
COMPUTER SYSTEMS WITH A VERY LARGE ADDRESS SPACE

AND

GARBAGE COLLECTION

by

PETE~ B. BISHOP

B.S., Massachusetts Institute of Technology
(1972)

S.M., Massachusetts Institute of Technology
(1972)

SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE

DEGREE OF

DOCTOR OF PHILOSOPHY

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

(MAY 19n)

. Signature redacted
Signature of. Author •....•... -.. y •• - ••• ~ •• • ••••• r;-.; •••• YI · · · · · · · · ·

Department of .Electrical Engineering and Computer Science, May 5, J9n

Signature redacted
Certified by •...•• -:-: •... ~,;. .•.... ..T.V. ~ Y. !~ t ••••••••••••••••••••••••••••.••••

/-J _ ~· ... Thesis Supervisor

Signature redacted --
Accepted by .••••••.•..••.••.•.. ,~ •. ~ ? .•• -••.•.• Y • • "';-;·: •••••••••••••••••••

Chairman, Department Committee

2

COMPUTER SYSTEMS WITH A VERY LARGE ADDRESS SPACE

. AND

GARBAGE COLLECTION

by

PETER B. BISHOP

Submitted to the Department of Electrical Engineering and Computer Science

on May 5, 1977 in partial fulfillment of the requirements

for the Degree of Doctor of Philosophy

ABSTRACT

The concept of objects is beginning to gain acceptance throughout the field of

computer science. A new computer system is proposed that provides hardware support

for objects and object references that can be used in all applications of objects. The

new system provides small object references that can be copied freely, makes very small

objects efficient, and retrieves the storage for inaccessible objects automatically. This

system is compared with some widely used existing systems, and while its speed seems

to be competitive, it is much easier to use.

Object references provide protection in the new system as do capabilities in

capability systems. The object reference in the new system contains an address from

linear, paged virtual address space rather than a unique ID. Use of small objects is

made feasible by efficiently grouping objects into areas. Objects in the same area may

be placed on the same page. The system automatically and efficiently maintains lists of

inter-area links that allow single areas to be garbage collected independently of the rest

of the system. The garbage collector can determine whether objects have been

inappropriately placed in an area and can move these objects to more appropriate

areas automatically.
Thesis Supervisor: Carl Hewitt, Associate Professor

S

Acknowledgements

I would like to thank my thesis supervisor, Prof. Carl Hewitt, for providing an
environment at M.I.T. in which I could pursue my research. My work with Prof.

Hewitt on Planner gave me the detailed knowledge of how to design and implement

very advanced programming languages that enabled me to see clearly the shortcomings

of current computer systems. I would also like to thank M.I.T. for constructing the

Multics computer system and for making it available to students through the Student

Information Processing Board. My experience in programming on Multics enabled me

to arrive at my somewhat unusual view of computer systems and computer system

design that resulted in this thesis. I would like to thank David D. Redell for patiently

talking with me and for teaching me most of what I know about capability systems. I
would also like to thank Prof. Liba Svobodova for her encouragement toward the end

of the work on my thesis. She also did a superb job of reading the thesis. Thanks are

also due to my other readers, Prof. Vaughann Pratt, Michael D. Schroeder, and Prof.

Michael Dertouzos, for their helpful comments. I would like to thank my family for

their constant support and encouragement, without which I would not have been able

to continue the struggle for seven years. Finally, I owe a special debt of gratitude to my

wife, Catherine W. Bishop, not only for her love, eternal patience, and support, but

also for her finanCal support at jobs that were not always pleasant.

This thesis describes research done at the Artificial Intelligence Laboratory of the

Massachusetts Institute of Technology. Support for the Laboratory's artificial

intelligence research is provided in part by the Advanced Research Projects Agency of

the Department of Defense under Office of Naval Research contract N00014-75-C-0522.

4

Table of Contents

1. Introduction ... 7
1.1 Objects .. 7
1.2 Widespread Acceptance of Objects 9
1.3 Object References .. 10
1.4 Are Object References Unstructured?.................................. 14
1.5 Computer System Design .. 15
1.6 Contributions of the Thesis .. 18
1.7 Organization of the Thesis .. 21

2. Computer System Design: An Historical Perspective 22
2.1 Size of the Address Space ... 24
2.1.1 Small Address Space Virtual Memory (SAV) Systems.................. 24
2.1.2 Large Address Space Virtual Memory (LAV) Systems..................25
2.2 Single Address Space.. 26
2.3 Capability Systems ... 28
2.3,1 Direct Capability (DC) Systems 34
2.3.2 CUID Systems ... 35
2.3.3 Garbage Collection ... 37
2.3.4 Small Objects 41

3. The New System - ORSLA .. 43
3.1 Address Space ... 43
3.2 W ords .. 50
3.3 Enforcing Restrictions on the Use of Object References 52
3.4 Enforcing the High Level Restrictions 57
3.5 Format of the Object Reference 60
3.6 M onitoring .. 62
3.7 Small Objects .. 67
3.8 Garbage Collection 69

4. Garbage Collection in Areas .. 70
4.1 Overview of Garbage Collection 70
4.2 Copying Garbage Collection ... 71
4.3 Large Garbage Collections ... 75
4.4 Other Approaches to Large Garbage Collections......................78
4.5 Inter-Area Links ... 80
4.6 Cables .. 84
4.7 Local Computation Areas .. 89
4.8 Using Inter-area Links in Machine Language Programs 91
4.9 The Area Object ... 93
4.10 Garbage Collection on ORSLA 96
4.11 Multiple Simultaneous Garbage Collections 105
4.12 Multiple-Area Cycles ... o108

Table of Contents 5

4.13 The Effect of Errors in the Garbage Collector I111
4.14 Other Related W ork .. Ill

5. Maintaining the Lists of Inter-area Links 116
5.1 Creation of Inter-Area References - What Must Be Computed 116
5.2 Computing Checks for Load and Store Operations Efficiently 123
5.3 Special Hardware Needed on ORSLA 129
5.3.1 Virtual Memory Mapping ... 129
5.3.2 Page M ap .. 131
5.3.3 Cache .. 137
5.4 Comparison of ORSLA with Other Systems 142

6. Placement of Objects in Areas .. 154
6.1 Initial Placement .*. 154
6.2 Directories ... 157
6.2.1 List of Named Objects .. 159
6.2.2 Garbage Collecting Areas ... 161
6.2.3 Deleting Areas ... 163
6.3 The M over ... 166
6.4 Garbage Collection Revisited .. 168
6.5 Problems Solved by the Automatic Mover 174
6.5.1 Multiple-Area Cycles .. 178
6.6 Problems Created by the Mover 184
6.7 Costs of Garbage Collection .. 186
6.8 Garbage Collection Corresponds to Other Operations on SAV Systems ... 195
6.9 Comparison of Inter-area Links with Linking on SAV and LAV Systems . 197

7. Protection .. 201

7.1 Enforcing the Size of Objects .. 203
7.2 Abstract Objects .. 212
7.2.1 The Lower Operation ... 214
7.2.2 Elevate Operations .. 217
7.2.3 Access Control Field ... 219
7.3 Domains ... 228
7.4 Revocation ... 232
7.5 Allocation of Storage... 241
7.5.1 First Free Storage Data Type 243
7.5.2 Allocating Address Space and Storage to Areas 246
7.5.3 Second Free Storage Data Type 249
7.5.4 Third Free Storage Data Type 250
7.5.5 Conclusion ... 252

Table of Contents 6

Appendix A. The Size of the Address Space 254

Appendix B. The Area Object.. 258

References .. 261

7

Chapter 1

Introduction

The first electronic computer was designed in 1945 just over thirty years ago. Since

then the electronics industry has advanced at a breakneck rate to make electronic

components as ideal for building computers as posible. Reliability and speed have increased

while power consumption and cost have decreased. At one time the design of CPUs was

largely influenced by a need to minimize costs for the CPU and the memory. A processor

and its memory, however, are just modules in a larger system, the computer system, that must

interact in a meaningful way with the outside world. Other elements of this system are the

system software, I/O devices, and user software. Today, the cost of the CPU is a relatively

minor part of the cost of a computer system. Therefore the design of the CPU should

maximize the efficiency of the rest of the computer system rather than minimize the cost of

the CPU.

Some computers are used for controlli'ng machiriiry. If the machinery is not too

complex, the programs needed are rather simple. The current state of the art in computer

system design is adequate for the needs of such systems. Some computer systems, however,

are used as general purpose tools for processing information. Such systems are currently so

unreliable and difficult to use that they do not achieve their full potential as tools for

processing information. To achieve this potential, the design of the CPU should be affected

by the fundamental requirements of computing. Unfortunately, there has not been an

adequate understanding of what these fundamental requirements are.

1.1 Objects

In the last few years, however, the concept of objects has emerged and seems to be

gaining acceptance throughout the field of computing. Computations are performed on

objects. Each object is a model of an ideal object known intuitively to the programmer. If

the programmer can create new kinds of objects, then the programmer can write programs

that deal with the objects with which he is familiar. When a computer does not permit the

set of objects to be extended then the programmer must continuously translate the

algorithms in his mind so they will make use of the small set of objects that are provided by

Section 1.1

the computer. Often the concept of objects is only supported by a compiler or an interpreter

and not by the operating system or the hardware. If the entire computer system is involved

in supporting objects, then a more hospitable environment ca'n be provided for subsystems

that use objects. Furthermore, it may be possible to identify several utility operations that

can be performed by the computer system for all of its subsystems rather than forcing each

subsystem to struggle with these tasks separately.

This thesis presents a computer system that supports objects in the hardware and in

the operating system as well as in interpreters and compilers. This computer system is a

logical successor to several existing computer systems on which objects are supported in

different ways. The new system is carefully designed to improve reliability and make the

system easier to use without sacrificing speed. This chapter discusses the concept of objects,

its origins, and some of the techniques that have been used to support it. The most

important mechanism for supporting objects in hardware is the object reference. The

discussion of objects in this chapter concludes with a list of design criteria that must be met

by the mechanism for object references that is provided by the system.

In order to implement an abstract object, the programmer first formalizes his intuitive

knowledge of the object by creating an abstraction of the ideal object, i.e. by defining the

behavior of a set of abstract operations on the object. A set of operations is then written for

the object in the computer. The behavior of these operations defines the abstraction that

has been implemented. The computer system will provide an initial set of generally useful

objects that will include integers, character strings, procedures, arrays, lists, file directories,

etc. In order to implement an abstraction each object must also have a representation.-Some

of the operations on an object will be implemented in terms of manipulation of the

representation of the object while some operations will be implemented in terms of the

abstract operations that have been defined on the object. In order for any operation to be

able to manipulate an object, however, it must be able to refer to the object. This is

achieved by the object reference. It should be easy to copy and move an object reference

regardless of the size of the object it references. Thus the object reference usually contains a

pointer to the representation of the object.

Objects 8

Widespread Acceptance of Objects

1.2 Widespread Acceptance of Objects

The concept of objects in computing appeared first in Simula 67 [Birtwistle73] in order

to provide a good conceptual basis for defining and manipulating the objects involved in

simulations. Since then the concept has gained increasing acceptance in the field of

programming languages. As with all good conceptual foundations, it is possible to look at

programming languages defined earlier than Simula 67 and identify the objects in these

languages as well. The concept of objects has also gained acceptance in the field of

operating systems and is emerging in the field of data base management syztems. All three

fields have independently developed their own concept of objects, thus suggesting that

objects are fundamental to computing.

The underlying foundation of the concept of objects can be found in mathematics.

Mathematicians define mathematical objects by specifying the behavior of the operations on

the objects. This corresponds to an implementation independent definition of an object.

Computing has merely expanded this approach to encourage computable definitions. If it

were possible to create definitions of objects that could be used efficiently directly from

mathematicians' definitions, then this would be preferable.

The concept of objects is important in the field of operating systems. Dijkstra

introduced the concept of levels of abstraction in the T.H.E. system [Dijkstra68J. This

concept has a wider application than the concept of objects, however, applying to the design

of a computer at the gate level or the transistor level as well as the many software levels.

Within the software levels, the concept of levels of abstraction has matured into agreement

with the concept of objects [Dahl72]. Each object has at least two levels of abstraction: the

object being modeled and the representation of the object. Both the object being modeled

and the representation of the object have abstract definitions that describe their behavior.

Direct system support of the concept of objects is provided by capability systems.

Capabilities, which are just object references, form the protection mechanism that provides

sophisticated control of access on these systems.

Another major field in computing is the design of data base management systems. An

Section 1.2 9

Widespread Acceptance of Objects

entity in a data base management system is similar to an object. An identifier or candidate

key is similar to an object reference EFry76J. Although the concepts in data base management

systems are similar to the concept of objects, there are some important differences

[Hammer76J. The fact that the recent Conference on Data [Data7&] was jointly sponsored by

SIGPLAN and SIGMOD indicates that many people are hopeful that the concepts in

programming languages and data base management systems can be unified.

1.3 Object References

The concept of objects was developed for Simula 67 to improve the conceptual basis

for the list processing used to perform simulations. The object reference was introduced to

allow one object to refer to another. Pointers were used for this purpose before the

development of object references. A pointer, however, is only an address while an object

reference contains both an address and a type code. The type code implicitly specifies the

operations that are defined on the object and the representation that is being used for the

object. Thus the type code identifies the data type of the object. A pointer only specifies a

location while an object reference specifies a whole object.

Each object reference has a specific object that it is supposed to refer to. When an

object, x, is created, an object reference to x is also created. The object reference to x may be

copied freely but it must always refer to the object x. The purpose of the object x is to

model an abstraction that is known to the user and has been implemented in the computer.

Only the operations that are defined in thi; abstraction may be performed on x. In order to

implement the operations on x, however, it is necessary to manipulate the repreisentation of x.

Thus each object must have at least two levels of abstraction: the high level abstraction for

which only the operations defined by the user may be performed on x and the low level

abstraction, i.e. the representation of x, for which operations are defined that manipulate the

representation of x. These two abstractions of an object, the high level abstraction and the

low level abstraction, are two different objects that share the same physical representation.

They differ in the set of operations that may be performed upon them. A high level

operation on x is implemented by taking the reference to x and converting it to a reference

to the low level abstraction of x and then performing the necessary low level operations on

Section 1.2 10

Object References

the low level abstraction of x. It is possible that this low level abstraction of x will in turn be

implemented by lower level objects. Eventually the operations on x will be implemented in

terms of manipulating the bits of the physical representation of x. At no time, of course,

should any reference to x be used to manipulate the representation of any other object.

Finally, when the object x is destroyed, i.e. its storage is freed and reused for other objects,

any outstanding references to x should continue to refer to x, which is now a destroyed

object. As before, a reference to x should not be used to manipulate the representation of

any other object. This is somewhat difficult to achieve in a reusable address space, however,

where this problem is known as the dangling reference problem. The dangling reference

problem is solved in LISP by never destroying an object until all the references to the object

have disappeared. Dangling references are not a problem, however, if the address space they

point to is not reused.

Now that we have seen the use that is made of an object reference we can begin

considering some basic issues of how an object reference is represented. Abstractly, an object

reference consists of both a pointer (address) and a type code, but many implementations of

programming languages have been able to use addresses as object references without having

any type code in the runtime representation. Such implementations have a speed advantage

over the use of runtime types on computers whose hardware supports addresses but does not

support type codes. If the hardware supported full object references, however, then the

system could provide much better support for the concept of objects without sacrificing

speed. Let us now examine the use of object references in more detail.

The representation of an object consists of bits which by themselves have no inherent

meaning. The type code in the object reference identifies how the bits in the representation

of the object are to be interpreted to achieve the object's abstraction. That is, the type code

creates a context in which the bits of the representation of the object are interpreted. It is

possible to use this context to reduce the number of bits needed in object references stored

within the object. For example, if the object being modeled is a grocery list, its

representation might contain two object references. The first object reference would specify

the first item on the grocery list, while the second object reference would specify the rest of

the grocery list. Since the number of different types of items that might be on a grocery list

Section 1.3 11

Object References

is very large, there is no meaningful context that can be used to reduce the number of bits

in the first object reference. The rest of the grocery list, however, is either the null object or

another grocery list object. Therefore only one bit is needed for the type code in the second

object reference.

Simula 67 recognized this possibility and required that every declaration of a variable

that holds an object reference specify all the data types (classes) of the objects that the object

reference could possibly refer to. If only one data type is specified (strong typing), then no

data type need be stored at all. Only the address need be stored. A program's context is not

always sufficient, however, to reduce significantly the set of data types of the objects that

can be referenced from a particular variable (see example above). EL-1 [Wegbreit74] allows

variables to be declared to be of type any. Context independent object references that

completely specify the data type of the object are used for such variables. When a variable

has been declared to reference one of a small set of data types, it is not clear that it is more

efficient to use an abbreviated special purpose object reference format than to use a context

independent format. Although the abbreviated format is smaller than the context

independent format, it is necessary for special purpose code to be written to interpret the

special purpose format while the code to interpret the context independent format can be

used by the whole system.

The most famou; list processing language, LISP, uses a context independent format

for object references. Unlike Simula 67, there is no mechanism in LISP for declaring the

types of variables [McCarthy65l. By using context independent object references, LISP is

able to do very well with a very small number of data types. The main data structure in

LISP, the list, is very useful because it can organize data of any type.

If we are to build an object oriented computer, however, object references play a much

more important role than allowing one object to refer to another. The CPU must use object

references in order to manipulate the representations of objects. Object references are the

basis of addressing on an object oriented machine [Fabry74). The general registers on such a

machine hold object references, while address calculation uses the addresses in object

references. If the registers of the CPU contain context dependent object references

Section 1.3 12

Object References

(addresses without type codes) whose context is provided by the currently executing program,

then the CPU cannot help in supporting objects. Since the CPU does not know what objects

are being manipulated, all of the suppori for objects must be provided by software. If,

however, the registers of the CPU contain context independent object references (containing

full type codes) then the CPU can tell which objects are being manipulated and can provide

additional support for objects. Thus the object references stored in the CPU registers should

be context independent.

The formats of object references used in current programming languages are not of

much help when deciding what format of object reference should be used in an object

oriented machine because the low level implementation of a programming language is

profoundly affected by the machine it is running on. Most current computers support

addresses but do not support any sort of type code with the address. If we are able to specify

new hardware to support objects, however, we will not be operating under the same

constraints used to develop object references for these subsystems and so should not be

surprised if the format of object reference we arrive at is rather different from the format

used for any of these subsystems.

If the hardware supports context independent object references, then there will be little

advantage to using context dependent object references within objects since extra time

would be required for converting a context dependent object reference to the context

independent form that is interpreted by the hardware. We should expect few languages on

such a system to require strong typing. Instead, languages would encourage the use of the

very general data structures that are possible when context independent object references are

used.

An object oriented machine must use object references to refer to very small objects

such as integers and booleans as well as larger objects. If the abstract definition of an object

does not allow side-effects, then it is possible for the entire representation of a very small

object to be held in the object reference. Thus small integers and booleans may be referred

to with object references that do not contain addresses but contain the actual integer or truth

value along with a type code. Bit string objects that are defined to have side-effects and

Section 1.3 13

Object References

integers that are too large for the object reference must be referred to with object references

that contain addresses.

1.4 Are Object References Unstructured?

In the last few years some people have suggested that the use of pointers or references

may be unstructured [Hoare73, Hoare75, Kieburtz76),* as is the "goto", and therefore

programming languages that do not have these constructs should be encouraged. The

pointer in PL/l, however, is just an address while an object reference contains both an

address and a type code. Furthermore, the pointer in PL/I is an object, while the object

reference is not an object; the object reference is merely an implementation mechanism to

enable objects to be manipulated. In fact, addresses or pointers are unstructured mechanisms,

while object references are highly structured' mechanisms. Since the concept of objects is in

basic agreement with the requirements of structured programming, it would be surprising if

object references were unstructured. It is not unusual, however, for structured mechanisms to

be implemented with unstructured mechanisms. Thus although a procedure call is a

structured mechanism, it 'uses a "goto" as part of its implementation. The major difference

between a "goto" and a procedure call is that a procedure call is a meaningful use of a

procedure object which in turn models such weli-known mathematical objects as functions. A

"goto", on the other hand, does not correspond to a meaningful operation on a conceptually

meaningful object. Similarly a pointer or address is an unstructured mechanism, while the

object reference is highly structured even though an address is an important part of an

object reference. An address does not correspond to a meaningful object, while the object

reference is the key to manipulating abstract objects.

A major reason why some people have begun to feel that references may be

1. References that conceptually contain a data type and an address have been defended in
the literature [Berry76J. Hoare and Kieburtz are not opposed to using object references to
implement programming languages, but are opposed to making addresses or pointers
available to the programmer. Thus there is general agreement that object references may be
used to support objects.

Section 1.3 14

Are Object References Unstructured?

unstructured is that many systems have been built that do not guarantee that a reference

will always refer to the same object. In particular, many systems have been built in which

dangling references can become a problem, i.e. in which a reference to one object can be

used to modify the representation of another object after the storage for the first object has

been freed. This is not the fault of the concept of the object reference, however; it is the

fault of those systems that do not enforce the proper use of object references. Inherent in

the concept of objects is the idea that an object reference should only be used to refer to a

single object, thus the references to an object may be used to access storage only in the

representation of that object. In addition, the concept of objects does not provide for any

method of creating object references other than copying an object reference or when

creating a new object. It is therefore improper to allow an arbitrary bit string to be

converted into an object reference. These restrictions on the use of object references are

inherent in the concept of objects and are thus an important factor that cause object

references to be structured while pointers or addresses are unstructured.

1.5 Computer System Design

The concept of objects appears to be a fundamental concept in computation that

should influence the design of the computer system. There are two major design criteria in

computer system design. First, the computer system should be reliable, i.e. it should always be

ready to correctly execute a correct program. Second, the system should perform the

computation wanted by the user as quickly and efficiently as possible. These two criteria

conflict with each other since reliability often has a cost that decreases efficiency during

those times that the system is "up" and available. A reasonable balance between these two

design criteria must be achieved. The system must execute programs at high speed, but

cannot allow erroneous programs to threaten the integrity of the system.

Designing a CPU that deals with objects must be done very carefully. Different

sections of computer science stress different aspects of the concept of objects. In order to

serve all parts of the field and thereby all.users, all of the aspects of objects should be given

meticulous attention. It would be tragic to provide hardware support for objects and then

find that some applications cannot use this mechanism but must build a separate software

Section 1.4 15

Computer System Design

mechanism for objects. Hardware supported objects will obviously be more efficient that

software supported objects on the same system. If the hardware mechanism does not provide

all of the flexibility that exists in the concept of objects, however, then a particular

application that requires the particular element of flexibility that was not provided may be

forced to build a separate software mechanism for objects that does provide that element of

flexibility.

The concept of objects requires that a certain relationship be maintained between an

object and a reference to the object. If the concept of objects is really a fundamental concept

occurring in all applications of computers, then a single implementation of the concept will

only be used for all applications if the only restrictions in the mechanism are the restrictions

that are inherent in the concept of objects. These restrictions are:

1) an object may be manipulated only through the use of a reference to the object

2) an object reference is created only when its corresponding object is created

3) modifications to the address within an object reference are prohibited; in fact, most

other modifications to the object reference are prohibited as well, because most

modifications to the object reference would violate other restrictions on the use of

object references ~

4) when an object reference is used to access storage, only the storage containing the

representation of the object referred to may be accessed

5) an object reference must always refer to the same object

6) each object is a model of an ideal object known intuitively to the programmer; all of

the operations on the object in the computer must be consistent with the ideal

object being modeled; this restriction is implemented in three parts:

a) only the data type definition of an object may convert a high level reference to

the object to a low level reference to the object

b) the definition of an object is determined by the programmer who originally

envisioned the object or by someone designated by that programmer

c) all operations on the object, including machine instructions, must reflect the

definition of the object

It is important that these be the only restrictions. In addition, however, the mechanism for

object references must have a low cost. Thus, in order to achieve a mechanism that can be

Section 1.5 16

Computer System Design

used for all applications the following criteria must also be satisfied:

7) an object reference should not be much bigger than an address

8) an object reference stored in one part of the system should be able to refer toi an

object in any other part of the system

9) objects may be of any size from one bit (truth values) to millions of words and

larger

10) object references may be freely copied

11) it should aNays be possible to define a new type of object

12) when defining a new object, it should be possible to define how operations that

already exist on the system, including machine instructions, will work on this

object; thus all operations are representation independent to some degree

Some of these design criteria specify properties of the addressing scheme of the system, some

specify flexibility that is needed in the system, and some specify restrictions that should be

placed on the use of object references, the use of addresses within object references, and the

ability to define new operations on an object. Flexibility must be provided in order to serve

all users. A computer system will have achieved the necessary flexibility if all the

programming languages based on the concept of objects use the hardware supported object

reference to refer to objects within the language.

It was once thought that the restrictions on the use of object references could be

achieved by relying upon the good wi2i of the programmer without providing any

mechanism for enforcing these restrictions; correct programs would naturally adhere to these

restrictions just as a good citizen obeys the law. This is the approach taken by PL/l; it has

lead to charges that pointers are unstructured. Software reliability can be improved if the

restrictions on the use of object references are enforced in some way. Two different ways of

enforcing these restrictions have been proposed. The obvious technique is for the hardware

to guarantee that the restrictions are not violated. This is only possible if full context

independent object references (containing type codes) are used in the CPU to point to

objects and to manipulate the representations of objects. The second approach is to design a

compiler that would not generate machine code that violates these restrictions even though a

random sequence of machine instructions might violate these restrictions [Palme73, Jones76.

If all the software on the system is written in the high level language translated by this

17Section 1.5

Computer System Design

compiler, then all the software would adhere to these restrictions. This thesis will only

consider hardware enforcement; nothing will be assumed about the sophistication of the

compiler.

1.6 Contributions of the Thesis

This thesis investigates the possibility of efficiently implementing a new computer

system that supports otajects in hardware and is a natural successor to several existing

systems. The complete description and investigation of a new computer system is beyond the

scope of a single thesis, so I have chosen a set of problems in the design of the new system

and proposed solutions to these problems. The most unusual aspect of the new system is that

it supports object references using a single, very large, paged, linear address space. Although

the address space must be reused to achieve efficient paging, the system prevents dangling

references from causing problems by not reusing a piece of address space unless there are no

dangling references to it. All of the processes and disk files reside within the single address

space. In addition, the single address space exists for the life of the system. Garbage

collection is an important tool that is used to prevent dangling references and to reclaim

storage for inaccessible objects automatically. When all online storage is within the address

space, the reliability of the entire system is threatened. This problem is dealt with by

providing hardware enforcement of the restrictions on the use of object references. Thus the

new system can be considered to be basically a capability system that uses a linear reusable

address space rather than unique IDs. The linear paged address space on the new system,

however, allows many small objects to be placed on the same page but also breaks large

objects into pages. Thus high speed memory can be used efficiently while incurring less disk

traf fic than on capability systems, which only swap individual objects.

There are several contributions in the thesis that make the new system design feasible.

The most important contribution is showing how to perform garbage collection in a very

large address space. First the address space is broken into pieces called areas; single areas are

then garbage collected independently from the rest of the system. Garbage collection of a

single area is possible because the system automatically maintains complete lists of all

inter-area references. This approach is attractive because I have developed a method for

18Section 1.5

Contributions of the Thesis

maintaining the lists of inter-area references automatically without incurring much runtime

overhead.

Another contribution is associated with the problem of placing objects into appropriate

areas. The programmer places objects into areas to create modules of related information

and to increase locality of reference. In case a programmer places an object inappropriately,

an automatic mover, developed in this thesis, detects the improper placement and moves the

object to a more appropriate area. The automatic mover is implemented by the garbage

collector. In addition to correcting inappropriate placement of objects, the automatic mover

ensures that cycles that extend over many areas will be reclaimed when they become

inaccessible even though the areas involved are never garbage collected together in one

garbage collection.

The new system is able to revoke access much better than on other capability systems

because both the garbage collector and the lists of inter-area links are powerful revocation

mechanisms. It is shown that the new system can provide protection by access control lists as

on Multics and can provide revocation that is as sudden and as comprehensive as on

Multics. Thus there are two ways of specifying protection on the new system: by. access

control lists as on Multics and by the use of object references (capabilities). The protection

provided by object references is more powerful, however.

A fourth contribution of the thesis is the format of the object reference used on the

new system, which is not much larger than an address. The current state of the art in the

design of capability systems that use a linear address space (see Chapter 2) requires three

other fields in the object reference in addition to the address field. The size of each of these

three fields is on the order of the size of an address. These three fields are: a type field, an

access control field, and a size field. Since the minimum size for an address on the new

system is 40 bits, these three fields could cause the object reference to be very expensive.

The thesis presents techniques for using as few as 5 bits in the object reference for a size

field, for reducing the access control field to a single bit with the possibility of using the size

field for access control information as well as for size information, and for reducing the

type field to as few as 9 bits without significantly sacrificing the ability to create new data

Section 1.6 19

Contributions of the Thesis

types.

An important claim of this thesis is that the proposed system is efficient. This claim is

supported by comparing the proposed system with several other classes of computer systems

that are described in Chapter 2. Evaluation of the efficency of a computer system, however,

is very difficult, so this thesis can only perform a cursory comparison of the new system with

other systems. Instead of dealing with total performance of the system, only very low level

operations on the different systems are compared. The goal is to.show that the proposed

system operates about as fast as current systems if the programming styles on current systems

are transferred directly to the new system. In addition, it is shown that many operations that

are not supported well on current systems are supported well on the new system. If

programming styles change on the new system to take advantage of the features that it

supports well, better performance can be achieved on the new system than on current

systems. High performance is achieved on the new system by providing hardware whose

prime design criterion is to provide a very hospitable environment for the support of objects

and whose secondary design criterion is speed of computation. The criteria of high quality

support of objects and high speed computation are both very important, but the quality of

the support for objects predominates somewhat.

These contributions go a long way toward allowing the new system to be as efficient as

computer systems that do not enforce the restrictions on the use of object references. The

thesis covers the major issues in the design of the new system so that the reader can see that

the type of system proposed here has merit and warrants further investigation. Among the

important issues that are not discussed in depth are: the machine language, techniques for

maintaining reference counts correctly and automatically, and the definition of data types.

The issues that will be discussed should make the reader aware of the implications of the

addressing scheme in the new system, how areas and inter-area links affect the structure of

the system, and the possibilities for and problems of storage management in the new system.

Section 1.6 20

Contributions of the Thesis

types.

An important claim of this thesis is that the proposed system is efficient. This claim is

supported by comparing the proposed system with several other classes of computer systems

that are described in Chapter 2. Evaluation of the efficency of a computer system, however,

is very difficult, so this thesis can only perform a cursory comparison of the new system with

other systems. Instead of dealing with total performance of the system, only very low level

operations on the different systems are compared. The goal.is to .show that the proposed

system operates about as fast as current systems if the programming styles on current systems

are transferred directly to the new system. In addition, it is shown that many operations that

are not supported well on current systems are supported well on the new system. If

programming styles change on the new system to take advantage of the features that it

supports well, better performance can be achieved on the new system than on current

systems. High performance is achieved on the new system by providing hardware whose

prime design criterion is to piovide a very hospitable environment for the support of objects

and whose secondary design criterion is speed of computation. The criteria of high quality

support of objects and high speed computation are both very important, but the quality of

the support for objects predominates somewhat.

These contributions go a long way toward allowing the new system to be as efficient as

computer systems that do not enforce the restrictions on the use of object references. The

thesis covers the major issues in the design of the new system so that the reader can see that

the type of system proposed here has merit and warrants further investigation. Among the

important issues that are not discussed in depth are: the machine language, techniques for

maintaining reference counts correctly and automatically, and the definition of data types.

The issues that will be discussed should make the reader aware of the implications of the

addressing scheme in the new system, how areas and inter-area links affect the structure of

the system, and the possibilities for and problems of storage management in the new system.

Sectlon 1.6 20

Organization of the Thesis

1.7 Organization of the Thesis

Chapter 2 presents an historical perspective on the design of computer systems that
shows how hardware support for the concept of objects has evolved. Selected systems that
illustrate this evolution have been considered in Chapter 2. In addition, Chapter 2 presents

and describes the other computer systems that will be compared with the new system

throughout the thesis. Chapter 3 presents an overview of the new system and many of the

mechanisms in it. Chapter 4 discusses garbage collection and shows how individual areas
can be garbage collected separately once the system automatically maintains the lists of

inter-area links. Chapter 5 presents the mechanisms for maintaining the lists of inter-area

links and shows that the overhead for maintaining these lists is incurred only when
performing operations that are not supported by hardware on other systems, so there is little
runtime overhead for maintaining the lists of inter-area links. Chapter 6 discusses areas and

how they interact with file directories and also presents the automatic mover. Chapter 7
presents the details of the new format for object references and discusses the mechanisms

for providing protection on the system. Revocation of access is discussed and the technique

for controlling access by access control lists is presented and compared to protection on
Multics.

Section 1.7 21

22

Chapter 2

Computer System Design: An Historical Perspective

Once the concept of objects is in hand, it is possible to look back at the computer

systems that have been developed in the past and see to what extent each system supported

objects. In many cases it is possible to view developments in computer system design as

advances in the support of objects. This chapter performs such an analysis, showing the

techniques that have been tried for supporting objects, and analyzing how each system has

fallen short of the design criteria given in section 1.5. At the end of this chapter, it should be

obvious that the design of the system presented in this thesis is a logical successor to all of

the systems discussed in this chapter. The new system attempts, however, to overcome some

of the deficiencies in these systems. The new system will be compared throughout the thesis

to the systems presented in this chapter to show that the new system is efficient.

The hardware in the earliest electronic computer systems consisted of a CPU, high

speed memory, much slower but larger and more permanent storage, and several 1/0 devices

(Burks46). This basic type of computer, sometimes called a von Neumann machine, continues

to be used today even in some newly designed systems. The large, slow storage is treated as

an 1/0 device but is also used to load a computation into high speed memory. The real

computation is supposed to be executed by the CPU in high speed memory. High speed

memory is contained within a linear address space consisting of words of storage. Not only

are the temporary results of a computation stored in high speed memory, but so is the

program. The program can load and store information in any word of high speed memory.

Information in memory is only given meaning when a program manipulates that

information. A word of memory can be viewed as holding an integer at one instant, so

another number can be added to it; at the next instant it can be viewed as holding an

instruction, so the program can transfer control to the location; finally the same word can be

viewed as holding an address, so the program can use the address to access another memory

location. This structure was created more for its ease of construction in hardware than for

its superior computational properties. At the time, however, the ability to view data with

different meanings at different times seemed to have important computational properties.

After all, it allows the programmer to create instructions and addresses that are the result of

Computer System Design: An Historical Perspective

calculation rather than just being constants in the code.

The fundamental nature of objects encouraged machine languages that were somewhat

consistent with the concept of objects. The address, however, was the closest construct these

machines had to an object reference. On all machines an object may consist of several

words; it is a record. Often a constant offset from the beginning of the object is used to

access a word of the object. Machines that provide address calculation in almost every

instruction and seldom store the result of the calculation in a register, such as the PDP-10,

IBM 7094, IBM 360, and H6180, provide limited hardware support to objects and object

references because this kind of address calculation is consistent with the address calculation

needed with object references.

One of the fundamental requirements of objects is that an object reference must

always refer to the same object. As long as an entire computation was contained in high

speed memory, this requirement was satisfied well enough. It did not take long, howcver, for

programmers to devise problems that required more storage than existed in high speed

memory. When a large, slow memory was available that could be used in a random access

manner, the programmer was tempted to use this memory to hold objects that were needed

for the computation. These objects could only be accessed when they were actually in high

speed memory, however. To achieve an increase in the effective amount of memory

available, it was necessary to use some sections of high speed memory for different objects

at different times. Addresses elsewhere in memory that pointed to these ephemeral objects

were very hard to use because they did not point to the correct objects all the time. To cure

this problem, the swapping of objects that were referenced from elsewhere in memory was

prevented. Thus the amount of high speed memory that was available for swapping was

reduced because many objects that were involved in a computation could not be swapped

out of high speed memory. Therefore the usefulness of the slow speed memory was limited.

This problem was solved by the development of virtual memory on the Atlas computer

[Kilburn62). Virtual memory provides some hardware support to the idea that an address

should always point to the same objet as long as the object exists.

Section 2 23

Size of the Address Space

2.1 Size of the Address Space

When designing a computer without virtual memory in the early 1960's, the choice of

the size of the address space was reasonably straightforward. During this time, high speed

memory (core) was very expensive. The computer architect could choose an upper bound on

the amount of core for the computer system as the size of the address space. Since the

address was a physical core address there was no need for more address space

The development of virtual memory removed the correlation between the size of high

speed memory and the size of the address space. A virtual memory system may easily have

an address space larger than high speed memory. It is only necessary that the working set

[DenningOS, Denning70] of the computation fit into high speed memory to achieve efficient

use of the computer system.

If the size of high speed memory no longer limits the size of the address space, how

large should the address space be? It is clear that no one has a sound basis for choosing the

size of the address space. Recent virtual memory systems seem to take 216 words as a

minimum (PDP-11) and go up to 232 words (Multics, MU-5) [Lindsey7l, Ritchie74,

Organick72).

2.1.1 Small Address Space Virtual Memory (SAV) Systems

In fact, current 'virtual memory systems can be divided into two distinct types. First

there are the Small Address space Virtual memory (SAV) systems. Although these systems

have virtual memory, the size of the address space is often too small to hold all of the

programs and data of a single computation. As a result these systems require mechanisms

that allow program overlays. Such systems deal with disk files by using 1/0 operations or by

using a small portion of the address space to access a small portion of a file. In the latter

1. The development of a relocation register for user jobs did not significantly change this
viewpoint but did alleviate somewhat the restriction on the amount of usable core storage
placed on the system by the size of the address space.

Section 2.1 24

Small Address Space Virtual Memory (SAV) Systems

case, the same piece of address space is then reused for another portion of the file. Most

virtual memory systems are in this category because it is easy to convert a computer system

designed without virtual memory to an SAV system. It requires little more than providing

page mapping hardware and writing the portion of the operating system that does demand

paging. Much of the operating system may remain unchanged. There is no need to change

user software since it already performs overlays and deals with the disk as an 1/0 device.

Examples of SAV systems are: ITS, TENEX, and UNIX [Ritchie74, Bobrow72, Eastlake69J.

The SAV architecture is superior to the architecture without virtual memory because a

program written for a system with a large amount of high speed memory will be able to run

on a system with less high speed memory. The overlay strategy for a program on an SAV

system is dependent upon the size of the address space, not upon the amount of high speed

memory on the system, thus greater hardware independence is achieved than without virtual

memory.

2.1.2 Large Address Space Virtual Memory (LAV) Systems

The second type of virtual memory system is the Large Address space Virtual memory

(LAV) system. In LAV systems, all of the programs and data needed by a single

computation fit into the address space. As a result such systems do not provide a mechanism

for program overlays. When a program uses a file on such a system the entire file is placed

in the address space. Portions of the file are not actually moved into high speed memory

until they are used, however. The system does not encourage the user to purge a file from

the address space unless it is known that no addresses continue to point into it. The address

space is large enough that it is not necessary to reuse the address space for such files.

Examples of LAV systems are Multics and MU-5.

LAV systems do a better job than SAV systems of supporting the concept of objects.

As long as an object exists within a single computation, it retains the same place within the

address space on an LAV system, while SAV systems may violate this requirement by the

use of overlays. In addition, LAV systems begin to support the idea that an object anywhere

in storage should be manipulated through the use of an object reference.

Section 2.1.1 25

Large Address Space Virtual Memory (LAV) Systems

The main feature of an LAV system is that all of the storage for a single computation

fits within the address space. Most computations make use of only a small amount of the

storage on a system. If the system programmers of an LAV system are influenced only by

users who never have computations that use a large amount of storage, then their LAV

system could have an address space that is many times smaller than the total amount of

on-line storage on the system. If, on the other hand, there are influential users who

occasionally have computations that use a large amount of storage and make use of a

significant fraction of the software on the system, then either the address space will be

almost large enough to handle all the storage on the system or the system will slowly become

an SAV system as mechanisms for performing overlays are written and begin to be used.

Thus the VS/2 system for the IBM 370, which only has 2"4 bytes in the address space but

has a structure that is very similar to the structure of Multics, may in fact be used as an

SAV system because its address space is so small. If a system has an address space that is so

large that it can be shown that it can contain and use all of the on-line storage on the

system, then I call that address space a very large address space. Both Multics and MU-5

have address spaces that are so large that they are almost very large address spaces.

2.2 Single Address Space -

LAV systems supply a different address space to each process or computation. Thus

the object references on an LAV system are only valid within the context of one process.

Although it is possible for an object reference on an LAV system to point to any word of

storage on the system, it is not possible for an object that exists within permanent storage

(within a file) to contain object references to other objects in the system1. Similarly it is not

possible for object references to be communicated from one process to another. Any address

1. Computer systems often provide file systems that implement a kind of single "address
space" that maps character strings into files. The file system is a large body of software that
implements this "address space". A basic premise of this thesis is that any mechanism for
manipulating objects should use an address space that is interpreted directly by hardware.
The "address space" provided by a file system is thus inadequate for use within object
references.

Section 2.1.2 26

Single Address Space

stored in a permanent object would point to different parts of the system in the different

processes that used the object. This violates the most basic requirement of object references.

If a single address space were provided for all the processes for the entire life of the system,

then an address stored in a permanent object would have the same meaning for all

processes. An address would always point to the same object.

Unlike an LAV system, however, the size of the address space on a single address

space system places an upper bound on the amount of online storage that can realistically be

used, so a single address space system must have a very large address space. If the address is

too big, however, then several bits in each address will always be zero and the hardware

needed to interpret these bits and the storage used for these bits will be wasted. Thus some

attempt must be made to keep the address space as small as possible. Multics wastes address

space when it uses an entire segment for a short file. If such waste is eliminated, then the

size of an address on a single address space system may be only a few bits larger than the

size of an address on Multics.

An LAV system needs a separate memory map for each process, but a single address

space system needs only one virtual memory map. The memory map on a single address

space system is only modified as pages are moved in and out of high speed memory. The

memory map is common to all processes, so the operation of switching processes is faster

than on LAV systems because it is not necessary to switch the memory map.

The concept of segmentation which is so prevalent on LAV systems such as Multics is

much less important on single address space systems. An important purpose of segmentation

is to allow a section of a memory map covering many pages (one segment) to be independent

of the address space it is used in. On such a system an address space is defined in a two step

process (see Figure 1). First there is a table of segment descriptors. Each segment descriptor

points to the page table for that segment. The position of a segment descriptor in the

segment descriptor table specifies the segment number for that segment. If a segment is used

in several address spaces whose segment descriptor tables are all in high speed memory, only

one copy of the page table for the segment is needed. Each address space, however, may

have a different segment number for that segment. Thus, segments play an important role

27Section 2.2

Single Address Space

segment

seg.# 17

seg.# 24

~1

descriptor tables

process I

pagel
segment A
page
table

.-.. page2

process 2

page3

Fig. 1. Segmentation reduces the memory needed for mapping multiple address spaces.

in reducing the overhead for creating and maintaining multiple large address spaces: a task

that is Unnecessary on a single address space system.

A problem with a single, large address space is that if a program contains an error, it

can cause any process executing that program to go marauding through the address space.

Even on an ideal system there is no way to protect a computation that exercises a bug from

itself, but other computations, files, and data bases that are unrelated to the erroneous

computation should not be affected by it. Both SAV and LAV systems use multiple address

spaces to limit the damage that can be caused by a bug.

2.3 Capability Systems

Capability systems, on the other hand, provide very sophisticated protection while

operating in a single address space for the entire system [Fabry74). Capability systems

provide their protection by enforcing the restrictions, inherent in the concept of objects, on

Section 2.2 28

Capability Systems

the use of object references. A capability is a context independent object reference,

containing type information as well as an address. If a program has access to a capability,

the program may perform an operation on the object pointed to by the capability. The

access control field in a capability specifies which operations may be performed on the

object. Each object can be viewed in at least two different ways, however: as a high level

object on which only the operations that are meaningful for the object being modelled are

allowed, and as a low level object on which operations are defined that allow the

representation of the object to be manipulated. Since the purpose of an object is to

implement its high level abstraction, the users of an object should only be able to perform

the high level operations on the object. The only programs that can perform a low level

operation on the object are those programs that define the data type of the object. Thus

sophisticated protection concentrates on limiting the set of high level operations that may be

performed on the high level abstraction of an object. There is not much point in limiting

the representation dependent operations that may be performed by the data type definition

on the low level abstraction of an object because the data type definition is highly

privileged code: it implements the high level abstraction of the object, so it must work

correctly. Limitations should be placed on the least trusted users of an object, not the most

trusted. Many capability systems, however, have put much effort into limiting the operations

on the object that the data type definition can perform as well as or sometimes instead of

limiting the high level operations that can be performed on an object. Thus the classic read,

write, and execute bits for controlling access limit the low level operations rather than the

high level operations on an object.

The restrictions on the use of object references (capabilities) enforced by capability

systems are shown in Table 1. These restrictions form two sets. The first set of restrictions,

the low level restrictions, has two purposes. First, it ensures that the low level operations on

an object (the representation dependent operations) can only manipulate the representation

of the object referred to by the object reference. Second, the low level restrictions ensure that

all references to an object were obtained by making copies of other references to the object

which eventually were copied from the reference to the object that was created when the

object itself was created. These two basic properties allow the distribution of references to

the object (and thereby access to the object) to be controlled by the software that created the

Section 2.3 29

Section 2.3 Capability Systems 30

Table 1. Restrictions on the Use of Object References
Low Level Restrictions

1) an object may be manipulated only through the use of a reference to the object
2) an object reference is created only when its corresponding object is created
3) object references may be copied, but most modifications to an object reference are

prohibited, especially modifications to an address within an object reference; thus
the system must be aware of the location of all the object references on the system

4) when an object reference is used to access storage, only the storage containing the
representation of the object referred to may be accessed

5) an object reference must always refer to the same object

High Level Restrictions
1) each object is a model of an ideal object known intuitively to the programmer; all of

the operations on the object in the computer must be consistent with the ideal
-object being modeled; this restriction is not directly computable: it must be left to
the judgment of the programmer; this restriction is implemented in three parts:

a) only the data type definition of an object may convert a high level reference to
the object to a low level reference to the object

b) the definition of an object is determined by the programmer who originally
defined the object or by someone designated by that programmer

c) all operations on the object, including machine instructions, must reflect the
definition of the object

object. The low level restrictions on the use of object references also ensure that the

representation of an object can unly be manipulated by use of a reference to that object.

The low level restrictions do not provide for limiting the operations on an object, however.

This is left to the high level restrictions.

Each object is supposed to model an ideal object. The high level restrictions allow

operations that are not defined on the ideal object to be prohibited. Although the most

important use of the high level restrictions is to prohibit low level operations on the high

level abstraction of an object and to allow the programmer to limit the high level operations

on an object that may be used by one of the users of an object, the high level restrictions

merely state that the programmer may limit the operations that may be performed on an

object. If the programmer decides to prohibit some low level operations while allowing

others, he may do so by making use of the high level restrictions on the use of object

references.

Capability Systems

The high level restrictions are implemented by associating with each object a data type

definition that specifies which operations may be performed on objects of that type and

how these operations are to be-performed. These operations may be defined to check the

access control information in the object reference or in the representation of the object and

only operate if these checks succeed. Only a data type definition for type D is allowed to

convert a high level object of type D to a low level object. This conversion is performed by

modifying the access control field in the object reference. Thus we may talk about a high

level reference to an object of type D and a low level reference to the object. Since the data

type definition must implement interpretation of the access control field in an object

reference, the data type definition can be trusted to restrict distribution of its low level

reference to the object. The code that creates an object of type D and is given the first low

level reference to the object is considered to be part of the data type definition of type D.

Thus the data type definition for type D is given the first low level reference to objects of

type D and only the data type definition may convert high level references to objects of type

D to low level references. Consequently, the data type definition can control the distribution

of low level references to objects of type D. If the data type definition does not distribute

any low level references to objects of type D to programs outside of the data type definition

of type D, then only the data type definition can manipulate the representations of objects

of type D. The high level restrictions on the use of object references allow access to an

object to be arbitrarily controlled by the data type definition. As with other objects, the

ability to modify a data type definition is controlled by the software or the user who created

the data type definition.

It is surprising how difficult it is to enforce the low level restrictions efficiently without

infringing on the flexibility of object references listed in section 1.5. It is also difficult to

enforce the high level restrictions efficiently without limitng flexibility, but it is possible to

separate the implementations of the low level and the high level restrictions. Once it is

recognized that the type code in the object reference should point to the data type definition

for the object, then the hardware can be made to map the type code into a pointer to the

data type definition. Implementation of the high level restrictions is then largely a matter of

specifying the representation of the data type definition and the techniques for converting a

high level reference to a low level reference. This thesis deals primarily with implementation

Section 2.3 31

Capability Systems

of the low level restrictions and conversion of a high level reference to a low level reference.

Although sophisticated protection of information can be achieved by enforcing the

high level restrictions as well as the low level restrictions, a great deal of system reliability is

gained even when only the low level restrictions are enforced. Thus if all the object

references on a system were low level object references then an erroneous program could still

only damage the objects for which it had references. Operations such as accessing outside of

the bounds of an array or using a character string as an address would cause errors even on

such a system, thus halting the erroneous computation. Although it would be theoretically

possible for an erroneous program to carefully follow long chains of object references and to

modify objects that were remote from the error, such as critical system data bases or the

computations of other users, in practice erroneous programs, unlike malicious programs, are

not written carefully enough to do this without violating one of the low level restrictions on

the use of object references. Thus a certain amount of system reliability can be gained by

enforcing the low level restrictions on the use of object references without enforcing the

high level restrictions. The amount of reliability thus gained is at least comparable to the

reliability achieved by multiple address spaces on SAV systems. Thus enforcement of the

low level restrictions on the use of object references regains the reliability that was lost by

deciding to place all the users and all the files into a single very large address space.

Once the low level restrictions on the use of object references are enforced, however, it

is foolish not to enforce the high level restrictions as well since they provide such

sophisticated protection and also improve reliability further by increasing the number of

illegal operations on objects and by decreasing the number of objects that can be accessed

by the remaining legal operations. Furthermore, the cost of enforcing the high level

restrictions can be avoided for those objects for which it is not necessary merely by

distributing low level references for the objects instead of distributing high level references

for the objects. Thus the costs for sophisticated protection can be limited to those objects for

which sophisticated protection is necessary. Therefore the costs for enforcing the high level

restrictions on the use of object references should be attributed to providing sophisticated

protection, wlhile the costs for enforcing the low level restrictions should be attributed to

maintaining system reliability.

Section 2.3 32

Capability Systems

Capability systems were developed to provide protection in computer systems. They

were not designed to support simulation or list processing. As a result, capability systems

have concentrated on enforcing the restrictions on the use of object references and have

sacrificed the flexibility and low cost that object references need to have to be used for

other applications as well. SAV and LAV systems, on the other hand, are more concerned

with efficiently implementing programming languages and so have concentrated more on

providing flexible and low cost object references but have not been concerned with

enforcing the restrictions on the use of object references.

A capability system provides protection by placing restrictions on the use of object

references (capabilities) that are not enforced on non-capability systems. It may be necessary

for a capability system to have a fair amount of specialized addressing hardware to enforce

these restrictions while still making it easy to use object references (capabilities). In order to

justify specialized hardware it is necessary for it to be used very frequently. Hardware to

support capabilities would be guaranteed of heavy use if programming languages such as

LiSP, APL, and BASIC would use capabilities for the object references needed in these

languages. The speed advantage achieved by using a hardware supported mechanism rather

than a software implemented mechanism should cause languages such as PL/l, Algol 68, and

Simula 67 to use object references (capabilities) for pointers and reference variables,

especially since the low level restrictions on the use of object references are consistent with

the defined use of pointers and reference variables in these languages1 . The more object

references (capabilities) are used, the better will be the protection provided by them and the

less painful it will be to specify needed protection. Unfortunately, no capability system has

1. Some people do not realize that although pointers can be abused in PL/l, these abuses
are usually illegal PL/l. So many implementations of PL/1 have been made that do not
enforce these restrictions that some people think that PL/l allows these abuses. Quoting from
the Multics PL/1 Language manual:

"All of these mechanisms require that the variables that share a generation of storage have
identical data types and alignment <attribute>s."[4-19)

". . .it is an error to take the "addr" of a parameter and assign the resulting locator value
to static storage and subsequently, in another block activation, use the locator value." (4-21]
[Honeywell72

Section 2.3 33

Capability Systems

yet been created on which it is practical to implement LISP by using capabilities for the

object references in LISP. It is clear, however, that some people have been hoping that this

would become possible [Fabry7l]. A major goal of the current thesis is to propose a new way

of constructing capability systems that will allow capabilities to be used for object references

in all programming languages.

2.3.1 Direct Capability (DC) Systems

We may now face the issue of how capabilities should be implemented. A CPU, in the

last analysis, must perform every memory access with a physical address. It is therefore

tempting to place a physical address in the capability. A capability system on which

capabilities contain the physical address of the objects they reference will be called a Direct

Capability (DC) system. The B6700 [Organick73i and the Rice-2 [Feustel72, Feustel73J are

DC systems. The B6700 and the Rice-2 are not usually considered to be capability systems,

but they do use special hardware to enforce the low level restrictions on the use of object

references. The object references supported by these systems are actually used by

programming languages such as ALGOL 60. For the purposes of this discussion these

systems illustrate the difficulties with DC systems.

Although the use of physical addresses within capabilities sounds very efficient, it does

not handle movement of objects between high speed memory and disk very well. Whenever

an object is moved in physical memory, all of the capabilities for that object must be

modified. Since the system performs this modification, however, it does not violate any of

the restrictions on the use of object references because the object references for the object

moved- continue to point to the same object. The modifications of the object references. are

invisible to the user and merely ensure that the proper relationship between the object and

its references is maintained even though the location of the object has changed. Actually,

only the capabilities in high speed memory need contain the addresses of the objects in high

speed memory. while capabilities stored on disk would always contain the disk address of the

object. When an object is brought into high speed memory, all of the capabilities in high

speed memory for the object would be modified to point to the location of the object in

high speed memory. In addition, all the capabilities stored within the object would be

Section 2.3 34

Direct Capability (DC) Systems

modified to point to the proper object in high speed memory. Even the problem of finding

and modifying only the capabilities that are in high speed memory is a very difficult job,

however, especially if the programmer is able to copy capabilities easily [Organick73,

Fabry74). Usually DC systems solve this problem by preventing capabilities from being

copied or by encouraging programming styles in which capabilities are not copied. Either of

these solutions prevents languages such as LISP and Simula 67 from using capabilities as

object references within these languages. DC systems are likely to provide means of using a

capability "indirectly" as with the Stuffed Indirect Reference Word (IRWS) on the B6700

[Organick73, pp. 98-99]. An IRWS can be used in place of the capability it points to in order

to alleviate the requirement that capabilities not be copied, but this solution forfeits the

efficiency of using physical addresses directly. At least one extra memory reference is

required on each access: the same overhead required for virtual memory. In fact, the use of

physical memory addresses, in object references is not more efficient than the use of virtual

addresses. "Virtual" address spaces have the potential for being designed specifically to

support the concept of objects.

2.3.2 CUID Systems,

The problem with using a physical address in a capability arises when the physical

location of the object changes. This problem can be solved by defining a virtual address

space in which the object's location never changes. All of the address spaces discussed so far

have contained words of storage. This is not necessary f or the "address" space used by a

capability. It is only necessary to provide a separate ID number or "address" for each object

[Dennis66]. A capability system on which capabilities contain a unique ID number that

identifies the object forever will be called Capability systems with Unique IDs (CUID

systems). CAL-TSS, developed at Berkeley [Lampson76], the Typical Capability System

Section 2.3.1 35

CUID Systems

described by Redell [Redell74], and HYDRA [Wulf74] are CUID systems1 .

Unique IDs are never re-used and the ID number associated with an object never

changes. Creating a reference to a new object is- a very simple operation. The operating

system maintains a counter, N. All IDs less than or equal to N have already been allocated to

objects, while no IDs greater than N have been allocated. To create a new object, N is

incremented by one and its new value is used as the ID of the new object. The size of the

ID space is made large enough so that it will never be exhausted. Usually a size of 264 IDs

is chosen :1.8 x 1019). This is the number of microseconds in 600,000 years. The size of the

ID space is chosen by selecting a life-time for the ID space and a maximum rate of new

object creation. This immediately gives an ID space size [RedelI74, p. 28. Since object IDs

are never changed, there is no need to change the IDs or "addresses" in capabilities and

therefore there is no need to place restrictions on the copying of capabilities.

Although it is not possible to exhaust the ID space it is very easy to exhaust the

storage on the system. The operating system maintains a catalog of where each object is in

physical memory. In order to move an object in physical memory, this catalog is modified in

just one place. Similarly, when the programmer wishes to change the amount of physical

storage associated with the object, the object is merely moved in physical memory and the

catalog is modified in one place. It is therefore very easy to implement dynamic arrays

[Dennis65) on a CUID system. When an object is no longer needed the storage associated

with it is reduced to zero and the entry for the object is completely removed from the

catalog. The catalog therefore maps a sparse ID space onto physical storage.

A serious problem for every subsystem on systems with more conventional word

addresses is storage management. The storage management problem that has received the

1. Fabry has advocated CUID systems [Fabry74. He did not say much about HYDRA or
CAL-TSS because the hardware on these systems did not support capabilities: only the
operating systems did. Fabry points out that the Plessey 250 (which is halfway between a DC
and a CUID system) did a reasonably good job of providing inexpensive capabilities that
could be stored in arbitrary data structures, but he then cited a few inefficiencies in the
Plessey 250 and suggested that CUID systems should be built instead.

Section 2.3.2

CUID Systems

most attention is storage fragmentation. A strength of CUID systems is that they are able to

handle storage fragmentation very well. "Storage" fragmentation is not a problem in the ID

space since this "address" space is never reused. A CUID system must map each unique ID

into a physical address space, however. The physical address space is basically a linear

address space consisting of words of storage. The physical address space must be reused.

Storage fragmentation is a serious problem only when the assumption is made that an object

cannot be moved. The strength of CUID systems, however, is that the physical locations of

objects can be changed easily to implement automatic swapping. Thus if an object

fragments some available storage, the object can be moved to combine the two blocks of

available (free) storage adjacent to it (see Figure 2). Indirection through a central catalog in

a CUID system is such a powerful tool for handling storage fragmentation that it has been

suggested that ALGOL 68 implement references using this technique in order to deal with

storage fragmentation [Saecker70l.

2.3.3 Garbage Collection

Storage fragmentation is not the only storage management problem, however. Since

capability systems do not allow any operation on an object to be performed without a

iobject 1

rree

object 3

fragmented stor

move object 2 to

combine storage

age less fra

object I

free

object 2

object 3

igmented storage

Fig. 2.

Section 2.3.2 37

Garbage Collection

reference to the object, and since object references must be copied rather than being built

from arbitrary bit strings, it is possible for an object to become inaccessible if all of the

references to the object have either been destroyed or stored in other inaccessible objects. If

no program on the system can obtain a reference to the object then the object is inaccessible.

One of the operations on an object on most capability systems is deleting the storage used by

the object. If an object becomes inaccessible, however, it is no longer possible to perform any

operation on it, including deleting the stqrage associated with the object. Thus when an

object becomes inaccessible it is impossible to use the storage associated with it since no

operation can be performed on the object, but it is also impossible to delete the storage from

the object. Thus the physical storage used by inaccessible objects is wasted. There are two

ways of dealing with this problem. It could be thrust upon a higher level of software to

ensure that no object ever becomes inaccessible. A file system takes this approach when it

maintains names for all the objects on the system. Thus if an object becomes inaccessible

except to the file system, the user can supply the name of the object to the file system and

obtain a reference to the object. Usually the file system deletes the storage for an object

when the name for the object is deleted from the file system. This approach is only practical

if objects are large enough so that their existence can be largely determined explicitly by the

user. The other approach is for the system to determine automatically when objects become

inaccessible and reclaim the storage for such objects.

The problem of deciding when to reclaim the storage for objects has been a major

difficulty in programming languages. The storage for an object should be reclaimed when

the object is no longer needed. The problem is that one object may be used for many

purposes, thus making it very difficult for any one program to determine when the object is

no longer needed. The concept of objects requires that a program have a reference to an

object before the program can use the object. It is possible for a utility program, called the

garbage collector, to determine which objects have become inaccessible and reclaim the

storage for these objects. Once such a utility program exists, however, we can ask whether it

is necessary to reclaim storage in any other way. As long as programs do not keep accessible

object references that will never be used, the garbage collector will reclaim the storage for all

objects that are no longer needed. This programming convention works very well in practice

and is usually followed by the programmer without effort. The use of a garbage collector

Section 2.3.3 38

Garbage Collection

makes the job of programming easier because the programmer need not try to determine

when he is finished with an object; the garbage collector does this automatically.

LISP is .a programming language that automatically reclaims storage for inaccessible

objects and does not allow the programmer to free objects explicitly. LISP has been used for

over 15 years for artificial intelligence applications that have sophisticated storage

management requirements. Automatically reclaiming the storage for inaccessible objects has

thus been shown to reclaim storage adequately for many demanding applications. The ease

of programming in LISP due to automatic reclamation of storage has been an important

factor in the frequent choice of LISP for symbol manipulation problems.

The concept of objects requires that if an object is to be used in the future, a reference

to the object must be retained. If an object becomes inaccessible, however, this implies that

the object will never be used again. Thus the concept of objects suggests that the storage for

inaccessible objects should be reclaimed. HYDRA tries to implement this requirement in two

ways. A count is maintained of all outstanding references to an object. When this reference

count reaches zero, the object can no longer be accessed. It has long been realized, however,

that reference counts do not reclaim all inaccessible objects. If objects B, C, and D exist on

the system as shown in Figure 3, these objects are said to form a cycle. If there are no other

B C

objeref

D

'Obj re f

Fig. 3.

Section 2.3.3 39

Garbage Collection

references to these objects than those shown in Figure 3, then the reference count for each

object is non-zero but none of the objects are accessible from the rest of the system.

Reference counts do not recognize such inaccessible objects.

The only known way to recognize all inaccessible objects is to find all of the objects

that are accessible and then free all other objects. This must be done by first finding the

immediately accessible objects. All objects referenced from accessible objects are also

accessible. The process of finding all the accessible objects and reclaiming the storage for

the inaccessible objects is known as garbage collection. Experience with garbage collection in

LISP has shown that it is a method of reclaiming storage that can run quickly and can

prevent the gradual erosion of storage into useless data structures.

In LISP, only the temporary storage for a single computation is garbage collected. On

a capability system, however, all the accessible objects on the whole system would have to be

f ound. This rapidly becomes inefficient as the total amount of online storage increases. By

the time the total of online storage is 10" bits, this technique is totally impractical. When

HYDRA had only 30 million bytes of storage, garbage collection required about three

minutes and was only done once a day. The size of the ID space on HYDRA does not place

any restriction on the total amount of storage that can be used on the system. The fact that

the garbage collector currently places a restriction on the amount of storage that can be used

on HYDRA is a problem that is being studied.

Usually when garbage collection is discussed in the context of operating systems, its use

is limited to handling the problem of fragmentation of storage. Thus files on disk may be

garbage collected, or the jobs in high speed memory may be garbage collected. With this

view, entire files or entire jobs are single objects. The problem being solved in these cases is

that the available memory has been broken into many pieces that are too small to use for

new files or jobs. The garbage collection moves all of the existing objects in storage so that

the available storage is in one large block. Usually operating systems do not have the ability

to delete the storage for objects, only the user has this ability, so the garbage collector does

not try to decide what objects should be deleted. If the system does not enforce the proper

use of object references, then the system has no way of deciding which objects a program

Section 2.3.3 40

Garbage Collection

will no longer use. A program on such a system can compute an address out of any

miscellaneous piece of information and so its entire address space is accessible. The system

must rely on the user to tell it when a piece of storage is no longer needed. If, however, the

proper use of object references is enforced, as on a capability system, then the system can

find all the accessible object references and can be sure that only one object will be used by

each reference, so it becomes possible for garbage collection on a capability system to delete

the storage for inaccessible objects automatically as well as to handle storage fragmentation.

CUID systems do not need to do garbage collection to solve storage fragmentation problems.

A CUID system need only modify the ID map to move an object within storage. Although

this - ol can solve storage fragmentation problems, it does not eliminate the need for

garbage collection. The opportunity to reclaim storage for inaccessible objects automatically

with a single mechanism that would be used by all subsystems is too valuable to pass up.

2.3.4 Small Objects

Although current CUID systems use a garbage collection algorithm that is not practical

for large amounts of online storage, this is not the major problem with CUID systems. The

major factor that discourages programming languages from using capabilities on CUID

systems for object references within the languages is that CUID systems have too much

overhead per object to make the use of small objects efficient.

CAL-TSS and HYDRA had a great deal of overhead per object because capabilities

were supported only by operating system software on these systems: there was no hardware

support for capabilities. I have already mentioned that capability systems must have

hardware support to be efficient, so I will ignore this aspect of CAL-TSS and HYDRA. I

am concerned about sources of overhead that would still remain if special hardware were

designed specifically for capability systems [Redell74 & Fabry74J.

The major factor that makes small objects inefficient in current capability systems is

the fact that they swap objects individually between high speed memory and disk. The

overhead involved in a disk operation is extremely high for objects containing only two or

three words. The average size of objects may be as small as six words each. A recent study

of the average size of objects in Algol 60 programs [Batson77] found that the average size

Section 2.3.3 41

Small Objects

of an activation record is 13-18 words while the median size of an activation record is 6-9

words. The study found larger sizes for arrays. Algol 60 does not allow object references to

be used within objects to support list processing, however. Whenever an application requires

list processing, it is coded in Algol 60 by using an array as an address space and using an

index into the array as an object reference, thus causing large.arrays to be used in place of

many small objects. An object corresponds rather well to a structure declaration in PLI!.

Structure declarations consisting of named fields are somewhat similar to the activation

records studied by Batson. Batson argues that the median size of arrays is a better estimate

of the average size of arrays than the value he measured. Batson also shows, however, that

the size of arrays has very little effect on the average size of activation records and arrays

combined, so we must consider the size of activation records to discover the average size of

objects. Noting that LISP uses two word objects most of the time, I think that the median

size of activation records measured by Batson (6-9 words) is a better estimate of the average

size of objects than is the average size of activation records measured by Batson. Thus

object oriented systems should be designed so that if the average size of objects turns out to

be between 6 and 9 words, the efficiency of the system will not be seriously affected.

Regardless of what the average size of objects is, however, it has been noted that there are

many very small objects. The only way to reduce the per object overhead for disk operations

for very small objects is to swap several objects during each disk operation, as has been

suggested by M. O'Halloran [Fabry74]. This approach is an improvement only if several of

the objects actually swapped during a disk operation are needed in high speed memory.

Devising schemes that swap several objects that are all needed at the same time is a

currently active area of research.

Section 2.3.4 42

43

Chapter 3

The New System - ORSLA

The goal of this thesis is to propose a new way of building capability systems that

would enable very small objects to be used extensively. On such a system capabilities would

be used by programming languages to reference objects within the languages. A crucial step

in this process is to provide garbage collection to reclaim the storage for inaccessible objects.

I assume that such a system would make such widespread use of capabilities that a new

CPU would be designed for the system to provide extensive hardware support for

capabilities.

The user of such a system would be much more aware of using capabilities to

reference objects in computation than using capabilities to implement protection. Wulf says

that "Hydra supports references to objects (called capabilities)" [Wulf74, p. $41. The term

"capability" is only appropriate when discussing protection while the term "object reference"

is appropriate in any context. The computer system proposed in this thesis is therefore called

ORSLA (Object References in a Single, Large Address space). Throughout the rest of this

thesis the term "object reference" will be used instead of the term "capability". The name,

ORSLA, emphasizes the fact that the object references will be used to refer to objects within

programming languages but it should never be forgotten that object references will provide

protection as well. The use of object references for protection will haive far-reaching effects

on the implementation of the system.

3.1 Address Space

The first problem in the design of ORSLA is: what kind of address space or name

space should be used to implement object references? Direct capability systems used physical

memory addresses and failed to meet all the criteria given in section 1.5 for the support of

object references. Some sort of virtual address space or name space should be used.

Capability systems with unique IDs also failed to meet all the criteria in section 1.5, however.

ORSLA investigates the possibility of using a linear, paged address space reminiscent of

virtual memories in non-capability systems.

Add ress Space

. There is only one address space on ORSLA. The same address space is used for all

users and contains all of the files on the system as well. The size of the address space

therefore places an upper bound on the total amount of on-line storage that ORSLA can

make full use of. The upper bound on the amount of online storage on ORSLA should not

be smaller than 1012 bits. There are several factors that lead to this conclusion. First, memory
technology is advancing rapidly to supply faster, cheaper memory, so a computer system

design should incude a safety factor to prevent the system from becoming obsolete shortly

after it is produced. Second, ORSLA will not be placed in a single installation; it will be a

complete computer system that will be sold to many people; the upper bound on the storage

should be large enough to satisfy all of the ORSLA installations. Third, it is unrealistic to

expect a user to be able to switch from an ORSLA system using one size of address space to

another ORSLA system using another size of address space. Probably all of the software on

the system will be dependent upon the size of an address. Although this dependence is not

desirable, and although using objects and high level languages helps reduce 'this

dependence, these tools are not presently powerful enough to ensure that users can be moved

to a system with a different size of address space. Thus the upper bound on the online

storage on ORSLA should be chosen so it will be acceptable for all ORSLA installations.

10" bits may be too small, however. After all, 101 bit memories are already commercially

available. I think that 1015 bits of storage is a good maximum on the amount of storage that

can effectively be used by a system containing about 10 processors in the speed range of one

million instructions per second. Assuming 100 bit words, it would require more than 3 years

of operation to access 1015 bits of storage at the rate of 106 words per second. 1015 bits of

storage has been estimated to be the amount of information in text contained in the Library

of Congress [Licklider65). Although 1015 bits of storage may not be considered to be

sufficient as an upper bound on all of the write-once storage on a computer system, as an

upper bound on erasable storage, it is beyond the comprehension of present-day

programmers. Thus the upper bound on the amount of online storage on ORSLA should be

between 1012 and 101 bits. Assuming 64 bit words, 1012 - 1015 bits of storage are about equal

to 234 - 244 words of storage. In order to ensure full use of this much physical storage it is

necessary to have an address space of 240 - 250 words (see appendix A for more details).

This means that most pages of virtual address space do not have any physical storage

assigned to them. This will turn out to be a useful feature for the implementation of certain

Section 3.1 44

Address Space

large objects. Thus an address on ORSLA will use between 40 and 50 bits. At the time

ORSLA is actually built, one of these sizes will have to be chosen.

There are several factors that influenced the decision to use a linear paged address

space on ORSLA rather than a unique ID space. There are two properties of ID spaces that

could cause a designer to choose the ID space. Experience has shown that these properties do

not lead to the significant increase in efficiency that might be expected, however. The first

positive property of a unique ID space is that since IDs are never reused, the dangling

reference problem is solved without needing a garbage collector. The dangling reference

problem must be solved, of course, if object references are to be the basis for protection on

the system. An ID space also allows storage fragmentation to be solved by the operating

system without using a garbage collector. In a reusable address space, on the other hand,

garbage collection is necessary to solve the dangling reference problem, i.e. an address can

only be reused if no object references exist for the object that used the address previously. A

linear paged address space must reuse addresses to maintain adequate locality of reference

and so must have garbage collection. Experience with CUID systems shows, however, that

garbage collection remains necessary to reclaim the storage for inaccessible objects. Thus

garbage collection was provided on HYDRA even though it was known that garbage

collection would present efficiency problems. This thesis shows how to make garbage

collection on ORSLA practical. Once a garbage collector is available, it becomes more

efficient to have a reusable address space rather than a nonreusable address space because

the reusable address space is smaller and allows the use of smaller addresses.

The second positive property of an ID space is that it *can be smaller than a linear

paged address space. Each ID specifies an object and each address specifies a word, but the

average size of objects is larger than one word. As we saw above, a linear paged address

space must be reused, so this second property only results in an ID space that is smaller than

an alternative linear paged address space if the ID space is also reused. At one time, when

objects were thought to correspond to files, it was thought that objects were quite large. As it

becomes clear that objects correspond to objects within programming languages, however,

estimates of the average size of objects have decreased. Since the average size of objects in

Algol 60 programs is between 6 and 9 words (see the end of Chapter 2), the size of an ID

Section 3.1 45

Address Space

space cannot be much smaller than the size of an alternative linear paged address space.

Thus the advantages of an ID space are not as great as was once hoped. Furthermore,

there are several disadvantages to an ID space. An ID space is much more difficult to map

onto physical memory than a linear paged address space because each ID must be mapped

individually, while an entire page can be mapped as a unit. Thus an entry is needed in the

ID space map for each object, which may have an average size of between 6 and 9 words,

causing the ID space map to use between 10% and 25% of the amount of storage used for the

objects themselves. Since typical page sizes are between 250 and 1000 words, the virtual

memory map for a linear paged address space uses less than 1% of the amount of storage

used for the objects. The extra difficulty of mapping an ID space is not only reflected in a

very large ID map. If we assume that virtual memory mapping or ID space mapping occurs

on every memory access then ID space mapping may be slower than mapping a linear paged

address space. Each memory access must map the ID or virtual address to a physical address

and then access the physical location in high speed memory. The ID map or page map for

all objects or pages in high speed memory is kept in an auxiliary pseudo-associative memory

whose access time is at least as fast as high speed memory. The effective access time is the

access time of the auxiliary associative memory plus the access time of high speed memory.

If the auxiliary memory holds mapping information for all of the objects in high speed

memory, then the size of the auxiliary memory for a linear paged address space is less than

1% of the size of high speed memory, while the size of the auxiliary memory for an ID space

is at least 10% and maybe as much as 25% of the size of high speed memory. Economics

determines the ratio of the speeds of the auxiliary memory to high speed memory. The

smaller the auxiliary memory, the more may be spent per bit on the auxiliary memory to

yield a faster memory. Thus if the speed of high speed memory is held constant, the

effective access time on a system with a linear paged address space will be less than the

effective access time on a system with an ID space because the small auxiliary memory for

the linear paged address space will be faster than the large auxiliary memory for the ID

space.

It is often assumed that the rest of the details of mapping an ID space are as

complicated as mapping a linear paged address space, but in fact mapping the ID space is

Section 3.1 46

Add ress Space

more complicated and may result in limitations on the size of objects in the ID space. A

memory access on an object oriented computer begins with an object reference and an offset

within the object that identifies the word that is to be accessed. In a linear paged address

space, the offset is added to the address within the object reference to find the virtual

address of the word being accessed. If pages are 21 words long, this address is split into two

parts: the high order bits specifying the virtual page number and the low order P bits

specifying the offset within the page. The auxiliary associative memory is accessed with the

virtual page number to find the physical location of the page in high speed memory. The

offset within the page is then added to the physical location of the page to obtain the

physical address of the location being accessed.

In an ID space, on the other hand, the ID in the object reference is concatenated with

the offset as shown in Figure 4. The high order bits of this large address are used to access

the auxiliary associative memory to find the physical location of the appropriate page of the

object. The offset within the page is then added to this physical location to find the physical

location of the word being accessed. Usually ID space systems assign only two words of high

speed memory to a two word object rather than requiring an entire page of high speed

memory to be used for such a small object, so the auxiliary memory also contains the size of

the page which is checked against the offset within the page before accessing the location. If

objects are not paged, i.e. m = n, then adding the offset to the physical location of the object

assumes that the entire object is in high speed memory, but an object can only be placed

n bits

ID offset

ID & page number m bits

offset within page

Fig. 4. Address Mapping in an ID Space

47Section 3.1

Address Space

entirely into high speed memory if it is smaller than high speed memory. If objects are not

broken into pages then the largest object that can be used on the system is a little smaller

than the size of high speed memory; this size is very implementation dependent, however.

Breaking large objects into pages reduces this restriction and increases implementation

independence. The size of a page, 2m, is chosen to be about as large but often somewhat

larger than the page size that would be chosen on a linear paged address space system. If

paging within objects is provided by making n > m, then the largest object on the system

cannot exceed 29, words. This limits the site of the largest object unless 2"is greater than

the total amount of physical memory (disk) on the system. This size, however, is

approximately the same size as the entire address space on a linear paged address space

system. Thus we see that mapping an ID space is more difficult than mapping a linear

paged address space both because objects in the ID space are smaller than pages and

because each entry in the auxiliary memory is larger for an ID space than for a linear

paged address space.

An additional advantage of a paged linear address space is that it naturally allows

storage to be swapped efficiently between levels of the memory hierarchy. The page size is

chosen so that swapping will be efficient. If objects are very small, then many objects will be

swapped at once while if objects are very large, they will be broken into pages. The address

space does not place any limitation on the size of objects because the address space is larger

than the total amount of physical memory on the system. Since most objects are quite small,

it is essential that several small objects be swapped at one time. Although it would be

possible to swap several objects at once on an ID space system, it would be necessary to keep

track of the additional information of which objects were to move together, while in a linear

address space this information is reflected in the relative placement of objects in the address

space. Furthermore, the linear paged address space allows the operating system to manipulate

pieces of storage of uniform size, thereby simply solving storage fragmentation problems for

the operating system.

Figure 5 shows how several objects could be placed in ORSLA's linear paged address

space. Page boundaries can appear at any place in an object. The programmer is not very

concerned where page boundaries occur because ORSLA uses demand paging to bring those

Section 3.1 48

Address Space

page

page 2

page 3

I object A

object B

object C

object D

Fig. 5. Objects and Pages in a Linear Paged Address Space

words of the address space that are currently being used into high speed memory. Thus the

page size on ORSLA is largely invisible to the programs on ORSLA. The page size on

ORSLA is selected to make page swapping efficient. Some of the factors that must be

considered in choosing the page size are: 1) access time of disk, 2) transfer rate of disk, 3)

access time of high speed memory, and 4) size of high speed memory. Usually these factors

result in page sizes of over 100 words. If not, however, the page size on ORSLA must still be

larger than 100 words so the storage needed for the system catalog of pages will not be too

large. The address space itself does not guarantee that swapping will be efficient. It merely

allows swapping to be efficient if objects are placed in the address space properly. One

obvious requirement for efficient swapping is that all or most of the address space in a page

Section 3.1 49

Address Space

be allocated to objects. Another requirement is that the objects that reside on the same page

be used together much of the time. It is the responsibility of the programs and users on

ORSLA to ensure that the objects on the same page will be used together. Since we don't

want the programs or users on ORSLA to be dependent on the page size, however, we

merely encourage them to place objects that will be used together adjacent to each other, as

are objects A, B, C, and D in Figure 5. This technique will increase efficiency of swapping

regardless of what the page size is or where page boundaries occur in the objects. The

concept of locality of reference from virtual memory systems is important on ORSLA as well.

A process exhibits locality of reference if its memory references during any one short time

interval are concentrated in a few places in the address space rather than being uniformly

spread over the address space. The placement of objects in the address space on ORSLA

can greatly affect the locality of reference of the processes in the system. Swapping will be

efficient if the processes on the system exhibit locality of reference.

3.2 Words

The address space for ORSLA is a linear address space consisting of words of virtual

storage. Each w - rd contains a tag bit that indicates whether the word contains an object

reference or not. Fabry calls this the tagged approach to capability systems [Fabry74. The

tag bit allows the hardware to be aware of every object reference in memory.

The word size on ORSLA is chosen to be one bit larger than the size of an object

reference. A word may be used for either an object reference or atomic data. Atomic data is '

any data that does not contain object references, such as character strings, bit strings, or

machine instructions. Thus machine instructions in a program are considered to be atomic

data rather than object references. Operand "addresses" that appear within machine

instructions are actually offsets within objects that are pointed to by object references that

will be in CPU registers when the instructions are executed. Although some of the cost of

using an object reference is due to the time taken to perform memory accesses, this time is

remarkably uniform for virtual memory systems. An important cost of using object

references, especially for list processing, is the cost of copying and storing object references.

Both of these costs are proportional to the size of the object reference. ORSLA can only

Section 3.1 50

Section 3.2

compete in the support of list processing with systems such as Multics that use bare

addresses as object references if the object reference on ORSLA is less than twice the size of

the address on ORSLA. As we will see, it will not be efficient to have fewer than 18 bits in

the object reference for all the other fields combined, so if the size of an address is from

40-50 bits, then an object reference will have between 58 and 100 bits.

Object references must be aligned on word boundaries to prevent excessive overhead

for tag bits1 . Since most objects will contain at least one object reference, it is acceptable to

require objects to begin on word boundaries by having the address within an object

reference be a word address. The representation of an object, however, can use storage very

efficiently by using the bits in the representation of the object for atomic data. The

hardware will probably contain a field extraction unit that allows arbitrary size bytes to be

extracted from the representation of an object. It will therefore be necessary to do bit

addressing within an object. The address in an object reference is a word address, but the

hardware can deal with bit offsets within an object. A bit offset from the beginning of an

object does not count tag bits in the words of the object since the programmer cannot set the

tag bits explicitly with byte manipulation instructions. In recent years it has become popular

to make the word size a power of two. The only cogent reason for making the word size on

ORSLA a power of two plus a tag bit, however, is to simplify the conversion from a bit

offset within an object to the word offset within the object and the bit offset within this

word. Since the hardware retrieves words, all accesses must be performed on words. The

conversion from bit to word offset is achieved by dividing the bit offset by the number of

bits per word minus one. The remainder from this division is the bit offset within the word.

If the number of bits per word is a power of two plus one, however, e.g. 65, then the

division by 64 is trivial because the quotient and remainder are obvious from the base two

representation of the bit offset. If, on the other hand, the word size is guaranteed to be a

small integer, i.e. less than 100, it is possible to provide several special purpose chips in the

byte extractor that automatically divide by the word size in one step. Thus, if all the other

1. Redell discusses techniques for placing tags on object references that are not aligned on
word boundaries.

Words 51

Section 3.2

considerations allow a range of word sizes that includes a power of two plus one, then the

byte extractor hardware can be simplified and speeded up somewhat by choosing the power

of two plus one as the word size. If other design criteria do not make a word size of a power

of two plus one attractive, however, then a different size may be chosen.

3.3 Enforcing Restrictions on the Use of Object References

In Chapter 2 we saw that the essential feature of a capability system is that it enforces

the restrictions on the use of object references that are inherent in the concept of objects.

There are two features of objects that are very powerful for controlling access to an object.

The first property, that the distribution of references to an object can be controlled by the

software that created the object, is provided by the low level restrictions on the use of object

references. The second property, that the software that defines an object can control the set

of operations defined on the object and how these operations are implemented, is provided

by the high level restrictions on the use of object references. In order to implement a high

level abstraction, however, it is necessary for a low level abstraction for the object to exist as

well. On ORSLA, the existence of high level and low level abstractions for the same object

is achieved by having a high-low bit in the object reference. If the bit is low, then the

representation dependent operations of reading and writing bits and object references from

the representation of the object are defined. These operations are the load and store

instructions on ORSLA. If the high-low bit is high, then none of these representation

dependent operations are defined on the object. The only immediate operation that can be

performed with a high level object reference is to set the high-low bit to low, but this can

only be done by software that defines the data type of the object. Thus we see that

enforcing the high level restrictions on the use of object references is largely a matter of

controlling the setting of the high-low bit in high level object references. Enforcing the low

level restrictions on the use of object references is much more complicated, however, so it

will be considered first.

An object may be manipulated only through the use of a reference to the object. This

restriction requires that storage may only be accessed through the use of an object reference.

Thus the load and store operations must take an object reference as an operand. An offset

52Words

Enforcing Restrictions on the Use of Object References

must also be given to the load and store operations to identify the word within the object

that should be accessed. The offset may specify a bit string within the-object that is to be

accessed.

An object reference is created only when its corresponding object is created. The way to

implement this restriction is first to prevent the creation of object references and then to

provide some special primitives that create objects and the references for these objects. The

creation of object references can be controlled by controlling the setting of tag bits. When a

program stores an object reference into a location, the tag bit in that location should be set.

When a byte of atomic data is stored, however, the tag bits of the words stored into must be

set to zero. The tag bit is not under the direct control of the programmer: thus the tag bit is

invisible to the byte manipulation instructions. The hardware ensures that the tag bits

correctly specify where the object references are. Primitives that create objects and their

associated object references will be discussed in Chapter 7.

Most modifications to an object reference are prohibited, especially modifications to an

address within an object reference. Although the object reference is context independent, only

a small part of the object reference always has the same interpretation: the type code. The

rest of the object reference is part of the representation of the object, so the interpretation,

of these bits is dependent upon the type code. Thus a small integer uses these bits for the

representation of an integer. Most types, however, need an address in the object reference.

Both the type code and the address within an object reference are very sensitive fields. An

address within an object reference cannot be modified at all, while the type code could

possibly be changed to another type whose representation is similar to the representation of

the original type of the object. Since the object reference must be protected against

modifications, it is possible to have other fields in the object reference that must be

protected as well. The rest of the bits in the object reference, however, are part of the

representation of the object and may be manipulated and modified as is the rest of the

representation.

Improper modifications to object references can be prevented by first preventing all

modifications to object references and then providing specific primitives that perform only

Section 3.3 53

Enforcing Restrictions on the Use of Object References

the acceptable modifications. The general registers of the CPU on ORSLA contain object

references, so every machine instruction must use these object references properly. Thus the

add instruction operates only on objects that are numeric and the exclusive-or instruction

operates only on objects whose abstraction is bit string. In addition, it is necessary to prevent

manipulations of bytes within the representation of an object from modifying any object

references in the object. Whenever a byte of atomic information is stored into a word, the

tag bit of the word must be set to zero so that any object reference that was in the word and

has now been modified can no longer be used as an object reference. Primitives to perform

legitimate modifications to an object reference will be discussed in Chapter 7.

When an object reference is used to access storage, only the storage containing the

representation of the object referred to may be accessed. This restriction is implemented in two

parts. Some objects are able to hold their entire representation within the object reference

itself. The references to such objects do not contain an address and so cannot be used to

access storage at all. To allow the hardware to quickly identify such object references, there

is a dataatype-info field in the object reference. The first two bits of the datadtypeinfo

field are zero if there is no address in the object reference. Usually, however, an object

reference does contain an address that points to a block of words in the address space. These

words may be accessed by the load and store instructions which take two arguments: an

object reference and an offset within the object. The offset is an integer which, when added

to the address within the object reference, gives the address of the word to be accessed. On

ORSLA, the address within the object reference points to the first word of the

representation of the object. If the size of the representation is n words, then this procedure

for finding the address to be accessed is only legitimate if the offset, i, satisfies: 0 < i < n.

Otherwise the address calculation described above will result in the address of a word

outside of the representation of the object being accessed. Each memory access must

therefore check the offset to ensure that it is within the proper range. The basic technique

for reducing the cost of this check is to minimize the number of extra memory references

needed to obtain the operands for this check. The offset being accessed, i, is already in the

CPU. The only problem is finding what n is. If n is in the object reference, then it is also in

the CPU. A separate piece of hardware can be added to the CPU to perform this check

without slowing down the computation of the CPU. The memory access may proceed before

Section 3.3 54

Enforcing Restrictions on the Use of Object References

the check is complete so the check will not slow down computation at all. If the check is

violated, the memory access can be abortedand, if necessary, any damage repaired.

Unfortunately, the need to have a size field in the object reference has caused object

references on both the B6700 and the Rice-2 [Feustel72] to be more than twice the size of

addresses on these systems. If there is no limit to the size of a single object, then an object

may use all of the storage on the system which would require a size field of 34-44 bits

depending upon whether the upper bound on online storage is 1012 bits or 1015 bits. Such a

large size field would cause the object reference to be too much larger than an address for

ORSLA to be able to compete with systems that use bare addresses. The purpose of the size

field, however, is merely to reduce the time needed for checking the. validity of loads and

stores. It is not necessary for the size field to approve every valid load and store operation if

more accurate size information is quickly available elsewhere. It is possible to encode the size

field using between 5 and 9 bits so it would approve over 95% of the valid load and store

instructions, thus reducing the overhead for checking the validity of loads and stores to less

than 5% of the time taken for the load and store operations themselves. The exact method of

achieving a small size field is rather complicated, however. The details will be covered in

Chapter 7.

Although this covers the obvious way in which an object reference can be used to

access storage in another object, there is another, more obscure way to violate this restriction.

When an object, x, is destroyed, it is desirable for the address space to be reused for another

object, y. If references to x still exist, then a legitimate use of a reference to x will result in

accessing storage in y. This problem is so severe that operating systems have not allowed it

to occur. It is a common problem in programming languages, however, where it is called the

dangling reference problem. An object reference is dangling when the object it refers to has

been destroyed. Dangling references only become a problem, however, when the address

space for an old object is reused for new objects while a dangling reference to the old object

is still accessible.

The dangling reference problem cannot be allowed to exist on ORSLA. Perhaps the

best solution to the dangling reference problem is to wait until all of the references to an

Section 3.3

Enforcing Restrictions on the Use of Object References

object are destroyed or become inaccessible before destroying the object. There are basically

two techniques for determining that an object is inaccessible: reference counts and garbage

collection. ORSLA should support both techniques. Unfortunately both of these techniques

are very difficult to achieve without much runtime overhead given all of the assumptions of

ORSLA. The very large address space makes garbage collection difficult. This thesis deals

with this problem. Chapter 4 will begin to discuss the problem of garbage collection on

ORSLA. The cost of freeing storage for an object by garbage collection is proportional to

the size of the object while the cost for reference counts is proportional to the amount an

object is used1. Since most objects are small and/or are used a lot, most objects should be

garbage collected. Reference counts should only be maintained on very temporary objects.

The free copying of references, as in LISP, causes problems for reference counts. Each time

an object reference is copied, it may be necessary to update a reference count as well. The

problem of reducing the overhead for automatically maintaining reference counts on

ORSLA will not be considered in this thesis, but it is a problem that must be faced before

ORSLA can be built. Other workers [Deutsch76] have also recognized this as an important

area of research.

The dangling reference problem can also be solved by simultaneously destroying an

object and all references to the object. This can easily be built into the garbage collector that

is needed on ORSLA. A slight variation on this theme is to free the storage for an object or

group of objects without reusing the address space for these objects until all references to

these objects have been destroyed. This also requires cooperation from the garbage collector.

Thus ORSLA prevents the dangling references caused by the explicit destruction of objects

from becoming a problem.

The last low level restriction on the use of object references is that an object reference

must always refer to the same object. The most important mechanism that implements this

i. These estimates for overhead may surprise some people. The cost for garbage collection
on ORSLA is derived in Chapter 6. If an object exists for a long time, then the major cost
for reference counts is incrementing and decrementing the reference counts: operations that
are performed automatically when the object is used.

Section 3.3 56

Enforcing Restrictions on the Use of Object References

restriction is the single, large address space. Dangling references violate this restriction when

they become problems, so all the mechanisms needed to solve the dangling reference problem

also implement this fundamental restriction on object references.

3.4 Enforcing the High Level Restrictions

The low level restrictions on the use of object references provide some protection, but

their main goal is to ensure that an object reference actually points to the object it is

supposed to point to. In addition, the low level restrictions ensure that the user who creates

an object may control the initial distribution of references to the object. By itself, however,

this does not provide much protection since- to a large degree the distribution of references

to an object is determined by the requirements for the flow of information in a computation.

Thus if information about object A is needed when doing an operation on object B, there

will probably have to be a reference to A in the representation of B. Usually the

requirements of protection do not conflict with the requirements of legitimate computation.

however, thus even if object B should 'not be able to obtain all of the information about A,

it will probably be permissible for B to obtain the information it needs to have about A.

The high level restrictions on the use of object references allow the operations that can be

performed on an object to be limited, so the reference to A that is stored in the

representation of B could be limited to those operations that allow only the information that

B needs about A to be transferred to B. When combined with the ability of the creator of

an object to control the distribution of references to the object, the ability to limit the

operations that can be performed with individual object references forms a powerful

protection mechanism.

Each object is a model of an ideal object known intuitively to the programmer; all of

the operations on the object must be consistent with the ideal object being modeled. This is

achieved by having the type code field in the object reference identify a data type

definition that specifies what operations are defined on the object and how to perform these

operations. As mentioned above, operations are forced to follow the data type definition by

having a high-low bit in the object reference. If the bit is high, the representation of the

object cannot be accessed, but the high-low bit can be set to low by the data type definition

Section 3.3 57

Enforcing the High Level Restrictions

which can then access the representation of the object to perform the required operation.

The operation of changing the high-low bitfrom high to low is a very sensitive operation

that.can only be performed by the data type definition of the object. Exactly how this is

enforced is discussed in Chapter 7.

Using the high-low bit to allow operations on an object to be limited has several effects

on programming styles that I consider to be beneficial. First, the operations that can be

performed on an object with a low level object reference cannot be limited, so a high level

object reference must be used whenever the operations on the object need to be limited. This

encourages the programmer to limit the high level operations on the object rather than the

low level operations. Sophisticated protection is expressed as limitations on the high level

operations, however, so this effect on programming is beneficial.

An important property of high level operations in programming languages and data

base management systems is that high level operations are representation independent, i.e.

they operate on any object whose high level abstraction is appropriate regardless of how

that abstraction is represented. Thus a program that uses protection via the high-low bit also

achieves representation independence. Conversely, modules that want to achieve

representation independence also achieve an extra measure of protection. Often the use of

high level operation; as well as the need for sophisticated protection and representation

independence occur at module boundaries. If module A passes the object x to module B,

module A will want module B to perform high level operations on x and may want to limit

the high level operations that B may perform on x. Module A may also want to reserve the

right to change the representation of x or to create another representation of the same kind

of abstract object as x without having to recompile module B. By combining protection and

representation independence with high level operations, module B is forced to use x in a

representation independent manner. Thus if modifications are made in A that do not affect

the abstraction that x presents to B, then B need not be recompiled. I consider this to be a

beneficial effect on programming.

The difficulty with limiting operations only by using the high-low bit is that it is

difficult to protect an object from representation dependent code. The only representation

Section 3.4 58

Enforcing the High Level Restrictions

dependent code that can operate on an object, however, should be in the data type definition

for the object, thus this limitation is merely that an object will not be protected from its data

type definition. The entire data type defintion must be correct, however, in order for the

object to achieve the behavior it is supposed to have. Other modules that only use the high

level abstraction of the object are allowed to depend upon the object achieving the behavior

it is supposed to have. These modules may be proven correct on the assumption that this

object behaves as it is supposed to behave. These proofs will be meaningless if any part of

the dafa type definition of the object is incorrect, thus little is gained by protecting an object

from its data type definition. By placing the programmer on notice that the entire data type

definition must be correct, however, we may be able to encourage the programmer to prove

the correctness of the data type definition, thereby increasing overall system reliability.

Programming languages are satisfied with two abstractions for an object: high level

and low level. In order to provide protection, however, it is necessary to be able to support

many abstractions of the same object. Each abstraction has its own set of operations that

may be performed on the object. One abstraction is needed for each kind of access that is to

be provided to an object. Often the sets of operations associated with two abstractions for

an object will overlap a good deal, but there is no need for them to overlap at all. In order

to support multiple abstractions of the same object it is useful to have a field in the object

reference that specifies which abstraction is being used by this reference. This field is called

the access control field because it will be used to control access to objects, although it can be

used for any purpose that requires multiple abstractions of the same object. The upper limit

on the size of the access control field is determined by the need to keep the object reference

small. Up to now, capability systems have used a very inefficient way of coding the access

control field by using each bit to represent the legality of a different operation, so the access

control field could specify an arbitrary subset of the possible set of operations on the object.

This coding is not feasible for high level abstractions for which there may be a large

number of operations defined on the object. There has not been adequate experience with

more efficient codings in which the entire access control field is an integer that identifies a

useful abstraction. We can only guess how many bits are needed in the access control field.

My guess is that between 4 and 10 bits are needed.

Section 3.4 59

Format of the Object Reference

3.5 Format of the Object Reference

The object reference on ORSLA contains several fields. Perhaps the most important

field is the type code field. If the object reference supported by the hardware on ORSLA is

to be used by all the subsystems on ORSLA, it must be possible to add new types of objects

to ORSLA. This is only possible, however, if there are a sufficient number of undefined

type codes in the object reference. Since the type code is supposed to identify the data type

definition, however, it is tempting to use the address of the data type definition as the type

code. Unfortunately, this causes the object reference to be more than twice the size of an

address, which is unacceptable. Furthermore, there is no need for 240 data type definitions

since they would not all fit in the online storage on ORSLA. The size of the type code field

can be minimized by placing an object reference to the data type definition into the

representation of the object. This solution is not acceptable either, however, because it

increases the size of objects by one word and requires a memory access to find the type of

an object. A third alternative that compromises between these two solutions somewhat while

keepinga small type code is to provide a type code field that is large enough to identify the

data types that are provided initially by the system and whose definitions may be

implemented in hardware. One of the initial data types is the escape data type that contains

an object reference for its data type definition in the first word of the representation of the

object. The Rice-2 was able to achieve a 5 bit type code field using this approach while still

allowing an unlimited number of data types. If it is advantageous to use the type code field

to identify the data type for frequently used system defined data types, then it is also

advantageous to identify data types that have been defined by subsystems and are used

heavily in those subsystems directly in the type code field. If the user can define a data type

that is identified by the type code in the object reference, then the problem arises of why the

user should use escape data types. The answer, of course, is that unallocated type codes are a

scarce resource of the system that should be carefully allocated, since a type code cannot be

reused once it has been defined. The standard techniques for discouraging the use of scarce

resources, such as quotas and charging for the use of the resources can be used for type

codes. If it costs a user "1000 to allocate a type code, users will not allocate type codes unless

they are sure it will save more than $1000 of storage and/or CPU time. Neither quotas nor

charging for the use of the resource can handle proper allocation of an extremely scarce

Section 3.5 60

Format of the Object Reference

resource, however, so it is necessary to make the type code field large enough so these

mechanims will not use up all the type codes. A 9 bit type code field is about the minimum

size that will allow most subsystems to use a small number of type codes without exhausting

the supply. As the type code field becomes larger, however, there begin to be problems

converting a type code into the address of the associated data type definition. This is a

serious problem once the type code field is as large as 16 bits. Thus the type code field

should be in the range of 9-16 bits.

The type code field and the size field are both needed to reduce the runtime overhead

and the storage overhead in small objects. There is also a need for another small field in the

object reference called the datailypeinfo field. This field contains information about the

representation of the object that allows certain operations to be performed on the object

reference without accessing the data type definition at all. For example, this field specifies

whether the object reference contains an address or not. It also specifies whether reference

counts are being maintained on this object or not. It will not be known exactly what this

field will be used for until the design of ORSLA is complete and construction is ready to

begin. Thus, this thesis does not specify all of the information that is contained in this field.

The information that I suggest should be contained in the dataype.info field is described

in detail in Chapter 7. 1 estimate that the datatypeinfo field will use between 3 and 5 bits.

An interesting possibility for reducing the size of the object reference is proposed in

this thesis. The size field is only needed in low level object references, while the access

control field is only needed in high level object references. Both of these fields are

approximately the same size (5-9 bits), so I propose that the same set of bits in the object

reference be used for these two fields. The operation of converting a high level object

reference to a low level object reference will extract the access control field and will load the

size field with valid information. Similarly the operation that converts a low level object

reference to a high level object reference will load the access control field. The details of

these operations will be covered in Chapter 7.

We have now seen all of the fields that exist in the object reference on ORSLA: the

type code field, the dataiypeinfo field, the high-low bit, the access control field, the size

Section 3.5 61

Format of the Object Reference

datatypeinfo type H/L. size address

3-5 bits 19-16 bits 1115-9 bits 40-50 bits

access
control

Fig. 6. Format of the Object Reference

field and the address. The size of the address is 40-50 bits, but the size of the object

reference must not be more than twice the size of the address in order to allow ORSLA to

compete with computer systems that do not support context independent object references in

the hardware but manipulate addresses instead. We have seen that the type code field

requires 9-16 bits, 'the size field requires 5-9 bits, the high-low bit requires one bit, the

datatypeinfo field requires 3-5 bits, and the access control field can use the bits in the size

field. This gives a total range of 18 to 31 bits in the object reference in addition to the

address. We cannot really afford more than 31 bits in the object reference for fields in

addition to the address, however, because 31 bits is so close to the size of the address. Thus

the size of the object reference on ORSLA will be in the range of 58-81 bits.

3.6 Monitoring

There is an interesting feature on ORSLA called "storage monitoring" that allows all

accesses to a particular storage location to be monitored. Monitoring the value of variables is

an accepted control structure in high level languages [Fisher70, pp98- 99; Hewitt72l. Many

languages only support monitoring of simple variables because otherwise monitoring causes

a great deal of overhead if it is not supported by hardware. If monitoring were provided in

the hardware, however, there would be almost no overhead until a monitor were actually

"tripped" or invoked. It would be possible to monitor not only simple variables, but also

elements in arrays and other data structures. This kind of monitoring can be used to

provide a trace of the values of a variable andfor to ensure that the value of a variable

always follows restrictions that the programmer has specified. These are both powerful

debugging tools. The general storage monitoring feature is also similar to the

Section 3.5 62

Monitoring

"stop-on-address-compare" switch that makes hands-on debugging using the "single-step"

switch and other console switches so powerful. Storage monitoring can also be used to

accumulate metering information without including special metering instruction sequences

throughout the system software. Thus system evaluation can be done much more easily with

storage monitoring. It is also possible to detect the use of uninitialized variables with storage

monitoring without inserting explicit checks into the software. Finally, storage monitoring

can be used to prevent the modification of certain sensitive fields in the representation of

an object.

Storage monitoring is implemented by replacing the contents of a monitored location

by a special object reference in which a bit in the dataiype..info field specifies that the

location is monitored. The object reference stored in the monitored location points to the

monitor object. Whenever a monitored location is accessed, the definition of the monitor

object is inspected to determine how the read or write operation is to be performed. The

A

monitored monitor object
locatio5surrogate

read operation'location

write operaticn

A location in object A which is supposed to contain an object reference to the integer 5 is
being monitored. Whenever this location is accessed, the definition for the read or write
operation that is within the monitor object is invoked. The storage monitor bit in the
data..type-info field in the object reference in the monitored location is on. This bit activates
the storage monitor machinery during reads and writes.

Fig. 7. General Purpose Monitor Object

Section 3.6 63

Monitoring

most common storage monitor object contains three locations as shown in Figure 7. The first

location is a surrogate location that contains what the monitored location would contain if it

were not monitored. The second location contains a reference to the definition of the read

operation. If this is the null object, then a read from the surrogate location is performed,

otherwise the definition of the read operation must be a procedure object that is called with

two arguments: the current monitor object and a cell object that specifies the monitored

location. The value returned by this procedure is considered to be the information read

from the monitored location. The procedure may perform any computation that is desired.

The cell object allows monitors to be added to and/or removed from the location and allows

read and write operations to be performed to the monitored location. The third location in

the standard storage monitor object contains a reference to the definition of the write

operation. This is either null or a procedure that takes three arguments: the monitor object,

the cell object, and the information being stored into the location. The write operation, of

course, does not return a value.

Another common storage monitor object is the uninitialized-storage monitor .object.

Whenever an object is created on ORSLA, all the storage in the representation of the object

is automatically initialized with uninitializedstorage storage monitors. The reference to the

uninitializedstorage object is an atomic object reference that contains no information. The

store operation to an uninitialized location is defined to erase the storage monitor and

perform the. store operation normally. The read operation to an uninitialized location,

however, is defined to causes the uninitializedstorage interrupt. Software may set up a

handler for this interrupt, but most of the time it will generate an error.

The object reference for the monitor object that is passed to the procedure that defines

the read and write operations for the most common storage monitor object is the same as the

object reference in the monitored location except that it has been deactivated as a storage

monitor by having the storagedinoni:or bit in the data.Jypeinfo field turned off. Thus this

reference to the monitor object can be passed from program to program, allowing the

represenration of the monitor object to be accessed, while an active reference to a monitor

object causes an interrupt that invokes the monitor whenever the location containing the

active reference to the monitor is accessed.

Section 3.6 64

Monitoring

Whenever a read or write operation is performed to any location, the contents of the

location must be checked for the presence of a monitor. If the storagecnonitor bit is chosen

as part of the system design, then a gate can be placed in the hardware that will generate an

interrupt when a location containing an active storage monitor is accessed. Most read and

write operations will be performed on locations that are not monitored, so the checks for

monitors must be designed to optinize the case of no monitors. With the .combinatorial

circuit mentioned above, the read operation can check for monitors without taking any extra

time. When a location is written into, however, the previous contents must be checked for a

storage monitor. This requires that the previous contents be accessed before the location is

modified. It is not necessary to use a full read-modify-write cycle on the memory, however,

since a monitor will be found so seldom. It is acceptable to use a read/write cycle in which

the information written is not dependent upon the information read. If a location is

monitored, then this will only be discovered after the write, but then the original contents

can be rewritten, thus forming a read/write-rewrite cycle that is indistinguishable from a

read-modify-write cycle in which the write has been aborted. These complex memory

operations require a little more time than a simple write cycle on semiconductor memory.

Unfortunately, it is difficult to estimate just what this overhead is. The necessary read/write

cycle can be just as fast as a simple write cycle, as on Intel's 1103 family of lK dynamic MOS

RAMs, or it can be as long as 190. of a simple write cycle as on Signetics N82SII bipolar 1K

RAM. The architectures with the highest speed memory, however, make use of a cache. As

we will see in Chapter 5, cache memory must perform a read before the write anyway.

Monitoring is able to make use of the data thus retrieved during store operations rather

than wasting it. Thus it is possible that a small overhead will be incurred in order to

implement monitoring on slower, less expensive machines, but the fastest machines will not

incur any overhead for this feature.

There is another use for the checks needed by storage monitoring, however: they can

be used to implement reference monitoring as well. Storage monitoring monitors the use of a

location while reference monitoring monitors the movement of an object reference. The most

important use for reference monitoring is to maintain reference counts. Most objects will

have their storage reclaimed by garbage collection, but some objects will also make use of

reference counts. Since the number of objects that will make use of reference counts is

Section 3.6 65

Monitoring

significant, the maintenance of reference counts will probably be done in microcode. A bit in

the dataitype-info field in the object reference will be used for identifying those references

for which reference counts are being maintained. Another input will be added to the gate

needed for storage monitoring so it will recognize reference monitors as well.

In order to maintain reference counts it is necessary to perform a few more checks than

are performed for storage monitoring; since these extra checks all involve information that

is already in the CPU, however, they can be performed without slowing down the CPU.

Whenever the number of references to an object changes, the reference count must be

updated. A load operation makes a copy of the reference stored in the location accessed, so

the count on the object referenced must be incremented, but the reference is stored in a

CPU register which may have held a reference to another object. The number of references

to this second object has decreased, so its reference count must be decremented. Thus not

only must the contents of the location loaded from be checked for monitors, but so must the

CPU register being loaded into. In the case of a store operation, the previous contents of the

socation must be checked. If it is an object reference, the reference count on this object must

be decremented. In addition, it is necessary to check the object reference in the register being

stored and the reference count on this object must be incremented.

Since checking for monitors does not cause overhead when no monitors are present, the

overhead for reference counting is restricted to those objects for which reference counts are

being maintained. Each time a reference to a reference counted object is copied or destroyed,

the reference count, which is located in the first word of the representation of the object,

must be accessed so it can be incremented or decremented. This extra memory reference

whenever an object reference is moved is the minimum overhead that can be obtained if

reference counting is performed by hardware. Even so, this overhead is very high when it is

considered that on ORSLA object references are moved as frequently as pointers are moved

within PL1 or LISP. Thus reference counting will only be used for very temporary objects

whose references will not be copied much before their storage is reclaimed. It may be

possible to reduce the overhead for reference counting by reducing the number of

operations for which it is necessary to increment or decrement the reference count. For

example, it may be possible to keep track of those references internal to the CPU separately

Section 3.6 66

Monitoring

from those outside, thus bringing a reference into the CPU-would cause the reference count

to be incremented and when the reference is no longer in the CPU the reference count

would be decremented, but the number of copies of the reference within the CPU would not

be maintained in the object's reference count. In this case, the extra check on the load

instruction may become unnecessary, although the extra check on the store instruction is still

necessary. Such a technique would substantially reduce the overhead for reference counting

for register-to-register operations. Exactly how reference counts should be maintained,

however, is beyond the scope of this thesis. It is a subject that obviously needs further work.

Once all of these checks are provided for, some data types should be designed that can

be used for a general reference monitoring feature. A comprehensive design of a monitoring

mechanism and of language constructs to handle it is beyond the scope of this thesis.

Providing such a comprehensive system is important for any system with tagged architecture

such as ORSLA. Storage monitoring and the mechanism needed for the automatic

maintenance of reference counts are very similar, so these two mechanisms should be

combined into a more powerful and comprehensive monitoring feature. This is a fertile area

for future research.

3.7 Small Objects

One of the important contributions of this thesis is to show how to swap many objects

between high speed memory and disk in one disk operation. The first step in achieving this

on ORSLA is the paged address space which allows many objects to be placed on one page.

The next step is to provide a mechanism for encouraging locality of reference. Objects that

will not be used together should not be placed on the same page, while objects that will

always be used together should be placed on the same page.

ORSLA provides a mechanism for partitioning all of the objects on the system into

groups called areas. Objects in the same area are supposed to be used together while objects

in separate areas are less likely to be used together. Since placement within the address space

determines placement on pages, areas must be used to place objects into the address space so

that related objects can be on the same page. The area is therefore used to allocate storage

Section 3.6 67

Small Objects

for the representations of objects t .

Address space is allocated to areas in units of a page since the purpose of an area is to

group objects together that are likely to be used together. Each area may use its own storage

management techniques to allocate address space to individual objects. The system may

allocate pages of physical storage to an area separately from the pages of address space. A

serious problem that every system must face is the possibility that a single computation will

exhaust all available physical storage. If the space hungry computation is running correctly,

this is a serious problem indeed for which there are no easy answers. If the computation has

exercised a bug that is causing the computation to allocate large amounts of storage

uselessly, the computation must be stopped before all available storage is exhausted since the

entire system may crash at that point. This can be prevented by placing storage quotas on

areas. An erroneous computation will probably violate a storage quota long before all free

storage is exhausted. The storage quota violation will stop the erroneous computation and

allow it to be debugged. Areas must also have address space quotas since pages of physical

storage and pages of address space can be allocated to areas separately.

When an object is created on ORSLA, it is necessary to specify in which area to place

it as well as what kind of object to create. If the scheme for areas provided by ORSLA

makes sense to the programmer then it will be easy for hini to select which area to use. By

specifying in which area to place an object, the programmer is giving the system additional

information about the pattern of use of the object.

Regardless of how carefully objects are originally placed, however, as data structures

change it may become necessary to move objects from one area to another. Once an object

has existed for awhile the pattern of references to the object from elsewhere in the system

provides important information about the best placement of that object. All of this

information is available to the system. In fact, this information is used during garbage

collection. On ORSLA, garbage collection is also used to increase locality of reference,

1. The term area comes from the PL/l area..

Section 3.7 68

Small Objects

especially within a single area. It can also be used to move objects from one area to another.

The resulting automatic mover is capable of correcting some mistakes in the initial

placement of objects as well as recognizing changing data structures and moving objects

accordingly.

3.8 Garbage Collection

Once it was decided that ORSLA must have garbage collection, many applications

arose that could take advantage of garbage collection. Itris essential that garbage collection

be practical on ORSLA. Garbage collection operates by finding all accessible objects, but it

is clear that it is impractical to find all of the accessible objects in i012 bits of storage.

An important contribution of this thesis is to show how to garbage collect a single area

separately from the rest of the system. Only the accessible objects within one area are found

during a single garbage collection. The size of an area can be controlled so there will not be

too many objects in the area to garbage collect it all at once. The greatest efficiency gained

by this approach lies in the ability to garbage collect only the portions of the system that

need garbage collection.

The key step in being able to garbage collect a single area is in having ORSLA

maintain lists of all inter-area references. The garbage collector, when finding all the

accessible objects in an area, can assume that objects referenced from other areas are

accessible. This assumption does not always hold, however, so a mechanism is presented in

Chapter 6 that prevents this assumption from causing problems when it does not hold.

Chapter 4 begins the detailed description of the garbage collector used on ORSLA.

The real problem in ORSLA, however, lies not in the garbage collector itself but in the

mechanism that maintains the lists of inter-area references. It would be easy to create such a

mechanism that would cause a large amount of runtime overhead. The mechanism presented

here for maintaining the lists of inter-area links would have to be designed into the

hardware; it would then cause only a small amount of runtime overhead. This mechanism is

described in Chapter 5.

Section 3.7 69

70

Chapter 4

Garbage Collection in Areas

This chapter discusses garbage collection and the mechanisms that need to exist in

areas in ORSLA in order to allow a small number of areas to be garbage collected. The

mechanisms of inter-area links and of the lists of inter-area links are automatically

maintained by ORSLA to allow small garbage collections. Cables and local computation

areas prevent inter-area links from being generated so frequently on ORSLA that it would

significantly slow down the entire system. The concept of inter-area links and how they are

used to achieve small garbage collections is relatively straightforward, however. Cables and

local computation areas are important for achieving efficiency, but are reasonably obvious

mechanisms once the approach of inter-area links has been taken. What makes this thesis so

novel even though it is based on a simple idea is the efficiency of the described

mechanisms. Though it may seem that maintaining the lists of inter-area links would be

very expensive, it turns out that this is not true, although we will not see why until Chapter

5. If the maintenance of the lists of inter-area links is carefully built into the hardware, it

can take advantage of the virtual memory machinery by placing into the page map a

reference to the area that each page is part of. The operation of finding what area an

object resides in then becomes very inexpensive, thereby reducing the overhead for the

maintenance of inter-area links to an acceptable level. The role of this chapter is to show the

value of the lists of inter-area links so that the reader will appreciate the mechanisms for

maintaining the lists of inter-area links that are presented in Chapter 5.

4.1 Overview of Garbage Collection

The main purpose of garbage collection is to free the storage occupied by inaccessible

objects. It is not possible, however, to discover directly which objects are inaccessible. Instead

a garbage collector operates by finding all of the accessible objects. All objects that are not

accessible are by definition inaccessible. The inaccessible objects are freed and storage is

compacted.

The accessible objects are found by a process called marking. Marking begins with the

immediately accessible objects: the activation record of the procedure that called the garbage

Overview of Garbage Collection

.collector, the file system, and all global variables. Logically two sets are created: the set of

marked objects, M, and the set of objects that have been marked from, F. M initially

contains the immediately accessible objects while F is initially empty. A marked element, x,

which has not been marked from, is selected from the set M - F and is marked from. This is

done by looking at the representation of x and finding all the object references in x. All

these objects are added to M without causing duplications. The element x is then added to

F. This process is repeated until M - F, i.e. M - F - 0. At this point M is the set of all

accessible objects; marking is completed. The storage for all the inaccessible objects is then

freed. There may be a fair amount of fragmentation of storage, however, i.e. there may be

many small blocks of free storage separated by accessible objects. Compaction rearranges all

the accessible objects in storage so that all free storage is in one large block. On systems with

virtual memory, compaction also attempts to increase the locality of reference of the

acessible objects. Note that when an object is moved in the address space all of the

references to that object must be modified. Compaction must handle all these details.

4.2 Copying Garbage Collection

The basic purpose of a garbage collector is to clean up all the "garbage" that degrades

system efficiency. This can be done by reclaiming storage for inaccessible objects,

eliminating storage fragmentation, increasing the locality of reference of the data, and

changing the representation of some objects, e.g. changing the size of a hash table. Some

garbage collection algorithms can only do some of these tasks. An algorithm that will

perform all of these tasks is the copying garbage collector [Fenichel69l. There are two phases

to a copying garbage collector: the copy phase and the delete phase. The copy phase

performs marking and compaction while the delete phase performs freeing.

During the copy phase a copy is made of each accessible object. The object references

placed in the new copy of an object are references to the new copies of the corresponding

objects. When the copy phase is over, all of the accessible objects have been copied. Since all

these objects were allocated from one large block of free storage, there is no fragmentation

in the copy. Also, there are no object references from the new copy to the old copy.

The delete phase then deletes the old copy. All of the storage in the old copy, whether

Section 4.1 71

Copying Garbage Collection 72

it was part of an accessible object, an inaccessible object or free storage, is freed at once as

one large block. No information about the representation of inaccessible objects is necessary

if the freeing is done in this way. Most other implementations of garbage collection require

such information.

The copy phase of the garbage collection must maintain a mark data base. All objects

that have been marked have an entry in the mark data base that contains a reference to the

new copy of that object. There are two ways of maintaining this data base: by internal

marking or by external marking. External marking uses a separate mark data base that

associates marked objects with their new copies. Internal marking uses a word in the
representation of the marked object to hold a reference to the new copy of that object.

During the garbage collection, most of the objects are dealt with by the garbage collector as
objects that are being garbage collected. A few of the objects are also used to assist with the

garbage collection, however, such as the garbage collection procedures. If the object is not

used to assist with the garbage collection, however, it is not necessary to reserve an entire

word in the representation of the object for internal marking. It is possible to reserve only a

single bit solely for internal marking by having this bit indicate whether the object is

marked or not. If the object is marked, then a specific word of the representation of the

object contains a reference to the new copy of the object instead of the part of the

representation of the object that the word contains when the object is not marked. Objects

that are internally marked in this way have part of their representation obliterated when

they are marked, and so cannot be used while they are marked to model the object they are

supposed to model. If an object may be used to assist with the garbage collection then an
entire word in the representation of the object must be reserved for internal marking.

External marking, on the other hand, does not use any storage within individual objects. It

allows all objects to be used to assist with the garbage collection as long as their state is not

modified by the garbage collector. Whether internal or external marking should be used is

immaterial to this thesis. Since external marking is easier to work with, however, it will be

assumed.

The copying garbage collector begins with a list, L, of immediately accessible objects.
The heart of the copy phase is in the recursive procedure collect shown in Figure 8. The

Section 4.2

Copying Garbage Collection .7

collect procedure is applied to each of the elements of L. This ends the copy phase. The

language used in Figure 8 is modified Algol that allows a variable to be. declared to be an

object, i.e. the variable may be assigned any type of object. Variables of type object use a full

context independent object reference. The assignment statement only involves the movement

of an object reference, it does not cause information from within the object being assigned

to be copied into any other object. The externally-mark procedure adds an entry to the

external mark data base, while the externally.zarked? and newcopy procedures retrieve

information from that data base. The ith word in the representation of x is specified by x[iJ.

The code in Figure 8 merely describes the basics of the collect procedure. It is not code

that can be executed. Most of the procedures called by collect are dependent upon the

representation of x. I am not suggesting that these specific operations should exist on x.

Probably collect should be written separately for each data type. The collect operation would

be the generic operation defined on all data types to perform garbage collection. The code

in Figure 8 merely describes what this operation would do.

procedure collect(x);
begin object x, new4; integer i;

if externallyjnarked?(x) then return newscopy(x);
new-x :- allocate.newcopy(x);
externally-mark(x, newx);
for i :- I to size(x) do

begin object z, w;
GC.joad (z, x[i]);
if storage-nonitor?(z)

then w :- deactivate.nonitor(z);
else w :- z;

if ~atomic?(w) then w :- collect();
if storageanonitor?(z)

then set.storagesmonitor(newxIJ, w);
else newx[i]:- t;

end
return new..x;

end
Fig. 8. COLLECT Procedure

Section 4.2 73

Copying Garbage Collection

The collect procedure takes one argument and returns one value. The argument is the

object to be garbage collected and the value is the new copy of the object. If an object has

already been marked then there will be an entry in the external mark data base specifying

where the new copy is. The new copy can be immediately returned as the value of collect. If

the object has not been marked before, then a new copy must be created and an entry must

be made in the external mark data base. Then we may begin putting information into the

new copy. Information that does not contain addresses (atomic information) can be simply

copied into the new copy of the object. The test for atomic information is true if the tag bit

is zero or if the type code indicates an atomic object reference, i.e. the first two bits of the

data.aypeinfo field are zero. Non-atomic object references cannot be copied so easily. An

ordinary non-atomic object reference must be converted to a reference to the new copy of its

object. The collect procedure will find the references to the new objects, so it is called

recursively and the result is stored in the new copy of the object. This recursive call to collect

not only finds the references to the new objects, but also causes objects that have not yet

been copied to be copied. During the course of the garbage collection all accessible object

references are passed to the collect procedure as arguments.

The existence of storage monitors does cause some complications for the garbage

collector. The garbage collector should not trigger storage monitors or cause them to

disappear. Thus when the information in an object is being copied, a special load

instruction (GCJoad) must be used that will not trigger storage monitors but will allow them

to be copied. Thus the OCJoad instruction returns an active object reference to the storage

monitor. The collect procedure can determine whether the location was monitored by

inspecting the storagenonitor bit in the dataiypeinfo field of this object reference. Before

the monitor object itself can be copied or manipulated in any way, however, the reference to

the monitor object must be deactivated. The deactivateamonitor operation turns off the

storagenonitor bit in the data.Jype-info field of the reference to the monitor object so that

the reference to the monitor object can be passed around without triggering the monitor.

After the monitor object has been collected, the reference to the new copy of the monitor

object can be placed as an active storage monitor in the new copy of the object that was

monitored by using the setstoragemoritor operation. The set..torage.monitor operation is

basically a store instruction that turns on the storagenonitor bit in the dataypeinfo field

.Section 4.2 74

Copying Garbage Collection

of the object reference being stored.

Note that each activation of collect that makes a recursive call is marking from one

object. If the new copies are being allocated from one large block of free storage, then collect

will place an object near other objects that reference it. For example, consider Figure .9.

Assume that none of the objects A-F have been marked until collect(A) is executed.

Regardless of where objects A-F are placed in the old copy, they are all placed adjacent to

each other in the new copy. During the processing of this data structure three recursive calls

on the collect procedure were active at one time. A simple copying garbage collector not only

handles fragmentation of storage but automatically places together objects that reference

each other and are therefore likely to be used together. This has been described by Fenichel

& Yochelson [Fenichel69J.

4.3 Large Garbage Collections

Garbage collection has been developed primarily as a programming language feature

in which only the temporary storage for a single computation is garbage collected at once.

This corresponds to the entire address space on an SAV system. Unfortunately, garbage

collection becomes inefficient when used in much larger address spaces as on ORSLA. If

paging activity is ignored, then the time required by a garbage collector is proportional to

the amount of storage in the accessible objects. If the amount of storage in the address space

being garbage collected is less than the size of high speed memory then the working set of

the garbage collector will probably fit in high speed memory and the time taken for paging

activity will be minimal. Finding all of the accessible objects in the address space is feasible

if the size of the address space is smaller than high speed memory. If the address space

covers all of disk, however, such a garbage collection is totally impractical. The garbage

collection would probably thrash, but even if it did not there are so many accessible objects

on the disk that looking at them all is a very large job. Garbage collection cannot be

performed in exactly this way in ORSLA's single address space.

There are two sources of additional overhead that appear when garbage collecting

large address spaces. First, the garbage collector thrashes, greatly increasing the amount of

CPU time needed per accessible object. Second, much of a very large garbage collection is

Section 4.2 75

Section 4.3 Large Garbage Collections

B

old
copy

A

B

C

new
D copy

E

F

Fig. 9. Copying Garbage Collection

Large Garbage Collections

wasted on data structures that have not been modified since the last garbage collection. Just

as a system exhibits locality of reference, so it exhibits locality of modification (see section

6.7). If the garbage collector could be concentrated on the parts of the system that are being

modified, then most of the wasted garbage collection time could be avoided.

Both of these problems can be attacked by a garbage collector that operates on just a

small piece of the address space. Objects on ORSLA, however, are already grouped together

in units called areas in order to efficiently swap small objects in the memory hierarchy. Each

area contains a small percentage of the storage on the entire system. It would be possible to

garbage collect a single area if the system were able to list all of the object references from

the other areas in the system to objects in the area being garbage collected. Then it would be

known what objects within the area are accessible from the rest of the system. Using these as

immediately accessible objects, garbage collection would find the rest of the accessible objects

in the area. ORSLA provides such a mechanism; it automatically maintains lists of all of the

inter-area references on the system so that areas may be garbage collected separately from

each other.

Savings are achieved by this approach in three ways. First, the storage in the system

can be garbage collected one piece at a time, allowing reasonably small garbage collections to

be interleaved with normal computation. In addition, only the computations that are using

the storage being garbage collected must be stopped during a garbage collection. Second,

areas can be made small enough so that the garbage collector will not thrash, thereby

significantly reducing the time needed to garbage collect a page of storage. Third, the

garbage collector may be directed to those areas that need it the most. In particular, those

areas in which modifications are being made at the highest rate will need to be garbage

collected at a higher frequency than other areas. The areas that need a high frequency of

garbage collection may have it without forcing other areas to be garbage collected at the

same rate.

In Knuth's discussion of garbage collection, he states that garbage collection is

performed when the system is about to run out of storage. Although this has been true on

systems from the IBM 709 to the PDP-10 this is not true on large virtual memory systems

Section 4.3 77

Large Garbage Collections

such as Multics [Fenichel69). LAV systems only run out of storage when the entire system

ex-hausts disk storage. A computer system should have large quantities of disk storage

available for temporary storage at all times. If it is exhausted, no processes will be able to

use additional temporary storage: an unacceptable situation. On ORSLA, an area is garbage

collected when it contains enough garbage so that a garbage collection will save money by

reducing either the storage used or the paging activity of the area. The longer the area will

exist without modifications, the more money will be saved for each word of storage

retrieved and for each increment in locality of reference achieved by the garbage collection.

Since each area contains a small part of the storage on the system, and since a

computer system keeps a significant amount of disk available for temporary storage, the

garbage collector does not have to be painstakingly designed to use a minimum amount of

temporary storage. Thus we may use a copying garbage collector with a recursive collect

procedure and an external mark data base. Rather than minimizing the total amount of

temporary storage used, we should minimize the working set of the garbage collector.

External marking may result in a smaller working set than internal marking.

4.4 Other Approaches to Large Garbage Collections

HYDRA shares many of the goals of ORSLA but tries to achieve them with a CUID

system. HYDRA performs garbage collection on the entire address space at once to free

storage for objects. This garbage collection, however, involves relatively large objects in a

system with a small total of online storage. Even so, the garbage collection is so expensive

that it is only done once a day. HYDRA requires 3 minutes to garbage collect 3 x 10 bits (40

million bytes) of online storage. ORSLA, however, is being designed for 1012 bits of storage.

Ignoring non-linear effects due to thrashing, this would require at least 104 minutes to

garbage collect, or approximately one week. If HYDRA had 1012 bits of storage it would not

be able to perform garbage collection. The vast amounts of storage that systems can now

have rule out the use of algorithms that must operate on all storage.

- Recently there has been interest in having the garbage collector run in parallel with

normal computation [Steele75, Wadler76, Baker77]. One reason for interest in this algorithm

has been the hope that it would make garbage collection of all of disk storage practical.

Section 4.3 78

Other Approaches to Large Garbage Collections

Although a parallel garbage collector may allow processes to be garbage collected with a

minimal interruption of service, it will not make garbage collection of all of disk storage

practical. Even ignoring the high speed memory used by the garbage collector and the

overhead for coordinating the running computation and the garbage collector that is

required by Steele's algorithm in both the running computation and the garbage collector, it

would take the garbage collector one week to complete a single garbage collection of 10 12 bits

of storage. The system would need enough extra physical storage to contain all the garbage

generated on the system in a week.

Performing garbage collection in parallel with normal computation will not eliminate

the need to be able to garbage collect single areas; on the other hand, once the decision has

been made to support garbage collection of single areas, it may be desirable to support

garbage collection of a single area in parallel with use of the area. Unfortunately, there has

not been enough analysis of the overhead involved in parallel garbage collection to enable

me to predict whether a parallel single area garbage collector would be superior to a

sequential single area garbage collector. Wadler [Wadler76 concludes that twice as much

CPU time should be spent in a parallel garbage collector as in a sequential garbage collector.

it is argued that this is not important since the garbage collection would be done with a

parallel processor. There arestill several questions about overhead that must be investigated

before the parallel garbage collector can be seriously considered, however:

1) Should the parallel garbage collector processor be an inexpensive special purpose

processor or should it be a general purpose processor?

2) If garbage collection is done with a general purpose processor, to what extent could

this processor be used for executing other jobs rather than always garbage

collecting?

3) One problem with multiprocessing systems is that each processor must have a large

amount of high speed memory for its own use. To what extent will a parallel

garbage collector share memory with the process running in parallel and to what

extent will the garbage collector need memory of its own? How much overhead will

this create for the running computation in added paging activity due to an inability

to use all the high speed memory?

4) -How much overhead does the parallel garbage collector require in normal

Section 4.4 79

Other Approaches to Large Garbage Collections

computation if the hardware has been carefully designed to perform as quickly as

possible the more complicated store operation that is required by the parallel

garbage collector?

5) Can the system and the hardware be designed so that there is no overhead for the

normal computation unless a garbage collector is actually running in parallel with

it?

Finally, whether to use parallel garbage collection depends upon two basic questions:

a) what is the total cost for parallel garbage collection vs. sequential garbage collection

and

b) what interruption in service is associated with parallel garbage collection vs. sequential

garbage collection.

At this time it appears that parallel garbage collection is more expensive but that sequential

garbage collection requires more interruption of service. If question (5) above can be

answered, "yes", then the system can be designed to support both parallel and sequential

garbage collection and the user or programmer can select which will be used in each

situation. This thesis does not consider the parallel garbage collector further and does not

show how to combine it with the techniques presented in this thesis. This work is left to

future research.

4,5 Inter-Area Links

One of the purposes of areas on ORSLA is to serve as the smallest piece of the system

that can be garbage collected. Garbage collection of an area proceeds by copying all of the

accessible objects in the area into a new copy of the area, and then drlente ie * * : ry Of

the area. In order to allow an area to be garbage collected separately from the rest of the

system, it is necessary to have a list of all the references stored outside of the area to objects

in the area, i.e. a list of incoming references to the area. All the incoming references must be

modified during garbage collection of the area so they will point into the new copy of the

area. In addition, the incoming references can be used to define the set of immediately

accessible objects in the area from which to start the garbage collection. It is also necessary,

however, for an area to have a list of all the references stored in that area that point to

Section 4.4 80

Inter-Area Links

objects in other areas, i.e. a list of outgoing references from the area. Thus each inter-area

reference is on two lists: the list of incoming references to the area the reference points into

and the list of outgoing references from the area the reference is stored in. Before the old

copy of an area is deleted, the outgoing references from the area must be removed from the

lists of incoming references of the areas they point into. Thus each area must have a list of

outgoing references and a list of incoming references. The elements of the lists are called

inter-area links, each of which contains a single inter-area reference.

An example of an inter-area link is developed in Figure 10. Let us consider the objects

x and y. Inside of object x is a reference to object y. This describes the state of affairs

area A

X Y

- 1 IAL

(a)
area B

(b)
area

\ arrea-
area IAL areaB

icomin incmig/
incominc

outcjoing outgoi.ng

X Y

(C)

Fig. 10. Inter-Area Links

Section 4.6 81

Inter-Area Links

accurately if x and y are in the same area (see Figure 10a). If object x is in area A and object

y is in area B, however, then the reference in x to y uses the inter-area link, 1 (see Figure

10b). Instead of storing the object reference to y directly in x, an object reference for I is

stored in x; the object reference for y is in 1.

It is necessary for the garbage collector to be able to find I given only a reference to

area A or to area B. An object reference to an area points to an area object. Thus the area

object must contain, among other things, an object reference to a list of incoming links and

an object reference to a list of outgoing links. Each inter-area link, 1, contains three object

references as shown in Figure 10c: 1) a direct reference to the object (y) that I is pointing to,

2) a reference to the next inter-area link in the list of incoming links for the area (B) that 2

is pointing into, and 3) a reference to the next inter-area link in the list of outgoing links for

the area (A) that I resides in. Thus each list of links has its root in the area object but is

threaded through the inter-area links themselves. The list of incoming links to an area is

threaded through the second object reference in the link, while the list of outgoing links

from an area is threaded through the third object reference in the link. Figure lOc shows

how each inter-area link is threaded onto these two lists. Since there is only one inter-area

link in Figure 10c, the references in the link to the rest of the incoming and outgoing lists

reference the null object. A more extensive example is shown in Figure 11, which contains an

additional object w in area B and an additional object v in area A. Figure 11 also shows

another area, C, that contains the object z. In addition to the inter-area link from x to y

there are also inter-area links from x to w, x to z, y to v, and z to x. The lists of incoming

links to area A starts in the area object for A and includes the link from y to v and the link

from z to x. The list of outgoing links from A include the links from x to y, x to w, and x to

z. The five links also form incoming and outgoing lists of links for areas B and C.

This chapter will only deal with the use of inter-area links; the problem of maintaining

the lists of inter-area links will be covered in Chapter 5. In order to maintain the lists of

inter-area links, however, it must be possible to find quickly what area an object is in. This

is implemented by placing a reference to the area object into the page map on ORSLA. The

importance of this feature at this point is that an inter-area link implicitly contains a

reference to the area object of the area it resides in and a reference to the area object of the

Section 4.5 82

Section 4.5 Inter-Area Links 83

areaL

A aisrnfIAL

IAL area

X 0area

IALI

IAL Y

area r

C area W

r

0
Z

IAL

0

Fig. 11. Lists of Inter-area Links

area it is pointing into. These implicit references can be used to find the beginning of the

list of incoming links and the beginning of the list of outgoing links given only a reference

to an inter-area link. There is some question in the design of ORSL A about exactly how the

lists of inter-area links should be implemented. An obvious alternative to the method

presented here is for these lists to be doubly linked instead of being singly linked. The

representation for the list of inter-area links presented in this thesis was selected because the

size of an inter-area link is small and the cost of threading an inter-area link onto the

beginning of a list of links is very low. The cost of unthreading an inter-area link, 1, from a

list of links may be high with this representation, however, since it is necessary to traverse

the entire list from the beginning of the list to I and then to modify the previous link in the

list. Future research on ORSLA may develop a superior representation for the lists of

inter-area links, but the representation presented here is simple and is therefore superior for

describing ORSLA.

Inter-Area Links

An important design decision on ORSLA is in which area an inter-area link should be
placed: the area it comes from, or the area it points into. An inter-area link must be placed
in the area the link comes from in order to allow areas to be garbage collected separately.
Figure 12 shows an improperly placed link. Area A in Figure 12 can be garbage collected
correctly, but a problem arises when area B needs to be garbage collected. When area B is
garbage collected, the inter-area link is able to identify y as an immediately accessible object
in area B, but then the inter-area link itself is copied into the new copy of area B. It is then
necessary to modify the reference in area A to the inter-area link, but there is -no way of
knowing where this reference is without garbage collecting area A. Thus ORSLA requires
that an inter-area link be stored in the area the link comes from and not in the area it
po-nts into.

4.6 Cables

Areas on ORSLA can be divided into two very general classes: permanent areas
containing long term data and local computation areas that contain the temporary results of
computations. The information kept in permanent areas on ORSLA corresponds rather
closely to the information kept in files on SAV and LAV systems, while the information

area A area B

IAL y

Fig. 12. The inter-area link should be in area A.

Section 4.5 84

Section 4.6

kept in a local computation area on ORSLA corresponds roughly to the information kept in

the address space of a job on an SAV system, but corresponds more closely to the

information kept in the segments in the process directory on Multics.

Inter-area links serve the needs of permanent areas rather well, but create too much

overhead to be used with local computation areas. A local computation ara will contain

references to many different objects in permanent areas. Most of these references will only

last for a short time, and so it would be expensive to construct an inter-area link for each of

these references. Thus another mechanism, called a cable, is needed in addition to inter-area

links. If there is a cable from area A to area C then object references stored in A to objects

in C do not need inter-area links. A cable allows direct references. The area object has a list

of outgoing cables and a list of incoming cables in addition to the lists of incoming and

outgoing inter-area links. The existence of a cable from area A to area C is represented by a

cable object on the list of outgoing cables from A and on the list of incoming cables to C.

The cable object is stored in area A and contains a reference to area C and two other

references, one for threading the list of incoming cables and one for threading the list of

outgoing cables.

Figure 13 shows the example from Figure 11 except that a cable has been constructed

from area A to area C. Thus, object x in area A contains a direct reference to object z in

area C instead of using an inter-area link. This.direct reference is allowed by the cable from

area A to area C. The cable object is on the list of outgoing cables from area A and the list

of incoming cables to area C.

A cable does not identify all references in the area it comes from, that is, it does not

really provide a list of all references from that area. If there is a cable from area A to area

C and if area C is being garbage collected, the references to C that are accessible from A

can only be found by garbage collecting area A as well. Garbage collecting area A will of

course find all the accessible object references within A, not just the references to objects in

C. Area A, however, may be garbage collected by itself as long as there are no cables to area

A. If area A generates garbage more quickly than area C and so needs to be garbage

collected more frequently than area C, then the requirement that area A be garbage collected

Cables 85

Section 4.6

areaiearea B
area

IAL

itsarea i
Oc IAL

cablefool

I lIAL

W

areaz

E27- IAL-

area C

Note that the direct reference from X to z is covered by a cable from area A to area C.

Fig. 13. Cables and inter-area links.

whenever area C is garbage collected is not too serious. If area A is a local computation area,

this slightly enlarged garbage collection is preferable to the excessive overhead for creating

inter-area links to all the objects in C that are used by the computation in A.

The vast majority of the cables on ORSLA go from local computation areas to

permanent areas. In fact, local computation areas rarely use inter-area links at all. ORSL A

Cables

Section 4.6

automatically constructs cables instead of inter-area links to handle references from local

computation areas to permanent areas. Whenever a local- computation area (LCA) is garbage

collected, the set of cables from the LCA is regenerated but only to those areas for which

accessible object references still exist in the LCA. Since local computation areas are garbage

collected frequently, they only have cables to those permanent areas that they are currently

using or were using just a short time ago. Thus when a permanent area is garbage collected

on ORSLA, it is only necessary to garbage collect the LCAs for the processes that were

recently using the permanent area.

The cables in the system define a relation between areas. An area A is cabled to area B,

written A . B, if there is a sequence of areas A, AI, A2, ... , An, B such that there is a

cable from A to A1 , from A1 to A2 ,... and from An to B. If area A is cabled to area B, (A

" B), there may be object references in A that directly reference objects in B. The cabling

relation is transitive and is formed by taking the transitive closure of the relation formed by

all the individual cables. This gives us the important property of transitivity, i.e. if A " B

and B s+ C then A'. C must be true. By this property, if A " B, then any object reference

in B that does not use an inter-area link may be copied from B to A without making an

inter-area link in A. The importance of this feature will be covered in more detail in

Chapter 5.

Whenever an area is garbage collected, it is also necessary to garbage collect all of the

areas that are cabled to it. Thus there is an incentive to keep chains of cables short. In fact,

few cables will be used except for cables from local computation areas. An important goal of

ORSLA is to be able to garbage collect each local computation area separately from all other

areas on the system. This can be achieved if cables are not automatically generated from one

local computation area to another, but are only generated from local computation areas to

permanent areas. Thus chains of cables will never be generated automatically.

Once the mechanism of cables is available, however, it might as well be used wherever

it is appropriate. Thus the user is able to explicitly create cables between areas. It is the

user's responsibility in such cases to be sure. that the increased size of some garbage

collections will be worth the savings in inter-area links. Two problems arise when cables are

Cables 87

Section 4.6

created explicitly by the user, however. When a cable is created from area A to area B, there

may already exist some inter-area links from A to B that are now unnecessary. This cannot

happen with an automatically generated cable because it is created when the first reference

to an object in B is stored in area A. Unnecessary links are not a serious problem, but they

do incur a small amount of unnecessary overhead that could be removed by converting the

references to these inter-area links to direct references to the objects in area B. In order to

do this, however, we must know the location of the references to the inter-area links; this can

only be discovered by garbage collection. Thus a conversion of unnecessary inter-area links

to direct references to cabled areas can only be performed during a garbage collection. As we

will see shortly, the garbage collector must handle inter-area links very carefully; it is not

convenient for the garbage collector to check the necessity of each inter-area link it finds.

To help the garbage collector decide which inter-area links can be eliminated, there is an

extra bit in each inter-area link called the possiblyunnecessary bit. When a user adds a

cable from A to B, all of the outgoing links from A are checked and the

possibly-unnecessary bit is turned on in those links that point to objects in B. The garbage

collector will check the necessity of all inter-area links in which the possibly-unnecessary bit

is on and will eliminate the unnecessary inter-area links.

The second problem with explicitly created cables is how to garbage collect them and

how to delete them when they are no longer necessary. When an area is garbage collected, no

special action is required to copy the needed cables that were generated automatically; they

will be regenerated automatically in the new copy of the area by the same automatic

mechanism that generated them in the old copy of the area. A cable from A to B will only

be regenerated automatically in A' if a reference to an object in area B is copied into area

A'. Explicitly created cables must be copied explicitly into the new area by the garbage

collector, however, since they will not be regenerated automatically. Each cable contains an

explicit bit to allow the garbage collector to distinguish automatically generated cables from

explicitly created cables. Presumably an explicitly created cable from area A to area B

should be destroyed when there are no references from objects in A to objects in B. This

can be detected by marking explicitly created cables as being unused when they are first

created. When an explicitly created cable is moved to A' during the garbage collection, it is

also marked as being unused. If a direct reference is ever stored in A to an object in B, then

Cables co

Section 4.6

the unused mark will be removed from the cable. Unused cables behave as if they did not

exist. The user may explicitly delete them from the lists of cables or may specify an option

to the garbage collector that causes them to be deleted from the lists of cables if they are still

unused at the end of a garbage collection.

Ordinarily, a cable from area A to area B cannot be simply removed from both the list

of incoming cables to area B and the list of outgoing cables from area A. The system

depends upon the existence of the cable on these lists if there are any accessible direct

references from objects in A to objects in B. A cable may be deleted, however, if the direct

references that depend upon the cable are modified to use inter-area links, but this can only

be performed during a garbage collection of the area. Thus the operation of deleting a

cable can be performed only during a garbage collection of the area it comes from. An

explicit deletion of an explicitly created cable can be performed by merely turning off the

explicit bit in the cable. The garbage collector will not copy the cable during the next

garbage collection and will automatically create inter-area links for all the direct references

that used the cable as the references are copied into the new area. Thus explicitly created

cables may be explicitly deleted. Automatically generated cables can only be deleted by more

sophisticated control of the automatic generation of cables, which will be discussed briefly in

Chapter 7.

4.7 Local Computation Areas

The local computation area on ORSLA is a major architectural feature of the system;

it contains the temporary storage for a single process. Thus the temporary storage for a

single process is very compact, resulting in good locality of reference. All of the machine

code and other permanent data on the system is kept in permanent areas and can be shared

by all the processes on the system.

The most popular use of temporary storage is for procedure activation records that

contain the local variables and compiler temporaries for a procedure. Each procedure

activation record is an object on ORSLA. Usually activation records form a stack that allows

the storage to be allocated, freed, and compacted at very high speed. Unfortunately the stack

has a history of being one of the major sources of dangling references in programming

Cables on

Local Computation. Areas

languages. On ORSLA, storage can be freed only by garbage collection or reference counts,

since dangling references are not allowed on ORSLA. In order to achieve the high speed.

storage management that is possible with an activation record stack, reference counts must

be used on the activation records. Reference counts were described briefly in Chapter 3; a

detailed explanation of the reference count mechanism is beyond the scope of this thesis. I

believe that it is possible to create a reference count scheme for activation records that allows

the activation record stack to run as quickly as on any other system while at the same time

allowing the retention of activation records when desired at a reasonable cost. Activation

records should only be retained during debugging or backtracking, however. Co-routines

and multi-processing should be handled by giving each process its own activation record

stack. Thus the practicality of ORSLA depends upon the development of high speed

automatic reference count algorithms for activation records. This is the most pressing

problem left undone by this thesis.

An activation record stack requires its own pool of address space that is allocated and

freed in its own way. Areas are used as pools of address space on ORSLA, but areas are

used for many other things as well, such as keeping track of inter-area references. A stack

operates as what I call a subarea, i.e., its only purpose is allocating and freeing storage, but it

operates as part of an area on ORSLA and manages only a part of the address space

assigned to the area. The activation record stack should be used in a rather limited way to

allow freeing and compaction to continue at high speed. A process needs another subarea in

which objects can be created that are not used in such restricted ways. Algol 68 has coined

the term heap for this subarea. Thus each process has a local computation area associated

with it that contains two subareas: an activation record stack and a heap. If the computation

being performed in the local computation area involves co-routining or multi-processing,

then the local computation area may contain several pairs of subareas containing an

activation record stack and a heap; each pair of subareas may have a process associated with

it. Most computations use only one process, however.

There are two interesting problems with areas on ORSLA that are somewhat alleviated

by the local computation area. First, si3ce ORSLA is a multi-user system, most areas are

accessible to many parallel processes, some of which will be modifying information

Section 4.7 90

Local Computation Areas

associated with the area, such as the list of incoming links, the storage quota, or the free

storage list. In order to coordinate these parallel processes, each area must have a lock that is

set whenever the information associated with the area is modified or used. Thus it is

necessary to set this lock when storage is allocated from the free storage list associated with

an area. Allocating storage for activation records and other temporary objects must be a

very high speed operation on ORSLA, however; it should be faster than setting a lock. The

local computation area can alleviate this problem by providing each process with a pair of

subareas that are used only by this one process; thus no locks need be set when allocating

storage from these subareas.

The second problem with areas that is alleviated somewhat by the local computation

area is the problem of which area to place an object into when it is created. The large

number of areas on ORSLA makes this a difficult choice. Most objects, however, are

intermediate results in a computation and will only have a temporary existence. Such objects

should be placed into the heap in the local computation area. Note that LISP and Algol 68

do not allow objects to be placed elsewhere than in the heap. On ORSLA, when a

programmer wants to create an object but does not specify in which area it is to be placed,

the object is placed into the heap in the local computation area. This solution not only

makes selection of the area in which to place an object much easier, but also encourages the

use of the heap which provides higher speed allocation than other areas because it is not

necessary to set a lock in order to allocate storage from the heap.

4.8 Using Inter-area Links in Machine Language Programs

We have now seen what inter-area links are and where they appear, but another

important question is: how do they interact with machine language programs? ORSLA

requires that inter-area links be invisible to machine language programs. Thus all machine

code will be able to operate regardless of where inter-area links appear in the data. If

inter-area links were not invisible to machine language programs, then a special instruction

sequence would be needed to process an inter-area link. Although this instruction sequence

could be made invisible to the assembly language programmer by the use of macros, the

instructions would still appear in the machine language program and would require space to

Section 4.7 91

Using Inter-area Links in Machine Language Programs 92

store and CPU time to execute. A machine language program that did not perform this-

sequence whenever it dealt with an object reference would not be able to handle inter-area

links in certain parts of the data. By making inter-area links invisible to machine code, we

not only increase the generality of all the programs on the system, but also eliminate the

need for the instruction sequence that processes inter-area links, thus significantly shortening

and speeding up all machine language programs.

There are two ways to make inter-area links invisible to the machine language, both of
which are used on ORSLA. One is the obvious brute-force method of treating a reference

to an inter-area link as an indirect reference. Every instruction that is given an object

reference for an inter-area link would behave as if it were using the object reference within

the inter-area link instead. This method requires some complication in the CPU because

every machine instruction must test for the existence of an inter-area link and process it

correctly. Even then, however, this method is somewhat expensive because it is necessary for

the CPU to access the first word of an inter-area link during each instruction that is given a

reference to the inter-area link even if these instructions are performed in rapid succession.

It would be more efficient if the first word of the inter-area link could be accessed once and

the object reference obtained used several times. The main advantage of the brute-force

method is that the direct reference to the object is so temporary and so internal to the CPU

that it is not necessary for it to be covered by a cable.

The second method of making inter-area links invisible to the machine language is

more efficient and less demanding on the CPU. The load instruction watches for object

references that use inter-area links just as it watches for monitored locations. When an

object reference for an inter-area link is to be loaded into a general register of the CPU, the

direct reference to the object the link is pointing at is loaded into the register instead. From

that point, the inter-area link no longer gets in the way of using this object. Further

operations are not even aware that an inter-area link was ever used. Since this direct

reference to the object remains in the general register for a long time, that is, longer than

one instruction, it is necessary for this reference to be covered by a cable. The general

registers are considered to be a part of the currently executing local computation area. The

general registers can either be viewed as being part of the process object of the currently

Section 4.8

Using Inter-area Links in Machine Language Programs

executing process or part of the currently executing activation record depending upon where

the registers are stored when an interrupt occurs. Both of these objects are in the local

computation area. Thus the direct references loaded into general registers must be covered

by cables from the local computation area. Thus this method of making links invisible may

be used for objects in permanent areas since the local computation area may have cables to

these areas, but the first method of making links invisible must be used for objects in -other

LCAs since the local computation area may not have cables to other LCAs.

4.9 The Area Object

We are now ready to consider most of the information that is kept in the area object.

As the thesis progresses, however, we will occasionally find some other pieces of information

that must be associated with an area. Appendix B lists all of the information kept in the

area object. It is often difficult to tell exactly what information is kept in an object on

ORSLA because users can define new representations for the object that keep additional

information. The information within an area object is known, however, because the area is

a sensitive object that is defined by the system. The user is given as much flexibility as

possible, but since the entire system depends upon some of the information that is kept in an

area object, the user is not allowed to define new representations for it. Some of the items

kept in an area object are:

1) free list - This is a list of blocks of free storage and address space. When storage and

address space are allocated from this area, the storage in this list decreases. The

area may request that ORSLA allocate blocks of address space and storage to, the

area to increase the amount of storage in the area's free list.

2) address space quota - This is the maximum number of pages of address space that can

be allocated to the area at any one time. The user is able to set the quotas on an

area. The user can be sure of being able to use this much address space, but cannot

get more without changing the quota.

3) address space used - This is the total number of pages of adress space currently

allocated to the area by ORSLA. This number may never exceed the quota.

4) pages allocated - This is a list of the pages of address space allocated to the area. When

an area is deleted, e.g. after it has been garbage collected and all the accessible data

Section 4.8 93

The Area Object

moved into a new copy of the area, all of these pages of address space are returned

to ORSLA along with any pages of storage associated with these pages of address

space. This list does not enable any of the address space to be accessed nor does it

identify any objects that may reside in the address space.

5) storage quota - This is the maximum number of pages of physical storage that may be

assigned to pages of address space that have been allocated to the area.

6) storage used - This is the number of pages of physical storage currently being used by

the area.

7) incoming links - This is the list of inter-area links from other areas that are referencing

objects in the current area. This list is used in garbage collection and is

automatically maintained by ORSLA.

8) incoming cables - This is the list of cables from other areas to this area.

9) outgoing links - This is the. list of inter-area links in the current area referencing

objects in other areas. This list is also used in garbage collection and is

automatically maintained by ORSLA.

10) outgoing cables - This is the list of cables from this area to other areas.

11) area information - This field contains several bits that specify information about the

area. Two of the bits in this field are: the LCA bit to specify whether the area is a

local computation area, and the garbagecollecting? bit to specify whether the area is

being garbage collected. We will shortly see what these bits are used for and will

also specify some more bits that are in this field.

12) miscellaneous information - This is a list of miscellaneous information that is

associated with the area but is not sensitive information. The user of an area may

keep information on this list and the garbage collector will keep some information

on this list.

13) lock - Each area may be manipulated by any of the processes on the system. During

manipulation of the area, it may be necessary for changes to be made in the free

list or in the lists of incoming or outgoing links in this area. To prevent parallel

processes from interfering with each other, this lock must be set whenever these lists

are read or written so that only one process at a time will manipulate the lists.

We have now seen what information is kept in an area object. The information kept

Section 4.9 94

The Area Object

within the area itself will correspond to the information kept within files on other systems.

There is a more absolute way to characterize an area, however. An area on ORSLA is a

module of storage. The mechanisms on ORSLA ensure that an arei will be used in this way.

First, related objects should be placed in the same area so they may be on the same page.

Second, the number of inter-area links should be minimized to minimize the overhead for

maintaining and using inter-area links. One way to do this is to have very large areas, but

this solution defeats ae entire purpose of areas: to break storage into pieces of reasonable

size so it is possible to do garbage collection in a reasonable amount of time. Thus there are

solid reasons on ORSLA for limiting the size of an area. Within this limitation, however,

the number of inter-area links should be minimized. An area should represent a logical

module1 of related information, that may have many internal references, but will have

relatively few external references.

The major factor that prevents an area from always being a single logical module of

storage is that although the size of an area can vary widely, there are limits to the range of

sizes of an area. An area cannot be smaller than a page of storage and even this size can be

inefficient because it can cause internal fragmentation of more than 100% of the storage

needed for the information in the area. Internal fragmentation occurs when the objects in

an area do not use all of the storage in the pages of storage used by the area. To reduce the

average storage wasted by internal fragmentation to about 10%, an area must have about 5

pages. If a single logical module of storage is smaller than 5 pages, it might be advantageous

to combine it with another small logical module of storage, especially if the two modules are

related and might be used together.

At the other end of the size spectrum, the size of an area is limited by the ability to

garbage collect the area. Unfortunately, it is not known how much locality of reference there

is in a copying garbage collector. In particular, the working set of the garbage collector may

contain most of the pages in the area being garbage collected. Only a few of the pages in

1. It has been suggested [Constantine68] that a good modularization is one in which the
number of interconnections between modules has been minimized.

Section 4.9 95

The Area Object

the new copy of the area will be in the working set of the garbage collector, however. If

there is not too much garbage in the area we should expect that the relative placement of

many objects will remain the same, so the garbage collector may only need in its working set

as few pages of the area being garbage collected as it needs from the new copy of the area.

Thus the size of the working set of a copying garbage collector is uncertain, but it cannot be

much larger than the size of the area being garbage collected. If it is assumed that a copying

garbage collector does not exhibit locality of reference, then, given that it is unacceptable for

the garbage collector to thrash, the size of areas should be limited to a little less than the size

of high speed memory. But even if the garbage collector has excellent locality of reference,

the size of an area is still limited by the amount of temporary storage available on the

system in which to copy the area and for the other temporary storage used by the garbage

collector. There should be enough disk storage available on the system for temporary use to

allow the full use of high speed memory, so concern about the size of the working set of the

garbage collector should be the limiting factor on the size of an area. Thus for each area, A,

there will be a factor GA that is related to the degree of locality of reference of the copying

garbage collector when operating on the information in area A. Area A will become too

large to garbage collect if A is larger than GA times the size of high speed memory. Thus if

a logical module of storage is too large, it must be broken into smaller pieces each of which

is placed in its own area; of course, these areas must not be cabled to each other or it will be

necessary to garbage collect them all at the same time, thus defeating the very purpose for

which the separate areas were created.

4.10 Garbage Collection on ORSLA

Now that we understand what areas are and how the lists of inter-area links are

represented we can ask how we are to garbage collect a single area separately from the other

areas on the system. Probably the only areas on ORSLA that can truly be garbage collected

by themselves are local computation areas; a permanent area must be garbage collected

together with the local computation areas of the processes that have been using the

permanent area recently. By garbage collecting only a few areas at one time, we reduce the

amount of real time taken by a garbage collection and reduce the working set of the garbage

collector. We also allow garbage collections to occur at different frequencies in different

Section 4.9

Garbage Collection on ORSLA

areas so that garbage collection effort can be concentrated on those areas that need it.

Another advantage of garbage collecting only a few areas is that it is only necessary to stop

the processes that are using information in those areas. Processes that are not using any of

the information in the areas being garbage collected will not be cabled to those areas and so

may proceed with their computations regardless of whether those areas are being garbage

collected or not.

If processes are able to execute in areas that are not being garbage collected, it becomes

natural to ask whether these processes may suddenly begin another garbage collection that

involves a different set of areas from those already being garbage collectd. It is obviously

desirable to allow multiple simultaneous garbage collections, but the garbage collector must

be carefully designed to allow them to occur. Problems arise because the garbage collector

looks at all of the incoming links to the areas being garbage collected. Normally, whenever a

process looks at an object in an area, a cable is constructed from the LCA running the

process to the area. Thus we might expect the garbage collector to require cables from the

LCA running the garbage collector to all the areas being garbage collected and all the areas

that have inter-area links into these areas. But then none of these areas could be involved in

another simultaneous garbage collection since the LCA running our garbage collector would

also have to be part of the other garbage collection. This problem can be avoided by

carefully designing the garbage collector so it does not require cables from the LCA to areas

that are linked via inter-area links to the areas being garbage collected. Then areas that are

only connected via inter-area links could be involved in separate simultaneous garbage

collections.

Garbage collection is performed by a procedure that takes an area, A, as an argument.

Area A and all the areas cabled to A must be garbage collected together. Garbage collection

of just a few areas requires more phases than those mentioned in section 4.1. The first phase

finds all the areas cabled to A, makes sure they are not part of another garbage collection,

and reserves them for this garbage collection. In addition, the first phase prevents the

construction of new cables to these areas and stops the processes executing in these areas.

The set S is the set of areas being garbage collected. S is initialized to [A). For each area, X

in S, area X is locked and the garbagesollecting? bit in the area.information field of X is

Section 4.10 97

Garbage Collection on ORSLA

inspected. If this bit is zero, then it is set to one and all of the areas on the list of incoming

cables to X are added to S without creating duplications. If X is an LCA, then all of the

processes executing in X are halted. A process is executing in X if X is the local

computation area for the process. A process is stopped for the garbage collection even if it is

asleep waiting. for an event to happen. All of the processes that have been stopped in X-are

placed on a list, P, that is put in the miscellaneous information of area X. The fact that the

garbagecollecting? bit in X has been set will cause any processes that attempt to construct a

cable to area X to be halted and placed on the list, P, in the miscellaneous information in

area X. At this point, area X is placed on the list, C, of areas that have been claimed for

this garbage collection. Finally, area X is unlocked. If, when the garbage-Collecting? bit is

-inspected, it is already one, then it is not possible to perform this garbage collection at this

time because area X is already involved in another garbage collection. Area X is unlocked,

the garbage-collecting? bits in all of the areas on the list C are turned off, all of the processes

on the list, P, of processes that have been stopped for the garbage collection are resumed,

and the garbage collection is abandoned for a later time when all of the areas cabled to A

will be available.

When the first phase has been completed successfully on all of the areas in S, S will

contain all of the areas cabled to A, which will have been found to be available for garbage

collection and will have been reserved for this garbage collection. This entire phase of the

garbage collector must be performed by special system code that does not generate cables to

the areas in S even though the area objects in these areas are being used. No cables should

be constructed to these areas until after it is known that the garbage collection will actually

occur.

Once it has been determined that the garbage collection will actually occur, it is

possible to begin performing operations that cannot be reversed. The second phase of the

garbage collector prepares each of the areas in S for garbage collection. For each area, X, in

S, a cable is constructed to X from the local computation area in which the garbage collector

is running. A new copy of area X, area X', is constructed and is added to the set S' of new

areas produced by the garbage collector. A cable is constructed from the LCA running the

garbage collector to area X'. All of the accessible information in area X will eventually be

Section 4.10 98

Garbage Collection on ORSLA

copied into area X' by the garbage collector. The initial size of area X' is a function of the

estimated storage used by accessible objects in area X. As we will see later, the page map on

ORSLA contains a GC bit. The GC bit for all of the pages in X are now turned on. It is

now very easy to determine that area X is being garbage collected. A reference to the LCA

running the garbage collector is now placed in the miscellaneous information of area X so it

is easy to determine which garbage collection X is part of. Although most of the processes

that may access objects in X have been stopped because their LCAs are cabled to X, some

processes may use objects in X via inter-area links. Thus all the incoming links to area X

are inspected and if any come from LCAs, the processes in these LCAs are stopped and

placed on the list, P. In addition, if any process attempts to construct any additional

inter-area links to area X, this process must be stopped and placed on the list, P, in the

miscellaneious information in area X. Other garbage collections, however, must be allowed

to construct copies of existing links. Garbage collection is carefully written so it will merely

copy a link and will not access the object. The cables from X to other areas are now checked

to see if any have the explicit bit turned on. Any explicit cables from X must be added to

X'. If a cable from X is to area Y in S, then the cable from X' should go to the

corresponding area Y' in S' instead of to area Y. These cables are marked as being explicit

and unused. When a direct reference uses one of these cables, the unused marking will be

removed. Note that although I have only been concerned about outgoing cables, all of the

incoming cables are transferred to the areas in S' as well because all of the incoming cables

to areas in S are outgoing cables from other areas in S. Finally, an external mark data base

(MX) for area X must be created in the LCA. Each area has its own mark data base in

order to improve locality of reference to mark data bases. References to X' and MX are

placed in the miscellaneous information of area X.

The copy phase consists of processing the areas in S one at a time beginning with area

A and calling the collect procedure on each of the immediately accessible objects in each area

X in S. Since the garbage collection cannot identify which objects outside of the areas in S

are accessible, it must assume that all of the objects outside of S are accessible. Thus the

first source of immediately accessible objects in area X in S is the incoming links from areas

outside of S. These are found by scanning the list of incoming links to X and checking each

to see whether it comes from another area in S. An area is a member of S if the

Section 4.10 99

Garbage Collection on ORSLA

garbage-collecting? bit is on in the area and if the portion of the miscellaneous information

in the area that contains a reference to the LCA running the garbage collection it is part of

is pointing at the current LCA. If so, it is marked as possiblyjunnecessary so that the object

it points to will be marked from only if the link is found to be accessible during garbage

collection of the area that the link comes from. If an incoming link comes from an area

outside of S, however, then the collect procedure is called on the object pointed to by the

link. The collect procedure returns a reference to the new copy of this object in area X' and

the link is modified to point to this object. The incoming link must be removed from the list

of incoming links to area X and added to the list of incoming links to area X'. After the list

of incoming links has been processed, then the list, P, of processes stopped in this area is

processed. All of the objects on this list that reside in S are collected and the new copies of

these objects are placed on the list P in area X in place of the old copies. Finally, the

activation record for the procedure that called the garbage collector is an accessible object.

This last object need not be considered if the LCA running the garbage collector was

created solely for performing the garbage collection because the process running the garbage

collector will be destroyed after the garbage collection. The collect procedure is called on the

activation record of the procedure that called the garbage collector if it resides in area X.

This completes the copy phase for area X. Each of the areas in S is processed in this way

beginning with area A, the main area being garbage collected.

The collect procedure is very similar to that described in section 4.2. There are some

important differences, however. It is necessary for an object in area X to be copied into its

corresponding area, X', and to be registered as marked in MX. In addition, the mark data

base Mx must be used to determine whether objects in area X have been marked. The

garbage collector maintains a pair of variables, N and M, that specify the new area that

objects are being copied into and the mark data base for the area currently being processed.

These variables remain set as long as the garbage collector operates on intra-area references,

but new values for these variables must be found whenever the garbage collector encounters

an inter-area reference. Many inter-area references are direct references that are covered by
cables. If a direct inter-area reference points into an area outside of S, however, the collect

procedure should not be called on this object, rather the reference to the object should

merely be copied into area X'. Thus the garbage collector must detect when a direct

Section 4.10 100

Garbage Collection on ORSLA

reference is an intra-area refererice and, if it is an inter-area reference, the garbage collector

must determine whether it is pointing into an area in S. Fortunately, this can be determined

by simply inspecting the CC bit in the page map for the page pointed into by the inter-area

reference. If the CC bit is on, the area is in S. This is true because no area, Z, to which an

area, X, in S is cabled can be involved in another garbage collection. If Z were involved in

a garbage collection, all the areas cabled to Z would also be involved in the same garbage

collection, so area X would be involved in the same garbage collection as area Z.

The new modified Algol program needed for collect is shown in Figure 14. The collect

procedure is now an internal procedure of the collectin..newtarea procedure which merely

sets up the variables N and M. The argument and value of the collect.innewarea

procedure are the same as for the collect procedure. The collect.inanew-area procedure looks

in the miscellaneous information of the area that y is in (A), to find the corresponding area

(N) that objects in A are to be copied into and also to find the mark data base (M) that is to

be used for objects in A. Then the collectinznewArea procedure just calls the collect

procedure. The externallyumarked?, newsopy, and externallynark procedures now take the

mark data base they operate with as an argument. Similarly the allocatenewsopy and

create-new-Jink procedures take the area to allocate in as an argument.

The most significant change in the collect procedure from the version used when the

entire address space is garbage collected at once occurs when an object, x, is marked from

and all its information is copied into newx. This section of the collect procedure must be

prepared to handle five different mechanisms. First, it must be prepared to handle storage

monitors, but storage monitors are handled just as they were earlier. The CCload operation

returns an object reference whose storagenonitor bit may be on. If so, the bit is turned off

with the deactivate-nonitor operation and when it is finally determined what object

reference should be stored in the new copy of the object, the storage monitor is reactivated

in the new object. Once storage monitors have been taken care of, there are four different

kinds of object references that the garbage collector must handle. The simplest kind of

object reference is for atomic data. Object references that do not contain addresses can be

simply copied into newrx. Non-atomic object references that do contain addresses, however,

must be handled more carefully. A direct intra-area reference, i.e. area(w) - area(x), is

Section 4.10 101

Garbage Collection on ORSLA

procedure collect-in-newuarea(y);
begin object y, M; area A, N;
procedure collect(x);

begin object x, new-x; integer i;
if externally-marked?(x, M) then return new-cofl(x, M);
newrx :- allocate-newcopy(x, N);
externallyszark(x, newx, M);
for i :- 1 to size(x) do

begin object z;
GCIoad(z, x iJ);
begin object w;

if storagmonitor?(z) then w :- deactivate.monitor(z);
else w :- Z;

if ~atomic?(w) then
if IAL?(w) then w := create..newjlink(w, N);
else if area(w) - area(x)

then o := collect(w);
else if garbagescollecting?(area(w))

then w :- collect-in-new-area(w);
else ;

if storagesmonitor?(z) then setstoragamonitor(newoxUJ, w)
else new.xW:- to;

end
end

return new.x;
end-

A :- area(y);
N :- correspondingsarea(A);
M := mark-data-base(A);
return collect(y);

end
Fig. 14. COLLECT.IN.NEW-A REA Procedure

processed by calling the collect procedure recursively so the current values for N and M will

continue to be used for w. Since the page map on ORSLA contains an object reference for

the area containing the page, the test (area(w) = area(x)) can be performed easily. If, on the

other hand, a direct reference is an inter-area reference, then we must determine whether it

is pointing into an area in S. If area(w) is not being garbage collected, then it is clearly not a

member of S, and so the object reference should be used as it is. If area(w) is being garbage

collected, however, then we have seen that this means that it is a member of S, so the new

Section 4.10 lo?,

Garbage Collection on ORSLA

version of the object must be found by calling the collectin-newarea procedure which

finds new values for N and M before calling the collect procedure for w. The only

alternative to a direct reference is a reference that uses an inter-area link. It is much more

difficult to determine whether inter-area links rather than direct references are pointing into

an area-in S because if the GC bit is on in the page pointed into by the link, it may merely

indicate that the area is involved in another garbage collection. Furthermore, inter-area links

must be handled carefully to prevent the construction of a cable from the LCA running the

garbage collector to all the areas to which there are inter-area links from areas in S. Thus

the CC.Joad operation in the collect procedure returns the reference to an inter-area link; it

does not automatically obtain the direct reference to the object pointed to by the link as the

ordinary load instruction does. The collect procedure checks the type code on the object

reference returned by GC.Joad to determine if it uses an inter-area link. If an inter-area link

is found, it is assumed that the link points into an area outside of S, so the inter-area link

itself is copied with the createnewlink operation but the collect procedure is not called on

the object pointed to by the link. The GC.Joad operation does obtain the direct reference to

the object pointed to by an inter-area link in which the possiblyunnecessary bit is on,

however. Thus the collect procedure treats possibly..unnecessary inter-area links as direct

inter-area references. This feature of the possiblyunnecessary bit, combined with setting the

possibly..unnecessary bit in incoming inter-area links from other areas in S, act together to

prevent any problems from arising from the invalid assumption that all inter-area links

from areas in S are to areas outside of S.

When all of the initially accessible objects have been processed and the incoming

inter-area links modified to reference the new copy, all of the information has been copied

into the new areas. There are no inter-area links into the areas in S from outside the areas

in S because they have all been modified to reference objects in areas in S'. There are no

cables to the areas in S that come from areas outside of S because if there were, the area

they come from would have been included in S as well. The processes that will be resumed

after the garbage collection now all reside in areas in S'. There are no references to any of

the old objects anywhere in the system. We may now free the storage and address space for

all of the areas in S, resume all the processes that were stopped for the garbage collection

and return to the new copy of the activation record for the procedure that called the

103-Section 4.10

Garbage Collection on ORSLA

garbage collector.

We have now seen how the garbage collector works,.but it is not clear how the various

strange ways of handling inter-area links interact. For example, why do we set the

possibly-unnecessary bit in incoming links from other areas in 3, and why do we assume that

outgoing inter-area links from an area point into areas outside of S when we know that

there may be inter-area links between areas in S? The reason for handling inter-area links

so differently from direct references is to avoid constructing cables from the LCA that is

running the garbage collector to all the areas that are connected by inter-area links to the

areas being garbage collected. It is this requirement that forces the GC.Joad instruction to

return the object reference for an inter-area link when one is encountered rather than

returning the direct reference to the object the link points to, as the normal load instruction

does. The garbage collector assumes that outgoing inter-area links point into areas outside of

S so that only the outgoing link itself will be copied when it is found to be accessible; no

direct reference to the object linked to will exist in the LCA that is running the garbage

collector. The incoming inter-area links from areas outside of S are assumed to be accessible,

so they are marked from when the area they point into is garbage collected. Since the

garbage collector will determine which objects in areas in S are accessible, however, the

incoming links from other areas in S are not marked from when the list of incoming links

for an area is processed. Another reason for not marking from the incoming inter-area links

from areas in S is that these links should not be modified to point to the corresponding

objects in areas in S' because none of the object references in areas in S are modified by the

garbage collector to point to objects in S'. These techniques work well for handling both

incoming and outgoing links that are connected to areas outside of S, but how can we be

sure that inter-area links between areas in S will be marked from when they are found to be

accessible? An accessible inter-area link from area A to area B, both of which are in S, will

eventually be copied into area A' in S'. If the list of incoming links of area B is processed

after this link has been copied, then since the new copy of the link is from an area in S'

rather than being from an area in S, the new copy of the link will be marked from. If, on

the other hand, the link from A to B is found to be accessible after the list of incoming

links in area B has been processed by the garbage collector, then the link will be found to be

possibly.unnecessary and so the object pointed to by the link will be marked when the link is

Section 4.10 104

Garbage Collection on ORSLA

found to be accessible. When the reference to the new copy of the object pointed to by the

link is stored in an area in S', then an inter-area link will be created automatically if one is

needed. Thus, when the garbage collector processes the list of incoming links to an area B in

s, it processes links from other areas in S that have already been found to be accessible by

modifying the copies of these links that now reside in areas in S'. The garbage collector also

marks all incoming links to B from other areas in S as possiblyannecessary so that if they

are found to be accessible after B has been processed, the objects pointed to by the accessible

links will be marked when the links are found to be accessible. Once the list of incoming

links to B has been processed, none of the links from areas in S to objects in B will be

copied into areas in S'. Instead, links to the new objects in area B' will be created in areas in

S'. Thus the list of incoming links to area B need be processed only once because no new

inter-area links to B will be created after B has been garbage collected.

4.11 Multiple Simultaneous Garbage Collections

The major goal of garbage collection of a single area is to reduce the amount of work

needed to collect the garbage on the system by allowing the garbage collector to be

concentrated where it is needed rather than forcing it to uselessly garbage collect areas in

which no garbage has been generated since the last garbage collection. A secondary goal of

the garbage collector on ORSLA, however, is to allow a single process to garbage collect its

LCA without interfering with computation or garbage collection elsewhere in the system.

Although this is achieved fairly well, there are some important points in the garbage

collector that improve this performance and there are some important ways in which this

goal is not achieved. When an area is garbage collected, so are all the LCAs that are cabled

to this area. Once a garbage collection has begun, however, none of the other areas that

these LCAs are cabled to may be garbage collected until this garbage collection is over.

Inter-area links between LCAs reduce the size of the garbage collection by allowing these

LCAs to be garbage collected separately, but it is necessary to halt execution in all LCAs

that have links to LCAs that are being garbage collected. Although normal processes cannot

execute in LCAs that have links to LCAs that are being garbage collected, it should be

possible for another garbage collection to run in these areas.

Section 4.10 105

Multiple Simultaneous Garbage Collections

The most severe problem of multiple simultaneous garbage collections is a deadlock.

The LCA running a garbage collector cannot be cabled to an area involved in another

garbage collection. Thus the garbage collector must not add cables to new areas once the

garbage collection has begun. Furthermore, the garbage collector must assemble the areas

that will be garbage collected, make sure that none of these areas are already involved in

another garbage collection, and reserve these areas for the current garbage collection before

actually beginning the garbage collection. The task of reserving the areas for the garbage

collection cannot result in deadlock if, before the entire set of areas has been reserved, it is

possible for the garbage collector to abandon the garbage collection and release the areas it

has already reserved if it finds that an area needed for the garbage collection is already

involved in another garbage collection. Once the set S of areas that will be garbage collected

has been reserved, however, another garbage collection will not be able to garbage collect

any of the areas in S. Another garbage collection will have to garbage collect one of the

areas in S if it tries to garbage collect any of the areas, T, that areas in S are cabled to.

Thus another garbage collection must avoid not only the areas in S, but also all the areas in

T. Since areas are usually considered to be cabled to themselves, the set T, containing all of

the areas that areas in S are cabled to, contains S as a subset. Thus the areas in T specify

the part of the system that cannot be used in any other simultaneous garbage collection. If

the set 7' were to grow during the garbage collection, however, deadlock might occur when

garbage collectors were halted because they were creating cables to areas involved in another

garbage collection. Thus the prevention of deadlock due to the garbage collector is

performed in two parts: reserving the set S during a phase of the garbage collector that can

be undone or abandoned, and writing the garbage collector so that no new cables are added

from the LCA running the garbage collector to areas outside of T.

The requirement that the LCA running the garbage collector not have cables to areas

outside of T makes the processing of the incoming and outgoing inter-area links somewhat

difficult because the lists of incoming links to the areas in S are threaded through objects

most of which reside In areas outside of T. On the other hand, there is the serious question

of whether a subsystem programmer should be able to write the code that searches, modifies,

and rethreads these lists. Since system reliability depends upon the correctness of these lists,

the manipulations of the incoming and outgoing inter-area links should only be performed

Section 4.11 106

Multiple Simultaneous Garbage Collections

by sensitive system code. This sensitive code, however, can have direct references to the

incoming inter-area links and the area objects for areas outside of T without having these

direct references covered by cables. Thus the part of the garbage collector that processes the

list of incoming inter-area links and invokes the collect-inunewarea procedure on the objects

pointed to by inter-area links from areas outside of S must be written as sensitive system

code. Similarly, the handling of outgoing inter-area links must be handled carefully. The

collect procedure that has been presented does not cause direct references to be created in the

LCA to objects in areas outside of T that are linked to from areas in S. The only operation

performed by the collect procedure that must operate on objects in areas ouside of T is the

create.new-link operation which must thread an inter-area link onto the list of incoming

links for an area outside of T. Thus the create-new.dink operation must be provided by

sensitive system code that does not cause a cable to be constructed to the area the link is

pointing into. This operation must already be sensitive system code, however, since the link

mu' be threaded correctly or system reliability will be threatened. Although the need for

parts of the garbage collector to contain sensitive system codelimits somewhat the ability of

a user to write a new kind of garbage collector, this limitation should be kept as small as

possible by designing the interface between the sensitive system code and the garbage

collector code so that the garbage collector can control the garbage collection and the

sensitive code merely prevents construction of cables that are not really necessary and

ensures that the lists of inter-area links are always correct. The detailed specification of this

interface will be left to the system implementor, however.

Multiple simultaneous garbage collections are possible because there are almost no

interactions between the garbage collections. One important interaction was just considered

that could lead to deadlock if the garbage collector were not carefully designed. Another

interaction occurs, however, when there is an inter-area link, , from area A which is

involved in one garbage collection to object x in area B which is involved in another

garbage collection. At some point in the garbage collection of area A, the createanewlink

operation will be performed on link 1. The create.newlink operation creates the inter-area

link I' in area A' to the same object pointed to by 1. If I has already been processed by the

garbage collection in area B, then P will initially be created to point to object x' in B'. If, on

the other hand, I has not been processed by the garbage collection in area B, then 1' will

Section 4.11 107

Section 4.11 Multiple Simultaneous Garbage Collections

initially be created to point to object x in area B. Since this incoming link has not, been

processed, however, the garbage collection -in area B has not finished processing the

incoming links to area B. It should thus be able to handle an additional incoming link

without much difficulty. The garbage collection in area B will process link r' in the same

way it processes link 1, causing them both to point to x' in area B' by the time the garbage

collection in area B is complete. Tnus regardless of the order in which these garbage

collections proceed, inter-area links between them will be processed correctly as long as the

createwnei.link operation is made an indivisible operation by the use of locks, as long as

modification 'of incoming links is also made indivisible, and as long as the garbage collector

will correctly handle additional incoming links that have been constructed to an area after

the garbage collector has begun processing the list of incoming links to the area but before

the garbage collector has completed processing the list of incoming links. Once the list of

incoming links to an area has been completely processed, no new incoming links will be

constructed to this area, rather links will be constructed to the new copy of the area instead.

4.12 Multiple-Area Cycles

The algorithm presented in this chapter does a perfect job of garbage collection if all

the references from other areas are in fact accessible within the areas they come from. If this

is not true, however, then it is possible that some of the objects that were considered to be

accessible are not, in fact, accessible and should have been destroyed. If these inaccessible

inter-area links form a tree, then when the area containing the root of the tree is garbage

collected some inter-area links will disappear and eventually all of these inaccessible objects

will be destroyed. If these inaccessible inter-area links form a cycle, however, it appears that

these inaccessible objects will never be destroyed.

For example, consider Figure 15a. Object x in area A has a reference to object y in area

B, but there are no references to object x elsewhere in the system. When area B is garbage

collected, y is considered to be accessible because I is on the list of incoming links to B.

When area A is garbage collected, however, x is not found to be accessible and so x and I

are destroyed. Then area B can be garbage collected and y will also be destroyed. If there is

a link from y to x, however, as in Figure 15b, then when area A is garbage collected, x is

108

Multiple-Area Cycles

x

area B
area A

(a)

mY

area A
area B

(b)

Fig. 15. An Inter-area Cycle

considered to be accessible because m is on A's list of incoming links. Since an inter-area

cycle is formed, the techniques presented so far will not reclaim the storage in objects in the

cycle or in objects referenced from objects in the cycle.

The main problem is that the incoming inter-area links do not necessarily point to

accessible objects, thus some other, more reliable method of finding the immediately

accessible objects is needed. On SAV and LAV systems, the user usually has a pretty good

Section 4.12 109

Multiple-Area Cycles

idea of what information is kept in each file. The user is able to manipulate the

information in the file by using the name of the file. A similar mechanism will be needed

on ORSLA to provide the user with names of objects that the user will manipulate explicitly

with user commands. The user will be able to type in the name of an object and the file

system will convert it to an object reference which can then be used to manipulate the object.

Any object that is named by the file system is clearly accessible, however. Furthermore,

names on any objects in an area should describe all the information in the area and this

information should be found by tracing from the named objects through other objects in

the area by way of intra-area references. Thus the objects named by the file system should

allow the garbage collector to find all the accessible objects on the system except for those

objects that are intermediate results of active computations. The copy phase for an area

could then be broken into two parts. The first part of the copy phase would last while the

objects in the area named by the file system and the active processes in the area are used as

immediately accessible objects. After the first part of the copy phase, all of the accessible

objects in the area should have been copied into the new copy of the area. During the

second part of the copy phase the incoming inter-area links are used as immediately

accessible objects. Any unmarked objects in the area that are pointed to by incoming

inter-area links, however, do not appear to belong in this area. Two important benefits

would be gained if the garbage collector would move such objects into the area from which

they are being referenced rather than the new copy of the area being garbage collected.

First, the garbage collector would further ensure that areas are modules of related

information and thus have good locality of reference and an acceptable number of

inter-area links. Second, as we see by inspecting Figure 15b again, the garbage collector

would either move x into area B or y into area A depending upon which area was garbage

collected first. What was originally an inaccessible inter-area cycle has now become an

inaccessible intra-area cycle whose storage will be reclaimed as soon as the area in which it

resides is garbage collected. The automatic movement of objects from one area to another

performed by this modification to the garbage collector is considered to be the result of an

automatic mover that is implemented by the garbage collector. The automatic mover

consolidates any arbitrarily complex, inaccessible multiple-area cycle into a single area where

it will be reclaimed. Unfortunately, the automatic mover raises some serious protection issues.

Solutions to these problems are proposed in Chapter 6, where the automatic mover is

Section 4.12 110

Multiple-Area Cycles

presented and analyzed in detail.

4.13 The Effect of Errors in the Garbage Collector

A classical problem with garbage collectors has been the seriousness of errors in the

garbage collector. A compacting garbage collector, especially, is able to destroy all the objects

in the address space being garbage collected even when the bug it contains is relatively

minor. The garbage collector on ORSLA is less likely to cause such disasters. The most

important reason for this is that the garbage collector on ORSLA does not need to violate

the restrictions on the use of object references, so ORSLA can continue to enforce these

restrictions within the garbage collector. A copying garbage collector does not scan all

storage, rather it only scans objects for which it has found object references. Once the

handling of the external mark data base is correct, there is a real possibility on ORSLA of

allowing the collect operation to be defined separately for each data type as a part of the

data type definition. If the code is grossly incorrect, it may be disastrous for objects of that

type, but enforcement of the restrictions on the use of object references will prevent the

disaster from spreading to other data types; furthermore, bugs will be limited to the objects

in which they occur. The ability to write a special collect procedure for each new data type

would greatly increase the range of possible behaviors for new data types.

4.14 Other Related Work

The most distinctive feature of ORSLA is that areas are used to group objects

together in a linear address space to achieve locality of reference and also to allow garbage

collection of small parts of the address space. Three other researchers seem to have found

related mechanisms, but on closer inspection, it appears that this related work is either

different from ORSLA or has been extended by ORSLA.

4.14.1 AED Free Storage Package

The oldest related work is the AED free storage package [Ross67J. Free storage is

broken into zones which have more in common with the areas on ORSLA than do areas in

PL/1. The remarkable feature of zones is that a zone, like an area on ORSLA, is not a

Section 4.12 III

S Other Related Work

single contiguous block of stbrage, but may have an arbitrary number of blocks of storage.

In addition, the pointer to a zone points to a plex (similar to an object on ORSLA) that

describes the zone (similar to the area object on ORSLA). Finally, different zones can be

managed in different ways. The concept of the help procedures in zones is similar to the

definition of a data type on ORSLA and so is consistent with the philosophy of ORSLA.

This part of the design of areas is beyond the scope of this thesis, however.

There are several important differences between zones and the areas on ORSLA,

however. First, zones were designed to manage the available free storage within the address

space of an SAV system. Ross says, "Although the present system applies only to the control

of uniform core storage, the zone technique provides the proper basic framework for

efficient use of ... massive backing stores."I I agree with this statement, but I suggest that

some mechanisms need to be added to zones to handle massive backing stores. In particular,

zones have no special mechanisms for handling pointers stored within a zone that point to

plexes in other zones. Second, Ross says that the automatic reclamation of storage is

inefficient whether it is done by garbage collection or reference counts 2 . Implicit in the

design of ORSLA, however, is the idea that automatic reclamation of storage is not

inefficient and furthermore, that the dangling references that can appear in AED are

unacceptable. This fundamental difference in approach is where ORSLA diverges from

Ross' philosophy.

4.14.2 Greenblatt's LISP Machine

The LISP machine [Greenblatt74, Knight74] being built at MIT also uses areas. The

programmer must specify in which area each object is to be placed, so the areas on the LISP

machine help increase locality of reference. As on ORSLA, the 223 word address space on

the LISP machine is divided into pages; an area must contain a whole number of pages.

Also, areas on the LISP machine have information associated with them such as a free list

1. [Ross67), p. 482.
2. [Ross67], p. 485.

Section 4.14.1 112

Other Related Work

and a list of outgoing references (called an exit vector). The LISP machine does not

continually maintain the validity of the exit vector, however: it is regenerated whenever the

area is garbage collected. Thus, if an area has not been modified since the last garbage

collection, the next garbage collection could bypass this area by marking only from the exit

vector. Thus the LISP machine makes an attempt to reduce the number of areas involved in

a garbage collection, but it is still necessary to include in each garbage collection all the areas

that have been modified since the last garbage collection, thus this technique is not adequate

for systems with a very large address space. ORSLA may wait until a significant number of

modifications have been accumulated in an area before garbage collecting it and may reduce

the size of individual garbage collections even among those areas that do have a significant

number of modifications in order to eliminate thrashing in the garbage collector.

Areas on the LISP machine do not have a list of incoming references. This omission is

a crucial difference between areas on ORSLA and the LISP machine. Another difference

between ORSLA and the LISP machine is that no serious attempt is made on the LISP

machine to guarantee the restrictions on the use of object references and thus the LISP

machine cannot be considered to be a capability system. Although one of the several

machine languages on the LISP machine does enforce the restrictions on the use of object

references, much of the sophisticated system software, such as the garbage collector, cannot

be written in this language. As with PL1, it is assumed that the system programmer will

naturally follow these restrictions. The approach on the LISP machine is better than that

taken by PL/1, however, because most programmers will only need to write code that will be

translated into the machine language that does enforce the restrictions on the use of object

references. In addition, the software provided on the LISP machine, such as the garbage

collector, assumes that the restrictions on the use of object references are being followed.

Thus the user on the LISP machine will be penalized if he violates the inherent restrictions

on the use of object references, while in PL/1 he will not interfere with any of the

system-provided software.

4.14.3 Baecker

It has also been proposed that areas be added to Algol 68 [Baecker72, Baecker75 so

Section 4.14.2 113

Other Related Work

that Algol 68 could deal with files better. An unusual aspect of this proposal is the

suggestion that an area should consist of two parts: a table containing the pointer to and the

size of each object in the area, and the storage containing the actual objects. At first glance

this might appear to be a list of incoming links as on ORSLA, but on closer inspection it

becomes clear that this is not Baecker's intention. Rather, the table is similar to the catalog

of objects on a CUID system but done separately for each area. The concept of an offset

within an area, which exists in PLI1 and whose use is advocated by Baecker, would be

implemented by an index into the table of objects for an area. The storage in the area could

be compacted by changing the pointer in the table of objects but without changing the

offsets of any of the objects in the area. If the immediately accessible objects in the area can

be found and if the offsets stored within objects in the area to other objects in the area can

.be identified, then the area can be garbage collected. Baecker suggests garbage collecting the

entire address space to find the accessible objects and uses the strong typing of Algol 68 to

identify offsets in objects.

The areas on ORSLA differ from Baecker's areas in several respects. First, ORSLA

always uses context independent object references that completely specify where in the

system an object resides. Second, ORSLA keeps a list of only the objects in an area that are

referenced from other areas. Since all the objects on this list are considered to be accessible

on ORSLA, the storage for objects in the area could not be reclaimed if this list contained

all of the objects in the area. Third, it is important that an inter-area link on ORSLA reside

in the area the link is coming from, not the area containing the object it references (see page

84). Baecker's areas store the table of objects within the area containing those objects.

4.14.4 Lomet

- Lomet (Lomet75J has proposed the construction of an "area machine" using a novel

addressing scheme. Although what Lomet calls an "area" corresponds to an object on

ORSLA, Lomet's areas are contained within segments which correspond roughly to areas on

ORSLA. Lomet uses the tagged approach to capability systems and enforces the low level

restrictions on the use of object references (which he calls "addresses"). His addressing

scheme is a cross between a unique ID space and the linear paged address space proposed in

Section 4.14.3 114

Section 4.14.4 Other Related Work 115

this thesis. He is able to place many objects on one page, but he still requires an entry in the

object catalog (which he calls the area table) for each object. Lomet's addressing scheme

pages as nicely as the linear paged address space on ORSLA, but requires more bits in the

address than a unique ID space. Lomet uses tombstones to enable him to reuse sections of a

page without having a reusable address space. Lomet does not have any mechanisms that

are similar to the lists of inter-area links on ORSLA.

116

Chapter 5

Maintaining the Lists of Inter-area Links

The purpose of the lists of inter-area links on ORSLA is to provide each area with a

complete list of the objects within the area that are referenced from other areas on the

system. Given the list of incoming links to an area, the area can easily be garbage collected

separately from the rest of the system by assuming that all the objects on this list are

accessible. Since these lists are needed only by the garbage collector, it would be natural to

assume that the garbage collector would be responsible for the maintenance of these lists.

An unusual aspect of ORSLA, however, is that these lists are continuously maintained as a

part of normal computation. Whenever an inter-area reference is created that is not

covered by a cable, an inter-area link is created and threaded onto the appropriate lists.

Thus the lists of inter-area links are always complete and accurate.

The correct maintenance of the lists of inter-area links can be achieved if every

machine instruction is designed so that if the lists of inter-area links are accurate before

execution of the instruction, they will be accurate after execution of the instruction as well.

Such comprehensive design ensures the accuracy of the lists of inter-area links, but it does

not ensure the practicality of the system. This chapter describes how this maintenance can

be done without slowing down normal computation significantly.

5.1 Creation of Inter-Area References - What Must Be Computed

The first problem is to identify all of the ways in which an inter-area reference can

be created. I approach this problem by considering the computer system at a very low level.

There are only two basic suboperations of machine instructions that can cause an

inter-area reference: load and store. Load gets an object reference from somewhere in the

address space and places it in an internal register of the CPU. Store takes an object

reference that is in a register and places it somewhere in the address space. The load and

store suboperations of every machine instruction on ORSLA perform checks that

determine when inter-area references are being created and construct the necessary

inter-area links and cables.

Creation of Inter-Area References - What Must Be Computed

If all inter-area references were done with inter-area links, the runtime overhead for

checking all- loads and stores and creating the necessary inter-area links would be very

high. The main purpose of the cable is to reduce this runtime overhead. The existence of

cables reduces the number of times inter-area links need to be constructed. The fact that

cables are transitive reduces the overhead for checking load operations.

Exactly what checks need to be performed? It is only necessary to perform a check

when an object reference is to be moved from one area to another. It must be remembered,

however, that all of the CPU registers are considered to be part of the local computation

area associated with the currently executing process. Thus object references may be moved

from register to register without performing any checks. The only way an object reference

can be moved from one area to another is through use of the load or store suboperations.

In each of these suboperations there are as many as three areas (shown in Figure 16) that

must be considered: area L, the local computation area, which contains the register being

loaded or stored; area A, the area being accessed; and area B, the area pointed into by the

object reference that is being moved between area A and area L. In addition there are two

object references that are of concern: p, the contents of the register that points to the object

in area A; and x, the object reference being moved between area A and area L.

area Lilil refnce x
L ,s

X area B

area A

Fig. 16. Partial Notation for Load or Store

117Section 5.1

Load Operation

5.1.1 Load Operation

The load operation may also be concerned with three other object references if either

p or x use inter-area links. In Figure 17, we see that p is the object reference in the register

that points to the object in A. If it uses an inter-area link, then Y' is the direct reference to

the object in A. Similarly, x is the object reference actually stored in the object being

accessed. If it uses an inter-area link, then x' is the direct reference to the object in area B.

Finally, it may be necessary to construct an inter-area link in L. If so, x" is the reference to

this new inter-area link.

A flow-chart of the necessary checks for the load operation is given in Figure 18. The

first question that must be asked is: does p use an inter-area link? In most cases, p will be a

direct reference, so we will consider this avenue first. Since p is a direct reference from a

CPU register to the object being accessed, we know that L is cabled to area A (L " A). The

next question is: does x use an inter-area link? If not, and if x contains an address, then we

also know that A " B, therefore, since the cabled relation is transitive, we know that L " B,

so x may be moved to L without further action. This direct reference is covered by cables

from L to B. If x does not contain an address it may be moved without further action, too.

IAL,
old IAL

P X - X' area
A

new IAL

rgL s er to
be loaded area

B
area L

Fig. 17. Notation for Load Operation

Section 5.1.1 118

Load Operation 119

LOAD

is p es

an IA. get p'

no

yes s x.

is x no x an an IAL?

an IAL2 address?

no no

yes yes

OK oes x have no

A=L? es OK
an address?

no OK

Iget x'j

e

yes-
B? MO

no

cable from yes

L to B? OK

no

yes
.s B an .-....- make an

CA? IAL

no

make a cable

from L to B

Fig. 18. Checks in the Load Operation

Section 5.1.1

Load Operation

If x does use an inter-area link, however, more action is required. If area A = L, then

presumably x is an inter-area link from L to another local computation area, but in any

case, x, the reference to the inter-area link, may be copied within L without further action.

If A # L, then x, the reference to the inter-area link, may not be moved to another area.

We must obtain x', the direct reference to the object in area B. Although L'F A, A 'A B, so

we do not know whether L'" B. If L = B, of course, then x will be an intra-area reference

in L. If L i# B, then we must construct a cable from L to B unless B is another local

computation area in which case we must construct an inter-area link from L to B and load

the register with x", the reference to this new link. If L a B, of course, there is no need to

construct either a cable or a link. Unfortunately it is very difficult to determine whether L

P+ B, since this cabling may go through several areas. Instead of doing this, then, we could

determine whether there is a cable directly from L to B and if not, construct either a

possibly redundant cable or an inter-area link.

We must now consider the case when p uses an inter-area link. In this case, we know

that there is no cable from L to A. Presumably A is another local computation area. We

also know that A # L. Thus we cannot reduce the number of checks that must be

performed. When no inter-area links are involved, the special properties of cables

eliminate even the need for checking whether x contains an address. When p is an

inter-area link, however, the full range of checks must be made whenever x contains an

address. If x uses an inter-area link, then the main avenue of the load operation described

above can access x' and perform the necessary checks. If x does not contain an address,

however, no further checks need be made.

5.1.2 Store Operation

The notation used for the store operation is the same as the notation used for the

load operation, thus Figure 16 describes some of the notation for the store operation. The

complete notation for the store operation is shown in Figure 19. Although the complete

notation for the load operation, shown in Figure 17, may seem to be different from that

shown in Figure 19, on closer inspection it is apparent that the notation for the store

operation is really the same as the notation for the load operation. In Figure 19, we see that

Section 5.1.1 120

IAL Pnew IAL

P
area

A

old IAL,

area
B

area L

Fig. 19. Notation for Store Operation

p is the object reference in the register that points to the object in A. Similarly, x is the

object reference in the register being stored. If it uses an inter-area link, then x' is the

direct reference to the object in area B. Finally, it may be necessary to construct an

inter-area link in area A. If so, x" is the reference to this new inter-area link.

A flow-chart of the necessary checks for the store operation is shown in Figure 20.

The store operation generally requires more checks than the load operation. If x does not

contain an address, then no inter-area reference can be created and the store can be

completed simply. If A - L, then x is being moved within L and no further action is

necessary. Otherwise, however, we must perform a brute-force check. The fact that L may

be cabled to area A and/or to area B has no bearing on whether area A is cabled to area

B. Thus it makes little difference whether P or x use inter-area links. If p uses an

inter-area link, the reference p' to the object must be retrieved. If x uses an inter-area link,

the direct reference x' must be retrieved. If A # B, then we check to see if there is a cable

from A to B. If so, then x or x' can be stored into A without further operations. If there is

Section 5.1.2 Store Operation 121

:S TORE

does x have no is p yes
an address? an IAL? get p'

yes no

OK

is p ye s
an IAL?

no-
yes

A=L? -OK Iget P'1

no -

is x es
an IAL? gt

no

A=B? ysO

no

a sathefrom no is A an LCA e construct a
A toaBe o while B is not? e cable from

yes no

OK construct
an IAL

122

Fig. 20. Checks During the Store Operation

Section 5.1.2 Store Operation

Store Operation 1

no cable from A to B, we check to see if A is a local computation area while B is not. If so,

we construct a cable from A to B, otherwise we construct an inter-area link.

In order to construct an inter-area link or a cable from area A to area B, it is

necessary to first lock both areas. Then the cable or link object can be allocated in area A

and the link or cable threaded onto the list of outgoing links or cables in A and the list of

incoming links or cables in B. Areas A and B can now be unlocked. The locking that is

used must not interfere with higher level programs that are running in the process that

may have locked either or both of areas A and B. If an area has already been locked by a

process, then this process should be allowed to relock the area. If an area has been locked

twice by a process, then it must be unlocked twice before the area will be truly unlocked.

5.2 Computing Checks for Load and Store Operations Efficiently

We have now seen what checks must be made before a simple load or store operation

can be completed. The next question is: how can these checks be made inexpensive? The

basic approach is to arrange for the operands of these checks to be available to the CPU

without performing any additional memory references. Then the checks can be performed

in parallel with the load or store operation itself. We must consider each step in turn and

see whether it can be performed without additional memory references. It is not necessary

for all of the checks to be done inexpensively, however. If, regardless of the outcome of a

check, the following operation takes a long time, such as constructing an inter-area link,

then one or two memory references to perform the check are acceptable. Even using an

inter-area link requires an extra memory reference to access the direct reference within the

link, so a little extra time used for checks in this case would be acceptable. The most

frequent load and store operations, however, should not spend any extra time performing

checks to maintain the lists of inter-area links. We have already seen, however, that the use

of cables on ORSLA has eliminated the need for complicated checks on the load operation

unless there a:e inter-area links. The use of cables does not eliminate any checks from the

store operation, however, so most of the effort expended in computing checks efficiently

should benefit the store operation.

Section 5.1.2 123

- Store Operation

5.2.1 Store Operation

The first check that must be performed for the store operation is to determine

whether x contains an address. As discussed in Chapters 3 and 7, the dataiypeinfo field

specifies whether x contains an address. Since x is already in a CPU register, the checking

of this field is easy. If x does not contain an address, then no inter-area reference is being

created by this store operation. It is still necessary, however, to check whether p uses an

inter-area link. Since p is also in a CPU register, however, this can be done by merely

checking the type code of p for type inter-area-link. If p does not use a link, the store can

be completed without taking any extra time for these checks. If p does use an inter-area

link, p' must be retrieved before we can compute the address being stored into. No extra

time is required for checks, however.

Even if x does contain an address, it is necessary to check whether p uses an

inter-area link. If p does not use an inter-area link, then the check (A - L?) must be

performed. It would not be too hard to design the system so that a CPU register contained

a reference to the area object for the local computation area (L), but getting a reference to

A is not as easy. Area A is the area containing the object referenced by p. In order to

perform the check (A - L), it must be possible to find a reference to A given p. ORSLA

provides this ability by using a virtual memory catalog which, given a page number, can

find the physical address of the page and also a reference to the area that the page is part

of. This information is kept not only in the catalog, but also in the high speed map that

maps virtual addresses to pages that are in high speed memory. A reference to area A can

therefore be found at the same time that the physical address of the page is found. Since it

is necessary to get the physical address of the page in A in order to perform the store, this

check can also be performed without slowing down the CPU. The store operation is merely

initiated, the reference to A obtained, and the check (A - L?) performed while x is being

stored into A. If A - L, then the store operation can be completed without additional

checks. In other words, as long as we store into the local computation area or store data

that does not contain addresses, the CPU can perform store operations just as fast as if we

were not automatically maintaining the lists of inter-area links. These two cases cover the

majority of store operations.

Section 5.2.1 124

Store Operation

At this point we have only covered store operations to the local computation area.

The checks from here on do not depend upon whether there are cables from L or not, so

if either p or x use inter-area links, the direct reference (jV or x') must be retrieved. This

involves overhead that would not be present if we did not have inter-area links. It is then

necessary to initiate the store operation (using the address from p') and obtain the

reference to area A. The next check in the store operation is (A - B?). B is the area

containing the object referenced by x. A reference to B can be found by using x or x'

(depending upon whether x uses 4n inter-area link) to access the virtual memory map. This

operation would not be needed if we were not maintaining lists of inter-area links. On the

other hand, it does not take much time; it takes about as long as a single memory reference.

If x points to an object in A, then the store operation can be completed and the overhead

is only about one extra memory reference. This case should cover most of the store

operations of object references containing addresses that are stored outside of the local

computation area.

If A # B, then we have exhausted the simple cases. We know that we are storing an

inter-area reference into an area other than the local computation area. Our only

remaining hope is that there is a cable from A to B. This is determined by looking at the

list of outgoing cables from A. Many areas do not have any outgoing cables. This could

easily be discovered in one memory reference to the area object for A. If an area has a

large number of outgoing cables, such as a local computation area, then searching the list

of outgoing cables would be faster if the area maintained a hash table of outgoing cables

in which each bucket pointed to a short list of outgoing cables (see Figure 21). In this way

the average number of memory references needed to find a cable can be kept to less than

5.

If there is a cable from A to B, then the store operation can be completed without

further effort. If there is no cable, however, then either an inter-area link or a cable must

be constructed. If A is an LCA while B is not, then a cable most be constructed, otherwise

an inter-area link must be constructed. Both of these operations require many memory

references, so there is no need to optimize the test for whether an area is an LCA or not.

The areainformation field in the area object specifies whether the area is an LCA. The

Section 5.2.1 125

Store Operation

area
object

cable cable

OUT our

An ordinary list is used for 0-3 cables. When the list is 3 cables long, it requires 7 memory
references to find that there is no cable to a particular area, and an average of 4 memory
references to find a cable that is present.

area hash cable cable

object table

our -cable

A hash table is used for more than 3 cables. The number of buckets in the hash table
should be approximately equal to the number of outgoing cables. Thus on the average,
there should be about 4 memory references to find a cable that is present and about 4
memory references to find that there is no cable. The estimates given here for average
search time assume that all the cables are equally likely to be searched for and that the
hash index is truly random.

Fig. 21. Hash Table of Outgoing Cables

combined test can be done with two memory references, one to the area object for A and

one to the area object for B. Then both areas must be locked and the link or cable created

and threaded onto the lists. This entire process should take about 20 memory references if

fully supported by hardware or microcode, but it will probably all be done by software, in

which case 40 or 50 memory references might be necessary. This is a major overhead that

cannot be avoided. Hopefully, the construction of inter-area links and cables will be so rare

that it will not be a significant source of overhead on ORSLA.

5.2.2 Load Operation

We have now seen the mechanisms used to compute efficiently the checks needed for

Section 5.2.1 126

Load Operation

the store operation. Some of these mechanisms can also be used to reduce the time taken

for some load operations. The most common kind of load operation occurs when neither P

nor x use inter-area links (see Figure 17). In this case it is only necessary to check that

neither p nor x use inter-area links, but these checks do not require any extra time since P
is already in a CPU register and the load operation brings x into a CPU register. Itris not

necessary to check whether x contains an address because the load operation is performed

simply in either case. Thus the most frequent load operations have no overhead for

maintaining the lists of inter-area links.

If x uses an inter-area link, the direct reference within the link should be accessed

unless the load is from L. The hardware required for the store operation can perform the

check (A - L?) while x is being loaded so this check does not take any extra time. The last

combination that avoids substantial overhead in the load operation for maintaining the

lists of inter-area links is when p uses an inter-area link but x does not have an address.

Once jt has been obtained and then x obtained, it can easiiy be determined that x has no

address. The load operation can then be completed without having taken any extra time.

Finally we have reached a section of the load operation that must perform at least

one extra memory access in order to perform checks that maintain the lists of inter-area

links. The page map must be accessed to find an area specifier for B. This is only

necessary if either p or x uses an inter-area link. Even then, if p uses an inter-area link but

x does not contain an address, this section of the load operation will not be reached. The

hardware developed for the store operation can easily perform the check (L - B?) which

will allow the load operation to complete with very little overhead. Otherwise, it is

necessary to check the cables from L to B. The hash table of outgoing cables developed by

the store operation is very important at this point in the load operation because LCAs will

probably have large numbers of outgoing cables. The hash table continues to average

about 4 memory references per check regardless of the number of outgoing cables because

the size of the hash table is merely increased to the size required to produce short lists in

each bucket. If there is no cable from the LCA to the area, then either an inter-area link

or cable must be constructed. The overhead in either case is large. Fortunately, this

happens very rarely. Thus the major overhead for maintaining the lists of inter-area links

Section 5.2.2 127

Load Operation

for the load operation consists of checking the cables from the LCA when P or x use an

inter-area link and actually constructing links and cables.

An important check that reduces overhead in both the load and store operations is

the check for a cable, so it is important for this check to be as fast as possible. Most

operations on the list of outgoing cables must lock the area before proceeding whether the

operation modifies the list of outgoing cables or merely inspects it. If, however, changes are

made very carefully to the list of outgoing cables, then it is not necessary to lock the area

when searching for an outgoing cable. It is not possible for such an unlocked search to be

accurate if it is done while changes are being made to the list of outgoing cables, but it is

possible to ensure that any errors that do occur consist of not finding a cable that is

present. This is useful because if a cable is found, then the load or store operation is

relatively short, while if no cable is found, the area must be locked to allow a link or cable

to be constructed. Before actually constructing a link or cable, however, another search of

the list of outgoing cables should be made. No error can occur during this second search

because the area is locked. If no cable is found this time, then the link or cable can be

constructed. By performing an unlocked search, two memory references are saved during

searches that find a cable. If no cable is found, then the unlocked search is wasted at a cost

of four memory references on the average. Since we expect most searches for cables to be

successful, this trade-off is attractive.

An unlocked search can only be allowed if all changes to the list of outgoing cables

are made very carefully so the list can be correctly read at all times. This can be achieved

easily when adding a cable to the list by first filling in all the fields in the new cable

before placing the reference to the new cable in the list of outgoing cables. Only a little

more effort need be expended when changing the size of the hash table. In this case, the

new table should be created and all the buckets in the new table should be initialized to

"empty". Then the reference to the new table can be placed in the area object. Only then

can we begin to rehash all the outgoing cables and add them one by one to the new hash

table. Perhaps the most difficulty is experienced when deleting a cable whose unused bit is

on. Remember that cables whose unused bit is off cannot be deleted at all. The critical

condition occurs if an unlocked search for the cable finds it but does not turn off the

Section 5.2.2 128

Load Operation

unused bit until after the cable has been deleted. This problem can be solved if we lock

the area in order to turn off an unused bit in a cable. Thus if modifications to the list of

outgoing links are made carefully, searches can be made quickly without locking the area.

Chapter 4 described the unused feature of explicitly created cables. When a cable is

explicitly created by the user or the garbage collector, it is marked as unused. As long as

the cable remains unused, it may be deleted explicitly and is not considered in the

transitive closure of cables that defines the cabled relation. When a load or store operation

searches for a cable and finds an unused cable, it turns off the unused mark and then

creates a direct reference that depends upon that cable. The location of the unused mark

in the cable object can affect the speed of the operation of finding a cable. If the unused

mark is in the first word of the cable, which contains the object reference to the area that

the cable goes to, then the unused mark can be checked at the same time this object

reference is compared with the area we are searching for. The unused mark is stored

within the object reference to the area that the cable goes to by using one state in the

access control field of object references to areas to denote the unused mark. Thus the only

cost for the unused cable feature is seven additional memory references the first time a

direct reference is-created that depends upon the cable. These seven memory references

lock the area, find the cable again, and turn off the unused mark.

5.3 Special Hardware Needed on ORSLA

We have now seen what checks are necessary during load and store operations and

generally how those checks can be performed without slowing down the computer system. It

is easy to design a CPU to make checks using information that is already in the CPU

without taking extra time. It is also easy to design into ORSLA a CPU register that

identifies the current LCn. This section concentrates on how, to identify the areas involved

in load and store operations and how to perform some of the checks required by these

operations.

5.3.1 Virtual Memory Mapping

It has been pointed out that a virtual memory system such as ORSLA must have a

Section 5.2.2 129

Virtual Memory Mapping

high speed page map for mapping virtual addresses of pages in high speed memory into

physical addresses. This map also holds an object reference for the area that each page is

part of. Thus the area containing the location being accessed can be found as easily as the

physical address of the location being accessed.

Cache memory on most virtual memory systems behaves like an associative ;imemory

that is a faster, smaller version of main memory, i.e. it takes a main memory address and

returns the contents of the addrcss. In order to perform a memory access using a virtual

address, then, it is necessary to access the page map to convert the virtual address into a

main memory address. Most virtual memory systems are designed so the page map is

accessed in parallel with the cache since the information from the page map is only needed

during the associative match in the cache. If such an organization is used on ORSLA, then

the area containing the virtual address being accessed is available without additional work

even if the associated main memory address is found in the cache.

There is another way to organize the cache that becomes possible on ORSLA since

there is only a single address space in the entire system. It would be possible for the cache

to map virtual addresses directly, thereby saving a little time since the associative match in

the cache need not wait for information from the page map. In addition, it may be

possible to reduce the time taken for purging information from the cache since the only

way the information in the cache can become erroneous is if other processes write into the

virtual addresses that are in the cache. If, on the other hand, the cache maps main memory

addresses, then information must be purged from the cache whenever a page is moved out

of high speed memory. Although it might appear that if the cache maps virtual addresses

it is no longer necessary to access the page map as well as the cache, in fact it is still

necessary to access the page map in parallel with the cache in order to find the area being

accessed so that the necessary checks for maintaining the lists of inter-area links can be

performed. The rest of section 6.3 considers how the hardware would be designed if this

alternate organization for the cache were used.

The purpose of the cache is to provide good performance at a reasonable cost, but

the system can function without it. The page map, however, is essential to the operation of

.Section 5.3.1 130

Virtual Memory Mapping

virtual memory. Usually it will be economical to use two different kinds of high speed

memory on ORSLA: main memory with an access time of 500 nanoseconds or more, and

very high speed memory with an access time of 100 nanoseconds or less for the cache and

the page map. If only one speed of high speed memory is available, ORSLA would be

built without a cache but with a high speed page map.

5.3.2 Page Map

Main memory is broken into pages. Each page of main memory is dynamically

assigned to a page of virtual address space. The CPU always deals with virtual addresses.

Every memory access must convert a virtual address into a storage address. This is done by

a special unit called the page map (See Figure 22). On many systems the page map

contains the locations of only 16 pages of virtual address space [Schroeder7l]. In order to

access the rest of the pages in main memory, it is necessary for these systems to have an

additional table in main memory that specifies the locations of all the virtual pages that

are in main memory. ORSLA, however, uses a page map that is large enough to map all

of the virtual pages that are in main memory: probably between 100 and 5000 pages.

The page map must take a virtual address and produce a main memory address.

The virtual address is broken into two parts: a virtual page umber and an offset within a

main
virtual page memory
address map address

----- amemory

L data

Fig. 22. Page Map Overview

Section 5.3.1 131

Section 5.3.2

virtual address
31 bits 9 bits

virtual page offset within
number page

map main
memory
page
number 7

13 bits 9 bits

memory address

Fig. 23. Mapping a Virtual Address

page (See Figure 23). The memory address is formed by finding the main memory page

number that corresponds to the virtual page number and appending to it the offset within

the page from the virtual address. The essential part of the page map is the memory that

converts a virtual page number into a main memory page number. Ideally, the page map

memory is an associative memory in which the contents are accessed by virtual page

number. Since the mapping memory must be accessed before memory can be accessed, the

effhctive access time of main memory is increased by the access time of the mapping

memory. If the mapping memory uses very high speed memory, then it will have an access

time of 100 nanoseconds while the main memory has an access time of 500 nanoseconds,

resulting in an effective access time of 600 nanoseconds to main memory.

The mapping memory must contain other information as well, however. Usage

information must be kept on each page in main memory so that ORSLA can determine

which page to swap out of main memory. Usually this is just one bit that system software

turns off every now and then and which is automatically turned on whenever the page is

accessed. ORSLA has a special need, however. It is necessary for this page map to contain

an object reference for the area each page is part of. It is not necessary for a full-size

object reference to the area object to be used, because most of the bits will be constant.

The type code always specifies type system-area; the size field and miscellaneous

information are always the same. Since the area object is the first object placed in an area,

Page Map 132

Section 5.3.2

the offset from the beginning of the page is a constant. Thus the only variable

information in a reference to an area is the page number in which the area object resides,

which only requires 31 bits in a 40 bit address space with 512 word pages.

In addition, two other bits of information are needed in the page map. First, the

garbage collector needs to know whether an area is being garbage collected, so there is a

GC bit. The second bit, the deleted bit, is needed to specify whether the area has been

deleted. The need for this bit will not be apparent until Chapter 6, however. Although

some of these bits duplicate bits in the areaJnformation field of an area, there is no deleted

bit there, and the LCA bit, which is in the areaJnformation field, is nct kept in the page

map. Information is kept in the page map only if it can significantly shorten operations

that are used very frequently. Since placing the LCA bit in the page map would not

significantly shorten the long operations in which it is used, such as constructing a link or

a cable, the LCA bit is not in the page map.

Thus the extra information needed by ORSLA in the page map does not quite

double the size of a page map entry. Ideally, all of this information would be contained in

each element of an associative memory that can be accessed with the virtual page number

(See Figure 24). Ideally, there would be as many elements in the associative memory as

there are pages of main memory.

Associative memories of this size become slow, however. The effect of an associative

memory can be approximated by a set associative memory. The IBM 370/165 uses a set

associative memory with four elements in each set and LRU replacement within a set

31 bits 113 bitsj4 1 31 bits

virtual page memory useige area
number page info

number

Fig. 24. Page Map Entry

Page Map 133

Section 5.3.2

[Madnick74). The IBM 3701165 uses this memory for cache, but this type of memory could

easily be used for a mapping memory as well. A set associative memory with four elements

per set does a good job of approximating a full associative memory. If ORSLA could use

a true associative memory, there would be no need for it to have a replacement algorithm

since it would always contain the complete data base. If a set associative memory is used,

however, it is possible for more than four pages to be in the same set, in which case their

addresses cannot all be placed in the fast memory. It is necessary to have the full page

table in main memory and for a mechanism to exist that will load the mapping memory

when a page in main memory is accessed whose mapping entry is not in the mapping

memory.

How well does a set associative memory with four elements per set approximate a true

associative memory? Let us assume that we have a 1000 element memory with 250 sets and

that there is a random set of x pages all of which we would like to have in the mapping

memory at the same time because they all form an importanL part of the working set. If we

assume that the probability of each page of virtual address space being a member of a set

is uniform, then if x is less than 225 pages, then the probability that the entire set of x

pages will all be in the mapping memory is greater than 0.51. Thus a set-associative

memory approximates a true associative memory rather well.

Even if it is practical to have a large mapping memory, it may be economical to have

a smaller mapping memory. Multics proved the feasibility of using a small mapping

memory. Fabry [Fabry74) has suggested that a small mapping memory be used for CUID

systems even though these systems have a single address space as does ORSLA and so

could avoid making changes in the mapping memory except when swapping objects if the

mapping memory were large enough. ORSLA has more to gain from a large mapping

memory than does Multics. Furthermore, ORSLA cannot operate with as small a mapping

memory as can Multics because ORSLA must make additional accesses to the mapping

memory in order to perform checks to maintain the lists of inter-area links. Thus ORSLA

1. This number was arrived at theoretically but was verified with a Monte Carlo method.

Page Map - 134

Section 5.3.2

must operate with a larger mapping ntemory than Multics. Since ORSLA maps pages

while CUID systems map objects, however, CUID systems will need an even larger

mapping memory than does ORSLA.

Once the page map specifies what area each page is part of, the operation of finding

the area that an object is in is very inexpensive. We are now ready to consider how we will

make use of these area specifiers. In particular, we are interested to see if there will be any

other structural changes in the page map in order to make effective use of the area

specifiers. The area specifiers were introduced to speed up the checking needed for the

store operation, so we will consider how well the needs of the store operation have been

met with the hardware that has been proposed so far and see if any further hardware is

needed to meet the needs of the store operation.

Before we consider what checks must be made and how to make them, let us review

the notation used in the previous discussion of these checks (see Figure 16). The object

reference that specifies the object being stored into is p. The actual address is calculated

from p. The location pointed at by p is in area A. The object reference being stored is x.

The area containing the object referenced by x is area B. L is the local computation area.

The CPU performs the first couple of checks in the store operation: checking p fcr

an inter-area link and checking x for an address (see the flow chart in Figure 20). If x

does not contain an address, no further checking is necessary, so there is a control line

from the CPU to the page map that specifies whether checking should be done. If

checking is necessary, then the first check that must be performed is to see whether A is

equal to L. The page map should contain a register (the LCA register) that contains the

area specifier for L (see Figure 25). The LCA register is loaded whenever the processor

switches processes. When a store operation is signalled, the page map finds the main

memory location of the page being stored into and the area specifier for A. The area

specifier for A is compared with the contents of the LCA register. If they are equal, no

further checks are necessary. If not, the rest of the checks are performed, but the store may

proceed. The result of the comparison of L and A is reported to the CPU in case x is an

inter-area link, so the CPU can abort the store and take further action. Otherwise,

Page Map 135

Section 5.3.2

mapping
memory

interrupt

control L CA

-+ TEMP
area

P

virtual a
address e ge

e ge

-off
set

page mapI

memory
address-

data

Fig. 25. Page Map in Detail

checking continues in the page map itself. The next check determines whether A is equal

to B. The specifier for A that was just obtained must be saved in a temporary register (the

TEMP register). The page map now gets the address from x and makes an access to the

mapping memory again. If the page map does not contain an entry for this page, a page

fault must be generated and the store operation must be aborted. Otherwise, the specifier

for B is returned and can be compared with the contents of the TEMP register. If A - B,

C
p
U

m
a

n

r
y

Page Map 136

Section 5.3.2

then no further checks are needed. Furthermore, the access to the page map to find the

area specifier for B was able to proceed in parallel with the store operation to main

memory. Thus even though the check for A - B is extra computation, it may be

accomplished without slowing down normal computation. By placing the checks for A - L

and A - B in the page map, we have eliminated the overhead for maintaining the lists of

inter-area links when storing anything in the LCA or when storing intra-area references

outside of the LCA.

If A # B, however, then much more complicated checks need to be made, so the store

should be aborted. The other checks that need to be made by the CPU depend upon A

and B, so the specifier for B is placed in the TEMP register and the specifier for A is sent

to the CPU. When area specifiers are sent to the CPU from the page map, the rest of the

bits are supplied to convert them to object references for area objects. The remaining

checks are complicated enough and rare enough that they can be performed by microcode

or by software; the overhead for these checks can be estimated in a straightforward

manner.

5.3.3 Cache

Cache memory is made of very high speed memory, having an access time less than

100 nanoseconds. An unusual feature of ORSLA is that the cache can map virtual

addresses instead of main memory addresses. Such an organization is an intriguing

possibility on a system with a single address space, but there are many reasons why main

memory addresses are used in cache memories. It is beyond the scope of this thesis to

consider all these issues, but it is my responsibility to show that no special feature of

ORSLA makes it more difficult to use a cache. After reading this section, it will be

obvious how to design a cache for ORSLA that uses main memory addresses. Since the

design of the cache is less obvious if it uses virtual addresses, however, I discuss the design

of this type of cache in this section.

Conceptually the cache memory on ORSLA is an associative memory which, given a

virtual address, can return the contents of that address. Each entry in the cache actually

contains more than one word, however. Depending upon how the cache and main memory

137Page Map

Section 5.3.3

40-50 bits 59-82 bits/word 4

virtual address 1-4 words misc
bits

Cache memory has 1-4 words per entry depending upon system parameters.
Fig. 26. Cache Memory Entry

have been designed, each entry in the cache contains either one, two, or four words. Only

one of these sizes is used in any particular system, of course. Each entry in the cache also

contains a few bits that are necessary for the maintenance of the cache and for the

realization of LRU replacement. The format of a cache entry is shown in Figure 26.

Conceptually the cache is a pure associative memory, but since each entry is so small, the

cache would have to be a large associative memory. Large associative memories, however,

are both expensive and slow, so a pure associative memory is approximated by a

set-associative memory. This is a standard technique in the design of cache memories.

Figure 27 shows a set-associative cache memory with 4 entries perset and four words

per entry. The virtual address is broken into three pieces: the offset (o) within a cache

entry, the set specifier (s), and the rest of the virtual address (v) which must be

associatively matched against the address of an entry. The cache memory consists of two

memories that are accessed in parallel: the address memory and the contents memory. A

word in the address memory contains the four addresses for the four entries in one set; it is

accessed with the set specifier part of the virtual address. A word in the contents memory

holds the contents of four virtual addresses, each address being at offset o within each

entry in the set. The contents memory is accessed by the set specifier and offset portions of

the virtual address. Thus both the address and contents memories can be accessed given

only a virtual address. An associative match is performed on the information retrieved

from the address memory with the unused portion (v) of the virtual address. If the virtual

address matches one of the entiries in the set, then the word in that entry from the contents

memory is gated into the READ buffer.

138Cache

Section 5.3.3

virtual ddress

V 5 0

associative set offset within

match specifier cache entry

set addresses

1 2 3
elements

4

set contents

Lord o

1 2 3 4
elements

et

set

0

1

et

associative element select appropriate
match with.. element

V specifier

READ buffer

Fig. 27. Cache does Read before Write

s5

v.add.V.add v.add.v.add.

F

Cache 139

Section 5.3.3

The page map is accessed in parallel with the cache to find what area the virtual

address is in and to find the associated main memory address. Since the page map uses a

set-associative memory of the same type as the cache, the main memory address is

completely prepared 1 by the time it is discovered that the virtual address is not in the

cache. Thus when a cache is used, no extra time is taken by the system for virtual memory

mapping.

A feature of ORSLA that might affect the structure of the cache is storage

monitoring. Checking for a monitor in a location being stored into requires that the

previous contents of the location be read before the write takes place. Most cache memory

systems do not use the cache for store operations, however; they use "store-through" directly

to main memory. A cache that is organized in this way is not involved in the

implementation of storage monitoring; instead, main memory must always perform store

operations with a read-modify-write cycle during which storage monitoring is implemented.

If, however, a cache memury allows store operations to be performed directly to the cache

without performing a "store-through" to main memory, what mechanism would be needed

in the cache to implement storage monitoring? The answer is that surprisingly little is

needed to implement storage monitoring. A store operation to the cache must first access

the address memory to find whether the virtual address being stored into is in the cache.

The contents memory is normally accessed at the same time as the address memory, and if

this is done even for store operations, then the contents of the virtual address are read by

the cache without taking any extra time. After the associative match has found which

entry in the set contains the virtual address, then the appropriate part of the cache can be

written into. Practically the only modification that is needed to the cache to implement

storage monitoring is to provide a double set of buffers: the READ buffer to hold the

previous contents of the accessed word and the WRITE buffer to hold the information

being written into the cache. Retaining the previous contents of a word also allows a store

1. If the page map does not contain an entry for this virtual page, the complete map of
the pages that are in high speed memory must be accessed by the CPU. If the page is not
in high speed memory a page fault is generated.

Cache 140

Section 5.3.3

operation to be aborted after it has begun.

We are now ready to consider how the cache memory works with the page map to

perform a store operation, assuming the cache does not use "store-through" to main

memory (see Figure 28). The CPU begins a store operation by sending the address to both

interrupt

control

addrec

control

data

data

interrupt

ss

w

t

a
b
0
r
t

r

address

not
found

data-----

m

i

in

0

r

Fig. 28. Cache Memory in Detail

page
map

C
p
u

i v I a - --- L-

L-

Cache 141

I

Wb
Ru

SIf
Tf

memory

b
E

De
r c ache

Section 5.3.3

the cache and the page map. The cache and the mapping memory are accessed in parallel.

If the address is not in the cache, the cache sends a signal to the page map to initiate a

main memory cycle. By this time the page map has been accessed so that when the signal

for a main memory cycle reaches the page map, the main memory address has been

prepared or a page fault has been signalled to the CPU.

If the address is in the cache, then the only purpose for accessing the mapping

memory is to perform checks to maintain the lists of inter-area links. If A 4 L, then the

page map sends a signal to the cache to wait before signalling completion of the store

operation. This signal reaches the cache at the time that the cache has just recognized that

the address is contained in the cache. While the page map is performing a second cycle to

find the area specifier for B, the cache is actually storing the data into the appropriate

location in the cache. Much of the second cycle in the page map is complete by the time the

store has completed. It will probably take a little longer for the second page map cycle than

for the store operation, so there will be a little overhead for such a check, but it will

probably not exceed 25% of the total time taken for a store operation. As before, the page

map makes its checks automatically. As a result of these checks, it may be necessary to

abort the store operation so more complicated checks can be made by the CPU. However,

the vast majority of store operations that do not involve inter-area.links or cause page

faults will be handled directly by the checks made in the page map.

Thus we see that by carefully designing the hardware on ORSLA, it is possible to

reduce the overhead for maintaining the lists of inter-area links almost to zero.

Furthermore, the complexity of the additions to the hardware needed for ORSLA is less

than that needed to implement virtual memory. In fact, ORSLA is able to make more

effective use of virtual memory than do SAV or LAV systems.

5.4 Comparison of ORSLA with Other Systems

We have now seen how the load and store operations are performed on ORSLA.

Individual load and store operations have an overhead that ranges from zero to a factor

of 50. This overhead is only meaningful in comparison with other systems, however. In

this section, I compare the speed of the load and store instructions on ORSLA with the

Cache 142

Comparison of ORSLA with Other Systems

speed of the equivalent operations on systems whose addressing hardware is used by object

references in programming languages. Thus I do not consider CUID systems in this section

but do consider the B6700, SAV systems and LAV systems. Programming style is affected

by the structure of the system, so there are different programming styles on the B6700,

SAV systems and LAV systems. During each comparison, I try to show how the

programming style on each system would naturally be transformed into the corresponding

programming style on ORSLA. We will see that the loads and stores on ORSLA that

correspond to loads and stores using the address space on SAV and LAV systems have

very little overhead, so we expect the programming styles used on SAV and LAV systems

to run just as fast on ORSLA as they do on their own systems. Many of the loads and

stores on ORSLA that are not supported by hardware on SAV or LAV systems involve

little overhead, however, so we expect a new programming style to be developed on

ORSLA that will take advantage of these inexpensive operations to increase the

performance of the system. Thus the apparent overhead that exists on ORSLA for

maintaining the lists of inter-area links does not slow down ORSLA. Instead, it allows the

use of a single address space for the entire system which is an inherently more efficient

address space than those found on SAV or LAV systems.

The comparison of ORSLA to the B6700 is very brief because the B6700 discourages

the copying of object references, while they can be freely copied on ORSLA. The

overhead on ORSLA for maintaining lists of inter-area links occurs only when object

references containing addresses are being copied. If ORSLA were used in the way the

B6700 is used, very little overhead due to the maintenance of inter-area links would be

invoked, so ORSLA compares favorably with the B6700.

SAV and LAV systems can manipulate addresses very easily, so it would appear that

the overhead for maintaining inter-area links slows ORSLA down relative to these systems.

We will discover, however, that the overhead for maintaining inter-area links occurs

during operations that correspond to operations on these other systems that are not

adequately supported by the hardware of these other systems, so these operations are costly

on these other systems as well. Both SAV and LAV systems.have several types of storage

that are used in different ways. In order to compare the loads and stores on these systems,

Section 5.4 143

Comparison of ORSLA with Other Systems

we must identify the different kinds of storage so that we can determine which loads and

stores on the three systems accomplish the same tasks. These storage types are: temporary

storage (T), external temporary storage (ET), machine code storage (C), and permanent

storage (P).

The first kind of storage that is treated specially by all three systems is the temporary

storage for a process. This storage contains the per-process information and intermediate

results of the process. On ORSLA, it is the local computation area (LCA). Loads and stores

to the LCA never have any overhead for maintaining the lists of inter-area links.

Furthermore, object references to anywhere in the system can easily be kept in the LCA.

On LAV systems, such as Multics, temporary storage is contained in the segments in the

process directory. Pointers are used extensively to organize information in temporary

storage and are also used to point to most other storage on the system as well. On SAV

systems, however, all of the writeable portions of the address space of a job are in

temporary storage. Pointers can easily be used within this temporary storage, but may not

point outside of the address space of the job. Occasionally, jobs on SAV systems use disk

for temporary storage, but this is done only when there is not enough room in the address

space. Since computations that are well suited for SAV systems do not use all of the

address space, this source of inefficiency will be ignored here. Thus all the temporary

storage for a job on an SAV system is contained in the address space of the job.

The rest of the address space for a job on an SAV system contains the machine

language programs that are needed by the job. This special handling of machine code on

SAV systems causes us to consider the storage that holds the machine code to be another

kind of storage. It is possible for pointers within the temporary storage of a job to point

into the machine code storage for the job. Pointers within machine code storage may point

at other machine code programs within the job. On ORSLA and LAV systems, however,

storage containing machine code is very similar to other permanent storage and is not kept

in the LCA or the process directory. On ORSLA, programs can contain direct object

references for constants and procedures within the same area, but must use inter-area links

for procedures in other areas. On Multics, a machine language program may use

intra-segment pointers within the program, but must use dynamic links to procedures in

Section 5.4 144

Comparison of ORSLA with Other Systems

other segments. These dynamic links are placed in the process directory automatically and

the first time they are referenced, they cause a fault which is recognized by the system

which then finds the proper pointer and stores it. in the dynamic link. This is called

"snapping" the link. The link may then be used without overhead for the rest of the

process.

The overhead associated with dynamic links on Multics has some similarity to the

overhead for maintaining and using inter-area links on ORSLA. The first time one of

the programs in an area is called, a cable must be constructed to the area from the LCA.

This is similar to the operation of making a segment "known" to a process on Multics. A

segment number is assigned to the segment and a linkage section is created for the segment

and is then initialized. The linkage section contains all the "internal static" storage for the

programs in the segment and all the dynamic links from this segment to other segments,

although these dynamic links are initially unsnapped. Making a segment known to a

process on Multics clearly takes longer than constructing a cable from the LCA on

ORSLA. Once a cable has been constructed from the LCA to an area on ORSLA, then

whenever an inter-area link to this area is used, the LCA must be checked to make sure

there is a cable to the area. On Multics, on the other hand, the first time a dynamic link is

used, it must be snapped, which is a very long operation. Once a link has been snapped,

however, it can be used without further overhead. The total overhead on the two systems

is probably comparable, however, since the extra overhead on Multics for making a

segment known to a process and snapping each dynamic link may balance the extra

overhead on ORSLA for checking for the existence of a cable from the LCA whenever an

inter-area link is used.

There is no overhead on SAV systems that corresponds to using an inter-area link or

a dynamic link as long as the programs that are called reside within the address space of

the job on an SAV system. Since the address space on an SAV system is about as large as

a segment on Multics or an area on ORSLA, it is possible for a programming style

developed on an SAV system to be transfered to Multics (or ORSLA) by placing all the

procedures found in the address space of the SAV system into a single segment (or area) so

that dynamic links (or inter-area links) need not be used between these procedures. SAV

Section 5.4 145

Comparison of ORSLA with Other Systems

systems sometimes provide dynamic linking as well as the static linking within the address

space that is usually used. Dynamic linking on SAV systems is used when a program -is
being called that does not reside within the address space of a job. The required program

is read into the address space and all external symbols (except for other dynamic links) in

the program are linked to objects within the address space. This is sometimes called

"loading" and has much more overhead than dynamic linking on Multics or the use of

inter-area links on ORSLA. Once a program has been loaded, however, it may be used

without further overhead. Thus it is not clear that Multics or ORSLA requires more

overhead than SAV systems for procedure calls, but there is some overhead for procedure

calls in all of these systems. The overhead on SAV and LAV systems is caused by dynamic

linking which is needed because of limitations of the address spaces on these systems, while

on ORSLA, it is caused by the need to maintain the lists of inter-area links.

The third kind of storage on these systems is permanent storage for information

other than machine code, e.g. source code, other text files, data files, and complex data

bases such as those used for airline reservation systems. This information is almost always

kept on disk. On SAV systems, there are two ways to use such information. A permanent

file can be copied into the address space of a job so it can be used heavily, or it can be

used where it is with explicit 110 commands to obtain the parts of the file that are needed

when they are needed. Thus a program that uses a permanent file is written differently

depending upon what the total pattern of access to the file is from the entire computation.

Furthermore, a permanent file that will be modified by several parallel computations, such

as an airline reservation system data base, cannot be copied into the address space even if

it is being used heavily, because this creates a copy of the file which may not be modified

without modifying the original file and all other copies of the file that have been created

by other processes using the file. Instead of attemping to keep all the copies of a file

consistent, the copy on disk is used with explicit I/O commands. On LAV systems and

ORSLA, however, the permanent storage used by a computation is within the address

space and so information within it is used in the same way as information in temporary

storage: by having object references to objects in permanent storage and using these object

references to obtain information from the object. Thus SAV systems do not support the

use of object references to objects in permanent storage. Even if software on an SAV

Section 5.4 146

Comparison of ORSLA with Other Systems

system did allow some form of object reference to objects in permanent storage, the most

fundamental problem of SAV systems is that "addresses" to objects in permanent storage

must be interpreted by software. LAV systems and ORSLA provide hardware supported

address spaces that allow efficient use of object references to objects in permanent storage.

There are limitations on the usefulness of the address space on an LAV system, however.

LAV systems do not allow full object references to be stored within objects in permanent

storage. Since permanent objects will be used by many different processes, each with its

own address space on an LAV system, full addresses cannot be stored meaningfully in

permanent objects. Many LAV systems support an intra-segment pointer, however, that

allows a different format of object reference to be used within permanent storage than is

used in temporary storage. The new format of object reference can only point to objects

within the segment in which it resides, however. Thus LAV systems as well as SAV

systems use a different representation for objects in permanent storage than is used for

objects in temporary storage, forcing programs to choose whether to operate on objects in

permanent storage or on objects in temporary storage. On ORSLA, the same representation

for objects may be used in temporary storage and permanent storage, allowing programs

originally written to operate on temporary objects to be used on permanent objects as well.

The fourth kind of storage is external temporary storage. This is the temporary

storage for another process. External temporary storage is accessed to perform inter-process

communication. On many SAV systems, the address space for another job is not treated as

a file in the file system and so special inter-process communication primitives are provided

by the system. Whether the address space for another job is handled via I/O operations or

special inter-process communication primitives, external temporary storage on SAV systems

is manipulated with a software supported address space which has significant overhead.

On Multics, users do not have access to each other's process directories, so external

temporary storage cannot be accessed through the address space. Special inter-process

communication primitives are used on Multics as well to allow the flow of information

between processes. Inter-process communication software is a form of software supported

address space, and so slows down both SAV and LAV systems. In addition, it is not

possible to communicate object references between processes on these systems because the

processes use different address spaces. On ORSLA, one process may access the temporary

Section 5.4 147

Comparison of ORSLA with Other Systems

storage of another process as long as the first process has a reference to an object in the

temporary storage of the second process. Object references can be communicated between

processes on ORSLA since they share the same address space. ORSLA does have

significant overhead for these references, however, since they must use inter-area links.

Another way of characterizing a load or store is by the kind of information that is

moved. Thus a load or store can be characterized by the type of storage accessed and the

kind of information moved. The easiest kind of information to manipulate is atomic

information (A) that does not contain any pointers. Any difficulty with dealing with atomic

information is attributable to the kind of storage being accessed, not the nature of the data

being moved.

Pointers are harder to deal with. The first kind of pointer is the internal pointer (IP).

An internal pointer in the temporary storage for a process points within temporary storage

for that process. This is the most common kind of pointer and it can be handled relatively

easily by ORSLA, SAV systems, and LAV systems. Another kind of pointer is the external

pointer (EP), which points from one area to another. There are three different kinds of

external pointer, depending upon the type of storage being pointed at: temporary (EPT),

machine code (EPC), or permanent (EPP). Of these three types of pointer, the one that is

most frequently given the most system support is the EPC pointer when it is stored in

machine code (pointer to a subroutine). The other types of pointers are seldom given much

system support except on ORSLA.

Table 2 compares the difficulty of load and store operations on ORSLA to those on

SAV systems and LAV systems. A line in the table stands for a specific kind of storage

while moving a particular kind of data. The codes used in characterizing the difficulty of

load and store operations have the following meaning:

OK means that there is no overhead or almost no overhead. The memory access is

performed using a hardware supported address and only one or two locations are

accessed.

OK- means that there is little overhead, but it is more than one extra memory access: it

is between three and seven memory accesses.

Section 5.4 148

Comparison of ORSLA with Other Systems

V means that there is definite overhead of more than seven memory accesses.

OKL means that the operation can be performed without overhead, but only in limited

situations. If the programmer wishes to violate these limitations, he must write more

complicated code that executes less quickly than the simpler code that would be used

if the limitations had not been reached. Slow execution of this complicated code is

the source of the overhead for this limited mechanism.

S means that the operation is not hardware supported. Software must interpret the

"address" being used to make the memory access or must convert the "pointer" that is

being moved from one address space to another.

1/0 means that this operation is performed by using disk 110 operations. Often ORSLA

or an LAV system would take a page fault instead of performing an explicit 1/0

operation. 110 operations are much harder for the programmer to use than page

faults, but it is not clear how much overhead is involved. The fact that 110 is hard

to use suggests that it will often be used inefficiently.

NO means that this operation is seldom supported by this type of system in either

hardware or software.

5.4.1 Results of the Comparison

As we-inspect this table, we note that wherever there is an OK or an OKL for an

SAV system there is also an OK for ORSLA except for accessing external pointers to code

(EPC) or permanent storage (EPP) within storage containing machine code (C). Similarly

wherever there is an OK for an LAV system there is an OK for ORSLA. The bulk of the

overhead for maintaining the lists of inter-area links on ORSLA is invoked when doing

operations that are not supported by hardware on SAV or LAV systems. According to the

table, the only overhead for frequent operations on ORSLA that is worse than that on

SAV systems is the handling of subroutine calls to library subroutines, but the discussion

on page 145 suggests that SAV systems may not be better than ORSLA on this point.

It would be possible to reduce the overhead for subroutine calls to library subroutines

on ORSLA by using another bit in the area-information field of an area: the lib bit. An

area could be defined to be a LIBRARY area. All LCAs would be automatically cabled to

Section 5.4 149

Comparison of ORSLA with Other Systems

Table 2. Comparison of Systems - Load and Store Operations

Kind of
Storage

T

ET1 1

C8

P9

Kind of
Data

A
IP
EPT
EPC
EPP

A
IP
EPT10

EPC
EPP

A
IP
EPT10

EPC
EPP

A
IP
EPT10

EPC
EPP

ORSLA SAV LAV

OK
OK
OK
OK
OK

OK
V4

V4

OK 3

OK-3

OK
OK
OK7

OK-6

OK-6

OK
OK
v4

V4

V4

OK
OK
OK
OKL
OK

s
NO
NO
NO

OKL
OKL
OKL
OKL

I/O
hOKI/0

1/0
I/0

OK
OK
OK
OK
OK

s
NO
NO
NO

12

OK
OK
OK-5

OK-5
OK-5

OK
OK
NO
S
S

Kinds of Storage
T temporary storage (LCAs)
C areas containing machine code
P permanent data not containing machine code
ET external temporary storage (for another process)

Kinds of Data Accessed
A atomic (no pointers)
IP internal pointers (intra-area pointers)
EPT external pointers pointing at temporary storage
EPC external pointers pointing at machine code
EPP external pointers pointing into permanent storage

Section 5.4.1 150

Comparison of ORSLA with Other Systems

Table 2 (con't)
Ratings of the Systems

OK cost for load or store is one or two memory references
OK- cost is more than 2 memory references, but less than 8
OKL cost is only one memory reference, but limited in flexibility
V significant overhead, but not as bad as S or 110
S access performed by software, possibly 1/0
110 access performed by use of explicit 1/0 commands
NO not supported or used

Notes
1 SAV and LAV systems perform inter-process communication with special purpose

software. The "address" used to perform the access is the name of an event
channel or of another process. This must be interpreted by software to actually
perform the inter-process communication.

2 Since different processes have different address spaces on LAV systems, the
pointers communicated from one process to another cannot be hardware supported
pointers but must be software supported pointers such as file names.

3 Since ET storage is reached from the LCA through an inter-area link, any pointers
retrieved from ET storage must be checked against cables already made from the
LCA. New cables may have to be constructed from the LCA.

4 An inter-area link must be created during this access.
5 Dynamic links are used. Each link must be snapped with software once per process.
6 These pointers are inter-area links, so it is necessary to check that there is a cable

from the LCA to this other area. Occasionally, cables must be constructed as well.
7 If SAV systems and LAV systems work at all with EPT pointers, these pointers

must point into the temporary storage of the current process. In this case, no check
for a cable need be made on ORSLA. The EPT pointer, which uses an inter-area
link, will be converted to an IP pointer in temporary storage.

8 Code is usually read and very seldom modified, so the estimates on overhead
assume loads rather than stores.

9 Permanent data is often read, but it is also modified. Since the overhead for stores
is greater than the overhead for loads on ORSLA, the overhead shown is for
stores.

10 Very rare kind of access.
11 Inter-process communication.

all LIBRARY areas without having cable objects to each LIBRARY area in each LCA.

This would require the system to keep a list of all the LCAs on the system. The memory

map would also contain a bit specifying that the area is a LIBRARY area. This would

allow calls to library subroutines to be performed without checking for a cable from the

Section 5.4.1 151

Comparison of ORSLA with Other Systems

LCA. An EPC pointer from machine code to a library subroutine uses an inter-area link.

When this link is used during a call to the library subroutine, it is necessary to obtain the

direct reference to the subroutine from the inter-area link and then to obtain a reference to

the area containing the library subroutine. At this point, however, the information that this

area is a LIBRARY area is obtained, so no further checking is needed since the LCA is

always cabled to all LIBRARY areas. Construction of a cable to the LIBRARY area is

avoided, as are all the checks that the cable exists. Fortunately, LIBRARY areas are seldom

modified and therefore seldom need to be garbage collected. To garbage collect a

LIBRARY area, first convert it to a normal area. This is done by constructing cables from

all LCAs to this area and then turning off the lib bit in the area and in the page map of

the pages of the area. After waiting for the LCAs to garbage collect themselves, which

should not take more than a few hours or possibly a day since garbage is generated

rapidly in LCAs and they are deleted when the processes running in them are terminated,

only those LCAs that are still referencing the ex-LIBRARY area will still have cables to it,

so it may be garbage collected with no more dif ficulty than necessary.

Even if this improvement is not made, however, programs originally designed for

SAV or LAV systems can be run on ORSLA with very little overhead. There are many

rows of Table 2, however, in which ORSLA performs better than SAV or LAV systems.

Programs designed specifically for ORSLA will probably run faster than programs

designed for SAV or LAV systems that perform the same task, even though lists of

inter-area links must be maintained on ORSLA but are not maintained on SAV or LAV

systems. Thus, although at first there appears to be some runtime overhead on ORSLA for

maintaining the lists of inter-area links, this is only in comparison to an ideal system with

a single, large address space on which every load and store can be done with exactly one

memory reference. In comparison to real systems, however, there is no runtime overhead

for maintaining the lists of inter-area links.

The detailed analysis above ignores an important difference between ORSLA and

SAV and LAV systems. When the LCA is garbage collected on ORSLA, another area is

created into which all the information in the LCA is copied. The garbage collector,

however, runs in the old copy of the LCA and has a cable to the new copy of the LCA.

Section 5.4.1 152

Comparison of ORSLA with Other Systems

Store operations into the new copy of the LCA, however, require as many checks as stores

into permanent areas. On an SAV or LAV system garbage collection is done within

-temporary storage. Thus the stores into the new copy of the LCA qualify as stores to P

storage on ORSLA but correspond to stores to T storage on SAV and LAV systems. Since

storing into P storage is more difficult than storing into T storage, there is additional

overhead in garbage collection on ORSLA for maintaining the lists of inter-area links.

Thus, although the maintenance of links is done during all computation, it only increases

costs during garbage collection. Even then, the cost of constructing links and cables should

not really be counted as overhead because the links and cables need to be copied as part of

the garbage collection. The real overhead in the garbage collection is the constant checking

for inter-area references and checking for cables that already exist. This checking,

however, also creates cables that are needed from the new area; thus cables are deleted

automatically when an LCA no longer references an area since those cables that are no

longer needed will not be created in the new copy of the LCA. Thus the overhead in the

garbage collector for maintaining the lists of inter-area links does perform some legitimate

garbage collection functions. Furthermore, it is acceptable for the garbage collector to

spend time maintaining the lists of inter-area links since the garbage collector benefits

enormously from their existence.

Section 5.4.1 153

154

Chapter 6

Placement of Objects in Areas

Areas help achieve locality of reference and aid the garbage collector because the

objects in an area are all related to each other: they form a logical module of information.

It is still necessary, however, to consider mechanisms that cause the objects in an area to be

related to each other. Ultimately, the user is responsible for the proper placement of

objects, but it is possible for programmers to write programs that correctly place the objects

they create. In addition, ORSLA provides as part of the garbage collector a feature known

as the mover which can move an object that is residing in one area into another area.

When used explicitly, it allows the user to move objects from one area to another, but the

mover is also able to identify which objects have been placed very poorly and move these

objects automatically into more appropriate areas. These mechanisms on ORSLA make it

easy for the user to place related objects into the same area.

"Easy" is a relative term, however. I will try to show that placing objects into areas on

ORSLA is easier than placing data into files on an SAV system or into segments on

Multics. CUID systems, however, do not have a concept similar to areas. Since the

programmer on a CUID system does not have to do any placement of objects at all, it is

harder to use ORSLA than CUID systems in this respect. Nevertheless, the improved

performance of ORSLA over CUID systems is worth the extra effort, especially since

mechanisms are supplied on ORSLA that can place objects automatically. When ease of

use is important, ORSLA can relieve the user of the need to place objects into areas

explicitly, but when efficiency of computation is important, ORSLA can achieve high

performance.

6.1 Initial Placement

Every object on ORSLA resides in an area, so when an object is created, the

programmer must specify in which area the object should be placed by providing the area

as an additional argument to the program that creates the object. This is the initial

placement of the object. Although assembly language- progreammers and PLII

programmers are familiar with this argument to the allocate procedure, LISP programmers

Initial Placement

and Algol 68 programmers are not familiar with this argument. Fortunately, a good

default can be supplied for the area in which to create an object: the local computation

area. After all, most objects created by programs are intermediate results in a computation

and therefore belong in the local computation area. This corresponds to the default area

provided in PL/. LISP and Algol 68 do not have the concept of areas, thus all of the

objects in these languages are allocated from the same pool of storage. Since LISP and

Algol 68 deal with files through 110 operations, all of the objects in these languages are

within temporary storage. The fact that LISP and Algol 68 force the user to place objects

into storage that corresponds to the LCA suggests that the LCA is a good default for

placement on ORSLA. Thus a program that creates an object on ORSLA takes the area in

which to initially place the object as an optional argument. If no area is specified, the local

computation area is used. This default initial placement of objects can be viewed as a form

of automatic placement. Thus when a programmer does not specify where an object is to

be placed, the system automatically places it into the local computation area.

Nor all objects are intermediate results of a computation, however. Objects that are

part of the final results of a computation that the user wants to save for some time should

be initially placed into the area in which the final results will be saved. The program that

performs the overall computation will be used many times by different people, so the area

in which to initially place the final results of the computation cannot be a constant in this

program; it must be a variable. It will probably not be possible to compute in what area to

place the final results from the usual set of arguments to this program, so the program will

probably take an additional argument that specifies in which area to place the final results.

The program that is in control of the overall computation, however, is often invoked

explicitly by the user as a command, so the user will have to specify in which area to place

the final results of the computation. The user will only be able to do this if he is aware of

the areas already in use and what they contain. One role of the file system is to provide

this information.

Although it seems that the only alternatives for initial placement are the local

computation area or an area specified by the user, in many instances it is possible for a

program to determine the proper area in which to place objects. When a data base is

Section 6.1 155

Initial Placement

created on ORSLA, the user must specify in which area to place it. Once a data base has

been created, however, the user can make modifications to it without having to specify in

which area the data base resides because an object reference to one of the objects in the

data base can be used to find what area the object, and therefore the data base, is in. The

program making the modifications could then place any new objects into the same area as

the rest of the data base. The reference to the area is obtained from the page map for the

object that is already part of the data base. Obtaining the reference to the area in this way

has problems of protection, but the rule of thumb that protection issues should not

interfere with legitimate computation suggests that the protection issues can be solved.

Having a reference to an object in an area should not automatically allow a program to

place objects into the area. If, however, the program is part of the subsystem that

maintains the data base in the area, then it seems reasonable that the program should be

able to place objects into the area. Thus the ability on ORSLA to find what area an object

is in helps reduce the number of user commands that must specify an area in which to

place the final results of the command.

Let us see how a program that controls a computation makes use of the information

of where the results of the computation should be placed. The program that controls the

computation could use this information directly by first waiting for the final results of the

computation to be computed and then copying this information into the area that should

hold the final results. This is not the initial placement of this information, however. The

initial placement of the objects in the final results can only be affected by causing the

programs that initially create these objects to create them in the appropriate area. These

objects may be created by very low level programs, however. For example, a multiple

precision number may be created by a multiply operation. If this number is part of the

final results of a larger computation and it is to be initially placed in a permanent area,

then the multiply operation should be called with an additional argument which is the area

in which to create the results of the operation. Thus the proper initial placement of objects

may be somewhat difficult to achieve. Programs that attempt it usually require one more

argument than programs that do not attempt proper initial placement. Passing these extra

arguments requires extra CPU time that should be counted as the cost of properly placing

objects when they are created. Furthermore, some algorithms do not allow proper initial

Section 6.1 156

Initial Placement

placement because it is not always known whether an object is an intermediate result or a

final result when it is created. Algorithms that use successive approximation construct

proposed solutions that are used as intermediate results if they are not found to be

adequate solutions. Successive approximation is a standard technique in numerical analysis

and similar techniques have been developed in graph theory as well. Thus although the

proper initial placement of objects seems to be very efficient, in fact it has a cost associated

with it and in some cases it is impossible to do. Once these reservations have been noted,

however, it should also be mentioned that many algorithms can perform the proper initial

placement of objects easily and efficiently. The programmer should decide whether the

final results of a program should be placed properly when they are created or should be

moved after they have been created.

6.2 Directories

Directories on ORSLA are similar to file directories on SAV systems, but are even

more similar to the directories on Multics. Directories on ORSLA have basically three

tasks. First, they provide names for the objects that the user manipulates directly. These

names are character strings that have been selected by the user. Most names are words or

abbreviations that remind the user what the object is and what it is being used for. A

particular name can only be associated with one object in one directory, but the same name

may be associated with different objects in different directories. Second, since the user

must manage areas and must pay for the storage used by areas, directories must be

displayed to users in a manner that shows what information is kept in an area and how

much storage is used by the area. The user is only concerned about the storage that he

must pay for, so there is the concept of an area being controlled from a directory. The
owner of a directory is responsible for the storage used by the areas controlled from the

directory, so ORSLA displays the amount of storage used by the areas controlled from a

directory. The directory must supply the user with information about the areas he controls

so the user can manage his areas effectively. This section will consider the operations

available to the user for managing areas as well as how the directory supplies the

information that allows the areas to be managed. The third task of directories on ORSLA

is to control access to objects. This task is necessary because a directory is a global data

Section 6.1 157

Section 6.2

base that converts character strings into object references. Work on CUID systems has

already resulted in techniques for using directories to provide names for objects and to

control access to objects. Since controlling access on CUID systems is very similar to

controlling access on ORSLA, little will be said here about how a directory controls access

to objects.

Figure 29 shows a sample listing of a directory on ORSLA. Each area that is

controlled from the directory begins with a line that gives the name of the area and some

key information about the area that helps the user manage the area. The following lines

give the names of the objects within the area and a description of the type of each object.

After all the areas that are controlled from this directory have been.listed, then the names

list this.dir
areal 3/4, 3/4, 0%

progi_source LISPsourcecode
progi LISPobjectcode

area2 2/5, 2/7, 5%
mailbox mailbox
cal appo intmentcal endar

thisdir directory

miscobjl LISPsource_code
otherjdir directory

Sam mailbox

compile LISPobject_code
other_area area

This figure shows the result of the list command typed in the first line of the figure. First
the named objects in each of the areas controlled from this directory are listed. The header
line for each of the areas has several numbers whose meaning is as follows:

areaname storage used/storage quota, address space used/address space quota,
gcjndex

After the areas controlled from this directory have been listed, all the named objects in the
directory that reside in other areas are listed.

Fig. 29. Listing a Directory

Directories 158

Section 6.2

of other objects that are not contained in the areas controlled from this directory are listed

along with a description of the type of each of these objects. The description of the type

of object is derived from the data type of the object; it does not form part of the name of

the object. There will, of course, be options available to the user for only listing some of

the objects in a directory.

6.2.1 List of Named Objects

The way a directory is listed is very important for making the user aware of the

areas that he is responsible for. By listing the objects within an area immediately under

the area, the user becomes aware of the kind of information kept in that area and is

reminded of the purpose of the area. It is then easier for the user to choose in which area

to place new objects. Listing the named objects in an area is only useful for controlling the

area, however, if the objects named in the area describe all of the information in the area.

This does not mean that all of the objects in the area must be named, however. What the

user considers to be a single object, such as a mailbox, may in fact be a complex data

structure that makes use of many objects. The user thinks of it as one object because in

order to manipulate the entire structure, it is only necessary for the user to name one of the

objects. Object references for the other objects in the structure may be obtained from the

named object, from objects accessible from the named object, and so on. Thus a named

object will usually be the root of a data structure all of which may be manipulated when

the user invokes operations on the named object.

The objects in an area that are named in the directory that controls the area should

allow all of the information in the area to be manipulated. In Chapter 4 we saw that the

garbage collector needs a more reliable source of accessible objects in an area than is

provided by the list of incoming inter-area links. The objects in an area that are named in

the directory that controls the area is this reliable source of accessible objects. It should be

possible to find all of the objects in the area by starting from each of the named objects

and tracing through objects in the area. In order to identify the named objects for the

garbage collector, another field is added to the area object: the list of named objects. This

is a list of the objects in the area that are named in the directory that controls the area.

Directories 159

List of Named Objects

This list contains the actual names of the named objects in the area as well as references to

these objects. The list of named objects in an area is contained within the area, but the

information in this list is duplicated in the directory that controls the area. The directory

has a large hash table that contains all the names in the directory so that character string

names can be converted quickly to object references for the objects they name. In order to

keep these two copies of the information consistent, the user manipulates the list of named

objects in an area through the directory that controls the area and the directory corrects

both its hash table and the list of named objects within the area.

It should be remembered that a directory does not maintain any sensitive system

information on ORSLA and so is just an ordinary object that could have been defined by

a user. A directory is a reasonably complex data structure, however, and so will probably

consist of several objects. The object reference for the directory refers to the root object of

the directory. The objects that comprise a directory must be stored in an area. A directory

is a data structure that users will manipulate explicitly with user commands and so the file

system must provide a name for a directory. Therefore, the root object of the directory will

be on the list of named objects in the area in which it resides. If a directory is placed into

one of the areas that this directory controls, then the directory will not need quite as many

inter-area links as it will need if it is kept in another area. Thus an unusual aspect of the

directories on ORSLA is that one of the names in the directory will probably name the

directory itself. Thus the object this-dir in area2 in Figure 29 is the name of the directory

that controls area2.

The user has the ability to change the names within a directory. Names may be

deleted from the directory and names for new objects may be added to the directory.

Additional names may even be added to objects that are already named in the directory. A

major purpose of a directory is to control a certain set of areas and to display the named

objects within these areas. If a directory is controlling a certain area, A, then deleting a

name of an object within A from the directory also removes the object from the list of

named objects in A. Adding a name for an object within A to the directory adds this

object to the list of named objects in A. Adding or deleting names from a directory has no

direct effect on the amount of storage used in the areas controlled by the directory,

Section 6.2.1 160

List of Named Objects

however. The directory merely contains object references to the objects within those areas.

More storage is used in these areas when objects are created in them, not when names are

added to the directory. Storage is reclaimed from the areas only when they are garbage

collected.

6.2.2 Garbage Collecting Areas

The user on ORSLA is ultimately responsible for garbage collecting areas. Garbage

collection is one of the most important management operations that must be performed on

an area. Fortunately, the system can help the user determine when each area should be

garbage collected. When a directory is listed for the user, the last number on the header

line for an area controlled from the directory is gcjndex, an estimate of the percentage of

the storage in the area that would be reclaimed by garbage collection.

How can gcJndex be computed, however? Garbage can be generated in an area in

two ways. An incoming link to an area that is the only accessible reference to the object it

points to can be destroyed, thereby making the object the link pointed to inaccessible. In

addition, the internal structure of the information in an area can be modified to cause

some of the objects in the area to be inaccessible. If the list of named objects in the area

actually describes the information in the area, however, then inter-area links to the area

should not be pointing to objects that are inaccessible from within the area in which they

reside. Thus changes in the number of incoming links to an area should not indicate a

change in the amount of garbage in the area. If object references stored within an area

have been destroyed, i.e. written over, this may be an indication that the structure of the

information is changing and that garbage is being generated. Another indicator that an

area needs to be garbage collected is the amount of storage allocated for new objects in the

area since the last garbage collection. Even if the new objects did not replace other objects

within the area, garbage collecting the area might improve the locality of reference of the

area. Finally, if objects have been deleted from the list of named objects in an area, then it

is likely that the area contains some inaccessible objects. Thus we see that gcindex can be

computed from the number of modifications to the area, the amount of storage allocated

within the area, and the number of objects deleted from the list of named objects since the

Section 6.2.1 161

Garbage Collecting Areas

last garbage collection. Unfortunately, it is difficult to estimate how much garbage is

generated by each one of these activities. Thus no more will be said in this thesis about

how gcindex is computed. The exact algorithm for computing gindex is an important

research topic for future research. Different algorithms may even be needed for different

areas or for different applications.

One obvious way to use gcindex is for the user to watch it and use it as a guide for

invoking the garbage collector explicitly. When should garbage collection occur, however?

There are two factors that must be balanced in deciding when to garbage collect an area.

First, garbage collection can reclaim storage. If an area contains a great deal of garbage

then it should be collected. Second, a small amount of garbage can have a large cost if it is

retained for a long time. Thus, if a series of modifications are being made to an area after

which no modifications will be made for a long time, then the area should be garbage

collected after the last modification has been made. Similarly, if garbage is being generated

in an area at a great rate, it is advantageous to wait until the rate of garbage generation

has subsided before garbage collecting the area unless the amount of garbage in the area

is producing a serious drain on available storage or is increasing the working set of the

computation dangerously close to the size of high speed memory on the system. Thus,

unless the amount of garbage in an area is excessive, an area should not be garbage

collected until after the rate of garbage creation has decreased. In many instances, it will be

well to wait until a user logs out of the system and then to garbage collect the areas that

the user modified as a background job on the system.

This analysis leads to three mechanisms for automatically invoking the garbage

collector. First, when a user logs out of ORSLA, each of the areas controlled by that user is

inspected. If an area's gcindex is above a threshold level selected by the user, then that

area is scheduled for garbage collection as a background job on ORSLA. ORSLA chooses

which areas to garbage collect first so as to make the best use of spare CPU time for

garbage collection. An area is only garbage collected as a background job when no LCAs

are cabled to the area. Second, if the storage quota on an area is exceeded and if gcindex

is above a certain threshold, then the area is garbage collected and execution is resumed

without reporting the storage quota overflow to the user. This mechanism does not prevent

Section 6.2.2 162

Garbage Collecting Areas

the user from ever getting a storage quota overflow, however. Immediately after such a

garbage collection, gcindex will be zero. If the garbage collection did not reclaim much

storage, then the next time the quota is exceeded, gcindex will not be above the threshold

used to trigger garbage collection and so the storage quota overflow will be reported to the

user. The third mechanism for automatically invoking the garbage collector is used when

the working set of a computation exceeds a certain threshold, causing the computation to

receive an interrupt. The process may then decide to garbage collect its LCA and it may

also garbage collect an area that the LCA is cabled to and whose gcindex is above a

rather high threshold.

The reader may have gotten the impression that the user will seldom have to specify

when garbage collection should occur. Although this may be true, I have not presented the

mechanisms in enough detail to allow anyone to estimate how well they will work. The

most sensitive issue is the accuracy of gcindex as an estimate of how much an area needs
to be garbage collected. Analyzing the quality of a specific algorithm for computing

gcindex can probably be done only on a specific ORSLA system. Thus, until the merit of

automatic invocation of garbage collection can be shown, we should expect that the user

will bear responsibility for invoking the garbage collector on permanent areas. Multics

LISP, however, has shown the practicality of automatic invocation of the garbage collector

for the LCA. Multics LISP invokes the garbage collector when the amount of storage

allocated since the last garbage collection exceeds the amount of storage in accessible

objects that was found during the last garbage collection.

6.2.3 Deleting Areas

Garbage collecting areas, setting quotas on areas, and naming the objects in areas are

not the only operations that must be performed on areas, however. There is also the matter

of creating and destroying areas. Areas can be created rather easily, but how are they

destroyed? One technique would be to wait until all incoming links and cables have been

deleted. The system could easily recognize when the last link or cable has been deleted and

then simply free all the storage and address space for the area. No garbage collection need

be done because there are no references anywhere else in the system to the objects in this

Section 6.2.2 163

Deleting Areas

area. The last link to the area would not be deleted until after the area has been deleted

from all the directories on the system, however. Since the user who creates an area is

charged for its storage, many users will not want to delete an area from the directory that

controls the area without having a good idea of when the storage used by the area will be

reclaimed. Furthermore, it would be possible for two areas to be completely inaccessible but

for each to have an inter-area link or a cable to the other area. Since these areas are

inaccessible, they will never be garbage collected (the user cannot initiate the garbage

collector) and the system will never notice that they are inaccessible. Thus the technique

just described for deleting an area cannot be depended upon. The file system must be

responsible for keeping all existing areas accessible from the file system. Furthermore, the

file system should ensure that every area that exists on ORSLA should be controlled from

an accessible directory. Thus no area should ever be without incoming links or cables. The

technique for deleting an area described in this paragraph can be used as a check that the

file system is operating properly. If an area is ever deleted because there are no incoming

links or cables, then there is a bug in the file system.

Usually a user will not delete an area from the directory that controls the area unless

there is no further use for the area or the information contained within the area. There

are two ways to delete an area without causing dangling references to be a problem. The

first method ensures that all the information within the area is destroyed and so is called a

hard delete.

Hard delete: To delete area A, first find all incoming inter-area links to objects in A,

change them so they reference the deleted object and then remove them from the

lists of inter-area links. Almost any computation with the deleted object causes an

error. A reference to the deleted object does not contain an address. Change all the

inter-area links from A to other areas to reference the deleted object and then

remove them from their lists of inter-area links. The set of areas that A has cables

to, Co, is then formed. The set of areas that are cabled to A, C, is also formed.

Cables are added from each area in Ci to each area in CO whenever these cables do

not exist already. Then all the cables from A to areas in CO are deleted. All the

storage associated with the address space assigned to A is returned to ORSLA. This

Section 6.2.3 164

Deleting Areas

destroys all of the object references inside of A and causes the null list of outgoing

cables to be accurate. The transitive cabled relation for all areas other than A has
been preserved even though all the cables from A have been deleted. The only

remaining references to the address space associated with A are from areas that are

cabled to A. The address space associated with A cannot be reused until all the areas

that are cabled to A have been destroyed and the cables to A removed. This can be

speeded up by causing these areas to be garbage collected. When an area is garbage

collected, any references to objects in A will be converted to references to the deleted

object in the new copy of the area. When the garbage collection is finished, the old

copy of the area will be destroyed thereby removing its cable to A. The new copy of

the area is not cabled to A because it does not contain any direct references into A.

Whenever a dangling reference into A is used to try to access storage, the fact that

there is no storage associated with the address accessed causes an error that is similar

to the kind of fault caused by the use of the deleted object. Thus the dangling

references into A will behave like references to the deleted object until they are

actually replaced by references to the deleted object. When the last cable to A is

removed, the address space for A is freed and can be reused since there are no

longer any dangling references to it. Thus a hard delete temporarily creates some

dangling references, but it does not allow them to become a problem.

A hard delete actively destroys all the information in the area. Although this will

sometimes be desired, there will be other times when the user merely wants to delete all the

named objects within the area from the directory and wants to stop paying for the storage

in the area. If other users still need some of the information in the area and are willing to

pay for it, then the needed information should be saved. This can be done by performing

a soft delete of the area.

A soft delete begins by deleting the area and all the named objects within the area

from the directory that controls the area. Instead of replacing all references to objects in

the area from other parts of the system with a reference to the deleted object, the area is

garbage collected without creating a new copy of the area. An object in the area that is

referenced from elsewhere in ORSLA is moved to one of the areas that points to it. Only

Section 6.2.3 -. 165

Deleting Areas

the information that is not moved elsewhere is lost.

Soft delete: To delete area A, initiate a garbage collection involving area A and all areas

cabled to A. Do not create a new area A' for the information in A. First garbage

collect the areas cabled to A. When a reference to an unmarked object in A is found

from area B, copy the object into area B' and mark from the object as if it were in

area B. When the garbage collection of the areas cabled to A has been completed,

mark from the incoming inter-area links to A. When a link from area C is

processed, place any unmarked objects found from that link into C. When this

garbage collection is over, there will be no inter-area links to A and no areas will be

cabled to A, so a hard delete may be performed on A. Area A will be deleted as part

of the clean-up of the garbage collection that will also delete the old copies of the

other areas that were garbage collected together with A.

As described, the soft delete algorithm forcibly moves information from A to areas

that reference that information. The owners of some areas may not want information

moved to their area, however. They could make their wishes known by setting a flag in the

inter-area link or cable to the area that is being deleted. If the individual links or cables

can enable or disable the saving of information from a deleted area, then the soft delete

will probably become the most popular way to delete an area. The philosophy behind the

soft delete is entirely consistent with garbage collection: objects should only be deleted

when everyone is finished with them, not merely when the entity that created them is

finished with them. There is no need for this philosophy to require the user who creates

an object to pay for its storage during its entire lifetime, however.

6.3 The Mover

Even when a programmer makes an effort to place an object into the correct area, it

is still possible for the structure of the data to change, so that after awhile, the object may

become part of the information in another area. Thus, it must be possible to move an

object from one area to another. This ability is especially important if the original

placement of the object was not done with care. Although the system does not know

anything about an object when it is first created, after the object has existed for awhile,

Section 6.2.3 166

The Mover

references to the object will be stored in other objects that are related to this object. Thus

there Is a potential for automatically moving an object to an appropriate area after it has

been created. An automatic mover may be able to relieve the user and the programmer of

much of the work needed to place objects into appropriate areas and to keep them in

appropriate areas.

The only mechanism on ORSLA for moving objects in the address space is the

garbage collector. The garbage collector finds all of the object references to the object

being moved and modifies these references so that they point to the object's new location.

Since the. garbage collector looks at all the references to the object on the system, the

garbage collector might be able to use the location of the references to the object to

determine when an object should be moved from one area to another. Earlier we saw that

the soft delete algorithm caused objects to move from one area to another. Perhaps the

techniques used there can be generalized to a full automatic mover.

A word of caution is needed here. Unless an automatic mover never makes mistakes,

there will be some users who will want to specify where their objects should be placed. The

automatic mover should not move these objects unless it is sure that the new placement will

be superior.

What criteria should be used to move an object? Each area contains a list of named

objects that is supposed to describe the information in the area. Thus all of the objects in

the area should be accessible by tracing through objects in the.area starting from the list

of named objects. Objects that cannot be found by tracing from the list of named objects

are not part of the information that is supposed to be in this area. These objects are quite

likely garbage. If one of these objects is referenced from other areas, it should be moved to

one of the areas that references it. This is the only criterion for automatically moving

objects that I advocate. It is a reasonably conservative criterion for automatic movement.

Any programmer that wants an object kept in a particular area can put the object onto

that area's list of named objects.

Thus it appears that the garbage collector can help decide which objects should be

moved and where they should be moved to. This is called the automatic mover even though

167Section 6.3

The Mover

it is difficult to separate it from the rest of the garbage collector. It is also necessary,

however, for a programmer to be able to specify that an object is to be moved to a specific

area. Thus a manual mover is needed as well as the automatic mover. The manual mover

will also be integrated into the garbage collector. A garbage collection should not be

initiated whenever a single object is to be moved, however. Instead, the requests to move

objects should be saved in a list associated with the area in which the objects currently

exist. When the next garbage collection occurs, the movement will actually occur. Thus

many individual requests for movement may be combined together and may also be

merged with automatic movement and garbage collection. Manual movement is thus quite

inexpensive.

6.4 Garbage Collection Revisited

This section describes the garbage collector actually used on ORSLA. It implements

the automatic mover and the manual mover as well as performing garbage collection This

garbage collector is very similar to the garbage collector described in Chapter 4. Garbage

collection begins when the area to be garbage collected, A, is passed as an argument to the

garbage collector. Area A is placed in the set of areas, S, that will be garbage collected

together. All of the areas that are cabled to A are also placed in S. All of the processes that

are executing in the areas in S are stopped and placed on a list, P. The areas in S are

locked so that other processes cannot begin accessing the areas in S during the garbage

collection. A new set of areas, $', is then produced. For each area, X, in S, there will be a

corresponding area X' in S'. A mark data base, MX, is created in the LCA for each area

X. The explicit cables from X to other areas are copied into X' and are marked as unused.

The area A is the first area to be garbage collected. First, however, it is necessary to

process the list of objects that are being manually moved from A. For each object, m, that

is being moved from A, a new copy m' is made in the area it is being moved to unless that

area is in S, in which case the object is placed in the corresponding area in S'. The

information in m is not copied into m' at this time, but m's new location is entered in the

external mark data base, MA-

We are now ready to begin the collection of the information in A. Each of the objects

Section 6.3 168

Garbage Collection Revisited

on the list of named objects in A is collected in the manner described in Chapter 4. If A is

an LCA, then any of the processes in P that are in A are collected as well. Since the list of

named objects is supposed to describe the information in A except for temporary

information which should be accessible from any process running in A, the only unmarked

accessible information left in A should be moved to other areas. In order to achieve this, a

garbagesollection.state is added to the miscellaneous information in A and this state is now

set to markingscomplete.

We are now ready to complete the actions required by the manual mover. The list of

objects to be moved manually is now processed again. For each object, m, a copy, in', has

already been made in the required area, but the information in m has not been copied into

m'. We are now ready to copy the information in m into m'. Any object references in m

must be collected and their new versions placed in m'. Inter-area links will automatically be

generated whenever necessary when an inter-area reference is stored in m'. Any unmarked

objects that are referenced from m should be copied into- the area containing M'. This

automatic movement of objects that no longer belong in the original area makes the

manual mover much easier to use than it would otherwise be.

The list of incoming links to A must now be processed. As was noted in Chapter 4,

processing the list of incoming links is a sensitive operation because it should not cause

cables to be created from the LCA in which the garbage collector is running to any of the

areas that have links to areas in S. Each incoming link to A is now considered. The links

from areas in S are not processed at this time because they may no longer be accessible.

They are marked as being possibly..unnecessary, however, so that they will be processed

when it is later determined that they are, in fact, accessible. Each link from an area, Z,

outside of S (possibly in S') to A is processed by calling collectinnew-area of the object it

is linked to, but in such a way that unmarked objects will be copied into Z. If Z is involved

in another garbage collection, however, then unmarked objects are copied into A' instead.

These complications can be handled by adding two arguments to the collectinznewarea

procedure: previoussrea, and the boolean maysopyintopreviousarea. If an area is in the

markingscomplete state, then it will copy any unmarked objects into previousarea, that is,

the area containing the incoming link, as long as maycopyinto-Previousszrea is true. The

Section 6.4 169

Garbage Collection Revisited

procedure collectinunewsarea(y, previous-area, maycopy.into-previous-area);
begin object y, M; area previousarea, A, N; boolean maycopyinto-previous-area;
procedure collect(x);

begin object x, new.x; integer i;
if externallydnarked?(x, M) then return newcopy(x, M);
new-x :- allocatenewsopy(x, N);
externallynark(x, newx, M);
for i :- I to size(x) do

begin object z;
GC.Joad(z, x iJ);
begin object w;

if storagemonitor?(z) then w :- deactivatejnonitor(z);
else w := z;

if ovatomic?(w) then
if 1A2?(w) then w := createnew-link(w, N);
else if area(w) - area(x)

then w := collect(w);
else if garbagecollecting?(area(w))

then w :- collectinszew-area(w, N, true);
else ;

if storagemonitor?(z) then setcstorage-nonitor(newxi], t)
else newcx-i) :- w;

end
end

return newx;
end

A :- area(y);
M : markdata-base(A);
if marking-somplete?(A) A maycopy.into-previoussarea

then N :- previous-area;
else N :- corresponding-area(A);

return collect(y);
end

Fig. S0. COLLECTJN..-NEW.AREA Procedure

new code for collectin-newarea is shown in Figure 30. The only change to collect, the

internal procedure in collect-inanew-area, is the recursive call to collect.in.newsarea.

When the object referenced by an incoming link from area Z has been collected, the

new reference is stored into the link and the link is unthreaded from the list of incoming

links to A and is added to the list of incoming links to the area that the link now points

Section 6.4 170

Section 6.4 Garbage Collection Revisited 171

into. Most of the time the object being referenced will already have been copied into A' by

the time this link is processed. If the object was moved by the mover, however, the object

may now reside in Z or there may be a cable from Z to the area the object now resides in

that makes this inter-area link unnecessary. Thus the cables from Z are checked and if the

link is unnecessary, it is marked as possibly-unnecessary. The link cannot be replaced by a

direct reference at this point because although we know where the link is, we don't know

where the reference to the link is. Since the link is now marked as possiblyiunnecessary, the

inter-area link will be replaced by a direct reference the next time area Z is garbage

collected.

After the list of incoming links to A has been processed, all of the sources of

accessible objects in A have been exhausted except for the accessible links from other areas

in S and direct references from other areas in S. These can only be found by garbage

collecting other areas in S, however. The process described for A is now followed for the

other areas in S. Any direct references from other areas in S to unmarked objects in A will

cause those objects to be moved from A because area A is in the markingcomplete state.

All of the incoming inter-area links to A from other areas in S have been marked as

possiblyunnecessary, so if any of these links are found to be accessible, they will be treated

the same as direct references to A. Thus, after all the other areas in S have been processed,

all of the accessible objects in the areas in S will have been found and moved to areas in

S' or to other areas. The cables from areas in S' to all other areas are now checked to see if

any are still unused. If so, they are deleted. Remember that an unused cable may be deleted

at any time, but no other cables may be deleted except by a hard delete of the entire area

that the cable is from. We may now unlock the areas in S' and resume the processes on the

list P. A hard delete is performed on all the areas in S and the new copy of the activation

record that called the garbage collector is returned to. The garbage collection is now

complete.

A garbage collection issue that remains to be explained is exactly what Cload does.

CC.Joad is the operation used to read information out of an old copy of an object in order

to copy it into the new copy of the object. The hardware described in Chapter 5 is ideal

for performing at very high speed the checks (area(x) - area(w)) and

Garbage Collection Revisited

GC-load

Access word to be loaded, w, from location
calculated from x and put page specifier for
the location in x into the TEMP register.
Do not trigger storage monitors.
Initialize condition codes to 0.

is w yes access ossibl
an IAL? possibly_unnecessary unnecessary?

bit in IAL ncsay

no -no
yes

access direct

does w reference in

contain an 2- rtur link & use as

address?w

yes
return

access page

. map for W-

no area(x)= no set
deleted.? area (w)?conditioncodel

to 1

yes yes

yes set

return gcbit? yeconditioncode2

deleted to 1

object no

return

Fig. 31. GC-LOAD Instruction

172Section 6.4

Garbage Collection Revisited

garbagescollecting?(area(w)) that are required in the collect procedure. These checks could

easily be performed by the CC-load instruction and the results could be returned in the

condition codes1. I assume that the system has a two bit condition code consisting of the

individual bits condition-codel and conditioncode2. We have already seen some of the

special properties of the OCload instruction: 1) it does not trip storage monitors, but allows

them to be moved into the new copy of the object, 2) it does not automatically return the

reference within an inter-area link unless it is marked as possibly-unnecessary, thus the

garbage collector can stop marking at inter-area links, 3) GCJoad trips reference monitors

so that reference counts will be maintained correctly.

A flowchart of the GCJoad instruction is shown in Figure 31. GCJoad(x) begins by

obtaining area(x) while it loads w into the necessary register. Area(x) is temporarily placed

into the TEMP register in the page map. The two checks (area(x) - area(w)) and

garbage-collecting(area(w)) can now be easily computed by accessing the page map using

the address contained in w, if any. The hardware will then compare area(x) (TEMP

register) to area(w) and will also have the GC bit from the page map that indicates

garbage.collecting?(area(w)). Thus by adding a page map access to GCJoad, it can return

with a condition code that indicates the results of these two tests. The other tests all involve

looking at the type code of w and so are very fast. This modification to GCload

significantly speeds up the most common cases: intra-area references, and direct references

into areas outside of the garbage collection. Both of these cases are particularly common

when garbage collecting a single LCA. OCJoad can also use the page map of the object

referenced to detect dangling references to deleted areas. The page map entry for the

object will contain a deleted bit that indicates that the area associated with this page of

address space has been deleted. If the deleted bit is on, GCload returns a reference to the

deleted object.

1. Some machine languages do not have condition codes but use skips instead. Whatever
technique is used to return the results of compare instructions should be used by the
CC-load instruction to return the results of these tests.

Section 6.4 173

Problems Solved by the Automatic Mover

6.5 Problems Solved by the Automatic Mover

A serious problem with the placement of objects arises on ORSLA because objects

are so small that the user does not want to be aware of most of them. The user wants to be

able to deal with large groups of objects as if they were a unit and without knowing how

many objects are involved. The first aspect of this problem appears as the difficulty that

programs have of deciding where to put their results. Most results are intermediate results

in a computation and so should be placed in the local computation area, but some results

are final results and so should be placed in other areas. The automatic mover solves this

problem by allowing such programs to create their results in the LCA. If they are final

results that should be saved, then a reference to them will be stored in the area in which

they belong and then the results will become inaccessible from the LCA in which they

reside. The computation in the LCA will probably still be able to use the results, but only

by accessing the object reference stored in the permanent area in which the results belong.

The next time the LCA is garbage collected, the objects that do not belong in the LCA will

be moved automatically to the area in which they do belong. Since the length of time

between the creation of the objects and the garbage collection of the LCA will be relatively

short, there will probably be only one area on the system with references to the objects that

were initially, but improperly, placed in the LCA. Thus the automatic mover will not have

to choose between several possible areas. Even if the mover does have a choice of areas,

however, it just selects any of the possible areas at random. If it later becomes obvious that

the objects have been misplaced, then the mover can always move the objects again. Thus

the automatic mover allows many programs to be written without concern for where their

results are placed. This is particularly important for very general, low level programs such

as the multiply operation.

Many systems require the user to be aware of all of the objects known to the

operating system: usually files and jobs. On such systems objects are so large that these

objects usually correspond to objects that the user wants to manipulate directly and so

wants to be aware of. On ORSLA, however, a file is a complex data structure consisting of

perhaps thousands of objects. The automatic mover allows the user to be unaware of most

of these objects. The user need only be aware of the objects he will manipulate directly:

Section 6.5 174

Problems Solved by the Automatic Mover

deleteaccount

gt-account

error handler

add-account

create-account

report

- --- print-account

accounting-system accounti

---2namel name2

addressl address2
hash table

This figure shows two separate modules of information that are somewhat related. The
lower module is the data base for an accounting system. Only a few of the objects in this
data base are actually shown. The upper module is the machine code of the accounting
system software, consisting of seven procedures. The four right-most procedures are
internal interfaces in the accounting subsystem, while the three left-most procedures are
entry points into the subsystem. Only these three procedures need be named in the area
that contains the accounting subsystem software, while only the hash table in the data base
need be named in the area that contains the data base. Note that the report procedure
contains a reference to the data base because a report on this particular data base is made
if report is called with no arguments.

Fig. 32.

175Section 6.5

Problems Solved by the Automatic Mover

those objects that the user wants to have names for. Many complex data bases need a

name for only one of the objects in the data base: the root of the data base (see Figure 32).

Such a data base forms a module of information that is always used by starting at the root

of the data base. Once the root of such a data base has been placed onto the list of named

objects in an area, the automatic mover has a good chance of identifying the rest of the

data structure and moving it all into the area that contains the root object. The only

references to the internal objects of the data base should be from temporary storage in

LCAs that are using the data base and from other objects in the data base. The automatic

mover usually gives precedence to inter-area links rather than direct references when

moving an object, so internal objects in the data base should migrate to the area

containing the root object since they will be referenced with inter-area links from this area.

Other permanent areas will usually contain a reference to the root object of the data base

since these references will eventually allow the data base to be used, which occurs starting

from the root object.

Some complex data structures consisting of many objects may be used starting at

several of the objects in the structure. These objects are the entry points into the structture.

The user will need to have names for all the entry points so that the data structure can be

used. A common example of a data structure containing several entry points is the code for

a subsystem (see Figure 32). All of the entry points into the subsystem must be named so

they can be called from outside of the subsystem. Special purpose subroutines used only by

this subsystem do not need to be named since they are not used from outside of the

subsystem. If all of the entry points to a data structure are placed on the list of named

objects of the same area, then the entry points into the data structure will be forced into

that area. Inter-area links from other permanent areas into this data structure will only

reference entry points into the structure, so the only references to the rest of the data

structure will be from the entry points into the structure or from LCAs that happen to be

using the data structure. Since the automatic mover gives precedence to inter-area links, the

structure will be moved into the area containing the entry points of the data structure

rather than into an LCA. Thus we may expect that the user will have to be aware of the

placement of all the entry points into a complex data structure but the user should not

have to be aware of the objects that make up the structure. Since a data structure is

Section 6.5 176

Problems Solved by the Automatic Mover

manipulated through the entry points into the. structure, the user will need to have names

for the entry points in order to manipulate the structure.

Another problem solved by the automatic mover is that the information in an area

may have little to do with the named objects in the area, especially if the user explicitly

places objects into the area. The automatic mover ensures that the list of named objects

really does describe the information contained in the area. This feature allows the user to

control what information is kept in each area by specifying in which area each named

object is to be placed. If the user decides that two areas should be combined, all of the

named objects in one area can be manually moved to the other. The automatic mover

gives precedence to references from objects being manually moved over incoming

inter-area links, so when the area being abandoned is destroyed with a soft delete, all the

information in the area will move into the other area. It is not quite so obvious that an

area can be divided so easily, however. If an area actually contains two complex data

structures and if all of the entry points of the two structures have been identified and are

on the list of named objects, and if all the entry points for one of the structures are

manually moved to another area, then it is clear that the entire data structure will be

moved automatically into the new area the next time the original area is garbage collected.

Thus, given all these preconditions, areas can be divided successfully. If, on the other

hand, the two data structures in the area are related more closely to each other than to

other data structures, then some of the entry points into the structures may not have been

named because they were not used from outside the original area. The automatic mover

will not properly divide such structures unless the entry points between the structures are

also identified. Parts of the data structure that should be moved will remain in the original

area due to the basic conservatism of the automatic mover. It will, of course, be possible to

identify the rest of the entry points at a later date and manually move them to the proper

area, at which time the rest of the data structure associated with those entry points will be

moved automatically to the proper area.

Thus we see that if the user takes the responsibility for identifying and naming all of

the entry points into a data structure placed into an area, then the automatic mover will

place the rest of the objects in the structure into the same area. If, on the other hand, the

Section 6.5 17/

Problems Solved by the Automatic Mover

user writes software that initially places objects into the proper area, then the user need not

name all of the entry points into an area, it is only necessary for the user to name the roots

of the data bases in the area. The difference occurs because in the first case we wanted to

be sure that the proper information would be moved into the area regardless of where it

was initially placed, while in the second case we are only concerned with preventing

information from being moved out of the area. The automatic mover is basically

conservative in that it will not move an object to another area if it is still accessible from

the area it currently resides in. Thus the automatic mover can be used by those who do not

want to take any responsibility for placement of objects other than named objects but can

also be used by those who want to take some more responsibility for the placement of

objects.

6.5.1 Multiple-Area Cycles

We are now ready to deal with a very serious problem of garbage collecting areas

separately. The question is: "Does separate garbage collection of an individual area actually

get rid of all the garbage in the area?" The answer to this question is "Yes, if the

automatic mover is used as well." Without the automatic mover, a multiple-area cycle using

inter-area links can prevent garbage from being reclaimed as we saw in section 4.12. With

the automatic mover, however, a multiple-area cycle that is inaccessible from anywhere in

the system will be consolidated into fewer areas as the areas that hold parts of the cycle are

garbage collected until the entire cycle resides in a single area. Garbage collecting this area

will then reclaim the storage for the entire cycle.

Let us examine this claim a little more carefully. Let us consider the inaccessible

multi-area cycle C consisting of the objects c1, .. ., c,.. These objects reside in areas A&i'

... , Acm which form a set of areas AC. Since the objects in C form a cycle, we know that

we can start from any object c; in the cycle and follow object references through other

members of the cycle to reach any other member of the cycle. Thus all of the members of

the cycle are ultimately accessible from any member of the cycle. just because the objects in

C are inaccessible does not mean that objects do not exist that contain object references to

objects in C, however. The set B of inaccessible objects are those objects that are not

178Section 6.5

Multiple-Area Cycles

members of C but that contain object references to members of C. In addition, inaccessible

objects that contain object references to objects in B are also members of B. The cycle C

cannot be recognized as inaccessible until all of the members of B have been reclaimed.

Note that no members of C contain object references to objects in B. Thus the inaccessible

objects in B ultimately point to the inaccessible objects in C. The objects in B reside in

areas in the set Ab. Note that no accessible object can contain an object reference to any of

the objects in BUC. Thus the objects in BUC contain all of the object references in the

whole system to the objects in BUC. Note that none of the objects in BUC are area objects

or are on the list of named objects in any area because all of the objects in BUC are

inaccessible, while area objects are accessible from the file system and all the objects on

lists of named objects in areas are accessible from area objects.

In order to simplify things, I will assume that none of the objects in BUC have

pending requests to be moved to another area. If any requests to the manual mover for

objects in BUC are pending in an area, X, then area X should be garbage collected. The

pending move request will thereby be processed. No additional move requests for objects in

BUC can be generated because these objects are inaccessible. Another way of looking at

this requirement is to consider an object with a pending move request to be accessible to

the manual mover. This is an accurate picture because the manual mover assumes that all

objects being moved are accessible. Storage for these objects cannot be reclaimed until the

areas to which the objects have been moved are garbage collected.

We are now ready to state the claim a little more precisely. The storage for the

inaccessible objects in the sets B and C will be reclaimed by the time all of the areas in the

set AbUAc have been garbage collected one or more times. It is not necessary for the areas

in AbUAc to be garbage collected together. In most normal cases it will only be necessary to

garbage collect the areas in the set AbUA once, but there are some pathological cases that

could require some areas to be garbage collected again before the objects in B and C can

be reclaimed.

This claim is proved by induction. We already know that if all the areas in AbUAc

are garbage collected at once, the storage for all of the objects in BUC will be reclaimed

Section 6.5.1 179

Multiple-Area Cycles

because there are no object references outside of areas in AbUAC to objects in BUC and

none of the objects in BUC are accessible. This is the basis of the induction. The induction

step states that when a group of areas, A , are garbage collected together one or more

times, then the objects in B that are in areas in Ag will either be reclaimed or will be

moved to areas in Ab-Ag and the objects in C that are in areas in A will be moved to

areas in (AgUAc)-Ag. Thus after the garbage collections, all of the objects in BUC will be in

the areas (AbUAc) Ag. In most normal cases only a single garbage collection of areas in A

will be necessary, but there are some pathological cases, which will be seen below, that

could require the areas in Ag to be garbage collected more than once.

Let us now consider the garbage collection of area G from the set A . A new copy of

the area is constructed: area G'. The sets B, and C contain the members of B and C
g g

respectively that are in area G. The garbage collection of the areas in Ag proceeds by

garbage collecting areas in Ag one at a time. Thus some areas in A will be garbage

collected before area G and some areas in Ag will be garbage collected after area G. The

garbage collection of area G itself is broken into two important phases: before and after

area G is placed in the marking-complete state. Before C is placed in the markingcomplete

state two things occur. First, the objects being manually moved are moved to their new

areas. We have assumed that none of the objects in BUC are being manually moved.

Second, the list of named objects in area G is garbage collected. Since every list of named

objects is accessible from the file system, all of the objects processed during this phase of

the garbage collection are accessible objects and so do not include objects in B UC . After
g9g9

G has been placed in the markingicomplete state the objects that have been manually

moved are marked from and the incoming inter-area links to area G are processed. None

of the objects in B UC are accessible from the objects that have been manually moved, so

we need only consider the second part of this phase. Incoming links from other areas in A
g

are marked as being possibly-unnecessary but no other action is taken with these lists.

Incoming links from areas outside of A are marked from. In many cases the object linked

to will already have been moved to area G', but if the object is unmarked, it is moved to

the area the link comes from unless that area is involved in another simultaneous garbage

collection. During this phase we will process all the inter-area links from areas in

(Ab"AC)Ag to objects in the set BgUCg. An object that is linked to directly will be moved

Section 6.5.1 180

Multiple-Area Cycles

to an area in (AbUAc)-Ag unless that area is involved in another simultaneous garbage

collection, in which case the object will be moved to G'. The object will then be marked

from and any unmarked objects found will be moved to the same area the original object

was moved to. Thus objects in B UC will be moved to areas in (AbUAc)~Ag or, in unusual

cases, to G'.

The problem of a simultaneous garbage collection preventing objects in BgUC from

being moved to an area in (AbUAc)~Ag can be solved by merely performing the garbage

collection of the areas in Ag (now Ag') again. During the second garbage collection of G, a

different set of areas outside of A will be involved in simultaneous garbage collections
g

and so the remaining objects from B UC may be moved out of area G. Actually, it will be
g g

rare when an inaccessible object is prevented from being moved to another area for

several reasons. First, we realize that simultaneous garbage collections can interfere with

each other and so ORSLA is designed with this in mind. Most garbage collections initiated

automatically by a computation will involve just a single area: the LCA. There will rarely

be any inter-area links into an LCA that point to inaccessible objects. If there is an

inter-area link to an object in an LCA it will be a reference that has recently been created

by the computation, so the object should not be inaccessible yet. The object will probably

be inaccessible to the LCA, however, so the object will be moved out of the LCA, thereby

reducing the number of incoming links to the LCA. Hopefully most garbage collections of

permanent. areas will be performed as background jobs on ORSLA. These background

jobs will be run one at a time to reduce the interference from simultaneous garbage

collections.

We have now considered an object, x, that was unmarked when an incoming link to

it was processed from an area outside of A . We will assume that x has been copied into

an area in (AbUAc)~Ag. The object x is marked from. Since x may contain references to

objects in BUC, we must consider what happens when x is marked from. If x contains an

intra-area reference to an unmarked member of B UC then that object is also copied into

the area in (AbUAc)-Ag that x was copied into. If there is a reference in x to an inter-area

link, there are two possibilities depending upon whether the link is marked as

possibly-unnecessary. If the link is not possibly-unnecessary, then the inter-area link is

Section 6.5.1 181

Multiple-Area Cycles

copied into the area x has been moved to. Otherwise it is treated as a direct inter-area

reference. Finally, x may contain a direct inter-area reference. In this case there are three

possibilities: 1) the inter-area reference points into an area outside of A, 2) the inter-area

reference points into an area in A that is in the markingcomplete state, and 3) the
g

inter-area reference points into an area in A that is not in the marking-complete state. In

the first case, the object reference is merely stored into the new copy of x, possibly creating

an inter-area link automatically. The object reference does not point to an object in B UC
g g'

however. In the second case, the collect-inznewarea procedure is called and if the object is

unmarked, It is placed in the same area as the new copy of x. In the third case, however,

when the collectin-newarea procedure is called on the object referenced, y, in area Aff

the object y is copied into the new copy of area A - A ' Thus we find that the objectsgy' &r,
referenced from x that are in B UC are usually moved to an area in (,bUAC)~A, but

sometimes these objects may be moved to a new copy of an area in A . I expect this latter

case to be rather rare because of the order in which the areas in A are processed. An
g

object in BgUC can only be moved to an area in A ' if, when an incoming link into an

area in A is processed, one object is moved to an area in (AbUAc&-A and then an

inter-area reference is followed to another area in A that is not in the marking-complete
g

state. This inter-area reference will be covered by a cable. Although inter-area links that

are marked as possibly-unnecessary are treated as direct references, either these links are

also covered by a cable or were marked as possiblyunnecessary when processing the

incoming links to the area it points into. This only happens if the area the link points into

is in the markingscomplete state state, but in this case the area the link points to is not in

the marking-romplete state. This problem can be avoided if the cables between areas in A
g

are used to determine the order in which the areas are processed so that if there is a cable

from area Agi to A - then area A will be processed before area A91. It is possible to

satisfy this criterion if the cables between areas in A do not form a cycle. Thus direct

inter-area references between areas in A will only be found when they point into areas ing
the marking-complete state. If the cables between areas in A form a cycle, however, it isg
not possible to garbage collect all the areas in A before all the areas in A that are cabledg g
to them. On the other hand, cycles of cables are strongly discouraged on ORSLA and

should not occur. Even if a cycle of cables does occur, however, it merely slows down the

reclamation of an inaccessible, multi-area cycle, it does not prevent the cycle from being

Section 6.5.1 182

Multiple-Area Cycles

reclaimed. Note that it was necessary for one object to be moved to (AbUAc)-Ag before a

direct inter-area reference could cause an object in B UC to be copied into an area in A

Thus it will not be necessary to garbage collect the areas in A more than IBgUCgI times

before moving all the objects in BgUCg to areas in ('bUAc)-g, but it will be unusual if

the areas in A need to be garbage collected more than once. During the garbage collectiong
of the areas in Agmost of the objects in B UC will be moved to areas in (AbUAc)Ag If

we assume that the two pathological cases do not occur, then all of the objects in B UC

that are ultimately accessible from objects in (BUC)-(BgUCg) will be moved to areas in

(AbUAch)g and the objects that are not moved will be reclaimed. Note that all of the

objects in Cg will be moved unless (BUC)-(B UC) is empty since all objects of the cycle are

ultimately.accessible from each of the other objects in BUC.

We have now completed the induction step of the proof. Garbage collecting areas

reduces the set AbUAc until all of these areas (possibly only one area) are involved in a

single garbage collection, when the storage for all of the objects in BUC is reclaimed. This

proof shows that regardless of how complicated a multiple-area cycle is when it becomes

inaccessible, garbage collection with the automatic mover will eventually reclaim the storage

for the cycle. This proof deals with the worst case, but it does not give a good idea of what

happens in the normal case.

When considering the normal case of multiple-area cycles, we must remember that

garbage collection is the primary.method of reclaiming storage on ORSLA, and so areas

are garbage collected whenever they have a significant amount of garbage in them. It is

against this background of continual garbage collection that we should consider

multiple-area cycles. Only a multiple-area cycle that has a brief lifetime will not be affected

by garbage collection before it becomes inaccessible. A cycle that has such a brief existence,

however, will probably be created by a single computation but if so, it will probably be

created entirely in a single LCA. A long-term cycle will definitely be affected by the

background garbage collection. In order for such a cycle to remain spread over many areas

there must be many objects in the cycle that are entry points into the cycle. Furihermore,

the cycle must be accessible from many areas in the system because the part of the cycle in

each area must be accessible to the information in that area or the background garbage

Section 6.5.1 183

Multiple-Area Cycles

collection would move that part of the cycle elsewhere. It would be unusual for so many

references to disappear quickly from so many different, and thus presumably unrelated,

areas. It would be likely for the references to the cycle to disappear one by one, during

which time the background garbage collection would collapse the cycle into fewer and

fewer areas. The process of concentrating the cycle into a single area begins as soon as only

one object in the cycle is referenced from outside the cycle or as soon as all the references

to the cycle are from a single area. Once a cycle has been placed into a single area, the

mover will keep it in a single area because when the first object in the cycle is marked, the

recursive call to the collect procedure will cause all the other objects in the cycle to be

marked as well and to be copied into the same area the first object was copied into. Then

the cycle can only be spread over several areas either by manually moving objects in the

cycle or by modifying the cycle. Thus we see that many cycles will probably be contained

within a single area but even when multiple-area cycles do occur, they will probably not be

inaccessible.

6.6 Problems Created by the Mover

There are two problems created by the automatic mover. First, placement of objects

can have an important effect on the locality of reference of the programs that use those

objects. By moving objects from areas in which the objects are not referenced to areas in

which they are referenced, the automatic mover increases the probability that these objects

will be placed on the same page with other objects that will be used at the same time as

these objects. Thus the automatic mover uses a very rough heuristic that may produce

acceptable locality of reference. If, on the other hand, the locality of reference in a

particular area is very important to a user, then the user may have carefully analyzed what

objects should be placed within the area to maximize locality of reference. The user may

be satisfied with the relative placement of these objects within the area that is achieved by

the copying garbage collector but may not want objects moved automatically into or out of

the area. The basic conservatism of the mover, combined with the ability of the user to

place the root of a data structure onto the list of named objects of an area to force the

mover to keep a structure in the area handle this problem reasonably well, but are

inadequate in some cases. Suppose area B supports area A by holding the objects that are

Section 6.5.1 184

Problems Created by the Mover

referenced from objects in A but are rarely used when using the information in area A.

The existence of area B allows the objects in area A to be more concentrated and so have

greater locality of reference when the information in B is not used. The information in

area B cannot be placed on the list of named objects because then all the information in B

would always be accessible. The existence of objects in B should be determined by whether

they are accessible from area A. There may be other instances where the basic

conservatism of the mover is inadequate as well.

The second problem is one of protection. Each user must pay for the storage in his

areas. Furthermore, there is a limit to the amount of storage available on the system. It is

possible for an owner of a large data base to manipulate his references to the data base so

that the automatic mover will move it into areas belonging to other users. It should be

noted, however, that the automatic mover will only move objects into an area that already

references them, so such a malicious user will be taking advantage of people who have

decided to cooperate with him. Such malicious behavior could be handled by normal

societal methods, such as refusing. to cooperate further with the malicious person.

Both of these problems can be handled by adding some special mechanisms to

ORSLA that control the automatic mover:

1) there could be flags in the area object that indicate that objects cannot be

automatically moved into or out of the area

2) there could be a flag in each inter-area link and cable that indicates whether the link

or references covered by the cable could cause automatic movement

3) on each area, there could be a list of other areas that objects can or cannot be moved

automatically to or from; this list could contain not only specific areas, but could

also characterize the type of area, e.g. the areas owned by a certain person or

controlled from a certain directory.

These mechanisms create new problems, however. What should be done with an object

that is no longer part of the information in the area in which it resides and is accessible

from other areas on the system, but which cannot be moved to any of those areas? There

are two choices: 1) the object can be kept in its current area, or 2) the object can be deleted.

Each of these choices is appropriate in certain circumstances. The user can be given

Section 6.6 185

Problems Created by the Mover

control of this choice by adding another bit of information to the mechanisms listed above.

If the user interferes with the automatic mover because he is placing objects explicitly,

then he will probably want objects kept in their current area. This option raises the

problem of multiple-area cycles again. In addition, the list of named objects for an area

that the mover cannot move objects out of does not necessarily describe the information in

the area very well. Since the user is taking responsibility for the placement of objects,

however, these problems should be solved by the user. The second option causes the

garbage collector to delete objects that are not accessible from their own area, are accessible

from other areas, but which may not be moved to any of these areas. In this case the list of

named objects in the area continues to describe the information in the area. A

multiple-area cycle may be destroyed by this mechanism before it becomes inaccessible, but

when it does become inaccessible, the storage for the cycle will be reclaimed. Thus the

second option is better if thi- automatic mover is being prevented from operating due to

considerations of protection. When objects are deleted by the garbage collector, all of the

references to the objects are modified so they reference the deleted object, thus no dangling

references are created1 .

6.7 Costs of Garbage Collection

Now that we have seen the full garbage collector on ORSLA and have an idea of

the benefits gained by garbage collection, it is time to consider the costs of garbage

collection. Unfortunately, it is not easy to analyze these costs meaningfully. As a rough

approximation, the cost of a garbage collection is proportional to the amount of storage in

1. Those readers who are beginning to wonder why all of these complications are
necessary when explicit deletion of objects has been used for so long are referred to
Chapter 2, where I explain why the concept of objects causes garbage collection to be so
desirable.

Section 6.6 186

Costs of Garbage Collection

accessible objects found by the garbage collector 2. A more meaningful measure, however,

would be the cost of garbage collection per word of reclaimed storage. If we assume that a

garbage collection uses an amount of CPU time that is proportional to the amount of

storage in accessible objects and that its only benefit is the amount of storage reclaimed,

then it is obvious that the cost in CPU time of reclaiming a word of storage can vary

widely depending upon when the garbage collector is invoked.

In order to analyze when to invoke the garbage collector, it will be necessary to make

several simplifying assumptions that are not often valid. After I have performed this

simplified analysis, however, I will use the results of this analysis to further analyze the

cases in which the assumptions of the simple analysis do not hold.

Let us consider garbage collection of the area A that contains n words of accessible

objects. If Cgc is the cost of garbage collection per word of accessible object, then nCgc is

the cost of a garbage collection of area A. Let us assume that the information in area A

has a certain rate of garbage generation, r, associated with it. Hence r is the number of

words of garbage generated per day per word of accessible object in area A. Thus nr is

the number of words of garbage generated per day in area A. The true cost of garbage

collection includes the cost of the garbage as well as the cost of garbage collection. The

existence of garbage has two costs. First is the cost of the storage to hold the garbage. This

cost is proportional to the average number of words of garbage in area A. The second cost

of garbage is due to the fact that garbage decreases the locality of reference of

computations that use area A. It is difficult to analyze how this cost is related to the

2. Some people may want to include the costs of maintaining the lists of inter-area links.
These costs cannot be avoided on ORSLA, however. Furthermore, the maintenance of
inter-area links allows ORSLA to operate in a single, large address space while making
good use of virtual memory. As we saw in Chapter 5, these advantages seemed to allow
ORSLA to run faster than other systems, so if we are trying to compare costs of garbage
collection between two systems, the loss in speed on these other systems due to poor paging
or due to multiple address spaces should be counted against the cost of garbage collection
on these systems if maintenance of inter-area links is counted against garbage collection on
ORSLA.

Section 6.7 187

Costs of Garbage Collection

number of words of garbage in area A. If a computation that uses A has a large working

set and the garbage in A causes the computation to thrash, then the cost of garbage

increases more than linearly with the amount of garbage. To handle these uncertainties, I

assume that if there are x words of garbage, the cost of this garbage is x0C , where a and

Cs are parameters of area A. If t is the number of days since the last garbage collection,

then nrt is the number of words of garbage currently in area A and this garbage costs

(nrt)aCs dollars per day. If the amount of storage in accessible objects, n, and the rate of

garbage generation, r, are constant, then area A will be in a steady state and there will be a

constant frequency of garbage collection, f, in days. When it is time for a garbage

collection,f = 1/t. The total cost per day of garbage and garbage collection, T, for area A is

the sum of the average cost per day of garbage collection, Tgc, and -the average cost per

day for garbage, Ts. The average cost per day of garbage collection is just:

Tgc = ffCgc
The average cost per day of garbage is

t
T a aC

Ts = (nrt) Cdt = f (nrt) Cdt

Thus

T = nfC g + +1 f fa

We choosef by trying to minimize the total cost per day of garbage and garbage collection,

T.

dT Ca a CS(nr)a

df nCgc a+1 a+1

Setting dTldf to zero and solving forf, we find
a+1 a-1 a

fa n r C

gc

Section 6.7 188

Costs of Garbage Collection

Substituting in the equation for T, we find

Tgc

nT --

S a

a+I a-1la a
a n r CsC

aFl sgc

a-Iaa
a+l

na-1raCCa
a~l s gc

T =-n

Taking the log of both sides, we find

ln T = a ln a+l
a+l a

a+1

1a- l aC Ca4~ s gc

+ at ln(naCs) + a ln (nrCgc)]

Thus T is the weighted logarithmic average of the cost per day of n words of garbage

(naCs) and the cost of garbage collecting the garbage generated in area A in one day

(nrCgc). The reason the cost of n words of garbage is important is that the cost per day of

the garbage that exists when we garbage collect, (nr/fpaC, is between one and two times

the average cost per day for the garbage collection, which is proportional to the number of

words of accessible objects in area A.

(nr a =
f)

a+l
a}

a+l

a a-IraC Ca

a+1 s gc

a+l
a gc

1~

Section 6,7 189

Costs of Garbage Collection

Although this analysis reflects the uncertainty of the cost of garbage, it is very likely

that the cost of garbage will be proportional to the number of words of garbage, i.e. a - 1.

In this case we find that

T n rCsCgc 2 SqaC

T =n -s = 2 rCsCgc

T =2n -rCsC

The cost of garbage collection per word of garbage is the average cost of garbage

collection per day, T, divided by the number of words of garbage generated per day, nr.

T 2C C
nr r

Thus we have found that if a-1, then the cost of garbage collection is proportional to the

number of words of garbage reclaimed, but the constant of proportionality varies from

area to area. Those areas with the highest rate of garbage generation will have the lowest

cost of garbage collection per word of garbage. The cost of garbage collection per word of

garbage is not related to the size of an area as long as all of the information in the area

has the same rate of garbage generation.

The cost of garbage collection can be reduced by separating objects with different

rates of garbage generation into different areas. Consider the sets of objects, Sj and S 2

consisting of ni and n2 words of accessible objects and having a rate of garbage

generation of r, and r2 respectively. If these objects are separated into their own areas, the

total cost of garbage collection for these two areas, T, and T2 is:

T = 2n rCsCgT =sge

T2= 2~C

Section 6.7 190

Costs of Garbage Collection

If these objects are combined into one area, the total cost is

2 n r +n2r2
31= 2(+n92 n +n2 /CCgj

T= j2(n2r1 +nln2 (r1+r2)+n r2) CsCgc

The ratio of these two costs is:

T1+T

T
2

T 2
ST3

2 2
n2r + nr2

2 2
qni1ri1+ni1n 2 (ri1 r 2)+n2r 2

n 1r +n r2 +2n n2 r

n r 1+nn2 (r 1+r 2)+n r2

2 2
n r1 +n 1n 2 (r1 +r 2)+n 2 r2

Separating the objects is better than combining them if TI+T2 < T3, i.e. if 2rl'r2 - (r, +r2)
is negative. Substituting xr1-r2, we get

f (x) = 2 xr

f (1) = 0

- ri (x+i)

rrf)

f ' () = 0 f' (x) > 0 for 0<x<i

f' (x) < 0 for x>l

Thus f(x) is always negative except when x-I, when it is zero. Thus it is better to separate

Section 6.7 191

Costs of Garbage Collection

the objects unless they have the same rate of garbage generation. The basic reason for this

is that each set of objects has its own optimal frequency of garbage collection. Time for

garbage collection is wasted if a set of objects is garbage collected too frequently and

storage is wasted if a set is not garbage collected frequently enough. These considerations

are not so important on ORSLA that they have a major effect on what objects are placed

in an area, but these considerations do cause garbage collection on ORSLA to be much

more efficient than on systems on which the entire system is garbage collected at once.

Another factor that allows the cost of garbage to be reduced significantly on ORSLA

is that the assumption that garbage is generated at a uniform rate is very poor. Permanent

areas seem to be modified in bursts, while only a few areas have a constant rate of

modification and therefore garbage generation. The fact that files are modified in bursts

is used by systems that automatically backup their disk files by creating incremental dumps

that contain only the files that have been modified since the last dump. It remains

necessary to perform a complete dump occasionally, but if most files on the system were

being modified at a uniform rate, there would be no advantage to doing incremental

dumps at all. If permanent areas are modified in bursts, then the cost of garbage can be

reduced by garbage collecting an area immediately after a burst of garbage generation.

There will be no garbage in the area until the next burst of garbage generation and the

garbage generated by the burst just before the garbage collection will not have existed for

long and so will have been very inexpensive even though it allowed more garbage to be

reclaimed during the garbage collection. If the bursts of garbage generation are so large

that it is necessary to garbage collect the area during the burst as well as after the burst,

then the above analysis can be used to help determine when to garbage collect during the

burst; we can consider the rate of garbage generation to have changed during the burst.

During the quiescent period the rate of garbage generation drops to zero. When trying to

determine whether to garbage collect after a burst, however, the long term average of

garbage generation should be used rather than the rate during a quiescent period. If the

bursts of garbage generation are small, then the area should not be garbage collected after

each one. The above analysis can be used to help determine how many bursts should be

passed over before garbage collecting the area.. If such an analysis tells us to garbage

collect during a quiescent period, the area should be garbage collected at the beginning of

Section 6.7 192

Costs of Garbage Collection

the quiescent period.

Perhaps the highest rate of garbage generation will be found in the LCA. Different

computations will have different patterns of garbage generation in their LOAs. The rate

of garbage generation will not be constant, but it will probably be very high at all times

when compared to permanent areas. Since a computation lasts such a short time, it is

probable that the cost of disk for the garbage in the LCA will be rather low. Garbage

collection in an LCA will probably be forced by increases in the size of the working set

caused by the garbage. If the cost of high speed memory is not enough to cause garbage

collection, then the cost of thrashing will be, but if garbage collection is triggered by

thrashing, then the exponent a will probably be larger than one. This will increase the cost

of garbage collection, but it will also serve as a greater incentive to the programmer to

reduce the working set of his computation regardless of the amount of high speed memory

on his system.

The total number of words of accessible objects in an LCA is not constant. Thus it is

important to try to choose the time of garbage collection so it coincides with a small

number of accessible objects. The number of accessible objects almost always reaches a

relative minima between invocation of user-level commands, since during a command there

are many accessible objects that hold the temporary results of that command. The relative

minima of accessible objects between commands mark those times when garbage collection

can be performed more efficiently than the neighboring times. The analysis above must be

used, however, to select which of these relative minima should be used or to determine that

garbage collection needs to be performed before the next relative minima is reached.

Fortunately, the analysis above is not restricted by all the assumptions that were made

during its derivation. The assumption of a constant number of accessible objects is not

very restrictive if we realize that it only refers to the number of accessible objects over the

several opportunities for garbage collection that are being considered. Although the

number of accessible objects varies greatly during commands, it is relatively constant at

those times between commands. In any case, it is not known in advance whether the

number of accessible objects will increase or decrease, so a constant level is a good average

Section 6.7 193

Section 6.7 Costs of Garbage Collection 194

prediction. The assumption in the above analysis of a constant rate of garbage generation

is somewhat troublesome. The analysis allows the time of garbage collection to be

identified regardless of the values of a or r from the estimated cost of the next garbage

collection, the total cost of garbage since the last garbage collection, and the cost per day of

the current amount of garbage. These factors may be easier to measure or estimate directly

than a, r, Cs, or Cgc

Let t be the time since the last garbage collection and Kgc be the estimated cost of

the next garbage collection. Kgc can be estimated by adjusting the cost of the last garbage

collection by the increase or decrease in the number of accessible objects that will be

involved in the next garbage collection. Let K. be the total cost of garbage since the last

garbage collection and let g be the cost per day of the current amount of garbage. If we

were to garbage collect at time t, the average cost of garbage and garbage collection would

be

K K
T = T + T =-3C + S

gc s t t

We know that under the assumptions of our previous analysis that

s I)aCsT= h
But nr/f is the amount of garbage at the time of garbage collection and (nr/f)Cs is the

cost per day of this amount of garbage. At the time of garbage collection, (nrlf)aCs will be

equal to g, the cost per day of the current amount of garbage. Thus:

K
S=

T=
S t a+1

Solving for a, we find

a gt
K

S

Thus, once we have measured g and K., we can calculate a. If there are non-linearities in

the cost of garbage, they can be approximated reasonably well by the assumption that xaCs

Ap%. am

Costs of Garbage Collection

is the cost of x words of garbage. If the cost of garbage is actually exponential (due to
thrashing), we will find the value we calculate for a increasing with time. To a limited

degree, the ability to calculate a from g and Ks means that if the rate of garbage

generation is changing, it will affect the value calculated for a.

From the previous analysis we know that at the time of garbage collection:

a Ca+1 T (a+)L9C

a gC

Substituting for a, we find:

K + K
g =- gC.S

t

Thus we should garbage collect the area whenever

K + K
g 2 gC S

t

This algorithm allows us to handle variations in the number of accessible objects fairly

well, but it handles variations in the rate of garbage generation less well in certain

circumstances. If, during the period since the last garbage collection, there has been a large

increase or decrease in the rate of garbage generation, then a rather large or small value

for a will be calculated. The previous analysis assumes a steady-state, however, in which

the next cycle between garbage collections is like the current one. That means that the

analysis expects the rate of garbage generation to change to the rate at the beginning of

the current cycle when the garbage collection is performed. Performing a garbage

collection will not affect the rate of garbage generation, however. The effect of (a+l)/a is

very large when a is small but is not important when a is large, thus no great harm is done

if the value calculated for a is large due to an increase in the rate of garbage generation

rather than a non-linearity in the cost of garbage. The cost of garbage is at least

proportional to the amount of garbage, so a should not be less than one. I propose limiting

Section 6.7 195

Costs of Garbage Collection

(a+1)/a to a maximum of two to reduce the seriousness of the error if the rate of garbage

generation is decreasing. Thus the modified algorithm is that an LCA should be garbage

collected when

K + min (KK)
gg S2

t

This algorithm does not minimize the cost of garbage collection in all cases, but the errors

introduced by this algorithm will probably be much less than the errors caused by errors in

measuring and estimating g, Kgc, and Ks. This algorithm is a good starting point for

ORSLA. Future research will be able to refine the algorithm for automatically invoking

the garbage collector, but the algorithm given here should ensure that the cost of garbage

collection per word of reclaimed storage will be inversely proportional to the square root of

the rate of garbage generation.

6.8 Garbage Collection Corresponds to Other Operations on SAV Systems

Some people may have concluded that garbage collection is a major source of

overhead on ORSLA. After all, other systems don't do much garbage collection. This issue

is not at all clear-cut, however. Garbage collection is performed on ORSLA to handle

fundamental problems of storage fragmentation and locality of reference as well as to

reclaim storage. It may appear that LAV and SAV systems do not have such problems

within their files. I would suggest that this is because these systems currently do operations

that are equivalent to garbage collection.

On SAV systems, especially, we note that often a file is modified by performing a

pass over the entire file, copying it into high speed memory, processing it, and then writing

a new file. I suggest that this corresponds to two operations on ORSLA: 1) making a

modification to an area, and 2) garbage collecting the area. Notice that a new copy of the

file is made, thus corresponding to a copying garbage collector. Combining modifications

with garbage collection, however, has an important consequence. It becomes very expensive

to make a single, small modification to a large file. To eliminate this problem,

modifications are collected on SAV systems until there are a large number of them and

Section 6.7 196

Section 6.8 Garbage Collection Corresponds to Other Operations on SAV Systems

then they are all made at once, thus spreading the cost of the "garbage collection" over

many modifications.

On ORSLA, however, modifications to a data base are naturally separated from

garbage collection. Single modifications are not too expensive so they can be processed

immediately. It is still possible to save paging time for code and the data base itself by

accumulating modifications and making them all at once, but the desirability of having the

data base accurate may outweigh this difference in cost. On ORSLA, the user may wait

until the data base contains much garbage before garbage collecting it, rather than being

forced to garbage collect it because some modifications must be made.

The desirability of separating modifications from garbage collection has not been

ignored on SAV systems, however. Techniques have been developed on these systems for

operating in the way I just described for ORSLA. List processing is very helpful in

making single modifications, however, while list processing is less necessary if the entire

file is regenerated whenever a change is made. SAV systems provide very little support for

list processing within files while on ORSLA permanent areas may contain object

references that are interpreted by the hardware.

Perhaps the most frequent reason for copying information is to move it between

storage devices of different speeds. Virtual memory performs all of this copying (paging)

on ORSLA and Multics, but 110 operations do some of this copying on SAV systems. It is

well known that virtual memory can decrease copying of information between disk and

high speed memory substantially in many instances by taking advantage of the

instantaneous state of the computer system. Another important tool to reduce copying on

ORSLA is sharing. The same copy of a data structure can be used many times by copying

an object reference to the data structure instead of copying the data structure itself. Finally,

however, it becomes necessary to do some copying of data structures to make them compact.

By isolating this copying In a garbage collector, however, it can be invoked only when it is

really needed. In fact, the necessity of garbage collection is a consequence of widespread

sharing. If objects were not shared, each object would be used by only one program so it
would not be necessary to use garbage collection to reclaim storage since storage for an

197

Section 6.8 Garbage Collection Corresponds to Other Operations on SAV Systems

object could be explicitly freed by the program using the object. It would be necessary to

continually copy information from one object to another in order to avoid sharing,

however. It may be that garbage collection is the price we must pay for comprehensive

sharing of information. Sharing substitutes copying a single object reference for copying a

larger structure during normal computation, and enables the speedy modification of data

structures through the use of side-effects. The savings gained in these ways may well

outweigh the costs of garbage collection on ORSLA.

6.9 Comparison of Inter-area Links with Linking on SAV and LAV Systems

Linking on SAV and LAV systems allows a program, A, to be compiled separately

from the programs that use A and the programs called by A. The object code that is

produced by a compiler on an SAV or an LAV system is not quite ready to be executed,

however, because the compiler does not know where the subroutines called by A are. Part

of the object code consists of a list of external symbol references that must be defined

before the code can be run. Another part of the object code contains several symbol

definitions for the entry points into the object code that may be used by other programs.

Usually each external symbol reference consists of a word in which to store the symbol

definition and a character string that is the name of the symbol it should be linked to.

Such a symbol reference can be viewed as a link. When linking occurs, the definition of

each link is found and stored in the link. This is known as snapping the link. If it ever

becomes necessary to unlink, then a zero is stored in the link in order to unsnap the link.

This is rarely done on SAV or LAV systems but is necessary on SAV systems when a

program is purged from the address space to make room for another program. A link is

snapped by finding a symbol definition whose character string matches the character

string in the link.

Linking is necessary on SAV and LAY systems because of the short lifetime of an

address space on these systems. This kind of linking is less necessary on ORSLA because a

program can remain linked for long periods of time to the subroutines it calls. Without

considering the needs of separate compilation, however, we have needed two mechanisms

on ORSLA that are similar to the mechanisms needed to support linking. First, ORSLA

198

Section 6.9 Comparison of Inter-area Links with Linking on SAV and LAV Systems

has inter-area links. Inter-area links on ORSLA remain snapped for long periods of time.

Second, ORSLA has the list of named objects in an area that corresponds to the symbol

definitions in object code. The only mechanism that exists in object code on SAV and

LAV systems that does not exist on ORSLA is the presence of the name of the symbol

within a link. This mechanism allows links on SAV and LAV systems to be snapped. We

have not considered the possibility of snapping an inter-area link on ORSLA. So far we

have always created a link by providing the actual object reference rather than merely the

name of a symbol. In this chapter we have seen that inter-area links are unsnapped when

the object they point to is deleted with a hardslelete. In the next chapter we will see more

widespread unsnapping of inter-area links in order to implement revocation of access. If

inter-area links are to be unsnapped, however, it will be convenient to be able to resnap

them. Thus it is probably a good idea to add symbolic names to inter-area links on

ORSLA. It will be necessary to add two words to an inter-area link to incorporate this

change as well as the other information that this chapter has already suggested be

associated with an inter-area link. The new format of inter-area link will contain five

words:

1) the reference to the object linked to

2) the list of incoming inter-area links

3) the list of outgoing inter-area links

4) a character string name of the object linked to

5) miscellaneous information, including whether the object linked to may be moved to

the area containing this inter-area link

If, when an inter-area link is used, it is found to contain a reference to the deleted object,

then a fault could be generated that would try to snap the link. This brings us to the

problem of how to find a reference to the object the link is supposed to point to given

only the name of the object. On SAV and LAV systems there is usually a series of

directories that are searched until the name is found. The first directory to look in is the

directory that controls the area containing the link. The list of directories to be searched

could be associated with this directory. In some cases, however, the object linked to is not

named in any of the directories in the search. Multics allows this case to be handled by

storing the pathname of the object in the link. The pathname is a series of names. The

first name is applied to the root directory of the system to find another directory, and so

199

Section 6.9 Comparison of Inter-area Links with Linking on SAV and LAV Systems 200

on, until the last name in the series names the object itself. Both of these options could

easily be supplied on ORSLA.

Since the purpose of the name in an inter-area link is to allow the link to be

resnapped, there is some difficulty on ORSLA in finding out what name should be

associated with an inter-area link. It is not a serious matter if no name is associated with a

link on ORSLA. Nevertheless, it is possible to provide inter-area links between permanent

areas with appropriate names automatically. If an inter-area link between two permanent

areas is created automatically by storing an inter-area reference in one of the areas, the

chances are good that ORSLA can associate an appropriate name with the link

automatically by merely searching the list of named objects of the area the link points into.

It was mentioned earlier in this chapter that the user will provide names for all of the

objects in an area that are entry points into the information in that area from other areas.

The user will provide these names in order to allow the information in the area to be used

properly and also to allow the automatic mover to operate properly. Exactly when a simple

name should be generated automatically for an inter-area link and when a full pathname

should be generated will be left to future research. There is also a question about when a

name should be generated automatically for an inter-area link: when the link is created or

when it is unsnapped. This question will be left to future research.

Thus we see that inter-area links and the list of named objects are similar to

information kept in object code modules on SAV and LAV systems. By adding names to

inter-area links on ORSLA we can provide the ability to resnap unsnapped inter-area links

and the ability to create inter-area links to objects that do not yet exist. The programmer

who creates an inter-area link to an object that does not yet exist must supply the name of

the object. Compilers can use this feature to compile programs that call other programs
that have not yet been written. Thus the ability to snap unsnapped inter-area links

automatically appears to be useful. We will see in the next chapter that it helps reduce the

undesirable effects of revocation as well.

201

Chapter 7

Protection

Protection on ORSLA is implemented by enforcing the restrictions on the use of

object references that are inherent in the concept of objects. The low level restrictions on

the use of object references require any program that accesses the representation of an

object to have an object reference to that object. The low level restrictions allow the

program that creates an object to control the initial distribution of references to the object.

The high level restrictions allow the software that defines an object to control what

operations a program with a particular object reference may perform on the object and

how the operations are implemented. Section 3.3 discussed most of the ways in which the

low level restrictions on the use of object references are enforced, but section 3.3 did not

adequately describe how a program is prevented from accessing storage outside of an

object to which the program has a low level reference and on which the program is

performing load and store operations. Each load and store operation must check the size of

the object. A technique is described in section 7.1 for encoding most of the size information

into a 5 - 9 bit size field in the object reference and then storing more complete size

information elsewhere when necessary.

Section 3.4 discussed the general technique used on ORSLA to enforce the high level

restrictions on the use of object references. The object reference contains a high-low bit

that specifies whether the object reference is a low level object reference, in which case

load and store operations may be performed on the representation of the object, or

whether the object reference is a high level object reference, in which case only the

operations defined by the object's data type definition can be performed on the object.

Actually, the only operation that can be immediately performed on a high level object is to

convert it to a low level object, i.e. set the high-low bit in the object reference to low. Section

7.2 describes the operation that exists on ORSLA for setting the high-low bit and shows

how any program that is not part of the data type definition of an object is prevented

from using this operation on this object. In order to ensure that the operation of lowering

the high-low bit is fast, it will be necessary to describe the format of the object reference

for data type definitions, but no further description of the representation of a data type

Protection

definition will be given. Discussion of the representation of a data type definition is

beyond the scope of this thesis.

The domain is an important concept in the field of protection. A domain is a set of

objects for which object references can be obtained by a particular activation of a

procedure and the operations that can be performed on these objects with these object

references. On some systems, an entire computation is performed in the same domain,

while on ORSLA the domain of execution changes frequently. Domains on ORSLA are

defined in a similar way to domains on HYDRA, consisting of all the objects that can be

reached from the current procedure activation record. A new domain is entered on every

procedure call, but procedure calls on ORSLA correspond to procedure calls in a

programming language while procedure calls on HYDRA are inter-subsystem calls. Section

7.3 describes how a domain is defined on ORSLA.

All capability systems enforce the restrictions on the.use of object references and

allow access to an object to be handed out in a controlled manner, but capability systems

have always had a great deal of difficulty revoking access once it has been given out. I

adapt the technique described by Redell [Redell74) to ORSLA in section 7.4. It turns out

that garbage collection can be a very important tool for revocation. In addition the lists of

inter-area links and cables can be used for revocation. In section 7.4 I show how revocation

on ORSLA can be as good as the revocation on Multics: a system with excellent revocation

abilities.

Finally, the allocation of address space on ORSLA is considered in section 7.5.

Capability systems do not allow the user to write programs that allocate address space

because such programs can easily violate the low level restrictions on the use of object

references. On ORSLA, however, subsystem programmers must be able to write programs

that allocate address space so that they can control which objects are adjacent to each other

in the address space. Allocation of address space is better known as the allocation of

storage in the field of storage management, which has developed a large variety of

techniques for allocating storage. Section 7.5 discusses the "allocation of storage" even

though the term "allocation of address space" might be more accurate. Section 7.5 describes

Section 7 202

Protection

three free storage data types that are provided by ORSLA to give programmers a great

deal of flexibility in the allocation of storage while preventing anyone from allocating

storage that is not free.

7.1 Enforcing the Size of Objects

The obvious way to check each load and store instruction to ensure that the size of

an object is not being violated is to have a size field in the object reference that specifies

the size of the object. The check itself is then very fast. The goal on ORSLA of achieving

a small object reference does not allow the use of a large size field, however. A small size

field, on the other hand, will only be able to specify one of a small set of sizes. The size of

objects need not be restricted to this small set of sizes, however. If the offset within the

object of the word being accessed is less than the size specified in the object reference,

then the load or store operation is valid. If the offset violates the size field, however, it is

not necessary to immediately signal an error. It might be possible for other exact sources of

size information to exist that could be checked before an error is signalled. If the exact size

of the object is not violated, then the load or store may complete without error.

Thus the size field in the object reference will sometimes cover only part of the

object. Violating the size field in the object reference has the cost associated with it of

obtaining the exact size information. The coding of the size field in the object reference

should minimize this cost. The coding I suggest to achieve a 5 bit size field is shown in

f n f size

1 4 bits 0 n

size 1 16-2n

(a) (b)

Fig. 33. Coding of a 5 Bit Size Field

Section 7/ 203

Enforcing the Size of Objects

Figure 33. The 5 bit size field is divided into two subfields: a one bit flag,f, and a four

bit integer n, from 0-15. The flag indicates whether the object is large or small. If the

object is small, its size is n. If the object is large, its size is 16 27 or 24,n. This scheme

allows objects of size 16 or less to have their exact size in the object reference. An object

containing 35 words would have a size field that indicates a size of 32 words. Accesses to

more than half the words of a large object are approved by this size field as long as the

object contains less than 220 (about 1,000,000) words.

This coding is quite grainy and it may be argued that being able to cover only a little

more than half of an object in some cases is not good enough. By using a slightly larger

size field and by using the floating point technique shown above, it is possible to reduce

the graininess of the coding significantly. For example, the coding for a 7 bit size field is

shown in Figure 34. The first bit of the field is a flag,f, that specifies how the rest of the

field is interpreted. If f is 0, then the rest of the field forms the integer, n, from 0-63, that

is the size of the object. If f is 1, then the rest of the field is divided in two: a 2 bit

abbreviated mantissa, m, and a 4 bit exponent, e. If both m and e are considered to be

integers, from 0-3 and from 0-15 respectively, then the size of the object is given by

f n

1 6 bits

f M e

1 2 4

f size

0 n

1 16 -2" -(4 +m)

Fig. 34. Coding of a 7 Bit Size Field

Section 7.1 204

Enforcing the Size of Objects

16,2'(4+m). A better way to think of it, however, is that m is the low order 2 bits of a 3 bit

binary mantissa for a floating point number. The first bit has been omitted because it is

always one. If the binary point is to the right of the 3 bit mantissa, then the binary

exponent is 4+e. Thus the smallest number using this floating point format is 64 and the

largest is 3,670,016. This size field handles the exact size of objects up to 64 words. Objects

larger than 64 words are guaranteed to have at least 80% of their size covered by this size

field. On the average, however, 92% of the size of an object larger than 64 words is

covered by this size field. This technique of coding the size field can easily be used to

increase the number of bits in the field in order to achieve larger size ranges and less

graininess, but the number of bits in the size field cannot be reduced below 5 bits without

unacceptable costs. The increase in efficiency that can be obtained by making the size field

larger than about 9 bits is probably not worth the cost due to a larger object reference.

Thus the size field on ORSLA contains from 5 to 9 bits.

The small size field in the object reference is dependent upon the existence of exact

size :nformation elsewhere. An obvious location for exact size information is in the first

word of the representation of the object. This location is attractive because it is easily

accessible to the CPU and it is not needed unless the object is larger than 16 words, so

there is less than a 6% storage overhead for this field. Another possible location for exact

size information is in the data type definition. The hardware on ORSLA must be able to

map the type code in the object reference into a reference to the data type definition of the

object. If all of the objects of a certain type are the same size, then this size can be stored

once in the data type definition rather than being stored in each object of that type (see

Figure 35).

7.1.1 Protecting System Information within the Representation of an Object

We must remember, however, that the purpose of the size field is to enforce the

proper use of object references. Once an object has been created, its size cannot be

increased by merely modifying the size field because the adjacent address space may be

used by other objects. There is no point in decreasing the size field because all the address

space of the original object is still accessible from all the other references to the object.

Section 7.1 205

Section 7.1.1 Protecting System Information within the Representation of an Object

object reference

type size address size object

data type
definition

size

The three possible locations for size information. Every low level object reference contains
a size field but the other two fields for exact size information are optional. Their presence
or absence is determined by the data type definition.

Fig. 35. Three Locations for Size Information

Thus the size of an object cannot be changed except by the garbage collector, which makes

a new copy of the object. Thus the size field must remain constant. Mechanisms were

described in Section 3.3 for preventing improper modifications to the object reference, so

these mechanisms can easily protect the size field in the object reference. If size

information is stored elsewhere, however, it must be protected from modification also. The

most effective mechanism on ORSLA for preventing such modification is storage

monitoring. Size information could be stored in the first word of the representation of an

object as an atomic object reference whose storagenonitor bit is on and whose definition

prevents writes. The same technique could be used within the data type definition. Thus

the programmer would have access to this information, but would be unable to change it.

Furthermore, the garbage collector would not copy this size information explicitly, rather it

would be placed into the new copy of the object at the instant the object is created.

206

Section 7.1.1 Protecting System Information within the Representation of an Object

Size information is not the only sensitive information that must be stored within the

representation of objects, however. There is also the reference count for objects whose

reference count is being maintained, and there is the pointer to the data type definition for

escape data types (see sections 3.5 and 3.4 respectively). If the protection of all this

information is designed as a unit, then a cleaner, more efficient design can be achieved.

For example, it is possible for the size and reference count information to be placed

into the same word, forming, a size-ref field within the representation of an object. ORSLA

is designed to work with an upper bound of 1012-1015 bits of storage, which corresponds to

about 234-244 words of storage. There Is no need to allow objects to be larger than 234-241

words so only 34-44 bits are needed to hold the exact size of an object. A reference count,

on the other hand, does not need many bits. Reference counts should only be used when

the overhead for maintaining the reference count is not too high. If the count becomes

very large, however, then much time is spent incrementing the count to this value and

decrementing it to zero. An arbitrarily small reference count field can be used without

violating restrictions on the use of object references if, once the count has reached its

highest value, it cannot be decremented. I prefer a 5 bit reference count field. A 10 bit

reference count field should satisfy the most avid proponent of reference counts, however.

If the reference count is combined with the size information in an object reference of type

size-ref that does not have an address but uses the size field and the address field for both

the exact size and reference count information, then there will be 11-15 bits available for

the reference count depending upon the size of the size field in the object reference on

ORSLA. The type code used for the size-ref field will identify its purpose and will allow

the system to maintain the reference count without allowing the user to modify any portion

of the size-ref field.

The reference to the data type definition contained within an object of an escape

data type must use an entire word of its own, forming a dataclype.lef field within the

representation of the object. Where should this data Jype.def field be placed, however?

For simplicity, let us assume for the moment that there is no size-ref field in the object. If

the datalypesdef field is placed in the first word of the representation of the object, then

all of the code that operates on the representation of objects of a particular escape data

207

Section 7.1.1 Protecting System Information within the Representation of an Object

type will avoid use of the first word. If the programmer had decided to make a normal

data type, however, then all of the representation dependent code would be different, since.

it would not avoid use of the first word. This difference in the representation dependent

code for escape data types and normal data types conflicts with an important use for escape

data types: debugging a data type that will eventually be a normal data type.

Unfortunately, very few modifications can be made to a data type definition. A bug

in a data type definition must often be repaired by defining a new data type in which the

bug has been fixed. The old data type then falls into disuse. If the old data type was an

escape data type, this is inexpensive, while if it was a normal data type, such debugging is

very costly because it wastes the limited supply of type codes. Thus escape data types

should be used when debugging a data type. Finally, when the user is sure that the data

type will be used heavily and is also sure that it will no longer be necessary to modify the

definition of the data type, then one of the valuable data types in the type code of the

object reference can be allocated to this data type. If any portion of an escape data type

definition needs to be modified in order to enable it to be used as a normal data type

definition, however, then more debugging will be needed after conversion to a normal data

type. Thus the datai.ype-def field should be invisible to the code that manipulates the

representations of objects of the data type. This can be achieved by placing the

escape data type
definition

Fig. 36. Escape Data Type

208

Section 7.1.1 Protecting System Information within the Representation of an Object 2

data-ype-def field at location -1 in the representation (see Figure 36).

If the datasype-def field should be invisible to representation dependent code, what

about the size-ref field? Representation dependent code may very well want to know what

the size of the object is or what its reference count is but this can easily be provided by

special size and refsrount instructions. Reference counts are maintained automatically by

the system and so do not require any instructions in representation dependent code to

increment or decrement the count. If the existence of the size-ref field is invisible to

representation dependent code, then reference counting could be requested at the time an

object is created even if it causes a size-ref field to be added to the representation of the

object. Similarly, if the size of one object of a variable size data type happens to be exactly

one of the sizes that can be specified by the size field in the object reference, it would be

possible to omit the size-ref field from the object.

To make the existence of the size-ref field this dynamic, it is not sufficient to place it

at offset -1 within the object, however. It must also be possible to determine the existence

of the size-ref field directly from the bits of the object reference. This is also necessary to

speed up checking the size in the size-ref field when the size field in the object reference is

violated. Furthermore, in order to make the automatic maintenance of reference counts

efficient, it is necessary to be able to tell from the object reference whether the reference

count is being maintained. This information is kept in the datajypejnfo field in the

object reference which was introduced in section 3.4. In addition, the datalypeinfo field

must specify whether there is an address in the object reference and also contains the

storage-monitor bit that specifies whether this object reference is an active storage monitor.

The datajypeinfo field therefore needs at least three bits: one for the storageanonitor bit

and two for an info field that specifies one of four mutually exclusive states:

1) there is no address in the object reference

2) there is an address in the object reference but there is no size-ref field in the

object

3) there is a size-ref field in the object but reference counts are not being maintained

4) there is a size-ref field and reference counts are being maintained

A system designer may identify more information that must be kept in the dataypeinfo

209

Section 7.1.1 Protecting System Information within the Representation of an Object

field, but the size of this field will probably not exceed 5 bits.

The only remaining problem is where to put the size-ref field for escape data types.

Since the size-ref field is used more often than the data type definition, I favor a constant

offset of -1 for the size-ref field while the data-iype-def field can be placed at -2 when

there is a size-ref field as well. Thus the size-ref field appears in objects as shown in

Figure 37.

Now that we have seen exactly how the size field is handled on ORSLA, we can see

how each load and store instruction will be validated if the size field in the object

reference is violated. First, the CPU will determine by looking at the object reference

whether there is a size-ref field in the representation of the object If so, it will be checked.

If there is no size-ref field in the object, then the size information in the data type

definition is used to perform the final check. Since the size information in both the size-ref

type

miscI

type

Lescape

size-ref

data type def

size-ref

Fig. 37. Location of Size-ref Field

-qo - - - .

210

Section 7.1.1 Protecting-System Information within the Representation of an Object

field and the data type definition is exact, violations of either of these fields causes an

error to be signalled.

It may have occurred to the reader that this check never allows the programmer to

use negative offsets within the object, so the programmer has no way to modify the size-ref

field or the data.Jypeadef field. Thus it may not be necessary to further protect these fields

with storage monitors. It cannot be denied, however, that storage monitors do provide

further protection. This question really turns on our attitude toward dangling references. If

we assume that there are never any dangling references, then the use of storage monitors to

protect these two fields is unnecessary. ORSLA has been carefully designed so that

software cannot generate any dangling references. It is possible for the hardware to

generate dangling references, however. For example, an undetected memory error can

change a bit in the address of an object reference. This kind of error can be disastrous for

a process on an SAV or LAV system since it may lead the program to begin interpreting

character strings and machine code as addresses. Such an error is much more limited in

effect on ORSLA, however. Since object references are tagged on ORSLA, it is never

possible to mistakenly use a character string as an address, or even to use an object

reference without full knowledge of the proper representation of the object referenced.

Thus the creation of one dangling reference by the hardware does not cause the software

on ORSLA to generate more dangling references. If the size-ref field or the dataJypeedef

field is not protected by storage monitors, then it would be possible for a hardware

generated dangling reference to be used to modify these fields, thus allowing all references

to the modified object to access storage outside of the representation of the object and

possibly modify size-ref fields in other objects. Dangling references are like a cancer that,

on a single address space system, could easily spread throughout the entire system. The

similarity of the effects of dangling references to cancer is what makes elimination of

dangling references a significant system reliability issue rather than just a protection issue.

ORSLA first prevents the creation of dangling references and then uses context

independent object references and size-ref fields protected by storage monitors to de-fuse

the cancer-like quality of dangling references. Thus even if the hardware does create a

dangling reference on ORSLA, the damage caused by it will be very limited. It can be

reduced even further by adding a mechanism to ORSLA such that if an expected size-ref

211

Section 7.1.1 Protecting System Information within the Representation of an Object

field or dataype-def field are not where they should be, then the erroneous reference is

converted to a reference to the deleted object. Thus ORSLA is robust, even though it uses

object references extensively.

7.2 Abstract Objects

Most of this thesis has been concerned with enforcing the low level restrictions on the

use of object references because enforcing these restrictions is significantly more difficult

in a reusable address space than with unique IDs. The low level restrictions ensure that an

object will not be accessed without a reference to the object, but they do not allow the

operations on an object to be limited: this is the role of the high level restrictions. The

basis for the high level restrictions is that an object in the computer is supposed to model

an ideal object in a programmer's mind. The ideal object, however, has a strict set of

operations defined on it that perform meaningful operations on the object. No other

operations may be performed on the object. When a data type is defined a complete set of

operations should be defined on it that allow all of the necessary manipulations of the

object to be performed in terms that are meaningful to the abstraction of the object. Not

all of the users of an object, however, should be able to invoke all of the operations that

have been defined on objects of that type. Thus the abstraction given to a user should

allow only the operations that are allowed to this user. Enforcing the high level restrictions

on the use of object references means sometimes restricting the operations that may be

performed on an object even further than the complete set of operations defined on the

objects of that type.

For example, a company may want to maintain a data base for inventory control.

This data base is a model of the physical inventory the company actually has in its

warehouses. The inventory control system automatically places orders for new items when

their supply runs low. To keep the model accurate, several people must provide input

about changes to inventory and the results of any manual inventories of the stock that are

performed. The data base can also be used, however, by auditors, accountants, and

executives to find out about the current state of the business. The complete set of

operations defined on the data base will support all of these uses. The abstraction of the

212

Abstract Objects

data base presented to those who maintain it will include operations for changing or

updating the information in the data base. The ability of these people to inspect the entire

data base may be limited, however. The abstraction of the data base presented to

management, on the other hand, will allow the complete data base to be inspected, but will

not allow changes to be made. The ability to present these different abstractions for the

same object is entirely consistent with the concept of objects.

It should also be noted that this ability to present different abstractions for the same

object and then to enforce the limitations of each abstraction allows the programmer to

supply different abstractions of an object, B, to different entities so that only the

operations actually used by each entity are defined on the abstraction given to that entity.

The entities need never know that they are being treated so carefully until they attempt an

operation that they are not supposed to perform.

Access to an object is limited by distributing high level object references for the

object and then controlling the operation of switching the high-low bit from high to low.

This operation must be performed before the representation can be accessed or modified.

There have been two methods developed for controlling the conversion of an object

reference from high to low: the invocation method and the explicit conversion method.

Both of these methods are based on the principle that only the data type definition should

be able to perform representation dependent operations on the object. The invocation

method, used in such programming languages as Simula 67, Planner-73 [Hewitt73J,

PLASMA (Hewitt76l, and Smalltalk [KayG8, defines an operation f on an object x with

the additional arguments Yj ... , Yn to be a procedure call to the data type definition of x.

The arguments given to the data type definition are the name of the operation f, the low

level abstraction of object x, and the objects Yi, y.,7. The system automatically converts

the oject reference to x to a low level object reference since it is being passed to its own

data type definition. The system is also responsible for finding the data type definition for

x given only the object reference to x. ORSLA must therefore be able to convert the type

code in the object reference to x into the address of the data type definition of x. In some

systems, a data type definition is a complex data structure that contains many different

procedures, one for each operation that is defined on the data type. Note that this is

Section 7.2 213

Abstract Objects

similar to the concept of a cluster in CLU [Liskov77], but a cluster is only a syntactic entity

in CLU; it does not have a corresponding runtime structure. If the data type definition

contains only a single procedure that is given the operation to. be performed as an

argument, then the programmer has much more flexibility in defining operations on the

object and in choosing the precise data structure that must be searched to find the

definition of this particluar operation. The invocation method is particularly valuable for

defining generic operations that operate on a large number of data types because the

operation can be extended to new data types merely by defining the operation in the new

data type definitions. The only difficulty with the invocation method is that the data type

definition must be searched for the definition of the appropriate operation, which can

sometimes take longer than the operation itself, especially for very simple operations.

7.2.1 The Lower Operation

The explicit conversion method makes use of the lower operation which converts a

high level object reference to a low level object reference. In order to limit the use of the

lower operation, however, it is given an additional argument: the data type of the object to

be lowered. Any program that has an object reference to a data type object that allows

objects of that type to be lowered is considered to be part of the data type definition. The

explicit conversion method is used much more commonly than the invocation method; it is

used by HYDRA and also by the languages Simula 67 and CLU. The origins of the

explicit conversion method, however, are lost in the mists of the birth of computer

engineering. The lower operation is very similar to a simple data type check operation.

Data types have been checked whenever multiple representations have been used in

computation. The lower operation can be used to check data types if it is also a predicate

which is false if the object is not of the required type. If the check succeeds and the

predicate is true, the lower operation must also return the low level reference for the object.

The lower operation can both be a predicate and return a value if it sets the condition

codes in the machine. The purpose of checking the data type of an object is so that a

program will be able to perform representation dependent operations on the object that

will have the intended effect. Some programming languages have allowed programs to

perform representation dependent operations on an object without even knowing what the

Section 7.2 214

The Lower Operation

representation of the object is. The lower operation merely forces a program to check the

data type before performing representation dependent operations. The set of programs

that can perform representation dependent operations on objects of a certain type can be

limited by limiting the distribution of object references to the data type.

The explicit conversion method requires each operation to search for the data type,

while the invocation method requires the data type to search for the operation. The

explicit conversion method is thus superior for an operation if the number of operations

that can be performed on the object is greater than the number of data types this

operation can operate on. The invocation method is superior for an object if the number

of operations that can be performed on the object is smaller that the number of data types

that those operations are defined on. The collect operation used by the garbage collector

should be defined with the invocation method since it is defined on every data type on the

system. If both methods are supported, it is possible for an operation to check explicitly for

the two or three most frequently used and most efficient data types and then use the

invocation method for all other data types. Using both methods in this way allows the

system to achieve the high speed of the explicit conversion method and the flexibility of

the invocation method. Conceptually, both methods are equivalent in that they allow only

the data type definition of an object to convert a high level reference to the object to a low

level reference. This thesis is concerned with providing hardware support for objects, but

is not concerned with the representation of a data type definition, so this thesis will not

consider the invocation method further but will consider the explicit conversion method in

more detail.

Before further consideration of the explicit conversion method, however, we must

consider the access control field in the object reference. As we saw earlier in this section, a

single object will have several different high level abstractions. The access control field in

the object reference identifies which of these possible high level abstractions is being used

by a high level object reference. It was estimated in section 3.4 that between 4 and 10 bits

are needed for the access control field. It was also noted in section 3.4 that the access

control field is only needed in high level object references, while the size field is only

needed in low level object references. Since both these fields are about the same size, it is

Section 7.2.1 215

The Lower Operation

possible to use the same set of bits in the object reference for both fields. If this is done,

however, then the lower operation must load the size field in the object reference it is

lowering and must return the information in the access control field of the high level

object reference as an additional value of the operation.

The lower operation has now become more than a simple type check but we would

like it to continue to be as fast as possible. The lower operation takes two arguments: a

high level object that is to be lowered and a data type object. The speed of the lower

operation depends upon what information is kept in the object reference to the data type

object. If this object reference contains the type code of the data type, no memory reference

will be needed to actually check the type code in the object reference being lowered. How

can the time needed to load the size field be minimized, however? If objects of a particular

type are always the same size, then the object reference to the data type definition could

contain a constant..size field of 5-9 bits that is loaded into the size field of the object

reference that is being lowered. If objects of a particular type are of a variable size,

however, then the size-ref field in the object itself must be accessed to find the size

information. If the access control field in the high level reference being lowered is not

needed for access control information then it could contain the size of the object. There is

no room in the object reference to the data type object for a constant..size field or for the

type code of the type being defined unless the object reference to the data type object does

not contain an address. The hardware on ORSLA is able, however, to convert the type

code for the data type into the address of the data type definition. Thus the object

reference to the data type definition does not need to contain an address.

A normal data type, i.e. a data type that is not an escape data type, is defined by an

object of type normal-typeslef. An object reference to an object of type normallypecdef

does not contain an address and so never uses an inter-area link. Reference counts cannot

be maintained on a data type object, either. An object reference of type normal-ypedef

uses 9 - 16 bits to hold the type code "normaljypedef', 3 - 5 bits for a datalype.info field,

one bit for a high-low bit, 5 - 9 bits for an access control field, 9 - 16 bits for the type code

of the data type it defines, 5 - 9 bits for a constant-size field that may be loaded into the

size field of a low level object reference of this type when it is lowered, and 2 bits for a

Section 7.2.1 216

The Lower Operation

setcsize field that specifies where the size information for a low level reference can be

obtained. The set_,size field has three possibilities:

1) size information for the low level reference is contained in the size field of the

high level reference

2) size information is in the constantcsize field

3) size information is in the size-ref field of the object that is pointed to by the low

level reference.

The object reference to an escape data type definition is different, however, for two

reasons. First, the object reference to an escape data type definition must contain the

address of the data type definition. Second, the lower operation must access the

dataiypedef field in the object whose type is being checked. If the size information to be

loaded into the low level reference is in the dataiypedef field, then no additional

information is needed in the object reference to the data type definition. Thus the

datalype-def field will contain a high level object reference of type datatypedef whose

storage-nonitor bit is on to prevent the field from being modified. The access control field

contains the size information that is in the size field of low level object references to the

object. Since the size information in the dataiype.def field is stored within the object

itself, it may reflect the size of that particular object without implying anything about the

size of other objects of that type. The address field of the object reference in the

dataJypedef field points to the data type definition. The object reference for an escape

data type definition contains the type code "escape" a datajypeinfo field, Aigh-low bit,

access control field, and an address field that points to the data type definition. The lower

operation operates on escape data types by accessing the datalypedef field in the object

being lowered. The address in the datalypedef field is compared with the address in the

reference to the data type object that is the second argument to the lower operation. If the

high level reference is lowered, then the size field of the low level object reference is

loaded from the size field in the dataypedef field.

7.2.2 Elevate Operations

The lower operation converts a high level object reference to a low level object

Section 7.2.1 217

Elevate Operations 218

reference. It must also be possible to convert a low level object reference to a high level

object reference since this is the only way the access control field can be set. In addition, an

object is first created along with a low level reference to the object. Converting a low level

object reference to a high level object reference may be performed by any program

without compromising protection because only highly privileged programs can obtain a low

level object reference. Actually, it is necessary to have two different operations that

perform this conversion:

B a elevate (A)

B - elevateesetuaccesscontrol (A, S)

The elevate operation only changes the high-low bit in the object reference to A to obtain

the object reference to B. Thus the access control field in the object reference to B contains

size information about B. The elevate..set-accesscontrol operation uses the bit string S for

the access control field in the reference to B. The elevate5etcaccess-control operation must

be certain that when the reference to B is finally lowered, the access control field will not

be used as size information. The current format of the object reference does not keep this

information in the reference to A, so the elevateset-accessscontrol operation must access the

data type definition of A to make sure it is alright to set the access control field. This

memory access could be eliminated if a small change were made to the datatype-info field

in the object reference. The data-ypeinfo field currently contains a two bit info field that

holds four alternatives. The extra memory access can be eliminated from the

elevatesetsaccess-control operation by adding one alternative to these four. This requires

an extra bit in the info field, but leaves three unused states in that field. The five

alternatives in the info field would be:

1) no address in object reference

2) no size-ref field in object but size information is in access control field

3) no size-ref field in object and no size information is in access control field

4) size-ref field in object but not maintaining reference counts

5) size-ref field in object and maintaining reference counts

Using this coding, the access control field would never be used for size information when

the object contained a size-ref field. A major mechanism that is not covered in this thesis is

reference counting. Since one state in the info field is already used for reference counting

Section 7.2.2

Elevate Operations

even though reference counting has not been described fully, it may be possible that more

states in the info field will be needed for reference counting. This three bit info field has

room for four states dealing with reference counting: the equivalent of two bits. It is not

clear, however, that this extra bit in the object reference is worth it if it speeds up only the

elevate.setaccesssontrol operation. This operation is not performed as often as the other

operations that are supported by the datailypeinfo field and is only used along with the

expense of moderately sophisticated access control. Simple access control needs only the

high-low bit and may therefore use the elevate operation. If the elevatecseeaccesssontrol

operation can be speeded up without using more bits in the object reference, however, then

it is clearly worth it.

7.2.3 Access Control Field

Thus we have seen the mechanisms on ORSLA that allow high level objects to be

created on which no representation dependent operations are defined. Most of the fields in

the object reference serve the needs of the system and the needs of low level objects, but

the access control field serves the needs of high level objects. Exactly what information is

kept in the access control field and how the field is interpreted is determined by the data

type definition. There is no need for the information kept in the access control field to be

limited to access control information. The access control field could be considered to be an

extension of the representation of the object. Since the system has no control over what the

access control field is used for, it is very difficult to decide how many bits should be used

for this field. The approach I have taken is to estimate the minimum number of bits

necessary by identifying valuable uses for the access control field and then finding

representations for those uses that require as few bits as possible.

Throughout this thesis I have frequently placed a piece of information into an object

reference in order to avoid a memory reference to the object itself. Although this criterion

was sufficient for placing information into the object reference, this criterion is not

important when deciding whether to place information into the access control field. The

most important reason for this sudden change of design philosophy is that the rest of the

object reference is supported by hardware while the access control field is supported by

Section 7.2.2 219

Access Control Field

software. A memory reference is expensive for a hardware supported operation, but is

much less important for a software supported operation. Thus information that can be

placed within the object itself should not be placed in the access control field.

We have seen that one object can be viewed with different abstractions. If the

abstraction that is being used from a particular object reference can be specified in the

access control field, then multiple abstracijons of the same object can be implemented

efficiently. If the access control field did not exist, it would be necessary to create an

indirect object for each high level abstraction except the first, which would be the high

level definition of the object itself. The indirect object would contain a low level reference

to the object and the information that would have been in the access control field if it had

been available. Thus use of the access control field saves a great deal of indirection and

also saves a significant amount of storage. If the size of the object reference is increased to

hold an access control field, however, then the access control field will use a significant

amount of storage on the system. Whether the storage saved by use of the access control

field would exceed the storage used by an enlarged object reference is dependent upon

how ORSLA is used and so would vary from subsystem to subsystem and installation to

installation. If the access control field does not enlarge the object reference, however, then

the larger the access control field, the more storage is saved. Thus I suggest that the size of

the access control field be exactly the same size as the size field and that the same bits in

the object reference be used for the size field and the access control field. We must ask

whether this size of access control field is large enough, however.

Regardless of how many bits there are in the access control field, there will always be

applications that could take advantage of a larger access control field. The real question is

whether enough applications can live with the proposed size of the access control field. If

an application discovers that it would like a larger access control field, it may be possible to

use a more efficient coding in the access control field that will allow the field that has

been provided to be used. The number of bits needed in the access control field can be

minimized by using each state of the access control field in references to a particular object

to identify an abstraction that is actually being used for this particular object. For

example, consider the high level abstractions of a directory object. The abstraction given

Section 7.2.3 220

Access Control Field

to the owner of the directory is the owner abstraction, while the abstraction given to an

unidentified user is the unidentiied-user abstraction. The unidentifieduser abstraction is

the abstraction of the directory object that is obtained from the file system when no

attempt is made to obtain greater access. The unidentfiedsuser abstraction should at least

allow users to find out what objects in the directory are being made available to the public

and should allow a program to be run that will- give access to these objects once

appropriate negotiations (possibly between programs) have been concluded. In addition to

these abstractions, there will probably be a sys-daemon abstraction (a concept from Multics)

that allows system utility programs to operate in the directory. There will probably be a

friendly-user abstraction that allows most or all of the directory to be inspected and allows

selected objects within the directory to be used. There might even be a trusted-user

abstraction that is almost as powerful as the owner abstraction. In special situations, it may

be necessary to create a special abstraction for a particular person, resulting in the Sam

abstraction. I have assumed that all of these abstractions are different, i.e. that the sets of

operations permitted to the abstractions are different. The name I have given to each

abstraction, however, identifies the entities that will use the abstraction. Entities that can

make use of the same abstraction are grouped into a class and the name given to the

abstraction describes all the entities in the class.

Somewhere within the object or its data type definition the information of which

operations are permitted on each abstraction must be represented. This information could

be stored in the form of a table within the representation of the object or its data type

definition. Each element of the table could be a bit string that defines an abstraction by

using each bit to specify the legality of a single operation. It would then be very easy to

change the behavior of the abstractions defined by the table. Different abstractions are

used by different users, so the operations allowed to a particular class of users can be

changed by changing the abstraction they use. This is such a powerful feature that

creating two abstractions for two classes of users that happen to have the same behavior is

acceptable if the chances are reasonably good that these two classes of users will be given

abstractions with different behaviors at some time. Thus, we make good use of the access

control field by using it to identify the class of users that will use the object reference and

by limiting the number of such classes to those classes that are actually using the object.

Section 7.2.3 221

Access Control Field

The table described above that allows the access control field to be coded efficiently

behaves differently from and is much more efficient to use than the data structure that

appears on other systems (such as Multics) and is known as the "access control list". The

table described above is quickly indexed by the access control field, while an access control

list must use information not provided by the reference to an object (usually a user or

domain identifier is also needed) and must painstakingly search the access control list to

find what abstraction should be presented to the user of the object. Thus although it is

necessary for a system to have mechanisms that reduce the frequency of searches of an

access control list, the table described above can be consulted once for each high level

operation that is performed on the object.

When the very efficient coding for the access control field described above is used,

there will probably be very few data types that will need an access control field larger than

four bits. An object that cannot use the access control field to distinguish all the different

abstractions of the object that are being used will have to use indirect objects. If the access

control field is at least four bits, however, the storage overhead for the indirect objects is

much less than without an access control field. Assuming a four bit access control field, the

access control field in the reference to the indirect object can be used to distinguish 16

different abstractions to the object. Each indirect object could contain the table that

defines what operations are used by the 16 abstractions defined by the indirect object, but

only one indirect reference would be needed within the indirect object. Thus the amount

of storage used by indirect references is now less than the amount of storage needed for

the table that defines the abstractions, so the overhead for indirect objects will not be very

high. The access control field will actually contain between 5 and 9 bits, however, thus

further reducing the number of indirect objects needed by an object that has a large

number of abstractions defined on it.

Another example of the use of access control information is provided by areas. The

system is able to return a reference to an area given a reference to any object in the area.

This can be used either to determine whether two objects are in the same area or to create

a new object in the same area as an existing object. The first of these operations may be

acceptable regardless of the types of objects involved, while the second operation is more

Section 7.2.3 222

Access Control Field

sensitive. It may be acceptable, however, for the definition of the data type of an object to

create another object in the same area as the original object. ORSLA supports these two

uses by providing one of two high level abstractions of an area to a program that obtains

a reference to the area by giving the system a reference to an object that resides within the

area: the highJevel-container abstraction if the reference to the object in the area was a

high level object reference, and the lowJevelcontainer abstraction if it was a low level

object reference. The low-levelsontainer abstraction of an area can only be obtained by a

data type definition for an object in the area. Each area may define for itself what

operations on the area are allowed by these two abstractions.

Another use for the access control field is to hold size information for an object that

does not have a size-ref field and whose data type consists of different size objects. This

use speeds up the hardware supported lower and elevate operations and has already been

discussed. Occasionally, it will be necessary for the representation of an object to place

some bits in the object reference. One example of this occurs for machine code objects that

have multiple entry points. The address within the object reference must point to the

beginning of the machine code object that contains all the code and the references to the

constants needed by the code. The object reference for each entry point into the code,

however, must indicate in some way which entry point is to be used. The number in the

access control field could be used to access a table within the machine code that specifies

the bit offset of each entry point within the machine code object.

All of the uses of the access control field to support the high level abstractions of the

object can be viewed as merely identifying different abstractions of the object. Many

objects will have only one high level abstraction, however. Many more objects will have a

few different possible abstractions. These objects may use any coding of the access control

field that seems appropriate. Objects that serve as entry points into data bases that contain

sensitive or valuable information of somne kind may have a large number of different

abstractions defined on them. If the data base is used by many people, then there may be a

need for many classes of users that may have different abstractions at one time but

happen to use the same abstraction at another time. These objects will be forced to use an

efficient coding of the access control field and may even be forced to use indirect objects

Section 7.2.3 223

Access Control Field

to increase the effective size of the access control field. There may be a cost associated with

handling such large numbers of abstractions, but this cost is acceptable because the cost

could not be reduced significantly by enlarging the access control field.

7.2.4 Comparison of Protection on ORSLA with Other Capability Systems

The mechanisms provided on ORSLA to restrict the operations that can be

performed on an object are quite similar to the mechanisms on HYDRA. The high-low bit

on ORSLA corresponds roughly to all the Kernelsights bits on HYDRA, while the access

control field on ORSLA corresponds to the auxiliary-rights bits on HYDRA. HYDRA

encourages the user to encode the legality of a single operation or set of operations in a

single auxiliarysights bit, but, as on ORSLA, there is no requirement that any particular

encoding be used. The dichotomy between the invocation method and the explicit

conversion method that exists on ORSLA is not present on HYDRA. HYDRA at first

appears to use a combination of the invocation method and the explicit conversion method

since each procedure has an argument template that is matched against the arguments the

procedure is called with and "amplifies the rights" of the arguments if the data types of

the arguments match the data types in the template. If there is no match then an error is

signalled. This is actually a case of the explicit conversion method because a) it amplifies

the rights of several capabilities at once (which cannot be done by the invocation method)

and b) it does not transfer to a procedure within the data type definition of a capability

being amplified. Since an error is signalled if the type codes of the arguments do not

match the template, this mechanism is not used to search for the representation dependent

code that is needed to perform a representation independent operation. Thus HYDRA

does not seem to recognize that the mechanism for amplifying rights could also be used to

support multiple representations of the same abstraction.

Another approach to implementing the conversion from a high level object reference

to an object reference for its representation has been used in some programming languages

[Liskov74J and some capability systems [Redell74, p.80. Instead of having a high-low bit in

the object reference, the lower operation replaces the type code field of the object reference.

This implementation is based on the idea, which has been formalized by Morris

Section 7.2.3 224

Section 7.2.4 Comparison of Protection on ORSLA with Other Capability Systems

[Morris73], that a user defined data type is based on another, more primitive, object which

is its representation. When a high level object reference is lowered, then the result is an

object reference for the object that is the representation of the high level object. This

representation object, however, is an abstract object itself. If the type of the representation

object is a user defined type, then this object has its representation object in turn. Thus

there is a chain of representation objects until finally a primitive data type is reached

whose operations are implemented directly by the system. If this idea is implemented by

simply changing the type code in the object reference whenever an object is lowered one

level, then the rest of the object reference uses the representation of the primitive data

type. All of the objects that are implemented by hardware on ORSLA, such as integers and

floating point numbers, would be implemented directly by such a system, but in addition

the system would provide several data types that are general purpose data structures, such

as lists, vectors, and arrays. Although this technique isolates the programmer from the

physical representation on the machine, the necessity of following the long chains of

representations before a primitive data type is encountered is inefficient. Actually, the long

chains of representations can be short-circuited by a compiler. Since each data type in the

chain has a single representation type, the lower operation could be given a data type

object that would cause the entire chain to be immediately short circuited to the primitive

type. This corresponds to lowering the high-low bit on ORSLA. Thus ORSLA encourages

a compiled data type definition to contain all of the information in the data type

definitions of the representations of the original data type so that the compiled data type

definition will manipulate the bits of the low level representation directly. It is likely to be

finally determined in the future that a chain of representations is a good way to define

data types in high level languages. Machine independence can be obtained by defining an

abstraction that allows the fields of the low level representation to be obtained without

specifying those fields in terms of bit offsets or sizes. Higher level abstractions can then be

defined with this machine independent representation abstraction of the object. A higher

level abstraction whose representation is this machine independent representation would

execute much more quickly if, when it is compiled, it converts operations on the machine

independent representation abstraction into the corresponding operation on the machine's

!ow level representation. If a high level abstraction is built on another high level

abstraction, however, then it may be better for the higher level definition, when compiled,

225

Section 7.2A Comparison of Protection on GRSLA with Other Capability Systems

to continue to use the high level abstraction that is its representation since operations on

this high level representation may be quite complicated.

A chain of representations as described above is supported on ORSLA by using the

access control field rather than the type code field. A good use for the access control field

is specifying which high level abstraction of the object is being used. A reference for one

high level abstraction is converted to a reference for another high level abstraction rather

than being immediately converted to the low levJ abstraction. Such conversion operations

can easily be provided by the data type definition of the object using the mechanisms that

have already been described. I am not ready to propose additional mechanisms that will

make this way of operating even easier because I believe there is need for additional

research before it will be clear what mechanisms should be provided by the system.

The purpose of the chain of representations is to provide representation

independence. Consider the operation f, which operates on objects of a certain abstraction,

a1 , by lowering that abstraction to a representation abstraction a2 and performing

operations on this lower level abstraction. If a2 is a high level abstraction, then there may

be many different low level representations that could make use of this single definition of

f without f being aware of the low level representation. Thus f should not have to

determine which low level representation is being used, it should merely determine that a9

is a reasonable lower level abstraction for the object. The mechanism of changing the type

code tc convert from a1 to a2 does not allow a data type for a1 to use different

representations for different objects of the type. Exactly how this should be implemented,

however, is a matter for future research.

Thus the mechanisms on ORSLA support a chain of representations. There is

another, more subtle, difficulty with implementing the lower operation by modifying the

type code. In particular, the references to the representation do not contain the information

of what the representation is being used for. The garbage collector can make good use of

such information and, in some cases, must have it. For example, a high level abstraction

for object w may need access to the objects x, y, and z, but may almost never make use of z.

On ORSLA, the garbage collector would be able to find the data type definition for w

226

Section 7.2.4 Comparison of Protection on ORSLA with Other Capability Systems

with both high level and low level references to w. The data type definition could specify,
in the definition of the collect operation, that the garbage collector should place z far away

from w, thus increasing locality of reference over the standard copying garbage collector. If

we lower the high level abstraction for w by changing its type code, however, it would be

natural to represent w with a vector of three elements. When the type code in the reference

to w specifies vector, however, there is no information available about the relative

frequency of use of the three elements of the vector, so the garbage collector could not do

better than the standard copying garbage collector. A more serious case arises with a hash

table data type in which the hash index is calculated from the address within the reference

to the name of an entry in the hash table [Bobrow75j. If the object that is the name of an

entry is moved, the entry must be rehashed into the table. If a vector is used to represent

the hash table, and if the first reference to the hash table discovered by the garbage

collector is for this vector rather than for the high level hash table, then the garbage

collector will neglect to rehash the entries in the hash table thus making it unusable after

the garbage collection. These difficulties are.very serious, especially when we consider that

the garbage collector begins marking the temporary storage of a process from the currently

executing activation record. It is thus likely that if a reference to the representation of an

object exists, it will be encountered by the garbage collector before a high level reference

to the object. These difficulties can be handled, even if we modify the type code when

lowering an object reference, by providing primitive data types that are garbage collected

properly. If the construction of chains of representations is the only mechanism for type

extension, however, then it is not possible to extend the set of primitive data types. To

show that such a scheme is practical, it is necessary to show that it will never be desirable

to create a high level abstraction tha: needs, in some sense, a primitive object that was not

originally supplied. The approach taken on ORSLA, however, corresponds to providing a

mechanism for extending the set of primitive data types. The load and store operations are

defined by the hardware for all primitive objects (low level objects) on ORSLA, but other

operations, such as the collect operation used by the garbage collector, are defined by the

data type definition for low level objects (primitive objects) as well as for high level

objects. Once the load and store operations have been provided by the hardware, the other

operations on a primitive object can be defined in terms of the load and store operations.

227

Section 7.3

7.3 Domains

It is important for a computer system to be able to manipulate all of the objects in

memory, however it is not necessary for a process to be able to manipulate all of these

objects at every instant. A procedure should only be manipulating its arguments, its

activation record, objects such as the root of the file system that are accessible to all

programs, its internal static storage, and objects referenced from the procedure. The most

valuable feature of protection is that it prevents erroneous programs from doing much

damage. Protection should not interfere with legitimate computation, however. An

erroneous program can be viewed as an arbitrary sequence of machine instructions. The

domain of a process characterizes the amount of damage that could be done by an

arbitrary sequence of instructions. The domain of a process at any instant is the set of

storage locations that could be accessed and the operations that could be performed on

protected objects by an arbitrary sequence of machine instructions executed at that instant.

Protection will not interfere with legitimate computation if the domain of a correct

procedure includes the objects that the procedure will want to manipulate. Most systems

that provide protection have a data structure that specifies the domain. What is this

structure on ORSLA?

Unlike most systems, machine instructions on ORSLA do not contain any addresses.

They only contain offsets within objects. In order to actually access storage these offsets

must be combined with a low level object reference. There are two dedicated CPU registers

that contain low level object references: the instruction object register and the activation

record register. The instruction counter is an offset within the instruction object. Together

they specify the bit location at which the next instruction begins. The instruction object

register is not generally accessible to the program. Transfer, call and return instructions

allow the instruction object register to be reloaded and the load instruction allows constants

to be retrieved from the instruction object, but nothing may be stored into the instruction

object. The activation record register points to the procedure's temporary storage. In

addition there are several general purpose registers. Conceptually, these registers are part

of the activation record. Machine instructions may load and store the general registers and

may use any low level object references in general registers to access the representations of

Domains 228

Section 7.3

those objects. Since the activation record register contains a low level object reference to

the activation record, registers can easily be loaded from and stored into the activation

record. Many of the general registers and locations within the activation record correspond

to local variables in the procedure. There are two locations that do not and so need more

explanation. One location in the activation record contains a low level object reference for

CPU state
root of domain

system
data

object
for B

size-ref

activation constants
record of B

internal
static

Fsize-ref

activation
record of A

A 1

A'Is reference-
to B

The setting of the high-low bit is shown in many of the object references in this figure.
Fig. 38. A Domain

process

instruction object

1 101

activation record

I0EEE

general registers
GR1

GR8 Z

229Domains

Section 7.3

the procedure object. This may be different from the reference to the instruction object.

The procedure object will contain the internal static storage for this instance of the

procedure and an object reference to the instruction object. The constants for the

procedure may be either in the procedure object or in the instruction object depending

upon the amount of flexibility that is needed. Another location in the activation record is

needed for the return point of the procedure. Usually, when procedure A calls procedure

B, it is desirable for B to be ignorant of who A is. This means that B should not be

accessing A's activation record. Therefore the object reference in B's activation record

pointing to A's activation record is a high level reference. The only operation allowed on

this object is return. Since activation records are implemented in hardware, the return

operation is not slowed down by the fact that it is using a high level reference.

In addition to these sources of information, the processor will contain an object

reference to a process object which will be accessible to the executing program. This object

will allow the program to get a high level reference for the root of the file system and

refe'-ences for other necessary information available to every program.

This completes the sources of information that are available to a program. The

domain of a process at a given instant is determined by all the object references that can

be reached from any one of these sources of information. The domain of a process is

made smaller when any low level object reference in the domain of the program is made

into a high level object reference that does not allow access to all of the object references

stored in that object.

Are we sure, however, that the domain on ORSLA does not interfere with legitimate

computation? Many programming languages, such as FORTRAN, PL/l, and Algol 68, pass

arguments "by reference". When a local variable, x, of procedure A is passed by reference

to procedure B, it is usually implemented by causing A to pass a pointer to the location in

A's activation record that contains the object reference to the value of x. Procedure B may

then set the value of x by storing an object reference into A's activation record. There are

two ways of implementing this method of call by reference on ORSLA without giving B a

low level object reference to A's activation record. Both implementations replace the

Domains 230

Section 7.3

pointer to the variable by an object reference to an abstract variable object (this object is

called a cell by some authors). The first implementation uses a high level object reference

to the activation record whose access control field specifies that it is abstractly a variable

object and identifies which location in the activation record is involved. The second

implementation requires that a separate variable object actually exist outside of the

activation record. A reference to this object is given to procedure B. Note that when an

array is passed by reference in FORTRAN, PL/l, or Algol 68, a pointer to the first word

of the array is passed. These languages do not pass a pointer to the location in A's

activation record that contains the object reference to the array. Thus an array is passed

by reference merely by passing an object reference for the array. Call by reference is

usually used for arrays, but when it is used for other variables, the main purpose is to

obtain several return values from the called procedure. Multiple return values can be

implemented more efficiently on ORSLA than the mechanisms for call by reference

described above. Some implementations of FORTRAN currently implement call by

reference of simple variables by using an underlying mechanism that returns multiple

values. In the example above, procedure A would pass the object reference that is the

current value of x to procedure B which would then return a single value to A which

would assign x to this value. Call by reference is the only common programming language

feature that might require a procedure to have a low level object reference to its caller. By

using the above techniques, we can implement call by reference without causing a

procedure to need a low level object reference to its caller, so the domain on ORSLA does

not interfere with legitimate computation. Forcing a procedure to use a high level object

reference to its caller and high level object references to other procedures called by this

procedure drastically reduces the size of the domain of the procedure and allows the

domain to be extremely dynamic. The domain on ORSLA does a good job of including

only the objects that a procedure really needs and so appears to approach the minimum

size that will not interfere with legitimate computation.

Domains 231

Revocation

7.4 Revocation

On all capability systems the possession of an object reference (capability) by a

program allows that program to perform certain operations on the object. Once an entity

has distributed a reference to an object, however, it is difficult for the entity to revoke the

access granted by that reference. Often, object references passed as parameters to a

subroutine are only intended to be of use during the subroutine call. If the called program

stores the object references into a permanent data base, however, there is little the caller

can do. This same problem occurs if an object reference is mistakenly given to someone

who should not have it or if relationships between programmers change so a programmer

who was once trusted is no longer trusted. The only way to solve these problems is to

introduce mechanisms that allow access to be revoked. ORSLA provides several such

mechanisms.

On CAL-TSS and HYDRA it is possible to copy the representation of an object and

then destroy the original. This essentially revokes all of the outstanding references to the

original object. Although these references still exist, no storage is being used for the

original object and no information can be gained from these dangling references. This

kind of revocation can be achieved on ORLSA by copying the object and then performing

a hard delete on the original object. This causes the next garbage collection to replace all

references to the original object with references to the deleted object.

7.4.1 Revocation a la Redell

This is not very satisfactory, however, because all access to the object is revoked. It

would be better if only the access granted by improper references were revoked. A more

sensitive revocation mechanism has been developed by Dave Redell [Redell74. The details

of his mechanism are incorporated into the ID map on a CUID system: a mechanism that

does not exist on ORSLA. Abstractly, however, Redell's mechanism is an example of

indirection. If program A wants to give to program B a reference to object x, and if

program A wants to revoke the reference to x when B returns, an indirect object can be

used (see Figure 39). Program A would create an indirect object, y, that would contain the

reference to x. Program A retains the low level reference to y and passes to B a high level

Section 7.4 232

Section 7.4.1 Revocation a la Redell 233

B A

H/L Y H/L

Y -1 -

x

Fig. 39. Revocation via Indirection

reference to y. The high level abstraction of y is identical to the abstraction of x. Any

operations performed on y are implemented by performing the same operation on x. This

can be quite efficient if the indirect object is implemented by hardware. When B returns,

then A stores a reference to the deleted object in y thereby revoking B's access to x. The

garbage collector could easily convert references to indirect objects containing the deleted

object into references directly to the deleted object. It is not necessary, however, for A to

completely revoke all access to x. Program A could store a different reference to x in the

indirect object that would give B more or less access to x. This mechanism allows A to

completely control the access B has to x.

If this mechanism is used heavily, then long chains of indirect objects will be created.

Every use of the object would require accessing each intermediate indirect object. This

would take a long time and could markedly increase the working set of the computation.

Redell's solution is to short-circuit these chains. Much of Redell's algorithm depends upon

the use of an associative memory to map object names onto high speed memory. Since this

is not done on ORSLA, a more standard method is used here. Redell assumes that the use

of an indirect object is more frequent than revocation and so he designs an indirect object

that short circuits long chains but correctly revokes all indirect objects. This can be

Revocation a la Redell 234

achieved on ORSLA with an indirect object that contains four object references, named

FINAL, SON, BROTHER, and FATHER. FATHER is the reference to the object from

which this indirect object was constructed. FATHER may point to another indirect object

or, if this indirect object is the last indirect object in a chain, it may point to the object

whose access is being controlled. FINAL is the reference to the object whose access is being

controlled regardless of how long a chain of indirect objects is. BROTHER points to

another indirect object that has the same father as this indirect object. SON points to an

indirect object whose FATHER field points to this object. FINAL short-circuits the

FATHER chain, while the SON and BROTHER links allow revocation of the short

circuits. Revocation is performed by changing the FATHER field. Whenever the

FATHER field is modified, all FINAL fields in this indirect object and all its sons,

grandsons, etc. are set to their new value. Any SON and BROTHER fields that must also
be modified to reflect any new structure in the indirect object chains are also updated.

In Figure 40, program A created an indirect object, a, for x. This indirect object was

passed to program B, which first made an indirect object, c, from a and passed this to

program C. When C returned, B made another indirect object, b, from a and passed this to

program D. Program D made an indirect object, d, from b and passed it to program E.

The indirect objects are now linked together as shown in Figure 40. To revoke an indirect

object, w, store the deleted object in FINAL and then follow the SON link. This reference

specifies a tree of indirect objects that are all offspring of w. Since w appears on the

FATHER chain from all these objects, they should be revoked as well. The tree of

offspring is found by following both SON and BROTHER links in all the indirect

objects found starting with the SON link of w. It is also necessary to remove w from its list

of BROTHERs, after which the deleted object can be stored in the FATHER link of w as

well. If, instead of completely revoking the access to an object, a new reference is stored

into the FATHER link of an indirect object, and if this new reference points to another

indirect object, v, then it is necessary to place w on the list of sons of v.

Redell's scheme allows restrictions to be placed on the use of an indirect link. This

would allow the object reference in the FINAL link of d to be different from but less

powerful than the FINAL link in a. Redell's mechanism depends upon having an access

Section 7.4.1

Revocation a la Redell

d

FINAL x

SON

BROTHER

FATHER b

b ,c

d

x .-

a, b, c, and d are indirect objects for x.

Fig. 40. Revocation a]a Redell

control field in the object reference in which each bit specifies the validity of performing

a separate operation. Since this coding is not forced on the user on ORSLA, Redell's

mechanism cannot be used. I will leave the development of mechanisms to allow restrictions

to be placed on the use of an indirect link to future research.

Indirect objects allow the uses of an object to be broken into classes when references

to the object are handed out. These classes form a tree structure. It is possible to revoke

access from all members of a particular subtree of users without revoking 'access from

other classes of users.

Section 7.A.1 235

Revocation a la Redell

7.4.2 Revocation Aided by Mechanisms on ORSLA

ORSLA provides another mechanism for dividing users into classes that is more

efficient. The access control field in a high level object reference can be used to specify

one of a set of from 25 (32) to 29 (512) different classes of users depending upon the

number of bits in the size field. It would be possible to maintain a table of bit strings

within the object that would specify the allowable operations for each class of user. One

bit in each string would specify the validity of one operation. Access for each class of user

can then be controlled by setting this table. This method of revocation .works when the

access control field identifies a class of users rather than a set of operations.

ORSLA can also perform revocation using the garbage collector. Since the garbage

collector finds all of the references on the system to a particular object, it would be possible

for the garbage collector to selectively substitute references to the deleted object for

references to an object some of whose access should be revoked. The garbage collector can

only be selective if it can distinguish between different references to an object, however.

The garbage collector has two kinds of information about a reference. First, there is the

object reference itself with its high-low bit and access control field. Thus the garbage

collector could revoke all low level references to an object, or it could revoke all high level

references that identify a specific class of users. The garbage collector is also aware of

what area the reference is stored in, however. This is an interesting piece of information

for revocation purposes, especially when combined with the access control field and any

further division into classes of users caused by indirection. Thus it may be that all low

level references for a particular object from areas other than LCAs or the area containing

the object should be revoked. Rather than revoking such references, however, the garbage

collector could add further levels of indirection a Ia Redell. This sort of activity by the

garbage collector can allow much better use to be made of the 5 - 9 bits in the access

control field. When a particular class of users is no longer valid, it can be revoked and its

code in the access control field can be reused for another class of users. The garbage

collector could also combine several classes of users, possibly making Sam access to a certain

directory the same as friendly-user access thus making the code for Sam access available

for other classes of users.

Section 7.4.2 236

Revocation a]a Redell

These advanced revocation abilities of the garbage collector are no accident. They

are due to the fundamental ability of the garbage collector to find all the accessible

references on the system to a given object and then to modify all these references. The

same mechanism that creates locality of reference and handles fragmentation of storage

can also provide sophisticated revocation features. I have tried to describe a few of the

ways in which relatively inexpensive revocation can be performed using the garbage

collector. The full development of this mechanism will be left to other researchers.

ORSLA provides one last mechanism that can be used for revocation: the inter-area

link. It is similar to the indirect object used for revocation a la Redell. Its main purpose,

however, is not to provide revocation, so we must accept whatever limitations it may have

for revocation. It is possible to revoke inter-area links to an object without garbage

collecting the area containing the object. It should be noted that most of the references to a

permanent object that will need to be revoked are not stored in the same area as the object.

The list of inter-area links immediately identifies the references to an area from other

reasonably permanent data bases. Each area is used by the class of programs and users

that use the information contained in the area, so some information about the class of

users of an inter-area link can be obtained by looking at the area that the link comes from.

If this does not correspond to the class of users identified by the access control field of the

reference, then a protection violation may have just been discovered after-the-fact.

Although this would be distressing, the violation must be due to an error by a user or a

program in handing out references to the object, not to a fault in the system. It is better

for the system to aid in the detection and correction of such errors than to prevent their

discovery.

7.4.3 Access Control Lists on ORSLA

Multics is a protection system that does a good job of revocation. Each segment on

Multics has an access control list that specifies what access each user has to the segment.

To revoke access, the access control list is merely modified. Since a segment on Multics

corresponds to an area on ORSLA, access control lists on Multics could be approximated

on ORSLA by providing an access control list for each area that would specify the legality

Section 7.4.2 237

Access Control Lists on ORSLA

of all incoming links and cables. Although inter-area links come from other areas rather

than from other users, each area is under the control of one or more users. If ORSLA can

identify these users, then the access control lists on ORSLA could be similar in appearance

to the access control lists on Multics. The access control lists on ORSLA could also specify

the access allowed from individual areas as well as the access allowed from areas controlled

by a particular user or class of users. These access control lists would be checked whenever

an inter-area link or cable is created, thus they are not only a mechanism for revocation.

When the access control list for an area A is modified, however, then all incoming links

and cables to A are checked against the new access control list and any illegal links are

revoked. If any cables to A are found to be illegal, the area from which the cable comes is

garbage collected and all the direct references to objects in A are revoked. Thus modifying

the access control list on ORSLA can provide revocation that is as sudden and as complete

as on Multics.

Unfortunately, it is not easy to tell what users control an area on ORSLA. Some

indication of what user controls an area can be gained from what directory controls the

area. Another hint of which user controls the area can be obtained from the account that

is being charged for the storage used by the area. A third possibility is to create another

field in the area object that would hold a highly privileged object reference to the user

who is responsible for the area. Presumably users would control the distribution of such

object references very tightly, so the system could use this field to determine what user

controls an area and at least have the assurance that the only other users who could control

the area would be users that are trusted by the user who is responsible for the area.

Exactly how ORSLA would determine what user controls an area will be left to future

research, but whatever method is used will probably not identify what user controls an

area much better than the techniques mentioned above.

Although the access control lists could control what LCAs are allowed to have cables

to the area, it should be remembered that the existence of a cable from an LCA does not

imply uncontrolled access by the LCA. It may be that the user who owns the LCA may

have access only to high level object references to the objects in our area. When an

operation is performed with a high level object reference, the owner of the LCA loses

Section 7.4.3 238

Access Control Lists on ORSLA

control of the process while the operation is being performed. Thus even the fact that a

low level reference to the object exists in a hostile LCA is no indication that protection has

been compromised. If the rings on Multics are ignored, then the access control lists on

Multics can be seen as preventing processes from using segments. This corresponds on

ORSLA to controlling cables from local computation areas. Multics, however, allows a

process to have limited access to a segment while ORSLA provides this via access control

lists by controlling high level references from permanent areas.

Access control lists on ORSLA form a separate protection mechanism that uses the

concepts for specifying protection that have been developed on Multics, i.e. people having

access to areas. There are two reasons why access control lists form a secondary protection

mechanism that will support the primary mechanism provided by object references. First,

there are uncertainties in identifying which people have access to a given area. These

uncertainties exist even on Multics, although the uncertainties may be greater on ORSLA.

Second, the protection provided by object references is extremely fine-grained and there is

a surprisingly small amount of difficulty in specifying and enforcing the variegated

control it provides. Access control lists on ORSLA can, however, provide secondary support

to the protection provided by object references. A major drawback of protection by object

references is that the flow of information must be pre-planned. When a program gives out

a reference to an object, the program must have some idea of what class of users will use

the reference so the class of users can be identified in the object reference. If the program

does not distinguish the various references to the object that it distributes, then everyone

will always have the same amount of access to the object. Access control lists, however, are

very dynamic, allowing the user to decide upon access control issues and to identify classes

of users after references to the objects have been distributed. Furthermore, the concept of

controlling peoples' use of areas is easy for people to understand. The concept of

distributing access to people via object references is also easy to understand, but it is not

easy to appreciate the implications of the further distribution of object references. Access

control lists, however, do not allow further distribution of access; this inability is a strength

when access is being distributed manually, although it becomes a weakness when more

careful thought is given to the control of access. Finally, the fact that the criteria for

determining legality of a reference is completely different for protection by object

Section 7.4.3 239

Access Control Lists on ORSLA

references and protection by access control lists means that protection by access control lists

can be used as a backup method for catching the failures of protection by object

references even when the control of access has been thoroughly planned in advance. By

dealing with areas rather than individual objects, it is possible for access control lists to

detect unprotected references to any of the objects in a data base, while the largest effort

in protection by object references will be concentrated on the objects that are entry points

into the data base. Thus protection by access control lists can be set to catch any blatant

lapses in protection that occur with the carefully designed protection by object references.

In this case, the access control lists should be set to prevent only those references that the

protection by object references would never allow when working properly.

7.4.4 Resnapping Mistakenly Revoked Object References

A fundamental problem of revocation is that it is difficult to identify precisely the

references that should be revoked. Although this thesis proposes mechanisms for

separating references into classes, there will probably be several references in each class,

only some of which should be revoked. The classic answer to this problem of capability

systems is that if an object reference (capability) is mistakenly revoked, the user should be

able to get another copy of the object reference. This answer, however, ignores the fact

that the user may not be aware of the existence of the object reference (capability) that was

revoked. In Chapter 6, 1 presented a mechanism for unsnapping and then resnapping

inter-area links. This mechanism could be used to give the user some help in obtaining

new copies of a reference that has been mistakenly revoked. At the very least it would

identify what object had been previously referenced and give some clue as to where to get

another copy of the reference to the object. Unfortunately, this mechanism for resnapping

links has serious protection implications that have not been discussed here. Future research

should present and work out the protection problems of dynamic linking on capability

systems.

The existence of areas and of garbage collection present many opportunities for

sophisticated revocation. One of the reasons revocation has been such a problem on

capability systems has been the lack of garbage collection. Once all the references to an

Section 7.4.3 240

Access Control Lists on ORSLA

object can be found and modified, sophisticated revocation is possible. Exactly how it

should be carried out and what controls need to be placed on it are subjects that have been

touched lightly here, but which need more research. Much of this work can only be done

after more of the details of ORSLA have been worked out.

7.5 Allocation of Storage

The allocation of storage has always been a complicated subject [Knuth68. A large

number of techniques have been developed for allocating storage. Unfortunately, allocating

address space is a very sensitive job on a capability system. If unique IDs are used,

however, one per object, in a non-reusable address space, then allocating them is very

simple. HYDRA and CAL-TSS each have a single system-provided function that allocates

IDs for objects. In a re-usable address space, however, where locality in the address space is

important, no single allocation algorithm would be acceptable in all cases. Therefore it is

necessary to allow the subsystem programmer to write storage allocation routines. We must

assume, however, that any code a programmer writes may have a bug in it. If a storage

allocator were to allocate the same piece of storage to two different objects, it would violate

a fundamental assumption of the system: that an object reference really points at the object

it is supposed to point at. Some method must be devised that allows subsystem

programmers to write storage allocators but prevents them from allocating the same piece

of storage twice.

The immediate purpose for allocating storage is to create a new object. To create the

object x, which is of type t, the programmer will call the procedure constructi, which is

responsible for creating objects of type t. The arguments to constructi specify the initial

state of x. Constructs is considered to be part of the definition of t. Constructs first

computes the number of words needed for the new object and then calls a storage allocator

which returns a free storage object, f, containing the required number of words.

Construct. now convertsf into the low level abstraction of x using the allocate operation

that is defined on free storage objects. The allocate operation initializes any size-ref field

or dataype.def field that may be in the object, zeroes the rest of the object, and creates

the initial low level object reference for x. At the same time,f is modified so that this piece

Section 7.44 241

Allocation of Storage 4

of storage cannot be allocated again without first being freed. Constructt now has a low

level reference for x, so it uses this reference to initialize the representation of x and then

returns the object that it has finished constructing.

Thus we see that the existence of free storage data types allows the information

encoded in constructl to be limited to information about the representation of objects of

type t. All of the complexities of storage allocation have been left in the storage allocator.

Furthermore, it is not necessary for the storage allocator to contain any information about

type t. Can free storage data types, however, allow the storage allocator to operate?

Surprisingly enough, there are really only two operations on free storage objects that are

needed to implement storage allocation: splitting a free storage object into two or more free

storage objects, and combining two adjacent free storage objects into a single object. In

addition, however, a storage allocator must be able to use the storage in the free storage

objects to maintain the data base that allows the allocator to keep track of the free storage

objects. This data base is usually called the "free storage list".

Now that we have seen how free storage objects are used, we are ready to consider

how we can prevent the same piece of storage from being allocated to more than one

object. We have assumed that all of the objects on ORSLA are using disjoint pieces of

address space. If we include free storage objects in our concept of objects, then it would be

natural to extend this requirement to free storage objects as well. Thus a word of address

space is either free, allocated, or inaccessible. It is allocated if it is part of the

representation of an accessible object other than a free storage object. A word of address

space is free if it is part of an accessible free storage object. A word of address space is

inaccessible if it is not part of an accessible object. The reference count machinery converts

an allocated object into a free object at the moment when the object becomes inaccessible.

Garbage collection will eventually convert inaccessible words into free words. No word of

address space may be part of more than one accessible object. If this requirement is

followed, then it is obvious that only storage that is free can be allocated regardless of how

many bugs an individual storage allocator may contain. There are three operations on free

storage objects which could, if not designed carefully, violate the disjointness of all objects.

These operations are: allocate, combine-storage, and split..storage. Each of these operations

Section 7.5 242

Allocation of Storage

return a new object that shares storage with one or more operands of the operation. These

operations must, therefore, destroy the old objects before creating the new ones so that at

no point will two objects exist that contain the same word of storage. In order to ensure

that this restriction is followed, all of the free storage data types are defined by the system.

On the other hand, it is the system's responsibility to ensure that enough different

representations for free storage objects are provided so that no limitation will be placed on

the possible storage allocators by limitations in the representations of free storage objects. I

suggest that the following three free storage data types will provide the needed flexibility.

7.5.1 First Free Storage Data Type

The simplest kind of free storage type, FS1, consists of objects of different sizes

whose representations are made entirely of free storage. Since the reference to an FS,

object points directly to free storage, however, this kind of object is destroyed only when it

becomes totally inaccessible. Fortunately, there is no need for references to exist to objects

that have been combined or split or allocated. Thus each of the allocate, combin estorage,

or split.storage operations will only accept an FS, object as an argument if the operation

has been given the last accessible reference to the FS, object. The operation merely

destroys this reference to the FS, object in order to make it inaccessible. The operation can

only check that it actually has the last remaining reference to the FS, object if reference

counts are maintained on FS, objects. Thus a size-ref field is needed in all FS1 objects.

Fsize-refFS1

Fig. 41. Simple Free Storage Type (FS)

Section 7.5 243

First Free Storage Data Type

Unfortunately, this thesis does not describe exactly how reference counts are maintained;

this has been left for future research. Only the allocate, combinestorage, and split-storage

operations are defined on the high level abstraction of an FS1 object, but the load and

store instructions are defined on the low level abstraction, allowing storage allocators to use

the free storage in FS, objects for maintaining the free storage list.

Storage is freed either by the garbage collector or by the reference count machinery.

The old information stored in newly freed storage must be erased before the storage

allocator may look at it, so all storage is "zeroed" out when it is freed. Actually, instead of

zeroing the storage, it is filled with a special atomic monitor object that allows information

to be stored in the monitored location, thus erasing the monitor, but causes the

uninitialized-storage interrupt if the monitored location is read from. Filling storage with

this monitor is called cleansing the storage. If a storage allocator uses only one or two

words in each free storage object for the free list, then cleansing the storage in a free

storage object when it is allocated would be largely redundant since the storage was

cleansed when it was freed. To avoid this unnecessary operation, the size field in the

object reference of a low level FS1 object only covers the part of the object that is being

used by the storage allocator. The size field in a low level FS1 object reference can only be

modified, i.e. decreased or increased up to the size of the object, when the reference count

is 1, i.e. when the object reference being modified is the only one is existence.

We can now see how the combinestorage operation is performed on FS objects:

A - combine5torage (B, C)

The combine-storage operation is only permitted when the storage for B and C is adjacent.

If B precedes C, then the combine._storage operation is permitted only when the reference

count of C is 1. Then the reference to C is destroyed, the size-ref field of B is increased by

the size of C (size-ref + 1), and the dirty storage in C is cleansed. Note that there may be

other references to B when this operation is performed. B is merely enlarged to include C.

There is a requirement on ORSLA that the representation of every object must be

entirely contained in one area. This allows an entire area to be freed at once when a

garbage collection has finished. To achieve this the combine-storage operation must check

244Section 7.5.1

Section 7.5.1 First Free Storage Data Type 245

size-ref
A-

size-ref
B

Fig. 42. Combining Free Storage

that both B and C are part of the same area if the point of joining occurs exactly at a
page boundary. If the point of joining does not occur exactly at a page boundary then B

and C must both be in the same area because the page on which the join occurs is only in

one area.

The split-storage operation is used to reduce the size of free storage objects.

(A, B) - splitustorage (C, I)
The FS, object C is reduced in size until it has only I words in it. Object C is transformed

into object A, while B is an FS, object for the storage removed from C. The

combine-storage and split-storage operations are used by storage allocators to construct

pieces of free storage of the proper size for constructing objects.

size-ref
A

size-re f
B - - - -- - - - -

Fig. 43. Splitting Free Storage

First Free Storage Data Type

Once a free storage object of the proper size has been obtained by a program that is

constructing an object, the allocate operation is used to convert the free storage object into

the type of object being constructed.

X - allocate (A, D)

Object A is a free storage object whose reference count is one, i.e. the allocate operation is

given the last remaining reference to A. Object A is converted to an object of type D. All

of the dirty storage in A is cleansed and a low level object reference of type D is

constructed to the storage in A. This new object reference is a reference to object X, which

is of type D. If X contains a data.jypedef field or a size-ref field, these fields are placed

in X by the allocate operation.

The FS, type of free storage object is useful in many circumstances. Many storage

allocators will operate using only the FS type of free storage. Most storage allocators, when

invoked to allocate some storage, will return a free storage object of type FS1. Programs

that create objects by using the allocate operation will usually be converting a free storage

object of type FS, to the type of object they are creating.

7.5.2 Allocating Address Space and Storage to Areas

Although the FS, data type is very useful, it is necessary for the system to provide a

set of representations that will be adequate for all applications. Before we can consider

more representations for free storage objects, however, we must take a closer look at an

interesting feature of ORSLA; address space and physical storage can be allocated

separately. Since the machine language level of ORSLA operates in a virtual address

space, however, free storage objects on ORSLA actually control allocation only of address

space. Storage is allocated by these objects only when there happens to be storage

associated with the address space that is being allocated. There are no physical storage

objects on ORSLA that control physical storage that is not assigned to a section of the

address space. Any object that contains a datalypedef field and/or a size-ref field must

have storage associated with the words of address space that contain these fields, but it is

possible for the rest of the object to consist of words of address space that do not have any

storage associated with them.

Section 7.5.1 246

Allocating Address Space and Storage to Areas

Ultimately the system is responsible for the control of physical storage. It decides

which piece of physical storage to use for a piece of address space and decides when to

move the piece of address space to another piece of physical storage. Physical storage is

broken into pages, so whenever there is a word of storage associated with a word of

address space, there are also words of storage associated with the rest of the words of

address space in the page of address space. The idea of allocating storage separately from

address space in this way is not new. Multics allocates address space in large, fixed blocks:

one segment at a time. A page of storage is allocated to a segment whenever the user stores

information into a page of address space that does not have any storage associated with it.

Allocating storage and address space separately allow certain large variable size objects to

be implemented efficiently. If a large array can change size, such as a stack, then it is

convenient to allocate a relatively large amount of address space to the object while only

allocating enough pages of storage to accomodate the current size of the object. This

technique is particularly valuable for allocating address space. An area may initially obtain

a large block of address space to allocate from. The area then allocates this address space

to objects starting from one end. Storage need not be associated with the part of this

address space that is still free. Whenever blocks of address space are allocated separately,

there can be no assurance that they will be adjacent to each other in the address space.

Each block of address space, when it has been allocated to objects, will probably contain a

small amount of internal fragmentation at the end of the block. This inefficiency is

minimized by allocating large blocks of address space to areas.

Although most programmers will allocate free storage objects from areas, storage

management within an area is a complicated, application dependent task that the system

cannot specify for all applications. Thus the system provides three operations that allocate

free storage objects to areas and also allow storage to become associated with allocated

sections of address space that do not have storage associated with them.

f - sysalloc (area, nw)

sys-allocaddress-ipace..only (area, nw, J)

assign.storage (area, page-number)

Section 7.5.2 247/

Allocating Address Space and Storage to Areas

The variable f is a free storage object while area is the area to which the allocation is

being made. Whenever an allocation is made to an area, the quota is checked and the

usage information in the area is updated, including the list of pages of address space

allocated to the area. The catalog of pages maintained by the system must also contain a

reference to the area that each page is part of. Although these operations are given the

number of words (nw) of storage and/or address space to allocate, the system only allocates

pages of storage and/or address space. Sysalloc allocates address space that has storage

associated with it, while sys-allocaddress-paceaonly allocates address space that does not

have storage associated with it. Both of these operations return a free storage object that

reflects the number of words actually allocated, which may be larger than nw but will not

be less. The assigmnssorage operation is used to assign storage tp address space that has

already been allocated but does not have storage assigned to it. The assign-storage

operation checks that the page of address space is part of the area and does not yet have

any storage assigned to it.

In addition, there are three operations that allow an area to return storage and

address space to the system:

sys.free ()

retrieve-storage (x, offset, nw)

hard-delete (area)

The sys free operation frees address space and any associated storage. The free storage

objects passed to the sys-free operation must match up with page boundaries since the

system will only free pages that are entirely contained in the free storage object. The

reirieve-storage operation does not free address space, but removes no more than nw words

of storage from the object x starting at the offset word within x. The object x does not

need to be a free storage object. The retrieve-5torage operation only retrieves whole pages

of storage but will not retrieve the storage associated with a word of address space that

contains a size-ref field or a data-type.def field. The harddelete operation returns all of

the address space and storage allocated to the area to the system. When an object is freed

by the reference count machinery, a small amount of address space may have been freed,

Section 7.5.2 248

Allocating Address Space and Storage to Areas

so the resulting free storage object is given to the area that contains the object. The area

may combine it with adjacent free storage objects and may eventually allocate its address

space to a new object.

7.5.3 Second Free Storage Data Type

There is another free storage type (FS2) that is also rather simple but is designed to

handle free address space that does not have any storage associated with it. An FS2 object

is two words long. The first word contains the address of the first word of the block of

free address space. The second word contains the size of the block of address space. This

free storage object does not need a reference count. It does not matter how many references

there are to the two word object because the two word object is considered to be allocated

storage. Only the storage pointed to from the two word object is considered to be free. The

only pointer to this free storage is kept within the two words of the FS2 object, so there

can never be more than this one pointer to the free storage itself, thus there is no need to

maintain reference counts to the free storage. The split-storage operation on FS2 objects

can take a positive or negative integer. If positive, the address space is allocated from the

beginning of the block. If negative, it is allocated from the end of the block. The

split.storage operation generates a free storage object of type FS1, however. Another

FS2 - -- -
free

object reference size address
FS2 object space

Fig. 44. FS2 Data Type

Section 7.5.2 249

Second Free Storage Data Type

operation, split..storage2, is needed that will create a new block of type FS2 . FS 2 objects

can be reused whenever the size of their free storage block reaches zero, so the

splitutorage2 operation reuses an existing FS 2 object rather than creating an additional

two word FS2 object. Splitstorage2 (A, I, B) allocates the storage from A and combines it

with B. Neither A nor B can be FS, objects since the operation does not return any values.

The combinecstorage operation, if given an FS, and an FS2 object, places all the storage in

the FS 2 object. Given two FS2 objects it places all the storage in its first argument.

Objects of type FS2 are ideal for allocating storage from a large block of address

space that may not have any storage associated with it. FS, objects are much better for

returning storage from a storage allocator because they contain only free storage. If an FS2

object is returned from a storage allocator, then the two word FS2 object cannot be safely

reused because the user will have a reference to it.

7.5.4 Third Free Storage Data Type

The FS, and FS2 data types handle many of the needs for storage allocation. There

is a third representation, FS3 , that can achieve great efficiency under certain conditions.

This is similar to FS2 in that the representation for the object is not free storage. It has a

size-ref field. The first two words are the same as the words in an FS2 object. Unlike FS2

however, storage is not allocated by changing these two words. Instead, an FS3 object

contains a bit string that specifies which words in the block pointed to from the FS3 object

are actually free and which are not free. The block pointed to from the FS3 object is called

the block of possibly free storage. The number of words represented by each bit are

specified by a number in the fourth word of the FS3 object. There is a requirement that

all contiguous blocks of address space be entirely contained within one area. To aid in

satisfying this requirement the third word of an FS3 object is a reference to the area that

free words in the block managed by the FS3 object belong to. The rest of the words of the

FS3 object contain the bits that identify which parts of the block of possibly free storage

are free and which parts are not.

When an FS3 object is created, the bead size, area specification, and the block of

possibly free address space must all be specified. The block of possibly free address space

Section 7.5.3 250

Section 7.5.4 Third Free Storage Data Type 251

1FS 3J size-re f pos sibly

object reference-free
---------m bad dres s

size space

area

Sbead sizesie

bit

string

FS 3object'

Fig. 45. FS3 Data Type

can either be specified with integers, in which case the bit string is set to indicate that none

of the address space is free, or the block may be specified with an FS or FS2 object in

which case the block of re frogthe oeSoeom the FSi or FS2 object and the bit

string in the FS object is set to indicate that all of the address space is free. In either case

the bead size multiplied by the number of bits in the bit string must be greater than or

equal to the number of words in the block of possibly free storage.

The combine-storage operation, when given an FS3 object and either an FS, or an

FS2 object, takes storage from the FS, or FS2 object that is included in the block of

possibly free storage of the FS3 object and changes the corresponding bits in the FS3

object to indicate that this storage is free. The bead size determines a certain graininess in

the handling of storage. If a free storage object does not exactly correspond to the bead

boundaries then only those bits will be set to "free" for which the corresponding words are

all known to be free. Sloppiness about bead boundaries results in storage being lost to the

allocator; it does not result in overlapping objects. Whenever a free storage object is

combined with an FS3 object such that one extreme of the object corresponds to an exact

bead boundary and an exact page boundary then the area the free storage is part of is

compared with the area in the FS3 object.

The split.storage operation is not defined on FS3 objects. Two more operations are

Third Free Storage Data Type

needed instead.

A - allocate.from.) (, offset, 0
The allocateJromd operation returns an FS, object. The arguments offset and i specify

bits within the bit string that correspond to the words that are to be allocated. The first bit

is specified by offset and the number of bits to allocate is i. All i bits must indicate that

these words are free. All these bits are set to "allocated" and a free storage object is

returned that corresponds to the bits that have been modified. An operation is also needed

that will produce FS2 or FS3 objects.

allocate.from3_to_2 (f offset, i, a)

The allocae-fromJ...o2 operation is similar to the allocate fromd operation except it

combines the allocated storage with a, which is either an FS2 or an FS3 object.

An FS3 object is best for handling large amounts of fragmentation, especially when

the bead size is larger than one. In this case searching the bit string can be done without

causing excessive paging. It is also easy to determine if a bead being freed can be

recombined with another bead. The bit string can be read by the user of the FS3 object,

but cannot be modified except by the combine and allocate operations. The FS3 data type

is used by the system to keep track of free pages of address space.

7.5.5 Conclusion

The definitions of all three data types preserve three properties. First, no single block

of free storage crosses area boundaries. Second, every piece of free storage is counted

exactly once; no two free storage objects overlap. Third, when a free storage object is

converted to another data type, no dangling references are created and the object is no

longer considered to be free storage. These properties prevent any bugs that may exist in a

storage allocator from creating dangling references.

The interface chosen for a storage allocator causes an object constructor to

communicate a bare minimum of information to the allocator. If the allocator is malicious

or has a bug in it, the worst thing that can happen is that the allocator could never return.

If the allocator returns with a free storage object of the correct size, then the worst that can

happen is that the free storage object cannot be converted into an object of another type.

Section 7.5.4 252

Section 7.5.5 Conclusion 253

Once the conversion is complete, however, the storage allocator can no longer interfere

with the computation. The allocator can no longer access the storage that was allocated and

the storage has been cleansed for the user thereby preventing information from previous

computations from leaking through the storage allocation machinery. The user need not

clean the storage to protect himself from the storage allocator, either.

254

Appendix A

The Size of the Address Space

Now that we are familiar with the entire structure of ORSLA we are ready to consider

a problem that arose very early in the thesis. ORSLA uses just one address space for the life

of the system, but how large must this address space be?-Throughout the thesis I have

assumed that in order to handle 1012 bits of storage (about 2 words of 59-82 bits each) it is

necessary to have only 40 bits in an address (240 words of address space). The purpose of

this appendix is to justify this assumption.

The main purpose of the address space is to allow all of the on-line storage to be used

quickly and easily. The address space on ORSLA must be designed for a maximum amount

of online storage. If this maximum is exceeded it is possible that the system will not be able

to make effective use of the additional physical storage. Physical storage is expensive,

especially in quantities as large as 1012 bits. If the users of a system go to the expense of

buying that much storage, the languages and operating system should enable the users to

make use of it in any way they see fit. This should include putting all (or most) of the

storage into one very large block. 1012 bits of storage would require 34 bits just to be able to

address all the words of storage. ORSLA allows single blocks of address space as large as

234 words.

2 words of address space are not enough, however. For one thing, the user needs to

be able to allocate blocks of address space without assigning storage to the address space.

The best use of this technique is for the activation record stack. The contiguous block of

address space in the stack increases the efficiency of the use of storage. It is easy for this

feature to get out of hand, however. Given a particular pattern of usage, a certain ratio will

develop between the total address space allocated (A) and the total storage allocated (S). This

is the A/S ratio. The total address space needed to handle 234 words of storage will be

(A/S).::? 34. This ratio increases the size of an address on ORSLA. It is difficult to decide

what A/S ratio is needed to use ORSLA effectively, but an A/S ratio as small as 2 may be

acceptable. This requires only one extra bit in the address. I will use this A/S ratio as an

example, but a different ratio could easily be used.

The Size of the Address Space

Regardless of what A/S ratio is chosen, the user will be tempted to use a higher ratio.

To prevent this it is necessary to have address space quotas on areas as well as storage

quotas. The total address space quota will be equal to twice the total storage quota. Let us see

what effect such a small A/S ratio has on the selection of a stack size.

When a stack is created on ORSLA it is necessary to obtain a certain amount of

physical storage quota for the use of the stack. The amount of storage quota obtained must

be somewhere between the average size and the maximum size of the stack. It is only

necessary to obtain the average size if an infinite number of independent stacks are all

drawing from the same pool of storage quota. If a stack is not sharing a pool of quota with

other data structures, then it is necessary to obtain enough storage quota for the maximum

amount of storage the stack will use. Since ORSLA does not set any limit on the maximum

size of a stack, the amount of available quota will determine the maximum size of a stack. In

practice, a stack will draw from the same pool of storage quota as several other data

structures but usually these data structures will not be independent. Often all of the data

structures will grow large at the same time. This means that the amount of storage quota

that must be obtained just for the stack is larger than the average size of the stack but

somewhat less than the maximum size. Again, the available quota may well determine the

maximum size. Once it has been determined how much storage quota is being added to the

pool of quota in order to handle the stack, the initial block in the stack section should be

made twice this size. This will allow the stack to become quite unusually large before it is

necessary to create a new section of the stack. If it can be predicted that a data structure will

grow, then we can allocate twice as much address space to it as the size to which we expect it

to grow because we would have already obtained an amount of storage quota equal to the

size to which we expect the data structure to grow. If many data structures do not use more

address space than storage, then it may be possible for some data structures to have high

A/S ratios even if the average A/S ratio is limited to two.

Fragmentation of the address space is a serious problem in a large, long-term address

space. Areas will obtain blocks of address space of various sizes and will later return these

blocks. Holes of free address space will develop between the blocks of allocated address

space. It will not be possible to actually allocate all of the address space to areas. Some parts

C)5; rAppendix A

The Size of the Address Space

of the address space will be broken into unusably small pieces. Assuming.an upper bound of

1012 bits on the total amount of online storage and an A/S ratio of two, we want to be able

to allocate a total of 235 words of address space. How large must the entire address space be

to ensure that we will always be able to allocate 295 words of address space in the size blocks

that we desire?

This question was faced by J. M. Robson in 1971 [Robson7l]. The answer depends in

part upon the range of sizes of the blocks of address space that must be allocated. Robson

assumes that the smallest block of address space that can be allocated is one word, but

ORSLA never allocates units of address space that are less than a page, so I will deal with

units of one page: 29 words. We want to be able to allocate a total of 226 pages of address

space in blocks as large as all physical memory: 225 pages. Robson uses the notation Nc(M,n)

to specify the smallest address space necessary to allow a total of M pages to be allocated

with a maximum block size of n pages. If n is a power of two (n - 225), then Robson comes

to the conclusion that

4Ma/13 - 16 02a/ 13 + 9M/13 s No(M, 2 a) : M(a + 1)

Substituting our numbers gives us:

40226025/13 - 16225/13 + 9022/13<5 N(2 2 6, 225) 5 226(26)

1.94 * 228 S No(226,225)S1.63230

In other words, if we choose an address space of 231 pages (240 words) we can

guarantee that storage fragmentation will never prevent ORSLA from allocating any size

block of address space. The allocation strategy that Robson suggests is a slight variant of

the buddy system, so it should be reasonably easy for ORSLA to use an address space

allocation strategy that will never get it into trouble. In general, in order to be able to

allocate a total of A = 2a words of address space and S = 2S words of storage on an ORSLA

system with a page size of 2P words, the size of the address space must be about A(s-p+1)

words.

Throughout the thesis, I have made a great effort to reduce the size of the fields in

256Appendix A

The Size of the Address Space

the object reference. I have made a good case that in order to handle 1012 bits of storage, it

is necessary to have an address space containing between 235 and 240 words. I have

advocated selecting the larger size for several reasons. First, storage fragmentation will

require a larger address space than words, but exactly how much more address space will

really be needed to handle the storage fragmentation that will actually occur on ORSLA will

not be known until an ORSLA system is actually built. Furthermore, the storage allocation

algorithm used by ORSLA will affect the amount of storage fragmentation, but the cost of

running a storage allocation algorithm that minimizes fragmentation may be prohibitive.

The algorithm described by Robson that results in his upper bound on the amount of

fragmentation is so similar to the buddy system that I expect this amount of fragmentation

to be economical to achieve. Lastly, the uncertainty in the upper bound on the amount of

physical memory that ORSLA should have is much larger than the uncertainty in the

fragmentation of storage. By being conservative on the amount of storage fragmentation, we

build in a small safety factor into the upper bound on all storage. Thus if we design

ORSLA so it is rated for 10 12 bits of storage, it may actually be able to operate with more

storage, but not much more storage. Exactly how far ORSLA can be pushed will not be

known until it is built and its limit tested.

Appendix A 257

258

Appendix B

The Area Object

The area object is one of the few objects on ORSLA that is defined by the system.

The lists of inter-area links are very sensitive system-maintained data structures that the

system depends upon. When the area object was first presented in Chapter 4, only some of

the uses of an area were apparent and so some of the information in an area object could

not be described. This appendix provides a complete description of the area object.

An area object resides in the area it defines. In fact, the area object is the first object

created in the area; as a result, the area object always begins at a page boundary. Thus the

area specifier for each page stored in the page map need not use a full word address; only

a page address is needed. The rest of the system refers to an area with a full object

reference, as with other objects.

Many of the fields in an area object contain information that must be correct if the

system is to operate properly. The owner of an area will often be able to affect these fields,

but only in very restricted ways. Other fields within the area object are less sensitive and

so may be set by the owner. Although some of the behavior of an area object is defined by

the system, the owner of an area is given as much flexibility as possible to define the rest

of the behavior of the area. The items in the area object are:

1) list of named objects - This is a list of character string names together with object

references to the objects they name. The objects named should reside within the

area. All of the objects in the area should be ultimately accessible from the named

objects in the area. The automatic mover will move other objects out of the area.

2) controlling directory - This is the directory that controls this area. This item allows the

pathname of objects in this area to be generated.

3) free list - This is a list of blocks of free storage and address space. When storage and

address space are allocated from this area, the storage in this list decreases. The

area may request that ORSLA allocate blocks of address space and storage to the

area to increase the amount of storage in the area's free list.

4) address space quota - This is the maximum number of pages of address space that

The Area Object

can be allocated to the area at any one time. The user is able to set the quotas on

an area. The user can be sure of being able to use this much address space, but

cannot get more without changing the quota.

5) address space used - This is the total number of pages of address space currently

allocated to the area bj ORSLA. This number may never exceed the quota.

6) pages allocated - This is a list of the pages of address space allocated to the area.

When an area is deleted, e.g. after it has been garbage collected and all the

accessible data moved into a new copy of the area, all of these pages of address

space are returned to ORSLA along with any pages of storage associated with

these pages of address space. This list does not enable any of the address space to

be accessed nor does it identify any objects that may reside in the address space.

7) storage quota - This is the maximum number of pages of physical storage that may be

assigned to pages of address space that have been allocated to the area.

8) storage used - This is the number of pages of physical storage currently being used by

the area.

9) incoming links - This is the list of inter-area links from other areas that are

referencing objects in the current area. This list is used in garbage collection and

is automatically maintained by ORSLA.

10) incoming cables - This is the list of cables from other areas to this area.

11) outgoing links - This is the list of inter-area links in the current area referencing

objects in other areas. This list is also used in garbage collection and is

automatically maintained by ORSLA.

12) outgoing cables - This is the list of cables from this area to other areas. This is

actually a hash table of outgoing cables if there are more than three cables

leaving this area.

13) area information - This field contains several bits that specify information about the

area. The bits in this field are: the LCA bit to specify whether the area is a local

computation area, the garbageccollecting? bit to specify whether the area is being

garbage collected, the lib bit to specify whether the area is a LIBRARY area, and

some bits to specify whether objects may be moved automatically in or out of the

area and if not, whether objects that are accessible from elsewhere in the system

but not from the current area should be deleted or retained in the current area.

Appendix B 259

The Area Object

14) miscellaneous information - This is a list of miscellaneous information that is

associated with the area but is not sensitive information. It includes several.

garbage collector data bases when the area is being garbage collected and contains

the list of objects that are to be moved to another area by the manual mover. The

user of an area may keep information on this list.

15) access control list - This is a list specifying what object references are allowed from

other areas to objects in this area. This list will often identify other areas by the

users or classes of users that control that area and will often prohibit large classes

of object references, such as all low level object references. This list will also

specify whether objects may be moved automatically to or from these areas and, if

the automatic mover is interfered with, whether an object that is inaccessible from

this area but cannot be moved elsewhere should be deleted or retained in this

area.

13) lock - Each area may be manipulated by any of the processes on the system. During

manipulation of the area, it may be necessary for changes to be made in the free

list or in the lists of incoming or outgoing links in this area. To prevent parallel

processes from interfering with each other, this lock must be set whenever these

lists are read or written so that only one process at a time will manipulate the lists.

Appendix B 260

261

References

[Baecker7O]

[Baecker72]

[Baecker75]

[Baker77

[Batson77)

[Berry76]

[Birtwistle73)

(Bobrow72J

[Bobrow75J

[Burks46)

[Constantine68]

[Dahl72]

Baecker, H. D. Implementing the Algol 68 Heap. BIT Vol. 10, No. 4
(1970), pp405-414.

Baecker, H. D. On a missing mode in Algol 68. SIGPLAN Notices
Vol. 7, No. 12 (Dec. 1972), pp20-30.

Baecker, H. D. Areas and record-classes. The Computer Journal Vol.
18, No. 3 (Aug. 1975), pp223-226.

Baker, Henry G., Jr. List processing in real time on a serial computer.
M.I.T. A.I. Lab. Working Paper 139, Cambridge, Mass. (Feb. 1977),

30p.

Batson, A. P. and Brundage, R. E. Segment sizes and lifetimes in
Algol 60 programs. Comm. ACM Vol. 20, No. 1 (Jan. 1977), pp3&-44.

Berry, D. M., Erlich, Z., Lucena, C. J. Correctness of data
representations: Pointers in high level languages. SIGPLAN Notices
Vol. 8, No. 2 (1976), Conference on Data: Abstraction, Definition and
Structure, pp 115-119.

Birtwistle, C. M. et al. SIMUL A BEGIN. Auerbach Publications, 1973,
Philadelphia.

Bobrow, D. C. et al. TENEX, a paged time sharing system for the
PDP-10. Comm. ACM Vol. 15, No. 3 (March, 1972), pp135-143.

Bobrow, D. G. A note on hash linking. Comm. ACA1 Vol. 18, No. 7
(July 1975), p413.

Burks, Arthur W., Goldstine, Herman H., von Neumann, John.
Preliminary discussion of the logical design of an electronic
computing instrument. 1946, in Computer Structures: Readings and
Examples by Bell, C. Gordon and Newell, Alan, McGraw-Hill, 1971,
New York, pp92-119.

Constantine, L. L. Segmentation and design strategies for modular
programming. Modular Programming, ed. by Tom 0. Barnett,
Information & Systems Press, Cambridge, Mass., 1968, pp2 3-4 2 .

Dahl, 0. J., Dijkstra, E. W., Hoare, C.A.R. Structured Programming,

References

Academic Press, New York, 1972.

[Data76]

(Denning68J

[Denning7]

[Dennis65]

[Dennis66j

[Deutsch76]

[Dijkstra68]

[Eastlake69]

[Fabry7l]

[Fabry74]

[Fenichel69J

[Feustel72]

[Feustel731

Conference on Data: Abstraction, Definition and Structure.
SIGPLAN Notices Vol. 8, No. 2 (1976).

Denning, Peter J. The working set model for program behavior.
Comm. ACM Vol. 11, No. 5 (May 1968), pp323-333.

Denning, Peter J. Virtual memory. Computing Surveys Vol. 2, No. 3
(Sept. 1970), pp 153-189.

Dennis, Jack B. Segmentation and the design of multiprogrammed
computer systems. JACM Vol. 12, No. 4 (Oct. 1965), pp589-602.

Dennis, Jack B. and Van Horn, Earl C. Programming semantics for
multiprogrammed computations. Comm. ACM Vol. 9, No. 3 (March,
1966), pp 143-155.

Deutsch, L. Peter and Bobrow, Daniel G. An efficient, incremental,
automatic garbage collector. Comm. ACM Vol. 19, No. 9 (Sept. 1976),
pp522-526.

Dijkstra, Edsger W. The structure of the "THE" multiprogramming
system. Comm. ACM Vol. 11, No. 5 (May, 1968), pp341-346.

Eastlake, D., et al. ITS 1.5 Reference Manual. MIT Al Lab Memo No.
161A (July 1969). Cambridge, Ma. 175p.

Fabry, R. S. List-structured addressing. Ph.D. Thesis, Univ. of
Chicago, 1971.

Fabry, R. S. Capability-based addressing. Comm. ACM Vol. 17, No. 7,
(July, 1974), pp403-4l2.

Fenichel, R. R. and Yochelson, J. C. A LISP garbage collector for
virtual-memory computer systems. Comm. ACM Vol. 12, No. 11 (Nov.
1969), pp6ll-612.

Feustel, E. A. The Rice Research Computer - a tagged architecture.
SJCC, 1972, pp369-377.

Feustel, E. A. On the advantages of tagged architecture. IEEE
Computers C-22, No. 7 (July 1973), pp64 4-656 .

262

References

[Fisher70j

[Fry76]

[Greenblatt74]

[Hammer76

263

Fisher, David A. Control structures for programming languages.
Ph.D. Thesis, Computer Science Dept., Carnegie-Mellon Univ., May,
1970, 206p.

Fry, James P. and Sibley, Edgar H. Evolution of Data-Base
Management Systems. Computing Surveys Vol. 8, No. 1 (March, 1976),
pp7-42.

Greenblatt, Richard. The LISP machine. M.I.T. A.I. Lab. Working
Paper 79, Cambridge, Mass. (Nov. 1974), 13pp.

Hammer, Michael. Data abstractions for data
Notices Vol. 8, No. 2 (1976), Conference on
Definition and Structure, pp 58-59.

bases. SIGPLAN
Data: Abstraction,

[Hewitt72]

[Hewitt73]

[Hewit,76J

[Hoare73J

[Hoare75)

[Honeywell72)

[Jones76]

[Kay68]

[Kieburtz76]

Hewitt, Carl. Description and theoretical analysis (using schemata) of
PLANNER: A language for proving theorems and manipulating
models in a robot. Al TR-258, Massachusetts Institute of Technology,
Artificial Intelligence Laboratory, April, 1972, 408p.

Hewitt, C., Bishop, P., and Steiger, R. A universal modular Actor
formalism for artificial intelligence. IJCAI-73, Stanford: Stanford
University, August, 1973, pp235-245.

Hewitt, Carl. Viewing control structures as patterns of passing
messages. A.I. Memo 410, M.I.T. Artificial Intelligence Lab.-(Dec. 1976),
5 7p.

Hoare, C.A.R. Recursive data structures. Stanford AI Lab Memo
AIM-223, Stanford University (Oct. 1973), 32 pp.

Hoare, C.A.R. Data reliability. Int. Conf. on Reliable Software, 1975, in
SIGPLAN Notices Vol. 10, No. 6 (June 1975), pp528 -533.

The Multics PL/1 Language. Honeywell Information Systems, 1972.

Jones, Anita K. and Liskov, Barbara H. A language extension for
controlling access to shared data. IEEE Trans. on Software
Engineering Vol. SE-2, No. 4 (Dec. 1976), pp277-285.

Kay, Alan C. FLEX, a flexible extendible language. Computer
Science Dept. Technical Report 4-7. University of Utah. June, 1968.

Kieburtz, Richard B. Programming without pointer variables.

References

[Kilburn62

[Knight74)

[Knuth68]

[Lampson76)

[Licklider65]

[Lindsey7?]

[Liskov74J

[Liskov77j

[Lomet75J

[Madnick74J

[McCarthy65J

[Morris73]

[Organick72]

SICPLAN Notices Vol. 8, No. 2 1976, Conference on Data: Abstraction,
Definition and Structure (March 1976), Salt Lake City.

Kilburn, T. et al. One-level storage system. IRE Trans. EC-11, Vol. 2,
(April 1962), pp223-235.

Knight, Tom. CONS. M.I.T. A.I. Lab. Working Paper 80, Cambridge,
Mass. (Nov. 1974), 22p.

Knuth, Donald E. Fundamental Algorithms, Vol. 1 of The Art of
Computer Programming, Addison-Wesley, Reading, Mass. 1968.

Lampson, Butler W., Sturgis, Howard E. Reflections on an operating
system design. Comm. ACM Vol. 19, No. 5 (May 1976), pp251-265.

Licklider, J.C.R. Libraries of the Future M.I.T. Press, Cambridge,
Mass. 1965.

Lindsey, C. H. Making the hardware suit the language. in Algol 68
Implementation ed. by J.E.L. Peck, North-Holland Pub. Co.,
Amsterdam (1971), pp347-365.

Liskov, B. H. and Zilles, S. Programming with abstract data types.
SIOPLAN Notices Vol. 9, No. 4 (April 1974), pp5O-60.

Liskov, Barbara, et al. Abstraction mechanisms in CLU. Computation
Structures Group Memo 144-1, M.I.T. Dept. of Elect. Eng. and
Computer Science, (Jan. 1977), to appear in Comm. ACM, 1p.

Lomet, D. B. Scheme for invalidating references to freed storage.
IBM J. Res. Develop. (Jan. 1975), pp26-35.

Madnick, Stuart E. and Donovan, John J. Operating Systems,
McGraw-Hill, New York, 1974.

McCarthy, John et al. LISP 1.5 Programmer's Manual. 2 nd ed. M.I.T.
Press, Cambridge, Mass. 1965.

Morris, James H., Jr. Protection in programming languages. Comm.
ACM Vol. 16, No. 1 (Jan. 1973), ppl5-21.

Organick, Elliot I. The Multics System: An Examination of its
Structure. MIT Press, 1972, 392p.

264

References

(Organick73)

[Palme73]

[Redell74J

[Ritchie74l

[Ross67]

(Schroeder7?]

[Steele75]

[Wadler76

[Wegbreit74)

[Wulf74J

265

Organick, Elliott . Computer System Organization - The B700BID6700
Series. Academic Press, 1973, New York.

Palme, Jacob. Protected program modules in Simula 67. Research
Institute of National Defense, Sweden, July, 1973, NTIS * PB-224 776,
25p.

Redell, David D. Naming and protection in extendible operating
systems. MAC-TR-140, Massachusetts Institute of Technology, 1974.

Ritchie, Dennis M., Thompson, Ken. The UNIX Time-Sharing
System. Comm. ACM Vol. 17, No. 7 (July 1974), pp365-375.

Ross, Douglas T. The AED free storage package. Comm. ACM Vol. 10,
No. 8 (Aug. 1967), pp481- 492.

Schroeder, Michael D. Performance of the GE-645 associative
memory while Multics is in operation. ACM Workshop on System
Performance Evaluation, ACM, N.Y. (April 1971), pp227-245.

Steele, Guy L., Jr. Multiprocessing compactifying garbage collection.
Comm. ACM Vol 18, No. 9 (Sept. 1975), pp 495-50 8.

Wadler, Philip L. Analysis of an algorithm for real time garbage
collection. Comm. ACM Vol. 19, No. 9 (Sept. 1976), pp4 9 1- 500 .

Wegbreit, Ben. The treatment of data types in ELI. Comm. ACM Vol.
17, No. 5 (May 1974), pp 251-284.

Wulf, W. et al. HYDRA: The kernel of a multiprocessor operating
system. Comm. ACM Vol. 17, No. 6 (June 1974), pp337-345.

266

Biographical Note

Peter Bishop was born in York, Pennsylvania on February 9, 1949..He studied

Electrical Engineering at the University of Rochester from September, 1966 to January,

1969. While at the University of Rochester he was a system programmer for an IBM

7700 - EAI 680 hybrid computer system.

Mr. Bishop completed his undergraduate work in Electrical Engineering at the

Massachusetts Institute of Technology in June, 1970. He then began graduate work in

Computer Science at M.I.T. and received the B.S. and S.M. degrees in Electrical

Engineering in June, 1972 and the Ph.D degree in June, 1977. While at M.I.T., Mr.

Bishop helped found the Student Information Processing Board and developed an

accounting system for students using Basic on Multics. Mr. Bishop was also a system

programmer on Multics for awhile.

While working on his doctorate, Mr. Bishop spent two years helping to design

and to implement the Planner programming language. The first implementation was

done on Multics in PLI! and the second implementation was done on ITS in LISP.

Mr. Bishop was a teaching assistant in 1974, first assisting in an elementary course

on programming languages, but later taking full responsibility for a graduate course at

M.I.T. entitled Programming Language Processors.

Mr. Bishop will now join Xerox in Palo Alto, California.

