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ABSTRACT

This study examines the possibility of modeling and control of
flexible manipulator arms. A modal approach is used throughout the work
for obtaining the mathematical model and control techniques applied. The
arm model is represented mathematically by a state space description de-
fined in terms of joint angles and mode amplitudes obtained from trunc-
ation on the distributed systems, and includes the motion of a two link
two joint arm.

The problem of controlling the system is examined via the linearized
model and using a regulator type of control. Three basic techniques are
used for this purpose: pole allocation with gains obtained from the rigid
system with interjoint feedbacks, Simon-Mitter algorithm for pole allo-
cation and sensitivity analysis with respect to parameter variations.

An improvement in arm bandwidth is obtained that could replace more con-
servative designs currently in use.

Optimization of some geometric parameters is undertaken in order to
maximize bandwidth for various payload sizes and programmed tasks.

The controiled system is examined under constant gains and using the
nonlinear model for simulations following a time varying state trajectory.
The procedure presented in this work is general and can be implemented to
be used in more specific designs.
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NOMENCLATURE

A,B, matrices

a,b,... vectors

A.B,. a,b, geommetric vectors

A,B,... a,b, nondimensionalized parameters

c(*) cossine of -

E Young's modulus

El stiffness

GRG General control with gains obtained from
rigid model with interjoint feedbacks

I bending moment of inertia

I Identity matrix

kr]’krz ratio of radii

m mass

mp payload mass

mj joint mass

g gravity acceleration

J(.) moment of inertia with respect to axis -

Jxxp mgment of inertia gf payload with respect
o center of gravity

1 lenght

q1.j time dependent mode component

Qr generalized force or torque

s(*) sine of .

SMA Simon-Mitter algorithm
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time

kinetic energy

nondimensionalized settling time
nondimensionalized time

flexible displacement of beam (-) at end
control law

potential energy

angular frequency

time derivative of A,a...
transpose of a matrix or a vector
inverse of a matrix

angles

spatial mode component

torques

damping ratio

finite variation of .

density per unit lenght

density per unity volume

complex unity



14

CHAPTEPR 1
INTRNDUCTION

1.1 Scope of the Work

Many recent studies deal with the design and control of mechanical
manipulators that perform tasks similar to those of human armms. The
possibility of using small computers located in the vicinity of the mani-
pulator originated the so-called supervisory controlled devices, es-
~ecially important when the distance between the arm and the operator
introduces a time lag in the information process [N2], [T1]. However,
the arm dimensions or the velocity of performing a task can increase the
effects of nonlinear factors that will complicate even more the control
process. Such control procedures would require nonlinear techniques that
may not be at hand. In the case of flexible mechanical arms, the vib-
rations originated by the elasticity of the links would affect the ef-
fectiveness of the system and even cause instability. 1In the interest
of reducing these vibrations, this study deals with the control of the
nonlinear system with results obtained from the linear control theory.

A suitable mathematical model is developed to represent the plane motion
of twe flexible beams by considering the rigid and flexible motions. The
hypothesis of controlling the dynamic motion of the nonlinear model is

examined by means of modal control applied to the linearized medel.

1.2 The System Mathematical Description

The approach assumed in this work is to derive the equations of

motion of a system of two flexible beams pinned at one end and at the
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joint. Lagrange's equation applied to a distributed system are used

for this purpose. Basically the model is obtained by superposing the
flexible motion over a hypothetical rigid body motion. For the purpose
of thisstudy, the elastic motion of the beams is truncated in the second
mode and a six degree of freedom, nonlinear model is obtained. A good
approximation for the dynamic shapes of the beams during the motion is
achieved by using the appropriate boundary conditions. Some experimental
results have shown good approximations for the values of natural frequen-
cies of the uncontrolled system when compared with those obtained from
the linearized mathematical model. Details of these procedures can be

found in Chapter II.

1.3 Control from the Perspective of Manipulator Design

The basic idea for controlling the system is to find the forces of
torques that must be exerted on the manipulator joints in order to move
the system from its present configuration to the desired position. If
fast motions have to be performed, the dynamic forces will become signi-
ficant and a reasonable control must be achieved for the nonlinear sys-
tem. On the other hand, slow motion with large payload might give rise
to undesired large deflections of the links.

A broad analysis of manipulator design would depend upon geometric
and elastic parameters, according to the tasks to be performed. In
this work one considers the implications of applying modal control tech-
niques to either short and rigid manipulators such as automation devices

or long and flexible ones like the space shuttie boom. In both cases,
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the control performance would depend upon physically available measure-
ments. However, only a limited number of these quantities might be ob-
tained for a given arm configuration. This suggests the comparison of
control performance for cases where all of the variables could supposed-
1y be measured and those when only some of them are vailable. Three
different techniques are used in the present work resulting in a Tinear
regulator type of control. The first technique works with the gains
obtained in the allocation of poles in the rigid equivalent system and
uses those gains in the control of the fiexible model. The convenience
of this method is accentuated by the fact that simple measurements are
sufficient for controlling the system. The second procedure is the use
of Simon-Mitter algorithm [S1], [S2] for independent positioning of poles.
This procedure requires the measurement and/or estimation of some state
variables that might require very sophisticated instruments. Finally,
the third method makes use of the poles sensitivites with respect to
parameters variations in order to find the elements of the feedback law.
These procedures are described in Chapter III and a comparison of results
is presented in Chapter IV. Estimates of maximum aym bandwidth are pre-
sented for the case of controlling the flexible system with a control law
obtained from the rigid model.

Some simulations of the nonlinear system using the rigid control
law and Simon-Mitter algorithm are presented in Chapter V for analyzing

the system performance in tracking a time varying state trajectory.
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1.4 Remarks

The study of controlling flexible manipulators was first under-
taken by Mirro [M2] in which a single beam is analyzed from the point of
view of optimal regulator theory. Before that, Townsend [T1], Kahn [K1]
and many others were concerned with controlling essentially rigid mani-
pulator arms. The most recent work on flexible systems is presented
by Book [B2] and Whitney, Book, Lynch [W2] where the pertinent 1itera-

ture can be found.
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CHAPTER II
SYSTEM DESCRIPTION
2.1 The Physical Model

The schematic of the general physical system is shown in Figure 2.1.
The system is composed of two flexible bodies connected by a friction-
less pinned joint. One end of the system is attached to the origin of
a reference frame. The system is assumed to have planar motion and the
relative motion of the two bodies results from torques applied at each
joint of the system. In order to facilitate the description, the joints
are numbered by 1 and 2 and the bodies will be represented by two flex-
ible beams. At the end of beam 1, a concentrated mass representing the
servo-motor at joint 2 and the joint itself; at the end of beam 2, a
discrete mass can also appear, representing a payload to be moved be-
tween two points in the plane.

In order to describe the moticns, three reference frames can be
defined:

[0,X,Y] - an inartial reference frame with origin at joint 1

[0.x11]. a veference frame with origin at 0 and the axis
Xy tangent to beam 1 at point 0

[Oz,xz,yzj - a reference frame with origin at joint 2 and with
axis X, tangent to beam 2 at point 0p

Also two angles can be defined:

81(t) is the angle between the axes xj and X

02(t) is the angle between the axes x; and x
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If now a new system is defined as being formed by two segments 00]
and 0403, having the angle 6, at 0, the overall motion can be understood
as a motion of a nypothetical rigid system 00103 and a flexible motion
of the beams 1 and 2 with respect to this moving system. In order to
simplify the notations a matrix representation form of the reference
frames can be introduced.

Let

u

{U}=={}f} be the unit vector of reference frame OXY
Uy
- 'ﬁkl .
Uy} = . the unit vector of reference frame Oxlx,
Uy'l
_ U,
{U2} = _f the unit vector of reference frame Ozxzy2
Uyz
then
Uy} =[] {0 (2.1.1)
{U,} = [C,] {0} (2.1.2)

[Cy] and [C,] are the rotational-transformation matrices. (Reference [C2]).
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Schematic of the General Physical System



21

Then

—- c6; s6; _
{U]} = {U}
-S6) €6

(2.1.3)
~ c(o,+062) s(o,+ey) |
{U,} = {U}
-s(e1 *+ 82) c(61+ 62 (2.1.4)
] Cel S61
C =
: L -s8; €O, (2.1.5)
c(er + 02) s(e; + 62)
[c,] = : ' (2.1.6)
-s(e; + 8,) c(e; + 8,)
where
c8; = cos 0] (2.1.7)
$8, =sin 6, (2.1.8)
c(e; + e2) = cos(e; + 63) (2.1.9)

s(e1 + 62) = sin(e1 + 6,) (2.1.10)
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Vector Position of One Element in Beam 1
Figure 2.2



23

2.2 Kinematic Uescription

The position of any point in tne system can be described by a con-
venient definition of a set of coordinates. As indicated in Figure 2.2,
any point Pi can be specified if a new variable “i(xi't) is defined as
being the coordinate of the flexible motion witn respect to the refer-

ence frame [0;%;y;]. The vector position of point P; would be

Ry = (05} =x;U, . + yiﬁ;i (2.2)

2.2.1 Beam 1

The vector position of any point in beam 1 is

X X
R.o=qit ) W = @htreat ) W - . m
Rd] {Uy} {u} [C]] (x]ce] u-ise])ux
+ (x]se] + u]ce1)i& (2.3)

2.2,2 Beam 2

In order to define the vector position of any point on beam 2, it
will be necessary to assume that the displacements of the flexible bod-
ies with respect to reference frames [Ox]y]] and [Ozxzyz] be small
enough to consider the paths of points 02 and 0p as straight lines nor-

mal to the respective reference frames. Then, as shown in Figure 2.3,
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the vector position of any point P, on beam 2 will be

Vector Position of one Element in Beam 2

Figure 2.3
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R = 00y * 0, + 077" + P (2.0
If now
U = flexible linear displacement at end of beam 1
1] = length of beam 1
12 = length of beam 2
then
— - ¢ e, - —
00] = {U} 1]C9~|Ux + 1]59]Uy (2.5.])
s U;,-S6
O]O2 = (Ut = -u]Ese]ux + u]Ece]uy (2.5.2)
u]ECS-l
X X
————'“. — 2 _—-—\ 2 - —
02P2 = {U]}t 0 } ‘{U}t[cl]t { }= XZC(Q] +92)Ux +X2 5(6] +62)uy
(2.5.3)
5 p = t = ahtre 1t = . = -
Py P2 {Uz} . {U} [C2] . u,s(ey + 8,)U, + U, c(eq + ez)qy
2

2 (2.5.4)
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and
N - 15c8 -U,.S8 X 0
Ry, = (Ut [ T The ) TETI et 4 B [T
1]59] U]Ece*l 0 UZ
(2.6.1)
Rd2 = [llcel -UjgSey + xzc(e] + 02) - “25(91 + 92)]Ux

* [lys0, + ujpeey + xps(ey + 02) + uyc(oy + 92)]§; (2.6.2)

The respective velocities are

l-

(2.7)

".

A
i

Rd2 = {-I]é]sel - &]ESG] - ulEé]ce] - Xz(é-‘ + éZ)S(G-l + 92
~Ups (87 4 62) -uz(é] + éz)c(e] + 92)16} [I]é]ce] + Ugpcey -
U]Eé]SG] + Xz(é] + éz)C(el + 02) + l'JZC(G] + 92) - Uz(é] + éz)

s(ey + 6p)]u, : (2.8)
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where the dot means tne derivative with respect to time.

For any mass mj concentrated at joint 2 the velocity will be the
same as for the end of beam 1 and for any payload, the velocity will be

the one at the end of beam 2.

2.3 Kinetic Energy

The kinetic energy of beams 1 and 2 can be expressed as

T =Ty +Tp=172 [Rd]-Rd]dm +1/2 fRdZ'Rdde (2.9)

™

where dm is the element of mass at point P;(i = 1,2) and my and m,
are themasses of beams 1 and 2 respectively.

If now (2.7) and (2.8) are substituted into (2.9) the result is:

T, = 1/2612 fxlzdm +1/2 /G]de + é1 fﬁ]x]dm +

™ ™ m

1/2é12fu]2dm + 1/2m,1,26,2 + 1/2mpt g2 + 1/2mpu1 26,2 + myli6qupg

™

+1/2(8; + 6,)2 fxzzdm +1/2 j.}zzdm +1/2(8; +6,)2 [uzz dm

Mo ma M
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+ (e] + ez)f xzuzdm + 1191(91 + ez)cezf xzdm +
My Mo

1161°62f uzdm + “!E(el + 92)c92 f x2dm + u]Ecezf uzdm
M2 m2 m2

u]E(e] + 62)3('62)f u2dm + u]Ee](e] + ez)sezf xzdm +

Mo Mo

Lle](e] + 92)5(’92)f uzdm + u]Ee](e] + ez)ceef uzdm +
m m
2 2

u]Eelsez.j; uzdm (2.10)

2

The same procedure can be applied to a mass concentrated at joint
2 and to a payload with moment of inertia pr with respect to an axis
normal to the plane of motion and through the center of gravity. In

fact, for the mass at joint 2 expression (2.7) can be modified to

R, = [-6,1y56, - Ujpse; = 8qujece 1 U + [6,1,cop + upcco,

- Upg8yseyl Uy (2.11)
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and from expression (2.8)
ﬁ; = [-1,6y509-U1gs0q-uyp61co-1p(8y + By)s(0y + 0,)-Upps(eq + 6,)
~upp (67 + éz)c(e] + 92)]ﬁi[1]é]ce] + ﬁ]Ece]-u]Eé]se] + lz(é] + 85)

c(oy *+ 8y) + Uppc(ey + 6,) ~lpp(8y + 6)s(0q + 92)16; (2.12.1)

vhere
uZE and GZE are flexible displacement and velocity of the end of
beam 2. If the moment of inertia of the payload with respect to an axis

through point 02 is defined by Jp and the angular displacement

ouy _ .
- Y
I:ax2 } (2.12.2)

X2=]2

is taken inte account, the total kinetic energy of the system can be

finally expressed as:

T = 1/2[Rd]-Rd]dm +1/2 fRdz'Rdzdm + ]/ij j'Rj +

m] ITI2
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(2.13)

+
N | =
3
>0
5
+
—d
[EH
[=
N
m

~n

2.4 Potential Energy

The potential energy of the system will be assumed as composed of
the energy associated to the rigid motion plus the elastic potential
energy of the links. Then, assuming Ox as the reference position, the
first approximation of the total potential of the system is (assuming
uj and u, sufficiently small)

1
Vo= mg 77 (1) + mugly(1-08q) + myg[Ty(1-coy) +

%Z.(l-c(e] + ez))] + mpg[ll(l-cel) + 1p(1-c(6y + 65))] -

L2 2 L2
- Y4
1/2[ EI,f 9 uy | dx 1/2[ EIZ( uZ) i (2.14)
0 0 8x,,2
\ax,? 2

where
g is the component of gravity acceleration in the Ox direction,

i.e.,
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g {n}tﬁ (2.15)

0

EI], EI2 are stiffnesses of links 1 and 2 respectively, assumed constant

for the purpose of this model.

2.5 Equations of Motion

In order to write the equations of motion of the proposed system, it
is possible to make use of the so called assume-modes method [M1].
Based upon this method, a solution of the flexible motions could be as-
sumed as being composed of a linear combination of admissible functions
multiplied by time-dependent generalized coordinates. Here, by admiss-
ible functions is meant any arbitrary function satisfying all the geo-
metric or essential boundary conditions [C1]. Then, in case of the flex-

ible displacements of beams 1 and 2, it is possible to assume
n
u; = i§]¢li(x])q1i(t) (2.16.1)

u, = Z ¢pi(x2)a,, (t) (2.16.2)
1

n
nm™Mmss
-

where the admissible functions ¢ji(X} must satisfy the geometric bound-
ary conditions with respect to the representation of the links in the
reference frames [le]y]] and [Ozxzyz].

It is clear that the system is now represented by a (2n + 2) de-
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((8), 11,

. .,n] are the generalized coordinates. !loreover, assuming that

grees of freedom system where [e](t),ez(t)] and [q1i(t), a

the amplitude of the higher modes of the flexible links is very small
compared with the first one, the system can be truncated with n equal
2, resulting in a 6-degree of freedom problem.

The (2.16) assumes the form

Uy = o17(x7)a3(t) + ¢15(x)aq,(t) (2.17.7)

up = 4p1(x2)a12(t) + 422(x5)a,(t) (2.17.2)

if now, ¢ij(i,j = 1,2) are assumed to be the eigenfunctions of a
clamped-free beam, the geometric boundary conditions will be satisfied

and because the orthogonality of these functions

1 1 0 (=5)
f Yo (x)4g(x)dx f VoV (x)01(s) dx =
0 0 1 (2.18)

(r=s)
where
¢r(x) = (coshlrx - cosxrx) - or(sinhlrx - sinApx) (2.19)

as in reference [B1], where r is the mode of vibrations and ApsOp @re

r
given by Table 2.1.
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r Arl o
1 1.875 0.7340
2 4.694 1.0184

Table 2.1 Characteristic Values for Clamped-free Beam

Now the integrals in equations (2.10) and (2.14) can be evaluated.

I xp%dm = Jg (2.18.1)
m]
Y = 2: 2, 28 24m = G122
/ ulzdm = [ ¢u_” q]‘Ide +/ $12 qm dm = am fm ¢.”2dm +
m] m] m] 1
4722 9122dm = my(d792 + 4722) (2.18.2)

[ ﬁ]x]dm = [
m m

(011977 + 7,07,)xqdm = Ml pdmt
!

1 1

940 7 ¢12X7dm = w1l gy + nwl2 45 (2.18.3)

™

where
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11
nwll = ¢]]x1dm = f u]x¢]](x)dx
m, 0

1]
wil2 =/ ¢1oxdm = S uyxéy,(x)dx
m 1271 0 17112
i) ulzdm - neglected in the model
m
i) x22dm = Jo]
m2
I ipfdn = mp(G12 + §5p2)
m2
i) u22dm = neglected in the model
m2

I Xplgdm = w214, + nw22gy,

m2
where
l2
w2l = [ ¢yyxodm = s u2x¢2](x)dx
m2 0 ;
12
nW22 = [ ¢poXpdm = S u2x¢22(x)dx
2 0
I xydm = mp EE

(2.

(2.

(2.

(2.

(2.

(2.

(2.

(2.

18.4)

18.5)

18.6)

18.7)

18.8)

18.9)

18.10)

18.11)
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I updm = S (¢2]q2] + ¢22q22)dm = g9 é 9p7dm + Qoo f¢22dm =

m2 m2 2
nq21 &2] + 1q22 9y (2.18.12)
wilere 1
nq21 =/ ¢,ydm = f2 u2¢2](x)dx (2.18.13)
m2 0
1
2
nq22 =/ ¢22dm = [f U2¢22(X)dx (2.]8.]4)
m2 0

é uydm = i (¢2]q2] + ¢22q22)dm = ng2l Ay * nq22 4q,, (2.18.15)
2 2

For the potential energy, assuming EI constant for each beam and

neglecting the effect of shear forces one can write

1 2 2 1
1 0 Uy 1 p 2
/ El dx = EI. [ (6" qyq * 61, Gy0)°dx =
5 1< ax]2> 1, 12 N12

kwillg 2 + kw122 q;f (2.19)

wihere the generalized springs are
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1
@l = ELy 7' (5 "o ")dx (2.20.1)
0o 11 n
1
w122 = E1, £ (67,76, ")dx (2.20.2)
]0 12 12 te
' 2y 2 2
e, 2 Y2 gx = kw211 gqpp° * kw222 dgp (2.21)
0 5 2
X2
where
i 12
w2l = E 1, (07"0,,")dx (2.22.1)
L
kw222 = E 1, 6 (892" 055" )dx (2.22.2)

The total kinetic energy can then be written as

_ 2y2 2 <2, 2 .2
T = 1/2(3 + m1, )0, + 1/2m(ay” +a,, )+ Vems(egqgayy ¥

. . . - .
8196012% * O11EtizE Gpy%i2) * eIl * milyoyqp)dyy * (w2 +
mj1]¢]2E)é]2] + 1/2(m2 + mp)l]zézz + ]/2.(“'2 + mp)(‘b]]Eé” + ¢]2Ea]2)2
+ 1/2(my + mp)ag% (eq1gayy * 0126012)° + (mp + mp) Ly Coqqglny *

¢]2Eé12) +1/2(0gy + Jp)(éz + 53)2 + 1/2m2(62]2 + 6222) +
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. 2 ) ° . .
172 (01507 * 4ypp,)° + (8, + 65) [(mi2] + m10,)q,, *

(22 + Wl 5pp)ipy] + (my + 2m) 112 8,8, + 8)co, +
2
]]ézce3[(mp¢2]E + nq21)62] + (mp¢225 + nq22)622] + (¢]156]] +
L L . .
$12£9712) (85 + 03)(my + Z“b)._?; cO3 + ($17ga11 *+ $1269,,) [(mporre
+ 192141 + (mpoppp + 1a22)G551c03 - (493644 *+ 97564, )
(6, + éS)E(mP¢21E + nq21)q,y + (mpé,, + nq22)qpyJses +
(mp + 2m) (91760, *+ #1260,,)85(82 + 8356, 12+ (o700 +
2
$126972)020My01E + 1A21)dpq + (myeaoE + ng22)d,,]s03 -
1162(62 + é3)[(mp¢2]E+nq21)qz1+(mp¢225 + nq22)q,,1s03 +
(9116977 * #106915)85(85 + 830 LMyt pqp + na21)ayy + (mtoop +
n922)agpleog + 1/23 (091 Gy + pp2)° (2.23)

For the potential energy

1 : 1
V = {(m] + ij + 2mp + 2m2)2—]- (1 - ce]) + ('"2 + 2mp)-2—2—-
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[1- clog + 8,)Tfg + kw11 qpq2 + kw22 q,% + kw21l g,02 +
kw222 qp% + k (2.24)

where:
k is the reference potential energy for the flexible ccmponents
$17E> $ypp are end deflections of beam 1
921E> $¢ppp are end deflections of beam 2
¢27g's éppp' are the angles at end of beam 2

g is the acceleration of gravity in X direction

If now 671, 62, 411> 9125 G271, Q2 are assumed to be a set of generalized
coordinates and Tty and T, are nonconservative torques acting at the joints
of the system, it is possible to write the equations of motion using
Lagrange's equations for a nonconservative system. These equations have

the form

ajlo

(g) - T +3V =Q, r=1,2...6 (2.25)
3 3q,
where Qr are time-dependent nonconservative generalized forces (or

torques). In this particular case, the torques & and t,_ are going to

2
realize work only for variations of 81 and 6. Then, if a variation 591
occurs at joint 1, with all other variables kept constant, the virtual

work done is:
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SW = 'r.l 5] (2.26)
and
SW
= T =
Q] 6] 3 (2.27)
Similarly

Also, from the definition of the angle 65 given at the beginning of
this chapter it is possible to show that the remaining generalized
forces are equal to zero.

Then, the equations of motion become

7187 + 82 + 30y, + Mgdyp + iysp) + Mygl22

- iIB11 - F1 + g (2.29.1)

Hly87 + o8y + p3qyy + Mpgdyp + Masap] + M2gaz2
- MBI2 - F2 + T, (2.29.2)

M3161 + M320 + M3317 + M3sq12 + M35027 + M3ghpp
- K111 qq - F3 (2.29.3)
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Mg01 + Mgoby + Mazaqq + Magdnz + Masa2l + Mggl22
- K122 g1 - Fé (2.29.4)

H5161 + Mgpy + M53G11 + Mgqdqp + Ms5a21 + Msedo2
-KW211 qp7 - F5 (2.29.5)

Mg181 + Mg262 + Mg3d11 + Me4d12 + Mesdpy *+ Mggdon
-KH222 qpp - F6 (2.29.6)

where the coefficients are given by

2
My = (Jg + mii8) + (mp + mp) 1" + (mp + my)(619qq7 + ¢126472)
+ (JO] + Jp) + (mz +2mp)1]12c62 + 2(m2 + 2mp)( ?]Eq]] + ¢-|2qu2)

12
2 s8 - 2(mp21 g1 + m22 q22)ys8p + 2(911Ea17 + $1p6a72)

(mp21 qp7 + mp22 qpp)c®) (2.30.1)
bz o, s (m + 2mp) (6 .

2 LLDARSRTUR N
912E912)s82 - (mp21gp1 + mp22 qpp)l1sep + (mp21 qp1 + mp22 qp5)
(611EG{1 + #12E912)CO2 (2.30.2)

My, + (Jg7 *+ Jp) + (mp + 2mp)

1
My3 = (w1l + mj1]¢]]E) + (mg + mp)Lyéqqe *+ (my +2mg) 11 5 €Oy
- (mp21 qpq * mp22 q22)¢11£59, (2.30.3)
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12
Mg = (nwl2 + mj1]¢]25) + (m2 + mp)hcp]ZE + (mp + 2mp)7— b3 CeZ
- (mp21 qp7 + mp22 q22)¢]2E562 (2.30.4)

(nw21 + mylo959) + 1ycOompyy + mp21 592(¢]-|EQ1] + $12£972)
(2.30.5)

M'IS

Mg = (w22 + mplaepzE) + mp221jce + mp22 s6y(9717Eq77 + $72E972)
(2.30.6)

Moy = Mo, (2.30.7)

Myp = Jg + Jp (2.30.8)

12

12
= ¢ 126(my + 2mp)-2-c92 = $12e(mp21qy + mp22qp7) s6, (2.30.10)

Mog =

Mas = (nw21 + mplp ¢21g) (2.30.11)
Myg = (w22 + mplybp0F) (2.30.12)
M3p = Mq3 (2.30.13)
M3y = Myg (2.30.14)
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M35

M36

Mg

Ma3

Maq

Mae

Mg

M5o

42

2
my * (mg * my + mp)éyq

(my + mp + mj)o17E8y ¢

¢11emP21 €85

$11E ™P22 C8p

M14

Moy

M34

m +(mp + mj + mp)¢]2E

$12emp21 B

¢]2Emp22 C62

M1s

MZS

2

(2.

(2.

(2.

(2.

(2.

(2.

(2.

(2.

(2.

(2.

(2.

(2.

30.

30.

30.

30.

30.

30.

30.

30.

30.

30.

30.

30.

15)

16)

17)

18)

19)

20)

21)

22)

23)

24)

25)

26)
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M5

55

56

M6]

Mg2 =

-
o
%]

u

Ms6

2 '
=mtmpé2lE tJp 6oy
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M35

Mgs

2
mp ¢21E%p0p + Jp ¢'21E¢ ' 22E
M]G

Mz 6

Ms56

2 .
My + Modggp” + Jpo' 20

(2.

(2.

(2.

(2.

(2.

(2.

(2.

(2.

(2.

30.

30.

30.

30.

30.

.30.

30.

30.

30.

30.

- 1
MB11 = [(my + ij)él $6y + (mp + 2mp)_;_2_s(6] + 6,) + (my + mp)

1] Se]

lg

(2.

30.

27)

28)

29)

30)

31)

32)

33)

34)

35)

36)

37)



44

)L2 gs(eq + 6,) (2.30.38)

MB12 = (m2 + 2mp -~

and the nonlinear functions are

F1= 2my + mploqpgdn * e12e%2) 11ed * 026992085 -

. 1.1, « 2 .
(m2 + 2mp)11129192592 - (m2 +2mp) 12 6, S0, - 1192592

q . . . 1
(mp21 qyq + mp22 . Gy,) - (m, + zmp)(¢11Eq]] + ¢125q12)—262592
2
- (¢'|]E M + ¢]2E q]z)[mp2] 991 + mp22 q22)592 + (mp21 A1 +

. . 1 . .
Mpe2 Qpp)85c0,] + 2(my + 2m) 52 [(oqqg 9q7 * 4928 99208158,

- \ )

t(oqqp 97 * dqpp 910084850850 *+ (my + 2m 500y Gy
1..)8 + + 5.2 Lo,

$12E 91200258, * (097 A1y + ¢10p 9928, ¢8,] 5

(899g 977 * #qg 932) (P21 Gy + MD22 Gyp)s0, + (b7p Qpq +

d10g A12) (MP21 Qpq + mp22 Gpp)6yc0, = (MP21 Gyq + mp22 )

s0,11(207 + 8,) - (mp21 qyq + mp22 q,,)6,1C0,(261 + 8,) + (09qpdqq+
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b12g970) (MP2T0,, ¥ mP22a2,) (269 + 65) * (077977 * ¢12g977)

[(mp21g,, + mp22d22)(2é] + éz)ce2 - (mp21g,y + mp22q22)é2
(26, +6,)s8,] (2.31.1)

) : , P '
2

- . 1
t 4 q)esei_ . . . . .
12EM27517725= - (mp21qpq + mp22Gp)) 110158, + (877£917+7568;)
6,(mp21q,, + mp22q,,)ce, + (m, + 2mp)1]12 6 2se + 1,658
1 21 22)cey * (m, 297788, * 19yse,
. . - - . e 1
(mp219pq + mp22qy,) + (877g8y7 * 09,687,) (8+92) (my*2mp) 2 so, +
- . . _ 1
(0778917 * 072g972)8 1 (MP219y, + mp22q,,)ce, - (m, + zmp)§§f¢11£q11 *
.2 C2, .
$12£912081705 * (897g977 + 6156992081  (MP21ay; + mp22q,,)se, +
é,2 (mp2lgy, + mp22q,, )t (2.31.2)
_ 1' . ° . .
P32 on1g,2l0y + 6p)my + 2mp)6ys0, - ¢qq(MP21Gy, + mp22dyy)

é2592 - ¢1]E(é] + éz)[(mp21d2] + mp22d22)se] + (mp2lgy, + mp224,.,)

. . 2 -
80001 = (my +mp)e ™ (647¢Gy7 + 09597 077 = (my + 2mp)oy g6,
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(é] + 69)s6p ;g_- 11 & (Mp21457 + mp22622)sez - ¢]]Eé1(é] + 67)
(mp21gy7 + mp22q,,)coy (2.31.3)
F4 =-¢10p 8p(67 + 65)(my + 2mp) %g_ $62 - ¢12£ (MP21qp7 + MP2249p)
82 56y -4126(8; + 82)[(mp21dp; + mp22qy,)s6p + (mp21ag) + mp22922)
6y op] = (my + mp)é720q26(077£a11 + ¢126972) = (M + 2mp) oy pphy
(87 +6 5) so, ;g - #1p67 (MP21d21 + mp22q2;) S8 - $72E6y
(67 + 62)(mp2lapy + mp229p2) coy (2.31.4)
F5 = -mp21 17676,50, + 2(477017 *+ ¢12£9712)mp2167s07 + 196,

(é] + éz)mp21sez - (¢711E977 * ¢]25q]2)é]2mp21 coy (2.31.5)
F6 = -mp22 170902 6 + 2(411£417 + 675£012)mp22 8156, + 1964
(b1 + 6,)mp22 50, = (116477 *+ 61pp972)8,° mp22 cop  (2.31.6)

where

mp21 = mp ¢21g * nq21 (2.32.1)
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mp22 = mp¢22E + nq22 (2.32.2)

Equations (2.29) can be written in matrix form

M () E=Kig+F+Cu (2.33)
where
ﬂ](t) = [Mij] i,j=1,.., 6 (2.34.1)
- -
0 0 0 0 0 0
0 0 0 0 0 0
0 0 -kwl11 0 0 n
K =
0 0 0 -kw122 0 0
0 0 0 0 -kwl] 0
0 0 0 0 0 -kw222 (2.34.2)
- -
- -
+F1 - MB11
+F2 - MB12
-F3
Fy =
- -F4
-F5
-F6 J (2.34.3)
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(2.34.4)

(2.34.5)

(2.34.6)

(2.34.7)
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A new set of variables can now be defined in order to write the equa-

tions of motion (2.33) in state space form.

In fact, if
C-' =9‘l (2.35.1) 1;4 = q~|2 (2.35.4)
Z, =8y (2.35.2) zg = qo1 (2.35.5)
z3 = qq7 (2.35.3) 26 = qpp (2.35.6)
equation (2.33) will be
E=ATH+F +Cu (2.36)
where
£ = [54] (2.37.1)
L = [5]
i=1, ...,6 (2.37.2)
01
A' = :
A S
MKy O (2.37.3)
]
F' =
M-TE (2.37.4)
- .
r~ g —
C' = | _.
E{JE (2.37.5)
L J
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where X, x and F' are (12x1) vectors, A' is (12x12) and C' is (12x2)

matrix.

2.6 Linearized Equations

Equation (2.36) is used to study the motions of the proposed system
under some designed control component u. For the purpose of design a
linearized form of (2.36) is obtained. In doing so, all sines and co-
sines are first replaced by their series representation and then all
terms of second- or higher degree in x;, i = 1,...,6 are dropped from the

equations. The resulting linearized system of equations can then be

written as
x=Ax+Bu (2.38)
where
]
g L
A= |
_——— -
Mkt 0 (2.39.1)
Q
B_ = ---]'
M'B (2.39.2)
and

(2.39.3)

I=
]
| g |
=
-do
.
| -
wad,
-
[ &
|
ol
-
-
(o) ]



51

—-MB] 11 -MB112 O 0 0 0
-MB121 -MB122 O 0 0 0
0 0 -kwlil 0 0 0
L= 0 0 0 -kwl22 0 0
0 0 0 0 -kw211 O
i 0 0 0 0 0 -kw222J (2.39.4)
where now

M‘” = (JO + mjl]z) +(m2 + mp)l]z + (JO] + Jp) + (mz + Zmp)]_]lzc-e.z
(2.40.1)

M12 = (Jo1 * Jp) + (mp + Zmp)p_;,z céz (2.40.2)

M]3 = (nwll + mj1]¢]]E) + (m2 + "‘pnﬂ’HE + (m2 + 2mp)¢“E .;_2_C§2

(2.40.3)

Myg = (w12 + milyopqg) + (mp * mp)lyeqe + (mp * Zmp)_l_?_ $126C87

(2.40.4)
Mg = (mi21 + myloép1g) + mp2l 19ch2 (2.40.5)
Mig = (nw22 + mylaopog) + mp22 19cB2 (2.40.6)



M22 =

Mz 3

M24

M2g

=
W
(3]

Ll

=
(98
(=4}
I

=Y
—
[l
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JO] + Jp
o117 (mo + 2my) L2 5
11E\M2 p/r — *"2
2
o =
¢12e(mg + 2mp) ¢ c0p
2

nw21 + mylod21E

nw22 + mp12¢225

= 1'123

=my + (m + mj + "‘P)“’%le
= {mpy + mp + mj)e11E ¢12E
= ¢o11mP21 c8p
= $11pMP22 co?

= Mg

M24

(2.40.8)
(2.40.9)
(2.40.10)
(2.40.11)
(2.40.12)
(2.46.13)

(2.40.14)

(2.40.15)
(2.40.16)
(2.40.17)
(2.40.18)

(2.40.19)

(2.40.20)



Mgo

M53

M54

M55

M56

M61

Mp3

53

= M3q

m + (mg + mj + mp)¢$ze
12Emp21 €y

¢12EMP22 €O

s

M25

M3s

Mgs5

m2 + mP¢22]E + JM%]E
Mpd21E 4p2F * Jp921E $22€
Me

M26

M3g

(2.

(2

(2.

(2.

(2.

(2

(2.

(2.

(2.

(2

(2.

(2.

(2.

40.

.40,

40.

40.

40.

.40.

40.

40.

40.

.40.

40.

40.

40.

21)

22)

23)

24)

25)

26)

27)

28)

29)

30)

31)

32)

33)
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Msg = Myg

Ms5 = M5g

2 2
Meg = mp + mpoyop + Jpdoor

MBI = [(m + 2n; + 2mp + 2mp) ;l By + (mp + 2mp) %2

c(®y + 8,)1g

MB112 = [(mp + 2mp) 7 9 c(5] + 32)]

MB121

[(mp + 2mp) %g g c(§ + 82)]

MB122 = [(m + 2mp) 12 g c(5) + )]
2

X1 =4 - §
Xp = & -8,
X3 = an
X4 = 12

(2.40.

(2.40.

(2.40.

(2.40.

(2.40.

(2.40.

(2.40

(2.4

(2.4

(2.4

(2.4

34)

35)

36)

37)

38)

39)

.40)

1)

.2)

.3)

.4)
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a21 (2.41.5)

422 (2.41.6)

with 8, and 8 being constant angles at some instant t.

2.7 Experimental Verification

To know how well the model represents a real system an experiment
was designed and built. It consisted of two carbon steel beams pinned
together by a joint that allows motion only in the plane of the beams.
One of the ends was connected to a torque motor for excitation and at
the other extreme a payload was clamped as indicated in Figure 2.4. The
joint was represented in the model by a lumped mass at the end of the
first beam. The experiment was performed in the vertical plane in order
to have the effects of the gravitational field. The frequency spectrum
shown in Figure 2.5 was obtained by automatic frequency sweeping and
measurement of the acceleration of the end point via an accelerometer
mounted on the payload. As the model only takes into account two nodes
for each beam, the overall system presents two rigid and four flexible
natural frequencies. Table 2.2 summarizes the flexible resonant fre-
quencies and the error relative to the experiment. As one can verify, the
results are quite good if one takes into account all the possible measure-
ment errors that might have been introduced by the automatic sweeping
without allowing the system to reach the steady state. Another source of errors

could well be introduced by the value of moment of inertia of the torque
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Units: slug-ft-sec (kg-m-sec)

Torque Joint Payload

Motor
J ///)7 S_.
N
N\ !
t ® 9 -t
NN
N
N
~
0.9190 0.625 0.882 - 0.325
(0.280) (.011) (0.269) (.099)

4 2

Torque Motor Rotor Inertia = 3.98x107 " ft-1bf-sec
(5.75x10"4 nt-m-secz)
Beams: diameter = 0.25 in (0.00635 m)
material: carbon-steel

Joint material: Aluminum

mass = 1.23x10™3 slugs (0.0179 kg)

Payload ..c = 4.875x1073

Jeg 0.395x107% slug-ft? ( 0.669x10”

slugs { 0.0711 kg)

Figure 2.4 - Experimental Verification - System Parameters
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motor, which was obtained from a motor catalogue. As has been observed
by W.J. Book [B2], a reduction of 30% in this value would lower the
first three natural frequencies about 3.7%.

Another comparison of results was performed between the proposed mod-
el and the transfer-matrix procedure used in [B2]. For this purpose the
chosen system was the correspondent model of a 53.4 ft. long manipulator.
The dimensions are summarized in Figure 2.6 and the results in Table 2.3.
In this case no gravity was taken into account and Table 2.3 presents
the first four flexible natural frequencies.

From the results presented in these two comparisons, one might as-
sume that the model gives a good represeﬁtation of the proposed physical
system with probably loss of significance only in the highest frequency
due to truncation error. This kind of error was also observed when
the proposed modeling procedure was applied to a single pinned-free beam.
Table 2.4 presentes some results comparing the proposed model applied
to a single pinned-free beam in two situations: forced by the same torque
motor and analytical values with dimensions shown in Figure 2,7, both

cases assuming truncation at the second flexible mode.

2.8 Humerical Evaluations

As the number of modes introduced in the model increases, the sys-
tem becomes more and more numerically stiff [L1]. This fact is reflect-
ed in the numerical calculations of the eigenvalues of the mathematical
model. The previous results in this work were obtained by using a mini-

computer Interdata Model 70, with 40K 16 bit words of core storage avail-
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Units: slug-ft-sec ( kg-m-sec)

LLLLLLLLLLLLY

26.7 26.7

3.0

(813) (813)

Beams : 0.75 ft (0.228 m)

0.734 ft (0.223 m)

External diameter

Internal diameter

mass = 5.278 slugs (77.021 kg)

Joint lumped mass = 1 slug (14.592 kg)

Payload
mass = 15.54 slugs (226.76 kg)

Sg.q. = 12:62 slug-Ft2 ( 21.37 kg-m%)

diameter = 1.0 ft (0.304 m)

(0.91)

Figure 2.6 - Characteristics of system used for comparison

with transfer-matrix method
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Torque motor rotor inertia: 3~98x10'4(1bf-ft-sec2)
(5.75x10'4 mt-m-secz)

J

diameter = 0.25 in (0.0635 m)

material: carbon steel

0.979 ft

a) laboratory experiment

YHNINIIIIIIN,

material: carbon steel

diameter = 0.01 ft (0.00304m)

ft

b) analytical example

Figure 2.7 - Characteristics of a single pinned-free beam
for model verification
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Experiment Model Error (%)
80.76 79.34 1.7
136.6 130.68 4.3
244 .6 282.56 15.5
401.6 21.4
417.0 487.56 16.9

Table 2,2 Flexible Resonant Frequencies and

Relative Error

Model Trans fer-Matrix
39.7 38.1
57.9 53.2
144.5 143.6
189.1 279.5

unit: rd/sec
Table 2.3 Comparison between the proposed model

and transfer-matrix procedure
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Analytical

Hodel Exact Error

313.2 308.3 1.50

1016.16 1191.58 17.2%
Experimental

Model Lab. Exper. Error

615.7 606.46 1.5%

2513.3 2112.16 15.9%

units: rd/sec

Table 2.4 Analytical and Experimental Results from a Single Pinned-

Free Beam
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able at M.I.T. Joint Civil-Mechanical Engineering Computer Facility.
The general programs are listed in Appendix A. As the storage capacity
of the computer used was small compared with the size of the program,

the operations were performed utilizing disk storage.
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CHAPTER III
CONTROL TECHNIQUES

3.1 Introduction

This chapter gives a general description of the techniques that
were applied to the analysis of controlling flexible manipulators.
These techniques, with one exception, were applied to the models pre-
sented in Chapter IV and the results are discussed in the next chapter.
In order to introduce these control procedures one can start with
equation (2.36) which represents the nonlinear model of the physical

system
T=ATHE +Cu (2.36)

The objective is to find a control law u(t,i,t) such that the sys-

tem response follows the desired specifications. This task is compli-

cated by the presence of the nonlinear terms in the system representation.

Even in the case for which the control law can be exactly specified,

it would in principle be useful only in very specific cases. To avoid

this type of design of the control one can always design the compensation

for the linearized model and verify how good the approach is when applied

to the nonlinear system.

From the linearized equations of motion

x=Ax+Bu (2.38)
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the structure of a linear regulator can be represented as in the block

diagram of Figure 3.1

Xq -+:;;‘ u |
T

I

v

I

Ico
+
g

[P

>

Figure 3.1 Block Diagram of the Compensated System.

where the control has been replaced by the linear equation

u=Kx (3.1)
and xp is the desired trajectory.
The purpose of this chapter is to present several techniques that
were used to compute the set of gains K for different feedback alter-

natives.

3.2 Modal Analysis

It is well known that in the case of linear time invariant systems

described by state equations of the form

x=Ax+Bu (3.2)
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where A and B are (n x n) and (n x r) matrices respectively, a model
representation can be obtained by using a nonsingular transformation of

state [C3], [S1].
x=Uz (3.3)

In the case of distinct eigenvalues of matrix A, matrix U is the
modal matrix of A and its columns are the eigenvectors of A [G1] [c3].

Then equation (3.1) becomes

1= az+pPTy (3.4.1)

where A is the diagonal matrix of the eigenvalues of A

A o
A
p=| °
© *n (3.4.2)
and
pT=ulg=yTg (3.4.3)

is the mode controllability matrix with

Qf=£ (3.4.4)

where I is the identity matrix.
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It is clear from equations (3.4) that the transformation (3.3)
uncouples the n-th order system into n uncoupled subsystems. Also it
is evident from equations (3.4) that the ith mode of the uncoupled sys-

tem is controllable by the jth control input if and only if
P'ij = V., .t_),] £0 (3-5)

The controllability of the system is immediately verified by exam-
ining the components of the mode controllability matrix ET.

Equations (3.3) represent an uncoupled system giving rise to one
important question: is it possible to find a control Taw u such that the
eigenvalues can be specified a priori? The answer te this question was
initially given by Rosenbrock [R1] and his presentation of modal control.
Several extensions and improvements have been made since then [E1], [P1],
[P2] and a very useful algorithm was presented in the work of Simon and
Mitter [S1], [S2] for the case of distinct eigenvalues. A more recent
work by Gould, Murphy and Berkman [G3] extends this algorithm for repeated
eigenvalues. The constraints in the number of inputs in the present work
make the Simon-Mitter algorithm the most suitable for applications. For
this reason a brief presentation of this method will follow in a simpli-
fied way as it was applied. A rigorous and general formulation can be

found in reference [S2].

3.3 Simon-Mitter Algorithm (SMA)

This algorithm is capable of shifting all the eigenvalues to desired
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location with only one application. However, this procedure may
cause numerical difficulties in the solution of a large number of i1l1-
conditioned equations. On the other hand, the shifting technique is
recursive, that is, a small number of poles can be shifted in each ap-
plication of the algorithm and this procedure may be applied as many times
as is necessary. If a number p of poles is to be shifted the solution
involves an inversion of a (p x p) matrix. For this reason a recursive
design shifting two poles each time was used, which means that the pro-
cedure would involve a small amount of computer core for each change of
poles. When two poles are moved, the gains to form the control Taw u
are such that two poles go to a new specified position while all the
others remain fixed. If a new pair of poles is modified, the gains are
all added to the old ones in order to maintain the former shifting of
poies. This procedure has a disadvantage with respect to numerical er-
rors accumulation but it is useful when few poles have to be shifted.
Again, the only restriction is that the system has no repeated poles.

In order to illustrate the two pole shift procedure one can recall
the canonical form (3.4.1)

7= 8z+P y (3.4.1)

The question is to find a linear state variable feedback law

u=62z=Kx (k=60 (3.6)
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which moves the two selected poles to specified location while the
other poles remain constant. If one chooses to change the polesiy and

A2 to Y] and Y, and assume that the system has r inputs the feedback

law becomes
[a11] a1y
urgZit@ze [ wTxr o) v x (3.7)
91 9r2

Substitution of (3.6) into (3.4.1) yields the new system

2= bz (3.8.1)
where
b= a+Plg (3.8.2)
B i 7
4 1 l
M + 6]] 6121
O
1 51 I —
21 o+ P2
|
e T
— 31 32
| 3 O
| Ay
| )
. , O .
6
n1 *n2 | - (3.9.1)
M l .
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where

511'k=_p_,-T9k for i=1,...,n k=T1,...,r (3.9.2)

To determine the new eigenvalues it is sufficient [S1] to examine the

eigenvalues of

_. 1 o
Moy %12
Ay o=
1 1
%1 o+ 8 (3.10.1)

In fact, from the mode decomposition property (Appendix B)

det(sI - 4 ) =

ll.=1 =

(s- 24) - det (sL- Zy9) (3.10.2)

j=3

If now the new pair of eigenvalues is vy and Yo it is sufficient to

equate the coefficients of like powers of the identity

(s - v1)(s = vp) = det[sI - Ap] (3.11)

and consequently find the conditions that must be satisfied by gj and go.
However, gjand gp are vectors whose dimension depends upon the number of
inputs to the system. If the system has a single input it is clear that
(3.10) will give a unique sclution for the control law u. On the other
hand, if r # 1 there exist an infinite number of components for gy and g7

that satisfy (3.10). Several alternatives exist to produce a unique sol-
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ution for the control. Among these techniques are those based on power
requirements of the system, sensitivities, proportionality between con-
trol elements, etc. For the purpose of this application the criterion

used is the fixed ratio of feedback gains, that is, the vectors gy and

gp were replaced by n1gp and npg, respectively. The vector gg is usually
chosen on the sense of satisfying some desired condition. In particular,

the selection of the elements of gy by the rule [S1]

G4 = Sign (pi1) i=1,...,r (3.12)
maximizes the measure of controllability and hence requires the least
absolute value of feedback gains. This rule was used throughout the ap-
plications. Since g5 is specified the algorithm gives a unique solution
for a shift of a pair of poles. This solution can be presented for two
cases: pair of real poles and a complex conjugate pair. In particular,
the numerical implementation becomes easier when these two cases are

taken into account.

3.3.1 Real Pair of Poles X and X (* ¢ M)

In this case, (3.11) yields

™ %0 %0 €]
n A2%0 X1 %0 €2 (3.13.1)
— - L N n J

where
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n

YIHY2 - M- A,

€2 = Y] Yp = My

n
—
-
.

ko = EkT 9 k PN
and the control law

u=go My +nv]T x

3.3.2 Complex Conjugated Poles

For this case, in order to assure that u is real let

A

N+ jx'{

M= ME = N -GN
and from the mode controllability matrix let
p.( - p,ll + j.E] [}

Pp=P*=P-jR"

M="+iyw"

(3.

(3.

(3.

(3.

(3.

(3.

(3.

(3.

(3.

13.2)

13.3)

13.4)

13.5)

14.1)

14.2)

14,3)

14.4)

14.5)
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Yo = vi*= vyt - ivy" (3.14.6)

1 T 1.1 [ ]
' T, "
n P19 '_JT 0 €1/2
n" P1™"% P10 (e2 - A'e1)/ 22"
) : - - L _
(3.14.7)
leads to the control law
_u_ = 220[“'1/_]' - nnv_ln]T 2(_ (3.]5)

The transformation of a real pair of poles into a complex pair and vice
versa can be easily obtained by successive numerical applications.
Appendix A presents the computer program used for the applications of

modal control using this algorithm in a recursive way.

3.4 General Rigid Gains - Cross Joint Feedback (GRG)

The preceding algorithm when applied to system (2.38) can move any
pole to the desired position. However, the control law u used for this
pole shifting will involve the measurements and/or estimation of all
state variables associated with the physical system. Although the pos-
sibility of using measurements of all of the variables is not impossible,

another technique was used in order to compare the results. Essentially,
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this other procedure is to compute the gains for the control of a two
link rigid manipulator and apply them to the flexible model. The con-
trol for the rigid system would use only position and velocity feedback
gains involving the joint state variables. Several methods exist to
compute this kind of gains butone particular procedure suggested by
Professor D.E. Whitney [W1] seems appealing because of its similarity
to a modal approach. A brief description of this method is presented
below.

Consider a pure rigid two link system with no damping and no joint
compliance represented by the equations
Ja=zt (3.16)
where J is the (2x2) inertia matrix of the system, T is the (2x1) vector
of control torques and @ is a vector with components @ and ,, shoulder
and elbow angles in the rigid system respectively. In terms of state

variables (3.16) can be written

NI 17.1 7.
At 0 1 & 0
- + 1
ko 0 0 || & g7 (3.17)
L. J e - L. - b o
where 1 is the identity matrix.
The torques are obtained via a control law
T=8Bu (3.18)

with B a (2x2) matrix and
us= ko + &mi'2 (3.19)
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where ky is a (2x2) angular position feedback matrix and kKtp is a (2x2)
angular velocity feedback matrix. The elements of Kt and Kyp can be ob-
tained for some desired specifications with respect to the position of

the poles in the complex plane. The system (3.16) with (3.17) and (3.18)

becomes
] il T
ks T 0 1 Fg
ks lBk,  IBkpp | | @ (3.20)
L 1 L JL
If now ky and kyp are chosen so that (*)
2
-1 0
3 Tekr =
0 ~wy2 (3.21.1)
-2gqWy 0
J3-1BKp = ]
0 ~2%pmy (3.21.2)

it is clear that the system (3.16) will become a set of two uncoupled
differential equations with natural frequencies wy and w, and damping
ratios %y and cz respectively. This choice of Kt and Kyp is not unique
but it is convenient because it allows one to place the poles by inspec-
tion. Then, this procedure enables one to specify the desired charac-
teristic of the system and as a consequence find the corresponding angular

position and velocity feedbacks.

Since for a real system the inertia matrix is always non-singular,
(*) w and w are used interchangebly to represent angular frequency
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the only restriction to the technique is that the control matrix B is
non-singular. This fact makes impossible the application of this pro-
cedure to the flexible model itself but some variations of the control
derived from a corresponding rigid model can be applied to the flexible
system. Also it is important to notice that the matrices Ky and Krp

are not necessarily diagonal which means that the control can take into
account feedback between the joints. Finally this procedure can be applied
to a rigid arm with any number of joints. A trivial generalization allows
the procedure to be applied to any controllable and observable Tumped

passive dynamic system although an observer may be needed.

3.5 Rigid Gains - No Cross Joint Feedback

This case is a particular way to find the Ky and Krp matrices in
the preceding method. As was mentioned before, the effect of cross joint
feedback disappears when Kt and Kyp are chosen diagonal matrices. Using
this procedure W.J. Book [B2] achieved interesting results for the design
of control for flexible manipuiators. This method was not applied in the

present work except as a means of comparison of different control techniques.

3.6 Sensjtivity Analysis

Another procedure used to find the components of the control law
u dealt with the sensitivities of the poles with respect to variations in
the gains. If one assumes only angular position and velocity feedbacks,
the number of control elements would be considerably reduced and by

inspection the gains could be changed based on their corresponding sensi-
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tivities.
Consider the system represented by

x=Ax+Bu (2.37)

and assume that

u=Kx (3.22)

where A is (nxn) matrix, B is (nxr) control matrix and K is (rxn) gain

matrix. For example, equation (2.38) could represent the linearized model of a
flexible manipulator. The €igenvector Uy associated with the jth eigen-

value Kj is defined by the equation

A u5 = Ajuj (3.23)

If vj is the corresponding element in the reciprocal basis, from the

orthogonality of the modes

Ty o g {8 TOTor T E
T = ford = (3.24)
From (3.23) and (3.24)
T -
v.TAug = (3.25.1)
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It is easy to verify that the only left hand side term involving

the element ajk
coe FVGRIKURG e T (3.25.2)

Then, from (3.24) and (3.25) the sensitivity of the eigenvalue }j

with respect to variations in the element ajy of the A matrix is given by

vi]

SA] = viiups (3.26)
sajg 1K

If now the control law (3.22) is taken into account, equation (2.38) re-

decues to
x=Ax (3.27.1)

where

|31
L]
|3
+
joo
{=

(3.27.2)
with components

r
43 =iyt L bk Iy ; (3.27.3)
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Now, the sensitivity of a pole X, with respect to gain 95 is

r .=
3a_ (z %3ij ) (3.28)
1 234y k=1 30k j

nm~Mm3

n
Ad¢ = I g . stj =
agkj j=1 k=1 Bi.ij agkj i

But

284 _ (3.29)
39y 3 bik
Then it follows from (3.28) and (3.29) that
n
8&; = I aka bik (3.30)

From (3.30) and (3.26) one can see that if the €igenvectors corresponding
to a certain configuration are known, it is pessible to analyze the effects
of local pole variations for each component of the gain matrix. This pro-

cedure will be explained numerically in the next chapter.

3.7 Summary

This chapter presented a brief description of the control techniques
used in this work. The next chapter presents the application of these
techniques to some nondimensionalized examples and general results ob-

tained.
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CHAPTER IV
APPLICATIONS AND RESULTS

4.1 Introduction

The purpose of this chapter is to introduce the example systems used
in the applications of the mathematical techniques and the general results
obtained from the several control methods. Two examples have been chosen,
both with circular ring cross sections. The first one (example 1) is a
very long and flexible beam of two equal segments carrying a payload that
might vary in size and weight. The overall dimensions are shown in Figure

4.1 and were obtained from reference [N1].

N shoulder elbow payload
J Jjoint joint
N
\O Cr
J
N
N
N
h 26.7 ft 26.7 ft variable
(8.13 m) (8.13 m)
Beams :

0.75 ft (0.228 m)
0.734 ft (0.223 m)

external diameter
internal diameter
material: Aluminum
E =107 psi (7.0x10'0 Pa)

Figure 4.1 Example 1 Characteristics
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The second example (example 2) is a more rigid system with fixed payload.
The most important difference is that the beams have different radii and
were chosen such that the stiffness EI for the first beam is approximately
equal to six times the value for the second beam. The main geometric
characteristics are presented in Figure 4.2 and were obtained from re-

ference [R2].

shoulder elbow payload
joint joint

LLLLLLLLL
o

18 in (0.457 m) 18 in (0.457 m)

Beam 1:

3.74 in (0.095 m)
3.15 in (0.080 m)

external diameter
internal diameter

Beam 2:

2.36 in (0.060 m)
2.00 in (0.051 m)
Material: Aluminum E = 107 psi (7.0x10'0 Pa)

external diameter
internal diameter

Joint Tumped mass = 0.932 slugs (13.6 kg)

Assumed payload:

0.623 slugs 0.623 slugs
(9.1 kg) (9.1 kg)
2.99 in
(0.076 m)
5.98 in
(0.152 m)

Figure 4.2 Example 2 Characteristics
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With respect to all the applications of the described models, the
motions were assumed to be in the plane of the beams, no structural
damping was considered and gravity was neglected. However, the computer

programs presented in Appendix A can accommodate damping and gravity.

4.2 Nondimensionalization

In order to have a better idea about the effect of the system para-
meters and also to obtain more general results, a system nondimensional-

ization was performed using the quantities given in Table 4.1,

Physical Quantity Symbo1 Dimension
Stiffness constant of 2
beam 1 EI4 FL
Total length 1 L

Average Mass/unit
length W FL-2T2

Table 4.1 Parameters for Nondimensionalization

where
'l - 'l.l + 12 ' (4.1.1)
ply + w2l2
M= 1 (4.1.2)

Two important quantities can be derived from Table 4.1

- time Tq = ET7 (4.2.1)
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-frequency Wa = 13 (4.2.2)

It is important to observe that frequency wq has no associated physical
system but can be easily related to any system natural frequency. For
example, if one considers a beam with stiffness EIy, length 1 and density
per unit length u, the clamped-free natural frequency is given by

EIq

We = 3.52 ;-1-3_ (4.3)

Then it follows that the relationship between frequencies wq and w¢ is

simply given by

we = 3.52 wy (4.4)
Any resuits with respect to wq can then be extended to compare with wc.
If now one introduces:

- ratio of the radii of beam 1

kg = 1
™ rel (4.5)

- ratio of the radii of beam 2

ri2
krz = "e2 (4.6)

it is possible to establish a constraint among the stiffness constant,
the radius and the density of the beams. In fact, if one assumes the
ratio of the radii for each beam and also the nondimensionalized stiff-

ness constant of beam 2, the following relationships are useful for the
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nondimensionalization of the remaining parameters.

In fact, if

Bl =€y " rey (1-kp14) (4.7.1)
then

(ngﬁz = (4.7.2)
Also, from (4.1.1)

L - 1‘1}}_{;"_2_1_2_ cuqly + o2 (4.8.7)
or

M1y + Holp = 1 (4.8.2)
On the other hand, for cylindrical beams

b= orlire1(1-kp?) + Tores?(1-krg?)] (4.9)

and

o emre0ke®)
1= by = oa[yrer2(1-kp12) + lore22(1-ky52)] (4.10)
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or, using (4.7) into (4.10)

- 1
11<|=

1+ 12/512 (1 + kpi2) (1 - kpp2)
(1 + ke2?) (1 - k?)

and from (4.8)

Ty =] '__"‘_]i
L

(4.17)

(4.12)

Then, assuming the value of ETQ, the ratio kyy and kpp» the lengths

Ty and T, and one of the external radii, expressions (4.7), (4.11) and

(4.12) define the other characteristics of the system.

Using EIj.pand 1 the nondimensionalized groups are shown in Table

4.2.
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Nondimensionalized Quantity Equations
stiffness constant of beam 1 EIy = EI{/EDY
stiffness constant of beam 2 Efg = EI2/EIN
length of beam 1 T] = 1/1
length of beam 2 12 = 12/1
length of payload Tp = 1p/1
internal diameter of beam 1 djq = di1/1
internal diameter of beam 2 5}2 = dj2/1
external diameter of beam 1 de1 = de1/1
external diameter of beam 2 aéz = da2/1
density per unity length: beam 1 H] = u)/u
density per unity length: beam 2 w2 = u2/u
payload mass mp = mp/ul
elbow joint lumped mass mj = mj/ul
mass moment of inertia J = /13
time T = t/Tq
frequency W = w/wd
angular position feedback gain Ehp = kap/ (EI1/1)

Tinear position feedback gain
angular velocity feedback gain

linear velocity feedback gain

K1p = kp/E11/12)
kav = kav/(EI1/wgl)
Elv = kyy(EI1/wql?)

Table 4.2 Nondimensionalized groups
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4.3 The Control Application and Arm Bandwidth Definitions

In order to apply the control techniques described in Chapter III
it is helpful to know some details of the gain matrix K that appears
in equation (3.1). The model described in Chapter II was assumed tc have
two inputs, namely the torques Tty and 71, applied at shoulder and elbow
joints, respectively. As the model is described by 12 state variables,

K is a (2x12) matrix. The general form of this matrix is

kjp k12 k13 kyg kis kyg kg7 kig kig kyjp kinn ke

|=
n

ko1 ko2 ko3 kos ko5 kpg k27 kog kag k210 k211 kot2

-

(4.13)

where

k11, ky2, ko1, ko2 are angular position feedback gains; ki3, k14, k15,
K165 k175 k235 kogs ko5, kog, k27 are linear position feedback gains;
k17, k18, k27, kog are angular velocity feedback gains; k19, k110, k1115
K112. k29, k210, k211, k212 are linear velocity feedback gains.

It is obvious that the linear feedbacks will necessarily require
measurements and/or estimation of flexible displacements and velocities
while the angular feedbacks are based essentially on the measurements of
angles. This is an important fact in comparing the results from the
application of general rigid gains design method and Simon-Mitter algo-

rithm. Modal control will involve the set of 24 gains while in the
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other case 8 at most are necessary. In the special case where no cross
joint feedback is taken into account, only four gains are used [B2].

Due to the large number of gains, the analysis via a root locus for gains
variations is impractical.

The remaining parts of this work will frequently mention arm band-
width when comparisons or simulations are presented. There is a certain
arbitrariness in defining the bandwidth of a manipulator arm. For this
reason this work defines arm bandwidth as the maximum undamped frequency
for which the two first dominant poles are as close as possible to 0.707
damping ratio. The following results are concerned with the arm band-
width obtained by using the control techniques presented in the previous

chapter.

4.4 General Rigid Gains Method Applications

For the implementation of this method one nondimensjonalized example

was chosen with the following parameters:

kel = kpp = 0.9 Jp = 0.0
El; = 1. 1p = 0.0
El7 = 1.0 1y = 0.5
¥ = 1.0 12 =0.5
fi2 = 1.0 Tel = 0.05
fip = 0.0 Tep = 0.05

61 = Q°
mj = 0.0 oo = 0

Tabe 4.3 Nondimensionalized Parameters of Example 3
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Similar tables for examples 1 and 2 can be found in Appendix C.

In order to obtain some results using this method one has to use an
equivalent rigid model that in the case of present work is represented
by a double pendulum with inputs at both pinned joints. It is evident
that only angular position and velocity feedback gains will be present
in such a model. If equations (3.2.1) are recalled, one will notice
that to find the matrices Kt and Kyp, it is necessary to specify four
parameters of the desired system, namely, wi, Wo, Z1, Z2. Once these
values are specified, one can obtain KT and Kyp such that the poles of the
closed Toop system will be exactly at the desired location. These gains
can now replace the angular position and velocity feedbacks on the gain
matrix (4.13), corresponding to the flexible case. In this way it is
possible to analyze how effective the method is for several variations in
the parameters. The following steps represent the application procedure:

a) choose the desired values of the first two dominant modes,

that is, wy, wo, 7, %23
b) using (3.21) applied to the rigid equivalent model obtain the
gain matrices Kr, Kyps

c) construct the gain matrix K expression (4.13) using Kt and Krp;

d) examine the closed-loop poles of the flexible system.

The Timiting range of this method will be determined by the deviation
of the dominant poles of the flexible model from the desired specifications.

This sequence was applied to the example of Table 4.3 with the

frequencies nondimensionalized by (4.2) and the assumption
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Wy =wW2 =W (4.14a)

g1 =82 =¢ (4.14b)
where

W = w/wg

It is important to mention that assumption (4.14) was used because it
yields symmetric matrices Ky and Kyp. This fact will make the control of
the flexible model analogous to spring and dashpots actuating among the
joints and consequently assuring stability for the system. Some results
were obtained for wy # w2 as can be seen in Figure 4.3 However to as-
sure stability (4.14) assumption was used throughout the work with damping
ratie ¢= 0.7 as a constant parameter.

For this damping ratio ¢ the frequency w was specified and gains
KT and __K_TD were obtained via the rigid model; these gains when applied
to the flexible model returned a pair of dominant poles which were plot-
ted as a root-locus of the first two dominant flexible poles. The locus
is shown in Figure 4.4 for damping ratios of 0.5, 0.7 and 0.8. A reas-
onable understanding of the results can be obtained by plotting both
pole on the same graph. One can see that for w = 1.0 the resulting be-
havior of the flexible system is essentially the same as the rigid one;
the dominant poles are close together with damping ratio 0.7. As the
value of W is increased, the poles of the fiexible system start separating

and for W over 3.0 there is a shift with respect to the distance to origin
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and the dominant pole becomes the one that has a smaller damping ratio.
On the other hand, if one recalls expression (4.4) it is easy to see

that this relationship holds for the present example. Consequently

W

W4 D352t we (4.15)

is useful to compare the preceding explanation with respect to the
natural frequency of a clamped-free beam associated with the system. U-
$ing (4.15) one might say that the method of general rigid gains yields
very reasonable results for manipulator bandwidth up to the natural
frequency of the clamped-free equivalent system. Faster response can
be obtained only with a considerable reduction in the damping ratio of
the dominant mode. For constant specified damping ratio ofg = 0.7
Figure 4.5 shows the dominant flexible poles for variations in w. This

plot presents a better view of the limitations obtained from the general

rigid gains method.

4.5 Effect of Payload

In order to analyze the effect of the payload in the design of the
control, a comparison was made between three different payloads for
the example presented in Table 4.3. The payloadé were assumed to be
lumped masses at the end of the second beam with values indicated in
Table 4.4
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case mp a

1 0.8 1.63
2 1.0 1.44
3 5.0 0.75

Table 4.4 Lumped Payloads Assumed for Example 3
The natural frequency of the clamped-free equivalent system is wp =q /EI/u14
with o« obtained us{ng the method presented in reference [B1]. The re-
sults can be seen in Figure 4.6 As the payload is increased, the arm
bandwidth is reduced as a consequency of the lower system natural fre-
"quencies. If one assumes the best design situation to be as close as
possible to a damping ratio of 0.7 one sees that the general rigid
gains method can still be appiied with good results up to close to the
clamped-free equivalent natural frequency. The situation would be con-

siderably different if rotary inertia of the payload were considered.

4.6 Variations in System CGeometry

In the preceding discussion only the case of equal cross section ﬁas
verified from the point of view of control application. However, it
“would be useful to know how the system geometry has to be taken into
account in order to improve the arm bandwidth. In order to implement
this idea it is necessary to mention some important aspects. First,
the system is going to be assumed, as in the previous cases, with two
beams of equal length. Then, in order to keep a good reference for
comparisons, the sum of the masses of the beams is assumed to be constant

and the only variations must occur in the radii of the beams. In doing
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so let one assume

<

my + m2 constant (4.16)

"
3
]

constant (4.17)

1]+12=1

If p is the density of the material, equation (4.16) can be written
P 1 Zﬂ dg12(1-kp12) =0 12£de22(1-kr22) =m (4.18)

or, using the nondimensionalization from Table 4.1, (4.18) can be re-

duced to
— 2 —
L(-kq?) + (Ze2)" (1 ,2) = m
rel r od 2 'n'13
el 7 (4.19)

If now one uses equation (4.7) there results

dg2 = (L") ¢ 1 )
el 7 \w /
pI 13 Ti(1-k.q2) + TH(1-kw? [
7t 107k #) + Tp(1-krp \/512 (-kr1?) (4.0
(1-kp22)
However, by definition
e=7 (4.21)

where V is the total volume of the system.

Then, with (4.21) one can define a system coefficient
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c.s. = de12(1-kp2)11 + dea2(1-kpp2)12
& (4.22)

This coefficient can be calculated for any initial system configuration
and remains constant as long as the mass is kept invariant. Then, for
a .given physical system it is possible to find the nondimensionalized

diameters by using

C.s.

2 = - — =
o1 = T1(1-kp12) + 1201-kp22) [E1p (1-Kr1%) (4.23)
(1-kp22)

together with relationship (4.7)

Another useful parameter to analyze the effect of variations of
the system geometry is the natural frequency of the corresponding clamped-
free system. For the purpose of comparison, W.J. Book (personal commun-
jcation) based on the nondimensionalization described before and using
a transfer matrix model, determined those natural frequencies for
different ratios of the stiffness EI and several payloads. The results

are shown in Figure 4.7 where

w = Yclamped
Wy (4.24)

and the factor (2/(1 +\/E12/EI1» corresponds to a correction factor
which takes into account the definition of wq based upon EIy. With
these elements it is possible to analyze the behavior of a stepped

beam under the general rigid gains type of control.
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In order to get some insight into the effect of cross section
variations, the control method was applied to the system described in
Table 4.3 assuming constant length and constant total mass. Two
cases were chosen: no payload at all and lumped payload mass of the

same order of magnitude as the mass of the total am.

4.7 HNo Payload - £12 variations

In this case the procedure was applied as before for each chosen
Efz ratio. The results can be seen in Figure 4.8 for Efg varying
from 0.2 to 0.8. As one can notice, if no payload is present, the arm
bandwidth becomes better as one decreases the ETZ ratio. However, if
one uses the results preseﬁted in Figure 4.7 it is expected that the
best bandwidth for the system would be obtained for EI2 ratio equal to
0.045, which corresponds to the maximum clamped-free frequency of the
equivalent system. This has not been verified and is included in the

suggestions for further work.

4.8 VYith Pay]oad-ffé Variations

The effect of payload seems to be very important in the search for
the best geometry of the system.While an accentuated stepped-beam ap-
pears to be the best design for no payload situation, a uniform system
looks the best indicated for carrying payloads. This can be seen in
Figure 4.9 where the method of general rigid gains was applied in the
same way as without payload, for the case of'ﬁb = 1.0. A close look

reveals that the system seems to converge for the best bandwidth when
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EI approaches 1.0, that is, when the two beams have the same di-

2
mensions.

Comparing the maximum reasonable bandwidth with the results from
Figure 4.7 it appears that the best results are those for Efz =1.0, where
the system bandwidth is about the natural frequency of the equivalent
clamped free system. Also, as was expected for lumped payload, the
bandwidth is considerably lower than in the case of no payload. These
two sets of results show that the designer should be very careful in
specifying the system geometry with respect to the kind of work the amm
has to perform. Also it is very important the analysis of the system based
upon the payload geometry because of natural frequency reduction caused by

the increasing rotary inertia. This fact was not considered in the

present work.

4.9 Simon-Mitter Algorithm Applications

At the beginning of the present work, the idea was to apply modal
control in order to place the poles of the system at any desired position.
However, after a number of applications it was verified that the parti-
cular algorithm (SMA) used for the modal control design would not solve
the problem due to the fact that poles were moved to positions that did
not correspond to minimum sensitivity. As a consequency any small varia-
tion that appeared in the process would shift the poles to other locations
and even to undesired unstable situations. Once reasonable results were
obtained using the general rigid gain method, the idea of applying modal

control changed to simply trying to improve the system bandwidth obtained
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from rigid gains. Even in this case, if some improvement was obtained
it should really be significant in order to compensate for the required
measurements and/or estimation of the remaining state variables of the
system.

Finally, assuming that a good bandwidth was achieved with the (SMA),
the final decision should be made by comparing the required torque with
the ones obtained from the application of the other design procedures.

In order to present some results from (SMA) applications the
example of Table 4.3 was used with equal beams. Initially the system
was assumed with no feedback at all. In terms of pole locations, all
poles lay on the imaginary axis with four poles at the origin. As the
modal control algorithm was not implemented in this work for applications
to cases with repeated eigenvalues, very small gains were assumed in or-
der to disturb numerically the poles at origin. The initial configura-
tion is indicated in Table 4.5 where €7 # €5 # 0,

It was shown before that wiien the general rigid gain method was
applied to this system, the best control situation was achieved for the
two dominant poles close to the natural frequencies of the clamped-free
equivalent system. As this frequency has the value w = 3.52, the first
movement using the Simon - Mitter algorithm was to shift the two first
dominant poles of Table 4.5 to the point(-3 ¢ 3j)’ that is, trying an
improvement of about 20% with respect to the rigid method. For com-
parison, the rigid gain procedure was used in an attempt to obtain si-
milar dominant pole locations. All the eigenvalues are shown in Table

4.6.
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Eigenvalue Real Part Imaginary Part

1 0.0 +€4

2 0.0 -€1

3 0.0 +€5

4 0.0 -€)

5 0.0 44.3

6 0.0 ~44.3
7 0.0 68.6

8 0.0 -68.6
9 0.0 151.0
10 0.0 -151.0
1 0.0 161.0
12 0.0 -161.0

Table 4.5 Initial Configuratiorn for Application of
Modal Control Algorithm
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Eigenvalue Real Part Imaginary Part
1 -2.8 2.9
2 -2.8 -2.9
3 -1.5 3.7
4 -1.5 -3.7
5 -6.1 0.0
6 -8.4 53.9
7 -8.4 -53.9
8 -16.4 103.8
9 -16.4 -103.8
10 -44.9 129.0
11 -44.9 -129.0
12 -1361.5 0.0

Table 4.6 Configuration From General Rigid Gains For

Comparison With (SMA)
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One important distinction between the two control procedures is
that in the case of rigid gains the high frequency poles are free to
move during gains variations (Table 4.6) and in case of (SMA) all poles
were specified to remain at the same position (Table 4.5) except the
ones chosen for relocation. The control is not only acting to move
a pair of poles but also to keep the other poles at a fixed position.
This fact is displayed very well in Table 4.7 where the gains using both
methods for obtaining the same dominant eigenvalues (of Table 4.6) ap-
pear in the same order as in expression (4.13). One notices that for
the first input to the system the gains corresponding to angular position
and velocity feedbacks are smaller in case of (SMA) while for the second
input (SMA) appears with bigger gains probably because of the specifica-
tion of the second dominant pole to a better position than rigid gains
gave. On the other hand, due to the fact that the high frequency poles
remain constant, (SMA) presents reasonably large linear feedback gains.
Again this fact requires high accuracy in the measurements or estimation
that must be made to apply the Simon-Mitter technique because of observed
high sensitivity of the poles with respect to gain variations.

A second shift using the Simon-Mitter algorithm was performed moving
the first dominant poles to (-5 + 5j). In this case the modal control
gains increased up to 10 times more than those presented in Table 4.7.
The rigid gain method cannot yield both dominant poles near this position,
so no direct comparison is possible.

Another important effect of the modal control feedbacks, especially



109

the positive ones, is with respect to system stability. For small mo-
tions around the equilibrium position used for control design (shoulder
and elbow joints with zero degrees) the linearized model presented sta-
ble ejgenvalues. However, due to high sensitivity of the poles to para-
meter variations, the achieved arm bandwidth is rapidly lost as the joint
angles change. For gross motion of the elbow joint from 0° to 90° using
constant gains obtained by the application of (SMA) at 0°, some high fre-
quency poles change rapidly to the right half complex plane, making the
system unstable. This fact was one of the bad characteristics of (SMA)
application because for different equilibrium position designs, the

gross motion always presented unstable high frequency poles. This fact
was not observed using constant gains obtained at the same position using
general rigid gains method. As a result, the Simon-Mitter algorithm
could not be applied using constant gains for a given gross motion but
would only give some improvement for small motions around equilibrium
position. This implies that the use of (SMA) for this kind of system
would bring some reasonable results only if one has a kind of adaptive

modal control. Finally, depending upon the tasks to be performed there

is a possibility of controlling the gross motion with the rigid gain
method and the fine motion using modal control techniques, using dif-

ferent sets of constant gains.

4,10 System Analysis Using Sensitivities

Another procedure to achieve desired pole allocations for the pre-
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Rigid Modal Rigid Modal
Nomenclature |Gain |[Method | Control |[Gain |Method Control
Angular k11 -5.3 -3.9 Ko7 -1.6 -4.2
IPosition
Feedbacks K12 -1.6 -1.2 ko2 -0.7 -1.5
) kq3 0.0 -10.4 ko3 0.0 -10.6
Linear
Position k 0.0 +8.2 k 0.0 +2.4
Feedbacks 14 24
k“|5 0.0 -3.5 k25 0.n -4.8
k]e 0.0 -1.6 k26 0.0 -1.3
Angular k17 -1.8f ~-1.4 Koy -0.6 -1.5
Velocity
Feedbacks Kig -0.6 -0.4 kog -0.2 -0.5
k19 0.0 -3.7 Kog 0.0 -3.7
Linear
Velocity k110 0.0 +2.9 K210 0.0 +3.4
Feedbacks
k”] 0.0 -1.3 kZH 0.0 -1.7
K112 0.0 -0.6 k212 0.0 -0.5

Table 4.7 Comparison of Gains

from General Rigid Method and Modal Control



i

sented system was the use of eigenvalues sensitivites using the analyti-
cal expressions described in Chapter III. To understand the procedure
let one consider the same example presented in Tables 4.3 and 4.6 with
the two pairs of dominant poles described with greater precision in Table

4.8

Eigenvaiue Real Part Imaginary Part Magnitude | Damping Ratio
1 -2.792 +2.957 4.066 0.686
2 -1.540 +3.775 4.077 0.377

Table 4.8 Initial Configuration for Sensitivities Application

Let one assume that only angular feedbacks are available for controlling
the system. Then, only sensitivities corresponding to eight gains are
necessary for analyzing the system despite the fact that all poles must
be checked for stability. In order to illustrate the procedure let one
cosider only the sensitivities of the two poles indicated in Table 4.8.
The values of the sensitivities are presented in Table 4.9 and they rep-
resent the real and imaginary part of the right hand side of expression
(3.30).

Let one assume that a small improvement should be obtained in both
poles in the sense of shifting them as close as possible to a damping
ratio of g = 0.707 while keeping about the same magnitude. From Table
4.9 it is possible to see that pole 1 is much more sensitive to gain
variations than pole 2. However, as it would be more desirable to move

pole 2 rather than pole 1, it is obvious that one should base the cal-
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Gain Sensitivity
Real Part Imaginary Part
kyp | -0.12378 -1.6737
b k]2 -0.28930 +3.9537
5 k7 +5.5841 +8.2614
Kis -12.2098 -6.2314
E ko1 -11.7945 -0.60046
koo -13.1803 -19.5332
: Ko7 -30.9911 -34.0298
kog +28.8638 +14.7419
K11 -0. 39584 -0.17299
Y -0.20609 -0.08951
Z K17 1.0570 -1.3176
Kig 0.44946 -0.72977
; Ko 0.63836 -0.64829
k22 2 0.54781 -0.68762
) ko7 ; -0.05090 -0.09990
kog | 0.23709 -0.38123

Table 4.9 Sensitivities of Poles from Table 4.8
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culations upon sensitivities of pole 2. From expression (3.30) and for
small variations of the gains, one can write

Ao

Ty T

(4.25)
where skj(‘q is the sensitivity of the real (imaginary) part of polea

with respect to variations in the gain kkj' Also, if the sensitivity
is positive (negative) and the eigenvalue is negative (positive) an
improvement in the poles would be obtained by decreasing the correspon-
ding gain and vice versa. If now one turns to Table 4.9 it is verified
that the maximum shift of pole two would be obtained for small variations
in the gain ky7. However, for this same gain variations, pole 1 has five
times more sensitivity which means it would undergo a bigger shift. It
must be kept in mind that this analysis is true only for small variations
of the gains since expression (4.25) holds only for linear deviations
from the dynamic equilibrium point. Let one assume for example that it
was decided to vary gain ky7 from its original value of -1.873 to a new
value -1.9 while the other gains were maintained constant. As one sees,
the variation on the gain was about 1.44%. The new pole location is

shown in Tables 4.10a and 4.10b.

Eigenvalue Real Part Imaginary Part Magni tude Damping Ratio

1 -2.942 2.733 4.016 0.732
2 -1.568 3.810 4.120 0.380

Table 4.10a New Poles Using Expression (4.25) for Sensitivities
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_Eiéenva]ue Real Part Imaginary Part Magnitude Damping Ratio
1 -2.948 2.840 4.093 0.720
2 -1.571 3.806 4.117 0.381

Table 4.10b New Poles Using Computer Programs from Appendix A.

As one sees, the predicted values from Table 4.10a are very close to the
numbers obtained from the gain variation using the model in a digital com-
puter. The discrepancy observed in the imaginary part of pole 1 might be
explained by the fact that the corresponding sensitivity is not constant
for the assumed gain variation. The new location is better than the one
in Table 4.8 but still is not enough since pole 2 still has a small damping
ratio. Further modifications can be obtained by repeating the procedure
with the sensitivities calculated for the positions represented in Table 4.10.
In applying the sensitivities procedure for some of the poles, it is also
necessary to know what happens with the high frequency eigenvalues since
they might go unstable for a desired gain variation to shift a specified
pole.

This procedure was applied to several cases in order to improve a
few of the poles, especially the dominant ones. However, fair results
were obtained only for a large number of trials since the gains variations

must be relatively small. For this reason no general results from sensiti-

vities are presented for comparison and the procedure is left only for fine

adjustments_in a final phase of the design. A more systematic procedure

might be designed for computer implementation.
Finally, it should be noticed that sensitivity played a very important

role in the present work in the sense of analyzing the numerical results
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obtained. Each time a given set of gains was obtained the sensitivities

helped to judge how accurate the gains had to be in order ‘to have only

small deviation in the poles corresponding to truncation error. Also in

applying the modal control algorithm, sensitivity of the high frequency
poles was always analyzed for the purpose of stability because the pole
sensitivity may increase considerably when the gains are specified to

keep the pole at constant position.

4.11 Comparison of Results with Rigid Gains - No Cross Joint Feedback

In order to show the effect of the cross joing feedback some re-
sults obtained in the present work were compared with those obtained by
W.Jd. Book using independent joint feedbe~t and a transfer matrix model of
the physical system, as described in [B2]. The values of the gains were
obtained from a rigid design technique which yielded a desirable relative
position of the four most dominant poles. These gains were presented for
the case of equal beams in [B2] and slightly modified to allow for the
changes in inertia where the beams are not equal. A1l results are pre-
sented for the non-dimensionalized case of Table 4.3 with changes in the
parameters payload and cross section of the component beams. In the
case of equal beams (EYZ = 1.0) and no payload Figure 4.10 shows the re-
sults obtained from no cross joint feedback. Although only one dominant
pole is shown, one can see that the maximum arm bandwidth is about 50%
of the clamped-free equivalent natural frequency. Variation of the mass
distribution of the system from equal beams to a stepped configuration
with no payload shows a slight increase in the ratio of arm bandwidth

to clamped natural frequency as can be seen from Figure 4.11 (ETZ = ,05)
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and the corresponding plot in Figure 4.7. The effect of payload results
in a reduction in this ratio as can be seen in Figure 4.12. These results
indicate the importance of the information between the joints. However,
as the control has more dynamics the feedback between the joints may cause
system instability in case of failure. (The examples of rigid gains are
stable even when the cross joint feedback gains are set to zero individ-

ually or together).

4.12 The Measurement of Feedback Angles

One observes from the definition of coordinates in the proposed
model for the phys:.cal system that the angle corresponding to shoulder
position (67) can be measured by a simple potentiometer or other type
readout. However, for the elbow angle the definition of coordinates re-
quires that not only the rigid angle must be measured but also the slope
at the end of the first beam. Here, by rigid argle (ep) is meant the
angle between the tangent at the end of the first beam and the tangent
at the beginning of the second beam that also can be measured by a pot-
entiometer. Measurement of the slope at th~ end of the first beam is
more difficult. In order to present some results comparing the feedbacks
measuring the flexible or rigid angle, a brief transformation of coordinates
has to be presented. The rigid angle can be defined as

Op = 82 - Uyl (4.26)
With
U = OTE A1y * o)k 12 (4.27)
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where the signs of the components ¢i1E and ¢{2E have been described

with respect to the reference frames in Chapter II.

Then, in order to

use the rigid angle in the feedback law from the general rigid method

one must have

] [k Krs] o], [km
£2 Ktz Kya] [or KTD2

with the relation of coordinates given by

1 0 0 0 0
0 1 -¢me -t O

KTD4

e

421

Q22
.

KTD3] [91}
U (4.28)

(4.29.1)

(4.29.2)

Using relations (4.29.1) and (4.29.2) in the proposed model, some results

were obtained in order to analyze the effect of the measured angle in the

design of the control.

In Figure 4.13 one can see the effect of using
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the rigid angle in comparison with flexible feedback for the system of
Table 4.3 with EI ratio equal to unity. The graph shows the results for
no payload and for ﬁh = 5,0. It is clear that feeding back information
about the flexible motion allows the design of a better control. However,
the improvement in the arm bandwidth may not justify the considerable com-
plications of measuring the deflection at the end of the first beam. For

the case of stepped 1ike system with ETZ = 0.045 Figure 4.14 shows es-

sentially the same behavior.

4,13 Summary
This chapter presented the general results obtained from the ap-

plications of the control techniques presented in Chapter III. A general
comparison of the results was presented. Some digital computer simula-

tions applying these results are presented in Chapter V.
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CHAPTER V
SIMULATION OF SPECIAL CASES

5.1 General Results

This chapter presents some results from digital simulation of the
examples presented in the previous chapter. The results are non-dimen-
sionalized as indicated in Table 4.2 and the main physical characteris-
tics were presented in Figures 4.1 and 4.2. The values of the parameters
for nondimensionalization are presented in Table 5.1 for the case of no

paylcad and no joint mass.

Physical Quantity Symbol Example 1 Example 2
System Coefficient c.s. 1.6303 x 10~ | 1.936 x 10-3
Stiffness Constant | EIq 1.848 x 10®° | 1.39 x 105 Nt-n2
1bf - ft2

Total Length 1 53.4 ft 0.914m
Average Mass per

Unit Length u 0.19769 1bm/ft| 3.955 kg/m
Dimensionalization

Frequency Wy 1.072 rd/sec | 224.5 rd/sec
Dimensionalization

Time Td - 5.86 sec 0.028 sec

Table 5.1 Parameters for Non-Dimensionalization of the
Simulated Examples

The simulations are divided into torque impulse responses and para-
bola tracking performance. The flexible amplitudes are the amplitudes of

each mode component, that is, gy, 912, 921, G22. The end point dis-
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placement means the linear deviation of the end of second beam with
respect to the rigid system (0,03]in Figure 2.1).

In order to analyze the behavior of the system under the (SMA)
modal control algorithm, Example 2 was chosen for the physical casz of
zero reference state variables. Following the procedure and results pre-
sented in the previous chapters, a control was designed using the gen-
eral rigid gains method, specifying the dominant poles at 60% of the
corresponding clamped-free natural frequency (w = 0.6 W, where W¢ is obtained
from Figure 4.7). Once the control law was obtained the eigenvalues cor-
responding to the closed-loop situation were calculated. Then one returned
to the original uncontrolled system and applied (SMA) to obtain the closed-
Toop system with exactly the same eigenvalues as those obtained using the
general rigid method. The purpose of this procedure was to compare the
response under modal control (SMA) to the response under GRGM and to
study the effect of pole sensitivity under both. The results presented
in Figures 5.1 and 5.2 correspond to the elbow torque impulse response of
the same magnitude. As one can see from Figures 5.1a and 5.2a modal con-
trol allows a smaller total angle variation for the elbow but varies the
shoulder more. Both systems settle down at about the same time. The
oscillatory behavior of modal control at the beginning might be caused by
the large number of feedbacks necessary for controiling the system, es-
pecially those from the flexible components. From the torque point of
view the (SMA) presents a more oscillatory behavior as can be seen from
Figures 5.2a and 5.2b.

The maximum torque is bigger in case of modal control, especially
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at the starting point. Finally, the end point displacement and flexible
amplitudes are about twice as large when modal control is zpplied, as can
be seen in Figures 5.1c, 5.1d, 5.2c, 5.2d. Here it is important to notice
that the different behavior presented by the system when using modal con-
trol algorithm with poles equivalent to the general rigid gains application
can be justified by the fact that the eigenvectors are not the same. That
is, with the modal control algorithm it is possible to bring the poles to
some desired location but it is not necessarily true that the eigenvectors
will be the same.

Following the previous results an attempt was made to improve the
system response by applying modal control (SMA) to the general rigid gain
(Figure 5.2) case and move the two dominant poles to a value of W about
2.5 times larger than the case of Figure 5.2 (W equals 1.5 of W the dim-
ensionless clamped-free natural frequency). The remaining poles in this
application were not moved. The results for the same impulse response can
be seen in Figure 5.3. The angles variations are smaller than the previous
case (Figure 5.2) with relatively higher oscillation. Despite the fact
that the poles were moved to a position of ¢z = 0.707 damping, the sensi-
tivities are so high that as soon as the system starts moving the new pole
locations indicate a considerable loss in system damping. The torque
history presents about the same maximum as the previous case but acting
for a longer period of time. The end point displacement and flexible
amplitudes represent a considerable increase from the previous case as can
be seen in Figures 5.3c and 5.3d.

Another control was then designed for example 2 using the general
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rigid gain method. For this situation the gains were obtained by speci-

fying the dominant poles of the rigid system at 0.9 (W = 0.9w.) of the dimension-
less natural frequency of the clamped-free associated system. The re-

sults are shown in Figure 5.4a which correspond to a response to torque

impulse at the shoulder. The response presents a smooth behavior that is
similar to the simulation of a rigid system.

Again for example 2 some gross motion simulations were performed.

In all cases the system was supposed to move the elbow angle from -15°

to +15° according to a double parabola specified as reference input. In
Figure 5.4 it is shown the pole variations when the control remains con-
stant and the elbow angle is changed from 0° to + 90°. Since the control
was designed for 0° elbow angle (the same as in Figure 5.1 with GRG) the
arm bandwidth is decreased for working at elbow angle of 90°.

If one recalls Figures 5.1 it is seen that the nondimensionalized
settling time is of the order of ?; = 3.5. The system was simulated
tracking double parabolas of joint angle 6, of durations 0.5Ts, I.OTS
and 2.0 fg respectively. This set of results can be seen in Figures 5.5,
5.6 and 5.7 and one could say that the recommended time to perform the
motion should be set equal to the settiing time of the system at zero
angle position. With this in mind all the conclusions were applied to
the example 2 with w = 0.9, that is, maximum bandwidth for the general
rigid method and settling time from the parabola tracking. The results
can be seen in Figure 5.8. It is important to notice that Figure 5.8d
represents the flexible components appearing in the system as described

in equation (2.36), representing an additional torque generated by the
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nonlinearities which in this simulation amounts to only about 10% of
the total torque acting in the system.

Finally, Figures 5.9 presents the elbow impuise response of example
1 for @ = 0.9 We. This case is a more flexible system and this can be
noticed by the oscillatory behavior of the response in Figure 5.9b that
indicates the system torques have to act in a vibrating way in order to

keep decreasing the effect of a higher flexibility.

5.2 Summary

This chapter presented some special simulations using results ob-
tained from the previous chapter. The systems were simulated for the -
condition of no payload because of large computer time necessary to
simulate other configurations. The computer programs are presented in

Appendix A and are capable of simulations for any configurations.
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CHAPTER VI
CONCLUSIONS AND SUGGESTIOMS FOR FURTHER WORK

6.1 Introduction

In this chapter, the principal results of the analysis in this
dissertation are summarized. Some conclusions about the proposed model
for manipulator arms are presented and the overall results concerning
control applications and discussed. Suggestions for future work are

given in the final section of this chapter.

6.2 Summary of the Conclusions on the Model

This study has presented a new model of a two-link flexible mani-
pulator amm. The fact that the model introduces the flexible behavior
with respect to a hypothetical rigid motion is important in studying
overall task performance. The experimental results from an uncontrolled
situation have shown that the truncation at the second mode of each
flexible component is a good approximation. The generalized coordinates
used in this model, regardless of the number of modes chosen, are suitable
for obtaining the system configuration at any time t, which would be very
helpful from a design point of view.

The fact that the model is presented in a pseudo-standard form
i= A x + F(x, X,t) + B u simplifies the linearization procedure that
can be used for application of linear control theory as well as allowing
simulations of the controlled nonlinear system. However, if the control

law requires more than the simple measuring of joing angles, the use
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of such a model may need more sophisticated techniques for measuring
the flexible components.

A more detailed study of the planar motion is also possible by in-
troducing compliance and damping associated with the actuators, for

example.

6.3 Control via (SMA)

From the point of view of controlling a flexible manipulator the
basic idea of the present work was to design a control technique that
could alow high speed without extreme deviations from rigid behavior.
This means that the desired flexible position and velocity during the
motion should be considered as being zero. With this in mind, this
work was started considering the possibility of using one particular
modal control algorithm as a means to assign desired closed-loop eigen-
values configuration. However, despite the efforts to obtain desirable
results from this technique, the attempts did not present a good control
design because specifying the eigenvalues does not necessarily mean
that the controlled system has reached a desired situation with respect
to the eigenvectors. This fact, related to the non-uniqueness of control
Taw for a multiple-input system, makes the system very sensitive to gains
variations which essentially eliminates the possibility of using con-
stant gains for controiling gross motions of manipulatois. Even in case
of obtaining desirable results from the application of (SMA) in manipu-
lator control there exists the problem of measurement ard/or estimation

cf some state variables present in the system modeling.
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6.4 Control Using General Rigid Gains Method

With respect to the rigid like control technique, the addition of
cross joint feedback seems to work very well in controlling the flexible
system. The application of this method in the present work improved the
speed of response by about a factor of two when compared with the control
without feedback between the joints. In other words, the arm bandwidth
is increased up to the value of the corresponding clamped-free natural
frequency. This procedure also eliminates the necessity of flexible
measurements and the use of an estimator. Finally, the most important
feature of this method is the possibility of working under constant gains
since the poles are less sensitive than using (SMA).

This method was applied to controlling the system under different
geometric configurations. When a lumped payload mass is present, the
results have shown that the arm bandwidth with control decreases compared
to the no-payload case. As the payload becomes bigger, the effect of
jts rotary inertia becomes more and more important. With the increasing
of the rotary inertia the associated clamped-free system will have its
first natural frequency decreased, consequently reducing the arm band-
width under control design via rigid gains method.

However, as a wide range of payloads must eventually be considered
this work did not deal with all possible alternatives with respect to
payload geometry.

It has also been shown in this work that decreasing the relative
ratio of stiffness Efz in case of no-payload increases the arm band-
width. The existence of an optimum stiffness ratio with respect to the

clamped-free natural frequency may indicate a 1imit for improvement in
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the closed-loop system performance when this ratio is varied and the
system carries no payload or if the payload range is small. On the other
hand, it has been shown that for handling large payloads the best in-

dicated ratio is of the order of unity.

6.5 The Use of Pole Sensitivities to Gains Variations

The use of pole sensitivity analyses has shown that in most cases
it is a matter of finding a set of convenient numbers in order to move
the poles to some desirable location. The fact that this process in-
volves a large amount of trials makes it not very useful for the over-

all design but only for fine adjustments.

6.6 General Remarks

In measuring the state of the system it has been shown that the
variables included in the proposed model take into account the flexible
displacement of the end of the first beam. The improvement in the control
when this measurement is used may not justify the complications and ac-
curacy of measuring devices. This means that potentiometer and tacho-
meter measurements may be enough to achieve the desired results using
the general rigid gains method.

With respect to system stability, the rigid gains method with
cross joint feedbacks and symmetric matrices Ky and Kyp presented very
good results since the system is always stable. However, if some of the
interjoint feedbacks fail, the results have shown that the system remains

stable at least for arm bandwidth of order of the clamped-free natural
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frequency of the equivalent system. However, despite the loss of de-
sirable response a good safety policy would be to cut all cross feed-
backs in case of failure in one of them.

In this work a linearized control technique was applied to a sys-
tem that in some cases may present severe nonlinear effects. This fact
is strongly dependent upon the system itself and this werk did not
analyze all possible cases of gross motion. In the cases where linear
control was applied the results obtained were satisfactory if one con-
sidered that the control was designed to keep the system as close as
possible to rigid motions. The nonlinear components, as appearing
in the equations of the proposed model, act like additional torques and
forces to the system during task motions. In the simulations of several
cases it was observed that the nonlinear torques amounts to about ten
percent of the total torque. However, in cases where the nonlinear ef-
fects are significant this effect has to be carefully analyzed.

Finally Table 6.1 summarizes the major results ohtained in this

work when compared with rigid method cross joint feed.ack.

6.7 Suggestions for Further Work

The work presented in this dissertation suggests several problems
for future investigators:

1. Compare the results obtained with the proposed model with
those from a model with only one component mode for each beam;

2. Extend the proposed model to represent spatial motions con-

sidering also torsional compliances;
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3. Include payloads with large rotary inertia as a third rigid
link in the model;

4. Use (SMA) to achieve eigenvalues location such that the sensi-
tivities with respect to gain variations are minimized. This implies in
a search for a better relationship for the control components (choice
of the arbitrary vector g, on page 71 );

5. Use sensitivity analysis to improve the am bandwidth by
means of a generalized digital procedure;

6. Examine with some detail the effect of nonlinearities due
to the motion as well as torque limitations imposed by the actuators;

7. Examine the possibility of controlling gross motions and fine
moticns with different control procedures by using different regions of

constant gains.
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APPENDIX A

COMPUTER PROGRAMS
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APPENDIX B

B.1 Modal Decomposition Property [S2]

This property is better introduced through an example. Suppose the
representation (3.4.1) with n=4 and assume poles 1 and 3 have to be

changed. Then the control law u becomes:

u=g;2 +932 (1.8)

— Mt 0 813 0
I - ‘3121 A2 6423' 0
63] 0 13-+633 0
o 0 S43 Ag (2.5)
L p

Using properties for interchanging rows and columns of determinants

(2.B) yields to

L]

"y S=A,=8" 0 0
det(sI-a) = det ?] 31 33
~62] -623 s-Az 0
9 4
-64] -643 0 S-A4 (3.B)

On the other hand, if Ay, and A,, are square matrices



det

(=]

-1
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Using (4.B) into (3.B) one finally has

det(sI-A) = (5-7\2)(5-A4) . det

B.2

det (522)
(4.B)
[~ 4 s T
5217513 =813
' S=A =8,
-63] 3 733
L ..
(5.8)

Useful Indentity for Inverson of a Complex Matrix with Complex

Conjugated Columns

Let

If one finds

a1
a1

a3 *

1
21

31

+ b]]j

+ b21j

L

gy - bpd oy
a1 = byyd S
agy - byyd ¢y (6.5)
—‘ - -
SR 1 %12 ™3
€23 =1 BN B12 B13
Y Y Y
C31 R 12 13 (7.8)
i L A




Then

-
2 2
-y
2 2
M
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M2 - P12 5 43 - F13
2 2 2 2
N2 - P12 M3 - P13 j
2 2
Y12 Y13
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APPENDIX C

NONDIMENSIONALIZED PARAMETERS OF EXAMPLES 1 AND 2

Procedure for nondimensionalization

1 - Determine parameters for nondimensionalization described in
Table 4.1

2 - Determine ratios k., and k., using equations (4.5) and (4.6)

3 -If EI] # E12 determine system coefficient c.s from equation
(4.22) and find the diameters using kr]’ kr2 and equations
(4.23) and (4.7.2)

4 - Equations (4.11) and (4.12) determine the nondimensionalized

parameters Ei and ﬁé

Tables C.1 and C.2 present the nondimensionalized

parameters for Examples 1 and 2.

Ky =ky.p=0.978 Exxp = 0.0
ET}= 1.0 Tp = 0.0
ET,= 1.0 T, =05
= 1.0 T, = 0.5

u, = 1.0 gy = 0.0136
i{p = 0.0 a'ez = 0.0136
ﬁ& = 0.0

Table C.1 - Nondimensionalized parameters of Example 1
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kpp = 0.842 m; = 0.0
kpp = 0.850 T, = 0.0

€T, = 1.0 T, = 0.5
ET, = 0.166 T, = 0.5

ny = 1.448 d,;=0.1039
W, = 0.551 d,, = 0.0656
m, = 0.0 Jxxp = 0.0

Table C.2 - Nondimensionalized parameters for Example 2
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