticisms, encountered in efforts to use aggregate production function theory in the study of technology and its change, has centered around the limited flexibility of the functional form and difficulties in fitting it to available data. The use of simplifying, often unrealistic assumptions, such as perfect competition in factors and goods markets, constant returns to scale, and entrepreneurs' instantaneous adjustment to exogenous price changes, are a major point of contention (9, 47, 58, 63, 114). Moreover, the form of some of the more common production functions is such that the sources of factor productivity cannot be adequately separated and identified (8, 12, 58, 63). The outcome of this has been the development of more generalized production functions, such as the Variable Elasticity of Substitution (VES) relation, to handle cases where the elasticity of substitution is sensitive to changes in factor proportions, and the Constant Difference Elasticities of Substitution (CDS) relation, to handle cases with more than two factors of production (8, 58, 63). Simultaneity and nonlinearities between the production function and marginal productivity conditions have led to problems in estimation, resulting in the development of new, often less restrictive, estimating techniques (9, 58).

It thus seems that considerable progress has been made in the theory and estimation of aggregate production functions, but empirical evidence on the performance of these new functions and estimating techniques is scanty. Little can be said except that production function based estimates of total factor productivity and parameters of technological change are very sensitive to slight changes in the data, the specification of the production function, and the method of estimation (9, 47, 52, 58, 63). Feelings about the usefulness of the aggregate production function in the analysis of technology and its change range from Brown (12) who strongly supports it, to Nadiri (58) who feels little further progress can be made until the available data is improved, to Acharya et al (1), Baer (6), Bhalla (9), and O'Herlihy (63) who believe a micro-study approach is the route to follow rather than the macro-study approach of the aggregate production function.

As is evident from the above discussion, the economic literature tends to be largely theoretical in nature, and even when the theory is put to a test, it is generally at the aggregate level of an industry or country. In recent years, however, micro-studies at the firm or even process level have begun to come into their own as a means of studying technology. Chenery (17, 18), as long ago as the late forties, introduced the idea of the engineering production function. This is a mathematical statement connecting the physical variables and the output of a process; it can be translated into an economic production function, which relates inputs and outputs in economic rather than physical terms, potentially

yielding the isoquants, expansion paths, and cost curves generated by more conventional economic analysis. Its advantages include its being a more explicit representation and analysis of technology and its change, and its not being restricted to observable input combinations. Its disadvantages are that it requires a thorough understanding of the physical technology and is restricted to relatively simple processes, and the range of alternatives is somewhat limited (e.g., fluid transport through pipelines rather than via any mode of transport) (17, 18, 20, 48, 50, 65).

The difficulties inherent in the macro-studies discussed above have thus resulted in a rekindling of interest in this more micro-study or case study approach. It is Sen's observation, in the Foreword to Bhalla's book (9), that this has particularly been the case in the study of choice of technology in developing countries, where the informational dichotomy between the planning and operations level has necessitated it. This is, the planners tend to stress the macro-economic effects of alternative technical packages, greatly simplifying the technology itself, whereas the operations personnel do the opposite; for many years, the emphasis has been on the planning side, but it now seems appropriate to switch the emphasis to operations. Such micro-studies basically entail observing and recording the inputs required for and influences impacting the various stages of production, for alternative means of producing a given output; this data may then be used to synthesize a production isoquant for the good. The advantages include close interaction with engineering data and freedom from the confines of mathematically tractable production

functions; the disadvantages include its being expensive and its yielding results which cannot readily be generalized and with no convenient summary measures (1, 6, 9). This shifting in emphasis on the nature of research in the analysis of technology has led to works like Cowing's (20) and Pearl's and Enos' (65) recent applications of the engineering production function, the case studies presented in Bhalla (9) and reviewed in Baer (6) and the array of literature pertaining to highways presented in Section 2.2.

2.2 Brief Review of Related Research in the Highway Field

There are two classes of studies pertaining to highways and their analysis that are directly relevent to the research at hand. Those of the first group, which are reviewed in some detail in Section 2.21, investigate the technical and economic feasibility of alternative technical packages for construction, primarily in conjunction with one design and looking only at construction costs, but being very concerned with deriving accurate and detailed resource productivity and cost data. Those of the second class, which are reviewed only briefly in Section 2.22, investigate the trade-offs among construction, maintenance, and user costs of alternative designs, with the construction technology generally being implicit in the rather aggregate cost and/or productivity data used in the analysis. In the analysis of technology and its change in highway construction, what is ultimately needed, and is used in the study at hand, is a combination of the two efforts, due to the complex interaction of design and technology in highway construction and use.

2.21 Some Case Studies Evaluating Alternative Technical Packages for Highway Construction

With the importance of analytic work based on economic and engineering analyses of individual industries, projects, and processes recognized and research of this type becoming increasingly common, as noted toward the end of Section 2.1, it is this micro-study or case study approach that is reviewed here, as it has been used by numerous authors to study the issue of choice of technology in highway construction, primarily in the context of developing countries. The area of labor-capital substitution in public works construction was a relatively dormant one from the early 1960's to the early 1970's, when interest was again aroused due to its potential for the creation of employment in the developing countries. The studies reviewed here represent the major efforts in the highway field in the seventies, as well as a couple dealing with earthmoving activities from the early sixties that provide some of the groundwork for the more recent studies (see Table 2.1).

The overall objective of this group of studies is to establish the technical feasibility of alternative technical packages for road construction, and, in turn, to relate these technically feasible alternatives to relative factor scarcities such that their economic feasibility can be determined under various institutional and environmental conditions. The majority of the studies, in pursuit of this objective, apply the factor productivity and price data they have collected to one or more real or hypothetical road (dam and canal in the case of Dreiblatt [24]) construction projects and parts thereof in order to determine the economic

Table 2.1: A list of the case studies which are reviewed.

Code Name			Year
(Reference Number)	Title of Study	Countries	Published
_{UN} (83)	Capital Intensity in Heavy Engineering Construction	United States	1958
(84)	Capital Intensity and Costs in Earth- Moving Operations	United States,Europe, Asia and the Far East	1960
(05)	Eartnmoving by Manual Labour and Machines	Asia and the Far East	1961
Dreiblatt (24)	The Economics of Heavy Earthmoving	India, West Pakistan ^a	1972
Müller (57)	Labour-Intensive Methods in Low-Cost Road Construction: A Case Study	A country in Subtropical Africa	1970
18RD-1 (42)	Study of the Substitution of Labor for Equipment in Road Construction, Phase 1: Final Report	Various countries	1971
1BRD-11 (41)	Study of the Substitution of Labor and Equipment in Civil Construction, Phase II: Final Report	India, Indonesia	1974
IBRD-111 (38)	Scope for the Substitution of Labor and Equipment in Civil Construction: A Progress Report	India, Indonesia, Kenya, Honduras	1976
(39)	Study of the Substitution of Labor and Equipment in Civil Construction, Phase III: Technical Report No. 1	India, Indonesta	1974
(40)	World Bank Study of the Substitution of Labor and Equipment in Civil Construction - Technical Memorandum No.1-25	India, Indonesia ^a	1975-76
IBRD-Indonesia (37)	Iron Deficiency Anemia and the Productivity of Adult Males in Indonesia	Indonesia	1974
1LO-Thailand (45)	Thai Workers in Heavy Road Construction Activities - An Ergonomic Pilot Study	Thailand	1974

ï

(Table 2.1 continued) Code Name (Reference Number)	Title of Study	Countries	Year Published
ILO-Iran (44)	Roads and Redistribution, A Social Cost- Benefit Study of Labor-Intensive Road Construction Methods in Iran	Iran ^a	1973
ILO-Philippines (43)	Men or Machines, A Philippines Case Study of Labour-Capital Substitution in Road Construction	Philippines	1974
ILO-Nepal (69)	Comparative Evaluation of Road Construction Techniques in Nepal	Nepal	1973
Vaidya (111)	The Choice of Technology in Highway Con- struction Industry - A Case Study of Nepal	Nepal	1974

57

^aData used in at least some of the analysis came from various countries.

feasibility of the various technically feasible alternatives observed. IBRD-I (42) and IBRD-II (41) represent a major portion of the work in the productivities area, although several other studies including Dreiblatt (24), Müller (57), and Vaidya (111) also focus more on resource productivities than prices. ILO-Iran (44), ILO-Philippines (43), and ILO-Nepal (69), on the other hand, are largely concerned with deriving various sets of factor prices, which may more truly reflect relative factor scarcities in a developing country than do the prevailing market prices; these studies are thus able to additionally investigate how the economic competitiveness of alternative technical packages varies with factor price.

IBRD-III (38, 39, 40), one of the exceptions to the basic procedure, is largely concerned with devising means to improve labor productivity; it thus tends to focus on factor productivities and prices at the disaggregate activity/task level, although it does consider some project-level implementation in its demonstration projects and studies of broader issues like management and organization. The UN studies (83, 84, 85) can also be singled out due to their concentration on resource productivity and unit cost at the task-level without ever aggregating it to the project level. The last two studies, IBRD-Indonesia (37) and ILO-Thailand (45); concentrate exclusively on factor productivities, in that they are studies of the relationship between health, nutrition, and general physical condition of the workers and their productivity.

The case study approach to the analysis of labor-capital substitution

in highway construction may entail three basic activities: (1) collecting the data; (2) applying it to one or more real or hypothetical road construction projects or parts thereof; and (3) analyzing the results. The data required for these studies consists of alternative technical packages for road construction activities, tasks, or stages, and the resource productivities and costs of these packages under various institutional and environmental conditions. The general paucity, lack of detail, and questionable reliability of the data in the engineering and economic literature and the important impact of institutional and environmental conditions on productivity and cost, as revealed by IBRD-I (42) and UN (83, 84, 85) among others, led to the use of field studies and project records in one or two countries in most cases. This is particularly true for the more labor-intensive packages, and efforts were thus largely concentrated on these. As for the equipment-intensive packages, it is felt that better records are generally kept, and thus more reliance is placed on the data already available, in some published form or in the form of contractor's and project records. Both the IBRD (IBRD-I [42], IBRD-II [41], and IBRD-III [38, 39, 40]) and UN (83, 84, 85) studies consider a large number of alternative technical packages for various construction activities or tasks, while the other cases are somewhat more limited in scope.

The case studies exhibit a broad range in emphasis on collecting and analyzing productivity data. Dreiblatt (24), for example, after mentioning the importance of institutional and environmental considerations,

ignores them completely in this comparative analyses; ILO-Nepal (69) and Vaidya (111) consider them in a rather qualitative, descriptive manner, although ILO-Nepal does at least use a frequency distribution, rather than a single value, to express the quantity of each factor required for a given output in the hilly regions. Some of the other studies, such as ILO-Iran (44), ILO-Philippines (43), and, to a lesser extent, IBRD-I (42) and UN (83, 84, 85), specify at least some of the institutional and environmental parameters in association with productivity figures for various activities and tasks and consider them in the analysis of alternative technical packages. ILO-Iran (44), for example, develops a production model for each task and technical package, in which a normal productivity is specified with percentage adjustments for changes in work and team factors such as earth type and labor quality.

Finally, the most sophisticated, and only statistically-based, approach is that of IBRD-II (41) which is extended somewhat in IBRD-III (38, 39, 40). A large share of the IBRD's efforts are concentrated on quantifying the relationships among resource inputs, product outputs, and various institutional and environmental parameters for various construction activities and tasks. A generalized Cobb-Douglas type specification fit by regression is used to model these relations, the data base being field observations of on-going civil construction activities and tasks. The data requirements for this are substantial, however, and so far it has been done for only a few parameters, some of the more important activities and tasks, and the more labor-intensive technical packages;

moreover, the particular functional form is being investigated in IBRD-III (38, 39, 40). In the specific area of quantifying the relationships between the general physical well-being of the workers or animals and their productivity, IBRD-Indonesia (37), ILO-Thailand (43), and a few of the technical memorandums in IBRD-III (40 - Numbers 4, 11, 21) make certain contributions.

In addition to factor productivities, factor prices are necessary in order to convert the physical productivities to unit costs to be used in an evaluation of the economic feasibility of alternative technical packages. In all of the cases dealing with one or two countries, and even in the case of IBRD-I (42) which gathers productivity data from a variety of countries, a prevailing, or market, hourly cost is determined for each of the various resources. In the case of labor, this is quite straightforward, the local wage rates for different types of labor, although there is some discussion concerning such costs as provision of amenities and transport for labor and mobilization of labor and whether they should be incorporated here or in the project overhead, with the frequent result that they are ignored. Hourly equipment costs are more complicated to derive, being made up of ownership costs such as interest, depreciation, and maintenance and repair labor and materials and operating costs such as equipment consumables, tires, and operating labor. Assumptions as to equipment life and utilization and maintenance and repair facilities, which are often very different in developing countries than in the developed ones, have an important influence on the hourly cost;

there is even some disagreement over what should be included in the capital cost of a piece of equipment, let alone its hourly cost.

A perhaps more interesting area of difference of opinion pertaining to factor prices is the use of alternative pricing schemes.* The UN studies (83, 84, 85) just gloss over the factor prices issue, looking at productivities and unit costs for the alternative technical packages, while Dreiblatt (24) and Müller (57) apply a single set of factor prices, those estimated to be prevailing, to their productivity data; all three, however, recognize the possibility of using shadow prices. The IBRD studies (IBRD-I [42], IBRD-II [41], and IBRD-III [38, 39, 40]) and Vaidya (111) also use a single set of prevailing labor and equipment prices, but they then perform a sensitivity analysis on the price of one or both resources. Sensitivity analysis in conjunction with a cost minimizing production routine, like that used in IBRD-II (41) or proposed in Vaidya (111), can be used to derive the production isoquant for a particular output. In IBRD-I (42), a breakeven wage rate,** defined for a given set of

^{*}Prevailing or market costs of resources are those costs actually incurred in any business transaction. In many developing, and even developed, countries, however, these costs may diverge from their true social costs, in which case such resources may be shadow priced to more truly reflect their relative scarcity as well as perhaps certain developmental objectives.

^{**}Breakeven wage rate: $W = (E_1 - E_2)/(L_2 - L_1)$, where E = equipment cost, L = unskilled labor hours, and subscript l denotes equipment-intensive technical package and 2 labor-intensive; W also represents the marginal rate of substitution of equipment for labor under these assum-tions.

equipment prices as that unskilled wage rate at which the cost of executing an activity by labor is identical to that by equipment, is often used to look at the trade-off between equipment and labor in various construction activities, tasks, and stages.

It is the three ILO studies (ILO-Iran [44], ILO-Philippines [43], and ILO-Nepal [69]) that really focus on the relative factor prices issue, much as the IBRD's work focuses largely on factor productivities. Because market prices prevailing in developing countries do not always properly reflect relative factor scarcities, various sets of input prices, which reflect different approaches to the question of optimal allocation of resources available to an economy, might be feasible and should be investigated. Using established methods for deriving shadow prices (basically those of UNIDO [23], OECD [51], and a mix of Sen [74] and UNIDO [23]) and varying certain assumptions which ultimately influence the relative input prices, the ILO studies (43, 44, 69) try various sets of labor and equipment prices in conjunction with their productivity data in order to investigate variations in the economic competitiveness of alternative technical packages with factor prices.

Given that the data has been collected, the final two steps to any case study entail applying the data to one or more real or hypothetical road projects or parts thereof and analyzing the results, and are best discussed concurrently. The UN studies (83, 84, 85) are rather limited in this regard in that only a couple of earthmoving tasks are considered, and the economic analysis is simply a tabular/graphical comparison of their

unit costs when various technical packages are used under a few varying environmental conditions. The primary difficulty with these studies is that the data is from a wide range of countries and projects, resulting in a wide variety of unmeasured institutional and environmental factors. Some of the other studies, such as ILO-Philippines (43), IBRD-II (43), and IBRD-III (38, 39, 40), do a similar type of analysis at the activity/task level, but their data is limited to one country, and thus the variability of unmeasured influences should be less.

In the cases of Dreiblatt (24), Müller (57), and ILO-Philippines (43), a wider range of activities/tasks is studied as well as the product, road, dam, or canal, they produce. The basic steps involved are as follows: (1) activities/tasks in the project are identified, and their quantities estimated; (2) for each, a capital and labor-intensive, and in ILO-Philippines (43) sometimes a modified labor-intensive, technical package is defined, and its resource requirements determined; (3) each package is then priced (with market and shadow prices in ILO-Philippines [43]), and comparisons can be made at the activity/task level; and (4) the activity/task costs are then summed for each category of technical packages, except in the case of Müller (57) who also sums over a combination of the capital and labor-intensive packages, and comparisons can be made at the project level. Although this method gives the costs of the various technical packages alone and in combination, it says nothing about their relative efficiencies. Still, it is straightforward to use and reasonably useful as long as the number of activities/tasks and

categories of technical packages is limited, or there is limited interest in mixing the packages of the various technical categories.

ILO-Nepal (69) and Vaidya (111) pursue the same basic approach, with some exceptions and extensions. These two studies are somewhat different from the other cases reviewed here, in that they are based on five different projects in Nepal, each constructed by a different country with its own particular set of technical packages, ranging from the highly labor-intensive practices of the Chinese to the highly capital-intensive ones of the Russians. Resource inputs for a given unit of output have been gathered at the stage level for each project, and a single set of quantities is used to aggregate the stages, representing one set of technical packages or a mix, to a standard kilometer of road. The validity of such comparisons is necessarily constrained by differences among the projects, some of which could be alleviated, but others of which could only be qualitatively described; for example, road design and quality which will later affect maintenance and user costs differ among projects, the environmental and institutional conditions differ, the actual activities/tasks and materials used in the different stages differ, and so forth. As an extension to the above discussed methodology, ILO-Nepal (69) plotted production isoquants in order to determine the relative efficiencies of the alternative sets of technical packages at each stage and in the aggregate (see Figure 2.2 for a sample graph); it also employed a number of matrices (e.g., a technical package, resource price [containing project, standard, and shadow prices], and total cost matrix)

Figure 2.2: Capital and labor inputs of the various technical packages for the earthwork stage of the Mepal projects, valued at standard prices for Nepal (source: ref. 69).

^aThis represents the standard technical package for empankment formation from the UN-HMG Nepal Road Feasibility Study Report (referenced throughout ILO-Nepal [69]) and is included for the sake of comparison.

C - Chinese

A distinction can be made between the techniques used in terai road construction and those employed in the hills (i.e., Chinese and Nepali projects); in terai road construction, earthwork entails lifting of the embankment material, while in side hill cutting the earth merely has to be pushed over the side of the formation, resulting in earthwork per cubic meter generally being cheaper in the latter case. Two separate boundaries have thus been inserted linking the efficient technical packages (at least efficient relative to those observed); it should be noted that the Britisn technical package is inefficient relative to the other terai techniques, wnile the Chinese is inefficient relative to the Nepali project.

as an effective means of organizing the data.

Productivities and technical packages are best observed at the disaggregate level of activities or perhaps tasks, while the object of interest is the road itself and the mix of packages to be used in its construction. This aggregation from the activity to task to stage to project level can be accomplished in the additive manner described above; if, however, it is desirable to consider mixing the technical packages at the disaggregate level and to consider only the relatively efficient combinations as is usually the situation, then a production function approach, as employed in IBRD-I (42), and ILO-Iran (44), is more appropriate. The derivation of an aggregate production isoquant is illustrated in notional form in Figure 2.3. ILO-Iran (44) and IBRD-I (42) both use this approach quite successfully for a limited number of technical packages and conditions. ILO-Iran (44), for example, uses it to aggregate eight activities/ tasks (those where substitution is possible) to the project level, considering two packages for each activity/task, for five different projects representing various road classes and terrains; it then calculates the average rate of technical substitution for each project as a whole, and finding them all to be about the same, it proceeds to look at the direct employment generated in each case as the labor-intensive activities are substituted for the capital-intensive ones.

There are several difficulties inherent in such aggregation of construction activities. First, it assumes the activities are independent, requiring that activities which are not for certain technical packages

Figure 2.3: Notional representation of the derivation of an aggregate production isoquant (source: ref.44)

(Figure 2.3 continued)

Note: The basic procedure for deriving the aggregate production isoquant is as follows: (1) suppose the construction consists of four operations, A through D, and for all except B there are two technical packages; (2) calculate the average rate of technical substitution of labor for equipment

ARTS =
$$\frac{L_2 - L_1}{E_1 - E_2}$$

for the pairs of technical packages using it to rank the packages; (3) beginning with the most capital-intensive package for each operation, sum the resources across the operations and plot this on the production isoquant graph; (4) next, for the pair of packages with the lowest ARTS (A in this case) use the resources of the more labor-intensive package, combining these with the resources of the capital-intensive packages for the other operations (B through D), and plot the sum; and (5) so forth, until all of the labor-intensive technical packages have been substituted for the capital-intensive ones. The result is a production isoquant representing the efficient mixes of packages (efficient relative to those available). In the interests of minimizing cost, it is economically feasible to substitute labor for equipment up to the point where the average rate of technical substitution equals the ratio of the average price of equipment to that of labor; for example, if

$$\frac{P_{E}}{P_{L}} = 1.5,$$

then one can economically use the labor-intensive packages for operations A and D and capital-intensive ones for B and C. Alternatively, one might price the points on the isoquant to determine the least cost solution.

In IBRD-I (42), the breakeven wage rate is used instead of ARTS; this is the inverse of ARTS with equipment measured in dollars rather than ton-hours. The major disadvantage of this approach is that the price of equipment cannot be varied as readily, although it eliminates the problem of finding an average price for equipment (a nonhomogeneous set) and the question of what to do with equipment that cannot be measured in ton-hours. (e.g., labor's productivity in loading depends on the haul vehicle due to the impact of load height) be treated as a single item. Perhaps more importantly, there are certain interdependencies among activities and impacts of substitution that are more subtle and harder to handle (e.g., the effect on equipment's utilization rate of substituting it by labor for a particular activity), and thus it is not clear that optimization on an activity basis is compatible with that on a project basis. Further, each aggregation is restricted to a particular set of institutional. environmental, and design conditions, and the number of possible alternatives is tremendous. Moreover, rather than looking at alternative mixes of technical packages for building one specific road, it is desirable to consider building various roads of equal quality and service, in that a particular technique might be more suited to one design than to another. If one begins to try to incorporate project scale, time, and other constraints such as minimizing foreign exchange cost or taking account of the availability and mobilization costs of labor and equipment, the problem becomes very complex indeed. Even ignoring this, this approach gets rather tedious and difficult to do if there are more than two technical packages for each activity or if the aggregation is done in a stepwise manner.

These types of difficulties and complexities encountered in the aggregation process led to the development of a computerized linear programming model in IBRD-II (41). The objective of this model is to select a set of methods to be used in constructing a given civil works project

(or set of projects) to minimize total cost, subject to the country's available resources and technology. Using the same type of activity/ task level data required above, this approach can quickly select the optimum mix of technical packages for a project from a large set of alternatives. Through successive applications of the model, alternative institutional and environmental conditions, project designs, pricing schemes, and so forth can be investigated, all rather quickly; testing the sensitivity of the results to alternative values of various parameters is a prime feature of linear programming models. An aggregate production isoquant can readily be derived by using a continuum of labor prices and solving for the minimum cost solution.

Furthermore, a number of features already incorporated or that could be incorporated in the model help to alleviate some of the difficulties in aggregation discussed above. Resources, for example, may be subject to minimum or maximum constraints (e.g., a minimum might be set on the amount of labor to be employed); new resources incur a set-up cost, while resources already on the site are available for only a limited number of hours during any period; and certain resources can be used only in integer or discrete quantities, an option which might be used to incorporate some features of economies of scale. Time has been introduced into the model through the use of time periods and a discount rate, and a certain limited amount of scheduling of tasks and resources is possible through constraints. The model is, however, still restricted to comparing alternative mixes of technical packages for building a specific road

(i.e., a given set of design standards), rather than building different roads of equal quality and service; the suggestion has been made, however, to use it in conjunction with models, such as those discussed in Section 2.22, which can analyze design standards. This model thus seems a potentially useful tool in the study of alternative technical packages, alone and in various combinations, for civil works construction and warrants further consideration and application, particularly in the field; in IBRD-II (41), for example, it is used only in a single road project and in a set of projects entailing four categories of roads.

In completing the review of this set of a dozen case studies, it seems only appropriate to briefly state their general findings, conclusions, and directions for further research. It is generally agreed that there exists a broad range of possible technical packages for use in highway construction, and that it is technically feasible to substitute labor for equipment in a wide variety of activities. The issue of economic efficiency of alternative technical packages, however, is much less clearcut: (1) several of the studies, including Dreiblatt (24), Müller (57), IBRD-II (41), and ILO-Iran (44), find that although certain labor-intensive techniques may be efficient relative to the others observed, they are generally not economically competitive at the market prices judged to be prevailing in the study country; and (2) certain other studies, including IBRD-III (38, 39, 40), ILO-Philippines (43), ILO-Nepal (69), and Vaidya (111), on the other hand, find certain of the relatively labor-intensive packages to be economically feasible at market prices. Finally, it is
generally agreed that the application of shadow prices, as demonstrated by the three ILO studies (43, 44, 69), makes the labor-intensive techniques more competitive, often to the point of being socially profitable. Recognizing the necessarily restricted nature of these studies and questions remaining as to appropriateness of market versus shadow prices, the general consensus, with but one exception (Dreiblatt [24]), seems to be that efforts should be expended in the direction of increasing labor's role in highway construction in labor-abundant, capital-scarce countries. It is thus proposed that future efforts be directed toward devising means to improve labor productivity and to effectively implement more labor-intensive practices.

2.22 Some Models Evaluating Alternative Designs for Highway Projects

A shortcoming of the case studies reviewed above is their focusing on alternative means of construction of a single project design, rather than extending the project beyond the construction phase to that of operation, such that various project designs might be investigated in conjunction with alternative technical packages. Considerable progress has been made toward developing a model to evaluate alternative design, construction, and maintenance strategies for low volume roads, in terms of construction, maintenance, and user costs since the mid-sixties, when Soberman (76) made his preliminary, largely theoretical contributions to the field. Lago (49) followed shortly with the development of a model for estimating total road transport costs. Building upon this earlier work, Vance (112) in the late sixties, using the concept of production function based cost

functions, produced a new version of a road transport cost estimating model, one that was suitable for hand calculation and could handle, for example, staging of construction and alternative labor/capital mixes for use in road construction and maintenance. Concurrently, personnel at M.I.T. were developing the first version (36) of the Highway Cost Model (HCM), a computer-based, cost-estimating, simulation model which met the objectives outlined above and brought together in a decision-making framework the work to date in the field. Since then, the model has been subject to extensive revisions and expansion of its capabilities, particularly in the areas of estimation of road surface deterioration and the impact of design standards and surface conditions on road user costs, as new information has become available (e.g., 80, 81), culminating in the most recent version (56) of the model which is now being tested and used in Ethiopia. Somewhat parallel and complementary to M.I.T.'s efforts have been those of the Transport and Road Research Laboratory (TRRL) which, largely on the basis of field work carried out in Kenya in the seventies, produced their own road transport investment model for developing countries (82).

It is the HCM which is used in the study at hand because it integrates many of the existing methodologies of evaluating alternative designs in terms of the three costs; it is also operational, computerized, and readily available with personnel at M.I.T. knowledgable about and willing to assist in its use. As the HCM is representative of this class of models, it seems appropriate to make a few comments about its basic

framework and more pertinent features.

Project-level engineering decisions, such as choice of alignment, geometric standards, surface type, maintenance policy, and construction and maintenance methods, and their implications for total transport costs are the focus of the model. The basic function of the HCM, estimating construction, maintenance, and user costs for a road, is done by simulating the life of the road, beginning with its initial construction and proceeding through periodic upgrading as well as the yearly cycle of use, deterioration, and maintenance. On a year-by-year basis throughout the analysis period then, construction and maintenance activities to be performed are determined, and road conditions, traffic volumes, and all associated costs are estimated; Figure 2.4 gives the basic structure of the model. The output of the simulation includes a yearly accounting of construction, maintenance, and user costs as well as a detailed history of the status and deterioration of the road. Construction and maintenance costs can be broken down into their components of labor, equipment, materials, and overhead and profit, while user costs can be disaggregated to the vehicle operating costs for each type of vehicle using the road. It might additionally be noted that all estimates in the course of the simulation are made in terms of physical quantities, from which total costs are obtained by applying the appropriate unit rates, allowing the use of any monetary system. Moreover, construction and maintenance technology are inherently expressed in the unit costs input to the model, while transport technology is inherent in the vehicle characteristics

Figure 2.4: Basic structure of the HCM (source: ref. 56).

DATA REQUIREMENTS	SIMULATION OF ROAD LIFE CYCLE		RESULTS
National or Regional Parameters	<u>For each year in analysis period</u> ,		
Design Standards Geometric standards Pavement sections Material characteristics Maintenance Standards Routine maintenance criteria	Estimate costs for road construc- tion or upgrading based on phys- ical characteristics of the align- ment, design standards, and con- istruction unit costs	Construction Costs	time-
for earth, gravel, and paved roads Resurfacing criteria	based on project completions, Preliminarily estimate this year's	Majatanuna	
Highway Program Parameters	traffic based on that of past year and expected growth	Costs	ſ,
Construction Unit Costs Maintenance Unit Costs Basic Vehicle Characteristics and Ownership and Operating Costs	Estimate road deterioration as a function of design standards, past year's surface conditions, traffic, and environment; effects of maintenance and their costs:	Surface Conditions	
Project Parameters	and average surface conditions	(present serviceability	
Traffic Physical Characteristics of the Alignment	Estimate user costs based on geo- metric standards and surface type <u>and condition</u>	index)	
Specific Design and Main- tenance Standards to Be Studied Schedule for Implementation	Update traffic projections based on actual user costs	User Costs (\$/vehicle/ kilometer)	1/

76

ļ

and costs input, and thus all can be varied.

2.3 Method of Approach Used in Research

The analysis of technology and its change in highway construction in the U.S. in the research at hand follows a micro-study approach patterned after the case studies reviewed in Section 2.21. In an effort to also consider the interaction of design and technology in highway construction and use, the current study goes somewhat beyond these earlier ones in implementing one of the models of Section 2.22 for evaluating total project costs. Moreover, certain of the economic concepts and tools discussed in Section 2.1 are used in the analysis of the results.

The basic analytic procedure thus entails first observing and recording the inputs required for and influences impacting the various tasks of production, for alternative means of producing a given output; this data is then used to synthesize a production isoquant for the good which is subjected to further economic analysis. Since it is obviously impossible to actually observe the technologies of the past in the field today, historical data used in a simulation framework must suffice; thus, the various stages of highway construction and complete road projects can be hypothetically built and operated, by means of alternative technical packages and project designs. This is accomplished in two levels of analysis: (1) the stage-level, where each of the various stages of construction constitutes an output, with the labor, capital, and materials of the various technical packages for each stage being the inputs; and (2) the

project-level, where a road project capable of handling a particular volume of traffic constitutes the output, with the construction, maintenance, and user costs of the alternative projects designed for the particular traffic being the inputs, although these are also considered in a more disaggregate sense as, for example, the labor, capital, and materials requirements of the construction phase. Each level of analysis is discussed in turn below.

2.31 Stage-Level Analysis

The basic data required for the stage-level analysis consists of the alternative technical packages, available at various points in time in the U.S., for the various stages of road construction, and the resource productivities and costs of these packages under typical environmental and institutional conditions. The productivities of the various resources included in each technical package are generally available at the activity or task level and are thus aggregated to the stage level. At this point, the unit prices of the resources can be applied, for example, to arrive at the unit costs of the various technical packages of each stage of construction. For each technical package for each stage of construction, where output is measured in physical units of a given rate of production (e.g., 100 bank cubic meters per hour) or units produced (e.g., 100 bank cubic meters), the following set of results is generated for further analysis: (1) skilled and unskilled labor input, separately or in combination, expressed in physical units of men or man-hours or in cost terms; (2) equipment input measured in value terms of investment, straight-line depreciation

(thus introducing life), or total ownership and operating cost (or its various components of capital recovery, maintenance and miscellaneous, and fuel and lubrication costs); (3) animal (horse) input expressed in value terms along the lines of those of equipment; (4) materials input measured in cost terms; and (5) total unit cost, including all resources involved. This is done for each of three technology periods under various pricing conditions. Section 3.1 and Appendix B provide further details on the collection and preliminary analysis of data for the stage-level analysis.

Given these results then, the analysis of technology change in highway construction over time in the U.S. is basically a three step process: (1) a qualitative investigation of how the technical packages, in terms of the resources constituting them, have changed; (2) an efficiency analysis, whereby graphical and numerical techniques are used in narrowing the production set to those technical packages, which are efficient, for each stage of construction, for each technology period and over all periods; and (3) an analysis narrowing the efficient set of technical packages for each technology period and over all periods to those which are best-practice at prices representative of each of the three technology periods, such that technology change and its characteristics can be identified and quantified.

The qualitative analysis concerning changes in the nature of the technical packages requires, for each stage of construction for each technology period, a listing of the technical packages and the resources constituting them, as well as a graphical representation of the resource

requirements of each package. The graphs used in the graphical efficiency analysis, discussed next, can fulfill any need for analytic tools at this step.

Narrowing the full set of technical packages to those which produce the most output for the least input can be accomplished by means of graphical or numerical analytic techniques; both are used in the case The graphical approach basically entails plotting the labor and at hand. capital requirements of the various technical packages for each period for a given rate or level of production, potentially yielding production isoquants. Certain difficulties are encountered in this approach, including the omission of other resources required for production, such as materials, although they could be included as additional dimensions, and selection of the units of measurement of the resources, some possible measures of capital, for example, being investment, hourly depreciation. or hourly ownership and operating costs at various possible base periods. Discussion and testing of alternative solutions to these difficulties for the case at hand is covered in Section 4.11. The outcome is that omission of resources other than labor and capital is justified; labor is reasonably measured in terms of unskilled men, where the skilled input is weighted by the skilled/unskilled wage ratio at the time of the technology, before being added to the unskilled input, while capital is most suitably measured in 1974 (i.e., current) investment dollars.

A numerical efficiency analysis is used as a back-up to the graphical approach, whereby the engineering variables are held constant while the

economic ones are allowed to vary over a wide range; efficient technical packages are defined as those which are least-cost under at least one set of reasonable economic conditions. The following equation is used throughout the study to estimate the total unit costs of the technical packages:

labor costs

UNITCOST = (skcost · SKREQ + unskcost · UNSKREQ) +

equipment costs

where	small letters indicate economic variables
	capital letters indicate engineering variables
	subscript k = item or equipment
	<pre>subscript t = year of equipment investment cost</pre>
	subscript j = material

____cost = hourly or per unit quantity cost of the resource, with sk = skilled labor, unsk = unskilled labor, c - coal, g = gasoline, d = diesel fuel, h = horse, m = material*

 P_{kt} = investment cost of equipment k in year to

index = index used to inflate or deflate equipment investment cost in line with particular economic conditions being considered

INDEX₊ = equipment investment cost index in year t

- i = interest rate
- N_k = life in years of equipment k
- H_k = annual hours of utilization of equipment k
- MAINT = maintenance over life as a percentage of investment cost of equipment k

^{*}Generally only site preparation materials are included, as those for surfacing are the same across all technical packages for one surface type.

The economic variables are divided into four groups, labor (skilled and unskilled), interest rate, equipment (index, equipment consumables, and materials assisting in construction), and horse, and various sets of economic conditions (e.g., the U.S. in 1974) are defined. The economic conditions of the four resource groups are allowed to vary independently of one another, and the unit costs of the full set of technical packages are calculated for each combination of economic conditions; thus the technical packages which arise as least-cost under at least one reasonable combination of economic conditions can be identified. The result, for each stage, for each technology period and over all periods, is the set of efficient technical packages, which can be compared to the respective result of the graphical analysis. The primary shortcoming of this analytic technique is that the range of combinations of economic conditions encountered in the analysis may not be fully representative of those in existence, and the results may, therefore, not be all-inclusive. Given the two analytic techniques, however, it seems a reasonably reliable picture of the set of efficient technical packages should be obtainable.

In beginning to address the issue of efficiency and substitution and their role in technology change, it was decided to pursue an approach either (1) along the lines of Salter (73), who tries to divide the change in factor productivity into its component parts; or (2) along the lines of the theoretical production functions, such as the Cobb-Douglas and CES, whereby the characteristics of a technology can be expressed by various combinations of the empirically determined parameters of the function.

Both approaches are discussed in Section 2.1 along with their various shortcomings. The results of the efficiency analysis, however, pretty much preclude the use of theoretical production functions. Production functions were found to exist for the various stages of construction for only the first of three technology periods identified in the course of the analysis and for the overall case. Furthermore, in the two cases where production functions do exist, the measurement of capital is a problem; investment cost is the standardly accepted measure in the economic literature, but it does not seem so appropriate here due to the wide variation in the lifetime, maintenance as a percentage of investment, and fuel consumption exhibited by the items of equipment included in the efficient set. An approach along the lines of Salter's seems somewhat more viable and is thus the one pursued in the study at hand.

Salter views technology change as represented by movements over time of the best-practice techniques. The first step, therefore, consists of narrowing the set of technical packages for each technology period to those which are least-cost, and thus best-practice, at prices representative of each of the three technology periods. The full set of technical packages for each stage of construction is costed by means of the unit cost equation given above, and the least-cost packages are identified as well as any others that are within 10 percent in cost; these, then, make up the least-cost set.

Having thus reduced the set of technical packages to the best-practice ones, it is useful to return to a graphical approach to observe the

magnitude of the technology change that has occurred over the years in terms of overall costs and factor inputs. For example, it is of interest to see the progression of the unit costs of each stage of construction over time, both as they actually occurred and as they would have occurred had technology not changed as it did. Coincidently, as suggested by Carter (15), and in line with Salter's analysis, it is useful to observe the change over time in the quantities of various resources required to produce a certain rate or level of output. After testing alternative measures in Section 4.12, it is decided to use unskilled men and 1974 investment costs, as in the graphical efficiency analysis; this is perhaps more appropriate here, as the equipment of the earlier best-practice packages is somewhat more in line with that of later packages than is generally the For each stage of construction, then, the labor and capital recase. quirements of the best-practice packages of each technology period are looked at as a percentage of those of previous technology periods.

Given this quantitative measure of technology change then, by means of Salter's approach, it is possible to begin to divide it into its component parts. Figure 2.5 is useful as a first step in that it depicts the disaggregation of the movement of best-practice packages over time into its component parts. It should be noted that in this study, as in Salter's analysis, returns to scale are assumed constant, leaving efficiency, factor bias, and factor substitution as the characteristics of technology change. As indicated by Figure 2.5, factor substitution occurs with changes in relative factor prices. In the course of deriving

Figure 2.5: Schematic representation of dividing technology change, represented by movements over time of best-practice techniques, into its component parts.

LABOR

Note: Constant returns to scale are assumed.

- A = best-practice technical package at the prices of period n, given T_n as the production isoquant.
- B = theoretical technical package defined to separate the effects of efficiency and bias; its capital/labor ratio is the same as that of A, while its cost is the same as that of C.
- C = best-practice technical package at the prices of period n, given T_{n+1} as the production isoquant, or both T_n and T_{n+1} .

5

D = best-practice technical package at the prices of period n + 1, given T_{n+1} as the production isoquant, or both T_n and T_{n+1} .

the set of best-practice packages for each technology period and over all periods at prices representative of each of the three technology periods, however, it was discovered that, with but a few minor exceptions, the best-practice packages for each stage of construction in each technology period are the same for all three price periods (i.e., points C and D are the same in Figure 2.5); moreover, the best-practice packages of each technology period exhibit lower costs than those of previous periods for all three price periods (i.e., point C is lower in cost than is point A in Figure 2.5). The first finding suggests that substitution, brought about by changes in factor prices over the period covered by the technologies being studied, has not played a significant role in the technology change observed over that period; the second suggests that efficiency has had some part. This approach is similar to one used by Buechner (14) in determining whether observed occupational changes were the result of technological or technical change.

What remains in the study at hand, then, is the separation of the roles of efficiency and factor bias; such is depicted in Figure 2.5. Based on Salter's work and after some testing of alternative pricing schemes as discussed in Section 4.12, the following generic form of the equation for estimating the fractional change in unit resource requirements accounted for by efficiency was selected:

$$\frac{L_B - L_A}{L_A}, \quad \frac{K_B - K_A}{K_A} = \frac{w_n L_C + g_n K_C}{w_n L_A + g_n K_A} - 1$$

where	subscripts A, B, C refer to points on Figure 2.5
	<pre>subscript n = initial period</pre>
	L = labor in men required for a given rate of production
	K = capital in investment dollars required for a given rate of production; any price period may be used on the left side of the equation, but period n must be used on the right side
	w _n = hourly wage rate in period n
	g _n = hourly capital recovery factor in period n

This measure of efficiency can readily be derived by simultaneously solving two equations defining point B in Figure 2.5, one stating the equality of the capital/labor ratios at points A and B and the other stating the cost equality of points B and C. In the case at hand, a uniform wage rate and capital recovery factor do not exist, and thus each item of labor (i.e., skilled and unskilled) and equipment (i.e., varying in terms of lifetime) is priced at its own wage rate or capital recovery factor before summing on the right-hand side of the above equation; L and K on the left-hand side are respectively measured in unskilled men and 1974 investment costs.

Salter also develops an equation for estimating the fractional change in unit resource requirements accounted for by bias as follows:

$$\frac{L_{C} - L_{B}}{L_{A}} = -\pi_{n} \left(\frac{K_{C}/L_{C}}{K_{A}/L_{A}} - 1 \right)$$

$$\frac{K_{C} - K_{B}}{K_{A}} = (1 - \pi_{n}) \left(\frac{K_{C}/L_{C}}{K_{A}/L_{A}} - 1 \right)$$

where

 π_n = share of capital costs in total costs in period n; in the case at hand, it is interpreted as the average for the packages (i.e., points A and C) being compared

Salter's measure of bias, however, is but an indication of the direction and potential magnitude of bias' influence on resource quantities and not really a true measure. In this study, the specific resource requirements of points A and C are known, and thus bias' part in the fractional change in unit resource requirements is simply as follows:

$$\frac{L_{C} - L_{B}}{L_{A}} = \frac{L_{C} - L_{A}}{L_{A}} - \frac{L_{B} - L_{A}}{L_{A}}$$

$$\frac{K_{C} - K_{B}}{K_{A}} = \frac{K_{C} - K_{A}}{K_{A}} - \frac{K_{B} - K_{A}}{K_{A}}$$

With these analytic tools, then, the relative roles of efficiency, bias, and substitution in technology change over time, as well as the magnitude of technology change itself, can be identified and quantified for the various stages of road construction in the U.S.

2.32 Project-Level Analysis

Variations in project designs and/or construction procedures can potentially lead to trade-offs among the various stages of construction and/or between the construction and operation phases of a highway project, and can thus be investigated only at the level of the complete project. Such interaction of design and technology in highway construction and use makes it important to extend the stage-level analysis to the project-level. In an effort to begin to investigate some of these issues, this research looks at alternative surfacing materials, various subgrade strength/surface design combinations, and alternative scenarios for obtaining fill materials, for a couple of design standards and traffic volumes.

89

Ì

The data required for the project-level analysis consists of the construction quantities and the efficient technical packages (and thus resource requirements and unit costs from the stage-level analysis) for each technology period and over all periods, for the various stages of construction of a representative set of alternative projects; also needed are the maintenance and user costs associated with these projects at various price periods. Although it seemed desirable at the outset to use designs commensurate with each technology period, this proved to be somewhat infeasible due to a paucity of early design information; it was decided instead to design projects at the low and high end of the spectrum for today's two-lane, low volume, rural roads for two different traffic volumes. The production function based aggregation procedure, as performed in the IBRD-I (42) and ILO-Iran (44) studies discussed in Section 2.21, seemed to present a suitable means by which to aggregate the various stages of construction, with their respective quantities and sets of efficient technical packages, for each technology period and over all periods, to the alternative projects. The findings of the stagelevel analysis given above, however, indicate that, over the range of prices representative of the three technology periods, there is effectively no choice of technology, and thus no need for such an aggregation procedure. It was therefore decided to do the project-level analysis at prices representative of the U.S. over this period, simply using the bestpractice technical packages identified in the stage-level analysis. Since production functions do exist in two cases, however, it was decided to also use a more extreme set of pricing conditions (e.g., those of a

developing country), such that some of the alternative technical packages in these cases might appear in the least-cost set and be used in the project-level analysis as well.

For each project, under various technology and price conditions, where output is measured in terms of the volume of traffic the project is designed to carry over its life, the following results are generated for further analysis: (1) total, and per unit traffic, construction costs and its various components of labor, capital, materials, and overhead and profit, among other subtotals; (2) total, and per unit traffic, maintenance costs over the life of the project, both expressed in net present value terms and the former in equivalent annual cost terms as well; (3) total, and per unit traffic, user costs over the life of the project, similarly expressed; and (4) total and per unit traffic, project costs over the life of the project, expressed in net present value terms. Section 3.2 and Appendix C provide further details on the collection and preliminary analysis of data for the project-level analysis.

The first step in the project-level analysis is a graphical efficiency analysis, patterned after one proposed by Soberman (76) investigating the trade-offs between current and future expenditures in highway construction and use resulting from the design and technology mix. For each project and each technology period and over all periods, the maintenance and user costs incurred over the life of the project, expressed in terms of equivalent annual costs, are plotted against the construction costs. As these are value rather than quantity-based measures, it is appropriate to do this for a couple of price conditions representative

of the U.S. over the period of the technologies observed. In order to broaden the analysis and test the sensitivity of the results to economic conditions, and as there is some choice of technology in the case of one technology period and the overall case, a more extreme set of prices, like those of a developing country today, are also used.

Given the various sets of efficient projects for each project group, under various price and technology conditions, it is next useful to narrow these to those projects which are least-cost in terms of total project costs, expressed as equivalent annual or net present values. Little distinction is found, however, among project alternatives and even among alternative technologies in the various project groups at the level of total project costs. A similar analysis with these costs disaggregated into partial construction (predominantly labor and capital), total construction, maintenance, and user cost components is thus necessary, in order to see the dominance of various cost factors and to see where differences among the projects and technologies lie. A graphical presentation of these cost components (and, in turn, their components) for a couple of projects, for each technology period, at prices representative of the U.S. over this period, serves as a useful tool. It provides some insight into the relative magnitudes of these various cost components as well as their change over time in the U.S., and, most importantly, it indicates the magnitude of the cost-reducing influence of technology change in highway construction at the project level. At the same time, it should be noted that materials usage, maintenance policies and procedures, and transport technology are assumed constant at about the level of today.

CHAPTER 3

DATA COLLECTION AND ANALYSIS

The primary aim of this chapter is the presentation of the results of the two-level analysis of data, one section being devoted to the stage and one to the project-level analysis. Each of the sections begins with some largely definitional comments pertaining to the level of analysis, followed by a brief description of the actual collection and analysis of the basic data such as the nature and scope of the data base and some of the problems encountered and solutions arrived at in its use. The presentation of the results, the detailed discussion of which is left to Chapter 4, finally completes each section. More detailed discussion of the data collection and preliminary analysis procedures, as well as presentation of the basic data and its sources and of some of the results, can be found in Appendices B and C.

3.1 Construction Technologies and Costs

The construction procedure for highways may be divided into various stages: site preparation, earthwork, subbase, base, and surfacing, minor structures, and major structures. Each stage, in turn, is made up of several activities; earthwork, for example, consists of excavate, load, haul, unload, return, spread, and compact and finish. Similarly, tasks can be defined as groups of possibly interdependent activities such as the earthwork activities, excavate through return. The resources used include various types of labor, equipment, and materials.

Some of the environmental conditions which might be of importance on a project are climate, vegetation, terrain, soil/rock type, lift height, and haul distance and condition; similarly, some of the institutional conditions are management and organization, physical condition and skill of the workers, method of payment, social welfare of the workers, and availability and quality of the maintenance and repair facilities. The data required for the study at hand thus consists of the alternative technical packages, available at various points in time in the U.S., for the various stages of road construction, and the resource productivities and costs of these packages under typical environmental and institutional conditions.

3.11 Identification of Technical Packages

For the purposes of this study, the stages of construction are somewhat rearranged, on the basis of their activities, into site preparation, excavation/hauling (with subgroups for haul distance), spreading/compaction (with subgroups for degree of compaction), and surfacing (with subgroups for the material, assuming a constant degree of compaction). It was decided at the outset to eliminate major structures from the analysis, as they are rather distinct and separate from the other stages of construction, and merit a study of their own. Minor structures are also not included, due to the scarcity of data in this area and to their relatively small contribution to highway construction costs. It should be noted, however, that these two stages are often relatively laborintensive, have considerable potential for labor-capital substitution, and might even be used in place of certain parts of other stages

(e.g., using a bridge instead of a large fill, or a retaining wall to lessen the amount of cut necessary).

In identifying the technical packages for the various stages of road construction, three time periods evolve quite naturally: (1) the 1920's, primarily representing those methods in use around 1915 to 1937; (2) the 1950's, representing those around 1945 to 1962; and (3) the 1970's, representing those around 1965 to 1975. These time periods coincide, by and large, with those during which the U.S. Federal Highway Administration (FHWA) carried out their production studies of alternative highway construction methods, these being about 1920-37, 1945-66, and 1971-present; the results of these studies are compiled in various unpublished forms (e.g., 97, 98), as summary articles in Public Roads (e.g., 2, 32, 33), and, for the current studies, as reports available through the National Technical Information Service (e.g., 105). The sources used in identifying alternative technical packages are the same as those used in estimating resource productivities for these packages, including the FHWA studies mentioned above as well as various methods and costs, cost estimating, and engineering books and handbooks (e.g., 29, 46, 67, 77) among other publications of the period.

The set of technical packages identified for each period for each stage of construction is given in Table 3.1, where the various resources constituting each package are specified, the equipment being organized by the major activities or tasks the stage involves. As a convenient means of referring to the various packages, a numbering scheme has been devised. The digits represent the major activicies or tasks of the

Period and No.			_		
Packag	e	Labor	Brush and Tree Removal	Burning Debris	Materials
1920:	11	Skilled Unskilled	Handtools (201) Horse	Handtools (201)	Dynamite (820) Fuse (821) Caps (822)
	21	Skilled Unskilled	80 hp tractor (630) Bulldozer blade (602)	Handtools (201)	
1950:	11	Skilled Unskilled	Chain saw (235) Handtools (207,208)	Handtools (206)	Dynamite (820) Fuse (821) Caps (822)
	21	Skilled Unskilled	90 dbhp tractor (642) Bulldozer blade (608)	Handtools (206)	
	31	Skilled Unskilled	90 dbhp tractor (642) Bulldozer blade (608) Cable (610)	Handtools (206)	
1970:	11	Skilled Unskilled	Chain saw (236) Brush saw (241) Backhoe (237) Handtools (209)	Handtools (209)	Kerosene (823)
	21	Skilled Unskilled	70 dbhp tractor (644) Bulldozer blade (614) Chain saw (236) Pickup truck (336) Handtools (209)	Handtools (209)	Kerosene (823)
	31	Skilled Unskilled	180 fwhp tractor (645) Bulldozer blade (615)	Handtools (209)	Kerosene (823)

Table 3.1a: Technical packages for site preparation in the 1920's, 1950's, and 1970's.

Period and No.		Equipment		
Package	Labor	Excavation	Hauling	
1920: 1-1	Skilled Unskilled	Handtools (202)	Wheelbarrow (301)	
1-2	Skilled Unskilled	Handtools (202)	Handcart (302)	
2~1	Skilled Unskilled	Plow (203) Horse Handtools (202)	Wheelbarrow (301)	
2-2	Skilled Unskilled	Plow (203) Horse Handtools (202)	Handcart (302)	
3-1	Skilled Unskilled	Plow (203) 20 hp tractor (631) Handtools (202)	Wheelbarrow (301)	
3-2	Skilled Unskilled	Plow (203) 20 hp tractor (631) Handtools (202)	Handcart (302)	
4-3	Skilled Unskilled	Dragscraper (604) Plow (203) Horse	Dragscraper (604) Horse	
5-4	Skilled Unskilled	Fresno (603) Plow (203) Horse	Fresno (603) Horse	

Table 3.1b: Technical packages for excavation/hauling in the 1920's, 1950's, and 1970's.

Period and No.	Equipment			
Package	Labor	Excavation	Hauling	
1920: 6-5	Skilled Unskilled	Wheelscraper (605) Plow (203) Horse	Wheelscraper (605) Horse	
7-6	Skilled	60 hp tractor (633) Bulldozer blade (606)	60 hp tractor (633) Bulldozer blade (606)	
8-7	Skilled Unskilled	Elevating grader (205) Horse Handtools (202)	1.5 cy wagon (303) Horse	
9-7	Skilled Unskilled	Elevating grader (205) 30 hp tractor (634) Handtools (202)	1.5 cy wagon (303) Horse	
10-7	Skilled Unskilled	Power shovel (230) 3/4 cy shovel dipper (204) Handtools (202)	1.5 cy wagon (303) Horse	
10-8	Skilled Unskilled	Power shovel (230) 3/4 cy shovel dipper (204) Handtools (202)	5 cy wagon (304) 20 hp tractor (631)	
10-9	Skilled Unskilled	Power shovel (230) 3/4 cy shovel dipper (204) Handtools (202)	3.5 ton truck (330)	
1950: 1-1	Skilled	1.5 cy power shovel (231)	10 ton truck (332)	
1-2	Skilled	1.5 cy power shovel (231)	20 ton truck (333)	

Table 3.1b: Technical packages for excavation/hauling in the 1920's, 1950's, and 1970's (continued).

Period and No. of Technical Package			Equipment	Equipment		
		Labor	Excavation	<u>Hauling</u>		
1950:	1-3	Skilled	1.5 cy power shovel (231)	8.5 cy wagon (305) 125 fwhp tractor (638)		
	1-4	Skilled	1.5 cy power shovel (231)	15 cy wagon (306) 185 fwhp tractor (639)		
	2-1	Skilled	2.0 cy power shovel (232)	10 ton truck (332)		
	2-2	Skilled	2.0 cy power shovel (232)	20 ton truck (333)		
	2-3	Skilled	2.0 cy power shovel (232)	8.5 cy wagon (305) 125 fwhp tractor (638)		
	2-4	Skilled	2.0 cy power shovel (232)	15 cy wagon (306) 185 fwhp tractor (639)		
	3-1	Skilled	2.5 cy power shovel (233)	10 ton truck (332)		
	3-2	Skilled	2.5 cy power shovel (233)	20 ton truck (333)		
	3-3	Skilled	2.5 cy power shovel (233)	8.5 cy wagon (305) 125 fwhp tractor (638)		
	3-4	Skilled	2.5 cy power shovel (233)	15 cy wagon (306) 185 fwhp tractor (639)		
	4-2	Skilled	Elevating grader (234) 90 dbhp tractor (642)	20 ton truck (333)		
	4-4	Skilled	Elevating grader (234) 90 dbhp tractor (642)	15 cy wagon (306) 185 fwhp tractor (639)		

Period and No	•	Equipment		
of Technical Package	Labor	Excavation	Hauling	
1950: 5-5	Skilled	6 cy scraper (611) 125 fwhp wheel tractor (638) 70 hp crawler tractor (641) 8 ft bulldozer blade (607)	6 cy scraper (611) 125 fwhp wheel tractor (638)	
6-6	Skilled	9 cy scraper (612) 185 fwhp wheel tractor (639) 90 hp crawler tractor (642) 10 ft bulldozer blade (608)	9 cy scraper (612) 185 fwhp wheel tractor (639)	
7-7	Skilled	15 cy scraper (613) 250 fwhp wheel tractor (640) 130 hp crawler tractor (643) 11.5 ft bulldozer blade (609)	15 cy scraper (613) 250 fwhp wheel tractor (640)	
8-8	Skilled	70 hp crawler tractor (641) 8 ft bulldozer blade (607)	70 hp crawler tractor (641) 8 ft bulldozer blade (607)	
9-9	Skilled	90 hp crawler tractor (642) 10 ft bulldozer blade (608)	90 hp crawler tractor (642) 10 ft bulldozer blade (608)	
10-10	Skilled	130 hp crawler tractor (643) 11.5 ft bulldozer blade (609)	130 hp crawler tractor (643) 11.5 ft bulldozer blade (609)	
11-0	Skilled	Blade grader (423)		
1970: 1-1	Skilled	1.5 cy power shovel (238)	10 ton truck (337)	
1-2	Skilled	1.5 cy power shovel (238)	15 ton truck (338)	
2-3	Skilled	2.5 cy power shovel (239)	20 ton truck (339)	

Table 3.1b: Technical packages for excavation/hauling in the 1920's, 1950's, and 1970's (continued).

Period and No. of Technical <u>Package</u>			Equipment	
		Labor	Excavation	Hauling
1970:	2-5	Skilled	2.5 cy power shovel (239)	15 cy wagon and tractor (341)
	3-4	Skilled	3.5 cy power shovel (240)	35 ton truck (340)
	3-6	Skilled	3.5 cy power shovel (240)	27 cy wagon and tractor (342)
	4-1	Skilled	1.75 cy front end loader (646)	10 ton truck (337)
	4-2	Skilled	1.75 cy front end loader (646)	15 ton truck (338)
	4-7	Skilled	1.75 cy front end loader (646)	1.75 cy front end loader (646)
	5-3	Skilled	3.0 cy front end loader (647)	20 ton truck (339)
	5-5	Skilled	3.0 cy front end loader (647)	15 cy wagon and tractor (341)
	5-8	Skilled	3.0 cy front end loader (647)	3.0 cy front end loader (647)
	6-4	Skilled	5.0 cy front end loader (648)	35 ton truck (340)
	6-6	Skilled	5.0 cy front end loader (648)	27 cy wagon and tractor (342)
	6-9	Skilled	5.0 cy front end loader (648)	5.0 cy front end loader (648)
	7-10	Skilled	<pre>11.5 cy elevating scraper (649)</pre>	11.5 cy elevating scraper (649)
	8-11	Skilled	21.5 cy elevating scraper (650)	21.5 cy elevating scraper (650)
	9-12	Skilled	20 cy scraper (651) 270 hp crawler tractor (653) 12 ft bulldozer blade (616)	20 cy scraper (651)

Table 3.1b: Technical packages for excavation/hauling in the 1920's, 1950's, and 1970's (continued).

-

Period and No. of Technical		Equipment	· · · · · · · · · · · · · · · · · · ·	
Package	Labor	Excavation	Hauling	
1970: 10-13	Skilled	30 cy scraper (652) 385 hp crawler tractor (654) 14 ft bulldozer blade (617)	30 cy scraper (652)	
11-14	Skilled	70 hp crawler tractor (644) 8 ft bulldozer blade (614)	70 hp crawler tractor (644) 8 ft bulldozer blade (614)	
12-15	Skilled	180 hp crawler tractor (645) 12 ft bulldozer blade (616)	180 hp crawler tractor (645) 12 ft bulldozer blade (616)	
13-16	Skilled	385 hp crawler tractor (654) 14 ft bulldozer blade (617)	385 hp crawler tractor (654) 14 ft bulldozer blade (617)	
14-0	Skilled	Motor grader (424)		

Table 3.1b: Technical packages for excavation/hauling in the 1920's, 1950's, and 1970's (continued).

Note: Technical package 11-0 in 1950 and 14-0 in 1970 are for simply excavating a small ditch alongside a road; in the 1920's this would be done with any package up to and including 6-5.

102

I

Period and No.		Equipment		
Package	Labor	Spreading	Compaction	
1920: 11	Skilled Unskilled	Handtools (401)	2.5 ton roller (501) Horse	
21	Skilled Unskilled	7 ft blade grader (402) Horse	2.5 ton roller (501) Horse	
12	Skilled Unskilled	Handtools (401)	6 ton roller (530)	
22	Skilled Unskilled	7 ft blade grader (402) Horse	6 ton roller (530)	
32	Skilled	12 ft blade grader (403) 76 hp tractor (632)	6 ton roller (530)	
1950: 11	Skilled	70 hp crawler tractor (641) 8 ft bulldozer blade (607)	Sheepsfoot roller (502) 70 hp crawler tractor (641)	
12	Skilled	70 hp crawler tractor (641) 8 ft bulldozer blade (607)	Sheepsfoot roller (502) 90 hp crawler tractor (642)	
13	Skilled	70 hp crawler tractor (641) 8 ft bulldozer blade (607)	3 wheel roller (532)	
14	Skilled	70 hp crawler tractor (641) 8 ft bulldozer blade (607)	Pneumatic roller (533)	

Table 3.1c: Technical packages for spreading/compaction in the 1920's, 1950's, and 1970's.

Period and of Technica	No.	Equipment	
Package	Labor	Spreading	Compaction
195 0: 21	Skilled	130 hp crawler tractor (643) 11.5 ft bulldozer blade (609)	Sheepsfoot roller (502) 70 hp crawler tractor (641)
22	Skilled	130 hp crawler tractor (643) 11.5 ft bulldozer blade (609)	Sheepsfoot roller (502) 90 hp crawler tractor (642)
23	Skilled	130 hp crawler tractor (643) 11.5 ft bulldozer blade (609)	3 wheel roller (532)
24	Skilled	130 hp crawler tractor (643) 11.5 ft bulldozer blade (609)	Pneumatic roller (533)
31	Skilled	10 ft blade grader (420)	Sheepsfoot roller (502) 70 hp crawler tractor (641)
32	Skilled	10 ft blade grader (420)	Sheepsfoot roller (502) 90 hp crawler tractor (642)
33	Skilled	10 ft blade grader (420)	3 wheel roller (532)
34	Skilled	10 ft blade grader (420)	Pneumatic roller (533)
41	Skilled	13 ft blade grader (421)	Sheepsfoot roller (502) 70 hp crawler tractor (641)
42	Skilled	13 ft blade grader (421)	Sheepsfoot roller (502) 90 hp crawler tractor (642)
43	Skilled	13 ft blade grader (421)	3 wheel roller (532)
44	Skilled	13 ft blade grader (421)	Pneumatic roller (533)

Table 3.1c: Technical packages for spreading/compaction in the 1920's, 1950's, and 1970's (continued).

ł

Period and No. of Technical Package				
		Labor	Spreading	Compaction
1970:	11	Skilled	180 hp crawler tractor (645) 12 ft bulldozer blade (616)	Sheepsfoot roller (536)
	12	Skilled	180 hp crawler tractor (645) 12 ft bulldozer blade (616)	Sheepsfoot roller (503) 270 hp crawler tractor (653)
	13	Skilled	180 hp crawler tractor (645) 12 ft bulldozer blade (616)	Pneumatic roller (537)
	14	Skilled	180 hp crawler tractor (645) 12 ft bulldozer blade (616)	Vibratory roller (538)
	21	Skilled	385 hp crawler tractor (654) 14 ft bulldozer blade (617)	Sheepsfoot roller (536)
	22	Skilled	385 hp crawler tractor (654) 14 ft bulldozer blade (617)	Sheepsfoot roller (503) 270 hp crawler tractor (653)
	23	Skilled	385 hp crawler tractor (654) 14 ft bulldozer blade (617)	Pneumatic roller (537)
	24	Skilled	385 hp crawler tractor (654) 14 ft bulldozer blade (617)	Vibratory roller (538)
	31	Skilled	12 ft motor grader (425)	Sheepsfoot roller (536)
	32	Skilled	12 ft motor grader (425)	Sheepsfoot roller (503) 270 hp crawler tractor (653)
	33	Skilled	12 ft motor grader (425)	Pneumatic roller (537)
	34	Skilled	12 ft motor grader (425)	Vibratory roller (538)

Table 3.1c: Technical packages for spreading/compaction in the 1920's, 1950's, and 1970's (continued).

105

-

Period and No. of Technical Package	Labor	Equipment Spreading	Compaction
1970: 41	Skilled	14 ft motor grader (426)	Sheepsfoot roller (536)
42	Skilled	14 ft motor grader (426)	Sheepsfoot roller (503) 270 hp crawler tractor (653)
43	Skilled	14 ft motor grader (426)	Pneumatic roller (537)
44	Skilled	14 ft motor grader (426)	Vibratory roller (538)

Table 3.1c: Technical packages for spreading/compaction in the 1920's, 1950's, and 1970's (continued).

106

1

Note: Technical packages 11, 21, 31 and 41 in 1950 use two 4 ft wide rollers pulled by a tractor, while technical packages 12, 22, 32, and 42 in 1950 use four such rollers and a larger tractor.

Table 3.1d: Technical packages for gravel surfacing in the 1920's, 1950's, and 1970's.

Period and No.		Equipment		
Package	Labor	Spreading Gravel	Compacting Gravel	
1920: 11	Skilled Unskilled	Handtools (401)	2.5 ton roller (501) Horse	
21	Skilled Unskilled	5 ft blade grader (404) Horse Handtools (401)	2.5 ton roller (501) Horse	
12	Skilled Unskilled	Handtools (401)	6 ton roller (530)	
22	Skilled Unskilled	5 ft blade grader (404) Horse Handtools (401)	6 ton roller (530)	
1950: 11	Skilled	70 hp crawler tractor (641) 8 ft bulldozer blade (607)	3 wheel roller (534)	
12	Skilled	70 hp crawler tractor (641) 8 ft bulldozer blade (607)	Pneumatic roller (533)	
21	Skilled	130 hp crawler tractor (643) 11.5 ft bulldozer blade (609)	3 wheel roller (534)	
22	Skilled	130 hp crawler tractor (643) 11.5 ft bulldozer blade (609)	Pneumatic roller (533)	
31	Skilled	10 ft blade grader (420)	3 wheel roller (534)	
32	Skilled	10 ft blade grader (420)	Pneumatic roller (533)	
41	Skilled	13 ft blade grader (421)	3 wheel roller (534)	

Period and No.		Equipment		
Package	Labor	Spreading Gravel	Compacting Gravel	
1950: 42	Skilled	13 ft blade grader (421)	Pneumatic roller (533)	
51	Skilled Unskilled	Gas spreader (422) 20 ton truck (333) Handtools (408)	3 wheel roller (534)	
52	Skilled Unskilled	Gas spreader (422) 20 ton truck (333) Handtools (408)	Pneumatic roller (533)	
1970: 11	Skilled	180 hp crawler tractor (645) 12 ft bulldozer blade (616)	3 wheel roller (539)	
12	Skilled	180 hp crawler tractor (645) 12 ft bulldozer blade (616)	Pneumatic roller (537)	
13	Skilled	180 hp crawler tractor (645) 12 ft bulldozer blade (616)	Vibratory roller (538)	
21	Skilled	385 hp crawler tractor (654) 14 ft bulldozer blade (617)	3 wheel roller (539)	
22	Skilled	385 hp crawler tractor (654) 14 ft bulldozer blade (617)	Pneumatic roller (537)	
23	Skilled	385 hp crawler tractor (654) 14 ft bulldozer blade (617)	Vibratory roller (538)	
31	Skilled	12 ft motor grader (425)	3 wheel roller (539)	

Table 3.1d: Technical packages for gravel surfacing in the 1920's, 1950's and 1970's (continued).

108

.
Period and No.		Equipment	Equipment					
Package	Labor	Spreading Gravel	Compacting Gravel					
1970: 32	Skilled	12 ft motor grader (425)	Pneumatic roller (537)					
33	Skilled	12 ft motor grader (425)	Vibratory roller (538)					
41	Skilled	14 ft motor grader (426)	3 wheel roller (539)					
42	Skilled	14 ft motor grader (426)	Pneumatic roller (537)					
43	Skilled	14 ft motor grader (426)	Vibratory roller (538)					
51	Skilled Unskilled	Gas spreader (427) 20 ton truck (339) Handtools (410)	3 wheel roller (539)					
52	Skilled Unskilled	Gas spreader (427) 20 ton truck (339) Handtools (410)	Pneumatic roller (537)					
53	Skilled Unskilled	Gas spreader (427) 20 ton truck (339) Handtools (410)	Vibratory roller (538)					

Table 3.1d: Technical packages for gravel surfacing in the 1920's, 1950's and 1970's (continued).

Note: All technical packages also include gravel (830).

Period and No. of Technical <u>Package</u>			Equipment							
		Labor	Spreading Crushed Stone	Spreading Screenings	Sprinkling and Compacting					
1920:	111	Skilled Unskilled	Handtools (401)	Handtools (401)	3 wheel roller (531) Sprinkler wagon (405) Horse					
	211	Skilled Unskilled	5 ft blade grader (404) Horse Handtools (401)	Handtools (401)	3 wheel roller (531) Sprinkler wagon (405) Horse					
1950:	111	Skilled Unskilled	70 hp crawler tractor (641) 8 ft bulldozer blade (607)	Spreader box (409) 10 ton truck (332) Handtools (408)	3 wheel roller (534) Water tank (407) 3.5 ton truck (334)					
	112	Skilled Unskilled	70 hp crawler tractor (641) 8 ft bulldozer blade (607)	Spreader box (409) 10 ton truck (332) Handtools (408)	Pneumatic roller (533) Water tank (407) 3.5 ton truck (334)					
	211	Skilled Unskilled	130 hp crawler tractor (643) 11.5 ft bulldozer blade (609)	Spreader box (409) 10 ton truck (332) Handtools (408)	3 wheel roller (534) Water tank (407) 3.5 ton truck (334)					
	212	Skilled Unskilled	130 hp crawler tractor (643) 11.5 ft bulldozer blade (609)	Spreader box (409) 10 ton truck (332) Handtools (408)	Pneumatic roller (533) Water tank (407) 3.5 ton truck (334)					
	311	Skilled Unskilled	l0 ft blade grader (420)	Spreader box (409) 10 ton truck (332) Handtools (408)	3 wheel roller (534) Water tank (407) 3.5 ton truck (334)					

Table 3.1e: Technical packages for waterbound macadam surfacing in the 1920's, 1950's, and 1970's.

Period and No. of Technical Package		Equipment							
		Labor	Spreading Crushed Stone	Spreading Screenings	Sprinkling and Compacting				
1950:	312	Skilled Unskilled	l0 ft blade grader (420)	Spreader box (409) 10 ton truck (332) Handtools (408)	Pneumatic roller (533) Water tank (407) 3.5 ton truck (334)				
	411	Skilled Unskilled	13 ft blade grader (421)	Spreader box (409) 10 ton truck (332) Handtools (408)	3 wheel roller (534) Water tank (407) 3.5 ton truck (334)				
412		Skilled Unskilled	13 ft blade grader (421)	Spreader box (409) 10 ton truck (332) Handtools (408)	Pneumatic roller (533) Water tank (407) 3.5 ton truck (334)				
	511	Skilled Unskilled	Gas spreader (422) 20 ton truck (333) Handtools (408)	Spreader box (409) 10 ton truck (332) Handtools (408)	3 wheel roller (534) Water tank (407) 3.5 ton truck (334)				
	512	Skilled Unskilled	Gas spreader (422) 20 ton truck (333) Handtools (408)	Spreader box (409) 10 ton truck (332) Handtools (408)	Pneumatic roller (533) Water tank (407) 3.5 ton truck (334)				
1970:	111	Skilled Unskilled	180 hp crawler tractor (645) 12 ft bulldozer blade (616)	Gas spreader (427) 20 ton truck (339) Handtools (410)	3 wheel roller (539) Water tank (412) 4 ton truck (343)				
	112	Skilled Unskilled	180 hp crawler tractor (645) 12 ft bulldozer blade (616)	Gas spreader (427) 20 ton truck (339) Handtools (410)	Pneumatic roller (537) Water tank (412) 4 ton truck (343)				

Table 3.1e: Technical packages for waterbound macadam surfacing in the 1920's, 1950's, and 1970's (continued).

Table 3.1e:	Technical packages (continued).	for waterbound	macadam surfacing	in the	1920's,	1950's,	and	1970's

.

Period and No.		Equipment							
Package	Labor	Spreading Crushed Stone	Spreading Screenings	Sprinkling and Compacting					
1970: 113	Skilled Unskilled	180 hp crawler tractor (645) 12 ft bulldozer blade (616)	Gas spreader (427) 20 ton truck (339) Handtools (410)	Vibratory roller (538) Water tank (412) 4 ton truck (343)					
121	Skilled Unskilled	180 hp crawler tractor (645) 12 ft bulldozer blade (616)	Spreader box (411) 10 ton truck (337) Handtools (410)	3 wheel roller (539) Water tank (412) 4 ton truck (343)					
122	Skilled Unskilled	180 hp crawler tractor (645) 12 ft bulldozer blade (616)	Spreader box (411) 10 ton truck (337) Handtools (410)	Pneumatic roller (537) Water tank (412) 4 ton truck (343)					
123	Skilled Unskilled	180 hp crawler tractor (645) 12 ft bulldozer blade (616)	Spreader box (411) 10 ton truck (337) Handtools (410)	Vibratory roller (538) Water tank (412) 4 ton truck (343)					
211	Skilled Unskilled	385 hp crawler tractor (654) 14 ft bulldozer blade (617)	Gas spreader (427) 20 ton truck (339) Handtools (410)	3 wheel roller (539) Water tank (412) 4 ton truck (343)					
212	Skilled Unskilled	385 hp crawler tractor (654) 14 ft bulldozer blade (617)	Gas spreader (427) 20 ton truck (339) Handtools (410)	Pneumatic roller (537) Water tank (412) 4 ton truck (343)					

	Period and No.			Equipment	
	Package	Labor	Spreading Crushed Stone	Spreading Screenings	Sprinkling and Compacting
	1970: 213	Skilled Unskilled	385 hp crawler tractor (654) 14 ft bulldozer blade (617)	Gas spreader (427) 20 ton truck (339) Handtools (410)	Vibratory roller (538) Water tank (412) 4 ton truck (343)
	221	Skilled Unskilled	385 hp crawler tractor (654) 14 ft bulldozer blade (617)	Spreader box (411) 10 ton truck (337) Handtools (410)	3 wheel roller (539) Water tank (412) 4 ton truck (343)
113	222	Skilled Unskilled	385 hp crawler tractor (654) 14 ft bulldozer blade (617)	Spreader box (411) 10 ton truck (337) Handtools (410)	Pneumatic roller (537) Water tank (412) 4 ton truck (343)
	223	Skilled Unskilled	385 hp crawler tractor (654) 14 ft bulldozer blade (617)	Spreader box (411) 10 ton truck (337) Handtools (410)	Vibratory roller (538) Water tank (412) 4 ton truck (343)
	311	Skilled Unskilled	12 ft motor grader (425)	Gas spreader (427) 20 ton truck (339) Handtools (410)	3 wheel roller (539) Water tank (412) 4 ton truck (343)
	312	Skilled Unskilled	12 ft motor grader (425)	Gas spreader (427) 20 ton truck (339) Handtools (410)	Pneumatic roller (537) Water tank (412) 4 ton truck (343)
	313	Skilled Unskilled	12 ft motor grader (425)	Gas spreader (427) 20 ton truck (339) Handtools (410)	Vibratory roller (538) Water tank (412) 4 ton truck (343)

Table 3.1e: Technical packages (continued).	for waterbound macadam	surfacing in the	1920's, 1950's	, and 1970's
--	------------------------	------------------	----------------	--------------

Period and of Technica	No. 1	Equipment								
Package	Labor	Spreading Crushed Stone	Spreading Screenings	Sprinkling and Compacting						
1970: 321	Skilled Unskilled	l2 ft motor grader (425)	Spreader box (411) 10 ton truck (337) Handtools (410)	3 wheel roller (539) Water tank (412) 4 ton truck (343)						
322	Skilled Unskilled	12 ft motor grader (425)	Spreader box (411) 10 ton truck (337) Handtools (410)	Pneumatic roller (537) Water tank (412) 4 ton truck (343)						
323	Skilled Unskilled	12 ft motor grader (425)	Spreader box (411) 10 ton truck (337) Handtools (410)	Vibratory roller (538) Water tank (412) 4 ton truck (343)						
411	Skilled Unskilled	14 ft motor grader (426)	Gas spreader (427) 20 ton truck (339) Handtools (410)	3 wheel roller (539) Water tank (412) 4 ton truck (343)						
412	Skilled Unskilled	14 ft motor grader (426)	Gas spreader (427) 20 ton truck (339) Handtools (410)	Pneumatic roller (537) Water tank (412) 4 ton truck (343)						
413	Skilled Unskilled	14 ft motor grader (426)	Gas spreader (427) 20 ton truck (339) Handtools (410)	Vibratory roller (538) Water tank (412) 4 ton truck (343)						
421	Skilled Unskilled	14 ft motor grader (426)	Spreader box (411) 10 ton truck (337) Handtools (410)	3 wheel roller (539) Water tank (412) 4 ton truck (343)						
422	Skilled Unskilled	14 ft motor grader (426)	Spreader box (411) 10 ton truck (337) Handtools (410)	Pneumatic roller (537) Water tank (412) 4 ton truck (343)						

Table 3.1e:	Technical packages	for waterbound	macadam s	urfacing	in the	e 1920's,	1950's,	and	1970's
	(continued).			-					

Period and No. of Technical Package		Equipment							
		Labor	Spreading Crushed Stone	Spreading Screenings	Sprinkling and Compacting				
1970:	423	Skilled Unskilled	14 ft motor grader (426)	Spreader box (411) 10 ton truck (337) Handtools (410)	Vibratory roller (538) Water tank (412) 4 ton truck (343)				
	511	Skilled Unskilled	Gas spreader (427) 20 ton truck (339) Handtools (410)	Gas spreader (427) 20 ton truck (339) Handtools (410)	3 wheel roller (539) Water tank (412) 4 ton truck (343)				
	512	Skilled Unskilled	Gas spreader (427) 20 ton truck (339) Handtools (410)	Gas spreader (427) 20 ton truck (339) Handtools (410)	Pneumatic roller (537) Water tank (412) 4 ton truck (343)				
	513	Skilled Unskilled	Gas spreader (427) 20 ton truck (339) Handtools (410)	Gas spreader (427) 20 ton truck (339) Handtools (410)	Vibratory roller (538) Water tank (412) 4 ton truck (343)				
	521	Skilled Unskilled	Gas spreader (427) 20 ton truck (339) Handtools (410)	Spreader box (411) 10 ton truck (337) Handtools (410)	3 wheel roller (539) Water tank (412) 4 ton truck (343)				
	522	Skilled Unskilled	Gas spreader (427) 20 ton truck (339) Handtools (410)	Spreader box (411) 10 ton truck (337) Handtools (410)	Pneumatic roller (537) Water tank (412) 4 ton truck (343				
	523	Skilled Unskilled	Gas spreader (427) 20 ton truck (339) Handtools (410)	Spreader box (411) 10 ton truck (337) Handtools (410)	Vibratory roller (538) Water tank (412) 4 ton truck (343)				

Table 3.1e: Technical packages for waterbound macadam surfacing in the 1920's, 1950's, and 1970's (continued).

Note: All technical packages also include crushed stone (831), screenings (832), and water (833).

Table 3.1f:	Technical 1970's.	packages	for	double	bituminous	surface	treatment	in	the	1920's,	1950's,	and
-------------	----------------------	----------	-----	--------	------------	---------	-----------	----	-----	---------	---------	-----

	Period and No. of Technical Package			Equipment							
			Labor	Sweeping the Base	Distributing Bitumen	Spreading Crushed Stone	Compacting				
	1920:	1111	Skilled Unskilled	Handtools (401)	600 gal pressure distributor (450)	Handtools (401)	6 ton roller (530)				
		1121	Skilled Unskilled	Handtools (401)	600 gal pressure distributor (450)	Spreader box (406) 5 ton truck (331) Handtools (401)	6 ton roller (530)				
	1950:	1111	Skilled Unskilled	Drag broom (440) Pickup truck (335)	1000 gal bitumen distributor(452)	Gas spreader (422) 20 ton truck (333) Handtools (408)	Tandem roller (535)				
116		1112	Skilled	Drag broom (440) Pickup truck (335)	1000 gal bitumen distributor(452)	Gas spreader (422) 20 ton truck (333) Handtools (408)	Pneumatic roller(533)				
		1121	Skilled Unskilled	Drag broom (440) Pickup truck (335)	1000 gal bitumen distributor(452)	Spreader box (409) 10 ton truck (332) Handtools (408)	Tandem roller (535)				
		1122	Skilled Unskilled	Drag broom (440) Pickup truck (335)	1000 gal bitumen distributor(452)	Spreader box (409) 10 ton truck (332) Handtools (408)	Pneumatic roller(533)				
		2111	Skilled Unskilled	Power broom (451)	1000 gal bitumen distributor(452)	Gas spreader (422) 20 ton truck (333) Handtools (408)	Tandem roller (535)				
		2112	Skilled Unskilled	Power broom (451)	1000 gal bitumen distributor(452)	Gas spreader (422) 20 ton truck (333) Handtools (408)	Pneumatic roller(533)				

Table 3.1f: Technical packages for double bituminous surface treatment in the 1920's, 1950's, and 1970's (continued).

Period and No.		Equipment								
of Teo Packao	chnical Je	Labor	Sweeping the Base	Distributing Bitumen	Spreading Crushed Stone	Compacting				
1950:	2121	Skilled Unskilled	Power broom (451)	1000 gal bitumen distributor(452)	Spreader box (409) 10 ton truck (332) Handtools (408)	Tandem roller (535)				
	2122	Skilled Unskilled	Power broom (451)	1000 gal bitumen distributor(452)	Spreader box (409) 10 ton truck (332) Handtools (408)	Pneumatic roller(533)				
1970:	1111	Skilled Unskilled	Rotary broom (441) 60 fwhp tractor (655)	1000 gal bitumen distributor(454)	Gas spreader (427) 20 ton truck (339) Handtools (410)	Tandem roller (540)				
	1112	Skilled Unskilled	Rotary broom (441) 60 fwhp tractor (655)	1000 gal bitumen distributor(454)	Gas spreader (427) 20 ton truck (339) Handtools (410)	Pneumatic roller(541)				
	1121	Skilled Unskilled	Rotary broom (441) 60 fwhp tractor (655)	1000 gal bitumen distributor(454)	Spreader box (411) 10 ton truck (337) Handtools (410)	Tandem roller (540)				
	1122	Skilled Unskilled	Rotary broom (441) 60 fwhp tractor (655)	1000 gal bitumen distributor (454)	Spreader box (411) 10 ton truck (337) Handtools (410)	Pneumatic roller (54])				
	1211	Skilled Unskilled	Rotary broom (441) 60 fwhp tractor (655)	1500 gal bitumen distributor (453)	Gas spreader (427) 20 ton truck (339) Handtools (410)	Tandem roller (540)				
	1212	Skilled Unskilled	Rotary broom (441) 60 fwhp tractor (655)	1500 gal bitumen distributor(453)	Gas spreader (427) 20 ton truck (339) Handtools (410)	Pneumatic roller(541)				

Table 3.1f:	Technical packages 1970's (continued)	for	double	bituminous	surface	treatment	in	the	1920's,	1950's,	and
-------------	--	-----	--------	------------	---------	-----------	----	-----	---------	---------	-----

Period and No. of Technical Package		Equipment							
		Labor	Sweeping the Base	Distributing Bitumen	Spreading Crushed Stone	Compacting			
1970:	1221	Skilled Unskilled	Rotary broom (441) 60 fwhp tractor (655)	1500 gal bitumen distributor(453)	Spreader box (411) 10 ton truck (337) Handtools (410)	Tandem roller (540)			
	1222	Skilled Unskilled	Rotary broom (441) 60 fwhp tractor (655)	1500 gal bitumen distributor(453)	Spreader box (411) 10 ton truck (337) Handtools (410)	Pneumatic roller(541)			

Note: All technical packages also include crushed stone (834) and bitumen (835).

stage in the order given in Table 3.1, and a change in a digit reflects a change in the resource mix for that particular activity or task; the numbering scheme starts over with each period and with each stage. Site preparation, for example, consists of two major activities, brush and tree removal and burning of the debris; in 1920, there are two technical packages, which differ only in the resource mix for the first of these activities. The numbers in parentheses following each piece of equipment and each material in Table 3.1 are their resource numbers; Section 3.12 and Appendix B give further descriptive and quantitative details on all of the resources. Finally, it should be noted that there is a separate list of technical packages for each surfacing material since each requires somewhat different activities and thus different resources, while there is only one list for excavation/hauling and spreading/compaction since the same resources can often be used for various haul distances and degrees of compaction, resulting only in a change in the productivities of the resources.

3.12 Evaluation of Resource Productivities and Costs

Labor, equipment, and materials constitute the resources used in highway construction; a list of their various categories is included as Table 3.2 which also indicates the organization of their resource numbers. Labor is divided into two categories: (1) skilled which includes all heavy equipment operators, drivers of trucks over five cubic yards in capacity, and personnel acting in a supervisory capacity on operations done predominantly by unskilled labor; and (2) unskilled

Table 3.2: The categories of labor, equipment, and materials used in highway construction.

1 -- Labor

- 01 skilled 02 unskilled
- 2 -- Excavate, Load Equipment

01-29 unpowered 30-99 powered

3 -- Transport Equipment

01-29 unpowered 30-99 powered

4 -- Spread, Mix, Heat Equipment

01-19 earthwork and soil/aggregate surface treatments - unpowered 20-39 earthwork and soil/aggregate surface treatments - powered 40-49 bituminous surface treatments - unpowered 50-69 bituminous surface treatments - powered 70-79 concrete surface treatments - unpowered 80-99 concrete surface treatments - powered

5 -- Compact, Finish Equipment

01-29 unpowered 30-99 powered

6 -- Multi-Purpose Equipment

01-29 unpowered 30-99 powered

- 7 -- Miscellaneous Equipment
- 8 -- Materials
 - 01-19 equipment consumables 20-29 materials aiding in construction 30-99 construction materials
- <u>Note:</u> The horse is included as item 601, although it is handled separately in the analysis.

which also includes semiskilled and thus involves common heavy construction laborers, operators of small power tools, drivers of trucks five cubic yards and under in capacity, and drivers of horses, although there are a few exceptions in the 1920's. Equipment is divided into several categories on the basis of the activities in which it is involved. Materials consist of three categories: (1) equipment consumables such as fuel; (2) materials used as aids in construction such as explosives; and (3) construction materials such as aggregate. Lists of all equipment and materials are given in Tables B.2 and B.4, respectively. It should be noted that for each of the three technology periods a separate set of equipment is specified, although this is not the case for labor and materials. This seems only logical in situations where new types of equipment appear; it is also thus in situations where a piece of equipment is apparently carried forward from one period to the next, in that it has likely undergone certain changes which have influenced its quality, productivity, and so forth, and it is thus a different piece of equipment than it was. In the case of labor and materials, this process of change over time is largely ignored, and the assumption made that the change in these resources has been of much less significance than that in equipment.

Resource productivities of the various technical packages available over time in the U.S. might most ideally be obtained from field observations of all packages at one point in time and space. This is obviously impossible, however, and even where some of the older methods might still be in use, as in certain developing countries, it is generally in con-

junction with today's designs which raises a compatibility question, and the institutional and environmental conditions, which play an important role in resource productivity, are undoubtedly rather different. Since cross-sectional data is thus not available, historical has to suffice, although inherent in it are such problems as changes in resource quality, indexing difficulties, lack of detail, and questionable reliability.

In the course of searching for this data, various agencies such as the FHWA and U.S. Bureau of Labor Statistics, associations such as the Associated General Contractors of America, American Road Builders Association, and Construction Industry Manufacturers Association, and equipment manufacturers such as Caterpillar Tractor Company and John Deere were contacted. A thorough search of the literature was also undertaken, including the publications of various groups such as the FHWA, Transportation Research Board, National Cooperative Highway Research Program, American Association of State Highway and Transportation Officials, and American Society of Civil Engineers, the publications of the Engineering Experimental Stations of various universities such as Purdue and Iowa State, various books and handbooks pertaining to highways and their construction including those focusing on methods and costs, cost estimating, engineering, and equipment, and various journals such as Public Roads, Construction Methods and Equipment, and Highway and Heavy Construction. The single most useful source for the productivity data is probably the FHWA production studies noted above, although the various books and handbooks are also very valuable.

The productivities of the labor, equipment, and materials included

in each technical package are usually derived from a variety of sources. generally at the activities level, under typical institutional and environmental conditions, for each stage of construction for the 1920's, 1950's, and 1970's. Section B.12 contains sample calculations of these productivity figures, demonstrating the estimation procedure and also giving an indication of the range in quality and detail found in the original data; Table B.1, then, in Section B.13 lists the full set of estimated resource requirements of each technical package for all stages and all three periods, as well as identifying the sources for each technical package. In order to remain consistent and logical throughout the course of deriving the various resource productivities, certain assumptions were made at the outset and as necessary throughout this phase of the work; some of the more important ones are touched upon here in the following brief discussion of each stage of construction, while a more complete discussion of them and the sources substantiating them can be found in SectionB.11 and in the sample calculations of Section B.12. It should be noted that all assumptions and productivity estimations are made with the project-level analysis in mind.

Site preparation consists of brush, tree, and stump removal and burning of the debris and is measured in hectares or acres, generally including the road and borrow areas. The environmental condition of primary concern here is the amount of vegetation which is taken as medium. As in the spreading/compaction and surfacing stages, the width of the road may be a factor in resource productivity; in such cases,

productivity data for the two road widths designed in Section 3.2 are calculated and averaged to get a figure relatively independent of road width.

Loosen and load constitute the first part of excavation/hauling, while load, haul, unload, and return constitute the second. The units of measure are bank cubic meters or bank cubic yards, and soil and haul distance and condition are the primary environmental factors. Ordinary/ common soil is assumed, which was later made more specifically silty clay, as this is one of only a few materials for which a relationship could be found in the literature between the amount of compaction and subgrade strength; these materials may be from cuts for the road itself or from borrow areas and may be going to the embankment or to spoil. As for the haul, the conditions are assumed to be average to good, and the distance is allowed to vary; in determining the haul distances for the two basic designs under various borrow situations given in Section 3.2, three groups of haul distances arose which in the stage-level analysis are represented by 6, 100, and 800 meter (20, 330, and 2625 foot) hauls.

Spreading/compaction is made up of the activities spread, compact, and finish, is also measured in bank cubic meters or bank cubic yards, and pertains to subgrade materials coming from cuts for the road or from borrow areas and going to fills for the embankment. In this stage, as in surfacing, the quality of the product may be dependent upon the the technology which produces it. Data on compaction for the 1920's is particularly sparse, but with the help of a British publication (70)

relating material density to number of passes for a few materials and rollers, two levels of compaction could be derived for the 1920's horse-drawn roller: (1) 98 percent compaction which falls within the range 95-100 percent of the standard AASHO compaction, the customary level of compaction of subgrades and embankments today, and which represents a compacted to loose ratio of 65 percent, assuming a bank to loose ratio of 80 percent for this soil; and (2) 93 percent compaction which falls below that generally acceptable today and which represents a compacted to loose ratio of 69 percent. The productivity of the powered roller in the 1920's, as well as that of all 1950's and 1970's rollers, is estimated only at 98 percent compaction, or as falling within the 95-100 percent range, as this can reasonably be achieved by such equipment.

The activities involved in surfacing vary with the material, as do naturally the quality of the product and the set of technical packages used in its construction. Spreading, compacting, and finishing the gravel constitute gravel surfacing, which is measured in compacted cubic meters or compacted cubic yards. Although the degree of compaction might again be allowed to vary, compaction in the range of 100-105 percent standard AASHO, as is customary for gravel subbases, bases, and surfaces, can reasonably be achieved by all rollers in the study, and this variable is thus assumed constant. The construction of waterbound macadam consists of spreading very coarse crushed rock, compacting, spreading screenings, and sprinkling, compacting, and finishing; it is measured in compacted cubic meters or compacted cubic yards.

According to the sources discussing waterbound macadam in the 1920's (11, 29), which is when it was most commonly used, nearly a hundred passes are necessary in the final compaction activity in order to properly float the mixture of screenings and water between the crushed rock as a binder; unfortunately, there is no indication of the surface behavior if less compaction is used, so this parameter could not be varied. Double bituminous surface treatment involves sweeping the base, spreading the primer bitumen, binder bitumen, and quite finely crushed stone, compacting (very lightly), spreading binder bitumen and even finer crushed stone, and compacting (very lightly) and finishing; since this is, as its name suggests, simply a surface treatment, it is measured in square meters or square yards, having a finished thickness of only some 2.2 centimeters (7/8 inch). The activities involved in materials production and their transport to the site are included in the cost of the materials rather than as a surfacing activity, although these activities also warrant investigation as to how their technology has changed.

These particular surfaces were selected because they are reasonably flexible in terms of the variety of technical packages that can be used in their construction, they represent a reasonable range of surface materials although they tend toward the low standard end for the 1950's and 1970's, and they were in use in all three periods although waterbound macadam is no longer much used except perhaps as a base. The materials productivity is thus based on designs which pretty much span all three periods. It should also be noted that it is assumed that the

same resource productivities apply whether the material is used as a surface, base, or subbase.

In addition to the stage-specific assumptions, some more generally applicable ones are also necessary. At least in part in order to avoid grossly different environmental and particularly institutional conditions, the study is limited to the U.S.; it thus seems appropriate, within reason, to assume that the health and nutritional conditions, work attitudes, and basic quality of the workforce are relatively uniform, the work is generally performed on a contract basis and payment of labor is by the hour, the equipment is reasonably fully utilized, and the climate is temperate. It is also assumed that the necessary amenities for labor and maintenance and repair facilities for equipment are available, and that the costs of these and of mobilization of labor and equipment essentially balance out for the two resources and are thus not explicitly included. Management is assumed to be average to good, working efficiency to be 80 percent (i.e., a 48-minute hour) when it is not specified for the particular operation, and supervision to be one supervisory person per a crew of ten or so unskilled men in situations where the workforce is predominantly unskilled laborers, mostly arising in the 1920's technical packages. Finally, the parameters of time to complete the job and project scale are not considered, as data are lacking and they are beyond the scope of this analysis.

At this point the resource productivities, in hours of labor or equipment per unit of output or quantity of material per unit of output, have been derived; what is still required for the determination of

the unit costs of the various technical packages (i.e., dollars per unit of output) are the resource costs, in dollars per hour for labor and equipment or dollars per quantity of material. These costs are needed for a few points in time; more specifically, since the influence of resource prices and thus factor substitution on technology change is of interest in this study, sets of resource costs representative of each technology period are necessary. The prices of 1930, 1956, and 1974 are thus used throughout the analysis. The economic situation at the time of the 1920's technology makes selection of a year rather difficult; however, since equipment purchase costs are mostly available for 1930 and only an extrapolated form of the equipment index exists prior to 1929, 1930 seems an appropriate year, a time when prices were on the decline but had not yet reached the bottom. The year 1974 is selected as the most current year for which a full set of cost data would be available. Finally, 1956 is selected as being in a relatively similar position, some two-thirds of the way through the time span covered by the technology period. The difficulty, of course, is arriving at a full set of labor, equipment, and materials prices for these particular years, necessitating a further search of the literature and pursuit of various contacts in the field.

Equipment is the most difficult resource to price, its hourly price involving ownership costs of depreciation and interest, maintenance, and miscellaneous items such as insurance, tax, and storage and operating costs of fuel and lubrication. Hourly rates for equipment may be found throughout the literature in various forms (e.g., hourly ownership cost

and fuel consumption), but because of the various assumptions hidden in such figures and the difficulty of adjusting them to various time periods, it was decided to estimate hourly equipment rates from scratch. This necessitated the collection of certain basic data about each piece of equipment, including investment cost, life in years, hours used per year, maintenance as a percentage of investment cost, and rate of fuel consumption, and certain assumptions such as the use of a capital recovery factor to arrive at interest and depreciation, selection of 5.5 percent of average annual investment as the charge for miscellaneous items, and estimation of lubrication as 35 percent of fuel cost. The basic data for each piece of equipment, with the possible exception of the rate of fuel consumption, by and large came from a single source for each technology period. The Associated General Contractors of America were responsible for the 1920's source (5), while Peurifoy authored both the 1950's and 1970's sources (66, 67); the data presented in each are similar enough in form to suggest that there may be a certain amount of coordination. Adjusting the hourly rate to various price periods simply involves adjusting the investment cost, interest rate, and fuel cost. Since each piece of equipment is taken as somewhat unique to its time period, its purchase price at the time of its use is inflated or deflated by means of an index. For the period 1929-1965, the U.S. Office of Business Economics index for private purchases of construction machinery (110) is directly used; the U.S. Bureau of Labor Statistics wholesale price index (91) for construction machinery and equipment is used to extrapolate this index forward from 1965, and

the same index for industrial commodities to extrapolate it backward from 1929 resulting in an index covering the entire period 1913-1974. Interest rates for the three years are taken from the <u>Federal Reserve</u> <u>Bulletin's</u> statistical tables (26), while fuel is costed as a material. For further details on any aspect, see Section B.21.

••

The draft animal, a horse in this study, is part of many of the 1920's technical packages; although it is in essence a piece of equipment, it is treated separately here as its cost is derived somewhat differently. An investment cost and hourly rate including upkeep are obtained for the 1920's and are inflated as necessary using the U.S. Bureau of Labor Statistics wholesale price indexes (91).

Labor and materials are handled very similarly. Prices are obtained for each of the three periods with only occasional use of indexes (the wholesale price indexes of the U.S. Bureau of Labor Statistics [91, 96]), and the same basic source is used to price a particular item over as many periods as possible (e.g., materials quotations in the <u>Engineering News-Record</u> [25] are used to price all but a couple of the construction materials for all three periods). The primary sources include <u>Engineering News-Record</u> (25), U.S. Bureau of Labor Statistics (91, 96), <u>Survey of Current Business</u> (78) and one of its supplements (109), and certain of the sources for resource productivities especially for the 1930's prices (e.g., 29). The hourly rate for skilled and unskilled labor is that which the contractor pays out for union labor for 1956 and 1974; the same source was not available for 1930, however, and it seems likely that the wage rate which is used is a mix of union and nonunion rates. As for materials, wholesale prices are

used, and the price for construction materials includes delivery as well as production. For further discussion of pricing the horse, labor, and materials see Sections B.22, B.23, and B.24, respectively.

As discussed in the methodology of the data analysis in Section 2.3, a wide range of economic conditions is needed in order to ascertain the set of efficient technical packages for each stage of construction. for each period and over all periods. The set of economic conditions developed for this purpose is given in Table 3.3. The figures for the U.S. for 1930, 1956, and 1974 and for a developing country today come directly from the tables and discussion in Section B.2. It should be noted that these conditions reflect a rather extreme case of a developing country. The wage rates reflect an abundance of unskilled labor and a relative shortage of skilled labor, while the interest rate suggests a lack of capital; the prices of heavy equipment (i.e., powered equipment or unpowered equipment attached, in some way, to powered equipment), equipment consumables, and materials assisting in construction suggest they are imported, while the price of light equipment (i.e., unpowered equipment or that which may be animal-powered) suggests it is locally produced, and that of the horse that it is relatively available. The set of miscellaneous conditions exists for the purpose of developing alternative combinations and conditions within the four groups of factors; the interest rate and labor wages represent an even more extreme case of a developing country. It might also be noted that construction materials are missing from the list in Table 3.3; these materials are not needed for the stage-level analysis, as materials productivity is assumed to be constant over all relevant technical packages,

	Economic Conditions						
	Units	<u>l</u>	United State	Developing	Miscellan-		
Resource		<u>1930</u>	1956	1974	<u>Country</u>	eous	
Labor - skilled	\$/hr	0,88	3,17	9,86	0,20	0.75	
- unskilled	\$/hr	0,46	2.36	7.88	0.05	0.01	
Interest Rate	2	5.0	4.5	11.5	20.0	30.0	
Equipment - light	index	30.1	89,7	176,3	15.0	-	
- heavy	index	30,1	89.7	176.3	350.0	-	
Coa 1	\$/ton	4.00	8.91	32.97	40.00	_	
Gasoline	\$/gal	0.194	0.25	0.426	2,00	-	
Diesel Fuel	\$/ga]	0.091	0.15	0.355	1.50	-	
Dynamite	\$/1b	0.206	0.248	0.321	0,500	-	
Fuse	\$/100 ft	0.71	1.22	3.44	4.00	-	
Caps	\$/100 count	1.08	1.85	5.22	6,00	-	
Kerosene	\$/gal	0,057	0.103	0.232	0.700	-	
Horse	\$/hr	0.12	0.22	0.44	0.05	-	
	Resource Labor - skilled - unskilled Interest Rate Equipment - light - heavy Coal Gasoline Diesel Fuel Dynamite Fuse Caps Kerosene Horse	ResourceUnitsLabor - skilled\$/hr- unskilled\$/hrInterest Rate%Equipment - lightindex- heavyindexCoal\$/tonGasoline\$/galDiesel Fuel\$/galDynamite\$/lbFuse\$/100 ftCaps\$/100 countKerosene\$/galHorse\$/hr	Resource Units 1930 Labor - skilled \$/hr 0.88 - unskilled \$/hr 0.46 Interest Rate % 5.0 Equipment - light index 30.1 - heavy index 30.1 Coal \$/ton 4.00 Gasoline \$/gal 0.194 Diesel Fuel \$/gal 0.091 Dynamite \$/lb 0.206 Fuse \$/100 ft 0.71 Caps \$/100 count 1.08 Kerosene \$/gal 0.057 Horse \$/hr 0.12	Resource Units 1930 1956 Labor - skilled \$/hr 0.88 3.17 - unskilled \$/hr 0.46 2.36 Interest Rate % 5.0 4.5 Equipment - light index 30.1 89.7 - heavy index 30.1 89.7 Coal \$/ton 4.00 8.91 Gasoline \$/gal 0.194 0.25 Diesel Fuel \$/gal 0.091 0.15 Dynamite \$/100 ft 0.71 1.22 Caps \$/100 count 1.08 1.85 Kerosene \$/gal 0.057 0.103 Horse \$/hr 0.12 0.22	Resource Units 1930 1956 1974 t Labor - skilled \$/hr 0.88 3.17 9.86 - unskilled \$/hr 0.46 2.36 7.88 Interest Rate % 5.0 4.5 11.5 Equipment - light index 30.1 89.7 176.3 - heavy index 30.1 89.7 176.3 Coal \$/ton 4.00 8.91 32.97 Gasoline \$/gal 0.194 0.25 0.426 Diesel Fuel \$/gal 0.091 0.15 0.355 Dynamite \$/100 ft 0.71 1.22 3.44 Caps \$/100 count 1.08 1.85 5.22 Kerosene \$/gal 0.057 0.103 0.232 Horse \$/hr 0.12 0.22 0.44	Resource Units 1930 1956 1974 t Country Labor - skilled \$/hr 0.88 3.17 9.86 0.20 - unskilled \$/hr 0.46 2.36 7.88 0.05 Interest Rate % 5.0 4.5 11.5 20.0 Equipment - light index 30.1 89.7 176.3 15.0 - heavy index 30.1 89.7 176.3 350.0 Coal \$/ton 4.00 8.91 32.97 40.00 Gasoline \$/gal 0.194 0.25 0.426 2.00 Diesel Fuel \$/gal 0.091 0.15 0.355 1.50 Dynamite \$/lb 0.206 0.248 0.321 0.500 Fuse \$/100 ft 0.71 1.22 3.44 4.00 Caps \$/100 count 1.08 1.85 5.22 6.00 Kerosene \$/gal 0.057 0.103 0.232 0	

Table 3.3: The set of economic conditions used in the efficiency analysis at the stage level (Source: Section B.2).

<u>Note</u>: Light equipment is unpowered equipment or that which may be towed by horses, while heavy equipment is powered or unpowered equipment which is somehow attached to powered equipment. The ratio of the index given in this table to that at the time a particular piece of equipment was in use is used to inflate or deflate the investment cost of that particular piece of equipment at the time of its use.

and comparisons among various types of surfaces are relatively meaningless at the stage level since their quality varies.

3.13 Alternative Technical Packages and Their Costs

As a first step in the analysis of the alternative technical packages and their costs, Figure 3.1 presents a graphical representation of some of the results. For each stage of construction and each technology period, the amount of investment in 1974 dollars and the amount of labor required to achieve a certain rate of production is plotted for each technical package. The labor component is measured in terms of unskilled men which is derived by summing over the number of skilled men, weighted by the ratio of skilled to unskilled wages for the period of the technology, and the number of unskilled men; the rate of production is expressed in basically arbitrary hourly units, being, for example, 100 bank cubic meters per hour for excavation/hauling and spreading/compaction. Here, as throughout the remainder of the analysis, various haul distances, levels of compaction, and surfacing materials are handled separately, as these parameters affect the resource productivities and thus costs. Such a pictorial representation of the alternative technical packages is useful in terms of developing a general impression of how technology has changed. Moreover, if it can reasonably be assumed that investment is an appropriate measure of capital, as is often done in the economic literature and as is discussed further for the case at hand in Section 4.11, then these graphs are production isoquants, depicting the set of efficient technical packages for each stage of construction for

Figure 3.1a: Labor and capital requirements of each technical package for site preparation at the rate of 1 hectare per hour, for each technology period (source: Table B.6).

Figure 3.1ba: Labor and capital requirements of each technical package for excavation/hauling at 6 meters at the rate of 100 bank cubic meters per hour, for each technology

Figure 3.1bc: Labor and capital requirements of each technical package for excavation/hauling at 800 meters at the rate of 100 bank cubic meters per hour, for each technology period (source: Table B.6).

Figure 3.1c: Labor and capital requirements of each technical package for spreading/compaction at the rate of 100 bank cubic meters per hour, for each technology period (source: Table B.6).

•

Figure 3.1d: Labor and capital requirements of each technical package for gravel surfacing at the rate of 100 compacted cubic meters per hour, for each technology period (source: Table B.6).

Figure 3.le: Labor and capital requirements of each technical package for waterbound macadam surfacing at the rate of 100 compacted cubic meters per hour, for each technology period (source: Table B.6).

Figure 3.1f: Labor and capital requirements of each technical package for double bituminous surface treatment over gravel at the rate of 100 square meters per hour, for each technology period (source: Table B.6).

141

.

each technology period and over all periods; Table 3.4 summarizes these graphs by presenting the efficient set so determined in list form.

In situations where the lifetime, maintenance as a percentage of investment cost, and fuel consumption vary considerably among the different pieces of equipment, as is particularly the case for the 1920's (see Table B.2), a perhaps more reliable measure of capital is its hourly ownership and operating cost; a numerical, as opposed to graphical, efficiency analysis of the sort outlined in Section 2.31 thus becomes necessary. The results of this are included here as Table 3.5, where the set of efficient technical packages is given for each stage, for each technology period and over all periods. It should be noted, however, that this efficient set is restricted to those technical packages which arise as least cost under some reasonable mix of the conomic conditions given in Table 3.3, and it may not thus be all-inclusive.

Four hundred possible combinations of economic conditions arise from the four groups of resources, each with four or five economic conditions. Certain combinations are, of course, not plausible, including for example:* (1) 1974 labor and 1930 equipment; (2) 1956 labor, miscellaneous interest rate, and 1930 equipment; and (3) miscellaneous labor and 1930 equipment; only three of the technical packages, which show up as being least cost under some of the four hundred combinations, appear only under such implausible combinations and are thus eliminated from the efficient set. Each of the technical packages in Table 3.5 thus

^{*}Resource groups not included in the combination listed may take any value.

Table 3,4;	Graphical efficiency analysis results the set of efficient technical packages for each stage of con- struction, from among those available in each technology period alone and in all periods combined (source: Figure 3.1 and Table B.6),
------------	--

			Technology Period				
				All Periods			
Stage	1920	1950	1970	1920	1950	1970	
Site Preparation	11,21	11,31	21,31	11	-	21,31	
Excavation/Hauling -6M]-],4-3,5-4,7-6	9-9.10-10	12-15,13-16	 _	9-9	12-15 13-16	
-100M	1-1,5-4,7-6,8-7	7-7	8-11	1-1,5-4	-	8-11	
-800M	1-1,8-7,10-8	4-4	4-1 ^a ,8-11,10-13	1-1	-	4-1 ^a ,8-11,10-13	
Spreading/Compaction -93%	11,21	-	-	_	-	-	
-98%	12,22,32	34,44	31 ^a ,41	-	-	31 ^a ,41	
Grave) Surfacing	11,21,22	32,42	32,42	-	32	32,42	
Waterbound Macadam Surfacing	111,211	312,412	311,312,411,412	-	312,412	311,312,411,412	
Double Bituminous Surface Treatment over Gravel	1111,1121	2112,2122	1112,1122,1212,1222	-	-	1112,1122,1212, 1222	

^aThese technical packages are barely efficient in that the investment costs of 800M exc/haul tp 8-11 and of 98% spr/comp tp 41 are only very slightly higher than those of tp 4-1 and tp 31, respectively, although their labor requirements are significantly less.

	·····		Technology Period				
				All Periods			
Stage	1920	1950	1970	1920	1950	1970	
Site Preparation	11,21	31	31	11	-	31	
Excavation/Hauling							
- 6M	1-1,4-3,5-4,7-6	9-9,10-10	12-15,13-16	5 - 4	9-9	13-16	
-100M	1-1,1-2,5-4,7-6,8-7,9-7	7-7	8-11	1-1,1-2,5-4,8-7	-	8-)]	
- 800M	1-1,1-2,2-1,2-2,6-5,8-7, 9-7,10-8	4-4	8-11	1-1,1-2,2-1,2-2,8-7	-	8-11	
Spreading/Compaction							
-93%	11,21	-	-	-	-	-	
-98%	11,21,12,22,32	33,34,43,44	41	21	-	41	
Gravel Surfacing	11,21,12,22	32,42	31,41	21	-	31,41	
Waterbound Macadam Surfacing	111,211	312,412	311 ,411	-	-	311,411	
Double Bituminous Surface Treatment over Gravel	1111,1121	2112,2122	1112,1121,1122	-	-	1112,1121,1122	

Table 3.5;	Numerical efficiency analysis results the set of efficient technical packages for each stage of con-
	struction, from among those available in each technology period alone and in all periods combined.

•
arises under one or more sets of conditions constituting a reasonable scenario such as: (1) the U.S. in 1974, 1956, or 1930 or some slight variation (e.g., 1974 conditions except developing interest rate, 1956 conditions except 1930 interest rate and/or labor, or 1930 conditions except 1956 interest rate and/or developing horse and/or labor); (2) a reasonably typical developing country or some slight variation (e.g., 1930 or miscellaneous labor, miscellaneous interest rate, and/or 1974 equipment); (3) the U.S. in the future as labor continues to increase in cost relative to other resources (e.g., 1956 conditions except 1974 labor or 1930 conditions except 1956 labor); (4) a reasonably advanced developing country (e.g., 1930 labor, 1974 interest rate, 1956 equipment, and 1930, 1956, or developing horse); and (5) a capital-rich developing country with somewhat of a labor shortage (e.g., 1930 or 1956 labor and interest rate and 1974 or developing equipment) or with an abundance of unskilled and shortage of skilled labor (e.g., developing or miscellaneous labor, 1930, or 1956 interest rate, and 1974 or developing equipment). It is interesting to note that, except in a few cases, the most labor-intensive technical packages of the 1920's given in Table 3.5 arise only under the conditions given in (2) above with a 1956 or 1974 horse, suggesting the importance of the draft animal in raising crew productivity.

In order to begin to address the issue of efficiency and substitution and their role in technology change, it is necessary to apply, to the resource requirements of each of the technical packages in each technology period, the factor prices at each of the price periods; the set of unit costs, which constitute the results of this, are given in Table B.5.

Table 3.6, then, presents a subset of these results: the set of leastcost, and thus best-practice, technical packages for each stage of construction, at the prices of 1930, 1956, and 1974, in each of the 1920's, 1950's, and 1970's technology periods. Technical packages with unit costs within ten percent of that of the least-cost technical package are also included in Table 3.6 in order to allow for reasonable error, accounting for those cases where more than one technical package is listed for a particular technology and price period. Generally, a second technical package is the most that is necessary to include, with the exception of the waterbound macadam surfacing and double bituminous surface treatment stages; these two stages involve a greater number of major activities or tasks for which different resource packages can be specified, and thus each activity or task potentially has a lesser part in the whole, and correspondingly, a change in its resource package potentially has a lesser impact on total unit cost. All further analyses involving the best-practice packages include those which appear as leastcost at the prices of the period coincident with that of the technology; in cases where more than one package is involved, the data for the various packages is averaged as necessary for the analysis.

Figure 3.2 is presented to give some indication of the magnitude of technology change in unit cost terms. Figure 3.2a consists of plots, for each stage of construction, of the unit costs of the best-practice technical packages of each technology period at the prices of 1930, 1956, and 1974, indicating the transition in costs that actually occurred as well as that which would have occurred had technology not changed as it

		Technology Period	
<u>Stage</u>	1920	1950	1970
Site Preparation	21	31	31
Excavation/Hauling			
-6M	7-6	9-9,10-10/10-10,9-9/10-10,9-9	13-16,12-15/13-16/13-16
- 100M	7-6,9-7/7-6/7-6	7-7,4-4	8-11
- 800M	10-8	4-4	8-11
Spreading/Compaction			
-93%	21	-	-
-98%	32	44/44,34/44,34	41,31
Gravel Surfacing	22	42,32	31,41
Waterbound Macadam Surfacing	211	412,312,212,112,512	311,411,111,211
Double Bituminous Surface Treatment over Gravel	1121	2122,1122,2121,1121,2112,1112/ 2122,1122,2112,1112,2121,1121, 2111,1111/2112,2122,1112,1122, 2111,2121,1111,1121	1122,1222,1112,1121,1212, 1221,1111,1211/1112,1212, 1111,1211,1122,1222,1121/ 1112,1212,1111,1211

Table 3.6: The set of least-cost technical packages for each stage of construction, at the prices of 1930, 1956, and 1974, from among those available in each technology period (source: Table B.5).

<u>Note</u>: The slashes separate the packages which appear as least-cost at 1930/1956/1974 price periods; if there are no slashes, then the same packages appear as least-cost at each price period. The least-cost technical packages of the 1970's are least-cost among all technical packages at all three price periods. Least-cost includes those packages within 10 percent of the least-cost package, the order of the listing being from the lowest to highest in cost.

۲ÿ۱

,

.

Figure 3.2a: Unit costs of the best-practice technical packages of each technology period for each stage of construction, at the prices of 1930, 1956, and 1974 (source: Table B.5).

(Figure 3.2a continued)

Note: Technology periods: ● 1920, ▲ 1950, ■ 1970.

----- Transition in costs that actually occurred.

---Transition in costs that would have occurred had technology not changed.

Best-practice packages are those which appear as least-cost, or within 10 percent of it, at the prices of the period coincident with that of the technology; where more than one package is involved, the data for the various packages is averaged.

Figure 3.2b: Labor and capital components of the unit costs of the best-practice technical packages of each technology period for each stage of construction, at the prices of 1974 (source: Table B.5).

TECHNOLOGY PORIOD

Note: Unit costs: 🗌 labor, 🖾 capital, 🖾 total.

Best-practice packages are those which appear as least-cost, or within 10 percent of it, at the prices of the period coincident with that of the technology; where more than one package is involved, the data for the various packages is averaged.

^aIncludes \$19.09 of materials.

.

did. In order to investigate labor and capital shares of the unit costs, Figure 3.2b presents bar charts, again for each stage, of the labor and capital components, in terms of 1974 unit costs, of the bestpractice packages in each period. In an effort to avoid the biases introduced by the use of a particular set of factor prices and to focus more directly on changes in quantities of resources, Figure 3.3 uses labor measured in units of unskilled men and capital in 1974 investment dollars required for a particular rate of production; Figure 3.3a presents the labor and capital requirements of the best-practice packages of each of the three technology periods as a percentage of those of the 1920's, while Figure 3.3b does the same using the 1950's as the base.

Returning to the questions of efficiency and substitution and their role in technology change brings up Tables 3.6 and 3.7. Table 3.6 gives an indication of the extent of substitution, brought about by changes in factor prices, in technology change, as it gives the best-practice packages for each technology period at the prices of 1930, 1956, and 1974. In order to investigate the role of efficiency in technology change, a method based on that of Salter (73), as discussed in Section 2.31, is used to separate the impact of efficiency from that of bias, technology change being represented by movements among the best-practice packages over time. Table 3.7 presents the results of this analysis; the figures represent the percentage change (decrease [-] or increase [+]) in the quantity of labor and of capital, required for the various stages of construction, which can be attributed to efficiency and to

Figure 3.3a: Labor and capital requirements of the best-practice technical packages of each technology period as a percentage of those of the 1920's, for each stage of construction (source: Table B.6).

(Figure 3.3a continued)

- <u>Note</u>: \Box Percent of 1920's labor, where labor is measured in unskilled men required for the given rate of production.
 - Percent of 1920's capital, where capital is measured in investment, in 1974 dollars, required for the given rate of production.
 - ---- Indicates the level to which the quantities of labor and capital of the 1950's, relative to those of 1920's, fell due to efficiency; the further drop, generally of labor, below this line and rise, generally of capital, above it represents the changes due to bias (from Table 3.7).

Best-practice packages are those which appear as least-cost, or within 10 percent of it, at the prices of the period coincident with that of the technology; where more than one package is involved, the data for the various packages is averaged.

I

Figure 3.3b: Labor and capital requirements of the best-practice technical packages of each technology period as a percentage of those of the 1950's, for each stage of construction (source: Table B.6).

(Figure 3.3b continued)

Note: Percent of 1950's labor, where labor is measured in unskilled men required for the given rate of production.

> F E

Percent of 1950's capital, where capital is measured in investment, in 1974 dollars, required for the given rate of production.

---- Indicates the level to which the quantities of labor and capital of the 1970's relative to those of the 1950's fell due to efficiency; the further drop, generally of labor, below this line and rise, generally of capital, above it represents the changes due to bias (from Table 3.7).

Best-practice packages are those which appear as least-cost, or within 10 percent of it, at the prices of the period coincident with that of the technology; where more than one package is involved, the data for the various packages is averaged.

					_					
	Distribution of the Percentage Change									
	100•(Res	ource50-Resou	irce ₂₀)/I	lesource20	100•(Resource70-Resource50)/Resource					
Stage and Resource	Total ^a	Efficiency ^b	Bias ^b	Bias ^b	Total ^a	Efficiency ^b	Bias ^b	Salter's Bias ^D		
Site Preparation										
Labor	-37.8	-36.2	-1.6	+7.23	-13.2	-14.9	+1.7	+3.01		
Capital	-55.0	-36.2	-18.8	-20.4	-32.6	-14.9	+17.7	-19.4		
Excavation/Hauling					ł					
-6M Labor	-67.1	-54.3	-12.8	-19.3	-70.4	-38.2	-32,2	-144.		
Capital	-53.4	-54.3	+0.9	+25.2	+12.0	-38.2	+50,2	+128.		
-100M Labor	-88.2	-69.9	-18.3	-169.	-48.6	-41.8	-6.8	-22.6		
Capital	-30.4	-69.9	+39.5	+197.	-28.5	-41.8	+13.3	+17.1		
-800M Labor	-93.8	-85.1	-8.7	-166.	-40.8	-32.3	-8.5	-23.5		
Capital	-71.6	-85.1	+13.5	+189.	-16.4	-32.3	+15.9	+17.9		
Spreading/Compaction										
-98% Labor	-83.6	-75.7	-7,9	-0.607	-64.9	-55.3	-9,6	-42.8		
Capital	-83.4	-75.7	-7.7	+1.30	-21.3	l -55.3	+34.0	+81.5		
Gravel Surfacing										
Labor	-94.9	-89.9	-5.0	-87.5	-20.0	-19.7	-0.3	-13.3		
Capital	-72.5	-89.9	+17.4	+355.	+21.0	-19.7	+40.7	+37.2		
Waterbound Macadam				1						
Surfacing				1	i i					
Labor	-88.5	-78.9	-9,6	-41.3	-27.0	-29.2	+2.2	-11.1		
Capital	-66.5	-78.9	+12.4	+149.	+5.0	-29.2	+34.2	+33.4		
Double Bituminous		,								
Surface Treatment										
over Gravel						1	1			
Labor	-92.9	-88.7	-4.2	-46.3	-48.8	-41.5	-7.3	~9.55		
Capital	-79.6	-88.7	+9.1	+143.	-31.5	-41.5	+10.0	+23.2		
oup (ou)	1 / 10			''-'			1	1		

Table 3.7: Distribution of the percentage change in the quantity of labor and capital required by the best-practice packages, for each stage of construction, in the 1920's to the 1950's and the 1950's to 1970's transitions (source: Tables B.5 and B.6 and Figure 3.3).

(Table 3.7 continued)

^aFrom Figure 3.3.

^bEquations for calculating these values are given and discussed in Section 2.31. Calculation of columns 2 and 6, efficiency, and columns 4 and 8, Salter's bias, are based on Salter's work, while columns 3 and 7 are the difference between the total percentage change from Figure 3.3 and that due to efficiency.

bias, in the transition from the 1920's to 1950's and in that from the 1950's to 1970's. It should be noted that Salter's measure of bias is an indication of what would happen, in terms, for example, of reducing labor and augmenting capital, if it could be done, and not of what actually happened; columns 3 and 7 of Table 3.7, then, combine the efficiency results with the data in Figure 3.3 to derive the actual percentage change in inputs due to bias.

This thus completes the presentation of the results of the stagelevel analysis. Further discussion of these results and their implications, as well as some limited sensitivity testing of them, is left to Chapter 4.

3.2 Project Designs and Costs

Highway construction and use are not independent, making it important to extend the stage-level analysis to the project-level and to look at some alternative project designs as well as construction technologies. Differences among designs lie primarily in the quality of the final product and in the quantities of the various stages in the overall project. In the course of the stage-level analysis, meaningful comparisons could not be made among the various surfaces because the nature of the surface itself, both in terms of the material and in its level of compaction and general quality of construction (although the latter parameter is assumed constant), affects the quality of the final product. Somewhat similarly, the degree of compaction in the spreading/compaction stage potentially interacts with the other stages of construction in

terms of project quantities and/or affects the quality of the final product. Site preparation and excavation/hauling, on the other hand, have no impact on the quality of the final product, as a cubic meter of excavation/hauling is the same regardless of how it is done. Noteworthy in the case of excavation/hauling are the variety of possible haul distances, a condition which varies widely among projects, and the range of possible construction scenarios, in terms of line hauling and borrowing, which affects the quantity of site preparation as well as the set of haul distances. Maintenance and user costs over the life of the project for a particular traffic profile serve as a very convenient, and measurable, indicator of the quality of the final product. The data required for the project-level analysis thus consists of the construction quantities and least-cost technical packages (and thus unit costs from the stagelevel analysis) at various technology and price periods, for the various stages of construction of a representative set of alternative projects; also needed are the maintenance and user costs associated with these projects.

3.21 Selection of Projects

In investigating the interaction of design and technology in highway construction and use, three groups of projects are of interest, as indicated in Table 3.8. Before proceeding, the numbering scheme of the projects might be mentioned. The L and H indicate the level of design standards, which will be discussed shortly; the first digit represents the surfacing materials, the second the subgrade strength and surface

Project Number	Design Standards/ Initial Traffic (ADT)	Subbase/Base/ Surface Materials	Subgrade Strength (%CBR)/%CBR for which Surface Designed	Line Hauling/ Sideborrowing/ Pit Borrowing
L 114	1ow/80	-/-/gravel	7.0/7.0	short/-/near
L 214	1 ow/80	-/gravel/wbm	7.0/7.0	short/-/near
L 314	1ow/80	-/gravel/dbst	7.0/7.0	short/-/near
H 215	high/400	-/gravel/wbm	7.0/7.0	long/-/near
H 315	h1gh/400	-/gravel/dbst	7.0/7.0	long/-/near
H 415	high/400	gravel/wbm/dbst	7.0/7.0	long/-/near
L 314]]ow/80	-/gravel/dbst	7,0/7,0	short/-/near
L 324	1ow/80	-/gravel/dbst	3.5/3.5	short/-/near
L 334	low/80	-/gravel/dbst	3.5/7.0	short/-/near
H 315	high/400	-/gravel/dbst	7.0/7.0	long/-/near
H 325	high/400	~/gravel/dbst	3.5/3.5	long/-/near
Н 335	high/400	-/gravel/dbst	3,5/7,0	long/-/near
L 311	1ow/80	-/gravel/dbst	7.0/7.0	short/lside/-
L 314	1ow/80	-/gravel/dbst	7.0/7.0	short/-/near
L 315	1aw/80	-/gravel/dbst	7.0/7.0	long/-/near
H 312	h1gh/400	-/gravel/dbst	7.0/7.0	short/2 sides/near
H 313	high/400	-/gravel/dbst	7.0/7.0	long/2 sides/near
H 315	h1gh/400	-/gravel/dbst	7.0/7.0	long/-/near
L 316	1 ow/80	-/gravel/dbst	7.0/7.0	short/-/far
L 317	1 ow/80	-/gravel/dbst	7.0/7.0	long/-/far
H 317	high/400	-/yravel/dbst	7.0/7.0	long/-/far

Table 3.8: A list of the projects considered in the analysis and their basic characteristics.

.

(Table 3.8 continued)

Note: Design standards and traffic profile details:

	Low Standard	<u>High Standard</u>
Design Speed	25 mph	60 mph
Maximum Grade	9 %	4 (some 6) %
Minimum Radius of Curvature	230 feet	1,300 feet
Minimum Length of Vertical Curves	4 00 feet	600 feet
Initial Traffic	80 ADT	400 ADT
Truck Percentage	20 %	30 %
Annual Growth Rate Over 15 Years	10 %	10 %

Low Standard Cross Section:

High Standard Cross Section:

162

L

design combination, and the third the excavation/hauling scenario. One numerical parameter is varied in each set of projects while the others are held constant, for the low and high standard design alternatives.

In the first group of projects, the surfacing material is allowed to vary, the surfaces being well-graded gravel (p L114), waterbound macadam with the gravel as a base (p L214, H215), double bituminous surface treatment with the gravel as a base (p L314, H315, and double bituminous surface treatment with the waterbound macadam as a base and the gravel as a subbase (p H415). As indicated in Section 3.12, these particular surfaces were selected because of their use in all three technology periods, being reasonably common as surfaces in the 1920's while more recently being used on relatively low volume, rural roads, and because of their flexibility in terms of being able to be constructed using alternative technical packages. Construction, maintenance, and user costs may be expected to vary among these projects.

In the second project group, the degree of compaction of the subgrade is allowed to vary and with it the design of the surface. Three combinations occur: (1) a 7 percent California Bearing Ratio* (CBR)

^{*}CBR is a measure of the strength of the subgrade and can be expressed as a function of the soil type, its density, and its moisture content, but as noted in Section 3.12 such data seems to be available for only a few materials, one being silty clay. A soaked CBR of 7 percent corresponds to compaction in the range of 95 to 100 percent of the standard AASHO compaction of silty clay within ± 2 percent of the optimum moisture content (i.e., the 98 percent compaction case), while a soaked CBR of 3.5 percent corresponds to 91 to 96 percent compaction of the same (i.e., the 93 percent compaction case) (116). It might further be noted that these are relatively low CBR values, resulting in the need for rather thick surfacing layers.

with a suitable surface thickness (p L314, H315); (2) a 3.5 percent CBR with a suitable surface thickness (p L324, H325); and (3) a 3.5 percent CBR with a surface thickness suitable for a 7 percent CBR (p L334, H335). A comparison of the first two cases yields insight into the trade-off in construction costs between the compacting and affected activities and the surfacing activities, while the maintenance and user costs may be expected to be the same. Comparison of the last case with each of the first two yields insight into the trade-off between construction costs now, in terms of the compacting and affected activities or the surfacing activities, and maintenance and user costs later.

In the third group of projects, the scenario for the excavation and hauling tasks is allowed to vary. It is assumed that all fill material for the embankment comes from cuts for the road (termed line haul) and from borrow areas. Assuming borrowing from alongside the road is possible, various scenarios arise: (1) short line haul with sideborrow on one side (p L311); (2) short line haul with sideborrow on both sides and near pit borrow as necessary (p H312); (3) long line haul with sideborrow on two sides and near pit borrow as necessary (p H313); (4) short line haul with near pit borrow (p L314); and (5) long line haul with near pit borrow (p L315, H315). Assuming borrowing can only be done at some distance from the road (e.g., 305 meters or 1000 feet) as is more common today, a couple scenarios arise: (1) short line haul with far pit borrow (p L316); and (2) long line haul with far pit

borrow (p L317, H317). Maintenance and user costs may be expected to be constant over these projects, with the trade-offs showing up in the construction costs.

Also varying in each of these project groups are the design standards and traffic. While it seemed desirable at the outset to use design standards commensurate with each technology period, this proved to be unfeasible due to a paucity of design data for the 1920's (about all that could be found were cross sections indicating road width and surface thickness); instead, it was decided to use today's designs for two-lane, low volume, rural roads. As it is desirable to actually build rather different roads for different design standards, rolling terrain with reasonably steep grades is selected, with the road crossing it in going from point A to point B. Two sets of design standards at reasonably opposite ends of the spectrum, as given in the note to Table 3.8. are defined with the help of such sources as the American Association of State Highway Officials (4), Oglesby and Altenhofen (59), and Vance (112). The low standard design has a 4.88 meter (16 foot) surface and two 0.61 meter (2 foot) shoulders, grades up to 9 percent, and a design speed of some 40 kilometers per hour (25 miles per hour); thus it essentially follows the contour of the land, with cuts and fills primarily resulting from the ditches and the 0.30 meter (1 foot) embankment, respectively. The high standard design, on the other hand, had a 6.71 meter (22 foot) surface and two 1.52 meter (5 foot) shoulders, grades up to 4 percent (a few up to 6 percent to avoid excessive cuts), and a design speed of

some 97 kilometers per hour (60 miles per hour); it cuts through the terrain with very large cuts and fills, resulting in some thirty-five times the cut and five times the fill quantities of the low standard design. In overall length, the two roads are about the same, being 17.0 kilometers (10.6 miles) and 16.6 kilometers (10.3 miles), respectively. In line with these two design standards and their various surfaces, two sets of traffic are specified; an initial average daily traffic (ADT) of 80 with 20 percent trucks is used for the low standard design, and one of 400 with 30 percent trucks for the high standard, each with a 10 percent annual growth rate over the 15 year life of the road (reaching 334 ADT and 1671 ADT, respectively).

3.22 Estimation of Project Quantities and Costs

It was observed in the introduction to Section 3.2 that one of the primary differences among projects is in the quantities of each stage in the overall project. For each project in Table 3.8, then, Table 3.9 presents the full set of quantities for each stage of construction, including the various haul distances, compaction percentages, and surfacing materials encountered in the analysis; sizeable differences are evident. The derivation of these quantities is briefly touched upon here, leaving the more complete discussion to Section C.1.

In the inital stages of development of the project-level analysis, an effort was made to find a simple, two-lane, rural road, crossing rolling terrain with a minimum of artificial influences affecting its alignment, which has been constructed and for which the plans, quantity estimates, and so forth were still available. This alone proved

																Spreac Compac	ling/ tion			
		ł			Lx	avat	ion	/1186]	ing	à ()	00	BCM)				(100 E	SCM)		Surfacin	i
	5110						-—-												Water- f	Double Situminous Surface
Project Number	Preparation (HA)	Dilch	6	M	<u> </u>	<u>om</u>		<u>60M</u>	10	<u>om</u>	.1	<u>65M</u>	5	<u>00M</u>	800M	<u>98.</u>	931	Gravel (100CCM)	Macadan (100CCM)	Treatment (100SM)
L 114	28.7	94.8	S 3	392		-	L	37,5		-		-	P	577	-	710	-	333	-	-
L 214	28.7	94.8	S 3	192		-	L	37.5		-		-	Ρ	577	-	710	-]	207	126	-
L 314	28.7	94,8	S 3	92		-	L	37.5		-		-	P	577	-	710	-	339	-	829
H 215	35.9	92.5	-		S :	3800		-		-	Р	931	L	2460	-	3490	-	282	170	
H 315	35,9	92.5	-	•	S :	3800		-		-	P	931	L	2460	-	3490	-	452	-	1110
H 415	35,9	92.5	-	•	S	3800		-		-	Ρ	931	L	2460	-	3490	-	282	170	1110
L 314	28,7	94,8	5 3	392		-	L	37,5		-			P	577	_	710	-	339	-	829
L 324	28,5	94.8	S (390		-	L	37.5		-		-	Ρ	536	-	-	668	526	-	829
L 334	28,5	94.8	S :	390		-	L	37,5		-		-	Р	536	-	-	668	339	-	829
H 315	35,9	92.5		-	S	3800		-		-	Ρ	931	L	2460	-	3490	-	452	-	1110
H 325	34,9	92.5		-	S	3780		-		-	Р	728	L	2460	-	-	3280	634	-	1110
H 335	34,9	92.5		-	S	3780		-		-	Р	728	L	2460	-	-	3280	452	•	0111
1 311	34 7	Δ7 Δ	ς.	489	 R	625		37 5		_		_		_		710		3 3 9	-	829
1 314	28.7	94.8	Š	392	٣	-	ī	37.5		-		-	Р	577	-	710	-	339	-	829
1 315	28.5	94.8	ŝ	352		-	-	-		-		•	i	75.7	-	710	-	339	-	829
L 313	1 1015	54,0	5	552						-			P	539						
H 312	56.7	-		-	B S	937 6240	L	330		-	Ρ	2220		-	-	3490	-	452	-	1110
H 313	44,3	17,6		-	B	631 3930		-	P	375		-	L	2460	-	3490	-	452	-	1110
H 116	35.0	42 6		-	Š	3800		-		_	p	931	ł	2460	-	3490	-	452	-	1110
1 316	28.7	94 8	S	392	5	-	Т	37.5		-	•	-	-		P 577	710	-	339	-	829
1 317	28.5	94 R	Š	352		-	-	-		-		-	L	75.7	P 539	1 210	-	339	-	829
H 317	35.9	92 5	2	-	S	3800		-		-		-	ī	2460	-	3490	-	452	-	1110
	33,3				5	2000							P	93]						

Table 3.9: Quantities of each stage of construction for each project,

^AFor excavation/hauling - S = spoil L = line haul P = pit borrow B = sideborrow

to be nearly impossible. With the additional condition that it be a project where different design standards and alignments had been considered and worked up or where such was even possible, it quickly became unfeasible, and it was decided to start from scratch.

On a U.S. Geological Survey topographic map of some rolling terrain, two points about 16 kilometers (10 miles) apart are selected, and a few possible alignments for each of the two design standards are planned, assuming no intermediate controls such as townships and quarries. Upon reviewing the wide variety of methods available for estimating earthwork quantities, which range from very rough to very detailed, it is decided to use one of the intermediate methodologies, a modified version of the one point model, in view of the geological data available (the topographic map with 6.1 meter [20 foot] contours) and the data pertaining to the alignment required by the Highway Cost Model (HCM) for estimating maintenance and user costs and surface conditions. The one point model simply computes the area of the cross section at each station (spaced every 60 meters [200 feet] along the route) and uses the average end area technique to compute the volumes, requiring only the centerline height difference between the terrain and road profile; due to the rolling terrain condition, side slope is also taken into account in calculating cross-sectional areas and finally volumes of earthworks. For the purposes of the study at hand, the intermediate alignment, in terms of road length and earthwork quantities, for both the low and high standard designs is selected; the details of these alignments, as required by the HCM, are given in Section C.I,

along with further details pertaining to laying out the route and estimating the earthwork quantities.

Given the basic earthwork quantities in terms of cut and fill volumes* for the two design standards, the distribution of cut between fill and spoil and of fill between cut and borrow remains to be determined along with the haul distances. This requires knowledge of the excavation/hauling scenarios of interest. Rather than going to a method as sophisticated as mass-haul diagrams, it is decided to simply review the cut and fill volumes given at 60 meter (200 foot) intervals along each road with two line haul distances (60 meters [200 feet] and 500 meters [1640 feet]) in mind, estimating the percentages of cut which can go to fill. The remainder of the fill, then, must come from borrow, the actual haul distances varying with the assumption as to the type of borrow, side or near or far pit, and the quantity and distribution of the material involved. In the low standard case, for example, the remaining fill is reasonably distributed along the road and thus can all be sideborrowed. In the high standard case, however, the remaining fill is large in quantity and unevenly distributed, and thus it is assumed sideborrow would be done to a limited distance from the road and then near pit borrow would begin as needed. In the near pit borrow scenario, the low standard design is penalized by a long haul distance, because a certain minimum size pit is assumed,

^{*}Cut for the low standard road is 17,100 bank cubic meters, while fill is 57,700 compacted cubic meters; for the high standard road, cut is 589,000 bank cubic meters, and fill is 283,000 compacted cubic meters.

as is required by some equipment and by common sense, making the haul along the road quite long. As for the quantity of spoil and its haul distance, the remaining cut and the top six inches on the roadbed including the ditches and on all borrow areas go to spoil, with the haul distance being a weighted average. In order to limit the full set of haul distances thus derived to a reasonable number and to leave an allowance for underestimating, some limited grouping and general rounding up is done, resulting in the set of distances given in Table 3.9. Section C.12 contains a fuller discussion of the derivation of these excavation/hauling estimates.

The volume of spreading/compaction is simply taken as the quantity of fill material, under the assumption that compaction is done only in fill areas. The factor for converting compacted to bank measure varies with the level of compaction, being 1.23 for 98 percent compaction and 1.16 for 93 percent compaction.

As in the case of topsoil removal which goes to spoil, the roadbed including the ditches and all borrow areas must be cleared of brush and trees. The quantity of site preparation thus consists of these areas plus an additional 1.5 meters (5 feet) on either side of the road and an additional 10 percent on the pits, as an allowance for brush encroachment and working space.

Gravel and waterbound macadam surfacing are measured in volumetric units as a function of the surface design in terms of layer thickness, the road cross section, and the length of the route; double bituminous surface treatment is measured in units of area as a function of

170

Ţ

the road cross section and length. Gravel shoulders are assumed in all cases, with a thickness equivalent to that of the surfacing materials for the low standard road since the shoulders are so narrow, and a fixed thickness of 15.2 centimeters (6 inches) for the high standard route. Section C.12 contains the final set of equations used in these calculations.

The surface design requires knowledge of the traffic expected over the design life of the road, the strength of the subgrade (i.e., its CBR), and the layer coefficients of the materials being used, which serve as indicators of the structural support value of the materials in the overall surface. It was decided at the outset to use the Transport and Road Research Laboratory's (TRRL's) design procedure (79), rather than that of the American Association of State Highway and Transportation Officials (AASHTO) (3), as TRRL's surface deterioration models (80) are used in the HCM. This results in somewhat lower standard surfaces (i.e., thinner layers) than might be expected from an AASHTObased design, which is probably not unreasonable for low volume, rural roads.

Actually only the thickness of the gravel layer has to be designed, as the waterbound macadam is assumed to be 15.2 centimeters (6 inches), since this represents standard design practice at the time of its use and even today, and the double bituminous surface treatment has a thickness determined primarily by the size of the crushed stone used instead of the amount, with 2.2 centimeters (7/8 inch) being a common thickness.

Given the traffic in terms of the cumulative number of standard axles (8200 kilogram [18 kip] loads) over the project life and the subgrade CBR, the gravel thicknesses are designed with the help of a chart provided by TRRL (79). For the two cases of the properly designed surface over a 3.5 percent CBR (p L324, H325), however, the modified structural number* is used to design the gravel layer, such that the properly designed roads with the 7 percent (p L314, H315) and 3.5 percent (p L324, H325) CBR's have the same modified structural number; this is done under the assumption that two such roads should behave the same, which is also the basis of TRRL's use of the modified structural number to determine paved road deterioration. As for layer co-efficients for the various materials, figures are derived with the help

*The structural number (SN) of a pavement is defined by an empirical relationship between the thicknesses and material coefficients of its various layers as follows:

$$SN = \sum_{i=1}^{n} a_i t_i$$

where

n = number of layers a_i = material coefficient of layer i t_i = thickness of layer i (inches)

The modified structural number (SN') incorporates the subgrade strength in terms of CBR into the measure as follows:

 $SN' = SN + 3.51(log_{10}CBR) - 0.85(log_{10}CBR)^2 - 1.43$

SN', then, is used as an index of the strength of the surface (3, 80).

of AASHTO (30) TRRL (80), and Yoder and Witczak (117), among others; these and the layer thicknesses are given in Section C.11, along with further details about the surface designs. Waterbound macadam presents some problems in that no deterioration model can be found for it; this is resolved by using a modified version of TRRL's model for double bituminous surface treated roads, as this seems reasonable in light of descriptions in the literature of the surface and of its behavior and maintenance.

Given the quantities of each stage in each project, what is still required for the derivation of the construction costs of the projects are the technical packages to be used, and thus their unit costs, from the stage-level analysis. It is assumed that each of the projects is only a small part of a much larger project, and thus no constraints are placed on the selection of technical packages in terms of their having to be used long enough to warrant their being brought to the site without incurring some penalty charge. The selection of technical packages is, therefore, largely stage and economic conditions specific and not really project specific. Table 3.10, then, gives the leastcost technical packages for each of the 1920's, 1950's, and 1970's technology periods as well as those over all technology periods at the prices of 1930, 1974, and developing countries. As in the stage-level analysis, packages within 10 percent of the least-cost one are also included, with the data being averaged as necessary for the analysis. Also, in the case of the 1930 and 1974 pricing periods, these are the

	1	930.1974 Prices ^a		Developing Countries Prices							
Stage	1920's Technology	1950's Technology	1970's Technology	1920's Technology	1950's Technology	1970's Technology	A11 Technologies 1920/1950/1970				
Site Preparation	21	31	31	11	31	31	11/-/-				
Excavation/ Hauling ^b											
Ditch 6M-S 9M-B -S 60M-L	5-4 7-6 7-6 7-6 7-6	11-0 10-10,9-9 10-10,9-9 10-10,9-9 7-7[4-4] ^C	14-0 13-16 13-16,12-15 13-16,12-15 8-11	5-4,4-3 5-4,4-3 5-4,4-3 5-4,4-3 5-4[8-7]	11-0 9-9 9-9,10-10 9-9,10-10 7-7,9-9, 10-10[4-4]	14-0 12-15,13-16 12-15 72-15 8-11	5-4,4-3/-/- 5-4,4-3/-/- 5-4,4-3/-/- 5-4,4-3/-/- 5-4[8-7]/-/-				
100M-P 165M-P 500M-P -L 800M-P	7-6,9-7 9-7 10-8 _d 10-8	7-7,4-4 7-7,4-4 4-4 7-7[4-4] 4-4	8-11 8-11 8-11 8-11 8-11	8-7 8-7 8-7 6-5[8-7] 8-7	7-7,4-4 7-7,4-4 4-4 7-7[4-4] 4-4	8-11 8-11 8-11 8-11 8-11	8-7/-/- 8-7/-/- 8-7/-/- 6-5[8-7]/-/- 8-7/-/-				
Spreading/ Compaction											
98% 93%	32 31e	44,34 -	41,31 -	21 21	44,43,34,33 -	41,31	21/-/- 21/-/-				
Surfacing											
Gravel	22	42,32	31,41	21	32,42	31,41	21/-/-				
Waterbound Macadam	211	412,312,212, 112,512	311,411, 111,211	211,111	412,312, 112,212	311,411,111	-/-/311,411,111				
Double Bitum- inousSurface Treatment Over Gravel	1121	2122,1122,2112, 1112,2121,1121, 2111,1111	1112,1212, 1111,1211	1111	2122,1122, 2121,1121	1122,1121, 1222,1221	-/-/1122,1121,1222 1221				
Double Bitum- inousSurface Treatment Over Waterbound Macadam	1121	2122,1122,2112, 1112,2121,1121, 2111,1111	1112,1212, 1111,1211	זווו	2122,1122, 2121,1121	1122,1222, 1121,1221	-/-/1122,1222,1121 1221				

Table 3.10: Least-cost technical packages for each stage of construction, for each technology period alone and over all periods, at the prices of 1930, 1974, and developing countries (source: Tables 3.6 and B.5). <u>Note</u>: Unit costs for these packages are found in Table B.5; where more than one package falls in the least-cost set (including the least-cost package and those within 10 percent), the average cost of the packages is used.

^aThese are the least-cost technical packages at the prices of the period coincident with that of the technology, as were used in the stage-level analysis of best-practice packages. The 1970's least-cost set is also least-cost over all technology periods at these prices.

```
<sup>b</sup>For excavation/hauling - S = spoil
B = sideborrow
L = line haul
P = pit borrow
```

^CThe package within the square brackets is the least-cost package for the haul distance, but as it cannot be used in such a line hauling activity, the next least-cost, technically feasible package is used.

^dThe design standard affects package selection - low standard 7-6 [10-8] high standard 60% 10-8, 40% 7-6

^eOnly two 1920's technical packages were developed for the 93% compaction case, tp 11 and tp 21, neither of which cost less at 1930 or 1974 prices than the least-cost 98% compaction package, tp 32. A new technical package, tp 31, was thus created, using the spreading technique of tp 32 (12 ft blade grader [403] and 76 hp tractor [632]) and the compacting technique of tp 21 (2.5 ton roller [501] and horse), at a cost of \$4.52/100BCM at the prices of 1930; it could not compete with tp 32 at the prices of 1974, however, so there is no 93% compaction considered for that price period.

least-cost technical packages at the prices of the period coincident with that of the technology, as were used in stage-level analyses of the best-practice packages.

Only a couple of situations arise in which the project can be said to influence the choice of technical packages. One involves the elevating grader (1920 tp 8-7; 1950 tp 4-4) which cannot be used for line haulor hauls under 60 meters (200 feet) or so; the second involves the use of a power shovel (1920 tp 10-8) in line haul, which is impossible in the low standard case due to the generally shallow depth of the cuts, but which is possible for an estimated 60 percent of the line haul work in the high standard case. In each of these cases, the next least-cost, technically feasible technical package is used, and that which could not be used is indicated in square brackets.

In order to complete the construction costs and bring them more in line with the maintenance and user costs, overhead and profit is included at 20 percent of total direct costs (i.e., labor, capital, and materials) (7, 28, 92). Minor structures are still left out, however, as they represent such a small share of total costs, and it is assumed that no major structures are necessary.

As for the quality of the final product, maintenance and user costs over the life of the project are used. As discussed in Section 2.22, the HCM is one of the models which investigates trade-offs among construction, maintenance, and user costs of alternative designs, with the construction technology being implicit in the rather aggregate cost data used in the analysis. Since it integrates many of the

existing methodologies of evaluating alternative designs in terms of the three costs, it seems an appropriate tool to use in deriving maintenance and user costs, although its data requirements are quite substantial. The majority of its requirements in terms of road characteristics, such as alignment, cross section, and surface design, and traffic profile are indicated throughout the discussion above; what remains consists of maintenance policies and unit costs and vehicle characteristics, costs, and utilization. Before proceeding, it should be noted that today's maintenance policies and technologies and vehicle transport technologies are assumed, although significant changes have occurred over time; maintenance itself is still often a relatively laborintensive activity and has considerable potential for labor-capital substitution, presenting yet another interesting area for research. Furthermore, it is important to bear in mind that the final maintenance and user costs are simply intended as reasonable indicators, not absolute measures, of the quality of the final product; the degree of accuracy and detail desired in this phase is, therefore, much less stringent than that in the construction phase, the primary focus of the research.

With regard to maintenance policies, the personnel associated with the HCM served as a primary source of information based on their experience in applying the model; Harger (31) also proved to be useful in the particular case of waterbound macadam surfacing. Maintenance policies had to be developed and tested, using the HCM, for each subgrade/surface combination, the objective being to minimize maintenance and user costs

and to end up with all of the roads in reasonably poor condition at the end of 15 years, the assumed design life, such that their salvage values would be low and reasonably comparable so as to justify their being ignored. It was quickly learned that the two sets of properly designed roads on different subgrade CBR's (p L314 and L324; p H315 and H325) exhibited the same behavior, and thus have the same maintenance and user costs, so the two on the poor subgrade (p L324, H325) were eliminated from further testing. The high standard design generally requires more maintenance than the low due to its traffic volume, while the improperly designed roads on the 3.5 percent CBR's (p L334, H335), not surprisingly, require more still. The final set of maintenance policies is given and discussed in Section C.21.

Unit costs of each maintenance activity in the various policies is also needed. With the help of such sources as maintenance studies (34, 35), studies of alternative design standards (36, 59), and engineering texts (31), one or more sets of productivity data, generally in a crew format with materials requirements specified as well, are found for each maintenance activity. These are then priced at 1974, using equipment rental rates (54, 113), along with the labor and materials costs used in the construction phase of the study. Using the FHWA highway maintenance and operation cost index (68, 102), these prices can be indexed back to 1930. An indexing factor is also derived for developing conditions, on the basis of the relative trends exhibited in the stage-level construction costs and a comparison of Ethiopian (55) and U.S. maintenance

costs. Table C.2 contains the full set of maintenance unit costs.

Vehicle characteristics, costs, and utilization constitute the final set of data needed for the project-level analysis. As in the case of maintenance policies, one set of vehicle characteristics and utilization data is used, although costs are required for all price periods. Four vehicle types, a car, a single-unit truck, and two semi-trailer combinations, are selected on the basis of their representativeness of the range of vehicles and the availability of data. The basic data required consists, for example, of fuel type, brake horsepower, maximum load, annual utilization in hours, and normal life in years; cost data is needed for such items as tires, insurance, registration, maintenance labor, and drivers. The primary sources for this data include Winfrey (115), Anderson, et al (61), Claffey (60), U.S. Federal Highway Administration (99), U.S. Bureau of Labor Statistics (94), and U.S. Interstate Commerce Commission (106). By and large, the 1974 cost data is readily available from these sources, although the U.S. Bureau of Labor Statistics labor wage and wholesale price indexes (91) are occasionally needed to update items. Since the HCM does not consider congestion or accidents, these items are ignored, as are overhead costs and value of time savings due to a lack of data. Unit costs at 1930 are generally 1974 prices indexed back with various sections of the U.S. Bureau of Labor Statistics wholesale and consumer price indexes (90, 91), except for labor costs which are handled more directly by means of a U.S. Bureau of Labor Statistics bulletin (95). As for developing countries' prices, vehicle cost figures are developed

in line with the set of economic conditions used in the construction cost phase, keeping in mind the vehicle information that is available in a few developing country case studies (10, 55, 62, 64). Fur further details on the vehicle characteristics, utilization, and cost data used in the analysis, see Section C.22.

3.23 Alternative Projects and Their Costs

Combining the project quantities with the unit costs of the leastcost technical packages for various technology and price periods and the various maintenance and user cost data via the HCM for the appropriate price periods yields the project-level results, as given in Table C.5, for each project under various technology and price conditions. As an initial step in the analysis of the interaction of design and technology in highway construction and use, Figure 3.4 presents a graphical representation of some of these results. For each project and each technology period, the maintenance and user costs incurred over the life of the project, expressed in terms of equivalent annual costs, are plotted against the construction costs. As these are value rather than quantitybased measures, various economic conditions need to be considered; 1974 and 1930 costs are used to represent U.S. conditions over the period of interest, while developing conditions are used to broaden the analysis and to indicate the sensitivity of the results to economic conditions. In developing equivalent annual maintenance and user costs, a discount rate is required; with the help of the Federal Reserve Bulletin (26), one which is roughly representative of the rate at which long-term bonds are floated is estimated for the three price conditions.
Figure 3.4a: Construction costs and lifetime maintenance and user costs, expressed in equivalent annual cost terms, of each project/technology combination at each design standard/ traffic volume, for all project groups and all technology periods, at the prices of 1974 (source: Table C.5).

(Figure 3.4a continued)

<u>Note</u>: Technology periods: ● 1920, ▲ 1950, ■ 1970.

✓ Indicates an efficient project alternative, for a particular project group (≯ surface materials; ≯ excavation/hauling scenarios), design standard, and technology period.

i

ខេះ

Note: Technology periods: ● 1920, ▲ 1950, ■ 1970.

- ✓ Indicates an efficient project alternative, for a particular project group (≯ surface materials; ≯ subgrade strength/surface design), design standard, and technology period.
- Indicates the range of construction costs of the alternative excavation/hauling scenarios, for a particular design standard and technology period.

÷.

Construction costs and lifetime maintenance and user costs, expressed in equivalent Figure 3.4c:

(Figure 3.4c continued)

Note: Technology periods: ● 1920, ▲ 1950, ■ 1970, ★ 1920-70 mix.

✓ Indicates an efficient project alternative, for a particular project group (メ surface materials; ≯ subgrade strength/surface design), design standard, and technology period.

Indicates the range of construction costs of the alternative excavation/hauling scenarios, for a particular design standard and technology period.

186

.

In the developing conditions case (Figure 3.4c), four technologies are indicated, where the fourth is a combination of the least-cost technical packages of all three technology periods (only the 1920's and 1970's actually contribute to the set [see Table 3.10]), and is thus the overall least-cost set of packages for developing conditions. In the 1974 and 1930 cases (Figures 3.4a and 3.4b, respectively), the 1970's technical packages are least-cost over those of all technology periods. It might also be observed that the alternative subgrade strength/surface design projects (p L314, L324, L334, H315, H325, H335) appear only at 1930 and developing prices, since at 1974 prices the least-cost 1920's technical package which compacts to 98 percent (tp 32) is actually less costly than is the package which compacts to only 93 percent (tp 31*); the difference between the 1930 and 1974 cases likely arises as a result of the relative capital intensities of the two packages. Finally, maintenance and user costs do not vary over the various excavation/hauling scenarios at a single design standard (p L311, L314, L315, L316, L317 and p H312, H313, H315, H317), and thus in the 1930 and developing cases, only the range of construction costs of these projects is given at the appropriate maintenance and user cost level. Such a pictorial representation as these graphs is useful in terms of developing a general feeling of how the technologies and designs interact in the various project groups. Moreover, these graphs are in essence production isoquants, depicting the trade-off

*See footnote to Table 3.10.

between current and future expenditures in highway construction and use resulting from the design and technology mix; check marks by the project numbers indicate those combinations which are efficient in each group of projects at each design standard, for each technology period and over all periods.

Somewhat in line with the stage-level analysis, the next step consists of narrowing the sets of efficient projects to the least-cost sets under various price conditions. In order to further investigate the trade-offs among the various components of total project costs, the leastcost projects are thus identified for each of several cost items as appropriate: these include: (1) partial construction costs, which include only the cost of labor and capital used in construction, although site preparation materials (amounting to, at most, 4 percent of this cost item) are also included in the few cases where the site preparation packages use them; (2) total construction costs, including the cost of labor, capital, materials, and overhead and profit for all stages of construction except minor and major structures; (3) maintenance costs incurred over the life of the project, expressed in net present value terms using the same discount rate as above; (4) user costs incurred over the life of the project, similarly expressed; and (5) total project costs, the sum of the last three items. The results of this analysis for each project group and design standard are presented in Table 3.11 for the various price and technology periods; as previously, least-cost is defined as including all projects within 10 percent of the least-cost one.

Table 3.11a: Least-cost projects at each design standard from among the surface materials alternatives, under various technology and price conditions, for the various cost components (source: Table C.5).

Design Standard/					1
Price Period/	Construction Costs		Operation Costs ^D		Total Project
Technology Period	Partiala	Total	Maintenance	User	Costsb
Low Standard Design 1930 Prices 1920 1950 1970 overal1 ^c	L]14 L]14 L]14,L314 L]14,L314 @ 1970	L114,L314,L214 L114,L314,L214 L114,L214,L314 L114,L214,L314 Q 1970,50	L314 L314 L314 -	L314,L214 L314,L214 L314,L214 -	L314,L214,L114 L314,L214 L314,L214 L314,L214 L314,L214 @ 1970,50,20
1974 Prices 1920 1950 1970 overall ^c	L114 L114 L114,L314 L114,L314 @ 1970	L114 L114,L214 L114,L214 L114 @ 1970,50 L214 @ 1970	L314 L314 L314 -	L314,L214 L314,L214 L314,L214 -	L314,L214 L314,L214 L314,L214 L314,L214 L314@1970,50,20 L214@1970,50
Developing Prices 1920 1950 1970 1920-70 mix overall ^C	L114 L114,L314 L114,L314 L114 L114 L114@mix,1920	L114 L114 L114 L114 L114 L114@mix,1920	L314 L314 L314 L314 L314	L314,L214 L314,L214 L314,L214 L314,L214 L314,L214	L314,L214,L114 L314,L214,L114 L314,L214,L114 L314,L214,L114 L314,L214,L114 L314,L214,L114 @mix,1920,70,50

H415,H315,H215 H415,H315,H215 H415,H315,H215 H415,H315,H215 H415,H315,H215 H415,H315,H215 H415,H315,9 H215,0 H215,	- SISH, ƏISH, ƏIPH ƏISH, ƏISH, ƏIPH ƏISH, ƏISH, ƏIPH ƏISH, ƏISH, ƏIPH ƏISH, ƏISH, ƏIPH	- 514H 514H 514H 514H	026l'×im⊚Sl2H Sl2H Sl2H Sl2H Sl2H Sl2H	arsh H315,H215,H215 H315,H215,H475 H315 H315 @mix,1920 H315 @mix,1920	Ceveloping Prices 1920 1950 1970 1970 150-70 mix ² [[519v0
1970,50 H415,H215 @ H415 @ H415,H215,H215 H415,H315,H215 H415,H315,H215 H415,H315,H215	212H, 21CH, 21PH 21SH, 21CH, 21PH 21SH, 21CH, 21PH	- 9144 9144 9144	02610 H512'H312'H4512 H512'H312'H4512 H512'H312'H4512 H512'H512'H4512	H315 @ 1970 H315 H315,H215 H315,H215 H315,H215,H415	sasing A701 1920 1920 2016 2016 2016 2016 2016 2016 2016 20
H5150150150 1970,50,20 H415,H3150 H415,H315,H215 H415,H315,H215 H415,H315,H215	212H, 212H, 212H 212H, 212H, 212H 212H, 212H, 212H 212H, 212H, 212H	914H 214H 214H	H415 @ 1970 H315,H415 @ 1970,50 H315,H215,H415 H315,H215,H415 H315,H215,H415 H315,H215,H415	H3I5 @ 1670 H3I5 H3I5,H215 H3I5,H215 H315,H215,H415	ngized brabnat2 AgiH secirq OE01 0501 0501 0701 0701 ⁰ [[srevo
tosiong [sto] d ₂₁₂₀ 0	a <u>stso</u> j no d _{st} soj no	Jeradů Penenetní eM	stsoj noito TstoT	untenoj Eleitreg	Design Standard/ Price Period/ Technology Period/

(Table 3.11a continued)

- Note: Least-cost includes those projects within 10 percent of the least-cost project, the order of the listing being from the lowest to highest in cost.
- ^aInclude cost of labor and capital used in construction, although site preparation materials $(\leq 4\%$ of this cost item) are also included in the few cases where they are used.

^bExpressed in net present value terms, the discount rate varying with the price period.

^CLooking across all technology periods, for a particular price period and cost component, this is the least-cost set of project/technology combinations.

Table 3.11b:	Least-cost projects at each design standard from among the subgrade strength/surface
	design alternatives, under various technology and price conditions, for the various
	cost components (source: Table C.5).

Design Standard/	Construction Costs		Operation Costs ^b		Total Project
Technology Period	Partial ^a	Total	Maintenance	User	Costsb
Low Standard Design 1930 Prices 1920 Developing Prices 1920 1920-70 mix overall ^C	L334,L314,L324 L334,L324,L314 L334,L324,L314 L334,L324,L314 @ mix	L334,L314 L334,L314 L334,L314 L334,L314 @mix,1920	L314,L324 L314,L324 L314,L324 -	L314,L324,L334 L314,L324,L334 L314,L324,L334 -	L314,L334 L314,L324 L314,L324 L314,L324 L314,L324 @ mix 1920
High Standard Design 1930 Prices 1920 Developing Prices 1920 1920-70 mix overall ^C	H335,H325,H315 H335,H325,H315 H335,H325,H315 H335 @mix,1920 H325,H315 @mix	H335,H315 H335,H315 H335,H315 H335,H315 G mix,J920	H315,H325 H315,H325 H315,H325 -	H315,H325,H335 H315,H325,H335 H315,H325,H335 -	H315,H325,H335 H315,H325,H335 H315,H325,H335 H315,H325,H335 @ mix, 1920

Note: See note and footnotes in Table 3.11a. The 93% compaction case (i.e., CBR of 3.5%) is only considered for the horse-drawn roller in the 1920's, as the powered rollers are able to achieve 98% compaction (i.e., CBR of 7.0%) with relative ease; at the prices of 1974 the horse-drawn roller, even at 93% compaction, cannot compete in unit cost terms with the powered roller at 98% compaction.

Table 3.11c: Least-cost projects at each design standard from among the alternative excavation/ hauling scenarios, under various technology and price conditions, for the various cost components (source: Table C.5).

09'02'20'20'20 ר311'ר314'ר312'ר312'ר312' ר311'ר314'ר312'ר312'ר312' ר311'ר314'ר312'ר312'ר312' ר311'ר314'ר312'ר312'ר312' ר311'ר314'ר312'ר312'ר312'	و سائع 1920 ۲314 ۲316 ۲319 ۲315 ۲311 ۹ ۲318 ۲319 ۲312 ۲311 ۹ ۲318 ۲319 7312 ۲311 ۲314 ۲312 ۲319 ۲311 ۲314 ۲312 ۲319 ۲312	xim 0 pic1, iic1 pic1, iic1 iic1 iic1 sic1, pic1, iic1	292179 Prices 1920 1950 1950 70 mix 71679V0 211679V0
09'0261 0 9187'2187 02'09'026109187'78187'187 9187'2187'9187'78187'187 2187'9187'9187'5187'787'187 2187'9187'5187'78187'187	09'0261 0 9121'2121'9121'b121'121 9121'212'9121'b121'121 9121'9121'9121'b121'121' 1121'9121'9121'b121'121 1121	0261 0 LLET LLET LLET LLET LLET	8901974 4761 1920 0791 0791 0791 0791
02'09'0261 0 17312'1216'1212'1212'1212 1811'1214'1212'1212'1212'1212 1811'1214'1212'1212'1212'1212'1212'1212'	021020 0020201212120 0210202020 02020202	0261 0 1187 1187 1187 1187 1187	Low Standard Design 1930 Prices 1950 1950 1970 2116 0verall ^C
^d zizoj tosiory fatoT	truction Costs [650]	eno) e[sijne9	Design Standard/ Price Period/ Technology Period

(Table 3.11c continued)

	steol noi	Vesign Standard/	
^d steol tosiect Costs ^b	letoT	⁶ [sitneq	Price Period/ Technology Period
 6 1970,50,50 9 1970,50,50 1912,1913,1915,1917 1912,1913,1915,1917 1912,1913,1915,1917 	© 1320'20 H315'H313'H312'H312 H315'H313'H312'H312 H315'H313'H312'H315 H315 H315	02610 912431319 912431319 9124 7124 7124 7124	High Standard Design 1930 Prices 1950 1950 1950 1950 ^C [[579V0
6 1620'20'20 H315'H313'H312'H312 H315'H313'H312'H312 H315'H313'H312'H312 H315'H313'H312'H312	H313'H312'H312'6 1310 H315 @ 1320'20 H315'H313'H312'H312 H315'H313'H312'H312 H315 H315	H312 0 1020 H312+H313+H312 H312+H312+H312 H312 H312 H315	1974 Prices 1920 1950 1970 2011 2016
09'02'0261 '×!m 0 2154'5154'5154'2154 2154'5154'5154'2154 2154'5154'5154'2154 2154'5154'5154'2154 2154'5154'5154'2154 2154'5154'5154'2154	H312,H316,H313,H317 H312,H316,H313,H317 H312,H316,H315,H317 H312,H316,H313,H317 H312,H316,H313,H317 M312,H316,H313,H317 M312,H316,H313,H317 M312,H316,H313,H317 M312,H316,H313,H317 M312,H316,H313,H317 M312,H316,H313,H317 M312,H316,H313,H317 M312,H316,H313,H317 M312,H316,H316,H317 M312,H316,H316,H317 M312,H316,H316,H317 M312,H316,H317 M312,H316,H317 M312,H316,H317 M312,H316,H317 M312,H316,H317 M312,H317 M312,H316,H317 M312,H317 M317 M317 M317 M	215H хіт Ф.212 хітн хіт Ф.215Н хіт Ф.215Н	Developing Prices 1920 1950 1950 1950 1950 1950 1950 1950 195

Mote: See note and footnotes in Table 3.11a. Variation of the excavation/hauling scenario affects only construction costs; maintenance and user costs are thus not included separately in the table,as they are the same across all projects at a particular design standard.

Figure 3.5 is presented to give some indication of the relative magnitudes of these various cost items for a couple of projects under various price and technology conditions over time in the U.S. For a low standard, gravel surfaced road (p L114) and a high standard, double bituminous surface treated road (p H315), then, the partial construction, total construction, and total project costs are plotted with their various component parts indicated. The construction cost items vary with the technology and price period, while all other costs vary only with the price period. It might also be noted that, much as in Figure 3.2 in the stage-level analysis, this figure indicates the transition in costs that actually occurred, as well as that which would have occurred had construction technology not changed as it did, although in this case maintenance and transport technology are still assumed constant at the level of today. It should also be remembered that partial construction costs represent only best-practice technical packages, accounting in part for their rather small share of total construction costs.

This completes the presentation of the project-level results; further discussion of these results and their implications, as well as the limitations of the analysis, is taken up in Chapter 4.

Figure 3.5a: Various components of project costs for a low standard, gravel road (p L114), under various technology and price conditions (source: Table C.5).

(Figure 3.5a continued)

<u>Note</u> :	Partial construction costs:	The lower portion of the bar chart represents the cost of labor and the upper portion that of capital, although site preparation materials (\leq 4% of partial construction costs) are also included here in the few cases (1970's technology) where they are used.		
	Total construction costs:	The lower portion of the bar chart represents the cost of labor and capital, the middle portion that of materials and the upper portion that of overhead and profit.		
	Total project costs:	The lower portion of the bar chart represents the total cost of construction, while the middle and upper portions respectively represent the maintenance and user costs incurred over the life of the project; these two latter costs are expressed in net present value terms, the discount rate varying with the price period.		

Figure 3.5b: Various components of project costs for a high standard, double bituminous surface treated road on a gravel base (p H315), under various technology and price conditions (source: Table C.5).

CHAPTER 4

DISCUSSION OF THE RESULTS

In much the same way that Chapter 3 presents the results, this chapter discusses them, devoting one section to the stage and one to the project-level analysis. Section 4.1 focuses on the change in highway construction technology over time and its implications for the future; in the course of the discussion, changes in the nature of the technical packages, the various sets of efficient technical packages, and the role of efficiency and substitution in technology change are considered and evaluated. Section 4.2 then focuses on the interaction of design and technology in highway construction and use; projects involving various surfacing materials, subgrade strengths, and methods of borrowing earthwork materials are considered and compared within their respective groups, accompanied by a discussion of the limitations of the analysis and implications of the results.

4.1 Change in Highway Construction Technology Over Time

In the analysis of technology change in highway construction, the first logical step is a qualitative investigation of how the technical packages, in terms of the resources constituting them, have changed (see Table 3.1 and Figure 3.1; Tables B.1 and B.2 might also be helpful). In the 1920's, small capacity, unpowered equipment operated largely by unskilled laborers with horses or mules as a source of power and a few skilled men acting in a supervisory role is most common, while in the

1950's the use of much larger capacity, powered equipment operated largely by skilled laborers with occasional unskilled assistants is the rule. The transition to the 1970's is not so great, primarily involving the introduction of still more powerful, larger capacity equipment as well as a few new types.

Both relatively labor-intensive (tp 11) and capital-intensive (tp 21, 31) technical packages exist for site preparation in all periods. Information on site preparation for highways is sparse, however, necessitating some limited use of data pertaining to building construction and road maintenance, particularly for the labor-intensive packages in the 1950's and 1970's; this perhaps, in part at least, explains their poor performance relative to that of the 1920's. As for the capitalintensive packages, that of the 1920's is replaced by larger buildozers and/or additional items of equipment in the 1950's and 1970's, with significant decreases in investment and relatively small, if any, decreases in labor.

The progression of technology is well demonstrated by the technical packages for excavation/hauling, the stage of construction which seems to have received the most attention in the literature. The technical packages of the 1920's represent a broad range of capital/labor ratios, from the highly labor-intensive handtools (tp 1-1, 1-2, 2-1, 2-2, 3-1, 3-2) through the horse-drawn scrapers (tp 4-3, 5-4, 6-5) and the horse or tractor-drawn elevating graders (tp 8-7, 9-7) to the highly capital-intensive bulldozers (tp 7-6) and power shovels (tp 10-7, 10-8, 10-9). In the 1950's and 1970's the span of capital/labor ratios is practically

reduced to a single value, with the 1970's generally being somewhat more capital-intensive than the 1950's. The 0.2 to 0.5 cubic yard, horse-drawn scrapers (tp 4-3, 5-4, 6-5) of the 1920's are replaced by 6 to 15 cubic yard, power-driven scrapers (tp 5-5, 6-6, 7-7) in the 1950's, with a significant decrease in labor and some to no increase in investment (with increasing haul distance); 20 to 30 cubic yard scrapers (tp 9-12, 10-13) and 11.5 to 21.5 cubic yard elevating scrapers (tp 7-10, 8-11) take over in the 1970's, with decreases in both labor and investment. With a significant decrease in labor and a slight increase to a decrease in investment (with increasing haul distance), the larger 1950's elevating graders (tp 4-2, 4-4) replace those (tp 8-7, 9-7) of the 1920's; in the 1970's 1.75 to 5 cubic yard front end loaders (tp 4-1, 4-2, 4-7, 5-3, 5-5, 5-8, 6-4, 6-6, 6-9) come into being. Finally, the 60 horsepower buildozer (tp 7-6) and 0.75 cubic yard power shovel (tp 10-7, 10-8, 10-9) of the 1920's are replaced by successively largerpieces in the 1950's (tp 8-8, 9-9, 10-10, 1-1, 1-2, 1-3, 1-4, 2-1, 2-2, 2-3, 2-4, 3-1, 3-2, 3-3, 3-4) and 1970's (tp 11-14, 12-15, 13-16, 1-1, 1-2, 2-3, 2-5, 3-4, 3-6), with decreases generally in both labor and investment. It might also be noted that, with the exception of the more capital-intensive technical packages, the labor force of the 1920's is largely unskilled with skilled men acting in a supervisory capacity, while that of the 1950's and 1970's is fully skilled.

In the above discussion, the piece of excavation equipment has been used as an identifier of the excavation/hauling technical package, and for those packages where the haul equipment is a separate item, it, too,

has changed in much the same way; thus, the hand-powered equipment, 1.5 cubic yard, horse-drawn wagons, 5.0 cubic yard, tractor-drawn wagons, and 3.5 ton trucks of the 1920's are replaced by 8.5 to 15 bank cubic yard, tractor-drawn wagons and 10 to 20 ton trucks in the 1950's and 15 to 27 bank cubic yard wagons and 10 to 35 ton trucks in the 1970's. The impact of the haul vehicle on the performance of the overall package is naturally much greater at the longer haul distances; only in the case of front end loaders, however, does the haul mode seem to have a generally significant effect, in that they perform well doing their own haul for short distances but absolutely require a separate haul vehicle for long distances.

With the exception of the material being used, spreading/compaction and gravel surfacing are very similar stages in that they involve the same basic activities and technical packages, and they can thus be discussed together. The set of technical packages available is not so diversified as is that for excavation/hauling, and the two major activities, spread and compact, are pretty much independent, with the result that the equipment in neither really dominates the performance of the technical packages (as does the excavation equipment in excavation/ hauling). As in the case of excavation/hauling, the 1920's technical packages span a broad range of capital/labor ratios, while those of the 1950's and 1970's fall within a very narrow range, the 1970's being noticeably more capital-intensive than the 1950's.

The handtools (spr/comp tp 11, 12; gravel tp 11, 12), horse-drawn blade graders (spr/comp tp 21, 22; gravel tp 21, 22), and tractor-drawn

blade graders (spr/comp tp 32) of the 1920's are replaced by self-powered blade graders (spr/comp tp 31, 32, 33, 34, 41, 42, 43, 44; gravel tp 31, 32, 41, 42), bulldozers (spr/comp tp 11, 12, 13, 14, 21, 22, 23, 24; gravel tp 11, 12, 21, 22), and spreaders (gravel tp 51, 52) in the 1950's and again in the 1970's by somewhat larger and more powerful pieces, each time with some drop in labor but only a small, if any, drop in investment across similar types of spreaders. As for the compacting equipment, heavier versions of existing rollers and new types of rollers are introduced in each period. The 2.5 ton, horse-drawn rollers (spr/comp tp 11, 21; gravel tp 11, 21) and 6 ton, 3 wheel rollers (spr/comp tp 12, 22, 32; gravel tp 12, 22) of the 1920's are replaced by 8 to 12 ton, 3 wheel rollers (spr/comp tp 13, 23, 33, 43; gravel tp 11, 21, 31, 41, 51), tractor-drawn sheepsfoot rollers (spr/comp tp 11, 12, 21, 22, 31, 32, 41, 42, and 10 ton, pneumatic rollers (spr/comp tp 14, 24, 34, 44; gravel tp 12, 22, 32, 42, 52) in the 1950's, while in the 1970's the same or slightly larger 3 wheel (gravel tp 11, 21, 31, 41, 51), sheepsfoot (spr/comp tp 12, 22, 32, 42), and pneumatic rollers (spr/comp tp 13, 23, 33, 43; gravel tp 12, 22, 32, 42, 52) are used, and self-powered sheepsfoot (spr/comp tp 11, 21, 31, 41) and vibratory rollers (spr/comp tp 14, 24, 34, 44; gravel tp 13, 23, 33, 43, 53) are introduced; the effect of these changes on labor is always a decrease across similar rollers, but that on investment varies from some increase to some decrease, depending upon the particular roller being considered, the overall impression being that investment decreases only slightly if at all. As for the labor, the 1920's tends to be mixed although slightly heavier

on the unskilled, while the 1950's and 1970's is skilled except for an occasional unskilled helper. In these two stages, as in the other surfacing stages, the width of the road, as designed in Section 3.2, may be having an effect on the relative performance of technical packages of the 1950's and 1970's which differ only in terms of the size of the spreading equipment; this is not felt to be serious enough, however, to affect the relative performance of various types of spreading and compacting equipment, which is of more interest in any case.

The range of capital/labor ratios for waterbound macadam surfacing is very limited for all three periods. In the 1920's, data for only two technical packages could be found, but these are both considerably more labor-intensive than are those of the 1950's and 1970's; the technical packages for the 1950's fall into two distinct groups depending upon the method of compaction, one being considerably less capitalintensive than the 1970's and the other about the same level of capital intensity. It should be noted that the equipment used in spreading the crushed stone and compacting the surface is the same as that for gravel, except for the 1920's where a heavier roller is used. Waterbound macadam surfacing is that stage of construction which requires a tremendous amount of compaction; it is thus not surprising that the compaction method has a primary influence on the overall behavior of the technical package, resulting in the packages falling into groups around this in the 1950's and around this and the method of spreading screenings in the 1970's The technical packages of the 1920's involve hand or horse-powered equipment and unskilled men with skilled men as supervisors, with the

exception of the 10 ton, 3 wheel roller. The transition to the 1950's involves, in addition to the equipment noted for gravel surfacing, the introduction of a truck-mounted spreader box (in all technical packages) instead of handtools for distributing screenings and the use of mostly skilled labor with unskilled men as assistants; this occurs with significant decreases in both labor and investment. As for the 1970's, the primary change, in addition to those for gravel surfacing, is the introduction of a gas spreader (tp 111, 112, 113, 211, 212, 213, 311, 312, 313, 411, 412, 413, 511, 512, 513) for distributing screenings; corresponding change in labor and investment varies widely with the particular roller and screenings spreader being considered.

As is the case in waterbound macadam surfacing, the range of capital/ labor ratios in the double bituminous surface treatment stage is rather narrow for all three periods, the 1920's being considerably more laborintensive than the 1950's and 1970's, which exhibit about the same level of capital intensity. Although alternative methods are used for the major activities in each period, the set of technical packages in each period is very close in performance, with the primary influence on their behavior coming from the spreading crushed stone and compacting the surface activities. The transition from the 1920's to the 1950's involves going from handtools to a truck-drawn (tp 1111, 1112, 1121, 1122) or self-powered broom (tp 2111, 2112, 2121, 2122), from a 600 gallon to a 1000 gallon bitumen distributor, from handtools (tp 1111) or a spreader box mounted on a 5 ton truck (tp 1121) to a spreader box mounted on a 10 ton truck (tp 1121, 1122, 2121, 2122) or a gas spreader (tp 1111,

1112, 2111, 2112), and from a 6 ton, 3 wheel roller to a 5-8 ton, tandem roller (tp 1111, 1121, 2111, 2121) or 10 ton, pneumatic roller (tp 1112, 1122, 2112, 2122); as for labor, it is quite mixed in both periods, with the 1920's tending toward more unskilled with a few supervisory types and the 1950's tending toward more skilled with some unskilled assistants. Particularly significant in this transition, however, is the sizeable drop in both labor and investment. As for the 1970's, the equipment is basically the same as or slightly larger and more powerful than that of the 1950's, but there is still a noticeable drop in both labor and investment over this period.

4.11 The Efficient Technical Packages

Given this broad overview of the full set of technical packages, it is now useful to narrow this to those which are efficient, those which produce the most output for the least input, for each stage of construction, for each technology period and over all periods. Two basic approaches to such an efficiency analysis, a graphical and a numerical one, are presented in Section 2.31, and their results are presented as Figure 3.1 and Table 3.4 and Table 3.5, respectively, in Section 3.13. Before discussing these results, it is important to look briefly at these two analytic approaches and consider their limitations and sensitivities in the case at hand.

The graphical approach involves plotting the labor and capital components of the various technical packages for each period which are required to produce a given rate or level of output. The first simplification is the omission of materials, since they are the same across all

technical packages, with the exception of those for site preparation where their share is small enough to warrant their omission as a third dimension in the graphical analysis. The next difficulty is the units of measurement of the resources. Labor can be measured in physical units of unskilled men or unskilled man-hours, where before the skilled is added to the unskilled component, it is weighted by the skilled to unskilled wage ratio at the time of the technical package; the justification for this is the assumption that the wages reflect, in some sense, the relative quality or productive potential of skilled and unskilled laborers, thus necessitating the use of the wage ratio at the time the technical package itself was in use. The 1920's technical packages are the ones potentially most affected by this assumption. in that the 1930 wage ratio is 1.91 compared with 1.34 and 1.25 for 1956 and 1974, respectively. A comparison of the investment plots in Figure 4.1a, where the wage ratio corresponding to the period of the technology is used, and Figure 4.1b, where the 1974 wage ratio is used for both the 1920's and 1970's technical packages, suggests, moreover, that the 1920's technical packages at the 1974 wage ratio have naturally shifted closer to the 1970's technical packages, but their relative positions remain essentially unchanged, and the set of efficient packages is the same. The impact of the wage ratio on the overall results thus seems relatively minor, and that of the period of the technology is used.

Capital's measurement presents even more of a problem because its heterogeneous nature necessitates the use of value measures rather than

Figure 4.1a:

Ta: Labor, in unskilled men where the skilled are weighted by the wage ratio at the time of the technology, and capital, in investment costs at 1974, required by each technical package for excavation/hauling at 100 meters at the rate of 100 bank cubic meters per hour, for the 1920's and 1970's technologies (source: Table B.6).

.....

208

a Martine and

209

1.1b: Labor, in unskilled men where the skilled are weighted by the 1974 wage ratio, and capital, in investment costs at 1974, required by each technical package for excavation/hauling at 100 meters at the rate of 100 bank cubic meters per hour, for the 1920's and 1970's technologies (source: Table B.6).

Figure 4.1c: Labor, in unskilled man-hours where the skilled are weighted by the wage ratio at the time of the technology, and capital, in depreciation costs at 1974, required by each technical package for 100 bank cubic meters of excavation/hauling at 100 meters, for the 1920's and 1970's technologies (source: Tables B.6 and B.7).

Figure 4.1d: Labor, in unskilled man-hours where the skilled are weighted by the wage ratio at the time of the technology, and capital, in ownership and operating costs at 1974, required by each technical package for 100 bank cubic meters of excavation/hauling at 100 meters, for the 1920's and 1970's technologies (source: Tables B.5 and B.6).

211

÷

physical units. A rather natural measure of capital is its investment cost in that a primary concern in technology change and technology choice is expenditure now, as for capital, versus payments over time, as for labor and materials. This is particularly appropriate in cases where the equipment is quite uniform in terms of lifetime, maintenance as a percentage of investment cost, and fuel consumption, as is somewhat true for the 1950's and 1970's but is decidedly not the case for the 1920's. In order to ascertain the sensitivity of the results to the measurement of capital, a couple of different measures are tried for the 1920's and 1970's technical packages for excavation/hauling at 100 meters. Labor in all cases is measured in units of unskilled men per 100 bank cubic meters per hour or unskilled man-hours per 100 bank cubic meters. Figure 4.1a presents the standard investment plot of investment in 1974 dollars required to produce 100 bank cubic meters per hour: Figure 4.1c introduces the lifetime of the capital resource into its measure by using hourly depreciation costs in 1974 dollars (investment divided by lifetime in hours); finally Figure 4.1d brings in all of the parameters varying with the item of capital by using hourly ownership and operating costs in 1974 dollars.

The only really significant change in the 1920's technology in Figure 4.1c relative to 4.1a is the upward shift in the fully laborintensive technical packages (tp 1-1, 1-2, 2-1, 2-2, 3-1, 3-2), reflecting the fact that the short lifetime of the handtools involved makes their low investment costs rather expensive in hourly depreciation terms. As for the 1970's some of the packages move slightly relative to one

another, and some of the power shovels (tp 2-3, 2-5, 3-4, 3-6), in particular, shift downward due to their relatively long life, but there is no change in the set of efficient technical packages (tp 8-11), and the overall effect is not too significant. As for hourly ownership and operating costs as a measure, the major change in the 1920's technical packages is the upward shift of the horse-powered technical packages (tp 4-3, 5-4, 6-5, 8-7), suggesting that the upkeep of a horse is expensive although its investment cost is low and lifetime long relative to those of equipment; the handtools (tp 1-1, 1-2, 2-1, 2-2, 3-1, 3-2) have also shifted back to their old position, suggesting that the impact of their relatively short lifetime is neutralized by their relatively low maintenance and operating costs. Changes in the 1970's packages are limited to slight movements of the packages relative to one another, although it should be noted that the 1970's packages are generally lower relative to those of the 1920's, with the 1970 elevating scraper (tp 8-11) being lower in cost than all of the 1920's packages. In summary, it seems that investment is probably the most appropriate measure of capital, at least for a graphical representation, in that it focuses on the issue of present versus future costs and does not seem to somewhat arbitrarily eliminate technical packages from the efficient set, as do the hourly depreciation and ownership and operating cost measures.

Accepting this, the next question is the appropriate base period, the selection of which may also influence the results. Figures 4.1a, 4.1e, and 4.1f respectively present investment plots at the prices of

1974, 1930, and a typical developing country, the latter being included to see what occurs under more extreme conditions than the first two. Equipment investment changes by a factor of 5.86 between 1930 and 1974 while investment in a horse changes by a factor of 3.93; under developing conditions heavy equipment investment goes up by a factor of nearly two relative to 1974, while investment in light equipment and a horse are reduced by nearly a factor of two relative to 1930. The effect is as expected: (1) the 1970's are completely unaffected in terms of their relative positions, since practically all of the capital is heavy equipment; (2) the same is pretty much true for the 1920's packages at 1930 costs; and (3) the 1920's at developing country conditions are significantly affected, in that there is a large space between the largely heavy equipment packages involving the bulldozer (tp 7-6) and power shovel (tp 10-7, 10-8, 10-9) and the remaining largely light equipment packages. The set of efficient packages for each period, however, remains the same with but a few exceptions. The tractor-powered elevating grader (tp 9-7) is added to the 1920's efficient set at developing prices, due to its being partly light equipment; the fresno (1920 tp 5-4) is dropped from the overall efficient set at 1930 prices, due to the smaller change in the cost of the horse relative to that of equipment, while the horse-powered elevating grader (1920 tp 8-7) is added at developing prices, due to its being light equipment. In summary, the base period does not seem to have too significant an impact on the overall results, and 1974 seems as reasonable as any other year for use in pricing the investment plot.
The graphical analysis thus provides one means of identifying the efficient technical packages, but because of the measurement difficulties discussed above, particularly the sensitivity of the results to the method of measuring capital, a second means is seen as necessary, this being the numerical analysis. Holding the engineering variables (i.e., resource productivities and basic equipment characteristics) constant while varying the economic variables (see Table 3.3) over a wide range, the efficient technical packages are those which appear as least cost under at least one reasonable set of economic conditions. The first problem, of course, is developing a comprehensive set of economic conditions, such that the various combinations which can arise represent the majority of possible real world situations. Recognizing the difficulty of doing this with a reasonably sized set of conditions. it must be realized that the set of efficient technical packages is thus restricted by the particular conditions used in the numerical analysis; other packages might enter the efficient set if additional economic conditions were included or some enter and some leave the efficient set if the conditions were modified somewhat. This latter situation is particularly likely among those technical packages which are relatively close in cost, such as the handtools (tp 1-1, 1-2, 2-1, 2-2, 3-1, 3-2) in the 1920's and certain of the waterbound macadam surfacing and double bituminous surface treatment packages in the 1950's (wbm tp 112, 212, 312, 412, 512; most dbst tp's) and 1970's (wbm tp 111, 211, 311, 411; most dbst tp's). This brings up another difficulty with the numerical analysis. It is set up so as to identify only one

technical package for each combination of economic conditions, even if the costs of others are in very close proximity; modification of this to include all packages within 10 percent, for example, might help alleviate some of the potential sensitivities of the results.

Between the graphical and numerical analyses, nevertheless, it seems quite possible to develop a reasonably reliable picture of the set of efficient technical packages for each stage of construction, for each period and over all periods. Most of the differences in the results of these two analyses, as given in Tables 3.4 and 3.5, arise as a result of the measure of capital selected in the graphical analysis. Several of the 1920's packages which arise only in the numerical analysis would arise in the graphical if it were done at developing rather than 1974 conditions; the remainder arise under economic conditions which depict reasonable scenarios, such as a typical developing country except for expensive light as well as heavy equipment and/or expensive beasts of burden, among others, as discussed in Section 3.13, but which are not represented by any of the capital measures considered above. The differences in the results of the 1950's and 1970's stem largely from the use of investment rather than hourly depreciation or ownership and operating cost as the measure of capital. For example, the investment required for a particular technical package may be relatively low, but its lifetime may also be relatively low and/or its fuel consumption high, resulting in high hourly costs; the outcome is that it looks efficient in the graphical analysis but does not appear as least cost in the numerical analysis. Another situation which occurs just a couple of

times in the 1970's (exc/haul tp 4-1; spr/comp tp 31) is that a technical package shows up as efficient in the graphical analysis when, in fact, it is barely efficient, since its investment is essentially the same as that of another package which has significantly less labor; finally, the two extra site preparation packages for the 1950's and 1970's arise in the graphical but not in the numerical analysis because investment for the two packages is less than for package 31 each year, but labor is significantly more, and the economic conditions in the numerical analysis are never apparently such as to override the low productivity of the package relative to that of 31. As for the results of the analyses over all periods, the packages which appear naturally follow directly from those which appear in the individual periods, and similarly, the same basic explanations account for any differences in the results of the two analyses.

The set of efficient technical packages in the 1920's, then, is observed to span a broad range of capital/labor ratios and unit costs. The efficient sets in the 1950's and 1970's, on the other hand, are represented by only a few packages generally, with capital/labor ratios and/or unit costs in close proximity, sometimes so close that the packages are essentially indistinguishable; this closeness comes to a peak with the waterbound macadam surfacing and double bituminous surface treatment stages, where several technical packages (1950 wbm tp 112, 212, 312, 412, 512; 1970 wbm tp 111, 211, 311, 411; most 1950 dbst tp's; most 1970 dbst tp's) are within 10 percent in unit cost, making the efficiency analysis rather meaningless as the entire least-cost set is really efficient.

219

۰.

The efficient set for each stage of construction in the 1920's technology includes the full production set except for the excavation/ hauling stage where certain representative technical packages are included; at 6 meters, handtools (tp 1-1), scrapers (tp 4-3, 5-4), and bulldozers (tp 7-6) are represented, at 100 meters, handtools (tp I-1, 1-2), scrapers (tp 5-4), elevating graders (tp 8-7, 9-7), and bulldozers (tp 7-6), and at 800 meters, handtools (tp 1-1, 1-2, 2-1, 2-2), scrapers (tp 6-5), elevating graders (tp 8-7, 9-7), and power shovels $(tp \ 10-8)$. This is not the case for the 1950's and 1970's where the efficient set consists of only a couple of technical packages and thus a couple of types or sizes of equipment, except for the double bituminous surface treatment stage where all packages are essentially included. Site preparation thus goes from handtools (tp 11) or a buildozer (tp 21) in the 1920's to larger bulldozers in the 1950's (tp 31) and 1970's (tp 21, 31), although a handtools package (tp 11) also appears as graphically efficient in the 1950's. In excavation/hauling at 6 meters, successively larger bulldozers are used in the 1950's and 1970's, while at 100 meters scrapers take over, and at 800 meters an elevating grader takes over in the 1950's while the larger scrapers stay on in the 1970's. Finally in the spreading/compaction, gravel surfacing, and waterbound macadam surfacing stages, the handtools and early blade graders of the 1920's are replaced by larger, self-powered blade graders for spreading soil and aggregate (although, as noted above, any spreading tool can be used in waterbound macadam) and spreader boxes or gas spreaders for spreading screenings in the 1950's and 1970's; the

horse-drawn and small, 3-wheel rollers of the 1920's, in turn, are replaced by larger, 3-wheel and pneumatic rollers in the 1950's and selfpowered, sheepsfoot rollers in the 1970's for compacting soil and pneumatic rollers in the 1950's and larger, 3-wheel and pneumatic rollers in the 1970's for compacting aggregate.

More interesting, perhaps, than looking at the transition over time in the efficient sets of technical packages for each stage of construction is looking at the efficient set which arises when the technical packages of all periods are considered at once. The full set of efficient, 1970's technical packages are, not surprisingly, included in this set, but also included are certain of the more labor-intensive and animal-powered packages of the 1920's (at least through gravel surfacing), while only a couple of the 1950's packages are included. A reasonable explanation for the exclusion of the 1950's technical packages is that they are, by and large, very similar to those of the 1970's; their capital/labor ratios are about the same or only slightly less than those of the 1970's, especially compared with the 1920's-1970's gap, and the equipment involved is often just a little smaller or a slightly different type and somewhat less productive but still powered and requiring skilled labor. The technical packages of the 1920's which show up, on the other hand, are very different from those of the 1970's, being fully labor-intensive or at most labor assisted by horse-powered equipment. It is under developing conditions, then, that the 1920's packages arise as least cost. It might be noted, however, that (1) some of the most labor-intensive packages (exc/haul 6M tp l-l;

spr/comp tp 11; gravel tp 11) which in the 1920's set arise under developing conditions with an expensive horse, (2) two of the horsepowered technical packages (exc/haul 6M tp 4-3; 800M tp 6-5) which in the 1920's set arise under developing conditions where light and heavy equipment are equally costly, and (3) all packages which involve any powered equipment (all remaining excluded technical packages) still cannot compete because of their very low productivity relative to that of the 1950's and 1970's packages. Although the 1920's technical packages for waterbound macadam surfacing and double bituminous surface treatment are labor-intensive relative to those of the 1970's, the gap is not so large as in the other stages and powered equipment is involved in all cases, resulting in their exclusion from the overall efficient set.

In summary, the results of the efficiency analysis demonstrate the existence of a production set that can be described as a production function for most stages of highway construction in the 1920's, the exceptions being site preparation, waterbound macadam surfacing, and double bituminous surface treatment. Only two packages are identified for each of these latter stages, as that was the limit of the available data, although it seems likely that other packages may have been in use. It might be noted at this point that much of the technology of surfacing is in the material being used, and that there is often not the variety of ways to produce a particular surface, especially the higher standard surfaces, as there is to do earthworks, for example. For the 1950's and 1970's, on the otherhand, there really are no production

functions except maybe for site preparation, where three packages are identified, with two being efficient according to the graphical analysis. It is felt that this lack of production functions, however, does not stem from a lack of data, in that a reasonably large number of technical packages are identified for each stage, with a couple of different types as well as sizes of equipment, with the possible exception of double bituminous surface treatment for which at most two items of equipment are identified for each major activity. The implication, then, is that this lack depicts a real shortage of efficient alternatives and the focusing of the development of new technical packages on a particular capital/labor ratio.

As for the overall analysis, if one accepts the results of the numerical analysis or a combination of the two, then, once again production functions exist, with the exception of double bituminous surface treatment, but these are production functions with a large gap in the middle, going from the fully labor-intensive and animal-powered technical packages of the 1920's to the fully capital-intensive packages of the 1970's, with a couple having a 1950's package, much closer to the 1970's, in between. It is also expected that these 1920's packages will arise as least cost only under the rather extreme types of developing conditions outlined in this research. Nevertheless, there does at least seem to be some possibility of a few rather labor-intensive packages being efficient relative to today's technology.

4.12 The Best-Practice Technical Packages

In order to more directly investigate the issue of efficiency and

substitution and their role in technology change, it is necessary to narrow the set of efficient technical packages in the 1920's, 1950's, and 1970's to the set of best-practice packages for each stage of construction at the prices of 1930, 1956, and 1974 as given in Table 3.6. This is done by applying the factor prices of each of these periods to the resource requirements of each technical package, the best-practice packages being those which are minimum cost, or at least within 10 percent of it, in terms of the production function and the relative factor prices. Movements over time of the best-practice package for a particular stage of construction, then, represent technology change.

Before proceeding to investigate technology change in some detail, it is useful to consider the magnitude of the change that has occurred over the years in terms of overall costs and factor inputs, the results being presented in Figures 3.2 and 3.3. Figure 3.2a shows the progression of the unit costs of each stage of construction over time, both as it actually occurred and as it would have occurred had technology not changed as it did. From the 1920's best-practice packages at 1930 prices to the 1950's packages at 1956 prices, the general trend in unit costs is steady to some decline, suggesting that the some fourfold increase in labor, nearly three-fold increase in equipment investment, and practically no to a two-fold increase in other items (e.g., fuel and interest) costs have been fully, or even more than fully, offset by the change in technology. Between the 1950's and 1970's, on the other hand, unit costs have roughly doubled, indicating that technology change has succeeded only in part in offsetting the better than

three-fold increase in labor, two-fold increase in equipment investment, and two to three-fold increase in other items costs. In line with this is the broad divergence in unit costs of the 1920's and 1950's best-practice packages at the three price periods and the nuch narrower difference in those of the 1950's and 1970's packages. At the same time, it should be noted that the best-practice packages in the 1920's are the most capital-intensive ones of the efficient set.

The impact of technology change seems to be somewhat less in the cases of site preparation and excavation/hauling at 6 meters, as is further indicated by the somewhat narrower span in unit costs between the 1930's technology at the prices of 1956 and 1974 and the technol-ogies which were actually used in those periods, than is the case for the other stages (see Figure 3.2a). This is not too surprising in that the technical packages for both of these stages are quite similar over all three periods, differing not in the type of equipment (largely bulldozers), but only in its size and productivity.

The excavation/hauling at 800 meters, gravel surfacing, and double bituminous surface treatment stages, on the other hand, exhibit a strong influence on the part of technology change between the 1920's and later period technologies, as is evident from Figure 3.2a. In the case of excavation/hauling, this is not surprising as both the excavation (power shovel versus elevating grader versus elevating scraper) and transport (5 cubic yard wagon towed by 20 horsepower tractor versus 15 cubic yard wagon towed by 185 horsepower tractor versus 21.5 cubic yard elevating scraper) equipment are vastly different in type, capacity,

and speed over the three periods. This is a stage of highway construction in which truly significant advances havebeen made in technology.

As for gravel surfacing, the difference lies primarily in the spreading equipment, going from a 5 foot, horsedrawn blade grader and handtools in the 1920's to 10 to 14 foot, self-powered blade graders in the 1950's and 1970's. Similar behavior might be expected in waterbound macadam surfacing, where the spreading equipment varies over a wide range (from 5 foot, horse-drawn blade graders in the 1920's to 10 to 14 foot, self-powered blade graders, 8 to 14 foot bulldozers, or gas spreaders in the 1950's and 1970's for the crushed stone: from handtools in the 1920's to spreader boxes in the 1950's to gas spreaders in the 1970's for screenings), but the domination of the compaction activity, where the equipment is more similar (10 ton, 3 wheel versus 10 ton, pneumatic versus 12 ton, 3 wheel rollers), overshadows this difference somewhat. As noted earlier, data on surfacing in the 1920's is somewhat sparse, and it is suspected that somewhat more advanced equipment may have existed for spreading aggregate as it did for spreading soil (e.g., the 12 foot blade grader towed by a 76 horsepower tractor-tp 32). In the case of double bituminous surface treatment, the technical packages over the three periods do not seem so far apart, going from hand to power-operated brooms, from 600 to 1000 or 1500 gallon bitumen distributors, from spreader boxes with 5 ton trucks to gas spreaders with 20 ton trucks or spreader boxes with 10 ton trucks. and from 3 wheel to pneumatic or tandem rollers; the effect of technology change, nevertheless, seems to be cumulative, although it should

be noted that the really major differences in productivity are again in the spreading aggregate activity, where it is suspected that the productivity may be somewhat low for the 1920's due to a paucity of reliable data.

It is important to note, at this point, that much of the analysis of technology change in this section is done using the set of bestpractice technical packages for each technology period. Quite justifiably, there is some concern that the magnitude of technology change and its effects might be somewhat overstated, in part because the bestpractice rather than average-practice packages are being used, and also because one can feel somewhat more confident that the bestpractice packages have truly been identified for the 1950's and 1970's than that the same has been done for the 1920's. At the same time. it should be noted, by looking at Figure 3.2a, that reasonably significant advances in technology are still evident in the pattern of unit costs over time for most stages of construction, even under the assumption that the productivity data for the 1920's are unfairly low relative to those of the 1950's and 1970's, and that they should thus be doubled, halving the unit costs of the 1920's best-practice packages. Site preparation and excavation/hauling at 6 meters are, to some extent, exceptions, but then doubling their 1920's productivities is also less justified, in that the packages of the 1920's in these two stages are so similar to those of the 1950's and 1970's that they are quite likely the truly best-practice ones.

In looking at what lies behind the trends in unit costs observed

in Figure 3.2a, it is useful to look at the labor and capital shares of production. Figure 3.2b does this directly by presenting graphs of labor and capital shares of unit costs in 1974 dollars for the bestpractice packages in each technology period. The use of a particular price period with all three technologies has certain difficulties, however, as demonstrated by Figure 4.2, part A, where 1974 unit costs are used, and part B, where 1930 prices are applied; a comparison of these two figures suggests that 1974 prices tend to overstate labor's share relative to that of capital while 1930 prices tend to understate it.

Figure 3.3 presents an alternative approach to looking at labor and capital shares in terms of the relative quantities of these resources required over time. Figure 3.3a, thus, presents the labor measured in unskilled men and capital measured in 1974 investment dollars required by the best-practice packages of each technology period as a percentage of those of the 1920's; Figure 3.3b does the same, using the 1950's as the base. Before deciding upon men and investment as the labor and capital measures, a wide variety of such measures were tried, as demonstrated in Figure 4.3. Comparison of the results produced by the various measures suggests that men and investment are the most reasonable pair to use, as they tend to understate the changes in capital, although at the same time, they slightly overstate the changes in labor. The only other measures of labor are 1930 and 1974 unit costs, and while one of these might be better in terms of changes in labor, they both seem to rather seriously overstate the changes in capital. Moreover, men and investment are the

Figure 4.2: Labor and capital components of the unit costs of the best-practice technical packages of each technology period for excavation/hauling at 100 meters, at the prices of 1974 and 1930 (source: Table B.5).

Note: Unit costs: 🗌 labor, 🖾 capital, 🖾 total.

Best-practice packages are those which appear as least-cost, or within 10 percent of it, at the prices of the period coincident with that of the technology; where more than one package is involved, the data for the various packages is averaged.

Figure 4.3: Labor and capital requirements of the best-practice technical packages of each technology period as a percentage of those of the 1920's, for excavation/hauling at 100 meters, using various measures of labor and capital (source: Tables B.5, B.6, and B.7).

Note:

[] percent of 1920's labor;

[ii] percent of 1920's capital.

Units of measure:

<u>Part</u>	Labor Input	<u>Capital Input</u>	Product Output
А	unskilled men	investment costs at 1974	100 BCM/hr
В	unskilled man-hours	depreciation costs at 1974	100 BCM
C	unskilled man-hours	ownership and operating costs at 1974	100 BCM
D	unskilled men	investment costs at 1930	100 BCM/hr
E	labor costs at 1974	ownership and operating costs at 1974	100 BCM
F	labor cost at 1930	ownership and operating costs at 1930	100 BCM

Best-practice packages are those which appear as least-cost, or within 10 percent of it, at the prices of the period coincident with that of the technology; where more than one package is involved, the data for the various packages is averaged.

standardly accepted measures in the economic literature, and in the case of the best-practice technical packages, the use of investment as a capital measure is less serious, in that the equipment in the 1920's packages falls somewhat more in line with that of the 1950's and 1970's in terms of lifetime, maintenance as a percentage of investment, and fuel consumption.

In the overview of the production sets of the 1920's, 1950's, and 1970's at the beginning of Section 4.1, a general trend was observed of labor decreasing significantly in the transition among technologies, especially between the 1920's and 1950's, while investment behaved in a more varied manner, ranging from some increase to no change to some decrease, for the various stages of construction, with the exception of site preparation where capital and labor switched roles. In the case of the best-practice packages, as given in Figures 3.2b and 3.3, the general trend observed is one of both labor and capital decreasing with changing technology, although a few exceptions in the case of capital show up between the 1950's and 1970's in Figure 3.3. It is also observed that the decrease between the 1920's and 1950's is generally more than that between the 1950's and 1970's, and that the decrease in labor is generally greater than that in capital.

In investigating the capital intensity of various stages of construction and its change over time, one comes to the same basic conclusions whether one looks at the share of unit costs attributed to capital and to labor in Figure 3.2b or one looks at the capital/labor ratios in Figure 3.3. The trend in capital/labor ratios is a steady

increase with changing technology, the most marked increases generally occurring between the 1920's and 1950's; site preparation is an exception in that the ratios fall over time. The distinct differences between the stages show up in the magnitude of the ratio; for excavation/hauling it is some 70,000 to 90,000 investment dollars per man in the 1970's, while for surfacing it is only 14,000 to 16,000 dollars per man, with spreading/compaction falling in between at 24,000 and site preparation on the bottom at 5,500. The implications of this are that the earthworks activities, particularly excavation/hauling, have a strong tendency toward capital intensity, to the point of practically totally replacing labor with capital, while the surfacing activities, at least under current conditions, simply cannot be executed with such a high level of capital intensity, although what is used in the 1970's is certainly much greater than that in the 1920's. As for site preparation, it has a strong tendency toward capital intensity in the brush and tree removal activity, but the burning of the debris activity has remained a highly labor-intensive operation, requiring 30.0 out of the 34.3 unskilled men required to clear 1 hectare per hour in the 1970's. It might also be noted at this point that the technology change which has occurred in highway construction between the 1920's and 1970's obviously has components of both neutral and non-neutral change.

Returning to the list of best-practice packages presented in Table 3.6, it is observed that, with but a few minor exceptions, the best-practice package(s) for each stage of construction in each technology period is (are) the same for all three price periods. The

exceptions consist of the deletion or addition of a technical package and/or modification of the order of the packages in the best-practice set. It is noteworthy that the few changes with price that do occur generally do so in the direction of increasing capital intensity over time; among the double bituminous surface treatment packages, for example, there is some tendency for those with higher capital/labor ratios to start at the end of the list, or not even on it, at 1930 prices and to move up, such that at 1974 prices they are at the top of the list. This meager suggestion of substitution of capital for labor over time is the only introduction of any substitution among alternative packages in each technology period for this price range.

This is not surprising for the 1950's and 1970's, as it was already observed in Section 4.11 that production functions do not really exist for these technology periods, or, in other words, that they have an elasticity of substitution of zero. As for the 1920's, where the technical packages form production functions for most of the stages of construction, these, too, are effectively right-angle production functions with zero elasticity of substitution over this price range. Finally, the 1970's best-practice packages are also the overall leastcost packages for all three price periods, yielding another effectively right-angle production function. It appears that substitution, brought about by changes in factor prices between 1930 and 1974, has not played a significant role in the technology change that is observed over that period.

Efficiency is the next aspect of technology change that is of

interest, ignoring for the moment any potential economies of scale. It must be noted, however, that efficiency cannot be the whole story since, as observed above in conjunction with Figures 3.2b and 3.3, non-neutral as well as neutral technology change has occurred; with the possibility of substitution brought about by factor price changes eliminated, factor bias is left. A method, based on that of Salter (73) of separating the impact of efficiency and bias on proportionate changes in factor inputs is presented in Section 2.31, and the results of this analysis are given in Table 3.7. A few observations about the analysis need to be made before discussing the results.

In line with Salter's approach and Figure 3.3, the quantity of labor is measured in unskilled men and that of capital in 1974 investment dollars; the figures in the table thus represent the change (decrease [-] or increase [+]) in the number of men or amount of investment required by the best-practice packages from one technology period to the next as a percentage of the quantity required in the earlier period, and the distribution of this percentage change between efficiency and bias. Two measures of bias appear in the table, one derived using Salter's approach, and the other derived as the difference between the total percentage change in resource quantities that is actually observed between the 1920's and 1950's and the 1950's and 1970's as given in Figure 3.3 and the percentage change attributable to efficiency as given in Table 3.7. Salter's measure is but an indication of the direction and potential magnitude of bias' influence on the resource quantities, and is generally larger than that actually observed, particularly in the 1920's to 1950's transition where capital/labor

ratios are widely different.

Since Salter's measure of bias serves only as an indicator, the slight variations that might arise, from the use of quantity measures other than unskilled men and 1974 investment dollars, price periods other than that of the earlier of the two technology periods being considered, and so forth, are of relatively little concern. As for the measures of bias derived from Figure 3.3, the use of men and investment as labor and capital measures is discussed above in conjunction with the figure. The measure of efficiency involves a comparison of the costs of using the best-practice packages of the two technology periods being considered, and thus the pricing of the inputs. Table 4.1 gives the results of various pricing methods; no real trend in terms of the pricing method used appears in the results, which are reasonably close together (with the exception of the 1950's to 1970's case of pricing skilled and unskilled labor hours separately and capital hours with hourly ownership and operating costs). For a variety of reasons, the first pricing alternative is used in the analysis. It is Salter's recommendation, as in much of the economic literature, that labor be priced with wages and capital with the capital recovery factor at the prices of one of the two technology periods. This brings out the fixed costs of capital, those costs which are incurred whether or not the equipment is in use. Moreover, since capital recovery factors specific to each particular item of capital are used in this study, the lifetime of the equipment is thus included, and as noted in conjunction with Figure 3.3, the equipment in the best-practice packages of the

Table 4.1: Testing the sensitivity of the percentage change due to efficiency to various means of pricing the labor and capital inputs in the case of excavation/hauling at 100 meters (source: Tables B.5 and B.6).

		Percentage Change Due to Efficiency		
		Resource ₅₀ -Resource ₂₀	Resource ₇₀ -Resource ₅₀	
	Pricing Alternative	Resource ₂₀	Resource ₅₀	
Labor:	priced by skilled and unskilled wages at 1930 or 1956			
Capital:	priced by capital recovery factor at 1930 or 1956	-69.9	-41.8	
Labor:	priced by skilled and unskilled wages at 1930 or 1956			
Capital:	priced by ownership and oper- ating costs at 1930 or 1956	-70.0	-34.6	
Labor:	measured in unskilled men, priced by unskilled wages at 1930 or 1956			
Capital:	priced by capital recovery factor at 1930 or 1956	-73.3	-43.4	
Labor:	priced by skilled and unskilled wages at 1956 or 1974			
Capital:	priced by capital recovery factor at 1956 or 1974	-75.4	-41.3	

Note: Equations for calculating these values are given and discussed in Section 2.31.

1920's is somewhat more in line with that of the 1950's and 1970's than is the full set of 1920's equipment. As for the pricing period, that of the earlier technology in the pair is used, as this is more compatible with the next step of determining the percentage change in resource quantities attributable to substitution brought about by factor price changes (if there were any to observe). Finally, the results obtained with this pricing alternative tend toward under rather than overstating the percentage change attributable to efficiency.

In order to begin to look at the relative roles of efficiency and bias in changing resource requirements over time, it is helpful to see it graphically as well as numerically. In Figure 3.3, using the results from Table 3.7, a dashed line is drawn indicating the level to which the quantities of labor and capital, of the 1950's and 1970's relative to those of the 1920's and 1950's, respectively, fell due to efficiency; the further drop, generally of labor, below this line and rise, generally of capital, above it represent the changes due to bias. It is evident from Figure 3.3 and Table 3.7 that twice in the 1920's to 1950's transition the measure of efficiency appears to be too small, and once in the 1950's to 1970's it appears to be too large. As indicated by the above discussion pertaining to alternative labor and capital measures and prices, this is undoubtedly a function of the particular measures and prices used; moreover, averaging over the bestpractice technical packages, when there is more than one in a technology period, probably does not help the coordination of the various measures of change in Table 3.7 and Figure 3.3. The implication of this

is simply that these measures of efficiency and bias should not be interpreted as absolute values, but rather as "ballpark" figures serving as a reliable indication of the relative roles of efficiency and bias in technology change.

The percentage decrease in resources required which is attributed to efficiency ranges from 36 percent for site preparation to 54 to 85 percent for earthworks to a peak of 79 to 90 percent for surfacing in the 1920's to 1950's transition (see Table 3.7 and Figure 3.3). These same figures for the 1950's to 1970's are significantly less, ranging from only 15 to 55 percent, and the positions of earthworks and surfacing are switched. Looking at the figures for total percentage change in resource quantities, as taken directly from Figure 3.3, the same basic trends are observed and were noted above in the discussion of Figure 3.3. Combining these two sets of data for labor (capital in the case of site preparation) yields the change in the quantity of labor (capital) attributed to efficiency as a share of the total change. In the 1920's to 1950's transition, this is some 66 percent for site preparation, 79 to 91 percent for earthworks, and 89 to 96 percent for surfacing; site preparation and excavation/hauling at 6 meters are notably less, being 46 to 54 percent, respectively, for the 1950's to 1970's transition, but the other stages exhibit about the same, or only a slightly smaller, percentage of total change in labor attributed to efficiency over this period. The role of bias toward labor-saving in the change in the quantity of labor required over the transition periods is thus relatively small, representing only 4 to 21 percent of the

change and being about the same or slightly more in the 1950's to 1970's than in the 1920's to 1950's. As for site preparation, the technologically constant burning activity creates an appearance of bias toward capital-saving or labor-using; bias' share in the total change in capital required over time in this case is quite large, representing some 34 and 54 percent in the 1920's to 1950's and 1950's to 1970's transitions, respectively.

The analysis of the relative impacts of efficiency and bias on changes in the quantity of capital (labor in the case of site preparation) is less straightforward due to their having opposing influences. The percentage increase in capital attributable to bias toward laborsaving in the 1920's to 1950's is some 1 to 39 percent in earthworks and 9 to 17 percent in surfacing; it is noticeably larger in the 1950's to 1970's, being some 13 to 50 percent in earthworks and 10 to 41 percent in surfacing. It was noted above that the trend in efficiency shares is just the opposite. Combining these two sets of data for capital gives the share of the decrease in capital due to efficiency which is lost due to bias' influence. This ranges from 2 to 56 percent in earthworks and 10 to 19 percent in surfacing for the 1920's to 1950's; for the 1950's to 1970's, the figures are notably larger, being, respectively, 32 to 131 percent and 24 to 207 percent. Along similar lines, when one compares the ratio of the percentage change in capital due to bias to that in labor, the figures for the two periods are about the same, ranging from less than 1 to 3.5 or so; the introduction of the appropriate capital/labor ratios, however, in order to ascertain the

cost, in terms of 1974 investment dollars, of bias' decreasing the number of men, shows significant differences. In the case of excavation/ hauling at 100 meters, for example, it cost some 23,000 investment dollars in capital to decrease labor by one man in the 1920's to 1950's, while it cost some 100,000 investment dollars in the 1950's to 1970's. In summary, although the change in labor attributed to bias as a share of the total change in labor is about the same over the two periods, the cost, in terms of capital, of a unit of this bias, in terms of labor, in the 1950's to 1970's is significantly greater than that in the 1920's to 1950's, due to the higher capital/labor ratios; it is expected that the same trends might be observed in the case of site preparation, but with labor and capital switching roles, due to the lowering of capital/labor ratios over time.

Returning to the concern mentioned earlier, in conjunction with Figure 3.2, of overstating the magnitude of technology change and its effects, particularly with regard to the 1920's technology, it is useful to briefly consider the consequences of doubling the 1920's productivities and thus halving its quantities of men and investment. In Figure 3.3a, this is accomplished by simply a scale transformation, doubling it, and also bringing the 1920's packages down to the level of the new 100 percent; the effect on the percentage change in resource quantities due to efficiency is that it falls, while that due to bias doubles. The percentage change in labor attributed to efficiency as a share of the total change is still greater than that attributed to bias, with the same exceptions, site preparation and

excavation/hauling at 6 meters, as noted in the previous discussion of doubling the 1920's productivities. Furthermore, the cost, in terms of capital, of a unit of labor-saving bias remains the same since the capital/labor ratios do not change, although the share of the decrease in capital due to efficiency which is lost due to bias' influence increases. Nevertheless, with but a few exceptions, bias' role in changing resource quantities is still overshadowed by that of efficiency.

In summary, the impact of technology change on highway construction in the U.S. from the 1920's to the 1970's appears indeed to have been significant. Between the 1920's and 1950's, it offset, or even more than offset, inflation with prices of the factors involved, while between the 1950's and 1970's it kept cost increases down to a factor Efficiency seems to have played a major role in this techof two. nology change, resulting in sizeable decreases in the amount of labor and capital required for highway construction, although the magnitude of these decreases has lessened over time. Substitution brought about by changes in factor prices, on the other hand, seems to have played effectively no role in the technology change observed. Bias appears as the non-neutral component of technology change, bias toward laborsaving, except in the case of site preparation where it is bias toward labor-using. Efficiency apparently accounts for some 80 to 95 percent of the drop in labor both from the 1920's to 1950's and 1950's to 1970's. while bias is responsible for only 5 to 20 percent. The cost of this labor-saving bias in terms of capital seems to have increased over time, however, due to increasing capital/labor ratios; in the 1950's to

1970's transition the impact of bias on capital is such as to completely overshadow that of efficiency in a few cases, while this is far from occurring in the 1920's to 1950's transition. As for the various stages of construction, it is noteworthy that the earthworks activities, especially excavation/hauling, appear to have a greater propensity toward capital intensity than do the surfacing activities, as exhibited by their larger capital/labor ratios.

4.13 Summary and Implications of the Results

Highways can be constructed in the U.S. today using significantly less labor and capital than was possible in the second and third decades of this century. These technology advances appear to have played a major part in keeping construction costs down, such that between the 1920's and 1950's the cost of the labor and capital in construction remained steady or even declined slightly, while between the 1950's and 1970's it about doubled.

This was accomplished between the 1920's and 1950's by means of increased mechanization and introduction of new types of equipment; that is, the hand and animal-powered, small capacity equipment of the 1920's, operated largely by unskilled labor with skilled labor acting in a supervisory role, was replaced by powered, larger capacity equipment, operated generally by skilled labor with occasional unskilled assistants, in the 1950's. Between the 1950's and 1970's, the means of accomplishment consisted of improving the equipment and the effectiveness with which it was used; that is, the equipment of the 1970's is largely similar to that of the1950's except that it is

generally a little more powerful, larger in capacity, and more productive, although a few new types of equipment have been introduced as well.

In economic terms, efficiency appears to have played a major role in the technology change observed between the 1920's and 1970's, although the percentage decrease in resource quantities attributable to efficiency between the 1950's and 1970's is only about half that between the 1920's and 1950's. Efficiency appears to account for some 80 to 95 percent of the drop in labor required for most stages of highway construction, while bias toward labor-saving accounts for the remainder. Over time, however, such labor-saving bias has become increasingly costly in terms of capital, with increasing capital/labor ratios, and between the 1950's and 1970's, efficiency's reducing effect on the quantity of capital required has been overshadowed by bias' opposite impact in a few stages of construction. It might, at the same time, be noted that part of what is interpreted as bias toward labor-saving or capital-using may actually be due to the fact that production functions are not really continuous functions, but rather are made up of discrete technical packages; a certain amount of shift in the capital/labor ratio may thus be necessary to meet a legitimate technical package. Interestingly enough, substitution brought about by factor price changes seems to have effectively played no part in the technology change observed. Returns to scale are assumed to have been constant, although the observed changes in equipment capacity and coincident changes in project scale over time suggest this may not

truly be the case; it is thus suspected that some of the technology change attributed to efficiency may, in fact, actually be due to economies of scale, their separation posing an area for future investigation.

As for future expectations regarding technology change in U.S. highway construction, it is first useful to ascertain the motivations behind that of the past. The stability of demand in highway construction has likely been a primary factor, especially since the enactment of the highway trust fund in the fifties, although the market has always been rather steady as such construction is government-funded; this stability is a feature not shared by many sectors of the construction industry. Fairly stiff competition among equipment manufacturers and changes in highway design (e.g., standards and materials) and project scale have also undoubtedly motivated technology change. Although the increased cost of labor relative to capital cannot be cited as a direct motivation since no substitution was observed, it might be fair to say that expectations of such tended to induce technology change in the direction of increasing capital intensity. Moreover, it should be noted that it is primarily the equipment manufacturers who do the research, and it is to their obvious advantage to produce technical packages which utilize capital to the maximum extent possible.

As for the future, these same basic motivations are expected to continue, although some may be dampened a bit by an expected declining emphasis on highways, particularly on new construction, and increased emphasis on other modes of transport. Increased concern over energy and materials conservations is also expected to enter the picture. As

for means of accomplishing technology change in the future, a continuation of past trends of improving the equipment is expected, but perhaps even more important is improving the effectiveness with which it is used through better management, organization, and supervision, both on and off the project. It is important to note, however, that efficiency's impact on resource quantities was considerably less between the 1950's and 1970's than between the 1920's and 1950's, particularly in the case of surfacing, suggesting that future gains may be expected to be still less; moreover, labor-saving bias may be expected to become increasingly costly in terms of capital and to increasingly overshadow the effects of efficiency on capital. Advances in project design, particularly in the standardization of specifications and road designs and in the modification and use of existing or development and use of new materials, may be seen as potentially opening the door to further advances in equipment as well as moving toward conservation of materials. Important, too, is modifying existing or developing new equipment in order to reduce fuel requirements or enable it to use more available fuels; this is likely not compatible with the use of bigger, more powerful equipment in the future, re-emphasizing the importance of the effectiveness with which equipment is used. Future analyses of technology and its change in U.S. highway construction can no longer be limited to labor and capital as the primary factors of production, but rather materials and energy must also be included.

The characterization of technology change primarily in terms of efficiency and perhaps some economies of scale, but only a rather small

amount of bias and no substitution, appears to be a rather negative result in terms of developing countries' returning to the use of some of the older, more labor and animal-intensive technologies of the past. At the same time, however, it was observed that the 1920's technical packages formed a rather nice production function over a wide range of capital/ labor ratios for most stages of highway construction, while those of the 1950's and 1970's largely fell along a single capital/labor ratio, resulting in right-angle production functions. Most importantly, an efficiency analysis over the production sets of all three periods also yielded a production function, although admittedly one with a large gap between the 1970's fully capital-intensive packages and the 1920's laborintensive and animal-powered packages, with the latter likely arising as least cost only under rather extreme developing conditions such as those outlined in the research. It thus appears that the development of new technical packages since the 1920's has been focused on the capitalintensive end of the production function, where increased efficiency has indeed been achieved, and that the 1920's labor-intensive packages have essentially been forgotten, although they still appear as efficient.

In the case of some developing countries, it thus appears to be worthwhile for them to consider potentially using some of the more fully labor and animal-intensive packages of the 1920's, especially if they could improve the productivity; three frequently cited means include: (1) management, organization, and supervision; (2) tools and simple mechanical aids and the skills necessary to use them; and (3) general physical and social well-being of the workers. Moreover, the chances

of the 1920's packages in the overall efficient set appearing as least cost may be strengthened by consideration of mobilization and various other fixed costs associated with the large 1950's and 1970's equipment, particularly in light of the small scale projects common in developing countries.

In conjunction with these comments, some limited sensitivity testing is appropriate, the results of which are presented in Table 4.2. In terms of productivity, doubling the productivity of the light equipment (in order to test the magnitude of the effect) and using one-tenth as many supervisory personnel (resulting in about one per hundred unskilled men, as is perhaps more realistic in developing situations) have been tried; in terms of heavy equipment use, halving the annual utilization and doubling the maintenance as a percentage of investment cost have been tried (as these are perhaps more realistic figures when heavy equipment is used in developing countries). In the cases of doubling the productivity and halving the equipment utilization, a fully labor and animal-intensive package, the horse-drawn elevating grader and wagon (tp 8-7), show up in the 1920's least cost set at the prices of 1930, while the usual bulldozer (tp 7-6) shows up at the prices of 1974; in all cases, however, the 1970's elevating scraper (tp 8-11) is least cost overall. Substitution brought about by factor price changes has thus entered the picture of technology change over the period 1930 to 1974, suggesting that such circumstances could indeed have a significant impact on the economic feasibility of using certain of the 1920's labor and animal-intensive packages in developing countries today.

Table 4.2: Least-cost technical packages and their unit costs (dollars per 100 BCM) for excavation/ hauling at 100 meters, for two technology and price periods, under various modifications of the productivity data and heavy equipment characteristics.

	1920's Technology		1970's Technology	
	1930 Prices	1974 Prices	1930 Prices	1974 Prices
1. Data as it stands	7-6 \$10.3 9-7 \$11.3	7-6 \$63.1	8-11 \$2.16	8-11 \$14.8
2. Productivity modifications				
a. Double productivity of all light equipment, including associated men and horses	8-7 \$6.75	7-6 \$63.1	8-11 \$2.16	8-11 \$14.8
b. Use 1/10 as many supervisory personnel	7-6 \$10.3 9-7 \$11.2	7-6 \$63.1	8-11 \$2.16	8-11 \$14.8
3. Heavy equipment modifications				
a. Halve hours used per year, leaving life in years the same, for all heavy equipment	9-7 \$12.2 8-7 \$13.5	7-6 \$87.3	8-11 \$3.48	8-11 \$23.4
b. Double maintenance as a per- centage of investment cost for all heavy equipment	7-6 \$11.6 9-7 \$11.7	7-6 \$70.7	8-11 \$2.68	8-11 \$17.9

4.2 <u>Interaction of Design and Technology in Highway Construction and</u> <u>Use</u>

An investigation of the interaction of design and technology in highway construction and use involves the aggregation of the various stages, with their respective quantities, to the alternative projects and the evaluation of the quality of the final products. As noted in Section 2.32, the lack of production functions for the 1950's and 1970's and the existence of effectively right-angle production functions over the price range of 1930 to 1974 for each technology period alone and over all technology periods combined make the use of a production function-based aggregation procedure, as performed in the IBRD-I (42) and ILO-Iran (44) studies discussed in Section 2.21, unnecessary, as there is no choice of technical packages over this price range. As indicated in Table 3.10, then, the best-practice technical packages of the 1920's, the 1950's, and 1970's, as identified in the stage-level analysis, are used in the project-level analysis at the prices of 1930 and 1974. As there is, however, some choice of technical packages, at least among those of the 1920's and overall sets, if one is willing to go to more extreme pricing conditions, the project-level analysis is also carried out at the prices of a developing country today. As indicated in Table 3.10, the least-cost technical packages of the 1950's and 1970's at developing conditions are, not surprisingly, basically the same as those at 1930 and 1974 prices, while those of the 1920's and overall are vastly different. For the 1920's technology, the labor-intensive, animal-assisted technical packages are least-cost at developing conditions, while the

overall least-cost set is a mix of the 1920's and 1970's packages, the 1970's only taking over in the waterbound macadam and double bituminous surface treatment stages where fully labor and animal-intensive techniques were not even used in the 1920's.

4.21 Comparison of Alternative Projects

Given the project quantities (Table 3.9) and the least-cost technical packages with their unit costs (Tables 3.10 and B.5), the construction costs of the various projects (Table 3.8 and C.5) can be derived under various technology and price conditions. With construction costs as a measure of fixed inputs, or inputs now, to the project, maintenance and user costs, derived via the HCM and expressed in terms of equivalent annual costs, serve as a measure of largely variable inputs, or inputs over time, to the project. As the purpose of the road is to get someone from point A to point B and its life is taken as 15 years with its maintenance being such as to leave all projects in roughly the same condition at the end of that time, the only measure of output required is the volume of traffic the road is to carry over its life, most easily expressed in terms of cumulative standard axles; there are thus two levels of output, one tied to each set of design standards. Using this data then, production isoquants are developed as given in Figure 3.4, where each of the three groups of projects at each of the two design standards/traffic volumes must be analyzed separately.

Looking at the production isoquants for the two traffic volumes, certain economies of scale are evident in all cases; while the cumulative number of standard axles goes up by a factor of over 7.5, construction

251

I

costs rise by a factor of about 2 and equivalent annual maintenance and user costs by a factor on the order of 5 or 6. Moreover, a comparison of construction costs and maintenance and user costs on a cost per standard axle over project life basis, as given in Table C.5, for the two traffic volumes shows the unit costs to be significantly less for the high volume road in all cases. Similarly, plotting these unit costs, as in Figure 4.4, instead of the total costs, as in Figure 3.4, gives a single production isoquant for each project group in which the low volume projects appear to be inefficient. The implications of this are just what has been observed in the U.S., a trend toward building higher standard roads, although the traffic volume must be at least sufficient to offset the increased construction and likely maintenance costs.

As for the various project groups, the results are the same across all technology and price periods with the exception of the materials alternatives in the high standard/traffic volume case. Differences between the 1920's and the 1950's and 1970's technologies at 1974 prices can be explained by the overall low productivity of the 1920's technology in constructing a waterbound macadam surface (p H215). As for differences in the 1950's and 1970's technologies at 1930 and 1974 prices, these arise as a result of relative changes in materials prices over the period; that of bitumen rose by a factor of 5.0, while that of aggregate went up by one of 1.7. Under developing countries conditions, the double bituminous surface treatment over gravel road (p H315) falls out of the efficient set while the waterbound macadam road (p H215) enters it, again
Figure 4.4: Construction costs and maintenance and user costs, expressed in net present value terms, per standard axle over project life of each project/technology combination at each design standard/traffic volume, for all project groups and all technology periods, at the prices of 1974 (source: Table C.5).

(Figure 4.4 continued)

Note: Technology periods: ● 1920, ▲ 1950, ■ 1970.

Indicates the range of construction costs of the alternative excavation/hauling scenarios, for a particular design standard and technology period.

largely as a result of relative changes in bitumen and aggregate prices. Waterbound macadam appears to fair rather poorly in terms of being an efficient alternative surface. It is felt that its construction costs may be overstated because of the compaction requirements placed upon it on the basis of 1920's descriptions of such road construction; at the same time, however, it is felt that its maintenance and user costs may be understated due to the use of a modified, surface treated road deterioration model. In the subgrade strength/surface design alternatives, the properly designed alternative on the weak subgrade (p L324, H325) is inefficient by definition, while the other two alternatives appear as efficient. As for the excavation/hauling scenarios, that with the shortest possible hauls (p L311, H312) comes out with the least construction costs and is thus most efficient.

The trends exhibited by the individual technical packages in terms of unit costs (see Tables 3.10 and B.5) are duplicated in the trends exhibited by the technologies in Figure 3.4 in terms of total construction costs. At the prices of 1930 and 1974, the 1970's technology has the lowest construction costs and is thus most efficient; also notable is the closeness of the 1950's costs to those of the 1970's relative to that of the 1920's and 1950's. Under developing conditions, the mix of 1920's and 1970's technologies is least in construction costs and thus most efficient, followed closely by the 1920's alone and more distantly by the 1970's and eventually 1950's. Underlying all of this, of course, is the assumption that each product is equal in quality regardless

of how it is constructed; if this is not the case, the tendency is generally to argue in support of greater capital intensity yielding better quality, at least in highway construction, thus strengthening the case for the 1970's technology.

Before trying to draw any further implications from this efficiency analysis, it is useful to look at the set of best-practice projects in each project group/design standard under various price and technology conditions, as presented in Table 3.11, in order to develop a feeling for the nature and magnitudes of the differences being observed. In line with the efficiency analysis, the best-practice projects are those which are least-cost, or within 10 percent of it, in terms of total project costs expressed as equivalent annual or net present values. Looking over the results in Table 3.11 reveals that, with the exception of the low standard materials and subgrade strength/surface design alternatives where at least two out of three projects end up in the least-cost set, all project alternatives in any project group fall into the best-practice set within any particular technology and price period. Moreover, looking across technologies in these groups leads to the observation that at 1930 and 1974 prices the 1950's technology always, and the 1920's better than half of the time, fall into the least-cost set along with the 1970's technology; at developing conditions, the 1920's technology always, and 1970's and 1950's technologies, often fall into the least-cost set along with the 1920-70 mix technology. A disaggregation of these costs into the partial construction, total construction, maintenance, and user cost

components, as given in Table 3.11, is necessary in order to see the dominance of various cost factors and to determine where differences among the projects and technologies lie.

Differences among projects are most evident at the level of maintenance costs and least at the level of user costs, while partial and total construction costs fall in between. On a total cost basis, the low standard/traffic volume design is significantly less than is the high standard/traffic volume design for all cost components except maybe maintenance, while on a cost per standard axle basis, the reverse is true for all cost items with some exceptions in partial construction costs; this is basically in accord with previous observations.

In the project group involving different surfacing materials, generally one or two projects are identified as least-cost at the level of partial construction costs; these are most frequently gravel (p L114) for the low standard, and double bituminous surface treatment over gravel (p H315) and waterbound macadam (p H215) for the high standard. The addition of surfacing materials in arriving at total construction costs generally has some impact, most commonly through the addition of projects to the least-cost set, thus expanding it, and less commonly through the replacement or deletion of projects in the least-cost set, thus changing it. As for maintenance and user costs, projects at the opposite end of the spectrum fall into the least-cost set; in the case of maintenance, for example, double bituminous surface treatment over gravel (p L314) and the same over waterbound macadam (p H415) are least-cost for the low

and high standard designs, respectively. It is the user costs which dominate total project costs, however. Only in the case of the 1920's technology at 1930 prices and in all cases at developing prices for the low standard design does the influence of low construction costs appear in the least-cost set under total project costs (i.e., p L114).

The situation is somewhat different in the group of subgrade strength/ surface design alternatives. No distinction among projects is possible at the partial construction cost level, while the addition of surfacing materials to obtain total construction costs results in the deletion of the properly designed surface on the weak subgrade (p L324, H325). As for maintenance costs, the two sets of properly designed surfaces (p L314, L324; p H315, H325) exhibit the same costs and are least-cost, but at the level of user costs any distinction among projects is again impossible. As previously, user costs tend to dominate the total project costs, although in the case of the low standard project there is evidence of the influence of high construction costs in one case (at 1930 prices, L324 is not included in the final least-cost set) and of high maintenance costs in another (at developing prices, L334 is not included in the final leastcost set).

Finally, in the case of the various excavation/hauling scenarios, the situation is more like that in the first group of projects, although maintenance and user costs are constant across all projects at a single design standard. At the level of partial construction costs, generally only one project, that with the shortest set of haul distances (p L311,

H312), shows up as least-cost. The addition of surfacing materials, which are the same across all projects at one design standard, generally obscures any differences among projects, however. Maintenance and user costs complete the process for the few remaining cases where distinction is still possible.

Looking across the technologies in these three project groups for the various cost components shows basically that which is expected. At the prices of 1930 and 1974, the least-cost projects in terms of partial construction costs are those using the 1970's technology; in the case of total construction costs, the 1950's technology frequently enters the least-cost set along with the 1970's. Similarly, at the prices of a developing country, in the partial construction cost case the 1920-70 technology mix generally stands alone as least-cost, while in the total construction cost case the 1920's technology generally joins it. This progression continues until, as noted above, in the total project cost case it is not uncommon for all technologies to end up in the least-cost set.

In order to gain some feeling for the relative magnitudes of these various cost components as well as their change over time in the U.S. and for the rather overshadowing influence of materials and user costs, various cost data are plotted for a road at each design standard in Figure 3.5. Much as observed in the stage-level analysis, technology change in highway construction between the 1920's and 1970's seems to have nearly offset the coincident inflation in labor and capital prices, as

indicated by the graph of partial construction costs. At the total construction cost level, assuming no change in materials usage, technology change appears to have been instrumental in keeping cost increases between 1930 and 1974 down to a factor of about 1.7; this is somewhat less than the cost increase observed for materials over that period, and about half of what construction cost increases would have been had technology not changed. The cost-reducing influence of technology change in highway construction appears to be rather diminished at the total project cost level due to the magnitude of user costs, the technology of which along with that of maintenance is assumed constant at today's. Project cost increases on the order of 3.5 are exhibited between the 1920's and 1970's, notably less than those in maintenance and user costs but only slightly less than those expected had technology not changed. Had the 1950's and 1970's technologies similarly been compared at 1956 and 1974, it is expected that the diminishing role of technology change would be more evident at the total construction cost level, due to the relative magnitudes of materials and partial construction costs.

At this point it is appropriate to look at some of the components comprising these various cost items. As expected, labor's share of partial construction costs decreases while capital's increases with the progression in technology; moreover, labor's share in the high standard project is somewhat less than in the low standard one, primarily as a result of the large amount of earthwork required in the high standard design, activities which are highly capital-intensive. Nevertheless, labor's

share looks somewhat low relative to capital's, with the exception of the 1920's technology at 1974 prices. A possible explanation is that expenses for labor beyond the basic wage and fringe benefits (e.g., social security [FICA], workmen's compensation insurance, and unemployment, amounting to about 15 percent in 1974 [54]) are included in overhead and profit, although mobilization costs for equipment are also included there, rather than directly with the labor and capital costs, respectively.

Proceeding to examine total construction costs, the cost of labor and capital relative to that of materials appears to be too small, with the exception of the 1920's technology at 1974 prices. A number of factors account for labor and capital's share being too low; these include: (1) the figures represent the best-practice technical packages for each period, selected under the assumption that the project at hand is part of a larger project, and there is thus no constraint as to minimum period of use of any package on the project or need for coordination of packages among activities (using an average-practice technical package in the case of excavation/hauling in the 1970's, for example, might increase the unit cost of the package by a factor of less than 2 to over 3 depending upon the haul distance); (2) as indicated above, additional expenses associated with labor, as well as mobilization and any other fixed costs associated with capital, are included in overhead and profit, which is expressed as a percentage of all direct costs, although it might be more appropriate, at least for overhead associated directly with labor

and capital, to express it as a percentage of the labor and capital costs and to include it with them (especially in light of the fact that a charge for transport costs to the site is included in the cost of materials); and (3) in the case of the low standard road at least, there is very little earthwork, which is where the sizable labor and capital requirements appear, and thus the project is largely surfacing, which is oriented more toward materials than toward labor and capital.

The share of materials in total construction costs may appear to be high for a few additional reasons, as follows: (1) the quantity of surfacing materials required is rather sizable, especially that of gravel due to the rather low subgrade strength (e.g., p L114 requires 29.2 centimeters [11.5 inches] of gravel and p H315 requires 33.0 centimeters [13.0 inches]); and (2) the surfacing materials, particularly the aggregate, may be higher quality than is necessary for road construction and may thus be overpriced, as data on materials is largely for building, not heavy, construction (e.g., aggregate is often given in conjunction with concrete, suggesting it is probably cleaner and more accurately sized than is necessary for many highway projects). Finally, minor structures are not included in the construction costs, and these could be expected to augment both labor and capital costs and materials costs.

Looking at the bar graphs of total project costs, the magnitude of user costs relative to other project costs is evident, and as expected, is somewhat greater in the high standard design with the higher traffic volume. Maintenance costs are, as expected, significantly less than

construction costs, and both represent a smaller share of the costs in the high standard/traffic volume project. Finally, several of the comments made above would serve to augment construction's part in overall project costs.

4.22 Summary and Implications of the Results

The efficiency analysis yields the following results: (1) the apparent existence of economies of scale among projects for various traffic volumes; (2) an indication of the efficient surfacing materials alternatives (generally all except waterbound macadam [p L214, H215] which appears in the high standard case when bitumen is expensive), efficient subgrade strength/surface design alternatives (all but the one which is properly designed on a weak subgrade [p L324, H325], and efficient excavation/hauling scenarios (that with the shortest set of hauls [p L31], H312]; and (3) an indication of the overall efficient technologies under various price conditions (1970's at 1930 and 1974 and 1920-70 mix at developing). The significance of these results becomes questionable, however, when the results of the least-cost analysis show all projects, or at least two out of three, to be within 10 percent of each other in total project costs. Similarly, for a particular project group/design standard, all technologies or at least two of them are found in the overall least-cost set.

Upon disaggregating the total project costs to their various components, distinctions among projects again become evident, most clearly at the level of maintenance costs and least so at the level of user costs;

I.

this latter cost item generally dominates the outcome at the total project cost level with only an occasional influence from the construction or maintenance cost level. Moreover, the technologies also regain their distinction, with one technology (1970's at 1930 and 1974; 1920-70 mix at developing) showing up in the overall least-cost set at partial construction costs, and two (1970's and 1950's at 1930 and 1974; 1920-70 mix and 1920's at developing) at total construction costs. Such disaggregation, however, does little to help in the analysis of project alternatives where materials, maintenance, and user costs vary, as in the case of two of the project groups under study. An incremental analysis, such as that given as an example in Table 4.3, where the overall least-cost project/technology combination at 1974 prices (i.e., L314 at 1970 and H415 at 1970) is used as a base to be subtracted from the other projects in the group, sheds little further insight into the problem. Although sizable cost differences and greater distinctions seem to appear among the various projects and technologies, their significance is questionable; that is, many of the incremental costs, at the more aggregate and user cost levels in particular, represent only a small share of their respective total costs, an observation in accord with that of insensitivity in the full cost analysis in Table 3.11.

It is apparent, nevertheless, that the cost-reducing influence of technology change in highway construction on project costs is indeed significant. At the disaggregate level of partial construction costs, for example, technology change between the 1920's and 1970's appears to

Table 4.3: Incremental costs (in \$1000), over the base case at each design standard, of each project/technology combination, for all surface materials alternatives and all technology periods, at the prices of 1974, for the various cost components (source: Table C.5).

Design Standard/ Technology Period/ Project	Construction Costs		Operation Costs ^D		Total Project
	Partial ^a		Maintenance	User	Costsb
Low Standard Design				}	
1970-L314	32.9	501	199	2416	3115
Incremental Values			}		
1920-L114	+206	+195	+58	+443	+596
-L214	+305	+327	+114	+139	+580
-L314	+251	+302	0	0	+302
1950-L114	+8.2	-43	+58	+443	+458
-L214	+27.2	-/	+114	+139	+246
-L314	+12.7	+16		0	+16
1970-L114	-2.7	-50	+58	+443	+445
-L214	+10.8	-26	+114	+139	+227
High Standard Design Base Case					
1970-H415	138	/89	187	15171	16147
Incremental Values					
1920-H215	+1024	+1179	+250	+1260	+2689
-H315	+950	+1133	+125	+604	+1862
-H415	+1083	+1300	0	0	+1300
1950-H215	+94	÷53	+250	+1260	+1573
-H315	+75	+82	+125	+604	+811
-H415	+100	+121	0	0	+121
1970-H215	-4	-55	+250	+1260	+1455
-H315	-18	-29	+125	+604	+700

<u>Note</u>: The base case is the overall least-cost project/technology combination at 1974 prices and is subtracted from the other combinations to give the incremental values.

^aInclude cost of labor and capital used in construction, although site preparation materials (≤4% of this cost item) are also included in the few cases where they are used.

^bExpressed in net present value terms, the discount rate being 8%.

essentially offset inflation in factor prices. Upon aggregation in the direction of total project costs, however, other factors come into view. materials and user costs in particular. In order to study the overall impact of technology change on highway construction and use in the U.S., be the technology change via the technical packages of construction, materials usage, maintenance policies and procedures, or transport technology, studies similar to the one at hand are first needed in these other areas as well: the results of the construction-based study are reasonably encouraging, at least in terms of past trends. Knowledge of the trends of the past as well as the expectations for the future in all of these areas in the U.S. is of importance. As noted in the stage-level analysis, the modification and use of existing or development and use of new materials, for example, is seen as necessary for future advances in the area of equipment as well as in that of materials conservation. The role of user costs in total project costs is such as to warrant major studies in the area of transport technology and its development; រ៣portant, too, is the development of more sensitive models for measuring user costs. Finally, future studies should involve a broader set of projects and eliminate some of the shortcomings and limitations of the current study such as explicit consideration of mobilization costs and project size.

On a somewhat different note, a few comments remain to be made about the implications of this analysis for developing countries. The results, in terms of alternative construction methods, certainly do look promising.

That is, under developing conditions, admittedly rather extreme ones, the 1920's fully labor-intensive, animal-powered packages do appear as least-cost for all stages except waterbound macadam surfacing and double bituminous surface treatment. Further testing is certainly needed, however, with regard to the range of economic conditions under which this occurs. As noted in the stage-level analysis, the case is potentially strengthened by consideration of possible productivity improvements and inclusion of mobilization and other fixed costs associated with heavy equipment. It should further be noted, however, that as in the U.S. situation, research is also needed in the areas of materials usage, maintenance policies and technology, and, probably most importantly, transport technology, if project costs are to be minimized.

CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER RESEARCH

5.1 Conclusions

The role of technology in the productivity of highway construction over the years in the U.S. appears indeed to have been a significant one. Highways can be constructed today using considerably less labor and even less capital than was possible in the second and third decades of this century. These advances in highway construction technology appear to have played a major part in keeping project costs down, essentially offsetting, or more than offsetting, inflation in the prices of labor and capital between the 1920's and 1950's, and keeping labor and capital cost increases down to a factor of two between the 1950's and 1970's; it should, at the same time, however, be noted that at the level of total project costs, the cost-reducing influence of such technology change tends to be overshadowed by other cost components, user costs being most dominant.

Efficiency seems to have played a major role in the observed technology change, although the magnitude and rate of the decrease in resource requirements attributable to efficiency has lessened over time. For most stages of highway construction, efficiency appears to be responsible for some 80 to 95 percent of the drop in labor required, with bias toward labor-saving accounting for the remainder. This laborsaving bias, however, has become increasingly costly in terms of capital, to the point of overshadowing efficiency's reducing effect on the

capital requirements in a few stages of construction. Part of what is interpreted as bias may, in fact, be due to the discrete, as opposed to continuous, nature of production functions. As for substitution brought about by factor price changes, it seems to have had effectively no part in the technology change observed. Constant returns to scale are assumed, but it is suspected that some of the technology change attributed to efficiency may, in fact, be due to economies of scale, in light of the coincident changes in equipment capacity and project scale over time.

Increased mechanization and introduction of new types of equipment appear to constitute the primary means of accomplishment of such technology change between the 1920's and 1950's in the U.S., while between the 1950's and 1970's it is largely just improving the equipment and the effectiveness with which it is used. A primary motivation in all of this has likely been the stability of the market in highway construction, a government-funded operation. Reasonably stiff competition among equipment manufacturers, along with changes in highway design and project scale and some standardization of design features, in part a result of the interstate program, has also undoubtedly motivated technology change. As for its being in the direction of increasing capital intensity, it should be remembered that it is primarily the equipment manufacturers who do the research; it also seems likely that expectations of labor's cost rising relative to that of capital have tended to induce technology change in the direction of saving labor although no substitution was observed.

As for the future, these same basic motivations are expected to

continue, although some switching of emphasis toward the repair and upgrading of highways, as opposed to new construction, and toward other modes of transportation may dampen some of them a bit. Energy and materials conservation is also expected to be of increasing interest. As for means of accomplishing technology change in the future, a continuation of past trends of improving the equipment and, more importantly, improving the effectiveness with which it is used is expected. Research in materials and standardization of specifications and road designs among other advances in project design may assist in the advancement of equipment as well as in the conservation of materials. Research in the area of fuel conservation and use of alternative fuels in relation to equipment use is also of importance; the likely incompatibility of using bigger, more powerful equipment and conserving fuel in the future reemphasizes the importance of the effectiveness with which equipment is used.

It has thus been observed in the course of this research that gains in both labor and capital productivity and efficiency in highway construction over the years in the U.S. have been substantial, resulting in certain offsetting of factor price increases. Nevertheless, if trends of the past are indicative of the future and a continuation of past means of accomplishing technology change is to continue as the primary means in the future, then gains in efficiency can be expected to be less than those previously, and labor-saving bias to become increasingly costly and to increasingly overshadow efficiency's effects on capital. This means that labor productivity will increase at a slowed rate, while the

270

I

productivity of capital will increasingly tend to decline. In line with this, productivity's effectiveness in offsetting factor price increases may be expected to continue to ...11. At the same time, the somewhat inexplicable substitution of labor by capital may be expected to continue. This suggests that new means of accomplishing technology change in highway construction need to be investigated; moreover, the motivation and meaning of labor-saving bias in the industry ought to be looked into, in order to ascertain its desirability from the viewpoint of all involved.

As for the developing countries, the results of the study, at first glance, appear to be rather negative in terms of the wisdom of their returning to the use of some of the more labor-intensive, animal-powered technologies of the past, in that technology change in highway construction in the U.S. appears to be primarily characterized by efficiency and perhaps some economies of scale, but only a relatively small amount of bias and no substitution. At the same time, however, it was observed that an efficiency analysis over the technical packages of all three periods results in production functions for most stages of construction, ones largely made up of the 1970's fully capital-intensive packages and the 1920's fully labor and animal-intensive packages, with just a couple from the 1950's. Moreover, under the developing conditions outlined in the study, admittedly rather extreme ones, the 1920's packages arise as least cost for all stages except the two higher standard surfaces. The development of technical packages since the 1920's thus seems to have been focused on the capital-intensive end of the production

function, where increased efficiency has indeed been achieved; the 1920's labor-intensive packages seem to have been essentially forgotten, although they still appear to be efficient and, under some conditions, economic. It does, therefore, appear to be worthwhile for at least some developing countries to consider potentially using some of the more fully labor and animal-intensive packages of the 1920's, particularly in light of, for example, possible productivity improvements, inclusion of mobilization and other fixed costs associated with heavy equipment, and application of more realistic utilization rates for developing conditions.

5.2 Recommendations for Further Research

The first recommendation for further research is a more in-depth analysis of the means and motivations behind technology change in highway construction in the U.S., past, present, and future. The current research provides greater understanding of the nature and magnitude of technology change over the past fifty years o. so; a component, which is still lacking; however, and which is so necessary in guiding the future direction of technology change, is greater insight into why this change occurred — what were the underlying motivations. Moreover, as observed above, the means of accomplishing technology change in the past do not look very promising for the future, and therefore, new approaches to improving resource utilization need to be investigated. Finally too, certain characteristics of the technology change that has been observed, such as the labor-saving bias, are puzzliny and need further analysis in terms, for example, of what has motivated them, who benefits,

and should such trends be encouraged or discouraged in the future.

A second recommendation is testing and, as appropriate, reducing some of the restrictions in the current research in future studies. Restrictions limiting the general applicability of the results lie, for example, in the assumption of "typical" institutional and environmental conditions and in the limited number of alternative surfaces, designs, and projects investigated. Omission of certain activities, such as minor and major structures and materials production and transport, constitutes another area. A third area of restrictions, and perhaps the most important, is that of simplifying assumptions, such as full utilization of equipment, balancing of additional labor and capital costs above the basic hourly rate and their inclusion in general overhead and profit. constant returns to scale, generally uniform product quality and time to produce a given output across technical packages (excepting, of course, specification of 93 versus 98 percent earthwork compaction and various surfacing materials), and each project's being a part of a larger project thereby being able to use only best-practice technical packages and having no need for coordination of packages. Several of these assumptions relate in one way or another to project scale, an aspect of highway construction definitely warranting further consideration; economies of scale, for example, are felt to be in part, at least, responsible for some of the technology change attributed to efficiency. The feasibility of further analysis of many of these restrictions rests on the availability of data, which is a problem in that historical data often fails to be sufficiently detailed.

A third recommendation is that studies of materials usage, maintenance policies and procedures, and transport technology and their change over time in highway construction and operation in the U.S. be made; the impact of this overall technology change might then be better understood, with the results of this study of the technical packages of construction being reasonably encouraging, at least in terms of past trends. Knowledge of past trends and future expectations is of importance in all of these areas. The modification and use of existing or development and use of new surfacing materials, for example, is perceived to be necessary for further advances in equipment as well as in materials conservation. User costs constitute such a major share of total project costs that studies in the area of transport technology and its development are clearly warranted; also important is the expansion of the data base pertaining to the estimation of road surface deterioration and the impact of design standards and surface conditions on road user costs, making more feasible the development of more sensitive models for measuring user costs.

Investigation of the role of technology in other sectors of the construction industry in the U.S. and elsewhere and its influence on productivity and efficiency and product quality and cost constitutes the fourth recommendation for further research. This is of importance in terms of indicating the direction of technology advance in the past and its potential in the future in these sectors in the U.S. and other developed countries; in the case of developing countries, it is of use in terms of assessing the potential appropriateness of various technical

packages. Other areas of heavy construction provide some interesting possibilities for research; in the case of tunneling, for example, the main thrust of technology change has occurred more recently, with research in the area potentially guiding its future path. Building construction is also of interest, particularly in light of the criticism it receives for being slow to adopt advances in technology. The study of technology and productivity in this sector of construction, even narrowing the scope to a single type of building like federal office buildings, is more complex, however, due to the large number of steps in the construction process and difficulties in the measurement of output in quantity, quality, and use terms.

The fifth and final recommendation pertains to developing countries and the additional testing and evaluation of the implications of the research at hand for the developing situation. First and foremost is further testing with regard to the range of economic conditions under which the more labor-intensive technical packages of the 1920's appear to be economic. At the same time it is appropriate to try to alleviate some of the more relevant and restrictive limitations, omissions, and simplifying assumptions discussed under the second recommendation. In view of the small scale projects common in developing countries, for example, explicit inclusion of mobilization and other fixed costs associated with heavy equipment as well as more realistic utilization rates for such equipment seems appropriate; such adjustments would, of course, tend to strengthen the case supporting the use of the 1920's technical packages. Also of importance is investigation of alternative

means of improving productivity, perhaps via management, organization, and supervision, tools and simple mechanical aids and the skills necessary to use them, and general physical and social well-being of the workers; in a couple of the case studies reviewed in Section 2.21 (e.g., IBRD-III [38,39,40] and ILO-Philippines [43]), field studies and demonstration projects are successfully used in the development, testing, and implementation of such measures to improve labor productivity. In line with recommendation three above, further study is also needed in the areas of materials usage, maintenance policies and technology, and, probably most importantly, transport technology in the developing countries, if project costs are to be minimized. Of interest, too, as noted at various points throughout the study, is the potential for labor-capital substitution in maintenance, materials production, and major and minor structures construction.

APPENDIX A

RESEARCH REFERENCES

The references listed here include all those cited in Chapters 1 through 5 of the text, while Appendices B and C contain separate lists of the references cited in each appendix.

- Acharya, Shankar, Geoffrey Shepherd, and Lyn Squire, <u>Choice of</u> <u>Technology: A Research Strategy for the Development Econo-</u> <u>mics Department</u>, Draft of report put together by IBRD, Washington, D. C., April 17, 1974.
- Allen, T. Warren and Andrew P. Anderson, "Power Shovel Operation in Highway Grading Part I: An Outline of More Important Facts Developed in Studies and Discussion of Factors Affecting the Operating Cycle of the Shovel", <u>Public Roads</u>, Vol. 8, No. 12, February 1928, p. 251+.
- American Association of State Highway and Transportation Officials, <u>AASHTO Interim Guide for Design of Pavement Structures 1972</u>, AASHTO, Washington, D. C., 1974.
- American Association of State Highway Officials, <u>A Policy on</u> <u>Geometric Design of Rural Highways - 1965</u>, AASHO General Offices, Washington, D. C., 1966.
- Associated General Contractors of America, <u>Contractors' Equip-</u> <u>ment Ownership Expense</u>, Washington, D. C., various years (1930 edition is titled <u>Equipment Ownership Expense</u>, and 1974 edition is titled Contractors' Equipment Manual).
- Baer, Werner, "Technology, Employment and Development: Empirical Findings," <u>World Development</u>, Vol. 4, No. 2, February 1976, p. 121-130.
- Ball, Robert, "Labor and Materials Required for Highway Construction, <u>Monthly Labor Review</u>, Vol. 96, No. 6, June 1973, p. 40-45.
- Beckmann, Martin J., Ryozo Sato, and Mark Schupack, "Alternative Approaches to the Estimation of Production Functions and of Technical Change," <u>International Economic Review</u>, Vol 13, No. 1, February 1972, p. 33-52.

,

9. Bhalla, A. S., Editor, Technology and Employment in Industry, International Labour Office, Geneva, 1975.

- Bhandari, Anil and Fredric Berger, <u>The Highway Cost Model: Evalu-</u> ation of the Dar-es-Salaam -- Morogoro Section of the Tanzania-<u>Zambia Highway</u>, Report No. 75-5, Technology Adaptation Program, Massachusetts Institute of Technology, Cambridge, September 1975.
- 11. Blanchard, Arthur H. and Henry B. Drowne, <u>Text-Book on Highway</u> Engineering, John Wiley and Sons, New York, 1913.
- 12. Brown, Murray, <u>On the Theory and Measurement of Technological</u> Change, Cambridge University Press, London, 1968.
- Brown, Murray, Editor, <u>The Theory and Empirical Analysis of</u> <u>Production</u>, Vol. 31, Studies in Income and Wealth, Conference on Research in Income and Wealth, National Bureau of Economic Research, New York, Columbia University Press, New York, 1967.
- Buechner, William R., <u>Technological Change and the Occupational</u> <u>Composition of the American Labor Force, 1950-1960</u>, Ph.D. Thesis, Department of Economics, Harvard University, Cambridge, Massachusetts, May 1972.
- 15. Carter, Anne P., <u>Structural Change in the American Economy</u>, Harvard University Press, Cambridge, Massachusetts, 1970.
- Cassimatis, Peter J., <u>Economics of the Construction Industry</u>, Studies in Business Economics No. 111, The National Industrial Conference Board, New York, 1969.
- Chenery, Hollis B., "Engineering Production Functions", <u>The</u> <u>Quarterly Journal of Economics</u>, Vol. 63, No. 4, November 1949, p. 507-531.
- 18. , "Process and Production Functions from Engineering Data", <u>Studies in the Structure of the American</u> <u>Economy - Theoretical and Empirical Explorations in Input-</u> <u>Output Analysis</u>, By Wassily Leontief et. al., Oxford University Press, New York, 1953, p. 297-325.
- 19. "Costs and Prices", <u>Construction Review</u>, Vol. 22, No. 7, August/ September 1976, p. 46 and Vol. 21, No. 11, December 1975, p. 47.
- Cowing, Thomas G., "Technical Change and Scale Economies in an Engineering Production Function: The Case of Steam Electric Power", <u>The Journal of Industrial Economics</u>, Vol. 23, No. 2, December 1974, p. 135-152.

278

- Creamer, Daniel, "Measuring Capital Input for Total Factor Productivity Analysis: Comments by a Sometime Estimator", <u>The</u> <u>Review of Income and Wealth</u>, Vol. 18, No. 1, March 1972, p. 55-78.
- 22. Dacy, Douglas C., "Productivity and Price Trends in Construction Since 1947", <u>The Review of Economics and Statistics</u>, Vol. 47, No. 4, November 1965, p. 406-411.
- 23. Dasgupta, P., A. K. Sen, and S. Marglin, <u>Guidelines for Project</u> <u>Evaluation</u>, Project Formulation and Evaluation Series, No. 2, United Nations Industrial Development Organization, Vienna, United Nations, New York, 1972.
- 24. Dreiblatt, David, <u>The Economics of Heavy Earthmoving</u>, Praeger Publishers, Inc., New York, 1972.
- 25. Engineering News-Record:
 - a. "Current Building and Construction Trades Wage Rates per Hour", Vol. 104, No. 18, May 1, 1930, p. 746.
 - b. "Current Prices of Construction Materials", Vol. 104, No. 18, May 1, 1930, p. 748-750.
 - c. "Hourly Wage Rates", Vol. 156, No. 18, May 3, 1956, p. 96.
 - d. "Materials Prices", Vol. 156, No. 19, May 10, 1956, p. 89, Vol. 192, No. 19 and 22, May 9 and 23, 1974, p. 40-41 and 30-31.
 - e. "Wage Rates for Key Building Construction Trades", Vol. 192, No. 23, May 30, 1974, p. 26-27.
- 26. <u>Federal Reserve Bulletin</u>, Statistical tables on interest rates and bond yields for various years.
- 27. Feller, Irwin, "Production Isoquants and the Analysis of Technological and Technical Change", <u>The Quarterly Journal of Econo-</u> mics, Vol. 86, No. 1, February 1972, p. 154-161.
- 28. Finger, Diane S., "Labor Requirements for Federal Highway Construction", <u>Monthly Labor Review</u>, Vol. 98, No. 12, December 1975, p. 31-36.
- 29. Gillette, Halbert P. and John C. Black, <u>Road and Street Construc</u>tion Methods and Costs, Gillette Publishing Co., Chicago, 1940.

- Gordon, Robert J., "A New View of Real Investment in Structures, 1919-1966", <u>The Review of Economics and Statistics</u>, Vol. 50, No. 4, November 1968, p. 417-428.
- Harger, Wilson G., <u>Rural Highway Pavements Maintenance and Recon</u> struction, McGraw-Hill Book Co., New York, 1924.
- 32. Harrison, J. L., "The Effect of Haul on the Cost of Earthwork", Public Roads, Vol. 5, No. 7, September 1924, p. 14-17.
- 33. _____, "The Wagon and the Elevating Grader Part I", Public Roads, Vol. 6, No. 2, April 1925, p. 25+.
- 34. Highway Research Board, <u>Iowa State Highway Maintenance Study --</u> <u>Time Utilization, Productivity, Methods and Management, 1959-</u> <u>1960</u>, Special Report 65 and Supplement I, National Academy of Sciences - National Research Council, Publications 921 and 922, Washington, D. C., 1961.
- 35. Imperial Ethiopian Government, Imperial Highway Authority, <u>Ethiopia</u> <u>Road Maintenance Study, Final Report and Appendix</u>, Prepared by Frederic R. Harris, Inc., Consulting Engineers, supported by Economics Research Associates, June 1973.
- 36. International Bank for Reconstruction and Development, <u>Highway</u> <u>Design Study Phase I: The Model</u>, Economics Department Working Paper No. 96, Prepared by Fred Moavenzadeh, Joseph H. Stafford, John H. Suhrbier, and John Alexander of CLM Systems, Inc., Cambridge, Massachusetts, January 1971.
- 37. , <u>Iron Deficiency Anemia and the Productivity</u> of Adult Males in Indonesia, Staff Working Paper No. 175, Prepared by S. S. Basta and A. Churchill from IBRD Transportation and Urban Projects Department, Research Division, Washington, D. C., April 1974.
- 38. <u>Scope for the Substitution of Labor and Equip-</u> <u>ment in Civil Construction: A Progress Report</u>, Prepared by I. K. Sud et. al. for IBRD Transportation Department, Transport Research Division, Washington, D. C., July 1976.
- 39. <u>Study of the Substitution of Labour and Equip-</u> <u>ment in Civil Construction: Phase III Technical Report No. 1</u>, <u>Vol. 1 and II, Prepared by Scott Wilson Kirkpatrick and Partners,</u> London, for the IBRD Transportation and Urban Projects Department, Research Division, Washington, D. C., August 1974.
- 40. <u>and Equipment in Civil Construction - Technical Memorandum No.</u> <u>1-25</u>, IBRD Transportation Department, Transport Research Division, Washington, D. C., January 1975-June 1976.

- 41. International Bank for Reconstruction and Development, International Development Association, Study of the Substitution of Labor and Equipment in Civil Construction: Phase II Final Report, Vol. I-III, IBRD-IDA Staff Working Paper No. 172, Prepared by C. G. Harral et. al. from the IBRD Transportation and Urban Projects Department, Research Division, Washington, D. C., and Scott Wilson Kirkpatrick and Partners, London, January 1974.
- 42. ______, Study of the Substitution of Labor for Equipment in Road Construction, Phase I: Final Report, Prepared by C. G. Harral et. al. from IBRD and various consultants, October 1971.
- 43. International Labour Office, <u>Men or Machines, A Philippines Case</u> <u>Study of Labour-Capital Substitution in Road Construction</u>, Prepared by Deepak Lal, Working Paper, Technology and Employment Project, World Employment Programme Research, ILO, Geneva, September 1974.
- 44. <u>Roads and Redistribution, A Social Cost-</u> <u>Benefit Study of Labor-Intensive Road Construction Methods in</u> <u>Iran</u>, Research and Action Project relating to Technology and Employment, World Employment Programme, ILO, Geneva, October 1973.
- 45. <u>Activities An Ergonomic Pilot Study</u>, Prepared by Rune Eriksson, Adolfo Yliö, and Nils Lundgren, Working Paper, Technology and Employment Project, World Employment Programme Research, ILO, Geneva, April 1974.
- 46. Kellogg, F. H., Construction Methods and Machinery, Prentice-Hall, New York, 1954.
- 47. Kennedy, Charles and A. P. Thirlwall, "Surveys in Applied Economics: Technical Progress", <u>The Economic Journal</u>, Vol. 82, No. 325, March 1972, p. 11-72.
- 48. Kurg, Mordecai and Alan S. Manne, "Engineering Estimates of Capital-Labor Substitution in Metal Machining", <u>The American Economic</u> <u>Review</u>, Vol. 53, No. 4, September 1963, p. 662-681.
- 49. Lago, Armando M., "Cost Functions and Optimum Technology for Intercity Highway Transportation Systems in Developing Countries", Traffic Quarterly, Vol. 22, No. 4, October 1968, p. 521-553.
- 50. Lave, Lester B., <u>Technological Change: Its Conception and Measure</u>ment, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1966.

- 51. Little, I.M.D. and J. A. Mirrlees, <u>Manual of Industrial Project</u> <u>Analysis in Developing Countries, Vol. II, Social Cost</u>-<u>Benefit Analysis</u>, Organization for Economic Co-operation and Development, Paris, 1968.
- 52. Mansfield, Edwin, <u>The Economics of Technological Change</u>, W. W. Norton and Co, Inc., New York, 1968.
- 53. <u>Industrial Research and Technological Innova-</u> tion: An Econometric Analysis, W. W. Norton and Co., Inc., New York, 1968.
- 54. Means Company, Inc., Robert Snow, <u>Building Construction Cost</u> Data, Duxbury, Massachusetts, various years.
- 55. Moavenzadeh, Fred, <u>Report Series: Evaluation Framework for Trans-</u> portation Planning in Developing Countries, Draft Report on Project Case Studies, Prepared for the Office of Science and Technology, Agency for International Development, U.S. Department of State, Washington, D. C., July 1976.
- 56. Moavenzadeh, Fred, Fredric Berger, Brian Brademeyer, and Robert Wyatt, <u>The Highway Cost Model - General Framework</u>, Report No. 75-4, Technology Adaptation Program, Massachusetts Institute of Technology, Cambridge, September 1975.
- Müller, J., "Labour-Intensive Methods in Low-Cost Road Construction: A Case Study", <u>International Labour Review</u>, Vol. 101, No. 4, April 1970, p. 359-375.
- 58. Nadiri, M. Ishaq, "Some Approaches to the Theory and Measurement of Total Factor Productivity: A Survey", <u>Journal of Economic</u> <u>Literature</u>, Vol. 8, No. 4, December 1970, p. 1137-1177.
- 59. National Cooperative Highway Research Program, <u>Economics of Design</u> <u>Standards for Low-Volume Rural Roads</u>, Report 63, by C. H. Oglesby and M. J. Altenhofen, Highway Research Board, Washington, D. C., 1969.
- 60. <u>Running Costs of Motor Vehicles as Affected by</u> <u>Road Design and Traffic</u>, Report 111, by Paul J. Claffey, Highway Research Board, Washington, D. C., 1971.
- 61. <u>User Benefit Analysis for Highway and Bus Transit</u> <u>Improvements</u>, by Dudley G. Andersen, David A. Curry, and Randall J. Pozdena, Transportation Research Board, Washington, D. C., October 1975.

- 62. Obhi, K. <u>Simulation of Road Construction, Maintenance, and User</u> <u>Costs on 13.7 Kilometers of the Yegeresso-Sarossarosso Section:</u> <u>Bobo Dioulasso-Havnde Road</u>, Unpublished paper, International Bank for Reconstruction and Development, Washington, D. C.
- 63. O'Herlihy, C. St.J., "Capital/Labour Substitution and the Developing Countries: A Problem of Measurement", <u>Bulletin of the</u> <u>Oxford University Institute of Economics and Statistics</u>, Vol. 34, No. 3, August 1972, p. 269-280.
- 64. Ortega, Nicholas G., <u>Economic and Financial Vehicle Operating</u> <u>Costs</u>, Ethiopian Road Authority, Addis Ababa, February 1976.
- 65. Pearl, D. J. and J. L. Enos, "Engineering Production Functions and Technological Progress", <u>The Journal of Industrial Econo-</u> <u>mics</u>, Vol. 24, No. 1, September 1975, p. 55-72.
- 66. Peurifoy, R. L., <u>Construction Planning</u>, <u>Equipment</u>, <u>and Methods</u>, McGraw-Hill Book Co., New York, 1956.
- 67. _____, <u>Estimating Construction Costs</u>, McGraw-Hill Book Co., New York, 1975.
- Radzikowski, H. A., "Progress Report of Committee on Maintenance Costs", <u>Highway Research Abstracts</u>, Vol. 23, No. 10, November 1953, p. 35-40.
- 69. Rieger, Hans C. and Binayak Bhadra, <u>Comparative Evaluation of</u> <u>Road Construction Techniques in Nepal</u>, Parts 1-4, Preliminary Report Prepared for International Labour Office in Geneva, by Centre for Economic Development and Administration, Kathmandu, Nepal, December 1973.
- 70. Road Research Laboratory, <u>Soil Mechanics for Road Engineers</u>, Department of Scientific and Industrial Research, Her Majesty's Stationery Office, London, 1952.
- 71. Rossow, Janet Koch and Fred Moavenzadeh, <u>The Construction Industry -</u> <u>A Review of the Major Issues Facing the Industry in the United</u> <u>States</u>, Research Report No. R74-44, Department of Civil Engieering, Massachusetts Institute of Technology, Cambridge, Summer 1974.
- 72. Rymes, Thomas K., <u>On Concepts of Capital and Technical Change</u>, Cambridge University Press, Cambridge, 1971.
- 73. Salter, W. E. G., <u>Productivity and Technical Change</u>, Cambridge University Press, Cambridge, 1966.

- 74. Sen, A. K., "Control Areas and Accounting Prices: An Approach to Economic Evaluation", <u>Economic Journal</u>, Vol. 82, March 1972, Supplement, p. 486.
- 75. Smith, Vernon L., <u>Investment and Production A Study in the</u> <u>Theory of the Capital-Using Enterprise</u>, Harvard University Press, Cambridge, Massachusetts, 1961.
- 76. Soberman, Richard M., "Economic Analysis of Highway Design in Developing Countries", <u>Highway Research Record</u>, No. 115, 1966, p. 44-63.
- 77. Stubbs, Frank W., Jr., Editor, <u>Handbook of Heavy Construction</u>, McGraw-Hill Book Co., New York, 1959.
- 78. Survey of Current Business, Vol. 55, No. 9, September 1975.
- 79. Transport and Road Research Laboratory (Overseas Unit), <u>A Guide to</u> <u>the Structural Design of Bitumen-Surfaced Roads in Tropical</u> <u>and Sub-Tropical Countries</u>, Proposed Revisior to TRRL Road Note 31, United Kingdom, 1966.
- 80. _______, <u>The Kenya Road Transport Cost Study:</u> <u>Research on Road Deterioration</u>, TRRL Laboratory Report 673, Prepared by J. W. Hodges, J. Rolt, and T. E. Jones, Crowthorne, Berkshire, 1975.
- 81. , <u>The Kenya Road Tranport Cost Study:</u> <u>Research on Vehicle Operating Costs</u>, TRRL Laboratory Report 672, Prepared by H. Hide, S. W. Abaynayaka, I. Sayer, and R. J. Wyatt, Crowthorne, Berkshire, 1975.
- 82. <u>A Road Transport Investment Model for Develop-</u> <u>ing Countries</u>, TRRL Laboratory Report 674, Prepared by R. Robinson, H. Hide, J. W. Hodges, J. Rolt, and S. W. Abaynayaka, Crowthorne, Berkshire, 1975.
- United Nations, Bureau of Economic Affairs, "Capital Intensity in Heavy Engineering Construction", <u>Industrialization and Produc-</u> <u>tivity</u>, Bulletin No. 1, April 1958, p. 35-48.
- 84. United Nations, Department of Economics and Social Affairs, Industrial Development Branch, "Capital Intensity and Costs in Earth-moving Operations", <u>Industrialization and Productivity</u>, Bulletin No. 3, March 1960, p. 7-24.

- 85. U. N. Economic Commission for Asia and the Far East, <u>Earthmoving</u> <u>by Manual Labour and Machines</u>, Floor Control Series No. 17, Report and discussion papers of the Working Party on Earthmoving Operations, Bangkok, 1961.
- 86. U. S. Bureau of the Census, <u>The Statistical History of the United</u> <u>States - From Colonial Times to the Present</u>, Basic Books, Inc., Publishers, New York, 1976.
- 87. U. S. Bureau of Economic Analysis, Long Term Economic Growth, 1860-1970, U. S. Government Printing Office, Washington, D. C., June 1973.
- 88. U. S. Bureau of Labor Statistics, "Average Annual Percentage Change in Onsite Labor Requirements for Various Types of New Construction Studied, for Selected Periods, 1958-1973", Unpublished chart of the Office of Productivity and Technology, Washington, D. C., 1975 (?).
- 89. _____, "Average Annual Rates of Growth Based on Lease Squares Method", Series of tables on the construction industry, Washington, D. C., Septembe: 20, 1974.
- 90. <u>- Price Indexes for Selected Items and Groups, Annual Averages</u> <u>1935-61, Quarterly Indexes March 1947-December 1961, Govern-</u> ment Printing Office, Washington, D. C., September 1962.
- 9]. <u>Reference Edition</u>, Bulletin 1865, Government Printing Office, Washington, D. C., 1975.
- 92. <u>Labor and Material Requirements</u> for Construction of Federally Aided Highways, 1958, 1961, and 1964, Report No. 299, Government Printing Office, Washington, D. C., 1966.
- 93. <u>Labor and Material Requirements</u> for Private Multifamily Housing Construction, Bulletin 1892, Government Printing Office, Washington, D. C., 1976.
- 94. , <u>Union Wages and Hours: Local</u> <u>Truckdrivers and Helpers, July 1, 1973</u>, Bulletin 1840, Government Printing Office, Washington, D. C., 1975.
- 95. ______, <u>Union Wages and Hours: Motor Truck</u> Drivers and Helpers, July 1, 1956 and Trends 1936-56, Bulletin 1206, Government Printing Office, Washington, D. C., 1957.
- 96. , <u>Wholesale Prices and Price Indexes</u> and <u>Wholesale Prices and Prices Indexes Supplement</u>, Government Printing Office, Washington, D. C., various years.

- 97. U. S. Bureau of Public Roads, <u>Production Study Reports Construc-</u> <u>tion Equipment Series</u>, <u>Production Study Reports - Cost Series</u>, and <u>Results of Production Cost Studies 1947-1966</u>, Unpublished field studies, Office of Research and Development, Washington, D. C., 1945-1966.
- 98. <u>Report of Studies Conducted on Sheet Asphalt</u> <u>Paving Project</u>, Submitted to T. Warren Allen, Chief, Division of Management, Bureau of Public Roads, Washington, D. C., by Walter E. Labelle and Neil E. MacDougall, Engineer Students, and H. K. Church, Junior Highway Engineer, Liberty, Indiana, September 29, 1929.
- 99. U. S. Federal Highway Administration, <u>Cost of Operating an Automo-</u> <u>bil.</u>, <u>Suburban Based Operation</u>, Office of Highway Planning, Highway Statistics Division, Washington, D. C., April 1974.
- 100. _____, "Effect of Improved Equipment on Highway Construction Prices", Chart prepared by the Office of Engineering and Operations, Construction and Maintenance Division, Washington, D. C., 1967(?).
- 101. _____, "Highway Construction Cost and Labor Usage Trends", Chart issued annually by Office of Highway Operations, Construction and Maintenance Division, Washington, D. C., 1974 (?).
- 102. <u>Highway Statistics 1973</u>, Government Printing Office, Washington, D. C., 1974.
- 103. ______, "Man-Hours Per \$1,000,000 Construction Cost", Unpublished table produced by Office of Highway Operations, Construction and Maintenance Division, Washington, D. C., 1974 (?).
- 104. , <u>Price Trends for Federal-Aid Highway Con-</u> <u>struction</u>, Pamphlet issued quarterly by Office of Highway Operations, Construction and Maintenance Division, Washington, D. C., various issues.
- 105. <u>Rubber-Tired, Front-End Loaders Final Report</u>, Report No. FHWA - RDDP - PC - 520, Prepared by D. A. Bernard, T. R. Ferragut, and D. L. Neumann, FHWA Region 15, Arlington, Virginia, May 1973.
- 106. U. s. Interstate Commerce Commission, <u>Transport Statistics in the</u> <u>United States, Part 7 Motor Carriers</u>, for the years ended December 31, 1971 and December 31, 1973, Prepared by the Bureau of Accounts, Washington, D. C.

- 107. U. S. National Commission on Productivity, <u>Conference on Agenda</u> <u>for Economic Research on Productivity</u>, Government Printing Office, Washington, D. C., April 1973.
- 108. U. S. National Commission on Productivity and Construction Industry Collective Bargaining Commission, <u>Measuring Productivity</u> <u>in the Construction Industry</u>, Proceedings of Conference held in Washington, D. C., September 14, 1972.
- 109. U. S. Office of Business Economics, <u>Business Statistics</u>, A Supplement to the <u>Survey of Current Business</u>, Government Printing Office, Washington, D. C., various years (1932 edition is titled <u>1932 Annual Supplement</u>, published by U. S. Bureau of Foreign and Domestic Commerce).
- 110. , <u>The National Income and Product Accounts of</u> <u>the United States</u>, <u>1929-1965</u>, <u>Statistical Tables</u>, A Supplement to the <u>Survey of Current Business</u>, Government Printing Office, Washington, D. C., <u>1966</u>.
- 111. Vaidya, Rameshananda, <u>The Choice of Technology in Highway Construc-</u> <u>tion Industry - A Case Study of Nepal</u>, Master's Thesis, Sloan School of Management, Massachusetts Institute of Technology, Cambridge, May 1974.
- 112. Vance, Jr., Lawrence Lee, <u>Cost Functions for Comparison of Low-</u> <u>Cost Transportation Technologies</u>, D.Eng. Thesis, Graduate Division, University of California, Berkeley, 1970 (Reprinted by Xerox University Microfilms, Ann Arbor, Michigan, No. 71-20,753).
- 113. Warren Brothers Company (Division of Ashland Oil, Inc.), Telephone Conversations with Don Woods and Benjamin Richter, Cambridge, Massachusetts, 1976.
- 114. Williamson, Jeffrey G., "Production Functions, Technological Change and the Developing Economies: A Review Article", <u>The Malayan</u> Economic Review, Vol. 13, No. 2, October 1968, p. 8-21.
- 115. Winfrey, Robley, <u>Economic Analysis for Highways</u>, International Textbook Company, Scranton, Pennsylvania, 1969.
- 116. Woods, Kenneth B., Donald S. Berry, and William H. Goetz, Editors, <u>Highway Engineering Handbook</u>, McGraw-Hill Book Co., New York, 1960.
- 117. Yoder, E. J. and M. W. Witczak, <u>Principles of Pavement Design</u>, John Wiley and Sons, New York, 1975.

APPENDIX B

CONSTRUCTION TECHNOLOGIES AND "OSTS

B.1 Resource Productivities

The productivities of the labor, equipment, and materials included in each technical package are usually derived from a variety of sources, generally at the activities level, under typical institutional and environmental conditions, for each stage of construction for the 1920's, 1950's, and 1970's. In order to remain consistent and logical throughout the course of deriving the various resource productivities, certain assumptions were mace at the outset and as necessary throughout this phase of the work.

The more generally applicable assumptions are discussed in Section 5.11, while discussion of the stage-specific assumptions is left to Section 8.12, where sample calculations of the productivity figures for the various stages of construction are given. These sample calculations serve to demonstrate the estimation procedure and also to give an indication of the range in quality and detail found in the original data; a sample is given for each stage of construction, except in the case of excavation/hauling, where three are given, one for each technology period, since the range of technical packages reviewed is so broad, and in the case of surfacing, where a sample is given for each of the three materials. Table 8.1 in Section 8.13, then, lists the full set of estimated resource requirements of each technical package for all stages and all three technology periods, as well as identifying the sources for each package. A complete list of sources for this appendix is given in Section 8.3. All assumptions and
productivity estimations are made with the project-level analysis in mind.

B.11 General Assumptions

As the study is limited to the U.S., it seems appropriate, within reason, to assume that the health and nutritional conditions, work attitudes, and basic quality of the workforce are relatively uniform, the equipment is reasonably fully utilized, the necessary amenities for labor and maintenance and repair facilities for equipment are available, and the work is generally performed on a contract basis and payment of labor is by the hour. The climate is taken as temperate.

Throughout the analysis, normal productivity figures are used as opposed to peak or actual; management is thus assumed to be average to good, and an allowance for the human factor, in the form of minor delays which are generally unavoidable on any job, is included, while major delays, which tend to be highly variable among jobs and are often weather or managementrelated, are excluded. A default working efficiency factor of 80 percent (i.e., a 48-minute hour) is used when one is not specified for a particular operation; in cases where data is in the form of actual productivities, a default factor of 125 percent is applied to bring the figures up to the level of normal productivities (21, 37, 44, 45). Where the workforce is predominantly unskilled laborers, mostly arising in the 1920's technical packages, one supervisory person (treated as a skilled laborer) per a crew of ten or so men is assumed (26). Finally, parameters of time to complete the job and project scale are not considered, as they are beyond the scope of this analysis, and the necessary data appears to be largely unavailable.

B.12 Sample Calculations of Resource Productivities

<u>Site Preparation</u>: Site preparation consists of brush, tree, and stump removal and burning of the debris; it is measured in hectares or acres, generally including the road and borrow areas. Vegetation is assumed to be medium, with 100 trees/acre averaging 10 in. in diameter (22, 86). For certain site preparation technical packages (e.g., 1950 tp 31), as in the spreading/compaction and surfacing stages, the width of the road may be a factor in resource productivity; in such cases the productivity data for the two road widths designed in Section 3.2 are calculated and averaged to get a figure relatively independent of road width. In the case of site preparation, average cleared widths of 60 ft and 75 ft are assumed for the two design standards, averages being based on the widths obtained under various excavation/hauling scenarios.

Example-1970 Site Preparation Technical Package 21: Dodge (22) cites the following productivities for a 90 fwhp crawler bulldozer, 4 chain saws, 1 pickup truck, handtools, 1 skilled laborer, and 6 unskilled laborers:

> Clearing trees less than 6 in. in diameter - 3 acres/8 hr day Grubbing and disposing of (burning) stumps less than 6 in. in diameter - 6 acres/8 hr day Clearing, grubbing, and disposing of trees greater than or equal to 6 in. in diameter - 1.5 acres/8 hr day

Peurifoy (57) gives productivity for a 93 fwhp crawler bulldozer with unspecified crew as follows:

Felling trees	2.18 hrs/acre	(49%)
Stacking trees	0.53 hrs/acre	(12%)
Burning	1.75 hrs/acre	(39%)
out it it is		. ,

Total 4.46 hrs/acre 33.3 gal of fuel per acre used in burning

Assuming the site has 100 trees per acre and their diameters are normally distributed with mean 10 in. and standard deviation 5, there are 33 trees less than 6 in. in diameter and 67 trees with diameters greater than or equal to 6 in. From Dodge:

> Clearing trees less than 6 in. -2.67 hrs/acre x 33% = 0.88 hrs/acre Grubbing and burning above trees -1.33 hrs/acre x 33% = 0.44 hrs/acre Clear, grub, and dispose of trees greater than or equal to 6 in. -5.33 hrs/acre x 67% = 3.57 hrs/acre

Total time to clear and grub 100 trees 4.89 hrs/acre The average of this figure with that from Peurifoy is 4.67 hrs/acre.

In order to get individual productivities for equipment and labor, the process is divided into activities using the percentages given in Peurifoy and the crew given in Dodge. It should first be noted that in site preparation, as in excavation/hauling and in the spreading activity of the spreading/compaction and surfacing stages, handtool packages appropriate to the task at hand are assembled and an average initial cost and life for each set estimated; handtool hours, then, are allocated on the basis of man-hours of using the handtools, with each unskilled laborer using no other equipment in a particular task being given such a package.

Brushing and tree removal:			
49% of 4.67 hrs/acre	=	2.29	hrs/acre
Equipment: 1 70 dbhp crawler			
tractor (644)		2.29	hrs/acre
1 8 ft dozer blade	(614)	2.29	hrs/acre

Equipment:	4	chain saws (236)	9.16	hrs/acre
Crew:	1	skilled laborer	2.29	hrs/acre
	4	unskilled laborers	9.16	hrs/acre
Stacking: 12% o	f	4.67 hrs/acre =	0.56	hrs/acre
Equipment:	1	70 dbhp crawler		
		tractor (644)	0.56	hrs/acre
	1	8 ft dozer blade (614)	0.56	hrs/acre
	1	pickup truck (336)	0.56	hrs/acre
	6	handtools (209)	3.36	hrs/acre
Crew:	1	skilled laborer	0.56	hrs/acre
	7	unskilled laborers	3.92	hrs/acre

For burning, Peurifoy cites a different productivity with each of three examples. The average of these three figures is used, rather than the result of applying a percentage (39%) to 4.67 hrs/acre as is done for the other activities; this is to keep the burning productivity the same across all three 1970's technical packages since it is always done the same way.

Burning:		1.75	hrs/acre
Equipment:	6 handtools (209)	10.5	hrs/acre
Crew:	6 unskilled laborers	10.5	hrs/acre
	3/4 foreman	1.31	hrs/acre
Material:	kerosene (823)	33.3	gal/acre

<u>Excavation/Hauling</u>: Loosen and load constitute the first part of excavation/hauling, while load, haul, unload, and return constitute the second ; the units of measure are bank cubic meters or bank cubic yards, where the materials may be from cuts for the road itself or from borrow areas and may be going to the embankment or to spoil. Ordinary/common soil and no rock is assumed, with the soil requiring only a limited amount of loosening; an expansion factor of 25 percent is assumed for this material, which means that output in bank measure is 80 percent of that in loose measure (21, 26, 68). The soil is later made more specifically silty clay as this is one of only a few materials for which a relationship could be found in the literature between the amount of compaction and subgrade strength.

The condition of the haul route is assumed to be average to good, while the distance is allowed to vary. A total of 7 haul distances* ranging from 6M (20ft) to 800 M (2625 ft) are derived for the two basic road designs under various borrow situations in Section 3.2; these fall into three groups of haul distances represented by 6, 100, and 800 M (20, 330, and 2625 ft) in the stage-level analysis. The original plan had been to use a simple equation for the hauling activity, with both a constant and distance-dependent component, but this proved infeasible for much of the 1950's and 1970's equipment where data is sufficiently detailed as to show variations in haul speed with the distance traveled; productivities are thus calculated for each individual haul distance. The productivity of elevating graders (1920 tp 8-7, 9-7; 1950 tp 4-2, 4-4), in particular, is dependent upon the length of the cut in which they are working, 450 ft being assumed as it appears to be a common size; such equipment is generally used in borrow pits, as its turning radius is also quite large (31, 33, 56, 77). It thus follows naturally that a minimum haul distance associated with such excavating equipment would be 200 ft or so.

Example 1-1920 Excavation/Hauling Technical Package 1-1: The most labor-intensive excavation/hauling method employs men with handtools (picks and shovels) for loosening and loading and men with wheelbarrows for trans-

^{*}The project-level analysis requires an additional, essentially no haul (2 M or 7 ft) situation in the form of ditch excavation; for the 1950's and 1970's a special technical package (1950 tp 11-0; 1970 tp 14-0) is defined for this, while for the 1920's any package up to and including 6-5 can be used.

porting the earth. Data for loosening is as follows:

<u>Material</u>	Productivity	Source
common loam	4 bcy/hr	Arthur (12)
light sand	6 bcy/hr	Arthur (12)
medium soil	2-4 bcy/hr	Pulver (58)
average	35-40 bcy/10 hr day	Gillette and Black (26)

Converting these numbers to units of hr/bcy and averaging gives 0.255 hr/bcy for men loosening soil with handtools.

The data for loading is given in both bank and loose measure:

<u>Material</u>	<u>Productivity</u>	Source
common earth	1-1.25 bcy/hr	(2°) Arthur
loose earth	2 lcy/hr	Arthur (12)
sand	0.40-0.80 hr/lcy*	Pulver (58)
loam	0.40-1.00 hr/lcy*	Pulver (58)
medium soil	0.50-1.00 hr/lcy*	Pulver (58)

Converting loose to bank measure by multiplying by 0.80 and inverting where necessary, the data becomes:

0.889 hr/bcy 0.625 0.750 0.875 0.938 average - 0.813 hr/bcy

This is the productivity for men, handtools, and wheelbarrows during loading.

Finally, for the hauling, Pulver (58) gives the capacity of a wheelbarrow as 0.07-0.12 bcy and the speed as 75-125 fpm loaded and 100-175 fpm empty. Averaging, the wheelbarrow will hold 0.095 bcy and has a speed of

^{*}These figures are for a lift height of 4 ft or less, which is appropriate for both the wheelbarrow and handcart modes of transport.

119 fpm. In addition, the same source gives the dump time as 0.20-0.30 min, for an average of 0.25 min. The productivity of the wheelbarrow for the haul, dump, and return cycle is thus $\frac{0.25 \text{ min/load}}{60 \text{ min/hr x } 0.095 \text{ bcy/load}}$ or 0.0439 hr/bcy plus $\frac{1.40 \times 10^4 \text{hr/load-ft traveled}}{0.095 \text{ bcy/load}}$ or 2.96 x 10^{-3} hr/bcy per ft of haul distance.

Final productivities are as follows:

0.255 hr/bcy - loosening 0.813 hr/bcy - loading Handtools (202) 1.068 hr/bcy - total $0.813 + 0.0439 + 2.96 \times 10^{-3} \times (Haul distance)$ Wheelbarrow (301) 6 M/20 ft 0.916 hr/bcy 100 M/330 ft 1.83 hr/bcy 800 M/2625 ft 8.62 hr/bcy Unskilled labor - productivity of handtools plus that of wheelbarrow less the time for loading (0.813 hr/bcv)*6 M/20 ft 1.17 hr/bcy 100 M/330 ft 3.09 hr/bcy 800 M/2625 ft 8.87 hr/bcy Skilled labor - 1 supervisory person per 10 unskilled men except during actual transport or 0.111 hr/bcv

Example 2 - 1950 Excavation/Hauling Technical Package 2-2: The cycle for the power shovel is load bucket, swing to haul vehicle, dump load into vehicle, and return to excavation site. The U. S. Bureau of Public Roads

^{*}In labor-intensive operations where the transport equipment is separate from the excavating equipment (as in 1920 tp 1-1, 1-2, 2-1, 2-2, 3-1, 3-2), it is reasonable to assume that during loading the man operating the transport vehicle either assists in the loading operation or leaves the vehicle to be loaded by others while he moves an already loaded vehicle.

production studies (77) include the following data for five 2 cy power shovels loading earth:

Average dipper load1.4 bcyAverage productivity (production/net
available working time - i.e., normal
productivity)121.3 bcy/hr

One may then calculate dipper loads per hour and productivity in hours per cubic yard:

<u>121.3 bcy/hr</u> = 86.6 dipper loads/hr 1.4 bcy/dipper load

1/121.3 bcy/hr = 0.00824 hr/bcy

Peurifoy (56) states that a 2cy power shovel, with 90° swing, under excellent management and job conditions, at its optimum face height (10.2 ft), operating in good common earth, has a productivity of 300 bcy/hr. This should be reduced by 20% for operation at 40% of optimum height*, and by 25% for average to good management and job conditions:

 $0.80 \times 0.75 \times 300 = 180 \text{ bcy/hr}$ or 0.00556 tr/bcy

At an average dipper load of $0.80 \times 2.0 \text{ cy} = 1.6 \text{ bcy}$, this is equivalent to:

186 bcy/hr 1.6 bcy/dipper load = 112.5 dipper loads/hr

To arrive at a final productivity for the power shovel (232) and its skilled operator, the two figures derived above are averaged: 0.00691 hr/bcy.

^{*}A power shovel can only be effectively used in deep cuts along the road or in borrow pits; cuts along the road could vary in depth, but those in borrow pits are assumed to be some 9 feet, restricted to such depth since it assumed that just common/ordinary soil is being borrowed from pits reasonably near the road and that this is about as deep as such soil might be expected to go.

Also involved in the excavation and loading process is the haul vehicle, which in this case is a 20 ton, 15cy rear dump truck. Its productivity during loading is the same as that of the power shovel, since its loading time is constrained by the speed of the excavator. The rest of the cycle for the truck is haul, dump, turn, and return. Depending on the operating conditions, Kellogg (46) cites 1.50 and 2.00 min for dumping and turning, while Stubbs (63) gives 1.00 and 1.30 min for the same activities. The average of these four figures is 1.45 min and adding 25 percent for delays results in a time constant of 1.81 min. This is equivalent to:

$\frac{1.81 \text{ min/load}}{60 \text{ min/hr x 15 bcy/load}} = 0.00201 \text{ hr/bcy}$

Kellogg, Peurifoy, and Stubbs each give several figures for truck maximum travel speed. For this study, round numbers in the center of the range were chosen. Hence, 30 mph and 18 mph were used for maximum travel speeds empty and loaded, respectively. Reduction factors from Stubbs were applied to account for the extent to which acceleration and deceleration times affect the average speed for each haul distance. The final speeds used are:

	Average S	peed (mph)
Haul Distance	Loaded	Empty
6 M/20 ft	3.6	6.0
100 M/330 ft	3.6	6.0
800 M/2625 ft	10.7	17.9

Final productivities consist of the loading time (0.00691 hr/bcy) and the time constant (0.00201 hr/bcy) plus a distance dependent component. For the 20 ft and 330 ft hauls, the average speed is 4.8 mph or 422 fpm. This becomes 2.63×10^{-6} hr/bcy per ft traveled or 5.26×10^{-6} hr/bcy per ft of haul distance. Similarly, for the 2625 ft haul, the speed is 14.3 mph which is equivalent to 1.77×10^{-6} hr/bcy per ft of haul distance.

297

The final productivities for the various distances for both trucks (333) and their skilled drivers are:

Haul Distance	Productivity (hr/bcy)
6 M/20 ft	$.00691 + .00201 + 20 (5.26 \times 10^{-6}) = 0.00903$
100 M/330 ft	$.00691 + .00201 + 330 (5.26 \times 10^{-6}) = 0.0107$
800 M/2625 ft	$.00691 + .0020i + 2625 (1.77 \times 10^{-6}) = 0.0136$
Example 3 - 1970 Excavat	ion/Hauling Technical Package 9-12: This exca-
vation method employs a whee	1 scraper, which has a capacity of 14 lcy
struck or 20 lcy heaped and	a 300 fwhp, two wheel tractor as its prime
mover. In addition, a 270 f	whp bulldozer is used as a pusher during
loading. Havers and Stubbs	(34) cite the following data for this size
scraper:	

Average payload	16.0 bcy
Average time to load	0.68 min
Fixed time at dump (turn and dump) Turn time at excavation	0.70 0.25
Total	1.63 min

Adding 25% for delays to the total, the time constant becomes 2.04 min, which is equivalent to a productivity of:

 $\frac{2.04 \text{ min/load}}{60 \text{ min/hr x 16.0 bcy/load}} = 0.00213 \text{ hr/bcy}$

To this must be added the distance dependent portion of the cycle time.

Day (18) uses 0.4 min and 0.7 min as acceleration, deceleration, and braking times for shifting between first and second and between first and third gears, respectively. For a 14/20 cy scraper operating on a 4 percent effective grade (equivalent to flat terrain and 80 lb/ton rolling resistance), Caterpillar (21) gives maximum speeds of 21.0 mph (1848 fpm) loaded and 29.5 mph (2596 fpm) empty, and an average of 4.3 mph (378 fpm) in low gear.

ŕ

For the 20 ft haul, done in low gear, and therefore necessitating no gear changes, the effective speed is 4.3 mph or 378 fpm. Thus:

$$\frac{2.64 \times 10^{-3} \text{ min/load-ft traveled}}{60 \text{ min/hr x 16.0 bcy/load}} = \frac{2.75 \times 10^{-6} \text{ hr/bcy per ft}}{0 \text{ distance traveled or,}}$$

$$2.75 \times 10^{-6} \times 2 = 5.51 \times 10^{-6} \text{ hr/bcy per ft of haul distance}$$

For a distance of 330 ft, hauling is done in second gear. The effective speed is obtained by dividing the distance traveled by the total time, which includes travel time and acceleration, deceleration, and braking time:

$$\frac{330 \text{ ft}}{330 \text{ ft}} = 570 \text{ fpm} = 6.5 \text{ mph}$$

$$\frac{330 \text{ ft}}{1848 \text{ fpm}} + 0.4 \text{ min}$$

The return trip may or may not be made in third gear. If it were, the effective speed would be:

$$\frac{330 \text{ ft}}{330 \text{ ft}} = 399 \text{ fpm} = 4.5 \text{ mph}$$

$$\frac{330 \text{ ft}}{2596 \text{ fpm}} + 0.7 \text{ min}$$

Since this is slower than the haul speed, the return trip is also made in second gear, at 6.5 mph. A calculation similar to the one shown above for the 20 ft haul results in a productivity of 3.65×10^{-6} hr/bcy per ft of haul distance.

Finally, for the 2625 ft haul, there are different speeds for haul and return. For haul, the speed is:

$$\frac{2625 \text{ ft}}{\frac{2625 \text{ ft}}{1848 \text{ fmp}}} = 1442 \text{ fpm}$$

and for the return the speed is:

The average of these two numbers is 1488 fpm or 16.9 mph, which is 1.40×10^{-6} hr/bcy per ft of haul distance.

The final productivities for the scraper/two wheel tractor combination (651) and a skilled operator for each haul distance are:

Haul Distance	Productivity (hrs/bcy)
6 M/20 ft 100 M/330 ft 800 M/2625 ft	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

The amount of time the pusher is used depends on the total cycle time which, in turn, depends on the haul distance. The cycle time for the pusher is load time plus exchange time, which is the time for it to go from one scraper to the next. For example, it takes

 $\frac{2625 \text{ ft x 2}}{1488 \text{ fpm}} + 2.04 \text{ min or } 5.57 \text{ min}$

for a 14/20 cy scraper to load, haul, dump, and return 2625 ft. At this distance, the pusher cycle is 0.68 min to load plus 1.00 min to exchange. One pusher bulldozer can thus service $\frac{5.57}{1.68}$ = 3.3 scrapers. Rounding this ratio to one pusher for three scrapers, the productivity of the pusher and its operator in hrs/bcy is one-third that of the scraper. For the other haul distances, one pusher can service only two scrapers, making its productivity half that of the scraper. Final productivities for the pusher bulldozer (616,653) and its skilled operator are:

Haul Distance	Productivity (hrs/bcy)
6 M/20 ft	$(1/2) \times .00224 = .00112$
100 M/330 ft	$(1/2) \times .00334 = .00167$
800 M/2625 ft	$(1/3) \times .00581 = .00194$

<u>Spreading/Compaction</u>: Spreading/compaction is made up of the actitivities spread, compact, and finish; it is measured in bank cubic meters or bank cubic yards and pertains to subgrade materials coming from cuts for the road or from borrow areas and going to fills for the embankment. Some 95 to 100 percent of standard AASHO compaction, achieved at some $\frac{+}{2}$ 2 percent of the optimum moisture content, appears to be an acceptable level of compaction for embankments in recent years (35, 87, 91, 93); that is, the ratio of the actual dry density of the compacted soil to the maximum dry density obtainable in standard lab tests, achieved at $\frac{+}{2}$ 2 percent of the optimum moisture content, is .95 - 1.00 with .98 being used in the current study. Taking the mass and cross-sectional area as constants, density becomes proportional to the inverse of the thickness of the layer, or

 $\frac{\text{actual dry density}}{\text{optimal dry density}} = \frac{1/(\text{actual thickness})}{1/(\text{optimal thickness})} = .98$

A shrinkage factor of 20 percent appears to be the best obtainable for common/ordinary soil, resulting in a compacted to bank ratio of 0.80 and a compacted to loose ratio of 0.64 (21). The optimal thickness is thus 64 percent of the loose thickness while the actual thickness is the compacted thickness; thus:

 $\frac{1}{(compacted thickness)}$ = .98, or 1/(.64 loose thickness)

compacted thickness = .65 (loose thickness)

Loose layers of 9 in. appear to be commonly used and are thus assumed, resulting in 5.9 in. compacted layers (35, 87, 91, 93).

Such compaction is standardly achieved by the rollers of the 1950's and 1970's, and data is generally available on the number of passes required to do so at or near the optimum moisture content. Data on compac-

tion for the 1920's is particularly sparse, however; by means of a British publication (61), among others (15, 35), which relates material dry density to number of passes for a few materials at or near optimum moisture content and a couple of rollers, it is determined that the powered roller of the 1920's might reasonably achieve 98 percent compaction, while the horse-drawn roller requires an inordinate number of passes (29) to do so. Resource requirements for the horse-drawn roller are thus determined for two levels of compaction, 98 and 93 percent, the second being achieved with 6 passes, the same number as is required by the 1920's powered roller to achieve 98 percent compacted to loose ratio of 69 percent, or a 9 in. loose layer compacted to 6.2 in. At the project-level, then, the trade-offs among subgrade strength, surface design, and product quality (as measured by maintenance and user costs) can be investigated to some extent.

<u>Example - 1950 Spreading/Compaction Technical Package 31</u>: This package makes use of a 10 ft blade grader for spreading and leveling and a sheepsfoot roller drawn by a 70 dbhp crawler tractor for compacting. Stubbs (63) gives the following basic equation for time (in hrs) required to grade a given length of road:

$$T = \frac{N \times D}{S \times E}$$

where	N = Number	S = Effective speed (mph)
	D = Distance (mi)	E = Efficiency factor

The number of passes required depends on the effective width of the grader, the width of the road, and the number of passes over any given spot necessary to satisfactorily spread and level the earth. The roads considered here are 28 ft and 40 ft wide at the bottom of the fill layer and 24 ft and 36 ft wide at the top. Peurifoy (56) suggests using 75 percent of the blade length as the effective width of the grader to account for the tilt of the blade. Allis-Chalmers (8) cites 3 passes per layer as sufficient for a blade grader spreading earth. Therefore, the total number of passes required is either:

Passes to CoverPasses/Layer
$$28 \text{ ft}$$
x3= 4 x 3 = 12 passes, or $0.75 \times 10 \text{ ft}$ x3= 6 x 3 = 18 passes

In order to make the results somewhat road independent, the average of 12 and 18 or 15 passes is used. Kellogg (46) suggests spreading is done in first or second gear at speeds of 1.83 mph or 3.80 mph. Averaging these numbers results in a speed of 2.81 mph. Stubbs gives an efficiency factor of 0.60, and Kellogg uses 0.75. The average of these, 0.68, is used and is assumed to account for turns as well as delays. Therefore, no further reduction of travel speed is necessary. The time required to spread and level earth for one mile of road is:

$$T = \frac{15 \text{ passes x 1 mi/pass}}{2.21 \text{ mph x 0.68}} = 7.85 \text{ hrs}$$

The thickness of the spread layer is 7.2 in. bank measure, making the volume of the earth spread in 7.85 hrs:

$$\frac{7.2 \text{ in.}}{36 \text{ in./yd}} \times \frac{26 \text{ ft} + 38 \text{ ft}}{2 \times 3 \text{ ft/yd}} \times 1760 \text{ yd} = 3755 \text{ bcy}$$

This is equivalent to a final productivity of 0.00209 hr/bcy for the grader (420) and its skilled operator.

The sheepsfoot roller is commonly used as two 4 ft drums mounted side-by-side and pulled by a tractor. The basic equation for roller productivity, given by the U.S. Department of the Army (94), is:

> Productivity (hrs/bcy) = $\frac{N}{L \times W \times S \times E}$ where N = Number of passes per layer L = Lift thickness (yd, bank measure) W = Effective width of roller (yd) S = Effective speed (yd/hr) E = Efficiency factor

Data from Allis-Chalmers (8), Peurifoy (56), and Walker (88) suggest that the number of passes should be 10. As in spreading, the lift thickness is 7.2 in. or 0.20 yd (bank measure). The effective width of the two rolls is 8 ft minus 1.5 ft for overlap of passes, which is 6.5 ft or 2.17 yd. Allis-Chalmers and Walker cite travel speed as 2.5 mph. For a 1500 ft pass length, with a 0.5 min turn time as given by Kellogg (46), the effective speed is:

$$\frac{1500 \text{ ft}}{1500 \text{ ft}} = 206 \text{ fpm} = 4118 \text{ yd/hr}$$

2.5 mph x 88 fpm/mph + 0.5 min

The efficiency factor is 0.80, or 25 percent delays. The final productivity of the roller (502), tractor (641), and skilled operator is:

$$\frac{10 \text{ passes}}{0.20 \text{ yd x } 2.17 \text{ yd x } 4118 \text{ yd/hr x } 0.80} = 0.00700 \text{ hr/bcy}$$

<u>Surfacing</u>: The activities involved in surfacing vary with the material, as does the quality of the final product: the activities involved in materials production and transport to the site are included in the cost of the material rather than as a surfacing activity. The resource productiv ities associated with the various materials are assumed to be the same regard less of whether the material is used as a subbase, or surface; an exception to th is double bituminous surface treatment, where the quantity of primer used on a waterbound macadam base is estimated to be half that used on a gravel one. In deriving materials productivities, an extra 5 percent is included to account for losses in haulage and construction (41). Labor and equipment productivities are based on materials in place, and thus on materials productivity before inclusion of the loss factor. An effort is made to base the derivation of materials productivity on designs generally spanning all three technology periods.

<u>Gravel Surfacing</u>: Spreading, compacting, and finishing the gravel constitute gravel surfacing, given the assumption that the gravel is purchased and arrives on the site properly mixed and with a moisture content such that it can be spread and rolled without any sprinkling. Compacted cubic meters or compacted cubic yards are the units of measure. Some 100 to 105 percent of standard AASHO compaction, achieved at some ⁺ 2 percent of the optimum moisture content, appears to be an acceptable level of compaction for well-graded gravel subbases, bases, and surfaces in recent years (35, 70, 87); as in the spreading/compaction stage above then,

1/(actual thickness) 1/(optimal thickness) = 1.02

An expansion factor, from bank to loose measure, of some 14 percent appears to be common, while a shrinkage factor, from bank to compacted measure, of some 14 percent appears to be the best obtainable for wellgraded gravel (21); the result is a compacted to bank ratio of 0.86 and a bank to loose of 0.88, or an optimal compacted to loose ratio of 0.76.

Thus:

1/(compacted thickness) 1/(.76 loose thickness) = 1.02, or Compacted thickness = .75 (loose thickness)

Loose lifts of 6 to 8 in. appear to be common (50, 54, 87, 93) except that the British publication (61), used in estimating the number of passes for the 1920's compaction equipment, uses 9 in. lifts. Since the productivities based on 9 in. loose lifts seem rather high, the number of passes indicated by the British publication are used for the 1920's, but 7.5 in. loose lifts are assumed as a compromise. Compacted lifts are thus 5.6 in., which is reasonably compatible with the gravel thicknesses designed in the project-level analysis.

Although the degree of compaction might again be allowed to vary, as in the spreading/compaction stage, compaction in the range of 100 to 105 percent standard AASHO can reasonably be achieved by all rollers in the study (e.g., the horse-drawn roller of the 1920's takes 16 passes while the powered one of that period takes 9 [15, 35, 61]). This variable is thus assumed constant for surfacing.

As for materials productivity, this follows directly from the compacted to loose ratio of 0.75, which inverted becomes 1.33. Adding 5 percent for loss results in a materials productivity of 1.40 loose cubic yards of gravel (830) per compacted cubic yard of gravel.

<u>Example - 1970 Gravel Surfacing Technical Package 22</u>: The methods used for gravel surfacing are similar to those used for spreading and compacting earth. This particular method employs a 385 fwhp crawler tracto with a 14 ft bulldozer blade for spreading and a 25 ton self-propelled, pneumatic roller for compacting. The equations for determining the productivity of the bulldozer are the same as those used for the blade grade in the previous example. Thus the time to spread (in hours) is:

$$T = \frac{N \times D}{S \times E}$$

where N = Total number of passes D = Distance (mi) S = Effective speed (mph) E = Efficiency factor

The blade grader takes 3 passes per layer to achieve satisfactory spreading (8). Assuming the bulldozer is less suited to the task of spreading than is the grader, it must make more passes per layer; 4 passes per laye are thus used. The two roads with gravel surfaces are 24 ft and 36 ft wide at the bottom of the gravel layer. The 14 ft bulldozer blade must make two passes on the narrow road and three passes on the wide one for complete coverage, resulting in total numbers of passes of 8 and 12. As with earthworks, the average number of passes, in this case 10, is used to make the results somewhat road independent. In determining the trave speed, it is assumed that gravel is easier to spread than is soil; therefore, second gear, rather than first, is used. Caterpillar (18) gives Havers and Stubbs (34) state that the time for this speed as 4.0 mph. one gear shift (forward to reverse) is 0.05 min for a power shift vehicle Using a pass length of 100 ft, based on the way in which a bulldozer spreads materials, the effective spreading speed is:

$$\frac{100 \text{ ft}}{\frac{100 \text{ ft}}{4 \text{ mph x 88 fpm/mph}} + 0.05 \text{ min}} = 299 \text{ fpm} = 3.4 \text{ mph}$$

Efficiency is taken as 80 percent, and the total time to spread gravel over 100 ft is thus: $T = \frac{10 \text{ passes x } 5280 \text{ ft/mi}}{3.4 \text{ mph x } 0.80} = 0.070 \text{ hrs}$ The lift thickness is 7.5 in. loose or 5.6 in. compacted. The volum gravel spread in 0.070 hrs is:

$$\frac{5.6 \text{ in.}}{36 \text{ in/yd}} \times \frac{24 \text{ ft} + 36 \text{ ft}}{2 \times 3 \text{ ft/yd}} \times \frac{100 \text{ ft}}{3 \text{ ft/yd}} = 51.9 \text{ ccy}$$

The final productivity for the tractor (654), blade (617), and skilled operator is thus 0.00134 hr/ccy.

The productivity of the pneumatic roller is computed in the same way as that of the sheepsfoot roller discussed above:

> Productivity $(hr/ccy) = \frac{N}{L \times W \times S \times E}$ where N = Number of passes per layer L = Lift thickness (yd, compacted measu W = Effective width of roller (yd) S = Effective speed (yd/hr) E = Efficiency factor

Due to the spacing of tires on the roller, two passes over the same area are required to make one complete coverage. Moavenzadeh (50) indicates that 3 complete coverages or 6 passes are necessary to achieve a satisfactory level of compaction. Havers and Stubbs list specifications for seve pneumatic rollers. The average width is 86 in. from which 18 in. is subtracted to account for overlap, resulting in an effective width of 68 in. The same source also cites and average travel speed for this size pneumatic roller as 5.0 mph. Assuming a 1500 ft pass length and using Day's (2' figure of a 20 ft turning distance, the effective speed is:

$$\frac{1500 \text{ ft}}{1500 \text{ ft} + 20 \text{ ft}} = 434 \text{ fpm} = 8680 \text{ yd/hr} = 4.93 \text{ mph}$$

5 mph x 88 fpm/mph

_ _ _ _ _

The efficiency factor is 80 percent. The final productivity for the roller (537) and its skilled operator is thus calculated as follows:

$$\frac{6 \text{ passes}}{5.6 \text{ in.}} = 0.00294 \text{ hr/ccy}$$

$$\frac{5.6 \text{ in.}}{36 \text{ in./yd}} \times \frac{68 \text{ in.}}{36 \text{ in./yd}} \times 8680 \text{ yd/hr} \times 0.80$$

Waterbound Macadam Surfacing: The construction of waterbound macadam consists of spreading very coarse crushed rock (1/2-2 1/2 in.), compacting, spreading screenings (No. 100-3/8 in.), and sprinkling, compacting, and finishing; it is measured in compacted cubic meters or compacted cubic yards. According to the sources discussing waterbound macadam in the 1920's (15, 26), which is when it was most commonly used, nearly a hundred passes are necessary in the final compaction activity in order to properly float the mixture of screenings and water between the crushed rock as a binder; unfortunately, there is no indication of the surface behavior if less compaction is used, so this parameter could not be varie For the 1950's and 1970's, there is a paucity of data on the compaction of waterbound macadam. On the basis of 1920's data (15), it is thus assumed that 8.5 times as many passes are required on the screenings laye as on the coarse crushed rock layer, where the number of passes on the latter is taken as equal to that required for compacting gravel (thicknesses are about the same - gravel: 7.5 in. loose, coarse crushed rock: 7.8 in loose).

As for the specific materials productivities, these come from Gillet and Black (26) but they correspond closely to those discussed by more recent highway engineering sources (54, 60, 91). A compacted thickness of 6 in. is typical for waterbound macadam. For the coarse crushed rock, in. of loose material is placed, yielding a loose to compacted ratio of 1.30, which grows to 1.37 with the inclusion of the 5 percent loss factor 1.8 in. of screenings are placed, yeilding a loose to compacted ratio of 0.30, or 0.32 with the loss factor included. Final materials productivit

are thus:

inus :	Productivity (q	ty/ccy of wbm)
Material	w/o loss factor	w/ loss factor
coarse crushed rock (831) screenings (832)	1.30 lcy 0.30 lcy	1.37 lcy 0.32 lcy
water (833)	60 gal	63 gal

Example - 1920 Waterbound Macadam Surfacing Technical Package 111: This method involved spreading stone and screenings with shovels and rakes, rolling with a 10 ton, 3-wheel roller, and sprinkling with a horse-drawn water wagon. Gillette and Black (26) give the following data for spreading loose stone by hand:

> 25 lcy in 10 hrs 28 lcy in 10 hrs 25 lcy in 10 yrs 22 lcy in 10 hrs

The average of these numbers is 25 lcy in 10 hrs or 0.40 hr/lcy. Given that there are 1.30 lcy of coarse crushed rock in every cubic yard of finished macadam, this becomes $1.30 \times 0.40 = 0.52$ hr/ccy of wbm. This is the final productivity for unskilled labor using handtools (401) spreading the stone.

For spreading screenings by hand, Gillette and Black indicate that 10 lcy may be spread in 10 hrs by one man. This is equivalent to 1.0 hr/lcy. There are 0.30 lcy of screenings in every cubic yard of finished macadam, so the final productivity for unskilled labor with handtools (401) spreading screenings is 0.30 x 1.0 = 0.30 hr/ccy of wbm.

The compaction is accomplished with a 10 ton, 3-wheel roller and skilled operator. Gillette and Black give 7 and 8 ccy/hr as productivities. Using the average, 7.5 ccy/hr, and inverting results in 0.133 hr/ccy. After this figure had been calculated and used in the analysis, more information on waterbound macadam surfacing was discovered. Blanchard and Drowne (15) give the following data for compaction of waterbound macadam on a stone base:

2.5	in.	of 2.	5	in.	stone	8	-	10	passes
1.5	in.	of 1.	5	in.	stone	10	-	12	passes
0.5	-ì.() in c	f	scre	eenings	80	-	90	passes

The above were compacted to a final thickness of 4 in. Using the averages of 10 passes on the coarse material and 85 passes on the screenings, one may compute roller productivity. The formula used in the two previous examples requires, in addition to the number of passes, the width and speed of the roller and the lift thickness. Using an 8 ton, 3-wheel roller with 70 in. rolls, as described in <u>Soil Mechanics for Road Engineers</u> (61), and subtracting 18 in. for overlap of passes, results in an effective width of 52 in. or 1.44 yd. Baker (14) suggests 2-2.5 mph as a speed and Blanchard and Drowne suggest 2-3 mph. Using the average, 2.4 mph, as a travel speed and adjusting for turns, assuming 1500 ft pass length and 0.1 min/turn, the effective speed is:

$$\frac{1500 \text{ ft}}{1500 \text{ ft}} = 208 \text{ fpm or } 4160 \text{ yd/hr}$$

2.4 mph x 88 fpm/mph + 0.1 min

The lift thickness is 6 in. compacted measure or 1/6 yd. The productivity for the roller and operator is, therefore:

This is some 90% of 0.133 hr/ccy which was calculated initially. Because of the closeness of the two numbers and because that calculated first came from the same source as the rest of the 1920's wbm data and should therefore be compatible, the original calculation was left unchanged. The final productivity for the roller (531) and its skilled operator is thus 0.133 hr/ccy of wbm. Sprinkiing is done with a 450 gal steel tank mounted on a wagon which is pulled by 2 horses. Assuming a haul distance of less than one mile, the roller constrains the productivity of the water wagon according to Gillette and Black, making its production rate the same as that of the roller, 0.133 hr/ccy of wbm.* The final productivities for the wagon (405) and unskilled driver are thus 0.133 hr/ccy of wbm and for the horse 0.267 hr/ccy.

The workforce involved in these activities is largely unskilled, and thus supervisory personnel are needed. Looking at the various productivity figures, it appears that for each roller, a crew of 7 unskilled men is needed (4 spreading coarse stone, 2 spreading screenings, and 1 sprinkling). One supervisory person is thus assigned for every two rollers or every 14 unskilled men. The final productivity of the skilled supervisory personnel is thus:

$$\frac{0.520 + 0.300 + 0.133}{14} = 0.0680 \text{ hrs/ccy of wbm}$$

Double Bituminous Surface Treatment: Double bituminous surface treatment involves sweeping the base, spreading the primer bitumen (light grade), binder bitumen (heavy grade), and quite finely crushed stone (3/8 to 3/4 in.), compacting very lightly, spreading binder bitumen (heavy grade) and even finer crushed stone (No. 8 to 3/8 in.),

^{*}In the 1950's and 1970's, it is similarly assumed that the rolling activity constrains the sprinking activity, but then it is assumed that one water truck can handle five rollers.

and compacting very lightly and finishing. Since this is, as its name suggests, simply a surface treatment, it is measured in square meters or square yards, having a finished thickness of only some 2.2 cm (7/8 in.).

A ratio of 1 to 100 for gallons of binder to pounds of aggregate for each layer appears to be a standard mix for dbst roads; medium curing, cutback liquid asphalt appears to be a commonly used bitumen. It is decided to basically follow the Transport and Road Research Laboratory's design for dbst roads given in Road Note 31 (65), since their surface deterioration models (66) are used in the project-level analysis, and their overall design is reasonably similar to those given by both old and new, U.S.-based, highway engineering sources (16,52, 53,91,93). Primer on a gravel base is applied at the rate of 0.40 gal/sy (including the 5% loss factor, 0.42 gal/sy); on a wbm base it is applied at the rateof 0.20 gal/sy (0.21 gal/sy).* The first course consists of 0.27 gal/sy (6.28 gal/sy) of binder and 27 lbs/sy (28.4 lbs/sy) of aggregate (around 5/8 in.); the second course is somewhat lighter, consisting of 0.22 gal/sy (0.23 gal/sy) of binder and 22 lbs/sy (23.1 lbs/sy) of aggregate (around 3/8 in.). When pricing these materials, it was found that both grades of bitumen and both sizes of aggregate are

^{*}Only in the 1970's is the productivity data such that different labor and equipment requirements can be determined for these two different rates of application of primer; in the productivity data for the 1920's and 1950's technical packages for dbst on gravel and dbst on wbm, therefore, the labor and equipment figures are constant, only the materials figures change.

about the same price, so they are lumped together, with the aggregate being converted to loose cubic yards by applying a factor of 1.35 tons/lcy (22). Final materials productivities are thus:

	F	Productivity (qty/sy o							
Material	w/c	loss	factor v	// loss 1	factor				
dbst on gravel:									
bitumen (835) crushed stone (8	(34)).89).0181	gal lcy	0.93 0.0191	gal Icy				
dbst on wbm:									
bitumen (835) crushed stone (8	(34) ().69).0181	gal lcy	0.72 0.0191	gal lcy				

Example - 1950 Double Bituminous Surface Treatment Technical

Package 1121: This particular method of constructing a dbst road employs a drag broom pulled by a 1/2 ton pickup truck, a 1,000 gal bitumen distributor with its own truck, a 12 ft spreader box attached to a 10 ton dump truck, and a 5-8 ton tandem roller. Data on the drag broom comes from the U.S. Bureau of Public Roads production studies (77); its production is 6,300 sy/hr, including turns but no delays, based on 7 passes to cover a 21 ft road. The dbst roads considered here are 16 ft and 22 ft wide, which should require 6 to 7 passes for complete coverage. Using the same productivity and applying an efficiency factor of 0.80 results in a production rate of 5040 sy/hr or 0.00020 hr/sy for the drag broom (440) pickup truck (335) and unskilled truck driver.

The same source gives the following productivities for a 1000 gal bitumen distributor:

2.66 mi	x 16 ft	3.5 hrs	7146 sy/hr
8.79 mi	x 16 ft	12.75 hrs	6473 sy/hr
2.28 mi	x 18 ft	188 min	7648 sy/hr
6.00 mi	x 18 ft	438 min	8679 sy/hr
0.96 mi	x 18 ft	120 min	5069 sy/hr
2.15 mi	x 18 ft	172 min	7920 sy/hr
1.90 mi	x 18 ft	315 min	3822 sy/hr
3.85 mi	x 18 ft	480 min	5082 sy/hr
5.64 mi	x 18 ft	585 min	6109 sy/hr

The weighted average of these numbersis 6379 sy/hr, or an affective speed of 1087 yd/hr or 0.618 mph. This includes all delays, turns, etc. The distributor is standardly 16 ft wide with extensions available to make it 18 ft. For the 22 ft road, 2 passes will be necessary to make one coverage. The time required to do one mile of road will be:

In one mile there are 1760 yd x $\frac{22 \text{ ft}}{3 \text{ ft/yd}}$ = 12,97 sy, for a productivity of 3988 sy/hr or 0.00025 hr/sy. For the 16 ft road, one pass will be sufficient. Productivity may be calculated as above:

and

Area = 1760 yd x
$$\frac{16 \text{ ft}}{3 \text{ ft/yd}}$$
 = 9387 sy,

for a productivity of 5801 sy/hr or 0.00017 hr/sy. The average of these two is taken, 0.00021 hr/sy, and is then multiplied by 3, since this activity is done three times in the course of construction. Final productivity for the distributor (452), unskilled driver, and skilled operator is thus 0.00061 hr/sy.

Spreading is done with a 12 ft spreader box pulled by a 10 ton, 7 cy truck.* There is one skilled laborer driving the truck, and one unskilled laborer with handtools riding on the back. The U.S. Bureau of Public Roads production studies gives the spread speed as 136 fpm, and the cycle fixed times as:

> 3.64 min/load - hook up spreader 2.67 min/load - unhook spreader 1.77 min/load - move and maneuver trucks <u>1.24 min/load</u> - exchange trucks 9.32 min/load - total

For a dbst surface, 0.0181 lcy of aggregate are distributed per square yard in two applications, for an average of 0.00905 lcy/sy per application.

^{*}In the 1950's and 1970's (the situation does not arise in the 1920's), in the excavation/hauling stage where the truck is used in hauling soil, its given volumetric capacity is taken as being bank measure; in the surfacing stages where it is used in hauling aggregate which is denser than soil, its given capacity is taken as being loose measure due to weight limitations.

The 7 lcy truck, therefore, can do $\frac{7 \text{ lcy}}{0.00905 \text{ lcy/sy}}$ or 773 sy/load. For the 16 ft road, done in 2 passes, 773 sy is equivalent to 290 linear yards. This can be done in $\frac{290 \text{ yd x 3 ft/yd}}{136 \text{ fpm}} = 6.40 \text{ min}$. The total time is therefore:

> 6.40 min/load - spread time <u>9.32 min/load</u> - fixed time 15.72 min/load - subtotal <u>3.93 min/load</u> - 25 percent for delays 19.65 mi./load - total

This is the same as $\frac{60 \text{ min/hr}}{19.65 \text{ min/load}} = 3.05 \text{ loads/hr}$. Productivity for this road is, therefore, 3.05 loads/hr x 773 sy/load = 2358 sy/hr or 0.00042 hr/sy. The 22 ft road is also done in two passes, and 773 sy/load is equivalent to 211 linear yd/load. At 136 fpm, it will take 4.65 min to spread one truck load of aggregate. Total cycle time is 4.65 + 9.32 + 25 percent = 17.46 min/load, which is 3.44 loads/hr. Productivity for the 22 ft road is 3.44 loads/hr x 773 sy/load = 2659 sy/hr or 0.00038 hr/sy. The average of the productivity for the 16 ft and 22 ft roads is 0.00040 hr/sy, which must then be multiplied by two to give 0.00080 hr/sy, since this activity is done twice; this then is the productivity of the spreader box (409), truck (332), and skilled driver and of the unskilled helper with his hand tools (408).

Rolling is done with a 5-8 ton tandem roller as suggested by Woods (91). For the size and speed of roller, the average of 6 rollers from a Highway Research Board bulletin (35) is used. The average width is 50 in., for an effective width of 50 - 18 = 32 in. Average intermediate rolling speed is 3.33 mph. Using a pass length of 500 ft and a turning time of 0.10 min (15ft/[1.75 mph x 88 fpm/mph] = 0.10 min), the effective speed is:

 $\frac{500 \text{ ft}}{500 \text{ ft}} = 276 \text{ fpm or } 5520 \text{ yd/hr or } 3.14 \text{ mph}$ 3.33 mph x 88 fmp/mph + 0.10 min

Stubbs (63) suggests one pass is sufficient for surface rolling dbst. Using the same basic equation as used above for compacting earth and gravel, but omitting the lift height factor, gives:

 $\frac{1 \text{ pass}}{32 \text{ in.}} = 0.00025 \text{ hr/sy}$ 36 in./yd x 5520 yd/hr x 0.80

This activity is done twice, resulting in a productivity of 0.00050 hr/sy for the roller (535) and skilled operator.

B.13 Tables of All Resource Productivities

Table B.1 presents the full set of resource requirements of the technical packages for all stages of construction in each technology period; Table B.1A covers the 1920's, B.1B the 1950's, and B.1C the 1970's. Materials productivities for the surfacing stage are given in the note at the end of each of the three parts, as they are constant over all technical packages. Data pertaining to the equipment and materials referred to by number in the table are given in Sections B.21 and B.22 and Section B.24, respectively. All sources are listed in Section B.3.

TABLE B. 1A: LABOR, EQUIPMENT, AND MATERIALS REQUIREMENTS OF THE TECHNICAL PACKAGES FOR ALL STAGES IN THE 1920'S.

STAGE/TECHNICAL PACKAGE NUMBER		LABOR (HRS/UNIT) SKILLED UNSKILLED (EQUIPMENT (NO., HRS/UNIT)			MATERIALS (NO.,QTY/UNIT)			SOURCES	
												SITE PREP (AC
1	1	0.447 e	02	0.3492	03	201	0.338E	03	820	0.578E	02	26
						601	0.207E	02	821	0.199E	01	
									822	0.103E	01	
2	1	0.884E	01	0.878E	01	201	0.878E	01				26
						602	0.774E	01				
						630	0.774E	01				

Т)	ABLE B.	1A CONT	INUED)									
TA	SK/TECH	INICAL	LABOR (HE	LABOR (HRS/UNIT) EQUIPMENT								
<u>P A</u>	CKAGE N	IUMBER	SKILLED	UNSKILL	ED (NO.	HRS/UNIT) (NO.	HRS/UNIT)			
ΕX	C/HAUL	(BCY)										
	2 M	1-1	0.111E 00	0.113E	01	202	0.107E 01	301	0.878E 00	12,26,58		
		1-2	0.112E 00	0.114E	01	202	0.107E 01	302	0.880E 00	12,26,58		
		2-1	0.907E-01	0.928E	00	202	0.813E 00	203	0.250E-01	12,58		
						601	0.500E-01	301	0.878E 00			
		2-2	0.912E-01	0.930E	00	202	0.813E 00	203	0.250E-01	12,58		
						601	0.500E-01	302	0.880E 00			
		3-1	0.897E+01	0.918E	00	202	0.813E 00	203	0.200E-01	12,58		
						631	0.200E-01	301	0.878E 00			
		3-2	0.902E-01	0.920E	00	202	0.813E 00	203	0.200E-01	12,58		
						631	0.200E-01	302	0.880E 00			
		4-3	0.131E-01	0.138E	00	203	0.250E-01	601	0.2268 00	12,58		
						604	0.880E-01					
		5-4	0.122E-01	0_114E	00	203	0.250E-01	601	0.241E 00	11,12,28,30,58		
						د60	0.635E-01					
		6-5	0.288E-01	0.377E	00	203	0.250E-01	601	0.454E 00	11,12,29,30,58		
						605	0.127E 00					
ω	6 M	1-1	0.111E 00	0.117E	01	202	0.107E 01	301	0.916E 00	12,26,58		
		1-2	0.112E 00	0.117E	01	202	0.107E 01	302	0.914E 00	12,26,58		
		2 - 1	0_907E-01	0.966E	00	202	0.813E 00	203	0.250E-01	12,58		
						601	0.500E - 01	301	0.916E 00			
		2-2	0.912E-01	0.964E	00	202	0.813E 00	203	0.250E-01	12,58		
						601	0.500E - 01	302	0.914E 00			
		3-1	0.897E-01	0.956E	00	202	0.813E 00	203	0.200E-01	12,58		
						631	0.200E-01	301	0.916E 00			
		3-2	0.902E-01	0.954E	00	202	0.813E 00	203	0.200E-01	12,58		
						631	0.200E-01	302	0.914E 00			
		4-3	0.131E-01	0.151E	00	203	0.250E-01	601	0.252E 00	12,58		
						604	0.101E 00					
		5-4	0.122E-01	0.120E	00	203	0.250E - 01	601	0.260E 00	11,12,28,30,58		
						603	0.701E-01					
		6-5	0.288E-01	0.381E	00	203	0.250E-01	601	0.462E 00	11,12,29,30,58		
						605	0.131E 00					

TASK/TEC	HNICAL	LABOR (HE	S/UNIT)		EQUIPH	ENT		SOURCES
PACKAGE	NUMBER	SKILLED	UNSKILLED (N	0.,	HRS/UNIT)	NO.	HRS/UNIT)	
	7-6	0.378E-02	0.000E 00 6	06	0.378E-02	633	0.378E-02	9
	10-7	0.205E-01	0.577E-01 2	02	0.330E-01	204	0.165E-01	5,6,7,48
			2	30	0.165E-01	303	0.247 E - 01	
			6	01	0.493E - 01			
	10-8	0.204E-01	0.582E-01 2	30	0.165E-01	204	0.165E-01	5,7,48
			2	02	0.330E-01	304	0.252E - 01	
			6	31	0.252E-01			
	10-9	0_544E-01	0.330E-01 2	02	0.330E-01	204	0.165E-01	5,7,48
			2	:30	0.165E-01	330	0.379E-01	
9 M	1-1	0.111E 00	0.120E 01 2	202	0.107E 01	301	0.946E 00	12,26,58
	1-2	0.112E 00	0.119E 01 2	202	0.107E 01	302	0.940E 00	12,26,58
	2-1	0.907E-01	0.996E 00 2	202	0.813E 00	203	0.250E-01	12,58
			6	501	0.500E-01	301	0.946E 00	
	2-2	0.912E-01	0.990E 00 2	202	0.813E 00	203	0.250E-01	12,58
			6	501	0.500E-01	302	0.940E 00	
	3-1	0.897E-01	0.986E 00 2	202	0.813E 00	203	0.2008-01	12,58
			6	531	0.200E-01	301	0.946E 00	
ა	3-2	0.902E-01	0.980E 00 2	202	0.813E 00	203	0.200E-01	12,58
2			6	531	0.200E-01	302	0.940E 00	
	4-3	0.131E-01	0.161E 00 2	203	0.2508-01	601	0.273E 00	12,58
			6	504	0.111E 00			
	5-4	0.122E-01	0.125E 00 2	203	0.250E-01	601	0.275E 00	11,12,28,30,58
			6	503	0.752E-01			
	6-5	0.288E-01	0.384E 00 2	203	0.250E-01	601	0.468E 00	11,12,29,30,58
			6	505	0.134E 00			
	7-6	0.442E-02	0.000E 00 6	506	0.442E-02	633	0.4428-02	9
	10-7	0.205E-01	0.5898-01 2	202	0.330E-01	204	0.165E-01	5,6,7,48
			2	230	0.165E-01	303	0.259E-01	
			6	501	0.518E-01			
	10-8	0.204E-01	0.586E-01 2	230	0.165P-01	204	0.165E-01	5,7,48
			2	202	0.330E-01	304	0.256E-01	- •
			6	531	0.256E-01			

(TABLE B. 1A CONTINUED)

TASK/TECHNICAL		LABOR (HE	SOURCES					
PACKAGE	NUMBER	SKILLED	UNSKILLED	(NO.	HRS/UNIT)	(NO.	HRS/UNIT)	
				230	0.165E-01	330	0.382E-01	
60M	1-1	0.111E 00	0.170E 01	202	0.107E 01	301	0.145E 01	12,26,58
	1-2	0.112E 00	0.164E 01	202	0.107E 01	302	0.138E 01	12,26,58
	2-1	0.907E-01	0.150E 01	202	0.813E 00	203	0.250E-01	12,58
				601	0.500E-01	301	0.145E 01	
	2 -2	0.912E-01	0.143E 01	202	0.813E 00	203	0.250E-01	12,58
				601	0.500E-01	302	0.1388 01	
	3-1	0.897E-01	0.149E 01	202	0.813E 00	203	0.200E-01	12,58
				631	0.200E-01	301	0.145E 01	
	3-2	0.902E-01	0.142E 01	202	0.813E 00	203	0.200E-01	12,58
				631	0.200E-01	302	0.138E 01	
	4-3	0.131E-01	0.334E 00	203	0.250E-01	60 1	0.618E 00	12,58
				604	0-284E 00			
	5-4	0 .1 22E-01	0.211E 00	203	0.2502-01	601	0.533E 00	11,12,28,30,58
				603	0.161E 00			
	6-5	0.288E-01	0.434E 00	203	0.250E - 01	60 1	0.568E 00	11,12,29,30,58
				605	0.184E 00			
	7-6	0.153E-01	0.000E 00	606	0.153E-01	633	0.153E-01	9
	8-7	0.820E-02	0.888E-01	202	0.117E-01	205	0.117E-01	6,31,33
		_		303	0.420E-01	601	0.271E 00	
	9-7	0.156E-01	0.545E-01	202	0.121E-01	303	0.424E-01	6,31,33
				205	0.121E-01	601	0.8482-01	
				634	0 .121E -01			
	10-7	0.205E-01	0.798E-01	202	0.330E-01	204	0.165E-01	5,6,7,48
				230	0 . 165E-01	303	0.468E-01	
	_			601	0.936E-01			
	10-8	0.204E-01	0.654E - 01	230	0.165E-01	204	0.165E-01	5,7,48
				202	0.330E-01	304	0.324E-01	
				631	0.324E-01			
	10-9	0.598E-01	0.330E-01	202	0.330E-01	204	0.1658-01	5,7,48
				230	0.165E-01	330	0.433E-01	
100M	1-1	0.111E 00	0.209E 01	202	0.107E 01	301	0.183E 01	12,26,58
	1-2	0.112E 00	0.197E 01	202	0.107E 01	302	0.172E 01	12,26,58

(TABLE B. 1A CONTINUED)

TASK/TECHNICAL	LABOR (HE	SOURCES			
PACKAGE NUMBER	SKILLED	UNSKILLED (NO.	,HRS/UNIT) (NO., HES/UNIT)	
2-1	0.907E-01	0.188E 01 20	2 0.813E 00	203 0.250E-01	12,58
		60	1 0.500E-01	301 0.183E 01	
2-2	0.912E-01	0.177E 01 20	2 0.813E 00	203 0.250E-01	12,58
		60	1 0.500E-01	302 0.172E 01	
3-1	0.897E-01	0.187E 01 20.	2 0.813E 00	203 0.200E-01	12,58
		63	1 0.200E-01	301 0.183E 01	
3-2	0.902E-01	0.176E 01 20	2 0.813E 00	203 0.200E-01	12,58
		63	1 0.200E-01	302 0.172E 01	
4-3	0.131E-01	0.466E 00 20	3 0.250E-01	601 0.882E 00	12,58
_		60	4 0.416E 00		
5-4	0.122E-01	0.277E 00 20	3 0.250E-01	601 0.730E 00	11,12,28,30,58
		60	3 0.227E 00		
6-5	0 . 288E-01	0.473E 00 20	3 0.250E-01	601 0.645E 00	11,12,29,30,58
		60	5 0.223E 00		
7-6	0.236E-01	0.000E 00 60	6 0.236E-01	633 0.236E-01	9
8-7	0.820E-02	0.105E 00 20	2 0.117E-01	205 0.117E-01	6,31,33
		30	3 0.580E-01	601 0.303E 00	
9-7	0.156E-01	0.705E-01 20	2 0.121E-01	303 0.584E-01	6,31,33
		20	5 0.121E-01	601 0.117E 00	
		63	4 0.121E-01		
10-7	0.205B-01	0.958E-01 20	2 0.330E-01	204 0.165E-01	5,6,7,48
		23	0 0.165E-01	303 0.628E-01	
		60	1 0.126E 00		
10-8	0.204E-01	0.706E-01 23	0 0.165E-01	204 0.165E-01	5,7,48
		20	2 0.330E-01	304 0.376E-01	
		63	1 0.376E-01		
10-9	0.6376-01	0.330E-01 20	2 0.330E-01	204 0.165E-01	5,7,48
		23	0 0.165E-01	330 0.4728-01	
165M 1-1	0.111E 00	0.271E 01 20	2 0.107E 01	301 0.245E 01	12,26,58
1-2	0-112E 00	0.252E 01 20	2 0.107E 01	302 0.226E 01	12,26,58
2-1	0.907E-01	0.250E 01 20	2 0.813E 00	203 0.250E-01	12,58
	_	60	1 0.500E-01	301 0.245E 01	
2-2	0.912E-01	0.231E 01 20	2 0.813E 00	203 0.250E-01	12,58

.

(TABLE B. 1A CONT)	(NUED)							
TASK/TECHNICAL	LABOR (HE	S/UNIT)		EQUIPM	ENT		SOURCES	
PACKAGE NUMBER	SKILLED	UNSKILLED (NC.	HRS/UNIT) (NO.	HRS/UNIT)	<u> </u>	
			601	0.5008-01	302	0.226E 01		
3-1	0.897E-01	0.249E 01	202	0.813E 00	203	0.200E-01	12,58	
			631	0.200E-01	301	0.2458 01		
3-2	0.902E-01	0.230E 01	202	0.813E 00	203	0.200E-01	12,58	
			631	0.200E-01	302	0.226E 01		
4-3	0.131E-01	0.679E 00	203	0.250E-01	601	0.131E 01	12,58	
			604	0.629E 00				
5-4	0.122E-01	0.383E 00	203	0.250E-01	601	0.105E 01	11, 12, 28, 30, 58	
			603	0.333E 00			• -	
6-5	0.288E-01	0.535E 00	203	0.250E-01	601	0.770E 00	11, 12, 29, 30, 58	
			605	0.285E 00				
7-6	0.371E-01	0.000E 00	606	0.371E-01	633	0.371E-01	9	
8-7	0.820E-02	0.131E 00	202	0.117E-01	205	0.117E-01	6,31,33	
			303	0.838E-01	601	0.355E 00		
9-7	0.156E-01	0.963E-01	202	0.121E-01	303	0.842E-01	6,31,33	
			205	0.121E-01	601	0.168E 00		
			634	0.121E-01				
10-7	0.205E-01	0.122E 00	202	0.330E-01	204	0.165E-01	5,6,7,48	
			230	0.165E-01	303	0.886E-01		
			601	0.177E 00				
10-8	0.204E - 01	0.790E-01	230	0.165E-01	204	0.165E-01	5,7,48	
			202	0.330E-01	304	0.460E-01		
			631	0.460E-01				
10-9	0.700E-01	0.330E-01	202	0.330E-01	204	0.165E-01	5,7,48	
			230	0.165E-01	330	0.535E-01	- •	
500M 1-1	0.111E 00	0.596E 01	202	0.107E 01	301	0.571E 01	12,26,58	
1-2	0.112E 00	0.537E 01	202	0.107E 01	302	0.511E 01	12,26,58	
2-1	0.9072-01	0.576E 01	202	0.813E 00	203	0.250E-01	12,58	
			601	0.500E-01	301	0.571E 01		
2-2	0.912E-01	0.516E 01	202	0.813E 00	203	0.250E-01	12,58	
			601	0.500E-01	302	0.511E 01	-	
3-1	0.897E-01	0.575E 01	202	0.813E 00	203	0.200E-01	12,58	
			631	0.200E-01	301	0.571E 01		
(TABLE B.1	IA CONT.	INUED)						
-------------	------------------	-------------	-----------	------	-------------	-----	-------------	----------------
TA SK/TECHN	NICAL	LABOR (HE	SOURCES					
PACKAGE NU	JMBER	SKILLED	UNSKILLED	(NO.	HRS/UNIT) (NO.	HRS/UNIT)	
	3-2	0.902E - 01	0.515E 01	202	0.813E 00	203	0.200E-01	12,58
				631	0.200E-01	302	0.511E 01	
	4-3	0.131E-01	0.180E 01	203	0.250E-01	601	0.354E 01	12,58
				604	0.175E 01			
	5-4	0.122E-01	0.938E 00	203	0.250E-01	601	0.271E 01	11,12,28,30,58
				603	0.888E 00			
	6-5	0.2888-01	0.860E 00	203	0.250E-01	601	0.142E 01	11,12,29,30,58
				605	0.610E 00			
	7-6	0.107E 00	0.000E 00	606	0.107E 00	633	0.107E 00	9
	8-7	0.820E-02	0.266E 00	202	0.117E-01	205	0.117E-01	6,31,33
				303	0.219E 00	601	0.625E 00	
	9-7	0.156E-01	0.232E 00	202	0.121E-01	303	0.220E 00	6,31,33
				205	0.121E-01	601	0.439E 00	
				634	0.121E-01			
	10-7	0.205E-01	0.257E 00	202	0.330E-01	204	0.165E-01	5,6,7,48
				230	0.165E-01	303	0.224E 00	
				601	0.448E 00			
	10-8	0.204E-01	0.123E 00	230	0.165E-01	204	0.165E-01	5,7,48
				202	0.330E-01	304	0.900E - 01	
				631	0.900E-01		_	
	10-9	0.103E 00	0.330E-01	202	0.330E-01	204	0.165E-01	5,7,48
				230	0.165E-01	330	0.865E-01	
800 M	1-1	0.111E 00	0.887E 01	202	0.107E 01	301	0.862E 01	12,26,58
	1-2	0.112E 00	0.792E 01	202	0.107E 01	302	0.766E 01	12,26,58
	2 - 1	0.907E-01	0.867E 01	202	0.813E 00	203	0.250E-01	12,58
				601	0.500E-01	301	0.862E 01	
	2-2	0.912E-01	0.771E 01	202	0.813E 00	203	0.250E-01	12,58
				601	0.500E-01	302	0.766E 01	
	3-1	0.897E-01	0.866E 01	202	0.813E 00	203	0.200E-01	12,58
	_			631	0.200E-01	301	0.862E 01	
	3-2	0_902E-01	0.770E 01	202	0.813E 00	203	0.200E-01	12,58
	_			631	0.200E-01	302	0.766E 01	
	4-3	0.131E-01	U.280E 01	203	0.250E-01	601	0.5558 01	12,58

(TABLE B. 1A CONT	INUED)			
TASK/TECHNICAL	LABOR (HR	S/UNIT)	EQUIPMENT	SOURCES
PACKAGE NUMBER	SKILLED	UNSKILLED (NO., HRS/UNIT) (NO., HRS/UNIT)
			604 0.275E 01	
5-4	0.122E-01	0.144E 01 2	203 0.250E-01 601 0.421E 0	1 11,12,28,30,58
		6	603 0 .1 39E 01	
6-5	0.288E-01	0.115E 01 3	203 0.250E-01 601 0.200E 0	1 11,12,29,30,58
			605 0.901B 00	
7-6	0.170E 00	0.000E 00	606 0.170E 00 633 0.170E 0	09
8-7	0.820E - 02	0.387E 00 2	202 0.117E-01 205 0.117E-0	1 6,31,33
			303 0.340E 00 601 0.868E 0	0
9-7	0.156E-01	0.353E 00 2	202 0.121E-01 303 0.341E 0	0 6,31,33
			205 0.121E-01 601 0.681E 0	0
		(634 0.121E-01	
10-7	0.205E-01	0.378E 00	202 0.330E-01 204 0.165E-0	1 5,6,7,48
			230 0.165E-01 303 0.345E 0	0
		1	601 0.690E 00	
10-8	0.204E-01	0.162E 00	230 0.165E-01 204 0.165E-0	1 5,7,48
			202 0.330E-01 304 0.129E (10
			631 0.129E 00	
10-9	0.132E 00	0.330E-01	202 0.330E-01 204 0.165E-0	1 5,7,48
			230 0.165E-01 330 0.116E (10
SPR/COMP (BCY)				
93% 11	0.371E-01	0.371E 00	401 0.361E 00 501 0.950E-(2 12,15,26,29,58,61
			601 0.380E-01	••••
21	0.232E-01	0.327E-01	402 0.232E-01 501 0.950E-0	2 12,14,15,26,29,61
			601 0.131E 00	
98% 11	0.452E-01	0.407E 00	401 0.361E 00 501 0.453E-0	1 12,15,26,29,58,61
			601 0.181E 00	
21	0.232E-01	0.685E-01	402 0.232E-01 501 0.453E-0	01 12,14,15,26,29,61
			601 0.274E 00	
12	0.392E-01	0.361E 00	401 0.361E 00 530 0.630E-)2 12,26,35,58,61
22	0.295E-01	0.232E-01	402 0.232E-01 530 0.630E-	02 14,26,35,61
			601 0.928E-01	
32	0.193E-01	0.000E 00	403 0.650E-02 530 0.630E-	02 26,35,61
			632 0.650E-02	

(TABLE B. 1A					
TA SK/TECHNI	CAL	LABOR (HRS	S/UNIT)	EQUIPMENT	SOURCES
PACKAGE NUM	BER	SKILLED U	JNSKILLED (NO., HRS/UNIT) (NO., HRS/UNIT)
SURFACING	•				
GRVL (CCY)	11	0.329E-01 0	0.361E 00 /	401 0.329E 00 501 0.324E-0	1 12,15,26,29,61
			(601 0-130E 00	
	21	0.106E-01 0	0.127E 00 (401 0.546E-01 404 0.200E-0	1 12,15,26,29,61
				501 0.324E-01 601 0.170E 0	0
	12	0.489E-01 (0.329E 00 4	401 0.329E 00 530 0.124E-0	1 15,26,35,61
	22	0.229E-01 (0.946E-01	401 0.546E-01 404 0.200E-0	1 15,26,35,61
				530 0.124E-01 601 0.400E-0	1
WBM (CCY)	111	0.201E 00 (0.953E 00 4	401 0.820E 00 405 0.133E 0	0 26
				531 0 . 1338 00 601 0.2678 0	0
	211	0.169E 00 (0.572E 00	401 0.387E 00 404 0.260E-0	1 26
				405 0.133E 00 531 0.133E 0	0
				601 0.319E 00	
DBST/G (SY)	1111	0.102E-01	0.849E-01	401 0.849E-01 450 0.208E-0	2 15,26,35
				530 0.547E-03	
	1121	0.766E-02 (0.383E-01	331 0.361E-02 401 0.383E-0	1 15,26,35
				406 0.361E-02 450 0.208E-0	2
				530 0.547E-03	
DBST/W (SY)	1111	0.102E-01	0.849E-01	401 0.849E-01 450 0.208E-0	2 15,26,35
				530 0.547E-03	
	1121	0.766E-02 (0.383E-01	331 0.361E-02 401 0.383E-0	1 15,26,35
				406 0.361E-02 450 0.208E-0	2
				530 0.547E~03	

(TABLE B. 1A CONTINUED)

NOTE: ALL TECHNICAL PACKAGES FOR SURPACING ALSO INCLUDE MATERIALS: GRAVEL: 830-1.40 LCY/CCY WATERBOUND MACADAM: 831-1.37 LCY/CCY 832-0.32 LCY/CCY 833-63 GAL/CCY DOUBLE BITUMINOUS SURFACE TREATMENT ON GRAVEL: 835-0.93 GAL/SY 834-0.0191LCY /SY DOUBLE BITUMINOUS SURFACE TREATMENT ON WATERBOUND MACADAM: 835-0.72 GAL/SY 834-0.0191 LCY/SY

TABLE B.1B: LABOR, EQUIPMENT, AND MATERIALS REQUIREMENTS OF THE TECHNICAL PACKAGES FOR ALL STAGES IN THE 1950*S.

STAGE/TECHNICAL	LABC	<u> </u>	HRSZUNT	T)	E	QUIPMEN	T	M	ATERIAL	S	SCURCES
PACKAGE NUMBER	SKILLE	D	UNSKIL	LEC	(NO	, HRS/UN	[]]	(NO.	QTY/UN	IT)	
SITE PREP (ACRE)					·						·
11	C.621E	02	0.497E	03	206	0.372E	02	820	0.136E	03	26,36,46,63,88
					207	0.1428	03	821	0.200E	01	
					208	0.310E	03	822	0.100E	01	
					235	C.749E	01				
21	0.788E	01	0.878E	01	206	0.878E	01				26,46,63
					608	C.678E	01				
					642	0.678E	01				
31	C.538E	01	0.878E	01	608	0.178E	01				26,46
					610	C.292E	01				
					642	0.428E	01				
					206	0.878E	01				

(TABLE B.1B CONTINUED)											
TASK/TECHN	ICAL	LABOR (HR	S/UNIT))		EQUIPN	ENT		SOURCES		
PACKAGE NUM	18ER	SKILLED	UNSKILL	ED (INC.,	HRS/UNIT)	NO.,	FRS/UNIT)			
EXC/HAUL (E	BCY)										
2M	11-0	C.324E-02	0.000E	00	423	C.324E-02			46		
6 M	1-1	C.178E-01	0.000E	00	231	0.664E-02	332	0.112E-01	46,56,63,77		
	1-2	C.154E-01	0.000E	00	231	0.664E-02	333	0.876E-02	46,56,63,77		
	1-3	C.151E-01	0.000E	00	231	0.664E-02	305	0.842E-02	46,56,63,77		
					638	0.842E-02					
	1-4	C.143E-01	0.000E	00	306	0.765E-02	639	0.765E-02	46,56,63,77		
					231	C.664E-02					
	2-1	0.184E-01	0.000E	00	232	0.691E-02	332	0.115E-01	46,56,63,77		
	2-2	C.159E-01	0.000E	00	232	0.691E-02	333	0.903E-02	46,56,63,77		
	2-3	C.156E-01	0 .000 E	00	232	0.691E-02	305	0.869E-02	46,56,63,77		
					638	0.869E-02					
	2-4	0.148E-01	0.000E	00	232	0.691E-02	306	0.792E-02	46,56,63,77		
					639	0.792E-02					
	3-1	0.149E-01	0.000E	00	233	0.516E-02	332	0.970E-02	46,56,63,77		
	3-2	0.124E-01	0.000E	00	233	0.516E-02	333	0.728E-02	46,56,63,77		
	3-3	0.121E-01	3.000E	00	233	0.516E-02	305	0.694E-02	46,56,63,77		
					638	0.694E-02					
•	3-4	0.113E-01	0.000E	60	233	0.516E-02	306	0.617E-02	46,56,63,77		
					639	0.617E-02					
	5-5	C.123E-01	0.000E	00	611	0.819E-02	638	0.819E-02	77		
					641	0.409E-02	607	0.409E-02			
	6-6	0.115E-01	0.000E	00	639	C.765E-02	612	0.765E-02	77		
					642	0.383E-02	608	0.383E-02			
	7-7	C.537E-02	0.000E	00	613	0.358E-02	640	0.358E-02	77		
					643	0.186E-02	609	0.186E-02			
	8-8	0.358E-02	0.000E	00	607	0.358E-02	641	0.358E-02	56,63		
	9-9	0.195E-02	0.000E	00	608	0.195E-02	642	Q.195E-02	56,63		
	10-10	0.159E-02	0.000E	00	609	0.1598-02	643	0.159E-02	56,63		
9M	1-1	0.179E-01	0.000E	00	231	0.664E-02	332	0.113E-01	46,56,63,77		
	1-2	0.154E-01	0.000E	00	231	0.664E-02	333	0.881E-02	46,56,63,77		
	1-3	C.151E-01	0.000E	00	231	0.664E-02	305	0.851E-02	46,56,63,77		
					638	0.851E-02					

(TABLE B.1B	CCNTI	NUEC)							
TASK/TECHNIC	AL	LABCR (HE	RS/UNIT)		EQUIP	MENT		SOURCES
PACKAGE NUMB	ER	SKILLED	UNSKILI	5D(INO.	HRS/UNIT)	(NC.	HRS/UNIT)	<u></u>
	1-4	C.143E-01	C.000E	00	306	0.770E-02	639	C.770E-02	46,56,63,77
					231	0.664E-02			
	2-1	C.185E-01	0.000E	00	232	0.691E-02	332	0.116E-01	46,56,63,77
	2-2	C.160E-01	0.000E	00	232	0.691E-02	333	0.908E-02	46,56,63,77
	2-3	C.157E-01	0.000E	00	232	0.691E-02	305	0.878E-02	46,56,63,77
					638	0.878E-02			
	2-4	C.149E-01	0 .000 E	00	232	0.691E-02	306	0.797E-02	46,56,63,77
					639	0.797E-02			
	3-1	C.150E-01	0.000E	00	233	C.516E-02	332	0.981E-02	46,56,63,77
	3-2	0.125E-01	0.000E	00	233	0.516E-02	333	0.733E-02	46,56,63,77
	3-3	C.122E-01	0 .000 E	00	233	0.516E-02	305	0.703E-02	46,56,63,77
					638	0.703E-02			
	3-4	C.114E-01	0 .000 E	00	233	0.516E-02	306	0.622E-02	46,56,63,77
					639	C.622E-02			
	5-5	0.124E-01	0.000E	00	611	0.828E-02	638	0.828E-02	77
					641	0.414E-02	607	0.414E-02	
	6-6	0.116E-01	0.000E	00	639	0.772E-02	612	0.772E-02	77
					642	0.386E-02	608	0.386E-02	
	7-7	0.542E-02	0.000E	00	613	0.361E-02	640	0.361E-02	77
					643	0.181E-02	609	0.181E-02	
	8-8	0.471E-02	0.000E	00	607	0.471E-02	641	0.471E-02	56,63
	9-9	C.256E-02	0 .000 E	00	608	0.256E-02	642	0.256E-02	56.63
1	0-10	C.205E-02	0.000E	00	609	0.205E-02	643	0.205E-02	56,63
60M	1-1	0.198E-01	0.000E	00	231	0.664E-02	332	0.132E-01	46,56,63,77
	1-2	0.163E-01	0.000E	00	231	0.664E-02	333	0.970E-02	46,56,63,77
	1-3	C.167E-01	0.000E	00	231	0.664E-02	305	0.101E-01	46,56,63,77
					638	0.101E-01			
	1-4	C.152E-01	0.000E	00	306	0.859E-02	639	0.859E-02	46,56,63,77
					231	0.664E-02			
	2-1	C.204E-01	0.000E	00	232	0.691E-02	332	0.135E-01	46,56,63,77
	2-2	0.169E-01	0.000E	00	232	0.691E-02	333	0.997E-02	46,56,63,77
	2-3	C.173E-01	0.000E	00	232	0.691E-02	305	0.104E-01	46,56,63,77
					638	0.104E-01			

(TABLE B.1B	CONTI	(NUEC)							
TASK/TECHNI	CAL	LABOR (HE	S/UNIT))		EQUIPM	ENT		SOURCES
PACKAGE NUM	BER	SKILLED	UNSKILL	ED (INO.	HRS/UNIT)	HRS/UNIT)		
	2-4	0.158E-01	0.000E	00	232	0.691E-02	306	0.886E-02	46,56,63,77
					639	C.886E-02			
	3-1	0.169E-01	0.000E	00	233	0.516E-02	332	0.117F-01	46,56,63,77
	3-2	C.134E-01	0 .000E	00	233	C.516E-02	333	C.822E-02	46,56,63,77
	3-3	0.138E-01	0.000E	00	233	0.516E-02	305	0.861E-02	46,56,63,77
					638	0.861E-02			
	3-4	C.123E-01	0 .000 E	00	233	0.516E-02	306	0.711E-02	46,56,63,77
					639	0.711E-02			
	4-2	C.688E-02	0.000E	00	234	0.191E-02	642	0.191E-02	46,56,63,77
					333	0.497E-02			
	4-4	0.577E-02	0.000E	00	234	0.191E-02	642	0.191E-02	46,56,63,77
					306	0.386E-02	639	0.386E-02	
	5-5	C.148E-01	0 .00 0E	00	611	0.985E-02	638	0.985E-02	77
					641	0.493E-02	607	0.493E-02	
	6-6	0.133E-01	0 .000 E	00	639	0.883E-02	612	0.883E-02	77
					642	C.442E-02	608	0.442E-02	
	7-7	0.630E-02	J.000E	00	613	0.420E-02	640	0.420E-02	77
					643	0.210E-02	609	0.210E-02	
	8-8	0.239E-01	0.000E	00	607	0.239E-01	641	0.239E-01	56,63
	9-9	0.130E-01	0.000E	00	608	C.130E-01	642	0.130E-01	56,63
	10-10	0.996E-02	0.000E	00	609	0.996E-02	643	0.996E-02	56,63
100M	1-1	C.213E-01	0.000E	00	231	0.664E-02	332	0.147E-01	46,56,63,77
	1-2	C.170E-01	0.000E	00	231	0.664E-02	333	0.104E-01	46,56,63,77
	1-3	0.179E-01	0.000E	00	231	0.664E-02	305	0.113E-01	46,56,63,77
					638	0.113E-01			
	1-4	C.159E-01	0.000E	00	306	0.928E-02	639	0.928E-02	46,56,63,77
					231	0.664E-02			
	2-1	C.219E-01	0.000E	00	232	0.691E-02	332	0.149E-01	46,56,63,77
	2-2	0.176E-01	0.000E	00	232	0.691E-02	333	0.107E-01	46,56,63,77
	2-3	0.185E-01	0.000E	00	232	U.691E-02	305	0.116E-01	46,56,63,77
	•				638	U.116E-01			
	2-4	C.165E-01	0.000E	00	232	C.691E-02	306	0.955E-02	46,56,63,77
					639	0.955E-02			

(TABLE B.18 CONTINUED)

TASK/TECHNICAL	LABOR (H	LABOR (HRS/UNIT) EQUIPMENT								
PACKAGE NUMBER	SKILLED	UNSKILL	ED	INO.	HRS/UNIT)	NO.	HRS/UNIT)	<u> </u>		
3-1	C.184E-01	0.000E	00	233	0.516E-02	332	0.132E-01	46,56,63,77		
3-2	C.141E-01	0 .00 0E	00	233	0.516E-02	333	0.891E-02	46,56,63,77		
3-3	C.150E-01	0 .000 E	00	233	C.516E-02	305	0.981E-02	46,56,63,77		
				638	C.981E-02					
3-4	0.130E-01	0.000E	00	233	0.516E-02	306	0.780E-02	46,56,63,77		
				639	0.780E-02					
4-2	0.757E-02	0.000E	00	234	0.191E-02	642	0.191E-02	46,56,63,77		
				333	C.566E-02					
4-4	C.646E-02	0 .000 E	00	234	0.191E-02	642	0.191E-02	46,56,63,77		
				306	0.455E-02	639	0.455E-02			
5-5	C.166E-01	0.000E	00	611	0.111E-01	638	0.111E-01	77		
				641	0.553E-02	607	0 .553 E-02			
6-6	C.145E-01	0 .000 E	00	639	C.969E-02	612	0.969E-02	77		
				642	0.485E-02	608	0.485E-02			
7-7	0.620 E-02	0.000E	00	613	0.465E-02	640	0.465E-02	77		
				643	0.155E-02	609	0.155E-02			
8-8	C.386E-01	0 .000 E	00	607	0.386E-01	641	0.386E-01	56,63		
9-9	C.210E-01	0.000E	00	608	0.210E-01	642	0.210E-01	56,63		
10-1	C C.160E-01	0 .000 E	00	609	0.160E-01	643	0.160E-01	56,63		
165M 1-1	0.237E-01	0.000E	00	231	0.664E-02	332	0.170E-01	46,56,63,77		
1-2	0.181E-01	0.000E	00	231	0.664E-02	333	0.115E-01	46,56,63,77		
1-3	C.199E-01	0.000E	00	231	0.664E-02	305	0.132E-01	46,56,63,77		
				638	0.132E-01					
1-4	0.170E-01	0 .000 E	00	306	0.104E-01	639	0.104E-01	46,56,63,77		
				231	0.664E-02					
2-1	C.242E-01	0 .000E	00	232	0.691E-02	332	0.173E-01	46,56,63,77		
2-2	C.187E-01	0 .000 E	00	232	0.691E-02	333	0.118E-01	46,56,63,77		
2-3	0.204E-01	0 .000 E	00	232	0.691E-02	305	0.135E-01	46,56,63,77		
				638	0.135E-01					
2-4	0.176E-01	0.000E	00	232	0.691E-02	306	0.107E-01	46,56,63,77		
				639	0.107E-01					
3-1	0.207E-01	0.000E	00	233	0.516E-02	332	0.156E-01	46,56,63,77		
3-2	C.152E-01	0.000E	00	233	0.516E-02	333	0.100E-01	46,56,63,77		

(TABLE B. 1B CONTINUED)

TASK/TECHN1CAL	LABOR (HI	SOURCES						
PACKAGE NUMBER	SKILLED	UNSKILL	ED (N	ID . ,	HRS/UNIT) (NO.	HRS/UNIT)	
3-3	0.169E-01	0.00CE	00 2	33	0.516E-02	305	0.118E-01	46,56,63,77
			6	38	0.1181-01			
3-4	0.141E-01	0.000E	002	:33	0.516E-02	306	0.890£-02	46,56,63,77
	_		6	53.9	0.890E-02			
4-2	0.867E-02	0.00CE	ΰO 2	:34	0.1912 - 02	642	0.191E-02	46,56,63,77
1	0 70 4 70 0 0	0 0007	1	333	0.6/6E-02	<i>.</i>	0 404- <u>.</u>	
4-4	0.756E-02	0.000E	00 2	:34	0.191E-02	642	0.191E-02	46,56,63,77
	0 4057 D4		2	106	0.5656-02	639	0.565E-02	
5-5	0.1952-01	0.000E	VU 6)11	0.130E-01	638	0.130E-01	77
<i></i>			6	141	0.6516-02	607	0.651E-02	
6-6	C.148E-01	0.000E	00 6	39	0.111E-01	612	0.111E-01	77
			6	542	0.369E-02	608	0.369E-02	
7-7	0.716E-02	0.000E	00 6	513	0.537E-02	640	0.537 E - 02	77
			6	543	0.179E-02	ó09	U.179E-02	
8-8	0.623E-01	0.00CE	<u>υ</u> 0 6	507	0.623E-01	641	0.623E-01	56,63
9-9	0.340E - 01	0.000E	00 6	508	0.340E-01	642	ü.340E-01	56,63
10-10	0.257E-01	0.000E	00 6	509	0.257E-01	643	0.257E-01	56,63
500M 1-1	0.244E - 01	0.000E	00 2	231	0.664E-02	332	0 .177 E-01	46,56,63,77
1-2	0.184E-01	0.000E	00 2	231	0.664E - 02	333	0.118E-01	46,56,63,77
1-3	0.204E-01	0.000E	00 2	231	0.664E-02	305	0.138E-01	46,56,63,77
			6	538	0.138E-01			
1-4	0.173E-01	0.000E	00 3	306	0.107E-01	639	0.107E-01	46,56,63,77
			2	231	0.664E-02			
2-1	0.249E-01	0.000E	00	232	0.691E-02	332	0.180E-01	46,56,63,77
2-2	0.190E-01	0.000E	00 2	232	0.691E-02	333	0.121E-01	46,56,63,77
2-3	0.210E-01	0.00CE	00 2	232	0.691E-02	305	0.141E-01	46,56,63,77
			6	638	0.1411-01			
2-4	0.179E-01	0.000E	00 2	232	0.691E-02	306	0.110E-01	46,56,63,77
			ť	639	0.11CE-01			
3-1	0.214E-01	0.000E	00 2	233	0.516E-02	332	0.162E-01	46,56,63,77
3-2	0.155E-01	0.000E	00 2	233	0.516E-02	333	0.103E-01	46,56,63,77
3-3	0.175E-01	0.000E	00 2	233	0.516E-02	305	0.123E-01	46,56,63,77
			(638	0.123E-01			

(TABLE B.1E	S CONTI	(NUED)							
TASK/TECHNI	CAL	LABOR (HI	S/UNIT)			EQUIPM	LNT		SOUPCES
PACKAGE NUM	IBER	SKILLED	UNSKILI	<u>. E D</u>	(NO.	HRS/UNIT)	(NO.	HRS/UNIT)	
	3-4	0.144E - 01	0.000Ē	00	233	0.5162-02	306	0.9221-02	46,56,63,77
					639	0.922E-02			_
	4-2	0.899E-02	0.C0CE	00	234	0.191E-02	ь 42	0.191E-02	46,56,63,77
					333	0.708E-02			
	4-4	0.788E-02	0.000E	00	234	0.191E-02	642	0.1915-02	46,56,63,77
					306	0.597£-02	639	0.597E-02	
	5-5	0.290E-01	0.000E	00	611	0.2328-01	639	0.2328-01	77
					641	0.58CE-02	607	0.580E-02	
	6-6	0.244E-01	0.006E	00	639	0.183E-01	612	6 . 183E-01	77
					642	0.610E-02	608	U.6102-02	
	7-7	0.122E-01	0.000E	00	613	0.916E-02	640	0.916E-02	7 7
					643	0.305E-02	609	0.305E-02	
	8-8	0.186E 00	0.000E	00	607	0.186E 00	641	0.186E 00	56,63
	9-9	0.102E 00	0.000E	00	608	0.102E 00	642	0.102E 00	56,63
	10-10	0.766E-01	0.000E	00	609	0.766E-01	643	0.7662-01	56,63
800M	1-1	0.275E-01	0.000E	00	231	0.664E-02	332	0.2092-01	46,56,63,77
	1-2	0.199E-01	0.000E	00	231	0.6646-02	333	0.133E-01	46,56,03,77
	1-3	0.230E-01	0.00CE	00	231	0.664E-02	305	Ú.1642-01	46,56,63,77
					638	0.164E-01			
	1-4	0.188E-01	0.00CE	00	306	0.122E-01	639	0.122E-01	46,56,63,77
					231	0.664E-02			
	2-1	0.281E-01	0.000E	00	232	0.691E-02	332	0.212E-01	46,56,63,77
	2-2	0.205E-01	0.000E	00	232	0.6912-02	333	0.136E-01	46,56,63,77
	2-3	0.236E-01	0.000E	00	232	0.691E-02	305	0.167E-01	46,56,63,77
					638	0.1671-01			
	2-4	0.194E-01	0.000E	00	232	0.691E-02	30 ó	0.124E-01	46,56,63,77
					639	0.124E-01			
	3-1	0.2468-01	Ú.000E	00	233	0.516E-02	332	0.194E-01	46,56,63,77
	3-2	0.170E-01	0.000E	00	233	0.516E-02	333	0.1182-01	46,56,63,77
	3-3	0.201F-01	0.000E	00	233	0.516E-02	305	0.149E-01	46,56,63,77
					638	0.149E-01			· · ·
	3-4	0.159E-01	0.000E	0.0	233	0.5162-02	306	0.107E-01	46,56,63,77
					639	0.107E-01			· · -

(TABLE B. 1B CONTINUED)

TASK/TEC.	TASK/TECHNICAL LABOR (HRS/UNIT) EQUIPMENT									
PACKAGE	NOMBER	SKILLEL	UNSKILL	ED	(NO .	HRS/UNIT)	NO.	HRS/UNIT)		
	4-2	0.105E-01	0.000E	00	234	0.191E-02	642	0.1911-02	46,56,63,77	
					3.3.3	0.8572-02				
	4-4	0.936E-02	G.000E	00	234	0.191E-02	642	J.191E-02	46,55,63,77	
					306	0.745E-02	639	0.745E-02		
	5-5	0.388E-01	0.00CE	00	611	0.323E-01	o 38	0.323E-01	77	
					641	0.647E-02	607	0.6475-02		
	6 -6	0.310E-01	0.000E	00	639	0.248E-01	612	0.2482-01	77	
	_	_			642	0.619E-02	608	0.6192-02		
	7-7	0.157E-01	0.000	00	613	0.125E-01	640	0.125⊵−01	77	
					643	0.314E - 02	ь09	0 .31 4ಪ−02		
	8-8	0.297E 00	0.000E	00	607	0.297E 00	641	0.297E 00	56,63	
	9-9	0.162E 00	0.000E	00	608	0.162E 00	642	0.162E 00	56,63	
	10-10	0.122E 00	0.000E	00	609	0.122E 00	643	0.122E 00	56,63	
SPR/COMP	(BCY)	0 4045 04	0.000	• •	F 0 0					
98%	13	0.121E-01	0.0005	00	502	0.700E-02	607	0.508E-02	8,46,56,63,88	
	A 13	0.0500.00	0.000	• •	641	0.121E-01				
	ז2	0.858E-02	0.000E	00	502	0.700E-02	607	0.508E-02	8,46,56,63,88	
	4.2	0 0074 00	0.000	~ ~	641	0.508E-02	642	0.350E-02		
	13	0.887E-02	0.0008	00	552	0.379E-02	60/	0.508E-02	20,35,56,63	
	4.4	A 77.00 00	0 000B	• •	041	0.508E-02	e A			
	14	0.//96-02	0.0005	00	007	0.5086-02	641	0.5082-02	20,38,55,63	
	24	0 1005 01	0 0000	00	222	0.271E-02		0.00CD 00		
	21	0.1042-01	0.0005	00	04 J	0.3355-02	609 E 00	U-335E-02	8,40,50,63,88	
	22	0 6858-02	0 0008	00	50.7	0.700E-02	5VZ	0.7008-02	0 14 66 43 00	
	4.2	0.0000-05	0.JUUL	99	504	0.25 Ck=02	6009	0.335E-02	0,40,00,00,00	
	22	A 7148-02	0 0005	0.0	522	0.3508-02	04J 2013	0.3355-02	20.25 EC (2)	
	23	0+7146-02	0.0000	00	552	0.3796-02	043	0.3355-02	20,35,50,03	
	24	0 6068-02	0 0005	00	6003	0.3355-02	6117	0 225 2-02	20 22 56 42	
	27	0.0001.02	0.0001	00	533	0.3332-02	045	0.3337-05	20,30,50,03	
	21	0.9098-0)	0.0065	00	120	0.27 1E-02 0 2008-02	502	0 700 -03	8 116 56 62 99	
	1	V. JUJE UZ	A. 000P	00		0 7008-02	202	0.7008-02	00,40,00,00,00	
	32	0.559E-02	0.000E	00	420	0.209E-02	502	0.700E-02	8-46-56-63-88	
				••	. 2 0	JILVII VL	3.0 %		0140100100100	

(TABLE B.1B CONTINUED)

TASK/TECHNI	CAL	LABOR (HE	S/UNIT)		EQUIPH	SOURCES		
PACKAGE NUM	BER	SKILLED	UNSKILLED	(NO.	HRS/UNIT)	(10.	HRS/UNIT)	
<u> </u>				64.2	0.350E-02			
	33	0.588E-02	0.00CE 00	420	0.209E-02	532	0.379E-02	20,35,46,56,63
	34	0.480E-02	0.000E 00	420	0.209E-02	533	0.2712-02	20,38,46,56,63
	41	0.853E-02	0.000E 00	421	0.153E-02	641	0.700E-02	8,46,50,63,88
				502	0.70CE-02			
	42	0.503E-02	0.000E 00	421	0.153E-02	502	0.700E-02	8,46,56,63,88
				642	0.350E-02			
	43	0.5322-02	0.000E 00	421	0.153E-02	532	0.3792-02	20,35,46,56,63
	44	0.424E-02	0.000E 00) 421	0.153E-02	533	0.2718-02	20,38,46,56,63
SURFACING								
GRVL (CCY)	11	0.105E-01	0.000E 00) 607	0.424E-02	534	0.625E-02	35,56,61,63
•••				641	0.424E-02			
	12	0.772E-02	0.0001 00) 607	0.424E-02	<u>6</u> 41	0.424E-02	20,38,39,56,63
				533	0.348E-02			
	21	0.972E-02	0.00CE 00	609	0.347E-02	643	0.347E-02	35,56,61,63
				534	0.625E-02			
	22	0.695E-02	0.0002.0	0 60 9	0.347E-02	643	0.347E-02	20,38,39,56,63
				533	0.348E-02			
	31	0.821E-02	0.000E 0	0 420	0.196E-02	534	0.625±-02	8,35,46,56,61,63
	32	0.544E-02	0.000E 0	0 420	0.196E-02	533	0.348E-02	8,20,38,39,46,63
	41	0.779E-02	0.00CE 0	0 42 1	0.154E-02	534	0.6258-02	8,35,46,56,61,63
	42	0.502E-02	0.00CE 0	0 421	0.154E-02	533	0.348E-02	8,20,38,39,46,63
	51	0.117E-01	0.291E-0	2 422	0.291E-02	333	0.2532-02	35,56,61,63,77
				408	0.291E-02	534	0.625E-02	
	52	0.892E-02	0.291E-0	2 422	0.291E-02	333	0.253E-02	20,38,39,63,77
				408	0.291E-02	533	0.348E-02	
WBM (CCY)	111	0.831E-01	0.222E-0	1 607	0.498E-02	641	0.498E-02	15,35,40,56,63,77
				332	0.820E-02	408	0.820E-02	• • • • • • • • • • • • • • • • • • •
				409	0.820E-02	534	0.699E-01	
				334	0.140E-01	407	0.140E-01	

(TABLE 8.1B CONTI	INU ED)						
TASK/TECHNICAL	LABOR (HE	S/UNIT)		EQUIPA	LNT		SOURCES
PACKAGE NUMBER	SKILLED	UNSKILLED	NO .	HRS/UNIT)	<u>0 N O</u>	HRS/UNIT)	
112	0.643E-C1	0.184E-01	60 7	0.498E-02	641	0.498 ± -02	15,35,40,56,63,77
			332	0.820E-02	40 B	0.820E-02	
			409	0.820E-02	533	0.511E - 01	
			334	0.102E-01	407	0.102E-01	
211	0.814E-C1	0.222E-01	64 3	0.3348-02	609	0.334E-02	15,35,40,56,63,77
			332	0.820E-02	408	0.820E-02	
			409	0.820E = 02	534	0.699E-01	
			334	0.140E-01	407	0.140E-01	
212	0.627E-01	0.184E-01	64 3	0.334E - 02	609	U.334E-02	15,35,40,56,63,77
			332	0.820E-02	408	0.820E-02	
			409	0.820E-02	533	0.511E - 01	
			334	0.102E-01	407	0.102E-01	
311	0.802±-01	0.222E-01	420	0.206E-02	332	0.8201-02	8,15,35,40,46,56,63,77
			408	0.820E-02	409	0.820E-02	
			534	0.699E-01	334	0.140E-01	
			407	0.140E-01			
312	0.614E-01	0.184E-01	420	0.206E-02	332	0.820E-02	8,15,35,40,46,56,63,77
			408	0.82CE-02	409	0.820E-02	
			533	0.511E-01	334	0.102E-01	
			407	0.102E-01			
411	0.796E-01	0.222E-01	421	0.150E-02	332	0.820E-02	8,15,35,40,46,56,63,77
			40.8	0.820E-02	409	0.820E-02	
			534	0.699E-01	334	0.140E-01	
			407	0.140E-01			
412	0.608E-01	0.184E-01	42 1	0.150E-02	332	0.820E-02	8,15,35,40,46,56,63,77
			408	0.820E-02	409	0.820E-02	
			533	0.511E-01	334	0.102E-01	
			407	0.102E-01			

(TABLE B.1B CONTINUED)

TASK/TECHN1	CAL	LABOR (HI	SOURCES					
PACKAGE NUM	<u>BER</u>	<u>SKILLED</u>	UNSKILLED	(N).	HRS/UNIT)	(<u>NO</u> .	HRS/JNIT)	
	511	0.837E-01	0.251E-01	333	0.266E-02	4 <i></i> 08	0.111E-01	15,35,40,56,63,77
				422	0.291±-02	332	0.820E-02	
				409	0.820E-02	534	0.699E-01	
				334	0.140E-01	407	0.140E-01	
	512	0.649E-01	0.213E-01	333	0.266E-02	408	0.111E-01	15,35,40,56,63,77
				42.2	0.291E-02	33 2	0.8201-02	
				409	0.820E-02	533	J.511E-01	
				334	0 .10 2E-01	407	0.102E-01	
DBST/G (SY)	1111	0.188E-02	0.120E-02	33.5	0.197E-03	440	0 .1 97E-03	35,63,77,91
				45.2	0.612E-03	422	0.405E-03	
				333	0.405E-03	408	0.4 05 E-03	
				535	0.503E-03			
	1112	C.166E-C2	0.120d-02	335	J.197E-03	440	6.197E-03	20,39,63,77
				452	0.612E-03	422	0.405E-03	
				333	0.405E-03	408	0.405E-03	
				533	0.284E-03			
	1121	0.191E-02	0.161E-02	335	0.197E-03	440	0.197F-03	35,63,77,91
				452	0.612E-03	332	0.798E-03	
				409	0.798E-03	408	0.798E-03	
				535	0.503E-03			
	1122	0.170E-02	0.161E-02	335	0.197E-03	440	0.197E-03	20,38,63,77
				452	0.612E-03	332	J.798E-03	
				409	0.798E-03	408	0.798E-03	
				533	0.284E-03			
	2111	0.188E-02	0.112E-02	45 1	0.120E-03	452	0.612E-03	35,63,77,91
				422	0.405E-03	333	0.405E-03	
				408	0.405E-03	535	Ú.503E-03	
	2112	0.166E-02	0.1128-02	451	0.120E-03	452	0.612E-03	20,38,63,77
				422	0.4051-03	333	0.4051-03	
				40 8	0.4051-03	533	0.284E-03	

(TABLE B.1B	CONT	ENULD)						
TASK/TECHNI	CAL	LABOR (HI	(S/UNIT)		EQUIPH	ENT		SOURCES
PACKAGE NUM	BER	SKILLED	UNSKILLED	(NO .	HRS/UNIT)	NO.	HRS/UNIT)	
	2121	0.191E-02	0.1532-02	451	0.120E-03	452	0.612E-03	35,63,77,91
				332	0.798E-03	409	0.798E-03	
				408	0.7982-03	535	0.5031-03	
	2122	0.170E-02	0.153E-02	451	0.120E-03	452	0.612E-03	20,38,63,77
				332	0.798E-03	409	0.798E-03	
				40.8	0.7988-03	533	0.284E-03	
DBST/W (SY)	1111	0.188E-02	0.12CE-02	335	0.197E-03	440	0.1972-03	35,63,77,91
				452	0.6122-03	422	0.405E-03	
				333	0.405E-03	408	0.405E-03	
				535	0.503E-03			
	1112	0.166E-02	0.120E-02	335	0.197E-03	440	0.197E-03	20,38,63,77
				452	0.612E-03	422	0.405E-03	
				<u>333</u>	0.405E-03	408	0.405E-03	
				533	0.284E-03			
	1121	C.191E-02	0.161E-02	335	0.197E-03	440	0.197E-03	35,63,77,91
				452	0.612E-03	332	0.798E-03	
				409	0.798E-03	408	0.798E-03	
				535	0.503±-03			
	1122	0.170E-02	0.161E-02	335	0.197E-03	44C	0.197E-03	20,38,63,77
				452	0.6128-03	332	0.798E-03	
				409	0.798E-03	408	0.798E-03	
				533	0.284E-03			
	2111	0.188E-02	0.112E-02	451	0.120E-03	452	0.6122-03	35,63,77,91
				422	0.405E-03	333	0.405E-03	
				408	0.405E-03	535	0.503E-03	
	2112	0.166E-02	0.112E-02	45 1	0.120E-03	452	0.612E-03	20,38,63,77
				422	0.405E-03	333	0.405E-03	
				408	0.405E-03	533	0.284E-03	
	2121	0.191E-02	0.153E-02	451	0.120E-03	452	0.612E-03	35,63,77,91
				3 3 2	0.798E-03	409	0.798E-03	
				408	0.798E-03	535	0.503E-03	
	2122	0.170E-02	0.153E-02	45 1	0.1208-03	452	0.612E-03	20,38,63,77
				33 2	0.798E-03	409	0.798E-03	
				408	0.798E-03	533	0.284E-03	

(TABLE B. 1B CONTINUED)

NOTE: ALL TECHNICAL PACKAGES FCR SURFACING ALSO INCLUDE MATERIALS: GRAVEL: 830-1.40 LCY/CCY WATERBOUND MACADAM: 831-1.37 LCY/CCY 832-0.32 LCY/CCY 833-63 GAL/CCY DOUBLE BITUMINOUS SURFACE TREATMENT ON GRAVEL: 835-0.93 GAL/SY 834-0.0191 LCY /SY DOUBLE BITUMINOUS SURFACE TREATMENT ON WATERBOUND MACADAM: 835-0.72 GAL/SY 834-0.0191 LCY/SY TABLE B.1C: LABER, EQUIPMENT, AND MATERIALS REQUIREMENTS OF THE TECHNICAL PACKAGES FOR ALL STAGES IN THE 1970'S.

STAGE/TECHNICAL	LAPCR	(HRS/UNIT)	EG	ULPMENT	ſ	MA	TERIALS	5	SCLRCES
PACKAGE NUMBER	SKILLED	UNSKILL	EC (NC.	HRS/UNI	(<u>T</u>)	(NC.,	GTY/UNI	(1)	_
SITE PREP (ACRE)										
11	C.245E 0	2 0 .1 42E	03	209	0.445E	02	823	0.333E	02	49,57
				236	0.640E	02				
				237	0.667E	01				
				241	C.340E	02				
21	0.416E 0	1 0.236E	02	209	0.139E	02	823	0.333E	02	22,57
				236	C.916E	01				
				336	C.560E	00				
				614	0.285E	01				
				644	0.285E	01				
31	C.271E 0	1 0.105E	02	209	0.105E	02	823	C.333E	02	57
				615	0.140E	01				
				645	0.140E	01				

TIMPER DATE CONTINUED	ſ	TABLE	B.1C	CONTINUED)
-----------------------	---	-------	------	------------

TASK/TEC	HNICAL	LABOR (HR	S/UNIT)		EQUIPM	ENT		SOURCES	
PACKAGE	NUMBER	SKILLED	UNSKILL	ED	INC.	FRS/UNITI	NO.	HRS/UNIT)	
EXC/HAUL	(BCY)								
2 M	14-0	0.145E-02	0.000E	00	424	C.145E-02			18,57
6M	1-1	C.137E-01	0.000E	00	238	0.610E-02	337	0.761E-02	21,22,34,57
	1-2	C.133E-01	0.000E	00	238	0.610E-02	338	0.716E-02	21,22,34,57
	2-3	C.107E-01	0.000E	00	239	C.444E-02	339	C.627E-02	21,22,34,57
	2-5	0.992E-02	0.000E	00	239	0.4448-02	341	0.548E-02	21,22,34,57
	3-4	C.751E-02	C.000E	00	240	0.307E-02	340	C.444E-02	22,34,47,57
	3-6	0.672E-02	0.000E	00	240	0.307E-02	342	0.365E-02	22,34,47,57
	4-1	C.135E-01	0.000E	00	337	C.749E-02	646	0.598E-02	18,21,22,34,56,83
	4-2	0.130E-01	0.000E	00	338	0.704E-02	646	0.598E-02	18,21,22,34,56,83
	4-7	C.872E-02	0.000E	00	646	C.872E-02			18,22,34,83
	5-3	0.989E-02	0.000E	00	339	0.586E-02	647	0.403E-02	18,22,34,49,57,83
	5-5	0.910E-02	0 .000 E	00	341	C.507E-02	647	0.403E-02	18,22,34,49,57,83
	5-8	0.464E-02	0.000E	00	647	0.464E-02			18,22,34,49,83
	6-4	C.683E-02	0.000E	00	340	C.41CE-02	648	C.273E-02	18,22,34,49,57,83
	6-6	0.604E-02	0.000E	00	<u>342</u>	C.331E-02	648	0.273E-02	18,22,34,49,57,83
ີພ	6-9	C.307E-02	0.000E	00	648	0.307E-02			18,22,34,49,83
4 3	7-10	C.476E-02	0 .000F	00	649	0.476E-02			18,21,34
	8-11	C.246E-02	0.000E	00	650	0.246E-02			18,21,34
	9-12	C.336E-02	0.000E	00	651	0.224E-02	653	0.112E-02	18,21,34
					616	0.112E-02			
	10-13	0.246E-02	0.000E	00	652	0.164E-02	654	0.819E-03	18,21,34
					617	0.819E-03			
	11-14	0.283E-02	0.000E	00	614	0.283E-02	644	0.283E-02	18,21,34
	12-15	C.109E-02	0.000E	00	616	0.109E-02	645	0.109E-02	18,21,34
	13-16	0.563E-03	0.000E	00	617	0.563E-03	654	0.563E-03	18,21,34
9M	1-1	0.137E-01	0.000E	00	238	0.610E-02	337	0.765E-02	21,22,34,57
	1-2	C.133E-01	0 .000 E	00	238	0.610E-02	338	0.718E-02	21,22,34,57
	2-3	0.107E-01	0.000E	00	239	0.444E-02	339	0.629E-02	21,22,34,57
	2-5	C.996E-02	0.000E	00	239	0.444E-02	341	0.5528-02	21,22,34,57
	3-4	0.752E-02	0.000E	00	240	0.307E-02	340	0.445E-02	22,34,47,57
	3-6	C.674E-02	0.000E	00	240	0.307E-02	342	0.367E-02	22, 34, 47, 57
	4-1	0.135E-01	0.000E	00	337	0.753E-02	646	0.598E-02	18,21,22,34,56,83

,

(TABLE B.10	CONT	INUED)							
TASK/TECHN	ICAL	LABOR (HE	RS/UNIT:)		EQUIP!	ENT		SOURCES
PACKAGE NU	MBER	SKILLED	UNSKILI	LFD	INC.	HRS/UNIT)	NO.	HRS/UNIT)	
	4-2	0.130E-01	0.000E	00	339	0.706E-02	646	0.598E-02	18,21,22,34,56,83
	4-7	C.101E-01	0.000E	00	646	C.101E-01			18,22,34,83
	5-3	C.991E-02	0.000E	00	339	0.588E-02	647	0.403E-02	18,22,34,49,57,83
	5-5	C.914E-02	0.000E	00	341	0.511E-02	647	0.403E-02	18,22,34,49,57,83
	5-8	C.494E-02	0.000E	00	647	0.494E-02			18,22,34,49,83
	6-4	C.684E-02	0.000E	00	340	0.411E-02	648	0.273E-02	18,22,34,49,57,83
	6-6	C.606E-02	0.000E	00	342	0.333E-02	648	C.273E-02	18,22,34,49,57,83
	6-9	C. 324E-02	0 .000 E	00	648	0.324E-02			18,22,34,49,83
	7-10	0.497E-02	0.000E	00	649	C.497E-02			18,21,34
	8-11	0.253E-02	0.000E	00	65 0	0.253E-02			18,21,34
	9-12	C.344E-02	0.000E	00	651	C.229E-02	653	C.115E-02	18,21,34
					616	0.115E-02			
	10-13	C.250E-02	0.000E	00	652	0.167E-02	654	0.833E-03	18,21,34
					617	C.833E-03			- • ·
	11-14	0.371E-02	0.000E	00	614	0.371E-02	644	0.371E-02	18,21,34
	12-15	0.143E-02	0.000E	00	616	0.143E-02	645	0.143E-02	18,21,34
ىپ	13-16	C.782E-03	0.000E	00	617	0.7828-03	654	0.782E-03	18,21,34
B 60M	1-1	0.144E-01	0.000E	00	238	0.610E-02	337	0.832E-02	21,22,34,57
	1-2	C.137E-01	0.000E	00	238	C.610E-02	338	0.765E-02	21,22,34,57
	2-3	0.111E-01	0.000E	00	239	0.444E-02	339	0.669E-02	21,22,34,57
	2-5	C.106E-01	0.000E	00	239	C.444E-02	341	0.612E-02	21,22,34,57
	3-4	0.782E-02	0.000E	00	240	0.307E-02	340	0.475E-02	22,34,47,57
	3-6	C.707E-02	0.000E	00	240	0.307E-02	342	0.400E-02	22,34,47,57
	4-1	0.142E-01	0.000E	00	337	0.820E-02	646	0.598E-02	18,21,22,34,56,83
	4-2	0.135E-01	0.000E	00	338	C.753E-02	646	0.598E-02	18,21,22,34,56,83
	4-7	0.334E-01	0.000E	00	646	0.334E-01			18,22,34,83
	5-3	C.103E-01	0 .000 E	00	339	C.628E-02	647	0.403E-02	18,22,34,49,57,83
	5-5	0.974E-02	0.000E	00	341	0.571E-02	647	0.403E-02	18,22,34,49,57,83
	5-8	C.101E-01	0.000E	00	647	0.101E-01			18,22,34,49,83
	6-4	0.714E-02	0.000E	00	340	0.441E-02	648	0.273E-02	18,22,34,49,57,83
	6-6	C.639E-02	0.000E	00	342	0.366E-02	648	0.273E-02	18,22,34,49,57,83
	6-9	C.613E-02	0.000E	00	648	0.613E-02			18,22,34,49,83
	7-10	0.639E-02	0.000E	00	649	0.6395-02			18,21,34

(TABLE 8.1C CONTINUED)

TASK/TEC	CHNICAL	LABOR (HI	SOURCES						
PACKAGE	NUMBER	SKILLED	UNSKILI	LFD	INC.	HRS/UNIT)	INC.	HRS/UNIT)	
	8-11	0.334E-02	J.000E	00	650	0.334E-02			18,21,34
	9-12	C.478E-02	0.000E	00	651	C.319E-02	653	0.159E-02	18,21,34
					616	0.159E-02			
	10-13	C.323E-02	0.COOE	00	652	C.215E-02	654	C.108E-02	18,21,34
					617	0.108E-02			
	11-14	C.168E-01	0.000F	00	614	0.168E-01	644	0.168E-01	18,21,34
	12-15	0.644E-02	0 .000E	00	616	0.644E-02	645	0.644E-02	18,21,34
	13-16	C.403E-02	0.000E	00	617	0.403E-02	654	0.403E-02	18,21,34
100M	1-1	C.149E-01	0.000E	00	238	0.610E-02	337	0.884E-02	21,22,34,57
	1-2	C.141E-01	0.000E	00	238	0.610E-02	338	0.801E-02	21,22,34,57
	2-3	C.114E-01	0.000E	00	239	0.444E-02	339	0.699E-02	21,22,34,57
	2-5	C.110E-01	0.000E	00	239	0.444E-02	341	0.658E-02	21,22,34,57
	3-4	C.805E-02	0.000E	00	240	0.307E-02	340	0.498E-02	22, 34, 47, 57
	3-6	0.733E-02	0.000E	00	240	0.307E-02	342	0.426E-02	22,34,47,57
	4-1	C.147E-01	0.000E	00	337	0.872E-02	646	0.598E-02	18,21,22,34,56,83
	4-2	C.139E-01	0.000E	00	338	0.789E-02	646	0.598E-02	18,21,22,34,56,83
	4-7	C.512E-01	0.000E	00	646	0.512E-01			18,22,34,93
	5-3	C.106E-01	0.000E	00	339	0.658E-02	647	0.403E-02	18,22,34,49,57,83
	5-5	C.102E-01	0.000E	00	341	0.617E-02	647	0.403E-02	18,22,34,49,57,83
	5-8	0.140E-01	0.000E	00	647	0.140E-01			18,22,34,49,83
	6-4	C.737E-02	0.000E	00	340	0.464E-02	648	0.273E-02	18,22,34,49,57,83
	6-6	0.665E-02	0.000E	00	342	0.392E-02	648	0.273E-02	18,22,34,49,57,83
	6-9	C.867E-02	0.000E	00	648	C.867E-02			18,22,34,49,83
	7-10	0.677E-02	0.000E	00	649	0.677E-02			18,21,34
	8-11	C.349E-02	0.000E	00	650	C.349E-02			18,21,34
	9-12	0.501E-02	0.000E	<u> </u>	651	0.334E-02	653	0.167E-02	18,21,34
					616	0.167E-02			
	10-13	0.360E-02	0.000E	00	652	0.239E-02	654	0.120E-02	18,21,34
					617	0.120E-02			
	11-14	0.241E-01	0.000E	00	614	0.241E-01	644	0.241E-01	18,21,34
	12-15	C.927E-02	0.000E	00	616	0.927E-02	645	0.927E-02	18,21,34
	13-16	0.587E-02	0.000E	00	617	0.587E-02	654	0.587E-02	18,21,34
165M	1-1	C.155E-01	0.000E	00	238	0.610E-02	337	0.937E-02	21,22,34,57

(TABLE 8.1C CONTINUED)

TASK/TECHNIC	AL	LABCR (HE	SOURCES						
PACKAGE NUMB	<u>ER</u>	SKILLED	UNSKILL	ED	NC.	HRS/UNIT)	INO.	HRS/UNIT)	
	1-2	0.145E-01	0.000E	00	238	0.610E-02	338	C.839E-02	21,22,34,57
	2-3	C.117E-01	0.000E	00	239	0.444E-02	339	C.730E-02	21,22,34,57
	2-5	C.115E-01	0.000E	00	239	0.444E-02	341	0.703E-02	21,22,34,57
	3-4	C.828E-02	0.000E	00	240	0.307E-02	340	0.521E-02	22,34,47,57
	3-6	0.758E-02	0.000E	00	240	0.307E-02	342	0.451E-02	22,34,47,57
	4-1	C.152E-01	0.000E	00	337	0.925E-02	646	G.598E-02	18,21,22,34,56,83
	4-2	0.142E-01	0.000E	00	338	0.827E-02	646	0.598E-02	18,21,22,34,56,83
	4-7	0.699E-01	0.000E	00	646	C.699E-01			18,22,34,93
	5-3	0.109E-01	0.000E	00	339	0.689E-02	647	0.403E-02	18,22,34,49,57,83
	5-5	C.106E-01	0.000E	00	341	C.662E-02	647	0.403E-02	18,22,34,49,57,83
	5-8	0.183E-01	0.000E	00	647	0.183E-01			18,22,34,49,83
	6-4	0.760E-02	0.000E	00	340	0.487E-02	648	0.273E-02	18,22,34,49,57,83
	6-6	0.690E-02	0.000E	00	342	0.417E-02	648	0.273E-02	18,22,34,49,57,83
	6-9	0.109E-01	0.000E	00	648	0.109E-01			18,22,34,49,83
	7-10	C.738E-02	0.000E	00	649	0.738E-02			18,21,34
	8-11	0.373E-02	0.000E	00	650	0.373E-02			18,21,34
	9-12	C.542E-02	0.000E	00	651	0.363E-02	653	0.179E-02	18,21,34
					616	0.179E-02			
1	0-13	0.384E-02	0.000E	00	652	0.256E-02	654	0.128E-02	18,21,34
					617	0.128E-02			
1	1-14	C.364E-01	0 .000 E	00	614	0.364E-01	644	0.364E-01	18,21,34
1	2-15	C.140E-01	0.000E	00	616	0.140E-01	645	0.140E-01	18,21,34
1	3-16	0.892E-02	0.000E	30	617	0.892E-02	654	0.892E-02	18,21,34
500M	1-1	0.180E-01	0.000E	00	238	0.610E-02	337	0.119E-01	21,22,34,57
	1-2	C.163E-01	0.000E	00	238	0.610E-02	338	0.102E-01	21,22,34,57
	2-3	0.132E-01	0.000E	00	239	0.444E-02	339	0.878E-02	21+22+34+57
	2-5	C.136E-01	0 .000 E	00	239	0.444E-02	341	0.920 E-02	21,22,34,57
	3-4	C.939E-02	0.000E	00	240	0.307E-02	340	0.632E-02	22,34,47,57
	3-6	0.878E-02	0.000E	00	240	0.307E-02	342	0.571E-02	22,34,47,57
	4-1	0.178E-01	0.000E	00	337	0.118E-01	646	0.598E-02	18,21,22,34,56,83
	4-2	C.160E-01	0 .000 E	00	338	0.101E-01	646	0.598E-02	18,21,22,34,56,83
	4-7	C.172E CO	0.000E	00	646	0.172E 00			18,22,34,83
	5~3	C.124E-01	0.000E	00	339	0.837E-02	647	0.403E-02	18,22,34,49,57,83

(TABLE 9.1C CONTINUED)

TASK/TEC	LABOR (HE	RS/UNIT	}		EQUIPI	M <u>ENT</u>		SOLRCES	
PACKAGE	NUMBER	SKILLED	UNSKILL	ED	NC.	FRS/UNIT)	(NO.)	FRS/UNIT)	
	5-5	C.128E-01	0.000E	00	341	C.879E-02	647	0.403E-02	18,22,34,49,57,83
	5-8	0.374E-01	0.000E	00	647	0.374E-01			18,22,34,49,83
	6-4	C.871E-02	0.000E	00	340	0.598E-02	648	0.273E-02	18,22,34,49,57,83
	6-6	C.810E-02	0.000E	00	342	0.537E-02	648	0.273E-02	19,22,34,49,57,83
	6-9	0.219E-01	0.000E	00	648	0.219E-01			18,22,34,49,83
	7-10	C.103E-01	0.000E	00	649	C.103E-01			18,21,34
	8-11	0.499E-02	0.000E	00	650	0.4998-02			18,21,34
	9-12	0.723E-02	0.000E	00	651	C.482E-02	653	C.241E-02	18,21,34
					616	0.241E-02			
	10-13	C.510E-02	0.000E	00	652	0.340E-02	654	0.170E-02	18,21,34
					617	0.170E-02			
	11-14	0.102E 00	0.000E	00	614	0.102E 00	644	0.102E 00	18,21,34
	12-15	C.391E-01	0.000E	00	616	0.391E-01	645	0.391E-01	18,21,34
	13-16	C.252E-01	0.000E	00	617	0.252E-01	654	0.252E-01	18,21,34
800M	1-1	0.194E-01	0.000E	00	238	0.610E-02	337	0.133E-01	21,22,34,57
	1-2	C.173E-01	0.000E	00	238	C.610E-02	338	0.112E-01	21,22,34,57
	2-3	0.140E-01	0.000E	00	239	0.444E-02	339	0.958E-02	21,22,34,57
	2-5	C.149E-01	0.000E	00	239	C.444E-02	341	0.104E-01	21,22,34,57
	3-4	0.998E-02	0.000E	00	240	0.307E-02	340	0.691E-02	22,34,47,57
	3-6	C.941E-02	0.000E	00	240	0.307E-02	342	0.634E-02	22,34,47,57
	4-1	0.192E-01	0.000E	00	337	0.132E-01	646	0.598E-02	18,21,22,34,56,83
	4-2	0.170E-01	0 .00 0E	00	338	0.111E-01	646	0.598E-02	18,21,22,34,56,83
	4-7	0.225E 00	0.000E	00	646	0.225E 00			18,22,34,83
	5-3	0.132E-01	0.000E	00	339	C.917E-02	647	0.403E-02	18,22,34,49,57,83
	5-5	0.140E-01	0.000E	00	341	0.100E-01	647	0.403E-02	18,22,34,49,57,83
	5-8	0.481E-01	0 .00 0E	00	647	0.481E-01			18,22,34,49,83
	6-4	0.930E-02	0.000E	00	340	0.657E-02	648	0.273E-02	18,22,34,49,57,83
	6-6	C.873E-02	0.000E	00	342	0.600E-02	648	0.273E-02	18+22+34+49+57+83
	6-9	0.279E-01	0 .000 E	00	648	0.279E-01			18,22,34,49,83
	7-10	0.126E-01	0.000E	00	649	0.126E-01			18,21,34
	8-11	C.593E-02	0.000E	00	650	0.593E-02			18,21,34
	9-12	0.775E-02	0.000E	00	651	0.581E-02	653	0.194E-02	18,21,34
					616	0.194E-02			

(TABLE B.1C CONTINUED) TASK/TECHNICAL LABOR (HRS/UNIT) EQUIPMENT SOURCES PACKAGE NUMBER SKILLED UNSKILLED (NC., HRS/UNIT) (NO., HRS/UNIT) 10-13 C.539E-02 0.000E 00 652 0.404E-02 654 0.135E-02 18,21,34 617 0.135E-02 11-14 C.160E CO 0.000E 00 614 0.160E 00 644 0.160E 00 18,21,34 12-15 0.616E-01 0.000E 00 616 0.616E-01 645 0.616E-01 18,21,34 13-16 C.4COE-01 0.000E 00 617 0.400E-01 654 0.400E-01 18.21.34 SPR/COMP (BCY) 98% 11 0.336E-02 0.000E 00 536 0.929E-03 616 0.253E-02 18,21,34,57 645 0.253E-02 C.434E-02 0.000E 00 503 C.363E-02 616 0.253E-02 18.21.34.57 12 645 0.253E-02 653 C.181E-02 C.414E-02 0.000E 00 537 0.161E-02 616 0.253E-02 18.21.34 13 645 0.253E-02 0.608E-02 0.000E 00 538 0.355E-02 616 0.253E-02 18,21,34,39 14 645 0.253E-02 0.217E-02 0.000E 00 536 0.829E-03 617 0.134E-02 18,21,34,57 21 654 C.134E-02 0.315E-02 0.000E 00 503 0.363E-02 617 0.134E-02 18,21,34,57 22 653 0.181E-02 654 0.134E-02 C.295E-02 0.000E 00 537 0.161E-02 617 0.134E-02 18,21,34 23 654 0.134E-02 0.489E-02 0.000E 00 538 0.355E-02 617 0.134E-02 18,21,34,39 24 654 0.134E-02 31 0.182E-02 U.000E 00 425 0.990E-03 536 0.829E-03 18,21,34,57 C.280E-02 0.000E 00 425 0.990E-03 503 0.363E-02 18,21,34,57 32 653 C.181E-02 0.260E-02 0.000E 00 425 0.990E-03 537 0.161E-02 18,21,34,57 33 C.454E-02 0.000E 00 425 0.990E-03 538 0.355E-02 18.21.34.39.57 34 0.158E-02 0.000E 00 426 0.753E-03 536 0.829E-03 18,21,34,57 41 C.256E-02 0.000E 00 426 0.753E-03 503 C.363E-02 18,21,34,57 42 653 0.181E-02 C.236E-02 0.000E 00 426 0.753E-03 537 0.161E-02 18,21,34,57 43 0.430E-02 0.000E 00 426 0.753E-03 538 0.355E-02 18,21,34,39,57 44

348

SURFACING

(TABLE B.1C	CONTI	(NUED)						
TASK/TECHNI	CAL	LABOR (HR	S/UNIT)		EQUIP	ENT		SOURCES
PACKAGE NUM	BER	SKILLED	UNSKILLED	NO.	HRS/UNIT)	NO.	HRS/UNIT)	
GRVL (CCY)	11	0.546E-02	0.000E 00	539	0.359E-02	616	0.187E-02	18,21,34,57
	12	0.481E-02	0.000E 00	537 645	0.187E-02	616	0.187E-02	18,21,34,50
	13	C.79 6E-02	0.000E 00	538 645	0.609E-02	616	0.187E-02	18,21,34,39,50
	21	C.493E-02	0.000E 00	539 654	0.359E-02 0.134E-02	617	0.134E-02	18,21,34,57
	22	C.428E-02	0.000E 00	537 654	0.294E-02 0.134E-02	617	0.134E-02	18,21,34,50
	23	C.743E-02	0.000E 00	538 654	0.609E-02 0.134E-02	617	0.134E-02	18,21,34,39,50
	31	0.454E-02	0.000E 00	425	0.954E-03	539	0.359E-02	18,21,34,57
	32	C.389E-02	0.000E 00	425	0.954E-03	537	0.294 E-02	18,21,34,50,57
	33	C.704E-02	0.000E 00	425	0.954E-03	538	0.609E-02	18,21,34,39,50,57
	41	0.445E-02	0.000E 00	426	0.858E-03	539	0.359E-02	18,21,34,57
പ	42	C.380E-02	0.000E 00	426	0.858E-03	537	0.294 E-02	18,21,34,50,57
49	43	0.695E-02	0.000E 00	426	0.858E-03	538	0.609E-02	18,21,34,39,50,57
	51	0.807E-02	0.242E-02	339	0.206E-02	410	0.242E-02	21,34,54,57,77
	c 0	0 1/05 00		427	0.242E-02	239	0.359E-02	
	52	U.742E-02	0.2426-02	339	U.206E-02	410	0.242E-02	21:34:00:04:07:07:77
	6.2	0 1045 01	0 2425 02	320	0.2428-02	221	0.2476-02	21 34 30 50 54 57 77
	75	C. 1002-01	U.Z42E-UZ	117	0.2425-02	- 1 L U	0.4005-02	51424424410474421411
URM (CCV)		0 6226-01	0 1096-01	721	0.4905-01	220	0.0595-02	15 19 21 34 40 54 57 77
NDM (CCT)		0.0206-01	0.100E-01	343	0.9595-02	427	0.118E-02	
				410	0.118E-02	220	0.1106-02	
				645	0.2005-02	616	0.200E-02	
	112	C.508E=01	0.1056-01	537	0.466E-01	412	0.931 E-02	15,18,21,34,40,50,54,77
		C. FOR		747	0.931E-02	427	0.118E-02	
				410	0.118E-02	220	0.110E - 02	
				645	0.200F-02	616	0.200F-02	
	113	C.676E-01	0.139E-01	538	0.633E-01	412	0.127E-01	15,18,21,34,39,40,50,54,77

(TABLE	B.1C CONT	INUED)						
TASK/T	ECHNICAL	LABOR (HE	RS/UNIT)		FQUIPM	ENT		SOLRCES
<u>PACKAG</u>	E NUMBER	SKILLED	UNSKILLED	<u>(NC.</u>	HRS/UNIT)	NO.,	HRS/UNIT)	······································
				343	C.127E-01	427	0.118E-02	
				410	0.118E-02	339	0.110E-02	
				645	0.200E-02	616	0.200E-02	
	121	0.578E-01	0.173E-01	539	0.480E-01	412	0.959E-02	15,18,21,34,40,54,57,77
				343	C.959E-02	337	0.775E-02	
				411	0.775E-02	410	J.//5E-02	
				645	0.2006-02	610	0.2001-02	
	122	C.564E-01	0.1/16-01	>>1	U.466E-01	412	0.931E-02	15,18,21,34,43,50,54,77
				243	U.931E-UZ	331	0.775E-02	
				411	0.1005.02	410	0.1751-02	
	1 7 2	0 7316 01	0 2055-01	C42 630	0.2000 ± 02	610	0.2008-02	15 10 31 34 30 40 50 54 33
	123	0.7510-01	0.2025-01	200	0.0336-01	712	0.7755-02	10,10,21,34,39,40,01,00,04,94,11
				411	0.7755-02	221	0.7755-02	
				645	0.2006-02	616	0.200 = 02	
	211	C.517E-01	0-108E-01	539	0.4806-01	412	0.9596-02	15-18-21-34-40-54-57-77
	L			343	0.959E~02	427	0.118E-02	
ñ				410	0.118F-02	339	0.110E-02	
-				654	0.143E-02	617	0.143E-02	
	212	0.503E-01	0.105E-01	537	0.466E-01	412	0.931E-02	15.18.21.34.40.50.54.77
				343	C.931E-02	427	0.118E-02	
				410	0.118E-02	339	0.110E-02	
				654	0.143E-02	617	0.143E-02	
	213	0.670E-01	0.139E-01	538	0.633E-01	412	0.127E-01	15,18,21,34,39,40,50,54,77
				343	0.127E-01	427	0.118E-02	
				410	0.118E-02	339	0.110E-02	
				654	0.143E-02	617	0.143E-02	
	221	0.572E-01	0.173E-01	539	0.480E-01	412	0.959E-02	15,18,21,34,40,54,57,77
				343	0.959E-02	337	0.775E-02	
				411	0.775E-02	410	0.775E-02	
				654	0.143E-02	617	0.143E-02	
	222	C.558E-01	0.171E-01	537	0.466E-01	412	0.931E-02	15,18,21,34,40,50,54,77
				343	0.931E-02	337	0.775E-02	

(TABLE 8.1C CO	NTINUED)			
TASK/TECHNICAL	LABOR (H	RS/UNIT)	EQUIPMENT	SOURCES
PACKAGE NUMBER	SKILLED	UNSKILLED	(NC., HRS/UNIT) (NO., HRS/	UNIT)
			411 C.775E-02 410 0.77	/5E-02
			654 0.143E-02 617 C.14	3E-02
22	3 C.725E-01	0.205E-01	538 0.633E-01 412 0.12	?7E-01 15,18,21,34,39,40,50,54,77
			343 0.127E-01 337 0.77	75E-02
			411 0.775E-02 410 0.77	75E-02
			654 0.143E-02 617 0.14	•3E-02
31	1 C.512E-01	0.108E-01	539 0.480E-01 412 0.95	59E-02 15,18,21,34,40,54,57,77
			343 C.959E-02 427 0.11	18E-02
			410 0.118E-02 339 J.11	10E-02
			425 0.925E-03	
31	2 C.499E-01	0.105E-01	537 0.466E-01 412 0.93	31E-02 15,18,21,34,40,50,54,57,77
			343 0.931E-02 427 0.11	L8E-02
			410 0.118E-02 339 0.11	10E-02
			425 C.925E-03	
31	3 0.666E-01	J.139E-01	538 0.633E-01 412 0.12	27E-01 15,18,21,34,39,40,50,54,57,
			343 0.127E-01 427 0.11	18E-02 77
ယ ပာ			410 0.118E-02 339 0.11	10 E-02
			425 C.925E-03	
32	I 0.567E-01	0.173E-01	539 0.480E-01 412 0.95	919191111111111111
			343 U-959E-U2 337 U-77	75E-02
			411 0.775E-02 410 0.77	(5E-02
3.3		A 1715 A1	425 0.9255-03	
52	2 0.00000-01	0.1/16-01	337 0.4668-01 412 0.93	31E-02 15,18,21,34,40,50,54,57,77
			- 343 G. 931E-02 337 U. //	
			411 0.1750-02 410 0.11	(3E-02
20	A 0 7206-01	0 2055-01	420 U.920E-U0 579 0 4775 01 412 0 17	
32	2 0.1206-01	. 0.209E-01	263 0 1275-01 227 0 77	2785-02 77 755-02 77
			$\begin{array}{c} 343 0.1276 = 01 337 0.17 \\ 411 0 7756 = 02 410 0 77 \\ \end{array}$	196-02 ((755-02
			-411 0 + 775 - 02 410 0 + 71 - 425 0 0 - 71 - 425 - 025 -	17 E-U2
41	1 0 5116-01	0 1086-01	539 0 4805-01 412 0 0F	505-02 15 18 11 27 70 57 57 77
71	T AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA		363 0 959E-02 412 0.7	//LVAX/#IV#ZI#J4#40#94#97#}//// 186=09
			410 0.118E-02 330 0 11	105-02
			- AIA ANTIA AN DIA ANTA	

(TABLE B	.1C CONT	INUED)						
TASK/TEC	HNICAL	LABCR (HI	<u>RS/UNIT)</u>	SOURCES				
PACKAGE	NUMBER	<u>SKILLED</u>	UNSKILLED	(NC.	HRS/UNIT)	<u>(NO.</u>	HRS/UNIT)	
				426	C.831E-03			
	412	0.497E-01	ა.105 E−01	537	0.466E-01	412	0.931E-02	15,18,21,34,40,50,54,57,77
				343	0.931E-02	427	0.118E-02	
				410	0.118E-02	339	0.110E-02	
				426	C.831E-03		_	
	413	0.664E-01	0 . 139E-01	538	0.633E-01	412	0.127E-01	15,18,21,34,39,40,50,54,57,
				343	0.127E-01	427	0.118E-02	77
				410	0.118E-02	339	0.110E-02	
				426	0.831E-03			
	421	C.566E-01	0.173E-01	539	0.4808-01	412	0.959E-02	15,18,21,34,40,54,57,77
				343	C.959E-02	337	0.775E-02	
				411	0.775E-02	410	0.175E-02	
		A		426	0.831E-03			
	422	0.5526-01	0.1712-01	537	0.466E-01	412	0.931E-02	15,18,21,34,40,50,54,57,77
				545	0.931E-02	331	0.775E-02	
				411	0.775E-02	410	0.775E-02	
2	())	0 7105 01	0 0055 01	420	0.0316-03	(1)	0 1070 01	
0	423	0.7196-01	0.2056-01	200	0.035E-01	412	0.1276-01	
				242		100	0.7755.02	17
				411	0.7756-02	410	0.175E-02	
	511	0 5495-01	0 1325-01	520	0.0310-03	412	0 0505-02	15 21 24 40 54 57 77
	711	0.0401-01	Veljar-ni	363	0 0505-02	407	0.3665-02	19421494440494491441
				410	0.364E-02	220	0.3205-02	
	512	0.534E+01	0.1305-01	537	0.4668-01	412	0.9316-02	15,21,34,40,50,54,57,77
	716	V.JHL UI		343	0.9316-02	427	0.3646-02	1312113414013013413111
				410	0.364E-02	220	0.3206-02	
	513	0.701E-01	0.163E-01	538	0.633E-01	412	0.127E-01	15.21.34.39.40.50.54.57.77
		GALATE AT	VVIOL VI	343	0.127E-01	427	0.364 E-02	
				410	0.364F-02	319	0.320F-02	
	521	0.603F-01	0.198F-01	539	0.480F-01	412	0.959F-02	15.21.34.40.54.57.77
	I,			343	0.959E-02	337	0.775E-02	
				411	0.7756-02	410	0.102F-01	

00 N

(TABLE 8.1C CONTINUED)

TASK/TECHNICAL		LABCR (H	RS/UNIT)	EQUIP	MENT		SOURCES		
PACKAGE NUMBER		SKILLED	UNSKILLED	(NC. HRS/UNIT)	(NC.,H.	RS/UNIT)			
				427 C.246E-02	339 0	.210E-02			
	522	0.589E-01	0.1956-01	537 0.466E-01	412 Û	•931E-02	15,21,34,40,50,54,57,77		
				343 0.931E-02	337 0	•775E-02			
				411 0.775E-02	410 0	+102E-01			
				427 0.246E-02	339 0	•210E-02			
	523	C.756E-01	0.229E-01	538 0.633E-01	412 0	•127E-01	15,21,34,39,40,50,54,57,77		
				343 0.127E-01	337 0	•775E-02			
				411 C.775E-02	410 0	. 102E−01			
				427 0.246E-02	339 0	•210E-02			
DBST/G (S	Y) 1111	C.119E-02	0.528E-03	540 0.411E-03	339 0	•334E-03	21,34,54,57,77,89		
				427 0.334E-03	410 0	•334E-03			
				454 0.116E-03	441 0	•787E-04			
				655 0.787E-04					
	1112	0.105E-02	0.528E-03	541 0.270E-03	339 0	1.334E-03	21,34,54,57,77,89		
				427 0.334E-03	410 0	.334E-03			
				454 0.116E-03	441 0	•787E-04			
ယ ၄				655 C.787E-04					
ω	1121	0.1316-02	0.977E-03	540 0.411E-03	337 0	.782E-03	21, 34, 54, 77, 89		
				411 0.782E-03	410 0	1.782E-03			
				454 U.116E-03	44I U	J. 181E-04			
	1100		· · · · · · · · · ·	675 U.18/E-04	222.0	3005 00	0		
	1122	C.117E-02	0.9//E-03	541 0.270E-03	337 0	0.782E-03	21: 34: 54: 11:89		
				411 0+7825-03	410 0) - /82 E - U3			
				404 U.110E-03	441 U	1.1016-04			
	1211	0 1105-02	0 5245-04	600 0.411E-03	220 0	2245-02	21 24 54 57 77 00		
	1211	0.1176-02	0.9200-03	40 0.411E-03	410 0)+))4E=U))]]4E=0]	21,34,34,37,17,17,89		
				462 0 116E-03	441 0	7975-04			
				455 0 797E-04	741 0	J. 1012-04			
	1212	0 1056-02	0 5266-03	541 0 270E-03	330 0	1 2245-03	21 24 54 57 77 90		
	1616	0.1076-02	0.7206-07	427 0 334F=03	410 0	1 2265-02	Crijii 141 1111 11407		
				457 0.1148-03	441 0	7875-04			
				655 0.7876-04	U IFF	• 101E-V4			
				UPP VERVIL-VE					

(TABLE 8.1C	CONT	(NUEC)						
TASK/TFCHNICAL		LABOR (HE	SOURCES					
PACKAGE NUME	<u>3ER</u>	SKILLED						
	1221	C.131E-02	0.974E-03	540	0.411E-03	337	0.782E-03	21,34,54,77,89
				411	0.782E-03	410	0.782E-03	
				453	0.114E-03	441	0.787E-04	
				655	C.787E-04			
	1222	0.117E-02	0.974E-03	541	0.270E-03	337	0.782E-03	21,34,54,77,89
				411	0.782E-03	410	0.782E-03	
				453	0.114E-03	441	0.787E-04	
				655	0.7876-04			
DBST/W (SY)	1111	C.117E-02	0.510E-03	540	0.411E-03	339	0.334E-03	21,34,54,57,77,89
				427	0.334E-03	410	0.334E-03	
				454	0.941E-04	441	0.787E-04	
				655	0.7876-04			
	1112	0.103E-02	J.510E-03	541	0.270E-03	339	0.334E-03	21,34,54,57,77,89
				427	0.334E-03	410	0.334E-03	
				454	0.943E-04	441	0.787E-04	
				655	C.787E-04			
	1121	0.129E-02	0.955E-03	540	0.411E-03	337	0.782E-03	21,34,54,77,89
				411	0.782E-03	410	0.782E-03	
				454	0.941E-04	441	0.787E-04	
				655	0.787E-04			
	1122	C.115E-02	0.955E-03	541	0.270E-03	337	0.782E-03	21,34,54,77,89
				411	0.782E-03	410	0.782E-03	
				454	0.941E-04	441	0.787E-04	
				655	0.787E-04			
	1211	0.117E-02	0 .505E- 03	540	0.411E-03	339	0.334E-03	21,34,54,57,77,89
				427	0.334E-03	410	0.334E-03	
				453	0.919E-04	441	0.787E-04	
				655	0.787E-04			
	1212	C.103E-02	0.505E-03	541	0.270E-03	339	0.334E-03	21,34,54,57,77,89
				427	0.334E-03	410	0.334E-03	
				453	0.919E-04	441	0.787E-04	
				655	C.787E-04			
	1221	0.129E-02	0.953E-03	540	0.411E-03	337	0.782E-03	21,34,54,77,89

(TABLE B.1C CONTINUED) EQUIPMENT SOURCES LABOR (HRS/UNIT) TASK/TECHNICAL PACKAGE NUMBER SKILLED UNSKILLEC(NO., HRS/UNIT)(NO., HRS/UNIT) 411 0.782E-03 410 0.782E-03 453 0.919E-04 441 0.787E-04 655 C.787E-04 1222 0.115E-02 0.953E-03 541 0.270E-03 337 0.782E-03 21,34,54,77,89 411 0.782E-03 410 0.782E-03 453 C.919E-04 441 C.787E-04 655 0.787E-04 NOTE: ALL TECHNICAL PACKAGES FOR SURFACING ALSO INCLUDE MATERIALS: **GRAVEL:** 830-1.40 LCY/CCY WATERBOUND MACADAM: 831-1.37 LCY/CCY 832-0.32 LCY/CCY 833-63 GAL/CCY DOUBLE BITUMINCUS SURFACE TREATMENT ON GRAVEL: 835-0.93 GAL/SY 834-0.0191LCY/SY DOUBLE BITUMINOUS SURFACE TREATMENT ON WATERBOUND MACADAM: 835-0.72 GAL/SY 834-0.0191 LCY/SY

B.2 Resource Costs

Labor, equipment, and materials constitute the resources used in highway construction; the draft animal, a horse in this study, is in essence a piece of equipment, but it is treated separately here since its cost is derived somewhat differently. In Sections B.21 through B.24, the procedures for deriving the various resource costs, at different points in time (U.S. in 1930, 1956, and 1974) and under different conditions (a developing country today), are discussed, and the basic data and final prices of the various resources are given; Section B.21 covers equipment, B.22 the horse, B.23 labor, and B.24 materials. All references cited are given in Section B.3.

B.21 Equipment

The cost of equipment is estimated on an hourly basis, its hourly price involving ownership costs of depreciation and interest, maintenance, and miscellaneous items such as insurance, tax, and storage and operating costs of fuel and lubrication. A lack of data precludes explicit inclusion of mobilization and other fixed costs associated with equipment use; labor, too, experiences certain costs over and above the basic hourly wage and fringe benefits. Such costs for both resources are taken as included in overhead in the project-level analysis.

It was decided at the outset to estimate hourly equipment rates from scratch rather than to use those reported in the literature because of the various assumptions hidden in such figures and because of the difficulty of adjusting them to various time periods and economic conditions. The first step thus consists of developing the basic equation for calculating these hourly rates; the final form, derived

with the help of various authors (21,25,26,59), is as follows:

HOURLY PRICE
OF EQUIPMENT = Pt
$$\begin{bmatrix} index \\ INDEX_t \end{bmatrix}$$
 $\begin{bmatrix} (1 + i)^{N}i \\ (1 + i)^{N}-1 \\ H \end{bmatrix}$ + $\frac{MAINT}{NH}$ + 0.055 $\frac{N+1}{2NH}$ +

1.35 (ccost * CREQ + gcost * GREQ + dcost * DREQ)

small letters indicate economic variables where capital letters indicate engineering variables subscript t = year of investment cost = investment cost in year t (in dollars) Ρ₊ index = index used to inflate or deflate investment cost in line with particular economic conditions under consideration INDEX₊ = investment cost index in year t = interest rate (in decimal form) i = life (in years) Ν = annual hours of utilization Н MAINT = maintenance as a percentage of investment cost (in decimal form) _cost = per unit quantity cost of fuel, with c = coal (in tons), g = gasoline (in gallons), d = diesel fuel (in gallons) = quantity of fuel consumed per hour, with prefixes REQ and units as for cost

The first half of the equation is ownership costs and the second operating costs.

Before investigating the component parts of the equation, a couple of observations need to be made: (1) many items of equipment appear in only one or two of the three technology periods; and (2) as for those that appear in all three periods, they have likely undergone certain changes over time which have influenced their quality, productivity, and so forth, and are thus different pieces of equipment than they were originally. In light of this, a separate set of equipment is specified in each technology period, with a full complement of engineering variables defined for each item of equipment at the time of its In the first term of the equation then, $P_t \begin{bmatrix} index \\ INDEX_t \end{bmatrix}$ is the use. investment or purchase price (P_t) of each item of equipment at the time of its use is inflated or deflated by means of an index $(\frac{index}{INDEX_{+}})$ to bring it in line with any given set of economic conditions. Although the use of an index over such a long time span (some 50 years) is to be discouraged, this appears as the most viable and consistent means of developing investment, and ultimately hourly, costs for equipment under various economic conditions; another point in favor of this is that the two construction equipment indexes (U.S. Office of Business Economics and U.S. Bureau of Labor Statistics) which are used in the research are felt to be reasonably reliable ones (e.g., they are price rather than cost-based).

Proceeding with the decomposition of the equation, the next term, $\left[\frac{(1 + i)^{N}i}{(1 + i)^{N}-1}\right] / H , \text{ is the capital recovery fractor expressed in hourly}$

terms, which when multiplied by the investment cost represents the interest and depreciation costs associated with an item of equipment on an hourly basis. The final two terms in the ownership costs part of the equation, $\frac{\text{MAINT}}{\text{NH}}$ and $0.055 \frac{\text{N+1}}{2\text{NH}}$, multiplied by the investment cost, respectively yield hourly charges for maintenance and repair of the equipment and for miscellaneous items like tax (1 - 5 % of average annual investment [AAI]), insurance (1 - 3 % of AAI), and storage ($\leq 1\%$ of AAI). Tires are frequently included as a separate cost item; here they are assumed to be covered by the cost of maintenance and repair which includes both a labor and materials component. The operating costs part of the equation is simply the cost of the fuel the equipment uses in an hour, with an additional 35 percent included to cover the cost of grease and oil.

The full set of engineering variables required by the equation for each item of equipment is given in Table B.2, along with a brief description of the piece of equipment; Table B2a covers the 1920's set of equipment, B.2b the 1950's, and B.2c the 1970's. The basic data for each piece of equipment, with the possible exception of the rate of fuel consumption (and, of course, the index which is discussed below), by and large come from a single source for each technology period. The Associated General Contractors of America are responsible for the 1920's source (13), while Peurifoy authors both the 1950's and 1970's sources (56,57); the data presented in each are similar enough in form to suggest that there may be a certain amount of coordination. Whenever possible, additional sources substantiating these figures are also cited.

	Number	Description	Purchase price (Pt) (\$@year)	Index for year of purchase ^a (INDEXt)	L (N-yrs)	ife (H-h <u>rs/yr</u>)	Mainten- ance over life (MAINT- % of investment cost)	Fuel consumption (CREQ,GREQ, DREQ- units/hour)	Source
000	Number 201 202 203 204 205 230 301 302 303 304 330 331 401 402 403 404 405 406 450 501	Handtools for site prep ^C Handtools for site prep ^C Handtools for excavation Moldboard plow 0.75cy power shovel dipper Elevating grader 0.75cy power shovel Steel wheelbarrow (0.095 bcy) Handcart (0.11 bcy) 1.5cy bottom-dump wood wagon 5cy bottom-dump steel wagon 3.5 ton rear-dump truck 5 ton rear-dump truck 5 ton rear-dump truck 4 Handtools for spreading 7 ft blade grader 12 ft blade grader 5 ft blade grader 5 ft blade grader 450 gal sprinkler wagon 7.5ft spreader box 600 gal bitumen distributor 2.5 ton horse-drawn roller	(\$@year) 0.85*@1913 0.75*@1913 40 @1930 2120 @1930 2600 @1930 10600 @1930 7 @1913 240 @1930 700 @1938 4800 @1930 0.60*@1913 520 @1930 1800 @1930 600 @1930 600 @1930 600 @1930 300 @1933	20.8 20.8 30.1 30.1 30.1 20.8 20.8 20.8 30.1 33.7 30.1 30.1 30.1 30.1 30.1 30.1 30.1 30.1	0.5* 0.5* 0.5* 3 4 5 7 1* 1* 4 5.5 5.5 5.5 5.5 5.5 3* 5 5 5 4 6* 7	2000* 2000* 2000* 1890 2430 2430 2430 2000* 2000* 1620 2160 2160 2160 2160 2160 2160 1920 2160* 1620 1620 1620 2000*	40* 40* 45 40 100 105 40* 56 75 88 88 40* 45 100 45* 50 75 68 60* 84	- - - - - - - - - - - - - - - - - - -	15 15 13,15,26 5,13 13,15,32 5,13,48 15,26,58 15,26,58 13,15 13,26 13,26 13,26 13,26 13,26 13,26 13,26 13,26 13,26 13,26 13,26 13,26 13,26 13,26
	530 531 602 603 604 605 630 631 632 633 633	<pre>6-8 ton 3-wheel roller 10 ton 3-wheel roller Bulldozer blade-80hp tractor 4 ft fresno (0.33 bcy) 0.175 bcy dragscraper No.2 wheelscraper (0.40bcy) Bulldozer blade-60hp tractor 80hp crawler tractor <20hp wheel tractor 76hp craw'er tractor 60hp crawler tractor 30hp crawler tractor</pre>	2900 @1930 3000 @1930 1600 @1938 26 @1930 11 @1930 68 @1930 1350 @1930 4650 @1938 700 @1930 6480 @1938 4300 @1930 2500 @1930	30,1 30.1 30.1 30.1 30.1 30.1 30.1 30.1 33.7 30.1 30.1 30.1	7 9 4 3 2 5 5 5 5 5 5 5 5 5 4	1890 1890 1890 1890 1890 1350 1920 2430 1920 2160 2160	84 90 60 30 75 60 75 30 75 75 75	2.09 0.035c - - 5.99 1.8*9 3.5d 4.89 2.49	13,26,35,80 13,15,26,27 13,15,26,30,48 13,15,58 13,15,58 13,30 9,13 13,26 13,26 13,26 13,26 13,26 13,26

Table B.2a: Brief description, basic data, and sources for each piece of equipment appearing in the 1920's technical packages.
Note: Asterisk (*) indicates that figure is an estimate.

^aSource: 74,85.

^bType of fuel is indicated by letter after fuel consumption figure:

c - coal - tons/hour g - gasoline - gallons/hour d - diesel fuel - gallons/hour

^CInclude axes, crosscut saws, machetes, brushhooks, shovels, rakes, hoes, picks, mattocks.

^dInclude picks and shovels.

^eInclude shovels, rakes, hoes, potato hooks, and brooms.

b	Deserved and	Purchase price (Pt)	Index for year of purchase ^a		fe	Mainten- ance over life (MAINT- % of investment	Fuel consump- tion ^b (GREQ, DREQ-	
Number	Description	() () year)	(INUEX _t)	(N-yrs)	(H-hrs/yr)	<u>cost</u>	gals/hr)	Source
206 207 208	Handtools for brushing ^C Handtools for tree removal ^d Handtools for stump removal ^e	2.74* @ 1954 5.21* @ 1954 2.89* @ 1954	81,6 81,6 81,6	0.5* 0.5* 0.5*	2000* 2000* 2000*	40* 40* 40*	-	62 62 62
231	1.5cy power shovel	42000 @ 1951	77.8	5	2000	65	4,0d	46,56
232	2.5cy power shovel	85000 @ 1958	100.0	6	2000	80	6,0d	46,56,63
234	Elevating grader	36000 @ 1951	77.8	; 5	2000	65	3,5d	46,56
305	8.5cy bottom-dump wagon	5000*@ 1951	77.8	5	2000	50	-	56,63
306 332	15cy bottom-dump wagon 10 top rear-dump truck	8500 @ 1951	77.9	'5 15	1800	50 1 65	i - 3.2d	56,63
333	20 ton rear-dump truck	28500 @ 1951	77.9	5	1600	60	7.5d	56,88
334 335	3.5 ton stake truck 0.5 ton stake truck	6000 @ 1951 1600 @ 1951	77.8	3	2000	48	1 3,89 0,59	46,56
407	1500 gal water tank	1000 @ 1954	81,6	6	2500	80	-	46,77
408	Handtools for spreading'	12.03* @ 1954	81.6	0,5*	¦ 2000* 1600	40*	, -	62 56
420	10 ft blade grader	7500 @ 1951	77.8	4	2000	60	3.09	46,56
421 422	13 ft blade grader 12 ft wheel spreader	12800 @ 1951 5900 @ 1951	77.8	5	2000	/5 68	4,50	56,63 56
423	8 ft blade grader	4150 @ 1951	77.8	4	2000	75	5.00	18,46,56
440	Drag broom Rotary broom	75*@ 1951	77.8	1*	2000*	80*	0.70	- 56
452	1000 gal bitumen distributor	8100 @ 1951	77.8	5	1600	85	7 lg	56
502	Sheepsfoot roller	1800 @ 1951	77.8	4	2000	1 75	104	56
533	10 ton pneumatic roller	9100 @ 1974	176.3	3	1400	90	2 2d	57
534	12 ton 3-wheel roller	9500 0 1951	77.8	7	2000	100	1.7d	56
535 607	5-8 ton tandem roller 8 ft bulldozer blade	1350 @ 1951	77.8	5	2000	65	1.99	56
608	10 ft bulldozer blade	1600 @ 1951	77,8	5	2000	65	-	56
609 610	<pre>11.5 ft bulldozer blade 1.5 in. diameter steel cable(100 ft)</pre>	2000 @ 1951 57 @ 1938	33.7	3	1440	45	-	13
611	6 cy 4-wheel scraper	6000 0 1951	77.8	5	2000	65		56
612	9 cy 4-wheel scraper	8000 @ 1951	77.8 77 ภ	5	2000	65	-	56
638	125 fwhµ wheel tractor	13000 @ 1951	77.8	5	2000	65	5.0d	56,63
639	185 fwhp wheel tractor	17000 0 1951	77.8	5	2000	65	5.01	56,63
641	250 TWNP wheel tractor 70 dbhp crawler tractor	8300 @ 1951	77.8	5	2000	65	2.4d	56,63
642 643	90 dbhp crawler tractor 130 dbhp crawler tractor	11000 @ 1951 15000 @ 1951	77. 8 77.8	5	2000 2000	65 65	3,5d 5,0d	56,63 56,63

Table B.2b:	Brief description, basic data, and sources for each piece of equipment appearing in the 1950's technical
	packages.

•

(Table B.2b continued)

Note: Asterisk (*) indicates that figure is an estimate.

^aSource: 74,85.

^bType of fuel is indicated by letter after fuel consumption figure:

g - gasoline d - diesel fuel

^CInclude axes, scythes, pruning saws, pole saws, shovels, and mattock hoes. ^dInclude crosscut saws, pole saws and extensions, and axes.

^eInclude post hole diggers and shovels.

^fInclude shovels, hoes, and rakes.

<u>Number</u>	Description	Purchase price (P _t) (\$ @ year)	Index for year of Purchase ^a (INDEX _t)	L (N-yrs)	lfe (H-hrs/yr)	Mainten- ance over life (MAINT- % of investment cost)	Fuel consump- tion ^D (GREQ, DREQ- gals/hr)	Source
209	Handtools for site prep ^C	4 84*0 1974	176 3	0.5*	2000*	40*	_	62
236	36 in chain saw	490 @ 1974	176 3	3	1200	45	0.30	57
237	l cy backhoe	54900+0 1974	176.3	6	2000	60	5.00	18.21.49.57.89
238	1 5 cv nower shove]	88500 0 1974	176.3	5	2000	75	4.8d	18.57
239	2.5 cv power shovel	165000 @ 1974	176.3	10	2000	1 125	9.0d	18.21.47.89
240	3.5 cy power shovel	146180 0 1970	135.9	8	2500	155	13.0d	18.47
241	6 in brush saw	65 @ 1974	176.3] 3	1400	45	•	57
336	0.5 ton nickup truck	3150 0 1974	176.3	3	2000	45	1.5*a	57
337	10 ton rear-dump truck	24800 @ 1974	176.3	5	1800	75	3.70	57
338	15 ton rear-dump truck	38200 @ 1974	176.3	5	1800	60	6 0d	; 57
339	20 ton rear-dump truck	55600 @ 1974	176 3	5	1600	60	9.8d	57
340	35 ton rear-dump truck	84950 @ 1974	176 3	5	1600	60	10.5d	18.57
341	20 ton bottom-dump wagon w/ tractor	60500 @ 1974	176.3	5	2000	75	5.1d	34,57
342	40 ton bottom-dump wagon w/ tractor	88400 @ 1974	176.3	5	2000	75	7.7d	34,57
343	4 ton stake truck	12450 @ 1974	176.3	4	2000	48	4.0g	57
410	Handtools for spreading	4,36*@ 1974	176.3	0,5*	2000*	40*	•	62
411	12 ft spreader box	2000 @ 1974	176.3	6	2000	85*	1 -	89
412	1000 gal water tank	600 @ 1974	176.3	8	2000	80*		89
424	12 ft 80 hp motor grader	24150 @ 1974	176,3	4	2000	60	į 2,1d	57
425	12 ft 115 hp motor grader	27750 @ 1974	176.3	4	2000	60	3.6d	18,57
426	14 ft 150 hp motor grader	36550 @ 1974	176.3	4	2000	60	4.7d	18,57
427	5-12 ft crawler spreader	12850 @ 1974	176.3	4	1600	60	2,6q	57
441	Rotary broom	2000 @ 1974	176.3	4	2000	80*	-	89
453	1500 gal bitumen distributor	16950 @ 1974	176.3	5	1600	85	(7.8g	1 57
454	1000 gal bitumen distributor	15225 @ 1974	176.3	5	1600	85	6.4g	57
503	Sheepsfoot roller	5975 @ 1974	176,3	. 6	2000	90	-	57
536	220 hp sheepsfoot roller	28100 @ 1974	176.3	4	2000	60	, 5.9d	57
537	25 ton oneumatic roller	17450 @ 1974	176.3	3	1400	90	3.6d	1 57
538	7 ton vibratory roller	20250 @ 1974	176.3	4	1600	60	2,94	57
539	10-12 ton 3-wheel roller	15720 @ 1974	176.3	7	2000	100	2.0d	1 57
540	8-10 ton tandem roller	16220 @ 1974	176.3	7	2000	100	2.1d	- 57
541	12 ton pneumatic roller	9720 @ 1974	176.3	3	1400	i 90	2.5d	57
614	8 ft bulldozer blade	4050 @ 1974	176.3	5	2000	, 75	<u>.</u> -	57
615	10 ft bulldozer blade	4800 @ 1974	176.3	5	2000	75	-	57
616	12 ft_bulldozer_blade	5975 @ 1974	176.3	5	2000	75	-	57
617	14 ft bulldozer blade	10150 @ 1974	176.3	5	2000	75	ļ	5/
644	70 dbhp crawler tractor	19500 @ 1974	176.3	, 4	2000	60	3,1d	18,5/
645	180 fwhp crawler tractor	50000 @ 1974	176.3	5	' 2000	75	6,0d	18,57
646	1,75cy frontend crawler loader	27000 @ 1971	142,2	, 5	2000	90	4,8d	34
647	3 cy front end wheel loader	36000 @ 1971	142.2	5	2000	84	4.80	1 34
648	5 cy front end wheel loader	65000 @ 1971	142.2	5	2000	96	7.4d	34
649	11,5cy elevating scraper w/ tractor	51400*@ 1974	176.3	6	, 2000	90*	4.5d	21,57,89
650	21.5cy elevating scraper w/ tractor	89340*@ 1974	176.3	6	2000	90*	j / 8a	21,57,89
651	14/20cy scraper w/tractor	74450 @ 1974	176.3	15	2000	/5	8.1d	1 5/
652	21/30cy scraper w/tractor	109900 @ 1974	176.3	5	2000	/5	10.80	1 5/
653	270 fwhp crawler tractor	68500 @ 1974	176.3	5	2000	75	9,20	18,5/
654	385 fwhp crawler tractor	106000 @ 1974	176.3	5	2000	75	12.90	10,0/
655	60fwhp agricultural tractor	11500*@ 1974	176.3	15	1 2000	<u>د</u> / ا	i i ug	¢1,97,69

(Table B.2c continued)

Note: Asterisk (*) indicates that figure is an estimate.

^aSource: 74,85.

^bType of fuel is indicated by letter after fuel consumption figure:

g - gasoline d - diesel fuel

^CInclude rakes and shovels.

365

^dInclude shovels, rakes, and hoes.

It is the economic variables, index, i, and ccost, gcost, and dcost, that change with economic conditions and allow equipment to be priced under varying conditions. Going in reverse order, fuel costs (ccost, gcost, dcost) are treated in Section B.24 with the rest of the materials used in highway construction. Interest rates (i) for 1930, 1956, and 1974 are, respectively, 5.0%, 4.5%, and 11.5%, coming from the statistical tables on rates for business loans in various issues of the <u>Federal Reserve Bulletin</u> (24). Rates of 20% and 30% are assumed for developing conditions; the former is used as the usual figure, representing a distinctly capital-scarce, developing nation, while the latter is used to represent an even more extreme situation.

As for the index, values for both index and INDEX_t come directly from the U.S. Office of Business Economics (OBE) index for private purchases of construction machinery (85) in the period 1929-1965; the U.S. Bureau of Labor Statistics (BLS) wholesale price index (74) for construction machinery and equipment is used to extrapolate the index forward from 1965, and the same index for industrial commodities to extrapolate it backward from 1929. In Figure B.1, the ratio of the BLS index for construction machinery and equipment to the OBE index for construction machinery is plotted for their overlapping years. The relationship between these two indexes is reasonably linear from the late forties to 1965, and this line is thus extrapolated forward to 1974. The BLS index for construction machinery and equipment divided by the appropriate figure from the graph yields the extrapolated version of the OBE index form 1966-1974. Prior to 1929, the OBE index is similarly

366

Figure B.1: Data used in the extrapolation of the OBE index for construction machinery, and the final index, spanning 1913-1974, used for inflating/deflating construction equipment investment costs (Source: ref. 74,85).

<u>Note</u>: As described in the text, the graph provides the factors for extrapolating the OBE index forward from 1965 and backward from 1929. The final index used in the analysis (extrapolated years in parentheses), as well as the OBE and two BLS indexes used in its derivation are listed below:

			BLS-	
	Final index	OBE-	construction	BLS-
	used in	construction	equipment	industrial
Year	analysis	machinery	and machinery	commodities
· · · ·				
1913	(20.8)	_	-	37.2
1914	(19.9)	-	-	35.2
1915	(20.7)	_	-	36.1
1916	(27.1)	-	_	46.8
1917	(35.7)	-	-	61.0
1918	(38.9)	-	-	65.9
1919	(41.0)	-	-	68.6
1920	(51.8)	-	-	85.7
1921	(34.0)	-	-	55.7
1922	(33.6)	-	-	54.4
1923	(34.7)	- –	-	55.6
1924	(33.5)	-	-	53.1
1925	(34.9)	-	-	54.6
1926	(34.4)	-	-	53.2
1927	(32.7)	-	-	50.0
1928	(32.7)	-	-	49.3
1929	30.2	30.2	-	48.6
1930	30.1	30.1	_ ·	45.2
1931	28.8	28.8	-	39.9
1932	26.0	26.0	-	37.3
1933	27.6	27.6	-	37.8
1934	29.6	29.6	-	41.6
1935	29.8	29.8	-	41.4
1936	29.9	29.9	-	42.2
1937	32.6	32.6	-	45.2
1938	33.7	33.7	-	43.4
1939	33.5	33.5	32.1	43.3
1940	35.0	35.0	32.5	44.0
1941	38.1	38.1	34.3	47.3
1942	40.8	40.8	35.4	50.7
1943	42.0	42.0	35.4	51.5
1944	43.0	43.0	35.5	52.3
1945	44.5	44.5	35.7	53.0
1946	49.1	49.1	38.8	58.0

(Figure B.1 continued)

			BLS-	}
	Final index	OBE-	construction	BIS-
	used in	construction	equipment	industrial
Voar		machinery	and machinery	commodities
	analysis	machinery	and machinery	connour cres
1947	56.7	56.7	44.0	70.8
1948	64.1	64.1	49.8	76.9
1949	67.9	67.9	53.0	75.3
1950	69.8	69.8	54.5	78.0
1951	77.8	77.8	60.5	86.1
1952	78.5	78.5	61.4	84.1
1953	80.2	80.2	63.2	84.8
1954	81.6	81.6	64.4	85.0
1955	84.2	84.2	67.0	86.9
1956	89.7	89.7	72.6	90.8
1957	95.5	95.5	78.2	93.3
1958	100.0	100.0	81.2	93.6
1959	103.1	103.1	84.1	95.3
1960	105.5	105.5	85.9	95.3
1961	106.0	106.0	87.3	94.8
1962	106.4	106.4	87.5	94.8
1963	107.7	107.7	89.0	94.7
1964	109.8	109.8	91.2	95.2
1965	112.4	112.4	93.6	96.4
1966	(115.4)	-	96.5	98.5
1967	(119.0)	-	100.0	100.0
1968	(125.4)	-	105.7	102.5
1969	(130.5)	-	110.4	106.0
1970	(135.9)	-	115.5	
1971	(142.2)	-	121.4	114.0
1972	(146.7)	-	125.7	
1973	(152.0)	-		
1974) (176.3)	I –	152.3	153.8

extrapolated using the BLS index for industrial commodities; in this case, the linearity of the relationship is not so strong, but this is not too serious in that only for half dozen or so pieces of the 1920's equipment are purchase prices prior to 1929 the only ones available. The final index (1913-1974), used throughout the research for adjusting the purchase price or investment cost of equipment, is given in the note to Figure B.1, along with the OBE index and two BLS indexes used in its development. The economic variable, index, thus takes the respective values of 30.1, 89.7, and 176.3 for 1930, 1956, and 1974 price conditions.

In the case of developing conditions, an index of 350, roughly twice that experienced in the U.S. in 1974, is used for heavy equipment (i.e., powered equipment or unpowered equipment attached to powered equipment), under the assumption that the equipment has to be imported and foreign exchange is costly. An index of 15, about half that experienced in the U.S. in 1930, is used for light equipment (i.e., unpowered equipment or that which may be animal-powered) under the assumption that it is locally produced by cheap labor.

In order to arrive at the full set of hourly equipment costs as presented in Table B.3, these engineering and economic variables are combined, by means of the equation given at the beginning of this section, under each set of price conditions, for each item of equipment in the three technology periods. In addition to the total hourly rate, its various components, hourly interest and depreciation, maintenance and miscellaneous items, and operating (fuel) costs, as well as the

370

TABLE B. 3AA: HOURLY COSTS OF THE 1920'S EQUIPMENT AT THE PRICES CF 1930.

EOUIPMENT	INVESTMENT COST	INT/DEF	MAINT/MISC	EUEL	TOTAL
NUMBER	(\$)	(\$/HF)	(\$∕ H₽)	(\$/HF)	<u>(\$/HP)</u>
2 1	1.230	0.00128	0.00054	0_0	0.00182
22	1.085	0.00113	0_00048	0.0	0.00160
23	40_000	0.00777	0.00395	0.0	0.01172
24	2120.000	0-24603	0.11723	0-0	0.36327
25	2599.999	0.31774	0.32053	0.0	0.63827
230	10599_996	0.75386	0.79142	0.2700	1.81528
31	10_130	0.00532	0.00230	0.0	0.00762
32	14_471	0.00760	0.00329	0_0	0.01089
33	240.000	0.04178	0.02583	0.0	0.06761
3 4	625-223	0.07521	0.05959	0 - C	0.13481
3 3 0	4799.996	0.43209	0.39153	0.7857	1.60931
331	5999-996	0.59012	0.53472	0.9428	2.06758
41	0_868	0.00090	0.00038	0.0	0_00128
42	520-000	0.08840	0.04494	0.0	0.13334
43	1607.715	0.19341	0.19510	0.0	0.38851
44	300.000	0.05100	0.02593	0.0	0.07693
45	600-000	0.08555	0.04926	0.0	0.13481
46	400_000	0.05703	0.04519	0.0	0.10222
450	5999-996	1.04448	0.75694	0.7857	2.58713
51	434.135	0.04277	0.02867	0.0	0.07144
530	2899.999	0.26517	0.23235	0.5238	1.02132
531	2999-999	0.22332	0.20723	0.1890	0.61955
62	1429.080	0.20990	0.13723	0.0	0_34/14
63	26.000	0.00505	0.00326	0.0	0.00831
64	11.000	0.00313	0_00111	0_0	0.00424
65	68.000	0.00831	0.00658	0.0	0-01489
66	1350.000	0.23097	0.15300	0.0	0-38347
630	4153.262	0.49963	0.39586	1-5452	2.44070
631	700.000	0.15492	0.05509	0.4714	0.68144
632	5787.773	0.69626	0.55165	0.4300	1.67789
633	4299.996	0,45981	0.36431	1.2571	2.08123
634	2499.999	0.32640	0.25680	0.6286	1.21176

TABLE B.3AB: HOURLY COSTS OF THE 1920'S EQUIPMENT AT THE PRICES OF 1956.

EQUIPMENT	INVESTMENT COST	INT/DEP	MAINT/MISC	FUEL	TOTAL
NUMBER	(\$)	(\$/HR)	(\$/HR)	(\$/HR)	(\$/HR)
2 1	3.666	0.00379	0.00162	0.0	0.00541
22	3.234	0.00334	0.00143	0.0	0.00477
23	119.203	0.02294	0.01177	0.0	0.03472
24	6317.734	0.72470	0.34936	0.0	1.07406
25	7748.168	0.93384	0,95520	0.0	1.88904
230	31588.695	2.20602	2.35847	0.6014	5.16592
31	30.187	0.01577	0.00687	0.0	0.02264
32	43.125	0.02253	0.00981	0.0	0.03234
33	715.216	0.12306	0.07698	0.0	0.20005
34	1863.205	0.22105	0.17759	0.0	0.39864
330	14304.312	1.26851	1.16677	1.0125	3.44778
331	17880.391	1.73246	1.59351	1.2150	4.54096
4 L	2.587	0.00267	0.00114	0.0	0.00382
42	1549.634	0.26098	0.13392	0.0	0.39490
43	4791.094	0.56842	0.58142	0.0	1.14984
44	894.020	0.15056	0.07726	0.0	0.22783
45	1788.039	0.25142	0.14680	0.0	0.39821
46	1192.026	0.16761	0.13465	0.0	0.30227
450	17880.391	3.07656	2.25574	1.0125	6.34481
51	1293.750	0.12541	0.08544	0.0	0.21086
530	8642.187	0.77597	0.69242	0.6750	2.14339
531	8940.195	0.65076	0.61756	0.4210	1.68932
52	4258,750	0.61828	0.40896	0.0	1.02724
63	77.482	0.01491	0.00970	0.0	0.02462
64	32.781	0.00926	0.00332	0.0	0.01258
65	202.644	0.02442	0.01962	0.0	0.04404
66	4023.087	0.67883	0.45595	0.0	1.13478
630	12377.000	1.46842	1.17968	1.9912	4.63935
631	2085.046	0.45841	0.16418	0.6075	1.23009
532	17247.949	2.04632	1.64394	0.7087	4.39901
633	12814.277	1.35138	1.08565	1.6200	4.05703
634	7450.160	0.96143	0.76528	0.8100	2.53671

TABLE B. 3AC: HOURLY COSTS OF THE 1920'S EQUIPMENT AT THE PPICES OF 1974.

EQUIPMENT	INVESTMENT COST	INT/DEP	MAINT/MISC	FUEL	TOTAL
NUMBER	(\$)	(\$/EP)	(\$/ HR)	(\$/HR)	(\$/HR)
2 1	7.205	0.00782	0.00318	0.0	0.01100
22	6.357	0.00690	0.00281	0.0	0.00971
23	234.286	0.05117	0.02314	0.0	0.07431
24	12417.137	1.66468	0.68665	0.0	2 - 35 1 3 3
25	15228.566	2.20759	1.87738	0.0	4.08497
230	62085.699	5.50991	4_63544	2.2255	12.37082
3 1	59.332	0.03308	0.01350	0.0	0.04658
32	84.760	0.04725	0.01928	0.0	0.06654
33	1405.714	0_28268	0_15131	0.0	0_43399
34	3662.018	0.52257	0_34904	0.0	0.87160
330	28114.277	3.04118	2.29322	1.7253	7.05970
331	35142_848	4.15346	3.13194	2.0704	9 . 355 77
4 1	5.086	0.00552	0.00224	0.0	0.00776
42	3045.714	0.58204	0.26321	0-0	0.94525
43	9416.617	1.34374	1.14275	0.0	2_48648
44	1757.142	0.33579	0.15185	0.0	0.48764
45	3514.285	0_59435	0_28852	0-0	0.88287
46	2342.856	0.39623	0.26466	0.0	0.66089
450	35142.848	7.06704	4.43353	1.7253	13.22587
5 1	2542.788	0.30487	0.16793	0.0	0.47280
530	16985.707	1.93812	1.36091	1.1502	4.44923
531	17571_422	1.71182	1_21378	1.5578	4.48344
62	8370.324	1-42022	0.80379	0.0	2.22401
63	152_2 86	0.03326	0.01907	0.0	0.05233
64	64.429	0.02004	0.00652	0.0	0.02656
65	398_285	0.05774	0_03856	0.0	0.09630
66	7907.141	1.60475	0.89614	0.0	2.50089
630	24326-262	3.47132	2.31860	3.3931	9.18301
631	4099.996	0.99178	0.32268	1_0352	2.34965
632	33899.824	4.83746	3_23108	1.6774	9.74591
633	25185.707	3.19464	2.13379	2.7605	8.08890
634	14642.852	2.20845	1_50411	1.3802	5.09280

TABLE B.3AD: HOURLY COSTS OF THE 1920'S EQUIPMENT AT THE FRICES OF A TYPICAL DEVELOPING COUNTRY.

.

EQUIPMENT	INVESTMENT COST	INT/DEP	MAINT/MISC	FUEL	TOTAL
NUMBER	(\$)	(\$/HR)	(\$/HR)	(\$/HR)	(\$/HP)
2 1	0.613	0_00070	0.00027	0.0	0.00097
22	0.541	0_00062	0.00024	0.0	0.00086
23	19.934	0.00501	0.00197	0_0	0.00698
24	24651.156	3.91871	1.36317	0_0	5.28187
25	1295.742	0.22924	0.15974	0.0	0_38898
230	123255.750	14.07163	9.20251	2.7000	25.97412
31	5_048	0.00303	0_00115	0.0	0.00418
32	7.212	0.00433	0_00164	0.0	0.00597
33	119.607	0.02852	0_01287	0_0	0.04139
34	7270.027	1.26612	0.69292	0.0	1_95904
330	5581 3, 94 1	7.47072	4.55262	8. 1000	20.12332
331	69767.375	10.20306	6-21769	9-7200	26.14073
41	0.433	0.00050	0.00019	0-0	0.00069
42	259 - 148	0.05696	0.02240	0_0	0.07935
43	18694_363	3.25573	2.26864	0_0	5.52437
44	149.509	0.03286	0.01292	0.0	0.04578
45	299.017	0,06172	0.02455	0_0	0_08627
46	4651.160	0.96003	0.52541	0.0	1.48544
450	69767.375	16.63602	8.80167	8.1000	33.53767
5 1	216.361	0.03253	0_01429	0-0	0.04682
530	33720-922	4.94972	2.70175	5-4000	13.05147
531	34883-711	4.57880	2.40966	1.8900	8.87846
62	16617_211	3.34325	1-59573	0.0	4.93898
63	12.957	0.00325	0.00162	0.0	0.00488
64	5.482	0.00190	0.00055	0-0	0.00245
65	33.889	0.00600	0.00328	0.0	0.00928
66	1569 7. 668	3.88813	1.77907	0.0	5.66720
630	48293.770	8.41065	4.60300	15.9300	28,94363
631	8139.531	2.19246	0.64061	4-8600	7.69307
632	67299.687	11.72064	6.41450	7.0875	25.22263
633	49999.988	7.74026	4_23611	12.9600	24-93636
634	29069 _ 758	5.19876	2.98604	6.4800	14.66480
•					

TABLE B.3BA: HOURLY COSTS OF THE 1950'S EQUIPMENT AT THE PRICES OF 1930.

EQUIPMENT	INVESTMENT COST	INT/DEP M	IFINT/MISC	FUEL	TOTAL
NUMBER	(5)	(\$ <u>∕</u> HR)	(\$/HR)	(\$/HR)	(\$/HR)
2 6	1.011	0.00105	C.00045	0.0	0.00149
27	1.922	C.00199	C.00085	0.0	0.00284
28	1.066	0.00111	C.00047	0.0	0,00158
231	16249.355	1.87659	1.32432	0.4914	3.69231
232	21665.809	2.66783	2.23993	0.6142	5.52201
233	25585.000	2.52034	2.11609	0.7371	5.37353
2.3.4	13928.020	1.60851	1.13513	0.4300	3.17362
235	139.259	0.04261	C.02166	0.1309	0.19523
35	1934.447	0.22340	0.12864	0.0	0.35204
36	3288.5EC	C.37979	C.21869	0.0	0.59848
332	4913.496	0.63050	C_44494	0.3931	1.46856
333	11026.348	1.59175	1.05439	0.9214	3.56752
334	2321.33€	0.32732	C.17918	C.9952	1.50172
335	619.023	0.11366	C.05778	0.1309	0.30238
47	368.873	C.029C7	C.02441	0.0	0.05348
48	0.749	C.00078	C.00033	0.0	0.00111
49	456.530	0.06590	0.05222	0.0	0.11812
420	2901.671	0.40915	C.26750	0.7857	1.46235
421	4952.184	0.57191	C.45312	0.5528	1.57786
422	2282.648	0.40233	C.29157	0.4190	1.11294
423	1605.591	0.22640	C.17812	1.3095	1.71402
44.0	29.017	0.01523	C.01240	0.0	0.02764
451	696.401	0.10053	C.07965	0.1833	0.36351
452	3133.804	0.45239	C.39760	1.8595	2.70948
52	696.401	0.09820	0.07726	0.0	0.17545
532	3056.427	C.2641C	C.26635	0.2619	0.79235
533	1553.658	0.40751	C.37362	0.2703	1.05140
534	3675.450	0.31759	C.32029	C.2088	0.84673
535	2050.514	0.17718	C.17869	0.4976	C.85348
67	522.301	0.06032	C.04257	0.0	0.10289
68	619.023	C.07149	C.05C45	0.0	0.12194
69	773.779	0.08936	C.06306	C.C	0.15242
610	50.911	0.01298	0.00660	0.0	0.01958
611	2321.336	0.26808	C.18919	0.0	0.45727
612	3095.115	0.35745	C.25225	C.C	0.60970
613	5029.562	0.58085	C.40991	0.0	0.99076
638	5029.562	0.58085	C.40991	0.6142	1.60501
639	6577.121	0.75957	C.53603	0.6142	1.90986
640	7737.789	0.89362	C.63C63	0.8599	2.38419
641	3211.182	0.37085	C.26171	0.2948	0.92740
642	4255.781	0.49149	C.34685	0.4300	1.26831
643	58C3.34C	C.67021	C.47297	0.6142	1.75743

TABLE B.3BB: HOURLY COSTS OF THE 1950'S EQUIPMENT AT THE PRICES OF 1956.

EQUIPMENT	INVESTMENT COST	INT/DEF	MAINT/MISC	FUEL	TOTAL
NUMBER	(\$)	<u>(\$∕H8)</u>	(\$/HB)	(\$/HR)	(\$/HR)
2 6	3.012	0.00311	0.00133	0.0	0.00444
27	5.727	0.00592	C.00253	0.0	0.00845
28	3.177	0.00328	C.00140	0.0	0.00469
231	48424.146	5.51529	3.94657	0.8100	10.27186
232	64565.535	7.82364	6.67513	1.0125	15.5 1 127
233	76244.937	7.39110	6.30609	1.2150	14.91218
234	41506.410	4.72739	3.38277	0.7087	8.81891
235	415.0CC	0.12580	C.06456	0.1687	0.35911
3 5	5764.777	0.65658	C.38336	0.0	1.03994
36	9800.125	1.11619	C.65171	0.0	1.76790
332	14642.531	1.85302	1.32596	0.6480	3.82698
333	32859.238	4.67815	3.14216	1.5187	9.33906
334	6917.734	0.96413	C.53396	1.2825	2.78060
335	1844.729	0.33553	C.17217	0.1687	C.67646
47	1099.264	0.08525	C.07273	0.0	0.15798
48	2.232	0.00231	C.OCC98	0.0	0.00329
49	1360.488	0.19369	C.15561	0.0	0.34930
420	8647.168	1.20517	C.79716	1.0125	3.01483
421	14757.824	1.68085	1.35034	0.9112	3.94244
422	6802.437	1.18508	0.86890	0.5400	2.59398
423	4784.766	0.66686	C.53081	1.6875	2.88517
44 C	86.472	0.04518	0.03697	0.0	0.08215
451	2075.320	0.29546	0.23736	0-2362	0.76908
452	9338.941	1.32958	1.18488	2.3962	4.91070
52	2075.320	0.28924	C.23C23	0.0	0.51947
532	9108.352	0.77285	C.79373	0.3375	1.90407
533	4630.004	1.20305	1.11340	0.4455	2.76196
534	10953.082	0.92937	C.95448	0.3442	2.22810
535	6110.664	0.51849	C.53250	0.6412	1.69224
67	1556.490	0.17728	C.12685	0.0	0.30413
68	1844 • 729	0.21011	C.15035	0.0	0.36045
69	2305.912	0.26263	C-18793	0.0	0.45056
610	151./18	0.03833	0.01967	0.0	0.05/99
611	6917.734	0.78790	0.56379	0.0	1.35169
612	9223.648	1.00003			1.80226
613	14988-418	1 70711	1.22100		2.92007
638	14988-418				3-94117
639	19000.242	2.23238	1.07022	1.0125	4.04230
54Q	23039.109	2.02033	1.8/932	1.41/5	3.32314 3.35504
641	707.033 10600 E16	1.00993	1 03360	0.4000	2+33364
542	17004 305	1 04075			J. 10003
543 [11234.320	1.30315	しゅサリタチダ		4+371/3

.

TABLE B.3BC: HOURLY COSTS OF THE 1950'S EQUIPMENT AT THE PRICES OF 1974.

EQUIPMENT	INVESTMENT COST	INT/DEP	MAINT/MISC	FUEL	TOTAL
NUMBER	(\$)	(\$/HR)	(\$/HR)	(\$/HE)	(\$/HR)
2 6	5.920	0.00643	C.00261	0.0	C.00904
27	11.256	0.01222	C.0C497	0.0	0.01719
28	6.244	0.00678	C.00276	0.C	0.00953
231	95174.75C	13.03806	7.75674	1.9170	22.71179
232	126899.687	19.01837	13.11957	2.3962	34.53418
233	149855.000	17.96693	12.39426	2.8755	33.23666
234	81578.375	11.17548	6.64863	1.6774	19.50148
235	815.658	0.28057	C.12688	C.2875	0.69500
3 5	11330.332	1.55215	C.75347	0.0	2.30562
36	19261.566	2.63866	1.28089	0.0	3.91955
332	28779.047	4.38051	2.60610	1.533€	8.52022
333	64582.902	11.05907	6.17574	3.5944	20.82916
334	13596.398	2.21467	1.04947	2.1854	5.44952
335	3625.707	0.74830	C.33840	0.2875	1.37425
47	2160.539	0.20723	C.14296	0.0	0.35019
48	4. 386	J.0047E	C.00194	0.0	0.00670
49	2673.959	0.45788	C.30583	0.0	0.76372
420	16995.500	2.76834	1.56677	1.7253	6.06041
421	29005.652	3.97351	2.65402	2.1566	8.78415
422	13369.793	2.72220	1.70778	0.9202	5.35014
423	9404.176	1.53182	1.04327	2.8755	5.45059
44C	169.955	0.09475	C.07266	0 . C	0.16741
451	4078.920	C.69847	C.46653	0.4026	1.56756
452	18355.141	3.14310	2.32881	4.0832	9.55512
52	4078.920	0.66440	0.45251	0.0	1.11691
532	17901.926	1.93032	1.56002	0.5751	4.06544
533	9099.996	2.68304	2.18833	1.0543	5.92572
534	21527.633	2.32127	1.87598	0.8147	5.01197
535	12010.152	1.29502	1.04660	1.0927	3.43431
6 /	3059.190	0.41908	C.24932	0.0	0.66840
68	3625.707	0.49665	C.29549	0.0	0.79218
69	4532.133	0.62086	C.36937	0.0	0.99023
610	298.193	0.08548	0.03865	0.0	0.12413
611	13596.398	1.85258	1.10811	0.0	2.97069
512	18128.531	2.48344	1.4/74/	0.0	3.90092
613	29458.867	4.03559	2.40090	0.0	6.43649
538	29458.867	4.03555	2.40090	2.3962	8.83274
639	38523.133	5.27731	3.13963	2.3962	12 25 70 "
54C	45321.332	0.20200	3.09309	3.3547	13.25/04
641	18808.352			1.1562	3.23905
542	24920.730	3.4.14/2	2.93153	1.6/74	1.12303
643 L	33931.000	4.05645	2.1/02/	2.3962	9.82296

TABLE **B.3BD:** HOURLY COSTS OF THE 1950'S EQUIPMENT AT THE PRICES OF A TYPICAL DEVELOPING COUNTRY.

EQUIPMENT	INVESTMENT COST	INC/DEP	MAINT/MISC	FUEL	TOTAL
NUMBER	(\$)	(\$/HR)	(\$/HR)	(\$/HR)	(\$/HR)
26	0.504	0.00059	0.00022	0.0	0.00080
27	0.958	0.00110	0.00042	0.0	0.00152
2 8	0.531	0.00061	0.00023	0.0	0.00084
231	188946.000	31.58981	15.39910	8.1000	55.08890
232	251923.000	47.34756	26.04565	10.1250	83.51820
233	297500.000	44.72993	24.60571	12.1500	81.48564
234	161953.687	27.07698	13.19922	7.0875	47-36369
235	1619.286	0.64060	0.25189	1.3500	2.24248
35	22493.570	3.76069	1.49582	0.0	5.25651
36	38239.070	6.39318	2.54290	0.0	8.93607
332	57133.672	10.61351	5.17377	6.4800	22.26727
333	128213.312	26.79494	12.26039	15.1875	54.24280
334	26992,285	5.21341	2-08347	10.2600	17.55685
335	7197.941	1.70852	0.67181	1.3500	3.73033
47	4289.215	0.51592	0_28380	0.0	0.79972
48	0.373	0.00043	0.00016	0.0	0.00059
49	5308.480	1.10940	0.60716	0.0	1.71656
420	33740.355	6.51676	3_11044	8.1000	1/.72/19
421	57583-543	9.52737	5.26889	9.1125	24.00876
422	26542.414	6.40815	3.39038	4.3200	14.11852
423	18669.664	3.60594	2.07117	13.5000	19.17709
440	337.404	0.20244	0.14424	0.0	0.34668
451	8097.684	1.69231	0.92617	1.8900	4-50848
452	36439.586	/ 61541	4.62327	19.1/00	31.40865
5 2	8097.684	1.56402	0.89834	0.0	2.40230
532	35539.844	4.92980	3-09704	2.7000	10.72684
533	18065.793	6.12591	4-34439	4.4000	14.920.30
234		5.92824	3.72429	3.4423	13.09503
232	23843.184	3.30/33	2.07776	5.1300	1 51009
5 / 2 0		1 20242	0.59563	0.0	1.70005
6 3	9007 406	1.20342		0.0	1.077003
510		1.50420	0.0767/	0.0	2-23/3/ 0 27100
611	251.900	U 19010	2 10097	0.0	6 71270
612	20392.203	4.01200 6.01711	2 9 2 2 1 6	0.0	8 95027
613	58483 285	9 77780	L 76639	0.0	14.54419
638	58481 285	0 77720	4.76639 4.76639	10.1250	24_66917
639	76479 125	12.78636	6-23296	10, 1250	29,14430
640	89974 250	15 04277	7 33290	14 1750	36.55066
641	37339-328	6_24275	3,04315	4_8600	14,14590
642	49485_855	8-27353	4_03310	7.0875	19, 39410
643	67480-687	11_28208	5_49967	10, 1250	26.90672
					2000000

TABLE B.3CA: HOUBLY COSTS OF THE 1970'S EQUIPMENT AT THE FRICES OF 1930.

EQUIPMENT	INVESTMENT COST	INT/DEP M	AINT/MISC	PUEL	TOTAL
NUMBER	(\$)	(<u>\$/HR</u>)	<u>(\$/HP)</u>	<u>(\$/HR)</u>	(\$/HP)
2 9	0.826	0.00086	0.00036	0.0	0.00122
236	83.659	0.02560	0.01301	0.0786	0.11/18
237	93 73.16 8	0.92334	0.61902	0.6142	2.15660
238	15109.754	1.74498	1_38254	0.5897	3.71720
239	28170.734	1.82411	2.18675	1.1056	5.11651
240	32376,879	2.00376	2_90987	1.5970	6.51068
241	11.098	0.00291	0.00148	0.0	0_00439
336	537,805	0.09874	0.05020	0.3928	0.54179
337	4234.145	0.54332	0.43047	0.4545	1_42934
339	6521.949	0.83689	0.55437	0.7371	2.12836
339	9492.680	1.37035	0,90774	1.2039	3.48202
340	14503.656	2.09373	1.38691	1.2899	4.77057
341	10329.266	1.19290	0,94513	0.6265	2.76456
342	15092.680	1.74301	1.38098	0.9459	4_06993
343	2125-610	0.29972	0.16407	1.0476	1.51139
410	0-744	0.00077	0.00033	0.0	0.00110
411	341.463	0.03364	0.02966	0.0	0.06330
412	102.439	0.00792	0.00671	0.0	0.01463
424	4123.168	0.58139	0.38010	0.2580	1.21948
425	4737.805	0.66806	0.43677	0.4423	1.54708
426	6240.242	0.87991	0.57527	0.5774	2.03258
427	2193,903	0.38669	0.25281	0_6809	1.32044
441	341.463	0.04815	0.04002	0.0	0.08916
453	2893.903	0.41776	0.36716	2.0428	2.82774
454	2599.390	0.37525	0.32980	1.6762	2.38120
53	10 20. 12 2	0.10049	0.09287	0_0	0.19336
536	4797.559	0.67648	0.44227	0.7248	1.84357
537	2979.269	0.78144	0.71644	0.4423	1_94014
538	3457.317	0.60938	0.39840	0.3563	1.36404
539	2683.903	0.23192	0.23388	0.2457	0.71150
540	2837.561	0.24519	0.24727	0.2580	0. 75045
541	1659.512	0.43528	0.39907	0.3071	1.14147
614	691.463	0.07986	0.06327	0-0	0.14312
615	819.512	0.09464	0.07499	0.0	0.16963
616	1020.122	0.11781	0.09334	0.0	0.21115
617	1732.927	0.20013	0.15856	0.0	0-35869
644	3329.269	0.46945	0.30692	0.3808	1.15720
645	8536.582	0.98587	0.78110	0.7371	2.50406
646	5715,187	0.66003	0.60867	0.5897	1.95839
647	7620.250	0.88004	0.76583	0.5897	2.23556
648	13758.789	1.58896	1.54786	0.9091	4.04592
649	8775.609	0.86447	0.79895	0.5528	2.21624
650	15253.168	1.50257	1.38867	0.9582	3.84947
651	12710.973	1.46795	1_16305	0.9951	3.62609
652	18763.414	2.16693	1_71685	1.3268	5,21056
653	11695.121	1.35064	1.07010	1.1302	3.55096
654	13097.559	2.09004	1.65592	1.5848	5.33072
655	1963,415	0.22675	0.1/965	V. 2619	0-00830

TABLE B.3CB: HOURLY COSTS OF THE 1970'S EQUIPMENT AT THE PRICES OF 1956.

EQUIPMENT	INVESTMENT COST	INT/DEP	MAINT/MISC	FUEL	TOTAL
NUMBER	(\$)	(\$/HR)	(\$/HR)	(\$/HR)	(\$/HR)
2 9	2.463	0.00255	0.00109	0.0	0.00363
236	249.308	0.07558	0.03878	0.1012	0.21561
237	27932.564	2.70776	1.84472	1.0125	5.56498
238	45028.070	5.12850	4.12007	0.9720	10.22056
239	83950.625	5.30476	6.51666	1.8225	13.64392
240	96485.250	5.85121	8.67161	2.6325	17.15530
241	33.071	0.00859	0.00441	0.0	0.01300
336	1602.694	0.29151	0.14958	0.5062	0.94734
337	12618.031	1.59682	1.28283	0.7492	3.62890
338	19435.840	2.45962	1.65205	1.2150	5.32666
319	28298.816	4.02746	2.70512	1.9845	8.71707
340	43221.859	6.15347	4.13309	2.1262	12.41281
341	30781.898	3.50592	2.81654	1.0327	7.35521
342	44977.191	5.12270	4.11541	1.5592	10.79736
343	6334.449	0.88284	0.48894	1.3500	2.72179
410	2.218	0.00229	0.00098	0.0	0.00327
411	1017.583	0.09864	0.08840	0.0	0.18705
412	305.275	0.02314	0.01999	0.0	0.04313
424	12287.316	1.71250	1.13274	0.4252	3.27049
425	14118.965	1.96778	1.30159	0.7290	3.99837
426	18596.332	2.59180	1.71435	0.9517	5.25790
427	6537.969	1.13901	0.75340	0.8775	2.76991
441	1017.583	0.14182	0.11925	0.0	0.26107
453	8624.016	1.22779	1.09417	2.6325	4.95446
454	7746.352	1.10284	0.98282	2.1600	4.24566
53	3040.031	0.29470	0.27677	0.0	0.57147
536	14297.043	1.99260	1.31801	1.1947	4.50536
537	8878.410	2.30695	2.13505	0.7290	5.17099
535	10303.027	1.79494	1.18726	0.5872	3.56945
539	7998.199	0.67865	0.69699	0.4050	1.78063
540	8456.113	0.71750	0.73689	0.4252	1.87964
541	4945.453	1.28502	1.18920	0.5062	2.98053
614	2060.606	0.23469	0.18855	0.0	0.42324
515	2442.200	0.27810	0.27016	0.0	0.50162
617	5040.031	0.54020	0.67253	0.0	0.02441
511		1 20276	0 01/63	0.6377	
544	4721+434 35630 593	L+25210	2 22772	1 2150	2+92010
646	23437.202	1 02092	2.02172	0 9720	6 72540
647	22708 852	2 58644	2.28224	0.9720	5 84067
648	41002 102	4 66005	4.61273	1.4985	10 79110
649	26151,891	2.53513	2.38091	0.9112	5.82729
650	45455-453	4,40640	4,13834	1.5795	10,12423
651	37879.543	4.31431	3.46598	1.6402	9.42053
552	55916-215	6.36860	5.11633	2.1870	13.67193
653	34852.230	3,96951	3.18898	1.8630	9.02149
654	53931.926	6.14260	4.93477	2.6122	13.68962
555	5851.105	0.66641	0.53538	0.3375	1.53929
-					

TABLE B.3CC: HOURLY COSTS OF THE 197C'S EQUIPMENT AT THE PRICES OF 1974.

CQUIPMENT	INVESTMENT COST	INI/DEP	MAINT/MISC	FUEL	TOFAL
NUMBER	(\$)	(~/HR)	(\$/HB)	(J/HK)	(\$/H <)
2.9	4.340	0.00525	C.00214	0.0	0.00739
236	490.000	0.16855	0.07622	0.1725	0.41730
237	54899.996	6.58226	3.62567	2.3962	12.60419
238	88499.937	12.12367	E.09774	2.3004	22.52179
239	164999.875	14.30359	12.80811	4.3132	31.42434
24.0	189635.875	15.00390	17.J4352	6.2302	38.27765
241	65.000	0.01916	0.00867	0.0	0.02783
336	3150.000	0.65012	C.29400	0.8626	1.80677
337	24799.996	3.77485	2.52133	1.7732	ຮ .06941
338	38199.996	5.81449	3.24700	2.8755	11.93699
339	55599.996	9.52086	5.31675	4.6966	19.53424
340	34949.937	14.54670	E.12334	5.0321	27.70215
341	50499.996	0. 28794	5.53575	2.4442	15.26785
342	88399.937	12.10997	E.08859	3.6902	23.88878
343	12449.996	2.02794	Ũ.96098	2.3004	5.28932
410	4.360	Ú.00473	C.00192	0.0	0.00666
411	2000.000	0.23975	C.17375	0.0	0.41354
412	600.000	C.05934	0.03928	0.0	0.09862
424	24149.996	3.93371	2.22633	1.0064	7.16646
425	27749.996	4.52010	2.55820	1.7253	3.80360
426	36549.996	5.9535C	3.36945	2.2525	11.57543
427	12849.996	2.61637	1.48076	1.4953	5.59238
441	2000.000	0.32577	0.23437	0.0	0.56015
453	16949.990	2.90249	2.15053	4.4858	9.53880
454	15224.996	∠.60713	1.93167	3.6806	8.21941
5 3	5974.996	0.71637	0.54397	0.0	1.26035
536	28099.996	4.57711	2,59047	2.827€	9.99515
537	17449.990	5.14495	4.19631	1.7253	11.06656
538	20249.95E	4.12307	2.33349	1.3898	7.34639
539	15719.996	1.69505	1.36988	0.9585	4.02343
540	16619.396	1.79209	1.44831	1.0064	4.24683
541	9719.996	2.86584	2.33743	1.1951	5.40139
614	4050.000	ú.5548 1	0.37057	0.0	J.92539
615	4799.996	0.65756	0.43920	0.0	1.09675
616	5974.996	C.81852	C.54c71	0.0	1.36523
617	10149.996	1.39046	0.92872	ũ.C	2.31918
644	19499.996	3.17629	1.79765	1.4357	6.45962
645	49999.996	6.84953	4.57500	2.8755	14.30003
646	33474.684	4.58572	3.56505	2.3004	10.45117
647	44632.910	6.11429	4.48561	2.3004	12,90030
648	30587 . 167	11.03970	9.06606	3.5464	23.65219
649	51399.996	6.16262	4.67954	2.1566	12.99879
650	39339.937	10.71145	E.13366	3.7381	22.58324
65 1	74449.937	10.19895	6.31217	3.8819	20.89302
652	109899.937	15.05528	10.05584	5.1759	32.28700
653	b 8499.937	9.38386	6.26774	4.4091	20.06070
654	105999.937	14.52101	9.69899	6.1823	30.40231
655	11499.996	1.5753\$	1.05225	り •5751	3.20274

TABLE B.3CD: HOURLY COSTS OF THE 1970'S EQUIPMENT AT THE PRICES OF A TYPICAL DEVELOPING COUNTRY.

-

EQUIPMENT	INVESTMENT COST	INT/DEP	MAINT/MISC	FUEL	TOTAL
NUMBER	(\$)	(\$/HR)	(\$/HR)	<u>(\$/FR)</u>	<u>(\$/HR)</u>
29	0.412	C.0C047	0.00018	0.0	0.00065
236	972.773	C.38483	0.15132	0.8100	1.34615
237	108990.250	16.38698	7.19790	10.1250	33.70985
238	175694.750	29.37433	16.07607	9.7200	55.17038
239	327566.625	35.06599	25.42734	18.2250	92.71832
240	376475,250	39.24512	33.83571	26.3250	99.40581
241	129.041	C.04376	0.01721	0.0	0.06096
336	6253.543	1.48436	0.58366	4.0500	6.11802
337	49234.258	9.14607	5.00548	7.4925	21.64404
338	75836.625	14.08789	6.44511	12.1500	32.6°399
339	110380.000	23.06799	10.55509	19.8450	53.46806
340	168547.125	35.24507	16.12688	21.2625	72.63443
341	120107.687	20.08076	10.98985	10.3275	41.39809
342	175496.250	29.34116	16.05789	15.5925	60.99153
343	24716.391	4.77383	1.90779	10.8000	17.43151
410	0.371	0.00043	0.00016	0.0	0.00059
411	3970.505	C.59698	0.34494	0.7	0.94191
412	1191.151	0.15521	0.07798	C.C	0.23320
424	47943.844	9.26008	4.41982	4.2525	17.93240
425	55090.75C	10.64047	5.07868	7.2900	23.00914
426	72560.937	14.01474	6.68921	9.5175	30.22144
427	25510.492	6.15901	2.93968	7.0200	16.11869
441	3970.505	C.76688	0.46529	0.0	1.23217
453	33650.027	7.03242	4.26935	21.0600	32.36174
454	30225.465	6.31673	3.83486	17.2°CC	27.43156
53	11861.883	1.78347	1.07992	0.0	2.36339
536	55785.59C	10.77468	5.14273	11.9475	27.86490
537	34642.652	11.74695	8.33073	7.2900	27.36756
538	40201.359	9.70583	4.63258	5.8725	20.21091
539	31208.164	4.32894	2.71957	4.0500	11.09851
540	32994.891	4.57678	2.87527	4.2525	11.70455
541	19296.652	6.54328	4.64038	5.0625	16.24615
614	8040.27C	1.34425	0.73568	0.0	2.07993
615	9529.211	1.59319	0.87192	C.C	2.46511
616	11861.883	1.98318	1.08536	0.0	3.06855
617	20150.309	3.36892	1.94375	0.0	5.21269
644	38712.418	7.47708	3.56880	6.2775	17.32338
645	99262.562	16.59567	9.08252	12.1500	37.82817
646	66455.687	11.11070	7.07753	9.7200	27.90822
647	88607.562	14.81427	8.90505	9.7200	33.43930
648	159985.937	26.74799	17.59840	14.5850	- 59./313/
649	102041.937	15.34229	9.29006	9.1125	33.74493
650	177362.375	26.66692	16.14735	15.7950	58.60925
651	14/801.937	24./1095	13.52387	16.4025	54.63730
652	218179.197	36.47728	19.96338	21.770	78.31064
653	135989.687	22. (36.)5	12.44305	18.6300	53.80908
654	210436.750	35.18293	19.25454	26.1225	80.56024
655	22830.398	3.81701	2.08898	Z. 200	8.00248

investment cost $\left\{ P_{t} \left[\frac{index}{INDEX_{t}} \right] \right\}$ of the item of equipment under the

stated economic conditions are given. Table B.3A thus covers the 1920's equipment at 1930 (B.3AA), 1956 (B.3AB), 1974 (B.3AC), and developing countries (B.3AD) prices; similarly B.3B covers the 1950's equipment and B.3C the 1970's.

B.22 The Horse

The draft animal, a horse in this case, is part of many of the 1920's technical packages; it is in essence a piece of equipment and has an equipment number of 601. Based on several of the 1920's sources (14,15,26,48), an hourly rate, including upkeep, of some \$0.10 seems reasonable for sometime around 1913. This price is inflated over time by means of an index, this time the BLS wholesale price index (74) for farm products; thus, prices of \$0.12/hr, \$0.22/hr, and \$0.44/hr are used for 1930, 1956, and 1974, respectively.

As for an investment cost, a figure of \$70.69 is given by the U.S. Department of Agriculture (81) as the purchase price for a work horse in 1930; using the BLS wholesale price index (74) for livestock, this inflates to \$128.66 in 1956 and \$277.81 in 1974. A work horse's life is estimated at 12 years with 2700 hours of use per year (9 hours/ day x 6 days/week x 50 weeks/year).

Assuming that a draft animal of some sort (not necessarily a horse) is reasonably available in developing countries as they are often largely agriculturally based, an hourly rate of \$0.05 and an investment cost of \$40.00 are used for the horse. The investment cost is taken as

383

somewhat more than half of the 1930's and the hourly rate somewhat less, in that purchasing a draft animal in a developing country is a relatively expensive venture for a peasant, while keeping one is less of a problem.

B.23 Labor

Labor is divided into two categories: (1) skilled which includes all heavy equipment operators, drivers of trucks over five cubic yards in capacity, and personnel acting in a supervisory capacity on operations done predominantly by unskilled labor; and (2) unskilled which also includes semiskilled and thus involves common heavy construction laborers, operators of small power tools, drivers of trucks five cubic yards and under in capacity,* and drivers of horses. Labor is assumed paid on an hourly basis, with its hourly cost estimate including the basic wage and fringe benefits, but none of the additional items such as social security (FICA), workmen's compensation insurance, and unemployment (amounting to some 15 percent in 1974 [49]) which are more standardly included in project overhead. It is assumed that labor's quality has remained relatively uniform over time, and labor is priced at individual points in time rather than by means of an index as for equipment.

Labor prices for 1930 are derived from a number of articles in Gillette and Black (26). The figure for skilled labor is the average of wages reported by the U.S. Bureau of Public Roads (BPR) as paid to skilled

^{*}This is treated as a skilled operation in the 1920's, as at that time it was skilled relative to driving a horse.

workers in works program highway and grade-crossing elimination projects in the 48 states, the District of Columbia, and Hawaii as of January 1937; this is indexed back to 1930 by means of a BPR average hourly earnings index for common labor in road building. The final result is a skilled wage of \$0.88 per hour. The wage rate for unskilled labor is arrived at by averaging figures from three sources and indexing as necessary using the BPR index above; the three sources include that cited above for skilled labor but which also gives wages for unskilled and intermediate grade labor, another set of figures for all of the U.S. for average hourly earnings for common labor in road building from 1913 to 1936 also reported by the BPR, and finally a set of figures for all of the U.S. for average hourly entrance rates for common labor in general contracting from 1931 to 1934 reported by the U.S. Bureau of Labor Statistics. The final rate determined for unskilled labor in 1930 is \$0.46 per hour. It is suspected that these wage rates include both union and nonunion employees,* while figures for 1956 and 1974 are all union.

The 1956 and 1974 prices for labor are from the same source, <u>Engineering News-Record</u> (23c,e), at the two different points in time. These are union rates averaged over ten cities (Baltimore, Boston, Cincinnati, Detroit, Los Angeles, Minneapolis, Philadelphia, Pittsburgh, St. Louis, and Seattle) and over various occupations. The skilled wage

^{*}An average over ten cities of the minimum wage rates for nonunion labor in construction other than building, reported by <u>Engineering</u> <u>News-Record</u> (23a) in May 1930, is \$0.447/hour, which is close to, but lower than, the \$0.46/hour derived above.

rates, \$3.17 per hour in 1956 and \$9.86 per hour in 1974, include hoist operators, tractor operators, tractor-scraper operators, power crane operators, and motor grader operators. The unskilled wage rates are \$2.36 per hour for 1956 and \$7.88 per hour for 1974 and include common heavy construction labor, air compressor operators, air tool operators, and truck drivers.

In the case of developing country conditions, two sets of wage rates are developed. The first, which is the standardly used one, gives unskilled labor at \$0.05 per hour and skilled at \$0.20 per hour; such rates definitely reflect a labor-abundant country (\$0.50 per day is not an uncommon wage for unskilled labor in road construction in India for example), but it is also one which has a certain amount of skilled labor available as well. The second set of wage rates, \$0.01 per hour for unskilled and \$0.75 per hour for skilled labor, reflects a more extreme situation of unskilled labor abundance and skilled labor shortage; these latter rates might be interpreted as shadow prices in a sense.

B.24 Materials

Materials consist of three categories: (1) equipment consumables (e.g., fuel); (2) materials used as aids in construction (e.g., explosives); and (3) construction materials (e.g., aggregate). Prices for materials are generally those quoted as wholesale, or at least as being representative of quantity-purchases; for materials requiring delivery to the site, such as coal and all construction materials, and materials encountering a special tax, such as gasoline and diesel fuel,

386

the price includes these additional items.* As in the case of labor, the quality of the material is assumed to be reasonably constant over time. Prices are obtained for each period with only occasional use of indexes, and the same basic source is used to price a particular item over as many periods as possible, with additional sources substantiating the information cited as well whenever possible. Prices for materials in 1930, 1956, and 1974, along with their units of measure and sources, are given in Table B.4.

Prices for materials under developing conditions are, by and large, estimates based on logic and a certain amount of fact. Oil-based materials, including gasoline, diesel fuel, kerosene, and bitumen, are priced in line with European conditions today, while the rest of the equipment consumables and materials assisting in construction are priced as a rounded-up version of U.S. prices in 1974; such prices suggest these materials are generally imported using costly foreign exchange. Prices for aggregate are estimated with the help of two IBRD studies investigating alternative means of aggregate production in India and Indonesia (42,43), with all except the finer crushed stone being produced by hand techniques; the price of water is estimated in line with these prices relative to those of 1930. The prices of materials so

^{*}For example, screenings in 1974 cost some \$2.00/1cy at the pit (22), but their total cost delivered is some \$3.50/1cy due to an estimated \$1.50/ 1cy delivery charge for a 10 mile haul (49). As for gasoline, an average retail price without taxes in 1974 is \$0.404/gal (51,64,82); its wholesale price is some 78% of this or \$0.316/gal (90), but taxes add an average of \$0.11/gal (51,82,90), yielding a final price of \$0.426/gal)

Table B.4:	Unit prices (\$/unit) and	l their source	es for the various materials used in highwa	зy
	construction under 1930	, 1956, 1974,	, and developing country economic conditions	3.

		Economic Conditions								
			1930		1956		1974		Devel- oping Country	
No.	Description	Units	Price	Source	Price	Source	Price	Source	Price ^a	
801 802 803 820 821 822 823 830 831 832 833	Coal Gasoline Diesel Fuel Dynamite, 40% Fuse, double tape Cap, nonelectric Kerosene Gravel,0.75 in. max Crushed rock,1.5in.max Screenings, fine Water	ton gal gal lb l00ft l00ct gal lcy ^b lcy ^b lcy lcy l00gal	4.00 0.194 0.091* 0.206 0.71 1.08 0.057 2.93 3.05 2.00* 0.12	26 26 23b 26,74 26,74 26,74 23b 23b 23b 23b 22,49 26	8.91 0.25 0.15 0.248 1.22* 1.85 0.103 3.68 3.68 2.43* 0.15	$ \begin{array}{r} \underline{64}, \underline{74}, 76 \\ \underline{56}, \underline{63}, \underline{88} \\ \underline{23d} \\ \underline{26}, \underline{74} \\ \underline{76} \\ \underline{76} \\ \underline{23d} \\ \underline{23d} \\ \underline{23d} \\ \underline{23d} \\ \underline{22}, \underline{49} \\ \underline{77} \\ \end{array} $	32.97 0.426 0.355 0.321 3.44 5.22* 0.232 5.59 5.29 3.50 0.20	26, <u>64</u> ,71,74,84 51, <u>64</u> ,82,90 51, <u>76</u> ,82,90 23d,55,76 26,74, <u>76</u> 26,74, <u>76</u> 26,74, <u>76</u> 19, <u>23d</u> ,49,76 19,22, <u>23d</u> ,49,76 22,49 <u>22,67</u>	40.00 2.00 1.50 0.500 4.00 6.00 0.700 1.50 5.00 1.25 0.08	
834	Crushed rock 0.75in.max 0.50in.max	1cy ^b	3.07	23b	3.74	23d	5.37	<u>23d</u> ,49 23d,49	3.25	
835	Bitumen	gal	0,06	<u>23D</u>	1 0.10	<u>23u</u>	1 0.30	<u>LJU</u> 973	10.00	

<u>Note</u>: Asterisk (*) indicates that figure is an estimate. The underlining (_) of the sources indicates those from which the data was actually taken, the others being substantiating sources.

^aSee text for description of derivation of prices.

^bUnits converted from tons if necessary by factor of 1.35 tons/lcy (22).

derived as representative of developing conditions are also given in Table B.4.

B.3 Sources for Construction Technologies and Costs

- 1. Agg, Thomas R., <u>The Construction of Roads and Pavements</u>, McGraw-Hill Book Company, New York, 1929.
- Aitken, Thomas, <u>Road Making and Maintenance; A Practical Treatise for</u> <u>Engineers, Surveyors, and Others</u>, Charles Griffin and Co., Ltd., London, 1900.
- Allen, T. Warren and Andrew P. Anderson, "Power-Shovel Operation in Highway Grading - Part I: The Operating Cycle and Factors Affecting Rate of Production," <u>Public Roads</u>, Vol. 15, No. 6, August 1934, pp. 147-161.
- 4. _____, "Power-Shovel Operation in Highway Grading Part II: The Hauling," Public Roads, Vol. 15, No. 7, September 1934, pp. 165-177.
- 5. _____, "Power Shovel Operation in Highway Grading Part I: An Outline of More Important Facts Developed in Studies and Discussion of Factors Affecting the Operating Cycle of the Shovel," <u>Public</u> Roads, Vol. 8, No. 12, February 1928, p. 251+.
- 6. _____, "Power Shovel Operation in Highway Grading Part II: Hauling with Teams and Wagons," <u>Public Roads</u>, Vol. 9, No. 1, March 1928, pp. 9-23.
- 7. _____, "Power Shovel Operation in Highway Grading Part III: Hauling with Trucks and Large Tractor-Drawn Wagons," <u>Public Roads</u>, Vol. 9, No. 2, April 1928, pp. 37-47.
- 8. Allis-Chalmers Manufacturing Company, <u>Earthmoving and Construction</u> <u>Data</u>, Construction Machinery Division, Milwaukee, Wisconsin, October 1959.
- 9. Anderson, Andrew P., "Observations on Bulldozers and Large Scrapers in Grading Work," Public Roads, Vol. 15, No. 3, May 1934, pp. 78-81.
- 10. _____, "Some Studies of Drilling and Blasting in Highway Grading," <u>Public Roads</u>, Vol. 12, No. 12, February 1932, p. 293+.
- 11. _____, "The Value of the Foreman on Fresno and Wheel Scraper Work," <u>Public Roads</u>, Vol. 7, No. 3, May 1926, pp. 65-66.
- 12. Arthur, William, <u>New Building Estimators' Handbook</u>, United Publishers Corporation, New York, 1922.
- Associated General Contractors of America, <u>Contractors' Equipment Ow-nership Expense</u>, Washington, D.C., various years (1930 edition is titled <u>Equipment Ownership Expense</u>, and 1974 edition is titled <u>Contractors' Equipment Manual</u>).

- 14. Baker, Ira Osborn, <u>A Treatise on Roads and Pavements</u>, John Wiley and Sons, New York, 1918.
- 15. Blanchard, Arthur H. and Henry B. Drowne, <u>Text-Book on Highway Engi-</u> neering, John Wiley and Sons, New York, 1913.
- 16. Bruce, Arthur G., <u>Highway Design and Construction</u>, International Textbook Company, Scranton, Pennsylvania, 1934.
- 17. Byrne, Austin T., <u>A Treatise on Highway Construction</u>, Designed as a text book and work of reference for all who may be engaged in the location, construction or maintenance of roads, streets, and pavements, John Wiley and Sons, New York, 1908.
- Caterpillar Tractor Company, <u>Caterpillar Performance Handbook</u>, Peoria, Illinois, January 1974.
- "Construction Materials Price Index Specifications," <u>Construction</u> <u>Review</u>, Vol. 21, No. 6, July 1975, pp. 4-19.
- Country Roads Board, Proper and Economical Use of Plant in the Field, Prepared by H.S. Gibbs, Chief Engineer, CBR, Victoria, Australia, November 1968.
- Day, David A., <u>Construction Equipment Guide</u>, John Wiley and Sons, New York, 1973.
- 22. Dodge Building Cost Services, <u>Guide for Estimating Public Works Con-</u> <u>struction Costs</u>, McGraw-Hill Information Systems Co., New York, various years (Editions before 1974 are titled <u>Estimating Guide</u> for Public Works Construction).
- 23. Engineering News-Record:
 - a. "Current Building and Construction Trades Wage Rates per Hour," Vol. 104, No. 18, May 1, 1930, p. 746.
 - b. "Current Prices of Construction Materials," Vol. 104, No. 18, May 1, 1930, pp. 748-750.
 - c. "Hourly Wage Rates," Vol. 156, No. 18, May 3, 1956, p. 96.
 - d. "Materials Prices," Vol. 156, No. 19, May 10, 1956, p. 89, Vol. 192, Nos. 19 & 22, May 9 & 23, 1974, pp. 40-41 & 30-31.
 - e. "Wage Rates for Key Building Construction Trades," Vol. 192, No. 23, May 30, 1974, pp. 26-27.
- 24. <u>Federal Reserve Bulletin</u>, Statistical tables on interest rates and bond yields for various years.

- 25. Gates, Marvin, <u>Lecture Notes for a Short Course on Principles of</u> <u>Construction Cost Estimating</u>, Presented by Marvin Gates, P.E., Vice-President, Gates-Scarpa and Assoc., Inc., West Hartford, Connecticut, 1974.
- 26. Gillette, Halbert P. and John C. Black, <u>Road and Street Construc</u>tion Methods and Costs, Gillette Publishing Co., Chicago, 1940.
- 27. Harger, Wilson G. and Edmund A. Bonney, <u>Handbook for Highway</u> <u>Engineers</u>, Containing information ordinarily used in the design and construction of rural highways, McGraw-Hill Book Co., New York, 1919.
- 28. Harrison, J.L., "The Cost of Grading with Fresnoes," <u>Public Roads</u>, Vol. 5, No. 8, October 1924, p. 10+.
- 29. _____, "The Economical Use of Wheel Scrapers," <u>Public Roads</u>, Vol. 5, No. 10, December 1924, pp. 16-23.
- 30. _____, "The Effect of Haul on the Cost of Earthwork," <u>Public</u> <u>Roads</u>, Vol. 5, No. 7, September 1924, pp. 14-17.
- 31. _____, "The Wagon and the Elevating Grader Part I," <u>Public</u> <u>Roads</u>, Vol. 6, No. 2, April 1925, p. 25+.
- 32. _____, "The Wagon and the Elevating Grader Part II: The Influence of Design on Elevating Grader Costs," <u>Public Roads</u>, Vol. 6, No. 3, May 1925, pp. 59-67.
- 33. _____, "The Wagon and the Elevating Grader Part III: Estimating the Cost of Elevating Grader Work," <u>Public Roads</u>, Vol. 6, No. 4, June 1926, pp. 75-80.
- 34. Havers, John A. and Frank W. Stubbs, Jr., editors, <u>Handbook of Heavy</u> Construction, McGraw-Hill Book Co., New York, 1971.
- 35. Highway Research Board, <u>Compaction of Embankments</u>, <u>Subgrades and</u> <u>Bases</u>, Bulletin No. 58, Washington, D.C., 1952.
- 36. <u>Connecticut Highway Maintenance Production Study</u>, Special Report 8, National Academy of Sciences - National Research Council Publication 235, Washington, D.C., 1952.
- 37. <u>Construction and Maintenance Equipment A Compilation of</u> <u>Data on Time Utilization, Performance, and Costs</u>, Special Report 68, National Academy of Sciences - National Research Council Publication 959, Washington, D.C., 1962 (Issued originally as Road Research Releases 1949-1960).
- 38. _____, Factors that Influence Field Compaction of Soils, Bulletin No. 272, By A.W. Johnson and J.R. Sallberg, Washington, D.C., 1960.

- 39. , <u>Soil Compaction Full Scale Compaction Studies at the</u> British Road Research Lab, Bulletin No. 254, By W.A. Lewis, Washington, D.C., 1960.
- 40. <u>Steel-Tired Rollers</u>, Bulletin No. 246, By Charles F. Parker, Washington, D.C., 1960.
- 41. Huang, Eugene Y., <u>Manual of Current Practice for the Design, Construc-</u> <u>tion, and Maintenance of Soil-Aggregate Roads</u>, The Engineering Experiment Station, University of Illinois, Urbana, June 1959.
- 42. International Bank for Reconstruction and Development, <u>Study of the Substitution of Labour and Equipment in Civil Construction: Phase III Technical Report No. 1</u>, Vols. I & II, Prepared by Scott Wilson Kirkpatrick and Partners, London, for the IBRD Transportation and Urban Projects Dept., Research Division, Washington, D.C., August 1974.
- 43. <u>World Bank Study of the Substitution of Labor and Equip-</u> <u>ment in Civil Construction - Aggregate Production, Technical</u> <u>Memorandum No. 25</u>, Prepared by Scott Wilson Kirkpatrick and Partners, London, for the IBRD Transportation Department, Transport Research Division, Washington, D.C., June 1976.
- 44. <u>and International Labour Office, World Bank Study of the</u> <u>Substitution of Labor and Equipment in Civil Construction and ILO</u> <u>Technology and Employment Project Study on Labor-Intensive Road</u> <u>Construction - A Field Manual for the Collection of Productivity</u> <u>Data from Civil Construction Projects, Technical Memorandum No. 8,</u> <u>Prepared by Codecon Ltd. and Scott Wilson Kirkpatrick and Partners,</u> London, for the IBRD Transportation and Urban Projects Dept., Transport Research Division, Washington, D.C., and ILO Technology and Employment Project, World Employment Program, Geneva, July 1975.
- 45. International Labour Office, <u>Manual on the Planning of Labour-Intensive</u> <u>Road Construction: Productivity and Performance, A Collection of</u> <u>Data on Labour-Intensive Methods in Road Construction</u>, Research and Action Project relating to Technology and Employment, World Employment Programme, ILO, Geneva, October 1974.
- Kellogg, F.H., <u>Construction Methods and Machinery</u>, Prentice-Hall, New York, 1954.
- 47. Lee, Olin A., "Some Recent Developments in Equipment Applied to Public Works Projects," <u>Highway Research Record</u>, No. 316 (Construction and and Construction Equipment), 1970, pp. 33-40.
- 48. McDaniel, Allen Boyer, <u>Excavation Machinery</u>, <u>Methods and Costs</u>, Including a revision of <u>Excavating Machinery</u>, McGraw-Hill Book Co., New York, 1919.

- 49. Means Company, Inc., Robert Snow, <u>Building Construction Cost Data</u>, Duxbury, Massachusetts, various years.
- 50. Moavenzadeh, Fred, <u>Compaction</u>, Notes prepared for a course given in the Department of Civil Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 1971.
- 51. National Cooperative Highway Research Program, <u>User Benefit Analysis</u> for Highway and Bus Transit Improvements, By Dudley G. Andersen, David A. Curry, and Randall J. Pozdena, Transportation Research Board, Washington, D.C., October 1975.
- 52. National Crushed Stone Association, <u>Design Guide for Low Volume Rural</u> Roads, Washington, D.C., February 1973.
- 53. Oglesby, Clarkson H., <u>Highway Engineering</u>, John Wiley and Sons, New York, 1975.
- 54. _____ and Laurence F. Hewes, <u>Highway Engineering</u>, John Wiley and Sons, New York, 1963.
- 55. Perini Yuba Associates, <u>Cost Study Regarding Driving of 26 Foot Diam</u>eter Colgate Tunnel, 1967.
- 56. Peurifoy, R.L., <u>Construction Planning, Equipment and Methods</u>, McGraw-Hill Book Co., <u>New York</u>, 1956.
- 57. _____, <u>Estimating Construction Costs</u>, McGraw-Hill Book Co., New York, 1975.
- 58. Pulver, H.E., <u>Construction Estimates and Costs</u>, McGraw-Hill Book Co., New York, 1947.
- 59. Rieger, Hans C. and Binayak Bhadra, <u>Comparative Evaluation of Road</u> <u>Construction Technologies in Nepal</u>, Parts 1-4, Preliminary Report prepared for International Labour Office in Geneva, by Centre for Economic Development and Administration, Kathmandu, Nepal, December 1973.
- 60. Ritter, Leo J. and Radnor J. Paquette, <u>Highway Engineering</u>, The Ronald Press Co., New York, 1967.
- 61. Road Research Laboratory, <u>Soil Mechanics for Road Engineers</u>, Department of Scientific and Industrial Research, Her Majesty's Stationery Office, London, 1952.
- 62. Sears, Roebuck and Co., <u>Catalogue</u>, various years.
- 63. Stubbs, Frank W., Jr., editor, <u>Handbook of Heavy Construction</u>, McGraw-Hill Book Co., New York, 1959.

- 64. Survey of Current Business, Vol. 55, No. 9, September 1975.
- 65. Transport and Road Research Laboratory (Overseas Unit), <u>A Guide</u> to the Structural Design of Bitumen-Surfaced Roads in Tropical and <u>Sub-Tropical Countries</u>, Proposed Revision to TRRL Road Note 31, United Kingdom, 1966.
- 66. <u>The Kenya Road Transport Cost Study: Research on Road</u> <u>Deterioration</u>, TRRL Laboratory Report 673, Prepared by J.W. Hodges, J. Rolt, and T.E. Jones, Crowthorne, Berkshire, 1975.
- 67. Troxell, George E., Harmer E. Davis, and Joe W. Kelly, <u>Composition</u> <u>and Properties of Concrete</u>, McGraw-Hill Book Co., New York, 1968.
- 68. U.N. Economic Commission for Asia and the Far East, <u>Earthmoving by</u> <u>Manual Labour and Machines</u>, Flood Control Series No. 17, Report and discussion papers of the Working Party on Earthmoving Operations, Bangkok, 1961.
- 69. U.S. Army Engineer School, <u>Student Reference Section I Soils</u> <u>Engineering</u>, Fort Belvoir, Virginia, Vol. I, March 1967, and Vol. II, July 1969.
- 70. _____, S<u>tudent Reference Section II Flexible Pavements</u>, Fort Belvoir, Virginia, April 1967.
- 71. U.S. Bureau of the Census, <u>Historical Statistics of the United States</u>, <u>Colonial Times to 1957</u> and <u>Historical Statistics of the United</u> <u>States, Continuation to 1962 and Revisions</u>, Government Printing Office, Washington, D.C., 1960 and 1965.
- 72. U.S. Bureau of Labor Statistics, <u>BLS Handbook of Methods</u>, Bulletin 1711, Government Printing Office, Washington, D.C., 1971.
- 73. <u>Compensation in the Construction Industry: Employment</u> <u>Patterns, Union Scales and Earnings</u>, Bulletin 1656, Government Printing Office, Washington, D.C., 1970.
- 74. <u>Handbook of Labor Statistics 1975 Reference Edition</u>, Bulletin 1865, Government Printing Office, Washington, D.C., 1975.
- 75. <u>, Union Wages and Hours: Building Trades, July 1, 1970</u>, Bulletin 1709, Government Printing Office, Washington, D.C., 1971.
- 76. ______, <u>Wholesale Prices and Price Indexes</u> and <u>Wholesale Prices</u> <u>and Price Indexes Supplement</u>, Government Printing Office, Washington, D.C., various years.

- 77. U.S. Bureau of Public Roads, <u>Production Study Reports Construction</u> <u>Equipment Series</u>, <u>Production Study Reports - Cost Series</u>, and <u>Results of Production Cost Studies 1947-1966</u>, Unpublished field studies, Office of Research and Development, Washington, D.C., 1945-1966.
- 78. <u>Report of Studies Conducted on Cement Concrete Paving</u> <u>Project FAP 168B and Summary Report of Studies Conducted on Cement</u> <u>Concrete Paving Projects FAP 124, FAP 185, and FAP 168B</u>, Submitted to T. Warren Allen, Chief, Division of Management, Bureau of Public Roads, Washington, D.C., by H.K. Church, Junior Highway Engineer, Ortonville, Michigan, July 31, 1929.
- 79. , <u>Report of Studies Conducted on Sheet Asphalt Paving</u> <u>Project</u>, Submitted to T. Warren Allen, Chief, Division of Management, Bureau of Public Roads, Washington, D.C., by Walter E. Labelle and Neil E. MacDougall, Engineer Students, and H.K. Church, Junior Highway Engineer, Liberty, Indiana, September 29, 1929.
- 81. U.S. Department of Agriculture, <u>Yearbook of Agriculture, 1931</u>, Government Printing Office, Washington, D.C., 1931.
- 82. U.S. Federal Highway Administration, <u>Cost of Operating an Automobile,</u> <u>Suburban Based Operation</u>, Office of Highway Planning, Highway Statistics Division, Washington, D.C., April 1974.
- 83. , <u>Production Efficiency Study on Large-Capacity, Rubber-</u> <u>Tired, Front-End Loaders - Final Report</u>, Report No. FHWA-RDDP-PC-520, Prepared by D.A. Bernard, T.R. Ferragut, and D.L. Neumann, FHWA Region 15, Arlington, Virginia, May 1973.
- 84. U.S. Office of Business Economics, <u>Business Statistics</u>, A Supplement to the <u>Survey of Current Business</u>, Government Printing Office, Washington, D.C., various years (1932 edition is titled <u>1932 Annual Supple-</u> ment, published by U.S. Bureau of Foreign and Domestic Commerce).
- 85. <u>The National Income and Product Accounts of the United</u> <u>States, 1929-1965, Statistical Tables</u>, A Supplement to the <u>Survey</u> <u>of Current Business</u>, Government Printing Office, Washington, D.C., 1966.
- 86. Vance, Jr., Lawrence Lee, <u>Cost Functions for Comparison of Low-Cos</u> <u>Transportation Technologies</u>, D.Eng. Thesis, Graduate Division, University of California, Berkeley, 1970 (Reprinted by Xerox University Microfilms, Ann Arbor, Michigan, No. 71-20,753).
- 87. Wahls, H. E., et.al., <u>The Compaction of Soil and Rock Materials</u> for Highway Purposes, NTIS PB-227931, Department of Civil Engineering, North Carolina State University, Raleigh, August 1966.
- 88. Walker, Frank R., <u>The Building Estimator's Reference Book</u>, Frank R Walker Company, Chicago, 1957.
- 89. Warren Brothers Company (Division of Ashland Oil, Inc.), Telephone conversations with Don Woods and Benjamin Richter, Cambridge, Massachusetts, 1976.
- 90. Winfrey, Robley, <u>Economic Analysis for Highways</u>, International Tex book Company, Scranton, Pennsylvania, 1969.
- 91. Woods, Kenneth B., Donald S. Berry, and William H. Goetz, editors, <u>Highway Engineering Handbook</u>, McGraw-Hill Book Co., New York, 1960.
- 92. Yoder, E. J., <u>Principles of Pavement Design</u>, John Wiley and Sons, New York, 1959.
- 93. _____, and M.W. Witczak, <u>Principles of Pavement Design</u>, John Wiley and Sons, New York, 1975.
- 94. U. S. Department of the Army, <u>Utilization of Engineer Construction</u> <u>Equipment - Volume A: Earthmoving, Compaction, Grading and</u> <u>Ditching Equipment</u>, Department of the Army Technical Manual TM5-331A, Government Printing Office, Washington, D. C., August 1967.

B.4 Tables of Results

Applying factor prices at each of the price periods to the resource requirements of each of the technical packages in each technology period yields the full set of unit costs for all stages of construction as given in Table B.5. Table B.5A covers the 1920's technical packages at the prices of 1930 (B.5AA), 1956 (B.5AB), 1974 (B.5AC), and a developing country (B.5AD); similarly B.5B covers the 1950's technical packages and B.5C the 1970's.

Table B.6 presents the full set of labor and capital requirements of each technical package used throughout the analysis of the results; that is, for each technology period, it gives the amount of capital, measured in terms of investment cost at 1974, and the amount of labor, measured in terms of unskilled men, required to achieve a certain rate of production for each technical package in each stage of construction. The capital component is simply:

∑ all equipment in technical package	investment cost of the piece of equipment in 1974 dollars	x	hours required by the piece of equipment to produce a unit of output	investment required to produce so many units of output per hour
	(\$)	x	(hours/output)	= (\$/output per hour)

The labor component is simply:

(skilled man-)x(\$/skilled man-hour hours/output)x(\$/unskilled man-hour)+(unskilled man-)=(unskilled men/) output per hour)

Table B.6A covers the 1920's technology, B.6B the 1950's, and B.6C the 1970's. It might be noted that in the case of Figure 4.1b, where the skilled labor component for both the 1920's and 1970's is weighted by the wage ratio of 1974, the labor component for the 1920's technology is calculated by multiplying the figure for skilled labor in Table B.6A by 0.654 (i.e., $\frac{1.25}{1.91} = 0.654$ which is the wage ratio for the 1970's over that for the 1920's) and adding this to the figure for unskilled labor in the table.

Table B.7 is a collection of data used in plotting Figures 4.1c, e, and f, where the sensitivity of the results to the measurement of capital requirements is being tested; the figures for the labor component in these plots come in all cases from Table B.6. Table B.7a gives the 1920's technical packages for excavation/hauling at 100 meters with capital measured in terms of depreciation cost at 1974,* investment cost at 1930, and investment cost under developing conditions; Table B.7b similarly covers the 1970's technical packages.

-

^{*}Investment cost (\$) in the equation above is replaced by hourly depreciation cost at 1974 (\$/hour - investment cost at 1974 divided by lifetime in hours); the result becomes depreciation cost per unit of output (\$/output). Labor's units of measure get switched around slightly to read unskilled man-hours per unit of output (unskilled man-hours/output).

TABLE 8.5AA: UNIT COSTS OF THE 1920'S TECHNICAL PACKAGES FOR ALL STAGES AT THE PRICES OF 1930.

STAGE/TE	CHNICAL		LABOR			200	IPMENT		E	OUTPMENT		
PACKAGE	NURBRA	SKILLED	TASKILLED	TOTAL	INT/DEP	MAINT/BIS	C PHEL	TOTAL	HORSER	ND HOPSE	MATEFIALS	TOTAL
SITE PRE	IP (3/HA)	•			·				······			
	11	97.243	396.3645	493.607	1.0668	0.4539	0.0	1.5206	6.13A	7.659	35.ć 8	536.743
	.21	19.222	9.9799	29-202	13.5980	10.2074	29.5529	53,3583	0.0	53.358	0.0	82.561
EXC/RAUL	(\$/100BCM)											
21												
	1-1	12.823	68.1462	80.969	0.7677	0.3314	0.0	1.0992	0.0	1.399	6.0	92.763
	1-2	12.000	69.3087	91.189	1-0321	0.4460	0.0	1.4780	0.0	1.473	0.0	92.n67
	2-1	10.440	55+8118	66.252	0.7556	0.3284	0.0	1.0940	0.755	1.859	0.0	59,121
	2-2	10.497	55.9743	66.472	1.0199	0.4429	0.0	1_4629	0.785	2.249	0.0	N9 719
	3-1	10.325	55.2101	65.535	1.1559	0.4699	1.2332	2.8590	0.0	2.859	0.0	69 391
	3-2	10.382	55.3726	65.755	1.4201	0.5845	1.2332	3.2373	0.0	3.234	0_ŭ	69 991
	4-3	1.508	8.3032	9.011	0.0614	0.0257	0.0	0.0877	3.547	3.634	C.0	11.445
	5-4	1.404	6.8315	9.236	0.0674	0_0400	0.0	0.1074	3.776	3.884	0.0	12.120
	6-5	3.315	22.6893	26.004	0.1636	0.1224	0.0	0.2359	7.128	7.413	0.0	73 19
61												
	1-1	12.A23	70.4567	63.279	0.7945	0.3430	J _0	1,1375	0.0	1.137	0.0	34.217
	1-2	12.840	70.3364	83.217	1.0655	0.4605	0.0	1.5260	0.0	1,525	0.0	44,743
	2-1	10.440	59.1223	69.562	0.7823	0.3400	0.0	1.1223	0.785	1,907	0.0	70.467
•	2-2	10.497	58.0019	68.499	1.0534	0.4574	0.0	1.5108	0.785	2.296	0.0	70.795
	3-1	10.325	57.5206	67.845	1.1825	0.4815	1.2332	2.8972	0.0	2.897	0.0	70.743
	3-2	10.382	57.4003	67.783	1.4535	0.5990	1.2332	3.2958	0.9	3.280	0.0	71.065
	4-3	1.508	9.0974	10.605	0.0668	0.0277	0.0	0.0945	3.962	4.054	0.0	14.6+1
	5-4	1_404	7.2262	9.630	0.0717	0.0428	0.0	0.1145	4.086	4.200	0.0	12.431
	6-5	3, 315	22.9190	26.233	0.1677	0.1256	0.0	0.2933	7.248	7.542	0.0	11.775
	7-6	0.435	0.0	0.435	0.3415	0.2558	0.6215	1.2199	0.0	1,219	0.0	1-654
	10-7	2.360	3.4693	5.829	2.2976	2.0464	0.5827	4.9267	0.774	5.701	0.0	11,020
	10-8	2.353	3.5018	5.855	2.9214	2.3411	2.1366	7.3991	0.0	7.399	0.0	13,254
	10-9	6.202	1.9855	8.247	4.3048	3.9040	4.4777	12.6965	0.0	12.687	0.0	29.934
98												
	1-1	12.823	72.2377	85-060	0.8151	0.3519	0.0	1.1670	0.0	1.167	0.0	96. 227
	1-2	12.890	71.9007	84.781	1.0913	0.4716	0.0	1.5629	0.0	1.563	U _0	46.366
	2-1	10.440	59.9032	70.343	0.8023	0.3489	0.0	1, 15 19	0.785	1 917	0.0	72.243
·	2-2	10.497	59.5663	70.064	1.0791	0.4686	0.0	1.5477	0.785	2,111	0.0	.72.196
	3-1	10.325	59.1016	69.026	1.2031	0.4904	1.2332	2.9268	0_0	2.927	0.0	72.551
	3-2	10. 392	58.9646	69.347	1.4793	0.6101	1.2332	3.3227	0.0	3, 123	0.0	72.671
	4-3	1.508	9.7111	11.219	0-0710	0.0291	0.0	0,1002	4.282	4.342	0.0	15.601
	5-4	1.404	7.5330	8.937	0.0751	0.0449	0.0	0.1200	4.324	6. 244	0.0	13.342
	6+5	3, 315	21.0985	26.013	0. 1710	0.1287	0.0	0.2192	7.341	7. 040	0.0	14 054
	7-6	0.509	0.0	0.507	0.3994	0.2991	0.7268	1.4252	0.0	1.425	0.0	1.014
	10-7	2.360	3,5431	5,903	2.3041	2.0506	0.5827	4.9376	0.813	5.751	0.0	11 464
	10-8	2.351	1.5258	5.879	2. 9334	2.3471	2.1613	7.4418	0.0	7.447	0.0	11 120
	10-9	6-296	1,9855	8,282	4.3218	3.9194	A. 5085	12.7497	0.0	12.750	0.0	21 020
601			1010.00					1201421		17.6 / 30	V• V	2 (• 17 3 (
- • ••	1-1	12.821	102.4781	115,301	1, 1647	0.5034	0.0	1.6691	0.0	1.649	0.0	116 040
	1-2	12.000	98.3987	111.279	1.5290	0.6613	0.0	2.1904	0.0	2 140	0.0	913 uro

401

.

.

(TABLE 1	B.5AA CONT	INUPD)										
STAGE/TI	ECHNICAL		LABOP			<u> </u>	ARNT		EQ	UIPHENT		
PACKAGE	NUMBER	SKILLED	DNSKILLED	TOTAL	INT/DEP	MAINT/MISC	PURL	TOTAL	HORSE AN	DHORSE	HATPSIALS	TOTAL
	2-1	10.440	90.1437	100-584	1-1525	0.5004	0-0	1,6529	0.785	2.438	0.0	103.021
	2-1	10.497	86.0643	96.562	1.5169	0.6503	0.0	2.1752	0.785	2.960	0_0	99.522
	3-1	10.325	89.5420	99-867	1-5527	0.å419	1.2332	3.4279	0_0	3.428	0.0	103.295
	3-2	10.382	85.4626	95.845	1.9171	0.7998	1.2332	3.9501	0.0	3.450	0.0	99.795
	4-3	1_50R	20.1021	21.610	0.1417	0.0543	0_0	0.19KU	9.703	9_899	0_0	31.509
	5-4	1.404	12.6954	14_100	0,1319	0.0815	0.0	0.2133	9.166	8.579	0.0	22.479
	6-5	3. 3 15	26.1249	29.440	0.2256	0.1716	0.0	0.3972	8.920	9.317	0.0	38,757
	7-6	1.761	0.0	1.761	1.3924	1_0353	2.5158	4.9335	0.0	4.933	0.0	6.605
	8-7	0.944	5.3429	6.287	0.7175	0.6332	0.0	1.3507	4,257	5.607	0.0	11.894
	9-7	1.796	3.2792	5.075	1.2539	1.0578	0.9948	3.1055	1.331	4.637	0.0	9.711
	10-7	2.360	4.8014	7.161	2_4186	2-1212	0.5827	5.1225	1.469	6,592	0.0	13.753
	10-8	2.353	3.9350	6.288	3. 1381	2.4491	2.5806	8.1678	0.0	8-168	0.0	14.456
	10-9	6.883	1.9855	8.869	4.6100	4.1806	5.0326	12.8232	0.0	13.823	0.0	22.692
100 8												
	1-1	12.823	125.6067	138.429	1.4321	0.6193	0.0	2.0514	0.0	2.051	0.0	140.481
•	1-2	12.8P0	118.6633	131.543	1. R637	0.B064	0.0	2,6701	9.0	2.670	0.0	134.213
	2-1	10.440	113.2722	123.712	1.4199	0.6163	0.0	2.0362	0.785	2.821	0.0	126.533
	2-2	10.497	106.3289	116.826	1.8516	0.8033	0.0	2.6549	0.785	3.440	0.0	120.266
	3-1	10.325	112.6706	122.995	1.8201	0.7578	1.2332	3.8111	0.0	3.811	0.0	126.007
	3-2	10.382	105.7272	116.110	2.2518	0.9448	1.2332	4.4298	0.0	4.430	0.0	120.539
	4-3	1,508	28.0503	29.558	0.1958	0.0735	0.0	0.2693	13.949	14.118	0.0	43.676
	5-4	1.404	16.6425	18.047	0.1751	0.1094	0.0	0.2846	11.455	11.739	0.0	29.706
	6-5	3.315	28.4354	31.750	0.2674	0.2046	0.0	0.4720	10.127	10.599	0.0	42.349
	7-6	2.716	0.0	2.716	2.1324	1.5969	3.8806	7.6098	0.0	7.610	0.0	10.326
	8-7	0.944	6.3056	7.249	0.8049	0.6872	0.0	1.4922	4.759	6.251	6.0	13.501
	9-7	1.796	4.2418	6.037	1.3404	1.1118	0.9948	3.4470	1.833	5.280	0.0	11.318
	10-7	2.360	5.7641	8.124	2.5060	2.1753	0.5827	5.2640	1.971	7.235	0.0	15.359
	10-8	2.353	4.2479	6.601	3,2947	2-5271	2,9012	A.7230	0.0	8.723	0.0	15.324
	10-9	7.332	1.9855	9.318	4.8304	4.3903	5.4334	14.6441	0.0	14.644	0.0	23.962
1658						·			-			
	1-1	12.823	162.9590	175.782	1.8639	0.8064	0.0	2.6703	0.0	2.670	0.0	178.452
	1-2	12.680	151.3947	164.275	2.4043	1.0406	0.0	3.4449	0.0	3.445	0.0	167.720
	2-1	10.440	150.6245	161-064	1.8518	0.8034	0.0	2.6551	0.785	3.440	0.0	164.504
	2-2	10.497	139.0603	149.558	2. 3922	1.0376	0.0	3.4297	0.785	4.215	0.0	153 772
	3-1	10-325	150-0229	160-348	2.2520	0.9447	1.2332	4.4301	0.0	4.430	0.0	164.778
	3-2	10, 382	138.4596	148.841	2.7924	1-1791	1.2332	5-2047	0.0	5.205	0.0	154.046
	4-3	1.508	40.8841	42.392	0.2831	0.1046	0.0	0.3877	20.546	20.934	0.0	63.326
	5-4	1. 0.04	23-0263	24-431	0-2452	0.1546	0.0	D. 399B	16.451	16.851	0.0	41.281
	6-5	3. 115	32, 17 18	35.487	0.3349	0-2581	0_0	0.5930	12.078	12.671	0.0	48.158
	7-6	4.270	0.0	4-270	3. 3522	2.5103	6. 1004	11,9629	0.0	11-963	0.0	16.233
	A-7	0.944	7.8579	A. 802	0.9459	0.7744	0.0	1.7203	5.569	7.289	0.0	16.091
	9-7	1.796	5.7942	7.590	1.4814	1.1990	0.9948	3.6752	2-643	6.310	0.0	13.908
	10-7	2, 360	7.3164	9.676	2.6470	2-2625	0.5827	5,4922	2.701	8.274	0.0	17.950
	10-A	2,161	4.7537	7, 104	3, 5475	2.65.1	3.4102	9.6199	0_0	9.620	0.0	16.726
	10-9	R.047	1.9855	10-043	5- 1865	4.7029	6.0809	15.9703	0.0	15.970	0.0	26-013
50 0 m				100043	35 1403	74/26/	384447	(20) (43		,		
	1-1	12.023	358.6431	371-466	4, 1262	1.7868	0.0	5.9130	0.0	5.913	0.0	377.379

(TABLE	R.SAA CONTINU	ED)										
STAGE/	TECHNICAL '		LABOR	1		<u>1002</u>	PERNT		E	DUI PAENT		
PACKAG	<u>ie Kumber</u>	SKILLED	UNSKILLED	TOTAL	INT/DEP	HAINT/HISC	PUEL	TOTAL	horse A	ND HOPSK	MATERIALS	TODAL
	1-2	12,000	322.8672	335.747	5.2363	2.2679	0.0	7.5042	0.0	7.504	0.0	343.251
	2-1	10.440	346.3086	356.749	4.1141	1.7937	0.0	5.8974	0.785	6.643	0.0	363.431
	2-?	10.497	310.5327	321.030	5. 2242	2.2648	0.0	7_4990	0.785	H.274	0.0	323.304
	3-1	10.325	345.7070	356.032	4.5143	1.9253	1.2332	7.6728	0.0	7.673	0.0	161.705
	3-2	10.382	309.9312	320.313	5.6244	2.4063	1.2332	9.2640	0.0	9.254	0.0	329.577
	4+3	1.508	109.1219	109.630	0.7407	0.2673	0.0	1.0079	55.025	56.013	0.0	166.263
	5-4	1.404	56.4496	57.854	0.6123	0.3912	0.0	1.0034	42.608	43.612	0.0	101.465
	6-5	3.315	51.7505	55.065	0.6886	0.5383	0.0	1.2269	22.291	23.518	0.0	78.584
	7-6	12.374	0.0	12.374	9.7131	7.2738	17.6763	34.6633	0.0	34.663	0.0	47.037
	8-7	0,944	15.9907	16.943	1.6853	1.2316	0.0	2,9169	9.416	12.771	0.9	29.676
	9-7	1.796	13.9349	15.731	2. 2208	1.6562	0.9948	4.8717	6.491	11.702	0.0	27.491
	10-7	2.360	15.4572	17.817	3.3864	2.7197	0.5827	6.6998	7.029	11.717	0.0	11.514
	10-8	2.353	7.4007	9.751	4.8720	1.3132	6.1323	14.3174	0.0	14-317	0.0	24.071
	10-9	11.856	1.9855	13.841	7.0515	6. 1929	9.4723	22.9167	0.0	22.017	0.0	36.759
800a												
	1-1	12.823	533.8643	546.687	6.1520	2.6646	0.0	4.8166	0.0	6.817	0.0	555.503
	1-2	12.890	476.4159	489.296	7.7724	3.3669	0.0	11, 1391	0.0	11.139	0.0	500-435
	2-1	10.440	521.5298	531.970	6.1399	2.6616	0.0	9.8014	0.785	9.536	0.0	541.556
~	2-2	10.497	464.0813	474.579	7.7602	3.3637	0.0	11,1239	0.785	11.309	0.0	496.494
5	3-1	10.325	520-9282	531.253	6.5401	2.8031	1.2332	19.5764	0.0	10.576	· U.O	141 823
ω	3-2	10.382	463.4797	473.862	8. 1604	3.5053	1.2332	12.8989	0.0	12.179	0.0	4P5.761
	4-3	1.503	169.1259	169.834	1.1503	0.4129	0.0	1.5633	97.239	93.502	0.0	259.436
	5-4	1.404	86.3771	87.701	0.9409	0.6030	0.0	1.5439	66.031	67.375	0.0	155.357
	6-5	3.315	69.2834	72.598	1.0053	0.7893	0.0	1.7946	31.439	33.234	0.0	105.432
	7-6	19.625	0.0	19-625	15.4055	11.5366	29.0355	54.9776	0.0	54.970	0.0	74.003
	A-7	0.944	23.2910	24.235	2.3476	1.6411	0.0	1.9889	13.621	17.510	G.U	41,945
	9-7	1.796	21.2272	23.023	2.8931	2.0657	0.7949	5.9436	10.695	16.639	0.0	19.662
	10-7	2,360	22.7495	25.109	4.0487	3.1292	0.5827	7.7606	10.933	18.574	0.0	41.70}
	10-8	2.353	9.7653	12.118	6.0550	7 . 9027	8.5556	14.5133	0.0	19.513	0.0	30.631
	10-9	15.251	1.9855	17.237	8.7188	7.9036	12.5040	29.1264	0.0	29.126	0.0	46.363
SPR/C	ORP (\$/1008CA) 3%											
	11	4,270	22.3163	26.587	0.0957	0.0537	0.0	0.1495	0.596	0.746	0.0	27, 113
	21	2.670	1.9675	4.638	0.3214	0.1720	0.0	0.4934	2.053	2.546	0.0	7.184
9	8%											
	11	5.203	24.4703	29.673	0.2960	0.1880	0.0	0.4840	7.R44	3.328	0.0	14-001
	21	2.670	4.1215	6.792	0.5217	0.3063	0.0	0.8279	4.101	5.129	0.0	11.921
	12	4.512	21.7447	26.257	0.2611	0.2096	0.4316	0.9023	9.0	0.902	0.0	27.159
	22	3. 396	1.3959	4.791	0.4868	0.3278	0.4316	1.2462	1.457	2.703	0.0	7.404
	32	2.222	0.0	2,222	0.9749	0.8264	0.7972	2.5985	0_0	2.598	0.0	4 920
SURFA	CING											
GRAVE	L (\$/100CCM)											
	- 11	3, 787	21.7327	25-520	0.2200	0.1380	0.0	0.3580	2-034	2. 142	5 36 - 54	554,453
	21	1_220	7.6413	8,861	0. 3211	0,1921	0.0	0.5132	2.662	1.175	536.54	548 574
	12	5-629	19.7812	25-412	0.4688	0.3933	0_8496	1,7117	0.0	1.712	576_54	563 665
	22	2.636	5.6919	A. 32A.	0,5699	0.4474	0_8496	1.8669	0.678	2.495	536.54	547 360
W BM	(\$/100CCM)	_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			-19977		4494 V				1.108.94	.7774.794

.

,

•

.

.

.

.

(TABLE B.SA	A CONTINU	UFC)										
STAGE/TECHN	ICAL		LABOR			EQUIP	MENT		E	DUTPMENT		
PACKAGE NUM	Ber	SKILLFD	UNSKILLED	TOTAL	INT/DRP	MATNT/MISC	PHEL	TOTAL	HORSE A	ND HOPST	MATEFTALS	TOTAL
2	11	19.464	34.4161	53.880	5.6042	4.5796	3.2951	13.4792	5.001	19.4A0	640.15	712.508
DEST/G (S/1	0058)							-				
1	111	1.070	4.6690	5.740	0.2861	0.2072	0.2295	0.7224	0.0	0.723	13.70	20.163
1	121	0.806	2.1059	2-912	0.5604	0.4554	0.6365	1.6522	0.0	1.652	13.70	19.265
DBST/W (\$/1	00SA)											
1	111	1.070	4.6690	5.740	0.2861	0.2072	0.2295	0.7228	0.0	0.723	12.19	18.457
1	121	0.806	2.1059	2.912	0.5604	0.4554	0.6365	1.6522	0.0	1.652	12.19	16.759

,

.

404

.

,

,

STAGE/T	ECHNICAL		LABOR			EQU	IPMENT		ε	OULPHENT		
PACKAGE	NUMBER	SKILLED	UNSKILLED	TOTAL	INT/DEP	MAINT/HIS	FUEL	TOTAL		ND HDRSE	MATERIALS	TOTAL
SITE PR	EP (\$/HA)					<u> </u>						
	11	350.295	2033.5222	2383.817	3.1678	1.3523	0.0	4.5202	11.253	15.773	46.15	2445.735
	21	69.244	51,2011	120.445	39.9915	30.4169	38.0837	108.4939	0.0	108.494	0.0	228.933
FXC/HAU	(\$71000CM)		,						•••			
24071140		*										
	1-1	46-190	349.6196	395.810	2.2776	0.9877	0.0	3-2653	0.0	3.265	0.0	329.075
	1-2	46.398	350.4531	396.451	3-0615	1.1290	2.0	4.3905	0.0	4, 191	0.0	401-241
	2-1	17.607	286.1386	323.946	2.2411	0.9786	0.0	3.2197	1.439	4.659	0.0	328.605
	2-2	37.915	287.1721	324.987	3.0250	1.3199	1.0	4.3450	1.439	5.784	0.0	330.771
	1_1	37.193	283_2520	320.445	3,4253	1.4006	1.5892	6.4149	0.0	6.415	0.0	326 841
	3-2	37.400	284.3954	321.494	4 2092	1 7417	1.5892	7.5402	0.0	7.540	0.0	329 326
	6-3	5.432	42.5989	49 031	0.1916	0.0767	0.0	0.2583	6.503	6.762	0.0	54 702
	5-4	5.059	35.0484	40.107	0.1990	0.1101	0.0	0.3181	A. 924	7.242	3.0	47.343
)-4 6-5	11.047	116.6067	128 348	0 4 9 1 1	0 3447	0.0	0.9101	13.067	12.013	0.0	142.261
	0-7	110772	11014005	120.140	0.4011	0.3041	0.0	4 1475	191001			1411101
91	1-1	46.190	361 . 6731	A07 A66	2 1549	1 0222	3 - 0	3,3790	0.0	3. 179	0. 0	411-043
	1-1	44 309	340 9567	407.364	2.1408	1 2723	2.0	4 5221	0.0	4 533	0.0	411 787
4	2-2	37 407	300 1031	336 800	3.1000	1 0121	0.0	2 2 2 2 2 4	1 4 10	4 773	0.0	346 573
<u> </u>	2-1	37.007	270+1921	333.030	247207	1 1433	2.0	2+2277	1 4 40	F 024	0.0	3401312
0.	2-2	314073	271+2751	333.370	341299	1.1012	1 6903	4 6304	1.434	2.920	0.0	341+310
	2-1	27+193	297.1077	332.290	3.77972	1 7050	1.54072	0.7200	0.0	7 407	0.0	110 671
	5-2	514400	294.4700	591.000	4.1000	1./050	1.0072	1.002	7 74 7	7.073	0.0	334+317
		2.432	0610.00	72.107	0.1910	0.0024	0.0	0.2000	7.400	7.243	0.0	24.047
	7-4	5.059	37.0734	42+132	0.2116	0.1275	0.0	U.3392	12 280	1.510	0.0	44.402
	5-7	11,942	117.5792	129.521	9.4932	0.3744	0.0	0.0010	134203	19,120	0.0	1434011
,	7-6	1+207	0.0	1.567	1.0038	0.7622	0.0010	2.7073	0.0	2.301	0.0	9+134
	10-7	4.500	17.7989	26.299	6.7365	6.0985	1.2980	14-1159	1.419	17.772	0.0	41-851
1	10-6	9+475	17.9656	26.441	8.5791	6.9/6/	1.3004	18.8202	0.0	10.070	0.0	45.291
	10-9	22.556	10.1867	32.743	12.0279	11.6343	6.3173	30.5794	0.0	30.214	0.0	63.322
9 P .												
	1-1	46.190	370.6104	416.801	2.4179	1.0408	0.0	3.4667	0.0	3.467	0.0	42).263
	1-2	46.398	368.9816	415.280	3.2372	1.4055	0.0	4.6427	0.0	4.643	0.0	419.922
	2-1	37.607	307.3293	344.937	2.3914	1.0397	0.0	3.4211	1.439	4.960	0.0	349.797
	2-2	37.015	105.6006	343.416	3.2007	1.3964	J. 0	4.5971	1.439	6.036	0.0	349.451
	3-1	37.143	304.2427	341.436	3.5656	1.4615	1.5892	6.6167	0.0	6,616	0.0	348.052
	3-7	37.400	302.5139	339.914	4.3849	1.8192	1.5892	7.7923	0.0	7.792	0.0	347.706
	4-3	5.432	49.8222	55.254	0.2100	0.0869	0.0	0.2965	7.850	8.147	0.0	63.401
	5-4	5.059	38.6477	43.706	0.2217	0.1339	0.0	0.7556	7.928	6.283	0.0	51.993
	6-5	11.942	118,5053	130.447	0.5028	0.3821	0.0	0.8847	13.459	14.343	0.0	144.793
	7-6	1.033	0.0	1.833	1.1737	0.0913	0.9366	3.0016	0.0	3.002	0.0	4.834
	10-7	8.500	10.1786	26.679	6.7562	6.1104	1.2980	14.1651	1.491	15.656	3.0	42.334
	10-8	6.475	18.0891	26.564	8.6147	6.9946	3.3322	18.9415	0.0	18.941	0.0	45.505
	10-9	22.681	10.1867	32.867	12.6777	11.6800	6.3570	30.7147	0.0	30.715	0.0	63.592
60M		-								2-		
	1-1	46.190	525.7568	571.948	3.4548	1.5003	0.0	4.9551	0.0	4.955	0.0	576.902
	1 1	14 1	-1 A-79	FS1 12	1 5354	1 9708	0.0	5042	0 0	1 501	0 0	\$\$7 772

•

TABLE B.5AB: UNIT COSTS OF THE 1920'S TECHNICAL PACKAGES FOR ALL STAGES AT THE PRICES OF 1956.

÷.

(TABLE B.SAB CONTINUED)

STAGE/TECH	TECHNICAL LABOR					PMENT		EC	VIPMENT			
PACKAGE NL	JMBER	SKILLED	UNSKILLE	D TOTAL	LNT/DEP	MATHT/MISC	FUEL	TOTAL	HORSE AN	D HORSE	MATERIALS	TOTAL
	2-1	37.627	462.4758	500.093	3.4183	1.4912	0.0	4.9095	1.439	6.148	0.0	536.432
	2-1	37.815	441.5469	479.362	4.4990	1.9617	9.0	6.4605	1.439	7.899	0.0	487.261
	3-1	37:193	459.3892	496.582	4.6025	1.9130	1.5892	8.1047	0.0	8.105	v.0	504.687
,	3-2	37.400	438.4602	475.860	5.6932	2.3035	1.5892	9.6559	0.0	9.656	0.0	495.515
	4-3	5.432	103.1326	108.564	0.4192	0.1618	0.0	0.5813	17.799	18.370	0.0	126.935
	5-4	5.059	65.1331	70.192	0.3091	0.2428	2.0	0.6319	15.338	15.969	0.0	46.161
	6-5	11.942	134.0323	145.974	0.6635	0.5112	7.0	1.1747	16.353	17.528	0.0	161.502
	7-6	6.344	0.0	6.344	4.0629	3.0851	3,2420	10.3901	0.0	10.390	0.0	16.734
	8-7	3.400	27.4115	30.011	2.1103	1.8869	2.0	3.9972	7.804	11.901	0.0	42.613
	9-7	6.468	16.8235	23.292	3.6874	3.1522	1,2820	8.1215	2.440	10.562	0.0	33.854
1	0-7	8.500	24.6333	33,133	7.0928	6.3215	1.2980	14.7121	2.693	17.406	0.0	51.519
1	0-8	8.475	20.1882	28.663	9,2190	7.2986	3.8725	20.3001	0.0	20 490	0.0	49-053
	13-0	24.795	10.1867	34.982	13,5239	12.4584	7-0326	13 0147	0.0	33 015	0.0	47.007
1004							,	3310141	0.0	11111	V.V	
	1-1	46,190	644-4165	690.607	4.2478	1.8456	0.0	A. 0934	0.0	1. 003	0 0	AJA . 701
	1_2	46.199	ANA 7939	655.102	5.5281	2.4030	2.0	7 0101	0.0	7 041	0.0	443 123
	2-1	37.607	581.1355	A18.743	4.2114	1.8365	0.0	1.7JLL 6.0478	1 4 30	7 497	0.0	A24 220
	2-1	37.815	545.5129	581.328	5.4016	7.3033	0.0	7 8865	1.417	0 374	0.0	512 452
	3_1	37.193	578.0498	615.261	5.1056	2 2 2 5 8 3	1 5402	0 2421	1.437	0 34 3	0.0	A 74 694
)-1)-1	27 400	542.4243	570.976	4 4750	2 0167	1 50072	7.2731	0.0	7.243	0.0	501 007
	6-1	5.412	143.0103	140.342	0.5702	0 2101	1 • J • J • J • J	A 7083	35 380	34 107	0.0	176 579
	4-1 6-4	5 050	85 3831	00 447	0 5170	0 3241	2.0	0 0471	221207	20.107	0.0	112 285
)-4 4-5	11 04 7	145.9950	157.827	0.7861	0.3201	2.0	1 3050	10 644	10 047	0.0	177 703
	7-4	0 785	0.0	0 785	A 2670	4 7597	5 0007	14 0345	10.000	174902	0.0	36 813
	1-0- 9-7	7,707	32.3605	35.750	2 3478	7.7567		10.0201	0.0	10.920	0.0	29.912
	n-r n-7	50700 4 440		20 221	2 9 5 7 6 7 6	2.0407	1 2020	9 5/00	0.727	13.141	0.0	40.071
	9-7	0,407	21.1023	20.671	7 7604	3.3133	1.2020	8.7402	3+301	11.901	0.0	40+172
	LJ-7	7.709	27+7123	10+012	(1)204	0,4020	1.2980	12.1309	3.014	18+/45	0.0	20+314
		21440	21+1939	30.209	7+0712	1.3310	4.2071	21.49/9	0.0	21.498	0.0	71+105
	10-9	20.412	10+1001	30+377	14+1110	13.0330	1.2484	34+1132	0.0	34.773	0.0	(1+)/2
1024	1 _ 1	44 100	0.24 3600	803 344	6 5304	7 (077		7 0310		7		800 173
	1-1	PD.190	30.0000	502+24U	7 1214	2.4032	0.0	7.9318	0.0	7.932	0.0	890.172
	1-2	90.190	772 7400	810 374	7+1314 5 4031	3.1011	0.0	10.2325	0.0	10.233	0.0	1133+17/
	2-1	17.007	712 43030	761 364	7 4 921	2+7741	9.0	1.000	1.439	9.127	0.0	019.(JL
	2-2	37.013	713+9342	171+429	1.0747	3.0920	0.0	10.1404	1.434	11.020	0.0	102 1730
	3-1	37.193	109.0049	DVD+0/7	0.0707	2.0179	1.0092	11.0017	0.0	11-081	0.0	HT(+430
	3-2	31.400	110.3925	1911123	0.2791	3.7137	1.5842	13.3821	0.0	13.382	0.0	101.137
	9-3	2.932	209.1334	217.107	0.03/0	0.3116	0.0	1.1493	37.008	38.817	0.0	274.002
	7-9	2.029	118-1349	123.193	0.7240	0.4607	3.0	1.1847	30.160	31.345	0.0	154.538
	0-7	11.942	167.0774	176.997	0.9845	0.7692	9.0	1.7537	22.143	23.897	0.0	203-894
	7-6	15.383	0.0	15.303	9.8520	7.4807	7.0613	25.1942	0.0	25.194	0.0	40.577
	8-7	3.400	40.3146	43+715	2.7831	2.3078	0.0	5.0909	10.210	15.301	0.0	59.015
	7-7	6.468	29.7266	36.195	4.3602	3.5731	1.2820	9.2153	4.846	14.061	0.0	50.256
	10-7	. 8.500	37.5364	46.036	7.7657	6.7424	1.2980	15.8060	5.099	20.905	0.0	66.942
1	10-0	8-475	24.3863	32.061	10.4277	7.9065	4.9532	23.2874	0.0	23.287	0.0	56.149
1	10 - 9 , ,	29.024	10.1867	39.211	15.2163	14.0150	0.3833	37.6146	0.0	37.615	0.0	76.826
500M												
	1-1	46.190	1839.9958	1006.197	12.2364	5.3247	0.0	17.5631	0.0	17.563	0.0	1903.750

•	LTABLE B.SAN CONTINUE	ED)										
	STAGE/TECHNICAL		LABOR		,	EQUI	PMENT			OULPMENT		
	PACKAGE NUMBER	SKILLED	UNSKILLED	TOTAL	INT/DEP	MAINT/HISC	FUEL	TOTAL	HORSE	ND HORSE	MATERIALS	TOTAL
	1-2	46.399	1656-4502	1702.848	15.5109	6.7583	3.0	22.2891	0.0	22.239	0.0	1725.137
•	2-1	37-607	1776.7148	1014.323	12.2020	5.3156	2.0	17.5176	1.439	18.956	0.0	1833.279
	2-2	37.815	1593.1692	1630.984	15.4944	6.7492	9.0	22 24 36	1.439	23.682	0.0	1654.665
	3-1	37.191	1773.6282	1810.821	13.3962	5.7374	1.5872	20.7129	0.0	20.713	0.0	1831.534
	1-2	37.400	1590-1825	1627.483	16.6786	7.1710	1 5892	25.4388	0.0	25.439	0.0	1652.921
	4-1	5.41?	554.7122	560.144	2.1914	0.7965	0.0	2.9879	101.979	104.967	0.0	655.111
	5-6	5.059	299.6108	294.669	1.8076	1.1657	5.0	2.9733	78.115	81.099	0.0	375.759
	4-5	11.942	265-5024	277.444	2.0241	1.6043	0.0	3.6283	40.858	44.496	0.0	321.943
	7-6	44.573	0.0	44.573	28.5468	21.6765	22.7789	73.0020	0.0	73.902	0.0	117.575
	R - 7	3.400	A2-0801	85.480	4.9610	3.6702	0.0	8.6312	17.997	26.628	0.0	112,103
	9-7	A. 469	71.4921	77.960	6-5381	4.9355	1.2820	12 7556	12.633	25.188	0.0	1 13. 349
	10-7	8.510	70.3010	87.802	9.9435	8,1048	1.2980	19.3463	12,986	32.232	0.0	120.034
	10-1	8.475	37.9686	46.444	14.3382	9.4735	9.4495	32 6611	0.0	32.661	0.0	79,105
	10-0	62.707	10.1967	52.894	20.6917	19, 1513	12.7536	52.4966	0.0	52.497	0.0	135.391
	4000	424707	10.1101	26.014		LINUSES	1201990	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		~		137177
		44 100	2738 0543	2786 147	18.7466	7.9407	0.0	26.1873	0.0	26.187	0.0	2811.334
	1-1	46 100	21.00.7003	2400.417	23.0523	10-0332	0.0	33.0855	0.0	33.086	0.0	2521.702
	1-2 -	37 4 37	277702212	2770.017	18 2101	7 0314	0.0	24.1417	1.439	27.581	0.0	2740 RAT
	2-1	37 916	201340153	2418 751	33.0160	10 0241	0.0	13 0100	1.439	14.474	0.0	2451.21
		374767	2104879VC	3700 741	10 2043	8 3634	1 6402	20 1140	0 0	20.117	0.0	2710 110
4	27 L	374173	2012.39990	2107.101	14 3001	10 4-60	1 5803	24 2762	0.0	14 215	0.0	3451 494
0	3-2	51.400	2111+0717	417.272	24.2001	1 7304	1.0072	2 4 7 7 7 2	150 572	16.275	0.0	- 2 771+780
7	4-5	2.432	303.7872	904-011	3.9030	1.2300	0.0	4 6747	197+372	135 433	0.0	673 0/
	5-4	7.024	44361021	990.ZII	2.1110	1.7907	3.0	742171	E7 410	47 0/6	0.0	273404
	6-5	11.942	122.4241	367.396	2.9550	2.3521	J.U	7.3071	2(.030	02.743	0.0	
	7-6	70.695	0.0	10.075	43.2763	34.3199	30.1282	112+1041	26 072	4124/02	0.0	170.901
	8-7	1.400	119.4931	122.493	0.4114	4.8907	J.U	11.3070	29+912	30.1/4	0.0	15% 00
	9-7	6.468	108.9051	115.313	8.4590	0.1334	1.2020	13+4504	10 841	12.717	0.0	117 60
	19-7	8.500	116./149	125.215	11.8944	9.3252	1.2900	22.71/0	14.001	42+219	0.0	101-24
	10-5	8.475	50.1000	28.272	17.8309	11.6303	11.5723	41.0333	0.0	41.033	0.0	44.00
	10-9	54.739	10.1867	65.126	25.5863	23.5534	10.0004	03.HUU/	0.0	02.000	. 0.0	110+92
	SPR/COMP (\$/100BCM) 93%							0 4/3/				
	11	15.393	114.4923	129.875	0.2523	0.1601	0.0	U = 9929	1.043	1.730	0.0	171-51
	21	9.620	10+0941	19./14	0.9478	0.7120	0.0	1+4004	2+104	2.224	V.U	29673
	983							1 / 200	E 914		* ^	160.05
	11	10.742	125.5434	144.285	0.9695	0.5602	0.0	1.4244	7.214	0.044	0.0	120.45
•	21	9.620	21.1451	30.765	1.5351	0.9126	0.0	2.4477	1.887	10.132	0.0	41.09
	12	16.254	111.5598	127.814	0.7659	0.6246	0.5562	1.9400	U.U	1.947	0.0	154-10
	22	12.232	7.1616	19.393	1.4314	0.9770	U.555Z	2.9646	2.670	2.615	0.0	23.02
	32	8.002	0.0	8.002	Z.#625	2.4626	1.1588	6.4839	0.0	5,484	0.0	14.48
	SURFACING Gravel (\$/100ccm)											
	11	13.642	111.4981	125.140	0.6465	0.4112	9.0	1.0577	3.729	4.787	673.85	803.80
	21	4.395	39.2034	43.598	0.9445	0.5724	0.0	1.5168	4.880	6.397	673.08	723.87
	12	20.276	101.4966	121.772	1.3736	1,1722	1.0948	3.6405	0.0	3.641	673.88	779.29
	22	9.495	29.2019	38.697	1.6715	1.3333	1.0948	4.0997	1.151	5.251	673.88	717.82
	WBM (\$/100CCM)	1						· · · · ·	.			
	- 111	83.464	294.2720	377,738	16.0169	13.4495	7.3404	36.8068	7.672	44.478	773.51	1195.72

TABLE 8.5AB CONTIN	IVED)										
STAGE/TECHNICAL		LABOR			EQUIP	MENT		E			
PACKAGE NUMBER	SKILLED	UNSKILLED	TOTAL	INT/DEP	MAINT/MISC	FUEL	TOTAL	HORSE A	ND HORSE	MATERIALS	TOTAL
211	70.115	176.5694	246.684	16.3774	13.6475	7.3404	37.3653	9.168	46.533	773.51	1066.729
DBST/G (\$/1005M)											
1111	3,856	23.9542	27.810	0.8425	0.6175	0.2958	1.7557	0.0	1.756	19.68	49.250
1121	2.902	10.9041	13.707	1.6477	1.3570	9.8202	3.8250	0.0	3.925	19.68	37.216
DBST/H (4/1005M)											
1111	7.856	23.9542	27.810	0.8425	0.6175	0.2958	1.7557	0.0	1.756	17.17	46.739
1121	2.902	10.8041	13.707	1.6477	1.3570	9.8202	3.4250	0.0	3.825	17.17	34.704
									,		

,

•

•

.

۲

.

,

.

,

,

+

.

,

.

.

Ţ

,

STAGE/TE	CHNICAL		LABOR			EONI	(PARNT		Z	OUIPHENT		
PACKAGE	NUMBER	SKILLED	UNSKILLED	TOTAL	INT/DEP	HAINT/HISC	PURL	TOTA I.	HORSE A	ND HORSE	MATERIALS	TOTAL
SITE PRE	PO(\$/IIA)					·						
	11	1089.560	6789.8945	7979-457	6.5384	2.6579	0.0	9.1964	22.506	31.702	76.07	7987.230
	21	215.378	170.9595	306.338	93.7231	59.7862	64.0946	219,4039	0.0	218.404	0.0	604.742
BIC/HAUL	(\$/100BCM)							•				
28				•								
	1-1	143.671	1167.3748	1311.046	4.7609	1_9413	0.0	6.7022	0.0	6,702	0.0	1,317.748
	1-2	144.316	1170.1577	1314.474	6.4048	2.6121	0.0	9.0170	0.0	9.017	0.0	1323.491
	2 - 1	116-975	956.0806	1073.055	4.6981	1.9234	0.0	6.6214	2.878	9.499	0.0	1082.554
	2-2	117_620	958.8635	1076.483	6. 3420	2.5942	0.0	8.9362	2.878	11.014	0.0	1089.297
	3-1	115.685	945.7737	1061-459	7.2591	2.7524	2.7080	12.7195	0.0	12.720	0.0	1074_178
	3-2	116.330	948.5566	1064.886	8.9030	3.42.32	2.7080	15.0343	0.0	15.034	0.0	1079.921
•	4-3	16-895	142.2371	159.132	0.3980	0.1507	0.0	0.5487	13.007	13.555	0.0	172.687
	5-4	15.734	117.0261	132.760	0.4437	0.2342	0.0	0-6779	13.947	14.525	0.0	147_285
	6-5	37_143	380.6782	425.821	1. 1272	0.7168	0.0	1.8440	26 . 1 34	27.978	0.0	453.800
, 6M					_							
	1-1	143.671	1206.9539	1350-625	4.9270	2.0091	0.0	6.9361	0.0	6-936	0.0	1357-561
	1-2	144.316	1204.0926	1349.208	6.6131	2.6971	0.0	9.3103	0.0	9,310	0.0	1359-519
	2-1	116-975	995.6597	1112-634	4.8642	1.9912	0.0	6.8554	2.878	9.733	0.0	1122.367
	2-2	117.620	993.5984	1111-218	6.5503	2.6792	0.0	9.2295	2.870	12,107	0.0	1123.325
	3-1	115.685	985.3528	1101-038	7.4252	2.8202	2.7080	12.9514	0.0	12.953	0.0	1113.991
	3-2	116.330	983.2915	1099-621	9-1113	3.5082	2.7080	15.3276	0.0	15.328	0.0	1114.949
	4-3	16,895	155.8424	172.737	0.4326	0.1620	0.0	0.5945	14.526	15.121	0.0	187.958
	5-4	15.734	123.7875	139.522	0.4723	0.2505	0.0	0.7228	14.981	15.704	0.0	155.225
	6-5	37.143	392.5950	429.738	1.1559	0.7359	0.0	1.8918	26.577	28.469	0.0	458.207
	7-6	4-875	0.0	4.875	2. 3729	1.4981	1-3648	5.2358	0.0	5.236	0.0	10.111
	10-7	26.439	59.4304	85.869	16.4258	11.986.3	4.8030	33.2151	2.537	36-052	9.0	121.921
	10-8	26. 361	59.9870	R6.348	20.5055	13.7123	8,2151	42.4329	0.0	42.433	0.0	128.781
	10-9	70.159	14.0132	104-172	30.5901	22.0004	13.1559	06.0124	0+0	66.812	0.0	170.985
98									• •	7		
	1-1	14.3=671	1237.4626	1181.134	5.0551	2.0613	0.0	/ 1104	0.0	7.110	0.0	1468.250
	1-4	144.310	1231.6907	13/6-00/	b.//32	2.7020	0_0	7.0307	0.0	9-230	0.0	1.107.042
	2-1	110-975	1026.1685	1143.145	4,9923	2.0434	0.0	1-0.157	2.7/8	9.913	0.0	1153-057
	2-2	11/-020	1020. 1965	11.38.016	0./104	2.7440	0.0	9-4049	2.718	12-333	0.0	1150.349
	3-1	112.003	0.1012-0010	1131-540	1.0011	2.0/24	2.7080	11.1330	0.0	13.134	0.0	1144-080
	3-2	116.330	1010.0896	1126-419	9.2/14	3-3/.10	2.7080	15.5530	0.0	10.001	0.0	1141.972
	4-1	10.847	100-1000	101.250	U-4391	0.1/07	U_U	0.6300	15.700	16.330	0.0	194.581
	5-4	15.739	129.0441	144.778	0.4945	0.26.12	0=0	0.7577	15+856	10.613	0.0	161.192
	0-2	37.143	395.6870	432.830	1. 1785	0.7511	0.0	1.9296	26.917	28.847	0.0	461.677
	7-6	5.700	0.0	5.700	2.7747	1.7517	1.5959	6.1223	0.0	6.122	0.0	11.823
	10-7	26.439	60.6981	87.137	16.4/12	12.0706	4.8030	33.2849	2.981	36.266	0.0	123.401
	10-8	20.301	60.3992	86.760	20.5847	13+7475	8.2693	42.6015	0.0	42.601	0.0	129.362
	10-7	/0.346	J4.0132	104-559	30-1034	22.9004	13.4236	67.0894	0.0	67.089	0.0	171.648

7.2296 2.9487

9.4958 3.8735

10.1783 13.3693 0.0

0.0

0.0

0.0

10.178

13.369

0.0 1909.344

0.0 1843.298

•

TABLE B.SAC: UNIT COSTS OF THE 1920'S TECHNICAL PACKAGES FOR ALL STAGES AT THE PRICES OF 1974.

409

.

608

1-1

1-2

143.671 1755.4946 1899.166 144.316 1685.6128 1829.929

(TABLE B.SAC CONTINUED)

STAGE/TI	STAGE/TECHNICAL LABOP				PQUI	PABNT		T.	CHIPHENT .			
PACK AGE	NUMBER	SKILLED	UNSKILLE	<u>р тотаі</u>	<u>AZD/LKI</u>	RAINT/MISC	PIEL	TOTAL	UDESE A	ND HORSP	BATEFILLS	TOTAL
	2-1	116.975	1544.2004	1561.175	7.166 B	2.9309	0.0	10.0975	2.179	12.075	0.0	1674, 150
	2-1	117.620	1474.3186	1591.938	9_4330	3.8556	0.0	13.2996	2.870	16.166	0.0	1604.104
	3-1	115.6A5	1533.0936	1649.578	9 . 7278	3.7590	2.7080	16.1958	0.0	16.190	0.0	1665.774
	3-2	116.330	1464.0117	1560.341	11.9940	4.6945	2.7080	19.3866	0.0	19.387	0.0	1593.729
	4-3	16.895	344.1582	161.253	0.9119	0.3179	0.0	1.2299	35.579	36.904	0.0	341.761
	5-4	15.734	217.4785	233.213	0.8677	0.4772	0.0	1.3450	30.675	32.020	0.0	265 231
	6-5	37.143	447.5315	484.675	1.5594	1.0048	0.0	2.5632	32.707	35.270	0.0	519_944
	7-6	19.732	0+0	19.732	9+6047	6.0636	5.5244	21.1927	0.0	21.193	0.0	40.925
	8-7	10.575	91.5265	102.102	4,9419	3.7096	0.0	4.6505	15.600	24.259	0.0	126.361
	9-7	20.119	56.1733	76.292	8.5678	6.1954	2.1845	16.9477	4.480	21.929	0.0	99,121
	10-7	26.439	A2.2502	108.689	17.2444	12.4245	4.8030	34.4719	5.387	39.459	0.0	149.547
	10-8	26.361	67.4080	93.769	21.9316	14.3449	9.1900	45.4666	0.0	45.467	0.9	139.236
	10-9	77.123	34.0132	111-137	32.7391	24.4862	14.5745	71.7989	0.0	71.799	0.0	182.935
100 8												
	1-1	143.671	2151.6970	2295.368	4.8927	3.6274	0.0	12.5201	0.0	12.520	0_0	2107.98/
	1-2	144.316	2032.7539	2177.070	11.5775	4.7229	0.0	16.3004	0.0	16, 300	10.0	2191.170
	2-1	116.975	1940.4028	2057.377	8.8299	3.6095	0.0	12.4393	2.874	15-317	0.0	2072 695
	2-2	117.620	1821.4597	1939.079	11.5147	4.7051	0.0	15.2197	2,978	19.097	0.0	1959.177
	3-1	115-685	1930-0959	2045.781	11. 3909	4-4335	2.7080	19.5374	0.0	18.537	0.0	2064.314
	3-2	116.330	1811.1529	1927.482	14. 0757	5.5341	2.7080	22.3178	0.0	22.318	0.0	1943.300
	4+3	16.895	480.5139	497.409	1.2582	0.4306	0_0	1.6888	50.778	52.457	0.0	563 975
	5-4	15.734	285.0925	300. 627	1. 15 31	0.6409	0.0	1.7940	47,001	41,745	4.0	164 67
	6-5	17.141	487.1106	524.254	1.8484	1, 1995	0.0	1.0469	17.112	μη. 17 3	0.0	564 531
	7-6	30.417	0.0	30.417	14_8151	9.3530	8-5211	33 6000	0 0	12 644	0.0	13, 12
	A+7	10.575	108-0178	118.597	5. 5135	4.0251	0.0	0 5549	17 660	27 300	0.0	145.602
	4-7	20.119	72.6646	02.784	9.1594	6-5121	2 1845	17 8560	6 722	2 1 5 7 A	0.0	117.362
	10-7	26_#39	98.7010	125.180	17-8360	17.7411	4.8010	17.000	7.720	L2 600	8.0	107 789
1	10-8	26.361	72.7677	99.129	22.9616	14.8019	9 4941.	17 6775	0 0	47 654	2.0	146.786
	10-9	82.151	14.0112	116.166	34.2895	25.6560	15 4546	75 0001	0 0	75 400	1.0	191.56h
1658			JARGIJE	1101100	3462077		1264,140	F 74 4777 F	46.4	134400	4.0	
14.511	1-1	143 671	2791 5581	29 15 229	11 5786	H 773H	0.0	16 1020	0.0	16 102	n n	2351 571
	1-2	144.316	2593.4570	2717 771	14.9398	6-0950	0_0	21.0349	0.0	21.035	0.0	2758 409
•	2-1	116.975	2580.2639	2697.239	11. 5159	4.7055	0.0	16 2213	2.878	19.099	0.0	2716-119
	2-2	117.620	2182-1628	2499.782	14.8770	6.0771	0.0	10.426 (J	2.070	CER EC	0.0	2521-814
	3-1	115.695	2560 9570	2685 642	14 0768	5 5345	3 7080	200 - 74 I 33 310 a	0 0	230112	0.0	7707 961
	3-2	116.330	2371 8560	20030042	17. 4 380	6.0061	2 7000	2442177	0 0	224 317	0.0	2515.238
	4-3	16.995	700.1633	717 25R	1.8172	0.6175	0 0	2780324	75 735	77 765	0 0	795.023
	5-4	15.714	394 4502	410.104	1-6147	0-9055	0.0	7 5303	60 120	47 Had	0.0	473.025
	6-5	17 141	551 1172	588 260	2 1174	1 6117	0.0	2 97.02	44 786	19 115	0.0	61. 175
	7-6	47. RH7	· 0.0	47.847	23 2899	14 7033	13 3967	51 3939	0.0	51.149	0.0	99.236
	8-7	10.576	134 6000	145.185	6.4174	4_5350	1363737	11 0000	20.410	11 LLL	0 U U	176.624
	9-7	1V+J/J 26 146	1J760077 60 3840	110 374	10.1174	J J J J J J J J J J J J J J J J J J	VeV 3 100E	10 2205	449417	20 012		149 293
	10-7	200117 76 µ30	77+6300 176 1724	151 773	14 7600	13 2517	X • 17 40	17.3703	10 1042	27+V12 17 043		1-1-1-01
	10-9	404 437 36 364	7364 PQ 0141910	107 747	100 7077 91 4966	15 62017	11 010JU	.70.044/ 61 1064	104170	51 107		153 000
	10-9	40+J01 68 334	0 14 4 2 30 34 11 3 3	104 104	270 0499 14 7055	1000070 97 6467	1140313	3141707	0 0	JI417/	0.0	100 TOW 206 EAN
500=	IV-7 ,	7Ve£79		1470271	3047733	4143431	1000105	0 14 21 70	VeV	11 1 4 4 17	V.V	2412303
94411	1-1	143 494	6143 7100	6 207 303	25 4400	10 4664		3. 1461	0 0	26 115	0 0	6773 404
	1 1	14340/1	01439 LIAA	W40/+30J	6J0 9970	1004034	VeV	70.1134	VeV	26*113	VeV	3 34 3 6 9 7 19

410

.

1

.

.

ı.

	STAGE/TECHNICAL	-	LABOR			5093	IPARMT		1	OUIPHENT		
	PACKAGE NUMBER	SKILLED	HNSKILLE	D TOTAL	INT/DEP	MATNE/11SC	FUEL	TOTAL	HORSE A	ND YOPSE	BATESIALS	TOTAL
	1-2	144.316	5530-9555	5675.168	32.5544	13.2930	0.0	45.8774	0.0	45.837	0.0	5721.005
	2-1	116.975	5932.4180	6049.395	25.5869	10.4475	0.0	16.0345	2.878	38.912	0.0	6749.105
	2-2	117.620	5319.5625	5437.180	32.4915	13.2651	0.1	45.7560	2.978	49.634	0.0	5485.416
	3-1	115.695	5922.1094	6037.797	28.1480	11.2765	2.7080	42,1326	0.0	42.133	0.0	6979.926
	3-2	116.330	5309.2539	5425.582	35.0526	14_0941	2.7080	51.8547	0.0	51.355	0.0	5477.437
	4-3	16.895	1852.1748	1969.070	4.7462	1.5654	0.0	5-3116	203.95A	210.270	0.0	2079.340
	5-4	15.734	967.0063	°82.740	4.0313	2.2911	0.0	6.1223	156.231	162,553	0.ů	1145.293
	6-5	37.143	886.5083	923.651	4 . 774A	3. 1531	0.0	7.9279	41.735	89.003	0.0	1013.114
	7-6	138.641	0.0	138.641	67.4841	42.6037	38.8151	149.9030	0.0	148.303	0.0	237.54.
	8-7	10.575	274.0640	284.639	11.4901	7.2136	0.0	19.7038	35.993	54.697	0.0	139.136
	<u>9</u> -7	20.119	238.7110	258.830	15.1161	9.7074	2+1845	27.0010	25.265	52.260	0.0	311.095
•	10-7	26.439	264.7876	291-226	23.7926	15.9295	4.3030	44.5251	25.772	70.297	0.0	361-523
	10-8	26.361	126.7766	153,138	33.3408	19.4057	16.9891	69.7357	0.0	69+736	0.0	227.17
	10-9	132.838	34.0132	166.851	49.9225	37_4441	24.3234	111_6900	0.0	111.690	0.0	278.541
	800n											
,	· 1-1	143.671	9145,3281	9289.000	38.2495	15,6070	0.0	53.8565	0.0	53.057	0.0	9342.952
	1-2	144.316	8161.2109	8305.527	48.3276	19.7196	0.0	64.0473	0.0	69.047	0.9	4273.574
	2-1	116.975	8934.0352	9051.012	38.1866	15.5891	0.0	53.7758	2.978	56.053	0.0	9137.460
	2-2	117.620	7949.9180	8067.539	48.2648	19.7017	0.0	67.9665	2.979	70.944	0.0	9139.343
~	3-1	115.685	8923,7266	9039.414	40.7477	16.4181	2.7080	59.9739	0.1	59.474	U_ ()	9094,281
1	3-2	116.330	7939.6094	8055.941	50.8258	20.5307	2,7080	74.0646	0.0	74.055	0.0	9130-904
	4-3	16.895	2883.4956	2900.390	7.3687	2.4157	0.0	9.7974	319.143	324.930	0.0	3279.319
	5-4	15.734	1479.6782	1495.412	6.1951	3,5317	0.0	9.7268	242.115	251.642	0.0	1747.255
	6-5	37.143	1186-8555	1223.999	6.9754	4.6230	0.0	11.5984	115.277	126.875	0.0	1150.474
	7-6	219.A92	0.0	219-892	107.0330	67.5717	61,5625	235.1671	0.0	236.167	0.0	456.059
	8-7	10.575	398.9854	409.561	15.9715	9-6123	0.0	25.5838	49.044	75.527	U. O	495.023
	9-7	20.119	363.6321	303.751	19.5974	12.0991 .	2.1845	33.0810	39.216	73.097	0.0	450.964
	10-7	26.439	389.7090	416.147	28.2739	18.3282	4.0030	51.4052	39.722	91.128	0.0	507.275
	10-8	26.361	167.2932	193.644	41. 1252	22.8586	22.3104	86.2944	0.0	86.294	v. 0	779.339
	10-9	170-884	34.0132	204.897	61.6572	46 <u>+2927</u>	30.9806	138-9396	0.40	138,931	0.0	343.427
	SPR/CONP (3/100BCA) 93%											
	11	47.847	382.2878	430.135	0.6398	0.3147	0.0	0.9545	2.187	3.141	C.0	433,277
	21	29.921	33.7040	63.625	2.1451	1.0074	0.0	1.1524	7.528	10.590	0.0	74.305
	98%											
	11	58.294	419.1873	477.481	2.0674	1.1011	0.0	3.1695	10.429	13.597	0.0	491.078
4	21	29.921	70.6032	100-524	3.5726	1.7937	0.0	5.3664	15.769	21.136	0.0	121.560
	12	50.556	372.4963	423.052	1.8580	1.2275	0.9478	4.0134	0.0	4.033	0.0	427.085
•	22	38.046	23.9123	61.958	3, 3633	1.9202	0.9478	6-2313	5,341	11.572	0.0	73.530
	32	24.891	0.0	24.891	6.8523	4.8401	2.3739	14.0663	0_0	14.056	0.0	18.957
	SURFACING			•								
	GRAVEL (\$/100CCM)											
	11	42.431	372,2900	414.721	1.5294	0.8082	0.0	2.3376	7.459	9.796	1023-64	1448,157
	21	13.671	130.8993	144.570	2.2099	1.1249	0.0	3_3348	9.761	13.096	1023-64	1141.306
	12	63.066	338.9953	401.961	3.3809	2.3038	1.8655	7.5502	0.0	7.550	1023_64	1433.152
	22	29.534	97.5046	127.038	4.0613	2.6206	1.8655	8,5474	2.302	10_349	1323-64	1161.524
	NER (\$/100CCR)											
	111	259.614	982.5701	1242.184	40.8017	26.4342	27.1618	94.3977	15.343	109.741	1110.92	2962-943

·

.

.

.

STAGE/TE	CHNICAL		LABOR		_	RQUT	PMENT	_	E	OUTPHENT		
PACKAGE	NUMBER	SKILLED	UNSKILLED	TOTAL	INT/DEP	MATNT/415C	FUEL	TOTAL	HORSE A	ND HOBSE	HATFPIALS	707
	211	218.086	589.5625	807.649	41.6308	26.8234	27.1618	95.6150	18.336	113.952	1110.92	2032
FEST/G ((\$/100SN)											
	1111	11_994	79.9826	91.977	1.9391	1.2138	0.5040	3.6567	3.0	3.657	45.60	141
	1121	9.028	36.0746	45.102	3.8722	2.6672	1.3976	7,9370	0.0	7.937	45.06	98
DBST/W (\$/10058)								,			
	1111	11.994	79.9826	91.977	1.9391	1.2136	0.5040	3.6567	0.0	3.657	38,13	133
	1121	9.028	36.0746	45.102	3.0722	2.6672	1.3976	7.9370	0.0	7.917	38.13	91

• • • • • •

.

· ·

.

.

, · · ·

STAGE/TEC	CHNICAL		LABOR			EOU	IDSENT		E	20123537		•
PACKAGE	NUMBER	SFILLED	UNSKILLED	TOTAL	INT/DE?	MAINT/MIS	C PHEL	TOTAL	HORSE A	ND HORST	NATEPIALS	TOTAL
SITE PER	P (5/11A)											
	11	22.101	43.0931	65.184	0.5887	0.2762	0.0	0.A144	2.557	3.372	100.39	174.944
•	21	4.369	1.0848	5.453	224.8147	118.5598	304.6694	648.0437	0.0	648.044	0.0	553.497
EXC/HAUL	(\$/100BCN)											
28	(-,											
	1-1	2.914	7.4072	10.321	0.4344	0.1652	0.0	0.5996	0.0	0.600	0.0	10.921
	1-2	2.927	7.4249	10.352	0.5850	0.2223	0.0	0.8072	0.0	0.407	0.0	11.157
,	2-1	2.373	6.0665	8.439	0.4301	0.1637	0.0	0.5918	0.327	0.921	0.0	9.16)
	2-2	2.386	6.0842	8.470	0.5806	0.2207	0.0	0.9014	0.327	1.128	0.0	9_594
	3-1	2.347	6.0011	9.348	6.1623	1.8382	12.7137	29.7142	0.0	20.714	0.0	29.062
	3-2	2.360	6.0188	8.370	6.3128	1.8953	12.7137	20-9219	0.0	20.922	0.0	29.300
	4-3	0.343	0.9025	1.245	0.0392	0.0124	0.0	0.0510	1.478	1.529	0.0	2.774
	5-4	0.319	0.7426	1.062	0.0434	0.0179	0.0	2.0633	1.574	1.637	0.0	2.699
	6-5	0.753	2.4662	3.220	0.1160	0.0610	0.0	0.1770	2.970	3.147	0.0	6.360
68	,		•									
	1-1	2.914	7.6583	10.573	0.4496	0.1709	0.0	0.6706	ບຸງ	0.621	0.0	11.193
~	1-2	2.927	7.6453	10.573	0.6040	0.2295	0.0	0.8315	0.0	0.934	0.0	11.405
5	2-1	2.371	6.3176	9.690	0.4453	0.1694	0.0	0.6147	0.327	0.942	0.0	9.632
ω	2-2	2.386	6.3046	8.690	0.5997	0.2280	0.0	0.8277	0.327	1, 155	0.0	9.445
	3-1	2.347	6.2522	8,599	6.1775	1.8440	12.7137	20,7352	0.0	20.735	0.0	29.334
	3-2	2.360	6.2392	9.599	6.3319	1.9025	12.7137	20.9492	0.0	20.948	0.0	29.547
	4-3	0.343	0.9889	1.332	0.0415	0.0138	0.0	0.0553	1.651	1.706	0.0	3.039
	5-4	0.319	0.7855	1.105	0.046?	0.0213	0.0	q.0675	1.702	1.770	0.0	2.474
	6-5	0.753	2.4911	3.244	0.1190	0.0626	0.0	0.1816	3.020	3. 20 2	0.0	6_445
	7-6	0.099	0.0	0.099	5.7494	2.9740	6.4077	15,1311	0.0	15.131	0.0	15,230
	10-7	0.536	0.3771	0.913	38.9214	22.9454	5.9271	67.5974	0.322	67.916	0.0	68.833
	10-8	0.535	0.3806	0.915	50.2294	27.1994	21.8464	99.2753	0.0	99.275	0.0	100, 191
	10-9	1.423	0,2158	1_639	75.9641	45.3726	45.9814	167.2181	0.0	167.21P	0.0	16P.857
9л												
	1-1	2.914	7.8519	10.766	0.4614	0.1754	0.0	0.6368	0.0	0.637	0.0	11.403
	1-2	2.927	7.9153	10.743	0.6187	0.2351	0.0	0 - 95 3 9	0.0	0.954	0.0	11.596
	2-1	2.373	6.5112	8.884	0.4570	0.1739	0.0	0.6309	0.327	0.958	0.0	9.843
	2-2	2.386	5.4746	8.660	0.6144	0.2335	0.0	0.8479	0.327	1.175	0.0	10.035
	3-1	2.347	6.4458	8.792	6.1892	1.8484	12.7137	20.7514	0.0	20.751	0.0	29.344
	3-2	2. 360	6.4092	8,769	6.3465	1,9081	12.7137	20.9684	0,0	20.968	0.0	29.737
	4-3	0.343	1.0556	1, 398	0.0440	0.0145	0.0	0.0586	1.784	1.943	0.0	3.241
	5-4	0.319	0_8189	1.138	0.0484	0.02?4	0-0	0.0709	1.802	1.873	0.0	3.011
	6-5	0.753	2.5107	3.264	0.1214	0.0639	0.0	0.1853	3.059	3.244	0.0	6.508
	7-6	0.116	0_0	0+116	6.7228	3.4776	7.4926	17.6930	9.0	17.693	0.0	17.30
	10-7	0.536	0.3851	0.921	38.926(27.8474	5-8271	67.6005	0.139	67.939	0 _ 0	68.961
	10-8	0.535	0.3832	0.918	50.4104	27.2692	22.1007	99.7903	0.0	99.7A0	0.0	100.596
	10-9	1.431	0.2158	1.647	76.1573	45.5513	46.2992	169.0078	0.0	16 A. 008	0.0	169.65:
60 11												
	1-1	2.914	11.1389	14.053	0.6605	0.2509	0.0	0_9114	0.0	0.911	0.0	14.965
	1-2	2.927	10.6955	13.623	0.868(0.3296	0.0	1.1976	0.0	1. 198	0_0	14,820

TABLE B.5AD: UNIT COSTS OF THE 1920'S TECHNICAL PACKAGES FOR ALL STAGES AT THE PRICES OF A TYPICAL DAVELOPING CONNTRY.

.

1 L

	(TABLE B. SAD CONTIN	029)										
,	STAGE/TECHNICAL		JABOR	· - · · · · · · · · · · · · · · · · · ·	<u> </u>	I U U S	PRENT		E	QUIPMENT		
	PACKAGE NUMBER	SKILLED	UNSKILLPD	TOTAL	INT/DEP	MAINT/MISC	PHEL	TOTAL	HORSEA	ND HORSE	BATEPIALS	TOTAL.
	2-1	2.371	9.7982	12.171	0.6562	0.2494	0.0	0.9055	0.327	1.233	U. 0	13.40)
	2-1	2, 386	9.3548	11_741	0.8637	0.3261	0.0	1.1918	0.327	1.519	0.0	13,259
	3-1	2.347	9.7328	12.079	6.3884	1.9239	12.7137	21,0260	0.0	21.026	0.0	33.105
	3-2	2.360	9.2894	11.649	6.5959	2.0026	12.7137	21.3123	0.0	21.312	0.0	32.961
	4-3	0.343	2.1950	2.528	0.0869	0.0271	0.0	0.1140	4.043	4.157	0.0	6.685
	5-4	0.319	1.3799	1.699	0.0849	0.0406	0.0	0.1255	3.486	3.011	0.0	5.310
	6-5	0.753	2.8397	3.593	0.1608	0.0855	0.0	0.2463	3.717	3.903	0.0	7.556
	7-6	0.400	9.0	0.400	23.2712	12.0378	25.9361	61.2450	0.0	61.245	0.0	61.645
	8~7	0.215	0.5808	0.795	0.5085	0.3156	0.0	0.8240	1.774	2.598	0.0	3.393
	9-7	0.409	0-3564	0.765	8.7493	5.0505	10.2558	24.0562	0.555	24.611	0.0	25.375
	10-7	0.536	0.5219	1.058	39.0040	22.8826	5.8271	67.713B	0.612	68.326	0.0	69.384
	10-8	0.535	0.4277	0.962	53.4866	28.4553	26,4234	108.3652	0.0	108.365	0.0	109.329
	10-9	1.564	0.2158	1.780	81.140A	48.5892	51.7026	181.4316	0.0	181.432	0.0	193.212
	100 m											
	1-1	2.914	13.6529	16.567	0.8128	0.3096	0.0	1,1214	0_0	1.121	0.0	17.689
	1-2	2.927	12,8982	15.025	1.0587	0.4019	0.0	1.4605	0.0	1.461	0.0	17 280
	2-1	2.373	12.3122	14.685	0.0085	0.3071	0.0	1.1156	0.327	1.443	0.0	16.127
	2-2	2,186	11.5575	13.943	1.0541	0.4003	0.0	1.4547	0.327	1.782	0.0	15.725
	3-1	2.347	12.2468	14.593	6.5407	1.9817	12,7137	21.2361	0.0	21.236	0.0	35.029
	3-2	2.360	11.4921	13.852	6.7865	2.0749	12.7137	21.5752	0.0	21-575	0.0	35.427
	4 - 3	0.343	3.0489	3.392	0.1197	0.0366	0.0	0.1564	5.770	5.927	0.0	9.313
	5-4	, 0.319	1.8090	2.128	0.1129	0.0545	0.0	0.1674	4.773	4.940	0.0	7.068
	6-5	0.753	3.0908	3.844	0. 1909	0.1020	0.0	0.2929	4-220	4.513	0.0	8.357
	7-6	0.617	0.0	0.617	35_8954	18.5681	40.0059	94.4695	0.0	94.469	0.0	95.087
	8-7	0.215	0.6854	0.900	0.5681	0.3425	0.0	0.9106	1.983	2.894	0.0	3.793
	9-7	D.40A	0.4611	0.869	8.8095	5.0775	10.2558	24.1429	0.764	24.907	0.0	25.776
	10~7	0.536	0.6265	1.163	39.0637	22.9096	5.8271	67.8004	0.921	68.622	0.0	69.785
	10-8	0.535	0.4617	0.996	55.8390	29.3623	29.7290	114.9302	0.0	114.930	0.0	115.927
	10-9	1.666	0-2158	1.882	84.9518	50.9106	55.8345	191-6967	0.0	191.697	0.0	193.579
	1658											
	1-1	2.914	17.7129	20.627	1.0588	0_4019	0.0	1.4607	0.0	1.461	0.0	22.089
	1-2	2.927	16.4559	19.383	1.3666	0.5186	0.0	1.8852	0.0	1.885	C_0	21_269
	2-1	2.373	16.3722	18.745	1. 0544	0,4004	0.0	1.4548	0.327	1.782	0.0	20.527
	2-2	2.386	15.1152	17.501	1. 3622	0.5171	0.0	1.8793	0.327	2.206	0.0	19.707
	3-1	2.347	16.3068	18.653	6.7866	2.0749	12.7137	21.5753	0.0	21.575	0.0	40.229
	3-2	2,360	15.0498	17.409	7.0944	2.1916	12,7137	21.9998	0.0	22,000	0.0	39.409
	4-3	0.343	4.4439	4.787	0.1727	0.0521	0.0	0.2248	8.561	8.786	0.0	13.572
	5-4	0,319	2.5029	2.822	0. 1580	0.0770	0.0	0.2351	6-855	7.090	0.0	9.912
	6-5	0.753	3.4969	4.250	0.2396	0.1286	0.0	0.3683	5.033	5.401	0.0	9.651
	7-6	0.971	0.0	0-971	56.4288	29.1897	62.8907	148.5092	0_0	148.509	0.0	149.480
	8-7	0.215	0.8541	1.069	0.6644	0.3859	0.0	1.0503	2.320	3.371	0.0	4,439
	9- 7	0.400	0.6298	1_030	8.9059	5.1209	10.2558	24.2825	1.101	25.384	0.0	26.422
	10-7	0.536	0.7953	1.332	39.1599	22.9530	5-8271	67.9401	1.159	69.099	0-0	70.431
	10-8	0.535	0.5167	1.051	59.6390	30.8275	35.0687	125.5352	0.0	125.535	0.0	126.587
	10-9	1.031	0.2158	2.047	91.1080	54.6622	62.5093	208.2793	0.0	208.279	0.0	210.326
		3 645				A 4005	A A .					
	1-1	2.714	19° 40 10	41.697	2. 3473	0.0705	UaU	3.2378	0.0	3.238	0.0	43.153

414

.

(TABLI	B.5AD CONTINU			\$001			P					
STAGE/	TECHNICAL			BOBLI	TUT IN PO	NUT IN AT C	<u>- 2081</u>	TOTAL	NORG V A	VOIENSAI.	PARVATATO	7071
PACKAG	SE AUNBER	<u> 3KILILU</u>			3 0106	1 1202		<u> </u>		4 110	0.0	47 111
	1-2	2.727	3.74V74J 37 61131	40 015	2 4 7 7 70	0 8990	0.0	1,0110	0.327	3.550	0.0	43.574
	· /- ·	2,373	J/.042J	36 130	2.3430	1 1997	0.0	4 1040	0 127	4 4 3 1	0.0	43 570
	2-2	2.170	.1.1. / J 30 37 6760	20.127	2. 7/33	7 5675	12 7117	22 3624	0.727	21 152	0.0	61 276
	J-1	2.147	31.3/07	34 723	0 U/J/	2.0017	12 7137	4 14 J 34 4 34 334 5	0.0	30 1JA 34 1JA	0.0	4.1 373
	3-2	2. 300	134700Z	10.04N	0,1017	2.0033	0.0	0 5010	22 177	27.244	0.0	35 354
	4-3	V- 343	4 1 3 4 9	12.093	0.4002	0 1010	0.0	0.5000	47 751	40 747	0.0	30 704
	5-4	0.319	0-1J20 5 6251	0.477	0,3743	0 2602	, 9.9	0 74 11	0 100	10.043	0.0	14 4 70
	6-5	0.010	1-0 <u>2</u> 01	0.370	44740	0.2001 04 5700	190 0100	1.01.11 (1.1.1.1.1)	2.100	13.4931	0.0	13.4 13.3
	7-6	2.112	V.V	2.017	10.1. 7007	04.0794	172.2304	43U-3192	4 300	430-310	0.0	433.(2)) 7 U 77
	8-7	0.215	1.7390	1.903	1. 10 91	U • 0 1 17	10 3550	1.7979	4.070	1.073 1.004	0.0	14721
	9-7	0.408	1.5147	1.921	4.4300	2.1444	5 4971	2100171	2 4 7 7 1	21.000	0.0	27.70
	10~/	0. 5.36	1.6801	2.210	39-0040	2.1.1809	D= 9271	01.0/2/	2.729	101 005	0.0	134117 147 879
	10-8	0.535	0.9044	1.339	19. 54.38	34.7022	01_0190	101+0300	0.1	101+000	0.0	10 4 424
	10-9	2.694	9+2158	2.910	123.3545	/4 - 3131	47.4721	2974 1399	0.0	272-134	(+ U	2-2-30
6007			50 0003	(0.002			6.0		0.0		6.3	46 773
	1-1	2.914	51.0207	60.943	3.3011	1. 3230	0.0	4 - 024 (0.0	4.141	0.0	20 010
	1-2	2-921	51./844	54./12	4.4249	1.0//9	0.0	0.1014	0.0	0.1V2 6.150	0.0	00+314 60 311
	2-1	2.373	56.6580	59.061	3.4968	1.1264	0.0	4.42.12	12.21	2.120	. 0.0	64.///
	2-2	2.386	50.4437	52.829	4.4197	1.0/04	0.0	1020401	0.127	0.4.23	0.0	07-203
	3-1	2.347	56.6227	78-969	9.2290	1_0010	12.7137	24-9437	· · · · ·	24.944	0.0	79.713
1	3-2	2, 360	50.3703	. 52. 718	10-1519	1. 1504	12.7117	25.2105	0.0	20.21/	0.0	55 J10
ļ	4-3	0.143	18.2963	14.639	0.6987	0.2054	0-0	0.9045	30 a 2 0 0	374171	0.0	27.114
	5-4	0.319	9.3888	9.708	0.6062	0.3005	0.0	0.7007	27.13	20.420	0.0	33.123
	6-5	0.753	7.5308	9.284	0. 7234	0.3934	0.0		1.3 4 1 00	14.210	9.0	264301
	7-6	4.460	0.0	4_460	259.1299	134.1469	289.0255	002.001	U.U. 5 4 75	0 1 1 0	0.0	10 221
	8-7	0.215	2.5316	2.746	1.6212	0.8179	0.0	2.4341	7.077	20 12	0.0	10.001
	9-7	0.409	2.3073	2+717	9.0011	P200+0	0.2007	23.1713	44430	77 447	0.0	74 457
	10-7	0-236	2.4728	3.009	40.1100	21.1077	24 42 7 1	09.J207 910 7011	4.) (4	10.043	0.0	212 201
	10-8	0.515	1.0014	1.770	97.3224	47.J7/Z	10.1210	2340/011	0.0	2304/01	0.0	374 460
	10-9	3.400	0.2158	3.682	152- 1811	91-0/94	128. /20/	3/2.10/4	V • V	3124101	0.0	3104464
SP8/C 9	089 (\$/1008CN) 134											
	11	0,971	2.4257	3.396	0.0639	0.0269	0.0	0.0907	0.249	n 0.339	0.0	3.735
	21	0.607	0.2139	0_821	0.2133	0.0857	0.0	0.2990	0.955	1.154	0.0	1,975
9	8%					,		•				
	11	1.192	2.6598	3.842	0.2162	0.0917	0.0	0.3097	1.185	1.495	0.0	5,317
	21	0.607	0.4480	1.055	0.3656	0.1526	0.0	0.5182	1.792	2.310	0.0	3.765
	12	1.025	2.3636	3,389	4.1022	2.2354	4.4498	17.7674	0.0	10.747	0.0	14.176
	22	0.772	0.1517	0.923	4.2516	2.2941	4.4499	10.9957	0.607	11.603	0.0	12.526
	32	0.505	0.0	0.505	16.8117	9.6087	10.4756	36.8950	0.0	36.896	0.0	37.401
SURPA	CTHG											
GRAVI	L (\$/100CCA)		_									
	11	0.661	2.3622	3,223	0. 1592	0.0699	0.0	0.2280	0.H4A	1.076	274.68	279.978
	21	0.277	0.8306	1.100	0. 2274	0.0957	0.0	0.3231	1.109	1.432	274.68	277.229
	12	1.279	2.1504	3.430	8.0494	4.3902	8.7584	21.1990	0.0	21.198	274.00	299.307
	22	0.599	0.6187	1.218	8.1176	4.4172	8.7584	21.2931	0.262	21.555	274.69	297.452
NBA	(\$/100CCN)											
	111	5.266	6.2346	11.501	80.9636	42.4625	32.9533	156.3793	1.744	158,123	417.30	536.927

,

415

•

.

	STAGE/TECHNICAL		LABOR			EQU)	LPH RNT		R.	OUTPARET		
	PACKAGZ MUMBER	SKILLED	ONSKILLED	TOTAL	INT/DEP	MAINT/MISC	C PUEL	FOTA I.	HORS . A	ND HOSSE	NATESTALS	TOTAL
	211	4.424	· 3.7409	8.165	81.0472	42 4956	32,9533	156.4961	2.084	158.593	417.30	514.049
,	CPST/G (\$/1005A)											
	1111	0.243	0.5075	0.751	4.4631	2.3660	2.3662	9.1953	0.0	9, 195	107-55	117_104
	1121	0.183	0.2289	0.412	9.2788	5.2755	6.5617	21.1160	0.0	21.115	107.55	129-076
	DBST/W (\$/10058)											
	1111	0.243	0.5075	0.751	4.4631	2.3660	2.3662	9,1953	0_0	9, 195	94.95	04.207
	1121	0.183	0.2289	0-412	9.2788	5.2755	6.5617	21.1160	0.0	21.116	A4.95	106-474

i

,

.

•

.

.

,

,

•

•

• •

.

•

STAGE/TE	CRNICAL		LABOR			ECUI	PRENT			EQUIPBENT		
PACRAGE	NUMBER	SKILLEE	UNSKILLED	10111	IN1/DEE	HAINT/MISC	PUEL	TOTAL	RCASE	AND HORSE	MATERIALS	TOTAL
SITE PHE	P (\$/8A)	e			<u> </u>							~~~~~
	i1	135.063	564.8074	699.870	2.4323	1.1000	2.4221	5.9543	0.0	5.954	75.40	781.229
	21	17.130	9.9799	27.110	9.4515	6.6636	7.2012	23.3162	0.0	23.316	0.0	50.426
	31	11.694	9.9799	21.674	5.6257	3.9453	4.5451	14.1161	0.0	14+116	0.0	35.790
EXC/HAOL	(\$/10CBCH)											
28	•••••											
	11-0	0.373	0.0	0.373	0.0955	0.0755	0.5550	0.7264	0.0	0.726	0.0	1.099
. 68												
	1-1	2.051	0.0	2.051	2.5518	1.6008	1.0017	5.3544	0.0	5.354	0.0	7.406
	1-2	1.773	0.0	1.773	3.4537	2.3583	1.4825	7.2945	0.0	7.295	0.0	9.067
	1-3	1.733	0.C	1.733	2.5156	1.7433	1.1033	5.3622	0.0	5.362	0.0	7.056
	1-4	1-645	0.0	1.645	2.7699	1,9054	1.0414	5,7167	0.0	5,717	0.0	7.362
	2-1	2.113	0.0	2.113	3.3555	2.6909	1.1439	7.1903	0.0	7.190	0.0	9.304
•	2-2	1.835	0.0	1.835	4.2913	3.2699	1.64.34	9.2046	0.0	9,205	0.0	11.039
	2-3	1.796	0.0	1.796	3.3254	2.6367	1.2534	7.2154	0.0	7.215	0.0	9.011
	2-4	1.707	C.0	1.707	3.5916	2.8064	1.1915	7.5894	0.0	7.589	0.0	9.256
~	3-1	1.710	0.0	1.710	2.5010	1.9927	0.9963	5.4900	0.0	5.490	0.0	7.200
±	3-2	1.432	0.0	1.432	3.2167	2.4322	1.3748	7.0238	0.0	7.024	0.0	8.456
7	3-3	1.393	0.0	1.393	2.4311	1.9171	1.0551	5.4033	0.0	5.403	0.0	6.796
	3-4	1.304	0.0	1.304	2.6205	2.0373	0.9932	5.6511	0.0	5.651	0.0	6.955
	5-5	1.413	0.0	1.413	1.1401	0.8046	0.8157	2.7604	0.0	2.760	0.0	4.174
	6-6	1.321	0.0	1.321	1.3997	0.9878	0.8300	3.2176	0.0	3.218	0.0	4.539
	7-7	0.618	0.0	0.618	0.8752	0.6177	0.5521	2.0450	0.0	2.045	0.0	2.663
	9-9	0.412	0.0	C.412	0.2019	0.1425	0.1381	0.4824	0.0	0.482	0.C	0.855
	9-9	C. 224	0.0	G. 224	0.1436	0.1013	0.1097	0.3546	0.0	0.355	0.0	0.579
	10-10	0.183	0.0	0.183	0.1580	0.1115	0.1277	0.3972	0.0	0.397	0.C	0.580
98			••••									
	1-1	2.064	0.0	2.064	2.5609	1, 807.)	1.0073	5.3755	0.0	5.375	0.0	7.439
	1-2	1.776	0.0	1.778	3.4641	2.3652	1.48.05	7. 3178	0.0	7, 318	0.0	9.096
	1-3	1.744	· C. O	1.744	2,5251	1.7497	1,1105	5-3852	0.0	5. 385	0.0	7,129
	1-4	1 461	0.0	1 651	2 7774	1 9101	1.0454	5.7331	0.0	5.711	0.0	7.384
	2-1	2 126	0 0	2.126	3 3646	2.6471	1, 1496	7, 2115	0.0	7,211	0.0	9.377
	2_2	1 441	0.0	4 44 4	A 3013	2 2764	1 6445	9 2280		0 320		11 049
	2-2	1 804 1	6 0°	1 804 1	4.3017	2 6430	1. 2606	7 2195	0.0	7 220	0.0	0 000
	2-1	1 712	0. 0	1 712	1007 C	2 0113	1 1455	7 6059		7 404		2 944
	2-4	1 7 7 7	0.0	1 223	2 5 1 6 1	1 9991	1 0019	5 5111	0.0	5 511	0.0	ער כי ד ער כי ד
	3-3	1 1 7 2 3	0.0	1 4 7 9	A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 4 3 9 1	1 3809	7 0472	0.0	7 047	0.0	F+4J4 B 266
	3-2 .	1.430	6.0	1.430	3+2272	1 4334	1 0621	5 4 26 3	0.0	1.4447	0.0	4 4 5
	3-1 2-1	4 346	0.0	1.1403	2.44400	1.7434	0 0077	6 4476	0.0	5 (67		0.047
	.;=-4 6 _ 6	1.11	0.0	1.310	4.0200	2.0422	0.77/2	3,0075	0.0	3.00/	0.0	0.7/7
	כייק לייל	1.430	0.0	1=9,5U 4 333	1 1721	0 0043 0.0112	0.024/	2.7707	0.0	4.19		4,220
	n-0 7_1	1.377	0.0		1.411/	V (404	0.03/1	J+643+ 3 Aut+	0.0	J.240		4.5/8
	1 - 1	U.D/4	0.0	1.024	0.0766	0.0100	0 4044	2.04/1	0.0	2.047	V.C	2.671
	0-0	0.542	0.0	6.542	V.2050	0.10/5	0.1010	0+0J4/ A #466	0.0	0.035	U.U	1.177
	y-y	0.295	0.0	U.295	0.1485	0.13.20	0.1440	0.4055	0.0	0.466	0.0	0.760
	10-10	0,236	0.0	C.236	0.2037	0.1437	0.1647	0.5121	v. 0	0.512	0.C	0.748
607												

••

TABLE D.5BA: MHIT COSIS OF THE 1950'S TECHNICAL PACKAGES FOR ALL STAGES AT THE PRICES OF 1930.

(TAPLE B.S	SHA CONTI	(NUED)										
STAGE/TECH	HNICAL		LAPOR		<u> </u>	EQUIP	MENT			EQUIPHENT		
PACKAGE NU	DH B Z R	SKILLED	BNSKILLED	ICIAL	INT/CEF	BAINT/HISC	FUEL	TOTAL	<u>HORSE</u>	AND HORSE	<u>MATERIALS</u>	TOINL
	1-1	2.284	0.0	2.264	2.7164	1.9184	1.1055	5.7424	C.0	5.742	0.0	8.026
	1-2	1.681	C.C	1.881	3.6494	2.4880	1.5958	7.7331	0.0	7.733	0.0	9.614
	1-3	1.926	0.0	1.926	2.6913	1.8610	1.2375	5.7897	0.0	5.790	0.0	7.715
	1-4	1.753	0.0	1.753	2.9100	1.9982	1.1169	6,0251	0.0	6,025	0.0	7.778
	2-1	2.346	0.0	2.146	3.5221	2.8084	1.2478	7.5704	0.0	7.578	0.0	9.924
	2-2	1.943	0.0	1.943	4.4870	3.3995	1.7567	9.6433	0.0	9.643	0.0	11.586
	2-3	1.986	C.O	1.988	3,5011	2.7543	1.3875	7.6429	0.0	7.643	0.0	9.631
	2-4	1.815	0.0	1.815	3.7316	2.8991	1.2670	7.6978	0.0	7.898	0.0	9.713
	3-1	1,943	0.0	1.943	2.6676	2.1103	1.1001	5.8780	0.0	5.078	0.0	7.821
	3-2	1.540	0.0	1.540	3.4125	2.5619	1.4881	7.4625	0.0	7.462	0.C	9.003
	3-3	1.585	0.0	1.585	2.6066	2.0347	1.1892	5.8308	0.0	5.831	0.0	7.416
	3-4	1_412	0.0	1.412	2.7606	2.1301	1.0687	5.9595	0.0	5.959	0.0	7.372
	4-2	0.792	C.O	C.792	1.5594	1.0557	0.8138	3.4289	0.0	3.429	0.0	4.221
	4-4	0.664	0.0	0.664	1.0995	0.7513	0.5250	2.3761	0.0	2.376	0.0	3.040
	5-5	1.701	0.0	1.701	1.3718	0.9681	0.9815	3.3214	0.0	3.321	0.C	5.023
	6-6	1.525	0.0	1.525	1.6156	1.1401	0.9580	3.7137	0.0	3.714	0.0	5.239
	7-7	0.725	U.O	C.725	1.0185	0.7187	0.6410	2.3782	0.0	2.378	0.0	3.103
	8-9	2.753	0.0	2.753	1.3490	0.9520	0.9225	3.2235	0.0	3.223	0.0	5.977
	9-9	1.499	0.0	1.499	0.9588	0.6766	0.7323	2.3676	0.0	2.368	0.0	3.866
5	10-10	1.146	0.0	1.146	0.9895	0.6983	0.8002	2.4881	0.0	2.488	0.0	3.635
1005												
	1-1	2.453	0.0	2,453	2.8397	2.0040	1.1811	6.0247	0.0	6.025	0.0	8.478
	1-2	1.960	0.0	1.960	3.7931	2.5831	1.6789	8.0551	0.0	8.055	0.0	10.015
	1-3	2,064	0.0	2.064	2.0175	1.9455	1.3339	6.0969	0.0	6.097	0.0	H. 161
	1-4	1.832	0.0	1.832	3.0128	2.0663	1.1/24	6.2515	0.0	6.251	0.0	8.084
	2-1	2.515	0.0	2.515	3.6433	2.0940	1.3234	1.8607	0.0	7.861	0.0	0, L. VI
1	2-2	2.022	0.0	2.022	4.6.107	3.4947	1.8349	9.9652	0.0	9.965	0.0	11.900
	2-3	2.126	Ç. 0	2.126	3.6273	2.8388	1.4839	7.9501	0.0	7.950	0.0	10.070
	2-4	1.895	0.0	1.895	3.8341	2,96/1	1.3225	8.1242	0.0	8.124	0.0	10.017
	3-1	2.112	0.0	2-112	2.7866	2.1958	1.1/3/	0.1004	0.0	0.104		34473 6 hPh
	3-2	1.620	0.0	1.620	1.220	2.65/0	1.0/13	/./844	0.0	/•/04		7.414
	3-3	1.723	0.0	1.723	2. / 130	2.1192	1.200/	0.13/3	0.0	0 • 13 0 (• • • •		7.001
	3-4	1.492	0.0	1,492	2.803	2.1982	1.1242	0.1858	0.0	0.100		1-070
	4-2	0.871	0.0	0.871	1.703	1.1500	0.03/0	3./209	0.0	1•/21		7+044
	4-4	0.744	0.0	6.744	1.292	0.8194	0.5804	2.0020	0.0	2.003		5 640
)-)	1.711	0.0	1.911	1.0447	1 1.0077	1.047	347377	0.0	J.737 0 070		5 740
	6-6	1.674	0.0	1.674	1.//23		1.0013	4.0/34	0.0	4.0/1		3 4 64
	7-7	0.714	0.0	0.714	1.0500	: U./410	0.0470	2.4377	0.0	Z . 44 (C 650
	H-8 6 0	4.445	0.0	4.445	2.1/0	1 1.0000	1.1077	3.2043	0.0	2029		6.242
	9-9	2.417	0.0	2+417	1.04/	2 (.V72J	1.1044	3.0444	0.0	2.047		5.824
	10-10	1.037	0.0	1-01/	1.203	1.1190	1. 20 2 3	3.7010	V. V	J • 70 (Jevay
1000			~ ~	n 4 n.	3 635	4 7 4640	1 30.20	6 11000	• •	Z 1101	0.0	0.206
	1-1	2.726	V.U	4.720	CLO°C	1 4.1417	1.0116	0.40UV 0 6404	V.U A A	0.40		10.455
	1=2	2.087	0.0	∡. 087	4.022	I ∡./ J40 C > A420	1.0113	0.3004 6 606A	V.U A A	0.30 2 204	5 0.0	A.8A4
	173	2.288	0.0	2.200	3.0220	C <u>X</u> .VOXO	1 2604	6 6 1 2 7 0 0	0.0	C+370 6 44'	, v.v	8.572
	1-4	1.757	V.V	1.737	3.1/6	3 4.1/30	1.4000 1.4023	0.0147	V • V	0.0ļ. 0.344		11 104
	2-1	2.788	0. 0	2.700	3.038(5 3.0319	1+4433	0. J 10 V	V • V	· 9• 7 fi	3 V4V	11-104

STAGE/7E	CHNICAL		LABOR	<u> </u>	_	EQUIP	RENT_			EQUIPMENT		
PACRAGE	NOMBER	SKILLED	UNSKILLED	ICIAL	<u>INT/DEE</u>	HAINT/HISC	PUEL	TOTAL	HORSE	AND HORSE	<u>MATERIALS</u>	TOINE
	2-2	2.149	0.0	2.149	4.8597	3.6464	1.9724	10.4785	0.0	10,479	0.0	12.628
	2-3	2.350	0.0	2.350	3.8325	2.9762	1.6406	8.4493	0.0	8.449	0.0	10.800
	2-4	2.021	0.0	2.021	3.5986	3.0760	1.4109	8.4854	0.0	8.485	0.0	10.507
	3-1	2.385	0.0	2.385	2.9843	2.3338	1.2976	6.6156	0.0	6.616	0.0	9.001
	3-2	1.746	0.0	1.746	3.7851	2.8087	1.7039	8.2977	0.0	6.298	0.0	10.044
	3-3	1.946	0.0	1.948	2.9382	2.2566	1.4423	6.6371	0.0	6.637	0.0	8.585
	3-4	1.618	0.0	1.618	3.0275	2.3069	1.2126	6.5471	0.0	6.547	0.0	8.166
	4-2	0.99F	0.0	C.998	1.9321	1.3025	1.0295	4.2641	0.0	4.264	0.0	5.262
	4-4	C.87C	0.0	C.870	1.3668	0.9281	0.6689	2.9638	0.0	2.964	0.Q	3.834
	5-5	2.245	0.0	2.245	1.8116	1.2786	1.2963	4.3867	0.0	4.387	0.0	6.63
	6-6	1.699	0.0	1.699	1.0891	1.3332	1.0969	4.3192	0.0	4.319	0.0	6.01
	7-7	0.824	0. 0	C.824	1.2135	0.8564	0.7478	2.8177	0.0	2.818	0.0	3.642
	8-8	7.173	0.0	7.173	3.5147	2.4803	2.4034	8.3983	0.0	8.398	0.0	15.572
,	9-7	3.916	0.0	3.916	2.5051	1.7679	1.9133	6.1863	0.0	6.186	0.0	10.10
	10-10	2,954	0.0	2.954	2.5494	1.7991	2.0616	6.4101	0.0	6.410	0.0	9.364
5008												
	1-1	2.804	0.0	2.804	3.0512	2,1815	1.3379	6.6106	0.0	6.611	0.0	9-41
	1-2	2,124	0.0	2.124	4.0287	2.7790	1.8501	8.7177	0.0	8.718	0.0	10.84
	1-3	2.354	C. 0	2,354	3.0626	2.1230	1.5363	6.7419	0.0	6.742	0.0	9.09
	7 - 4	1.996	0.0	1.996	3.2244	2.2065	1,2865	6.7174	0.0	6.717	0.0	8.71
	2-1	2,866	0.0	2.866	3.8949	3.0715	1.4802	8.4466	0.0	8.447	0.0	11.31
	2-2	2.196	0.0	2.186	4.9263	3.6905	2.0110	10.6278	0.0	10.628	0.0	12.81
	2-3	2.416	0.0	2,416	3.8924	3.0163	1.6864	8.5952	0.0	8,595	0.0	11.01
	2-4	2.056	C.C	2.058	4.0461	3.1074	1.4365	8.5901	0.0	8.590	0.0	10.64
	3-1	2.463	0.0	2.463	3,0403	2.3734	1.3326	6.7462	0.0	6.746	0.0	9.20
	3-2	1.783	0.0	1.783	3,8518	2.8529	1.7424	8.4470	0.0	8.447	0.C	10.23
	3-3	2.013	0.0	2.013	2.9981	2.2969	1.4881	6.7830	0.0	6.783	0.0	8.79
	3-4	1.655	0.0	1.655	3.0751	2.3384	1.2383	6.6517	0.0	6.652	0.0	8.30
	4-2	1.035	0.0	1.035	1.9987	1.3467	1.0681	4.4135	0.0	4.413	0.0	5.44
	4-4	0.907	0.0	C.907	1.4143	0.9596	0.6945	3.0684	0.0	3.068	0.0	3.97
	5-5	3.330	0.0	3.338	2.9032	2.0488	2.0877	7.0397	0.0	7.040	0.0	10.37
	6-6	2.811	6.0	2.011	3.1259	2.2059	1.8150	7.1467	0.0	7.147	0.0	9.95
	7-7	1.405	0.0	1.405	2.0696	1.4605	1.2754	4.0055	0.0	4,806	0.0	6.21
	A-8	21.446	0.0	21.446	10.5079	7.4155	7.1854	25.1088	0.0	25.109	0.0	46.55
	y=9 '	11.708	0.0	11.708	7.4904	5.2860	5.7208	10.4972	0.0	18.497	0.0	30.20
	10-10	8.612	0.0	8.812	7.6064	5.3679	6.1511	19.1254	0.0	19.125	0.0	27.93
800 M												
	1-1	3.168	0.0	3.168	3.3516	2.3654	1.5004	7.2176	0.0	7.218	0.0	10.36
	1-2	2.295	0.0	2.295	4.3985	2.9845	2.0296	9.4130	0.0	9.413	0.0	11.70
	1-3	2.653	C. 0	2.653	3.3561	2.3061	1.7452	7.4075	0.0	7.407	0.0	10.06
r	1-4	2.166	0.0	2.166	3.4450	2,3526	1.4054	7,2010	0.0	7,203	0.0	9.36
	2-1	3.230	0.0	3.230	4.1555	3.2554	1.6427	9,0536	0.0	9.054	0.0	12.28
	2-2	2.357	0.0	2.357	5.2365	3.8960	2.1906	11.3231	0.0	11.323	0.0	13.66
	2-3	2.715	0.0	2.715	4.1659	3.1995	1.8953	9.2607	0.0	9.261	0.0	11.97
	2-4	2.228	0.0	2.228	4.2667	3.2535	1.5555	9.0757	0.0	9.076	0.C	11.30
	3-1	2.827	0.0	2.827	3,3009	2.5573	1.4950	7.3532	0.0	7.353	0.0	10.18
	3-2	1.954	0.0	1.954	4.1620	3.0584	1.9220	9.1421	0.0	9,142	0.0	11.00

(TAEL	2 B.	58A -	CONTINUED)
CRICE	1000	9410	

(14100	MDQUUTQLI	, , , , , , , , , , , , , , , , , , , ,										
DIAUL	TECHNICAL	<u></u>	LAZUR		T 11 T - DTT	LQU1	PALAT			EQUIPHENT		
PACKAG	<u>es number</u>	<u>SKILLKD</u>	<u>DNSKILLED</u>	<u>ICIAL</u>	181/011	<u>MAINI/MISC</u>	<u> </u>	TOTAL	HORSE	AND HORSE	<u>MATERIALS</u>	TOTAL
	3-3	2.312	0.0	2.312	J.2716	2.4799	1.6970	7.4486	Ç.C	7.449	0.0	9.761
	3-4	1.826	0.0	1.826	3.2956	2.4845	1.3572	7.1373	0.0	7.137	0.0	8.963
	4-2	1.206	0.0	1.206	2.3089	1.5522	1.2477	5.1087	0.0	5.109	0.0	6.315
	4-4	1.977	0.0	1.077	1.6345	1.1057	0.0134	3.5540	0.0	3.554	0.0	4.631
	5-5	4.466	ዮ•0	4.466	3.9559	2.7917	2.8478	9.5955	0.0	9.596	0.0	14.062
	6-6	3.571	0.0	3.571	4.0822	2.8808	2.3423	9.3052	0.C	9.305	0.0	12.876
	7-7	1.608	0.0	1.808	2.7304	1.9269	1.6628	6.3201	0.0	6.320	0.0	8.128
	8-8	34.223	0.0	34.223	16.7679	11.8332	11.4662	40.0673	0.0	40.067	0.0	74.290
	9-9	18.684	0.0	18.694	11.952E	8.4352	9.1290	29.5170	0.0	29.517	0.C	48.201
	10-10	14.061	0.0	14.061	12.1369	8.5650	9.8148	30.5167	0.0	30.517	0.0	44.578
SPR/CO 98	DAP (5/10CBCA)											
	11	1.390	. 0.0	1.390	0.7160	0.5125	0.4659	1.6944	0.0	1.694	0_0	3.085
	12	0.988	0.0	C.988	0.6014	0.4317	0.3928	1.4259	0.0	1.426	0_0	2.013
	13	1.021	0.0	1.021	0.4174	0.3342	0.3257	1.0774	0.0	1.077	0.0	2.098
	14	0.897	0.0	C.897	0.4309	0.3346	0.2917	1.0573	0.0	1.057	0.0	1.954
	21	1.191	0.0	1.191	0.7623	0.5452	0.5391	1.8466	0.0	1.847	0.0	1.018
	22	C.78E	0.0	C.700	0.6477	0.4644	9.4660	1.5781	0.0	1.578	0.0	2.367
	23	0.822	0.0	C.822	0.4638	0.3669	0.3990	1.2297	0.0	1.230	0.0	2.051
	24	0.698	0.0	0.698	0.4773	0.3673	0.3650	1, 2095	0.0	1.210	0.0	1.907
	31	1.046	0.0	1.046	0.5413	0.3835	0.4847	1.4095	0.0	1.410	0.0	7.456
	32	0.643	0.0	0.643	0.4268	0.3026	0.4116	1.1410	0.0	1.141	0.0	1.784
	33	0.677	0.0	C.677	0.2428	0.2052	0.3446	0.7926	0.0	0.791	0.0	1.469
	34	0.552	0.0	0.552	0.2563	0.2056	0.3106	0.7725	0 0	0 772	0.0	1 325
	<u>4</u> 1	0.942	0.0	6.982	0.5435	0.4010	0 3906	1 3255	0.0	1 226	0.0	2 207
	4 I 11 D	r 570	0.0	6 679	0.0290	0 3202	0 3075	1.0570	0.U	1.020	. 0.6	4.347
	<u>ц</u> а	0 412	0.0	0.612	0.2454	0. 2227	0 2005	0 7094	0.0	0 700	0.0	1 334
	5 7 1 4 L	444 0	0 0	6 4 9 9	0 2580	0 2231	0 2044	A 4005	N N	0,107	0.0	1 176
50.0347	TNC 1	4.400	V. V	V140V	012307	VILLUT	012004	0.0005	0.0	4.000	V-4	1.170
	18/100CCH							,				
AN 1 1 1 1	11	1 207	0 0	1.207	0 4986	0.4306	A 3343	1 26 26		1 36 0	536 Sh	634 013
	12	0.889	0.0	0.889	0.4900	0.3388	0 2046	1.0500	0.0	1.204	230,34	537.412
	21	1,119	0.0	1,119	0.6044	0.5051	0.1005	1 5540	0.0	1 560	236 27	530.900
	22	0.000	0.0	C.80C	0.6302	0.4134	0.4475	1 2060	A A	9 30 5	536-34 536 6 4	539.217
	21	0.000	0.0	6 645	0 3446	0.4134	0.4010	1.3434	0.0	1.343	330.74 536 60	338.96/
	30	0.775	0.0	C 636	0.3042	0.3304	0 3046	1.00/1	0.0	1.007	530.JW	530.JJJ
	34	V 8040 A 807	0.0	L +020 A AA7	0.2704	0 2521	0,3243	0.0333	0.0	0.033	230.34	230+VX1
	41	0.07/	0.0	V=07/	0.3740	0.3531	V+2021	1.0100	0.0	1.010	330.34	236.440
	4 <u>7</u> , 51	1 344	0.1761	4 514	0.3007	0.2013	0.2344	0.7964	0.0	0./90	536-34	014.16
	50	1. 340	0.1751	1.721	0.5350	0.7217	0.0301	2.2968	0.0	2.29/	230.24	240.329
71 A A	34	1.027	0.1/51	1.202	V. 605/	0.0361	0.58/4	2.0832	0.0	2.083	210-24.	234.039
#3 5	(S/100CCA)			40 000						40.450		
	111	7.00J	1.3343	10.07/	4.3840	4.0324	4.3430	12.9595	0.0	12.959	640.15	664.UUS
	211	7.4110	1.1003	C.370	4.2293	7.2010	J. /509	11.4818	0.0	11.482	040.15	000.138
	211	7.3/4	1.1343	16.709	4.0350	4.0084	4.4193	13.1227	0.0	13.123	040-15	601.7/Y
	212	7+211	1.1083	E.J4U	4.2892	J.23/0	J. 02/2	11.0451	0.0	11.645	040.15	000.113
	311	9.227	1.3345	10.201	4+4134	7.9063	4.1626	12.6824	0.0	12.682	640.15	563.392
	512	7.064	1.1083	8.172	4.0587	J.3755	3.7705	11.2048	0.0	11.205	640.15	639.525
		9.367	1.1185	10.847	4.2154	1.471	A.7540	17 5979	n A	17 498	AAD.15	- AB (

.

420

....

(TAELE B. 58A CONTIN	UED)										
STAGE/TECHNICAL		LABOR		-	EQUIE	ABNT			EQUIPMENT		
PACKAGE NUMBER	SKILLES	UNSKILLED	ICIAL	INT/DEF	MAINT/MISC	PDEL	TOTAL	HORSE	AND HORSE	BATERIALS	TCIAL
412	6.999	1.1083	5.108	4.9607	3.3923	3.6673	11.1203	0.0	11.120	640.15	659.376
511	9.631	1.5096	11.140	5.0104	4.3122	4.6310	13.9536	0.0	13.954	640.15	665.242
512	7.468	1.2834	8.751	4,6557	3.7814	4.0389	12.4760	0.0	12.476	640.15	661.375
DBST/G (\$/1005#)											
1111	0,198	0.0662	C.264	0.1434	0.1067	0.2341	0.4842	0.0	0.484	13.69	14.437
1112	0.175	0.0662	C.241	0.1466	0.1086	0.2133	0.4686	0.0	0.469	13.69	14.399
1121	0.201	0.0884	C.290	0.1134	0.0890	0.2068	0,4092	0.0	0.409	13.69	14.328
1122	0,178	0.0884	C.267	0.1166	0.0910	0.1860	0.3936	0.0	0.394	13.69	14.350
2111	0.19E	0.0614	0.259	0.1418	0.1062	0.2337	0.4816	0.0	0.482	13.69	14.430
2112	0.175	0.0614	C.236	0.1450	0.1081	0.2129	0.4660	0.0	0.466	13.69	14.391
2121	6.201	0.0842	0.286	0.1118	0.0885	0.2063	0.4067	0,0	0.407	13.69	14.381
2122	0.176	0.0842	(.263	0.1150	0.0905	0.1856	0.3911	0.0	0.391	13.69	14.343
DDS1/W (\$/1005P)											
1111	0.19E	0.0662	C.264	0.1434	0.1067	0.2341	0.4842	0.0	0.484	12.18	12.930
1112	0.175	0.0662	C.241	0.1466	0.1086	0.2133	0.4686	0.0	0.469	12.18	12.892
1121	. 0,201	0.0884	0.290	0.1134	0.0890	0.2068	0.4092	0.0	0.409	12.18	12.881
1122	C.17E	C. C884	C.267	0.1166	0.0910	0.1860	0.3936	0.0	0.394	12.18	12.843
2111	0,198	0.0614	0.259	0.1416	0,1062	0.2337	0.4816	0.0	0.482	12.18	12.923
2112	0.175	0.0614	0.236	0.1450	0.1081	0.2129	0.4660	0.0	0.466	12.18	12.884
2121	0.201	0.0842	C.286	0.1116	0.0885	0.2063	0.4067	0.0	0.407	12.18	12.874
2122	0.178	0.0842	C.263	0.1150	0.0905	0.1856	0.3911	0.0	0.391	12.18	12.036

•

.

.

••

421

.

.

- ,

•

STAGE/TE	CHNICAI		LABOR		<u> </u>	<u> </u>	PMENT			EQUIPHENT		
PACKAGE	NUMBPR	SKILLED	UNSKILLED	TUTAL	INT/DEF	MAINT/HISC	FUEL	TOTAL	<u>HCRSE</u>	AND HOBSE	MATERIALS	TOTAL
SITE PRE	P (\$/HA)				_							
	11	486.532	2897.7073	3384.239	7.2087	3.2781	3.1212	13.6080	C.O	13.608	93.94	3491.789
	21	61.707	51.2011	112.908	27,7785	19.8579	11.8701	59.5064	0.0	59.506	0.C	172.415
	31	42.125	51.2011	93.327	16.5355	11.7571	7.4920	35.7850	0.0	35.785	0.0	129.112
EXC/HAUL	(\$/10 CBCH)											
20												
	11-0	1.343	0.0	1.343	0.2826	0.2250	0.7151	1.2227	0.0	1.223	0.0	2,566
61												
	1-1	7.389	0.0	7.389	7.4998	5.3666	1.6511	14.5176	0.0	14.518	0.0	21.906
	1-2	6.385	0.0	6.385	10,1504	7.0280	2.4437	19.6220	0.0	19,622	0.0	26.007
	1-3	6.244	C.O	€.244	7.3933	5.1952	1.8186	14.4071	0.0	14.407	0.0	20.651
	1-4	5.925	0.0	5.925	8.1407	5.6782	1.7166	15.5355	0.0	15.536	0.0	21.461
	2-1	7.613	C. O	7.613	9,8464	8.0190	1.8856	19.7510	0.0	19.751	0.0	27.364
	2-2	6.605	0.0	6.609	12.5967	9.7444	2.7090	25,0501	0.0	25.050	0.0	31.659
	2-3	6.498	0.0	6,468	9.7579	7.8574	2.0660	19.6813	0.0	19.681	0.0	26.150
	2-4	6.149	C.C	6 149	10.5401	8.3631	1.9640	20.8672	0.0	20.867	0.0	27.016
	3-1	6.161	0.0	6.161	7.3395	5.9385	1.6422	14.9202	0.0	14.920	0.0	21.082
	3-2	5.150	0.0	5.158	9.4431	7.2482	2.2662	18,9575	0.0	18,958	0.0	24.116
)	3-3	5.017	0.0	5.017	7.1341	5.7130	1.7391	14.5862	0.0	14.586	0.0	19.603
1	3-4	4.696	0.0	4.698	7.6905	6.0713	1.6372	15.3993	0.0	15.399	0.0	20.097
	5-5	5.092	0.0	5.092	3.3507	2.3977	1.3446	7.0930	0.0	7.093	0.0	12.105
	6-6	4.760	G.O	4.760	4.1138	2.9437	1,3682	8.4257	0.0	8.426	0.0	13.166
	7-7	2.227	0.0	2.227	2.5723	1.8407	0.9101	5.3231	0.0	5.323	0.0	7.550
	8-8	1.484	0.0	1.484	0.5934	0.4246	0.2276	1.2456	0.0	1.246	0.0	2.730
	9-9	0.809	0.0	6.809	0.4220	0.3020	0.1808	0.9048	0.0	0.905	0.0	1.713
	10-10	0.659	0.0	0.659	0.4643	0.3322	0.2106	1.0071	0.0	1.007	0.0	1.666
G M					•••							
201	1-1	7.434	0.0	7.634	7.5265	5.3857	1.6604	14.5726	0-0	14.573	0.0	22.007
	1-2	6.406	0.0	6.406	10.1809	7.0485	2,4536	19-6831	0.0	19-683	0.0	26.089
	1-3	6.282	0.0	6.282	7.4211	5.2141	1.8305	14.4657	0.0	14.466	0.0	20.747
	1-4	5.946	0.0	5,946	8, 1626	5.6929	1,7232	15.5787	0.0	15.579	0.0	21.525
	2-1	7.656	0.0	7.658	9.8711	8.0381	1.8949	19,8061	0.0	19.806	0.0	27.464
	2-2	6.630	0.0	6.630	12.6277	9.7650	2.7189	25.1112	0.0	25.111	0.0	31.741
	2-2	6 504		6.506	9.7857	7.8763	2.0779	19.7399	0.0	19.740	0.0	26.246
	2-3	6.170		6 170	10.5620	8.3778	1.9706	20-9105	0.0	20.910	0.0	27.060
	3-1	6.202		6.207	7.3662	5.9576	1.6515	14.9752	0.0	14.975	0_0	21, 182
	3-3	6 170	6 0.0	6 170	0 4777	7.2687	2,2762	19.0186	0.0	19.019	0.0	24.157
	3-2	5.05/	4 0.0	5 054	7,1616	5.7319	1.7511	14.6449	0.0	14.645	0.0	19.699
	2-U			. 110	7 7 10 17	6 0960	1 64 30	15 00445	0.0	95 hills	0.0	20, 161
	J-4 5-6	94713 6 167		4./17	2 2472	3 8 8 8 8 8	1 3505	7 1713	0.0	7 171	0.0	12.321
	7-3	2.13V	v v∎u 1 0.0	2.130	1 924 1 9461	2,4600	1.3700	70 1713 A.4070	0.0	10171 10171	0.0	11.259
	0-0	7 24		4.091 2 247	9 6361	1 1 247070 1 1 2424	0 0004	6.3204	0.0	5 0°430		7.577
	/-/ 0-0	4 4 4	7 VIV	4+447	4+3/04	1. 1.04JO	0.3030	1 2107	A 4	4 230		1_542
	a-u 0-0	1 64		1,703	0.7047	, 072200 , 072200	0 2173	1 1030/	ν÷υ Δ Δ	1.633		2.240
	7-7	1.00		1.001	V+7341	↓ V+3704	V + 43 / 3	1010	V • V	1 100		2 444
	10-10	V. 85	U U.U	C.050	U. 3986	; V.4X8J	V.4/13	1+2,204	u.u	1.479) V.V	# # 190

.....

.

TABLE B.5BB: BAIT COSIS OF THE 1950'S TECHNICAL PACKAGES FOR ALL STAGES AT THE PRICES OF 1956.

422

,

ł

STAGE/TI	CHRICAL	,	LARDI			E0011	ኮክደብኘ			BOUIPHENT		
PACKAGE	NUMBER	SKILLYT	DNSKILLED	10146	IN1/GEF	MAINT/HISC	PUEL	TOTAL	BCRSE	AND HORSE	MATERIALS	TOTAL
	1-1	8.226	0.6	1.26	7.9854	5.7170	1.8223	15.5287	0.0	15.529	0.0	23.755
	1 - 2	6.775	0.0	č.775	10,7255	7.4143	2,6304	20.7702	0.0	20.770	0.0	27.545
	1-3	6.917	C.C	6.937	7.9096	5.5458	2.0398	15.4951	0.0	15.495	0.0	22.432
	1 - 4	6.315	Q.O	6.315	8.5525	5.9547	1.8411	16.3482	0.0	16.348	0.0	22.663
	2-1	8 450	0.6	£.450	10.3360	8.3694	2.0568	20.7622	0.0	20.762	0.0	29.212
	2-2	6.999	C.O	6.999	13.1715	10.1308	2.8957	26.1983	0.0	26.198	0.0	33, 157
	2-3	7.161	0.0	7.161	10,2742	8.2080	2.2871	20,7693	0.0	20.769	0.0	27.930
	2-4	6.519	0.0	6.539	10.9518	8.6397	2,0885	21.6800	0.0	21.680	0.0	28.219
	3-1	6.999	0.0	£.999	7.8251	6.2888	1.0134	15.9313	0.0	15.931	0.0	22.930
	J-2	5.548	0.0	5.548	10.0183	7.6345	2.4530	20.1058	0.0	20.106	0.0	25.654
	3-3	5.710	C.O	5.710	7.6504	6.0636	1.9603	15.6743	0,0	15.674	0.0	21.384
	3-4	5.088	0.0	5.088	8.1026	6.3478	1.7616	16.2120	0.0	16.212	0.0	21.300
	4-2	2.853	0.0	2.853	4.5831	3.1460	1.3414	9.0705	0.0	9.070	0.0	11.923
	4-4	2.392	0.0	2,392	3.2326	2.2389	0.8653	6.3368	0.0	6.337	0.0	8.729
	5-5	6.128	0.0	6.128	4.0317	2.8849	1.6179	8.5345	0.0	8.534	0.0	14.663
	6-6	5.494	0.0	5.494	4.7481	3.3977	1.5792	9.7250	0.0	9.725	0.0	15.219
	7-7	2.612	0.0	2.612	2,9932	2.1419	1.0566	6.1918	0.0	6, 192	0.0	8.804
	8-8	9.918	0.0	9.918	3.9647	2.8370	1.5206	8.3224	0.0	8.322	0.0	18.240
	9-9	5.399	0.0	5.399	2.0176	2.0163	1.2070	6.0411	0.0	6.041	0.0	11.440
	10-10	4.130	0.0	4.130	2.9083	2.0811	1.3190	6.3084	0.0	6.308	0.0	10.438
1000												
	1-1	8.836	0.C	0.836	8.3457	5.9719	1.9469	16.2646	0.0	16.265	0.0	25.100
	1-2	7.061	0.0	7.061	11.1478	7.6979	2.7675	21.6131	0.0	21.613	0.0	28.674
	1-3	7.434	0.0	7.434	0.2806	5.7977	2.1987	16.2770	0.C	16.277	0.0	23.711
	1-4	6.601	0.0	6.601	8.8547	6.1577	1.9325	16.9448	0.0	16.945	0.0	23.546
	2-1	9.060	0.0	9.060	10.6923	8.6243	2.1814	21.498C	0.0	21.498	0.0	30.558
	2-2	7.285	0.0	7.285	13.5941	10.4144	3.0328	27.0412	0.0	27.041	0.0	34.326
	2-3	7.658	0.0	7.658	10.6452	8.4599	2.4461	21.5512	0.0	21.551	0.0	29.209
	2-4	6.825	0.0	6.825	11.2540	8.8426	2.1799	22.2766	0.0	22.277	0.0	29.101
	3-1	7.609	0.0	7.609	8.1854	6.5438	1.9380	16.6671	0.0	16.667	0.0	24.276
	3-2	5.834	0.0	5.834	10.4405	7.9181	2.5900	20.9486	0.0	20.949	0.0	26.783
	3-3	6.207	0.0	6.207	8.0214	6.3155	2.1192	16.4561	0.0	16.456	0.0	22.663
	3-4	5.374	0.0	5.374	8.4048	6.5508	1.8530	16.8086	0.0	16.809	0.0	22.162
	4-2	3.139	0.0	3.139	5.0053	3.4296	1.4785	9.9133	0.0	9,913	0.C	13.052
	4-4	2.675	C.O	2.679	3.5346	2.4419	0.9567	6.9334	0.0	6.933	0.0	9.612
	5-5	6.883	0.0	6.883	4.5391	3.2480	1.8216	9.4087	0.0	9.609	0.0	16.492
	6-6	6.029	0.0	6.029	5.2106	3.7285	1.7329	10.6720	0.0	10.672	0.0	16.701
	7-7	2.571	0.0	2.571	3.0803	2.2099	1.0674	6.3656	0.0	6.366	0.0	8.936
	8-8	16.013	0.0	16.013	6.4013	4.5805	2.4550	13.4368	0.0	13.437	0.0	29.450
	9=9	8.716	0.0	٤.716	4.5491	3,2552	1.9486	9.7530	0.0	9.753	0.0	18.469
	10-10	6.61E	0.0	6.618	4.6602	3.3347	2.1137	10.1086	0.0	10.109	0.0	16.726
1658												
	1-1	5.615	0.0	5.819	8,9202	6.3830	2.1478	17.4509	0.0	17.451	0.0	27.269
	1-2	7.517	0.0	7.517	11.8208	8.1500	2.9860	22.9568	0.0	22.957	0.0	30.474
	1-3	8.243	0.0	8.243	8.8835	6.2070	2.4569	17.5474	0.0	17.547	0.0	25.790
	1-4	7.058	0.0	7.058	9.3369	6.4816	2.0783	17.8965	0.0	17.897	. 0.0	24.954
	2-1	10.042	0.0	10.042	11.2667	9.0353	2.3823	22.6844	0.0	22.684	0.0	32.727

•

(TAELE B.5BB CONTINUED) STAGE/TECHNICA1

.....

τ.

(TAPLE 8.588 CONTINUED)

STAGE/T	ECHAICAL		<u>r v do v</u>			<u> </u>	<u>PNENT</u>			EQUIPMENT		
PACKAGZ	NUMBER	<u>SKILLEE</u>	UNSKTLLED	TCIAL	<u>t nt/dee</u>	MAINT/MISC	POEL	TOTAL	<u> 110 ps B</u>	AND HORSE	MATERIALS	TOTAL
	2-2	7.741	0.0	7.741	14.2672	10.8665	3.2513	28.3849	0.0	28.385	0.0	36.126
	2-3	8.467	· C.J	€.467	11.2481	6.8692	2.7043	22.8216	0.0	22.822	0.0	31.289
	2-4	7.281	0.0	7.281	11.7363	9.1665	2.3257	23,2285	0.0	23.229	0.0	30.510
	3-1	d.591	0.0	8.591	8.7596	6.9548	2.1389	17.8535	0.0	17.853	0.0	26.445
	3-2	6.290	0.0	6.290	11.1136	8.3702	2.8085	22,2923	0.0	22.292	0.0	28.582
]-]	7.016	0.0	7.016	8.6243	6.7248	2.3775	17.7266	0.0	17.727	0.0	24.742
	3-4	5.830	0.0	5.A30	0.807¢	6.8747	1.9988	17.7606	0.0	17.761	0.0	23.551
	4 - 2	3.595	0.0	3.595	5.6784	3.8817	1.6970	11.2570	0.0	11.257	0.0	14.852
	4-4	3.135	0.0	3,135	4.0170	2.7658	1.1025	7.8853	0.0	7.885	0.0	11.020
	5-5	8.085	0.0	E.C85	5.3246	3.8103	2.136B	11,2719	0.0	11.272	0.0	19.357
	6-6	6.120	0.0	6.120	5.5521	3,9729	1.8001	11.3331	0.0	11.333	0.0	17.453
	7-7	2.969	0.0	2.969	3.5065	2.5520	1.2327	7.3512	0.0	7.351	0.0	10,320
	9-A	25.84C	0.0	25.840	10.3295	7, 3915	3.9616	21.6826	0.0	21.683	0.0	47.523
	9-9	14.106	0.0	14.106	7.3626	5.2684	3.1538	15.7848	0.0	15,785	0.0	29.891
	10-10	10.640	0.0	10.640	7.4926	5.3615	3.3983	16.2523	0.0	16.252	0.0	26.892
5008	.,											2000/4
	1-1	10,101	0.0	10.101	9,0850	6.5009	2.2054	17, 7913	0 0	17 791	0.0	27 BC2
	1-2	7.650	0.0	7.650	12.0167	8.2815	3.0496	21.3477	0.0	23 200	0.0	27.032
	1-1	 0.479 	0.0	8.479	9.0596	6. 1267	2.5324	17.9188	0 0	17 919	0.0	26 308
	1-4	7,190	0.0	7,190	9.4766	6.5754	2.1205	14 17 26	0.0	10 173	0.0	20.350
	2-1	10.324	0.0	10.324	11_4116	9,1533	2.4399	21 0247	0.0 0 0	21 025	0.0	23.302
	2-2	7 474	0.0	7 874	14 46 70	10 9000	3 31/10	23 7750	0.0	20.020	0.0	33.347
	2-2	4 703	0.0	6 703	11 4204	A 0040	2 7700	20.1130	0.0	20.//0	0.0	30.020
	2-,	7 414	0.0	2 114	11 8760	0.300 3 0.360ii	2 3670	23.5003	0.0	23.173	0.0	JI.030
	2-1	רודיי	0.0	6 117	9 0246	7 0710	2.0075	43.3043	0.0	23.304	0.0	20.210
	3-7	6 103	0.0	6,073	11 3004	1.V/20 0.6017	2.1903	10.1737	0.0	18, 194	0.0	27.667
	1-2	0.443	0.0	1 969 1 969	0 0005	4 JUIF	2.0721	22.0032	0.0	22.083	0.0	29.106
	1-1 1-1	7+474 E 045	0.0	1.404	0,0000	0.0440	2.4530	10.0900	0.0	10.098	0.0	25.350
	3-4	2.90∡ 017 C	0.0	2,902	9.0207	0.9000	2.0411	18 0 36 4	0.0	18.036	0.0	23.959
	4-2	3.120	0.0	3-728	2+8/44	9.0132	1.7606	11.6479	0.0	11.648	0.0	15.376
	4-4 6-6	10 000	0.0	3.207	4.1007	2.0390	1.1440	8.1011	0.0	8.161	0.0	11.428
	7-5	12.024	0.0	12.024	8.3320	6.103/	3.4412	18.0794	0.0	18.079	0.0	30.104
	0-0	10.125	0.0	10.125	9.1009	6.5/38	2.9917	18.7523	0.0	18.752	0.0	28.878
	1-1	2.00.5	0.0	2.003	0.00.20	4 3027	2.1023	12-5374	0.0	12.537	0.0	17.600
	0-0	(1+400	0.0	11-255	30.8826	22.0986	11.8441	64.8251	0.0	64.825	0.0	142.080
	9-9	42.1//	0.0	42+177	22.0142	15.7527	9.4299	47.1968	0.0	47.197	0.0	89.374
000-	19-10	31.742	0.0	31.745	22.3551	15.9966	10.1392	48.4910	0.0	48.491	0.0	80.236
RONU												
	1-1	, 11, 411	6.0	11.411	9.0505	7.0490	2.4732	19.3731	0.0	19.373	0.0	30.784
	1-2	8.268	0.0	8.268	12.9284	8.8939	3,3456	25.1678	0.0	25.168	0.0	33.436
	1-3	9.557	0.0	9.557	9.8636	6.8725	2.0767	19.6128	0.0	19.613	0.0	29.170
	1-4	7.803	0.0	7.903	10.1248	7.0108	2.3165	19.4522	0.0	19.452	0.0	27.256
	2-1	11.635	0.0	11.635	12.1974	9.7013	2.7078	24.6065	0.0	24.607	0.0	36.241
	2-2	8.492	0.0	6.492	15,3747	11.6104	3.6108	30.5959	0.0	30.596	0.0	39.088
	2-3	9.781	0.0	9.781	12.2282	9.5347	3.1241	24.8870	0.0	24.887	0.0	34.668
	2-4	8.027	0.0	8.027	12.5242	9.6958	2.5639	24.7839	0.0	24.784	0.0	32.011
	3-1	10.183	0.0	10.103	9.6905	7.6208	2.4643	19.7757	0.0	19.776	0.0	29.959
	3-2	- 7.041	0.0	7.041	12.2211	9.1141	3.1681	24.5033	0.0	24.503	0.0	31.544

(TABLE B. 58B CONTINU)	EC)
------------------------	-----

(TAELE B	.58B CONTINU	JE C)										
STAGE/TE	CHNICAL		LABOR		_	ÉQUI	<u>PAENT</u>		e	QUIPMENT		
PACKAGE	NDHOFS	SKILLED	ONSKILLED	JULI	INT/CEE	BAINT/HISC	FUEL	TOTAL	HORSE A	ND HORSE	MATERIALS	TCTAL
	3-3	8.330	0.0	8.33C	9.6044	7.3963	2.7973	19.7919	0.0	19.792	0.0	28.122
	3-4	6.576	0.0	6.576	9.6750	7.4039	2.2371	19.3160	0.0+0+	19.316	0.0	25.892
,	4-2	4.345	0.0	4.345	6.7855	4.6256	2.0566	13.4681	0.0	13.468	0.0	17.813
	4-4	3.881	0.0	3.881	4.8045	3,2950	1.3408	9.4407	0.0	9.441	0.0	13.322
	5-5	16.08E	0.0	16.008	11.6265	8.3195	4.6942	24.6402	0.0	24.640	0.0	40.728
	6-6	12.862	0.0	12.862	11.9975	8.5850	3.8609	24.4433	0.0	24.443	0.0	37.305
	7-7	6.514	0.0	6.514	8.0247	5.7422	2.7409	16.5078	0.0	16.508	0.0	23.022
	8-8	123.280	0.0	123.280	49.2868	35.2638	18.9002	103.4449	0.0	103.445	0.0	226.724
	9-9	67.304	0.0	67.304	35.1297	25.1174	15.0478	75.3144	0.0	75.314	0.0	142 618
	10-10	50 652	0.0	50.652	35.6701	25.5244	16.1792	77 3727	0.0	77.373	0.0	128 025
SPR/COMP 981	(\$/100BCM)	501072		JUICIT	33.0707	2313244	101 1752	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		***3*3	5.0	120.025
70A	11	5 009	0.0	5-009	2.1048	1.5274	0.7679	4.4001	0.0	4.400	0.0	<u>a µ</u> @a
	11	3 669	0.0	3 659	1 7601	1 2845	0 6070	3 7020	0.0	2 702	0.0	7.947
	12	34336	0.0	24720	1 2261	1.2003	0.0474	3 7 1 1 4	0.0	3.744	0.0	6 380
	13	3,070	0.0	3.070	1 2421	0.07700	0 4702	2 7 1 6	0.0	2 1 1	0.0	0.JC7 5.0J6
	14	3.230	0.9	2.236	1.2005	0.77/2	0.4000	2.7403	0.0	4 - 740	0.0	3.970
	21	4.291	0.0	4-291	2.2409	1.0240	0.8086	4.7344	0.0	4 . / 24	0.0	9.040
	22	2.840	0.0	2.849	1.9043	1.3037	0.7031	4.0304	0.0	4.050	U.U	0.05/
	2.3	2.961	0.0	2.961	1.3612	1.0934	0.6110	3.0657	0.0	3.066	0.0	6.026
	24	2.513	0.0	2.513	1,4346	1.0946	0.6016	3.1008	0.0	3.101	0.0	5.614
	31	3.769	0.9	3.769	1.5922	1.1428	0.7218	3.4568	0.0	3.457	0.0	7.226
	32	2,318	0.0	2,318	1.2556	0.9019	0.6013	2.7587	0.0	2.759	0.0	5.077
	33	2.438	0.0	2.438	0.7126	0.6114	0.4441	1.7681	0.0	1.768	0.0	4.206
	34	1.990	0.0	1,940	0.7559	0.6126	0.4347	1.8032	0.0	1.603	0.0	3,793
	41	3.537	0.0	3.537	1.5991	1.1951	0.6273	3.4216	0.0	3.422	0.0	6.950
	42	2.086	0.0	2.086	1.2625	0.9542	0.5068	2.7235	0.0	2.724	0.0	4.809
	43	2.206	0.0	2.206	0.7195	0.6637	0.3497	1.7329	0.0	1.733	0.0	3.939
	44	1.750	0.0	1.758	0.7628	0.6649	0.3403	1.7680	0.0	1.768	0.0	3.526
SUBPACIN	16											
ORAVEL	(\$/100CCR)										•	
	11	4.350	0.0	4.350	1.4625	1.2832	0.5510	3.2967	0.0	3.297	673.88	681.527
	12	3.201	0.0	3.201	1.2504	1.0097	0.4723	2.7324	0.0	2.732	673.08	679.815
	21	4.030	0.0	4.030	1.7730	1.5053	0.7410	4-0193	0.0	4.019	673.88	681.931
	22	2.882	0.0	2.662	1.5606	1.2318	0.6623	3.4550	0.0	3.455	673.88	680.218
	31	3.404	0.0	3.404	1.0687	0,9847	0.5410	2.5944	0.0	2.594	673.00	679.880
	32	2.256	0.0	2.256	0.8566	0.7112	0.4624	2.0301	0.0	2.030	673.88	678.167
	41	3.230	0.0	3.230	1.0983	1.0523	0.4650	2.6156	0.0	2.616	673.68	679.727
	42	2.081	0.0	2 081	0.8862	0.7788	0.3863	2.0513	0.0	2.051	673.88	678.014
	51	4.847	0.8983	5.745	2.7598	2,1512	0.9896	5,9006	0.0	5,901	673.88	A85.527
	52	3.699	0.8981	4.547	2.5477	1. 8777	0.9109	5, 3363	0.0	5.316	671.68	683 814
98 B	4\$ 2100CCAN			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			••••••		v. •	26.330	0/3400	0031014
	111	34. LUA	6.8467	41.295	17,4795	12.0169	6.5042	31, 9603	0.0	31 96 0	773 61	846 767
	112	26.667	5.6860	10 102	12.4685	10.4351	5.7043	28.6070	0.0	31030V 30 400	773431	040.101
	211	201031	6 8447	24.242	13 6000	10 1001	6 6300	20.0013	0.0	20.000	773+31	034.402
	212	JJ. /00 76 077	0.0407 5 6960	31 663	13 61096	164 1491	5 8300	J&+J4J 70 00/7	0.0	36.343	117.21	040.409
	211	41.711	5.0000	71.007 71.007	12 0 104	1043443	3.0300 6 h60h	20.370/	U . U	20.991	113.51	C01++105
	311	33 .43/	0.040/ 5 141A	31 437	14.7303	10 0411	0.40V4 5 22AE	31.VJ33	0.0	31.040	113.31	044.635
	411	33.005	6.8467	35.652	12.9435	11.6912	6.366 4	27.0070	0.0	27.688 31.001	773.51	844.365

•

.

.

425

•

ı.

.

(TALLE 8.588 CCN	TINDED)										
STAGE/TECHNICAL	·	LABOR			EQUIE	MENT			ZQUIPMENT		
PACKAGE NUMBER	SKILLED	UNSKILLED	TCIAL	INT/DEE	MAINT/HISC	P971	TOTAL	HORSE	AND HORSE	MATERIALS	TOTAL
412	25.214	5,6860	30.900	11.9725	10.1094	5.5665	27.6487	0.0	27.649	773.51	832.060
511	34.693	7.7450	42.438	14.6934	12.8506	6.9216	34.4655	0.0	34.466	773.51	850.415
512	26.902	6,5843	33.486	13.7227	11.2688	6.1216	31.1131	0.0	31.113	773.51	836.111
DB51/G (\$/1005#)											
· · · · · · · · · · · · · · · · · · ·	0.713	0,3396	1.053	0.4214	0.3179	0.3177	1.0570	0.0	1.057	19.67	21.779
1112	0.630	0.3396	C.97C	0.4311	0.3237	0.2943	1.0492	0.0	1.049	19.67	21.688
1121	0.726	0.4538	1.179	0.3332	0.2653	0.2799	0.8785	0.0	0.878	19.67	21.727
1122	0.643	0.4538	1.096	0.3425	0.2711	0.2565	0.8706	0.0	0.871	19.67	21.636
2111	0.713	0.3149	1.028	0.4167	0.3164	0.3171	1.0503	0.0	1.050	19.67	21.748
2112	0.630	0.3149	C.945	0.4264	0.3222	0.2937	1.0424	0.0	1.042	19.67	21.657
2121	0.726	0.4322	1.158	0.3285	0.2638	0.2794	0.8717	0.0	0.672	19.67	21.699
2122	0.643	0.4322	1.075	0.3382	0.2696	0.2559	0.8638	0.0	0.864	19.67	21.608
DBST/W (\$/1005m)											
1111	0.713	0.3396	1.053	0.4214	0.3179	0.3177	1.0570	0.0	1.057	17.16	19.267
1112	0.630	0.3396	0.970	0.4311	0.3237	0.2943	1.0492	0.0	1.049	17.16	19.177
1121	0.726	0.4538	1.179	0.3332	0.2653	0.2799	0.8785	0.0	0.878	17.16	15.215
1122	0.643	0.4538	1.096	0.3425	0.2711	0.2565	0.8706	0.0	0.871	17.16	19, 125
2111	0.713	0.3149	1.028	0.4167	0.3164	0.3171	1.0503	0.0	1.050	17.16	19.236
2112	0.630	0.3149	C.945	0.4264	0.3222	0.2937	1.0424	0.0	1.042	17.16	19.145
2121	0.726	0.4322	1.158	0.3285	0.2638	0.2794	0.8717	0.0	0.872	17.16	19.187
' 2122	0.643	0.4322	1.075	0.3382	0.2696	0.2559	0.8638	0.0	0.864	17.16	19.096

,

•

.

•

	STAGE/TEC	CHNICAL	_	LABOR			EQUI	PNENT	_		EQUIPMENT		
	PACKAGE N	UNBER	SKILLED	UNSKILLED	ICINE	INT/DEF	HAINT/HISC	FUEL	TOTAL	HORSE	AND HORSE	MATERIALS	. TOTAL
	SITE PREF	P (\$2HA)											<u> </u>
		11	1513.314	9675.39841	1188.703	15.2656	6.4428	5.3186	27.0270	0.0	27.027	137.77	11353.500
		21	191.935	170.9595	362.895	65.6476	39.0295	28.0925	132.7696	0.0	132.770	0.0	495.664
		11	111.027	170.9595	301.987	79.0334	23.1080	17,7310	79.8724	0.0	79.872	0.0	381.859
	RTC /UADA	11/10(BCB)					1911000		1110121				3011033
	28	fax to coold											
	20	11-0	1 170	0.0	4 170	6 64.93	0 0021	1 3164	2 2000	0.0	2 310	• •	6
	6 10	11-0	44117	VeV	44172	V. 6434	0.4421	142100	4.3077	V+V	2.310	0.0	0.467
	00		22.002	0.0		13 3005	40 61-20	2 0076			20.405	• •	
		1-1	42.702	0.0	22.702	1/ . / 495	10.0470	3.9070	32.1049	0.0	32.183	0.0	22.10/
		1-2	19.001	0.0	19-061	23.9933	0110.0110	5.7834	43.5917	0.0	43.592	0.0	63.453
		1-3	19.423	C.C	19.423	17.4777	10.2108	4,3040	31.9925	0.0	31.992	0.0	51.415
		1-4	18.430	0.0	16.430	19.2446	11.1601	4,0627	34.4673	0.0	34.467	0.0	52.897
		2-1	23.679	0.0	23.679	23.7498	15.7609	4.4626	43.9733	0.0	43.973	0.C	67.652
		2-2	20.558	0.0	20.558	30.2514	19.1521	6.4112	55.8148	0.0	55.815	0.0	76.372
		2-3	20,119	0.0	20.119	23.5406	15.4432	4.8895	43.8734	0.0	43.873	0.0	63.992
		2-4	19,126	0.6	19.126	25,3898	16.4372	4.6482	46.4751	0.0	46.475	0.0	65.601
4		3-1	19.165	0.0	15.165	17.6842	11.6717	3.8865	33.2424	0.0	33.242	0.0	52.407
Ň		3-2	16.044	0.0	16.044	22.6571	14.2459	5.3634	42.2664	0.0	42.266	0.0	58.310
7		3-3	15.605	0.0	15-605	17, 1987	11.2286	4.1160	32.5432	0.0	32.543	0.0	48.148
		3-4	14.612	0.0	14.612	18.514E	11, 9327	3.8746	34, 3222	0.0	34.322	0.0	48.974
		5-5	15.817	0.0	15-837	7,9210	4.7125	3, 1823	15,8158	0.0	15, 816	0.0	31.653
		6-6	14.806	0.0	14.806	9.7250	5.7857	1 2180	18 7488	0 0	19 749	0.0	11 564
•		7_7	6 976	0.0	4 0 2 4	6 0000	3 6 1 7 7	2 15 20	11 0576	0.0	11 960	0.0	10 770
		8-8	0.340	0.0	0.720	1 4036	J.U / /	0 6796	2 7760	0.0	11+052	0.0	10,770
		0-0	9.017	0.0	4+017	1.4020	0.0343	0.03300	2.1/37	0.0	2.770	0.4	1.373
		9-9	2.010	0.0	2.515	0.9976	0.5935	0.4270	2.0190	0.0	2.019	0.0	4.534
	· ·	10-10	2.051	0.0	2.051	1.09/5	0.0230	0.4984	2.2468	0.0	2,249	0.0	4.299
	98												
•		1-1	23.124	0.0	23.124	17.7925	10.5853	3,9296	32,3075	0.0	32.308	0.0	55.432
		1-2	19.926	0.0	19.926	24.0676	13.8534	5.8069	43.7279	0.0	43.728	0.0	63.654
		1-3	19.539	0.0	19.539	17.5434	10.2480	4.3322	32.1236	0.0	32.124	0.0	51.662
		1-4	18.494	0.0	18.494	19.2963	11.1890	4.0783	34.5637	0.0	34.564	0.¢	53.058
		2-1	23.821	0.0	23.821	23.0125	15.7984	4.4847	44.0959	0.0	44.096	0.0	67.916
		2-2	20.622	0.0	20.622	30,3236	19.1925	6.4347	55.9510	0.0	55.951	0.0	76.573
		2-3	20.235	0.0	20.235	23.6064	15.4804	4.9177	44.0045	0.0	44.004	0.0	64.240
		2-4	19.191	0.0	19.191	25.4415	16.4661	4.6638	46.5715	0.0	46.571	0.0	65.762
		3-1	19.307	0.0	19.307	17.7472	11.7092	3,9086	33.3650	0.0	33.365	0.0	52.672
		3-2	16.106	0.0	16.108	22.7294	14.2863	5.3869	42.4026	0.0	42.403	0.0	59 511
		3-3	15.721	0.0	15.721	17.2646	11.2657	4.1442	32.6743	0 0	32 674	0 0	69 306
		3-4	14.677	0.0	14.677	18.5666	11.9617	3,8963	34.4185	0.0	34 410	0.0	40.370
		5-5	16 019	0.0	16.018	8.0085	4.7645	3 2174	15 0004	0.0	15 000	0.0	47.633
		9= 3 6 = 6	14 036	0.0	14.976	0.0000	5 8363	3 2654	18 0003	0.0	134370	0.0	32.008
	,	0-0 7_7	144733		196723	7. UUC4 6 AAA/	3.0333	3 46 47	1047073	0.0	10.304	U.C	33.844
		1 - 1	0+990		0.770	0.0900	J.0233	2-1527	11.0008	0.0	11.867	0.C	18.857
		8-H	6.074	9.0	c.074	1.0455	1.0980	0.7086	3.6521	0.0	3.652	0.0	9.727
		9=9	3,302	0.0	3.302	1.3097	0.7792	0.5617	2.6506	0.0	2.651	0.0	5.952
		10-10	2.644	0.0	2.644	1.4151	0.8419	0.6425	2.8994	0.0	2.899	0.0	5.543
	60N	•											

TABLE 8.58C: UNIT COSTS OF THE 1950*S TECHNICAL PACKAGES FOR ALL STAGES AT THE PRICES OF 1974.

(TABLE 8.5BC CONTIN	UED)										
STAGE/TECHNICAL	•	LALOR			LOUIP	MENT			EQUIPHENT		
PACKAGE NUMBER	SKILLEI	UNSKILLED	IC1AL	INTICH	MAINT/MISC	PUEL	TOTAL	<u>H</u> ORSE	AND HORSE	MATERIALS	TOTAL
1-1	25,587	0.0	25.587	18.0865	11.2364	4.3128	34.4361	0.0	34.436	0.0	60.023
1-2	21.073	0.5	21.073	25.3550	14.5723	6.2253	46.1526	0.0	46.153	0.0	67.226
1-3	21.576	9.0	21.576	18.6982	10.8999	4.8274	34.4255	0.0	34.426	0.0	56.002
1-4	19.642	0.0	15.642	20.2178	11.7036	4.3573	36.2787	C.O	36.279	0.0	55.921
2-1	26.284	0.0	26.284	24.9072	16.4494	4.8678	46.2245	0.0	46.225	0.0	72.508
2-7	21.770	0.0	21.770	31.6112	19.9114	6.8531	58.3757	0.0	58.376	0.0	80.146
2-3	22.273	0.0	22.273	24.7612	16.1323	5.4129	46.3064	0.0	46.306	0.0	68.579
2-4	20.338	0.0	20.338	26.363C	16.9807	4.9428	48.2865	0.0	48.287	0.0	68.625
3-1	21.770	0.0	21.770	10.8416	12.3603	4.2917	35.4936	0.0	35.494	0.0	57.264
3-2	17.256	0.0	17.256	24.016E	15.0052	5.8053	44.8273	0.0	44.827	0.0	62.083
3-3	17.759	0.0	17.759	18.4192	11.9176	4.6394	34.9762	0.0	34.976	0.0	52.735
3-4	15.824	0.0	15.824	19.4881	12.4763	4.1692	36.1336	0.0	36.134	0.0	51,950
4-2	8.673	0,0	£.873	10.8343	6.1832	3.1747	20.1922	0.0	20.192	0.0	29.065
4-4	7.441	0.0	7.441	7.6417	4.4004	2.0479	14.0901	0.0	14.090	0.0	21.532
5-5	19.062	0.0	19.062	9.5300	5.6702	3.8290	19.0299	0.0	19.030	0.0	38.092
6-6	17.088	0.0	17.088	11.2247	6.6779	3.7373	21.6400	0.0	21.640	0.0	38.728
7-7	8.125	0.0	8.125	7.0760	4.2097	2.5007	13.7864	0.0	13.786	0.0	21.911
8-8	30.849	0.0	36.849	9.3726	5.5760	3.5987	18.5473	0.0	18.547	0.0	49.357
9-9	16.792	0.0	16.792	6.6612	3.9630	2.8566	13.4807	0.0	13.481	0.0	30.272
10-10	12.845	0.0	12.845	6.8751	4.0902	3.1218	14.0871	0.0	14.087	0.0	26.932
1008											-
1-1	27.483	0.0	27.483	19.7292	11.7375	4.6077	36.0743	0.0	36.074	0.0	63.550
1-2	21.963	0.0	21.963	26.3531	15.1297	6.5497	48.0325	0.0	48.033	0.0	69.996
1-3	23.124	0.0	23.124	19.5753	11.3950	5.2035	36.1738	0.0	36.174	0.0	59.298
1-4	20.532	Ú.O	20.532	20.9323	12.1026	4.5736	37.6084	0.0	37.608	0.0	58.140
2-1	28.180	0.0	28.180	25.7495	16.9505	5.1627	47.8627	0.0	47.863	0.0	76.042
2-2	22.660	0.0	22.660	32.6093	20.4688	7.1775	60.2556	0.0	60.256	0.0	82.915
2-3	23.821	0.0	23.821	25.6382	16.6274	5.7890	48.0547	0.0	48.055	Ú.O	71.875
2-4	21.228	0.0	21.228	27.0775	17.3797	5.1590	49.6162	0.0	49.616	0.0	70.844
3-1	23.666	0.0	23.666	19.6835	12.8614	4.5866	37.1319	0.0	37.132	0.0	60.798
3-2	18.146	0.0	18.146	25.0145	15.5626	6.1297	46.7072	0.0	46.707	0.0	64.853
3-3	19.307	0.0	15.307	19.2963	12.4127	5.0155	36.7245	0.0	36 724	0.0	56.031
3-4	16.714	0.0	16.714	20,2025	12.8752	4.3855	37.4633	0.0	37.463	0.0	54.178
4-2	9.763	0.0	9.763	11.8324	6.7406	3.4991	22.0721	0.0	22.072	0.0	31.835
4 - 4	8.331	0.0	0.331	8.3561	4.7994	2.2642	15.4197	0.0	15.420	0.0	23.751
5-5	21.409	0.0	21.409	10.7303	6.3839	4.3110	21.4250	0.0	21.425	0.0	42.834
6-6	18.752	0.0	16.752	12.3177	7.3282	4.1012	23.7471	0.0	23.747	0.C	42.499
· 7-7	7.996	0.0	7.996	7.300€	4.3434	2.5262	14.1703	0.0	14.170	0.0	22.166
8-8	49.808	0.0	45.808	15.1325	9.0028	5.8102	29.9455	0.0	29.945	0.0	79.753
9-9	27.109	0.0	27.109	10.7541	6.3979	4.6118	21.7638	0.0	21.764	0.0	48.873
10-10	20,583	0.0	20.583	11.0167	6.5542	5.0023	22.5733	0.0	22.573	0.0	43.157
165M											
1-1	30.540	6.0	30.540	21.0871	12.5454	5.0831	30.7156	0.0	38.716	0.0	69.255
1-2	23.382	0.0	23.302	27.9443	16.0183	7.0669	51.0294	0.0	51.029	0.0	74-411
1-3	25.639	0.0	25.639	21.0005	12.1995	5.8147	39.0147	0.0	39.015	0.0	64.654
1-4	21.952	0.0	21.952	22.0723	12.7392	4.9186	39.7301	0.0	39.73(0.0	61.682
2-1	31.236	0.0	31.236	27,1075	17.7584	5.6381	50.5040	0.0	50, 504	0.0	81.740

428

(TRELE	B.5BC CONT	INUED)										
STAGE/T	ECHNICAL	·	LADOR			EQUIP	<u>MENT</u>	<u></u>		EQUIPMENT		
PACKAGE	NUADER_	SKILLED	UNSKILLED	ICIAL	INT/CEE	MAINT/HISC	FUEL	TOTAL	HORSE	AND HORSE	<u>BATERIALS</u>	TCTAL
	2-2	24.078	0.0	24.078	34.2005	21.3574	7.6947	63.2525	0.0	63.253	0.0	87.331
	2-3	26,335	0.0	26.335	27,0634	17.4319	6.4002	50.8956	0.0	50.896	0.0	77.231
	2-4	22.648	C.O	22.648	28.2175	18.0163	5.5041	51.7379	0.0	51.738	0.0	74.386
	3-1	26.722	0.0	26.722	21.0418	13.6693	5.0620	39.7731	0.0	39.773	0.0	66.495
	3-2	19.565	0.0	19.565	26.6061	16.4512	6.6469	49.7041	0.0	49.704	0.0	69.269
	3-3	21.822	0.0	21.822	20.7215	13.2173	5.6267	39.5654	0.0	39.565	0.0	61.387
	3-4	18.134	0.0	10.134	21.3425	13.5110	4.7306	39.5849	0.0	39.585	0.0	57.719
	4-2	11,182	0.0	11.102	13.4236	7.6292	4.0163	25.0690	0.0	25.069	0.0	36.251
	4-4	9.751	0.0	9.751	9,4961	5.4360	2.6093	17.5414	0.0	17.541	0.0	27.293
	5-5	25.149	0.0	25.149	12.5878	7.4889	5.0571	25.1337	0.0	25.134	0.0	50.283
	6-6	19.036	0.0	19.036	13.1251	7.8085	4.2792	25.2128	0.0	25.213	0.0	44.249
	7-7	9,234	0.0	9.234	8.4311	5.0159	2.9174	16.3643	0.0	16.364	0.0	25.599
	8 - A	80.373	0.0	86.373	24.4189	14.5275	9.3758	48.3222	0.0	48.322	0.0	128.696
	9-9	43.875	0.0	43.075	17.4051	10.3548	7.4640	35.2239	0.0	35.224	0.0	79.099
	10-10	33.093	0.0	33.093	17.7124	10.5376	0.0426	36.2926	0.0	36,293	0.0	69.386
500N												
	1-1	31.417	0.0	31.417	21.4767	12.7772	5.2195	39.4734	0.0	39.473	0.0	70.850
	1-2	23.795	0.0	23.795	28.4072	16.2768	7.2173	51.9012	0.0	51.901	0.0	75.696
	1-3	26.374	0.0	26.374	21.4171	12.4347	5.9934	39.8452	0.0	39.845	0.0	66.219
	1-4	22.363	0.0	22.363	22.4026	12,9236	5.0186	40.3448	0.0	40.345	0.0	62.708
	2-1	32,113	0.0	32.113	27.4971	17.9902	5.7745	51.2618	0.0	51.262	0.0	83.375
	2-2	24.491	0.0	24.491	34.6633	21.6159	7.8451	64.1243	0.0	64.124	0.0	88,616
	2-3	27.071	0.0	27.071	27,4800	17.6671	6.5789	51.7260	0.0	51.726	0.0	78.797
	2-4	23.060	0.0	23.060	28.5477	18.2007.	5.6041	52.3526	0.0	52.353	0.0	75.412
	3-1	27.599	0.0	27.599	21.4314	13.9011	5.1984	40.5309	0.0	40.531	0.0	60.130
	3-2	19.977	0.0	19.977	27.0690	16.7097	6.7973	50.5759	0.0	50.576	0.0	70.553
	3-3	22.557	Ċ.O	22.557	21.1301	13.4525	5.8053	40.3958	0.0	40.396	0.0	62.952
	3-4	18.546	0.0	16.546	21.6728	13.6963	4.8306	40.1997	0.0	40.200	0.0	58.745
•	4 - 2	11.594	0.0	11.594	13.8864	7.8677	4.1667	25.9408	0.0	25.941	0.0	37.535
	4 - 4	10.163	0.0	16.163	9.8264	5.6204	2.7093	18.1561	0.0	18.156	0.0	28,319
	5-5	37.401	0.0	37.401	20.1710	12.0003	8.1441	40.3154	0.0	40.315	0.0	77.716
	6-6	31.494	0.0	31.494	21.7176	12.9205	7.0804	41.7184	0.0	41.718	0.0	73.213
	7-7	15.747	0.0	15.747	14.3792	8.5546	4.9754	27.9091	0.0	27,909	0.0	43.656
	8 - 8	240.295	0.0	240.295	73.0059	43.4334	20.0311	144.4704	0.0	144.470	0.0	384.765
	9-9	131.187	0.0	131.187	52.0413	30.9610	22.3174	105.3197	0.0	105.320	0.0	236.507
	10-10	90.739	0.0	98.739	52.0472	31.4404	23.9961	108.2838	0.0	108.284	0.0	207.022
800 n												
	1-1	35,492	0,0	35.492	23,2673	13.8543	5.8534	42,9950	0.0	42.995	i 0.0	78.487
	1-2	25,716	0.0	25.716	30.5625	17.4804	7.9178	55,9607	0.0	55.961	0.0	81.677
	1-3	29.727	0.0	29.727	23.3174	13.5074	6.8083	43.6331	0.0	43.633	0.0	73.360
	1-4	24.272	0,0	24.272	23.9350	13.7793	5.4825	43.1968	0.0	43.197	0.0	67.469
	2-1	36.189	0.0	36.189	29.3077	19.0674	6.4084	54.7834	0.0	54.783	0.0	90.972
	2-2	26.413	0.0	26.413	36.8107	22.8195	0.5456	68.1838	0.0	68.184	0.0	94.597
	2-3	30.424	0.0	30.424	29.3803	18.7398	7.3938	55.5139	0.0	55.514	0.0	85,938
	2-4	24.968	0.0	24.968	30.0801	19.0565	6.0680	55.2046	0.0	55.20	0.0	80.173
	3-1	31.675	0.0	31.675	23.2420	14.9783	5.8323	44.0526	0.0	44.053	0.0	75.727
	3-2	21.899	0.0	21.899	29.2243	17.9133	7.4979	54.6354	0.0	54.619	6.0	76 534

...

429

.

,

(TAELE	B.58C CONTINU	ED)										
STAGE/	TECHNICAL		LABOR			<u> </u>	PHENT			EQUIPHENT		
PACKAG	E NUMBER	SKILLED	<u>UNSKILLED</u>	TCTAL	INT/DEP	<u>HAINT/HISC</u>	PUEL	<u>TOTAL</u>	<u>HORSE</u>	AND HORSE	<u>MATERIALS</u>	<u>TOTAL</u>
	3= 3	25.910	Ç.U	25.910	23.0384	14,5252	6.6203	44.1838	0.0	44.184	0.0	70.054
	3-4	20.454	0.0	20.454	23.2052	14.5520	5.2944	43.0517	0.0	43.052	0.0	63.506
	4-2	13.516	0.0	13.516	16.0418	9.0913	4.8672	30.0002	0.0	30.000	0.0	43.516
	4-4	12.071	0.0	12.071	11.3588	6.4762	3.1732	21.0081	G.O	21.008	0.0	33.080
	5-5	50.040	0.0	50.040	27.4848	16.3515	11.1097	54.9461	0.0	54.946	0.0	104.986
	6-6	40.006	0.0	40.006	28,3618	16.8733	9.1374	54.3725	0.0	54.372	0.0	94.379
	7-7	20.261	0.0	20.261	18.5703	11.2860	6.4867	36.7430	0.0	36.743	0.0	57.0C4
	8-8	383.449	0.0	383.449	116.4992	69.3089	44,7306	230.5386	0.0	230.539	0.0	613.908
	9-9	209.342	0.0	209,342	03.0451	49,4060	35.6131	168.0641	0.0	168.064	0.0	377.406
	10-10	157.548	0.0	157.540	84.323€	50.1667	38.2885	172.7789	0.0	172.779	0.0	330.327
SPR/CI 91	DHP (3/10CBCM) BX											
	11	15.579	0.0	15.579	4.9579	3.0020	1.8174	9.7773	0.0	9.777	0.C	25.357
	12	11.066	0.0	11.066	4.1621	2.5286	1.5322	8,2228	0.0	8.223	0.0	19.288
	13	11.440	0.0	11.440	2,9474	1.9576	1.0494	5.9543	0.0	5.954	0.0	17.394
	14	10.047	0.0	10.047	2.9416	1.9599	1.1380	6.0395	0.0	6.039	0.0	16.086
	21	13.348	0.0	13.348	5.2798	3.1935	2.1031	10.5765	0.0	10.576	0.0	23.925
	22	8.834	0.0	8.834	4 . 484C	2.7201	1.8179	9.0220	0.0	9.022	0.0	17.856
-	23	9.208	0.0	9.208	3.2693	2.1491	1.3351	6.7535	0.0	6,753	0.0	15.962
A	24	7.816	0.0	7.816	3.2635	2.1514	1.4237	6.8386	0.0	6.039	0.0	14.654
ö	31	11.723	0.0	11.723	3,7242	2.2461	1.5248	7.4951	0.0	7.495	0.0	19.218
	32	7.209	0.0	7.209	2.9284	1.7727	1.2395	5.9406	0.0	5.941	0.0	13.150
	33	7.583	0.0	7.583	1.7137	1.2017	0.7567	3.6721	0.0	3,672	0.0	11.255
	34	6.191	0.0	6.191	1.707e	1.2040	0.8454	3.7572	0.0	3.757	0.0	9.548
	41	11.001	0.0	11.001	3.7626	2.3489	1.4847	7.5963	0.0	7.596	0.0	10.597
	42	6.487	C. 0	6.487	2.9668	1.8755	1.1995	6.0418	0.0	6.042	0.0	12.529
	43	6.861	0. 0	£.861	1.7521	1.3045	0.7167	3.7733	0.0	3.773	0.0	10.634
	44	5.468	0.0	5.468	1.7462	1.3068	0.8053	3.8584	0.0	3.858	0.0	9.327
SURFA	CING											
GR AVB	L (\$/100CCR)											
	11	13.529	0.0	13.529	3.5590	2.5220	1.3039	7.3849	0.0	7.365	1023.64	1044.554
	12	9.956	0.0	9.956	2.0826	1.9845	1.1176	5,9849	0.0	5.985	1023.64	1039.582
	21	12.536	• 0.0	12.536	4.2929	2.9586	1.7536	9.0051	0.0	9.005	1023.64	1045.181
	22	8.963	0.0	8.963	3.6165	2.4211	1.5675	7.6051	0.0	7.605	1023.64	1040.209
	31	10.588	0.0	10.588	2.6073	1.9353	1.1083	5.6510	0.0	5.651	1023.64	1039.880
	32	7.016	0.0	7.016	1.9310	1.3978	0.9222	4.2510	0.0	4.251	1023.64	1034.907
	41	10.047	0.0	10.047	2.6980	2.0682	1.1004	5.8667	0.0	5.867	1023.64	1039.554
	42	6.474	0.0	€.474	2.0217	1.5307	0.9143	4.4667	0.0	4.467	1023.64	1034.581
	51	15.076	2.9993	18.076	6.5953	4.2201	2.2057	13.0291	0.0	13.029	1023.64	1054.745
	52	11.504	2.9993	14.503	5.9189	3.6906	2.0196	11.6291	0.0	11.629	1023.64	1049.773
4D <i>1</i> 3	(\$/100CC#)											
	111	107.147	22.8610	130.008	32.7977	23.6185	13.8392	70.2554	0.0	70.255	1110.92	1311, 187
	112	82.914	18.9856	101.900	28.3201	20.5096	12.3640	61.1936	0.0	61.194	1110.92	1274.017
	211	105.032	22.8610	127.893	33.1519	23.0293	14.1368	71.1180	0.0	71.118	1110.92	1309.934
	212	80.799	18.9856	99.785	28.6742	20,7203	12.6616	62,0562	0.0	62.056	1110.92	1272.764
	311	103.381	22.8610	126.242	31.5923	22.8798	13.5549	68.0270	0.0	68.027	1110.92	1305.193
	312	79.14E	18.9856	98.134	27.1147	19.7709	12.0796	58.9652	0.0	58.965	1110.92	1268.022
	411	102.659	22.8610	125-520	31.6259	22.9784	13.5131	68.1175	0.0	68.117	1110.92	1304-561

STAGE/	TECHNICAL		LABOR			EQUI	PHENT			BOUIPMENT		
PACKAG	<u>e notber</u>	SKILLEE	UNSKILLED	1CINL	INTICEE	MAINT/HISC	PUEL	TOTAL	HORSE	AND HORSE	MATERIALS	TOTAL
	412	78.426	18.9856	57.411	27.1483	19.8694	12.0379	59.0556	0.0	59.056	1110.92	1267.350
	511	107.906	25.0604	133.769	35.7321	25.2571	14.6908	75.6800	0.0	75.680	1110.92	1320.372
	512	83.675	21.9849	105.660	31.2544	22.1482	13.2156	66.6182	0.0	66.618	1110.92	1283.201
DBS1/G	(\$/10052)											
	1111	2,218	1.1338	3,352	0.9952	0.6249	0.5901	2.2101	0.0	2.210	45.64	51.203
	1112	1.96 C	1.1338	3.094	1.0085	0.6363	0.5602	2.2050	0.0	2.205	45.64	50.540
	1121	2.257	1.5151	3.772	0.7904	0.5215	0.5180	1.8299	0.0	1.830	45.64	51.243
	1122	1.999	1.5151	3.514	0.8036	0.5329	0.4881	1.8248	0.0	1.825	45.64	50.980
	2111	2.218	1.0513	3.270	0,9854	0.6219	0.5891	2.1964	0.0	2.196	45.64	51.106
	2112	1.960	1.0513	3.012	0.9987	0.6333	0.5592	2,1913	0.0	2.191	45.64	50.843
	2121	2.257	1.4430	3.700	0.7806	0.5185	0.5171	1.8162	0.0	1.816	45.64	51.157
	2122	1.995	1.4430	3.442	0.794(0.5299	0.4872	1.0111	0.0	1.811	45.64	50.894
DBST/W	(\$/10058)											
	1111	2.218	1,1338	3.352	0,9952	0,6249	0.5901	2.2101	0.0	2,210	38.11	43.667
	1112	1.960	1.1338	3.094	1.0085	0.6363	0.5602	2.2050	0.0	2.205	38.11	43,404
	1121	2.257	1.5151	3.772	0.7904	0.5215	0.5180	1.8299	0.0	1.830	38.11	43.707
	1122	1.999	1.5151	3.514	0.8038	0.5329	0.4881	1.8248	0.0	1.825	38.11	43.444
	2111	2.218	1.0513	3.270	0.9854	0.6219	0.5891	2.1964	0.0	2.196	38.11	43.571
•	2112	1.960	1.0513	3.012	0.9987	C.6333	0.5592	2.1913	0.0	2.191	38.11	43.308
)	2121	2.257	1.4430	3.700	0.780€	0.5185	0.5171	1.8162	0.0	1.816	38,11	43.621
	2122	1.999	1.4430	3.442	0.7940	0.5299	0.4872	1.8111	0.0	1.811	38.11	43.354

.

.

431

÷

TABLE 5.50D: UNIT COSTS OF THE 1950'S TECHNICAL PACKAGES FOR ALL STAGES AT THE PRICES OF A TYPICAL DAVELOPING COUNTRY.

STAGE/FECHN ICAL		LABOR			EQU	IPHENT			BQUIPHENT		
PACKAGE NURBER	SKILLED	UNSKILLED	TOTAL	INT/DEP	HAINT/HIS	C FUEL	TOTAL	HORSE	AND HORSE	MATERIALS	TOTAL
SITE PREP (\$/HA)											
11	30.696	61.3921	92.088	12.7550	5.0075	24.9698	42.7323	0.0	42.732	202.62	337.442
21	3,803	1.0848	4.978	158.7319	77.3757	118.7010	354.8083	0.0	354.808	0.0	359.786
31	2.658	1.0848	3.743	94.1625	45.7675	74.9197	214.8496	0.0	214.850	0.0	218.592
PICZHAUL (\$/100BCM)											
20											
11-0	0.055	0.0	0.085	1.5202	0.9777	5.7212	8.1271	0.0	8-127	0.0	8.212
68							•	•			
1-1	0.466	0.0	0.466	42.9567	20,9401	16.5109	80.4077	0.0	80.408	0.0	80.874
1-2	0.403	0.0	0.403	58.1379	27.4223	24.4369	109.9972	0.0	109.997	0.0	110.400
1-3	0.394	0.0	0.394	42.3465	20.2711	18.1859	80.8036	0.0	80.804	0.0	81.198
1-4	0.374	0.0	0.374	46.6275	22.1556	17.1662	85-9493	0.0	85.949	0.0	86.323
2-1	0.490	0.0	0.480	58.6895	31.2093	18.8561	108.8349	0.0	108.835	0.0	109.315
2-2	0.417	0.0	0-417	74.4422	38.0218	27.0896	139.5535	0.0	139.554	0.0	139.971
2-3	0.408	0.0	0.408	58, 1826	30.6587	20.6598	109.5012	0.0	109.501	0.0	109.909
2-3	0.388	0.0	0.398	62.6628	32.6320	19-6401	114,9349	0_0	114.935	0.0	115.323
1-1	0.389	0.0	0.389	43.6555	23.1713	16.4219	83.2487	0.0	83.249	0.0	83.637
1-2	0. 325	0.0	0.325	55.7042	28.2817	22.6622	106.6482	0.0	106.648	0.0	106-974
3-1	0.317	0.0	0.317	42.4791	22.2916	17.3913	82.1620	0.0	82.162	0.0	82.479
3-4	0.296	0.0	0.296	45-6680	23-6895	16.1716	85.7292	0.0	85.729	0.0	86.026
,,	0.321	0.0	0.321	19, 1917	9-3554	13.4464	41.9935	0_0	41.994	0.0	42.315
55	0 200	0.0	0.300	21 5627	11 4861	13 6818	48 7307	0.0	49.711	0.0	49.031
0-0 7-7	0.309	0.0	0 140	14 7333	7 1021	9 1009	31 016 7	0.0	11 016	0.0	31.157
/-/ 0-0	0.140	0.0	0 140	1 1007	1 6568	2 2758	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	0 0	7.331	0.0	7.425
0-0	0.051	0.0	0.051	2 4172	1 1793	1 8077	5 4032	Λ Λ	5 403	0.0	5,454
7-7	0.042	0.0	0.042	2 6592	1 2063	2 1057	6 0612	0 0	6.061	0_0	6-103
10-10	0.042	1/ • •	0.042	2.0372	1.2743	201037	000012		01001		40103
70	0 0 4 6 0	0.0	0 469	MJ 1000	21.0145	16.6041	80 7281	0.0	80 728	0.0	81, 197
1-1	0.407	0.0	0.407	50 2122	27 5075	24 5362	110 3510	0.0	110 352	0.0	110.756
1-2	0 204	0.0	0.396	40 5050 40 5050	27. 3023	18 3051	R1 1660	0.0	91.156	0.0	A1.552
1 - 1 1 - 1	V.J70	0.0	0.376	46. JUJ7	20.3440	17 3334	A6 1093	0.0	86 199	0.0	86.574
1~4	0.373	0.0	0 4 97 9	40.7347	21 2620	19 0003	100 1663	0.0	100.170	0.0	109.638
2-1	0.403	0.0	0.403	39.0422	31-3030	77 1890	130 0093	0.0	139.908	0_0	140-327
2-2	0.410 '0.410	0.0	0 4 10	14.01/4 58 3410	30.1020	27.7007	100 0535	0.0	100'953	0.0	110-264
2-3	0.410	0.0	0.410	20.3417	30.7324	10 7062	107-0111	0.0	115 104	0.0	115.571
2-4	0.309	0.0	0.303	02.1002	JZ.0074	17. /003	113.1037	0.0	03 560	0.0	83 961
3-1	0. 392	0.0	0.392	43.0002	23.2400	10.0102	107.000	0.0	507.007		107 330
3-2	0.327	0.0	0.327	22.8/92	28.3019	42.70 10	107.0030	0.0	10/2003	0.0	107.0330
1-1	0.119	0.0	0.319	42.0184	22.3033	1/.5105	04+0143	0.0	02.314	0.0	96 776
3-4	0.298	0.0	0.298	42. /935	23./469	10.43/0	02.9/02	0.0	00-7/0 40 467	0.0	43 783
5-5	V. 325	U.U	0.345	19.4037	9.400/	13.374/	44-43/1		4 2 4 4 7 f	0.0	46 JUL 46 JUL
6-6 7	U. 303	1).U	0.303	23.7647	11.0846	13./984	44-14/0	0.0	' 47±140		77.431
7-7	0.142	0.0	U.142	14./569	7.1935	7-0754	31.0402	0.0	31.040	V_U	310100 A 714
8-8	0.123	0.0	0.123	4.4715	2.1797	2.9941	7+0403	0.0	7.043		7.107
9=9	0.067	0.0	0.067	3. 1733	1.5469	2.3732	7.0935	0.0	7.093	0.0	7+199
- 10-10	0,054	0-0	0_054	3, 6285	1.6713	2.7149	7.8147	U.U	7.013	U_U	/.004

432

.
	(TABLE B.5BD CONTIN	UZD)										
	STAGE/TECHNICAL	· · · · · ·	LABOR			EQUI	PHENT			EQUIPHENT		
	PACKAGE NUMBER	SKILLSD	UNSKILLED	TOTAL	INT/DED	MAINT/NISC	PHEL	TOTAL	HORSE	AND HOPSE	NATERIALS	TOTAL
	1-1	0.519	0.0	0.519	45.7610	22.3071	19-2230	86.2911	0.0	86.291	Ų.0	86.910
	1-2	0.427	0.0	0.427	61.4324	28.9299	26.3042	116.6664	0.0	116.666	0.0	117.094
	1-3	0.439	0.0	0.438	45.3038	21.6390	20.3976	87.3404	0.0	87.340	0.0	87.778
	1-4	0.398	0.0	0.398	49.9857	23.2346	18.4111	90.6314	0.0	90.631	0.0	91.030
	2-1	0.533	0.0	0.533	61.4937	32.6563	20.5682	114.7182	0.0	114.718	0.0	115.251
	2-2	0.442	0.0	0_442	77.7367	39.5293	28.9569	146.2228	0.0	146.223	0.0	146.664
	2-3	0.452	0.0	0.452	61.1399	32.0266	22.8715	116.0380	0.0	116.038	0.0	116_490
	2-4	0_413	0.0	0-413	65.0210	33.7110	20,8850	117.6170	0.0	119.617	0.0	120.029
	3-1	0.442	0.0	0.442	46.4597	24.5383	18.1340	89.1321	0.0	89.132	0.0	89.574
	3-2	0.350	0.0	0.350	58.9987	29.7872	24.5296	113.3175	0.0	113.317	0.0	113.667
	3-3	0.360	0.0	0.360	45.4364	23.6595	19,6030	89.6989	0.0	88.699	0.0	89.059
	3-4	0.321	0.0	0.321	48.0262	24.7685	17.6165	90.4112	0.0	90.411	0.0	90.732
	4-2	0.180	0.0	0.180	26.2503	12.2753	13.4143	51.9399	0.0	51-940	0.0	52.120
	4-4	0.151	0.0	0.151	18.5150	8.7359	8.6533	35.9043	0.0	35.904	0.0	36.055
	5-5	0.387	0.0	0.387	23.0921	11.2567	16.1788	50.5276	0.0	50.528	0.0	50.914
	6-6	0.347	0.0	0.347	27.1963	13.2574	15,7915	56.2451	0.0	56.245	0.0	56.592
	7-7	0.165	0.0	0.165	17.1443	8.3573	10.5665	36.0681	0.0	36.068	0.0	36.233
	8-8	0.626	0.0	0.626	22.7088	11.0698	15.2056	48,9843	0.0	48.984	0.0	49.610
4	9-7	0.341	0.0	0.341	16.1394	7.8675	12.0701	36.0769	0.0	36.077	0.0	36.418
ιų	10-10	0.261	0.0	0.261	16.6576	8.1201	13.1905	37.9682	0.0	37.968	0.0	38.229
ω	1008											
	1-1	0.557	0.0	0.557	47.6017	23.3019	19.4690	90.5726	0.0	90.573	0.0	91.130
	1-2	0.446	0.0	0,446	63.8507	30.0363	27.6749	121.5619	0.0	121.562	0.0	122.007
	1-3	0.469	0.0	0.469	47.4288	22.6219	21.9868	92.0375	0.0	92.038	0.0	92.507
	1-4	0.416	0.0	0.416	50.7167	24.0266	19.3249	94.0682	0.0	94.068	0.0	94.485
	2-1	0.572	0.0	0.572	63.5345	33.6511	21.8141	118.9997	0.0	119.000	0.0	119.571
	2-2	0.460	0.0	0.460	80.1550	40.6358	30.3276	151.1183	0.0	151.118	0.0	151.578
	2-3	0.483	0.0	0_483	63.2649	33.0095	24.4607	120.7351	0.0	120.735	0.0	121.218
	2-4	0.431	0.0	0.431	66 - 75 1 9	34.5030	21.7988	123.0538	0.0	123.054	0.0	123.484
	3-1	0.490	0.0	0.480	48.5005	25.5331	19.3800	93.4136	0.0	93.414	0.0	93.894
	3-2	0.368	0.0	0-368	61.4170	30.8957	25.9003	118.2130	0.0	118,213	0.0	118.501
	ر - ر	0.392	0.0	0.392	47.5614	24.6424	21.1922	93.3960	0.0	93.396	0.0	93.788
	3-4	0.339	0.0	0-339	49.7572	25.5605	18.5303	93.0480	0.0	93.848	0.0	94.187
	4-2	0,190	0.0	0.198	28.6686	13.3010	14.7850	56.8354	0.0	56,835	0.0	57.033
	4-4	U. 169	0.0	0.169	20,2460	9.5280	9.5671	39.3411	0.0	39.341	0.0	39-510
	2-3	0.433	0.0	0.435	25.9983	12.6/34	10.2156	56.8873	0.0	56.887	0.0	57.320
	0~D	0.300	0.0	0.380	29.8445	14,5483	17.3291	61.7218	0.0	61.722	0.0	62.102
	1-1	0.162	0.0	0.162	17.6887	8.6227	10.6743	36.9856	0.0	36.986	0.0	37.148
	6-7	1.010	0.0	1.010	30.0644	17.8728	24.5502	79.0875	0.0	79.088	0.0	80.098
	7-9	0.000	U.U	0.550	26.0560	12.7015	19.4865	58.2440	0.0	58.244	0.0	58.794
	10-10	0.419	0.0	0.415	26.6924	13.0117	21.1366	60.8407	0.0	60.841	0.0	61.258
	1001		• •			,						
	1-1	0.619	0.0	0.619	51.0918	24.9057	21-4778	97.4753	0.0	97.475	0.0	98.095
	1-2	U.474	0 <u>.</u> 0	0.474	67.7060	31.8003	29.8601	129.3664	0.0	129.366	0.0	129.841
	و - ۱	0.520	0.0	0.520	50.8819	24.2191	24,5693	99.6704	0.0	99.670	0.0	100.190
	1-4	V.445	0.0	9.445	53.4787	25.2904	20.7830	99.5522	0.0	99.552	0_0	99.997
	2-1	V+634	U.U	V.634	66. 8246	35,2550	23.8229	125.9025	0.0	125.902	0.0	126.536

(TABLE B.58D CONTI	(NURD)										
STAGE/T BCHN ICAL		LABOR			2001	IPNENT			EQUIPMENT		
PACKAGE NUMBER	SKILLED	UNSKILLED	TOTAL	INT/DEP	MAINT/HIS	C PUEL	TOTAL	HORSE	AND HORSE	MATERIALS	TOTAL
2-2	0.488	0.0	0.488	84.0102	42.3998	32.5128	158,9228	0.0	158.923	0.0	159.411
2-3	0.534	0.0	0.534	66.7180	34.6068	27.0432	128.3680	0.0	128.368	0.0	128.902
2-4	0.459	0.0	0.459	69.5140	35.7669	23.2569	128.5378	0.0	128.538	0.0	128.997
3-1	0.542	0.0	0.542	51.7906	27.1370	21.3888	100.3163	0.0	100.316	0.0	100.958
,1-2	0.397	0.0	0.397	65.27?3	32.6597	20.0854	126.0175	0.0	126.017	0.0	126-414
3- 1	0.443	0.0	0_443	51.0145	26.2396	23.7747	101.0288	0.0	101.029	0.0	101.471
.3 — 4	0.368	0.0	0.368	52.5192	26.8244	19.9884	99.3320	0.0	99.332	0.0	99.700
4-2	0.227	0.0	0.227	32. 5239	15.1459	16.9702	64.6399	0.0	64.640	0.0	64.867
4-4	0.198	0.0	0.198	23.0081	10.7918	11.0252	44.8251	0.0	44.825	0.0	45.023
· 5-5	0.510	0.0	0.510	30.4998	14-8673	21.3681	66,7342	0.0	66.734	0.0	67.244
ti → ń	0.386	0.0	0.386	31.9006	15.5019	18.0813	65.3838	0.0	65.384	0.0	65.770
7-7	0.187	0.0	0.107	20.4276	9.9578	12.1270	42.7124	0.0	42.712	0.0	42.900
6-8	1.630	0.0	1.630	59.1644	28.8409	39.6160	127.6213	0.0	127-621	0.0	129.252
ų-9	0.890	0.0	0.890	42.1706	20.5569	31.5380	94.2656	0.0	94.266	0.0	95.156
10-10	0.671	0.0	0.671	42.9152	20.9198	33.9828	97.8178	0.0	97.818	0.0	98.489
500M											
1-1	0.637	0.0	0.637	52.0358	25.3659	22.0541	99.4559	0.0	99.456	0.0	100.093
1-2	0.483	0.0	0.483	68.8275	32.3135	30_495B	131.6368	0.0	131.637	0.0	132.119
1-3	0.535	0.0	0.535	51.8913	24.6860	25.3242	101.9015	0.0	101.902	0.0	102.436
1-4	0.454	0.0	0.454	54.2790	25.6566	21.2055	101.1411	0.0	101.141	0.0	101.595
2-1	0.651	0.0	0.651	67.7686	35.7151	24.3993	127.8830	0.0	127.883	0.0	128.534
2-2	0_497	0.0	0.497	85.1317	42.9130	33.1484	161.1931	0.0	161.193	0.0	161.690
2-3	0.549	0.0	0.549	67.7274	35.0736	27.7981	130.5991	0.0	130.599	0.0	131.148
2-4	0.468	0.0	0.468	70.3143	36.1330	23.6793	130.1267	0.0	130.127	0.0	130-594
3-1	0.560	0.0	0.560	52.7346	27.5972	21.9651	102.2969	0.0	102.297	0.0	102.857
3-2	0.405	0.0	0.405	66.3938	33.1729	28.7211	128.2878	0.0	128.288	0.0	128.693
3-3	0.458	0.0	0.458	52.0238	26.7065	24.5296	103.2600	0.0	103.260	0.0	103.718
3-4	0.376	0.0	0.376	53.3195	27.1905	20.4109	100.9209	0.0	100.921	0.0	101.297
4-2	0.235	0.0	0.235	33.6453	15.6590	17.6059	66.9102	0.0	66.910	0.0	67.145
4-4	0.206	0.0	0.206	23.8084	11.1580	11.4477	46.4140	0.0	46.414	0.0	46.620
5-5	0.759	0.0	0.759	48.8721	23,8237	34-4119	107.1076	0.0	107.108	0.0	107.866
6-6	0.639	0.0	0.639	52.6193	25.6504	29.9170	108.1867	0.0	108.187	0.0	108.826
7-7	0.319	0.0	0.319	34.8392	16.9831	21.0227	72.8449	0.0	72.845	0.0	73.164
8-8	4.874	0.0	4.874	176.8854	96.2264	110.4413	301.5530	0.0	381.553	0.0	386.427
9-9	2.661	0.0	2.661	126.0905	61.4654	94.2990	261.8542	0.0	281.854	0.0	284.515
10-10	2.003	0.0	2.003	128.0432	62.4172	101.3922	29148521	0.0	291.852	0.0	293.855
800M											
1-1	0.720	0.0	0.720	56.4227	27.5044	24.7325	108.6596	0.0	108.660	0.0	109.379
1-2	0.522	0.0	0.522	74.0495	34.7029	33.4557	142.2083	0.0	142.208	0.0	142.730
1-3	0.603	0.0	0.603	56.4955	26.8156	28.7675	112.0786	0.0	112.079	0.0	112.682
1-4	0.492	0-0	0.492	57.9918	27.3555	23.1655	108.5128	0.0	108.513	0.0	109.005
2-1	0.734	0.0	0.734	72.1555	37.8536	27.0776	137.0867	0.0	137.087	0.0	137.821
2-2	0.536	0.0	0.536	90.3539	45.3024	36,1084	171.7646	0.0	171.765	0.0	172.300
2-3	0.617	0.0	0.617	72.3315	37,2033	31.2414	140.7762	0.0	140.776	0.0	141.393
2-4	0.506	0.0	0.506	74.0271	37.8319	25.6394	137.4984	0.0	137.498	0.0	138.005
3-1	0.642	0.0	0.642	57.1215	29.7356	24.6435	111.5006	0.0	111.501	0.0	112.14
3-2	0.044	0_0	0.444	71.6169	25 5623	11.6811	128.8507	0 0	110 860	0.0	139, 201

(TABLE B.58D CONTIN	USD)										
STAGE/TECHNICAL		LABOR	<u> </u>		<u>Pot</u>	IPHENT			RQUIPMENT		
PACKAGE NUMBER	SKILLED	UNSKI1,LED	TOTAL	INT/DEP	MAINT/HIS	C PUEL	TOTAL	HORSE	AND HORSE	MATERIALS	TOTAL
3-3	0.526	0.0	0.526	56.6280	28.8362	27.9729	113.4371	0.0	113.437	0.0	113.963
3-4	0.415	0.0	0.415	57.0324	28.9894	22.3709	108.2927	0.0	108.293	0.0	108.708
4~2	0.274	0.0	0.274	30.8675	18.0485	20.5658	77_4817	0.0	77.482	0.0	77.756
4-4	0.245	0.0	0.245	27.5212	12.8568	13.4077	53.7857	0.0	53.786	0.0	54.031
5~5	7.015	0.0	1.015	66.5928	32.4620	46.9423	145.9971	0.0	145.997	0.0	147.012
6-6	0.811	0.0	0.811	68.7176	33.4978	38.6087	140.8241	0.0	140.824	0.0	141.636
7~7	0.411	0.0	0.411	45.9630	22.4056	27.4087	95.7773	0.0	95.777	0.0	96.188
8~H	7.778	0.0	7 . 778	282.2646	137.5956	189.0025	608.8630	0.0	608.863	0.0	616.641
9-9	4.246	0.0	4.246	201.2092	98.0835	150.4778	449.7700	0.0	449.770	0.0	454-016
10-10	3.196	0.0	3.196	204.3070	99.5936	161.7825	465.6826	0.0	465.683	0.0	468.878
SPR/COAP (\$/100BCH) 98%											
11	0.316	0.0	0.316	11.9706	5,9598	7.6791	25-6095	0_0	25-610	0 0	25 926
12	0.224	0.0	0.224	10.0424	5-0198	6.4739	21-5361	0.0	21.536	0.0	21 761
13	0.232	0.0	0.232	7_ 2666	3.8863	4.5678	15 7206	0.0	15 771	0.0	15 053
14	0.204	0.0	0-204	6.9942	3.8909	# 808u	15.6936	0.0	15.694	0.0	15 907
21	0.271	0.0	0.271	12 7506	6 3400	8 8861	27 0769	0.0	27 077	0.0	20 2027
22	0.179	0.0	0.179	10.8224	5 4000	7.6812	27.9036	0.0	27. 777	0.0	20.240
21	0.187	0.0	0.187	0.0466	1 2665	5 7750	19 0991	0.0	18 048	0.0	10 375
24	0.159	0.0	0.159	7 7742	4 2711	6.0157	18,0610	0.0	18.061	0.0	18 210
Ī	0.238	0.0	0.238	8.9294	4-4591	6-6641	20.0526	0.0	20.051	0.0	20 290
32	0,146	0.0	0.146	7 0011	3-5192	5.4590	15.9793	0.0	15.979	0.0	16 126
33	0.154	0.0	0.154	4. 2254	2. 3856	3.5528	10, 16 17	0.0	10 164	0.0	10.123
34	0.126	0.0	0 126	3 9529	2 39/3	2 7935	10 1367	0.0	10 137	0.0	10 262
41	0.223	0_0	0.223	9.0745	4.6633	6.2734	20 0112	0.0	20 011	0.0	20 2202
82	0.132	0.0	0.132	7 1463	1 7213	5 0683	15 9379	0.0	15 019	0.0	16 060
43	0.139	0.0	0 130	4 3705	3 6 0 0 7	3 1621	10 1220	0 0	10.100	0.0	10.007
44	0.111	0.0	0 1J7	4.3703	4 6 3 0 7 / 7 5 6 4 4	3 1021	10 0053	0.0	10.122	0.0	10.202
SURFACTER	44171		V. 111	46 0 70 1	20J799	3.4020	10.0333	V • V,	10.073	V.V	10.200
GRAVEL (\$/100CCM)											
11	0.274	0.0	0.274	8.8716	5.0068	5.5096	19.3080	0.0	19.388	274.68	294.342
12	0.202	0.0	0.202	6.8137	3.9397	4,7232	15.4766	0.0	15.477	274.68	290.358
21	0.254	0.0	0.254	10.6498	5.8736	7,4097	23.9331	0.0	23.933	274.68	298.867
22	0.182	0.0	0.182	8,5918	4.8065	6,6233	20.0216	0.0	20.022	274.68	294.083
31	0.215	0.0	0.215	6.5170	3.9420	4_8908	15.2499	0.0	15,250	274.68	290.144
32	0.142	0.0	0.142	4.4591	2.7749	4.1044	11.3384	0.0	11.338	274.68	286.160
41	0.204	0.0	0,204	6.7856	4.1059	4,6498	15.5417	0.0	15,541	274.68	290.425
42	0.131	0.0	0.131	4.7277	3.0398	3.8634	11.6299	0.0	11.630	274.68	286-441
51	0.306	0.0190	0.325	16.1527	8.3924	9.4845	34.0295	0.0	34.030	274.68	309.034
52	0.233	0.0190	0.252	14.0948	7.3253	8.6981	30.1181	0.0	30.118	274.68	305-050
WBM (\$/100CCM)	1									_ /	
111	2.173	0.1451	2,318	81.9797	46.8849	60.3516	189.2160	0.0	189.216	417.30	608-819
112	1.682	0.1205	1.802	65.9135	40.7128	53.6137	160.2398	0.0	160.240	417.10	579.744
211	2.130	0.1451	2.276	82.8379	47.3032	61.6092	191.7501	0.0	191.750	417.10	611_110
212	1.639	0.1205	1.759	66.7717	41.1311	54.8713	162.7739	0.0	162.774	417.30	581.837
311	2.097	0.1451	2.242	79.0078	45.4183	59.3684	183.7944	0.0	183.794	417.30	603-341
312	1.605	0.1205	1.726	62.9416	39,2462	52.6305	154.8183	0.0	154.818	417.30	573.848
411	2.082	0.1451	2.227	79.1408	45.6139	50.9738	183.7284	0.0	183.728	417.30	603.260

,

.

STAGE/TECHNICAL		LABOR			EOUT	PMENT			ROUTPHENT		
PACKAGE NUMBER	SKILLED	UNSXILLED	TOTAL	INT/DEP	MAINT/MISC	FUEL	TOTAL	HORSE	AND HORSE	MATERIALS	TOTAL
412	1.591	0.1205	1.711	63.0745	39.4419	52.2358	154.7522	0.0	154.752	417.30	573.76
511	2.189	0.1641	2.353	89.0139	50.1364	64.1143	203.2647	0.0	203.265	417.30	622.92
512	1.697	0.1395	1.837	72.9476	43 9644	57.3764	174.2884	0.0	174.288	417.30	593.42
DBST/G (\$/1005M)											
· 1111	0.045	0.0072	0.052	2.4097	1.2403	2.6887	6.3377	0.0	6.338	107.54	113.92
1112	0.040	0.0072	0_047	2.4180	1.2630	2.5315	6.2126	0.0	6.213	107.54	113.79
1121	0.046	0.0096	0.055	1.9212	1.0349	2.3633	5.3194	0.0	5.319	107.54	112.91
1122	0.041	0.0096	0.050	1.9305	1.0576	2.2062	5.1943	0.0	5.194	107.54	112.78
2111	0.045	0.0067	0.052	2.3681	1.2344	2.6841	6.3066	0.0	6.307	107.54	113.89
2112	0.040	0.0067	0.046	2.3974	1.2572	2.5269	6.1815	0.0	6.182	107.54	113.76
2121	0.046	0.0092	0.055	1.9005	1.0290	2.3588	5-2883	0.0	5.288	107.54	112-87
2122	0.041	0.0092	0.050	1.9099	1.0517	2.2016	5.1632	0.0	5.163	107.54	112.74
DBST/W (\$/1005A)	0 0 U E	0 0070					<				
1111	0.043	0.0072	0.052	2.4087	1.2403	2.088/	6.3377	0.0	6.338	84.93	91.32
1112	0.040		0.047	2.4100	1.0200	2.7313	0.2120	0.0	6.213	84.93	91.18
1121	0.040	0.0096	0.050	1. 7212	1.0349	2.3033	5-3194	0.0	5.319	84.93	90.30
1122	0.041	0.0050	0.052	2 3801	1.00/0	2.2002	2.1943	0.0	5.194	84.93	90.1/
D 2112	0.04)	0.0067	0.012	2.3001	1 2572	2.0041	6.JUD0 6.JUD0	0.0	D.JU/	04.33	71.20
ω 2121	0.046	0.0007	0.055	1,9005	1_0290	2.3588	6 1015	0.0	5 200	04.7J 94.03	P1+12
01 2122	0.041	0.0092	0.050	1,9099	1.0517	2.2016	5.1632	0.0	5 163	AA 03	90.1
				•						,	

• · · ·

•

PACE GO MARE STILETD MASSILED TOTAL TMT/DEP PALE JSC FUEL TOTAL TOTAL 11 53.210 M61.4944 215.104 19.4050 12.4247 22.5491 54.570 0.0 54.579 4.69 274.313 33 5.893 11.9349 74.805 2.9815 5.0904 12.601 4.69 31.799 ACCMALL (J1000CA) 7.801 0.0167 0.1103 0.0721 0.0489 0.2113 0.0 0.231 4.69 31.799 ALC 1-1 1.578 0.0 1.577 1.9331 1.5316 0.9229 4.3876 0.0 4.69 31.799 ALC 1.233 0.0 1.578 1.9331 1.5316 0.9229 4.3876 0.0 4.69 31.799 ALC 1.516 0.0 1.574 1.9331 1.5316 0.2929 4.3876 0.0 5.87 0.0 5.700 0.737 0.0 7.7060 0.0 4.559 <td< th=""><th>STAGE/TE</th><th>CHNICAL</th><th>•</th><th>LABOR</th><th></th><th></th><th>EQUI</th><th>PHENT</th><th></th><th></th><th>EQUIPMENT</th><th></th><th></th></td<>	STAGE/TE	CHNICAL	•	LABOR			EQUI	PHENT			EQUIPMENT		
$ \begin{array}{c} \textbf{SITE PEP} (s/iii) \\ 11 \\ 21 \\ 2. 0.06 \\ 2. 0.02 \\ 3. 0.00 \\ 3. 0.0$	PACKAGE	NUMAER	SKILLED	ONSKILLED	TOTAL	TNT/DRP	MAINT/NISC	C PHEL	TOTAL	HORSE	AND HO3SE	MATEPIALS	TOTAL
$ \begin{array}{c} 11 & 53.210 & 161.4944 & 215.104 & 19.4050 & 12.4247 & 22.5499 & 54.5764 & 0.6 & 54.576 & 4.69 & 274.373 \\ 31 & 5.891 & 11.9349 & 17.828 & 3.7601 & 2.9710 & 2.5499 & 9.2911 & 0.0 & 9.281 & 4.69 & 31.799 \\ 31 & -0 & 0.167 & 0.0 & 0.167 & 0.1103 & 0.0721 & 0.0484 & 0.2113 & 0.0 & 0.231 & 0.0 & 0.398 \\ \hline 1-1 & 1.578 & 0.0 & 1.578 & 1.9331 & 1.5316 & 0.9224 & 4.1876 & 0.0 & 4.398 & 0.0 & 5.866 \\ \hline 1-2 & 1.526 & 0.0 & 1.576 & 1.9331 & 1.5316 & 0.9224 & 4.1876 & 0.0 & 4.398 & 0.0 & 5.866 \\ \hline 1-2 & 1.526 & 0.0 & 1.576 & 1.9331 & 1.5316 & 0.9224 & 4.1876 & 0.0 & 4.398 & 0.0 & 6.886 \\ \hline 2-3 & 1.233 & 0.0 & 1.233 & 2.1812 & 2.0144 & 1.6295 & 5.8711 & 0.0 & 4.859 & 0.0 & 6.886 \\ \hline 2-5 & 1.192 & 0.0 & 1.142 & 1.9144 & 1.9474 & 1.0912 & 4.9510 & 0.0 & 4.453 & 0.0 & 6.224 \\ \hline 3-4 & 0.464 & 0.0 & 0.664 & 2.0206 & 1.9739 & 1.3904 & 5.5184 & 0.0 & 5.318 & 0.0 & 5.318 \\ -4 & 1.559 & 0.0 & 1.659 & 1.0876 & 0.9866 & 1.10912 & 4.9510 & 0.0 & 4.455 & 0.0 & 4.951 \\ -7 & 1.004 & 0.0 & 1.649 & 1.2869 & 0.9866 & 1.10912 & 4.9510 & 0.0 & 4.403 \\ -7 & 1.004 & 0.0 & 1.0497 & 1.2869 & 0.9866 & 1.10912 & 0.0 & 3.413 & 0.0 & 4.912 \\ -7 & 1.004 & 0.0 & 1.0497 & 1.2869 & 0.9866 & 1.1093 & 0.136 & 0.0 & 2.120 & 0.0 & 1.123 \\ -5 & 1.047 & 0.0 & 1.631 & 0.6326 & 0.6726 & 3.0117 & 0.0 & 3.413 & 0.0 & 4.912 \\ -7 & 1.004 & 0.0 & 1.639 & 0.536 & 0.4648 & 0.3576 & 1.3556 & 0.0 & 3.487 & 0.0 & 4.959 \\ -5 & 1.047 & 0.0 & 0.731 & 1.2869 & 0.9866 & 1.0403 & 0.0 & 1.020 & 0.0 & 4.685 \\ -5 & 1.047 & 0.0 & 0.351 & 0.6316 & 0.6216 & 0.1356 & 0.0 & 3.103 & 0.0 & 4.959 \\ -7.10 & 0.548 & 0.0 & 0.534 & 0.536 & 0.4648 & 0.3576 & 1.3556 & 0.0 & 3.487 & 0.0 & 4.859 \\ -7.10 & 0.548 & 0.0 & 0.534 & 0.5486 & 0.4747 & 0.1404 & 0.0 & 1.240 & 0.0 & 1.927 \\ -7.11 & 0.548 & 0.0 & 0.351 & 0.6311 & 0.6216 & 0.1356 & 0.0 & 1.355 & 0.0 & 1.355 & 0.0 & 1.355 \\ -7.10 & 0.548 & 0.0 & 0.768 & 1.6702 & 1.2965 & 1.0164 & 4.0073 & 0.0 & 0.475 \\ -7.11 & 0.284 & 0.0 & 0.284 & 0.571 & 1.6277 & 1.6277 & 0.0 & 1.527 & 0.0 & 1.527 \\ -7.11 & 0.284 & 0.0 & 0.157 & 0.7244 & 0.3059 & 1.7$	SITE PAR	P (\$/(A)				·					<u> </u>		
21 31 31 31 31 31 31 31 31 31 31 31 31 31		11	53.210	161.8944	215-104	19.6050	12.4247	22.5491	54.5788	0.0	54.579	4.69	274.373
$ \begin{array}{c} 31 \\ \text{SCPMBL} \\ \textbf{14-0} \\ \textbf{14-0} \\ \textbf{14-0} \\ \textbf{14-0} \\ \textbf{14-0} \\ \textbf{1-1} \\ \textbf{1578} \\ \textbf{14-0} \\ \textbf{1-1} \\ \textbf{1.578} \\ \textbf{1-1} \\ \textbf{1.578} \\ \textbf{1-1} \\ \textbf{1.578} \\ \textbf{1.578} \\ \textbf{1-1} \\ \textbf{1.578} \\ 1$		21	9.046	26.9024	35.848	4-6138	2.9835	5.0040	12.6012	0.0	12.601	4.69	53.140
2xc/mat (x/1008ch) 2a 14-0 0.167 0.1103 0.0721 0.0489 0.2113 0.0 0.231 V.0 0.398 6n 1-1 1.578 0.0 1.5778 1.9331 1.5316 0.4229 4.3876 0.0 4.398 V.U 5.966 1-2 1.526 0.1761 1.6223 1.1608 4.9951 0.0 4.955 0.0 5.8627 2-3 1.623 0.0 1.213 2.1614 1.9974 1.0912 4.9951 0.0 4.955 0.0 6.2257 3-4 0.864 0.0773 0.466 1.9739 1.3904 5.3809 0.3 5.385 0.0 6.237 3-4 0.866 1.4973 0.4966 1.4973 0.4966 1.4973 0.4966 1.4973 0.301 4.3561 0.00 3.413 0.0 3.413 0.0 4.132 4-7 1.004 0.7326 0.6966 1.4900 3.413 0.0		31	5.893	11.9349	17.828	3.7601	2.9710	2.5499	9-2911	0_0	9.281	4.69	31.799
28 14-0 0.167 0.1103 0.0721 0.0489 0.2113 0.0 0.231 0.0 0.198 67 1-1 1.576 0.0 1.577 1.931 1.5316 0.9229 4.3876 0.0 4.959 0.0 5.9766 1-2 1.526 0.0 1.5276 2.1761 1.6223 1.1608 4.9591 0.0 4.959 0.0 5.827 0.0 7.660 2-5 1.122 0.0 1.421 1.144 1.9974 1.0972 4.9510 0.0 4.953 0.0 5.387 0.0 5.330 3-4 0.864 0.0 0.664 2.0206 1.9732 1.9094 5.3843 0.0 1.403 0.0 4.5567 0.0 4.5567 0.0 4.5567 0.0 4.4012 4-2 1.499 0.0 1.0497 1.2263 0.0617 0.0 3.4134 0.0 3.4134 4-7 1.004 0.0 1.5736 0.06795	EXC/HAUL	(\$/100BCA)											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2 🖪												
6n 1-1 1.578 0.0 1.578 1.9331 1.5316 0.9229 4.3876 0.0 4.308 0.0 5.766 1-2 1.523 0.0 1.526 2.7761 1.6223 1.1608 4.4591 0.0 4.4599 0.0 6.485 2-3 1.233 0.0 1.233 2.1812 2.0144 1.5975 5.8627 0.0 5.827 0.0 7.060 2-5 1.182 0.0 1.412 1.9144 1.9974 1.0912 4.9510 0.0 4.953 0.0 6.995 3-4 0.664 0.0 0.4664 2.0206 1.9739 1.3008 5.380 0.3 5.385 0.0 6.249 3-6 0.773 0.0 0.773 1.6365 1.8276 1.0298 4.5569 0.0 4.953 0.0 4.951 4-1 1.550 0.0 1.550 1.0486 0.9976 1.9028 4.5569 0.0 4.955 0.0 4.401 4-2 1.4999 0.0 1.499 1.2669 0.9866 1.1400 3.4134 0.0 3.413 0.0 4.401 4-7 1.004 0.0 1.004 0.7520 0.6986 1.1400 3.4134 0.0 3.413 0.0 4.403 5-5 1.047 0.0 0.776 1.0485 0.7376 1.2356 3.80473 0.0 3.612 0.0 4.405 5-5 1.047 0.0 0.786 0.336 0.538 0.5726 3.3017 0.0 3.612 0.0 4.655 5-6 0.534 0.0 0.4534 0.5336 0.536 0.7263 3.0117 0.0 3.012 0.0 4.055 6-6 0.495 0.0 0.4691 1.5128 1.2965 1.0164 4.0031 0.0 4.003 0.0 4.789 6-6 0.495 0.0 0.786 1.6902 1.2956 1.0164 4.0031 0.0 4.003 0.0 4.789 6-6 0.495 0.0 0.0495 1.3218 1.1604 0.3651 0.1628 0.0.3100 0.206 0.0 3.408 6-710 0.588 0.0 0.538 0.538 0.4976 0.3651 1.6247 0.0 1.425 0.0 1.956 7-10 0.588 0.0 0.586 0.4976 0.3676 0.3651 1.6247 0.0 1.625 0.0 1.956 7-10 0.588 0.0 0.586 0.4976 0.3676 0.3651 1.6247 0.0 1.625 0.0 1.956 7-10 0.588 0.0 0.586 0.4976 0.3676 0.3651 1.6247 0.0 1.625 0.0 1.930 1-12 0.887 0.0 0.513 0.6181 0.4270 0.4413 1.3904 0.0 1.390 0.0 1.220 9-12 0.887 0.0 0.518 0.4976 0.3197 0.26531 1.7254 0.0 1.725 0.0 1.976 1-14 0.284 0.0 0.546 0.5185 0.4976 0.3187 0.4813 0.3905 0.0 0.8770 0.0 0.419 0.0 1.220 9-12 0.487 0.0 0.4283 0.7944 0.4952 0.4110 0.4413 0.4915 0.0 0.481 0.0 0.4139 1-14 0.526 0.0 0.326 0.2033 0.1370 0.4410 0.4813 0.0 0.481 0.0 0.4152 1-25 1.466 0.0 0.426 0.2033 0.1370 0.4410 0.4815 0.0 0.481 0.0 0.419 0.0 0.419 0.0 0.419 0.0 0.419 0.0 0.419 1-2 1.559 0.0 1.559 1.5314 0.4525 0.3177 0.0 0.4815 0.0 0.481 0.0 0.419 0.0 0.484 4-7 1.461 0.0 1.441 1.9205 1.924 1.0954 4.45675 0.0 0.4567 0.0 4.4957 3-6 0.776 0.0 0.776 1.4411 1.8912 1.4973 4.45675 0.0 0.4557 0.0 6.4114 5		14-0	0.167	0.0	0.167	0.1103	0.0721	0.0489	0.2313	0.0	0.231	v. 0	0.398
1-1 1,578 0,0 1,577 1,931 1,5316 0,9229 4,387,6 0,0 4,388 0,0 5,986 1-2 1,526 0,0 1,526 2,1761 1,522 1,166 4,523 1,060 4,3595 0,0 4,355 0,0 7,060 2-5 1,182 0,0 1,142 1,9144 1,974 1,0912 4,951 0,0 4,353 0,0 6,985 3-4 0,864 0,0 0,773 1,6365 1,9739 1,3904 5,380 0,0 4,953 0,0 6,249 3-6 0,773 0,0 0,773 1,6365 1,9276 1,0928 4,5569 0,0 4,4557 0,0 5,330 4-1 1,550 0,0 1,550 1,0485 0,973 0,006 2,8520 0,0 2,2453 0,0 4,401 4-2 1,499 0,0 1,499 1,286 0,9866 1,1400 3,4134 0,0 3,413 0,0 4,913 4-7 1,004 0,0 1,004 0,7520 0,6942 0,576 2,1194 0,0 3,413 0,0 4,401 4-7 1,004 0,0 1,104 0,7520 0,6942 0,576 2,1194 0,0 3,413 0,0 4,013 5-5 1,047 0,0 1,137 1,556 1,2676 1,336 3,8473 0,0 3,847 0,0 4,986 5-5 1,047 0,0 1,104 0,534 0,035 0,7263 3,0117 0,0 3,012 0,0 4,059 5-6 0,786 0,0 0,786 1,6902 1,2965 1,0164 4,0031 0,0 4,003 0,0 4,789 6-4 0,786 0,0 0,786 1,6902 1,2965 1,0164 4,0031 0,0 4,003 0,0 4,789 6-4 0,786 0,0 0,534 0,533 0,533 0,6347 0,5356 1,3556 0,0 1,355 0,0 1,369 6-4 0,786 0,0 0,534 0,533 0,6347 0,5316 0,3476 0,3467 0,00 4,003 0,0 4,789 6-4 0,786 0,0 0,538 0,535 0,6476 0,3467 0,3671 1,6247 0,0 1,220 0,0 3,200 0,0 1,921 4-11 0,2984 0,0 0,2584 0,5385 0,4976 0,3497 0,0 1,2401 0,0 1,240 0,0 1,522 4-11 0,2984 0,0 0,288 0,7044 0,5621 0,3671 1,6247 0,0 1,240 0,0 1,522 4-11 0,2984 0,0 0,288 0,7044 0,512 0,371 1,6135 0,0 1,0187 0,0 3,200 0,0 3,200 0,0 3,505 1-14 0,2984 0,0 0,288 0,7044 0,512 0,371 1,6135 0,0 1,0187 0,0 0,0 1,220 4-11 0,2984 0,0 0,288 0,7044 0,521 0,0453 0,1725 0,0 0,187 0,0 0,1527 4-11 0,2984 0,0 0,288 0,7044 0,5217 0,0433 0,1725 0,0 0,187 0,0 0,1524 4-1 1,559 0,0 1,529 1,7182 1,6217 1,16127 4,9647 0,0 4,495 0,0 6,811 0,0468 0,0 0,286 0,5385 0,1746 0,1052 0,3975 0,0 0,387 0,0 0,511 0,164 0,025 0,0 0,056 0,1666 0,1316 0,1167 0,04190 0,0 1,220 0,0 5,111 0,251 0,126 0,0 0,266 0,1666 0,1316 0,1167 0,04190 0,0 0,419 0,0 0,419 2-5 1,4166 0,0 1,551 1,2514 1,0904 1,4953 4,5675 0,0 0 4,955 0,0 0 6,414 3-4 0,666 0,0 0,0666 0,1666 0,1316 0,1167 0,04190 0,0 3,419 0,0 4,405 4-2 1,550 0,0 1,551 1,2614 1,0904 1	61												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1-1	1.578	0.0	1.578	1.9331	1.5316	0.9229	4.3876	0.0	4,388	0.0	5.966
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1-2	1.526	0.0	1.526	2, 1761	1.6223	1.160A	4.9591	0_0	4 959	0.0	6.485
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		2-3	1.233	0.0	1.233	2.1832	2.0144	1.6295	5.8271	0.0	5.827	0.0	7.060
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		2-5	1.142	0.0	1-142	1_9144	1.9474	1.0912	4.9530	0.0	4.953	0.0	6.095
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		3-4	0.864	0.0	0.R64	2.0206	1.9739	1.3904	5.3849	0.0	5.385	0.0	6.249
$\begin{array}{c} 4-1 & 1.550 & 0.0 & 1.550 & 1.0486 & 0.973 & 0.9066 & 2.8529 & 0.0 & 2.853 & 0.0 & 4.403 \\ 4-2 & 1.499 & 0.0 & 1.499 & 1.2868 & 0.9866 & 1.1400 & 1.4131 & 0.0 & 3.413 & 0.0 & 3.417 & 0.0 & 4.998 & 5.55 & 1.047 & 0.0 & 0.534 & 0.5336 & 0.4644 & 0.3576 & 3.0117 & 0.0 & 3.012 & 0.0 & 4.059 & 5.8 & 0.538 & 0.0 & 0.538 & 0.538 & 0.0 & 0.538 & 0.538 & 0.0 & 0.536 & 0.2653 & 3.0117 & 0.0 & 3.206 & 0.0 & 3.901 & 6.64 & 0.786 & 0.0 & 0.786 & 1.6902 & 1.2955 & 1.0164 & 4.0031 & 0.0 & 4.360 & 0.0 & 4.759 & 6.64 & 0.786 & 0.0 & 0.531 & 0.6381 & 0.6216 & 0.1651 & 1.6247 & 0.0 & 1.625 & 0.0 & 1.927 & 7.10 & 0.548 & 0.0 & 0.548 & 0.535 & 0.4976 & 0.1443 & 1.3904 & 0.0 & 1.300 & 0.0 & 1.927 & 7.11 & 0.548 & 0.0 & 0.528 & 0.5112 & 0.4971 & 1.635 & 0.0 & 1.524 & 9.12 & 0.1641 & 0.0 & 2.0001 & 1.927 & 7.11 & 0.284 & 0.0 & 0.284 & 0.4444 & 0.5121 & 0.4531 & 1.201 & 0.0 & 1.240 & 0.0 & 1.524 & 9.12 & 0.4871 & 0.0 & 0.283 & 0.7044 & 0.5021 & 0.4571 & 1.6335 & 0.0 & 1.641 & 0.0 & 2.0001 & 10-13 & 0.283 & 0.0 & 0.284 & 0.4444 & 0.5320 & 0.1725 & 0.0 & 0.4861 & 0.0 & 0.807 & 1.211 & 1.370 & 0.0 & 1.529 & 2.1726 & 0.0 & 0.377 & 0.0 & 0.481 & 0.0 & 0.807 & 1.2251 & 0.0 & 0.481 & 0.0 & 0.807 & 1.2251 & 0.0 & 0.481 & 0.0 & 0.807 & 1.2251 & 0.0 & 0.387 & 0.0 & 0.387 & 0.0 & 0.687 & 1.252 & 0.3775 & 0.0 & 0.387 & 0.0 & 0.687 & 1.252 & 0.3765 & 0.0 & 0.4955 & 0.0 & 0.4955 & 0.0 & 0.495 & 0.0 & 0.495 & 0.0 & 0.497 & 0.527 & 0.233 & 0.1726 & 0.0 & 0.365 & 0.1666 & 0.1336 & 0.1167 & 0.4190 & 0.0 & 0.413 & 0.0 & 0.484 & 0.687 & 0.0 & 0.481 & 0.0 & 0.657 & 0.0 & 0.437 & 0.0 & 0.6114 & 0.4955 & 0.0 & 0.4955 & 0.0 & 0.4957 & 0.0 & 0.4951 & 0.0 & 0.4951 & 0.0 & 0.4951 & 0.0 & 0.4951 & 0.0 & 0.4951 & 0.0 & 0.4951 & 0.0 & 0.4951 & 0.0 & 0.4951 & 0.0 & 0.4951 & 0.0 & 0.49$		3-6	0.773	0.0	0.773	1.6365	1.8276	1.0928	4.5569	0.0	4.557	0.0	5.330
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		4-1	1,550	0.0	1.550	1.0485	0.9979	0.9066	2.8529	0.0	2.853	0.0	4.403
$\begin{array}{c} 4-7 \\ 1.004 \\ 0.0 \\ 5-3 \\ 1.118 \\ 0.0 \\ 1.118 \\ 0.0 \\ 1.118 \\ 1.5125 \\ 1.004 \\ 1.255 \\ 1.0095 \\ 1.2306 \\ 1.2306 \\ 3.047 \\ 0.0 \\ 0.0 \\ 0$		4-2	1.499	0.0	1.499	1.2869	0,9866	1.1400	3.4134	0.0	3.413	0.0	4.912
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		4-7	1.004	0.0	1.004	0,7528	0.6942	0.6726	2.1196	0.0	2.120	0.0	3.123
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		5-3	1.138	0.0	1.138	1.5142	1.0995	1.2336	3.8473	0.0	3.847	0.0	4.985
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		5-5	1_047	0.0	1_047	1.2550	1.0305	0.7263	3.0117	0.0	3.012	0.0	4.059
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		5-8	0.534	0.0	0.534	0.5336	0.4644	0.3576	1.3556	0_0	1.356	J.O	1.369
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		6-4	0.786	0.0	0,786	1.6902	1.2965	1.0164	4.0031	0.0	4.003	0.0	4.769
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		6-6	0_495	0.0	0.695	1.3218	1.1504	0.7340	3,2063	0.0	3.206	0.0	3.901
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		6-9	0,353	0.0	0.353	0.6391	0.6216	0.3651	1.6247	0.0	1.625	0.0	1.978
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		7-10	0_548	0.0	0.548	0.5385	0.4976	0.3443	1.3004	0.0	1.390	0.0	1-927
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		8-11	0.284	0_0	0.284	0.4841	0.4474	0.3087	1.2401	0.0	1.240	0.0	1.524
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		9-12	0.387	0.0	0.387	0.6452	0.5112	0.4571	1.6135	0.0	1.614	0.0	2.000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		10-13	0.283	0.0	0.283	0.7094	0.5621	0.4539	1.7254	0.0	1.725	0.0	2.009
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		11-14	0.326	0.0	0.326	0.2033	0.1370	0.1410	0.4813	0.0	0.481	0.0	0.807
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		12-15	0.126	0.0	0.126	0.1575	0.1248	0.1052	0.3875	0.0	0.387	0.0	0.513
98 1 -1 1.583 0.0 1.583 1.9359 1.5338 0.9253 4.3951 0.0 4.395 0.0 5.978 1 -2 1.529 0.0 1.529 2.1782 1.6237 1.1627 4.9647 0.0 4.965 0.0 6.493 2 -3 1.235 0.0 1.235 2.1868 2.0168 1.6326 5.8362 0.0 5.036 0.0 7.071 2 -5 1.146 0.0 1.146 1.9206 1.9524 1.0945 4.9675 0.0 4.957 0.0 6.114 3 -4 0.866 0.0 0.866 2.0233 1.9757 1.3921 5.3912 0.0 5.391 0.0 6.257 3 -6 0.776 0.0 0.776 1.6411 1.8312 1.0953 4.5676 0.0 4.568 0.0 5.343 4 -1 1.555 0.0 1.555 1.0514 0.9001 0.9089 2.8604 0.0 2.860 0.0 4.415 4 -2 1.501 0.0 1.501 1.2891 0.9880 1.1419 3.4190 0.0 3.419 0.0 4.920 4 -7 1.161 0.0 1.161 0.8711 0.8033 0.7782 2.4526 0.0 2.453 0.0 3.614 5 -3 1.141 0.0 1.141 1.5178 1.1018 1.2368 3.8564 0.0 3.056 0.0 4.997 5 -5 1.052 0.0 1.052 1.2612 1.0354 0.7296 3.0262 0.0 3.026 0.0 4.978		13-16	0.065	0.0	0.065	0.1686	0.1336	0.1167	0.4190	0.0	0.419	0.0	0.484
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	98												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1-1	1.583	0.0	1.583	1.9359	1.5338	0.9253	4.3951	0.0	4.395	0.0	5.978
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1-2	1.529	0.0	1.529	2. 1782	1.6237	1,1627	4.9647	0.0	4,965	0.0	6.497
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2-3	1.235	0.0	1.235	2. 1868	2.0168	1.6326	5.8362	0.0	5.836	0.0	7.071
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2-5	1.146	0.0	1.146	1.9205	1.9524	1.0945	4.9675	0.0	4.957	0.0	6.114
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3-4	0.866	0.0	0.866	2.0233	1.9757	1.3921	5.3912	0.0	5.391	0.0	6.257
4-1 1.555 0.0 1.555 1.0514 0.9001 0.9089 2.8604 0.0 2.860 0.0 4.415 4-2 1.501 0.0 1.501 1.2891 0.9880 1.1419 3.4190 0.0 3.419 0.0 4.920 4-7 1.161 0.0 1.161 0.8711 0.8033 0.7782 2.4526 0.0 2.453 0.0 3.614 5-3 1.141 0.0 1.141 1.5178 1.1018 1.2368 3.8564 0.0 3.055 0.0 4.997 5-5 1.052 0.0 1.052 1.2612 1.0354 0.7296 3.0262 0.0 3.026 0.0 4.978		3-6	0.776	0.0	0.776	1_6411	1.8312	1.0953	4.5676	0.9	4,568	0.0	5.343
4-2 1.501 0.0 1.501 1.2891 0.9880 1.1419 3.4190 0.0 3.419 0.0 4.920 4-7 1.161 0.0 1.161 0.8711 0.8033 0.7782 2.4526 0.0 2.453 0.0 3.614 5-3 1.141 0.0 1.141 1.5178 1.1018 1.2368 3.8564 0.0 3.055 0.0 4.997 5-5 1.052 0.0 1.052 1.2612 1.0354 0.7296 3.0262 0.0 3.026 0.0 4.978		4-1	1.555	0.0	1.555	1.0514	0.9001	0.9089	2.8604	0.0	2,860	0.0	4.415
4-7 1.161 0.0 1.161 0.8711 0.8033 0.7782 2.4526 0.0 2.453 0.0 3.614 5-3 1.141 0.0 1.141 1.5178 1.1018 1.2368 3.8564 0.0 3.856 0.0 4.997 5-5 1.052 0.0 1.052 1.2612 1.0354 0.7296 3.0262 0.0 3.026 0.0 4.078		4-2	1.501	0.0	1.501	1.2891	0.9850	1.1419	3.4190	0.0	3-419	0.0	4.920
5-3 1.141 0.0 1.141 1.5178 1.1018 1.2368 3.8564 0.0 3.856 0.0 4.997 5-5 1.052 0.0 1.052 1.2612 1.0354 0.7296 3.0262 0.0 3.026 0.0 4.978		4-7	1.161	0.0	1.161	0.8711	0.8033	0.7782	2.4526	0.0	2.453	0.0	3.614
5-5 1-052 0-0 1-052 1-2612 1-0354 0-7296 3-0262 0-0 3-026 0-0 4-078		5-3	1. 141	0.0	1. 14 1	1.5178	1.1018	1.2368	3.8564	0.0	3.056	0.0	4.997
		5-5	1.052	0.0	1.052	1.2612	1.0354	0.7296	1.0262	0.0	3.026	0.0	4.078
5-8 0.568 0.0 0.568 0.5685 0.4947 0.3809 1.4442 0.0 1.444 0.0 2.013		5-8	0.568	0.0	0.568	0.5685	0.4947	0.3809	1-4442	0,0	1.444	0.0	2.013
		6-4	0.787	0.0	0.787	1.6930	1.2983	1.0181	4.0091	0.0	4.009	0.0	4,797
6-6 0.697 0.0 0.697 1.3264 1.1540 0.7365 3.2169 0.0 3.217 0.0 3.91µ		6-6	0.697	0.0	0.697	1.3264	1.1540	0.7365	3.2169	0.0	3 217	0.0	3,914
6-9 0.373 0.0 0.373 0.6734 0.6560 0.3853 1.7146 0.0 1.715 0.0 2.0ee		6-9	0.373	0.0	0.373	0.6734	0.6560	0.3653	1.7146	0.0	1.715	0.0	2.089

.

.

TABLE B.SCA: UNIT COSTS OF THE 1970'S TECHNICAL PACKAGES FOR ALL STAGES AT THE PRICES OF 1930.

,

(TABLE	B.SCA CONTI	NUFD)										
STAGE/T	BCHNICAL		LABOR			EQUITS	TENT			LOUIPSENT		
PACKAGE	NUMBER_	SKILLED	MNSKILL <u>ed</u>	TOTAL	INT/DR?	MAINT/MISC.	20.81	TOTAL	HORSE	AND HOZSE	MATEFIALS	TOTAL
	7-10	0.572	0.0	0.572	0.5617	0.5192	0.3592	1.4401	0.0	1.440	0.0	2.012
	8-11	0.291	0.1	0.291	0.4972	0.4575	0.1171	1.2739	0.0	1.274	0.0	1.565
	9-12	0.397	0.0	0.397	0.6615	0.5241	0.4687	1.6544	0.0	1.054	0.0	2.051
	10-13	0.268	0.0	0.288	0.7219	0.5719	0.4616	1.7554	0.0	1.755	0.0	2.043
	11-14	0.427	0.0	0.427	0.2666	0.1796	0.1848	0.5310	0.0	0.631	0_0	1.058
	12-15	0.164	0.0	0.164	0.2060	0.1632	0.1376	0.5068	0.0	0.507	0.0	9.671
	13-16	0.090	0_0	0.090	0.2343	0.1856	0.1621	0.5819	0.0	0.582	0.0	0-672
60 л									•			<i>,</i>
	1-1	1.660	0.0	1.660	1.9836	1.5716	0.9652	4.5203	0.0	4.520	0.0	6.180
	1-2	1.583	0.0	1.583	2. 2297	1.6578	1.2080	5.0756	0.0	5.096	0.0	6.673
	2-3	1.201	0.0	1.281	2.2585	2.0643	1.6956	6.0194	0.0	6.019	0.0	7.299
	2-5	1.215	0.0	1.215	2,0143	2.0265	1.1436	5_1844	0.0	5.194	0.0	6.400
	3-4	0.900	0.0	0.900	2.1055	2.0302	1.4427	5.5784	0.0	5.578	0.0	6.478
	3-6	0.814	0.0	0.814	1.7170	1.8914	1.1365	4.7449	0.0	4.745	0.0	5.559
	4-1	1.632	0.0	1.632	1.0990	0.9378	0.9489	2.9956	0.0	2.986	0.0	4_619
	4-2	1.555	0.0	1.555	1_3405	1.0221	1.1872	3.5499	0.0	3.550	0.0	5.105
	4-7	3,842	0.0	3.842	2.8818	2.6575	2.5746	8.1139	0.0	9,114	0.0	11.956
	5-3	1.187	0.0	1.187	1.5095	1.1493	1.2999	4.0386	0.0	4-039	0.0	5.225
	5-5	1. 121	0_0	1.121	1.3548	1.1096	0.7788	3.2432	0.0	3.243	0_0	4.364
	5-8	1.161	0.0	1.161	1. 1615	1.0107	0.7782	2.9504	0.0	2.950	0.0	4.112
	6-4	0_822	0.0	0-822	1.7751	1.3527	1.0687	4.1965	0.0	4.197	0.0	5.018
	6-6	0.736	0.0	0.736	1,4023	1.2142	0.7777	3.3942	0.0	3.394	0.0	4.130
	6-9	0.706	0.0	0.706	1_2740	1.2411	0.7289	3.2440	0.0	3.244	0.0	3.950
	7-10	0.736	0.0	0.736	0.7225	0.6678	0.4621	1.8524	0.0	1.852	0.0	2.588
	8-11	0_384	0.0	0.384	0.6564	0.6067	0_4186	1.6817	0.0	1.682	0.0	2.066
	9-12	0.550	0.0	0.550	0.9179	0.7272	0.6503	2.2954	0.0	2.295	0.0	2-946
	10-13	0.372	0.0	0.372	0.9340	0.7400	0.5977	2.2717	0,0	2.272	0.0	2.644
	11-14	1.931	0.0	1.931	1.2056	0.0125	0.0159	2.8540	0.0	2.854	0.0	4.785
	12-15	0.741	0.0	0.741	0.9293	0.7362	0.6206	2.2961	0.0	2.286	0.0	3.027
	13-16	0.464	0.0	0.464	1.2087	0.9576	0.8364	3.0027	0.0	3.003	0.0	3.467
1005												
	1-1	1.720	0.0	1.720	2,0205	1.6008	0_9961	4.6174	0.0	4.617	0.0	6.337
	1-2	1-624	0.0	1.624	2.2691	1.6839	1.2428	5.1959	0.0	5.196	0.0	6.820
	2-3	1.316	0.0	1.316	2.3123	2.0999	1.7428	6.1550	0.0	6.155	0.0	7.471
	2-5	1.268	0.0	1.268	2.0860	2.0834	1.1813	5.3508	0.0	5.351	0.0	6.619
	3-4	0.927	0.0	0_927	2. 1684	2.0719	1.4815	5.7219	0.0	5.722	0.0	6.648
	3-6	0. A44	0.0	0_844	1.7758	1.9390	1.1684	4.8822	0.0	4.482	0_0	5.726
	4-1	1.692	0.0	1.692	1. 1360	0.9671	0.9797	3.0827	0.0	3.083	0.0	4.775
	4-2	1.596	0.0	1.596	1.3799	1.0482	1.2219	3.6501	0.0	3.650	0.0	5.247
I.	4-7	5.091	0.0	5.891	4.4185	4.0746	3.9475	12.4406	0.0	12.441	0.0	18.332
	5-3	1.221	0.0	1-221	1.6433	1.1849	1.3470	4.1753	0.0	4.175	0.0	5,397
, '	5-5	1_174	0.0	1-174	1.4266	1.1664	0.8165	3-4095	0.0	3.410	0.0	4.584
	5~8	1.615	0.0	1.615	1-6150	1.4054	1_0821	4.1025	0.0	4.103	0.0	5.717
	6-4	0 . 84A	0.0	0.848	1.8381	1-3944	1.1075	4.3400	0.0	4.340	0.0	5.188
	6~6	0.765	0.0	0.765	1_4611	1.2608	0.8096	3.5315	0.0	3.532	0.0	4.297
	6-9	0.998	0.0	J.99 8	1.8019	1.7553	1.0309	4.5882	0.0	4.588	0.0	5.586
	7-10	0.779	0.0	0.779	0.7655	0.7075	0.4895	1.9625	0.0	1.963	0.0	2 - 742

.

(TABLE B.SCA CONTIN	UED)										
STAGE/TECHNICAL		LABOR			<u>7.00 X 1</u>	PMENT			ROUIP12NT	_	
PACKAGE NUMBER	SKILLED	ORSKILLED	TOTAL	<u>INT/DEP</u>	MATHT/HISC	<u>PIIPL</u>	TOTAL	<u> 035 B</u>	AND HORSE	MATERIALS	<u>20751</u>
A-11	0.402	0.0	0.402	0.6859	0.6339	0-4374	1.7572	0.0	1.757	0.0	2.159
9-12	0.577	0.0	0.577	0.9621	0.7622	0.6815	2.4059	0_0	2.406	0.0	2.983
10-13	0.414	0.0	0_414	1.0383	0.9226	n . 6644	2.5253	0.0	2,525	0.0	2.740
11-14	2.772	0.0	2.772	1.7301	1.1660	1.1995	4.0956	0.0	4.096	0_0	6.867
12-15	1.067	0.0	1.067	1.3378	1.0599	0.8935	3.2912	0.0	3.291	0.0	4.359
13-16	0.676	0.0	0.676	1.7599	1.3943	1.2179	4.3720	0.0	4.372	0.0	5.048
1658											
1-1	1.781	0.0	1.781	2.0582	1.6307	1.0276	4,7164	0.0	4.716	0.0	6.497
1-2	1.668	0.0	1.668	2.3107	1.7115	1.2794	5.3016	0.0	· 5.302	0.0	6.969
2-3	1.351	0.0	1.351	2.3678	2.1367	1.7917	6.2962	0.0	6.296	0.0	7.649
2-5	1.320	0.0	1.320	2.1563	2.1390	1.2182	5.5135	0.0	5.514	0.0	6.834
3-4	0.953	0.0	0,953	2.2314	2.1136	1.5203	5.8654	0.0	5.865	0.0	5.81A
3-6	0.872	0.0	0.872	1.8328	1.9831	1.1993	5,0153	0.0	5.015	0.0	5.898
4-1	1.753	0.0	1.753	1.1736	0.9969	1.0112	3.1917	0.0	3, 182	0.0	4,935
4-2	1.640	0.0	1.640	1.4215	1.0758	1.2586	3.7559	0.0	3.756	0.0	5.396
4-7	8.043	0.0	8.043	6.0329	5.5634	5.3899	16.9861	0.0	16.995	0.0	25.030
5-3	1.257	0.0	1.257	1.6989	1,2219	1.3958	4,3165	0.0	4.316	0.0	5.573
5-5	1. 226	0.0	1.226	1.4968	1.2221	0.8533	1.5722	0.0	3,572	0.0	4,798
5-8	2.110	0.0	2.110	2.1100	1.8361	1.4138	5. 3549	0.0	5.360	0.0	7.470
6-4	0.875	0.0	0.875	1.9011	1.4362	1.1463	4.4816	0.0	4.444	0.0	5, 359
6-6	0.794	0-0	0.794	1.5181	1.3060	0.8406	1.6646	0.0	1.665	0.0	4.459
6-9	1.254	0.0	1-259	2.2717	2.2149	1, 1009	5.7895	0.0	5.790	0.0	7.049
7-10	0.849	0-0	0 940	6 8345	0.7712	0.5336	2,1393	0_0	2.110	0.0	2.489
8-11	0 479	0.0	0 4 7 4	0 7171	0 6775	0 4675	1.9781	3.0	1.478	0 0	2,107
0-17	A 624	0.0	0 4 2 4	1 000	0 8246	0 7371	2 6025	<u> </u>	2.603	0.0	2 276
10-13	0.442	0.0	0 447	1. 1099	0.4793	0.7101	2.600.2	0.0	2.699	0.0	3, 141
11-14	4.187	0.0	4 197	2 6139	1.7615	1.8122	6. 1876	0.0	6.188	0-0	10. 375
12-15	1 6 13	0.0	1 613	2 0235	1 6012	1.1514	4 9781	0 0	4 978	0 0	6 592
13~16	1 077	0.0	1 0 2 7	2 6735	2 1192	1 8500	6.6419	0.0	6.642	3 0	1 669
5000	1.041	4.0	1.027	******		100310	0.0410	V • «	0.014	0.0	7.003
1-1	2 0 25	0.0	2 075	2 2401	1 7748	1,1798	5.1947	0_0	5, 195	0.0	7 770
1-2	1 974	0.0	1 974	2 5066	1 8013	1 4520	5 7444	0 0	5 400	0.0	7 674
7-3	1 5 2 2	0.0	1 5 2 2	2 6331	2 7120	2.0247	6.9703	0.0	6 970	0.0	9 110 3
2-5	1 570	0.0	1 570	2 1011	2, 073	1.3961	6.2982	0 0	6 238	0.0	7 969
3-4	1 001	0.0	1 081	2 6 3 5 4	2 7150	1.7076	6.5580	0 0	6 558	0.0	7 619
3-6	1 011	0.0	1 011	2 1064	2.1909	1.1478	5.6541	0.0	5.654	0.0	6 665
u-1	2 048	0.0	2 048	1.3556	1.1411	1.1634	1.6600	0.0	3 660	0.0	5 709
4-7	1 846	0 0	1 846	1.6175	1 2056	1_4311	4 2542	0.0	5+050 8 350	0.0	5 100
	10 796	0.0	19 796	14.8474	13.6920	13 7648	41.8042	0.0	11 ANA 11 ANA	0.0	61 600
5-1	1 407	0.0	1 4 2 7	1 9641	1 3975	1 6289	4 GOAS	0.0	41.004	0.0	
5-5	1 4747	0.0	1 476	1.8354	1_4903	1-0312	4.7703	Å Å	94775 8 367	0.0	0.410
5-8	470	0.0	8 309	4.3085	3.7494	2 8870	10 9110	0.0	10 016	0.0	5,011
5-0	4.000	0 0	1.002	2, 2051	1.6375	1. 3334	5.1760	0.0	E 472	V.U A A	13.435
- A	1.003	0.0	0.017	1,7017	1.5007	0_989A	1. 102	0.0	2+1/0 h 303	0.0	0.1/9
0-U 0-1	V.7JZ 9 634	0.0	3 534	107317 11.5570	103667 4_44AA	2.6077	74JVJ4 11 6ACE	0.0	4.JUJ 14.COS	U . U	1L & .C
0- J 7- 10	4 100	V-V	1,182	1, 1617	1.0712	20UV// 0.7426	נכטט בוו ונידים ל	0.0	11.000	0.0	14.130
- 10 0_11	1-102	0.0	14102	1 0013	1 00136	0.1420	4071/1 7 6176	0.0	2.411	U. U	4.159
0-11	V= 274	V. V	Va 374	V+ 70V/	Va 7004	V=0434	4.7123	0.0	2.315	0.0	3.087

(TABLE B. SCA CONTIN	UED)										
STAGE/TECHNICAL	_	LABOR			ROUI	PMENT	_		EOUI DRENT		
PACKAGE NUKBER	SKILLED	UNSKILLED	TOTAL	INT/DEP	HAINT/HISC	PHPL	TOTAL	11085 E	AND HORSE	ANTERIALS	TOTAL
9-12	0.B32	0.0	0.R32	1.3884	1.1000	0.9836	3.4720	0.0	3.472	0.0	4,304
10-13	0.507	0.0	0.587	1-4729	1.1670	0.9424	3.5823	0.0	3.582	0.0	4.169
11-14	11.750	0.0	11.750	7.3343	4.9427	5.0849	17.3620	0.0	17.362	0.0	29.112
12-15	4.503	0_0	4.503	5.6470	4_4741	3.7714	11.9924	0.0	13.872	0.0	18-195
13-16	2.903	0.0	2.903	7.5562	5.9869	5,2298	19.7718	0.0	18.772	0.0	21.675
800 7										••••	210075
1-1	2.236	0.0	2.236	2.3396	1.8537	1.2630	5.4563	0.0	5.455	0.0	7.693
1-2	1_ 998	0.0	1_980	2.6150	1.9130	1.5474	6.0755	0.0	6.075	0.0	8,063
2-3	1.614	0.0	1-614	2.7765	2.4074	2-1507	7.3346	0.0	7.335	0.0	8.948
2-5	1.709	0.0	1.709	2.6836	2,5569	1_4952	6.7357	0.0	6.736	0_0	8.445
3-4	1.149	0.0	1.149	2.6970	2-4220	1.8072	6.9262	0.0	6.925	0.0	8.075
3-6	1.QA3	0.0	1.083	2.2500	2.3137	1.4257	5.9895	0.0	5.989	0.0	7.073
4-1	2.209	0.0	2.209	1.4551	1.2199	1.2466	3.9216	0.0	3.922	0.0	6,130
4-2	1.960	0.0	1.960	1.7259	1.2773	1.5266	4.5298	0.0	4.530	0.0	6.490
4-7	25.896	0.0	25.896	19.4229	17.9115	17.3527	54.6A72	0.0	54.687	0.0	80.583
5-3	1.519	0.0	1.519	2.1075	1_4925	1.7549	5.3549	0.0	5.355	0.0	6-974
5-5	1.615	0.0	1-615	2-0242	1.6399	1.1303	4,7945	0.0	4.794	0.0	6.409
5-8	5.540	0.0	5.540	5.5402	4.8212	3.7123	14.07.37	0.0	14.074	0.0	19.614
6-4	1.070	0.0	1.070	2.3667	1.7446	1.4331	5.5443	0.0	5 544	0.0	6.615
6-6	1.005	0.0	1.005	1.9353	1.6365	1.0670	4.6388	0.0	4 639	0.0	5.644
6-9	3.215	0.0	3.215	5.8049	5.6547	3.3211	14.7807	0.0	14,781	0.0	17,996
7-10	1.447	0.0	1_447	1.4213	1.3136	0.9089	3.6438	0.0	3 644	0.0	5,091
8-11	0.683	0.0	0.687	1.1655	1.0771	0,7432	2.9858	0.0	2,986	0.0	3.668
9-12	0.892	0.0	0.892	1.4082	1.1791	1.0430	3.7103	0.0	3,710	0.0	4.602
10-13	0.620	0.0	0.620	1.5495	1.2276	0,9809	3.7591	0.0	3,758	0.0	4.378
11-14	18.426	0.0	18.426	11.5015	7.7511	7.9741	27.2267	0.0	27.227	0.0	45.653
12-15	7.092	0.0	7.092	8.8951	7.0475	5,9407	21.8933	0.0	21.883	0.0	28.976
13-16	4.607	0.0	4.607	11.9896	9.4993	8.2967	29.7856	0.0	29.786	0.0	34.393
SPR/COMP (\$/100BCM)											
						•					
362											
11	0.387	0.0	0.387	0.4386	0.3373	0.3225	1.0984	0.0	1.098	0.0	1.485
12	0.500	0.0	0.500	0.7327	0.586A	0.5115	1.8310	0.0	1.031	0.0	2,331
15	0-477	0.0	0.477	0-5299	0.4402	0.3371	1.3071	0.0	1.307	0.0	1,784
14	0.700	0.0	0.700	0.6482	0.4744	0.4094	1.5319	0.0	1.532	0.0	2,23?
21	0.250	0.0	0.250	0_4749	0.3660	0.3564	1.1971	0.0	1.197	0.0	1.447
22	0.363	0.0	0.363	0.7689	0.6155	0.5453	1.9297	0.0	1.930	0.0	2.292
23	0.340	0.0	0.340	0.5660	0.4689	0.3709	1-4058	0.0	1.406	0.0	1.745
24	0.563	0.0	0.563	0.6844	0.5030	0_4432	1.6306	0.0	1.631	0.0	2-193
31	0,209	0.0	0.209	0.1599	0.1045	0.1359	0.4002	0.0	0.400	0.0	0.610
32	0.322	0.0	0.322	0.4540	0_3540	0.3248	1.1328	0.0	1.133	0.0	1.455
33	0.299	0.0	0.299	0.2511	0.2074	0.1504	0.6089	0.0	0.609	0.0	0.908
54	0.523	0.0	0.523	0.3695	0_2416	0.2227	0.8337	0.0	0.834	0.0	1.356
41	0.182	0.0	0.182	0.1600	0-1046	0-1355	0.4001	0.0	0_400	0.0	0.582
4Z	0.295	0.0	0-295	0.4541	0-3541	0.3244	1.1327	0.0	1.133	0.0	1.427
43	0.272	0.0	0.272	0.2512	0-2075	0.1500	0.6088	0.0	0.609	0.0	0.880

•

•

.

440

•

.

(TABLE	ABLE R.SCA CONTINUED) AGE/TECHNICAL LABOR ENTLIED HMSKTLLED TOTAL					FOUL	PRENT			EQUI PRENT		
DICKAG	ALPENATORE	CRTITED	UNSKTILRD	ቸስሞአነ	INT /DEP	BATNY / ST SC	PUEL	TOTAL	HORSE	AND HOBSE	MATERIALS	TOTAL
PACKAG		<u> 3816210</u>	0.0	0.495	0, 1696	0.2417	0.2223	0.8336	0.0	0.834	0.0	1.329
-	77	V. 773	V • 17	01473	013070		••••••			•		
SUNTAL	UIIU /#/100008\											
G BA Y BL	r fationerul	0 679	0.0	0.628	0.1789	0. 1217	0.2957	0,9982	0.0	0,998	536.54	539.168
	11	0 564	0 0	0 554	0 5705	0.4894	0.3504	1.4102	0.0	1.410	536.54	518.505
	14	0 0 14	0.0	0.916	0 7654	0 5312	0 4641	1 7507	0.0	1.751	536.54	519.208
	17	0.710	0.0	0.547	0.5103	0 4270	0 1031	1 3313	0.0	1, 131	5 16 . 54	519.440
	21	0.007	0.0	0.307	0 7010	0 5075	0 4479	1 74 11	0 0	1 743	536.54	538.777
	22	U. 493	0.0	0.473	0 0017	0 6754	0 5616	2 0838	0.0	2.084	536.54	513 480
	23	0.100	0.0	0.000	0.0000	0 1643	0 1706	0 5 27 1	0.0	0.527	534.54	537 591
	51	0.523	0.0	0.523	0 2020	0.104.2	0. 1700	0 0 20 1	0.0	0 070	636 <u>5</u> 4	517 029
	32	0.448	0.0	0.448	V. 3034	0.3300	9-2200	0.0371	0.0	1 700	536 60	510 611
	33	0.810	0.0	0.410	0.0000	0.3719	0.3370	1.2170	0.0	0 540	576 50	517 616
	41	0.512	0.0	0.012	0.7076	0.1/44	0.1002	0.0044	0.0	0.074	526 54	517 051
	42	0.437	0.0	0.437	0. 1993	0.1401	0.2349	0.9742	0.17	0.7/4	000004 602 60	030 164
	43	0_800	0.0	0.900	0.5842	0. 18 19	0.3486	1. 1147	0.0	1.312	536.54	510.000
	51	0.929	0.1456	1.074	0_ 1001	0-4345	U. 655.1	1.0905	0.0	1.091	5.10. 54	537.307
	52	0.854	0.1456	1.000	0.7924	0.6002	0.7100	2,1026	0.0	2.103	535.54	714.044
	53	1.220	0.1456	1.366	0.9773	0,6421	0.8237	2.4431	0.0	Z. 443	534.54	540-350
WB/I	(\$/100CCN)							_	_			
	111	6.020	0.6498	6.670	2.3876	2.0811	3.3278	7.7965	0.0	7.797	640.15	654.614
	112	5.847	0.6318	6.479	5.6834	4.9733	4_4426	15.0993	0.0	15.099	640.15	561.726
	113	7.781	0,9363	8.617	6.1022	3.9807	5.1611	15.2440	0.0	15,244	540.15	664.009
	121	6.653	1.0409	7.694	2.7163	2.3782	3,5103	8.6048	0.0	8,605	640.15	656.447
	122	6.492	1.0289	7.521	6.0121	5.2704	4.6250	15,9075	0.0	15.207	540.15	663.576
	123	8.414	1.2334	9.648	6.43QA	4.2778	5.3436	16.0522	0.0	16.052	640.15	665-94
	211	5.951	0.6498	6.601	2.5273	2.1917	3,4314	8.1504	0.0	8.150	640.15	654.899
	212	5.790	0.6318	6.421	5.8230	5,0839	4.5461	15.4531	0.0	15.453	640.15	662.022
	213	7.712	0.8363	8.548	6.2418	4.0914	5.2647	15.5979	0.0	15.598	640.15	564.294
	221	6.584	1.0409	7.625	2.8560	2.4888	3_6139	9.9586	0.0	8.959	640.15	656.731
	222	6.423	1.0289	7.452	6. 1517	5. 1810	4.7286	16.2613	0.0	16.261	640.15	663.861
	223	8.345	1.2374	9.578	6.5705	4.3885	5.4472	16.4061	0.0	16.406	640.15	666.132
	311	1 5.691	0.6499	6.543	2, 1798	1,9051	3.1885	7.2734	0.0	7.273	640.15	651.964
	312	5.744	0.6318	6.375	5.4755	4.7974	4.3032	14.5761	0 0	14.576	640.15	561.100
	242	7 666	0 8363	8.502	5.8941	1.8048	5-0210	14.72.09	0.0	14.721	640.15	663.371
	221	6 526	1 000	7 567	2.5084	2.2022	3, 3710	8.0816	0.0	8 092	640.15	655.791
	241	6 346	1.0000	7.204	5 9007	5 0005	4.4957	15.3844	0.0	15.384	640.15	662.926
	312	0.307	1.0207	1.374	5 3330	0 1019	5.2043	15.5291	0.0	15.529	640 15	665 19
	223	0,207	1.2334	2. 74 1	0,2225	1 0148	3 1978	7 1072	0.0	7.307	600.15	653 981
	911	34772	U+0447	6.034	5 1003	1 0071	4 3105	10 6000	0.0	14 610	640.15	561 130
	412	2./21	0.0310	0-102	5 0001	1 0146	5 0211	14.0075	0.0	14.010	600 15	667 201
	913	/.043	U.8,36.3	0.4/9	5.9091	2.2410	J. J. J. J. J.	0 116	0.0	14+()J 0 110	640.13	003-36
	421	0.015	1.0409	7.000	Z.JZJZ E 1904	2 4 2 1 1 7 6 4 0 0 0	J. JOV2	70 1174	0.0	19. FIJ 46. J. 40	040.15 200.15	022.01
	422	6.354	1.0289	7.383	2.8190	0.1042	4.4747	10.000	0.0	17.418	040.15	002+94
	423	8,276	1.2334	9.509	0.23/8	44 1110	2.21.12	1340024	U.()	10-00	040.15	005.22
	511	6. 308	0.7942	7.102	2-6000	2.1831	3.0848	8.4679	0.0	H. 46H	640.15	655.720
	512	6.147	0.7822	6.929	5.8958	5.0753	4.7995	15.7706	0.0	15.771	640.15	662.84
	513	B.069	0.9807	9-050	6.3145	4.0828	5.5181	15.9154	0.0	15+915	640.15	665-11
	521	6.941	1.1913	8.132	2.9287	2.4802	3.0673	9.2761	0.0	9.276	640.15	557.55
	£73	1 780	1 1733	7 951	. 338.	5-172"	»° ∂8 30	16 57 88	0 0	16 579	640 15	11 T.A.

r

SINULY I BENKICAL		LANVA CAR		P.10 (0.05	HANN TAAN	1401			MOTLUPUT		
PACKAGE NUTITE	SKILLED	UNSKILLED	TOTAL	INT/DEP_	nal Traise	FNEL	TOTAL	<u>noase</u> I	ND HOUSE	DATEFIALS	<u></u>
523	8.702	1.3778	10.080	6.6432	4.3799	5.7005	16.7236	0.0	16.724	640,15	666.951
DBST/G (\$/ 1005 H)											
1111	0,125	0,0291	0.155	0.0900	0.0651	0.1136	0.2687	0.0	0.269	13.70	14,121
1112	0.111	0.0291	0.140	0.0920	0.0658	0.1108	0.2687	0.0	Q.269	13.70	14.107
1121	0.138	0_0537	0.192	0.0739	0.0619	0.0809	0.2167	0.0	0.217	13.70	14_107
1122	0.123	0.0537	0.177	0.0759	0.9626	0.0701	0.2166	0.0	· 0.217	13.70	14.092
1211	0.125	0.0289	0.154	0.0905	0.0655	0.1101	0.2741	0.0	0.274	13.70	14.127
1212	0.111	0.0289	0.140	0.0925	0.0663	0.1154	0,2741	0.0	0.274	13.70	14.112
1221	0.130	0,0536	0.192	0.0744	0.0623	0.0855	0.2221	0.0	0.222	13.70	14.112
1222	0.123	0.0536	0.177	0_0764	0.0630	0.0827	0.2221	0.0	0.222	13.70	14,097
DEST/W (\$/10058)											
1111	0.123	0.0280	0.151	0.0890	0.0543	0.1092	0.2625	0.0	0.262	12.13	12.605
1112	0.109	0.0280	0.137	0.0910	0.0650	0.1065	0,2625	0.0	0.262	12.19	12.590
1121	0.136	0.0525	0.188	0.0729	0.0610	0.0765	0.2104	0.0	0.210	12,19	12,590
1122	0.121	0.0525	0.173	0.0749	0.0617	0.0738	0.2104	0.0	0.210	12, 19	12.57
1211	0.123	0.0278	0.151	0.0994	0.0646	0.1128	0.2667	0_0	0.267	12.19	12.604
1212	0.108	0.0278	0.136	0-0914	0.0653	0.1100	0.2667	0.0	0.267	12.19	12.59
1221	0.136	0.0524	0.188	0.0733	0.0613	0.0801	0.2147	0.0	0.215	12.19	12.59
L222	0.121	0-0524	0.173	0.0753	0-0621	0.0773	0.2147	0.0	0.215	12-19	12.579
	••••••							•••	••••		
Ň											

.

•

.

.

STAGE/TE	CHNICAL		LABOR _			<u>EQU</u>	IPHENT			EQUIPMENT		
PACKAGE	NUMBER	SKILLED	UNSKILLEI	D TOTAL	INT/DEP	MAINT/MIS	<u>C FUEL</u>	TOTAL	HORSE	AND HORSE	MATERIALS	_TOTAL
SITE PRE	P (\$7HA)											
	11	191.675	830.5881	1022.263	57.5809	37.0260	32.6796	127.3065	0.0	127.306	8.48	1158.045
	21	32.586	137.508L	170.094	13.5918	8.8908	7.4131	29.8958	0.0	29.896	8,48	208.465
	31	21.228	61.2313	82.457	11.0514	8.8537	4.2032	24.1084	0.0	24.108	8.48	115.043
EXC/HAUL	(\$/1008C4)									-		
	14-0	0.601	0.0	0.601	0.3248	0.2148	0.0807	0.6203	0.0	0.620	0.0	1.222
69												
	1-1	5.685	0.0	5.685	5.6814	4.5642	1.5213	11.7669	0.0	11.767	0.0	17.452
	1-2	5.448	0.0	5.498	6.3954	4.8345	1.9134	13.1433	0.0	13.143	0.0	18.641
	2-3	4.441	0.0	4.441	6.3837	6.0031	2.6859	15.0727	0.0	15,073	0.0	19.513
	2-5	4.113	0.0	4.113	5.5937	5.8034	1.7987	13.1959	0.0	13.196	0.0	17.309
	3-4	3.114	0.0	3.114	5.9232	5.8824	2.2919	14-0976	0.0	14.098	0.0	17.211
	3-6	2.786	0.0	2.786	4.7946	5.4464	1.8013	12.0423	0.0	12.042	0.0	14.828
	4-1	5.585	0.0	5.585	3.0817	2.6756	1.4943	7.2516	0.0	7.252	0.0	12.837
	4-2	5.399	0.0	5 399	3.7822	2.9400	1.8791	8.6013	0.0	8.601	0.0	16.001
	4-7	3 616	0.0	3 616	2 2125	2 0689	1,1096	5 3900	0.0	5.390	0.0	9.005
	7-1	4 101	0.0	6 101	4 4504	3 2745	2 0325	0 7401	0.0	9 760	0.0	12 941
)-) 5 5	7.101	0.0	2 773	7.49207	3.0709	2.0333	7.0000	0.0	7.064	0.0	11 210
	2~2	3.113	0.0	2.172	3.0003	1 3830	1 + 1 7 7 2	2 5/17	0.0	1.790	0.0	E (4)
	2-0	1.722	0.0	1.722	1.00175	1.3039	J. 3074	3.3411	0.0	3.242	0.0	7.404
	0-4	2.832	0.0	2.832	4.90/2	3.0030	1.0/24	10.0000	0.0	10.507	0.0	13.338
	5-0	2.004	0.0	2.304	2+040	3.4204	1.2100	0.2721	0.0	0.723	0.0	11.027
	6-4	1.273	0.0	1.273	1.8752	1.8523	9.6017	4.1292	0.0	4.329	0.0	5.602
	7-10	1.974	0.0	1.974	1.5791	1.4930	0.5676	3.6296	0.0	3.630	0.0	5.604
	9-11	1.021	0.0	1.021	1.4196	1.3332	3.5089	3.2616	0.0	3.262	0.0	4.283
	9-12	1.393	0.0	1.393	1.8963	1.5234	0.7535	4.1732	0.0	4.173	0.0	5.566
	10-13	1.018	0.0	1.018	2.0850	1.6750	3.7482	4.5083	0.0	4.508	0.0	5.527
	11-14	1.173	0.0	1.173	0.5987	0.4084	0.2324	1.2395	0.0	1.239	0.0	2.413
	12-15	0.452	0.0	0.452	0.4629	0.3719	0.1734	1.0081	0.0	1.008	0.0	1.461
	13-16	0.233	0.0	0.233	0.4957	0.3982	0.1924	1.0862	0.0	1.086	0.0	1.320
9M												
	1-1	5.701	0.0	5.701	5.6897	4.5709	1.5253	11.7859	0.0	11.786	0.0	17.487
	1-2	5.506	0.0	5.506	6.4019	4.8388	1.9166	13.1573	0.0	13.157	0.0	18.664
•	2-3	4.449	0.0	4.449	6.3943	6.0101	2.6911	15.0955	0.0	15.076	0.0	19.545
	2-5	4.130	0.0	4.130	5.6121	5.8182	1.8041	13.2343	0.0	13.234	0.0	17.364
	3-4	3.118	0.0	3.110	5.9313	5.8878	2.2947	14.1138	0.0	14.114	0.0	17.232
	3-6	2.794	0.0	2.794	4.8080	5.4571	1.8054	12.0705	0.0	12.071	0.0	14.865
	4-1	5.602	0.0	5.602	3.0900	2.6823	1.4982	7.2705	0.0	7.271	0.0	12.872
	6-2	5.407	0.0	5.407	3.7886	2.9444	1.8823	8.6153	0.0	8.615	0.0	14-022
	4-7	4.184	0.0	4-184	2.5601	2.3934	1.2828	6.2368	0.0	6.237	0.0	10.421
	5-3	4.109	0.0	4.109	4.4609	3.2835	2.0386	9.7831	0.0	9.783	0.0	13.892
	5~5	3.700	0_0	3.700	3.7067	3.0854	1,2024	7.0040	0-0	7.905	0.0	11.796
	5-8	7 1 7 17 17	0.0	2.048	1.6709	1.4744	0.4279	2.7722	0.0	1.772	0.0	L / 07 5 031
)=;; 4_4	2 8 V 7 11	0.0	2.070	4.0744	3.8600	1 4701	10 5339	0.0 0 0	10 623	0.0	13 354
	4-4	2.030	0.0	3 613	3.8047	3 4 301	1 3140	14.7250	0.0	100723	0.0	134334
	U-U 4-0	20712	0.0	1 343	1 0701	1 0540	1	043373	0.0	0 6 7 7 L	0.0	11.007
	0-7		0.0		407174	4 . 7770	0 40331	7.070	0.0	70707	0.0	3.714

.

TABLE 8.5CB: UNIT COSTS OF THE 1970'S TECHNICAL PACKAGES FOR ALL STAGES AT THE PRICES OF 1956.

,

.

ITABLE B.5CB CONTI	NVED)										
STAGE/TECHNICAL		LABOR			COUIP	PHENT			EQUIPMENT		
PACKAGE NUMBER	<u>Skilled</u>	UNSKILLED	<u>_TOTAL</u>	INT/DEP	MAINT/MISC	FUEL	TOTAL	HORSE	AND HURSE	MATERIALS	TOTAL
7-10	2.060	0.0	2.060	1.6474	1.5471	5.5921	3.7867	0.0	3.147	0.0	5.847
8-11	1.049	0.0	1.049	1.4582	1.3695	3.5227	3.3504	0.0	3.350	0.0	4.399
9-12	1.429	0.0	1.428	1.9443	1.5620	3.7726	4.2788	0.0	4.219	0.0	5.707
10-13	1.036	0.0	1.035	2.1212	1.7041	0.7612	4.5866	0.0	4.587	0.0	5.623
11-14	1.539	0.0	1.539	0.7849	0.5353	0.3046	1.6249	0.0	1.625	0.0	3.163
12-15	0.592	0.0	0.592	0.6054	0.4864	0.2268	1.3186	0.0	1+319	0.0	1.915
.13-16	0.324	0.0	0.324	0.6885	0.5531	9,2672	1.5087	0.0	1.509	0.0	1.833
60N											
. 1-1	5.979	0.0	5.979	5.5297	4.6834	1.5909	12.1039	0.0	12.104	0.0	18.083
1-2	5.701	0.0	5.701	6.5531	4.9404	1.9913	13.4847	0.0	13.485	0.0	19.186
2-3	4.615	0.0	4.615	6.6050	6.1517	2.7950	15.5516	0.0	15.552	0.0	20.165
2-5	4.379	0+Ü	4.379	5.8872	6.0392	1.8851	13.8115	0.0	13.812	0.0	18,190
3-4	3.242	0.0	3.242	6.1727	6.0500	2.3781	14.6009	0.0	14.601	0.0	17.043
3-6	2 932	0.0	2.432	5.0311	5,6364	1,8733	12.5408	0+0	12.541	0.0	15.473
4-1	5.880	0.0	5.880	3.2300	2.7947	1.5639	7.5886	0.0	7.509	0.0	13.468
4-2	5.602	0.0	5.602	3.9398	3.0459	1.9570	8.9427	0.0	8,943	0.0	14.544
4-7	13.841	0.0	13.841	8.4695	7.9195	4.2438	20.6328	0.0	20.633	0.0	34.473
5-3	4.275	0.0	4.275	4.6716	3.4251	2.1425	10.2397	0.0	10.239	0.0	14.514
5-5	4.039	0.0	4.039	3.9818	3.3066	1.2837	8.5721	0.0	8.572	0.0	12.611
5-9	4.184	0.0	4.184	3.4135	3,0120	1.2820	7.7084	0.0	7,708	0.0	11.892
6-4	2.960	0.0	2.960	5.2171	4.0312	1.7616	11.0098	0.0	11.010	0.0	13.970
6-6	2.650	0.0	2.650	4.1213	3.6184	1.2820	9.0216	0.0	9,022	0.0	11.672
6-9	2.542	0.0	2.542	3.7444	3.6985	1.2015	8.6444	0.0	8.644	0.0	11.185
7-10	2.650	0.0	2.650	2.1189	1.9900	0.7616	4.8705	0.0	4.871	0.0	7.520
6-11	1.385	0.0	1.385	1.9250	1.8079	0.6900	4.4230	0.0	4,423	0.0	5.808
2-12	1.982	0.0	1.982	2.6977	2.1673	1.0718	5,9368	0.0	5.937	0.0	7.919
10-13	1.339	0.0	1.339	2.7451	2.2053	0.9852	5.9357	0.0	5,936	0.0	7.275
11-14	6.958	0.0	6.958	3.5500	2.4213	1.3778	7.3491	0.0	7.349	0.0	14.307
12-15	2.469	0.0	2.669	2.7311	2.1940	1.0230	5.9481	0.0	5.948	0.0	6.617.
13-16	1.673	0.0	1.673	3.5524	2.8539	1.3787	7.7849	0.0	7.785	0.0	9.458
1008											
1-1	6.195	0.0	6.195	5.9383	4.7706	1.6419	12.3508	0.0	12.351	0.0	18.545
1-2	5.451	0.0	5.851	6.5689	5.0182	2.0485	13.7356	0.0	13.736	0.0	19.586
2-3	4.739	0.0	4.739	6.7630	6.257R	2.9728	15.8937	0.0	15.894	0.0	20.633
2-5	4.569	0.0	4.569	6.0982	6.2087	1.9473	14.2541	0.0	14.254	0.0	18.823
3-4	3.336	0.0	3.338	6.3579	6.1744	2.4421	14.9743	0.0	14.974	0.0	18.312
3-6	3,019	0.0	3.039	5-2040	5.7753	1.9259	12.9052	0.0	12.905	0.0	15.944
4-1	6.095	0.0	6.095	3.3386	2.8819	1.6149	7.8354	0.0	7.835	0.0	13.931
4-7	5,751	0.0	5.751	4-0557	3.1237	2.0142	9.1935	0.0	9.194	0.0	14.945
4-7	21.221	0.0	21.221	12.9859	12.1426	5.5069	31.6354	0.0	31.635	0.0	52.856
5-3	4. 109	0.0	4.399	4.8297	3.5312	2.2203	10.5812	0.0	10.581	0.0	14.981
5-5	4.220	0.0	4.229	4-192A	3.4761	1.3458	9.0147	0.0	9.015	0.0	13.244
5-8	5,817	0.0	5.817	4.7444	4.1882	1.7837	10.7184	0.0	10.716	0.0	16.536
/	3.054	0.0	3.054	5.4022	4.1556	1.8255	11.3833	0.0	11.303	0.0	14.439
U-4 6_1	3.767	0.0	2.767	A 2043	3,7573	1.3344	9. 3860	0.0	0.184	0.0	12-143
0-0 4-0	2 606	0.0	3,605	5.3060	5,2310	1.6993	12.2263	0.0	12.224	0.0	15-821
7-10	2 807	0.0	2,807) . 74AQ	2.1083	0.008	5.1402	0.0	5.140	0.0	7.967
1-10	E a d V I	V+V	E 6 0 4 1	A	TITON	310003	20104E	414	>= Tua		

.

444

STAGE/TECH	VICAL		LABOR			<u> </u>	PRENT			EQUIPMENT		
PICKAGE NJ	MHER	<u>skilled</u>	UNSKILLED	TOTAL	INT/DEP	MAINT/MISC	FUEL	TOTAL	HDRSE	AND HORSE	MATERIALS	TOTAL
	0-11	1.447	0.0	1.447	2.0115	1.8891	0.7210	4.6216	0.0	4.622	0.0	6.069
•	9-12	2.077	0.0	2.077	2.8275	2.2715	1.1235	6.2226	0.0	6.223	0.0	8.300
1:	0-13	1.493	0.0	1.473	3.0515	2.4515	1.0951	6.5992	0.0	6.598	0.0	8.091
1	1-14	9.984	0.0	9.984	5.0944	3.4746	1.9772	10.5463	0.0	10.546	0.0	20.53
1.	2-15	3.842	0.0	3.842	3.9318	3.1587	1.4727	8.5631	0.0	8.563	0.0	12.400
1	3-16	2.436	0.0	2.436	5.1723	4.1552	2.0074	11.3349	0.0	11.335	0.0	13.77
165M												
	1-1	6.414	0.0	6.414	6.0490	4.8596	1.6938	12.6023	0.0	12.602	0.0	19.01
	1-2	6.00A	0.0	6.00A	6.7911	5.1003	2.1059	14.0003	0.0	14.000	0.0	20.00
	2-3	4.869	0.0	4.060	6.9263	6.3675	2.9533	16.2471	0.0	16.247	0.0	21.11
	2-5	4.756	0.0	4.756	6.3045	6.3744	2.0081	14.6873	0.0	14.687	0.0	19.44
	3-4	3.433	0.0	3.433	6.5430	6.2987	2.5061	15.3477	0.0	15.348	0.0	18.78
	3-6	3.143	0.0	3.143	5.3715	5.9098	1.9769	13.2583	0.0	13.258	0.0	16.40
	4-1	6.315	0.0	6,315	3.4493	2,9709	1.6668	8.7870	0.0	8.087	0.0	14.40
	4-2	5.909	0.0	5.909	4.1779	3.2058	2.0746	9.4583	0.0	9.458	0.0	15.36
	4-7	28.975	0.0	28.975	17.7306	16.5793	8.8844	43.1943	0.0	43.194	0.0	72.16
	5-3	4.528	0.0	4.528	4.9730	3.6409	2.3008	10.9347	0.0	10.935	0.0	15.46
	5-5	4.416	0.0	4.416	4.3991	3.6419	1.4066	9.4476	0.0	9,448	0.0	13.86
	5-8	7.600	0.0	7.600	6.2011	5.4718	2.3304	14.0034	0.0	14.003	0.0	21.60
"	6-4	3.151	0.0	3.151	5.5873	4.2799	1.8895	11.7567	0.0	11.757	0.0	14.90
	6-6	2.961	0.0	2.861	4.4617	3.8918	1.3856	9.7391	0.0	9.739	0.0	12.60
1	6-9	4.536	0.0	4.536	6.6825	6.6006	2.1443	15.4274	0.0	15.427	0.0	19.96
	7-10	3.060	0.0	3.060	2.4472	2.2983	0.8796	5.6251	0.0	5.625	0.0	8.68
	8-11	1.547	0.0	1.547	2.1498	2.0190	0.7706	4.9395	0.0	4,939	0.0	6.48
	9-12	2.247	0.0	2.247	3.0589	2.4574	1.2150	6.7313	0.0	6.731	0.0	8.97
1	0-13	1.592	0.0	1.592	3.2619	2.6205	1.1705	7.0529	0.0	7.053	0.0	8.64
1	1-14	15.084	0.0	15.084	7.6967	5.2495	2.9871	15.9333	0.0	15.933	0.0	31.01
1	2-15	5.812	0.0	5.812	5.9471	4.7777	2.2276	12.9524	0.0	12.952	0.0	18.76
1	3-16	3.701	0.0	3.701	7.8575	6.3124	3.0495	17.2194	0.0	17.219	0.0	20.92
500M							•					
	1-1	7.476	0.0	7.476	6.5837	5.2891	1.9447	13.8175	0.0	13.017	0.0	21.29
	1-2	6.750	0.0	6.750	7.3670	5.4871	2.3934	15.2475	0.0	15.247	0.0	21.99
	2-3	5.481	0.0	5.481	7,7060	6.8912	3.3375	17.9346	0.0	17.935	0+0	23.41
	2-5	5.656	0.0	5.656	7.2996	7.1739	2.3012	16.7747	0.0	16.775	0.0	22.43
	3-4	3.893	0.0	3.893	7.4364	6.8988	2.8148	17.1499	0.0	17.150	0.0	21.04
	3-6	7.641	0.0	3.641	6.1756	6.5558	2.2216	14.9530	0.0	14.953	0.0	18.59
	4-1	7.376	0.0	7.376	3.9840	3.4004	1.9177	9.3021	0.0	9.302	0.0	16.67
	4-2	6.651	0.0	6.651	4.7538	3.5926	2.3590	10.7054	0.0	10.705	0.0	17.35
	4-7	71.309	0.0	71.309	43.6364	40.8027	21,8651	106.3044	0.0	106.304	0.0	177.61
	5-1	5.141	0.0	5.141	5.7726	4.1646	2.6850	12.6222	0.0	12.622	0.0	17.76
	5-5	5.316	0.0	5 316	5.3942	4.4413	1.6997	11.5353	0.0	11.535	0.0	16.85
	5-A	15.520	0.0	15.520	12.6628	11.1735	4.7588	28.5950	0.0	28.595	0.0	44.11
	6-4	3.611	0.0	3.611	6.4807	4.8800	2.1982	13.5589	0.0	13.559	0.0	17.17
		1, 160	0.0	3, 350	5.2457	4.5378	1.6303	11.4338	0.0	11.434	0.0	14.70
	6-9	9.093	0.0	9,097	13.3955	13.2314	4 2484	30 9252	0.0	30.925	0.0	40.01
	7-10	4.25R	0.0	4.258	3.4055	3.1983	1.2241	7.8279	0.0	7. A2A	0.0	12.04
	T AU	, 71270	0.0	2.060	2.8740	2.7011	1.0309	6.6080	0 0	4.4.A	0.0	

TABLE B	.5CB CONTINU	ED)										
STAGE/TE	CHNECAL	_	LAGOR			EQU1	PMENT			EQUIPMENT		
PACKAGE	NJMBER	SKILLED	UNSKILLED	TOTAL	INT/DEP	MAINT/MISC	FUEL	TOTAL	HORSE	AND HORSE	MATERIALS	TOTAL
	9-12	2.948	0 . 0	2.998	4.0804	3.2781	1.6214	8,9799	0.0	8.980	0.0	11.978
	10-13	2.115	0.0	2.115	4.3289	3.4777	1.5535	9.3601	0.0	9.360	0.0	11.475
	11-14	42,326	0.0	42.326	21.5964	14.7297	8.3818	44.7078	0.0	44.708	0.0	87.034
	12-15	16.219	0.0	16.219	16.5964	13.3330	6.2165	36.1459	0.0	36.146	J.O	52.365
	13-16	10,459	0.)	10.459	22.2077	17.8410	8.6189	48.6677	0.0	48.668	0.0	59.127
800M						,						
	1-1	A.056	0.0	N.056	6.8761	5.5240	2.0819	14.4820	0.0	14.492	0.0	22.538
	1-2	7,161	0.0	7.161	7.6955	5.7010	2.5507	15.9372	0.0	15.937	0.0	23.098
	2-3	5.813	0.0	5.813	9.1274	7.1742	3.5451	18.8468	0.0	18.847	0.0	24.660
•	2-5	6.157	0.0	6.157	7.8545	7.6146	2.4646	17.9388	0.0	17.939	0.0	24.096
	3-4	4.138	0.0	4.138	7.9113	7.2177	2.9789	18.1078	0.0	18.108	0.0	22.246
	3-6	3.902	0.0	3.902	6.5977	6.8949	2,3501	15.8429	0.0	15.843	0.0	19.744
	4-1	7.957	0.0	7.957	4.2764	3.6353	2.0549	9.9666	0.0	9.967	0.0	17.923
	4-2	7.061	0.0	7.061	5.0723	3,8065	2.5164	11.3952	0.0	11.395	0.0	18.456
	4-7	93.285	0.0	93.285	57.0840	53.3774	28.6034	139.0647	0.0	139.065	0.0	232.349
	5-3	5.473	0.0	5.473	6.1941	4.4476	2.8926	13.5343	0.0	13.534	0.0	19.008
	5-5	5+817	0.0	5.817	5.9491	4.8871	1.8632	12.6994	0.0	12.699	0.0	10.517
	5-8	19.956	0+0	19.956	16.2926	14.3676	6.1191	36.7694	0.0	36.769	0.0	56.726
	6-4	3.856	0+0	3.856	6.9556	5.1989	2.3623	14.5169	0.0	14.517	0.0	18.373
	6-6	3.620	0.0	3.620	5.6879	4.8769	1.7588	12,3236	0.0	12.324	0.0	15.943
	6-9	11.501	0.0	11.581	17.0605	16.8514	5.4744	39.3863	0.0	39.386	Q .O	50.967
	7 - 10	5.212	0.0	5.212	4.1681	3.9146	1.4982	9.5810	0.0	9.581	0.0	14.793
	8-11	2.459	0.0	2.459	3.4170	3.2099	1.2251	7.8528	0.0	7.853	0.0	10.312
	9-12	3.213	0.0	3.213	4.3738	3.5138	1.7192	9.6068	0.0	9.607	0.0	12.820
	10-13	2.235	0.0	2.235	4.5539	3.6585	1.6169	9.8293	0.0	9.829	0.0	12.064
	11-14	66.375	0.0	66.375	33.8671	23.0988	13.1441	70.1100	0.0	70.110	0.0	136.485
	12-15	25.549	0.0	25.549	26.1426	21.0021	9.7923	56.9370	0.0	56.937	0.0	82.486
	13-16	16.596	0.0	16.596	35.2375	28.3086	13.6758	77.2219	0.0	77.222	0.0	93.818
SPR/COMP 98%	(\$/100BCM)											
	11	1.393	0.0	1.393	1.2895	1.0053	0.5316	2.8264	0.0	2.026	0.0	4.220
	12	1.800	0.0	1.800	2.1531	1.7487	0.8431	4.7450	0.0	4.745	0.0	6.545
	13	1.717	0+0	1.717	1.5592	1.3120	0.5556	3.4268	0.0	3.427	0.0	5.143
	14	2.521	0.0	2.521	1.9069	1.4136	0.6748	3.9953	0.0	3.995	0.0	6.516
	21	0_900	0.0	0.900	1.3958	1.0907	0.5874	3.0738	0.0	3.074	0.0	3.974
	22	1.306	0.0	1.306	2.2594	1.8341	0.8989	4.9925	0.0	4.992	0.0	6.299
1	23	1.223	0.0	1.223	1.6655	1.3974	0.6114	3.6743	0.0	3.674	0.0	4.897
	24	2.02B	0.0	2.029	2.0132	1.4990	0.7305	4.2428	0.0	4.243	0.0	6.270
	31	0.755	0.0	0.755	0.4709	0.3115	0.2240	1.0063	0.0	1.005	0.0	1.761
	32	1.161	0.0	1.161	1.3345	1.0549	0.5355	2.7249	0.0	2.925	0.0	4.086
	33	1.078	0.0	1.078	0.7406	0.6182	0.2479	1.6067	0.0	1.607	0.0	2.685
	34	1.882	0.0	1.882	1.0883	0.7198	0.3671	2.1752	0.0	2.175	0.0	4.058
	41	0.655	0.0	0.655	0.4713	0.3118	0.2233	1.0064	0.0	1.006	0.0	1.662
	42	1.061	0.0	1.061	1.3350	1.0552	0.5348	2.9250	0.0	2.925	0.0	3.996
	43	0.979	0.0	0.979	0.7411	0.6185	0.2473	1.6068	0.0	1.607	0.0	2.585
	44	1.783	0+0	1.783	1.0887	0.7201	0.3664	2.1753	0.0	2.175	0.0	3.958
SURFACING	5											

.

446

,

(TAB	LE B.SCB CONTIN	IVED)										
STAG	E/TECHNICAL		LAGOR	_	<u>.</u>	EQUIP	MENT			EQUIPMENT		
PACK	AGE NUMBER	SKILLED	UNSKILLED	TOTAL	INT/DEP	MAINT/MISC	FUEL	TOTAL	HORSE	AND HORSE	NATERIALS	TOTAL
	<u> </u>	2.264	0.0	2.264	1.1121	0.9647	0.4874	2.5641	0.0	2.564	673.88	678.707
	12	1.974	0.0	1.994	1.6805	1.4584	0.5775	3.7165	0.0	3.716	673.88	679.592
	13	3.301	0.0	3.301	2.2232	1.5831	3,7650	4.5713	0.0	4.571	673.88	681.753
	21	2.044	0.0	2.044	1.4984	1.2750	2.6480	3.4215	0.0	3.421	673.88	679.347
	22	1.775	0.0	1.775	2.3669	1.7688	0.7382	4.5738	0.0	4.574	673.89	680.230
	23	3+081	0.0	3.001	2.6095	1.9935	0.9256	5.4286	0.0	5.429	673.88	682.391
	31	1.482	0.0	1.892	0.5642	0.4897	0.2811	1.3351	0.0	1.335	673.88	677.093
	32	1.613	0.0	1.613	1.1327	0.9835	0.3713	2.4874	0.0	2.487	673.88	677.982
	33	2.919	0.0	2.919	1.6753	1.1082	0.5588	3.3422	0.0	3.342	673.88	680.143
	41	1.845	0.0	1.845	0.6095	0.5197	0.2970	1.4262	0.0	1.426	673.88	677-153
	42	1.576	0.0	1.576	1.1780	1.0134	0.3871	2.5786	0.0	2.579	673.88	678.035
	43	2.802	0.0	2.892	1.7207	1.1381	0.5746	3.4334	0.0	3.433	673.88	680-196
	51	3.346	0.7470	4.093	1.7644	1.2947	1.0027	4.0619	0.0	4.062	673.88	682.036
	52	3.077	0.7470	3.824	2.3329	1.7884	1.0928	5.2141	0.0	5.214	673.88	682-919
	53	4.395	0.7470	5.142	2.8756	1.9131	1.2803	6.0689	0.0	6.069	673.88	685.092
N BM	(\$/100CCM)								•••			0,,,00,5
	111	21.695	3.3338	25.019	7.0011	6.2015	4.9750	18.1776	0.0	18.178	773.51	816.708
~	112	21.063	3.2412	24.305	16.7686	14.8206	6.8262	38.4155	0.0	38.415	773.51	R36.232
4	113	29.029	4.2908	32.320	17.9702	11.8627	7.8436	37.6765	0.0	37.677	773.51	843.508
4	121	23.966	5.3403	29.306	7.9646	7.0861	5.3135	20.3642	0.0	20.364	773.51	823, 182
	122	23.385	5.2786	28,664	17.7321	15.7052	7.1648	40.6021	0.0	40.602	773.51	842.778
	123	30,310	6.3291	36.638	18.9337	12.7473	9.1821	39.8631	0.0	39.863	773.51	850-013
	211	21.437	3.3338	24.770	7.4115	6.5312	5.1457	19.0884	0.0	19.088	773.51	817.371
	212	20.856	3.2412	24.097	17.1790	15.1503	6.9970	39.3263	0.0	39.326	773.51	836.935
	213	27.701	4.2908	32.071	18.3806	12.1924	8.0143	38.5874	0.0	38.587	773.51	844.170
	221	23.717	5.3403	29.057	8.3750	7.4158	5.4843	21.2751	0.0	21.275	773.51	A23.844
	222	23.137	5.2786	28.415	18.1425	16.0349	7.3355	41.5129	0.0	41.513	773.51	843.440
	223	30.061	6.3281	36.389	19.3441	13.0770	8.3529	40.7740	0.0	40.774	773.51	850.675
	311	21.229	3.3338	24.563	6.3906	5.6773	4.7453	16.8133	0.0	16.813	773.51	814.883
	\$12	20.690	3.2412	23.912	16,1581	14.2964	6.5966	37.0511	0.0	37.051	773.51	A34.494
	313	27.615	4.2908	31.906	17.3598	11.3365	7.6139	36.3122	0.0	36.312	773.51	841.729
	321	23.510	5.3403	28.850	7.3541	6.5619	5.0839	18.9999	0.0	19.000	773.51	821.362
	322	72.929	5.2786	28.208	17.1216	15.1810	6.9351	39.2377	0.0	39.238	773.51	840.957
	323	29.854	6.3281	36.182	18,3233	12.2231	7.9525	38.4988	0.0	38.499	773.51	R48.192
	411	21.198	3.3338	24.522	6.4343	5.7062	4.7606	16.9010	0.0	16.901	773.51	A14.934
	412	20.607	3.2412	23.849	16.2718	14.3253	6.6118	37.1389	0.0	37.139	771.51	R34.409
	413	27.532	4.2908	31.023	17.4034	11.3673	7.6292	36.3999	0.0	36.400	773.51	841.734
	421	23.468	5.3403	28.809	7.3978	6.5907	5.0991	19.0876	0.0	19.088	773.51	821.408
	422	22.888	5,2786	20.166	17,1653	15.2098	6.9504	39,3255	0.0	19.125	773.51	841.003
	423	29.812	6.3281	36.140	18,3669	12.2519	7.9677	38.5865	0.0	38.587	773.51	848.239
	511	22.722	4.0747	26.797	7.6253	6.5053	5.4846	19.6152	0.0	19.615	773.51	A19.924
	512	22.142	4.0129	26.154	17.3928	15.1244	7.3358	39.8531	0.0	39.853	773.51	A10.510
	513	29.066	5.0316	34.098	18,5945	12.1665	8.3532	39.1142	0.0	39.114	773.51	846.723
	521	25.003	6.1120	31.115	8.5889	7.3899	5.8231	21.8018	0.0	21.802	773.51	A76 479
	522	74.422	6.0194	30+441	18.3563	16.0090	7.6744	42.0397	0.0	42.040	773.61	845 003
	523	31,346	7.0690	38.415	19.5580	13.0510	8.6917	41.3008	0.0	41.301	773-51	851.374
D8ST,	/G (\$/100SM)											3734440

(TABLE 8.5CB CONTIN	NUED)					MC 11 7			CONTONENT		
STAGE/TECH4ICAL					<u>EQUIP</u>	MENI			EQUIPMENT		
PACKAGE NUMBER	SKILLED	UNSKILLEÖ	TOTAL	INT/DEP	<u>MAINT/MISC</u>	FUEL	TOTAL	<u>MORSE</u>	AND HORSE	MATERIALS	TUTAL
	0.452	0.1471	0.601	0.2643	0.1943	0.1682	0.6265	0.0	0.627	19.65	20.906
1112	0.400	0.1491	0.549	0.2705	0.1962	0.1637	0.6304	0.0	0.630	19.68	20.858
1121	0.498	0.2757	0.773	0.2168	0.1843	0.1241	0.5252	0.0	0.525	19.68	20.977
1122	0.444	0.2757	0.719	0.2730	0.1865	0.1196	0.5290	0.0	0.529	19.68	20.927
1211	0.452	0.1485	0.600	0.2657	0.1953	0.1741	0.6351	0.0	0,635	19.68	20.914
1212	0.399	0.1485	0.547	0.2719	0.1974	0.1695	0.6384	0.0	0.639	19.68	20,865
1221	0.498	0.2750	0.773	0.2192	0.1855	0.1300	0.5337	0.0	0.534	19.68	20.985
1222	0.444	0.2750	0.719	0.2244	0.1877	0.1254	0.5375	0.0	0.538	19.68	20,935
DBST/W (\$/100SM)											
1111	0.444	0.1438	0.588	0.2614	0.1914	0.1626	0.6154	0.0	0.615	17.17	18.370
1112	0.391	0.1438	0.535	0.2677	0.1936	0.1581	0.6194	0.0	0.619	17.17	18.322
1121	0.489	0.2695	0.759	0.2139	0.1817	0,1185	0.5140	0.0	0.514	17.17	18.440
1122	0.435	0.2695	0.705	0.2201	0.1839	0.1139	0.5179	0.0	0.518	17.17	18.390
1211	0.444	0.1426	0.586	0.2625	0.1924	0.1672	0.6221	0.0	0.622	17.17	18.376
1212	0.391	0.1426	0.533	0.2687	0.1946	0.1626	0.6260	0.0	0.626	17.17	18.327
1221	0.489	0.2689	0.759	0.2150	0.1827	0.1231	0.5207	0.0	0.521	17.17	18.446
1222	0.435	0.2689	0.704	0.2212	0.1849	0.1185	0.5246	0.0	0.525	17.17	18.396

,

.

.

448

STAGE/TE	CHNICK1		LABOA		-	EQU.	1066597			2001PHEST		
PACRAGE	NUMLER	SKILLEL	UNSKILLER	D ICTAL	INT/DEF	A-INT/CIS	C FUIL	TOPAL	HCASE	AND HORSE	MATERIALS	TOTAL
SITE PhE	P (\$2HA)											
	11	596.148	2773.3210	3369.510	117.3270	72.7731	66.7784	276.0787	ė.0	276.879	19.09	3665.474
	21	101.354	459.1375	560.492	31.1703	17.4746	15.5014	64.2563	6.0	04.206	19.09	643.783
	Ĩ	66.027	204.4505	270.477	26.1063	17.4015	9.9475	53.4553	J.0	53.455	19.09	343.017
EXC/HADI	(5/10CBCB)											
28	1.7											
	14-0	1.876	0.0	1.070	0.7461	0.4222	0.1909	1.3592	ú.C	1,159	0.0	1. 229
68	• • •								•••	11337	•••	,
•	1-1	17.042	6.0	17.692	13.4307	в. 9707	3.60.05	26.0018	0.0	26.002	0.0	43.683
	1-2	17.101	0.0	17.101	15.1107	9.5019	4.5230	29.1490	0.0	29.149	0.0	40.250
	2-3	13.013	C. C	13.813	16.1150	11.7987	6.3567	34.2704	0.0	34.270	0.0	48.063
	2-5	12.794	C.U	12.794	14.2475	11.4065	4.2569	29.9106	0.0	29.911	0.0	42.704
	3-4	9.606	Û. u	9.686	14.4729	11.5616	5.4242	11.4587	ù. 6	33.459	0.0	41.144
	1-6	8.665	0.0	8-665	11.8049	10.7045	4.7631	26.77/4	3.0	26.772	0.0	36 // 36
	4-1	17. 372	0.0	17. 172	7, 285 1	5.2547	3.5165	16.0803	0.0	1. 080	0.0	33 455
•	4-2	16.792	u_0	16.792	8.9416	5 7745	<u>6 667</u>)	19 1667	0 0	10 167	0.0	35 050
	4-7	11.246	0.0	11 244	5 2104	6 8663	2 4 2 2 2	11 4200	010	11 020	0.0	27.177
~	5 - 3	10 765	()	11 755	10 5904	6 4 307	1 0108)1 77	0.V	11.740	0.0	20,100
<u>-</u>	0-6	11 736	6 C	14 . 7 . 7	U JAUG	6 6366	9.0140	41.7720	0.0	21.773	0.0	34.528
6)-) 5#8	5 070	0.0	5 076	0.1172	0.0307	2.0333	7 4226	0.0	17.588	0.0	29.324
	6-0	9 979	0.0	3 900	3.7070	7 5007	1.3797	7.0220	0.0	1.02J	0.0	13.092
	0-4 6-6	0.007 7 100	0.0	0.007 7 703	0 1536	1+3731	3.9030	23.3019	0.0	23.302	0.0	32.110
	n-o	7+700	0.0	1.150	4.1032	0./302	2.0030	14.10.3	0.0	18.705	0.0	26.574
		2.909	0.0	1,909	4.4331	2.0403	1.444(9.4977	0.0	9.490	0.0	13.457
	7-12	0.141	0.0	6.141	1.1342	2.9147	1 14 . 3 . 1	9.0202	0.0	8.097	0.0	14.238
	9-11	3.1/7	0.6	3.177	3.4508	2.6203	1.2043	7.2754	0.0	7.275	C . O	10,452
	9-12	4+313	0.0	4.133	4.4828	2.9942	1.7833	9.2003	6.0	9.260	C.C	13.594
	10-13	3.107	0.0	3.167	4.5285	3.2922	1.7703	9.9419	0.0	9.942	0.0	13.159
	11-14	3.650	u.U	3.650	1.3811	0,8026	0.5500	2.7337	0.0	2.734	C.O	6.384
	12-15	1.407	0.0	1.407	1.0943	0.7309	0.4103	2.2355	J.C	2,235	0.0	3.643
	13-16	6.726	0.0	C.726	1.1717	4.7826	0.4553	2.4096	0.0	2.41ù	0.0	3.13 6
9ñ												
	i- 1	17.733	C . U	17,733	13.4504	8.9839	3.6098	26.0441	J.C	26.044	0.C	43.777
	1-2	17.127	0.Ú	17,127	15.1335	9.5104	4.5159	29.1902	0.0	29.180	0.0	46.307
	2-3	13.030	0.0	13.030	16,1399	11.81.0	6.3690	34.3215	ů,C	34.122	0.0	48.160
	2-5	12.845	ن ا	12.845	14.2905	11.4352	4.26.97	29.9957	0.0	29.995	0.0	42.841
	3-4	9.698	Ú.C	9.698	14.4920	11.5722	5.4308	31.4949	0.0	31.495	0.0	41.193
	3-6	8.691	0.0	8.691	11.8365	10.7257	4.2727	26.8349	0.0	26.835	0.0	15.526
	4-1	17.424	0.0	17.424	7.3048	5.2718	3.5458	16.1225	0.0	14.122	0.ŭ	31.546
	4-2	76.016	0.0	16.018	8.9563	5.7070	4.4547	19, 1979	0.0	19,198	ŭ. C	36.015
	4-7	13.013	0.0	13.013	6.0521	4.7051	1.0160	13.79.12	0.0	11.793	0.0	26 906
	5-3	12.701	C.O	12.781	10.5455	6.4536	4.8249	21.82.19	0.0	21,424	0.0	202040 204 HL
	5-5	11.768	0.0	11.788	8.7625	6.0645	2.8462	17.6713	0.0	17 673	A L	34.003 30 444
	5-8	6. 370	0.0	(3,9500	2.8978	1.4461	9676.6	0.0	יינו א הומייו	0.0	47.401
	6-4	8.821	0.0	6.821	11.7622	7.4044	3, 97 1	1 1 1 1 1 1	3 0	רנו נו אנויט	0.0	14.764
	6-6	7.614	0.0	2.814	9.2152	6.7594	2 87 10	14 0.074	6 0	0 LL.L. 0 LL.L.	0.0	32.100
	6-9	4,170	0.0	4.174	4.6785	3.8421	1 50 30	10.0470	0.0	10 - 04 0	0.0	20-662
							142030	10+0430	V + V	10+044	v.0	34.202

TABLE B.SCC: UNIT COSIS OF THE 1970'S TECHNICAL PACKAGES FOR ALL STAGES AT THE PRICES OF 1974.

.

(TABLE	B.SCC CONTI	(NUBD)										
STAGE/T.	ECHN IC KL	·	11108	<u> </u>	·	<u></u>	<u>988887</u>			EQUIPAENT	_	
PACKAGE	<u>NUMBER</u>	<u>SKILLEI</u>	UNSKILLED	<u>lcryr</u>	INT/Prf_	BAIRTZMISC	<u> </u>	TOTAL	HOLSE	YND HOPZE	<u>BATRE LELS</u>	<u> 767AI </u>
	7-1ů	6.407	0.0	6.407	4.0046	3.04Ca	1.4014	8.4448	N.U	8.447	0.0	14.854
	8 -1 1	3.263	0.0	3.263	3.5447	2.0916	1.2370	7.4733	0.0	7.473	ű.C	10.736
	9-12	4.443	6.6	4.443	4.5962	3.0699	1.8285	9.4947	0.0	9.495	6.6	13.538
	10-13	3.223	0.0	3.223	5.0146	3. 5494	1. 8C 16	10,1655	0,0	10,166	0.0	13.388
	11-14	4.785	0.0	4.785	1.81Cé	1.0522	0.7209	3.5837	G.G	3+584	0.0	A.368
	12-15	1.840	0.0	1.840	1.4313	û.4560	0.5367	2.9239	6.0	2,924	C. C	4.764
	13-16	1.005	0.0	1.009	1.6275	1.0871	0.6324	3.3469	0.0	3.347	(.(4.355
60B												
	1-1	18.597	0.0	16.597	13.7014	9.2049	3.7652	26.7512	0.0	26.751	C.O	45.349
	1-2	17.733	0.0	17.733	15.4913	5.7100	4.7127	29.9140	0.0	29.914	0.0	47.647
	2-3	14.354	¢.0	14.354	16.6381	12.0968	6.6147	35.3435	6.0	35.344	0.0	49.690
	2-5	13.619	0.0	13.619	14.9415	11.8697	4.4015	1.2724	6.0	31.272	0.0	44.892
	3-4	10.085	0.0	10.085	15.0628	11.8910	5.6282	32.5819	Ú.O	J2.582	0.0	42.667
	3-6	9,121	6.0	9.121	12.3640	11.0760	4.4335	27.8755	ů.O	27.175	0.0	36.996
	4-1	18.266	0.0	18.286	7.6356	5.4928	3.7012	16.8297	0.0	16.830	U.C	35.117
	4-2	17.424	0.0	17.424	9.3137	5.9866	4.6315	19.9317	0.0	19.932	c.0	37.355
	4-7	43.050	0.0	43.050	20.0217	15,5654	16.0438	45.6369	6.0	45.631	0.r	88.691
	5-3	13:297	ů.O	13.297	11.0436	6.7318	5.0705	22.6459	0.0	22.640	0.0	36.143
I.	5-5	12.562	0.0	12.562	9.4130	6.4989	3.0301	10.9500	0.0	18,950	0.0	31.512
	5-8	13.013	0.0	13.013	8.0695	5.9200	3.9360	17.0254	0.0	17.025	0.0	30.038
	6-4	9.208	6.0	9.20 e	12.3330	7.9231	4.1690	24.4252	6.0	24.425	0.0	33.634
	6-6	8.244	0.0	8.244	9.7426	7.1117	3.0340	19.6683	0.0	19.888	e.c	28.132
	6-9	7, 906	0.0	7.906	8.8517	7.2692	2.8436	18.9044	0.0	16.964	0.0	26.870
	7-10	b.241	0.0	8.241	5.1508	3.9112	1.8025	10.6645	0.0	10.805	0.0	19.106
	8-11	4.308	0.0	4.308	4.6795	3.5534	1.6331	9.8660	C.0	9.366	c.c	14.174
	9-12	6.165	0.0	6.165	6.3773	4.2596	2.5367	13.1736	0.0	13.174	0.0	19.338
	10-13	4.166	0.0	4.166	6.4894	4.3345	2.3316	13, 1555	0.0	13.156	0.0	17.321
	11-14	21.641	0.0	21.641	A. 1691	4.7589	3.2608	16.2088	0.0	16.209	0.0	37.850
	12-15	H. 102	0-0	8.302	6.4562	4.3123	2.4211	13, 1895	0.0	13, 190	C.C	21.491
	13-16	5.264	0.6	5.204	н.3977	5.6091	3.2629	17.2697	0.0	17.270	0.0	22.474
1008	13 10	20204	••••	20201	••••							
10011	1-1	14.268	0_0	14.268	14.0380	5.3764	3.8858	27, 3001	0.0	27.300) G.C	46.568
	1-2	18 147	0.0	16.197	15,7651	9.2629	4.8481	30.4762	0.0	30.476	. 0.0	48.674
	2-1	14 741	0.0	16 701	17.0117	12.2994	6.7990	36,1101	0.0	36 - 110	0.0	50.851
	2-1	14 215	0.6	14 212	15_4400	12,2025	4.60.85	32, 25 12	U. 0	32.251	0.0	46.464
	3-4	10. 382	0.0	17.392	15.5004	12,1353	5.7796	13.4153	0.0	33.415	0.0	43.797
	3-4	9 151	0.0	0 163	12 7777	11, 1509	4.55.00	20.6816	0.0	28.682	0.0	38.135
	<u> </u>	18 959	0.0	14 459	7 8924	5.6643	3.8218	17.3785	u.0	17.379	G.C	36.337
	4-1	17 444	0.0	17 489	0 5975	6.1145	4.7669	20.4938	0.0	20.494	0.0	38.382
	4-2	44 000	0.0	56 006	10 6984	23.8657	15.3947	64.9637	0.0	69.964	G.C	135.970
	- 5-3	17 696	0.0	13 684	11 4172	6.94.04	5.2548	23.6125	0.0	23.61	0.0	37.296
	5-5	11 166	0.0	13.004	6 9117	6.8326	3, 1851	19,9285	ů.0	19.429	0.0	33.084
	5-9	10 000	0.0	14 004	11 0006	8 2314	4. 2215	23 6726	0.0	23.67	0.0	41.768
	3-0 4-4	10.UV4 4 EAL	0.0	10.074	1144403	8.1675	4.1700	2010130	Δ.Ο Λ.Λ	25.250	6.0	34.764
	0-4	7.303	0.V	2.303	10 1613	7 3467	1.1586	20.200	0.0	20.69	0_0	29.271
	0-0	0+270 44 445	N+V 6 6	0,7/0	10 6104	10.2912	1 10 1 A		0.0 A A	26,07	2 0.0	38.004
	0-y 7-40	11.102		114104	6	コンスクリム	1 0/07	40+0224	0.0 A A	11 51	0.0	20.242
	7-10	11,10	U.U	6"17]	3,43/1	41 1470	747977	11.2140	v.v	11+11		

(TABLE B. SC	C CONTI	NUED)										
STAGE/TECHN	ICAL	•	LABOR			<u> </u>	PAFNT			EQUIPHINT		
PACKAGE NUM	BER	SKILLEE	DNSKILLED	TCTAL	INT/DEE	MAINT/MISC	FUEL	TOTAL	HORSE	AND HORSE	MATERIALS	TOTAL
	3-11	4.501	û.0	4.501	4.8857	3.7129	1.7064	10.3051	0.0	10.309	2.0	14.810
9)-12	6 461	0.0	£.461	ú.6842	4.4646	2.6590	13.8078	0.0	13.308	0.0	20.269
10)-13	4.643	û.U	4.643	7.2136	4.0163	2.5918	14.6238	0. 0	14.624	J.j	19.267
11	1-14	31.056	0.0	J1.05 6	11.7517	6.8222	4.0794	23.2603	0.0	23.200	ů.ů	54.310
12	2-15	11.952	6.0	11.952	9.2946	6.2081	3.4855	18.9995	0.0	10.900	0.0	30.940
13	3-16	7.577	0.0	7.577	12.227.	8.1609	4.7500	25.1448	0.0	25.145	ປູ ປ	32.722
1658												
	1-1	19.951	6.0	15.951	14.2997	9.5512	4.0007	27.6595	v.C	27.459	0.0	47.811
	1-2	18.686	0.0	18.686	16.0541	10.0243	4.9910	31.0695	0.0	31.069	C.C	49.757
	2-3	15.141	C.C	15.141	17.3977	12.5150	б.9895	36.9021	0.0	36.902	0.0	52.043
	2-5	14.793	0.0	14.793	15.9278	12.5286	4.7524	33,2087	0.0	33.209	0.0	48.001
	3-4	10.675	0.0	10.679	15.9360	12.3797	5.4310	34.2467	6.0	34-249	0.0	44.927
•	3-6	9.776	0.C	9.776	13.1687	11.6154	4.6787	29.4628	0.0	29.463	0.0	39.239
1	4-1	15.642	0.0	15.642	8.1541	5.0391	3.9448	17,9379	0.0	17 . 93a	6.1	37.580
l	4-2	16.376	0.C	16.328	9.8765	6.3069	4.9098	21.0871	0.0	21.087	0.0	39.465
1	4-7	90.123	0.0	96.123	41.9149	32.5056	21.0263	95.5269	0.0	95.527	0.0	185.650
9	5-3	14.005	0.0	14.083	11.0033	7.1560	5,4453	24,4645	0.0	24.465	C.C	39.488
l ,	5-5	13.735	0.0	13.735	10.3995	7.1579	3.3290	20,8863	C.O	20.885	Ü.C	34.621
	5-8	23.640	0.0	23.640	14.6594	10.7545	5,5153	30.9293	C.O	30.929	0.0	54.569
+	6-4	9.801	0.0	5.802	13.2083	8.4119	4.4718	26.0919	0.0	26.092	0.0	35.894
i	ó-6	8.895	0.0	6.899	10.5473	7.6492	3.2792	21.4756	ί.Ο	21.476	0.0	32.374
•	6-9	14.109	6.0	14.109	15.7973	12.9731	5.0743	33.8451	0.0	33.845	0.0	47.954
	7-10	9.516	0.C	5.518	5.948E	4.5172	2.0818	12.5470	6.0	12.546	0.3	22.066
ł	8-11	4.811	0.0	4.817	5.2259	3,9683	, 1. 823н	11.0180	0.0	11.018	C.C	15.829
	9-12	6.990	6.0	6.990	7.2312	4,8299	2.8755	14.9366	C. 0	14.937	0.0	21.927
1	0-13	4.952	0.0	4.952	7.7111	5.1505	2.7702	15.6318	0.0	15.632	Ú.u	20.584
1	1-14	46.915	0.ů	46.919	17.7545	10.3175	7.0696	35.1416	0.0	35.142	0.0	d2.000
1	2-15	18.076	0.0	18.078	14.0586	9.3903	5.2720	28.7210	6.0	28.721	0.0	46.799
1	3-16	11.510	0.0	11.510	18.5749	12.4067	7.2172	38.1987	0.0	38.199	0.0	49.709
50CM												
	1-1	23.253	C.O	23.253	15.5637	10.3954	4.6025	30,5615	0.0	30,562	G.C	53.815
	1-2	20.996	0.0	20.996	17.4155	10.7845	5.6641	33,8643	0.0	33.864	0.0	54.860
	2-3	17.050	0.0	17.050	19.2408	11.5442	7.8987	40.6817	Ú.u	40.684	C.C	57.733
	2-5	17.551	0.0	17.591	18.2802	14.0998	5.4461	37.8261	0.0	37.426	6.0	55.417
	3-4	12.110	C.C	12.110	18.0500	1.1.5591	ú.661b	38.2707	0.0	31.271	0.0	50.381
	3~6	11.323	0.0	11.323	15.0695	12.6850	5,2579	33.2124	0.0	33.212	0.0	44.536
	4-1	22.944	0.0	22.944	9.4181	0.6823	4.5365	20.6399	0.0	20.040	0.0	43.583
	4-2	20.667	Ú.Ú	20.687	11.2379	7.0011	5.5031	23.0820	0.0	23.882	0.0	44.569
	4-7	221.801	0.0	221.801	103.1557	80.1958	51.7474	235.0990	Ú. 0	235.099	0.Ú	456.899
•	5-3	15.992	0.0	15.992	13.6464	8.1852	6.3545	28.1861	0.0	28.166	0.0	44.17
	5-5	16.534	0.0	16.534	12.7519	8.7291	4.0227	25.5037	0.0	25.504	6 C	42.014
	5-8	48.273	6.0	48.273	29.9346	21.9608	11+2624	03.1570	0.0	64.158	0.0	111.431
	6-4	11.233	0.0	11.235	15.3203	9.5913	5.2024	30.1140	0.0	30.114	0.2	41.347
	h-6	10.446	0	16.446	12.4401	8.9187	3.8584	25.2252	0.0	25.225	6.0	35.672
	6-9	28.253	0.0	28,203	31.6667	26.0054	10,1720	67.8450	0.0	67.845	0 0	96.12
	7-10	11.245	0.0	13.245	8.2783	6.2001	2.070	17.4615	0.0	17,461	0.0	10.707
	8-11	6.436	0.0	6.436	6.9913	5.3088	2.4399	14.7399	0.0	14.740	3.0	21, 179

۰.,

451

.

÷

STAGE/TECHNICAL LABOR			LOUIPMENT				TARNELUGZ				
PACKAGE NUMBER	SKILLFE	UNSKILLED) 765 <u>61</u>	INT/DUF_	HAIRT/MISC	7091	TOTAL	<u>1101 SP</u>	<u>AND HCASE</u>	CATERIALS	TOTAL
9-12	9.324	0.0	9.324	9.6401	6.4429	3.8373	19.9262	0.0	19.926	0.0	29.251
10-13	a.577	0.0	6.577	10,2335	u, 8352	3.0705	20.7452	J .0	20.745	0.0	27.323
11-14	131.651	0.0	131.651	49.8179	∡a.95C3	19.8368	99.6051	0.6	98.605	0.3	210.256
12-15	50.449	0.0	50.449	19.2336	26.2052	14.7125	80,1513	0.0	60.151	0.0	130.600
13-16	32, 532	0.0	32.532	52.4986	35.0054	26.3931	107.9623	0.0	107,962	0.0	149.495
n008											
1-1	25.059	0.0	25.059	16.2549	10.8571	4.9272	32,0392	0.0	32.039	0.0	57.098
1-2	22.273	0.0	22.273	18.1634	11.2050	6.0160	35.4100	0.0	35,410	0.0	57.69
2-3	18.0H1	0.u	16.081	20.2371	14.1006	8.3961	42.7277	0.0	42.728	0.0	60.409
2-5	19.152	0.0	19.152	19.5919	14,9760	5.4337	40.4).18	6.0	40.401	0.0	59.553
3-4	12.871	0.0	12.871	19.1720	14.1866	7.0503	4).4086	0.0	40.407	0.0	53.280
3-6	12,136	0.0	12.136	16.0674	13.5516	5.5620	35.1.109	0.0	35.181	0.0	47.317
4-1	24.749	0.0	24.749	10.1093	7.1451	4.8032	22.1176	0.0	22.118	0.1	46.86/
4 - 2	21.963	0.0	21.963	11.9908	7.4815	5.9554	25.4277	J.J	25.424	0.0	47.391
4-7	290.154	0.0	290.154	134.9457	104.9102	67.6947	307.5503	0,0	307.550	0.0	597.704
5-3	17.024	0.ů	17.024	14.6426	8.7415	6.9459	30.2301	ý.)	30.230	0.0	47.254
5-5	18,094	0.0	16.094	14.0636	9.6052	4.4096	28.0784	0.0	28.078	9.0	40.1/3
5-1	62.073	0. 0	62.073	38.4919	28.2387	14, 49 19	61.2126	0.0	91.213	0.0	143.285
6-4	11.994	ů.Ü	11.294	16.4429	10.2152	5.5900	32.2518	0.0	32.252	0.0	44.246
6-6	11.259	0.0	11.259	13.4460	9.5853	4.1625	27.1937	0.0	27.194	0.0	38.433
6-9	36.021	6.0	36.021	40.3307	31.1205	12,9560	86.4072	0.0	84.407	0.0	122.420
7-10	16,211	0.0	16.211	10.1323	7.6939	3.5458	21.3720	C.O	21.372	0.0	3/.203
8-11	7.648	0.0	7.648	8.3083	6.1688	2.8975	17.5165	0.0	17.517	0.0	25.164
9-12	9.995	0.0	9.995	10.3395	ú. 3 061	4.0689	21.3145	0.0	21.314	0.1	31.310
10-13	6.951	0.0	0.951	10.7653	7.1905	3.8266	21.7826	0.0	21./83	0.0	25.734
11-14	206.453	0.0	260.453	78.1236	45.3994	31.1377	154.0305	0.0	154.030	0.0	301.003
12-15	79.467	0.0	79.467	61,8007	41.2784	23.1/51	126.2542	0.0	120 . 204	0.0	203.721
13-16	51.620	0.0	51.620	93.3008	55.6389	32.3061	171.3057	0.0	1/1.300	0.0	222.923
SPR/CONP (\$/100BCN)											
985				_							10 601
11	4.333	0.0	4.333	3.0335	1.9758	1.2582	6.2678	0.0	0.209	0.0	10.001
12	5.597	ù.9	5.597	5.0993	3.4371	1.9954	10.5318	0.0	10.532	0.0	10.147
13	5.335	Ú.O	5.339	3.6210	2.570ú	1.3149	7.5145	0.0	7.514	0.0	14 440
14	7.841	0.0	7.841	4.4520	2.7784	1.5969	8.8274	0.0	8.827	0.0	10.007
21	2.799	0.0	2.799	3.2851	2.1430	1.3902	6.8190	0.0	D.UIY		7.010
22	4.063	0.0	4.963	5,3500	3+6049	2.1274	11.0829	0.0	11.00.7		11 070
23	3.005	0.0	3.005	3,8723	2.7464	1,4469	8.0650	0.0	0.000		16 235
24	6.107	0.0	6.307	4.7033	2.9403	1.7289	9.3785	0.0	9.J/9	0.0	12,003
31	2-347	0.0	2.347	1.0816	0.6122	0.5300	2.2230	0.0	2 • 224 2 • 6 0		10 000
32	3.611	0.0	3.611	3.1471	2.0734	1.26/3	5.40//	0.0	0.408 2.190		10.077 6.93u
33	3.353	0.0	3.353	1.6699	1.2150	9.5867	3.4705	0.0	3.4/0		10.479
34	5.855	0.0	5.855	2.4998	1.4148	0.0048	4./034	0.0	4./01 1.00		4.263
41	2.038	0.0	2+038	1.0827	0.6128	0.5285	2.2237 7 1075	0.0	20224 1 100		9.78G
42	3.302	U.C	3.302	3.1481	2.0740	1.200/	0+40/0	0.0	2 490		6.514
45	3.044	V.O	3.044	1.0098	1.2150	U. 3832	3.4700	v. v	3.4/1	, ,,,,	01314

,

(TABLE 8. SCC CONTINUED)

452

.

ı.

STAG./	TECHNICAL		LABUR			L_U11	1.1.41			GATASEVI .		
PACKAL	SE NUXLER	SKILLE	UNSKILLED	TCIAL	<u>Ihi/DEI</u>	MAINT/MISC	<u> </u>	TOTAL	HORSZ A	ND HONSE	MATERIALS	TOTAL
	41	0+C+C	0.0	3.340	2.0009	1.4134	J. CD #2	4./010	U.U	4.783	ິບູເ	10.325
SUHPAC	CING											
GRAVEI	L (3/100CCH)	7 . 0 /	• •	1 040	2 -715	1 964.5	1 15 14	6 7 100	0.0	5 711	1022 64	1036 40
	11	7.042	0.0	1.042	2+0/10	1.0900	1 1 2 3 4	3.7209	0.0	2.141	1023.04	1030-40
	12	0.203	0.0	0	J∎9341 5.1600	2.0004	1.000	10.0073	0.0	10.007	1023.04	1037.73
	13	10.200	0.0	10.200	5.1599	3. 1 1 1 2	1.0104		0.0	10.002	1023.04	1943.30
	21	6.358	U. V	0.101	3.7548	2.5000	1.2721	7.0240	0.0	7.024	1023.04	1037.02
	22	5.520	0.0	5.529	4.7073	3.4/04	1 1 1 1 1	9.9908	0.0	7.771	1023.04	1012 10
	23	9+502	0.0	9.002	0.0732	3.7215	2.1307	11.9074	0.0	11.900	1023.04	1043.20
	31	5.855	0.0	2.023	1.3004	0.9020	0.0004	2.90/8	0.0	2.900	1023.64	1034.40
	32	5-017	0.0	5-01/	2.5425	1.9329	0.8/89	0,3042	0.0	2.324	1023.04	1034-01
	33	9.079	6.0	9.079	3.84 44	2.1/80	1 - 32 24	7.3488	0.0	7+349	1623-64	1646.66
	41	5.739	0.0	5.739	1.4541	1.0214	0.1.21	1,1884	0.0	3.180	1023.64	1932-56
	42	4.901	0.6	4.901	2.0400	1.9918	0.9163	5.5547	0.0	5.555	1623.64	1634.09
	43	8,963	0.0	6.963	3,9525	2.2369	1 1 1 1 1	7.5493	0.0	7.549	1023.64	1040.15
	51	10,408	∠.4943	12.102	4.1910	2.5452	2,189	8.9250	0.0	8.925	1023.64	1045.40
	52	9.569	2.4943	12,064	5.3735	3.5156	2.4023	11.2914	0.0	11.291	1023.64	1046.5
	53	13.671	2.4943	16.165	6.0794	3.7607	2.0459	13.2866	G.O	13.286	1023.64	1053.04
WDN	(\$/100CCH)											
	111	67.451	11.1316	76.582	17.0408	12.1890	10.5622	39.7919	0.0	39.792	1110.92	1229.2
	112	65,510	10.8224	76.339	37.6821	29.1294	14,9762	81.7577	0.0	91.789	1110,92	1265.0
	113	87.183	14.3208	161.510	41.3052	23.1157	16.9373	81.0883	0.0	ខ1.68អ	1110.92	1294.1
	121	74.544	17.0312	92.375	19.3408	13.9292	11.4531	44.7231	ú.0	44.723	1110.92	1248.0
	122	72.738	17.6250	96.363	39.9821	30.3695	15. 9672	96.7189	0.0	86.719	1110.92	1288.0
	123	94.276	21₊1∠94	115.406	43.6852	25.0559	17.8783	86.6194	0.0	86.619	1116.92	1312.9
	211	66.677	11.1316	77.878	18.0109	12.8370	1),9663	41.8145	0.0	41.814	1110.92	1230.5
	212	64.871	10.6224	75.694	38.6523	29.7774	15.3394	83.3100	0.0	83.810	1110-92	1270.4
	213	86.409	14.326d	100.736	42.3554	23.9637	17.3914	83.7106	0.0	83.711	1110.92	1295.3
	22 (73.776	17.h312	91.601	20.3110	14.5772	11.8573	46.7454	0.0	46.745	1110.92	1249.2
	222	71.905	17.6250	69.590	40.9523	31.5175	16.2713	80.7412	0.0	88.741	1116.92	1299.2
	223	93.502	21.1294	114.632	44.6554	25.7039	18.2824	88.6417	6.0	64.642	1110.92	1314.1
	311	46.032	11.1316	77.164	15.5817	11.1587	10.0187	36.7591	0.0	36.759	1110.92	1224.8
	312	64.355	10,8224	75.170	36.2230	28.0991	14.4328	78.7548	0.0	78,755	1110.92	1264.8
	313	85.093	14.3268	106.220	39.9261	22.2854	16.44 Ja	78.6554	0.0	78.655	1110.92	1289.7
	321	73.125	17.8312	90.956	17.8817	12,8960	10.9097	41.6902	0.0	41.690	1110.92	1243.5
	322	71.326	17.0∠50	88.945	38.5230	29.8392	15.3237	83.6866	0.0	83.680	1110.92	1285.5
	323	92.85a	21.1294	113.987	42.2262	24.0256	17.3348	83.5865	0.0	83.587	1110.92	1308.4
	473	u5.90J	11.1316	77.035	15.6019	11.2154	10.0548	36.9521	0.0	36.952	1110.92	1224.9
	412	64.097	10.8224	74.92C	30.3232	28.1558	14.4688	78.9479	0.0	78.948	1110.92	1264.7
	413	85.635	14.3268	99.962	40,0263	22.3421	16.4799	78.8484	0.0	78.048	1110.92	1289.7
	421	72.996	17.6312	90.828	17,9819	12.9556	10.9457	41.8033	C.C	41.881	1110_92	1243.6
	422	71.191	17.6250	86.816	38,6233	29.8959	15.3598	83.8790	0.0	83.879	1110.92	1281.6
	423	92.729	21.1294	113.858	42.3264	24.0823	17.3709	83.7796	0.0	83,780	1110.92	1306.5
	511	70.475	13.6653	64,280	18.4934	12.7867	11,5011	42.8612	J.C	42.861	1110.92	1238.0
	512	68.864	13. 1992	82.268	39.1347	29.7270	15.9952	84.0509	0.0	84.057	1110.92	1276.0
	513	90.407	16.0005	167.200	42.8378	23.9134	18.0063	84.7575	0.0	84 751	1110.52	1302.8
	521	77.768	20.4079	98.176	20.7914	14.5268	12.4721	47.7923	0.0	47.74:	1110.92	1256.8
	617	76 06 1	20.0987	46.061	41.4747	31.4672	16.8462	89.7881	0.0	19.70	1110.42	120. 7

ī

(TABLE B. SCC CONTIN	(UZD)										
STAGE/TECHNICAL	•	LABOR			<u>EyUI</u>	PALNT			ZQUIPARX7		
PACKAGE NUMBER	SKILLED	UNSKILLED	10% ML	INT/DIF	MAINT/AISC	21176	TOTAL	HOLSE	AND HOASE	MATERILLS	TOTAL
523	97.500	23.6031	121.104	45.1372	25.6535	18.8973	89.6800	0.Ú	89.689	1110.92	1321.716
DBST/G (\$/1005#)											
1111	1.406	0.4978	1.904	υ. ύ26υ	0.3814	0.3530	1.3009	0.0	1.361	45.05	48.910
1112	1.243	0.4978	1.741	0.6310	0.3857	0.3422	1.3589	0.0	1.359	45.65	46.746
1121	1.548	6.3264	2.468	0.5181	0.3624	0.2714	1.1522	0.0	1 15 2	45.65	49.266
1122	1.380	Ů.9204	2.300	0.5225	0.3666	0.2610	1,1502	6.0	1.150	45.65	49.096
1211	1.496	0.4950	1.902	2.6299	0.3839	0.1630	1.1767	0.0	1.377	45.h5	48.924
1212	1 24 1	0.4958	1.736	0.6344	0.3881	0,3522	1.3747	0.0	1.375	45.65	48.757
1221	1.548	0.9104	2.460	0.5214	0.3648	0.2813	1.1680	0.0	1.160	45.05	49.280
1222	1.380	0.9184	2.298	0,5259	0.3691	0.2710	1.1660	0.0	1.166	45.05	49.110
DBST/W (\$/10058)											
1111	1.360	6.4803	1.860	0.6198	0.3763	0.0433	1.3394	0.0	1.339	.18.11	41.312
1112	1.217	0.4503	1.698	0.6243	6.3867	0.3326	1.3376	0.0	1.338	38.11	41-147
1121	1.522	0.8998	2.422	0.5113	د 357 0	0.2622	1.1307	0.0	1.131	38.11	41.664
1122	1.354	0.8998	2.254	0.5157	9.3616	0.2514	1.1287	0.0	1.129	38.11	41.494
1211	1.390	0.4762	1.856	0.6223	0.3782	0.3512	1.3518	0.0	1,352	58.11	41.320
1212	1.215	0.4762	1.691	0.6268	0.3825	0.3404	1.3497	0.0	1.350	38.11	41.153
1221	1.522	6.8977	2.420	0.5138	0.3592	J.2700	1.1431	0.0	1.143	38.11	41.674
1222	1.354	0.8977	2.252	0.5183	0.3635	0.2592	1.1410	0.0	1.141	38.11	41.505

.

,

.

454

,

•

.

,

STAGE/TE	CHNICAL	_	LABOR			ଟେପ	IPMENT			EQUIPHINT		
PACKAGE	NUMBER	SKILLTD	UNSKILLED	TOTAL	JAT/DEP	MAINT/MIS	C FUEL	TCIAL	HCR S 5	AND HORSE M	ATERIALS	<u>T</u> CTAL
SITE PRE	P (\$/HA)		1					·				
	11	12.093	17,5972	29.690	334.6667	144.0271	294.9722	773.6653	C.O	773,665	57.60	95).954
	21	2.356	2.9133	4.969	72.4035	34.5526	69.1464	175.6024	C.O	175,602	57.60	239.171
	31	1.339	1.2973	2.637	52.9347	34.4411	42.0316	139.4074	5.0	139.407	57.60	199.643
EXC/HAUL 2M	(\$/100BCM)											
	14-0	0.038	0.0	0.038	1.7563	0.4181	0.8065	3.4011	C.O	3.401	č.C	3 432
6M												
	1-1	0.359	0.0	0.359	32.5410	17.8091	15.2133	65.5615	6.0	65.564	0.O	65.922
	1-2	0.347	0.0	0.347	36,6309	16.8637	19.1342	74.6293	C.O	74.629	C+C	14 975
	2-3	0.290	0.0	0.280	41.6060	23.4233	26.8574	91.88899	0.0	91.099	3.3	92.159
	2-5	0.260	0.0	0.260	17.0812	22.6443	17.5968	77.7121	0.0	77.712	3.3	77.972
	3-4	0.196	0.0	0.196	36.2277	22.9526	22.9192	82.0996	0.0	P2.100	6.3	12.296
	3-6	0.176	0.0	0.176	29.7633	21.2517	10.0131	69.0275	c.o	69.028	0.0	69.203
	4-1	0.352	0.0	0.352	17.6509	10.4399	14.9432	43.0339	C.0	43.034	u.0	43.196
	4-7	0.341	0.0	0.341	21.6632	11.4717	14.7309	51.9259	0.0	51.526	c.c	52.256
	4-7	0.228	0.0	0.229	12.6726	8.0725	11.0864	31.4314	0.0	31.031	C.C	12.06)
	5-3	0.259	0.0	0.259	25.4903	12.7944	21. 1145	58.6091	0.0	58.609	3.5	50.P63
•	5-5	0.218	0.0	0.238	21.1256	11, 9823	11.9724	45.0200	0.0	45.080	0.0	45.319
	5-9	0.121	0.0	0.121	8.0432	5.3999	5,8941	20.2772	0.0	20.277	C . C	27, 198
	A-4	0 179	0.0	0 170	29.4525	15.0754	16.7535	60.2815	0.0	60.291	0.0	41.461
	6-4	0 159	0.0	0 159	22 7506	13 1771	12.0596	47.7273	0.0	47.727		47.905
	6-0	0 100	0.0	0.080	10 7408	7 7 7 7 7 4	6 0173	23 0855	0.0	23.035	5 6	26.066
	7-10	0.126	0.0	0.125	0 5513	1+6617	5 6750	21 0106	0.0	21 019	3 0	71 141
	7-10	0 044	0.0	0.044	9 6010	5 2220	5 0005	19 0014	0.0	10 600		10.047
	9-11	0.004	0.0	0.004	0.0410	9.2020	3,000	10*0010		10×034	0.0	14 4 94 9
	9-12	0.000	U •J	0.000	10.4014	2.7442	7,000	24+3490	0.0	24.141	0.0	24.427
	10-13	0.064	0.0	0.064	11.9523	6.1375	7.5521	27+9014	0.0	22,900	0.0	20.075
	11-14	0.074	0.0	0.074	3,2655	1.27.24	2,3657	7.1024	0.0	1.104	0.0	7.256
	12-15	0.029	0.0	0.029	2.6513	1.4510	1 + 7 3 3 5	2.4301	0.0	5.430	6.0	2.862
	13-16	0.015	0.0	0.015	2.4390	1.5537	1.9237	6.1164	6.0	6,110	0.Q	6.331
9M												
	1-1	0.360	0.0	0.350	32.5889	17.8353	19-2925	65.6768	Ú•0	62.617	U.C	56.036
	1-2	0.347	0.0	0.347	36.6677	18.9806	19,1660	14.1143	C.0	74.714	C.G	75.4762
	2-3	0.251	0.0	0.281	41.6664	23.4509	26.9113	92.0287	0.0	92.029	0.C	32.1 09
	2-5	0.261	0.0	0.261	37,1962	22.7018	18.0408	77.5289	0.0	77.929	C.C	78.189
	3-4	0+197	0.0	0.197	36.2738	22.9737	22.9470	82.1946	C.0	82.195	C.C	22+301
	3-6	0.176	0.0	0.176	25.8401	21,2932	18.0538	69.1871	0.0	69.197	0 • C	F9.363
	<u>4-1</u>	0.353	0.0	0.353	17.6988	10.4659	14.5024	43.1471	C.O	43,147	0.3	43.500
	4-2	0.341	0.0	0.341	21.7000	11.4886	18.8227	52.0113	C.O	62.011	C.C	52.352
	4-7	0.264	0.0	0.264	14.6536	9.3407	12.8282	36.8325	J.U	36,932	¢.0	37+096
	5-3	0.259	0 .0	0.259	25.0506	12.0120	20.3365	58.7491	0.0	58,749	0.0	57.003
	5-5	0.239	0.0	0.239	21.2307	12.0395	12.0264	45.2986	Ç ₊ Q	45.277	C.C	45.536
	5-8	0.129	0.0	0.129	9.5703	5.7529	6.2793	21.6025	0.0	21.602	ა.ე	21.732
	6-4	0.179	0.0	0.179	28.4926	15.0965	16.7813	60.1765	C.O	50.376	0.0	60.555
	6-6	0+159	0.0	0.159	22.3274	13.4191	12.1434	47.9869	C.O	47.887	0.0	48.345
	6-9	0.085	0.0	0.085	11.3356	7.6276	6.3505	25.3137	0.0	25.314	0.0	25.398

TABLE 8.5CD: UNIT COSTS OF THE 1970'S TECHNICAL PACKAGES FOR ALL STAGES AT THE PRICES OF A TYPICAL DEVELOPING COUNTRY.

(TABLE	8.5CD	CONTINUED1
	CONTRACTOR	

STADE FLOMICAL DAULA DAULAGE DAULAGE <thdaulage< th=""></thdaulage<>		05(7)				6.001	ONCHT			CONTRACT		
PACKAGE NUMBER SK11(10) ONSK (127) O104 ONSK (127) O104 ONSK (127) O104 O104 <tho104< th=""> O104 O104</tho104<>	STAGE/TECHNICAL		LADUK	7074	11.7 6380		<u>PE: 11</u>			ENDIPACNI		• • • • •
P-10 0.190 0.190 0.190 0.0180 0.0210 0.1021 0.1021 0.1021 0.1021 0.1021 0.1021 0.1021 0.1021 0.1031 0.1021 0.10311 0.10311 <th0.1031< th=""></th0.1031<>	PACKAGE NUMBER	SKILLIU	UNSKILLED	TUTAL	INTOL	MAINITELSU	- FUEL		HCRAF	AND HETSE	MULTIN	11:20
8-11 0.060 0.0266 r+0.27 5.7.83 5.2.269 19.255 0.0 19.755 0.25 19.755 0.25 19.755 0.25 0.1 13.161 0.0046 7.7.871 24.9486 0.0 24.911 0.0 25.9477 11-14 0.007 0.0 0.017 1.4767 1.4797 2.2014 7.4334 0.0 2.4.111 0.0 2.4.111 0.0 2.4.111 0.0 2.4.111 0.0 2.4.111 0.0 2.4.111 0.0 2.4.111 0.0 2.4.111 0.0 2.4.111 0.0 2.4.111 0.0 2.4.111 0.0 2.4.111 0.0 7.4.11 1.1.1121 2.4.111 0.0 7.4.11 0.0 7.4.11 1.1.1121 2.4.111 0.0 7.4.11 0.0 7.4.11 1.4.111 1.4.11 1.4.111 1.4.111 1.4.111 1.4.111 1.4.111 1.4.111 1.4.111 1.4.111 1.4.111 1.4.111 1.4.111 1.4.111 1.4.111 1.4.111 1.4.1	7-10	0.139	0.0	0.139	9.1596	0.0108	5,9214	21.5279	0.0	21.526	0.0	22.153
9-12 0.080 0 0.075 0 0.075 12.149 0.0945 7.7221 24.9569 0 0. 24.977 3 25.477 11-14 0.007 0 0.097 4.7007 2.0883 3.0445 9.4158 0 0. 0.7613 1 25.477 12-15 0.017 0 0.071 1 0.071 1 0.771 1 0.7873 0 0. 0.773 3 27.711 13-16 0.022 0 0.022 0 0.0.220 3.9433 2.15.1 2.2672 8.7733 0 0. 0.7574 0 0.7514 1-1 0.377 0 0.377 13.3904 18.2740 15.9091 67.9736 0 0.7574 0 0.77633 2-1 0.291 0 0.700 1 0.710 19.2129 75.7236 0 0.7574 0 0.77633 2-1 0.291 0 0.201 0 0.101 19.2169 15.9129 75.7236 0 0.7574 0 0.77633 2-5 0.275 0 0.0 0.025 31.4569 21.6005 21.7613 8.0417 0 0.1.178 0 0.157 0.0.0 0.	8-11	6.066	0.0	0.000	H 1247	5 3435	5.2269	19.3952	6.0	19.375	c.ç	19.461
10-13 0.005 0.14 0.065 12.14*36 0.0494 7.6122 26.414 0.0 26.411 3.2 26.411	9-12	0.090	0.0	0.070	11.1.161	6.0945	7.7261	24,9569	6.0	24.057	3.0	25.047
11-14 0.037 0.0 0.047 4.7201 2.0489 3.0443 9.4188 C.0 9.416 C.7 9.416 13-16 0.027 0.3 0.1220 3.0433 2.1674 7.6334 C.0 8.773 3.3 2.7671 407 1-1 0.377 0.7 0.377 0.3 0.137 0.131 0.1471 0.4270 0.4770 0.7726 0.0 7.6714 0.0 7.7633 2-1 0.340 0.0 0.370 33.3904 18.2740 15.9991 67.7256 0.0 7.6774 0.0 7.7633 2-5 0.2750 0.0 0.2761 3.4569 23.6013 81.4131 81.1171 C.0 61.1174 C.0 71.4447 3-4 0.205 0.0 0.371 18.703 10.9046 53.4206 0.0 63.4477 0.0 63.4477 0.0 63.4477 0.0 63.4378 4-1 0.311 0.7 23.522.561 1.1.1846	10-13	0.065	0.0	0.055	12.1498	6.6494	7,6122	26,4114	0.0	26.411	0.2	20.477
12-15 0.037 0.0 0.0417 3.4678 1.4979 7.2670 7.4334 0.0 7.613 13 7.671 607 1-1 0.0377 0.0 0.377 3.3 0.0 0.1773 0.0 0.1773 0.0 0.1774 0.0 0.1774 0.0 0.1774 0.0 0.1774 0.0 0.1774 0.0 0.1774 0.0 0.1774 0.0 0.1774 0.0 0.1774 0.0 0.1774 0.0 0.1774 0.0 0.1774 0.0 0.1774 0.0 0.1774 0.0 0.1774 0.0 0.1774 0.0 0.1714 0.0 0.1714 0.0 0.1714 0.0 0.171 0.0 0.171 0.0 0.171 0.0 0.171 0.0 0.171 0.0 0.171 0.0 0.171 0.1 0.1 0.1 0.1 0.1 1.112 1.0926 1.0114 1.010 0.1 1.012 1.012 1.012 1.012 1.012 1.010 </td <td>11-14</td> <td>0.077</td> <td>0.0</td> <td>0.097</td> <td>4.2907</td> <td>2.0889</td> <td>3.0463</td> <td>9.4158</td> <td>C•0</td> <td>9.416</td> <td>· C.C</td> <td>9.511</td>	11-14	0.077	0.0	0.097	4.2907	2.0889	3.0463	9.4158	C•0	9.416	· C.C	9.511
13-16 0,027 0,0 0,020 3,0433 2,15.1 2,4720 6,1731 C,0 8,773 J,3 C,0 607 1-2 0,160 0,0 0,377 13,1904 18,2740 15,901 67,4735 0,0 67,574 J,C C,C C,751 2-3 0,201 0,1 0,211 2,2733 24,032 27,656 54,6261 C,O 94,726 J,C C,C C,753 2-4 0,275 0,0 0,276 37,7592 24,032 24,731 85,0447 0,0 75,174 C,C 77,633 3-4 0,255 0,0 0,1571 11,1504 11,1173 C,O 94,735 J,C 45,734 3-6 0,1185 0,0 0,1751 13,1504 11,118,1047 0,0 31,1173 11,724 11,1174 11,1174 11,1174 11,1174 11,1154 3-6 0,1187 0,0 0,173 46,1105 10,11752 11,11754 11,1174	12-15	0.037	0.0	0.017	3.4678	1.4979	2.2679	7.6334	C.0	7.633	i.3	7.671
460* 1-1 0.377 0.0 0.377 13.3904 18.2740 15.9091 67.6735 0.0 ñ7.574 C.C 67.751 2-3 0.291 0.0 0.3201 19.2768 19.2768 19.2129 76.7236 0.0 76.724 3.0 77.7633 2-5 0.275 0.0 0.2201 42.27373 24.0022 27.5496 56.4720 0.0 91.173 C.C 91.4743 2-5 0.275 0.0 0.2205 37.6509 25.6471 18.8713 81.1773 C.O 91.444 3-6 0.185 0.0 0.185 11.1181 21.9264 15.5490 54.0497 C.O 54.44 C.C 72.924 4-7 0.833 0.0 0.353 22.5661 11.8049 19.5696 54.0210 0.0 121.553 11.272.024 4-7 0.813 00 0.2264 15.5515 11.7526 12.8610 10.0 121.8210 10.2206 12.8506	13-16	0.020	0.0	0.020	3.9433	2.15.1	2.6720	8,7733	C.O	8,773	0.0	£.794
1-1 0.377 0.377 33.3904 18.2749 15.991 67.6735 0.0 67.5714 C.C 67.5751 2-3 0.201 0.0 0.291 42.9733 24.0032 27.5846 54.9261 C.O 94.926 3.2 3.5.117 2-5 0.225 0.726 0.7262 23.5645 18.4513 81.1773 C.O 94.926 3.2 3.5.645 3-4 0.2255 0.0 0.2205 37.6569 23.6055 23.7113 85.0447 O.O 74.744 C.C 75.6471 4-1 0.371 0.6 9.371 18.5703 10.9046 15.8499 45.94719 C.O 71.444 C.C 45.441 4-7 0.873 00 9.371 18.5105 10.7526 13.7449 10.5595 5.9266 0.0 55.926 0.255 22.4265 12.9202 17.8410 48.5456 1.0.212.53 1.1255 1.1255 1.11556 1.2726 12.42478 1.12450 0.2.445132	60M											
1-2 0,360 0,0 0,360 37,538 19,2769 15,129 76,733 0,0 76,724 1,0 77,03 2-5 0,275 0,0 0,276 38,722 23,5645 18,613 81,1773 0,0 81,173 0,0 81,173 0,0 81,173 0,0 14,454 3-6 0,185 0,0 0,276 31,759 54,613 81,1773 0,0 85,0457 0,0 85,0457 0,0 85,0457 0,0 85,0457 0,0 85,0457 0,0 54,047 0,0 54,047 0,0 54,047 0,0 54,047 0,0 54,047 0,0 54,047 0,0 54,047 0,0 54,047 0,0 54,047 0,0 54,047 0,0 54,047 0,0 54,047 0,0 54,047 12,0125 12,0125 12,0125 12,0125 12,0125 12,0125 12,0125 12,0125 12,0125 12,0125 12,0125 12,0125 12,0125 14,012 12,0161	1-1	0.377	0.0	0.377	33.3904	18.2740	15.9091	67.5736	0.0	67.574	C.C	67.951
2-3 0.291 0.7 0.291 42.9733 24.032 27.5966 54.9261 C.0 94.026 50 75.11 2-5 0.76 0.7 0.276 38.722 23.5643 18.81177 1.0 0.0 75.145 5.0 0.45.24 3-4 0.205 0.0 0.205 37.4569 23.6055 27.7113 85.0447 0.0 75.145 5.0 0.45.24 4-1 0.371 0.7 0.371 18.503 10.9046 15.8190 45.0437 0.0 75.145 5.0 0.45.24 C.C 72.022 4-1 0.371 0.7 0.351 22.5661 11.809 10.5649 05.020 0.0 55.021 5.0 122.723 5-3 0.270 0.9 0.270 26.7575 13.3643 71.4248 61.3466 0.0 55.221 5.0 122.723 5-3 0.270 0.9 0.270 26.7575 13.3643 71.4248 61.3466 0.0 121.255 3.3 122.723 5-3 0.2250 0.0 0.255 22.7661 21.2020 11.8169 49.94545 1.0 0.0 121.255 3.3 122.723 5-3 0.2264 0.9 0.2270 26.7575 13.3643 71.4248 61.5466 0.0 55.421 5.0 0.44132 0.0 44.132 6-4 0.187 0.0 0.187 29.4716 15.7274 17.6157 53.2267 0.0 64.122 0.0 44.131 0.0 449 0.0 0.167 12.0233 7.647 7.643 12.2014 7.643 28.0743 0.0 28.224 0.0 5.46 25.467 0.0 34.425 0.0 34.433 0.0 0 74.425 0.0 0.166 20.447 0.0 0	1-2	0.360	0.O	0.360	37.5338	19.2769	19.9129	76,7236	0.0	76.724	3.0	77.093
2-5 0.775 0.0 0.2263 38,7622 23,6643 18,4513 11,177 C.0 91,178 C.C 91,645 3-6 0.185 0.0 0.185 11,1181 21,6723 85,0447 0.0 71,144 C.C 72,022 4-1 0.311 18,7503 10,9764 15,6490 65,0430 C.O 45,044 C.C 45,0451 4-2 0.353 0.0 0.4573 22,5661 11.8049 19,5696 54,0206 0.0 12,1253 J.J J.Z 73,745 5-3 0.2275 0.0 0.4273 48,5105 30,043 21,4248 61,5466 C.C 61,547 C.C 12,175 5-3 0.2255 0.0 0.2264 15,7515 11,726 12,2810 0.0 63,227 C.C 44,132 5-6 0.255 0.0 0.264 15,7515 11,726 12,28247 0.0 63,227 C.C 44,436 6-6 0.167 0.0 0.167 23,655 14,1155 12,4165 50,451 1.0 <td< td=""><td>2-3</td><td>0.291</td><td>0.0</td><td>0.291</td><td>42.0733</td><td>24.0032</td><td>27.5496</td><td>54.0261</td><td>C.O</td><td>94.926</td><td>3.0</td><td>95.117</td></td<>	2-3	0.291	0.0	0.291	42.0733	24.0032	27.5496	54.0261	C.O	94.926	3.0	95.117
3-4 0.205 0.0 0.205 37.4569 23.6065 23.7113 85.0447 0.0 A5.045 C.C 44.224 4-0 0.85 0.0 0.85 31.1812 21.9226 18.713 70 71.6447 0.0 A5.045 C.C 44.22 4-1 0.371 0.0 0.371 18.503 10.9046 15.6330 45.047 0.0 A5.047 C.C 45.644 C.C 45.415 4-2 0.853 0.0 0.255 22.566 11.8849 19.5666 54.206 0.0 54.021 C.C 45.437 4-7 0.873 0.0 0.270 26.7575 13.3663 71.4248 61.5466 0.C 61.547 C.C 31.816 5-5 0.255 0.0 0.255 22.406 12.0920 17.8169 44.5565 0.0 44.556 0.2 44.754 5-6 0.264 0.3 0.264 14.5515 11.7526 17.2042 17.6157 43.2267 0.0 63.227 C.C 44.419 5-8 0.264 0.3 0.264 14.5515 11.7526 17.2042 17.6157 43.2267 0.0 63.227 C.C 44.419 6-4 0.187 0.0 0.187 29.4916 12.2832 44.1122 0.9 44.1122 0.9 44.112 6-5 0.167 0.0 0.167 23.6554 14.1185 12.4195 50.5434 C.O 59.543 1 7.711 8-11 0.0167 0.0 0.167 12.8233 7.7647 7.6153 28.2043 0.0 28.224 C.C 28.371 8-11 0.0167 0.0 0.167 12.8233 7.7647 7.6153 28.2043 0.0 28.224 C.C 28.371 10-13 0.004 0.0 0.0451 15.7224 84.5650 9.4519 34.1601 0.0 34.182 0.3 34.626 11-14 0.439 0.0 0.459 19.3643 9.4476 13.7704 42.5584 0.0 34.626 0.3 34.626 0.3 34.626 0.3 34.626 0.4 34.556 11-14 0.439 0.0 0.459 19.3613 9.4476 13.7704 42.5584 0.0 42.5587 0.4 44.831 0.C 34.451 10-13 0.004 0.0 0.459 19.3613 9.4476 13.7704 42.5584 0.0 34.4626 0.3 34.626 0.3 34.626 0.3 34.626 0.4 34.556 11-14 0.439 0.0 0.459 19.3613 9.4476 13.7704 42.5584 0.0 42.5587 0.2 C 35.470 0.0 64.5587 0.0 64.5587 0.0 64.5587 0.0 64.5587 0.0 64.5587 0.0 64.5587 0.0 64.5587 0.0 64.5587 0.0 64.5587 0.0 64.5587 0.0 64.5587 0.0 64.5587 0.0 64.5587 0.0 78.528 0.0 78.5	2-5	0.275	0.0	0.276	38.7622	23.5643	18.8513	81.1773	C.O	01.178	C.C	°1.454
3-6 0,185 0,0 0,185 31,1181 21,926 18,713 71,2437 0,0 71,944 C.C. 72,024 4-1 0,371 0,0 0,371 18,7303 10,0946 15,639 45,049 C.0 45,C44 C.C 45,415 4-7 0,873 0,0 0,273 22,566 11,804 15,639 0,0 0,54,021 C.C 54,374 4-7 0,873 0,0 0,270 24,775 13,3643 21,4248 61,5466 0,0 54,021 C.C 54,374 5-5 0,255 0,0 0,255 22,266 12,9020 12,8169 46,555 10,0 42,556 3,2 2,723 5-8 0,225 0,0 0,255 22,266 12,9020 12,8169 46,555 10,0 44,556 3,2 2,73,184 6-4 0,187 0,0 0,187 29,9916 15,7294 17,6157 63,2267 0,0 63,227 0,0 44,132 0,0 44,135 6-6 0,167 0,0 0,167 29,4916 15,7294 17,6157 63,2267 0,0 63,227 0,0 44,132 0,0 44,135 6-6 0,167 0,0 0,167 21,466 14,4312 12,0150 47,8298 0,0 47,833 0,0 28,226, C.C 23,371 6-9 0,160 0,0 0,160 12,4466 14,4312 12,0150 47,8298 0,0 28,226, C.C 23,371 8-11 0,0167 0,0 0,167 11,6500 7,6554 6,9004 25,6047 0,0 28,226 0,0 47,833 0,0 48,256 9-12 0,125 0,7 0,125 15,4516 8,4564 10,7185 33,6264 0,0 34,626 0,0 34,626 10-13 0,046 0,0 0,0419 19,3613 9,4476 13,7780 42,5864 0,0 34,626 0,0 34,626 11-14 0,439 0,0 0,419 19,3613 9,4476 13,7780 42,5864 0,0 42,587 0,0 42,587 0,0 44,626 0,0 34,625 11-14 0,439 0,0 0,419 19,3613 9,4476 13,7780 42,5864 0,0 42,587 0,0 64,2587 0,0 78,626 0,0 78,726 74,7626 13-16 0,166 0,0 0,0 0,169 11,2722 18,6409 10,729 34,4134 0,0 34,413 0,0 74,626 0,0 78,726 0,0 77,720 22,109 24,417 29,789 96,724 0,0 94,526 0,0 78,726 0,0 78,726 0,0 74,692 27,148 13,7785 24,4174 29,789 96,724 0,0 94,526 0,0 78,726 0,0 74,692 27,647 11,1354 13,7786 94,728 0,0 78,726 0,0 74,692 27,647,692 17,469 1-2 0,369 0,0 0,399 8,1972 19,5804 20,490 78,626 0,0 73,649 0,0 74,620 0,0 74,630 2,0 74,630 2,0 74,630 2,0 74,630 2,0 74,630 2,0 74,630 2,0 74,630 78,649 0,0 74,720 0,0 74,640 2,0 74,640 2,0 74,640 2,0 74,640 2,0 74,640 2,0 74,640 2,0 74,640 2,0 74,640 2,0 74,640 2,0 74,640	3-4	0.205	0.0	0.205	37.6569	23.6065	23.7813	85.0447	0.0	15.045	0.C	45.244
4-1 0.371 0.0 0.371 14,5703 10.9046 15,6390 45,0419 C.0 45,044 C.C 45,445 4-7 0.873 0.0 0.473 48,5105 30.9012 42,4185 121,8501 0.0 121,850 3.3 122,723 5-3 0.270 0.0 0.2270 24,7575 13,3643 21,4248 61,5466 0.0 121,850 3.3 142,723 5-5 0.2265 0.0 0.2264 15,7294 17,6157 63,2267 0.0 44,132 0.0 44,132 0.3 44,132 6-6 0.167 0.0 0.167 23,6054 14,1181 12,4195 50,5414 0.0 50,543 1 17,711 6-6 0.167 0.0 0.167 23,6054 14,1181 12,4195 50,5414 0.0 76,543 1 17,711 6-7 0.167 0.0 0.167 13,6264 10,7185 34,624 0.0 23,555 C.2 25,642 7-10 0.167 0.0 0.167 13,71704	3-6	0.185	0.0	0.185	31.1101	21.9926	18.7130	71.0437	0.0	71.944	C.C	72.024
4-2 0.353 0.0 0.353 22.6661 11.8049 19.5696 54.7206 0.0 54.721 C.0 54.721 5-3 0.270 0.0 0.270 26.7575 13.3643 21.4248 61.5466 0.0 12.1653 3.3 122.723 5-5 0.2255 0.0 0.2255 22.4766 12.9020 12.8160 48.5555 1.0 48.546 3.2 47.754 5-8 0.2264 0.3 0.264 15.7520 17.752 12.222 44.1722 0.0 44.125 3.3 44.396 6-4 0.167 0.0 0.167 23.6354 14.186 12.4172 0.0 63.227 C.0 44.413 6-6 0.167 0.0 0.167 12.4666 14.4118 12.0150 47.852 C.0 47.893 0.0 28.264 C.2 28.371 8-11 0.0167 0.0 0.677 11.6500 7.6543 6.07185 34.6264 0.3 34.626 0.3 34.626 0.3 34.626 0.3 34.626 0.3 3	4-1	0.371	0.0	9.371	18.5003	10.9046	15.6390	45.0439	0.0	45.044	C.C	45.415
4-7 0.873 0.0 0.673 48,5105 30.0012 42,4485 121,850 0.0 121,253 3.3 122,723 5-3 0.255 0.0 0.255 22,006 12.9020 12,8109 48,5451 1.0 42,546 0.2 44,132 0.1 44,132 0.0 44,132 0.0 44,132 0.0 44,132 0.0 44,132 0.0 44,132 0.0 44,132 0.0 44,132 0.0 44,132 0.0 44,132 0.0 44,134 0.0 0.167 0.0 0.167 23,054 14,1165 12,4195 50,6414 0.0 50,543 0.0 7.44,613 6-6 0.167 0.0 0.167 12,4233 7.7647 7.6157 32,2043 0.0 78,2264 C.0 23,371 8-11 0.017 0.0 0.687 11,6500 7.6547 6.6104 25,2647 C.0 25,455 C.0 25,455 C.0 25,457 C.0 25,457 C.0 25,457 C.0 25,457 C.0 25,457 C.0 C.2,57,471 </td <td>4-2</td> <td>0.353</td> <td>0.0</td> <td>0.353</td> <td>22.5661</td> <td>11.8849</td> <td>19.5696</td> <td>54.0206</td> <td>0.0</td> <td>54.021</td> <td>5.0</td> <td>54.374</td>	4-2	0.353	0.0	0.353	22.5661	11.8849	19.5696	54.0206	0.0	54.021	5.0	54.374
	4-7	0.873	0.0	0.873	48.5105	30,9012	42.4185	121.8501	0.0	121 853	3.3	122.723
5-5 0.255 0.0 0.255 22.3066 12.8169 48.5645 1.0 48.566 2.2 45.70 5-8 0.264 0.7 0.264 15.515 11.7526 12.8282 44.1322 0.0 44.132 0.0 44.132 0.0 44.132 0.0 44.132 0.0 44.132 0.0 44.132 0.0 44.132 0.0 44.132 0.0 44.132 0.0 44.132 0.0 44.132 0.0 44.132 0.0 44.132 0.0 44.132 0.0 44.132 0.0 44.132 0.0 44.132 0.0 44.132 0.0 44.133 0.0 44.133 0.0 24.24 0.2 0.2 25.55 0.2 25.46 0.0 44.55 15.65 11.6 0.0 25.55 0.2 25.65 12.2 25.65 12.2 25.65 12.2 25.65 12.2 25.65 12.2 25.65 12.2 25.65 12.2 25.65 12.2 <t< td=""><td>5-3</td><td>0.270</td><td>0.0</td><td>0.270</td><td>26.7575</td><td>13.3643</td><td>21.4248</td><td>61.5466</td><td>c.c</td><td>61.547</td><td>C.C</td><td>51,016</td></t<>	5-3	0.270	0.0	0.270	26.7575	13.3643	21.4248	61.5466	c.c	61.547	C.C	51,016
5-8 0.264 0.7 0.264 19.515 11.7526 12.2212 44.132 0.0 44.132 0.0 44.132 0.0 44.132 0.0 44.132 0.0 44.132 0.0 44.132 0.0 44.132 0.0 0.167 0.0 0.167 0.0 0.167 0.23654 14.1185 12.4195 50.6414 0.0 6.9 44.431 0.0 6.9 0.160 0.167 12.9233 7.7647 7.613 0.0 7.8.224 C.0 7.8.234 C.0 7.8.234 C.0 7.8.234 C.0 7.8.234 C.0 7.8.234 C.0 7.8.255 C.1 2.8.255 C.2 2.8.257 2.8.25	5-5	0.255	0.0	0.255	22. 2006	12.9020	12.8369	48.545	0.0	49.546	2.0	45.000
b-4 0.187 0.0 0.187 29.4916 15.7294 17.6157 63.2267 0.0 63.227 0.0 63.227 0.0 63.227 0.0 63.227 0.0 63.227 0.0 63.227 0.0 63.227 0.0 63.227 0.0 63.227 0.0 63.227 0.0 63.227 0.0 63.227 0.0 63.227 0.0 63.227 0.0 64.413 6-6 0.167 0.0 0.167 12.9233 7.7647 7.6163 28.2043 0.0 7.8.204 C.0 22.5371 9-12 0.125 0.7 0.125 15.4516 8.4564 10.7185 34.6264 0.0 34.626 0.3 44.626 14.7125 10-13 0.004 0.0 0.439 10.9 0.4313 1.7764 42.5864 0.0 34.433 0.0 14.602 12-15 0.168 0.0 0.168 15.6426 8.6609 10.2294 34.4334 0.0 34.433	5-8	0.264	0.7	0.264	19.5515	11,7526	12.8232	44.1322	0.0	44 . 132	5.)	44.396
6-6 0.107 0.0 0.167 23.6054 14.1185 12.4195 50.6414 C.0 50.543 C.1 13.711 6-9 0.160 0.0 0.160 21.4466 14.4312 12.0150 47.8529 C.0 47.893 0.3 48.531 7-10 0.167 0.0 0.667 11.6500 7.6543 6.9004 25.6047 0.0 28.555 C.C 28.511 9-12 0.125 15.4516 R.4554 10.7185 34.6264 0.3 34.626 0.3 34.623 34.626 34.7 <t< td=""><td>6-4</td><td>0.187</td><td>0.0</td><td>0.197</td><td>29.9916</td><td>15.7294</td><td>17.6157</td><td>63.2267</td><td>0.0</td><td>63.227</td><td>2.0</td><td>64.413</td></t<>	6-4	0.187	0.0	0.197	29.9916	15.7294	17.6157	63.2267	0.0	63.227	2.0	64.413
6-9 0.160 0.3 0.160 21.4466 14.4312 12.0150 47.8528 0.0 47.893 0.0 28.254 0.2 28.254 0.2 28.254 0.0 28.254 0.0 28.254 0.0 28.254 0.0 28.254 0.0 28.254 0.2 28.254 0.0 28.254 0.0 28.254 0.0 28.254 0.0 28.254 0.0 28.254 0.0 28.255 0.2 28.373 9-12 0.125 0.125 0.125 15.4516 8.4554 10.7185 34.6224 0.0 34.4751 10-13 0.004 0.0 0.0294 15.7232 8.6509 9.8519 34.1401 0.0 34.182 0.7 44.654 12-15 0.166 0.0 0.469 19.4613 9.4476 13.7780 42.5864 0.0 34.433 0.0 14.652 12-15 0.166 0.0 0.166 14.6125 18.6144 16.4187 69.9457 0.0	6-6	0.167	0.0	0.167	23.6054	14,1185	12,9195	50.5414	0.0	50.543		51.711
$\begin{array}{c} \textbf{100} \\ \textbf{1000} \\ \textbf{1000} \\ \textbf{1000} \\ \textbf{1000} \\ \textbf{1000} \\ \textbf{1000} \\$	9-4	0.160	0.0	0.160	21.4466	14.4312	12.0150	47.8529	0.0	47.893	0.0	48-051
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7-10	0.167	0.0	0.167	12.0233	7.7647	7.6163	29.2043	0.0	11111	č 1	22 271
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	r-10 8-11	0.107	0.0	0.047	11.6500	7.0543	40110 A	25 4047	0.0	2012UN 95 125		35 403
$\begin{array}{c} \mathbf{v}_{12} & 0, 12 & 0, 12 & 12, 12$	0-12	0 1 25	0.0	0.125	15.4514	8.4544	10.7195	20.0071	0.0	23.303	0.3	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7-12	0.044	0.0	0.084	15 7232	8 6050	0 9510	36 1901	0.0	34.020	3.0	74.725
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10-13	0.004	0.0	0.639	10 3413	0.4476	12 7700	73 20101	0.0	241165	1.45	17.207
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11-14	0.439	0.0	0 140	1943013	7	10 3340	42.000 37.7377	0.0	92.307		11.620
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12-15	U+105	0.0	0.103	10+3420	7.1007	11.42270	34.4114	0.0	39.931		J4+C/JZ
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	13-10	0.100	0.5	0+100	20+1407	11+1324	13+1504	42.7591	0.0	45.204	u - C	42.212
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	TUOM	A 101	~ ~	o 201	34 0136	10 /16/	14 4107	(0.0157				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1-1	0.391	0.0	0.191	39+0122	10+0144	10.410/	69.3421	0.0	69-146	0.9	67.41/
2-3 0.299 0.0 0.299 43.7785 24.4174 28.7283 96.9242 0.0 96.9242 0.0 96.9242 0.0 96.9242 0.0 96.9242 0.0 96.9242 0.0 96.9242 0.0 96.9242 0.0 96.9242 0.0 96.9242 0.0 96.9242 0.0 96.9242 0.0 96.9242 0.0 93.669 0.0 93.669 0.0 93.669 0.0 93.669 0.0 93.669 0.0 93.669 0.0 93.669 0.0 93.669 0.0 93.669 0.0 93.669 0.0 93.669 0.0 93.669 0.0 93.669 0.0 93.669 0.0 93.669 0.0 93.669 0.0 0.0 93.669 0.0 0.0 93.669 0.0 0.0 93.669 0.0 0.0 93.669 0.0 0.0 93.669 0.0 <td>1-2</td> <td>0.363</td> <td>0.0</td> <td>0.369</td> <td>38-1972</td> <td>19,5804</td> <td>20.4850</td> <td>78.2626</td> <td>6.0</td> <td>78.263</td> <td>-) • C</td> <td>78.632</td>	1-2	0.363	0.0	0.369	38-1972	19,5804	20.4850	78.2626	6.0	78.263	-) • C	78.632
2-5 0.288 0.0 0.288 35.9704 24.2255 19.4727 83.6686 0.0 93.669 $C.0$ 83.657 $3-4$ 0.211 0.0 0.211 38.7172 24.0917 24.4210 87.2299 0.0 87.230 0.0 57.230 0.0 57.440 $3-6$ 0.192 0.0 0.192 32.1082 22.5345 19.2592 73.9019 0.0 73.502 $C.C$ 74.094 $4-1$ 0.385 0.0 0.395 19.1224 11.2451 16.1486 46.5160 0.0 46.516 $J.C$ 44.0911 $4-2$ 0.363 0.0 0.363 23.2295 12.1884 20.1417 55.5596 0.0 55.564 0.0 15.922 $4-7$ 1.339 0.0 1.339 74.3788 47.3794 65.0690 186.9271 0.0 186.927 $C.C$ 13.6457 $C.C$ 13.7922 $4-7$ 1.339 0.0 0.278 27.6627 13.7784 22.2035 63.6447 0.0 186.9271 0.0 186.9271 0.0 186.9271 0.0 196.927 $C.C$ 13.7922 $5-5$ 0.267 0.0 0.267 24.0148 13.5633 13.4593 51.0364 0.0 51.036 $J.9$ 51.335 $5-6$ 0.267 0.0 0.267 27.1860 16.3419 17.8374 61.3657 $C.0$ 61.3455 $C.C$ 45.603 $5-6$ 0.367 $0.$	2-3	0.297	0.0	0.299	43.1785	24.4174	25.7283	96 9242	0.0	56.524	C.C	57.223
3-4 0.211 0.0 0.211 38.7172 24.0917 24.4210 87.2299 0.0 67.230 0.0 57.230 0.0 57.440 $3-6$ 0.192 0.0 0.192 32.1082 22.5345 19.2592 73.9919 0.0 73.9622 $C.C$ 74.094 $4-1$ 0.385 0.0 0.385 19.1224 11.2451 16.1486 46.5160 0.0 46.516 $J.C$ 46.9911 $4-2$ 0.363 0.0 0.363 23.2295 12.1884 20.1417 55.5596 0.0 55.564 9.0 35.922 $4-7$ 1.339 0.0 0.363 23.2295 12.1884 20.1417 55.5596 0.0 186.927 $C.C$ 117.166 $5-3$ 0.278 0.0 0.274 27.6627 13.7784 22.2035 63.6447 0.0 63.645 $0.C$ 63.922 $5-5$ 0.267 0.0 0.2274 27.6627 13.7784 22.2035 63.6447 0.0 63.645 $0.C$ 63.922 $5-5$ 0.267 0.0 0.267 24.0148 13.5633 13.4593 51.0364 0.0 51.036 $J.9$ 51.334 $5-6$ 0.367 0.0 0.193 30.9419 16.7145 18.2593 65.4118 0.0 61.3452 $C.C$ 41.732 $6-6$ 0.174 0.0 0.227 10.332 20.4109 16.9935 67.7375 $C.0$ 67.738 $C.$	2-5	0.244	0.0	0.248	39.9704	24 . 2255	19,4727	83.6686	0.0	93.669	S.0	83.957
3-6 0.192 0.0 0.192 32.1082 22.5345 19.2592 73.9019 0.0 73.902 $c.c$ 74.094 $4-1$ 0.385 0.0 0.395 19.1224 11.2451 16.1646 46.516 0.0 46.516 $J.0$ 46.901 $4-2$ 0.363 0.0 0.363 23.2295 12.1884 20.1417 55.5596 0.0 55.563 0.0 55.922 $4-7$ 1.339 0.0 1.339 74.3788 47.3794 65.0690 186.9271 0.0 186.927 $c.c$ 137.166 $5-3$ 0.276 0.0 0.2274 27.6627 13.7784 22.2035 63.64477 0.0 63.645 $0.c$ 63.922 $5-5$ 0.2677 0.0 0.2677 24.0148 13.5633 13.4593 51.0364 0.0 51.036 $J.0$ 51.334 $5-6$ 0.367 0.0 0.367 27.1860 16.3419 17.8374 61.3657 $c.o$ 61.365 $c.c$ 41.732 $6-4$ 0.193 0.0 0.193 30.9419 16.7145 18.2593 65.4118 0.0 65.412 $c.c$ 45.675 $6-6$ 0.174 0.0 0.2277 10.3332 20.4109 16.9935 67.7375 $c.0$ 67.738 $c.c$ 67.964 $6-9$ 0.2277 0.0 0.1277 13.5856 8.2265 8.6933 29.8816 0.0 29.882 $c.c$ $36.657.964$ <	3-4	0.211	0.0	0.211	18.7172	24.0917	24.4210	87.2299	0.0	67.230	0.0	37.443
4-1 0.3#5 0.0 0.395 19.1224 11.2451 16.1486 46.5160 0.0 46.516 J.0 46.901 4-2 0.363 0.0 0.363 23.2295 12.1884 20.1417 55.5596 0.0 55.563 0.0 15.922 4-7 1.339 0.0 1.339 74.3788 47.3794 65.0690 186.8271 0.0 186.927 C.C 137.166 5-3 0.278 0.0 0.267 24.0148 13.5633 13.4593 51.0364 0.0 51.036 J.9 51.334 5-5 0.267 0.0 0.267 24.0148 13.5633 13.4593 51.0364 0.0 51.036 J.9 51.334 5-6 0.367 0.0 0.267 27.1860 16.3419 17.8374 61.3652 C.O 61.365 C.C 41.732 6-4 0.193 0.0 0.193 30.9419 16.7145 18.2593 65.4118 0.0 65.412 C.C 45.663 6-6 0.174 0.0 0.174 24.5955 <t< td=""><td>3-6</td><td>0.192</td><td>0.0</td><td>0.192</td><td>32.1082</td><td>22.5345</td><td>19.2542</td><td>73.9019</td><td>0.0</td><td>73.902</td><td>C.C</td><td>74.(94</td></t<>	3-6	0.192	0.0	0.192	32.1082	22.5345	19.2542	73.9019	0.0	73.902	C.C	74.(94
4-2 0.363 0.0 0.363 23.2295 12.1884 20.1417 55.5596 0.0 55.560 0.0 15.922 4-7 1.339 0.0 1.339 74.3788 47.3794 65.0690 186.8271 0.0 186.927 0.0 137.166 5-3 0.278 0.0 0.277 27.6627 13.7784 22.2035 63.6447 0.0 63.645 0.0 63.922 5-5 0.267 0.0 0.267 24.0148 13.5633 13.4593 51.0364 0.0 51.036 0.9 51.336 0.9 51.336 0.365 0.0 63.645 0.0 63.645 0.0 63.645 0.0 63.645 0.0 63.922 5-6 0.267 0.0 0.267 24.0148 13.5633 13.4593 51.0364 0.0 51.036 0.0 51.336 0.9 51.337 5-6 0.367 0.0 0.367 27.1860 16.3419 17.8374 61.3657 0.0 65.412 C.0 65.603 6-4 0.193 0.0 0.174 </td <td>4-1</td> <td>0.315</td> <td>0.0</td> <td>0.395</td> <td>19,1724</td> <td>11.2451</td> <td>16.1486</td> <td>46,5160</td> <td>0.0</td> <td>46.516</td> <td>J.C</td> <td>46.901</td>	4-1	0.315	0.0	0.395	19,1724	11.2451	16.1486	46,5160	0.0	46.516	J.C	46.901
4-7 1.339 0.0 1.339 74.3788 47.3794 65.0690 186.8271 0.0 186.927 0.0 137.166 5-3 0.278 0.0 0.278 27.6627 13.7784 22.2035 63.6447 0.0 63.645 0.0 63.922 5-5 0.267 0.0 0.267 24.0148 13.5633 13.4593 51.0364 0.0 51.036 0.0 51.036 0.0 51.036 0.0 51.036 0.0 51.336 51.337 5-6 0.367 0.0 0.367 27.1860 16.3419 17.8374 61.3657 0.0 61.365 0.0 61.365 0.0 61.365 0.0 61.365 0.0 61.365 0.0 61.732 6-4 0.193 0.0 0.193 30.9419 16.2145 18.2593 65.4118 0.0 65.412 0.2 65.605 6-6 0.174 0.0 0.174 24.5955 14.6604 13.3457 52.6016 0.0 52.652 0.0 52.776 6-9 0.227 0.0 0.227<	4-2	0.363	0.0	0.363	23.2295	12.1884	20.1417	55.5596	0.0	55.560	0.0	35.922
5-3 0.278 0.0 0.278 27.6627 13.7784 22.2035 63.6447 0.0 63.645 0.0 63.922 5-5 0.267 0.0 0.267 24.0148 13.5633 13.4593 51.0364 0.0 51.036 0.0	4-7	1.339	0.1	1.339	74.3748	47.3794	65.0690	186.3271	0.0	186.927	C.C	130.166
5-5 0.267 0.0 0.267 24.0148 13.5633 13.4593 51.0364 0.0 51.036 0.0 51.032 0.0 51.02 <td< td=""><td>5-3</td><td>0.278</td><td>0.0</td><td>0.278</td><td>27.6627</td><td>13.7784</td><td>22.2035</td><td>63.6447</td><td>0.0</td><td>63.645</td><td>0.0</td><td>63.922</td></td<>	5-3	0.278	0.0	0.278	27.6627	13.7784	22.2035	63.6447	0.0	63.645	0.0	63.922
5-8 0.367 0.0 0.367 27.1860 16.3419 17.8374 61.3652 0.0 61.365 61.365 61.36	5-5	0.267	0.0	0.267	24.0149	13.5633	13.4503	51.0364	0.0	51.036	5.0	51.301
6-4 0.193 0.0 0.193 30.9419 16.2145 18.2553 65.4118 0.0 65.412 C.C 45.603 6-6 0.174 0.0 0.174 24.5955 14.6604 13.3457 52.6016 0.0 52.652 0.0 52.776 6-9 0.227 0.0 0.227 10.3332 20.4109 16.9935 67.7375 C.O 67.739 C.C 67.964 7-10 0.177 0.0 0.177 13.5858 8.2265 8.0693 29.8816 0.0 29.882 C.C 36.659	5-8	0.367	0.0	0.367	27.1860	16.3417	17.8374	61.3652	0.0	61.365	c.c	61.732
6-6 0.174 0.0 0.174 24,5955 14.6604 13.3457 52.6016 0.0 52.602 0.0 52.776 6-9 0.227 0.0 0.227 10.3332 20.4109 16.9935 67.7375 C.0 67.739 C.C 67.964 7-10 0.177 0.0 0.177 13.5858 8.2265 8.0693 29.8816 0.0 29.882 C.C 36.659	6-4	0.193	0.0	0.123	30.9419	16.2145	18.2553	65.4118	0.0	65.412	C.C	45.605
6-9 0.227 0.0 0.227 10.332 20.4109 16.9935 67.7375 C.O 67.739 C.C 67.964 7-10 0.177 0.0 0.177 13.5858 8.2265 8.0693 29.8816 0.0 29.882 C.C 36.659	6-6	0-174	0.0	0.174	24.5955	14.6604	13.3457	52.6016	0.0	52.632	0.0	52.776
7-10 0.177 0.0 0.177 13.5456 8.2265 8.0693 29.4816 0.0 29.882 0.0 36.059	6-9	0.227	0.0	0.227	10.1112	20.4109	16.9935	67.7375	c. 0	67.734	<u>c.c</u>	67.964
	7-10	0.177	0.0	0.177	13.5858	8.2265	A.0693	29.4816	0.0	29.082	C.C	30.059

•

456

•

,

ŧ.

(TABLE 8.5CD CONTINU	UED1										
STAGE/TECHNICAL		LABOR			EQU	IPMC NT			EQUIPMENT		
PACKAGE NUMBER	SKILLFD	UNSKILLED	TOTAL	INTINEP	MAINT/MIS	C FUEL	<u> </u>	<u>HCRSE</u>	AND HORSE	MATERIALS	TUTAL
8-11	0.041	0+3	0.091	12.1732	7.3711	7.2103	26.7546	0.0	26.755	0.)	20.246
9-12	0.131	0.0	0.131	16.1751	8.8633	11.2352	36.2935	0+0	36.234	ű.C	16.425
10-13	0.094	0.0	0.094	17.4782	9.5655	10.9513	37.9949	c.c	37.995	C.C	NF.C59
11-14	0 6 1 7	0.0	n.630	27.7042	13.5577	19.7720	61.1139	C.0	61.114	0 , Ü	51.744
12-15	0.242	0.0	0.242	22.5199	12.3247	14.7273	49.5719	0.0	44.572	i.0	49.914
13-16	0.154	0.0	0.154	27.6251	16.2133	20.073A	65.9122	0.0	65.912	C.C	66.066
165M											
1-1	0.435	0.0	0.405	14.6465	18.9614	16.9481	70.5462	C.)	70.546	u.0	75.951
1-2	0.379	0.0	0.379	38.9974	19.0009	21.0499	79.8971	6.0	79.P97	5.0	90.265
2-3	0.307	0.0	0.307	44.7139	24.9454	29.5330	99.0927	0.0	99.092	3.0	99.393
2-5	0.300	0.0	0.300	41.1524	24.8724	20.0806	86.1053	0.0	26 . 1u5	J+0	46.435
3-4	0.217	0.0	0.217	39.7775	24.5769	25.0676	89.4150	C.O	59.415	0.0	97.612
3-6	0.198	0.0	0.199	33.0677	23.0596	19.7691	75.9964	0.0	75.896	3.0	76.095
4-1	0.398	0.0	0.349	19.7564	11.5921	16.6680	48.0165	0.O	48.010	U.J	48.415
4-2	0.373	0.3	0.373	23.9297	12.5088	20.7456	57.1941	C.O	57.184	C.C	57.557
4-7	1.028	0.0	1.828	101.9552	64.6904	88.8437	255.0895	0.0	255.090	C.C	256.917
7-3	0.286	0.0	0.286	28.5791	14.2064	23.0092	65.9127	0.0	65.913	1.0	46.099
5-5	0.279	0.3	0.279	25.1963	14.2101	14.0662	53.4731	C.O	53.473	3.0	\$3.752
2-8	0.4/10	0.0	0.480	35.5181	21.3504	23.3043	80.1729	0.0	40.173	3.C	80.652
0-4	0.179	0.0	0.199	32.0122	16.6997	18.8950	67.5967	0.0	67.597	0.5	67.796
0-6	0.101	0.0	0.181	25.5550	15.1855	13.8556	54.596l	0.0	54.596	0+0	54 . 777
0-9	0.286	0.0	0.286	38.2751	25.7548	21.4428	85.4727	0.0	45.473	C.C	15+759
7-10	0.193	0.0	0.193	14.9100	8.9677	n.7963	32.5740	ù.)	12.574	. J .G	12.767
8-11	0.048	0.0	0.098	13.0104	7.9700	7.7061	28.5945	C.O	28.594	0.C	28-692
9-12 10-13	0.142	0.0	0.142	17.5204	9.5886	12.1499	39.2599	C.O	39.259	(.C	39.401
10-13	0.109	0.0	0.100	18.6831	10.2250	11.7052	40.6133	0.0	40.613	0.0	4.14714
12-15	0.902	0.1	0.557	41.9763	20.4829	29.8715	52.3307	0.0	92.331	J.0	93-282
12-12	0.307	0.0	0.307	35+0629	18+6420	22.2761	74.9917	0.0	74.981	3.0	75.349
10-10 500M	0.235	0.0	0.233	42+6444	24.6304	30.4951	100.1304	0.0	100+130	0.0	107.364
1-1	A 477	A 0	0 470	11 2001	20 4776	10 (170	77 309/				
1-2	0.716	0.0	0.412	21-1971	2010212	19.4470	11+1930	C.U	17,794	0.0	78,255
2-3	0.470	0.0	0 3/4	42+1920	21+4100	23.49310	87.9375	0.0	87.519	3.0	97.565
2-5	0 357	0.0	0 367	47+1177	20+1001	21.1/40	109+4428	0.0	109.443	J.U	107.739
3-4	0.246	0.0	0 - 244	10.6720	21+9911	2146119	57.0770	L. U	97.050	0.0	48-212
3-6	0.230	0.0	0 220	37 4770	2019103	27.1477	99.9001	C.U	99.961	C.G	100+206
4-1	0 4/5	0.0	0 44.5	77 6101	12 2401	22,2100	67.9070	0.0	45.470	0.0	P5.697
4-2	0.420	0.0	0 4 2 0	22+4173	12-2001	19.1100	57+2019 (6 03(6	0.0	77.204	G.C	55.729
4-7	4.499	0.0	4.400	249.9350	159 2380	21.27993	417 7047	0.0	437 710	C.C	65.2.5
5-3	0.324	0.0	0.174	13.0637	16.2407	210,011	74 1424	0.0	74 173	J.U	612.293
5-5	0. 115	0.0	0.335	30.0.4	17.3304	14 0076	46 2026	0.0	10.101	J.J	10.483
5-8	0.979	0.0	0 670	77 6784	43 5077	AT 6074	142 7122	0.0	09.223	0.0	62.554
6-4	0.220	0.0	0.228	17 1194	19 0411	21 6921	70 1474	0.0	163.(15	J.0	164.691
6-6	0.212	0.0	0.212	30.1604	17.7059	16.3021	1011420 86.1807	0.U 2.0	10.143	0.0	73.37)
6-9	0.574	0.0	0.514	76.7251	51.6274	62.0474	171.1140	0.0	107.109	U+U 3 0	64.JH1
7-10	0.269	0.0	0.269	20.6095	12.4795	12,2410	45, 1200	0.0	411110	0.0	1115910
8-11	0.131	0.0	0.131	17.4053	10.5392	10.1093	38,2530	0.0	38.354	0.9	47.577
								V • V	2012237	U • U	30.104

ITABLE 8.5CD CONTINU	(D)										
STAGE/TECHNICAL		LABOR			500	<u>TPMENT</u>			EQUIPMENT		
PACKAGE NUMBER	SKILLED	UNSKILLED	TOTAL	<u>INT/GEP</u>	MALITYMIS	<u>C FUEL</u>	TOTAL	<u>HCRSE</u>	AND HORSE	MATERIALS	TOTAL
9-12	0.189	0.0	0,149	23.3713	12.7907	15.2137	52.375.)	<u>_</u> 0*U	52.176	2.2	52.565
10-13	0.133	0.0	0.133	24.7945	17.5696	15.5346	53.0907	C.J	53.909	0.0	54.332
11-14	2.673	0.0	2.670	117.7930	57.4737	83.A175	259.0740	0.0	259.074	2.0	201.744
12-15	1.023	0.0	1.023	95.0588	52.0740	62.1655	209.2492	C.O	209.246	0.0	21 /+ 271
13-16	0+660	0.0	0.660	127.1988	69.6136	96.1992	203.0015	C.O	283.001	6.0	211.661
BOOM											
1-1	0.508	0.0	0.508	19.3439	21.5541	20.9190	81.7571	6.0	81.757	0.0	32.265
1-2	0 4 5 2	0.3	0.452	44.0201	22.2447	25.5070	91.7718	0.0	91.772	·)•0	92.224
2-3	0.367	0.0	0.367	51.5933	27.9931	35.4512	115.0377	6.0	115.038	C = C	115+404
2-5	0.309	0.0	нв с •О	50.0301	29.7310	24.6464	104.4076	6.0	104,408	C.C	104.796
3-4	0.241	0.0	0.261	47+6146	20.1629	29.7985	105.5660	0.0	115.566	0.0	115 . F27
3-6	0.246	0.0	0.246	40.0909	26.9033	23.5013	90.4955	C.O	70.496	6.0	14.742
4-1	0.502	0.0	0.502	24.4938	14.1847	20.5499	59.2274	6.0	59.227	2.0	54.727
4-2	0.446	0.0	0.446	29.0524	14.9527	25.1617	69.1689	0.0	69.069	5.2	69.514
4-7	5.885	0.0	5.885	326.7585	208.2731	286.0337	821.2656	J.O	821.266	3.3	827-151
5-3	0.345	0.0	0.345	35.4775	17.3542	29.9264	81.7581	0.0	91.758	c.c	32.103
5-5	0.367	0.0	0.367	34.0746	19.0698	19.6320	71.7753	0.0	71.775	2.0	72.147
5-8	1.259	0.0	1.259	93.2619	56,3607	61,1913	210.5135	ί.Ο	210.514	0.0	211.771
6-4	2.243	0.0	0.243	39.8393	20,2856	23.6229	A3.7479	C.0	93.748	c.c	13.571
6-6	0.229	0.0	0.220	32.5782	19.0292	17.5479	69.1952	6.0	69.145	0.0	61.424
6-9	0.731	0.0	0.731	97.7169	65.7525	54.7418	218.2132	0.0	218.213	0.0	218.944
7-10	0.329	0.0	0.329	25.2251	15.2743	14.5924	55.4917	C.O	55.492	0.0	55.911
8-11	0.155	0.0	0.155	20.6840	12,5246	12.2513	45.4579	C.O	45.466	6.0	45.615
9-12	0.203	0.0	0.203	25.0516	13.7103	17,1924	55.9543	0.0	55,954	0.0	55.157
10-13	0.141	0.0	0.141	26.0832	14.2749	16.1695	56.5275	C.O	56,528	0.0	55.669
11-14	4.188	0.0	4.189	184.7050	90.1293	131.4411	406.2751	0.0	406.275	ċ.ċ	410.463
12-15	1.612	0.0	1.612	149.7362	91,9490	97.9229	329.6069	0.0	329.6.7	0.0	331.219
13-16	1.047	0.0	1.047	201.0287	110.4574	136.7581	449.0442	C.O	449.C44	0.0	451.091
SPR/COMP (\$/100BCM)											
985											
11	0.088	0.0	0.080	7.3165	3.9224	5.3162	16.5552	0.0	16.555	0.0	16.643
12	0.114	0.0	0.114	12.3777	6.0234	8.4313	27.6324	0.0	27.632	0.0	27.746
13	0.108	0+0	0.109	5+6220	5.1191	5.5559	19.2970	C.O	19.297	G.G	17.405
24	0.159	0+0	0.159	10.6550	5.5159	6.7476	22.9184	0.0	22.518	C.C	23.077
21	0.057	0.0	0.057	7.9254	4.2557	5.8740	18.0551	0.0	18.055	0.0	18-112
22	0.082	0.0	0.032	12.9865	7.1566	8.5891	29.1323	0.0	29.132	C.O	21.215
23	0.077	0.0	0.077	9.2308	5.4524	6.1137	20.7967	6.0	20.797	C.C	20.P74
24	0.129	0.0	0.128	11.2638	5.8491	7+3054	24.4183	0 • N	24.418	0.0	24.540
31	0.048	0.0	0.048	2.5462	1.2153	2.2395	6.0010	0.0	6.001	C.C	6.049
32	0.073	0.0	0.073	7.6074	4.1163	5 3546	17.0782	0.0	17.078	Ç.Ç	17,151
33	0+068	0.0	0.008	3.9516	2.4120	2.4792	8.7429	0.0	8.743	0.0	8.811
34	0,119	0.0	0.119	5.8847	2.8087	3.6708	12,3642	6.0	12.364	0.0	12.483
41	0.041	0.0	0.041	2.5487	1.2165	Z+2329	5.9981	0+0	5.558	0.0	0.637
42	0.067	0.0	0.067	7.6099	4.1175	5.3490	17.0753	0.0	17+075	0.0	17.142
43	0.062	0.0	0.062	3.8541	2.4132	2+4726	8.7359	0.0	8,740	0.0	8.802

.

458

	(TABLE	B.5CD CONTIN	IVED)	1 4 909			E DI: 1	P MENT			FCUIPMENT		
	DACKACE	RINGED	SK TI LED	UNSKILLED	TOTAL	INTICO	NATUT / VICE	FIG	TOTAL	HCRSE	AND HERSE	NATESTALS	TOTAL
	PAUNAUE		0.112	0.0	0.112	5-0877	2-8099	3.6642	12.3613	0.0	12.351	C.C	12.474
	SURFAC L	NC	VI 112	0.0								••••	
	GRAVEL	48/10000001											
	TRAFEE	11	0.143	0.0	0.143	6.5771	3.7641	4.8736	15.2147	0.0	15.215	274.68	290.037
		12	0.126	0.0	0.126	9.0616	5.6906	5 7752	20.5275	0.0	20.527	274.59	235.333
		13	0.208	0.0	0.278	12.2757	6.1772	7 6497	26.1026	0.0	26.133	274.69	123.520
		21	0.129	0.0	0.129	8.7398	4.975)	6.4903	20.2451	C.O	20 245	274.69	215.054
		22	0.112	0.0	0.112	11.2744	6.9016	7 3819	25.5579	0.0	25.558	274.68	300.351
		23	0.194	0.0	0.194	14.4084	7.3092	9.2564	31.1330	0.0	31.133	274.69	106.007
		31	0.119	0.0	0.119	3.3605	1.9108	2.8114	A.UR27	0.0	8.033	274.69	292.991
		32	0.102	0.0	0.102	5.8451	3.8373	3.7131	13.3954	6.0	13.395	274.68	234.177
		33	0.184	0.0	0.184	5.0591	4.3239	5.5975	18.9706	0.0	18.971	274.69 '	291.814
		41	0.116	0.0	0.116	3.6356	2.0277	2.5659	8.6032	C.O	8.603	274.69	233.397
		42	0.099	0.0	0.099	6.7901	3.9543	3.8715	13.9157	C.0	13.916	214.69	254.605
		43	0.192	0.0	0.192	5.3042	4.4409	5.7460	19.4911	0.0	19.491	274.68	294.351
		ร์โ	0.211	0.0158	0.227	10.1981	5.0515	9.4710	24.7207	0.0	24.721	274.69	219.627
		52	0.194	0.0158	0.210	12.6926	6.9782	10.3727	30.0335	0.0	30.033	274.64	324.923
		53	0.217	0.0150	0.293	15.0967	7.4648	12.2471	15.6096	0.0	15.639	274.69	315.592
	18M	(\$/100CC#)											
A		111	1.368	0.0706	1.439	42.4915	24.1977	46.0919	112.7812	0.0	112.791	417.30	511.524
Ċ		112	1.329	0.0687	1.398	36.7332	57.0286	64 . 7034	209,2650	0.0	2.14.265	417.30	627.967
9		113	1.768	0.0909	1.859	97.6786	46.2871	73.6799	217.6453	0.0	217.646	417,30	616.800
		121	1.512	0+1131	1.625	49.0999	27.6492	49 7483	125.4963	0.0	175.446	417.30	544.426
		122	1.475	0.1118	1.587	92.3404	61.2801	68.3599	221.9800	0.0	221.940	417.30	640.871
		123	1.912	0.1341	2.046	103.2855	49.7385	77.3163	230.3605	0.5	230.361	417.30	647.711
		211	1.352	0.0706	1.423	44.9422	25.4842	47 7995	118.1260	G .O	118,126	417.30	536.853
		212	1.316	0.0687	1.385	49.0830	57.1151	66.4111	214.6097	0.0	214+610	417.30	613.299
		213	1.753	0.0909	1.844	100.0293	47.5736	75.3875	222.9903	0.0	722.990	417.30	642.138
		221	1.496	0.1131	1.609	50.4494	28.9357	51.4559	130.0413	C.O	130.041	417.30	549.755
		222	1.460	0.1118	1.572	94.6911	62.5666	70.0674	227,324R	0.0	227. 325	417,30	646.200
		223	1.897	0.1341	2.011	105.6365	51.0250	79.0439	235.7054	0.0	235.705	417.30	655.040
		311	1.339	0.3706	1.410	38,9187	22.1523	43.7955	104.8665	C.O	104.867	417.30	523,581
		312	1.305	0.0687	1.374	93.1693	55.7832	62.4070	201.3503	ú.0	201.350	417.30	620.024
		313	1.742	0.0909	1.833	94.1058	44.2417	71.3035	209.7309	0.0	209.731	417.30	629.863
		321	1.483	0.1131	1.576	44.5260	25.6039	47.4519	117.5816	6.9	117.502	417.30	536.482
		322	1.447	0.1118	1.558	98.7676	59.2346	66.0614	214.0655	C.O	214.065	417.30	612.524
		323	1.884	0.1341	2.018	99.7131	47.6931	75.0199	222.4459	0.0	222.446	417.30	641.767
		411	1.337	0.0706	1.407	39.1547	22.2649	43.5490	105.3676	C.O	105.368	417.30	524.077
		412	1.300	0.0687	1.369	93.3963	55.8953	62.5595	201.8514	C.Q	201.851	417,30	620.524
		413	1.737	0.0909	1.028	94.1417	44.3543	71.5159	210.2318	0.0	210.232	417.30	629.344
		421	1.491	0.1131	1.594	44.7619	25,7164	47.6044	118.0027	0.0	110.181	417.31	516.90)
		422	1.444	0.1118	1.556	89.0035	59.3473	66 . 2159	214.5664	C.O	214.566	417.30	633.426
		423	1.881	0.1341	2.015	79.9490	47.8057	75.1923	222.9470	0.0	222.947	417.30	642.266
		511	1.434	0.0863	1.520	45.9496	25.3831	50.6233	121.9559	0.0	121.956	417.30	540.774
		512	1.397	0.0850	1.482	90,1911	59.0137	69.234R	218.4397	0.0	218.440	417.30	617.225
		513	1.834	0.1066	1.540	101.1366	47.4724	79.2113	226.8202	0.0	226 . A2C	417.30	646.065
		521	1.577	0.1295	1.707	51.5568	28.8345	54.2797	134.6709	0.0	134.671	417.30	553.692
		522	1.541	0.1275	1.668	95.7984	62.4654	72.8912	231.1548	6.0	211.155	417.30	650.127

ITABLE B.SCD CUNTIN	(VED)										
STAGE/TECHNICAL		LABOR			EQU	PMENT			ECLIPMENT		
PACKAGE NUMBER	SKILLED	UNSKILLED	TOTAL	INT/CEP	MAINT/MISC	FUEL	TOTAL	HCRSE	AND HOPSE	MATERIALS	TOTAL
523	1.978	0.1498	2.127	106.7439	50.9237	A1.8676	239 . 5353	0.0	239.535	417.30	655.957
DBST/G (\$/1005M)											
1111	0.029	0.0032	0.012	1.5218	0.7570	1.5459	3.8247	0.0	3.925	107.50	111.359
1112	0.025	0,0032	0.029	1,5081	0.7655	1.5003	3.7740	6.0	3.774	107.50	111.314
1121	0.031	0.0058	0.037	1.2671	0.7193	1.1749	3.1617	0.0	3.151	107.50	117.697
1122	0.028	0.0058	0.034	1.2534	0.7275	1.1293	3.1102	0.0	3.110	107.50	110.645
1211	0.029	0.0031	0.632	1.5299	0.7619	1.5929	3.8846	0.0	3,985	107.50	111.415
1212	0.025	0.0031	0.028	1.5162	0.7704	1.5472	3.8339	0.0	3.034	107.50	111.363
1221	0.031	0.0058	0.037	1.2751	0.7239	1.2218	3.2209	0.0	3.221	107.50	111.7.759
1222	0.028	0.0058	0.034	1.2615	0.7324	1,1762	3.1701	C.O	3.170	107.50	110.705
OBST/W (\$/1005M)											
1111	0.028	0.0030	0.031	1.5053	0.7470	1.5007	3.7530	0.0	3.753	24.90	98.6E1
1112	0.025	0.0030	0.028	1.4918	0.7556	1.4556	3.7029	0.0	3.703	84.90	69.636
1121	0.031	0.0057	U.C37	1.2505	0.7090	1.1297	3.0892	0.0	3.089	84.90	P3.025
1122	0.027	0.0057	0.033	1.2368	0.7175	1.0841	3,0384	0.0	3.016	84.90	87.571
1211	0.028	0.0030	0.031	1.5115	0.7507	1.5377	3.8000	ŭ.0	3,900	84.90	19.73/
1212	0.025	0,0030	0.029	1.4978	0.7592	1.4921	3.7492	0.0	3.749	84.50	P3.675
1221	0.031	0.0057	0.037	1.2568	0.7128	1.1657	3+1362	0.0	3.136	84.90	°9.J72
1222	0.027	0.0057	0.033	1.2431	0.7213	1.1211	3.0854	0.0	3.085	84.90	23.019

•

•

,

•

TAELE	в.6 А	:	1 H E	AMOI	ĽNT	OF	INV	ESTRI	ENT	A T	THE	PRIC	ES CI	E 1974	4			
			AND	THE	Ado	TANC	OF	LABO	CR B	Ect	JIR ED	FC F	1 H E	GIVE	N RA	TE (32	
			EPCI	LUCI	KO3	POS	TH	E 192	20 • S	5 TI	ECHNI	CAL	PACK	GES	FOR	ALL	STA	GES

STACETE		1 4899 1		PENZUNTTI	INVESTE	NT (11000Z	LNIT
DACKAGE	UTIND CD	371157	01571115	C TOTAL	COULPMENT	HCSSC	TOTAL
100 100 100 100 100 100 100 100 100 100	2 (113/112)						
STIL PAL	11	211, 352	261.6621	1773.054	6.02	14.21	20.23
	21	41.727	21.6954	62.482	625.50	C.C	625.50
EXCZHAUL	(100BCM/HR)					•••	
61	110060171601				•		
0.4	1-1	27-875	153, 1662	181.041	8°CC	C.O	8.00
	1+7	29.000	152,9052	180.915	11.02	č.č	11.02
	2-1	22.695	126.3528	149.048	8,55	1.92	10.37
	2-7	22.820	126, 3912	149,911	11.50	1.82	13.39
	3-1	22.445	125.0443	147.499	19-12	C • 0	19.12
	2-2	22.570	124.7432	147.353	22.15	0.0	22.15
	4-3	3.276	19.7769	23.055	1.62	9.17	10.79
	5-6	1.051	15.7031	19.752	2.16	5.46	11.52
	4-5	7 206	49.8217	57.028	7.53	16.78	24.37
	7-4	r c44	1 1	0.946	16.36	0.0	16.36
	10-7	5 130	7.5419	12.671	165.35	1 79	167.14
	10-7	5 115	7 6176	12.727	186.40	0.0	186.40
	10-0	12 612	4 3166	17.979	100-10	0.0	300.19
1.000	10-9	13.012	4. 11.04		/3342/		
TCOM		21 975	373 0579	303 032	15 11	C 0	15.11
	1-1		213.0111	295 063	10 02	2.0	10.33
	1-2	20.4000	231.3030	212.703	15 66	1 83	17.48
	2-1	77.699	240.2447	266.737	20 49	1 02	77 30
	2-2	22.020	271+1471	223.7 291	23097	2.0	26.74
	3-1	22.4443	29447301	201071	20.24	0.0	20.24
	3-2	21.77	<u>223+3413</u>	LL 357	21.07	32 04	76 33
	4-5	1.2(*	24 1707	24.227	*• <i>21</i> 5 79	32.00	11 80
	5-4	3.071	20+1/71	27+272	19 20	20. 12	15 91
	6-5		01.0101	57.022	12+39	23+74	102 15
	7-6	2.973		2.7.7	192+19	11 03	45 00
	8-7	2.002		12 125	53.77	6 76	47.00
	9-7	5.903	9.2214	17 440	173 37	4.24	176.03
	10-7	5-110	12.000	11.000		4.30	109.35
	10-8	5.112	4.2347	14.349	145.94	0.0	172+77
	10-3	12.939	4.3104	20.277	224.24	-1 + V	224.27
500M				1100 //0	47 77	c 0	67 77
	1-1	21.81-		1138.449		0.0	
	1-2	ZH.CCC.		1003.047	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		70 14
	2-1	27.695	L133 • 7512	1170.470		1.07	12017
	2-2	22.829	1008.8735	1031.043	70 00		70 90
	3-1	22.445	1132.4331	1124.395	10+07	0.0	04 07
	3-2	22.57	1007.5652	1130-112	70.77		77.77
	4-3	3.278	365.9251	109.204	23.92	201.30	227.42
	5-4	3.053	187.7764	190.829	23.31	172+07	121.23
	6-5	7.204	150,6152	157.823	. 4(+/)	12.15	770 07
	7-6	42.663	2.0	42.003	122.02	C.4.9 31 53	113.J2
	8-7	2.052	59.6327	22.014	63.65	21.33	136 60
	9-7	3.901	46.1452	50.050	104.44	24.70	134.07
	19-7	5+130	47.4555	34.583	224.21	27.05	247.17
	10-9	5.115	21.2249	20.343	242.04		272467
	10-9	33.154	4.3164	57.471	241.34	0.0	761.33
SPR/CEMP 731	(19)BCM/HR]						
	11	7.293	43.5137	57.797	3.40	1.39	4.78

(TAHLE	B.GA CONTIN	UFD)		-			-
STAGEZ	FECHNICAL	_14ካሮዴ (UNISKILLED	MENZONITI	INVESTME	NT (\$10007)	UNETE
PACKAGE	E NUMBER	SKILLEN	UNSKILLED	TETAL	EQUIPMENT	HORSI	E TOTA
	21	<u> </u>	4.2172	10.032	12.4)	4.75	17.15
285	K .						-
	11	11.310	53.1964	64.576	15.31	6.58	21.39
	21	5.805	9.9579	14.765	24.31	7.96	34.27
	12	7.807	47.2711	57.GBO	14.24	0.C	14.24
	22	7.382	3.7346	10.416	23.24	3.37	26.61
	32	4.829	C .0	4.829	50.82	0.0	57.92
SURF 4C	ING						
GRAVEL	(100CCM/HR)						
	11	8.232	47.2443	55.477	10.99	4.71	15.7C
	21	2.652	16.6116	19.264	15.41	6.16	21.57
	12	12.236	43 0070	55.243	27.77	0.0	27.77
	22	5.730	12.3737	18.104	32.18	1.45	33.64
WB M	(100CCM/HR)		+				
	111	50.369	124.6915	175.061	368.19	9.69	377.88
	211	42.312	74.8176	117.130	373.88	11.58	385.45
D9ST/G	(100 SM/HR)					-	
	1111	2.327	10.1501	12.477	9.90	0.0	9.90
	1121	1.752	4.5723	6.330	26.05	0.0	25.05
DBST/W	(100 SM/HR)						
	1111	2.327	10.1501	12.477	9.90	0.0	9.90
	1121	1.752	4.5790	6.330	26.05	C.0	26.05

-

NOTE: LABOR IS EXPRESSED IN UNITS OF UNSKILLED MEN; THAT IS, THE ACTUAL NUMBER OF SKILLED MEN REQUIRED IS WEIGHTED BY THE RATIC OF THE SKILLED WAGE TO THE UNSKILLED WAGE FOR THE PERIOD OF THE TECHNOLOGY; THIS FACTOR FOR THE 1920*S IS 1.91.

TABLE B.6B : THE AMOUNT OF INVESTMENT AT THE PRICES OF 1974 ANI THE AMOUNT OF LASCE REQUIRED FOR THE GIVEN RATE OF ERCENCTION FOR THE 1950'S TECHNICAL PACKAGES FOR ALL STAGES.

.

-

.

-

-

-

.

DACK MSC. NUMBER SKITLELD DASK #112.20 TOTAL EUDIPRENT HORSE TOTAL SITE PLEP 11 206.155127.8425 113.997 24.37 0.0 24. 31 17.845 11.6954 37.842 478.32 0.0 478. 31 17.845 11.6954 37.842 476.32 0.0 24. 67 1-1 2.706 0.0 2.706 156.66 0.0 124. 67 1-3 2.660 0.0 2.661 157.80 0.0 127. 1-4 2.511 C.0 2.741 161.06 0.0 161.40 2-1 3.226 0.0 3.226 174.56 0.0 174.56 2-3 2.711 C.0 2.741 161.06 0.0 161.40 3-4 1.991 C.0 2.186 162.64 0.0 137.65 3-3 2.126 C.7 2.186 1.22 136.0 137.65 3-4<	STAGE/TECHNICHT	139C8 (ii	KSKILLED	MENZUNIT)	INVESTME	NT (\$ 1000/	UN IT)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	PACKAGE NUMBEE	SKILLE	USSKILLE	D TOTAL	EQUIPHENT	HORSE	TOTAL
$ \begin{array}{c} 1100 & 11 & 1200 & 1200 & 2600 & 2700 & 2400 & 2400 & 27000 & 27000 & 27000 & 27000 & 27000 & 27000 & 27000 & 27000 & 27$	STTE PREP (HACHE)						
$\begin{array}{c} 21 & 26.147 & 21.6954 & 47.842 & 478.32 & 0.0 & 478.3 \\ 31 & 17.845 & 21.6954 & 39.545 & 281.70 & 0.0 & 281.5 \\ \hline \\ $	11	206 - 155 1	227.8425	1433.997	24.37	0.0	24.
$ \begin{array}{c} 1 & 7.846 & 21.6954 & 39.545 & 281.70 & 0.0 & 281.^{-1} \\ 67 & 1-1 & 2.706 & 0.0 & 2.706 & 156.66 & 0.0 & 156.^{-1} \\ 1-2 & 2.706 & 0.0 & 2.511 & 140.88 & 0.0 & 140.^{-1} \\ 1-3 & 2.646 & C.0 & 2.646 & 127.58 & 0.0 & 127.^{-1} \\ 2-1 & 3.226 & 0.0 & 3.226 & 157.80 & 0.0 & 190.^{-1} \\ 2-1 & 3.226 & 0.0 & 3.226 & 157.80 & 0.0 & 190.^{-1} \\ 2-2 & 2.801 & C.0 & 2.401 & 161.96 & 0.0 & 161.0 \\ 2-3 & 2.701 & C.0 & 2.401 & 157.56 & 0.0 & 174.^{-1} \\ 3-1 & 2.611 & C.0 & 2.605 & 174.56 & 0.0 & 174.^{-1} \\ 3-2 & 2.7186 & 0.0 & 2.186 & 152.64 & 0.0 & 162.^{-1} \\ 3-2 & 2.7186 & 0.0 & 2.186 & 152.64 & 0.0 & 162.^{-1} \\ 3-2 & 2.7186 & 0.0 & 2.186 & 152.64 & 0.0 & 162.^{-1} \\ 3-2 & 2.7186 & 0.0 & 2.997 & 177.8 & 0.0 & 188.^{-1} \\ 3-2 & 2.7186 & 0.0 & 2.997 & 177.8 & 0.0 & 187.^{-1} \\ 5-5 & 2.157 & 0.0 & 2.977 & 57.82 & 0.0 & 77.^{-1} \\ 5-5 & 2.157 & 0.0 & 0.943 & 44.39 & 0.0 & 44.^{-1} \\ 9-9 & 0.343 & 0.0 & 0.943 & 44.39 & 0.0 & 44.^{-1} \\ 9-9 & 0.343 & 0.0 & 0.343 & 7.28 & 0.0 & 77.^{-1} \\ 10-10 & 0.279 & 0.0 & 0.279 & 8.01 & 0.0 & 170.^{-1} \\ 1-2 & 2.992 & 0.0 & 2.992 & 170.83 & 0.0 & 170.^{-1} \\ 1-2 & 3.937 & 0.0 & 3.839 & 170.93 & 0.0 & 170.^{-1} \\ 1-2 & 3.938 & 0.0 & 3.839 & 170.93 & 0.0 & 170.^{-1} \\ 2-2 & 3.067 & 0.0 & 3.245 & 176.37 & 0.0 & 152.64 \\ 2-1 & 3.639 & 0.0 & 3.245 & 176.37 & 0.0 & 152.64 \\ 2-1 & 3.639 & 0.0 & 3.245 & 176.37 & 0.0 & 150.7 \\ 3-2 & 2.630 & C.0 & 2.692 & 186.68 & 0.0 & 186.^{-1} \\ 3-4 & 2.277 & 0.0 & 2.277 & 160.10 & 0.0 & 160.^{-1} \\ 3-4 & 2.277 & 0.0 & 2.277 & 160.10 & 0.0 & 150.7 \\ 3-2 & 2.630 & C.0 & 2.692 & 186.68 & 0.0 & 186.^{-1} \\ 1-1 & 4.255 & C.0 & 2.695 & 176.37 & 0.0 & 153.^{-1} \\ 3-4 & 2.277 & 0.0 & 2.277 & 160.10 & 0.0 & 160.^{-1} \\ 1-2 & 3.503 & 10.0 & 3.693 & 78.50 & 0.0 & 3.632 \\ 8-6 & 6.785 & C.0 & 6.785 & 110.46 & 0.0 & 110.68 \\ 9-9 & 3.693 & 0.0 & 3.693 & 170.23 & 0.0 & 176.^{-1} \\ 1-2 & 3.503 & 10.0 & 2.804 & 60.42 & 0.0 & 74.^{-1} \\ 1-2 & 3.503 & 10.0 & 2.804 & 60.42 & 0.0 & 74.^{-1} \\ 1-3 & 4.550 & C.0 & 1.533 & 185.01 & 0.0 & 195.0 \\ 10-10 & 2.804 & 0.0 & 2.804 & 80$	21	26 . 147	21.6954	47.842	478.32	0.0	478.
$ \begin{array}{c} 2 \mbox{rc} \mu \mbox{a} 1 & 1 & 3 & 1 \mbox{a} 1 & 1 & 2 \mbox{a} 7 \mbox{b} 6 \mbox{a} 1 & 1 & 2 \mbox{a} 7 \mbox{a} 6 \mbox{b} 6 \mbox{a} 1 & 2 \mbox{a} 7 \mbox{a} 6 \mbox{a} 0 & 1 \mbox{a} 1 & 2 \mbox{a} 7 \mbox{a} 6 \mbox{a} 0 & 1 \mbox{a} 1 & 2 \mbox{a} 1 & 2 \mbox{a} 6 \mbox{a} 0 & 1 \mbox{a} 1 & 2 \mbox{a} 1 & 1 \mbox{a}$	31	17.849	21.6954	39.545	281.70	0.0 .	28 1
$ \begin{array}{c} 1.5. \\ 1-1 \\ 1-2 \\ 1-2 \\ 1-3 \\ 2-646 \\ 2-76 \\ 1-4 \\ 2-511 \\ 2-1 \\ 2-2 \\ 2-8 \\ 2-2 \\ 2-8 \\ 2-2 \\ 2-8 \\ 2-2 \\ 2-8 \\ 2-2 \\ 2-8 \\ 2-2 \\ 2-8 \\ 2-2 \\ 2-8 \\ 2-2 \\ 2-8 \\ 2-2 \\ 2-8 \\ 2-1 \\ 2-2 \\ 2-8 \\ 2-2 \\ 2-8 \\ 2-2 \\ 2-8 \\ 2-2 \\ 2-8 \\ 2-8 \\ 2-2 \\ 2-8 \\ 2-8 \\ 2-1 \\ 2-8 \\ 2-1 \\ 2-8 \\ 2-1 \\ 2-1 \\ 2-1 \\ 2-1 \\ 2-2 \\ 2-8 \\ 2-2 \\ 2-8 \\ 2-1 \\ 2-1 \\ 2-1 \\ 2-1 \\ 2-1 \\ 2-1 \\ 2-2 \\ 2-2 \\ 2-8 \\ 2-1 \\ 2-1 \\ 2-1 \\ 2-1 \\ 2-1 \\ 2-1 \\ 2-1 \\ 2-1 \\ 2-1 \\ 2-2 \\ 2-2 \\ 2-8 \\ 2-1 \\ 2-1 \\ 2-1 \\ 2-1 \\ 2-1 \\ 2-1 \\ 2-1 \\ 2-1 \\ 2-1 \\ 2-2 \\ 2-1 \\ 2-2 \\ 2-1 \\ 2-1 \\ 2-2 \\ 2-1 \\ 2-1 \\ 2-2 \\ 2-1 \\ 2-2 \\ 2-1 \\ 2-1 \\ 2-2 \\ 2-1 \\ 2-1 \\ 2-2 \\ 2-1 \\ 2-1 \\ 2-2 \\ 2-1 \\ 2-1 \\ 2-2 \\ 2-1 \\ 2-1 \\ 2-2 \\ 2-1 \\ 2-1 \\ 2-2 \\ 2-1 \\ 2-1 \\ 2-2 \\ 2-1 \\ 2-1 \\ 2-2 \\ 2-1 \\ 2-2 \\ 2-1 \\ 2-2 \\ 2-1 \\ 2-2 \\ 2-1 \\ 2-2 \\ 2-1 \\ 2-2 \\ 2-1 \\ 2-2 \\ 2-1 \\ 2-2 \\ 2-1 \\ 2-2 \\ 2-1 \\ 2-2 \\ 2-1 \\ 2-2 \\ 2-1 \\ 2-2 \\ 2-1 \\ 2-2 \\ 2-1 \\ 2-2 \\ 2-1 \\ 2-2 \\ 2-1 \\ 2-2 \\ 2-2 \\ 2-1 \\ 2-2 \\ 2-2 \\ 2-1 \\ 2-2 \\ 2-1 \\ 2-2 \\ 2-1 \\ 2-2 \\ 2-1 \\ 2-2 \\ 2-1 \\ 2-2 \\ 2-1 \\ 2-2 \\ 2-1 \\ 2-2 \\ 2-1 \\ 2-2 \\ 2-1 \\ 2-2 \\ 2-1 \\ 2-2 \\ 2-1 \\ 2-2 \\ 2-2 \\ 2-1 \\ 2-2 \\ 2-1 \\ 2-2 \\ 2-1 \\ 2-2 \\ 2-1 \\ 2-2 \\ 2-1 \\ 2-2 \\ 2-2 \\ 2-3 \\ 2-1 \\ 2-2 \\ 2-2 \\ 2-3 \\ 2-3 \\ 2-1 \\ 2-2 \\ 2-3 \\ 2-3 \\ 2-1 \\ 2-2 \\ 2-3 \\ 2-3 \\ 2-1 \\ 2-1 \\ 2-2 \\ 2-3 \\ 2-3 \\ 2-1 \\ 2-2 \\ 2-3 \\ 2-3 \\ 2-1 \\ 2-1 \\ 2-2 \\ 2-3 \\ 2-3 \\ 2-3 \\ 2-3 \\ 2-3 \\ 2-1 \\ 2-2 \\ 2-3 \\ 2-3 \\ 2-3 \\ 2-3 \\ 2-1 \\ 2-2 \\ 2-2 \\ 2-2 \\ 2-2 \\ 2-2 \\ 2-3 \\ 2-1 \\ 2-2 $	EXC/HAUL (100ECE/HR)						
$\begin{array}{c} \begin{array}{c} 1-2 \\ 1-3 \\ 1-3 \\ 2-646 \\ 2-1 \\ 3-26 \\ 2-1 \\ 2-1 \\ 3-26 \\ 2-2 \\ 2-3 \\ 2-2 \\ 2-2 \\ 2-3 \\ 2-2 \\ 2-2 \\ 2-3 \\ 2-2 \\ 2-4 \\ 2-2 \\ 2-3 \\ 2-2 \\ 2-4 \\ 2-2 \\ 2-3 \\ 2-3 \\ 2-2 \\ 2-4 \\ 2-2 \\ 2-3 \\ 2-2 \\ 2-4 \\ 2-2 \\ 2-3 \\ 2-2 \\ 2-4 \\ 2-4 \\ 2-2 \\ 2-3 \\ 2-2 \\ 2-4 \\ 2-4 \\ 2-2 \\ 2-3 \\ 2-4 \\ 2-2 \\ 2-$	1-1	3.131	C.C	3.131	124.75	0.0	124.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1-2	2.706	0.0	2.706	156.66	0.0	156 -
$\begin{array}{c} \begin{array}{c} 1-4\\ 2-1\\ 3-26\\ 2-1\\ 3-26\\ 2-2\\ 2-2\\ 2-3\\ 2-741\\ 2-2\\ 2-3\\ 2-741\\ 2-611\\ 2-2\\ 2-3\\ 2-741\\ 2-611\\ 2-2\\ 2-3\\ 2-741\\ 2-615\\ 2-3\\ 2-3\\ 2-741\\ 2-615\\ 2-3\\ 2-3\\ 2-741\\ 2-615\\ 2-4\\ 2-4\\ 2-655\\ 0-6\\ 2-73\\ 2-7\\ 2-4\\ 2-655\\ 0-6\\ 2-611\\ 2-4\\ 2-655\\ 0-6\\ 2-611\\ 2-6\\ 2-6\\ 2-6\\ 2-7\\ 2-3\\ 2-2\\ 2-7\\ 2-6\\ 2-7\\ 2-3\\ 2-7\\ 2-3\\ 2-2\\ 2-3\\ 2-3\\ 3-4\\ 2-2\\ 2-3\\ 3-4\\ 2-2\\ 2-3\\ 3-4\\ 2-2\\ 2-3\\ 3-4\\ 2-2\\ 2-3\\ 3-4\\ 2-2\\ 2-3\\ 3-4\\ 2-2\\ 2-3\\ 3-4\\ 2-2\\ 2-3\\ 3-4\\ 2-2\\ 3-55\\ 2-1\\ 2-3\\ 3-4\\ 2-2\\ 3-55\\ 2-1\\ 2-3\\ 3-4\\ 2-2\\ 2-3\\ 3-4\\ 2-3\\ 2-3\\ 3-4\\ 2-2\\ 2-3\\ 3-55\\ 2-1\\ 2-3\\ 3-67\\ 2-3\\ 2-4\\ 2-4\\ 2-4\\ 2-55\\ 2-1\\ 2-3\\ 3-26\\ 2-1\\ 2-3\\ 3-26\\ 2-1\\ 2-3\\ 3-26\\ 2-1\\ 2-3\\ 3-26\\ 2-1\\ 2-3\\ 3-26\\ 2-1\\ 2-3\\ 3-26\\ 2-1\\ 2-3\\ 3-26\\ 2-1\\ 2-3\\ 3-26\\ 2-1\\ 2-3\\ 3-26\\ 2-1\\ 3-22\\ 2-4\\ 2-4\\ 2-4\\ 2-4\\ 2-4\\ 2-4\\ 2-4\\ $	1-3	2.646	C .0	2.646	127.58	0.0	127.
$\begin{array}{c} \begin{array}{c} 2-1 \\ 2-2 \\ 2-3 \\ 2-3 \\ 2-3 \\ 2-3 \\ 2-4 \\ 2-6 \\ 2-4 \\ 2-6 \\ 2-4 \\ 2-6 \\ 2-4 \\ 2-6 \\ 2-4 \\ 2-6 \\ 2-7 \\ 2-2 \\ 2-5 \\ 2-5 \\ 2-7 \\ 2-2 \\ 2-5 \\ 2-7 \\ 2-2 \\ 2-5 \\ 2-7 \\ $	1-4	2.511	Č.Č	2.511	140_48	0.0	140.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2-1	3.226	0.0	3.226	157.80	0.0	157.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2-2	2.801	Ċ.C	2.801	190.98	0.0	190.5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2-3	2.741	C.0	2.741	161.06	0.0	161.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2-4	2.605	0.0	2.605	174.56	0.0	174.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3-1	2.611	C.C	2.611	137.65	0.0	137.E
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3-2	2.186	0_0	2.186	162.64	0.0	162.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3-3	2.126	C.C	2, 126	138.17	0.0	138.1
$\begin{array}{c} \begin{array}{c} 5-5 \\ 5-5 \\ 6-6 \\ 2.017 \\ 7-7 \\ 0.943 \\ 9-9 \\ 9-9 \\ 0.343 \\ 10-10 \\ 9-9 \\ 9-9 \\ 10-10 \\ 1-1 \\ 1-2 \\ 2.992 \\ 1-2 \\ 2.992 \\ 1-4 \\ 2.797 \\ 1-2 \\ 2.992 \\ 2.992 \\ 1-4 \\ 2.797 \\ 1-4 \\ 2.797 \\ 1-4 \\ 2.797 \\ 1-4 \\ 2.797 \\ 2-3 \\ 3.245 \\ 1-4 \\ 2.992 \\ 2.0 \\ 2.472 \\ 1-3 \\ 3.245 \\ 1-4 \\ 2.992 \\ 2.0 \\ 2.472 \\ 1-5 \\ 2-1 \\ 3.245 \\ 1-4 \\ 2.992 \\ 2.0 \\ 2.992 \\ 170.43 \\ 1-2 \\ 3.245 \\ 1-4 \\ 2.992 \\ 1-4 \\ 2.992 \\ 1-4 \\ 2.992 \\ 1-4 \\ 2.992 \\ 1-4 \\ 2.992 \\ 1-4 \\ 2.992 \\ 1-4 \\ 2.992 \\ 1-4 \\ 2.992 \\ 1-4 \\ 2.992 \\ 1-4 \\ 2.992 \\ 1-4 \\ 2.992 \\ 2.0 \\ 3.245 \\ 1-4 \\ 2.992 \\ 1-4 \\ 2.992 \\ 2.0 \\ 3.245 \\ 1-4 \\ 2.992 \\ 1-4 \\ 2.992 \\ 1-4 \\ 2.992 \\ 1-4 \\ 2.992 \\ 1-4 \\ 2.992 \\ 1-4 \\ 2.992 \\ 1-4 \\ 2.992 \\ 1-4 \\ 2.992 \\ 1-4 \\ 2.992 \\ 1-4 \\ 2.992 \\ 1-4 \\ 2.992 \\ 1-4 \\ 2.992 \\ 1-4 \\ 2.992 \\ 1-4 \\ 2.992 \\ 1-4 \\ 2.992 \\ 1-4 \\ 3.24 \\ 1-5 \\ 3-2 \\ 2.472 \\ 1-4 \\ 3.224 \\ 150.79 \\ 0.0 \\ 150.7 \\ 1-5 \\ 3-2 \\ 2.472 \\ 1-6 \\ 1-3 \\ 4.2 \\ 1-3 \\ 3.66 \\ 1-1 \\ 1-2 \\ 3.503 \\ 10-10 \\ 2.804 \\ 8.9 \\ 9.9 \\ 3.29 \\ 10-10 \\ 2.804 \\ 8.9 \\ 9.9 \\ 3.29 \\ 0.0 \\ 3.99 \\ 1-7 \\ 1.009 \\ 1-3 \\ 4.05 \\ 1-1 \\ 4.935 \\ 10-10 \\ 2.804 \\ 8.0 \\ 1-1 \\ 4.935 \\ 10-10 \\ 2.804 \\ 8.0 \\ 1-1 \\ 3.306 \\ 0.0 \\ 3.306 \\ 174.72 \\ 0.0 \\ 174.7 \\ 2-1 \\ 1-4 \\ 3.306 \\ 0.0 \\ 3.306 \\ 174.72 \\ 0.0 \\ 174.7 \\ 2-1 \\ 3.598 \\ 2.2 \\ 3.598 \\ 2.9 \\ 3.598 \\ 2.9 \\ 3.598 \\ 2.9 \\ 3.598 \\ 2.9 \\ 3.598 \\ 2.9 \\ 3.598 \\ 0.0 \\ 203.69 \\ 0.0 \\ 203.6$	3-4	1,991	0.0	1,991	147.78	0.0	147."
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5-5	2.157	0_0	2, 157	57.82	c. c	57
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6-6	2.017	C_C	2.017	70.99	0.0	70.
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $	7-7	0,943	0.0	0.943	44.39	0.0	44.1
$\begin{array}{c} 9-9 \\ 10-10 \\ 10-10 \\ 1-1 \\ 1-1 \\ 1-2 \\ 2.992 \\ 1-2 \\ 1-2 \\ 1-2 \\ 1-2 \\ 1-2 \\ 1-2 \\ 1-2 \\ 1-3 \\ 1-2 \\ 1-4 \\ 2.797 \\ 1-4 \\ 2.797 \\ 1-4 \\ 2.797 \\ 1-4 \\ 2.797 \\ 1-4 \\ 2.797 \\ 1-4 \\ 2.797 \\ 1-4 \\ 2.797 \\ 1-4 \\ 2.797 \\ 1-4 \\ 2.797 \\ 1-4 \\ 2.797 \\ 1-4 \\ 2.797 \\ 1-4 \\ 2.797 \\ 1-5 \\ 2-1 \\ 3.839 \\ 1-6 \\ 1-4 \\ 2.797 \\ 1-6 \\ 1-4 \\ 2.797 \\ 1-6 \\ 1-4 \\ 2.797 \\ 1-6 \\ 1-4 \\ 2.797 \\ 1-6 \\ 1-4 \\ 2.797 \\ 1-6 \\ 1-4 \\ 2.797 \\ 1-6 \\ 1-4 \\ 2.797 \\ 1-6 \\ 1-4 \\ 2.797 \\ 1-6 \\ 1-4 \\ 2.797 \\ 1-6 \\ 1-4 \\ 2.797 \\ 1-6 \\ 1-4 \\ 2.797 \\ 1-6 \\ 1-4 \\ 2.797 \\ 1-6 \\ 1-4 \\ 2.797 \\ 1-2 \\ 2-3 \\ 3.245 \\ 0.0 \\ 3.245 \\ 1-6 \\ 3.74 \\ 1-2 \\ 1-2 \\ 1-2 \\ 1-3 \\ 2.472 \\ 1-6 \\ 1-1 \\ 1-3 \\ 1-2 \\ 1-2 \\ 3.503 \\ 1-6 \\ 1-1 \\ 1-2 \\ 3.503 \\ 1-6 \\ 1-2 \\ 3.503 \\ 1-6 \\ 1-2 \\ 3.503 \\ 1-6 \\ 1-2 \\ 3.503 \\ 1-6 \\ 1-2 \\ 3.503 \\ 1-6 \\ 1-2 \\ 3.503 \\ 1-6 \\ 1-2 \\ 3.503 \\ 1-6 \\ 1-2 \\ 3.503 \\ 1-6 \\ 1-2 \\ 3.503 \\ 1-6 \\ 1-2 \\ 3.503 \\ 1-6 \\ 1-2 \\ 3.503 \\ 1-6 \\ 1-3 \\ 4.655 \\ 1-6 \\ 1-2 \\ 3.503 \\ 1-6 \\ 1-3 \\ 4.655 \\ 1-6 \\ 1-2 \\ 3.503 \\ 1-6 \\ 1-3 \\ 4.655 \\ 1-6 \\ 1-2 \\ 3.503 \\ 1-6 \\ 1-3 \\ 1-3 \\ 2-2 \\ 3.598 \\ 1-6 \\ 3.598 \\ 229.33 \\ 0.0 \\ 229.3 \\ 2-3 \\ 4.445 \\ 1-6 \\ 3.598 \\ 229.33 \\ 0.0 \\ 229.3 \\ 2-3 \\ 4.401 \\ 208.86 \\ 0.0 \\ 208.8 \\ 0$	8-8	0.629	0.0	0.629	10.24	0.0	10.1
$\begin{array}{c} 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 $	9-9	0.343	0.0	0.343	7.28	0.0	7.1
1CCB 1-1 3.744 C.C 3.744 137.88 0.0 137. 1-2 2.992 0.0 2.992 170.43 0.0 170.4 1-2 3.15C C.C 3.150 142.90 0.0 182.5 1-4 2.797 0.0 2.797 152.80 0.0 152.6 2-1 3.637 0.0 3.639 170.93 0.0 170.4 2-2 3.067 0.0 3.245 176.37 0.0 176.5 2-3 3.245 0.0 3.245 176.37 0.0 176.5 2-4 2.892 C.0 2.892 186.86 0.0 186.5 3-1 3.224 0.0 3.224 150.79 0.0 150.7 3-2 2.670 C.0 2.472 176.41 0.0 176.5 3-3 2.660 C.0 2.472 176.41 0.0 153.7 3-4 2.277 0.0 2.277 160.10 0.0 160.5 4-2 1.336 C.0 1.35<	10-10	0.279	0_0	0.279	8.01	0.0	8.(
1-1 3.744 C.C 3.744 137.88 0.0 137. 1-2 2.992 0.0 2.992 170.43 0.0 170.4 1-3 3.15C C.C 3.150 142.90 0.0 182.5 1-4 2.797 0.0 2.797 152.80 0.0 152.6 2-1 3.639 0.0 3.839 170.93 0.0 170.4 2-2 3.067 0.C 3.087 204.75 0.0 204.75 2-4 2.892 C.0 2.892 186.86 0.0 186.7 3-1 3.224 0.0 3.224 150.79 0.0 150.7 3-3 2.630 C.0 2.472 165.41 0.0 176.5 3-3 2.630 C.0 2.277 160.10 0.0 160.7 4-2 1.33C C.C 1.330 74.42 0.0 74.4 4-2 1.33C C.C 2.917 85.47	100						
1-2 2.992 0.0 2.992 170.43 0.0 170.4 1-3 3.15C C.C 3.150 142.90 0.0 142.5 1-4 2.797 0.0 2.797 152.80 0.0 152.6 2-1 3.839 0.0 3.839 170.93 0.0 170.4 2-2 3.067 0.0 3.839 170.93 0.0 170.4 2-3 3.245 0.0 3.245 176.37 0.0 274.7 2-3 3.245 0.0 3.224 150.79 0.0 150.7 3-1 3.224 0.0 2.472 176.41 0.0 176.7 3-2 2.472 0.0 2.277 176.41 0.0 153.7 3-4 2.277 0.0 2.277 160.10 0.0 160.7 4-2 1.33C C.C 1.330 74.42 0.0 74.4 4-4 1.35 0.0 1.135 61.00 0.0 85.4 6-6 2.555 C.C 2.555 89.92 <td>1-1</td> <td>3.744</td> <td>C . C</td> <td>3.744</td> <td>137.88</td> <td>0.0</td> <td>137.</td>	1-1	3.744	C . C	3.744	137.88	0.0	137.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1-1	2.992	0.0	2,992	170.43	0.0	170.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1-3	3.150	C.C	3, 150	142.90	0.0	142.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1-2	2.797	0.0	2.797	152.80	0.0	152.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2-1	3,839	0_0	3.839	170.93	0.0	170.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2-2	3.067	0.0	3.087	204.75	0.0	204.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2-3	3 245	0.0	3. 245	176.37	0.0	176.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 - J 7 - 4	2.992	0-0	2.892	186.88	0.0	186.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3-1	3.224	0.0	3. 224	150.79	0.0	150.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3-7	2 472	0_0	2.472	176.41	0.0	176.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1-1	2.630	0.0	2.630	153.48	0.0	153.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3-5	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.0	2.277	160.10	0.0	160.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1 336	0.0	1.330	74.42	0.0	74.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4-2 4-4	1, 175	0.0	1, 135	61.00	0.0	61.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4-4 6_6	2.917	0.0	2.917	85-47	0.0	85.+4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5-5	2.555	0.0	2.555	89.92	0.0	89.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7-7	1.089	0.0	1.089	53.29	0.0	53.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8+9	6.785	0.0	6.785	110.46	0.0	110-4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9-6	3.693	0_0	3.693	78.50	0.0	. 78.5
ECCM 1-1 4.835 C.C 4.835 161.26 0.0 161.2 $1-2$ 3.503 C.O 3.503 195.01 0.0 195.0 $1-3$ $4.C5C$ C.C 4.050 170.21 0.0 170.2 $1-4$ 3.306 0.0 3.306 174.72 0.0 174.7 $2-1$ $4.93C$ C.C 4.930 194.31 0.0 194.3 $2-2$ 3.598 C.C 3.598 229.33 0.0 229.3 $2-3$ 4.145 G.O 4.145 203.69 0.0 203.69 $2-4$ $3.4C1$ C.C 3.401 208.80 0.0 208.80	10-10	2.804	0.0	2.804	E0.42	0.0	80.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6CCH	20004					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1-1	4. 875	C. C	4.835	161.26	0.0	161.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1-2	3,503	0.0	3.503	195.01	0.0	195.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1-3	A. CSC	0.0	4.050	170.21	0.0	170.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1-A	3, 106	0_0	3, 306	174.72	0.0	174.7
2-2 3.598 C.C 3.598 229.33 0.0 229.3 2-3 4.145 C.O 4.145 203.69 0.0 203.6 2-4 3.401 C.O 3.401 208.80 0.0 208.8	2=1	4,470	<u></u>	4,930	194.31	0.0	194.3
2-3 4.145 C.O 4.145 203.69 0.0 203.6 2-4 3.4C1 C.C 3.401 208.80 0.0 208.8	2=2	3,548	<u> </u>	3.598	229.33	0.0	229.3
2-4 3.401 C.C 3.401 208.80 0.0 208.8	5 6 7 4 1	4,145	6.0	4, 145	203.69	0.0	203.6
	2 - J 7 - L	3,401	c.c	3.401	208.80	0.0	208.8

(TAPLE B.6B CONTINU	EC}					
STAGF/TECHNICAL	LABOR (U	NEKILLED	EN/UNIT)	LNVESTRENT	(\$1000/0)	NLT)
EACKAGE NUMBEE	SKILLEE	<u>INSKILLED</u>	1CTAL	EQUIFEERI	<u>hUFSE</u>	101
3-1	4,315	5.0	4.312	1/4.1/	0.0	1/4.1/
3-2	Z.983	0.0	2.903	200.99	0.0	200.99
3-3	3.530		3.710		0.0	100.00
3-4	2.786	C.G	2.700	162.01	0.0	182.01
4-2	1.841	G.0	1.841	95.00	0.0	99.00
4-4	1.644	C.C	1.044	52.92	0.0	82.92
5-5	6.817	0.0	5.017	200.63	0.0	200.6
6-6	5.450	C.0	5.452	207.03	0.0	207.0
7-7	2.760	0.0	2.760	138.48	0.0	138.48
8-8	52.236	0.0	52.236	850.42	0.0	850.42
9-9	28.518	C.0	28.518	606.21	0.0	606-2
10 - 1 C	21.462	0.0	21.462	615.54	0.0	615.54
SEF/COMP (100ECE/HR)					•	
58 1						
11	2.122	C.C	2.122	35.49	0.0	35-4_
12	1.507	C.C	1.507	29.68	0.0	29.6
13	1.558	C.O	1.558	23.40	0.0	23.4(
14	1.369	0.0	1.369	17.76	0.0	17.76
21	1.818	C.0	1.818	37.84	0.0	37.81
22	1.203	0.0	1. 203	32.03	0.0	32.0.
23	1.254	0.0	1.254	25.75	0_0	25.75
24	1.065	c.o	1.065	20.11	0.0	20.1
31	1.597	C.0	1.597	25.60	0.0	25.61
32	0.982	c.0	0.982	19.79	0.0	19.7.
33	1.033	0.0	1.033	13.52	0.0	13.51
34	0.843	C.C	0.843	7.87	0.0	7.81
41	1.499	0.0	1.499	26.76	0.0	26.76
42	0.884	c.c	0.884	20.95	0.0	20.95
43	0.935	C.O	0.935	14.68	0.0	14.6
44	9.745	0.0	0.745	9.03	0.0	9.0:
SURFACING	•					
GEAVEL (100CCE/EE)						
11	1.843	C.0	1.843	29.73	0.0	29.7:
12	1.356	C.C	1.356	16.27	0.0	16-21
21	1.708	0.0	1.708	35.08	0.0	35.0
22	1,221	c.c	1.221	21.63	0.0	21.6:
31	1.442	c.0	1.442	21.96	0.0	21.9
32	9.956	0.0	0.956	8.50	0.0	8.50
41	1.369	C.C	1.369	23.44	0.0	23.4
42	0.882	0.0	0.882	5.98	0.0	9.9
51	2.054	0.3806	2.434	44.06	0.0	44.0
52	1.567	C.3806	1.948	30.60	0.0	30.61
WEE (10CCCE/EF)						
111	14.596	2.9011	17.497	273.62	0.0	273.6
112	11,295	2.4093	13.704	125.88	0_0	129.8
211	14.308	2.9011	17.209	276.21	0.0	276.2
212	11.007	2.4093	13.416	132.47	0.0	132.4
311	14.083	2.9011	16.984	263,96	0.0	263.9
312	10.782	2.4093	13.191	120.22	0.0	120.21
411	13.985	2.9011	16.886	265.07	0.0	265.0
412	10.684	2.4093	13.093	121.33	0.0	121.31
511	14.700	3.2819	17.982	286.94	0.0	286.9
512	11.399	2.7900	14. 189	143.20	0.0	143.2
CEST/G (10C SM/EF)						
1111	0.302	C.1439	0.446	5.93	0.0	5.91
1112	0.267	0.1439	0.411	5.52	0.0	5.5
- 1121	0.307	C.1923	0.500	5.16	0_0	5.1
1122	0.272	0.1923	0.465	4.75	0.0	4.7.

(1)ELE B.68 CONTINU	IEC) .					
STAGE/TECHNICAL	LABOR (U	NSKILLED	MFN/URIT)	INVESTMENT	(\$1000/UNI	<u>T)</u>
PACKAGE NUMBER	SKILLED	DISKILLEC	TOTAL	ECOIENZNT	HORSE	<u> </u>
2111	0.322	0.1334	0.436	5.90	0.0	5.90
2112	0.267	0.1334	0.400	5.49	0.0	5.49
2121	0.307	C.1831	0.491	5.13	0.0	5.13
2122	0.272	0.1831	0.455	4.72	0.0	4.72
DEST/W (10C SM/EF)						
1111	0.302	0.1439	0.446	5.93	0.0	5.93
1112	0.267	0.1439	0.411	5.52	0.0	5.52
1121	0.307	C.1923	0.500	5.16	0.0	5.16
1122	0.272	0.1923	0.465	4.75	0.0	4.75
2111	0.302	0.1334	0.436	5.90	0.0	5.90
2112	0.267	C.1334	0.400	5.49	0.0	5.49
2121	0.307	0.1831	0_491	5.13	0.0	5.13
2122	0.272	0.1831	0.455	4.72	0.0	4.72

NCIE: LABOR IS EXPRESSED IN UNITS OF UNSKILLED MEN; THAT IS, THE ACTUAL NUMBER OF SKILLEL MEN REQUIRED IS WEIGHTED BY THE RATIC OF THE SKILLED WAGE TO THE UNSKILLED WAGE FOR THE PERIOD OF THE TECHNOLOGY; THIS FACTOR FOR THE 1950'S IS 1.34.

TABLE B.6C : THE ABOUND OF INVESTMENT AT THE PRICES OF 1974 AND THE AMOUNT OF LABOUR REQUIRED FOR THE GIVEN BATE OF DECOUCTION FOR THE 1970'S TECHNICAL PACKAGES 203 ALL STAGES.

-

-

.

٠

.

STASEZTECHNICAL	LANDR D	INSKTLETD	MTIL/LNTT)	ENVESTMO	NT (#1000/	UNIT)
PACKAGE NUMPER	SKILLEP	UNSKILLED	TUTAL	EQUIPHENT	HCKSE	JAT 11
SITE PREP (HA/HR)	<u> </u>					
11	75.660	351.0444	427.605	988.32	c.0	988.32
21	17.053	59.2662	71.129	181.45	0.0	181.46
31	9.377	25.9455	\$4.325	169.77	າ.ຄ	189.70
EXC/HAUL (1000CM/HR)	-					
1-1	2.244	6.0	2.244	95.30	0-0	95.30
1-2	2.170	3.0	2.170	196.39	0.0	106.39
2-3	1.753	-).0	1.753	141.42	2.2	141.42
2-5	1.624	2.0	1.024	137-19	o_c	137.15
3-4	1.229	3.3	1.229	125.49	7.0	125.48
3-6	1.100	0.0	1.100	118.34	0.0	112.34
4-1	2.205	0.0	2.205	50.40	0.0	50.48
4-2	2.131	1.0	2.131	61.35	0.0	61.36
4-7	1.427	0.C	1.427	32.18	3.0	32.18
5-3	1.619	3.9	1.619	66.14	0.0	66.14
5-5	1.499	9.9	1.499	63-65	5.0	61.65
5-3	2.752	0.0	0.759	27.06	2.0	27.)6
6-4	1.119	0.0	1.118	74.33	^_ 0	74.33
6-6	C. 98P	0.0	6.288	67.04	5.9	67.34
6-9	·.5C2	3.0	0.572	32.36	0.0	32.36
7-10	0.779	2.0	2.779	32.02	0.0	32.02
8-11	C. 403	0.0	Q.403	28.78	0.0	23.78
9-12	9.550	0.0	0.550	32.72	2.0	32.72
10-13	5.492	J . O	0.402	35.98	0.0	35.98
11-14	2.463	2.0	6.463	8.72	0.0	8.72
12-15	6.179	5.0	0.179	7.99	0.0	7.99
13-16	0.092).)	0.092	8.55	2.0	3.55
100M		-				
1-1	2.445	G.O	2.445	99.29	0.0	39.29
1-2	2.309	3.0	2.309	110.63	0.0	110.63
2-3	1.371	2.0	1.971	146.66	0.0	146.66
2-5	1.904	0.0	1.504	- 147.39	0.0	147.59
3-4	1.318	3.0	1.318	131.48	C.O	131.48
3-6	1.200	0.0	1.200	125.41	0.0	125.41
4-1	2.406	0.0	2.406	54.47	0.0	54.47
4-2	2.275	ə . 9	2.270	65.61	0.0	65.61
4-7	2.777	0.0	2.377	224.09	C.O	224.09
5-3	1.737	0.0	1.737	71.38	0.0	71.38
5-5	1.669	0.0	1.669	72.35	5 . 0	72.35
5-8	2.296) .a	2.296	81.91	0.0	81.91
6-4	1.206	3.0	1.206	80.33	0.0	80.33
6-6	1.092	0 . 0	1.098	74.10	2.2	74.10
6-9	1.419	3.3	1.419	91.39	C.O	91.39
7-10	1.103	0.9	1.108	45.52	0.Ò	45.52
8-11	5.571	0.0	0.571	49.78	5 .0	49.78
9-12	0.92C	0.0	C-820	48.73	3.0	48.79
10-13	0.589	0.0	0.589	52.66	C.C	52.66
11-14	3.941	0.0	3.941	74.17	5.40	74.17
12-15	1.517	0.0	1.517	67.85	c.0	67.85
13-16	Û ⊾96 2	0.0	0+96 Z	°9.26	C.O	P9-26
BCOM						
. 1-1	3.180	0+0	3.190	113.85	0.0	113.85
1-2	2.827	3.3	2.527	126.42	C.O	126.42

•

٠

(TABLE B.GC CONTINUED)

. -

.

-

.

STAGE/TECHNICAL	LAPOR D	JUSKTLLEG I	MENZUNITI	[NVESTWEN	T (+1000ZU	NTTI
PACKAGE HUMBER	SKILLEF	UNSKILLED	TOTAL	TOUIPMENT		TOTAL
2-3	2.295	9+0	2.275	165.49	2.0	161.45
2-5	2.430	C+O	2.430	178.20	5.0	179.70
3-4	1.633	0	1.633	152.53	c.0	157 13
3-6	1.540	0.0	1.545	149-46	c c	160 66
4-1	3.141	5.0	3.141	67-63	2.0	49.33
4-2	2.787	2.0	7.797	81.40	0.0	01 40
4-7	36.022	0.0	76.822	085 07	0.0	31.40
5-3	2.160	6.0	2.166	20 33	0.6	102.01
5-5	7.296	u - 0	2.296	1/12 66	2.0	90.22
5-3	7.877	0.0	7 977	280 05		102.66
6-4	1.522	0.0	1 572	250+94	0.0	280.95
6-6	1.620	ú - 1	1 670		0.0	101.78
6-9	6 571	0 0	1 - 42 9	98-15	n.0	93.15
7-10	2 067	0.0		294.40	C.O	294.4ů
P-11	C 071	2.0	2.057	44.51	0.0	84.51
0-LI 0-17	1 369	0.0	0.971	69.30	0 . 7	64.30
7-12	1.200	1.0	1.268	75.48	C.J	75.48
10-13	1.002	0.0	0.352	78.55	0 . 0	78.58
11-14	25.200	6.0	26.200	493.10	. .0	493.10
12+15	10+085	9.0	10.085	451.13	0.0	451.13
13-16	6.751	0+0	6.551	6C8.CP	`a . o	605.08
98 T						
11	7.550	0. ن	0.550	21.57	~ ^	21 57
12	9.719	0.0	2.710	37.58		21.37
13	C. 579	ú.0	0.678	22.20	5.0	27.20
14	2 995	3.0	6.995	22.021	1.0	22.20
21	0.355	0.0	0.355	27.13	0.0	27.93
22	0.516	0.0	0-516		0.0	23.40
23	- 493	0.0	C. 483	77.44	0.0	39.41
24	6.200	1.0	0.800	24.03	5.6	24.01
31	0.298	. O	0.000	29.16	0.0	29.76
32	1.459	· · · ·	0.450	0.04	0.0	6.64
12	0 476	0.0	7.470	22.55	G•0	22.65
36	6. 741	0.0	0.420	1.21	0.0	7.27
41	1 350	0.0	0.743	13.00	0.0	13.00
43	1 / 10	0.0	0.259	6.65	0•0	6.65
7 2	1.4113	1+0	0.419	22.65	C.O	22.65
7 3	7+350	1.1	0.386	7.27	0.0	7.27
SUDEACTING	0.70	9.9	0.794	13.00	0.0	13.00
GRAVEL (100CCM/HR)					•	
11	0.994	0.0	C.874	21-07	0-0	21.07
12	0.787	0 . 0	0.787	20.47	3.0	20.40
13	1.303	0.9	1.323	29.82	0.0	20 40
21	0.807	0.0	0.827	27.74	0.0	27.52
22	3.701	2.0	0.701	27.07	0.0	27.17
23	1.216	3.0	1.216	36-49	5.0	21+31
31	2.743	0.0	0.743		0.0	10 97
32	1.637	5.0	1.637	10 17		10.54
33	1,152	0.0	1 15 2	10.17	5.0	10.17
41	7.729	0.0	5 77 8			14.24
42	2.627	6.0	20167 11.677	1.1 01		11.48
47	1,132	0.0	1 170	10.01	··•U	10.81
51	1_301	0.0 0.3145	1 437	20.25	(°•0	20.23
52	1.214	5 2166 5 2166	1 631	20.45	C.C	25.43
52	1.725		しゅうさん コンパート	27.75	0.D	25.76
NBM (100CCM/HR)	4 - 7 3 . '	1.1703	5+921	37+18	J.O	37.18
111	-76°	1.4126	7.973	137.67	G - C	04.051
112	5.314	1.3734	9.698	146.89	5.0	146.99

.

.

•

-

(TAMLE B.GC CONTINUED)

~

STAGEZTECHNICAL	LATTR (L	HISKILLED M	LAVESTMENT (SICOO/UNIT)			
PACKAGE NUMBER	SKILLEI	UNSKILLED.	TOTAL	ECULPHENT	HORSE	TOTAL
113	11.064	1.2101	12.432	213.37	C.C	213.97
121	7.450	2.2629	11.723	156.97	0.0	156.39
122	5.231	2.2367	11.469	164.07	a.o	164.)7
123	11.964	2.6314	14.646	271.15	0.0	231-16
211	°.462	1.4126	7.974	146.79	0.0	146.78
212	e.233	1.3734	7.676	153.96	0.0	153.76
213	10.966	1.8191	12.794	221.05	C.O	221.25
221	9.362	2.2629	11.625	163.97	0.0	163.97
222	7.133	2.2367	11.369	171.16	0.Q	171.15
223	11.966	2.6814	14.547	238.24	0.0 .	233.24
311	P.380	1.4126	9.793	128.41	C.O	129.41
312	°.167	1.3734	9.541	135.60	ר. ס∙נ	135.60.
313	10.500	1.3131	12.717	202.68	0.0	202.68
321	7.280	2.2623	11.543	145.60	C.O	145.60
322	7.051	2.2367	11.288	152.79	C.O	152.79
323	11.724	2.6314	14.466	219.88	0.0	219.88
411	2.364	1.4125	9.775	129+02	G.O	129.02
412	2.134	1.3734	9.50P	136.21	0 . 0	136.21
413	17.868	1.8181	12.696	203.30	? ₊ 0	203.30
421	9.264	2.2629	11.527	146.22	0.0	146.22
422	9.035	2.2357	11.271	153.40	9 .0	153.40
423	11.769	2.6814	14.449	220.49	0.0	220.49
511	8.767	1.7266	10.696	144.46	0.0	144.46
512	°.740	1.7934	10.440	151.65	0.0	151.65
513	11.473	2.1320	13.605	218.74	0 •0	218.74
521	9.869	2.5878	12.459	161.65	0 .0	161.65
522	7.640	2.5506	12.191	168.84	0.0	169.84
523	12.373	2.9953	15.369	235.93	0.0	235.43
DEST/G (100 SM/HR)						
1111	0.178	9.9632	0.242	3.89	0.C	3.89
1112	0.15B	0.0632	2-221	3.38	0.0	3.34
1121	r+196	9.1163	1.313	3.66	0.0	3.66
1122	9+175	9.1168	0.292	3.16	0.0	3.16
1211	P+173	3.0627	0.241	3.91	C.O	3.91
1212	7.157	C.0629	0.220	3.40	J.O	3.40
1221	0.176	3.1165	0.313	3.69	0.0	3.68
	0.175	9.1165	0.292	3.18	0.0	3.18
DESIZH EIGG SMZHR)						
1111	3.175	0.0610	0.236	3.85	0.0	3.85
1112	0.155	9.0619	0.215	3.34	0.0	3.34
1121	C.193	0.1142	0.307	3.62	D •C	3.62
1122	9+172	3.1142	0.286	3.12	0.0	3.12
1211	2.175	0.0604	0.236	3.86	C.O	3.86
1412	2+154	0.0504	0.215	3.36	C.O	3.36
1221	5.193	0.1139	C.307 .	3.64	0.0	3.64
1222	0.172	9.1137	0.286	3.13	0.0	3.13

NGTE: LABOR IS EXPRESSED IN UNITS OF UNSKILLED MEN; THAT IS, THE ACTUAL NUMBER OF SKILLED MEN REQUIRED IS WEIGHTED BY THE RATIC OF THE SKILLED WAGE TO THE UNSKILLED WAGE FOR THE PERIOD OF THE TECHNOLOGY; THIS FACTOR FOR THE 1970'S IS 1.25.

-

-
		Measure of Capital Requirements					
Technical package number	Depreciation cost at 1974 (\$/100 BCM)	Investment cost at 1930 (\$1000/100 BCM per hr)	Investment cost under developing conditions (\$1000/100 BCM per hr)				
1_1	8.00	2.58	1.29				
1-2	10.41	3,40	1.70				
2-1	7.98	3.14	1.59				
2-2	10.39	3.96	2.00				
3-1	10.10	4.48	22.61				
3-2	12.51	5.30	23.02				
4-3	2.05	8,89	4.98				
5-4	1.75	7,65	4.27				
6-5	2,09	8,08	4.43				
7-6	10.81	17.44	202.80				
8-7	4.46	8.60	4.48				
9-7	7.03	10.99	49.58				
10-7	12.58	30.59	320.85				
10-8	16.69	33.97	395.00				
10-9	24.03	57.09	663.80				

Table B.7a: Capital requirements of the 1920's technical packages for excavation/hauling at 100 meters, where capital is measured in various ways.

		Measure of Capital Requirements	
Technical package number	Depreciation cost at 1974 (\$/100 BCM)	Investment cost at 1930 (\$1000/100 BCM per hr)	Investment cost under developing conditions (\$1000/100 BCM per hr)
	10.05		102.11
	10.25	16.95	197.11
1-2	11.51	18.89	219.64
2-3	11.15	25.04	291.15
2-5	10.00	25.25	293.61
3-4	10.72	22.45	261.03
3-6	8.73	21.41	248.96
4-1	5.76	9.30	108.14
4-2	7.00	11.20	130.24
4-7	22.41	38.26	444.88
5-3	8.33	12.19	141.71
5-5	7.24	12.35	143.64
5-8	8.19	13.98	162.61
6-4	9.32	13.72	159.48
6-6	7.41	12.65	147.11
6-9	9.14	15.60	181.43
7-10	3.79	7.77	90.36
8-11	3.40	6.96	80.96
9-12	4.88	8.33	96.87
10-13	5 27	8 99	104 54
11_14	8 05	12 66	147.26
12-16	6 78		
13-16	8 93	15.24	134.70

Table B.7b: Capital requirements of the 1970's technical packages for excavation/hauling at 100 meters, where capital is measured in various ways.

APPENDIX C

PROJECT DESIGNS AND COSTS

C.1 Project Design

Certain aspects of the project design not covered in Section 3.2, including some further details of the design standards and alignments used in the analysis and the characteristics and design of the materials used in the various layers, are discussed in Section C.11. Section C.12 proceeds with some further discussion of the derivation of the construction quantities for the excavation/hauling, spreading/compaction, site preparation, and surfacing stages of the various projects. All sources cited in these two sections are listed in Section C.13.

C.11 Design Standards

As it is desirable to build rather different roads for different design standards, rolling terrain with reasonably steep grades was selected, with the road crossing it in going from point A to point B. Two sets of design standards, at reasonably opposite ends of the spectrum for today's two lane, low volume, rural roads, are defined for two different traffic profiles as follows (2, 3, 4, 6, 9, 11):

	<u>Low Standard</u>	<u>High Standard</u>
Design Speed	25 mph	60 mph
Maximum Grade	9%	4 (some 6) %
Minimum Radius of Curvature	230 ft	1300 ft
Minimum Length of Vertical Curves	400 ft	600 ft
Initial Traffic	80 ADT	400 ADT
Truck Percentage	20 %	30 %
Annual Growth Rate Over 15 Years	10%	10%

High Standard Cross Section:

It might additionally be noted that the critical length of grades is not used in the design as low volume roads are being considered, and that no spirals are used since the scale of the map did not allow it. These standards are basically in agreement with those set forth by the American Association of State Highway Officials (AASHO) (2), for low volume, rural roads, with the exception of the widths which reflect the views of Oglesby and Altenhofen (6), among others, who believe AASHO's widths are overdesigned for such roads.

Given these design standards and a U.S. Geological Survey topographic map of rolling terrain with two points selected some 16 kilometers (10 miles) apart, several possible alignments connecting the two points were

laid out for each design standard, assuming no intermediate controls such as townships and quarries. Earthwork quantities (cut and fill) were then estimated for each plan. For the purposes of the study at hand, the intermediate alignment, in terms of road length and earthwork quantities, for both the low and high standard designs is selected for use in the project-level analysis; the details of these two alignments, as required by the HCM, are given in Table C.1. A few other random details about the general project that the HCM needs include: rainfall - 800 mm/year, seasons - 4 months wet and 8 months dry, and elevation - 550 meters.

Gravel, waterbound macadam, and double bituminous surface treatment constitute the surfaces used in the current research. Various characteristics of these materials are needed for use both in designing the surfaces and in estimating their deterioration over time. The gravel, to be used as a surface, base, or subbase, is assumed to be a well-graded gravel with some 10 percent fines and to be compacted to 100-105 percent of standard AASHO compaction. The California Bearing Ratio (CBR) of this material in a soaked state is 55 percent according to Yoder (12). Usina the correlations between CBR and material coefficient developed by the Illinois Division of Highways (1), such gravel has a layer coefficient of 0.12 when used as a subbase and 0.11 as a base; similar figures are reported by various states in the AASHTO Interim Guide for Design of Pavement Structures 1972 (1). Lacking similar data for gravel surfaces, a layer coefficient of 0.10 is assumed, in line with the figures above and with those standardly used in the HCM. In determining surface conditions, for the eventual estimation of maintenance and user costs, the

Segment Number	Length (km)	Curvature (°/km)	Road rise (M/km)	Road fall (M/km)	Ground rise (M/km)	Ground fall (M/km)
100	0.823	0	31.1	0	11.1	0
101	2,225	0	41.8	0	41.8	0
102	0.305	0	0	20.0	0	20.0
103	1.036	241.31	32.4	0	32.4	0
104	1.341	0	3.4	0	3.4	0
105	1.463	0	0	32.3	0	32.3
106	2.225	134.83	35.6	0	35.6	0
107	0.427	23.42	0	71.4	0	71.4
108	0.457	175.05	0	53.3	0	53.3
109	0.853	222.74	28.6	0	28.6	0
110	1.890	55.56	0	9.7	0	9.7
111	1.341	44.74	13.6	0	13.6	0
112	2.621	5.72	60.5	0	60.5	0

Table C.la: Details of the individual segments of the alignment for the low standard design.

Note: Total length is 17.01 km.

Segment Number	Length (km)	Curvature (°/km)_	Road rise (M/km)	Road fall (M/km)	Ground rise (M/km)	Ground fall (M/km)
200	3,901	34.61	33.6	0	33.6	0
201	0,914	38.29	3.3	3,3	6.6	6,6
202	2.377	0	0	7.7	0	7.7
203	0.610	32.79	0	40.0	0	40.0
204	2.073	103.71	35.3	0	38.2	2.9
205	1.250	84.00	0	35.4	4.9	43,9
206	0.396	126.26	46.2	0	53,9	0
207	1.097	0	0	5.6	0	5.6
208	1.219	0	41.3	11.3	45.0	15.0
209	1.036	82.05	88,2	0	88.2	0
210	1.737	43.18	17.5	0	17.5	0

Table C.lb:	Details	of	the	individual	segments	of	the	alignment	for	the	high
	standard	ab t	esigr	۱.							

Note: Total length is 16.61 km.

HCM uses the deterioration model of the Transport and Road Research Laboratory (TRRL) (8) for gravel surfaces; an initial roughness of 3250 mm/km is assumed (8).

Waterbound macadam is used as a base or surface. AASHTO (1) cites figures ranging from 0.14 to 0.20 for the layer coefficient of a wbm base, the data being gathered from various states. The midpoint of the range, 0.17, is used in this study; Huang (4) substantiates this somewhat by cutting an inch off his base when a wbm, as opposed to gravel or crushed rock, base is used beneath a flexible pavement, with crushed rock bases having a material coefficient of about 0.14 (1). For wbm as a surface, the bottom of the range of material coefficients, 0.14, is used. As no deterioration model for wbm surfaces could be found, TRRL's model for double bituminous surface treated roads (8) is used. This is not as unreasonable as it may seem, however, in that the exact model used, such as curves for roughness and cracking, varies with the modified structural number of the surface; also the initial roughness is specified as 3250 mm/km, more like a gravel than a dbst road.

For double bituminous surface treated roads, TRRL (8) suggests a material coefficient of 0.10, while the HCM uses one of 0.20. The actual value is not too critical in that the layer is so thin it has little influence on the modified structural number of the surface, which is the only place the layer coefficient is used. A figure of 0.10 is used in the current research, since the design and deterioration of the dbst road is pretty much based on TRRL's work (7,8). Using TRRL's deterioration model for surface treated roads, an initial roughness of 2300

mm/km is assumed (8).

The surface design requires knowledge of the traffic expected over the design life of the road and the CBR of the subgrade, as well as the layer coefficients of the materials being used. Actually only the thickness of the gravel layer has to be designed, since a wbm surface or base is assumed to be 15.2 cm (6 in.), as this represents standard design practice, and the thickness of dbst is determined primarily by the size of the crushed stone used instead of by the amount, with 2.2 cm (7/8 in.) being the thickness used. Following TRRL's design procedure for flexible pavements (7), the basis of the gravel thickness design is a chart relating subbase thickness to traffic over the life of the road and CBR of the subgrade for a surface dressed road with a 6 in. base of gravel, crushed rock, cement or lime-stabilized soil, or bitumen-stabilized sand. This is obviously fine for the dbst road, but it may result in slight underdeisgning of the wbm and especially the gravel road, although it does not appear to be serious as they seem to perform satisfactorily when run in the HCM.

The traffic is needed in terms of cumulative standard axles (8200 kilogram [18 kip] loads) over the life of the project. The inital average daily traffic is as follows:

	Cars	<u>SU trucks</u>	2-S2 trucks	3-S2 trucks
Low standard	64	8	5	3
High standard	280	60	36	24

Using the gross weights and axle configurations of the four vehicles (Table C.3), equivalence factors for converting axles to standard axles (7), and a chart relating cumulative number of vehicles over project life to initial traffic, design life (15 years), and annual growth rate (10%) (7), these ADT's are respectively converted to 265,000 and 1,998,400 cumulative standard axles in both directions over the life of the project. The narrow width of the low standard design necessitates inflating 265,000 actual cumulative standard axles to 368,200 effective cumulative standard axles because of the tendency of people to drive in the middle when there is no on-coming traffic.

Using these traffic figures and a subgrade CBR of 7.0 percent, the following layer thicknesses are designed:

Project	Subbase	Base	Surface
L114	-	-	gravel - 29.2 cm (11.5 in.)
L214	-	gravel - 14.0 cm (5.5 in.)	wbm 15.2 cm (6.0 in.)
L311,L314, L315,L316, L317	-	gravel - 29.2 cm (11.5 in.)	dbst 2.2 cm (7/8 in.)
H215	-	gravel - 17.8 cm (7.0 in.)	wbm 15.2 cm (6.0 in.)
H312,H313, H315,H317	-	gravel - 33.0 cm (13.0 in.)	dbst 2.2 cm (7/8 in.)
H415	gravel - 17.8 cm (7.0 in.)	wbm 15.2 cm (6.0 in.)	dbst 2.2 cm (7/8 in.)

This just leaves the surfaces on the 3.5 percent CBR subgrade. The two improperly designed ones (p L334 and p H335) are designed for a 7 percent CBR, and their layer thicknesses, therefore, are as above for projects L314 and H315, respectively. For the two properly designed surfaces (p L324 and p H325), the modified structural number is used to design the gravel layer, such that the properly designed roads with the 7 percent CBR (p L314 and H315) and the 3.5 percent CBR (p L324 and H325) have the same modified structural number; this is done under the assumption that two such roads should behave the same. The equation for the modified structural number of a surface is as follows (1, 8):

$$SN' = \sum_{i=1}^{n} a_i t_i + 3.51(\log_{10} CBR) - 0.85(\log_{10} CBR)^2 - 1.43$$
where n = number of layers
$$a_i = \text{material coefficient of layer i}$$

$$t_i = \text{thickness of layer i (in.)}$$

$$CBR = California Bearing Ratio (%)$$

SN' for the two dbst surfaces on the 7 percent CBR are as follows:

p L314: SN' = .11(11.5) + .10(7/8) + 3.51(
$$\log_{10}7$$
) - 0.85($\log_{10}7$)² - 1.43
= .11(11.5) + .10(7/8) + .93
= 2.29

^

p H315: SN' = .11(13.0) + .10(7/8) + 3.51(
$$\log_{10}7$$
) - 0.85($\log_{10}7$)² - 1.43
= .11(13.0) + .10(7/8) + .93
= 2.45

For the two dbst surfaces on the 3.5 percent CBR, where t represents the thickness of the gravel layer, then:

p L324: SN' = 2.29 = .11(t) + .10(7/8) + 3.51(
$$\log_{10}3.5$$
) = 0.85($\log_{10}3.5$)² - 1.4
2.29 = .11(t) + .10(7/8) + .23
t = 17.9 in.

p H325:
$$SN^{*} = 2.45 = .11(t) + .10(7/8) + 3.51(log_{10}3.5) - 0.85(log_{10}3.5)^{2} - 1.43$$

2.45 = .11(t) + .10(7/8) + .23
t = 19.4 in.

The design of the surfaces for the two properly designed projects on a 3.5 percent CBR is thus as follows:

<u>Project</u>	Base	Surface
L324	g ravel - 45.4 cm (17.9 in.)	dbst - 2.2 cm (7/8 in.)
H325	gravel - 49.2 cm (19.4 in.)	dbst - 2.2 cm (7/8 in.)

Finally, gravel shoulders are assumed in all cases. For the low standard road, their thickness is taken as equivalent to that of the surfacing materials since the shoulders are so narrow; a fixed thickness of 15.2 cm (6 in.) is used in the high standard case.

C.12 Construction Quantities

Excavation/Hauling: There are many ways of doing earthwork quantity estimates of highway construction. The accuracy of the results depends upon the information available, time and money available, and method used, with the first factor generally predominating and determining the other In the case at hand, it is assumed that the only information atwo. vailable is that displayed on a U.S. Geological Survey topographic map with 20 foot contours and that two points some 10 miles apart are to be Given this, it was felt that one of the intermediate design linked. methodologies should be adopted rather than the very crude or very de-McCoomb (5) does a comprehensive review of the many tailed methods. models available for estimating earthwork quantities, and comes up with the following sketch relating accuracy of the estimate and cost of collecting and processing the data:

INCREASING COST -----

The Australian model, for example, assumes the average height of cut or depth of fill to be 1, 2, 4, or 8 feet, depending upon whether the terrain is flat, rolling, hilly, or mountanous, respectively; at the opposite end of the spectrum is the detailed engineering design for which detailed survey data is required, detailed cross sections are plotted, end areas are found by planimeter, and then the average end area method is applied for computing the final earthwork volumes.

In the case at hand, a lack of data as well as of time precluded the use of detailed design, and as for ICES-ROADS, given the data available, its results would be no better than those of the one point model. The HCM, in turn, requires the road profile for use in estimating user costs; this suggests that the one point model may as well be used, since it is more accurate than the other models and its data requirements are complementary to those of the HCM. The basic one point model calls for computing the area of the cross section at each station, and using the average end area method to compute volumes; only the centerline height difference between the terrain and road profile is required. Because the area chosen for the study is a rolling to almost mountainous region, however, it was felt that the error incurred by neglecting side slope would be significant, and this is therefore included as briefly outlined below.

Fill area = $A + A_2$

 $A = WH + 2H^2$

BD = Y Sin0
ED = Y Sin0 [Cot(26.56 + 0)]
DC = YSin0 [Cot(26.56-0)]

$$A_2 = \frac{1}{2} BD \cdot (ED + DC)$$

= $\frac{1}{2} Y^2 Sin^2 \theta [Cot(26.56 + \theta) + Cot(26.56 - \theta)]$
= $Y^2 K$, where K is constant for a given cross slope

Cut area =
$$3 \text{ ft}^2/\text{ditch}$$

For the case of cut:

Cut area = A + 2A₃ + A₂
A =
$$\left[\frac{(W + 20) + (W + 20 + 4H)}{2}\right] \cdot H$$

= $(W + 20 + 2H) \cdot H$
BD = Y' Sin0
ED = Y' Sin0 [Cot(26.56 + 0)]
DC = Y' Sin0 [Cot(26.56 - 0)]
A₂ = $\frac{1}{2}$ BD · (ED + DC)
= $\frac{1}{2}$ (Y')² Sin²0 [Cot(26.56 + 0) + Cot(26.56 - 0)]
= (Y')² K, where K is constant as above
A₃ = 11 ft²

Note: The 26.56° comes from the assumption of batter slopes of 2 to 1.

Given a contour interval of 20 feet, it seemed reasonable to space stations every 200 feet. At each station then, the centerline height difference between terrain and road profile is estimated. The side slope input is the average cross slope in the vicinity of the road, and no attempt was made to obtain a weighted average cross slope, as again the contour interval does not lend itself to greater accuracy. Centerline height difference is taken in 2 foot intervals, and cross slope in intervals of 5 percent. Batter slopes of 2 to 1 are assumed for all cuts and fills. Although this conflicts somewhat with the current practice of varying the batter slopes with the height of cut and fill, it seems a reasonable simplifying assumption to make; moreover, these are somewhat steeper than usual, but this is not unreasonable since it helps reduce the amount of earthwork and the roads under consideration are. after all, low volume ones (2). Narrowing of the table drain in cuts would have substantially reduced earthworks in some areas, but it was not done as the cuts are lengthy and no run-off information is available. No real attempt was made to balance earthworks, as alternative excavation/hauling scenarios as well as alternative technical packages for doing the work are to be considered in the course of the project-level analysis.

Three alignments were laid out for each design standard, two completely separate routes (Routes 1 and 2), and in the case of the low standard road a slight modification of Route 1 (Route 1A), and in that of the high standard road a combination of the first two routes (Route 1-2). The earthworks were then estimated. The results are as follows:

Route	<u>Length(mi)</u>	Cut(bcy)	<u>Fill(ccy)</u>
Low standard:			
1	10.57	22,313	75,447
2	10.44	35,384	85,080
1A	10.74	13,380	74,289
High standard:			
1	10.68	768,541	323,523
2	9.45	1,619,790	831,073
1-2	10.32	770,158	370,326

The two intermediate alternatives, Route 1 for the low standard and Route 1-2 for the high standard, are used throughout the rest of the project-level analysis.

Given the basic earthwork quantities in terms of cut and fill volumes for the two design standards, the distribution of the cut between fill and spoil and of fill between cut and borrow remains to be determined along with the haul distances. This requires knowledge of the escavation/hauling scenarios of interest.* Rather than going to a method as sophisticated as mass-haul diagrams, it is decided to simply review the cut and fill volumes given at 200 foot intervals along each

^{*}Generally only the projects depicting alternative excavation/hauling scenarios are indicated in this discussion, as the projects depicting alternative surface materials and subgrade strength/surface design combinations assume a single excavation/hauling scenario for each design standard.

road with two line haul distances (200 feet and 1640 feet) in mind, estimating the percentages of cut which can go to fill. All materials taken directly from the ditch (low standard: 56% of the cut; high standard: 1.6% of the cut) go to fill. In cases where there is sideborrow, they are included with it in terms of haul distance; when there is no sideborrow, the ditch materials are hauled an average distance of 6 ft which is rounded up to 7 ft for the analysis. For the 200 ft line haul case, an additional 22% of the cut, coming from the road, goes to fill in the low standard case (p L311, L314, L316), and only 5.6 % in the high standard case (p H312); given the 1640 ft line haul, the figures are respectively 44% (11% of the fill at 98% compaction) (p L315, L317), and 42% (7% of the fill at 98% compaction) (p H313, H315, H317). In discussing the high and low standard cases side by side, it is important to remember the difference in the magnitude of their earthwork (cut: 1 to 35; fill: 1 to 5; cut + fill: 1 to 11) and also the distribution of materials between cut and fill, the low standard case having a lot of fill and little cut and the high standard the opposite.

The remainder of the fill, then, must come from borrow, the actual haul distances varying with the assumption as to type of borrow and the quantity and distribution of the material involved. In the low standard case (p L311), the remaining fill is reasonably distributed along the road and can thus all be sideborrowed from one side at an average haul distance of 21 ft. In the high standard case (p H312, H313), however, the remaining fill is large in quantity and unevenly distributed. It is

assumed that sideborrow areas on both sides of the road are some 3 ft deep and 12 ft across, providing some 3.8 bcy of material per foot of road. The quantities of fill still needed on a section by section basis (i.e., generally every 200 ft) are converted to quantity needed per foot, and for those sections where the need is below or not too far above 3.8 bcy/ft, the need is assumed satisfied with sideborrow at an average haul distance of 24 feet, while for sections with significantly larger needs, it is assumed that near pit borrow is more appropriate. Sideborrow takes care of 28% of the need for borrow in the case of the 200 ft line haul (p H312), while it handles 60% in the case of the 1640 ft line haul (p H313). The haul distance for sideborrow in all cases is rounded up to 30 ft.

All remaining fill materials thus come from pit borrow. In the two high standard cases with some sideborrow (p H312, H313), the pits are assumed to be some 10 ft beyond the sideborrow area, as an allowance for topsoil spoil; in the cases where all borrow comes from nearby pits (p L314, L315, H315), the pits are assumed to be some 20 ft beyond the ditch such that there is not a sharp drop-off right by the road. Pits containing some 7500 bcy of material are assumed (e.g., 450 ft by 75 ft by 6 ft for elevating graders and 300 ft by 75 ft by 9 ft for power shovels - greater depth being limited by suitability of materials). Fill requirements on a section by section basis are thus lumped to pit size, and haul distances, including at the pit, to the road, and along the road, are estimated, with the final average haul distance being a weighted

average. This in the low standard case is some 1564 ft (p L314) or 1607 ft (p L315) depending upon the line haul; in the high standard cases with sideborrow, it is 453 ft (p H312) or 306 ft (p H313) again depending on line haul, while in that without sideborrow, it is 574 ft (p H315). The assumed minimum size of the pit is penalizing the low standard case (p L314, L315) by resulting in a long haul along the road. The low standard near pit borrow distances are rounded to 1640 ft, while those for the high standard are rounded to 330 (was 306) ft and 540 (were 453 and 574) ft. The far pit borrow scenarios (p L316, L317, H317) are handled exactly like the respective near pit borrow ones (p L314, L315, H315) except that the pit is assumed to be 1000 ft from the ditch instead of 20 ft, yielding a set of haul distances 980 ft longer; the final distance used for the low standard case is 2625 ft and for the high is 1640 ft.

Before proceeding to discuss spoil, it should be noted that fill quantities are estimated in ccy and their conversion to bcy depends upon the level of compaction. In the case of 98% compaction:

from Section B.12 and $\frac{bank thickness}{loose thickness} = 0.65$, $\frac{bank thickness}{loose thickness} = 0.80$, thus $\frac{bank thickness}{compacted thickness} = 1.23$

Assuming that only the depth and not the cross-sectional area changes with compaction, then 1.23 is the factor for converting ccy to bcy.

Similarly in the 93% compaction case, the factor is 1.16. In the projects with 93% compaction (p L324, L334, H325, H335) then, less fill is needed, with the difference in the excavation/hauling quantities showing up in the amount borrowed from the pit.

All of the cut which cannot be used for fill and all of the topsoil removed from the roadbed including the ditches and from all borrow areas go to spoil. The quantity of topsoil removed from the vicinity of the roadbed depends upon whether or not sideborrowing is being done and upon the width (including ditches) and length of the road, the thickness being constant at 6 in. In the low standard case with sideborrow (pL311). an average topsoil removal width of 57 ft is used, while for those cases without sideborrow (p L314, L315, L316, L317), 40 ft, the width to the outside edge of the ditch, is used; similarly in the high standard cases, the figures are 81 ft (p H312, H313), and 52 ft (p H315, H317), respectively. Quantities coming from pit areas are calculated by dividing the volume of borrow from the pit by the average depth of the pit, 25 yd, to arrive at the area of topsoil removal, which when multiplied by 1/6 yd gives the volume of spoil material. In the low standard case, most of the spoil is from topsoil removal, while in the high standard case it is largely from cut for the road. As for haul distances, materials from the vicinity of the roadbed are assumed to be spoiled somewhat beyond the ditch, except in cases with sideborrow when these materials, along with the topsoil from the borrow area, are assumed to be spoiled beyond the sideborrow area; as for spoiling topsoil from borrow pits, this is

assumed to be done around the periphery. Weighting these various haul distances by the volumes of material involved results in average distances of 14 ft (p L311) and 11 ft (p L314, L315, L316, L317) in the low standard case, and of 18 ft (p H312, H313) and 17 ft (p H315, H317) in the high standard; these are rounded to 20 ft and 30 ft, respectively.

<u>Spreading/Compaction</u>: Silty clay is assumed to be the common soil in the area of the road, as it is one of the few materials for which a relationship could be found in the literature between the amount of compaction and subgrade strength. For silty clay, compaction in the range of 95 - 100% standard AASHO (giving a dry density of 100-105 $1b/ft^3$) at ± 2 percent of the optimum moisture content (a molding water content of 16 - 20%) results in a soaked California Bearing Ratio (CBR) in the range of 2.0 - 12% (10, 11). For the 98% compaction case, 7.0% is thus used as the soaked CBR of the subgrade. Similarly, compaction in the range of 91 - 96% standard AASHO (giving a dry density of 95.5 - 100.5 (1b/ft³) at the above moisture content results in a soaked CBR in the range of 2.5 - 5.5% (10, 11). For the 93% compaction case, 3.5% is therefore used as the soaked CBR of the subgrade.

The quantity of spreading/compaction is simply taken as the volume of fill material in bank measure. As noted above, the factor for converting compacted to bank measure varies with the level of compaction, being 1.23 for 98% compaction and 1.16 for 93% compaction.

<u>Site Preparation</u>: As in the case of topsoil removal which goes to spoil, the roadbed including the ditches and all borrow areas must be

cleared of brush and trees. The quantity of site preparation thus consists of these areas plus an additional 5 feet on either side of the road beyond the ditch and an additional 10 percent on the pits, as an allowance for brush encroachment and working space.

For certain site preparation technical packages (e.g., 1950 tp 31), the width of the area to be cleared is a factor in resource productivity. In the low standard case, site preparation widths of 67 and 50 ft are encountered for the roadbed (respectively with and without sideborrow) and 75 ft for the borrow pits, averaging out to some 60 ft or so; in the high standard case, widths of 91, 62, and 75 ft are encountered, averaging to some 75 ft.

<u>Surfacing</u>: Gravel and waterbound macadam surfacing are measured in volumetric units as a function of the surface design in terms of layer thickness, the road cross section, and the length of the route, while double bituminous surface treatment is measured in units of area as a function of the road cross section and length. The basic relations are as follows:

gravel and wbm layers:

volume (cy) =
$$\frac{\text{end area } (\text{ft}^2) \times \text{length } (\text{mi}) \times 5280 \text{ ft/mi}}{27 \text{ ft}^3/\text{cy}}$$

dbst layer:

area (sy) =
$$\frac{\text{width (ft) x length (mi) x 5280 ft/mi}}{9 ft^2/sy}$$

The lengths of the low and high standard designs are respectively 10.57 mi and 10.32 mi. The width of the surface, and thus that of the dbst layer, is 16 ft in the low standard case and 22 ft in the high standard. The end areas for the gravel and wbm layers are as follows:

gravel and wbm surface, base, and subbase:

• `

end area (
$$ft^2$$
) = $\frac{layer thickness (in.)}{l2 in./ft}$ x width (ft)

gravel shoulders (both) - low standard:

gravel shoulders (both) - high standard:

end area (ft²) = 2 [
$$\frac{6 \text{ in.}}{12 \text{ in./ft}} \times 5 \text{ ft}$$
] + [$\frac{6 \text{ in.}}{12 \text{ in./ft}} \times 1 \text{ ft}$]
= 5.5

Thicknesses of the various subbase, base, and surface layers are given in Section C.11.

C.13 Sources for Project Design

- American Association of State Highway and Transportation Officials, <u>AASHTO Interim Guide for Design of Pavement Structures 1972</u>, <u>AASHTO</u>, Washington, D.C., 1974.
 - American Association of State Highway Officials, <u>A Policy on Geo-</u> <u>metric Design of Rural Highways-1965</u>, AASHO General Offices, Washington, D.C., 1966.
 - 3. Harger, Wilson G., <u>Rural Highway Pavements Maintenance and Recon</u>struction, McGraw-Hill Book Co., New York, 1924.
 - Huang, Eugene Y., <u>Manual of Current Practice for the Design, Con-</u> struction, and <u>Maintenance of Soil-Aggregate Roads</u>, The Engineering Experiment Station, University of Illinois, Urbana, June 1959.
 - McCoomb, Lloyd Alexander, <u>Predictive Cost Models for Highway Con-</u> <u>struction</u>, S.M. Thesis, Civil Engineering Department, Massachusetts Institute of Technology, Cambridge, February 1970.
 - National Cooperative Highway Research Program, <u>Economics of Design</u> <u>Standards for Low-Volume Rural Roads</u>, Report 63, By C.H. Oglesby and M.J. Altenhofen, Washington, D.C., 1969.
 - 7. Transport and Road Research Laboratory (Overseas Unit), <u>A Guide</u> to the Structural Design of Bitumen-Surfaced Roads in Tropical and Sub-Tropical Countries, Proposed Revision to TRRL Road Note 31, United Kingdom, 1966.
 - Transport and Road Research Laboratory (Overseas Unit), <u>The Kenya</u> <u>Road Transport Cost Study: Research on Road Deterioration</u>, TRRL Laboratory Report 673, Prepared by J.W. Hodges, J. Rolt, and T.E. Jones, Crowthorne, Berkshire, 1975.
 - Vance, Jr., Lawrence Lee, <u>Cost Functions for Comparison of Low-</u> <u>Cost Transportation Technologies</u>, D. Eng. Thesis, Graduate Division, University of California, Berkeley, 1970, (Reprinted by Xerox University Microfilms, Ann Arbor, Michigan, No. 71-20,753).
 - Wahls, H.E., et al., <u>The Compaction of Soil and Rock Materials for</u> <u>Highway Purposes</u>, <u>NTIS PB-227931</u>, <u>Dept. of Civil Engineering</u>, North Carolina State University, <u>Raleigh</u>, <u>August 1966</u>.

- 11. Woods, Kenneth B., Donald S. Berry, and William H. Goetz, Editors, <u>Highway Engineering Handbook</u>, McGraw-Hill Book Co., New York, 1960.
- 12. Yoder, E.J. and M.W. Witczak, <u>Principles of Pavement Design</u>, John Wiley and Sons, New York, 1975.

-

C.2 Project Costs

Construction costs can be estimated by simply combining the construction quantities for the various stages of construction with the unit costs of the technical packages derived in the stage-level analysis. In order to complete these costs and bring them more in line with maintenance and user costs, overhead and profit is included at 20 percent of total direct costs, i.e., labor, equipment, and materials (1, 6, 23). Minor structures are still left out, however, as their share of total costs is small, and no major structures are assumed to be necessary.

This leaves the maintenance and user costs shares of project costs to be determined for 1974, 1930, and developing conditions. As these costs occur over the 15 year life of the road, a discount rate is needed in order to bring the costs back to the present or to annualize them; with the help of the statistical tables of the <u>Federal</u> <u>Reserve Bulletin</u> (5), rates of 8%, 3.5%, and 15% are estimated as roughly representative of the rate at which long-term bonds might be floated under 1974, 1930, and developing conditions, respectively. Some further discussion of the derivation and lists of the maintenance policies and unit costs used in the project-level analysis are given in Section C.21; the same is done for vehicle characteristics, utilization, and costs in Section C.22. Any sources cited in the course of these discussions and listings are given in Section C.23.

C.21 Maintenance Policies and Costs

Maintenance policies and technologies of today are assumed

throughout the analysis. The personnel associated with the HCM served as a primary source of information in the development of the policies, based on their experience in applying the model; Harger (7) also proved to be useful in the particular case of waterbound macadam surfacing. The basic objective is to develop maintenance policies which minimize maintenance and user costs and result in all of the roads being in reasonably poor condition at the end of 15 years, the assumed design life, such that their salvage values are low and reasonably comparable so as to justify their being ignored. The policies are developed by basically a trial and error process, using the HCM to test alternative policies.

Maintenance of gravel surfaces (p L114) may consist of grading during the dry and wet seasons, spot regravelling, and resurfacing; in the current project only the blading and resurfacing are done. The final maintenance policy consists, for the first 12 years, of grading once each season (i.e., once in 8 months in the dry season and once in 4 months in the wet) and resurfacing to a thickness of 29.2 cm (original depth of gravel) when the gravel reaches 15 cm in thickness; at year 13, the policy changes to just include blading. This results in the resurfacing of all segments of the road once in its 15-year life.

Maintenance of waterbound macadam surfaces (p L214, L215) may consist of calcium chloride treatments in the first year and oiling thereafter, surface patching, and periodic application of a level course. For the low standard road (p L214), maintenance entails 3

calcium chloride treatments in the first year, oiling once a year thereafter, and surface patching each year such that 100% of the cracks are filled; the surface patching is done with a bituminous mix as is standardly used for double bituminous surface treated roads. Because of its additional traffic, the high standard road (p H215) requires, in addition to the above maintenance, a level course in year 9 (the routine oiling and surface patching are not done in this year); this level course consists of filling all ruts and low spots with a bituminous mix, generally amounting to about 2 cm of material over some 30% of the road (an average of 0.6 cm over the entire road), and then oiling the whole surface.

Maintenance of double bituminous surface treated roads consists of surface patching and periodic application of a chip seal, level course, or overlay. The dbst projects fall into several groups on the basis of maintenance policy. For the low standard dbst road on a gravel base, projects L311, L314, L315, L316, and L317, and high standard dbst road on a wbm base and gravel subbase, project H415, and adequate maintenance policy entails surface patching each year such that 100% of the cracks are filled and application of a chip seal in years 5 and 10; a chip seal is a layer of bitumen followed by a layer of fine crushed rock, generally with a greater proportion of bitumen to aggregate than is used in the original surface treatment. The high standard dbst road on a gravel base, projects H312, H313, H315 and H317, requires the routine surface patching on a yearly basis, a chip seal in year 5, and a level course in year 9; the level

course is like that for the wbm surface, except that it is followed by a chip seal rather than by oiling. The only projects left are those on the 3.5% CBR subgrade; of these, the projects which are properly designed, projects L324 and H325, exhibit the same behavior, and thus require the same maintenance policies, as those on the 7% CBR subgrade, projects L314 and H315, respectively. The improperly designed projects, L334 and H335, call for the routine surface patching and application of an overlay, except in year 15, whenever the surface roughness gets over 4000 mm/km; an overlay consists of a tack coat of bitumen followed by the application of a 1 cm thickness of bituminous mix and a chip seal. This policy results in an overlay every other year for the low standard road, and one every year, but 1 and 15, for the high standard road; this is a lot of maintenance.

Routine maintenance performed annually on the various projects includes blading of gravel shoulders (included with surface grading for the gravel road, p Lll4), brush and vegetation control within 1.5 meters (5 feet) on either side of the road beyond the ditch, and culvert/ditch cleaning.

The unit costs of the various maintenance activities are, by and large, derived in the same way. For each activity, one or more sets of productivity data, generally taken from maintenance studies, studies of alternative design standards, and engineering texts, are used. This data most often specifies a crew of men and equipment with the times required for each to complete a given activity, plus materials

quantities where applicable. The equipment hours are then priced for 1974 using equipment rental rates from Means (13) and from conversations with engineers at Warren Brothers (29). The labor and materials are priced at 1974 simply using the prices in the construction phase of the study. Labor, equipment, and materials costs are then summed, and 20 percent added for overhead and profit to arrive at the unit cost for each activity. In cases where more than one set of productivity data are available, the average of the unit costs is used.

Maintenance costs for 1930 and developing countries are also needed. The U.S. Federal Highway Administration has published a highway maintenance and operation cost index (20, 27) since 1935 which can reasonably be extrapolated back to 1930, yielding a figure of 24 (1967 = 100) for that year; at the time of the study, figures only up to 1973 were available, so the index was extrapolated forward to 1974, yielding a figure of 150 (1967 = 100). The ratio of these two numbers gives an indexing factor of 0.16, which, when applied to the 1974 unit costs, adjusts them to the unit costs at 1930.

Deriving such an indexing factor for developing conditions is less straightforward. Given some cost figures for maintenance operations in Ethiopia (14), these were compared with the U.S. figures derived above for 1974; dropping the top and bottom figures, the ratio is found to range from 0.34 to 0.63, averaging at 0.49. A comparison of the costs of the least-cost technical packages under developing conditions to those under 1974 U.S. conditions for the various stages of construction gives a ratio ranging from 0.25 to 1.01, averaging at

0.61; similarly using developing conditions except for 1974 equipment and associated items, a ratio ranging from 0.24 to 0.79, averaging at 0.54 is found. Looking over these figures, 0.55 is selected as the indexing factor to be used in adjusting the 1974 unit costs for maintenance to those under developing conditions.

Table C.2 gives the unit costs, under 1974, 1930 and developing conditions, of the various maintenance activities discussed in the policies section, as well as the sources upon which their derivation is based.

C.22 Vehicle Characteristics, Utilization, and Costs

Transport technologies of today are assumed throughout the analysis, resulting in one set of vehicle characteristics and utilization data, as in the case of maintenance policies, although user costs are needed for various price conditions. A car, a single-unit truck (SU truck), and two semi-trailer combinations, one with two axles on the cab (2-S2 truck) and one with three (3-S2 truck) make up the vehicle set, selected on the basis of their representativeness of the range of vehicles and the availability of data. Table C.3 gives the basic characteristics and utilization data, along with the sources for these vehicles, as required by the HCM.

Vehicle cost data for 1974 is, in general, reasonably available from a variety of reliable sources. When comparable data is available from more than one source, the figure used is generally an average; when updating of the data is required, the wholesale price and labor wage indexes of the U.S. Bureau of Labor Statistics (BLS) (22) are

Table C.2: Unit costs (\$/unit) and their sources for the various activities involved in highway maintenance under 1974, 1930, and developing conditions.

		Economic Conditions				
		197	/4	1930	Devel- oping Country	
Activity	Units	Price	Source	Price ^a	Price ^a	
Gravel road maintenance:						
Dry season grading	km of road	28,66	9,13,15	4.59	15.76	
Wet season grading	km of road	28.66	9,13,15	4 59	15 76	
Gravel resurfacing	CCM of gravel	23.06 ^b	9,13	3.69 ^b	12.68 ^b	
Whm road maintenance:						
Calcium chloride treatment	SM of road		7 8 12 13 20		0 0220	
0iling	SM of road	0.04	7,0,12,13,25	0.000	0.022	
Surface patching	SM of area repaired	8 13	8 9 10 13 29 31	1 30	4 47	
Level coursed	CCM of material	117.54	7,9,10,13,29,31	18.81	64.65	
Obst road maintenance:						
Surface patching	SM of area renaired	8 13	8 9 10 13 29 31	1 30	4 47	
Chin seal	SM of road	0.13	9 10 13 20	0 11	0 30	
Level course ^e	CCM of material	189 20	9 10 13 29	30 27	104 06	
Overlaye	CCM of material	116.99	8,9,10,13,29	18.72	64.34	
Routine maintenance:						
Grading gravel shoulders	km of road	82.97	10.13	13.28	45.63	
Brush control	ha of area cleared	30.75	4.8	4.92	16.91	
Culvert/ditch cleaning	CM of muck removed	23.47	8,10,13	3.76	12.91	

502

(Table C.2 continued)

^aSee text for description of derivation of prices.

Indexing factor: 0.16 for 1930 (20, 27) 0.55 for developing country (14 and estimate)

^bAssuming resurfacing is done over the full 6.10 meters of road surface width.

e

.

^CCost of one treatment.

^dIncludes oiling.

^eIncludes chip seal.

		Vehicl	e name		
	Car	SU truck	2-S2 truck	3-S2 truck	Source
Fuel type	gasoline	gasoline	gasoline	diesel	-
Brake horsepower	187	165	210	218	30
Maximum cruising speed (km/hr)	110 ^a	110 ^a	110 ^a	110 ^a	-
Unloaded vehicle weight (metric tons)	1.6	2.6	10.0	13.6	16,17,30
Maximum load (metric tons)	0.4	3.5	15.1	18.7	30
Axle configuration ^b -type/% gross weight	sng1/33.3	sng1/20.0	sng]/7.7	sng1/6.0	30
-type/% gross weight	sng1/66.7	sng1/80.0	sng1/30.8	db1/47.0	30
-type/% gross weight	-	-	db1/61.5	db1/47.0	30
Annual utilization (hrs)	372	446	1,171	1,464	9,26,30
Annual km driven	23,800	25,000	65,600	82,000	9,26,30
Normal vehicle life (yrs)	8	10	10	01	9,26,30

Table C.3:	Vehicle	characteristics	and	utilization	data	and	their	sources.
(Table C.3 continued)

^aThe HCM assumes maximum speeds at or below these values; using these figures thus means that no constraints will be placed on vehicle operation due to limitations in its power.

^bThe HCM recommends using the following fractions when axle load information is not available:

steering axle $\frac{1}{1-1}$

each other axle group $\frac{N}{T-1}$

where T = total number of tires on vehicle

N = number of tires in axle group

used. It might be noted that the fuel costs used are different from those used in conjunction with construction equipment, since retail rather than wholesale prices are assumed here; interest rates are taken as being the same, however. Overhead and value of time savings are taken as zero due to a lack of data. Finally, finding annual insurance costs and registration, license, and inspection fees for trucks presented the most difficulties by far and merits some further explanation.

The U.S. Interstate Commerce Commission (28) gives the following figures for Class I common carriers of general freight involved in intercity service at the end of 1973:*

<u>Vehicle Type</u>	Number	Value
Trucks	51,537	\$ 322,178,272
Truck-tractors	109,917	\$1,445,151, 1 79
Semi-trailers	234,154	\$1,116,556,971
Full Trailers	1,945	\$ 11,637,067

Insurance for the above vehicles (cargo loss and damage, fire, theft, collision, public liability and property damage, and other insurance expenses) - \$246,868,772 Vehicle licenses and registration fees - \$154,538,335

Each vehicle is given an insurance cost and license and registration cost on the basis of its value (i.e., the average value of a truck of its type) as a percentage of the total value of all vehicles. Costs

^{*}Class I carriers are defined as those having one million dollars or more average annual gross operating revenues; intercity service means at least 50 percent of the carriers revenues come from intercity business.

for the single-unit truck are based on the data for trucks, while costs for the two larger trucks are based on the data for truck-tractors with semi-trailers.

In order to arrive at costs under 1930 conditions, the individual items constituting vehicle cost data are generally indexed back separately from 1974, as no convenient overall index exists as in main-With a certain amount of extrapolation of the BLS's consumer tenance. price index for various vehicle related items (21, 22), and use of their wholesale price index for motor vehicles and equipment (22), the basic vehicle data for 1974 is indexed back to 1930. Similarly. the prices of petroleum products are indexed by means of ratios of the prices used in the construction phase of the research or by means of the BLS consumer and wholesale price indexes (21, 22). Labor costs are generally handled somewhat more directly by means of a 1957 BLS bulletin (25). Total user costs (undiscounted) over the life of the road as determined by the HCM using this 1930's data are some 18 percent of those using the 1974 data.

Vehicle cost figures under developing conditions are largely based on logic and a certain amount of fact, much as in the case of the materials costs. Keeping in mind the vehicle information available in a few developing country case studies (2, 14, 18, 19), and the general comments of various authors (3, 11), costs are developed in line with the set of economic conditions used in the construction cost phase. Vehicle and tire costs are thus taken as somewhat less than twice the 1974 U.S. figures, as vehicles are generally driven

507

over a longer time in developing countries. Insurance is left about the same, and fees for registration, licensing, and inspection are half the 1974 figures which is probably still a little high. Labor, petroleum products, and interest rate are based directly on the figures used in the construction cost phase of the research, although maintenance labor is taken as twice the skilled wage rate due to scarcity and helper costs as twice the unskilled rate as compensation for expenses incurred on the road. Using these figures for developing conditions, the HCM computes total user costs over the life of the road, the final result being some 90 percent of 1974 user costs (both undiscounted).

Table C.4 gives the vehicle cost data under 1974, 1930, and developing conditions, as well as the sources upon which the figures are based.

Table	C.4a:	Vehicle	cost	data	in	dollars	and	their	sources	at	the	prices	of	1974.
								••••			-,			,

Cost Item	Car	SU truck	2-S2 truck	3-S2 truck	Source
Vehicle cost new less tires	4,340	7,500	23,300	30,000	17,26,30
Tire cost (1 tire)	33	122	187	290	16,17,22,26,30
Annual insurance cost	162	540	1,500	1,500	26,28
Annual registration, licensing, and inspection fees	47	350	1,000	1,000	26,28
Maintenance labor (per hour)	12.00	6.73	6.73	6.73	22,26,28
Driver cost (per month)	0	925	1,110	1,292	22,24
Helper cost (per month)	0	855	1,082	1,193	22,24

	Unit Price/Rate	Source
Petroleum products:		
gasoline (liter)	0.13	17,26
diesel fuel (liter)	0.11	17
oil (liter)	0.72	17,26
Interest rate (%)	11.5	5

Table C.4b: Vehicle cost data in dollars and their sources at the prices of 1930.

Cost Item	Car	SU truck	2-S2 truck	3-52 truck	Source
Vehicle cost new less tires	1,351	2,287	7,105	9,149	17,22,26,30
Tire cost (1 tire)	9	37	57	88	16,17,22,26,30
Annual insurance cost	28	92	255	255	21,22,26,28
Annual registration, licens- ing, and inspection fees	23	169	482	482	21,22,26,28
Maintenance labor (per hour)	1.21	0.68	0.68	0.68	22,24,25,26,28
Driver cost (per month)	0	104	104	104	25
Helper cost (per month)	0	80	80	80	25

	Unit Price/Rate	Source
Petroleum products:		
gasoline (liter)	0.06	17,21,22,26
diesel fuel(liter)	0.03	17,22
oil (liter)	0.25	17,21,22,26
Interest rate (%)	5.0	5

Table C.4c: Vehicle cost data in dollars under developing conditions.

,

Cost Item	Car	SU truck	2-S2 truck	3-S2 truck
Vehicle cost new less tires	7,810	13,500	41,900	54,000
Tire cost (1 tire)	59	220	337	522
Annual insurance cost	162	540	1,500	1,500
Annual registration, licens- ing and inspection fees	24	175	500	500
Maintenance labor (per hour)	0.40	0.40	0.40	0.40
Driver cost (per month)	0	33	33	33
Helper cost (per month)	0	17	17	17

υ	1
-	•
	÷

		Unit Price/Rate	
Petroleum produ	cts:		
gasoline	(liter)	0.50	
diesel fuel	(liter)	0.40	
oil	(liter)	2.70	
Interest rate	(%)	20.0	

Note: See text for discussion of the derivation of these prices.

C.23 Sources for Project Costs

- Ball, Robert, "Labor and Materials Required for Highway Construction", <u>Monthly Labor Review</u>, Vol. 96, No. 6, June 1973, pp. 40-45.
- Bhandari, Anil and Fredric Berger, <u>The Highway Cost Model: Evalua-</u> <u>tion of the Dar-es-Salaam--Morogoro Section of the Tanzania -</u> <u>Zambia Highway</u>, <u>Report No. 75-5</u>, <u>Technology Adaptation Program</u>, <u>Massachusetts Institute of Technology</u>, <u>Cambridge</u>, <u>September 1975</u>.
- Carstens, R.L. and L.H. Csanyi, "Economic Analysis for Highway Improvements in Under-Developed Countries", Engineering Report No. 44, <u>Iowa State University Bulletin</u>, Vol. 63, No. 11, November 4, 1964.
- Dodge Building Cost Services, <u>Guide for Estimating Public Works Con</u>-<u>struction Costs</u>, McGraw-Hill Information Systems Co., New York, various years (Editions before 1974 are titled <u>Estimating Guide</u> for Public Works Construction).
- 5. <u>Federal Reserve Bulletin</u>, statistical tables on interest rates and bond yields for various years.
- Finger, Diane S., "Labor Requirements for Federal Highway Construction", <u>Monthly Labor Review</u>, Vol. 98, No. 12, December 1975, pp. 31-36.
- 7. Harger, Wilson G., <u>Rural Highway Pavements Maintenance and Re</u>construction, McGraw-Hill Book Co., New York, 1924.
- Highway Research Board, <u>Iowa State Highway Maintenance Study Time</u> <u>Utilization, Productivity, Methods, and the Management, 1959-1960</u>, Special Report 65 and Supplement I, National Academy of Sciences-National Research Council, Publications 921 and 922, Washington, D.C., 1961.
- Imperial Ethiopian Government, Imperial Highway Authority, <u>Ethiopia</u> <u>Road Maintenance Study, Final Report and Appendix</u>, Prepared by Frederic R. Harris, Inc., Consulting Engineers, Supported by Economics Research Associates, June 1973.
- International Bank for Reconstruction and Development, <u>Highway Design Study Phase I: The Model</u>, Economics Department Working Paper No. 96, Prepared by Fred Moavenzadeh, Joseph H. Stafford, John H. Suhrbier and John Alexander of CLM Systems, Inc., Cambridge, Massachusetts, January 1971.

- International Bank for Reconstruction and Development, <u>Quantifica-tion of Road User Savings</u>, World Bank Staff Occasional Papers No. 2, By Jan de Weille, Johns Hopkins University Press, Baltimore, 1966.
- 12. "Materials Prices", <u>Engineering News-Record</u>, Vol. 192, No. 22, May 23, 1974, pp. 30-31.
- 13. Means Company, Inc., Robert Snow, <u>Building Construction Cost Data</u>, Duxbury, Massachusetts, various years.
- 14. Moavenzadeh, Fred, <u>Report Series: Evaluation Framework for Transportation Planning in Developing Countries</u>, Draft Report on Project Case Studies, Prepared for the Office of Science and Technology, Agency for International Development, U.S. Department of State, Washington, D.C., July 1976.
- 15. National Cooperative Highway Research Program, <u>Economics of Design</u> <u>Standards for Low-Volume Rural Roads</u>, Report 63, by C.H. Oglesby and M.J. Altenhofen, Washington, D.C., 1969.
- 16. National Cooperative Highway Research Program, <u>Running Costs of</u> <u>Motor Vehicles as Affected by Road Design and Traffic</u>, Report 111, by Paul J. Claffey, Highway Research Board, Washington, D.C., 1971.
- 17. National Cooperative Highway Research Program, User Benefit Analysis for Highway and Bus Transit Improvements, By Dudley G. Andersen, David A. Curry, and Randall J. Pozdena, Transportation Research Board, Washington, D.C., October 1975.
- 18. Obhi, K., Simulation of Road Construction, Maintenance, and User Costs on 13.7 Kilometers of the Yegeresso-Sarossarosso Section: Bobo Dioulasso-Havnde Road, Unpublished Paper, International Bank for Reconstruction and Development, Washington, D.C.
- 19. Ortega, Nicholas G., <u>Economic and Financial Vehicle Operating Costs</u>, Ethiopian Road Authority, Addis Ababa, February 1976.
- Radzikowski, H.A., "Progress Report of Committee on Maintenance Costs", <u>Highway Research Abstracts</u>, Vol. 23, No. 10, November 1953, pp. 35-40.
- 21. U.S. Bureau of Labor Statistics, <u>Consumer Price Index (1957-59=100)</u>-<u>Price Indexes for Selected Items and Groups, Annual Averages</u> <u>1935-61, Quarterly Indexes March 1947 - December 1961, Government</u> Printing Office, Washington, D.C., September 1962.
- 22. U.S. Bureau of Labor Statistics. <u>Handbook of Labor Statistics 1975 -</u> <u>Reference Edition</u>, Bulletin 1865, Government Printing Office, Washington, D.C., 1975.

- 23. U.S. Bureau of Labor Statistics, <u>Labor and Material Requirements</u> for Construction of Federally Aided Highways, 1958, 1961, and <u>1964</u>, Report No. 299, Government Printing Office, Washington, D.C., 1966.
- 24. U.S. Bureau of Labor Statistics, Union Wages and Hours: Local Truckdrivers and Helpers, July 1, 1973, Bulletin 1840, Government Printing Office, Washington, D.C., 1975.
- 25. U.S. Bureau of Labor Statistics, <u>Union Wages and Hours: Motortruck</u> <u>Drivers and Helpers, July 1, 1956 and Trends 1936-56</u>, Bulletin 1206, Government Printing Office, Washington, D.C., 1957.
- 26. U.S. Federal Highway Administration, <u>Cost of Operating an Automo-</u> <u>bile, Suburban Based Operation</u>, Office of Highway Planning, Highway Statistics Division, Washington, D.C., April 1974.
- 27. U.S. Federal Highway Administration, <u>Highway Statistics 1973</u>, Government Printing Office, Washington, D.C., 1974.
- 28. U.S. Interstate Commerce Commission, <u>Transport Statistics in the</u> <u>United States</u>, Part 7 Motor Carriers, for the years ended <u>December 31</u>, 1971 and December 31, 1973, Prepared by the Bureau of Accounts, Washington, D.C.
- 29. Warren Brothers Company (Division of Ashland Oil, Inc.), Telephone Conversations with Don Woods and Benjamin Richter, Cambridge, Massachusetts, 1976.
- Winfrey, Robley, <u>Economic Analysis for Highways</u>, International Textbook Company, Scranton, Pennsylvania, 1969.
- 31. Woods, Kenneth B., Donald S. Berry, and William H. Goetz, Editors, <u>Highway Engineering Handbook</u>, McGraw-Hill Book Co., New York, 1960.

C.3 Tables of Project Results

Combining the project quantities with the unit costs of the leastcost technical packages for various technology and price periods and the various maintenance and user cost data via the HCM for the appropriate price periods yields the project-level results, as given in Table C.5, for each project under various technology and price conditions. Table C.5A gives project costs using the least cost technical packages of the 1920's at the prices of 1930 (C.5AA), 1974 (C.5AB), and a developing country (C.5AC); similarly C.5B covers the least cost packages of the 1950's and C.5C the 1970's. Table C.5D gives project costs using the least-cost technical packages over all technology periods (1920-70 mix) at the prices of a typical developing country. The numbers beside the names of the stages of construction designate the technical package used in the activity, except where more than one package is used when the number of packages in the least-cost set is given. All costs in the table are given in \$1000, except those labeled /TRAFFIC which are given in dollars per standard axle.

515

	1					
PROJECT		1714	1 3 1 4	10.16		
PROJECT	n	44.14	7214	1415	1112	1415
CCST (\$ 1000)	_					
STAF POPP 21	2. 1700	2.1700	2.3700	2.9646	2 4640	2 96.46
EXCAVA TI DN /HATLING	1				211040	A 1 7 4 4
DITCH 5-4	1.1487	1.1467	1.1487	1.1208	1,1208	1, 1208
68 7-6	C.6488	6.6488	6.6488	0.0	0.0	0.0
98 7-6	0.0	6.0	0.4	7.3682	7.3682	7,1682
60N 7-6	0.2509	0.2569	0.250 9	0.0	0.0	0.0
100H AVE	2 0.0	C.O	0.0	0.0	0.0	0.0
1658 9-7	- C.O	0.0	0.0	12.9502	12,9502	12,9502
1-5008 7-6	0.0	6.0	0.0	46.3464	46.3464	46.3464
P-50CH 10-8	13.8768	11.0700	13.8768	35.4978	35.4978	35,4978
a00a 10-8	0.0	0.0	0.0	0.0	0.0	0.0
TOTAL	15.9252	15.9252	15, 9252	103.2834	103.2834	103.2034
SPREADING/COMPACTIC	N					
934 32	3.4222	3.4222	3.4222	16.8218	16.8218	16.8218
934	0.0	0.0	0.0	0.0	0.0	0.0
SUBPACING	1					
GRAVEL 22	3.6057	2.2414	3.6707	3.0535	4.8943	3.0535
NBA 211	0.0	9.1224	0.0	12,3080	0.0	12.30 00
DBST/G 1121	0.0	0.0	3.7452	0.0	5.0683	0.0
DBST/N 1121	0.0	0.0	0.0	0.0	0.0	5.0683
TOTAL N/O SURP MAT	25.3231	33,0812	29.1733	138.4313	133.0323	143.4995
TOTAL W/ALL MAT	204.1440	224.8861	222.5735	398.6650	390.9629	417.2751
SKILLED LABOR	4.7315	0.0559	5.4150	31.9062	29,9347	32,8039
UNSKILLED LABCR	7.0985	16.7159	8.8418	24.7555	22.2169	27.0976
/TEAFFIC	0.0440	6.000J	0.0340	0.0284	0.0261	0.0100
CAPITAL	1314371	13,3674	14 .0/37	01.1073	80+0801	43.0010
TRAFFIC	0.0509	U+U3030	6.6561	C.0404	040405	0.0418
MATERIALS	1/0.0210	131./990	193.4003	200.2114	257.9109	213.1159
/THAFFIC	0.0748	6. 7230	0./295	0.1302	V.1291	0.1370
OVERHEAD & PROFIT	40.8288	44,9760	44.5147	79.7330	78.1926	83,4550
TOTAL CONSTR COSTS	244.9726	269.8566	267.0881	478.3979	469.1553	500.7300
21934EFIC	0.9244	1.0183	1.0079	0.2394	0.2348	0.2506
• • -						
HAINT COSTS (#P#)	60.7000	64.2000	43.0000	43.2000	70.6000	40.2000
/TRAFFIC	0.2291	G.242J	6.1623	0,0466	0.0354	0.0201
EGNIA VARAT UVINI	5.2706	5.5745	3.7337	8.0926	6.1476	3.4906
USER COSTS (NOT)	764.2000	A99.4140	658.5000	4794.6314	#696.1992	3896.1001
/T A A P 7 1C	2.8800	2.6411	2.4844	2.1490	2.0447	1.9496
EOULA ANNULL USER	66.2687	60.7721	57.1776	372.9301	355.6729	118.2981
						- JVI 2/ V/
TCTAL PROJECT COSTS	1068.8726	1033.9558	968.5881	4666.1992	4636.1523	4437.0273
/TRAFFIC	4.0335	3.9617	3.6550	2.4350	2,3199	2.2203

TABLE C.SAA: PROJECT COSTS IN \$1000 USING THE BEST-PRACTICE TECHNICAL PACKAGES OF THE 1920'S AT THE PRICES OF 1930.

.

.

.

PRO	JECT	}						
PIUJECT	NUPPER	L 314	L324	L334	H315	11325	н 135	
COST(\$10)01								
SITE PREP	21	2.3700	2.3515	2.3535	2.9646	2.932	2.9820	
EXCAVATION/HAU	LING							
DITCH	5-4	1.1497	1.1497	1.1407	1.1208	1.1205	1.1209	
6 H	7-6	2.6498	1.6454	0.6454	2.0	0.J	5.0	
9 M	7-6	1 0.3	1.0	0.0	1.3692	7.3294	7.3244	
6JH	7-6	0.2509).25.9	0-2509	1.0	0. I	1.0	
199M	AVE 2	0.2	5.0	0.0	0.0	0.0	3.5	
165H	9-7	0.5	1.0	0.0	12.9512	13.126%	12.1265	
L-SJJH	7-6	0.0	U_0	0.0	46.3464	46. 1464	46.3454	
P-510H	10-8	13.6768	12.8958	12.8908	15.4978	35.4074	35.447A	
0.0M	10-0	0.4	0.0	0.0	0.0	0.2	1.3	
TOTAL	•	15.0252	16.9158	14.9344	111.2014	133.4203	101.47 9	
SPREADING/COMP	ACTION		1-1///0	4747329	87112014	4441.641		
	32	3,4222	0.0	0.0	16.8218	3.9	1.1	
232	31	0.0	3.010	3,0180	2.0	14.830G	14.8120	
SURFACING		1	164747	14 V 1 1 - 1	2.0	4747177	1-10110	
CRAVEL	,,	3.6702	6.6955	1.67.7	4.8043	A . 0.540	4.8941	
	211		0.0	5.0		6.3	1.1	
065120	1121	3.7452	1 7852	1 7957	5 1491	5 1683	5.3673	
DBST/H	1121	3.0	1.13/6	1.1972	3,30,3	0.0	1.1	
				0.0	V.U	0.0		
TOTAL MED CURE	MAT	29 1 211	24 7801	27 7432	113 0323	130 0551	126.0866	
TUTAL NYO SURF. Tutal system me	*	27.177	2401011	2101032	11347162	486 7137	104 1141	
ISTAL AVALL PA		222.9113	74 1.005/	221.191)	311.7011	43211171	100 1 3 1 3 1	
SKILLED LABO	4	5.4156	5.2360	4.7423	29.9147	27.1925	25.7121	
UNSKILLED LA	RON	A 3419	11.0225	8.9595	22.2169	23.9431	22.9077	
/TRAFF1L		0.0543).0576	0.0517	3.0261	0.1256	2.0249	
CAPITAL		14.975)	14-5316	16.0645	91.8817	78.4192	79.4646	
/THAFFIC		0.1561	.0548	0.0511	5.0415	2.5395	7.93/3	
MATERIALS		193.4001	211.0131	191.4001	257.9119	155.4646	257,9317	
/TAAFF IC		0.7299	1.1048	0.724A	7+12+1	0.1783	2+12+1	
8 8 9 7 7 7 7 8 9 9								
OVERHEAD & PAD	F T	66.5347	64-7213	44.2327	19,1926	97.1611	77.2010	
TOTAL CONSTR C.	JSTS	267. 1001	348.1279	265.3943	467.1553	582.8635	461.2190	
/TRAFFIC		1.0074	1.4454	1.3014	3.2144	0.2917	1,2311	
1 4 9 9 9 1 9 0			10.411.14					
HAINT COSTS IN	PV 1	A300.3	41-0010	114.9660	71.80.0	70,8602	241.2000	
/TRAFFIC		0.1/.31	1,1691	0.4345	1.0354	2.135-	3.12.7	
EDUTY ANNUAL M	LINT	1.1111	1.7117	0.976A	5-1674	6.1470	27.9414	
	~ * * * *	}						
USER COSTS INP	4 1	658-5000	654.5014	648.0000	4696-1992	4596-1997	4143,1992	
/TRAFFIC		2.4849	2.4849	2.5902	2.1497	2.3497	2.3914	
ELUTY ANNUAL IN	SER	37.1774	57.1776	50.8385	355.4729	155.6721	362 . 9646	
AAAAA MUUMAP A								
TOTAL PROJECT	COSTS	268.5841	1049.8779	1049-0059	4636-1523	4769.4594	4484 .6172	
/IRAFFIC		3.4553	4.174	4.(1343	2.3100	2.1740	7.4443	
		1	-12110	717271	614174	217.01		

TABLE C.54AI PROJECT COSTS IN \$10 H USING THE REST-PRACTICE TECHNICAL PACKAGES OF THE 192015 AT THE PRICES OF 1930.

,

	PROJECT									
PROJECT	NUMBER	L311	L314	1315	8312	H313	H315	L316	L3 17	HJ 17
COST (\$ 100	0)		;							
SITE PREP	21	2.8655	2.3760	2.3515	4.6A2J	3,6583	2.9640	2.3700	2.3535	2.9046
EXCAVATION	THAULING	3 8 9 4 5								
DITCH	2-4	0.5/43	1.1407	1.1407	0.0	0.2133	1.1208	1.1487	1.1487	1.1208
	2 4	0.8073	0.0480	0.5020	13 01: 3	0.0	0.0	0.6488	0,5826	0.0
40	7-0	1.2117	0,0	0.0	13.9102	0.0430	/.3082	0.0	0.0	1.3085
100	1-0	0.2309	6 6	0.0	2,2077	0.0	0.0	0.2309	0.0	0.0
1000	0-1		0.0	0.0	20 4402	4.0374	10.0500	0.0	0.0	0.0
1027	7-/	0.0	0.0	3 5655	30.0004	U.U.U. 	12.9302	0.0	0.0	0.0
5-500A	10-9		13 4764	12 9629	0.0	40.J404 15 4079	40,J404 36 mu t e	0.0	3.3033	40+3494 67 4463
- 300h	10-11		6.0	0.0	0.0	33.4310	55.4770	17 6950	16 6 30 3	3740003
መንሞት 1	i ∧_4	2 8464	16.4757	18.2597	47 0041	01.0605	103 3034	10 7734	21 8170	112 7237
SPREADING/	CORVICTION	410404	131 7234	1012377	4710047	34,3000	10342034	171/334	2110110	11411437
GOL	37	1. 4222	1. 477.	3.4395	16.8218	16.0.218	16 0214	3 8333	3 4 2 2 2	16 8314
911		6.6	0.0	0.6	0.0	0.0	0.0	0.0	314444	0.0210
SUBPLCING							•••	010	0.0	610
GRAVEI	22	3.6707	3.6707	3.6707	4.8943	4.8443	4.8941	1.6707	1.6707	4.1743
KRM	211	c.c	0.6	0.0	0.0	0.0	0.0	0.0	0.0	6.0
EBST/G	1121	3.7852	3.7452	3.7852	5.0683	5.0683	5.0643	3.7852	3.7852	5.0603
DB5T/W	1121	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	6.0
, *					•••		•••			••••
TOTAL W/O	SURF NAT	16.5900	29.1733	31.4913	78.4706	125.4031	133.0323	32.9815	35,0487	142.4726
TOTAL W/AL	L BAT	209.9902	222.5735	224.6915	336,4014	383,3337	396.9629	226.3817	228.4489	400.4933
SETLIED	TANOR	4.46AB	5.4156	6. 1777	19, 1543	29.5501	29.9347	5.4156	6.1777	10.4467
UNSKILLE	D LABOR	4.3481	H. 661H	8.5186	18.3136	17, 1937	27.2169	10.2665	9,8022	21.7150
ፖግስአምሃ	TC	6.0333	0.0500	6.0550	0.0188	0.0234	0.0261	0.0592	0.0606	r (* 271
CAPITAL		7.7711	14.8754	16.7150	40.9827	78.0593	80. 8507	17.2493	18. 9788	88.3100
/ ****	10	6.6293	0.0551	6.6631	0.0205	0.0394	0.0405	0.0653	0.0716	6.0442
NATERIAL	.5	193.4003	193.4663	193.0003	257.9309	257.9309	257.9309	193.4003	193.4003	257 9359
/TRAFT	IC	0.7298	C.7298	0.7298	0.1291	0.1291	0.1291	0,7298	0.7298	0.1291
AVENU23 0 4		L1 0906	44.4167	<u>ин</u> 6743	67.2801	76 6667	74 1074	46 2762	45 6444	40.0407
70711 CONS	TR COSTS	151. 4841	267 6844	340 0.00	403 604	860 0002	UKG 1553	271 6580	774 1187	480.4834
	16 60019 16	0.0500	1.0076	1 6194	0. 1020	400.0001	n. 51 u u	1.0251	1.0345	0.2004
<i>Finnes</i>		V. 7307		114 (04	V1 4V5V		V.2340	1.0131	114343	
SAINT COSI	S (NPV)	43.0000	43.0000	43.0000	70.8000	70.8000	70.8000	43,0000	43.0000	70.8000
/188.21	210	0.1623	0.1623	6.1623	0.0154	0.0354	0.0354	0.1623	0.1623	0.0354
EGUIN VAND	THEAR IA	3.7337	3.7337	1.7337	6, 1476	6,1475	6, 1476	3,7337	3,7337	6.1476
USER COSTS	(#PV)	658.5000	658.5(60	658.5600	4096.1992	4096.1992	4096.1992	658.5000	658.5000	4096.1992
/TRAFI	10	2.4649	2.4849	2.4849	2 0497	2.0497	2.0497	2,4849	2.4849	2,0457
EGALA YANY	IAL USER	57.1770	57.1776	57.1776	355.6729	355.6729	355.6729	57. 1776	57.1776	355.6729
TOTAL PRO	ECT COSTS	953. 4640	968.5km1	971. 3696	#570.6797	N626.9961	#636.1523	971, 1580	975.6387	4647.4805
/TRAFI	IC	3.5981	3.6550	3.6655	2.2#72	2, 3153	2.3199	3,6723	3.6817	2.3250

TABLE C.SAA: PROJECT COSTS IN \$1060 USING THE BEST-PRACTICE TECHNICAL PACKAGES OF THE 1920'B AT THE PHICES OF 1930.

.

.

P	ROJECT	1					
PROJECT	NUMBER	L114	1214	L314	H215	H315	H415
COST(\$1000)						-	-
		1				·····	
SITE PREP	21	17.3148	17.3348	17.3348	21.6 ⁿ 36	21.6836	21.6936
EXCAVATION/H	AULING						
DITCH	5-4	13.9525	13.9525	13.9525	13.0140	13.6140	13.6140
6M	7-6	3.967.)	3.9670	3.9670	0.0	0.7	2.0
9M	7-6	0.0	0.0	0.0	44.9160	44,9160	44.9150
60M	7-6	1.5337	1.5317	1.5337	0.0	0.)	0.0
100M	AVE 2	0.0	C.O	0.0	0.0	0.0	0.0
165#	9-7	0.0	0.0	0.0	138.1799	138.1792	139.1790
L-500M	7-6	0.0	C.O	0.0	262.8979	282.8999	282.8999
P-500M	10-8	120.7287	129.7237	128.7287	329.2454	329.2954	329 . 2954
8004	10-5	0.0	C.O	0.0	0.0	0.0	0.0
TOTAL		148.1819	148,1019	148.1819	879.9341	808,9041	809.9041
SPREADING/CO	MPACTION						
484	32	27.6829	27.6829	27.6829	136-0751	136.0751	136-0751
934		0.0	0.0	0.0	0.0	0.0	0.0
SURFACING						-	
GRAVEL	22	45.9140	28.5412	46.7413	38.8921	62.3217	39.0921
WBM	211	0.0	116.1594	0.0	156.7229	0.0	156.7229
OBST/G	1121	0.0	0.0	43,9950	0.9	58,9077	0.0
08\$T/W	1121	0.0	0.0	0.0	0.0	0+0	58.9077
TOTAL MZO SU	RE MAT	239.1136	117 8600	283.0358	1162 2676	1097 9014	1221 1760
TOTAL W/ALL	24T	560 1052	689.8518	AAA.954P	1410.0651	1601.4460	1741 1038
				40017700	10,,,,,,,,,,,	103144600	1
SKILLED LA	603	53.0497	76.7939	60.7119	357.1550	335.1384	167.1742
UNSKILLED	LAROR	121.7458	183.8038	152.2977	424.4562	361.0022	464.7271
/TRAFFIC		0.6596	0,9834	0.8037	2.3912	0.3594	0.4161
CAPITAL		64.3191	77.3634	70.9664	380.4553	371.7505	309.2696
/TRAFFIC		0.2427	0.2917	0.2674	0.190+	0.1860	P.1948
MATERIALS		340.9919	351.9519	365.0212	477.6377	513,5747	519.9205
/THAFFIC		1.2869	1.3281	1.4529	0.2393	0,2570	0.2602
			_				
OVERHEAD C P	ROFIT	116.0210	137.9707	133.7913	327,9410	320.2932	348 2207
TUTAL CONSTR	COSTS	696-1262	827,9245	802.7461	1967. 2962	1921.7600	2087.3245
/TRAFFIC		2.6269	3.1538	3.0292	0.9947	0,4616	1.0455
PAINT COSTS	INPVI	256.5000	112.5000	198.4000	A17. 3000	117.1096	187.0000
/IRAFFIC		0.9479	1.1702	A. 7464	0 9164	0 1543	0 0016
EQUIT ANNUAL	PAINT	29.9669	36.8.094	23.2024	51.1014	34.4977	21.8472
				230£V24	71.1014	39 4 4 7 1 7	2119712
USER COSTS (NPVI	2858.4997	2555.3000	2415.80001	6431.10161	5774.6992	15170 .4008
/TRAFFIC		10.7883	9.6426	9.1162	9.2221	7.8917	7.5715
EUUIV ANNUAL	USEA	314.0051	298.5356	282.2378	1919.6453	1842.9570	1772 - 4043
IUIAL PROJEC	i cuzis	10111-0201	1095.6245	3417-1479	10836.38671	18028.9555	17447+1250
7INAPEIC		14+3831	11.9458	12.8949	9.4257	9-0114	4.7305

TABLE C.5A81 PROJECT COSTS IN \$1033 USING THE BEST-PRACTICE TECHNICAL PACKAGES OF THE 1920'S AT THE PRICES OF 1974.

.

•

.

.

P	r oj ect	1								
COST (\$ 100D)	BUNDER	L311	L314	1315	8312	11313	HJ15	1316		
SITE PREP	21	22,9588	17.3348	17.2140	34.2468	26.7574	21.0836	17.3348	17.2140	21.6836
EXCAVATION/H	AULING									
DITCH	5-4	6.9762	13,9525	13,9525	0.0	2.5903	13.6140	13.9525	13,9525	13,6140
6.1	7-6	4.9487	3.9670	3.5622	0.0	0.0	0.0	3.9670	3.5622	0.0
98	7-6	7.3875	C.O	0.0	84.8321	53,9110	44.9160	0.0	0.0	44.9160
608	7-6	1.5337	1,5337	0.0	13.4970	0.0	0.0	1.5337	0.0	0.0
1003	AVE 2	6.0	C.U	6.6	0.0	33.8475	0.0	0.0	0.0	0.0
165#	9-7	0.0	6.0	0.0	329.4922	0.0	138.1790	ა.0	0.0	0.0
1-5008	7-6	Ŭ.U	0.0	21.7637	0.0	282.8999	282.8999	0.0	21.7637	282.8999
P-5008	14-8	0.0	128.7287	120.2509	0.0	329.2954	329.2954	0.0	0.0	537.0015
ROOR	10-8	v. 0	0.0	C.O	0.0	0.0	0.0	161.3808	150.7582	0.0
TOTAL		20.8461	148.1819	159.5293	427.8213	702.5439	808.9041	180.8401	190.0367	878.4312
SPREADING/CO	PACTION									
986	32	27.6829	27.6629	27.0829	136.0751	136.0751	136.0751	27.0829	27.6829	136.3751
93%		0.0	6.0	C.C	0.0	0,0	0.0	0.0	0.0	0.0
SURFACING										
GRAVEL	22	40.7413	46.7413	46.7413	62.3217	62,3217	62.3217	46.7413	46.7413	62.3217
6 B M	211	0.4	C.O	0.0	0.0	ປໍ.ບໍ	0.0	0.0	0.0	0.0
DB ST/G	1121	43.9950	43.9950	43.9950	58,9077	58,9077	58.9077	43,9950	43.9950	58.9077
CBST/W	1121	0.0	(,0	Ü.G	0.0	0.0	0.0	0,0	0.0	0.0
TOTAL #20 SI	IR P BAT	100.2241	283.9358	295.1624	719.3718	986.6052	1087.8916	316.5937	325.6697	1157.4187
TOTAL W/ALL	BAT	545.2449	668.9568	6 80 . 1833	1232.9470	1500.1804	1601.4668	701.6150	710.6907	1670.993>
SKILL3D L	ABOH	50.4607	60.7118	69.2236	214.4815	330,8713	335.1384.	60.7118	69.2236	346.9944
UNSKILLED	LABOR	74.4589	152.2577	147.3975	314,2825	294.8511	381.0022	175.3377	168.9575	406.7908
/TRAPPIC	:	0.4699	C. 80 37	C,8174	0.2646	<u>0.3131</u>	0.3584	0.8908	0.6988	0.3742
CAPITAL		35.7046	76.9664	78.5414	190.6036	363.8826	371.7505	80.5446	87.4888	409.6331
/TBASTI	2	0.1347	ú.2o76	Ç.2964	0.0954	0.1805	0.1860	0,3039	0.3301	0.2050
NATERIALS		385.0212	365.0212	J85.0212	513.5747	513, 5747	513.5747	385.0212	345.0212	513.5747
/T8%871	C	1.4529	1.4529	1.4529	0.2570	0.2570	0.2570	1.4529	1.4529	C.2573
OTERHEAD A	PROP ፤ ጥ	109-0496	133.7913	130.0367	246.5894	300.0359	320.2932	140.3230	142.1361	334.1987
TOTAL CONS?	B COS75	654.29.17	802.7480	816.2200	1479.5364	1800.2163	1921.7600	841.9377	852.8266	2005.1926
/TRAPPI		2.4690	3,0292	3.0801	0.7404	6,9008	0.9616	3.1771	3.2192	1.0034
NAINT COSTS	(NPY)	198.6000	198.0000	198.6000	312.3999	312,3999	312, 3999	198. 6000	198.6000	312,3999
/TRAPPI		0.7494	6.7454	0.7494	0.1563	0,1503	0.1563	0.7494	6.7494	0.1563
EQUIV ANNUA	Г ЛАТИТ	23.2024	23.20.4	23.2024	36.4977	36. 4977	36.4977	23.2024	23.2024	36.4977
USER COSTS	(N PY)	2415.8000	2415.8000	2415.8000	15774.6992	15774.6992	15774.6992	2415,8000	2415.8000	15774.6992
/THAP? I	C	9.1162	9.1102	9,1162	7.8937	7.8937	7.8937	9.1162	9,1162	7.8937
EQUIV ANNUA	L OSEN	282,2378	262.2378	282.2378	1842.9578	1842.9578	1842.9578	282.2378	282.2378	1842.9578
TATL: 55A10		1268 4014	3417, 1679	34 1C - A 109	17566.6328	17887. 3125	18008-8555	3456.3376	3467.2285	18092.2891
TRAFFI		12.3347	14.8949	14.9457	8.7903	6,9508	9.0116	13.0428	13.0839	9.0534

TABLE C.6AB: PROJECT COSTS IN \$100' USING THE DEST-PRACTICE TECHNICAL PACKAGES OF THE 1920'S AT The prices of 1974. .

~		1					
	PROJECT						
PROJECT	VUMAFR	1.114	L214	1314	H215	0318	H415
CUSTINO	100						
SITE PREP	11	5.0103	5.0123	5.0101	6.2672	6.267?	6.2672
EXCAVATED	NZHAUL ING						
DTICH	AVE 2	0.2599	0.2579	0.2599	1.2536	3.2536	0.2536
64	AVE 2	1.1601	1.1601	1.1601	6.0	U •Ŭ	0.Ç
ንዞ	AVE 2	0.0	0.0	0 .)	11.8777	11.8777	11.9777
6 J M	5-4	0.1993	2.1933	0,1993	0.0	0.3	0.0
100 M	8-7	0.0	0.0	0.0	0.0	0.2	0.0
165%	8-7	0.0	-3 • 0	0.0	4+1327	4.1327	4 . 1327
L-5JOM	6-5	0.0	0 _ 0	0+0	47,4325	40,4325	42.4325
P-5J)M	8-7	4.5150	4,5150	4.5150	0.0	0.3	0.0
850M	9-7	0.4	9 *9	0.0	3*3	0.0	n.0
TOTAL		6.1343	6.1343	6.1343	56.6964	56.6964	55.6964
SPREADING	COMPACTION						
78 T	21	2.3877	2.3077	2.3877	11.7369	11.7367	11.7369
938	21	Ú.0	0.0	0.0	0.0	0.0	0.0
SURFACINO	3						
SRAVEL	21	0.3462	1.526.	0.9614	3.7166	1.1485	3.7165
HBM	AVE 2	0.0	21-1365	0.0	29.5175	υ,ύ	29.5175
D8ST/G	1111	3.0	0.0	8.2494	0.0	11.0455	٦.0
DBST/W	1111	0.0	C . O	0.0	0.0	0.)	11.0456
		{				_	
TOTAL H/C	SURF MAT	14.1784	35.1947	22+643)	103,9345	36.1946	114.98.1
TOTAL W/A	NLL PAT	105.9513	144.6616	205+3999	252.3744	331.0742	357.6517
Cietu a co		1 4644	2 6 3 3 4	1 45.77	7 1866	6 6477	7 4253
	CD 14800	2 2 2 2 2 2 2	1 4171	1.0711	71 4750	2111	23 0330
71245	LET ENGUN	0.0103	1031	211247	22.4130	0 3145	5 0152
CAD1TA		A 64.94	94 984 E	16 2039	70170	56 1004	AN 71-17
/1348		0,0007	2012097	0 0536	0 0153	3711070	5 04 14
MATER 14		04.4172	112.6007	195 7007	167 2664	347 0854	246.4843
71345		0 3570	0.4365	0.7011	D 0762	6.1241	5.1211
71081	1.10	0.5570		01,011	0.0102	() • • • • • •	5.11.77
GVERHEAD	L PADE IT	21.1907	29.9373	41.0800	50,4749	66.2149	71.5317
TOTAL CON	ISTA COŠTS	127.1440	173.5939	246+4799	372.8471	397.2802	427.1932
/TRAF	FIC	0.4798	C+6531	0.9301	0.1515	0.1751	2.2149
HAINI LUS	12 (NPA)	82.1000	111.203	72.400	125.46.10	107.4001	01.0077
/ 1 H AP		0-1121	1.4272	D+2732).0755	16.3231	0.0339
EANIA WW	WAL HAINT	14.1430	19:3090	12.1814	20.1484	10.101.	11*24.5
USER COST	S ENPY }	1589.6301	1493.8939	1408.5000	8672.8944	8226.8000	7884 . 9000
/TRAF	FIC	5.9985	5.6562	5.3151	4.3179	4.1167	3.9456
EUJEV ANN	UAL USER	271.4533	256.3418	240.8816	1491.2308	1406.7470	1349.4581
TOTAL PRO	UECT COSTS	1799.4435	1705-6918	1727.3794	9124.6445	8731.4883	8381.7891
/TRAF	FIC	6.7904	6,7385	6.5184	4,5690	4.3692	4.1943

TABLE C.SACI PROJECT COSTS IN \$1000 USING THE LEAST-COST TECHNICAL PACKAGES OF THE 1920'S AT THE PRICES OF A TYPICAL DEVELOPING COUNTRY.

•

·

	PBOJECT COST (\$1000)	NONDER	L314	£324	1334	8315	8325	K3 35
	SITE PHEP	11	5.0103	4.9754	4.9754	6.2672	6.0926	6.0926
	EXCAVATION/N	INE J	0 1500	0 3544	0 7500	0 15 14	0 7636	A 2514
	pitch (m	AVG 4	1 1401	1 1647	1 1547	0.2330	0.0	0.2330
	0 N A =	ATE 4	0.0	0.0	0.0	11 2777	11 9151	11 6151
		ATG 4	0.0	0 1003	N 1003	1149/1/	1110121	0.0
	1005	9-7	0,1993	0.1773	0 0	0.0	0.0	0.0
	165=	8-7		0.0	0.0	4.1327	3. 2316	2 2316
	1-5004	0-7	0.0	0.0	0.0	441347	40 4325	40 4136
	L-300A	0-3	0.0	U.U.U.U.U.U.U.U.U.U.U.U.U.U.U.U.U.U.U.	V+V 0 1063	40.4325	A A	40.4323
	P-2001	0-7	4.3130	4.1742	4+1744	0.0	0.0	0.0
	8004	0-/	6 1 2 4 2	5 8075	0.U 6 0076	9.9 6.2 6060	5L 3334	55 3300
	TUTAL		0.1343	3.00/3	3.60/3	3010704	22*1358	23*1370
	SPPEADING/CO	PACTION	2 2077		A A	51 7360	~ ^	~ ^
(5	985	21	2.3077	0.0	0.0	11.1304	V.V	V. V
	XLV	21	0.0	1*2187	1.3193	0.0	0.4/80	0.4789
Ň	BURPACING							
, -	GPAVEL	21	0.8614	1.1366	0.8614	1.1485	1.6110	1.1485
	WB/I	¥1 2	0,0	0.0	0.0	0.0	0.0	0.0
	DBST/G	1111	8.2494	8.2494	8.2494	11.0450	11.0456	11.0456
	DBST/W	1111	0.0	0.0	0.0	0.0	0.0	0.0
	TOTAL N/O SUA	TAR 1	22.6430	21.6881	21.2130	86.4946	80.9600	80.4975
	TOTAL W/ALL !	IAT	205.3799	255.8699	203.9698	331.0742	375.1897	324.6772
	SKILLED LAG	808	1.6577	1.6701	1.6183	6.6477	6.4983	6.4479
	UNSKILLED I	LABOR	3.7393	3.6379	3.4825	22.3319	21.3863	21.2351
•	/TPAPPIC		0.0204	0.0200	0.0192	0.0145	0.0140	0.0139
	CAPITAL		14,2038	13.3591	13.0911	54.1096	49.3760	49,1152
	/TANPPIC		0.0536	0.0504	0.0494	0.0271	0.0247	0.0246
	MATERIALS		185.7992	237.2030	185.7780	247.9854	297.9292	247.8794
	/TRAPPIC		0.7011	0.8951	0.7010	0.1241	0.1491	0,1240
	OVERHEAD 6 TH	10717	41.0800	51.1740	40.7939	66.2148	75.0379	64.9354
	TOTAL CONSTR	COSTS	246.4799	107.0437	244.7637	397.2888	450.2275	389.6125
	/TRAFFIC		0.9301	1.1507	0.9236	0.1988	0.2253	0.1950
	RAINT COSTS		72.4000	72.4000	194.2000	107.4000	107.4000	403.8999
	/TRAFFIC		0.2732	0.2732	0.732#	0.0537	0.0537	0.2021
	BOULY ANNUAL	THIAN	12.3810	12.3818	23.2121	18.3675	18.3675	69.0749
	USER COSTS (NBA}	1+08.5000	1408.5000	1+84.1001	8226.8008	8226.8008	#554,8008
	/TRAFFIC		5.3151	5,3151	5.6155	4.1167	4.1167	4.2808
	EQUIY ANNUAL	USER	240.8916	240.0016	254.4948	1406.9470	1406.9470	1463.0417
	TOTAL PROJECT	T COSTS	1727.1794	1747.9+14	1927.0617	#731.4843	A784.6258	9368, 3125
	/TLAPFIC		6.5144	6.7470	7.2719	4.3692	4.3957	4.6779
	/							

TABLE C. SAC	C1 PROJECT COSTS IN \$1000 USING THE LEAST-COST TECHNICAL PACRAGES OF THE 1920'S A The prices of a typical developing country.	
	PROJECT	

·

.

,

,

		I								
	PROJECT									
PROJECT	NUMBER	յ տո	1314	1315	H312	H313	H315	L 116	1317	1317
COSTINIO										
STTE PREP) II	6.0577	5.0103	4.9756	9.8083	7.733/	6 3673	5 0103	4 0154	
EXCAVATIO	N/HAULING					141320	, ,,,,,,,,	212201		, Å**D15
DITCH	AVE 2	0.1299	J. 2599	0.2599	0.0	0.6487	1.2536	0.259%	0.2529	1 11 2534
68	AVE 2	1.4471	1.1601	1.0417	0.0	0.0	0.1	1.1601	1.061	3.4
98	AVE 2	1.9536	0.0	0.0	22.4331	14.2563	11.0777	0.0	0.0	11.0777
60M	5-4	0.1993	0.1993	0.0	1.7539	6.0	0.0	0.1993	0.9	4.5
109M	8-7	0.0	11.0	0.0	0.2	1.4216	0.0	0.0	0.0	0.0
165M	8-7	0.0	0.0	0.0	9.8546	0.0	4.1327	0.0	0.0	6.1
L-500M	6-5	0.0	0.0	1.2442	9.0	40.4325	41.4325	0.0	1.2447	45.4325
P-500H	8-7	0.0	4.5150	4.2177	0.0	0.0	2.2	0.1	5.0	7.2651
800M	8-7	0.0	1.0	0.0	0.0	0+J	0.0	6.2691	5.956	0.2
TOTAL		3.7300	6.1343	6.7634	34.0416	56.1597	55.6964	7.4584	4.4027	50 8481
SPREADING	COMPACTION									
905	21	2.3677	2.3877	2.3877	11.7369	11.7369	11.7369	2.3877	2.3877	11.7361
931	21	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.1
SURFAC I NG		1								
GRAVEL	21	0.4614	0.8614	0.0614	1.1485	1.1485	1.1485	0.8614	Q.8614	1,1455
NBM	AVF 2	0.0	0.0	0.0	0.0	3.9	5.0	0.0	0.0	3.1
DBST/G	1111	8,2494	A.2494	8.2494	11.0456	11.0456	11.0456	8.2494	8.2494	11.)454
D8ST/W	1111	0.0	9.0	0.0	0.0	0.0	2.0	0.0	0.0	212
TOTAL W/O	SURF MAT	21.2861	22.6430	23.2373	67.8710	A7.A233	85.8946	24.3971	24.8757	93.347
TOTAL W/A	LL MAT	204.3430	205.3979	205.9941	312.0515	312.0027	331.0742	207+154)	207.6127	134.2266
SKILLED	LABOR	1,0896	1.6577	1.6769	6.7246	6.3409	6-6477	1.6577	1.6763	6.6477
UNSKILL	EO LABOR	3.6266	3.7393	4.0036	14.0229	22.8071	22.3319	4-1952	4.4294	23.1567
/TRAF	FIC	0.0236	2.0234	0.0214	0.01 14	0.0147	0.0145	0.0221	0.023	6.1149
CAPITAL		12.0918	14.2036	14.5358	41.1133	53,3794	54.1096	15.5020	15.7484	56.4371
/TRAF	FIC	0.0456	0.0516	0.0549	0.0206	0.0267	0.0271	0.0585	C.0594	5.026.
MATERIA	LS	186.4352	185.7992	195.7780	250,1932	248.8759	247.9854	185.7992	195.770	247.9054
/TRAFI	FIC	0.7015	0.7011	0.7013	0+1252	0.1245	0+1241	0,7011	0.701	0+1241
OVERHEAD	G PROFIT	40. 90 96	41.0600	41.1988	62.4101	66.4006	65.2148	41.4304	41.5265	66.8451
TOTAL CON	STA CUSTS	244.8516	246.4799	247.1930	374.4694	398.4031	397.2858	248.5847	249.159	401.171-
/TRAFI	FIC	0.9240	0.9301	0.9328	2.1874	0.1994	0.1938	0.9381	0.94 02	5.2637
MAINT COST	TS (NPV)	72.4000	72.4000	72.400.)	117.4000	107.460%	107-40-0	72.4000	72.600	107 400
/TRAF	FIC	0.2732	U.2712	0.2732	0.0537	0.0537	0.0517	0.2732	0.2737	0.1517
EUUTY ANN	UAL MAINT	12.3818	12.3418	12.3818	18.3675	18.3675	18. 1675	12.3818	12.3012	15.1675
USER COST	S (NPV)	1408.5000	1408-5000	1408-5000	8226.8008	8226-8009	8226 - 8008	1408-5000	1618-500	8776.4124
/TRAF	FIC	5.3151	5.3151	5.3151	4.1167	4.1167	4.1147	5.1151	5.3151	6.1147
EUUIV ANN	UAL USER	240.0816	243.0016	240.0016	1436.9470	1406-9473	1406.9470	240.5816	240.8816	1436 947
	JECT COSTS	1725.7514	1727.1744	1778.0078	8708.6632	8732.6014	8731.4893	1729.4844	1730.0691	8736 273
/1844		6.5123	6-5184	6.5211	4.1574	A. 140A	6.1409	K. 5744	A.8324	4 3711
e rodel		1	A\$1\$44	447411		443640	4 9 10 4 5	412664	84765	44911

TABLE C.5ACI PROJECT COSTS IN \$1000 USING THE LEAST-COST TECHNICAL PACKAGES OF THE 192)'S AT THE PRICES OF A TYPICAL DEVELOPING COUNTRY.

.

,

.

•

.

. •

.

4

•

	11567	1					
PROJECT	NUNDER	1114	1.214	1 3 1 4	8215	8315	Ha 15
COST/\$1000		1 2003					
	$ \geq $		·				
STTE DREP	11	1.0269	1.0269	1.0269	1.2845	1.28#5	1.2845
RECAVATION / HAL	11.780				,		1 4 4 17 4 2
DITCH	11-0	6.1042	0.1042	0.1042	0.1017	0.1017	0.1017
68	112.	6.2274	0.2274	0.2274	0.0	0.0	0.0
94	AVE 2	0.0	6.0	0.0	2.8690	2.8690	2.8690
608	7-7	0.1164	C. 1164	0.1164	0.0	0.0	0.0
1004	192 2	0.0	0.0	0.0	0.0	0.0	0 0
1658	AVE 2	0.0	0.0	6.6	3,4791	3,4791	1.4791
1-5008	7.7	0.0	6.0	0.0	15,3012	15. 10 12	15. 10 12
P-5000	4-4	2.2947	2.2447	2.2447	0.0	0.0	0.0
8008	4-4	0.0	0.6	0.0	0.0	6.0	0.0
TOT \$ 1	~ ~	2.7427	2.7427	2.7427	21.7510	21.7516	21.7510
SPREAD ING/CONI	ACTION		411441				
98%	LVR 2	0.8882	0.8882	0.8882	4, 3660	4.3660	4.3660
914		0.0	6.0	0.0	0.0	0.0	0.0
SUDPACING				V10	~~~	***	
COLVEI	LV2 2	0.4752	0.2954	0.4838	0.0024	0.6450	0.4024
CRATEL		6.6	2.5167	0.0	3 3940	0.0	1 1043
#E0 P0 67 7/2	100 4	6.0	0.0	0.0	0 0	0.7774	0.0
0054/4	175 0		0.0	0,0007	0.0	0.0	C 7778
#83X/4	MITA O			v.v	V. V		017770
TOTAL W/O SURT	TAB ?	5.1330	7.4694	5.7224	31.1988	28.8242	31.9765
TCTAL W/ALL NA	T	183,9538	199.2683	199.1226	291.4326	286.7549	305.7522
SKILLED LADO	ж	1.5713	2.4004	1.7308	8.9361	8.0181	9.1448
UNSKILLED L	BOR	0.2864	C.4361	0.3487	0.5521	0.4416	0.6354
/TRAFFIC		0.0076	0.6107	0.0078	0.0047	0.0042	0.0049
CAPITAL		3.2753	4.6J∡9	3.6430	21.7105	20.3645	22.1963
/TRAFFIC		0.0124	0.0175	0.0137	0.0109	0.0162	0.0111
MATERIALS		178.6210	191.7990	193.4003	260.2339	257.9309	273.7759
/TRAFFIC		0.6748	0.7238	0.7298	0.1302	0+1291	J. 1370
		76 7404	10 6674	10 8545	EN 2017	67 3643	61 1504
	/# \$ [}^# \$ [30.7700	1700330	3740447	204 2003	3/43314	36. 00.24
TOTAL CONSTR C	0313	440. 1440	437+1417	230+94/1 C 0017	34 94 / 190	344.103/	300.9020
VERAPPIC		0.0330	0.9023	0.3017	V1115V	V. 1722	V. 10 JO
MAINT COSTS ()	(24)	60.7000	64.2000	43.0000	93.2000	70.8000	40.2000
/TRAPPIC		0.2291	0.2423	0.1623	0.0466	0.0354	0.0201
EGDIA VNHAVE H	ia i nt	5.2706	5.5745	3.7337	8.0926	6.1476	3.4906
USER COSTS (NE	(¥)	763.2000	699.8999	658.5000	4294.6016	4096.1992	3896.1001
TRAPPIC		2,6600	2.6411	2.4849	2.1490	2.0497	1.9496
BOULY ANNUAL U	ISER	66.2687	60.7723	57.1776	372.9001	355.6729	338.2983
	40 S.B.C	4000 400F	44.4.3	A64 6694			
TUTAL PROJECT	COSTS	1044.0445	1003.2217	740.4470	4/3/10195	4311.1010	4303.1992
ALMMLETC		3.3451	3./65/	3.3407	2.5707	4.23/4	4+ J271

TABLE C.58A: PROJECT COSTS IN \$1000 USING THE BEST-PRACTICE TECHNICAL PACKAGES OF THE 1950'S AT THE PRICES OF 1930.

-

PROJECT COST (\$ 1900	NUBBER	1311	1314	1315	H312	H313	H315	L316	L3 17	H3 17
5778 2350	31	1.2416	1.6269	1.0197	2 0287	1 5851	1 2845	1 0269	1 0197	1 2 4 4
FICANATIANA	WARDET NO.		(1010)				111049			
DITCH	11-0	0.0521	0.1042	6.1042	0.0	0 0193	0.1017	0.1042	0.1042	0 101
64	AVE 2	0.2836	0. 2274	0.2042	0.0	0.0	0.0	0.227#	0.2042	0.0
0 m	397 2	6.4719	0.0		5 4196	3 44 36	0.948.0		0 0	2 940
608	7-7	0.1164	0.1164	0.0	1 0746	0.0	1.0050	0 1164	0.0	4,007
1008	148.2	0.0	6.0	0.0	0.0	1 2184	0.0	0.0	0.0	0.0
165#	182.2	0.0	0.0	6.0	8.0961	0.0	7.4741	0.0	0.0	0.0
1+5008	7-7	6.0	0.0	0.0709	0.4701	16 1012	15 2012	0.0	0 # 700	15 301
8-5014	1-1 4-1		2 2047	0 1036	0.0	17.74.5	13,3012	0.0	0.4703	3 767
8004 8004	4-4		4.474/	4+1430	0.0	0.0	0.0	7 6716	2 10 06 -	3.102
000.1 TOTIL	4-4	0.0	0.0	1 6229	9.0	10 0925	31 76 10	240713	244730	11 010
destantsc/c	0.00.00.00	0.7240	2. /42 /	4.9440	14.7374	17,7040	21472IV	3+1193	3+1140	£ 1+7 / 4
STREADING/C	VEPACTION			A					0 000 0	
203	AAD T	0.0001	0.0082	0.6672	4.3000	4.1000	4.3000	V.000X	0.0002	4.300
738 803810100		0.0	V.V	0.0	0.0	4.0	4.0	0.0	4.0	0.0
JUATALING	NUN 0	6	A 4.438	A 4.836				0	0 0.030	0 () E
GRAVEL	A V E 2	[0.4838	0.4838	0.4838	0.0420	0.6450	0.6450	0.4838	0.4838	0.540
807 0007 (0	AVE D		0.0	6.6	0.0	0.0	0.0	0.5000	0.0	0.0
6851/6	AVE 8	0.2009	0.5809	0.2803	0.7778	0.7776	0.7778	0.3007	0.2003	0.777
SB5T/W	AVE 8	l c.c	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOTAL #/0 S	TAN LAU	4.1184	5.7224	5.8954	22,5509	27.3563	28.8242	6.0992	6.2473	29.047
TOTAL W/ALL	, HAT	197.5186	199.1226	199.2955	280.4875	205.2069	286.7549	199.4994	199,6475	286.976
SKILLED L	ABOR	1.4460	1.7308	1.7054	6.9876	7.7757	8.0181	1.8306	1.8586	8.073
UNSKILLED	LABOR	0.4006	0.3487	0.3467	0.6492	0.5255	0.4410	0.3487	0.3467	0.441
/THAPPI	c	0.0070	C.0078	0.000	0.0038	0.0042	0.0042	0.0082	0.0063	0.004
CAPITAL		2.2639	3.6430	3.7633	14,9200	19.0551	20.3645	3,9199	4,0420	20.532
/TRA771	C	6.0085	0.0137	0.0143	0.0075	0.0095	0.0102	0.0148	0.0153	0.010
MATERIALS	1	193.4003	193.4003	193.4003	257.9309	257,9309	257.9309	193.4003	193.4003	257.930
/TRAFFI	c	0.7298	0.7298	0.7298	0.1291	0,1291	0.1291	0.7298	0.7298	0.129
OVERHEAD 6	PROFIT	39.5037	39.8245	39.8591	56.0975	57.0574	57,3510	39.8999	39,9295	57.395
TCTAL CONST	R COSTS	237.6223	238.9471	239.1546	336.5850	342.3440	344.1057	239.3992	239.5770	344.373
/TRAFF1	c	0.8944	0,9617	0.9625	0.1684	0.1713	0.1722	0.9034	0.9041	0.172
MAINT COSTS	(#24)	43.0000	43.0000	43.0030	70.0000	70.0006	70.8000	43.0000	43,0000	70.800
/TRAPPI	c` ′	0.1623	C. 1623	0.162)	0.0354	0.0354	0.0354	0.1623	0.1623	0.035
ROULY ANNUA	L BAINT	3.7337	3.7337	3.7337	6, 1476	6.1476	6.1476	3.7337	3,7337	6,147
USEP COSTS	(#27)	658.5000	658.5000	658.5000	4096.1992	4096, 1992	4096.1992	658,5000	658,5000	4096.199
/TRA771	ic .	2.4849	2.4849	2.4649	2.0497	2.0497	2.0497	2,4849	2.4849	2.049
EQUIA YNNDY	L USZA	57.1776	57.1776	57.1776	355.4729	355.6729	355.6729	57.1776	57.1776	355.672
TOTAL PROJE	CT COSTA	938.5222	940.4470	940.6545	4503.5820	4509.339A	4511.1016	940.8992	941.0749	4511.371

TABLE C.5BA: PROJECT COSTS IN \$1000 USING THE BEST-PRACTICE TRCHNICAL PACKAGES OF THE 1950'S AT THE PRICES OF 1930.

.

PF	OJFCT	-						
COST (\$1000)		Eu 	1114	L214		n215	n 315	JH415
SITE PREP RECAVATION/64	31 ULING		10.9605	10.9605	10,9605	13.7102	13,7102	13.7102
DITCH	11-1	0	0.6153	0.6153	0.6153	0.6003	0.6003	0.6003
61	AVE	2	1.7287	1.7287	1.7287	0.0	0.0	0.0
98	AVE	2	0.0	0.0	0.0	21.8120	21.8120	21.8120
605	7-7	-	0.8224	6.8224	0.8224	0.0	0.0	0.0
500 M	ÂVE.	2	L.0	ú. 0	c.c	0.0	0.1	0.0
1658	AVE	2	c.0	0.0	0.0	24.5691	24.5691	24,5691
1-500N	7-7		6.5	0.0	¢.0	107.2559	107.2559	107.2559
P-500M	4-4		16.3868	16.3466	16.3868	0.0	0.0	0.0
8008	4-4		0.0	0.0	0.0	0.0	0.0	0.0
TOTAL			19.5531	19,5531	19.5531	154.2373	154.2373	154.2373
SPREADING/CON	PACTI	ON.						
98%	AVE	2	6.8444	6.8444	0.8444	33.6436	33.0436	33.6436
914		_	0.0	0.0	0.0	0.0	0.0	0.0
SURFACING				•••				
GRAVEL	A V E	2	3.6996	2.2990	3,7663	3.1330	5.0217	3.1330
WER .	AVE	5	0.0	20.4372	0.0	27.5740	0.0	27.5740
DB ST/G	AVE	8	6.0	0.0	4,4849	0.0	6.0051	0.0
CDST/W	AVE	8	0.0	0.0	0.0	0.0	0.0	6.0051
TOTAL #/0 SUP	P BAT		41.0576	60.0950	45.6092	232.2981	212.6179	238.3032
TOTAL W/ALL !	1AT		382.0493	412.0468	430,6301	709.9358	726.1924	758.2317
SKILLED LAT	303		17.6270	26.9825	19.4167	99.0529	89.5725	102.1950
UNSKILLED 1	LABOR		4.9077	7.3773	5.9771	9.4709	7.5708	10.9028
/TRAFFIC			0.0850	0.1297	6.0958	9.0547	0.0486	0.0566
CAPITAL			18.5229	25.7352	20.2154	122.9743	115.4746	125.2054
/TRAFFIC			0.0699	0.0971	0,0763	0.0615	0.0578	0.0627
MATERIALS			340,9919	351.9539	385.0212	477.6377	513.5747	519.9285
/TBAFFIC			1.2868	1,3261	1.4529	0.2390	0,2570	C,2602
OVERHEAD 6 PT	0717		76.4099	82.4398	86.1260	141.9871	145.2385	151.6463
TOTAL CONSTR	COSTS		454.4590	494.4585	516.7561	851.9229	471.4307	909.8779
/TRAFFIC			1.7300	1.8659	1.9500	9.4263	0.4361	0.4553
BAINT COSTS	(XPY)		256.5000	312.5000	198.6090	437.3999	312.3999	187.0000
/T AA7 PIC			0.9679	1. 1792	0,7494	0.4189	0,1563	C.0936
IÕOIA YNDAT	NAINT		29.9669	36.5694	23.2024	51, 1014	34.4977	21.8472
USIR COSTS (124)		2858. 8999	2555.3000	2415.8600	16431.1016	15774.6992	15170.8008
DITTART,			19.7003	7.0420	¥•7162	4,2221	7.6937	7.5915
EQUIA VEBOVE	4211		334,0051	278.7356	492,2478	121249423	1842.9378	1772.4943
TCTAL PROJECT	COST	8	3573.0589	3362.2585	3131.1560	17720.4219	16956.5273	162 67.6758
ALEY IC		1	1 11.4893	14+0978	11.0157	0,80/3	W.4861	8,1404

TABLE C.588: PROJECT COSTS IN \$1000 USING THE BEST-PRACTICE TECHNICAL PACKAGES OF THE 1950'S AT THE PRICES OF 1974.

.

,

PROJECT COST (\$1000	NUMBER	1311	1314	1315	#312	H313	H315	L316	L317	8317
SITE PREP Excavation/	31 HADLING	13.2519	10.9605	10.8841	21.6537	16.9182	13,7102	10.9605	10.8841	13.710
DITCH	11-0	C.3076	6.6153	0,6153	0.0	0,1142	0.6003	0.6153	0.6153	0.000.
6.8	XV2 2	2.1565	1.7287	1.5523	0.0	0.0	0.0	1.7287	1.5523	0.0
9#	AVE 2	3.5875	0.0	0.0	41,1960	26,1801	21.8120	0.0	0.0	21.8120
605	7-7	0.8224	C.8224	Ç.C	7.2369	0.0	0.0	0.8224	0.0	0.0
1008	AVE 2	0.0	6.0	0.0	0.0	8.6137	0.C	0.0	0.0	0.0
1658	6VE 2	0.0	0.0	0.0	58,5858	0.0	24.5691	J.O	0.0	C.C
L-500 N	7-7	0.0	0.0	3.3005	0.0	107.4559	107.2559	0.0	3.3005	107.255
P-500M	4-4	6.0	16.3068	15.3076	0.0	6.0	0.0	0.0	0.0	25.4401
6004	4-4	0.0	0.6	Q.O	0.0	0.0	0.0	19.0987	17.8409	0.0
TOTAL SPREADING/CO	DEPACTION	6.8740	19.5531	20.7757	107.0186	142,1640	154.2373	22.2650	23,3090	156.108
985	AV2 2	6.8444	6.8444	6.8444	33.6436	13.6436	33.6436	6.8444	6.8444	31.6430
935 608810780		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
JORFACING ADIVEI		1 3 744 1	3 76	3 9 3	6 0347	6 0217	6 0 1 1 7	1 7443	3 7663	6 0 2 1 7
NOR NOR	1764 1975	1 3.1003	3. 700 3 0. ú	7,003	5.0217	5.0217	3.0217	74/403	3,7603	5.021
ቸው። በዓይም /ር	110 0		CeN 0.0440	U . U . J. A	6 0051	6 0061	4 0061	6 4 0 0 0 0		6 0051
DEST/0	ATE 0	4.4047	4,4043	4,4047	0.0000	010001	0,001	4.4047	4.4047	0.000
00317#	AT5 0	0.0	0.0	0.0	V.U	0.0	0.0	V. V	0.0	···
TOTAL #/0 SI	IPP NAT	35,2215	45.0042	46.7554	173, 3427	203.7526	212.6179	48,3211	49.2887	214,489/
TOTAL W/ALL	TAT	420.2424	430.6301	431.7764	686.9172	717.3269	726,1924	433,3420	434,3096	728.061
SKILLED L	BOB	16.1966	19.4167	19.7953	78.2338	86,0485	89.5725	20,5130	20.8194	96.2335
GNSKILLED	LABOR	7.0031	5.9771	5,9429	11.1276	9.0072	7.5708	5.9771	5,9429	7.5708
/TRAPPIC	:	0.0875	0.0956	6.3971	0.0447	0.0480	Q.0486	C.1000	0.1010	C.0489
CAPITAL	_	12.0218	20.2154	21.0171	83.9013	107.8968	115.4746	21.8310	22.5263	116.6849
/TRAFF10		0.0454	0.0763	0.0793	0.0420	0,0540	0.0578	0.0824	0.0850	0.0584
MATERIALS		385.0212	385.0412	365,0212	513.5747	513+5747	513.5/4/	185.0212	J85.0212	513.574
/1845510		1.4529	1.4529	1,4529	0.2570	9,2570	0.2570	1.4529	1.4529	0.2570
DVERNBAD & P	HOFIT	84.0485	86.1260	86.3553	137.3834	143.4654	145.2385	86.6084	86.8619	145.6127
TOTAL CONSTR	COSTS	594.2908	516.7561	518.1316	824, 1005	860.7922	671.4367	520.0103	521.1714	873.6763
/TRAFFIC	2	1,9030	1.9500	1,9552	0.4125	0.4307	0.4361	1.9623	1.9667	0.4372
AINT COSTS	(#84)	194.6000	198.6000	198.6600	312, 3999	312.3999	3 12. 3999	198.6000	198.6000	312.3999
THAPPIC		6.7494	0.7494	0.7494	0.1563	0.1563	0,1563	0.7494	0.7494	0.1503
CONIA VANGUT	MAINT	23.2024	23.2624	23.2324	36.4977	36,4977	36.4977	23.2024	23.2024	36.4977
ISEN COSTS	XPY)	2415.8000	2415.8000	2415.80001	5774.69921	15774, 69921	5774.6992	2415.8000	2415.80001	5774.6992
77847710		9.1162	9.1162	9.1162	7.8937	7.8937	7.8937	9,1162	9,1162	7.0437
COLA YANAY	USZN	282,2378	262,2378	242,2376	1442.9578	1842,9578	1642.9578	262.2376	282.2378	1842,9578
OTAL PROJEC	T COSTS	3118.6907	3131. 1560	3132.53151	6911.39841	6947.09061	6958.5273	3134.4102	3135.57131	6960.7734
/TEAP21/		11.7686	11.4157	11.0200	# #625	#.4807	8.4861	11 8280	11 8323	A

TABLE C.SDB: PROJECT COSTS IN \$1000 USING THE BEST-PRACTICE TECHNICAL PACKAGES OF THE 1950'A AT THE PRICES OF 1974.

,

,

	PROJECT						
PROJECT	NUURTH	5114	L214	1314	8215	H 3 1 5	8415
COST (STOUG	<u>n</u>						
SITE PREP	31	6,2778	6,2778	6.2778	7,8528	7.8528	7.8528
EICAVATION,	/HAULING	1					
DITCH	11-0	0.7788	0,7785	0.7798	0.7599	0.7599	0.7599
6 11	9-9	2,1368	2.1368	2.1368	0.0	0.0	0.0
94	AVE 2	C.0	0.0	0.0	28,5418	28.5418	28.5418
60 H	AVE 3	1.3858	1.3858	1,3858	0.0	0.0	0.0
1005	AVE 2	0.0	0.0	0,0	0.0	0.Ú	c.0
1657	AVE 2	C.0	0.0	0.0	40,9575	40.9575	40.9575
1-5008	7-7	0.0	0,0	0.0	179.8727	179,8727	179.8727
P-5005	4-4	26.8916	26.8916	26.8916	0.0	0.0	0.0
800 M	4~4	6.0	0.0	0.0	0.0	Ú,Ú	0.0
TOTAL		31.1931	31.1931	31-1331	220-1319	250+1318	250.1318
SPREADING/	COMPACTION						
95%	AVE 4	7.2654	7.2654	7.2654	32.7132	15.7132	35.7132
931		0.0	0.0	0.0	0.0	0.0	0.0
SURPACING				3	3 8 6 4 4		
CAVAEL	AVE 2	3.8/51	2.4089	3.9449	3.2810	5.2599	3.2816
120	6164		20,1280	6 3474	21.15/0	0.0	27.1576
UBS1/G	A16 4		0.0	4.30/0	0.0	2.0121	0.0
CESTA	A75 4	0.0	0.0	V.U	0.0	4.0	2*0/21
TOTAL N/C S	SURF MAT	48.6114	67,2737	53.0691	324,1365	304.8323	330.0115
TOTAL W/ALL	TAT .	140.1864	176.7407	235.0259	472.5764	549.0122	572.6904
SKILLED L	ABOR	0.3729	0,5616	0.4098	2.0795	1.8740	2.1278
UNSKILLED	LABOR	0.0310	6.0462	6860+0	0.0593	0.0492	0.0697
/TRAFFI	1 2	0.0015	0.0023	6.0017	0.0011	0.0010	0.0011
CAPITAL		46.2075	66.6665	52.6205	321.9978	302.9092	327.0140
/TRAP71	c	0.1819	0.2516	0,1986	0.1611	0.1516	0.1640
MATERIALS	i	91.5750	109,4670	182.7570	148.4400	244.1800	242.6789
/TRAFFI	ic -	0.3456	0.4131	0.6396	0.0743	0.1222	0.1214
OVERHEAD 6	PROFIT	28.0373	35, 3481	47.1652	94.5153	109.8024	114.5381
TOTAL CONST	R COSTS	168.2236	212.0088	282.9910	567.0916	658,8145	687.2283
/TRAFFI	c	G.6348	0,8Qú3	1.0679	9.2630	0,3297	0.3439
MAINT COSTS	(NPY)	82,7000	113.2000	72.4000	152.9000	107.4000	67.8000
/184571	C	0,3121	C.+272	0.2732	0.0765	0.0537	0.0339
EQUIY ANNUA	I HAINT	14,1434	19,3595	12,3818	26.1489	18.3675	11.5952
USER COSTS	(#PY)	1599.6001	1496.4999	1408.5000	8672.8984	\$226.8008	7864.8008
/24AP71	ic	5.9985	5.6502	5.3151	4.3399	4.1167	3.9456
EGOIA VANAN	L USER	271.8533	256.3418	240.0016	1483.2358	1406.9470	1348.4583
TCTAL PROJE	CT COSTS	1840.5237	1824. 1805	1763.8909	9392.8867	4993.0117	8639.8281
/TRAFFI	c	6.9454	6.0037	6.6562	4.7002	4,5001	4.3234

TABLE C.58C: PROJECT COSTS IN J1660 USING THE LEAST-COST TZCHNICAL PACKAGES OF THE 1950'S AT THE PRICES OF A TYPICAL DEVELOPING COUNTRY.

PROJECT COST (\$1000	PROJECT NUMBZR	1311	L314	1315	K312	H313	H315	L316	L317	HJ 17
SITE PREP	31 /#KULTNG	7.5903	6,277a	6,2341	12.4026	9.0902	7.8528	6.2778	6,2341	7.8528
DITCH	11-0	0.3894	0.7788	0.7784	0.0	0.1446	0.7599	0.7788	0.7788	0.7599
65	9-9	2.6655	2.1368	1,9188	0.0	0.0	0.0	2.1368	1.9188	0.0
9.6	AV7. 2	4.6944	0.0	0.0	53.9064	34.2577	28.5418	0.0	0.0	28.541R
60 #	AVE 3	1.3858	1.385a	0.0	12.1955	0.0	0.0	1.3858	0.0	- 0.0
1938	AVE 2	0.0	C.O	6.0	0.0	14,3872	0.0	0.0	0.0	0.0
1655	አህም 2	6.0	0.0	0.0	97.6644	0.0	40.9575	0.0	0.0	0.0
1-5003	7-7	0.0	6.0	5.5351	0.0	179.8727	179.8727	0.0	5.5351	179.8727
P-5008	4 - 4	} 0.C	26.8916	25.1206	0.0	0.0	0.0	0.0	0.0	43.3902
800 H	4-4) C.O	0.0	0.0	0.0	0.0	0.0	31.1840	29.1302	0.0
TOTAL		9.1351	31, 1931	33.3533	163,7663	228,6622	250.1318	35.4854	37,3629	252,5645
SPREADING/	CORPACTICH									
98%	AVE 4	7.2654	7.2654	7.2654	35.7132	35.7132	35.7132	7.2654	7,2654	35,7132
93%		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SURFACING		1					6 36 6 6	1.000	3 0	
<u> UKATEL</u> Low	AYE 4	3.9449	3, 9449	3.9449	2.2299	2.2377	2.12333	3. 9449	3.9449	3.2399
863 7667 /0	AYG 4		U.U 1. 3478	0.0	V.J 6 0761	5 4761	U.U 6 3761	0.0	V.U 4 3074	0.0
55579 55579	ATE 4	0.0	4.3075	4, 30/0	0+0723	210121	210131	4,30/0	N 0 0	3.0731
L031/4	ATE 4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOTAL W/O S	SURP NAT	32,3236	53.0691	55.1855	223.0171	285.2002	304.8323	57.3614	59.1951	307,2651
TCTAL W/AL	LHAT	215.0864	235.8259	237.9424	467.1968	529.3801	549.0122	240.1182	241.9520	551.4451
SKILLED I	LABOR	0.3459	0.4098	0.4139	1.6759	1.8169	1.8740	0,4323	0,4350	1.8861
UNSKILLS:	D LABOR	0.0453	0.0146	0.0386	0.0717	0.0583	0+0492	0,6383	C.0386	0.0492
/TRAPP)	lc .	0.0015	6.0617	0.0017	0.0009	0.0001	0.0010	0,0018	0.0018	0.0010
CAPITAL		31.9324	52.6205	54.7330	221,2695	283.3230	302,9092	56,6903	58.7216	305,3296
TRAP?	IC	0.1205	0.1986	0.2065	0.1107	0.1419	0.1516	0.2147	0.2216	0,1528
MATERIAL	9	182.7570	182.7570	162.7570	244,1800	244.1000	244.1800	182,7570	182.7570	244.1800
/TRAFF	LC	0.6896	0.6895	C. 0896	0.1222	0,1222	0,1222	Q.6896	0.6896	0.1222
OVERHEAD &	PROFIT	43.0161	47.1652	47,5685	93.4393	105.8760	109.8024	48.0236	48.3964	116.2890
TCTAL CONST	TR COSTS	258.0964	282.9910	285.5308	560.6360	635.2561	658.8145	288.1418	290.3423	661.7339
/*****	IC	0.9739	1.0679	1.0775	0.2805	0.3179	0.3297	1.0073	1.0956	0.3311
MAINT COSTS	5 (XPV)	72.4000	72.4000	72,4000	107.4000	107.4000	107.4000	72.4000	72.4000	107.400C
/TRAFF1	C	0.2732	0.2732	0.2732	0.0537	0.0537	0.0537	0.2732	0.2732	0.0537
ZÖNIA YNNNI	AL MAINT	12,3010	12.3616	12 . Ju 18	10.3675	18.3675	18,3675	12.3018	12.3818	18.3675
USER COSTS	(# ₽¥)	1408.5000	1408.5000	1408.5000	8226.8008	8226.8008	6226.6008	1408.5000	1498.5000	8226,8008
/184773	IC Ì	5.3151	5.3151	5.3151	4.1167	4.1167	4.1167	5,0151	5.3151	4.1367
BÖNIA VANDI	L USER	240.8816	246.8816	240.8016	1406.9470	1406.9470	1406.9470	240.8816	240.8816	1406.9470
TOTAL PROJ	100 100	1734.99-3	1761.4909	1765.4307	8884. 4154	8969.4531	8993.0117	1769.0417	1771. 2422	8995 U31-
/*****	C	6.5621	h.65h2	B.465H	4.4510	4.4841	4,5001	6.6764	247841111 0164_8	0.6016 8.6016
7	-	1			414310	414403	44.04.61	410130	4.0034	443010

TABLE C.58C: PROJECT COSTS IN \$1000 USING THE LEAST-COST TECHNICAL PACKAGES OF THE 1950'S AT THE PRICES OF A TYPICAL DEVELOFING COUNTRY.

.

PROJECT PROJECT NUMBER	L114	1214	L314	H215	H315	8415
COST (\$1000)			<u> </u>			<u> </u>
SITE PREP 31 RECAVATION/HADLING	0.9115	0.9115	0.9115	1.1402	1.1402	1.1402
DITCH 14-0	0.037	0.0377	0.0377	0.0368	0.0368	0.0368
68 13-16	0.18.	0.1897	0.1897	0.0	0.0	0.0
95 478 2	0.0	0.0	0,0	2.5498	2.5498	2.5498
60n 8-11	0.0774	0.0774	0.0774	Õ.0	0.0	0.0
1008 8-11	0.0	0.0	0.0	0.0	0.0	0.0
165h 8-11	0.0	0.0	0.0	2.1497	2.1497	2.1497
L-5008 8-11	0.0	0.0	0.0	7.5866	7.5866	7.5866
P-5008 8-11	1.7795	1.7795	1.7795	0.0	0.0	0.0
800R 8-11	0.0	0.0	0.0	0.0	0.0	0.0
TOTAL	2.0643	2.0843	2.0843	12.3229	12.3229	12.3229
SPREADING/COMPACTION						
98% AVE 2	0.4232	0.4232	0.4232	2.0800	2.0800	2.0800
93%	0.0	0.0	0.0	0.0	0.0	0.0
SURFACING						
GRAVEL AVE 2	0.3540	0.2200	0.3604	0.2998	0.4805	0,2998
WDM AVE 4	0.0	1.7917	0.0	2.4174	0.0	2.4174
DBST/G AVE 4	0.0	0.0	0.3465	0.0	0.4640	0.0
DBST/N AVE 4	0.0	0.0	0.0	0.0	0.0	0,4539
TOTAL W/O SURP MAT	3.7730	5.4307	4.1259	18,2603	16.4876	18.7141
TOTAL W/ALL MAT	182.5939	197.2296	197.5261	278.4941	274.4185	292.4900
SKILLED LABOR	0.8676	1.5508	0.9685	4.3608	3.5701	4.4896
UNSKILLED LABOR	0.3415	0.4234	0.3656	0.5377	0.4594	0.5686
TRAFFIC	0.0046	0.0074	0.0050	0.0025	0.0020	0.0025
CAPITAL	2.4292	3.3219	2.6572	13.1934	12.2897	13.4075
TRAFFIC	0.0092	0.0125	0.0100	0.0066	0.0061	0.0067
MATERIALS	178,9556	191.9336	193.5349	260.4023	258.0991	273.9443
TRAFFIC	0.6753	0.7243	0.7303	0.1303	0.1292	0,1371
,						
OVERHEAD & PROFIT	36.5188	39.4459	39.5052	55.6980	54.8837	58.4980
TOTAL CONSTR COSTS	219.1127	236.6755	237.0313	334.1929	329.3020	350.9878
/TRAFFIC	0.8268	0.8931	0.8945	0.1672	0.1649	0.1756
• • • • • • • • •						
NAINT COSTS (NPV)	60.7000	-4.2000	43.0000	93.2000	70.0000	40.2000
/TRAFFIC	0.2291	0.2423	0.1623	0.0466	0.0354	0.0201
EQUIY ANNUAL HAINT	5.2706	5.5745	3.7337	8.0926	6.1476	3.4906
USER COSTS (MPY)	763.2000	699.8999	658.5000	4294.6016	4096.1992	3896.1001
/TRAFFIC	2.8800	2.6411	2.4849	2.1490	2.0497	1.9496
BOOLY ANNUAL USER	66,2687	60.7723	57,1776	372.9001	355.6729	338.2983
		•				
TOTAL PROJECT COSTS	1043.0125	1000.7754	938.5312	4721.9922	4496.3008	4207.2052
/TRAFFIC	3.9359	3.7765	3.5416	2.3629	2.2500	2.1454

TABLE C.5CA: PROJECT COSTS IN \$1000 USING THE BEST-PRACTICE TECHNICAL PACKAGES OF THE 1970'S AT THE PRICES OF 1930.

	PROJECT									
PROJECT COST (\$100	0) NUNDER	1311	1314	L315	H312	8313	H315	L316	L317	8317
SITE PRZP	31	1.1021	0.9115	0,9052	1.8008	1,4070	1.1402	0.9115	0,9052	1.1402
BACAVATION	/HAULING									
DITCH	14-0	0.0189	0.0377	0.0377	0.0	0.0070	0.0368	0.0377	0.0377	0.0366
В П О П	01-11	0.2367	0.189/	0.1704	0.0	0.0	0.0	0.1897	0.1704	0.0
70	ATG 4	0.4194	0.077#	0.0	4.0130	3.0004	2.5498	0.0	0.0	2.5498
100	D=13	0.0774	0.0774	0.0	9.6811	0.0	0.0	0.0774	0.0	0.0
1003	0-11	0.0	0.0	0.0	0.0	0.8107	0.0	0.0	0.0	0.0
1-5008	6-11	0.0	0.0	0.0	2.1404	7 5966	2.1497	0.0	0.0	
2-500h	8-11		1 7705	1 4413	0.0	/.3000	1.2400	0.0	0.2333	1.3800
8008	8-11		0.0	1.0023	0.0	0.0	0.0	2 1102	1 9707	2.8/12
TOTAL	0-11	0.7623	3 0853	2 1039	10 6339	44 4666	11 2770	241173	1.2/7/	12 0545
SPREADING/	COMPACT TON	1 0.1323	449043	41 1030	14.0227	11-4040	12+3447	2.4242	414413	13,0443
GAL	LVE 3	0.4212	0.4232	0 4333	2 0800	2 0800	2 0800	A 4777	A # 232	2 0800
915		0.0	0.0	0.0	0.0	0.0	0.0	0.4232	0.4232	1.0000
SURPACTNO					***	***	••••			
GRAVEL	AVK 2	0.3604	0.360#	0.3604	0.4805	0.4805	0.4805	0.3604	0.3604	0 4805
WBR	AVP A	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
DBST/G	AVE A	0.3465	0.3465	0.1465	0.4640	0.4640	0.4640	0.1465	0.3465	0.4646
DBST/W	AVE 4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOTAL N/O	SURT MAT	2.9844	4.1259	4.1390	15.4481	15.8963	16.4876	4.4657	4.4565	17.2091
TOTAL W/AL	I ANT	196.3847	197.5261	197.5393	273.3789	273.8271	274.4185	197.8660	197.8567	275.1399
SKILLED	LABOR	0.7504	0.9685	0.9720	3.3737	3.4551	3.5701	1.0314	1.0307	3.7051
UNSKILIE	D LABOR	0.4370	0.3656	0.3632	0.7069	0.5594	0.4594	0.3656	0.3632	0.4594
/TRAPP:	IC	0.0045	0.0050	0.0050	0.0020	0.0020	0.0020	0.0053	0.0053	0.0021
CAPITAL		1.6343	2.6572	2.6702	11.1016	11.6741	12.2897	2.9341	2.9289	12.8763
/TRAPP:	C	0.0062	0.0100	0.0101	0.0056	0.0056	0.0061	0.0111	0.0111	0.0064
HATEBIAL	5	193.5030	193.5349	193.5339	258.1968	258.1387	258.0991	193.5349	193.5339	259.0991
TRAPP:	C	0.7304	0.7303	0.7303	0.1292	0.1292	0.1292	0.7303	0.7303	0.1292
OVERHEAD 6	PROFIT	39,2769	39.5052	39.5078	54.6758	54.7654	54,8837	39.5732	39.5713	55.0280
TOTAL CONST	CA COSTS	235.6616	237.0313	237.0471	326,0544	328,5925	329.3020	237,4391	237.4281	330.1677
/TPAPP)	(C	0.0093	0.8945	0,8945	0.1642	0.1644	0.1648	0.8960	0.8960	0.1652
MAINT COST:	5 (NPV)	43.0000	43,0000	43.0000	70.0000	70.8000	70.8000	43.0000	43.0000	70.8000
/TRAPP1	(C	0, 1623	0,1623	0,1623	0.0354	0,0354	0.0354	0.1623	0.1623	0.0354
BONIA YNHNY	L HAINT	3.7337	3.7337	3.7337	6,1476	6,1476	6.1476	3.7337	3,7337	6.1470
USER COSTS	(NPV)	658.5000	658.5000	658,5000	4096.1992	4096,1992	4096, 1992	658,5000	658.500G	4096.1992
/TRAPP?	(C	2.4849	2.4849	2,4849	2.0497	2.0497	2.0497	2.4849	2.4849	2.0497
BOOLA YARA'	L USER	57.1776	57.1776	57.1776	355.6729	355.6729	355,6729	57.1776	57.1776	355.6729
TOTAL PROJE	CT COSTS	937.1614	938.5312	938.5469	4495.050B	4495,5898	4496.300B	938.9390	938,9280	4497, 1641
/TRAFFI	C	3.5365	3,5416	3.5417	2.2493	2.2496	2.2500	3.5432	3.5431	2.2504

TABLE C.5CA: PAOJECT COSTS IN \$1000 USING THE REST-PRACTICE TECHNICAL PACKAGES OF THE 1970'S AT THE PRICES OF 1930.

PROJECT PROJECT		1114	1214	1314	H215	K315	H415
SITE PAPP 31		9.8326	9.8326	9.8326	12.2993	12.2993	12,2993
BACAVATION/HAULING	i A	0 3040	A 30(I)	0 10/0		A 200	A 1000
DITCH 14-	• Q	0.3002	1 3001	V. 3004	0.2908	0.2900	0.2700
67 13-	16	1.2293	1.2293	1.1191	0.0	0.0	U.U
98 841	. X	0.0	0.0	0.0	17.2900	17.2900	17.2900
60M 8-1	1	0.5317	0.5317	0.5317	0.0	0.0	0.0
1000 8-1	1	0.0	0.0	0.0	0.0	0.0	0.0
1658 8+1	1	0.0	0.0	0.0	14,7191	14.7191	14.7191
L-500M 8-1	1	0.0	0.0	0.0	52.0044	52.0044	52,0044
8-500M 8-1	1	12.1976	12.1978	12.1978	0.0	0.0	0.0
R007 B-1	1	0.0	0.0	0.0	0.0	0.0	0.0
TOTAL		14.2650	14.2650	14.2650	84,3123	84,3123	64,3123
SPREADING/CORPACTS	ON						
985 AVE	2	3.1311	3.1311	3.1311	15,3909	15.3909	15.3909
93%		0.0	0.0	0.0	0.0	0.0	0.0
SURFACING							
GAAVEL AVE	2	2.9604	1.8402	3.0137	2.5070	4.0183	2.5070
YBN AYE	4	0.0	14.6664	0.0	19.7880	0.0	19.7880
DAST/G AVE	4	0.0	0.0	2.6419	0.0	3.5373	0.0
DBST/W AVE	-	0.0	0.0	0.0	0.0	0.0	3.4610
TOTAL W/O SURP MAT	1	30.1891	43.7354	32.8843	134.2974	119.5581	137.7584
TOTAL WYALL BAT		371.1807	355.6892	417.9050	611.9351	633.1326	657.68/0
SKILLED LABOR		9.7199	17.3681	10.6489	48.8426	39.9888	50.2856
DESKILLED LABOR		5.8548	7.2534	6.2666	9.2106	7.8750	9.7412
/TRAFFIC	- 1	0.0588	0.0929	0.0646	0.0290	0.0240	0.0300
CAPITAL	1	14.0663	18.5657	15.2206	75.5586	71.0086	77.0460
/TRAFFIC	- 1	0.0531	0.0701	0.0574	0.0378	0.0355	0.0386
BATERIALS	Ì	341.5400	352.5020	385.5693	478.3232	514.2603	520,6140
/TRAFFIC		1.2988	1.3302	1.4550	0.2394	0.2573	0.2605
OVERHEAD & PROFIT		74.2361	79.1378	83.5810	122.3870	126.6265	131.5378
TOTAL CONSTS COSTS		445.4167	474.8269	501.4858	734.3220	759.7590	789.2244
/TRAPPIC		1.6808	1.7918	1.8924	0.3675	0.3802	0.3949
NAINT COSTS (NPV)		256.5000	312.5000	198.6000	437.3999	312.3999	187.0000
/TRAPPIC	- 1	0.9679	1.1792	0.7494	0.2189	0.1563	0.0936
BOUIN ANNUAL WYINL		29.9669	36.5094	23.2024	51.1014	36,4977	21.8472
USER COSTS (NPV)		2858.8999	2555.3000	2415.80001	16431,10161	15774.6992	15170.8008
/TRAPPIC	- [10.7883	9.6426	9.1162	8.2221	7.8937	7.5915
BOOLY ANNUAL USBR	ł	334.0051	298,5356	282.2378	1919.6453	1842.9578	1772.4043
TOTAL PROJECT COST	s :	3560.8167	3342.6270	3115.88571	7602.82031	6846.8555	16147.0234
/TRAPPIC		13.4370	12.6137	11.7581	8.8085	8.4302	6.0800

TABLE C.5CB: PROJECT COSTS IN \$1000 USING THE BEST-PRACTICE TECHNICAL PACKAGES OF THE 1970'S AT THE PRICES OF 1974.

, h

,

PROJECT	PROJECT		1314	1315	8312	H313	#315	1316	1317	#317
COST (\$ 100	0}									
	· · · · · · · · · · · · · · · · · · ·									
SITE PREP	33	11.6682	9.8326	9.7641	19,4254	15.1772	12,2993	9.8326	9.7641	12.2993
DITCH	10-0 10-0	0 1511	0 3063	0 3063	0.0	0 0568	0 2000	0 3063	0 3062	0 3044
68	13+16	1.5135	1,2293	1.1039	0.0	0-0	0.0	1.2293	1,1019	0.2300
98	AVE 2	2.8438	0.0	0.0	32.6551	20.7525	17.2900	0.0	0.0	17.2900
608	8-11	0.5317	0.5317	0.0	4.6794	0.0	0.0	0.5317	0.0	0.0
100 M	8-11	0.0	0.0	0.0	0.0	5,5537	0.0	0.0	0.0	0.0
165M	8-11	0.0	0.0	0.0	35.0982	0.0	14.7191	0.0	0.0	0.0
L-500 m	8-11	0.0	0.0	1.6003	0.0	52.0044	52.0044	0.0	1.6003	52.0044
P-500#	8-11	0.0	12,1970	11.3945	0.0	0.0	0.0	0.0	0.0	19.6813
800M	8-11	0.0	0.0	0.0	0.0	0.0	0.0	14.5115	13.5558	0.0
TOTAL		5.0621	14.2650	14.4048	72.4329	78,3675	84.3123	16.5788	16.5662	89.2745
SPREADING/	COMPACTION									
98%	AVE 2	3.1311	3.1311	3.1311	15.3909	15.3909	15.3909	3.1311	3.1311	15.3909
93%		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SURPACING										
GRAVEL	AVE 2	3.0137	3.0137	3.0137	4.0183	4-0183	4.0183	3.0137	3.0137	4.0183
¥B8	AVE 4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
DBST/G	AVE 4	2.6419	2,6419	2.6419	3,5373	3.5373	3.5373	2.6419	2.6419	3.5373
DBST/W	AVE 4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOTAL W/O	SUBT MAT	25.7369	32.8843	32,9556	114.8048	116-4912	119,5581	35, 1980	35.1169	124.5203
TOTAL M/AL	1 NAT	410.7578	417.9050	417.9763	628,3792	630.0657	633.1326	420.2190	420.1377	638.0947
SWIFTED	LABOR	8.3984	10.8489	10.8879	37.7639	38.6931	39.9888	11.5471	11.5401	41.5063
UNDAILLE	D LABUR	7.4906	0.2000	0.2258	12.1182	9.5880	1.8/50	6.2666	6.2258	7.8750
788655	10	0.0000	0.0040	0.0040	0.0250	0.0242	0.0240	0.06/2	0.06/0	0.0247
CAFILAL /TOLWS		0 0347	13.2200	12.2973	\$3.037/ \$ 0340	0/01011	/1.0000	10.0302	10.040/	/4.4033
2 4 8 8 7 4 8 8 7 4 8 8 7 4 8 8 7 4 8 8 7 4 8 8 7 4 8 7 4 8 7 4 8 7 4 8 7 4 8 7 4 8 7 4 8 7 4 8 7 4 8 7 4 8 7 4	c .	385 4438	396 6603	V.VJ// 346 6466	0.0117 614 4676	610 40007	610 2603	396 6603	306 5660	510 740373
/TRLPP	10	1.4554	1 4460	1 4560	0 2676	0.2574	A 2571	1 1250	1 4550	0 3573
/	10		1.4350	114330	0.13/3	1123/1	412373	114330	114330	0.2375
OVERHEAD O	PROFIT	82.1516	83,5810	03.5952	125.6758	126.0131	126.6265	84.0438	84.0275	127.6189
TOTAL CONS	TR COSTS	492.9092	501.4858	501.5715	754.0549	756.0786	759.7590	504.2627	504.1650	765.7136
/73875	10	1.6600	1.8924	1.8927	0.3773	0.3783	0.3802	1.9029	1.9025	0.3832
RATHT COST	9 (NPV)	198.6300	198 6000	108 6000	112.1999	312.3999	317 3999	198.6000	198 4000	313 3099
/TRAVE	10	0.7494	0.7494	0.7494	0.1561	0.1563	0.1561	0.7494	0.7494	0.1563
EQUIT ANNU	AL BAINT	23.2024	23.2024	23.2024	36.4977	36.4977	36.4977	23.2024	23.2024	36.4977
										
USER COSTS	(###)	4415.8000	2415.0000	2415.0000	10/74.0992	15/74.6992	12/74.6992	2415.8000	¥415.8000	15774.6992
778477		9.1162	9.1162	¥.1162	7.0937	7.8937	7.8937	9.1162	9.1162	7.8937
CANTA VAMA	AL V366	282.2378	202-2378	202.2378	1042+9578	1042.9578	1042.9578	282.2378	282.2378	1842.9578
TOTAL PROJ	ECT COSTS	3107.3091	3115.8857	3115.9714	16841.1523	16843. 1758	16846.8555	3118.6626	3118.5649	6852.8125
/12479	IC	11.7257	11.7501	11.7584	8.4273	8.4283	8.4302	11.7685	11.7682	6.4332

TABLE C.5CD: PROJECT COSTS IN \$1000 USING THE BEST-PRACTICE TECHNICAL PACKAGES OF THE 1970'S AT THE PRICES OF 1974.

•

7182 7.1527 3259 0.3180 3920 0.0 0 29.1346 9633 0.0 0 26.7178 0 26.7178 94.5402 1747 1747 0.0 0 0.0 8558 150.7107 2912 21.0936 0 0.0 8673 2.3652 18.6015 16.6015	7.1527 0.3180 0.0 29.1346 0.0 26.7178 94.5402 0.0 150.7107 21.0936 0.0 3.8230	7.1527 0.3180 0.0 29.1346 0.0 26.7178 94.5402 0.0 150.7107 21.0936 0.0
3259 0.3180 3920 0.0 0 29.1346 9633 0.0 0 26.7178 0 26.7178 0 94.5402 1747 0.0 0 0.0 8558 150.7107 2912 21.0936 0 0.0 8673 2.3652 18.6015	0.3180 0.0 29.1346 0.0 26.7178 94.5402 0.0 0.0 150.7107 21.0936 0.0 3.8230	0.3180 0.0 29.1346 0.0 26.7178 94.5402 0.0 150.7107 21.0936 0.0
3259 0.3180 3920 0.0 0 29.1346 9633 0.0 0 26.7178 0 26.7178 0 94.5402 1747 0.0 0 0.0 8558 150.7107 2912 21.0936 0 0.0 8673 2.3652 18.6015	0.3180 0.0 29.1346 0.0 26.7178 94.5402 0.0 150.7107 21.0936 0.0 3.8230	0.3180 0.0 29.1346 0.0 26.7178 94.5402 0.0 150.7107 21.0936 0.0
3920 0.0 29,1346 9633 0.0 9633 0.0 0 0 26.7178 0 0 94.5402 1747 1747 0.0 0 0 558 150.7107 2912 21.0936 0 0 0.0 8673 2.3652 18.6015 16.6015 16.015	0.0 29.1346 0.0 26.7178 94.5402 0.0 150.7107 21.0936 0.0 3.8230	0.0 29.1346 0.0 26.7178 94.5402 0.0 150.7107 21.0936 0.0
0 29,1346 9633 0.0 0 26.7178 0 94.5402 1747 0.0 8558 150.7107 2912 21.0936 0 0.0 8673 2.3652 0 18.6015	29.1346 0.0 26.7178 94.5402 0.0 150.7107 21.0936 0.0 3.8230	29.1346 0.0 26.7178 94.5402 0.0 150.7107 21.0936 0.0
9633 0.0 0 26.7178 0 94.5402 1747 0.0 0 0.0 8558 150.7107 2912 21.0936 0 0.0 8673 2.3852 18.6015	0.0 0.0 26.7178 94.5402 0.0 150.7107 21.0936 0.0 3.8230	0.0 0.0 26.7178 94.5402 0.0 150.7107 21.0936 0.0
0 0.0 0 26.7178 0 94.5402 1747 0.0 0 0.0 8558 150.7107 2912 21.0936 0 0.0 8673 2.3852 0 18.6015	0.0 26.7178 94.5402 0.0 150.7107 21.0936 0.0 3.8230	0.0 26.7178 94.5402 0.0 150.7107 21.0936 0.0
0 26.7178 0 94.5402 1747 0.0 0 0.0 8558 150.7107 2912 21.0936 0 0.0 8673 2.3852 18.6015	26.7178 94.5402 0.0 150.7107 21.0936 0.0 3.8230	26.7178 94.5402 0.0 150.7107 21.0936 0.0
0 94.5402 1747 0.0 0 0.0 8558 150.7107 2912 21.0936 0 0.0 8673 2.3652 18.6015	94.5402 0.0 150.7107 21.0936 0.0 3.8230	94.5402 0.0 0.0 150.7107 21.0936 0.0
1747 0.0 0 0.0 8558 150.7107 2912 21.0936 0 0.0 8673 2.3652 0 18.6015	0.0 0.0 150.7107 21.0936 0.0 3.8230	0.0 0.0 150.7107 21.0936 0.0
0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0 150.7107 21.0936 0.0 3.8230	0.0 150.7107 21.0936 0.0
8558 150.7107 2912 21.0936 0 0.0 8673 2.3852 0 18.6015	150.7107 21.0936 0.0 3.8230	150.7107 21.0936 0.0
2912 21.0936 0 0.0 8673 2.3852 0 16.6015	21.0936 0.0 3.8230	21.0936
2912 21.0936 0 0.0 8673 2.3852 0 18.6015	21.0936 0.0 3.8230	21.0936
0 0.0 8673 2.3652 0 18.6015	0.0	0.0
8673 2.3852 0 18.6015	3.8230	0.0
8673 2.3852 0 18.6015	3.8230	
0 18.6015	3.0230	2 2652
0 18.8013	<u> </u>	10 6016
AP.1.3 U.1	2 6570	10-0013
	242212	3 4684
u u.v	0.0	314004
100 QUIS	186 1178	201.4120
1465 348.3831	430.5173	446.0903
2252 1.0221	0.8454	1,0542
0421 0.0587	0.0531	0.0650
0010 0.0005	0.0004	0.0006
4692 196.7950	183.3715	200.2249
1449 0.0985	0.0918	0,1002
4101 150,5078	246.2478	244.7467
6959 0.0753	0.1232	0.1225
8767 £0 £764	86 1076	89 2180
0756 440 ACOL	616.4304	515, 1087
7/30 410.0370	010.02VG	A 2670
0130 012072	492103	V12077
4000 152.9000	107.4000	67.8000
2732 0.0765	0.0537	0.0339
3810 26.1489	18.3675	11.5952
5000 0672.8984	8226.8008	7884.8008
3151 4.3399	4.1167	3.9456
8816 1483.2388	1406.9470	1348.4583
8755 9243.8555	8650.6203	8487.9062
6033 4.6256	4.4290	4.2474
	3897 199.9435 1465 348.3831 2252 1.0221 0421 0.0587 0010 0.0005 4692 196.7950 1489 0.0985 4101 150.5078 9756 418.0596 0150 0.2092 4000 152.9000 2732 0.0765 3810 26.1489 5000 6672.6984 3151 4.399 8755 9243.8555 6033 4.6256	3897 199.9435 186.3378 1465 348.3831 430.5173 2252 1.0221 0.6454 0421 0.0587 0.0531 0010 0.0005 0.0004 4692 196.7950 183.3715 1489 0.0985 0.0918 4101 150.5078 246.2476 6959 0.0753 0.1232 8293 69.6766 86.1035 9756 418.0596 516.6206 0150 0.2092 0.2585 4000 152.9000 107.4000 2732 0.0765 0.0537 3010 26.1489 18.3675 5000 6672.6984 8226.8008 3151 4.3399 4.1167 8151 4.3399 4.1167 8161 1483.2308 1406.9470 8755 9243.8555 6650.6203 6033 4.6256 4.4290

TABLE C.SCC:	PROJECT	COSTS	IN	\$1000	USING	THE	LEAST-COST	TECHNICAL	PACKAGES	OP THE	1970'5	AT.
	THE PRIC	LES OP	1 1	TPICAL	L DEVEI	LOPI	NG COUNTRY.					

PROJECT	PROJECT	1311	1314	L315	H312	H313	H315	L316	1317	H317
COSTINION									<u> </u>	
SITE PREP	31	6.9136	5.7182	5.6783	11.2969	8.8263	7.1527	5.7182	5.6783	7.1527
BICAVATION	ZMAULING									
DITCH	14-0	0.1630	0.3259	0.3259	0.0	0.0605	0.3180	0.3259	0.3259	0.3180
6 M	AVE 2	2.9839	2,3920	2.1479	0.0	0.0	0.0	2.3920	2.1479	0.0
98	12-15	4.7919	0.0	0.0	55.0260	34.9692	29.1346	0.0	0.0	29.1346
60 M	8-11	0.9633	0.9633	0.0	8.4767	0,0	0.0	0.9633	0.0	0.0
100 8	8-11	0.0	0.0	0.0	0.0	10.0841	0.0	0.0	0.0	0.0
165 N	8-11	0.0	0.0	0.0	63.7095	0.0	26.7178	0.0	0.0	0.0
L-500H	8-11	0.0	0.0	2.9092	0.0	94.5402	94.5402	0.0	2.9092	94.5402
P-500n	8-11	0.0	22.1747	20.7143	0.0	0.0	0.0	0.0	0.0	32.7793
800 n	8-11	0.0	0.0	0.0	0.0	0.0	0.0	26-3429	24.6080	0.0
TOTAL		в.9020	25.8558	26.0973	127.2123	139.6540	150.7107	30.0241	29.9911	124.1121
SPREADING/	COMPACTION								0 2022	
98%	AVE 2	4.2912	4.2912	4.2912	21.0936	21.0936	31.0470	4.2914	4.2912	21.0930
93 K		0.0	0.0	Q.0	0.0	0.0	0.0	0.0	0.0	0.0
SURPACING	· ··- •				2 0230		7 9130	2 8671	2 8673	1 8 2 1 6
GRAVEL	AVE 2	2.8673	2.8673	2.00/3	3.8230	3.0434	3.0230	2.00,3	0.0	0.0
WBN	745 3	0.0	0.0	0.0	V.U 3.6670	0.0	3 6670	2 6672	2.6572	1 5579
DBST/G	AVE 4	2.6572	2.6572	2.0372	3.3514	7.2214	7*2212	A 0	0.0	0.0
DBST/W	AVE 4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
TOTAL N/D	SUNP RAT	25.6313	#1. 3897	41.5913	166.9836	176.9548	186.3378	45.5579	45.4851	195.3992
TOTAL W/AL	L HAT	208.3881	224.1465	224.3481	411, 1633	421.1343	430,5173	228.3147	228.2419	439.5789
5¥111.PD	1.1.808	0.1811	0.2252	0.2258	0.8274	0.8248	0.8454	0.2391	0.2387	0.8761
DWSKILLE	D LABOR	0.0499	0.0421	0.0419	0.0801	0.0640	0.0531	0.0421	0.0419	0.0531
/**191	TC	0.0009	0.0010	0.0010	0.0005	0.0004	0,0004	0.0011	0.0011	0.0005
CAPITAL		23.4015	39.4692	39.6821	162.8101	173.5143	193.3715	43.6236	43.5629	192.4022
/198/	10	0.0083	0.1489	0.1497	0.0815	0.0868	0.0918	0.1646	0.1644	0.0963
BATERIAI	S	184.7557	184.4101	184.3986	247.4459	246.7316	246.2478	184.4101	184.3986	246,2478
/TRAFI	7IC	0.6972	0.6959	0.6958	0.1238	0.1235	0.1232	0.6959	0.6958	0.1232
OVERHEND A	. PROFIT	41.6776	84.8293	44.6696	82.2327	84.2268	86.1035	45.6629	45.6484	87.9158
TOTAL CON	TR COSTS	250-0657	268.9756	269.2175	493.3958	505.3611	516.6206	273.9775	273.8901	527.4944
/TRAFI	IC	0.9436	1.0150	1.0159	0.2469	0.2529	0.2585	1.0339	1.0335	0.2640
#ATH# (05	M (HOW)	1 72,4000	72.4000	72.4000	107.4000	107.4000	107.4000	72.4000	72.4000	107.4900
/78481		0. 27 32	0.2732	0.2732	0.0537	0.0537	0.0537	0.2732	0.2732	0.0537
BOULT ANNI	VAL BAINT	12.3618	12.3418	12.3818	18.3675	18.3675	18.3675	12.3818	12.3818	18,3675
		5408. 5000	1408.5000	1408.5000	8226.8008	8226.8008	8226.8008	1408.5000	1408.5000	8226.8004
- 10 PR - CO11 2721 PI		5, 1151	5. 1151	5. 3151	4.1167	4.1167	4.1167	5.3151	5.3151	4.1167
BODIA VNNI	IAL USER	240.8816	240.0816	240.8816	1406.9470	1406.9470	1406.9470	240.8816	240.8816	1406,9470
								476h 0774	1760 3000	
TOTAL PRO	JECT COSTS	1730,9656	1/49+8755	1/30.1174		edjy.3300	003V.02UJ	1/34±0//4	6.6210	0001+0714 4 5344
/TRAF	71C	1 0+2114	0.0033	0.0V41	*****	414233	4.4490	0.0444	VI 04 10	494144

,

TABLE C.5CC: PROJECT COSTS IN \$1000 USING THE LEAST-COST TECHNICAL PACKAGES OF THE 1970'S AT THE PRICES OF A TYPICAL DEVELOPING COUNTRY.

PADJECT NUMOUR L114 L214 L314 H215 H315 H415 LDST(\$1000) SITE PREP 11 S.N103 S.0103 G.2072 G.2073		PROJECT	1					
SITE PREP 11 5	PROJECT	NUMBER	L114	1214	1314	H215	4315	H415
ERCAVATION/HAULING 0.2577 0.2579 0.2534 0.2536 0.2534 0.2536 0.2534 0.2536 0.2534 0.2536 0.2534 0.2536 0.25376 0.25376 0.25376 0.25376			5-1103	5.0113	5-0103	6.2672	A.2672	6.2672
DITCH AVE2 0.2597 0.2599 0.2594 0.2536 0.25372 0.25372 0.25372 0.25372 0.25372 0.25372 0.25372 0.25372 0.25372 0.25372 0.25372 0.25372 0.25372 0.25372 0.25372 0.25372	EXCAVATION/	HAULING			,,		012072	UTLOTE
AW AVE 2 1.16J1 1.16J1 1.16J1 0.0 <	011CH	AVE2	0.2577	0.2599	0.259+	9.2536	0.2534	2.2516
VH AVE 2 0.0 C.0 0.0 11.8777 11.0777 11.6777 00H 5-4 0.1993 J.1993 J.0	6 M	AVE 2	1.1631	1.1631	1.1601	0+0	0.0	5.5
6/M 5-4 0.1993 J.1993 0.0 0.0 J.0 J.1 J.1 <thj.1< th=""> J.1 J.1 J.</thj.1<>	9 M	AVE 2	0.0	ć.Ó	0.0	11.8777	11.9777	11.9777
100M 8-7 0.0 0.0 0.0 0.0 0.0 0.1327 <th0.1227< th=""> <th0.1327< th=""> <th0.1327< td=""><td>6 Ú M</td><td>5-4</td><td>0.1993</td><td>J.1993</td><td>0.1993</td><td>0.0</td><td>3.5</td><td>5.0</td></th0.1327<></th0.1327<></th0.1227<>	6 Ú M	5-4	0.1993	J.1993	0.1993	0.0	3.5	5.0
165M 8-7 0.0 1.0 0.0 4.1327 <	100M	8-7	0.0	2.0	0.0	6.0	0.r	3.3
L-5.JDM 6-5 P-5.JDM 8-7 4.5153 4.5153 4.5153 0.0 0.0 0.0 TUTAL 6.1343 4.5153 4.5153 0.0 0.0 0.0 TUTAL 6.1343 4.5153 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	165M	8-7	1 0.0	0.0	0.0	4.1327	4.1321	4.1327
P-5)0M R-7 4.5153 4.5153 4.5153 0.0 0.0 7.0 BJUM B-7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.0 TUTAL 6.1343 6.1343 6.1343 56.6964 56.7964 11.7369 11.7364 11.7369 11.7364 11.7364 11.7369 11.7364 11.7364 11.7364 11.7364 11.7364 11.7364 11.7364 11.7364 11.7364 <th< td=""><td>L-5J0M</td><td>6-5</td><td>0.0</td><td>0.0</td><td>0.0</td><td>49.4325</td><td>40.4325</td><td>47.4325</td></th<>	L-5J0M	6-5	0.0	0.0	0.0	49.4325	40.4325	47.4325
BJDM B-7 O.C N.O O.C O.C N.O TUTAL 6.1343 6.1343 56.6964 56.6964 56.6964 SPREADING/COMPACTION 93% 21 2.3877 2.3877 11.7369 11.7364 11.7364 93% 21 0.0 N.O 0.0 0	P-530H	8-7	4.5150	4.5150	4,515)	0.0	0.0	2.0
TUTAL 6.1343 6.1343 6.1343 56.6964 56.	830M	8-7	0.0	0 .0	0.0	0.0	0.0	٦.6
SPREADING/COMPACTION	TOTAL		6.1343	6.1343	6.1343	56.6964	56.6964	56.6964
98 21 2.3877 2.3877 2.3877 11.7369 11.7369 11.7369 SJRFACING 0.0 </td <td>SPREADING/CO</td> <td>DMPACTION</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	SPREADING/CO	DMPACTION						
93% 21 0.0 <th0.0< th=""> <th0.0< th=""> <th0.0< th=""></th0.0<></th0.0<></th0.0<>	488	21	2.3877	2.3877	2.3877	11.7369	11.7369	11.7369
SJRFACING GRAVEL 21 0.8462 7.526J 9.8614 3.7166 1.1425 3.7166 MAM AVE 3 0.0 14.7870 0.6 14.6015 0.0 14.615 DBST/G AVE 4 0.0 0.0 2.6572 0.0 3.5579 3.0 DRST/W AVE 4 0.0 0.0 0.0 2.6572 0.0 3.5579 3.0 DRST/W AVE 4 0.0 0.0 0.0 7.0 0.0 3.5579 3.0 DRST/W AVE 4 0.0 0.0 0.0 7.0 0.0 3.5579 3.0 DRST/W AVE 4 0.0 0.0 0.0 7.0 3.5579 3.7 DVALLED LAROR 1.4.546 1.5878 1.4807 6.5634 6.4137 6.9264 WINSKILED LAOR 1.4546 1.5878 1.4807 6.5634 6.4137 6.9264 /THAFFIC 3.019 1.0191 0.0191 3.0141 0.3141 3.01237 3.03237 3.03237 3.03237 3.03237 <t< td=""><td>938</td><td>21</td><td>0.0</td><td>·)•0</td><td>0.0</td><td>Ŭ+0</td><td>0.0</td><td>o.o</td></t<>	938	21	0.0	·)•0	0.0	Ŭ+0	0.0	o.o
GAVEL 21 0.8462 0.5260 0.8614 0.7166 1.1485 0.7166 WBM AVE 3 0.0 14.7870 0.6 18.6015 0.0 19.6015 DBST/G AVE 4 0.0 0.0 2.6572 0.0 3.5579 0.0 DBST/W AVE 4 0.0	SURFACING							
MBM AVE 3 0.0 14.7870 0.6 18.6015 0.0 18.6015 DBST/G AVE 4 0.0 0.0 2.6572 0.0 3.5579 0.0 DRST/W AVE 4 0.0 0.0 0.0 0.0 0.0 3.5579 0.0 TJTAL W/O SURF MAT 14.1774 27.8452 17.0509 0.4.0115 79.4007 97.4870 TJTAL W/ALL MAT 14.1774 27.8452 17.0509 0.4.0115 79.4007 97.4870 SKILLED LAROR 1.4546 1.58728 1.4807 6.5654 6.4107 6.5926 UNSKILLFD LABOR 1.4546 1.58728 1.4807 6.5657 6.4107 6.5926 JYRAFFIC 0.0191 0.0191 70.141 0.0141 7.014	GRAVEL	21	0.8462	1.5260	0.8614	2+7166	1,1485	0.7166
DBST/G AVE 4 0.3 0 2.6572 0.0 3.5579 0.0 DRST/W AVE 4 0.0	WBM	AVE 3	0.0	11.7870	0.0	19.6015	0.0	16.4015
DBST/M AVE 4 0.0 0.	DBST/G	AVE 4	Į 0+3	0	2.6572	0.0	3.5579	0.0
TUTAL W/O SURF MAT 14.1784 27.8452 17.3509 74.9135 79.4000 97.4870 TUTAL W/ALL MAT 105.9533 137.3121 199.6077 242.45944 323.5867 340.1655 SKILLED LAMOR 1.4546 1.5878 1.4807 6.5654 6.4137 6.5926 UNSKILLED LAMOR 1.4546 1.5878 1.4807 6.5654 6.4137 6.5926 JMAKILLED LAMOR 1.45546 1.5978 1.4807 6.5654 6.4137 6.5459 JMAKILLED LAMOR 1.45546 1.5978 1.2174 3.3233 21.6577 21.774 21.6455 JMAKIKLLED LAMOR 0.0199 9.2049 9.20497 1.2.0146 3.0237 0.3027 0.3027 0.3027 0.3027 0.3027 0.3027 0.30237 0.3027 0.3026	DBST/W	AVE 4	0.0	0.0	0+0	2.0	0.0	1.4634
TUTAL W/ALL MAT 103.9533 137.3121 199.6077 242.4544 323.5867 340.1655 SKILLED LARDR 1.4546 1.58928 1.4697 6.5634 6.4137 6.5926 UNSKILLFD LABOR 1.4546 1.58928 1.46807 6.5634 6.4137 6.5926 /TRAFFIC 0.0180	TUTAL W/O SI	URF MAT	14.1784	27.8412	17.0509	74+2135	79.4067	97.4870
SKILLED LANDR 1.4546 1.587A 1.4607 6.5644 6.4137 6.5926 UNSKILLFD LABOR 3.1132 1.2174 3.3233 21.6367 21.7744 21.6457 /THAFFIC 3.0193 1.0191 0.0191 9.0141 0.3141 9.0277 9.9269 12.2454 24.749.84 44.6434 9.0377 9.9269 12.2454 24.749.854 24.64633 9.0331 12.133 DVERHEAD C PROFIT 21.1997 27.4424 19.94515 48.4917 64.7173 64.03331 127.1440 164.7746 <td>TUTAL W/ALL</td> <td>HAT</td> <td>105.9533</td> <td>137-3171</td> <td>199.6077</td> <td>242.4544</td> <td>323+5867</td> <td>342.1655</td>	TUTAL W/ALL	HAT	105.9533	137-3171	199.6077	242.4544	323+5867	342.1655
UNSKILLFO LABOR 3.1132 1.2174 3.3230 21.6367 21.7744 21.6457 /TRAFFIC 3.0170 1.0171 0.0191 5.0141 0.5141 7.0141 CAPITAL 6.5674 19.9994 9.2649 7.0141 0.5141 7.0141 CAPITAL 6.5674 19.9994 9.2649 7.20146 47.4161 65.4459 /TRAFFIC 0.0249 9.0755 0.3347 7.0110 3.0237 5.0327 MATERIALS 94.6172 112.5032 185.7997 152.2454 247.9854 245.4443 OVERHEAD & PROFIT 21.1907 27.4424 19.94615 48.4917 64.7173 68.0331 DVERHEAD & PROFIT 21.1907 27.4424 19.94615 48.4917 64.7173 68.0331 TJTAL CONSTR 2355 127.1440 164.7746 239.7692 270.9570 388.3040 408.1935 /TRAFFIC 0.4779 7.6216 0.9049 0.1656 0.1943 0.2043 /TRAFFIC 0.427000 <td>SKILLED L</td> <td>AROR</td> <td>1.4546</td> <td>1.5878</td> <td>1.4807</td> <td>6.5614</td> <td>6,41)7</td> <td>6.5926</td>	SKILLED L	AROR	1.4546	1.5878	1.4807	6.5614	6,41)7	6.5926
/THAFFIC 0.0190 1.0191 0.0191 0.0141 0.0121 0.0127 0.0127 0.0141 0.0121 0.0121 0.0121 0.04746 0.7011 0.0762 0.1241 0.1213 0.0473 0.2043 0.2043 0.2043 0.2043 0.2043 0.2043 0.2043 0.2043 0.2043 0.2043 0.2043 0.2043 0.2043 0.2043 0.2043 0.2043 <td>UNSKILLFO</td> <td>LAGOR</td> <td>3.1132</td> <td>1.2174</td> <td>3.3230</td> <td>21.6387</td> <td>21.7744</td> <td>21.6450</td>	UNSKILLFO	LAGOR	3.1132	1.2174	3.3230	21.6387	21.7744	21.6450
CAPITAL 6.5604 19.995H 9.2649 A2.0146 47.4163 65.4459 /TRAFFIC 0.0248 0.0755 0.0347 5.0110 3.0237 5.0327 MATFRIALS 94.6172 112.5032 145.7997 152.2454 247.9854 245.4843 /TRAFFIC 0.3570 0.4246 0.7011 5.0762 0.1241 3.1233 OVERHEAD & PROFIT 21.1907 27.4424 39.9615 48.4917 64.7173 69.0331 TJTAL CONSTR COSTS 127.1440 164.7746 239.7692 270.9570 348.3040 408.1935 /TRAFFIC 0.4799 0.6218 0.9049 0.1456 0.1943 0.2043 MAINT COSTS (NPV) 82.7000 113.2037 72.4000 152.9030 107.4000 67.8020 /TRAFFIC 0.4799 0.4272 0.2732 1.0765 3.6537 0.7336 BOULV ANNUAL MAINT 14.1434 19.3595 12.3819 26.1449 18.3675 11.5952 USER COSTS (NPV) 1589.6091 1493.8949 1408.5003 9672.8934 8226.9001 7894.9039 <td>/THAFF [[</td> <td>C</td> <td>0.0100</td> <td>1.0191</td> <td>0.0191</td> <td>2.0141</td> <td>0.0141</td> <td>7.0141</td>	/THAFF [[C	0.0100	1.0191	0.0191	2.0141	0.0141	7.0141
/TRAFFIC 0.0248 0.0755 0.0347 0.0347 0.010 0.0237 0.0327 MATERIALS 94.6172 112.5012 193.7997 152.2454 247.9854 245.4463 /TRAFFIC 0.3570 0.4246 0.7011 0.0762 0.1241 0.1233 DVERHEAD & PROFIT 21.1907 27.4424 39.9615 48.4917 64.7173 69.0341 TJTAL CONSTR COSTS 127.1440 164.7746 239.7692 270.9570 388.3040 408.1935 /TRAFFIC 0.4799 0.6218 0.9049 0.1456 0.1943 0.2043 MAINT COSTS (NPV) 82.7000 114.2009 72.4000 152.9000 107.4000 67.8070 /TRAFFIC 0.4799 0.6218 0.9049 0.1456 0.1943 0.2043 MAINT COSTS (NPV) 82.7000 114.2009 72.4000 152.9000 107.4000 67.8070 /TRAFFIC 0.4121 0.4272 0.2732 9.0765 0.6537 0.7339 BOULV ANNUAL MAINT 14.1434 19.3595 12.3819 26.1449 18.3675 11.5952 <td>CAPITAL</td> <td></td> <td>6.5604</td> <td>19-9954</td> <td>9.2649</td> <td>A2+0140</td> <td>47,4163</td> <td>65.4439</td>	CAPITAL		6.5604	19-9954	9.2649	A2+0140	47,4163	65.4439
MATERIALS 94.6172 112.5072 145.7997 152.2454 247.9854 245.4443 JTRAFFIC 0.3570 0.4246 0.7011 0.0762 0.1241 0.1233 OVERHEAD & PROFIT 21.1907 27.4424 39.9615 48.4917 64.7173 69.0331 TJTAL CONSTR COSTS 127.1440 164.7746 239.7692 270.9570 348.3040 408.1935 MAINT COSTS INPVI 0.4799 0.6218 0.9049 0.1456 0.1943 0.2043 MAINT COSTS INPVI 0.4799 0.4272 0.2732 1.0765 0.6537 0.7339 EQUIV ANNUAL MAINT 14.1434 19.3595 12.3819 26.1449 18.3675 11.5952 USER COSTS (NPV) 1589.6001 1493.8999 1408.5003 9672.8934 8226.9001 7894.9009 /TAAFFIC 1589.6001 1493.8999 1408.5003 9672.8934 8226.9001 789.6909 /TAAFFIC 271.6533 256.562 5.3151 4.3399 4.1167 3.9456 EDUIV ANNUAL USER 271.6533 256.3418 246.8816 1473.2398 1406.9	/TRAFFI	C	0.0248	n.0755	0.2347	2.0110	↓ ₀237	5.0327
/TRAFFIC 0.3570 0.4246 0.7011 0.0762 0.1241 0.1233 DVERHEAD & PROFIT 21.1907 27.4424 39.9615 48.4917 64.7173 68.0331 DYERHEAD & PROFIT 21.1907 27.4424 39.9615 48.4917 64.7173 68.0331 TOTAL CONSTR 0.3570 127.1440 164.7746 239.7692 270.9570 388.3040 408.1933 MAINT COSTS (NPV) 127.1440 164.7746 239.7692 270.9570 388.3040 408.1943 MAINT COSTS (NPV) 127.1440 164.7746 239.7692 270.9570 378.3040 408.1943 MAINT COSTS (NPV) 0.4779 7.6218 0.9049 0.1456 0.1943 0.2043 MAINT COSTS (NPV) 0.4121 4272 0.2732 7.0765 0.6537 0.7339 EQUIV ANNUAL MAINT 14.1434 19.3535 12.3819 26.1449 18.3675 11.5952 USER COSTS (NPV) 1589.6021 1493.8999 1408.5003 9672.8934 8226.9001 7894.9009 /TAAFFIC 1589.6021 1493.8999 1408.5003	MATERIALS		94.6172	112.5092	145.7997	152-2454	247.9854	245.4843
OVERHEND & PROFIT TJTAL CONSTR COSTS /TRAFFIC 21.1907 27.4424 39.9615 48.4917 64.7173 69.0341 MAINT COSTS (NPV) /TRAFFIC 127.1440 164.7746 239.7692 270.9570 383.3040 408.1935 MAINT COSTS (NPV) /TRAFFIC 0.4799 0.6218 0.9049 0.1456 0.1943 0.2043 WAINT COSTS (NPV) /TRAFFIC 0.4121 0.4272 0.2732 0.7055 0.6537 0.7339 USER COSTS (NPV) /TAAFFIC 1589.6001 1493.8999 1408.5003 9672.8934 8226.9001 7894.9039 USER COSTS (NPV) /TAAFFIC 1589.6001 1493.8999 1408.5003 9672.8934 8226.9001 7894.6939 TOTAL PROJECT COSTS /TRAFFIC 1799.4439 1774.8743 1720.6692 9116.7461 8722.5039 8360.7959 6.7904 6.7902 6.4931 4.5620 4.3647 4.1837	/TRAFFI	2	0.1570	0.4246	0.7011	9.0762	0.1241	5.1233
TJTAL CONSTR COSTS /TRAFFIC 127.1440 164.7746 239.7692 270.9570 388.304) 408.1935 MAINT COSTS (NPV) /TRAFFIC 0.4799 0.6218 0.9049 0.1456 0.1943 0.2043 MAINT COSTS (NPV) /TRAFFIC 82.7000 111.200% 72.4000 152.9000 107.4000 67.8000 USER COSTS (NPV) /TRAFFIC 0.4121 0.4272 0.2732 0.0765 0.6537 0.7336 USER COSTS (NPV) /TAAFFIC 1589.6001 1493.8949 1408.5000 9672.8954 8226.9000 7884.9039 JTAAFFIC 5.0985 5.6562 5.3151 4.3399 4.1167 3.9456 EQUIV ANNUAL USER 271.8533 256.3418 246.88816 1493.2348 1406.9470 1349.4593 TDTAL PROJECT COSTS /TRAFFIC 179.4439 1774.8743 1720.6692 9116.7461 8722.5039 8360.7959 6.7904 6.7902 6.4931 4.5620 4.3647 4.1837	OVERHEND &	PROFIT	21.1907	27.4424	19.9615	48.4917	64.7173	69.0711
/TRAFFIC 0.4799 0.6218 0.9049 0.1456 0.1943 0.2043 MAINT COSTS (NPV) 82.7000 111.2001 72.4000 152.9000 107.4000 67.8000 /TRAFFIC 0.4121 0.4272 0.2732 1.0765 0.6537 0.7339 EQUIV ANNUAL MAINT 14.1434 19.3595 12.3819 26.1449 18.3675 11.5952 USER COSTS (NPV) 1589.6001 1493.8939 1408.5003 9672.8934 8226.9001 7894.9009 /TRAFFIC 5.0985 5.6562 5.3151 4.3399 4.1167 3.9456 EQUIV ANNUAL USER 271.8533 256.3418 246.8816 1473.2398 1406.9473 1349.4593 TOTAL PROJECT COSTS 1799.4439 1774.8743 1720.6692 9116.7461 8722.5039 8360.7959 /TRAFFIC 6.7934 6.7052 6.4931 4.3647 4.1837	TOTAL CONST	R COSTS	127-1440	164.7746	239.7692	270.9570	348,304)	408.1935
MAINT COSTS (NPV) /TRAFFIC 82.7000 11.2001 72.4000 152.9000 107.4001 67.8000 USER COSTS (NPV) /TRAFFIC 0.4121 0.4272 0.2732 0.0765 0.6537 0.0330 USER COSTS (NPV) /TRAFFIC 14.1434 19.3595 12.3810 26.1489 18.3675 11.5952 USER COSTS (NPV) /TRAFFIC 1589.6001 1493.8939 1408.5000 9672.8934 8226.9001 7886.9030 EQUIV ANNUAL USER 1589.6001 1493.8939 1408.5000 9672.8934 8226.9001 7896.9030 TOTAL PROJECT COSTS /TRAFFIC 1799.4439 1774.8743 1720.6692 9116.7461 8722.5039 8360.7959 6.7904 6.7902 6.4931 4.5620 4.3647 4.1837	/TRAFFI	6	0.4799	7.6216	0.9049	0.1456	0.1943	0.2043
/TRAFFIC 0.4121 J.4272 0.2732 1.0765 J.5537 J.7339 EQUIV ANNUAL MAINT 14.1434 19.3575 12.3819 26.1489 18.3675 11.5952 USER COSTS (NPV) 1589.6001 1493.8999 1408.5003 9672.8934 8226.8001 7884.9009 /TAAFFIC 5.0985 5.6562 5.3151 4.3399 4.1167 3.9456 EQUIV ANNUAL USER 271.6533 256.3418 246.8816 1493.2398 1406.9473 1349.4593 TOTAL PROJECT COSTS 1799.4439 1774.8743 1720.6692 9116.7461 8722.5039 8360.7959 /TRAFFIC 6.7904 6.7052 6.4931 4.3620 4.3647 4.1837	MAINT COSTS	(NPV)	82.7000	111.2004	72.4000	152.90.00	107.4003	67.8010
EQUIV ANNUAL MAINT 14.1434 19.3575 12.3819 26.1489 18.3675 11.5952 USER COSTS (NPV) /TAAFFIC 1589.6001 1493.8939 1408.5003 9672.8934 8226.8001 7884.9038 COULV ANNUAL USER 5.0985 5.6562 5.3151 4.3399 4.1167 3.9456 TOTAL PROJECT COSTS 179.4439 1774.8743 1720.6692 9116.7461 8722.5039 8360.7959 TOTAL PROJECT COSTS 1799.4439 1774.8743 1720.6692 9116.7461 8722.5039 8360.7959 Cost 6.7904 6.7052 6.4931 4.5620 4.3647 4.1837	/TRAFF1	C	0.1121	44272	0.2732	9.0765	3.6537	2.2139
USER COSTS (NPV) 1589.6001 1493.8999 1408.5000 9672.8954 8226.9001 7884.9009 /TAAFFIC 5.0985 5.6562 5.3151 4.3309 4.1167 3.9456 EQUIV ANNUAL USER 271.8533 256.3418 246.8816 1493.2398 1406.9470 1349.4593 TOTAL PROJECT COSTS 1799.4439 1774.8743 1720.6692 9116.7461 8722.5039 8360.7959 /TRAFFIC 6.7904 6.7052 6.4931 4.5620 4.3647 4.1837	EQUEV ANNUA	L MAINT	14-1434	19.3595	12.3819	26,1489	18.3675	11.5952
/TAAFFIC 5.0985 5.6562 5.3151 4.3399 4.1167 3.9456 EQUIV ANNUAL USER 271.8533 256.3418 24G.8816 14P3.2398 1406.9473 1349.4593 TOTAL PROJECT COSTS 1799.4439 1774.8743 1720.6692 9116.7461 8722.5039 8360.7959 /TRAFFIC 6.7904 6.7052 6.4931 4.5620 4.3647 4.1837	USER COSTS	(NPV)	1589.6001	1493.8999	1408.5000	9672.8984	8226.9001	7854.9009
EQUIV ANNUAL USER 271.8533 256.3418 24G.8816 1423.2348 1406.9473 1349.4593 TOTAL PROJECT COSTS 1799.4439 1774.8743 1720.6692 9116.7461 8722.5039 8360.7959 /TRAFFIC 6.7904 6.7052 6.4931 4.5620 4.3647 4.1837	/TAAFF1	C	5.7985	5.6562	5.3151	4.3399	4.1167	3.9456
TOTAL PROJECT COSTS 1799.4439 1774.8743 1720.6692 9116.7461 8722.5039 8360.7959 /TRAFFIC 6.7934 6.7052 6.4931 4.5620 4.3647 4.1837	EQUIV ANNUA	L USER	271.8533	256-3418	240.8816	1473.2348	1406.9470	1349,4593
/TRAFFIC 6.7934 6.7052 8.4931 4.5620 4.3647 4.1837	DEDAG JATOT	CT COSTS	1799.4439	1774.0743	1720.6692	9116.7461	8722.5039	8360.7959
	/TRAFF1	C	6.7904	6.7052	6.4931	4.5620	4,3647	4,1837

TABLE C.5DI PROJECT COSTS 14 \$1000 USING THE LEAST-COST TECHNICAL PACKAGES OVER ALL TECHNILOGY PERIODS AT THE PRICES OF A TYPICAL DEVELOPING COUNTRY.

.

,

PROJECT COST (\$10	PROJECT NUMBER	1314	1324	L334	H315	H325	11335
SITE PREP	11	5.0103	4.9754	4.9754	6,2672	6,0926	6.0926
BRCRVATIO	ALAALING	0 0600	A 9699		0.06.24		A 3636
DITCH	A 744	V.2399	V+4077	U.4277	V. 40 JO	0.4330	0.2330
01	AV5 4	1.1001	1.1342	1.1342	11 011	41 0151	11 0161
20 40m	AVE 4 5-4	0.0	0.0	A 1993	11.0///	11.0151	0 0
9VN 100m	J-4 8-7		0.1773	0.1773	0.0	0.0	0.0
1400	8-7	0.0	0.0	0.0	4.1327	1.2116	3.2316
100n 1-500m	6-5	0.0	0.0	0.0	40.4325	40.4325	40.4325
B-500H	4-7	4 6150	4 1943	4 1942	0 0	0.0	0 0
8000	8-7	0.0	0.0	0.0	0.0	0.0	0.0
1000 Tota	U -,	4 1202	5 9076	5 8076	44 404 H	86 7326	\$5 7120
SPREADING	COMPACTION	0,1343	3.0013	310013	2010704	3311310	33.1320
98%	21	2.3877	0.0	0.0	11,7369	0.0	0.0
93%	21	0.0	1.3193	1.3193	0.0	6.4780	6.4780
SURPACING	1						
GRAART	21	0,8614	1.3366	0.8614	1.1485	1.6110	1,1485
אפא ר <u>ט</u>	YAS 3	0.0	0.0	0.0	0.0	0.0	0.0
ည် DBST/G	AV 2 4	2.6572	2.6572	2.6572	3.5579	3,5579	3.5579
DBST/W	AVE 4	0,0	0.0	0.0	0.0	0.0	0.0
TOTAL N/O) SURP MAT	17.0509	16.0959	15.6208	79.4069	73.4723	73.0098
TOTAL W/A	LL MAT	199.8077	250.2777	198.3776	323.5867	367.7019	317.1895
SKILLE	LABON	1.4807	1.4932	1.4414	6.4107	6.2613	6.2109
0¥ S KI). 1	LED LABOR	3.3230	3.2216	3.0662	21.7744	20.8289	20.6776
/TRAF	TIC	0.0181	0.0178	0.0170	0.0141	0.0136	0.0135
CAPITAL	•	9.2049	8.3602	8.0923	47.4163	42.6827	42.4219
/TRA8	7710	0.0347	0.0315	0.0305	0.0237	0_0214	0.0212
BATERIA	ALS.	185.7992	237.2030	185.7780	247.9854	297;9292	247.8794
/TRAJ	7710	0.7011	0.8951	0.7010	0.1241	0.1491	0.1240
OVERHEAD	6 280717	39.9015	50.0555	34.6755	44.7173	73.5404	63.4379
TOTAL CON	STR COSTS	239.7692	300.3333	238.0531	J08.3040	441.2422	380.6272
/TPAT	7710	0.9048	1.1333	0.8983	0.1943	0.2208	0.1905
ALINT COS	TS (NPV)	72.4000	72.4000	194.2000	107.4000	107.4000	403.8999
/TRAI	FIC	0.2732	0.2732	0.7328	0.0537	0.0537	0.2021
EQUIT AND	UAL HAINT	12,3818	12.3610	33.2121	18.3675	18.3675	69.0749
	(# P ¥)	1400.5000	1408.5000	1468.1001	8226.8008	\$226.8008	8554.8008
	110	5.3151	5.3151	5.6155	4.1167	4.1167	4.2808
BOUIT AND	UAL OSBA	240.8816	240.8816	254. 4944	1406.9470	1406.9470	1+63.0417
TOTAL PRO	JICT COSTI	11720.6692	1761.2332	1920.353C	\$722.5039	8775.4414	9339, 3242

TABLE C.5D:	PROJECT	COSTS	IN \$1000	USING THB	LEAST-COST	TECHNICAL	PACKAGES	OVER A	LL	TECHNOLOGY
	PERIODS	AT THE	PRICES (OF A TYPICA	L DEVELOPI	NG COUNTRY.				

•

•

•

PROJECT	NUMBER	1111	1314	LJ15	H312	H313	H315	L316	L317	н317
STTE PREP	11	6.0577	5.0103	4.9754	9.8983	7.7336	5.2672	5.0101	4.9754	6.2673
ERCAVATION/	AUL ING									
OTTCH	AVF2	0.1299	J.2599	0.2599	2.0	0.0482	3.2536	0.2594	0.2594	6.254
68	AVL 2	1.4471	1.1601	1.0417	0.0	0.0	0.5	1.1601	1.0417	2.1
91	AVE 2	1.9516	0.0	0.0	72.4331	14.2563	11.4777	0.0	6.0	11.077
608	5-4	0.1993	0.1993	0.0	1.7519	0.0	0.0	0,1991	5.0	
1.00	9-7	5.5	V.0	0.0	0.0	1.4216	1.5	0.)	0.0	3.0
165H	8-1	1 0.0	0.0	0.0	9.8546	0.0	4.1327	0.0	0.0	6.1
L-SUOH	6-5	0.0	0 .0	1.2442	0.0	40.4325	40.4325	0.0	1.2443	44.432.
P-500H	8-7	0.0	4.5150	4.2177	0.0	0.0	1.0	0.1	0.0	7.2051
RCCB	8-7	0.0	0.0	0.0	0+0	0.0	2.0	6.2691	5.8562	0.)
TOTAL		3.7300	6.1.43	6.7634	34.0416	56.15A7	55,6964	7 9964	8.402	59.144.
SPREADING/CO	INPACTION	ĺ							• ·	-
988	21	2.3877	2.3877	2.3877	11.7369	11.736)	11.7369	2.3877	2.3877	11.736
938	21	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5.5
SURFACING		1								
GRAVEL	21	0.8614	0.8614	0.8614	1.1485	1.1485	1,1495	0.8614	0.8614	1.149-
WBM	AVE 3	0.0	2.0	0.3	0.0	0.0	2.0	0.)	3.0	C.,
DBST/G	AVE 4	2.6572	2.6572	2.6572	3.5579	3.5579	3.5579	2.6572	2.6572	3.557
DBST/W	AVE 4	0.0	0 .0	0.0	2.0	0.0	0.0	0.7	0.9	J.
TUTAL W/O SU	IRF MAT	15.6940	17.05.)9	17.6451	60.3832	80.3355	77.4069	18.9049	19.283/	82,559
TOTAL W/ALL	NAT	198.4508	194.8077	200.4019	304.5610	324.5151	323.5967	201.5619	202.0435	326.719
SKILLED LA	BOR	1.7126	1.4837	1.5000	6,4876	6.703+	6.4107	1.4807	1.500	6.4157
UNSKILLED	LABOR	3.2103	3.3230	3,5872	13.4655	22.2497	21,7744	3.7794	4.613	22.599
ZTRAFFIC	1	0.0186	0.0181	0.0142	0.0100	0.0145	0.0141	0.019*	1.0254	5
CAP1 TAL		7.0929	9.2049	9.5369	34+4200	46.6861	47.4153	10.5032	16+7497	44.743.
/TRAFFIC		0.268	0.0147	0.0360	0.0172	0.0234	0.0237	0.0396	6.6404	5. .24
MATERIALS		186.4352	185.7992	185.7780	259.1992	248+8758	247.4854	185.7992	165.778	247.955
/TRAFF10	•	0.7015	0.7011	0.7010	0+1252	0.1245	5.1241	0.7311	0.7015	3-1241
OVERHEAD & P	ROFIT	39.6902	34.9615	40.0804	60.9126	64.9030	64.7173	40.3123	40.4001	65.347
TOTAL CONSTR	COSTS	238.1410	239.7692	240-5823	365.4753	389.4187	188.3040	241.9741	242.4496	392.7861
/TRAFFIC	•	0.2956	9 •9048	0.9075	0.1829	0.1947	0.1943	0.9127	0.9149	0.1963
MAINT COSTS	(NPV)	72.4000	72.4000	72.4000	107.4000	107.4009	107.4000	72.4000	12.4001	107.400
/TRAFFIC	;	0.2712	ə .273 2	0.2732	0.0517	0.0537	0.0537	0.273?	0+2732	5+1531
EQUIT ANNUAL	MAINT	12.3818	12.3810	12.3818	18.3675	18.3675	18,3675	12.3819	12.3614	18.367
USER COSTS I	NPVI	1408.9000	1408.5000	1408.5000	6226.8008	5226.9001	8226.8008	1409.5001	1438-5001	8226.463
/TRAFF LÖ		5.3151	5.3151	5.3151	4.1167	4.1167	4.1167	5,3151	5.3151	4.115
EQUIT ANNUAL	USER	240.9816	243.8816	240.8816	1496.9470	1406.9473	1406.9470	240.8816	240,9914	1406.147
TOTAL PROJEC	T COSTS	1719.0405	1720.6692	1771.3023	8697.6758	8773.6172	A727.5039	1722.7739	1723.3491	8726.245.
100 400 10		1 4 4440	4 4631	A ABCA	4 1811	4.3461	4.3447	4.5010	4.8342	6.161.0

•

TABLE C.SDI	PROJECT	COSTS	IN \$1000	USING	THE L	EAST-COST	TECHNICAL	PACKNGES	OVER ALL	TECHNOLOGY
	PERIODS	AT THE	PRICES	OF A TY	PICAL	DEVELOPIN	IG CUUNTRY	•		

٠

,

BIOGRAPHICAL SKETCH

JANET ANN KOCH ROSSOW

Date of Birth:	January 5, 1949, North Muskegon, Michigan
<u>Married</u> :	Peter William Rossow June 7, 1971 Boston, Massachusetts
Education:	M.I.T., Civil Engineering, S.B., June 1971 M.I.T., Civil Engineering, S.M., February 1974 M.I.T., Civil Engineering and Management, Ph.D., February 1977
<u>Positions</u> :	Postdoctoral Fellow Civil Engineering Department Massachusetts Institute of Technology January 1977 - present
	Doctoral Candidate and Graduate Research Assistant Civil Engineering Department Massachusetts Institute of Technology September 1971 - January 1977
	Undergraduate Research Assistant Civil Engineering Department Massachusetts Institute of Technology June 1970 - August 1971, and October 1968 - May 1969
	Student Engineering Assistant Barton-Aschman Associates, Inc. Chicago, Illinois June 1969 - August 1969
<u>Honors and Awards</u> :	Mellon Foundation Postdoctoral Fellowship January 1977 - present
	Sloan Research Traineeship September 1974 - August 1975
	Tucker-Voss Award - 1974
	NSF Graduate Traineeship September 1971 - August 1972
	M.I.T. National Scholar - 1967
	Letter of Commendation, National Merit Scholar - 1967

Society of Sigma Xi
Tau Beta Pi
Chi Epsilon Fraternity M.I.T. Chapter Vice President September 1970 - September 1971
M.I.T. Task Force on Constructed Facilities - 1974
M.I.T. Civil Engineering Departmental Committee on Graduate Students 1972 - 1973
Associate Advisor for Freshmen at M.I.T. 1970 - 1971
Committee to Review Undergraduate Curriculum in Civil Engineering at M.I.T 1969

List of Publications

- Koch, Janet Ann. <u>A Framework for an Initial Development Cost Model</u> <u>for Single-Family Dwellings</u>, S.B. Thesis, Department of Civil Engineering, M.I.T., Cambridge, Massachusetts, June 1971.
- 2. Rossow, Janet Ann. <u>A Review of the Major Issues Facing the Construc-</u> <u>tion Industry in the United States</u>, S.M. Thesis, Department of Civil Engineering, M.I.T., Cambridge, Massachusetts, February 1974.
- Rossow, Janet Koch and Fred Moavenzadeh. <u>The Construction Industry -</u> <u>A Review of the Major Issues Facing the Industry in the United States</u>, Research Report No. R74-44, Department of Civil Engineering, M.I.T., Cambridge, Massachusetts, Summer 1974.
- Rossow, Janet Ann Koch and Fred Moavenzadeh. <u>The Construction Indus-</u> try in <u>Developing Countries</u>, Technology Adaptation Program, M.I.T., Cambridge, Massachusetts, Spring 1975.
- Rossow, Janet Ann Koch and Fred Moavenzadeh. "Management Issues in the U.S. Construction Industry", <u>Journal of the Construction Div-</u> <u>ision</u>, ASCE, Vol. 102, No. C02, June 1976.
- Rossow, Janet A.K. "Labor-Capital Substitution in Highway Construction - A Review of Some Case Studies", Prepared for the First Conference on Highway Planning and Project Evaluation, Addis Ababa, Ethiopia, January 1976.
- Rossow, Janet A.K. and Fred Moavenzadeh. "Risks and Risk Analysis in Construction Management", Prepared for the International Symposium on Organization and Management of Construction, Washington, D.C., May 1976.