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ABSTRACT

A complete understanding of any visual sysicm requires knowing how sufficient information may
be extracted from an image to allow recovery of the structure of the corresponding scene. This thesis
examines how shading, illuminant direction and contour in an image may be used to infer the shape
of the imaged surfaces without @ priori knowledge about the scene. Following a theoretical analysis,

algorithms are developed which:
(1) estimate surface shape using a Jocal analysis of changes in image intensity,
(2) estimate illuminant direction and use it to constrain surface shape,

(3) estimate three-dimensional shape for imaged contours and use them to help determine surface
shape.
The performance of these algorithms is evaluated by using them to recover surface shape from both

natural and synthesized images.

Many aspects of human perception of surface shape can be explained by this analysis, including the
correct perc ption of shape in natural images as well as certain failures in shape perception. A new il-
lusion is presented that demonstrates some fundamental limitations on the use of shading information

to recover shape.

Thesis Supervisor: Dr. Whitman Ri=hards, Professor of Psychology
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SUMMARY

People are able to recover surface shape from monocular images under very general viewing condi-
tions. Without texture or contour information. however, pcople make systematic errors. The addition,
f texture or contour information, which by itself is often insufficient to recover surface shape, can

allow the correct recovery of the surface.

The computational basis for this human capability has been investigated by examining we physics
of image formation and exploring the use of several possible constraints on the interpretion of shape
from local image data. This analysis has revealed the following facts about the Tocal computation of

surface shape from shading and contour information.

Determination Of Shape From Local Shading:

(1) The image-plane component of surface oricntation (tilt) at a point may be exactly determined
from an analysis of shading in the ncighborhood of the imaged point, under the assumption that the
surface is locally a second-order surface. The tilt of the surface may be inferred from the direction
in which d?I, the second derivative of image intensity. is greatest; it is notable that knowledge of the

illuminant direction is unnecessary.

(2) The depth component of surface orientation (slant) may be estimated with reasonable accuracy
using a maximum likelihood estimator, which by definition is the minimum variance unbiased es-
timator. The slant of the surface is estimated to be proportional to |V2] /II=%, where V2 is the
Laplacian of the image intensity I; again knowledge of the illuminant direction is unnecessary.

Examples of surface shape being recovered are shown using both natural and synthesized images.

(3) The effects of foreshortening on image shading, caused by the surface slanting away from the
viewer, are identical to the effects of surface curvaturc on image shading, so that forcshortening may
cancel all or part of the effects of surface curvature, and vise versa. Therefore it is impossible to

exactly estimate the depth component (slant) of a surface from shading informaticn alone; it is always
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confused with surface curvature. This shows that the previous two results give the best estimate of sur-

face orientation that it is possible to obtain from local shading information, given their assumptions,

(4) The type of the surface up to refections about the image plane may be determined from the
number of directions along which 21 is zero at the point under consideration. 1f d2T is zero along one
dircction, the surface is a cylinder; if %I is 7ero along three (and thus all) dircctions, a planc; and if

d?I is not zero for any image dircction then the surface either a convex, concave or saddle surface.

Constraint On Shape From Muminant Direction:

(5) The illuminant direction may be closely estimated within a region of the image under the
assumption that change in surface orientation is isotropically distributed. Examples arc shown using

natural and synthetic images.

(6) Information about illuminant direction may be used to provide constraint on surface shape: the
convexity of the surface may be estimated along cach dircection (i.e., whether the surface is curving
toward, or away, from the viewer), and from this it can be estimated whether the surface is a convex,

concave or saddle surface.

Shape From Contour:

(7) A maximum likelihood estimate of the three-dimensional shape of an imaged contour may be
made under the assumption that viewer position and contour generator shape are independent. This

estimate is that the contour generator is regionally planar.

Shape From Contour And Shading:

(8) Given the existence of shading information in the neighborhood of an imaged contour, the con-
straint on surface shape obtained from a local analysis of shading is generally sufficient to determine

whether the regions on either side of an imaged contour are part of the same surface, or are from
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different surfaces.

(9) Given the existence of shading information in the neighborhood of an imaged contour, the
constraint from local analysis of the shading is generally sufficient to determine whether or not the
contour is a smooth occluding contour, such as is found at the cdge of the image of a sphere.

Examples are shown using natural images.

(10) Given the existence of shading information in the neighborhood of an imaged contour, then
the surface orientation may be exactly determined if the contour generator is planar (sce (7) above),
and not parallel to the image plane. Examples of contour being used to constrain the intcrpretation

surface shape are shown, using both natural and synthesized images.

Relevance To Human Perception:

The psychological and biological reality of local cstimation of surface shape from shading, il-
luminant direction and imaged contour is discussed. Many aspects of the human perception of surface

shape can be accounted for by this analysis of the problem, including the following:

(11) The inability to utilize shading in photographic ncgatives, even though the shading in electron
microscope images (which appear similar to photographic negatives) can be used to determine surface
shape.

(12) The inability of humans to perceive the correct shape in some situations where texture and
contour information is lacking. A new illusion is demonstrated, and an explanation for this illusion is
provided.

(13) The addition of surface markings is sometimes sufficient to allow the correct perception of sur-

face shape in cases where shading alone is insufficient. An explanation this phenomenon is presented.

(14) The ability of humans to estimate the illuminant direction in novel images is quantificd, and a

theory advanced which accounts for human performance.
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Figure 0-0. Typically, most of an image is shading, and contours are fairly infrequent.

INTRODUCTION
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Figure 0-0.  Typically. most of an image is shading. and contours arc fairly infrequent.

INTENTIONAL DUPLTCATE EXPOSURE
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1 Introduction

How do you determine the shape of an unfamiliar object from an image of that object? This is
the central question of this thesis. The answer to this question is important because the perception of

shape is central to the human visual ability.

The full answer to how we perceive shape is very complex. [t is not only the image of a scene which
determincs our perception of shapes in the scene but also higher-level knowledge about the world, for
instance, knowledge about gravity. Before examining how such high-level knowledge contributes to
the perception of shape, however, it seems that it might be best to first investigate to what extent we

can use local image information to directly calculate shape.

A spatially-restricted analysis of a single image is the logical first stage of any visual system. This
first stage of analysis is especially important because it determines what information is available to
the remainder of the visual system, and therefore determines what is required of the remainder of
the system. If the first stage of analysis produces a rich description of the structure of the world,
then the remainder of the visual system will be much simpler than if it had to deal dircctly with all
of the ambiguities of the image. It is thercfore important to perform as much analysis as is possible
in this first stage of processing. If it is possible to calculate shape from local image information in a
straightforward, bottom-up manner then the design of any visual system should take full advantage
of this possibility. There is overwhelming evidence that biological visual systems are organized in this

manner, devoting a large percentage of their neurons to the initial local analysis of the image.

This reasoning sets the scope of inquiry for this thesis. The question of how we perceive shape from
an image will be addressed by investigating how shape may be determined locally, that is, how the
shape of a surface at a point in the image may be determined using only the image information within
a small neighborhood of that point. It is important to understand that limiting the scope of inquiry to
a local analysis of the image does not imply that we can obtain only simple or local results; there are

many examples of local, parallel processes which exhibit complex, global properties (see Rosenfeld et
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Figure 0-1.  People use shading information to help them derive an impression of surface shape.
Images of a disk, a sinc function, two spheres, and two other shapes, a sphere with a hollow in it
and a sphere with a bump on it. In the first four cases the contours are identical, it is only the
shading which differs. In the last two cases the illuminant direction must be used to dctermine the

convexity/concavity of the surface.

INTENTIONAL DUPLICATE EXPOSURE
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Figure 0-1.  People use shading information to help them derive an impression of surface shape.
Images of a disk, a sinc function, two spheres, and two other shapes, a sphere with a hollow in it
and a sphere with a bump on it. In the first four cases the contours arc identical, it is only the

shading which differs. In the last two cases the illuminant direction must be used to determine the

convexity/concavity of the surface.

INTENTIONAL DUPLICATE EXPOSURE
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al 1976, Ullman 1979)
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1.1 Shape Perception: Shading, llluminant Direction and Contour

People use shading information to help them determine the shapes of objects. In figure 0-1 the
only differcnce between the first four shapes is in the shading; the contours are the same. Thus the
different perceptions of shape which result from viewing these four images are due to differences in
shading. Interpreting shape from shading cannot always be as straightforward as in these first four
images. In the bottom two images the shading cannot determine the shape directly; the shading must
first be used to determine the illuminant dircction, and the illuminant direction can then be used to

determine the convexity/concavity of the central bump/hollow.

People cannot always use shading to correctly determine shape, however. In figure 0-2, we see an
example which shows that shading alone can be insufficient for recovering surface shape. Part (A) of
this figure is generally perceived as a flatish, egg-shaped object lying in the image plane. The shape of
the object seen in (A) is actually more like the Hindenburg, as shown in figure 0-3 which is a side-view
relief map of the object. This Hindenburg illusion shows a basic deficiency in the ability of people to

use shading information.

When we examine a small neighborhood around a point in an image, usually all we find in the
neighborhood is small changes in shading (changes in image intensity). It is unusual to find a contour
within the neighborhood of an image point (see, for instance, figure 0-0). Thus if we are to inves-
tigate what we may learn about surface shape from local examination of an image, we must concern
ourselves with shading. After determining what information shading gives about surface shape we
can examine how imaged contours, and factors such as the scene’s illumination, interact with and

constrain the interpretation of shape derived from shading.

If we add the contour shown in (B) of figure 0-2 to the shaded Hindenburg image of (A), we obtain
the image which is part (C) of figure 0-2. This image gives a much greater impression of relief than
the shading alone, and certainly more of a perception of depth than the contour by itself. The contour
information alone is inadequate to give an impression of three-dimensional shape, yet the addition of

this single contour to the shading has changed the perceived shape to a much more correct perception
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Figure 0-2.  (A) a shape with shading, (B) a contour drawn on the surface, together with the outline
of (A), (C) a shape with shading plus the contour. {A) is generally perceived as a flattened cgg-shape
lying in the image plane, and (B) generally gives little impression of three-dimensional shape, yet ©)
which is the combination of (A) and (B) produces a fairly strong three-dimensional impression of a
elongated egg-shape (a "Hindenburg" shape) pointing out of the image plane at 45°, which is the true
shape of this figure. The addition of contour does not always give rise to a correct impression of shape,
as shown by (D) which is the same shape as (A) and (C) but with different contour information drawn
on the surface of the Hindenburg.

INTENTIONAL DUPLICATE EXPOSURE
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Figure 0-2. (A)ashapcwuhshaMng(B)aconumrdnnvnondmsurhcutogﬂhcrwuh(heoudme
of (A), (C) a shape with shading plus the conteur. (A) is generally percened as a flattened cgg-shape
lving i the image plane, and (B) generally gives little impression of three-dimensional shape, yet (C)
which is the combination of (A) and (B) produces a fairly strong three-dimensional impression of a
dongauxicggﬁhapc(a”FUndcnburg"sh&pc)pon1nnguutvfthcunagc[ﬂuncat45°_whujl15duzuue
shapcofdﬂsﬁgum.Thcadmdonofcmnourdocsnotdwuysghcrﬁcloaconcminmrmﬂontﬁﬁhapq
assho“l1by(l))“dﬂchis[hcsan1cshapc‘m(/\)and(C)lnnxvuhcﬁﬁbrcntcontourinﬂnnnuknadrawn
on the surface of the Hindenburg.

INTENTIONAL DUPLICATE EXPOSURE
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Figure 0-3. Side view of a relief map showing the shape of the objects in figure 0-2. This object is shaped
like the Hindenburg, and is slanted out from the image plane at 45°,

c¢f the Hindenburg shape.

One might think of shading information as a glue-like substance which fills in and ties together
the image, but which is also quite maleable until it is "set" by the contour information. The shading
alone gives a weak impression of the depth in these images, and the contour alone gives almost no im-

*pression of depth, but together the shading and contour can give a relatively strong three-dimensional
impression of shape. Image (C) shows that it can take relatively little contour information to firmly
"set" the shading "glue", however the addition of contour information does not always result in the
correct perception of the shape, as shown by (D) of this figure. This image contains more contours
than (C), and yet (D) gives only a flat impression of shape. Thus not all contours can be used to help

inrzrpret the shape implied by shading,

Sharpening The Question. The examples of figures 0-1, and 0-2 help to sharpen the original
question of how do we determine the shape of an object in a picture. We now see that we can obtain a

uscful answer to the original question by finding the answer to these four more specific questions:

How is it that surface shape may be recovered from an image using a local analysis of shading?
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Why is shading insullicient tc recover shape in some cases, but not in others?

Why docs the addition of contour information give a correct impression of shape in some cases but not

i others?

How does knowledge of the illuminant direction provide constraint on the computation of surface
shape?

In order to answer thesé questions, we must first address the theoretical problems posed by these
questions; that is, we must first understand what information about object shape is contained in the
image, and how it is theoretically possible that this information could be used to obtain an estimate of
the object shape (Horn 1975, Marr 1977). This requircs an analysis of the process of image formation
which shows explicitly the relationship between image intensity and the physical characteristics of the
viewed scene. Once we have derived cquations which express the relationship between image and
physical parameters of the scene, we may use these cquations to deduce the structure of the scene
using the evidence of the image. These eciuations together with the inference scheme which allows us
to take image data and deduce the physical structure of the viewed scene form a computational theory
of shape perception.

When we have developed such a computational theory, describing what information is contained
within the image and how this information can be uscd to recover shape from the image, then we will
know what it is that the human visual system is doing. Then we can begin to understand Aow it is

being done.

1.2 Previous Work

Most directly related to this thesis is the work of Berthold Horn and his associates, who have

developed an approach to deriving shape from image intensity measurements.

In 1970 Horn showed that the shape of an object may be recovered from image intensity informa-
tion, given that several facts are known beforehand about the objects’ surface and the illuminant.

Horn found that he could compute surface shape from image intensities given a priori knowledge of
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(1) the distribution of illumination, (2) the bidirectional reflectance function of the objects’ surface,

and (3) the surface orientation along an initial curve on the objects’ surface.

Hom and his colleagues (Horn 1975, 1977, Strat 1979, Brooks 1979) have developed numerical
integration schemes for using image intensity to solve for object shape. These numerical algorithms
correctly recover the shape of the imaged surface given the required a priori knowledge, although
these schemes have some numerical stability problems. These algorithms have the particular disad-
vantages that they require that surface orientation be known aiong an iritial curve on the objects’
surface, and that the surface may not contain a smooth occluding contour (such as is found at the edge

ofan image of a sphere).

In order to extend the general applicability of Horns’ shape-from-shading mcthodology, Ikeuchi
and Horn 1981 have developed an iterative numerical scheme which makes use of points at which
surface orientation might possibly be determined without a priori knowledge (c.g., a smooth occlud-
ing contour) rather than simply assu'ming that an initial curve is known. The illuminant dircction
and surface reflectance function are still assumed to be known a priori. Bruss 1981, however, proves
that surface shape is correctly and unambiguously derived using this scheme only for images in which
image intensity is determincd completely by the slant of the surface! . Bruss' result also proves that
shape cannot be unambiguously determined from a local analysis of image intensity even given the g

prioriknowledge of illuminant direction and reflectance function.

These shape-from-shading techniques have been shown to be useful in situations where there is
sufficient information known a priori about the image, such as in a factory setting where one can know
about the illumination and the surface reflectance function beforehand. These techniques have also
been shown to be useful in analysis of LANDSAT imagery? (sce Horn and Sjoberg 1979), where
shape is known but reflectance is not. In such imagery shape-from-shading techniques may be applied
to determine the contribution of shape to image intensity, this contribution may then be subtracted

'Specifically, only if the reflectance map R is R(p,q) = f(p® +¢?), eg. a Lambertian surface with the illuminant at
V, the viewers’ position, or at —V, a5 . scanning electron microscope images.

Zimagery collected by NASA'’s earth-resources satellite, LANDSAT,



PENTLAND 18 INTRODUCTION

from the image intensity resulting in a value which is much more directly related to the reflectance of

the viewed material.

The rescarch performed by Horn and his colleges compriscs the greater part of our understanding
of how surface shape and shading are related. The question of this thesis, however, is how people
determine shape from shading and other cues. All of the previously mentioned analyses assumed
substantial a priori knowledge of the scene: such knowledge is simply not available in the typical
visual task faced by the human visual system. Thus it remains for us to discover what may be deter-
mined about the world without such a priori knowledge. In addition, the Horn-type shape-from-
shading techniques function by propagating constraint from boundary conditions over the surface
whose shape is to be cstimated. Thus these techniques usc global, rather than local image information
to estimate surface shape. We are intercsted in how purely local image information may be used to

estimate shape, because local analysis is the logical first stage of any visual system.

In order to address the question of what information about shape may be obtained using only local
image information, with no a priori information assumed, we must produce a new analysis of image
shading. Unfortunately, only limited use can be made of Horn’s analysis, because it is based on a

- mathematical construct called the reflectance map, which describes how intensity varies with surface
orientation given a partic'ular combination of viewer, surface material and illuminant. In order to
answer our question, it will be necessary to examine how changes in image intensity depend on o/l the
physical variables which determine the image, not only surface orientation but also surface curvature,

illuminant direction and so forth.”

Both Witkin (1980, 1981) and Stevens (1979, 1981) have investigated the question of how imaged
contour information, such as generated by surface markings, can be used to recover surface shape.
For both Witkin and Stevens the primary problem is that the shape of imaged contours results from
two sources: the inherent shape of the contour generator, and the foreshortening caused by the
angle between the contour generator and the image plane (see also Kender 1980). The amount of

foreshortening must be determined before the contour shape, and thus underlying surface shape, may
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be determined.

Witkin analyzed the case where nothing is known about the shape of the contour generator, and
so its shape might best be treated as a randomly distributed quantity. Because viewer position and
contour gencrator shape are independent of each other, over all scenes the distribution of contour
generator tangent direction will be uniform. Thus any anisotropy in the distribution of imaged con-
tour tangent dircction is most likely the result of foreshortening. Measurement of this anisotropy
allows a maximum likelihood estimate of the foreshortening may be made, and thus the shape of the

contour gencrator determined.

Witkin treated in depth the case of a surface patch covered with random curves. He showed
that in scenes where the surface is densely covered with surface markings the foreshortening can
be accurately estimated, and thus the surface orientation determined. He showed several examples
where the surface orientation was recovered from an image of a naturally occurring scencs, through

an analysis of contours found in the scene.

Witkins results show that surface orientation may be reliably recovered from surfaces densely
covered with isotropically-distributed surface contours; however surfaces with an anisotropic distribu-
tion of surface contours (such as tree bark) produce erroneous estimates, and the variance of the sur-
face orientation estimate increases rapidly as the density of the randomly-distributed surface contours

decreases.

Stevens analyzed several cascs in which people can recover surface shape from imaged contours
and line drawings, such as the relief plots used throughout this thesis. He demonstrated that it is
necessary to make assumptions about the relationship of the imaged contour to the contour generator
and the surface that the contour generator lies upon. He then investigated what inferences may be
made about surface shape given varioqs special configurations of imaged contour and the assumption
of general position. These inferences about surface shape from the imaged contours appear to be

sufficient to account for perceived surface shape in the exam ples discussed? .

3Currently Stevens is working toward implementing these inferences in a computer program, so that his inference scheme
may be tested. :
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Some of the inferences about surface type developed by Stevens have analogics in the domain
of local analysis of shading. For instance, the inference that if an imaged specularity is linear then
the surface must be cylindrical is directly analogpus to the methed proposed here to determine sur-
face type (the proposition dealing with determination of surface type is proved in chapter 2). More
generally, many of the inferences are similar, apparently because the geometry of projection is identi-
cal for any image information. Thus, for instance, the theory for estimation of illuminant direction
appears analogous to Witkins' estimation of surface orientation from the distribution of iimaged con-

tours.

Both the work of Witkin and that of Stcvens has important implications for the interpretation of
shape from imaged contour. This thesis will investigate the interaction of estimates of surface shape
made using imaged contour with estimates made using shading information. This will provide a
framework for integrating information about surface shape obtained from inferences about 1maged

contour with information about surface shape obtained from shading.



Chapter 1
Groundwork For A Theory

1 Deciding Input And Output

What is the appropriate image information to use as input for the computation of surface shape?
Because we are limiting this inquiry to local computation of surface shape in novel, unfamiliar images
we are limited to image intensity or its derivatives as the input information. Any other information

requires cither a priori information about the scene, or more global processing.

What is the appropriate output representation? The words "surface shape" can mean any of several
things, including the surface orientation (or cquivalently, the surface normal) at cach point, or a map
of rclative depth from the viewer at cach point. Both of these quantities contain the same information;
thus for a computational theory it doesn’t matter which we deal with. For convenience of cxplication,

I'will use the surface orientation (surface normal) as the output of the theory.

One of the consequences of these decisions is that absolute image intensities alone are not sufficient
for our purposes. Measuring the absolute image intensity yields only one measurement at each
point in the image, whercas surface orientation has two degrees of freedom! . It is impossible to
determine both of the parameters of surface orientation with only one measurement, so that measure-
ment of image intensity alone is insufficient: we need more measurements at each point. Both the
first spatial derivative (which yields two measurements per point), and the second spatial derivative
(three measurements per point) both provide sufficient measurements per point to potentially allow

determination of both the parameters of surface orientation? .

1The two degrees of freedom may be expressed as either slant o = cos—!dz and tilt 7 = tan"ldy/d;c (Stevens
1979) or p =dz/dz and ¢ = dz/dy (Homn 1975), for instance.

2Note that usually it requires two points to measure d/ and three to measure d2/. In order to show how we may
obtain derivatives at one point requires introducing the notion of scale, which is beyond the goals of this section. This
problem is treated in chapter 3 section 1
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The use of cither the first or sccond spatial derivatives of image intensity fits well with what is
known of the human visual system. The human visual system is scnsitive to changes in image inten-
sity, rather than to absolute image intensity. In chapter 4 it is shown that the human sensitivity to
changes in image intensity may be reasonably characterized by either the first derivative of image

intensity (Mach 1910), or by the sccond derivative of image intensity (Kuffler 1952, 1953).
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N Normal N
P

Source L

<

Viewer V

Figure 1-1. A simple model of image formation. N is the surface normal, L is the illumination direction,
V is the viewers direction. If N is the flux emitied toward the surface, p the average reflectance of the
surface, and we assume distant light source and a Lambertian reflectance function for the surface then the
image intensity 7 is given by /= pA(N- L).

2 The Process Of Image Formation

The original question of this thesis, how we perceive shape, has been sharpened to the question
of how changes in image intensity in the neighborhood of a point can be used to recover the surface
normal (or equivalently, surface orientation) at that point. In order to answer this question we must
discover what information about the three-dimensional surface normal resides in the two-dimensional
image, and that means we must investigate how changes in the image reflect the structure of the three-

dimensional world.

In order to be able to make quantitative statements about the world from the image, we must
develop a mathematical model of the process of image formation. Figure 1-1 shows a simple model
of image formation: a distant point source illuminant at direction L, a patch of surface with surface
normal N, and a viewer in dircction V. Throughout this thesis all bold face variables (e.g., N, L, p etc.)

represent three-dimensional vectors, all other variables are scalars,

The surface normal N, the viewer direction V and the illuminant direction L are unit vectois in
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Cartesian three-space. As they are unit vectors, two parameters suffice to specify them, the third being
determined by the constraint that they have unit magnitude. Two parameters which are often chosen

are the slant, o, and the tilt, 7 (sce Stevens 1979).

The tilt of a surface is tan—!(yn/zn), where zx and yn are the z and y components of the
surface normal, and the slant of the surface is cos™!{zv), where zy is the z component of the sur-
face normal. The tilt and slant are a useful way to characterize directions because they divide the
components of a direction into the orientation of the image-plane component, which is the tilt, and
the slope of the depth component, which is the slant. This image-plane versus depth distinction scems

to fit well with some of our intuitions about the world, and with some of the properties of images.

2.1 Three Components Of Image Formation

There are three parts to our model of image formation: the illumination of the surface, the
‘reflection of light falling on the surface back into space, and the projection of this light into the eye,
forming the image. Each of these portions of the process has characteristicly different effects on the

image, and so it is useful to examine each of them separatcly.

The llluminant Component Of Image Formation. The amount of light falling on a surface
varies with the angle between the surface and the illuminant: a small patch of the surface which
faces away from the light receives less light than it would if it were directly facing the light. This
illumination foreshortening is proportional to the cosine of the angle between the surface normal
and the illuminant® so that the size of an infinitesimal patch of the surface dAs appears to have the

foreshortened areadA;, when seen from: the direction of the illuminant:
dAr =N-L dAg

Thus if we let N be the amount of light (flux) per square area arriving in the neighborhood of the

surface of an object from a distam point-source illuminant positioned in direction L, then A, the

3The cosine of this angle may be expressed as the dot product of N and L.
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amount of light per meter squared incident on a patch of surface with surface nonnal N, will be

AN =AN-L

The Surface Component Of Image Formation. We now have an expression for the amount’
of light falling on the surface of the object. The next step s to express how that light is reflected from

the surface of the object back into space, and eventually onto the image plane.

To do this we must define p, the albedo of the surface, and R the reflectance function® of the

surface.

The albedo p is the portion of incident light which is reflected. Thus if a surface had an albedo
of 0.2 (the average for all natural surfaces — sce Krimov 1971, Richards 1981), then only twenty
percent of the incident light would be reflected, with the rest absorbed into the surface, increasing the

temperature of the surface.

The reflectance function R(N, L, V) describes how much of the reflected light leaves in cach direc-
tion. The amount of incident light which is reflected in the viewer direction, V, is a function of the
illuminant direction, L, and the surface normal, N. In the case of the reflectance function of a mirror,
all incident light is simply reflected at an angle equal to the incident angle. At the opposite end of the
spectrum of reflectance functions is the Lambertian reflectance function, where the light is reflected
proportional to the cosine of the incident angle, i.e., proportional to N - L. This reflectance function is
an approximation of that typical of rough, matte surfaces. Most reflectance functions are somewhere

between these two.

Using the albedo and the reflectance function we may describe how light incident upon the surface
is reflected back into space. If we let Ag be the amount of light reflected from the surface in direction
V, then

Ar = pANR(N, L, V) = pA(N - L)R(N, L, V)

“This function is neither the bi-directional reflectance function nor Horn’s reflectance map. 1" we set N =(0,0,1) and
vary the values of L and V, we generate the bi-directional reflectance function. If we fix L and V, and let N vary,
we generate Horn's reflectance map. :
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The Projection Component Of Image Formation. The final portion of the process of image
formation is the projection from the surface of the object onto the image plane. As with the projection
of the illuminant onto the surface of the object, there is a foreshortening cffect which is proportional
to the cosine of the angle between the viewer direction V and the surface normal N, as expressed by
N - V. Thus an infinitesimal paich of surface dAg is mapped into an infinitesimal patch of the image
dAj according to

dAs = (N- V)—ldA[
Thus 7, the image intensity® , is given by

I=Np(N- V)™ = p\(N- L)R(N, L, V)(N - v)~1

A Lambertian reflectance function is defined as

R(N,L,V)=N.V

which is the reciprocal of (N - V)™!, the projection foreshortening term. Thus for a Lambertian sur-
face the reflectance function and the effects of projection cancel each other. Because this cancellation
considerably simplifies many calculations, a Lambertian reficctance function is often assumed. If we

assume a Lambertian reflectance function, then the equation for image intensity becomes

I'=p\N-L 1)

2.2 The First Derivative Of Image Intensity

The image intensity I and the surface normal N are diffcrent at each point (z, y) in the image, and

so are perhaps better written /(z,y) and N(z, y). When discussing them at a point P, however, they

5In the interests of avoiding confusion, the words “image intensity” will be used throughout this document rather than
using the more technically correct “image irradiance” for the flux per unit area falling on the image plane, and “image
intensity” for the for the measured image irradiance. The two may be assumed to be numerically equal, and thus the
distinction is of little interest to the task at hand.
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will be written as simply I and N. Similarly, I will write dI and dN to designate the first derivative of

image intensity and the surface normal, respectively, at a point P in the direction (dz,dy). That is,

dl =Ldz+Idy  dN=Ndz+ N,dy

where

Iz='—" Iy=

Q|

The first derivative of image intcnsity may also be expressed in terms of the physical parameters of
the scene. If we are examining a small, homogencous region of an image it is rcasonable to assume
that the illumination and albedo of the surface change very little, and so we may treat L, p, and f as
constants® . If we also assume a Lambertian reflectance function, so that equation (1) applics, then

dl = d(pAN - L)
= pAdN - L4 pAN-dL (2)
= pAdN - L
The term N - dL is zero because L was assumed constant. Thus the first derivative of image intensity
is a function of the first derivative of the surface normal. We must thercfore investigate the nature of

dN, and how it relates to the surface normal, N.

dN In Terms Of Surface Properties. Letus represent the surface in the neighborhood of a

point P by a Monge patch, i.e.,
p = ue; + vey 4 f(u, v)e;

where ey, e; and e arc orthogonal basis vectors, and p is a vector giving the position of a point on
the surface at point (u, v). This is shown in figure 1-2,

8This assumption is not reasonable at occluding contours, of course; thus all of the calculations dependent upon these
equations break down at occluding contou:+. This causes no problems if we can identify cccluding contours (or potential
occluding contours) beforchand and treat them specially. Chapter 2 section 5 addresses the problem of finding and
identifying these contours.
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If we position the surface with the origin of the (u, v) planc at point P, with the tangent plane to

the surface parallel to the (w, v) plane then

Ip(u, v)

— ap(u, ‘U) =e, +fueS Py = 0 = @9 —l—-];ea

¥ du

where f, and f, are the partials of f(u, v) with respect to u and v. Note that at the point P, f, =
fo =0, so that p, = e; and Py, = e2. Thus the partials p,, p, of the surface vector p lie in the

tangent planc to the surface. This arrangement is also shown in figure 1-2.
There are several quantitics which are defined at cach point on the surface, and which characterize

the surface. At cach point there is a unit surface normal N which defined as

__ PuXpy o —Jfull — fe2 +e3

" hoxed T T VITEER

Thus the surface normal is perpendicular to the tangent plane. The normal surface curvature %, is also

defined in each direction § at a point P
fcn=puu~Ncos20+pm,-Ncosﬁsin0+pw-Nsin28 (3)

" where
_ &p p %p

Pus=Gwn P =5my Pr=g5

and 6 is measured from the u axis (see Lipschutz 1969).

The curvature takes on distinct maximum and minimum values in orthogonal directions, unless the
surface is a sphere or a plane, in which case the curvature is constant. The maximum and minimum
directions are the principal directions of the surface at point P, and the maximum and mi:imum
values of the curvature are, respectively, the first and second principal curvatures, k; and K. As the
principal directions are perpendicular we may align the axes (u, v) with the principal directions and

then the principal curvatures simplify to

K] =Puy-N K2 = Pyy - N
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TANGENT
PLANE

Figure 1-2.  The position vector p = ue; 4+-ve; + f(u, v)es defines the surface, the surface normal
N = ej, the tangent plane defined by p,, = ey, p,, = ey, the partials of p at the point P
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Equation (2) showed that the first derivative of image intensity d7 in dircction (du, dv) depends
upon the first derivative of the surface normal dN in the direction (du, dv), i.e, dI = I du + I,dv
depends upon dN = Nydu - N,dv. The vector dN is a linear approximation to the change in

surface normal between {u, v) and (u - du, v + dv), so that
dN = N(u + du, v + dv) — N(u, v) + O((du? + dv?)'/?)
This is shown in figure 1-3. Note that &N is perpendicular to N, as
2dN-N = d(N - N) = d(1) = 0

Thus dN lies in the tangent plane to the surface at P, as does d .

We would like to obtain a concise expression for N in terms of surface curvature and orientation.
We may obtain such an expression using p,, and p,, whose cross-product defines the surface normal. -
Because p,, and p,, are orthogonal vectors in the tangent plane, dN (which also lics in the tangent

plane) may be written as a linear combination of them. Thus
dN = N,du + Nydv = €1Py + 2Py

The constants ¢; and ¢, however, are not the same for dN taken along different dircctions (du, dv).

Let us assume that u and v are the principal directions at point P. This is shown in figure 1-4. Then

Rodreguez formula tells us that
Ny = —Kipy

N, = —rp,
(see Lipschutz, 1969, pp. 183-187 for a proof of this theorem). As dN = N, du -+ N,dv then we see

that in the direction (du, dv)

dN = —x;pdu — kyp,dv (4)

This then gives us an expression for dN in terms of the surface properties of curvature and

orientation.
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> Y
;@Kmﬂu ,v+dv)

L Sfawdn B

Figure 1-3.  dN = N, du + N,dv, the first derivative of N in the directidn (du,dv), is a linear
approximation to the change in surface normal along the differential step (dw, dv). dN does not
normally point in the direction (du, dv), unless the surface is a sphere.
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dN=k,p,du+k,p,dv
=o1- pudu+I€2pvdv

A =k,p,dv
<% / s NCuv) e

P4
k,>0

duv+dv) /:l(u+du,v+dv)

Figure 1-4.  dN along (dv, dv) may be expressed as a linear combination of py and p,, as it lies in

the tangent plane. The relationship is dN = —K1Pudu — Kkyp,dv, where k; and k, are the principal
curvatures, and , v are the principal directions.
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As equation (4) indicates, the vector dN points parallel to p,, when measured in the dircction
(du, 0), and parallel to p, when measured in the direction (0, dv). However, as figurcs 1-3 and 1-4
indicate, the vector dN is not in general parallel to dp along any other dircction. Thus dN measured

along direction (d, dv) does not in general point along the dircction (du, dv).

dl in terms of surface properties. Having derived an expression for dN in terms of surface
properties, we may now derive an expression for A7 in terms of surface propertics. Using equations
(2) and (4) we find d1 taken along (du, dv) is

dl = pNdN-L
= pN(—~Kp du — K2p,dv) - L (5)
= PN~ (P - L)du — Ky(p,, - L)dv)

We may rewrite cquation (5) in a more convenient matrix notation as follows:

du
dl = P}‘(""Cl(pu' L) —xap,- L))(d ) (6)
v

This equation expresses the derivative of image intensity in a co-ordinate system which is tangent to

the surface and which is aligned with the dircctions of the principal curvatures.

In order to be generally uscful, we must obtain an expression for d in the image plane co-ordinate
system (z, y). ‘Thus we requirc a projection matrix ¢ which maps the image planc co-ordinate system
(dﬁ:, dy) into the tangent planc co-ordinate system (du, dv):

(du) (d’u ¢12)(dz)
dv) $a1 ¢/ \dy
This projection matrix is actually the Jacobian of the transformation from the (z, y) co-ordinate sys-

tem to the (u, v) co-ordinate system. Given ® we may write d7 in the image co-ordinate system (z, y)

P11 P12\ [/dz
dl = p}\(—-—m(pu' L) _Kd(pv ) L))(( o )(dy))
1 2

In order to express 41 in the im~ge plane co-ordinate system we must first rotate the co-ordinate

as

system in the (u, v) plane in order to line up with the tilt of the surface, project the co-ordinate
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R o

Figure 1-5.  Transformation from (A) a co-ordinate patch oriented along the principal curvature
directions and the surface normal N, to (B) a system (u', v") still in the tangent plane (u,v) but
oriented along the tilt direction of the wngent plane, to (C) a system (", y") in the image plane
-aligned with the tilt direction of the tangent plane, to (D) the (z, y) co-ordinate system.
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system onto the image plane, and finally rotate the projected co-ordinate system to match the (z, y)

co-ordinates. These successive transformations are shown in figure 1-5.

To obtain an expression for the differential step (du, dv) in terms of the differential step (du”, dv")

in the co-ordinate system (u”, v*) which is rotated by an angle 6, in the tangent plane we simply

(du) ( cos sinﬂl)(du‘)
dv ——Sinal COS@I d’l)'

In order to account for the projection into the image plane we must first line our co-ordinate system

multiply by a rotation matrix:

up with the projection of the tilt of the tangent plane (i.e, with the projection onto the tangent plane
of an image-plane vector which points in the dircction of maximum descent in the tangent plane),
which may be done by letting 6, above be the angle between the projection of the tangent plane tilt

and the direction of the first principal curvature.

Along the surface tilt direction there is a foreshortening effect which is proportional to zﬁl where
2y is the z component of N, the surface normal (ie, N = (zn, Un, 2n)). Along the direction
orthogonal to the surface tilt there is no foreshortening cffect. We can then account for the forshorten-

ing duc to projection as follows:
(du) ( cosf; sin 01) (zﬁi 0) dz*
dv —sind; cosf /\ ¢ | dy*
This then leaves us able to express (du, dv) in terms of a differential step (dz*,dy") in a co-
ordinate system (z*, y") in the image plane, but with the z* direction oriented along the tilt direction
of the surface. Thus to obtain an expression for (d, dv) which is in the (z, y) co-ordinate system we

must rotate the axes by é, the angle between the z* and the = axes. We can do this by multiplying by

a second rotation matrix as follows:

(du) ((_‘.0591 sinal)(zpl 0)( cosby sineg)(dz)
dv —sinf; cosd, 0 1/\—siné costh/\dy
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This then is the desired projection matrix, ®.

We may usc the projection matrix & to give us an expression for 7 in the image-plane co-ordinate
system by taking equation (6), which expresscs d in the (u, ) co-ordinate system, and multiplying

by tﬁc projection matrix ®:

b1 12\ [dz\
ar = p\(—rlpu-L) —mfo ) U
$21 é22/\dy
o (¢11 ¢12) (cosﬂl sinﬂl)(zﬁl 0)( cosh sinﬂz)
B $21 P22 B —sinf; cosé; 0 1/\—siné cosb,

6y = angle between the projection of the surface tilt and the direction of the first principal curvature

where

and where

zv = the z component of the surface normal N = (zn, yn, 2v)

6 = the tilt of the surface

2.3 The second derivative of image intensity

If, as with the first derivative, we assume that the albedo and illuminant are locally constant then

the second derivative of image intensity will be

d*I = d(pAdN - L)
. = pAd?N - L 4 pAdN - dL
= pNd®N - L

Thus the second derivative of image intensity dcpends upon the second derivative of the surface

normal, just as the first derivative depended upon the first derivative of the surface normal.

dN in terms of surface properties. As with the first derivative of the surface normal, we
want to express the second derivative of the surface normal, d2N, in terms of surface curvature and
surface orientation. In the co-ordinate system (w, ), the first derivative of the surface normal in
direction (du, dv) was

dN = —k pdu — Kyp,dv
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Therefore the second derivative of the surface normal in dircction (du,dv) is

dk d
2N = (& 2 (0K
a°N = (du Pu +K1Pyy)du (_du Pu + £2Pyr)dudv
- (dﬂ
dv

dy 8
Py + ’92pvv)dv2 - (d_v‘pu + K'lpuv)dvdu
This cquation is too complex to be tractable. However considerable simplification is possible

without incurring significant error.

Equation (3) gives us that in the (u, v) co-ordinate system the principal curvaturcs &; and «, are
Kl = Pyu- N K2 = Pyy- N

Thus
dIC]

d d d.
du < “puuu” 'd;zz'l < ”pvvu“ ,ﬁ) < ”pvvv” '-di‘l)ll < ”puuv”

that is, the changes in curvature are less than or cqual to the third order derivatives. Thus if we
assume that the third derivatives of p are zero, then the changes in curvature arc also zero. If we
further assume that the surface has no "twist” in it, i.c., that IPuo]l = 0, then we obtain the desired

simplification of equation (8):
d’N = —'clpuudu2 - K,me,d’l)z (9)

By assuming that the surface we are observing has zero third derivatives and no “twist", we are ap-
proximating the observed surface by a second-order surface, that is, a surface which may be described
by the Monge patch p = ue; + 1'1e2 + f(u, v)e; where f(u, v) is of the form ayu? 4 ayv? + azu+
asv + as. The approximation of an arbitrary surface by such a surface typically causes errors on
the order of §° where § is the spacing between observed points on the surface” (Isaacson and Keller,

1966). Thus we may assume that we are observing such a second-order surface without incurring

undue error.

TFor surfaces with lIPwoll large the errors may become 0(62), they cannot become larger. Thus if ten points are
observed across a surface, the maximum error incurred by this approximation is on the order of 1 /100%" of the width of
the surface. This occurs only for surfaces like those in figure 1-6 (e) or (f); for all other surfaces having ten observations
would limit the maximum error to be on the order of 1/1000%" of the width of the surface.
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Surfaces (a) through (d) have zero third derivatives, and also have no "twist" in them,

Figure 1-6.
i.e., [Ipusll = 0. Surfaces (e} and (f) have "twist" in them, i.., IPus|l # 0.
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Figure 1-6 illustrates the implications of this assumption. This figure shows four surfaces, (a)
through (d), which are second-order surfaces with no cross-terms. These surfaces therefore have zero
third derivatives, and do not "twist", i.c., [lPuoll = 0. In contrast, surfaces (c) and (f) have significant
"twist", i.e., the cross-derivative p,,, is non-zero. By assuming that the surface is sccond order, we
in cffect approximate surfaces such as (c) or (f) using small prtches of surface types (a) — (d). In
fact, the surfaces in figure 1-6 (c) and (f) are actually shown as composed of small patches of surface
types (a) — (d), demonstrating the effectivencss of such approximation. These figures make it clear
that the assumption that a surface is second-order is not an overly restrictive assumption; especially as
the assumption typically introduces only 0(63) error, and gives us considerable simplification of the

expression for d2N,.

If we are observing such a second-order surface, then in the co-ordinate system (u, v) the sccond
derivative of the surface normal d2N is perpendicular to the first derivative d N, just as the first deriva-
tive is perpendicular to the surface normal. Further, under this assumption d2N points in the same
direction as the surface normal, as shown in figure 1-7. This claim is proven in the appendix. The fact
that dN is parallel to i is important because it shows that the effects of the illuminant are identical

upon all three components of 21, ie., I, I, and I,,,, and the surface normal.

d?I in terms of surface properties. Using equation (9) then
d%l = pA\d2N - L

= PN—K1Puudu® — K3p,udv?) - L
= pM—#1(Puu - L)du? — ry(p,, - L)dv?)

We might alternatiely choose to express equation (9) using the Hessian:
(du)T(qu u.,) (du) )\(du)T —£1(Puu - L) 0 (du)
=p
dv Ivu vv/ \dv dv 0 _52(pvv : L) dv

where the superscript "T" denotes the transpose of the matrix.

We can then use the projection matrix ® to obtain the Hessian in the image co-ordinate system
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Figure 1-7. The sccond aerivative of the surface normal points in the same direction as the surface normal
if’ the surface has zero third derivatives.

(z,9)
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For our purposes it will be more useful to have an expression for dI rather than the full Hessian. We

may adopt a notation similar to that used for dI to express d2] in the (u, v) co-ordinate system:

T

21 N —&1(Pun - L) 0 (du) ('du.)
= p
0 —KQ(pvv" L) dv dv
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and then use ® to express d2/ in the (z, y) co-ordinate system

(P L) 0 ((4511 m)(dz)) T((¢u m\(dz))
d2I = pA
0 —52(Pev - L) J\\@21 22/ \dy $a1 ¢zz/ dy

(10)
This then gives us an expression for d27 in terms of surface properties, under the assumption that we

are observing a second-order surface.

2.4 Generality Of The Assumptions

In developing an equation for the derivative of image intensity we assumed that the surface had a
Lambertian reflectance function, and that the surface was illuminated by a distant point-source. These
are strong assumptions when applied globaily, however they are much weaker assumptions when they
are only interpreted locally. This section addresses the strength of these local assumptions, that is, how
generally true these local assumptions may be expected to be in real scenes. Proofs of the following

proposition is given in appendix.

Proposition (Generality Of A Point-Source liluminant). Given that a surface has a
Lambertian reflectance function, any constant distribution of illumination is cquivalent to a distant

point source.

The caveat of a "constant" distribution of illumination means that all of the surface under discus-
sion must be illuminated by the same distribution of light — i.e., no "sclf-shadowing”. When applicd
globally, the requirement no self-shadowing means that if the surface has a wide range of surface
orientations, then it is impossible to find an point-source which is equivalent to any relatively broad
distribution of illumination. When applied to a single point, the requirement that there be no self-
shadowing only rules out distributions of illumination where a large amount of the incident light is
nearly parallel to the pointé’ tangent plane, e.g., points along the terminator. Thus given a Lambertian
reflectance function the assumption of a distant point-source introduces little error as long as we are

dealing with a single image point.



FENTLAND 42 GROUNDWORK FOR A THEORY

Generality Of Lambertian Reflectance Function. The following "gencral" expression for

image intensity

I'=pfk(N-L)+ pf(1— k)[%}% : '-} (11)

was suggested by Horn 1977 as a first approximation to most natural reflectance functions.8 This func-
tion contains a matte or Lambertian term (the first term) and a specular or mirror-reflection term (the
second term) in the proportion & to 1 — k. The skarpness of the specularity term (how nearly mirror-
like the term is) is given by the power q. Using this function we can obtain reflectance functions which

range from purely Lambertian to purely specular or mirror-like.

For most valucs of N, k and ¢ cquation (11) may be reasonably approximated by the Lambertian
reflectance function with an appropriate selection of L, because for most values of k, q and N the
specular term is small. Even for the most specular, shiny surfaces (those with low k and high ¢ values),
the function is roughly Lambertian over most of the range of N. It is only near those values of N near
where L is parallel to 2N — V, that is, near where highlights and specular reflection are occurring, that
the reflectance ﬁmctiqn is a quickly changing function of N and thus cannot be locally approximated

by the Lambertian reflectance function.

8Sce Torrance, Sparrow and Birkebak 1966, Torrance and Sparrow 1967.



Chapter 2
A Theory For Determining Shape

1 Introduction

We now have cquations for the image intensity, and its first and second derivatives. These were

I=p\N-L
dl = pA\dN - L (12)
d* I = pAd®N - L

The problem of estimating surface shape from Jocal information is, essentially, the problem of deter-
mining the unknown surface normal, N, from image measurements of I, dI or d2I. Solving for
the unknowns in any system of equations requires having more measurements than unknowns. As
mentioned before, N has two degrees of freedom (for instanice, slant and tilt), and so we require
least two measurements at each image point in order to solve for N locally. A further obstacle to
determining surface orientation is that the unknown illuminant dircction, L, also appears in these

equations, adding another two degrees of freedom to the equations,

This means that we cannot determine the surface normal using image intensity alone, as it provides
only one measurement per image point. More measurements per point can be obtained from the first
or second derivatives of image intensity, which provide respectively two and three measurements per
point! However both dN and d2N depend nct only upon N but upon the curvature of the surface and
how that curvature is oriented, adding another three degrees of freedom. Thus using dI or d2[ to

obtain more measurements does not lead directly to a solution.

We cannot obtain a solution for N simply by using higher derivatives to obtain yet more measure-

ments per point. Although each additional derivative does give more measurements per point, each

147 is completely characterized by its partials with respect to = and y, f; and Iy, and d?] is completely characterized
by the partials Iz¢, fyy, and L.
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additional derivative also brings an cven larger number of unknowns into the cquations. Thus in
order to solve for N locally we must either have additional information about the imaged surface or
make some simplifying assumptions, so that the number of unknowns is not larger that the number of

measurements available to us.

1.1 Potential For Use Of dI And 42I

Let us look in more detail at two candidates for use in the local estimation of surface shape: d and
d*I. Equation (12) shows that these depend on dN and d 2N, respectively, and their relationship to the

illumination.

As shown previously in figure 1-3, the vector dN points in different dircctions when measured
along different image dircctions (dz, dy) — and the dircction in which dN points is not nccessarily
(dz,dy). The fact that dN points in a different (unknown) direction for each image dircction along
which it is measured means that cach measurcment of d is a tunction of two unknown and con-
founded factors: the magnitude of dN and the direction of N relative to L. The dependence of d
upon L makes d7 useful for finding the illuminant direction and using it to identify surface type, as
will be done in the third section of this chapter. However this dependence upon L makes the use of dJ
to estimate surface shape critically dependent upon knowing the exact illuminant direction. Thus it is

difficult to obtain accurate estimates of shape using measurements of dJ.

By contrast, d2N always points in the same direction as the surface normal (see figure 1-7), given
the assumption that the surface has zero third derivatives (this is proven in the appendix). This
means that the effects of the illuminant are identical upon all three components of d27, as well as the
surface normal itself. This gives us considerable potential to discount the effects of the illuminant and
makes dI especially useful for estimating surface shape, as will be shown in the fourth section of this

chapter.
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[ [/
[ [/

PLANAR’R1' k,*0 CYLINCER:
k1 ¥ y er 0
CONVEX:k,>0,k,>0 CONCAVE k,<0,k,<0

'SADDLE SURFACE:

Figure 2-1. Surfaces may *e classificd into five types: planar, cylindrical, convex, concave, or saddle surface.
The classification of a surface depends on whether the two principal curvatures £ and «; are positive, negative,
or zero.

'1.2 Direct Inference About The Surface

Measurements of d2] are in a sense direct measurements of the surface — of d2N. These measure-
ments are relative to the illuminant, in that they are scaled by the cosine of the angle between them
and the illuminant, and thus their magnitude is as much a result of the illuminant direction as of
the surface. However if d21 is zero, then it turns out that 42N must also be zero? , and vise versa.

Knowing when d2N is zero helps to characterize the surface.

Surfaces miay be classified into five types: planar, cylindrical, convex, concave, or saddle surface.

These five types are shown in figure 2-1. The classification of a surface depends on whether the two

ZBecause d?N is always nearly parallel to N (see appendix), the d2N will not be perpendicular to L except at or
near where N-L =0, ie, at or near terminat.rs in the complete absence of diffuse illumination. In the presence of
an atmosphere this practically cannot happen; there will always be diffuse illumination, so that N - L 7 0 and thus
d?N - L 54 0 unless |[d?N|| = 0.
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principal curvaturesy and x; are positive, negative, or zcro:

N

plane k=0 k=0

cylinder k>0 k=0
convezr k<0 Ky <0

concave k>0 K2 >0

saddle surface K >0 Ke <0

We can use equation (9) to show how d?2[ relates to the principal curvatures (these conclusions are
not dependant upon the assumptions of equation (9), however use of equation (9) allows a clearer

exposition). Equation (9) describes d21 given that we are looking straight down upon the surface:
4%l = pN(—KPuy - LdU? — KoPyy - Ldo?) (9)

Because the third derivatives of the surface were assumed to be zero, then pyu, Puy and N are

parallel, and so pyy = K1 N, Py, = k2N. We may then write equation (9) as
d*l = pN(—k3N - Ldu? — k2N - Ldv?)

From this equation we sce that d2I = 0 only if (1) cither sy = 0 orxy = 0, or (2) both x;, = 0 and
Ky =03,

In case one, where either &, or k are zero (a cylindric surface), then d2I is zero in only one
direction? In casc two, where both £; and &, are zero (a planar surface) d27 is zero in all directions.
The fact that d2I 5 0 in all dircctions for convex, concave and saddle surfaces is a consequence of
shading’s inherent convexity/concavity ambiguity, discussed in the following section. As the projec-

tion matrix ® cannot alter the number of zero directions, we have

Proposition (Surface Type). The number of directions in which d2I = 0 determines the
surface type, up to reflections about the image plane:

d2l =0 in no dircctions= convez/concave/saddle surface
d? =0 in one direction= cylinder
d? =0 in all dircctions= plane

3The case where N L =0 can be ignored, as explained in the iast footnote.

4Stevens 1981 has noted that linear highlights imply a cylindric surface, this is a special case of this more general result
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Thus if we observe that d2] = 0 along a line in the image, then we know that the surface has a zero
principal curvature along that line and thus that the surface is cylindrical along that line. Similarly, if
we observe that d%] = 0 along a dircction (dz, dy) throughout some region in the image, then the

surface is a cylinder with an axis pointing in the (dz, dy) direction.

The detection of lines along which a surface is cylindrical is of considcrablc importance because it
is only at such cylindrical lincs that changes in the surface type (¢.g.. convex, concave, saddle surface)
occur. As the surface changes from one type to a different surface type the sign of at lcast one of the
principal curvatures changes from positive to negative, or vise versa. In changing sign the curvature
is briefly zero, and so the surface is cylindrical along the locus where the surface changes type (if
the change takes place over an extended arca, both curvatures will be zero and so the surface will
be planar instead of cylindrical). Thus lines along which d?I = 0 are places where the surface
is changing type. The set of such lines divides the surface up into regions with the same sign of

curvature.
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2 Fundamental Limitations Of Shading

Local analysis of shading has several intrinsic limitations for use in the cstimation of surface shape

(see also Bruss 1981). The first fundamental limitation of shading is apparent as carly as cquation (5):

dI = pA\(—x;py - Ldu — xop,, - Ldv) (5)

3

where as before L is the illuminant direction, p,, and P, are the partials of the surface vector p =
uey + veg + f(u,v)es with respect to u and v, and &, x5 are the principal curvatures. Because
xy and «, only appear in conjunction with the terms p,, - L and Py - L (respectively), we see that for
purposes of estimation the signs of x; and &, are hopelessly confounded with the signs of P, Land
Py - L. From this observation comes our first proposition about the limitations of a local analysis of

shading:

Proposition (Convexity/Concavity Ambiguity). In any analysis of local image shading,

there will always remain ambiguity about the sign of both the principal surface curvatures «; and

This ambiguity is familiar as the "crater illusion” — pictures of lunar craters can look like bumps
rather than depressions if we imagine the illuminant to be coming from the bottom of the picture
rather than from the top. At this point in the analysis it is not clear whether this ambiguity may be
limited to only one, overall ambiguity for a surface, or it may exist at each point. Later it will be
shown that the ambiguity is of a more global nature, given certain continuity assumptions. This is
consistent with human perception of surfaces — if we "switch” one part of the picture from convex to

concave, all of the figure switches.

There another limitation to the use of local shading information for the estimation of surface shape,
and this relates to the perception of the relief in an image. The common example of this limitation
is bas relief sculpture, where the actual relief of the surface is much less than the threc-dimensional
object being portrayed. Despite the small amount of relief the correct impression of shape may be

achieved. This is explained more exactly by the following proposition:
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i’roposition (Intrinsic Underdetermination Of Surface By Shading). Foreshortcning,
caused by the surface slanting away from or toward the viewer, and surface curvature have identical

efects on the first derivative of image intensity; cither can reinforce or cancel the effects of the other.

This proposition illustrates the trade-off of forshortening and curvature in determining the first
derivative of image intensity. We may illustrate this ambiguity by again examining equation (5),
which gives an expression for dI. The partials of I, which are I, and I, arc dI along the directions

(du, 0) and (0, dv), thus from cquation (5);
I, = —pheip, - L I, = —phsgp, - L

The two numbers I, and I, completely specify the first derivative of image intensity at a point. It
is clear that we may obtain any I, and I, by varying either p,, and Pv, Which describe the surface
orientation and thus the foreshortening, or by varying the surface curvatures %1 and ks, or by any

combination of p, p, and £; and &,. Thus the proposition.

This demonstrates the equivalence of the effects of foreshortening and curvature, and shows that
at an arbitrary point the image effects of curvature (x;, £2) can modify, and even cancel, the effects

foreshortening.

Equation (9), the expression for d2] which is analogous to equation (5), confounds the factors of
foreshortening and surface curvature in a manner similar to that of equation (5) (see the proof of
the following proposition). Thus these fundamental limitations also exist for the second derivative of
image intensity, and in fact new limitations in the use of a local analysis of shading arise from the

greater number of factors contributing to the second derivative. One such limitation is

Proposition (Sufficiency). The second derivative of any pattern of image intensities can be
accounted for by a second-order surface.
This proposition (proved in the appendix) provides further justification for assuming that the

viewed surface is second-order, the assumption used in developing the expression for d2I, equation

(10). This proposition shows that equation (10) allows us to describe all possible local image intensity
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configurations; cven if we were to view a non-second-order surface, there would be no way to locally

distinguish it from a second-order surface on the basis of shading information.
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3 Constraint From Illluminant Direction

The first proposition in the last scction shows that additional information, such as the illuminant
direction, is always required in order to determine the convexity or concavity of a surface. For
instance, to determining the convexity/concavity of the central "bump"” in the last two images of
figure 0-1 requires knowledge of the illuminant direction. In this section we will first address the
problem of determining the illuminant direction, and then see how the illuminant direction may be
uscd to complete the determination of surface type, i.e., to determine whether the surface is convex or

concave,

3.1 Finding The llluminant Direction

In biological vision L is not known a priori, and so must be estimated from the image data itsclf.
This is difficult because, as shown in equations (12), image data are largely determined by the angle
between the surface normal and the illuminant direction. Because the evidence about illuminant
direction is confounded with the unknown direction of the surface normal, estimating the illuminant

requires making some assumption about the surface orientation (or its derivatives).

It suffices to estimate the illuminant direction for regions of the image, rather than at each in-
dividual point, because the illuminant direction typically varies slowly. Generally the illuminant is
distant, and so the light rays are ncarly parallel and thus the illuminant direction nearly constant
within a small region. The most common nearby "source" of light comes from light reflected off of
one surface onto another. However, since the average albedo of nat.. .l surfaces is only 0.2, and rarely
goes above 0.5 (see Kirnov 1971, Richards 1981) the amount of light contributed by a nearby surface
is usually much less than the amount of light falling directly onto the surface. Thus the illuminant
direction is usually little affected by reflected light, and so may be reasonably treated as constant over

small regions of the image.

Having an accurate guess about the mean of dN within a region of the image allows us to solve

for the illuminant direction within that region. Using dI, the mean value of dJ measured along a
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particular image dircction, together with dN, our guess of the mean of dN along that direction, we
can solve for L using the relation dT = dN - L. The accuracy of this solution for L depends upon
how close the value assumed for the mean of dN is to the actual mean, and upon how constant the

illuminant direction is within the region.

One good gucss about the mean of dN within a region comes from asserting that the sum of all
dN over all orientations within a region is zero. This is cquivalent to asserting that change in surface
orientation is isotropically distributed within the image region. It is true that dN is isotropically
distributed when considered over all scenes, and thus that the sum of dN over all scenes is zero. In
addition to the statistical mcan being zero, there is a large class of common objects for which the sum
of all dN is exactly zero. This class of objects includes all imagcs of convex objects bounded entirely

by a gradual occluding contour® , such as the imagc of any smooth pebble.

Given the assumption that changes in surface orientation are isotropically distributed, so that the
sum of all &N is zero, we can devise a procedure for estimating the illuminant direction L by looking
for the regular biasing effect of the illuminant direction on dI, the mean value of dI, along various
image directions (dz, dy). The cffect of the illuminant direction is to make d , vary according to

dl = pNdN - L
= pNdZnzr 4 dYnvyL + d2na)
where dN = (dzy, dgy, dzy) and L = (2, yy,, z_) is the illuminant direction. Under the assump-

tion that within a region

Y dl=0

z,y,0

Le., that the sum of all dN along all directions is the zero vector, then along any one image direction
dZy is proportional to the z- component of the image direction, dz, and df is proportional to y-

component of the image direction, dy, while dzy is zero. Therefore

dI = k(dznzr, + dyanyr)

5This may be proved by noting that the s-.rfice normals on such an object are perpendicular to V at the boundary of
such an object, and thus (given that the object is strictly convex) we may form a 1-1 onto map between the surface
normals of the object and the Gaussian sphere, which has mean zero,
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where k is a constant determined by the albedo, illuminant strength and the variance of the distribu-

tion of dN within the region.

By using this relation, we can set up a linear regression using the mean of dJ as mcasured along
various image dircctions to solve for the ratio of the unknowns z;, and yz. The constant k, and
from this the exact values of zz,y;, and 2;, can be estimated from the mean and variance of the
distribution of dI along any one image direction, as specified in the following proposition, proved in

the appendix;

Proposition (Illuminant Direction) Under the assumption that change in surface normal is
isotropically distributed, the following regression gives a maximum-likclihood estimate of ., the tilt of

the illuminant direction within a region:

A
:zL = [ﬂTﬁ]—lﬁT d,jz (13)
YL :

\d1,,/

where dJ; are the means of dI over the region along cach of  image dircctions (dz;, dy;),fisa2 Xn

matrix of directions (dz;, dy;) and 87 indicates the transpose of 5. The itluminant tilt, 7, is given by

7L = tan™! (;qé)
zL

and the full illuminant direction L = (z, yr, 2.) is estimated by
. s A2 | a2
L _ & . _ (zL + yr
L= L= 7 ZL—Vl 2

k= \/E(dI?) — E(dI)?

where

- Note that this estimation procedure determines the tilt of the illuminant dir>ction to within 4-7/2,

leaving an ambiguity about illuminant position which is identical to the human perceptual ambiguity.
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This cstimation procedure has been applied to several synthetic images, and to images of real-
world scenes, consisting of rocks and logs (sec Pentland 1980, 1982a, b). In the synthetic images this
maximum likelihood estimation procedure correctly determined the illuminant direction, as was to be
expected for an image which fulfilled the assumptions on which the estimation procedure was based.

The performance of this algorithm on images of real-world scenes i discussed in chapter 3, section 3.

3.2 Using The llluminant Direction

It is reasonable to expect that if the illuminant direction were known then we would have addi-
tional constraint available to help in the estimation of surface shape, simply because there would be
two fewer degrees of freedom left in cquations (12). In the first section of this chapter we saw that
the surface type could be identificd directly from measurement of d27, up to reflections about the
image plane. Thus what remains undetermined is the convexity of the surface, i.c., whether along
a particular direction the surface is curving toward the viewer (concave), or away from the viewer
(convex). One of the important ways knowledge of L may be used is to complete this typing of the

surface, by giving us sufficient constraint to identify the surface as convex or concave,

Using constraint from L to determine surface convexity. The convexity of the surface,
as well as the surface type, is determined by the signs of &1 and k5. In the first section of this chapter
we were able to detcrmine whether one or both of the surface curvatures K, K9 were zero. We could
not, however, determine whether the curvatures were both positive (a concave surface), both negative
(a convex surface) or if they were of opposite sign (a saddle surface). To complete the typing of the

surface we must determine the sign of the curvatures.

If we examine equation (7), we find that d7 is dependent upon the angle between p,, or p, and L,

the curvatures £; and s, and the projection matrix ®:

11 d12\[dz
dl = P}‘(—’cl(pu L) —Ka(py - L))(qftg p )(d ) (7)
1 922 Y

Even if we are given L there remain too many unknown factors to exactly determine the sign of the
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curvatures, because some configurations of these unknown factors produce quite atypical patterns of

image intensity.

Given L, cach arrangement of curvature has its own typical or generic appearance. Whether dJ
is positive or negative along a particular dircction depends upon whether dN points toward, or away
from, the illuminant L. If we assume that surface orientation and curvature arc randomly distributed,
then for a convex surface df measured in the direction (dz, dy) will typically be positive if (dz,dy)
is toward L. This is illustrated in figure 2-2 (A). The sign of dI is positive because for a convex
surface ¢N measured along (dz, dy) typically points in the direction (dz, dy), so that df = pAdN - L
is positive. On the other hand, if the surface is concave (curving toward the viewer) then d7 will
typically be negative, because for a concave surface dN measured along (dz, dy) typically points in
the direction (—dz, —dy), so that d] = PNAN - L is ncgative. Thus the sign of dT as we measure

toward and away from the illuminant gives us an estimate of the surface convexity in that direction:

Proposition (Surface Convexity). The maximum likelihood estimate of surface convexity in
a direction (dz, dy), i.c., whether the surface is becoming closer (concave) or farther {convex) from
the viewer as onc moves along that direction, assuming that «;, x, are identically distributed and that
surface orientation is uniformly distributed, is

convez:  sgn(z.dz 4 y dy) = sgn(d])
concave: sgn(zLdz 4 yrdy) 5% sgn(d] )

where L = (xr, y;, 2.) and d[ is measured in the direction (dz,dy)8.

Having an estimate of the sign of the surface curvature in each direction allows to complete the sur-
face typing begun in the first section of this chapter. The angle between 7y, the direction along which
dI = 0, and 7;, the tilt of the illuminant (ro = tan~"Y(y./z;)), provides sufficient information to
estimate surface type, as the sign of dI is positive on one side of 7, and negative on the other side.
Thus knowing 79 and 7, allows us to estimate the convexity of the surface along each image direction,

and thus estimate the surface type. Figure 2-2 (B) shows the probability distribution of 1o for cach

®The function sgn(z) is +1 when z > 0, —1 when £ << 0 and zero when z = 0.
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(dx,dy) s (dx,dy)
v = F N L
CONVEX CONCAVE
A
Wy L2
CONVEX 3T k¢
| 9
SURFACE = 72 3o CONCAVE
T (0]
3y,
SADDLE SURFACE
B

Figure 2-2.  (A) For a convex surface, dN measured along (dz, dy) typically points in the direction
(dz, dy), so that if the direction (dz, dy) is toward the illuminant then d] — PAAN - L is positive.
For a concave surface, dN measured along (dz, dy) typically points in the direction (—dz, —dy),
so that I = pAdN - L is negative. Thus the sign of d/ along (dz, dy) relative to the illuminant direc-
tion gives an estimate of the surface convexity along that direction. (B) Use of constraint from the
illuminant direction to determine the qualitative type of surface. Each type of surface has a generic
appearance, which may be characterized by the angle between 7, the direction in which dl =0, and
7, the illuminant direction. The distribution of 7y — 7, is shown for each surface type, assuming that
dI > 0 to the right of 7. It can be seen that the appearance of the different types does not overlap
much, so that a good identification of the surface type may be made from this angle.
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surface type given 77, the tilt of the illuminant” , and assuming that all other variables are uniformly
distributed. As can be seen by comparing the overlap between these probability distributions, the

probability of a correct identification is quite good.

Note that the ambiguity of ££7/2 in the estimation of illuminant directicn leads to a global
convexity/concavity ambiguity. Thus, just as with the human percept, when scene is sufficiently
simple that it is not certain that convex objects dominate the scene, the direction of the illuminant
may be “switched” by 7/2, and this causes all of the convexity/concavity determinations to switch

sign.

"These distributions were determined by a Monte Carlo simulation.
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4 Surface Orientation From Changes In Shading

We now have developed a theory to determine the type of the surface, estimate the illuminant
dircction, and use the illuminant dircction to determine the convexity of the surface. We know
the sign of the principal surface curvatures, £, and &3, which constitutes a good description of the
qualitative shape of the surface. Knowing the sign of the principal curvatures, however, does not
provide constraint on what we st out to determine — the surface orientation. What is needed now is

amethod of estimating surface oricntation, as described by N, the surface normal.

Section 2 of this chapter, on the intrinsic limitations of shading, showed that locally foreshortening
and surface curvature have the same effects, and thus it is impossible to distinguish between them for
the purposes of estimating suiface shape. Therefore we cannot hope to solve completely for cither the
curvatures k; and &4 or for the surface normal N on the basis of shading information alone; there will
always be at least one degree of freedom remaining. We may however make an estimate of N, and that

is the goal of this section of the thesis.

We cannot usc the image intensity alone to estimate N because it does not provide us with enough
measurements at cach point in the image. Use of the first derivative of image intensity to estimate
shape also has an intrinsic problem; as we measure d[ in various image dircctions both the 1n1gnitude
of dN and the angle between dN and L vary. Thus there are two unknown factors which determine

each measurcment of 47. This makes it difficult to use dI for estimation of surface shape.

The same problems do not apply to the sccond derivative. We have scen that the second derivative

of image intensity, d?7, depends upon the second derivative of the surface normal, d2N:
d?I = pAd®N - L

If a surface has zero third derivatives (as illustrated by figure 1-6), then d2N points in the same
direction as the surface normal (see figure 1-7) regardless of the direction in which it is measured This
means that the effects of the illuminant are identical upon all three components of d27, as well as

upon the surface normal itself. This fact means that we may "factor out" the effects of L on d2f by
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dividing by the image intensity, . Removing the effects of illumination is an important step toward
solving the problem of estimating surface oricntation. As discussed in chapter 1, the assumption of
zero third derivatives does not introduce significant error in our estimation of the surface even if the

assumption is incorrect.

We can show how the effects of the illuminant direction may be “factored out” of d2I by dividing
by I by expanding 21 /T using cquation (12):

df _ pMIN-L (14)
I~ pAN-L

This expansion shows that the surface albedo term, p, and the illuminant strength term, N, divide out
so that d21/1 is independent of surface albedo and illuminant strength. If we then use equation (9) to

expand d2N in terms of surface curvature and the derivatives of p we obtain from cquation (14):

d2]‘ —"gl(puu : L)du2 - K"Z(pvv : L)dvz
T N-L (15)

Equation (9) assumes usat the third derivatives of p are zero. Under this assumption d2N is parallel to

N (as shown in the appendix), and so

puu ) N = j:”puu” pl"U ' N = :t”pU‘U”

where the variable sign has the same sign as the surface curvature in that direction. Noting that by

definition in the (u, v) co-ordinate system
K1 =Pyy- N Ko =Pyy- N

we sce that equation (15) may be written

d?f  —&3(N-L)du? —&3(N- L)dv?

T N-L

where the variable sign of each term is taken to be negative if the curvature is greater than zero, and

positive otherwise. The terms (N - L) then caneel in the numerator and denominator, leaving

; 2
d—I{ = —xldu’? — k2dv?
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B
Figure 2-3, The process of “dividing out” the effects of the illuminant. (A) an image of a sphere illuminated
from the side. (B) shows V2 = I,; + Iy as calculated from the image in (A). Larger values of V2/ are
lighter, smaller values are darker. Note the asymmetry in this figure caused by the sphere being illuminated
from the side. (C) shows V2/ /I as calculated from the image in (A). After division by /, there is almost
no asymmelry in the figure; the illuminant =fiects have been “divided out”. The remaining asymmetry occurs
only around the edge of the sphere, where the assumption of a homogencous surface is violated.

which does not contain terms for the illuminant direction, illuminant strength, or surface albedo,
This example shows how the cffects of the illuminant may removed in the surface tangent-plane co-
ordinate system. Exactly the same operations apply to the gencral image-plane expression, equation

(10), and render it free of illuminant and albedo effects (see the appendix).

This process of "dividing out" the effects of the illuminant is illustrated by figure 2-3. Part (A) of
this figure shows a sphere illuminated from the side. Part (B) of this figure shows V2I = I, + Ly

as calculated from the image in (A). Larger values of V2I arc lighter, smaller values are darker, Note

INTENTIONAL DUPLICATE EXPOSURE
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that the asymmictry in this figure is caused by the sphere being ifluminated from the side. Part (©
of figure 2-3 shows V2I/T as calculated from the image in (A). After division by I, there is almost
no asymmery in the figure; the illuminant effects have been "divided out™. The remaining asym-
metry occurs only around the edge of the sphere, where the assumption of a homogencous surface is

violated (sce chapter 3 scction 1).

4.1 The Tilt Of The Surface

When we observe a smooth surface, we obtain a strong impression of the 7 of the surface — that
is, which dircction the surface is slanting away from us. Because we have such a strong impression
of the tlt, it scems diat there might be some way of directly computing the tilt of the surface. If we
could exactly determine 7, the tilt of the surface, then there would be only one degree of freedom (the
slant) left undetermined in N. The propositions in section 2 of this chapter prove that this is the most
information about surface orientation which can be unambiguously determined from local shading

information.

Let us develop an intuition of how we might go about estimating the tilt. Imagine that we could
directly observe the lines of curvature on a surface. These lines of curvature would look like the lines
drawn in figure 2-4. If we were looking straight down on a surface with no twist, the lines of curvature
would appear perpendicular, as in figure 2-4 (A). As we tilted the surface off to one side, the lines
of curvature would appear progressively more spread apart, as in figure 2-4 (B) and (C). Different

directions of tilt cause spreading in different directions® , as shown by (D).

We can’t directly observe lines of curvature on the surface, of course, but we can observe the
interaction of surface curvature with the illuminant in the second derivatives of image intensity. The
second derivative of image intensity has three components: I.; and I, the "curvature" of image
intensity along the z and y axes, and Iy, the "spread” of those curvatures. Just as with the spreading

of the lines of curvature, the direction in which this spread term is the greatest is the direction of the

8Stevens 1980 observes that this “spreading” effect may be used to constrain surface orentation given imaged contours
known a priori to be perpendicular on the surface.
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Figure 2-d.  The manner in which image curvature "spreads” indicates the tilt of the surface. This
may be understood by imagining that we could directly observe the lines of curvature on a surface.
These lines of curvature would look just like the lines drawn in this figure. If we were looking straight
down on a surface with no twist, the lines of curvature would appear perpendicular, as in (A). As we
tilted the surface off to one side, the lines of curvature would appear progressively more spread apart,
as in (B) and (C). Different dircctions of titt would cause sprcading in different dircctions, as shown by
(D).
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surface tilt. The dircction in which the spread is the greatest is also the direction along which d27 is

the greatest, and so the following proposition (whose proof is given in the appendix):

Proposition (Tilt of the Surface). Given the smooth, homogeneous surface assumed by equa-
tion (10), and I, 5% Ly, Iy 5 0), then the tilt of the surface is the image direction in which the

second derivative of image intensity, d21, is greatest.

Thus one of the two components of surface oricntation, the tilt, may be directly determined from
the second derivative of image intensity without knowledge of the illuminant direction. This leaves only

the slant of the surface to be determined.

4.2 The Slant Of The Surface

In the previous sections we have proven that while the tilt of the surface may be exactly
determinced, the slant of the surface cannot be completely disentangled from the curvature of the
surface. Still we may hope to make an unbiased estimate of the surface slant. We would then have the
best estimate of N which it is possible to obtain from local shading information. This section develops

amethod for making such an estimate of surface slant. First we observe that:

Proposition (Normalized Laplacian). Given the smooth, homogeneous surface assumed hy

equation (10), then
2
YI—I = —r22y? —K2

where rc,, is the surface curvature along the surface tilt dircction and K is the surface curvature in the
orthogonal direction, 2y is the z component of the surface normal, equal to the cosine of the slant of

the surface.

What this proposition shows is that V2T /1 is a function of the squared curvatures of the surface, fcf.

and «2,, and the foreshortening.

There is a limited range of relationships between the surface curvatures and the foreshortening
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for any particular obscrved value of d2J /1. Therefore if we were given that the magnitude of the
surface curvature had a particular a priori distribution, say a uniform distribution, then for any ob-
served value of V2I/T we ceuld make a maximum likelihood estimate of the forcshortening. As the
foreshortening is proportional to zﬁz, this then gives us an cstimate of the slant of the surface (which

is cos ™ !(zn)). This leads to the following proposition:

Proposition (Estimation Of Slant). Assuming a uniform distribution of surface curvature, and
the smooth, homogencous surface assumed by equation (10), then the maximum-likelihood estimate of

2y, where zy is equal to the arccosine of the slant of the surfa e, is

%
V2
I 2

| — o (16)

ZN = O

where o7 is the variance of the distribution of surface curvatures.

Section 2 of this chapter showed th= intrinsic underdetermination of shape by local shading infor-
mation, demonstrating that at least one degree of freedom will remain undctermined by the shading
information. The tilt proposition showed that one of the two parameters of surface orientation can

. be determined exactly, leaving only the slant undetermined. This proposition gives a maximum
likelihood estimate of the slant, which by definition is the minimum-variance unbiased cstimate.
Therefore the slant and the tilt propositions together constitute the best estimate of surface that it is
theoretically possible to make from local shading information. Note that neither the slant estimate nor

the tilt estimate require knowledge of the illuminant direction.
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5 Shape From Contours

We have scen that local analysis of shading can produce useful information about surface shape,
however we have also scen that shading information alone is intrinsically insufficient to exactly deter-
mine surface shape. Imaged contours can also be used to obtain information about shape, information
which is independent of the sources of error inherent in shading information. Thus usc of informa-
tion derived from imaged contours in conjunction with shape information derived from shading can
provide the constraint necessary to determine surface shape more completely. This section therefore
addresses the problems of finding contours in the image, and then obtaining shape information from

imaged contours.

5.1 Locating Imaged Contours

If we are to use imaged contours, first we must find them. Further, all of the results developed
so far have depended upon the assumption that the region under examination is homogeneous. The
only way to insure homogeneity is to localize all of the discontinuities surrounding the homogeneous
regions — that is, find the "cdges".

The problem of locating contours in the image has been investigated by many researchers (Roberts
1965, Horn 1968, Herskovitz and Binford 1970, Rosenfeld er af 1971, 1971b, Heuckel 1971, Macleod
1972, Binford and Horn 1971, Shirai 1973, Duda and Hart 1973, Davis 1975, Marr 1976b, Rosenfeld
and Kak 1976, Pratt 1978, Marr and Hildreth 1980), and many different solutions have been proposed
(see Marr and Hildreth for a good survey of the field). Because we must find the imaged contours in
order to accomplish our goals, it is useful examine the problem of edge detection in light of the results

developed so far.

In all of the earlier portions of this chapter, it was assumed that we were observing a homogeneous,
continuous patch of Lambertian surface, with constant albedo and illumination. Thus in order to
apply the results obtained so far, we must try to locate all discontinuitics in albedo (e.g., changes in

material), illumination strength (such as shadows), surface normal, and reflectance function (e.g., a
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highly specular point). Thus it is the occurance of these events in the course of image formation which

we will label "imaged contours".

How are we to find these imaged contours? Marr and Hildreth 1980 have proposed using the
zero-crossings of V2] to locate image contours. Their cdge-finding technique has met with particular
success, especially as employed in the Marr-Poggio-Grimson sterco algcrithm (Marr and Poggio 1979,

Grimson 1980, 1981), and so we will investigate its functioning for use in this application.

Let us begin by examining the image formation cquation developed in the beginning of chapter 1:

I'= p\(N-L)R(L, V,N)(N - v)~!

If we combine the functions R(L, V, N) and (N - V)~ into a single function R(L, N) describing how
light is reflected from the surface onto the image (V neced not appear as it is constant), we see that
V2 =V2pAN - LR(L,N) + pV2AN - LR(L, N)
+ PAVA(N - LR(L, N) 4 oAN - LV2(R(L, N))
~+cross terms
‘The "cross terms" in this cquation are terms with differentials of fwo factors, rather than just one. Let
us assume that it is unlikely that two of the factors will vary together, so that we make take these cross-

terms to be zero.

Under the assumption that it is unlikely that two factors vary together, there will be a zero-crossing
of V2I whenever any of the factors V2p, V2A, V(N - L) or VZR(L,N) undergoes a zero-crossing,
i.e., whenever any of p, N\, N - L or R(L, N) undergocs a change in convexity® Such changes in con-
vexity are found at discontinuities in these variables!? | so that the Marr and Hildreth operater should
localize the image formation events that we have defined as imaged contour. It is clear, however, that
the Marr and Hildreth operator will also localize inflections in these quantities, and we do not wish to

label these inflections as imaged contours,
SThat is, one or both of the partials Iz, Iy, changes sign.

10While not true of ideal images, it is true in real images, because they always have some amount of blurring. See
section 1 of the next chapter.
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A sccond potential problem with using zero-crossings of V2/ stems from the cffects of image noise.
Itis easily confirmed that a small noise spike in an otherwise perfectly constant region of of the image
will gencrate a small zero-crossing surrounding it. Thus noisc is a problem which must be considered

in using zero-crossings of V21,

We can circumvent the problem of noise by discarding weak zero-crossings. Given a bound on
the noise amplitude, §, we can effectively exclude the zero-crossings gencrated by noise by discarding
zero-crossings which cross the zero-value point with a slope less than the slope of the zero-crossing
generated by a noise pulse of size §. Discarding such weak zero-crossings means that only robust
contours, those of magnitude greater than &, will be localized. Thus this procedure will discard some
“real” (although weak) zero-crossings along with the noisc-generated zero-crossings. It appears that
for our purposes this is an advantage, rather than a drawback, as most of these weak "real” zcro-
crossings correspond to the unwanted inflections in p, », etc. Thus discarding weak zero-crossings
appears to be a method of ridding curselves of both noise-produced zero-crossings and inflection-

produced zero-crossings (see chapter three for an evaluation of this discarding procedure).

5.2 Shape From Imaged Contour

There are two categoriés of imaged contour that are relevant to the estimation of surface shape.
The first category is smooth occluding contours, such as occur at the edge of an image of a sphere.
The second category contains all varieties of sharp contours, including sharp occluding contours, such
as found at the edge of an image of a disk, and sharp surface contours, such as are generated by
surface markings. These two categories, smooth contours and sharp contours, are distinguished by the

different constraint which they provide on the interpretation of shape.

Constraint from smooth occluding contour. A smooth occluding contour provides the
strongest possible constraint on surface shape: the surface normal along that contour is known ex-
actly; it lies perpendicular to the contour and parallel to the image piane. Thus the identification of

smooth contours is of great importance to the interpretation of surface shape.
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The smooth occluding contour, by itsclf, provides only local constraint on shape; there are an
infinite number of shapes bounded by the same smooth occluding contour. By using shading informa-
tion the powerful constraint from smooth occluding contours may be propagated across the surface of
an object. The fact that shading may be used to propagatc constraint has been successfully used by

Horn, Grimson and others.

Constraint from sharp contours. Sharp contours do not provide as strong constraint on shape
as do smooth occluding contours. There is no absolute information about oricatation or shape which
may be gained from a sharp contour, as is provided by a smooth occluding contour. Nonctheless, im-

portant constraints may be derived from a sharp contour, as is discussed in the following subscction.

5.3 Three-dimensional interpretation of sharp contours

Not all three-dimensional intexpretatiqns of a sharp’contour are equally likely. Given an imaged
sharp contour one may make a reasonable guess about the three-dimensional shape of the contour

using the fact that viewer position is indcpendent of the shape of the contour generator.

Figure 2-5 (A) shows the relationships which exist between the contour generator and the imaged
contour. Curvature in the image of a three-dimensional curve is a function of x, the magnitude of
the contour generators curvature vector, k, and the forcshortening along both the contour generators
curvaturc vector and its tangent vector, t. Foreshortening along the curvature vector causes k*, the
magnitude of the imaged curvature, to be less than &, the magnitude of the three-dimensional curva-
ture vector as shown by figure 2-5 (B). Foreshortening along the tangent vector t causes &* to be

greater than , as shown by figure 2-5 (C).

The torsion, 7, of the contour generator is the amount which the curvature vector deviates from a
single plane (called the osculating plane). The torsion therefore describes the "twist" in the contour
generator. The presence of torsion gives no direct evidence in the image, it simply results in more or
less foreshortening as the plane of the contour varies. The effects of torsion can therefore be exactly

mimicked by changes in the curvature «, and vise versa, We may however make an estimate of the
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1

torsion in an imaged contour:

Proposition (Zero Torsion). The maximum likelihood cstimate of the torsion of the contour

generator is zero (i.e., no "twisting" of the contour gencrator).

This proposition follows from the independence of viewer position and contour generator shape -
if the shape is independent of the viewer position, then the torsion of the éontOLnr generator is also
independent. Therefore it is equally likely that the torsion of the contour generator is toward the
viewer as away, and the most likely estimate is the mean torsion: zero. This proposition also follows
from the assumption of general position (the assumption that the viewed scene is stabie under small
changes in viewpoint). A curve with substantial torsion will alter its appearance considerably with
small changes in viewer position; thus if we assume gencral position then the torsion in a imaged

contour must be small.

Note that at places where the curvature vector is zero — straight segments and inflection points —
the torsion is not defined and may be taken to be zero. Because torsion is not defined along straight
segments and at inflection points, even with zcro torsion the osculating plane may change freely at
these points. As a consequence, we will normally estimate that most of the "twisting” or changes in
osculating plane of the contour generator will occur in places where the imaged curvature is zero, i.e.,

at straight lincs and inflection points.

If the torsion is zero, then for each uninflected arc of an imaged contour there is a two-parameter
set of planar contour generators which could have generated that imaged arc. Those two parameters

correspond to the two degrees of freedom of the osculating planec. This is shown in figure 2-5 (D).

Three-dimensional estimation. Assume that we are given the image of an uninflected arc, and
asked to estimate its three-dimensional shape. Let us start to determine the threc-dimensional shape
of the arc by examining the first five points of the arc, which always define an ellipse in the image
plane. On the basis of the previous proposition, we would guess that the generntor of the arc had zero

torsion, i.e., it was planar.
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The case of imaged arcs which are assumed to be planar was cxamined by Witkin 1980, He
observed that as all contour generator orientations are equally likely (because viewer position is inde-
pendent of generator orientation), it is unlikely that one would get the clliptical, anisotropic distribu-
tion of orientations which is characteristic of foreshortened images of uniformly-distributed contour
generators. It is most likely that the anisotropy which looks like foreshortening is in fact due to
foreshortening. Using this result, Witkin constructed a maximum-likelihood estimator for the contour
gencerator shape, under the assumption that the contour genesator is planar. The maximum-likelihood
estimate for the cllipse defined by the first five points of our imaged arc is that the arc is generated by
a segment of a circle. This estimate corresponds well to human perception — when presented with an
ellipse and asked for a three-dimensional interpretation, people interpret the ellipsc as a tilted circle.

Nonctheless, it is clear that this estimate is weak because any five points define an ellipse.

Let us now examine the next point on the imaged arc, the sixth. If this point lics on the same
ellipse defined by the first five points, we have much stronger evidence of th2 contour generators
shape, because it is very unlikely that by chance the sixth point would fall on the same ellipse as the
first five if cither the curvature or the osculating plane of the contour gencrator was changing, If the
osculating plane was changing (i.c., there was torsion in the contour generator), then the curvature
would have to be changing also, and in such a manner as to exactly cancel the image cffects of the
changing osculating plane. Similarly, if the curvature of the contour gencrator was changing, then the
osculating plane would have to change exactly enough to cancel out the image cffects of the changing
curvature. As both of these cancellations are unlikely, we must conclude that the sixth point lies on

the same circular contour generator defined by the first five points of the arc.

But what if the sixth point lies off the ellipse defined by the first five? Then we can be certain that
either the curvature or the osculating plane (or both) of the contour generator has changed. We must

measure another five points before we can estimate a new orientation for the contour generator.

These arguments leads to the following proposition:

Proposition {Planar Interpretation). Given an elliptical segment of imaged contour (five or
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more points) the maximuni likelihood estimate for the three-dimensional shape of the contour gener-

ator is a planar, constant-curvature contour — i.c., a segment of a circle.

As any curve may be closely approximated by a contour made up of portions of ellipses and
straight lines, these two results form an interpretation strat'cgy for imaged contour which encompasses
all configurations of imaged contour. This estimation strategy results in an cstimate which is quite
similar to that obtained using the estimation algorithm proposed by Barrow and Tennenbaum 1981
What is novel about this treatment of the problem is the probalistic motivation for the estimation

strategy.
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6 Shape From Contour And Shading

There are three main ways in which shading and contour interact: (1) shading may be used to
identify whether or not a particular contour is a smooth occluding contour or a sharp contour, 2)
the shading on either side of a sharp contour may be be used to determine whether or not the two-
sides join together smoothly, and (3) the cstimate of threc-dimensional shape for an imaged contour,
developed in the last section, may be used to help constrain the estimate surface shape derived from
shading to a unique, correct interpretation of surface shape. Each of these three cascs of shading and

contour interacting will be dealt with scparately.

6.1 Identification Of Smooth Occluding Contours

If we can identify smooth occluding contours in the image, then we can make use of the strong
constraint on surface shape provided by them. The remaining contours can then be treated as sharp

contours. But how are we to identify them?

In a previous section it was proven that local shading is insuffizient to disambiguate between sur-
face curvature and foreshortening. Thus we have proven that it is impossible to unambiguously
identify smooth occluding contours on the basis of local shading information alone. We have also,
however, presented an cstimator of surface orientation which will be shown to work quite well, espe-

cially for the highly slanted areas which are an intrinsic characteristic of smooth occluding contours.

The idea for identification of smooth occluding contours is simple: the defining characteristic of
smooth occluding contours is that the slant of the surface approaches /2, and the tilt of the surface
is perpendicular to the contour. Using the results of section 4 of this chapter, we may determine
the surface tilt and estimate the surface slant using local shading information near a contour. If the
estimated slant and tilt are appropriate for a smooth occluding contour, then the contour is identified
as such; otherwise the contour is not a smooth occluding contour. Because the estimate of surface
orientation developed in section 4 of this chapter is the best estimate possible from local shading

information, this identification of smooth occluding contour is also the best that can be made using
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local shading information.

Constraint from illuminant dircction may also uscful for helping to identify smooth occluding con-
tours. The magnitude of dI along a smooth occluding contour depends on the orientation of the
contour relative to the illuminant, with d7 along contours perpendicular to the illuminant tilt being
the smallest, and dJ along contours parallel to the illuminant. tilt being the largest. This is similar to
an idea advanced by Barrow and Tennenbaum 1978, and like that proposal this constraint is critically
dependent on constant albedo and illuminant direction. Thus this constraint from illuminant direction

is uscful only if applicd in a qualitative manner.

6.2 Joining Regions Together

One of the most important interactions of contour and shading occurs when determining whether
regions on cither side of a sharp contour join together smoothly, as with the regions on either side of
a surface marking, or whether the regions are scparate, as on either side of a sharp occluding contour.
It is clear that if the regions on cither side of a contour are “the same", that is, if the regions to either
side of a contour have exactly the same propertics (brightness, texture, ctc.) then these regions will
appear identical in the image. Thus adjoining regions which appear identical may be presumed to
join together smoothly, i.e., along the boundary the two regions will have the same surface normal.
If, however, the regions on either side of an imaged contour are not identical, then no such constraint
need apply — but often the surfaces do in fact join together smoothly, such as in the case of the

dissimilar regions on either side of a shadc - boundary.

The problem in determining whether two regions join together smoothly is that we are concerned
only with whether or not the surface normals are the same, and not with other factors such as the
surface albedo or the illumination. These other factors strongly influence the appearance of a surface
in the image and so confound us. Qur estimate of surface shape from local shading informatior;,

however, is not affected by surface albedo or illumination. Thus it may be used to determine whether

or not two regions join together smoothly, even if they have different albedos or different illumina-
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tion.

We may produce an estimate of the surface orientation along both sides of a contour using the local
shading information. While such estimates may be in error because of the curvature of the surface,
they are not affected by the albedo or the illumination: the cstimates are purely a function of the
shape of the surface. Further, it is a measure-zero occurance that two different surfaces will produce
the same cstimate of surface shape. Thus if along the two sides of a contour we obtain identical
estimates of surface orientation, then we know with certainty that the two sides of the contour have
the same shape — and thus the two sides of the contour must have the same surface orientation along
that contour. Note that becausc we cannot produce an estimate of surface orientation for either planar

or cylindrical surfaces, we cannot apply this reasoning to the boundaries between such surfaces.

If the cstimates are not the same along the two sides of the contour, the the two sides of the contour
have different shapes, and therefore cannot join together smoothly. Note that this inferencc is stronger
than the inference available using texture; if the texture is identical on both sides then the two sides
must join together smoothly, but one cannot assert that if the textures differ then the two sides do not

join smoothly.

Thus, given that we may use shading information to estimate surface orientation, we may deter-
mine whether or not the two regions join together smoothly regardless of differences in surface albedo
or illumination by comparing the estimates of surface orientation along both sides of the contour. A

determination made in this manner will virtually always be correct.

6.3 Using Contour And Shading To Constrain Surface Shape

The estimates of the three-dimensional shape of imaged contour produced by the estimator
developed above is subject to crror, because the probabilistic constraints which allowed us to assume
torsion to be zero are weak. Similarly, we have proven that it is impossible to determine surface orien-
tation exactly using only local shading information. Fortunately, the causes of error when interpreting

shape from shading (e.g., unequal surface curvatures) are different and independent of the causes of
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error in determining the three-dimensional shape of a contour (c.g., torsion). Thus if we could use
shading to check for the existence of torsion in an contour generator, or usc imaged contour to check
for canceliation of foreshortening effects by uncqual surface curvatures, then we could obtain a better

estimate of surface shape by using both sources of image information.

Let us consider what is implied by interpreting an imaged arc as planar. Planarity means that all of
the points (z,, y;) along the contour must have z co-ordinates such that all of the points fall in a single

planc. This constraint may be expressed as
(zicos 7, + y;sin To)tan"lg, = z (17)

for all (z;, y;), where 7, and o, are the tilt and slant of the osculating plane of the contour generator.,

Taking the derivative of (17) along the contour C, we obtain

dz dy . —1_ __ dz
(dC cos 7, Jc sin r,,)tan o, = ol (18)

The quantity dz may also be expressed in terms of the surfacc that the contour gencrator is embedded
in:

dz—le(cos'r +sm'r y) (19)

were N = (zn, yn,2v). 7 is the tilt of the surface, and the imaged direction of the contour is

(dz, dy). Putting cquations (18) and (19) together, we obtain the following proposition:

Proposition (Contour And Shading). Given an imaged contour C and shading information
about a point, then under the assumption that the maximunr-likelihood estimate of contour generator
shape is correct (i.c., the contour gencrator is planar) then 2y, the cosine of the slant of the surface, is
cos 745 + sin rd
(ﬁi—w cos 7, - alé’ sin 'ro) tan"lg,

where dz/dC and dy/dC are the change in z and y along the contour C, 7, and o, are the tilt and

slant of the contour gencrators osculating plane (from the maximum likelihoe4 estimate of the imaged

contours shape), and 7 is the tilt of the surface (from the local shading information).
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Unde the assumption of planarity, the quantitics 7, and 0, the tilt and slant of the contour gener-
ators osculating plane, may be determined exactly from the imaged contour. The contour dircction,
(dz,dy). and the surface tilt, 7, may be determined exactly, leaving 2y as the only quantity which
is estimated and could therefore be in error. Thus equation (20) allows us to use these known quan-
tities to determine zy under the assumption of planarity, as long as g, is not zero, in which case the

equation is degencrate.

This solution would be of considerably more use if we could detect violations of the assumption of
planarity. We may find evidence for such violations by examining the curvature of the surface: by
taking the derivative of equation (18), we obtain

d’z I d%

(d02 cosro—}— ic? sm'ra)tan %= T3
The quantity d%2/dC? is approximately equal to d2I/I along the imaged contour, as for a sccond-
order surface d?I/1 is cqual to the foreshortened surface curvature (sec the proof of the normalized
Laplacian proposition in the appendix) which is exactly d%2/dC? when C s linear. Thus if we
obscrve that either d2 /T varies when the curvature of the contour docs not, or if the curvature of
the contour varics while d1 /I remains constant, then we have evidence of violation of the planarity

assumption.



Chapter 3
Computation Of Shape

The first two chapters of this thesis developed a theory for the inference of shape from local image
data. In this chapter we will discuss a practical algorithm which accomplishes the computations
required by the theory. This algorithm has becn implemented as a computcr program on a Lisp
Machine! , and tested on both synthetic and natural images. Cemparison of the surface shape es-
timates produced by the computer program to the actual shapes appearing in these test images has
allowed considerable evaluation of the algorithms performance, and thus indirectly an evaluation of

the validity and robustness of the theory.

The first section of this chapter will discuss several issues concerning the design of the algorithm. In
particular, this section will discuss the measurement of the image information required by the theory,
and will address issues concerning the scale of examination (the resolution of estimation algorithm)

which are raised when discussin g how to measure the required image information.

The second section of this chapter will describe the algorithm by presenting block-diagram
schematics showing the flow and successive transformation of information from raw image data to a
description of the viewed surfacé. Each of the elements of this block-diagram will then be briefly
discussed, in each case showing how a sequence of relatively simple, parallel operations results in the
calculations requircd by the theory. The portions of the algorithm which utilize imaged contour are
difficult to describe in such a block-diagram, as they require analysis at more than one point of the

imaged contour. Therefore description these portions of the algorithm will be delayed until the third

YThe Lisp Machines are single-user digital computers designed and built by the Artificial Int=lligence Laboratory of the
Massachusetts Institute Of Technclogy.
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section of this chapter, where we may describe the algorithms operation on specific examples.

The third scction of this chapter will show examples of application of the algorithm to both syn-
thetic and natural image data, and discuss the performance of the algorithm on these images. The
examples presented in this section do not constitute an cxhaustive evaluation of the performance of
the algorithm on image data, nonctheless I belicve that one may obtain a clear impression of both the

performance capabilities of the algorithm and the general validity of the theory.
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1 Measuring Image Information

The problems of measuring dI, I or V27 and of identifying imaged contours have both been ad-
dresscd by many different researchers. Measurement of dI, dI or V2] by convolving the image with
an appropriate filter is a standard image processing technique (see Horn 1974). Marr and Hildreth
1980 propose locating contours in a similar fashion; by convolving the image with a V2G(z, y) filter.
Although the measurement of the required image information has become standard practice in the
image processing community, it is unclear how the approximations made in performing measure-
ments might influence the results of our theory. Thus we must investigate the implications of various

methods of measuring the input information required in the theory.

1.1 The Notion Of Scale

In all imaging devices there are imperfections which result in a blurring of the image. This blurring
is described by the blur function, or the point-spread function, and may be characterized as a filter
which is applied to the image. This blurring limits the scale at which we can examine imaged surfaces
by averaging out all finer details of the surface. Thus an imaging systems blur function defines a scale

of examination (Mandelbrot 1977, Witkin 1980).

Let us assume that the blur function of a particular imaging system were characterized by the filter
G(z,y), a Gaussian? as shown in figure 3-1 (A), and let us also assume that we can characterize the
scene and the image with infinite resolution, so that we can let N'(z, y) be the surface normal at the

image point (z, y), and we can let I*(z, ) be the infinite-resolution image intensity at the point (z, y)

Let us continue to assume that the image intensity values I* are determined by the cosine of the

angle between the surface normal N* and the illuminant direction L in the following manner:

I'(z,y) = N'(s, y)-L

2The use of a Gaussian is unimportant; any unimodal filter would suffice. However, if there is high-frequency noisc in
the imaging system, it is desirable to have a blur function which attenuates higher frequencies quickly. The Gaussian
is commonly employed as a filter for attenuating such noise so that accurate measurements of the derivative can be
made.
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Then the actual image intensities /(z, y) available to us after passing through our imaging system will

be
I(z,y) =Gz, y) ® I‘(:B, Y) (21)
= G(I: y) ® (N'(ib‘, y) : L)

where ’Q)’ significs the operation of convolution. If continue to assume that L is a constant we can re-

write equation (21) by defining a new surface normal

Nz, y) = G(z,y) @ N'(z, ) (22)

where in this case the convolution operation is applied to each of the components of N* individually.
The new surface defined by N is quite different from the original surface, as the smoothing which
occurs is dependent upon the value of N*. Regions facing away from the image plane will be much
more affected by this smoothing than regions facing the image plane. Equation (22) allows us to write
I(:t, y) = G(.’L’, y) @ (N‘(I, y) : L)
= N(z,y) L
This shows that the image intensitics available to us in the imaging system can be thought of as a
function of the surface defined by N(z, y) in equation (22). If we refer only to the surface N(z, y)
defined using the scale set by the imaging systems’ blur function, we do not need to be concerned with

ihe imaging systems’ blur and may treat the imaged intensities I(z, y) as exact.

The surface N(z, y) is the only surface which is available for observation in the image because all
of the additional detail of N* has been attenuated to below the background noise level by the imaging
systems blur ﬁ;nction3 The fact that N has only limited detail available has important implications for

the validity of the assumptions made in the first chapter. This is discussed at the end of this chapter.

The use of scale to define surface orientation splits the world into two parts: Aacrostructure, those

features of the surface which are large enough to not be "smoothed over" by our averaging, and

31f we let S(f) be the frequency distribution of the signal, B(/f) that of the blur function, and N (f) that of the noise,
thea the signal irretrievably lost will be those frequencies for which S(f)B(f)N—'(f) <1 Thus the resulting signal-
to-noise ration of the imaged system is B~(f)N(f). It is perhaps better to speak of the inverse of this function as
the blur function, rather than as we do now.
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Microstructure, those features which are too small to appear in our average! . When we speak of
the "shape™ of a surface, it is the macrostructure to which we refer. When we speak of the (three-
dimensional) “surface texture”, it is microstructure to which we refer. That is to say, the details of
the surface shape which are the three-dimensional texture are too small to be distinguished within
our notion of the surface shape at the particular scale of examination we are currently using. The
small variations which constitute the three-dimensional surface texture have somchow been smoothed
over in arriving at our conception of the surface shape. The size of the region used in this smoothing
operation defines the scale at which we are representing or examining the surface shape. This division
on the basis of scale defines both what constitutes the surface orientation, and what constitutes surface

texture.

1.2 Measuring The Derivatives Of Image Intensity

Using equation (22), we may calculate that the first directional derivative of image intensity,
dI(z, y), taken in the image direction (dz, dy) as a function of the change in surface normal (see also
chapter 1):

dl(z,y) = dN(z,y)- L

If we now were to build a imaging system whose blur function was the first directional derivative of
the Gaussian, dG(z, y) (shown in figure 3 - 1 (B)), then 3(z, y), the image resulting from this blur

function, would be

Iz, ¥) = dG(z,y) R I'(z, y)
But from the Convolution theorem we have

4Gz, 4) @ I'(a, ) = d[c(z, )OI, y)] = dl(z,y)

“In order to make this notion of scale fully coherent, we must also assume noise in the system so that features which
have been sufficiently smoothed over by the averaging process can no longer be distinguished from the background
noise.
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Figure 3- 1. (A) the blur function G(z,y), (B) its first directional derivative dG(z,y), (C) its
circularly-symmetric second derivative (the Laplacian) V2G’(z, y), and (D) the second directional
derivative, d2G(z, y). The function G(z, y) is the most common approximation for the average blur

function, because when several stages are involved in an imaging system the resulting blur function
always tends toward G(z, y) (by the Central Limit Theorem).
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thus we sce that the output of this new imaging system is the first dircctional derivative of the output

of an imaging system whose blur function is G(z, y).

If the blur function of a system were the Laplacian of a Gaussian, V2G(z, y) as shown in figure 3-1
(C), then the output I(z, y) of the imaging system would be
z,y) = V’G(z,y) ®I'(z, v)
= V6t 1) ® 16| = V(e

so that the output of this imaging system is the Laplacian of the output of an imaging system whose
blur function is G(z, y). Similarly, if the blur function were d2G(z, y), the second directional deriva-
tive of a Gaussian, as shown in figure 3-1 (D), then the output would be the second derivative of an

imaging system with the blur function G(z, y).

Thus in order to calcu.latc dI, d2I or V2], the input information required for the computations of
our theory, we nced only convolve the original image I” with d@G, d2G or V2G. The result of these
convolutions is the exact derivatives of ] (i, y), a smoothed version of this original image, spccifically
G(z, y) ® I'(z, y). This smoothed image, in turn, corresponds to the image produced by N(z, y), a

smoothed version of the original surface N*, specifically G(z, y) ® N*(z, y).

1.3 Finding Imaged Contours

The previous chapter discussed the edge-detection theory of Marr and Hildreth 1980. Marr and
Hildreth propose defining contours in the image by calculating the zero-crossings of V21, that is,
where the value of V2] changes from positive to negative or vise versa.3 As shown in chapter 2, the
zero-crossings of V2I occur whenever image contours occur. For the purposes of locating imaged
contours, however, zero-crossings have the problem that they also occur whenever there is a rapid
inflection in surface orientation, surface reflectance or illumination characteristics. In addition, there
are often many "weak" zero-crossings, caused by small amounts of noise in the image, which appear

randomly strewn across the imnage.

5Actually. they used V2G @1, a lincar operator which’ they characterized as an approximatcly-bandpass filter. As shown
above, this operator may also te whought of as calculating V21,
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As mentioned in chapter 2, it appears that we can solve the problems of weak and inflection-caused
zero-crossings by discarding those zero-crossings for which V2] has negligible slope across the zero-
crossing contour. The threshold value for discarding weak zero-crossings is deterinined by the amount
of noisc in the system. In checking for such weak zero-crossings, it is important to consider the
average slope of the zero-crossing along segments of the zero-crossing, rather than the slope individual
points only, so that local fluctuations in image intensity will not cause perfectly valid contour points
to be discarded. Zero-crossing contours may be uscfully segmented by cutting them wherever shaip

changes in contour direction occur.
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2 Description Of The Estimation Algorithm

Having described how to obtain the required input information, we can describe how to use this
information to carry out the computations required by the theory. The estimation algorithms may
be grouped into three "modules” on the basis of their input information: these three modules are
(1) the shape-from-shading and surface type estimators, which use d2J and | V21|, (2) the illuminant
direction and surface convexity estimators, which use dI, and (3) the contou r-and-shading cstimators,

which use the results of the previous two estimation modules together with imaged contour shape.

This section will describe cach of these modules in turn. The final result is an integrated algorithm
which combines of all of these image measurement and estimation algorithms into a single informa-
tion processing system. The block structure diagram of this integrated system is shown in figure 3-

2

Shape-From-Shading And Surface Type Algorithms

. Surface type. The theory for determining surface type is simple; it was proven that it only
requires counting the number of image dircctions along which d2I is zero to determine the surface
type. If d21 is zero along three or more dircctions, then the surface is a plane; if d2I is zero along
one direction then the surface is a cylinder, and if d27 is non-zero for all image directions then the
surface is convex, concave or a saddle surface. This portion of the algorithm is diagrammed in figure
3-3. These last three types (convex, concave and saddle surface) can be distinguished only by using
additional information, such as knowledge of the illuminant direction. The separation of these three

types is accomplished by the surface convexity portion of the algorithm.

The surface slant. The theory for estimation of surface orientation from local shading informa-

tion proved that 2y, the surface slant (how much the surface is slanted away from the viewer or
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Figure 3-3. Surface type identification portion of the algorithm.

toward the viewer) may be estimated by

—4
= Un(l VI az) (16)

where o is the variance of the distribution of surface curvatures. We have already shown how to

calculate | V21|, thus the only difficulty left is to determine the constant o2. This constant is a function
of the size of the imaging systems blur function. Thus if one knew the blur function, one could

determine o2,

Alternatively, this constant may be calculated by making use of the constraint that 0 < zy <1
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Figure 3-4.  Shape-from-shading portion of the algorithm: (A) estimation of slant of surface (amount surface

is oriented away from or toward the viewer) and (B) estimation of tilt of the surface (which image direction

the surface is slanting away or toward the viewer),
and the identified smooth occluding contours (see the scction on identifying smooth occluding con-
tours). The maximum value of zy within a region is one, and the minimum value (zy = 0) must
occur at the identified smooth occluding contours. The two resulting equations allow us to determine
the value of aﬁ. Therefore an estimate of the surface slant is obtained by subtracting this constant (or
adding it, if the surface is identified as a saddle surface) from {V2I/1], computing the inverse square

root and multiplying by the constant 1/o,. This portion of the algorithm devoted to estimating the

slant of the surface is diagrammed in figure 3-4 (A).
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The surface tilt. In the theory chapter it was proven that the tilt of the surface (the direction

along which the surface slants away from or toward the viewer) may be found by determining the

direction, at each point, in which |dI| is largest. Thus we need only compare |[d2]| across image

oricntations to exactly determine the surface tilt at cach point, as shown in figure 3-4 (B). The surface

tilt and slant completely specify surface orientation at a point, therefore these two outputs at each

point in the image constitute a complete description of surface shape.

lluminant Direction And Surface Convexity Algorithms

llluminant direction. The previous chapter developed a theory for the estimation of the il-

luminant direction. This theory consisted of two steps: first, calculate the mean value of dJ along

each image orientation, and second, determine the direction along which the mean of dI is greatest.
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This direction is the tilt (the image-plane component of the direction) 5f the illuminant. Only deter-
mination of the tilt will be discussed here, as the tilt is all that is required by the other portions of the
algorithm. The theory used a linear regression to determine the direction in which the mean of d7
is maximum, because variations in surface shape introduce changes in the mean of dI which make it

necessary to treat the mean of d7 a noisy signal.

The mean value of dJ along a particular image direction may be found by summing all of the
appropriately-oricnted dJ-operators throughout the entire region for which the illuminant direction is
to be esimated. We don’t need to divide this sum by the number of image points, as the number of

points is constant for all orientations,

The second step in estimating the illuminant direction is to find the direction for which the sum of
al is largest. If we blur the response profile of dI across orientation and then pick the maximum of
the blurred response profile, we accomplish the same (esult as the regression used in the theery. The
blurring smoothes out any random variations in the sums of df, and allows us to pick the oricntation
wiﬂ1 the maxinium sum, and thus mean, of d1. The portion of the algorithm dealing with finding the

illuminant direction is diagrammed in figure 3-5.

Surface convexity. The theory for estimating surface convexity along a particular direction
(whether the surface is curving toward the viewer, or away from the viewer) stated that if 7 was
positive when measured along a direction which is toward the illuminant then the surface is convex®
if d/ is negative then the surface is concave, Similarly, if dI is negative when measured away from the

illuminant, then the surface is convex, otherwise it is concave.

This comparison may be made by creating a set of reference signals which specify whether each
direction is toward or away from the illuminant. Such a signal would be ~+1 if the direction is toward
the illuminant, and —1 otherwise. Such a signal could then be compared to the sign of dI along
the same direction to determine the convexity of the surface; if both df and the reference signal

have the same sign then the surface is convex, otherwise it is concave. This comparison operation is

SThe 180° ambiguity in illuminant direction shown by both people and this algorithm results here in the “crater illusion”,
ie, if we decide that the illuminant is actually in the mirror-image position then we get a reversal of convexity also.
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Figure 3-6. Localization of contours, detection of smooth occluding contours, determining whether regions
should be joined together.

diagrammed in figure 3-5. To determine whether the surface is convex, concave or a saddle surface
one only need examine the estimates of convexity along various directions at a point to see whether

they are all convex, all concave, or mixed (implying a saddle surface).

Detecting Smooth Occluding Contours, Region-Joining Algorithms

The theories of detecting smooth occluding contours and of determining whether or not the regions
on cither side of a contour join together smoothly may be diagrammed and described in a manner

similar to the above algorithms. Figure 3-6 shows diagrams of these portons of the -algorithm.
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However, the use of the constraint contour gives on shading to determine surface shape, and the
estimation of three-dimensional shape from an imaged contour are not easily diagrammed, as they
involve integration of information from several points along an imaged contour. In the next section of
this chapter the workings of these algorithms will be iltustrated by going through specific examples of

their application.

Detecting smooth occluding contours. The theory developed in the previous chapter
showed that we may determine whether or not a particular contour is a smooth occluding contour
(such as found at the edge of the image of a sphere) by examining the surface orientation estimates
made from local shading information along the contour. If the surface orientation estimates show that
the surface is "rolling off” in the manner that defines a smooth occluding contour, then the contour

may be taken to be a smooth occluding contour; otherwise it is not.

Thus determining whether a contour is a smooth occluding contour is straightforward if we have
available reliable estimates of surface orientation. If the estimates (especially the slant) were known to
have a significant variance, it would be desirable to be cautious about such identifications, because the
mis-identification of a sharp contour as a smooth occluding contour can cause serious errors in later
estimatcs of surface shape. However, if we adopt the strategy of identifying only those areas with the
largest slant estimates and most appropriate tilt estimates as smooth occ]tiding contours then we can
obtain arbitrarily reliable identifications of smooth occludin g contours, at the cost of failing to identify
a significant portion of them. As long as a reasonable fraction of the smooth occluding contours are
identificd, there seems to be no gfeat penalty incurred by failing to identify some of these contours,

and no false information is introduced into the system? .

Joining surfaces together. In theory chapter it is shown that the determination of whether

or not the two regions on either side of a contour join together smoothly can be made in the same

"Io this algorithm the estimate of surface slant requires calculation of o2, the variance of the distribution of surface
curvatures. The calculation of this constant used here requires the identification of smooth occluding contours — which
seems to require the estimation of slant. There is no problem however, as the largest values of |[V21/1] will correspond
to the most slanted regions of the image regardless of the value of aﬁ, s that the most reliably-identified smcoth
occluding contours can still be found.
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manner as the determination of whether or not a contour is a smooth occluding contour. The two
regions on either side of an imaged contour must join together smoothly if the shape-from-shading
estimates of surface orientation arc the same along both sides of the contour, If the estimates are
not the same, then the regions on either side of the imaged contour cannot join together smoothly.
Thus if local estimates of surface orientation can be made along both sides of a contour3 then we can

determine with virtual certainty whether or not the two regions join together smoothly.

8l.e., there is shading information, and the surfaces are not planar or cylindrical
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3 Evaluating The Algorithm

In order to evaluate the performance of the algorithm it is important that it be tested on both
natural and synthetic images. Synthetic images allow a carcfully controlled, noisc-free test of the
algorithms, while natural images provide a critical test of the algorithms performance under real-

world conditions.

The algorithm described in the previous section has been applied to a number of natural and
synthetic images, allowing cvaluation of the performance of the algorithm. This section presents and
discusses scveral examples where the shading and contour information in an image were used to es-
timate the shape of the surfaces in the image. From these examples one may obtain a clear impression

of the performance and capabilitics of the algorithm.

In the following examples, the images for which shape was estimated were typically 50 X 50 pixels
in size, with the largest being the Tuckermans Ravine image, which was 100 X 80 pixels. The filters
which were convolved with these images were 11 X 11 pixels, giving a support of 121 pixels. The
images for which the iiluminant direction was estimated were approximately 200 X 200 pixels, and
the images for which contours were localized were typically 400 X 400 pixels. The filters used for

these images were typically 21 X 21 pixels, giving a support of 441 pixels.

3.1 Shape From Local Shading

The estimation of surface orientation from local shading information is an important part of the
theory, and so deserves considerable examination. The slant (depth component) and tilt (image-plane
component) of surface orientation have been estimated for synthetic images of a sphere and an cllip-
soidal object (a "Hindenburg" shape), hnaées of several natural objects, and an Electron Microscope
(EM) image. The success at recovering surface orientation from these images indicates that local

shading may be used to give significant information about surface shape.

Artificial Images. Synthetic images of a sphere and an ellipsoidal shape were used in order to
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allow a carcful examination of the local shape-from-shading estimators. These imagcs are shown in

figure 3-7 (A).

Because it is difficult to graphically show the surface orientation estimates for an object in such
a manner that the correctness or incorrectness of the estimate is apparent, the surface orientation
estimates produced by the algorithm (slant and tilt) were converted to another form (p = dz/dz
and ¢ = dz/dy) and then were integrated, yiclding map of the relative depth for the surface. This
depth map was then converted into a line drawing which shows the relief of the surface, a graphic
representation of the surface which has been found to give people a good impression of the estimated
shape. Figure 3-7 (B) shows such relief maps, corresponding to the sphere and cllipsoidal shape
images of figure 3-7 (A), and figure 3-7 (C) shows relief maps of the shape estimated using a local
analysis of the shading information in the images of figure 3-7 (A). The steps of conversion to p, g
and then integrating to form a depth map are not part of the theory under discussion here, but merely
a step taken to provide the reader with an easily-interpreted graphic representation of the estimated

surface shape.

The Ieft portion of figure 3-7 (C) shows the surface shape estimate for the sphere image. It can be
seen that for the sphere image this cstimation strategy works well; in the error analysis section an ex-
ample will be shown in which the deviation from spherical is less than 0.01%. The right side of figure
3-7 (C) shows the surface shape cstimate for the image of the ellipsoidal shape, a figure with unequal
surface curvatures. It can be seen that for this image the estimate of surface shape is qualitatively
correct, although the overall relief of the surface is somewhat underestimated. In the cllipsoidal image
of figure 3-7 (A) the arrangement of unequal surface curvatures somewhat cancels the effects of the
foreshortening, thus any local analysis of the shading “sees” somewhat less foreshortening in the shad-
ing than it would if the curvatures were equal. As predicted by the theory, this partial cancellation
leads to underestimation of the slant of the surface. Because of this intrinsic underdetermination of
shape by shading (sec scction 2 of chapter 2), any local analysis of shading ir formation will produce

such an underestimation of the relief of the surface (chapter 4 discusces the fact that people also
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Figure 3-7.  (A) Images of a sphere and an ellipsoidal object. (B) Relief maps showing a side view
of the shapes of the objects whose images appear in (A). (C) Result of applying shape-from-local-
shading algorithms to estimate shape for the images in (A). Lef? side. Shape estimate for the sphere
image. The shape is successfully recovered. Note that illuminant direction and surface albedo are not
used, and thus need not be known. Right side. Shape estimate for the image of the ellipsoidal object.
The estimated shape is qualitatively correct, and corresponds closely to the shape perceived by human
subjects. The slant of the estimated surface is somewhat underestimated because the unequal surface
curvatures partially cancel the effects of foreshortening, as predicted by the theory.
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underestimate the relicf in this situation).

These two synthetic images conform to the assurnptions of the theory. The fact that the slant
and tilt estimates are as predicted by the theory demonstrates that the mathematics of the theory are
fundamentally sound. Making conclusions about the geaeral applicability of the theory on the basis of
testing on synthetic images has a significant potential problem, namely that the synthetic images may
not be typical of natural images in some critical manner. It does not appear that the assumptions of
the theory are overly restrictive (see section 3 of chapter 1), however the only real test is to apply the

estimation methods to images of real-world scenes,

Natural Images. In order to test the performance of the algorithm on images of real-world
scenes, four natural images were selected for processing: a picture of a log, a picture of a rock, a close-
up picture of a young woman (Lisa), and a mountain scene, the headwall at Tuckermans Ravine?® .
Digitized versions of the rock and log pictures are shown in figure 3-8 (A) and 3-8 (B). Figure 3-8
(C) shows a picture of Lisa, and the digitized close-up view of her face for which a shape estimate
was made. Figure 3-8 (D) shows a picture of Tuckermans Ravine, and and the digitized image of the

headwall for which an estimate of shape was made,

As described previously, the estimates of slant and tilt cannot be displayed in such a manner that
the correctness or incorrectness of the estimates is apparent. Therefore the slant and tilt estimates were
converted to dz/dz and dz/dy and integrated to obtain the relative depth of the surface, which can

be satisfactorily displayed. This process in illustrated in figures 3-9 and 3-10.

Figure 3-9 shows (A) the digitized log image, (B) a relief map of the cstimated slant of the surface,
and (C) a relief map showing a side view of the surface shape estimated for the image, produced by
integrating the estimated slant and tilt of the surface to obtain relative depth. The estimated slant of
the surface is shown by the relief map in 3-9 (B); the higher areas of the surface shown in this figure
correspond to portions of the image in which the surface is facing the viewer, ;avhile the lower portions
®Tuckermans Ravine is one of two majce ravines on Mt. Washington, a member of the Presidential range in New

Hampshire and the tallest mountain in the eastern United States. Tuckermans ravine is famous for downhill skiing, it
is generally considered the steepest slope (averaging 60° for long distances) commonly skied on this continent.
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Figure 3-8.  (A) Digitized image of a log. (B) Digitized image of a rock. (C) A picture of Lisa,
and the digitized portion of this image for which shape was estimated. (D) A picture of Tuckermans

ravine, and the digitized portion of this image (the headwall) for which an estimate of shape was
made.

INTENTIONAL DUPLICATE EXPOSURE
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igure 3-8.  (\\) Digitized image of a log. (B) Digiuzed image of a rock. (C) A picture of Lisa,
and the digitized portion of this image for wihich shape was estimated. (D) .\ picture of Tuckermans
ravine, and the digitized peruon of this image (the headwall) for which an estimate of shape was
made.

INTENTIONAL DUPLICATE EXPOSURE
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(B) a relief map showing the estimated slant of the surface

"

(A) The digitized log image
relief areas in this representation correspond to

Figure 3-9.
(high-

regions facing the viewer, low-relief regions

from the viewer), and (C) a relief map showing a side view of the surface
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to regions slanting away
estimated for this image.
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Figure 3-9. (A)Thcd@hhcdk@imaga(B)ardkfnmpshowmgUu:mumawdshntofmcsuﬁmm
(high-relief arcas 1n this representation correspond to regions facing the viewer, low-relicf regions
to regions slanting away [rom the viewer), and (C) a relief map showing a side view of the surface
cstimated for this image.

INTENTIONAL DUPLICATE EXPOSURE
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correspond to regions in which the surface slants away from the viewer. Figure 3-9 (C) shows a side
view of the estimated surface shape; it is clear from this figure that this estimated shape is the correct

one.

The slant map of figure 3-9 (B) gives the impression of containing all the information necded to
recover the shape of the log; it secms that we only necd to "puff up” this slant map to obtain the
surface shape shown in figure 3-9 (C). If the surface has no "twist" in it, ie., that [[py,|| = 0
everywherce on the viewed surface, then the slant map shown in figure 3-9 (B) is by itscif a sufficient
representation of the surface shape. This fact may be important in understanding the representations
of shape built by the human visual system even though this condition is is not true of all surfaces.
Examples of surfaces without such twist are shown in figure 1-6 (A) - (D), while the surfaces in figure
1-6 (E) and (F) demonstrate surfaces with considerable twist in them. Note that we have already made

the assumption that || p,,|| is negligible in developing equation (10), the expression for d21.

Figure 3-10 shows (A) the digitized rock image, (B) a relief map of the slant estimated for the
surface, and (C) two views relief map showing the surface shape estimated for the rock image, as ob-
tained by integrating the slant and tilt estimates, Again, it is apparent that the estimated surface shape
corresponds to the human percept of shape for thesc images. The estimated surface shape is also quite
accurately the objectively correct surface shape. The fact that shape is successfully estimated for both
the log and rock images, neither of which have uniform albedo, Lambert‘an reflectance function or

distant point-source illuminant, demonstrates the robustness of the theory.

Figure 3-11 shows (A) the digitized picture of Lisa, and (B) a relicf map of the surface slant es-
timated for the Lisa picture. No relief map of the estimated surface shape is shown because the step of
integrating slant and tilt estimates (a step which is not part of this theory, but done only to allow the
reader to evaluate the estimated shapc) proved difficult to do because of the complexity of the surface
shape. If a relief map was desired for such complex surfaces, it would be better to use a relaxation-
type integration algorithm rather than the one-pass, serial algorithm employed here. See Rosenfeld

and Kak 1976. As before, in the slant-map representation regions with higher relief face toward the
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Figure 3-10.  (A) The digitized rock image, (B) a relief map showing the estimated slant of the
surface (high-relief arcas in this representation correspond to regions facing the viewer, low-relief

regions to regions slanting away from the viewer), and (C) a relicf map showing a side view of the
surface estimated for this image.

INTENTIONAL DUPLICATE EXPOSURE
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Figure 3-10.  (A) The digitized rock imaze, (B) a relief map showing the estimated slant of the
surface (high-relief areas in this representation correspond (o regions facing the viewer, low-relief
regions to regtons slanting away from the viewer). and (C) a relicf map showing « side view of the
surface cstimarted for this image.

INTENTIONAL DUPLICATE EXPOSURE
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viewer, lower relief regions facc away from the viewer. Note that again, as with figures 3-9 and 3-10
all important details of the surface shape scem to be available in this representation; for instance, the
structurc of the nose and eycbrow ridges is plainly visible. Thus it seems that for human faces the

slant estimate alone might serve as a reasonable representation of surface shape.

Figure 3-12 shows (A) the digitized image of Tuckermans ravine, (B) a rclicf map showing a side
view of the estimated surface shape, obtained by integrating the slant and tilt estimates, and ©) a
topographic map of the Tuckermans ravine area in which the imaged area is outlined and the camera
position marked, together with a refief map showing the estimated surface shape as it would be seen
from above. This relicf map may be dircctly compared to the outlined arca of the topographic map.
Comparing the topographic map with the estimated surface shape, we sec that the roll-off at the top of
figure 3-12 (B) and the steepness of the estimated surface are correct for this surface — this area of the

ravine has a slope which averages 60°. And people ski down this!

Looking at the original image, it seems that the lower right portion of the image has considerably
more relief than is estimated. In comparing the estimated shape with the outlined area in the
topographic map, we sce that there is indeed greater relief in the lower right-hand of the image,
confirming our visual impression. The underestimation of relief in this portion of the image when
using only shading information will allow a demonstration of the impcrtant role of imaged contours
in determining shape. In the lower right portion of the image is a region of markedly different albedo,
which in fact generates a contour as defined in this algorithm. In order to produce a correct estimate
of shape for this image, it is necessary to locate the contours which bound this region, and then use
them to constrain the estimate of shape. This will be accomplished in the following sections of this

chapter.

An Electron Microscope image. In addition to natural images, an electron microscope (EM)
image was selected. Ikeuchi and Horn 1981 have measured the reflectance function for this image, and

found that the image intensities may be reasonably well described by

I=k(N-v)~!
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Figure 3-11.  (A) The digitized image of Lisa and (B) a relief map showing the estimated surface
slant in this image (high-relief arcas in this representation correspond to regions facing the viewer,
low-relief regions to regions slanting away from the viewer). The integration of estimated slant and
estimated tilt to show surface shape proved impossible because of the complexity of this surface.
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Figure 3-12.  (A) The digitized of Tuckermans ravine, (B) a relief map showing a side view of
the surface estimated for this image, and (C) a topographic map of the Tuckermans ravine area in
which the imaged area is outlined and the camera position marked with a small dot, together with a
relief map showing the estimated surface shape as seen from above. This relief map may be directly
compared to the outlined area of the topographic map. Comparing the topographic map with the
estimated surface shape, we see that the roll-off at the top of (B) and the stecpness of the estimated
surface are correct for this surface. Comparing the estimated surface to the topographic map of the
area, or to our own impression of the shape of the surface, we see that the relief of the lower right-
hand portion of the image is underestimated. We must use both the shading and the contour informa-
tion in this image before the relicf of this portion of the image can be correctly recovered. The use of
the contour information to constrain the estimate of shape is accomplished in the following sections.

INTENTIONAL DUPLICATE EXPOSURE | e
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Figure 3-12.  (A) The digitized of Tuckermans ravine, (B) a relief map showing a side view ot
the surface estimated for this image, and (C) a opographic map of the Tuckermans ravine area in
which the imaged area is outlined and the camera position marked with a small dot, together with a
relief map showing the estimated surface shape as scen from above, Tl his relief map may be directly
compared to the outlined arca of the topographic map. Comparing the mpovmplm map with the
estimated surface shape. we see that the roll-off at the top of (B) and the stecpness of the estimated
surface are correct for this surface. Comparing the estimated surface (o Lh\, topographic map of the
area, or to our own impression of the shape of the surface, we sce that the relief of the lower right-
hand portion of the image is underestimated. We must use both the shading and the contour informa-
UmnndnsmumcbdmxUkrcmformnpommnofmcina%canbeuxwwbwfancmd ‘The use of
the contour mformation to constrain the estimate of shape is accomplished m the following sectioas.

INTENTIONAL DUPLICATE EXPOSURE
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where k is approximatcly 0.8. If we carry out the required computations, we sce that the tilt is still
the dircction along which d?7 is greatest, and the 2 component of the surface normal is approximately
proportional to V2//1, as in normal images'? . Therefore we can expect to obtain a reasonable shape
estimate for EM images using the estimation techniques we developed for normal images. Figure 3-13
(A) shows this image and the portion of the image for which shape was cstimated. People can use the
shading information in EM images to perceive shape, as figure 3-13 (A) shows. This fact is surprising,
because these images look very much like photographic ncgatives, and people are very poor at using
the shading in ncgatives to determine shape. This image therefore is a critical test of the similarity

between the human use of shading and this theory.

Figure 3-13 (B) shows a relief map of the slant estimated for the surface, and figure 3-13 (C) a relief
map showing a side view of the cstim;xtcd surface shape, again obtained by integrating the slant and
tilt estimates for this image. It can be scen that the estimated surface shape is quite accurate. The
success of the shape estimation theory on this image i; of special significance bacause of the bizzare
nature of EM images. The fact that both people and the theory presented here function successfully
on such an unnatural image and not on photographic negatives (which are superficially similar to EM
images) has important implications for understanding the human perception of shape, as discussed in

chapter 4.

10See the discussion of EM images in chapter 4, especially figure 4-3.
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Figure 3-13.  (A) An Electron Microscope image of resin nodules on a flower of cannabis sativa, and
the portion of the image for which shape was cstimated, (B) a relief map showing the estimated slant
of the surface (high-relief areas in this representation correspond to regions facing the viewer, low-
relief regions to regions slanting away from the viewer), and (C) a relief map showing a side view of
the surface estimated for this image. The fact that both people and this algorithm can correctly use
the shading information in Eleztron Miciuscope images, but not in photographic negatives (which are
superficially similar to EM irnages), has important implications for understanding human vision.



PENTLAND ’ 107 COMPUTATION OF SHAPE

Figure 3-13.  (A) An Electron Microscope image of resin nodules on a flower of cannabis sativa, and
meponmnofdw1wmgemrwhkhsmmcwuswﬁmamd(B)anﬂkfnmpshowmgLhcudmamdSMnc
of the surface (high-relief arcas in this representation correspond to regions facing the viewer, low-
relief regions to regions slanting away from the viewer), and (C) a relief map showing a side view of
the surface estimated for this image. The fact that both people and this algorithm can correctly use
the shading information in Electron Mictoscope images, but not in nhotographic negauves (which are
superﬁdaﬂysnnﬂarU)Ekihnagcﬂ,hashnponantunp]kadonsfbrundcrmandingluunan\ﬁﬂon.

INTENTIONAL DUPLICATE EXPOSURE
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Figure 3-14. Examples of illuminant dircction bemng found for digiuzed images of natural objects (a rock
and a log). The cllipses show the estmated illumnant direction.

3.2 Finding The [lluminant Direction

The illuminant dircction portion of the algorithm has been applied to several synthetic and natural
images (Pentland 1980, 1982a, 1982b). On synthetic images of a sphere illuminated from various
dircctions, the algorithm performs correctly — as it should in instances where the image fits the
assumptions of the theory perfectly. On natural images the estimated illuminant direction was com-
pared to the direction of the sun. Figure 3-14 shows two examples of digitized images of natural

objects (a reck and a log), together with two cllipses which show the estimated light direction.

In every natural image but one, the cstimated and actual illuminant directions are the same to
within experimental accuracy (about 415°). In the one case in which the illuminant direction was
crroneously estimated, people also err in their judgment of illuminant direction — in fact both the
algorithm and people give the same estimate of the illuminant direction for this image. 1 he next chap-
ter discusses the similarity between human perception of the illuminant and the estimate produced by

this algorithm.
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Figure 3-14. Examples of illuminant direction being found for digitized images of natural objects (a rock
and a log). The cllipses show the estimated illuminant direction.

3.2 Finding The Illluminant Direction

The illuminant dircction portion of the algorithm has been applied to several synthetic and natural
images (Pentland 1980, 1982a, 1982b). On synthetic images of a sphere illuminated from various
directions, the algorithm performs correctly — as it should in instances where the image fits the
assumptions of the theory perfectly. On natural images the estimated illuminant direction was com-
pared to the direction of the sun. Figure 3-14 shows two examples of digitized images of natural

objects (a rock and a log), together with two ellipses which show the estimated light direction.

In every natural image but one, the estimated and actual illuminant directions are the same to
within experimental accuracy (about 4-15°). In the one case in which the illuminant direction was
erroneously estimated, people also err in their judgment of illuminant direction — in fact both the
algorithm and people give the same estimate of the illuminant direction for this image. The next chap-
ter discusses the similarity between human perception of the illuminant and the estimate produced by

this algorithm.

INTENTIONAL DUPLICATE EXPOSURE
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3.3 Location And !dentification Of Contours

In order to apply the shape-from-shading techniques used in previous sections of this chapter, we
must first identify regions of differing albedo. After the boundary between such regions has been
found and its type (smooth occluding, surface marking, ctc) determined, we may then estimate shape
separately for cach region and then "hook them together” properly. In addition, the imaged contour
within such a region is important in the estimation of shape, as shown by the theory and demonstrated
by the Hindenburg illusion, presented in the introduction to this thesis. Thus it is of great importance
that we be able to (1) locate imaged contours, and (2) determine whether or not they are smooth

occluding contours (the type of contour found at the edge of an image of a sphere).

The second section of this chapter describes algorithms for locating contours, and then determining
whether or not the contour is a smooth occluding contour. These algorithms have been applied to
several synthetic images, and have performed admirably. However the locatior: and identification of
contours is well known to be much easier in synthetic images than in in natural images. Therefore
several natural images have been processed, as a critical test of the algorithms ability to locate and

identify contours.

Location of contours. The process of locating contours may best be shown by stepping through
some examples. Figure 3-15 (A) shows the Henry Moore sculpture which sits in the M.L.T. Great
Courtyard. Figure 3-15 (B) shows the zero-crossings of V2 calculated for this image, as per Marr
and Hildreth 1980. These zero-crossings can be seen to localize many more "contours” than those
we would like to consider. In figure 3-15 (C) shows those zero-crossings segments with a significant
average slope across the zero-crossing. It can be seen that these contours correspond quite closely
to people’s intuitive definition of "contour”, and that these contours are the one we need to find in
order to be able to apply our shape-from-shading algorithm. Similarly, figure 3-15 (D) shows the
Lisa picture, figure 3-15 (E) shows the zero-crossings of V21, and figure 3-15 (F) shows the zero-

crossing segments with a significant average slope across the zero-crossing. Figure 3-15 (E) shows
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many "weak" zero-crossings due to image noise. Again, the contours of figure 3-15 (F) scem to be the

correct ones, as well as corresponding closely with peoples intuitive notion of an image contour.

The number of zero-crossing scgments with a particular slope across them is a relatively smooth,
monotonic function of the slope across the zero-crossing segment. Typically, the number of zero-
crossing segments with a particular slope declines rapidly as slope increases up to a certain point
above which the number of zero-crossing segments is relatively constant regardless of slope. The
decline of the number of segments with increasing slope fits well with the hypothesis that these seg-
ments are due to noise, whereas a constant number of zero-crossing segments for any particular slope
is to be expected for zero-crossings which correspond to imaged contours as the difference in light
reflected from adjacent imaged surfaces has a uniform distribution. Thus the threshold for discarding
weak zero-crossing segments is set at the slope above which the number of ZCro-crossing segments is

constant.

Further examples of contour localization are shown in figure 3-16. Figures 3-16 (A) and (C) show
LANDSAT!! imagery of fields in North Dakota and Kansas. Figures 3-16 (B) and (D) show the con-
tours localized this imagery (sce Pentland 1980). In (B) and (D) the contours are overlayed as black
lincs on the image itself, in order to show the correspondence between the image and the localized
contours. It is notoriously difficult to define reasonable contours in LANDSAT imagery, because the
signal (inter-field differences) is the same size as the noise (the inter-pixel variation) (see Richardson
and Pentland 1976, Pentland 1977, Kauth ef o 1978); typically only people are able to discern the
field structure. This extremely poor signal-to-noise ratio makes the accuracy of contour localization!?

in these examples all the more impressive.

Identification of smooth occluding contours. The theory chapter showed that smooth
occluding contours could be differentiated from other contours by the surface orientation estimates

on cither side of the contour. It was proven that this differentiation cannot identify all smooth
11 ANDSAT is NASA's earth resources survey satellite.

12Contour location was compared to ground-truth maps gathered as pant of NASA’s LACIE (Large Area Crop Inventory
Experiment).
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Figure 3-1S.  (A) Moore sculpture, (B) zero-crossings, (C) the localized contowss. (D) The Lisa
image, (E) zero-crossings, (F) the localized contours.

INTENTIONAL DUPLICATE EXPOSURE
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Figure 3-15.  (A) Moore sculpture, (B) zero-crossings, (C) the localized contours. (D) The Lisa
image, (E) zero-crossings, (F) the localized contours.

INTENTIONAL DUPLICATE EXPOSURE
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D

Figure 3-16.  (A) and (C) show LANDSAT imagery of fields in North Dakota and Kansas. (B) and
(D) show the contours localized in this imagery (sce Pentland 1980).

INTENTIONAL DUPLICATE EXPOSURE
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occluding contours, because the slant may not be absolutely dezermined but only estimated. Thus
this identification strategy will misidentify some contours with vnusual surface shape configurations
or unusual surface textures unless we are cautious, that is, identify only those contours which we are
most certain of at the cost of missing the others. Because misidentification of sharp contours as smooth
occluding contours can result in serious mistakes, it it important to only identify those contours bor-
dered by the largest slant values and most appropriate tilt values as smooth occluding contours. Such
an identification criterion can result in reliable identification of a significant portion of the smooth
occluding contours in both synthetic and natural images, and thus provides significant information

about shape.

Figure 3-17 presents two natural images for which the contour type has been estimated. Figure 3-
17 (A) shows the Henry Moore sculpture, and figure 3-17 (B) shows the image of Tuckermans ravine,
The contours localized in the Moore and Tuckerman images are shown in figures 3-17 (B), and 3-17
(E), respectively. The identified smooth occluding contours are shown in figures 3-17 (C) and 3-17 (F).
The smooth occluding contours appear to be correctly identified, as can be scen from this figurel3 |
although in the more complicated Moore image many of the smooth occluding contours have been
missed. The performance of this algorithm on these test images supports the claim that many of the

smooth occluding contours in an image may be rcliably identified in this manner.

13The correctness of the identification of the left-most portion of the Moore sculptures’ bounding contour may be
debated; however its surface orientation is certainly near m/2, 50 even if incorrect this error is not serious.
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Figure 3-17. Determination of contour type. Figure 3-17 (A) shows the Henry Moore sculpture,
figure 3-17 (D) shows the image of Tuckermans ravine. The contours which were identified for
the Moore and Tuckerman images are shown in figure 3-17 (B), and figure 3-17 (E) respectively,
The identified smooth occluding contours are shown in figures 3-17 (C) and 3-17 (F). The smooth
occluding contours appear to be correctly identified, as can be seen from this figure.

INTENTIONAL DUPLICATE EXPOSURE
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Figure 3-17. Determination of contour type. Figure 3-17 (A) shows the Henry Moore sculpture,
figuie 3-17 (D) shows the image ol Tuckermans ravine.  The contours which were identified for
the Moore and Tuckerman images are shown in figure 3-17 (B, and figure 3-17 (F) respectively.
The identfied smooth cecluding contours are shown in figures 3-17 (C) and 3-17 (). The smooih

occluding contours appear to be cortectly identified. s can be seen from this figure.

INTENTIONAL DUPLICATE EXPOSURE
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3.4 Shape From Contour And Shading

We have developed a theory which shows how three-dimensionally interpreted contour may be
used to constrain the interpretation of surface shape from shading, yiclding a correct estimate of
shape. Unfortunately, it is difficult to produce a simple diagram of how such constraint may be imple-
mented, as was done with the other portions of the theory. In licu of such a diagram, the algorithm
can perhaps best be explained by demonstrating its action in several examples. Thus this section will
first demonstrate the performance of the shape-from-contour-and-shading portion of the algorithm on

several synthetic images, and at the same time cxplain the operation of the algorithm.

Figure 3-18 shows three examples of contour and shape together in images of the "Hindenburg"
shape, shown without contour in part (A) of this figure. In (B) and (C) of this figure, the addition of
contour to the shaded image gives a correct impression of the surface shape, however in (D) the addi-
tion of contour leaves the impression of shapc unaffected!4 . These examples are especially interesting
because they show that the human visual system uses some inter-constraint from contour and shading,
and that this inter-constraint is sufficient to recover shape in some cases but not in others. Because
these examples arc so interesting, they were selected to demonstrate the functioning of the estimation

algorithm.

We may use local shading information to determine the tilt of the surface and the convexity with
great confidence, however there is a wide range of surface slants which are possible for any given
pattern of local shading information; thus we may only estimate the slant of the surface. Because only
an estimate is possible, there are a wide range of reasonable interpretations of the surface shape. We
can illustrate the range of possible surface shape interpretations using the Hindenburg image of figure
3-18 (A) as an example. The extremes of interpretation for this image are illustrated by figure 3-19
(A) and 3-19 (B). Either of these shapes, and all the shapes intermediate between them, are possible

interpretations of 3-18 (A).

14Note that in (C) the contours are simply iso-intensity lines from the shading, and thus objectively the shading plus
contour image contains no more information about shape than the shading image alone; yet the shading alone does
not give the correct impression of shape. Thus the interaction of contours with shading must be more than the simple
addition of information about shape.
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Figure 3-18. Pmt@ﬂofmmfgum,mcPﬁmknbmgwnhﬁumngMnaghcsavmyﬁmhnmt$mn
of shape. Part (B) of this figure gives a much greater (and more correct) three-dimensional percept
of the shape, as does (C). Part (C), howeser. contains no more nformaton about shape than (A),
as the only difference between (A) and (C) is that one of the iso-intensity contours in (\) have been
rnadcl;ﬁghtcrin(C).U))dcnunmtnﬂcsduulhc;Ncscnccofhnagedcontoursdocsnotahvayshcu)dle
pcrccptofshape.T1ﬂsinlagcconuﬂnsrnorccontoursthan(CD.andinfhc[thccontoursgivcaddidonal
information about shape in a way that the contour n (C) doesn't, and vet (D) gives only a very flat
impression of shape.

INTENTIONAL DUPLICATE EXPOSURE
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Figure 3-18.  Part (A) of this figure, the Hindenburg with shading alone, gives a very flat impression
of shape. Part (B) of this figure gives a much greater (and more correct) three-dimensional percept
of the shape, as does (C). Part (C), however, contains no more information about shape than (A),
as the only difference between (A) and (C) is that one of the iso-intensity contours in (A) have been
made brighter in (C). (D) demonstrates that the presence of imaged contours does not always help the
percept of shape. This image contains morc contours than (C), and in fact the contours give additional
information about shape in a way that the contour in (C) doesn’t, and yet (D) gives only a very flat
impression of shape.
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Figure 3-19.  (A) shows a low-relicf interpretation of surface shape which is locally consistent with
the shading evidence. (B) shows a high-relief intcrpretation of surface shape which is also consistent
with the shading. These two interpretations show extremes of the range of surface shapes which
are locally consistent with the shading information. (C) and (D) show the imaged contours from
figure 3-18 (B) and (C) projected onto the low-relicf interpretation of surface shape provided by the
shading. It can be seen that the requirement that these curves be planar is not consistent with this in-
terpretation of surface shape, in fact this interpretation of surface shape requires a violation of general
position. (E) and (F) show the imaged contours from figure 3-18 (B) and (C) projected onto the high-
relief interpretation of surface shape provided by the shading. It can be scen that the requirement that
these curves be planar is consistent with this interpretation of surface shape. (G) and (H) show the
imaged contours from figure 3-21 (D) projected onto both the high- and low-relief interpretations of
surface shape provided by the shading. It can be seen that the requirement that these curves be planar
provides no constraint on the interpretation of surface shape in this image.
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The three-dimensional interpretation of imaged contour developed in chapter 2 section 5, con-
strained the three-dimensional shape of the contour gencrator to be regionally planar. Let us scc how

such a planar curve fits with shape interpretations (A) and (B) of figure 3-19.

In figures 3-19 (C) and (D), we see the imaged contour of figurcs 3-18 (B) and (C) projected down
onto the surface shape interpretation of 3-19 (A). As can be scen from this figure, if we accept this
low-relicf interpretation of surface shape then the curve generating the imaged contour cannot be
planar; it must contain significant curvaturc oriented exactly away from the viewer, so that it cannot
be seen in the image. Thus the low-relief interpretation of surface shape is inconsistent with the
planar, maximum-likclihood interpretation of the contour generators three-dimensional shape. In
fact, the low-rclicf interpretation requires a violation of general position in that significant features of

the contour generator are hidden by being exactly lined up with the line of sight.

Figures 3-19 (E) and (F) show the imaged contour projected down onto the high-relief interpreta-
tion of surface shape, figure 3-19 (B). In this figure the three-dimensional shape of the contour gener-
ator is planar, as required by the maximum-likclihood interpretation of the imaged contour. Thus the
high-relief interpretation of surface shape is consistent with the maximum-likelihood estimate of the
contour gencrators three-dimensional shape, and requires no violation of general position. Therefore
in this example the interaction of the planarity of the contour generator with the tilt and convexity
determinations obtained from shading results in a unique, and correct, interpretation of surface shape

in figures 3-18 (B) and (C). This is consistent with the human percept for these images.

How does this algorithm function in figure 3-18 (D), where the human visual system was unable
to use the imaged contour to correctly estimate surface shape? Figure 3-19 (G) and (H) show the con-
tours from figure 3-18 (D) projected onto both the high- and low-relief interpretion of surface shape.
It can be seen that both interpretations of surface shape are consistent with the planar, maximum-
likelihood estimate of the contour generator. Thus these imaged contours provide no constraint on
the shading-obtained qualitative surface shape in this image. This failure is predicted in the theory;

equation (20) which expresses the constraint between contour and shading information becomes
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degenerate for contour generators which are parallel to the image plane; i.e., which run perpendicular
to the tilt of the surface, as is the case with the contours in figure 3-18 (D). Thus the functioning of the
algorithm in this example is also consistent with the human percept. The similarity of the algorithms

performance to the human perception of shape is discussed in chapter 4 section 2.

Contour and shading in a natural image. The image of Tuckermans ravine was used in
the portion of this chapter which evaluated the local shape-from-shading estimators. The result of es-
timating surface shape for this image is shown in figure 3-12 (B). Looking at the original image (figure
3-12 (A), or better, figure 3-8 (D) which shows a larger poriion of the ravine), it seems that the lower
right portion of the image has considerably more rclicf than is cstimated. This underestimation was
confirmed by comparing an aerial view of the estimated surface shape to a topographic map of the
area, shown in figure 3-12 (C). The underestimation of the relief in this image when using only shad-
ing information allows a demonstration of the important role imdged contours play in determining

shape.

In the lower right portion of the image (shown in figure 3-20 (A)) is a region of markedly different
albedo, which generates a sharp contour as defined by this algorithm (the previous section of this
chapter showed the location and identification of the contours in this image; the sharp contours found
in this figure are shown as solid lines in figure 3-20 (B), the smooth occluding contour is shown as
dotted linc). We can use the contours which bound this region to obtain a more correct estimate of

shape.

The sharp contours around the region of markedly differing albedo form an ellipse-like shape. The
estimate of orientation for the plane in which this contour is estimated to lie is shown by figure 3-
20 (C) (which may be thought of as a tin-can lid with a nail through it). Using equation (20), we
then calculate that the region of the image for which this contour gives constraint must have the same
orientation as the contour plane itself. We may therefore replace the shading-derived surface orienta-
tion estimates with these new estimztes of surface orientation, taking care to join them smoothly with

the shading-derived estimates of surface orientation, as no discontinuities in surface orientation were
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Figure 3-20.  (A) The image of Tuckermans ravine (figure 3-8 shows the context of this image),
(B) the contours located and typed in this image. Dotted contours have been identified as smooth
occluding contours, solid contours are sharp occluding contours. (C) The estimated orientation of the
osculating plane containing the sharp occluding contour, (D) a relief map showing a side view of the
estimated surface shape. (E) a topographic map of the Tuckermans ravine area in which the imaged
area is outlined and the camera position marked with a small dot, together with a relief map showing
an aerial view of the estimated surface shape which may be directly compared to the outlined area of
the topographic map. Comparing the topographic map with the estimated surface shape, we see that
the estimated surface shape is correct. Thus the interaction of the shading and contour information in
this image has allowed the shape of the imaged surface to be correctly recovered.

INTENTIONAL DUPLICATE EXPOSURE
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Figure 3-20.  (A) The image of Tuckermans ravine (figure 3-8 shows the context of this image),
(B) the contours located and typed in this image. Dotted contours have been identified as smooth
occluding contours, sulid contours are sharp occluding contours. (C) The estimated orientation of the
osculating plane containing the sharp occluding contour, (D) a relicf map showing a side view of the
csumated surface shape. (E) a topographic map of the Tuckermans ravine area in which the imaged
arca 1s outlined and the camera positon marked with a small dot. together with a relief map showing
an aerial view of the cstimated surface shape which may be directly compared to the outlined arca of
the topographic map. Comparing the topographic map with the estimated surface shape, we see that
the estimated surface shape is correct. Thus the interaction of the shading and conteur information in
this image has allowed the shape of the imaged surface to be correctly recovered.

INTENTIONAL DUPLICATE EXPOSURE
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indicated by the shading. We may now integrate using this new estimate of slant and tilt to produce a

new relicf map showing a side view of the estimated surface shape, figure 3-20 (D).

We may comparc this cstimated shape with the actual shape of the imaged region. Figure 3-20 (E)
shows the cstimated shape as viewed from above, together with a topographic map of the arca. The
.region corresponding to the image is outlined, and the camera position is marked. Comparing the
estimated shape with the topographic map, we sce that there is an impressive agreement between the
two. Thus the addition of contour information has greatly improved the accuracy of our algorithm. It
is clear that the addition of contour information has also greatly improved the agreement between the

estimated surface shape and the impression of surface shape we obtain when viewing the image.
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3.5 Robustness And Error Analysis

Scale and the computational theory: Contours. The sclection of a scale, that is, the
specification of the size (variance) of G(z, y), has an influence on the validity of some of the assump-
tions of the theory, and on the algorithms sensitivity to image noise. For instance, Marr and Hildreth
1980 have analyzed how zero-crossings of V2G(z, y) ® I'(z,y) = V?I(z,y) are influenced by
image noise as a function of scale. They found that the larger the size of G(z, y), the less the effect of

a specific amount of image noise.

A similar analysis was carried out for the contour localization algorithm developed here. The
results of this analysis are illustrated in figure 3-21. Part (A) of this figure again shows the Moore
sculpture image, and part (B) shows the same image after the addition of a large amount of uniformily
distributed noise. The signal-to-noise ratio in (B) is one, so that performance on this image is a
severe test of the stability of the contour localization algorithm. Part (C) shows the zero-crossings
for the original image, (A), using a filter with a support of 121 pixels and a center region four pixels
across. Shown below the zero-crossings is the distribution of zero-crossing slope, with number of zero-
crossing segments along the vertical axis, and slope (cquivalent to d2 across the contour) along the
horizontal axis. Part (D) of this figure shows the zero-crossings of the noisy image, (B), again using a
filter with a support of 121 pixels. Below this is shown the distribution of zero-crossing slope for the

noisy image.

Comparing the distribution of zero-crossing slopes in (C) with that in (D) we see that as noise
is added to the image the proportion of zero-crossings classified as noise by the threshold rule also
grows. This fact adds creedence to the claim that the zero-crossings discarded by the threshold rule are

primarily due to noise.

Part (E) of figure 3-21 shows the contours localized in the original Moore image, i.c., those zero-
crossings segments with slope greater than the threshold, and part (F) of figure 3-21 shows the con-

tours localized in the noisy Mocre image. This example shows that contours localized in this manner
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Figure 3-21.  (A) The Moore sculpture image, (B) The same image after addition of uniformily
distributed noisc, so that the signal-to-noise ratio is one. (C) The zero-crossings for the original image,
(A), and the distribution of zero-crossing slope, with number of zero-crossing segments along the
vertical axis, and slope (equivalent to d2I across the contour) along the horizontal axis. (D) The
zero-crossings of the noisy image, (B), and the distribution of zero-crossing slope for the noisy image.
Comparing the distribution of zero-crossing slopes in (C) with that in (D) we see that as noise is added
to the image the proportion of zero-crossings classified as noise by the threshold rule also grows. This
fact adds creedence to the claim that the zero-crossings discarded by the threshold 1ule are primarily
due to noise,

INTENTIONAL DUPLICATE EXPOSURE
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Figure 3-21.  (A) The Moore sculpture image, (B) The same image after addition of uniformily
distributed noise, so that the signal-to-noise ratio is one. (C) The zero-crossings for the original image,
(A), and the distribution of zero-crossing slope, with number of zero-crossing segments along the
vertical axis, and slope (equivalent to d*7 across the contour) along the horizontal axis. (D) The
zero-crossings of the noisy image, (), and the distribution of zero-crossing slope for the noisy image.
Compaﬂngdwcﬁﬁnbudonofzmnfnﬁgngﬂop%in(C)wd01mann(D)wesccUuuusnoﬁehaﬂdcd
tomehmgcmcpnmonmnofmmnxmﬁngCM$MCdmrmsebymednuhddrMcaBogmw&1hm
fact adds creedence to the claim that the zero-crossings discarded by the threshold 1ule are primarily
due to noise.

INTENTIONAL DUPLICATE EXPOSURE
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are stable even for the extreme signal-to-noise ratio of one. Figure 3-16 showed the performance of
this algorithm in two naturally occuring cases where the signal-to-noise ratio is one. If we compare
the unthresholded zero-crossings in (C) and (D), we sce that there is a substantial, cven qualitative
difference causcd by the addition of this much noise. Thus if we are to obtain a consistent description
of the contours in a viewed scene despite varying noise conditions we cannot use unthresholded
zero-crossings; it scems that the thresholding operation must be applied in order to obtain a stable

description of the scene.

Another important aspect of robustness is scale invariance; we must obtain similar descriptions of
the contours in a viewed sccne as we move closer or farther from the objects in the scene. Without
such invariance, we would require a scparate description of each object at every possible viewing
distance, and could not perform a recognition task without first knowing the distance to the viewed
object. Figure 3-22 shows how the localized contours vary with scale. Parts (A), (B) and (C) of figure
3-22 show the zero-crossings of the Moore sculpture image at three different scales, each one octave
apart. The filter used to generate (A) had a center region four pixels across, for (B) the filter had a
center eight pixels across, and for (C) the filter had a center sixteen pixels across. The zero-crossings
produced by these three filters is identical to the zero-crossings which would be produced by the
smallest filter convolved with an image taken at one, two and four times the actual distance to the
Moore sculpture. Parts (D), (E) and (F) show how the localized contours (thresholded zero-crossings)
vary for these three filters or distances. It can be seen from this figure that although the unthresholded
zero-crossings vary considerably with distance, the localized contours (thresholded zero-crossings)

remain quite stable.

Scale and the computational theory: Shading. Marr and Hildreth 1980 have shown how
the relatively large support of the VG filters such as used here act to reduce the effects of noise,
Because the shape-from-shading estimators developed here use the same filter, one would cxpect that
they would also benifit from the noise-reducing averaging effects of filters with such large supports.

In addition, however, the size of filter selected affects the truth of the assumptions that the cross-term



Figure 3-22.  Invariance of contours with scale or viewing distance. (A), (B) and (C) show the zero-
crossings of the Moore sculpture image at three different scales. The filter used to gencrate (A) had a
center region four pixels across, for (B) the filter had a center eight pixels across, and for (C) the filter
had a center sixteen pixels across. The zero-crossings produced by these three filters is identical to the
zero-crossings which would be produced by the smallest filter convolved with an image taken at one,
two and four times the actual distance to the Moore sculpture. Parts (D), (E) and (F) show how the
localized contours (thresholded zero-crossings) vary for these three filters or distances. Tt can be seen
from this figure that although the unthresholded ZEro-crossings vary considerabl'y with distance, the
localized contours (thresholded Zero-crossings) remain quite stable.

IAPE
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Puy and that the third derivatives of p(u, v) are zero.

In developing an expression for the second derivative of image intensity, it was assumed that the
third derivatives of the surface p(, v) with respect to the co-ordinate system (u, v) were zero, and
that ||pyy}| = 0. This assumption is, of course, not always true of real surfaces. When we pick a
scale of examination (i.e., a particular G(z, y}). however, we also limit all of the derivatives of image
intensity. This can be shown by convolving an image consisting of a single delta function of unit

amplitude with derivatives of G(z, y):

6(z,¥) @ G(z, y) = G(z, y)
6(z,y) ® dG(z, y) = dG(z, y)
8(z, ¥) @ d*G(z, y) = d’G(z, )

The convolution of the delta function with the various filters G, dG, or d’G gives the maximum
values of the 0t%, 1%t 29 derivatives for a fixed amplitude of §. Thus if we pick a filter with small third
derivatives, we will be observing a surface N(z, y) with at most those third derivatives, as

I(z,y) = G(z,9) @ I'(z, y)

=(Glz,¥) ®N'(z,9)) - L
= N(:I:, y) ‘L

Thus the third derivatives of p(u, v) can be made arbitrarily small by choosing a large enough G. The

same arguments apply to minimizing [|p.,||.

We can carry out an investigation similar to the one shown in figures 3-21 and 3-22 using the shape-
from-shading algorithm devcloped here. The results of such a study are shown in figure 3-23. Two
different levels of uniformly distributed image noise were added to an image of a sphere. The size of
these images was 200 X 200 pixels, and the the V2@ filter had a center 21 pixels across. The signal-
to-noise ratios used were infinite (no noise), ten-to-one, and one-to-one, The shape was then cstimated
for each of these images, and the resulting estimates integrated to produce an estimated surface shape.

The estimated surfaces are shown in the relief maps of figure 3-23 (A), (B), and (D).

The no-noise case produced a shape estimate whose relief map is shown in figure 3-23 (A), The

estimated shape is perfect to within the numerical error expected for the type of integration program
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used. The deviation from spherical averaged 0.0094%within the central 150° of the surface, increas-

ing somewhat near the edges.

The ten-to-one signal-to-noise ratio case produced a shape estimate whose relief map is shown in
figure 3-23 (B). As can be seen, "gullies” have appearcd in the sphere, although the overall shape is
still fairly spherical. The deviation from spherical is averages 10.15%over the central 150° degrecs.
The size of this error, however, appears to be largely a function of the integration procedure, and not
of the estimator itself. Figure 3-23 (C) shows the difference between a perfect sphere and the shape of
figure 3-23 (B). It can be seen that in the central region the error is very small; it is only as one gets
further from the center that th. errors build up, causing the gullies. Because the integration program
starts in the center and "builds" the surface radially by adding successive patches of surface, it appears
that what is happening is that once a small error is made, the integration program carries it along and
adds to it, thus causing the gullies and an overall trend toward higher error as one gets further away

from the center,

The one-to-one signal-to-noise ratio case produced a shape whose rclief map is shown in figure 3-
23 (D). As can be seen, the gullies have deepened, and the general spherical shape further degraded,
In this case the deviation from spherical averages 26.37%over the central 150° degrees. While this
level of performance is poor, it should be remembered that both this case and the ten-to-one case are
very difficult tests of the algorithm. Additionally, use of a different integration program seems likely to

significantly improve these results,
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Figure 3-23.  Two different levels of uniformily distributed image noise were added to an image
of a sphere. (A) shows the no-noise case; the estimated surface shape is nearly perfect. (B) shows
the surface shape estimated in a ten-to-one signal-to-noise ratio image. The deviation from sherical
is 10.15%(C) shows the difference between a perfect sphere and the shape shown in (B). As can
be seen, the errors are very small in the center and increase as one moves toward the edge. This
pattern of error scems to implicate the integration procedure, rather than the shape estimator, as the
major source of error. (D) shows the surface shape estimated in a one-to-one signal-to-noise ratio
image. The deviation from spherical averages 26.37%. While this level of performance is poor, it
should be remembered that both this case and the ter-to-one case are very difficult tests of the algo-
rithm. Additionally, use of a different in.egration program seems likely to significantly improve these
results.
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Figure 3-23.  Two different levels of uniformily distributed image noise were added to an image
of a sphere. (A) shows the no-noise case; the estimated surface shape is nearly perfect. (B) shows
the surface shape estimated in a ten-to-one signal-to-noise ratio image. The deviation from sherical
is 10.15%(C) shows the difference between a perfect sphere and the shape shown in (B). As can
be seen, the errors are very small in the center and increasc as one moves toward the edge. This
pattern of error scems to implicate the integration procedure, rather than the shape estimator, as the
major source of error. (D) shows the surfacce shape estimated in a one-te-one signal-to-noise ratio
image. The deviation from spherical averages 26.37%. While this level of performance is poor, it
should be remembered that both this case and the ten-to-one case are very difficult tests of the algo-
rithm. Additionally, use of a different iniegration program seems likely to significantly improve these
results.

INTENTIONAL DUPLICATE EXPOSURE



Chapter 4

Human Perception

1 Introduction

The task of this thesis has been investigate how it is that the human visual system is able to estimate
surface oricntation from a single, unfamiliar image, scemingly in a local, bottom-up manner. In
order to investigate this question, we first addressed the theoretical problem. Chapter 1 cxamined the
physics and geometry of the process of image gencration to determinc how image features are affected
by surface orientation and curvature, Chapter 2 then determined how these features could be used to

estimate the surface shape.

After the theoretical problem was dealt with, an algorithm was designed to implement the com-
putations required by the theory. This algorithm was described and evaluated in chapter 3. On the
basis of the examples presented in chapter 3, it appears that useful estimates of surface shape may be

generally obtainable from a local analysis of the image.

We now face the question of how this theory and algorithm relate to the human perception of
shape. In order to answer this question we must first be clear about what claims are reasonable to
make, about what cvidence might bear upon these claims, and about the extent to which we can
potentially prove or disprove such claims. Therefore we must first investigate the logical relations

between the theory, the algorithm, the human mechanism and experimental evidence (see Marr and

Poggio 1977).

1.1 Theory, Algorithm, Mechanism And Evidence

There are three levels at which we can make the claim that our theory corresponds to the human
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visual system:

The Computational Theory. We can claim that both our theory and the function of the human
system are predicated upon the same laws of physics and statistical regularitics of the world in order
to deduce, from the same image information, similar physical interpretations of each image. This is to

claim that the computational theories are the same.

We could test this claim by determining whether the two estimation "machines” (the computer
implementation of our algorithm and the human visual system) obtain the same estimates given the
same images under "normal” operating conditions. Both machines will normally producc the same
estimates if and only if they arc both predicated upon the same assertions about the world and operate
on the same body of image information. Further, we might cxpect that the variance of the estimates
would be corrclated — if they both use the same image information then when one has enough

information to make a confident estimate, so should the other.

We would expect that both estimation machines would make major errors on the same images —
those images which violate the assumptions on which the theory is predicated. The exact nature of the
major mistakes might not be the same, however, because differences in algorithm might cause the two
estimates to break down in different ways. Similarly, we would not necessarily cxpect the two estima-
tion machines to make absolutely identical estimates; small differences may result from limitations
inherent in the particular algorithm or mechanism chosen to carry out the computations of the theory.
An example of this is two computers carrying out the same computation with different precisions
(number of bits per number). The two computers would give typically give slightly different answers
because of round-off errors; and they might give quite different answers for computations involving

very large or very small numbers, yet they both are still performing the same computation.

The Algorithm. We could expand our theoretical claims beyond those of the computational
theory by claiming that our algosithm for carrying out the computational theory was identical to the

algorithm uscd by the human brain. We would then be claiming that (1) both our theory and the
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human system are predicated upon the same information about the world and use the same image
information, and (2) both our algorithm and the human system extract the same output information

through isomorphic transformations of the same image features.

Note that in order to make the notions of "computational theory" and "algorithm" coherent it is
necessary that the term "computational theory" refer only to the generic solution of scene structure
from image data. If we were to interpret the computational theory as being the complete inference
scheme, from image data to interpretation, then the notion of “theory” swallows up the notion of
"algorithm",

If we expand our claims to include a proposal about the algorithm, then we would rcasonably ex-
pect that both our theory and the human visual system would make the same mistakes under the same
conditions, at least under conditions where the hardware or mechanism is in its normal operating
range and thus presumably not contributing significantly to the errors. Further, we would expect that
aur algorithm could account for (or at least be consistent with) many of the sccondary characteristics
of the human visual system. For example, our proposed algorithm and the human visual system

should have similar sensitivitics to changes in image in tensity.

The Mechanism. Finally, we might wish to expand our claims still further to include a descrip-
tion of the mechanism which implements the algorithm. We could then propose that this mechanism
is that used by the human visual system. We would then cxpect to account for anatomical data, and

data from ncurophysiology about neural characteristics.

These then are the three levels at which we can entertain a claim that we have an explanation for
some portion of the human visual system. The first two levels, theory and algorithm, are classically
addressed through psychophysical experiments. The level of mechanism may be addressed through
the disciplines of anatomy and neurophysiology. Therefore the next section will address itself to
the psychophysical evidence conceming similarity between the human visual system and the theory

developed in this thesis, and between the huinan visual system anc the algorithm implementing this
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theory. The last section will deal with similarities between this algorithm and the ncuronal organiza-

tion obscrved in biological visual systems.
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2 Psychophysics

There arc three major portions of the theory which we will investigate as possible theorics of
human perception. These three are
(1) Estimation of surface orientation.
(2) The constraint of contour on shading.

(3) Estimation of illuminant direction.

For each of these three parts of the theory we may make a claim that the theory on which the
human visual system is predicated similar to the theory developed here; and we may also make the
separate (but dependent) claim that the algorithm employed by the human visual system is similar to

the algorithm described here.

Similarity of theory. The preceding discussion showed that the only methods by which we may
comment on the similarity between the ti'xcory of this thesis and the theory on which human vision
is based is to demonstrate (1) that both yicld similar estimates given the same image information,
and (2) that both make mistakes on the same examples (although the mistakes don’t necessarily have
to be the same). Such a demonstration docs not prove that the theories are identical; such definite
proof” appears to be impossible to obtain without exhaustive evaluation of all cases. Even if such
exhaustive comparison were possible, the complexity of the human visual system would insure that
our results would still be open to doubt. Nonetheless, we may still seek strong correlational evidence

of similarity.

Similarity of algorithm. The preceding discussion also showed that the methods available to
show similarity between the algorithm developed in this thesis and the algorithm used by the human
visual system are (1) demonstiate that they both make the same mistakes, and (2) demonstrate they
both have the same "secondary characteristics”, e.g., similar contrast sensitivity. Again, we cannot
conclusively demonstrate equivalence of algorithm, but again we can hope to obtain strong correla-

tional evidence of similarity.
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2.1 Estimation Of Surface Orientation: Similarity Of Theory

Chapter 3 presented several examples of surface shape being cstimated using a local analysis of
shading information. For the shading-only examples (figurcs 3-7, 3-9, 3-10), the estimates of surface
shape are very much like the shape people perceive. This is true even for images such as the
Hindenburg image (sce ﬁgufe 3-7) where people incorrectly perceive the surface shape. From these
examples it appears that the theory of this thesis may provide a uscful explanation for the human

perception of shape from shading information.

Unfortunately, even in these simple images pcople have considerable additional information avail-
able to them, including the global configuration of shading, the bounding contour, general knowledge
about object shape and so forth. Thus the similarity of the perccived shape to the shape estimated by
this theory might well be the result of a different analysis of the image which also yields a generally
correct estimate of shape. Brady (1981) has suggested that an algorithm such as developed by Horn
and Ikcuchi, using a few standard reflectance functions, might provide such an alternative explaina-
tion; and Ullman (1981) raised the question of whether the data might reasonably be accounted for
by a relatively crude, qualitative shape-from-shading algorithm. Thus before we can claim that this
theory provides an account of one aspect of human perception we must (1) demonstrate that people
are able to use a local analysis of shading information to determine surface shape, and (2) demonstrate

that there are aspects of human perception of shape which cannot be accounted for by other theories.

Can people use local shading information to estimate surface shape?. In order
to answer this question the following experiment was designed: Four small, square patches were cut
from an image of a sphere. The size of the patches was chosen to be just large enough that changes
in the shading were visible, thus allowing the second derivative of image intensity to be observed. No
contour or texture information was present in the patches. Subjects werc told that they were going to
be shown several small patches cut from some pictures, and that they were to indicate the orientation
of the imaged surface by positioning the image patch at the appropriate place (the place with the same

surface orientation) on a drawing showing the bounding contour of a sphere. They were not told the
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illuminant dircction, however all subjects who reported considering the illuminant direction made the
correct assumption about where the illumination was coming from. Subjects were then presented with
the image patches one at a time, they indicated the surface orientation for each patch, and then the

patch was removed from sight. Presentation order was randomized.

Figure 4-1 shows the results of this experiment. The surface tilt estimated by the subjects (N =
12) is plotted against the true surface tilt. The error bars show the standard deviation of the estimates.
As can be seen, the subjects showed impressive accuracy in estimating the surface tilt; in fact the
corrclation between true and estimated tilt is 0.9926, so that the variable of surface tilt accounts for
98.5%of the variance in this data. The dotted line in figure 4-1 shows the regression line between the

true and estimated tilt; the coefficients are different from zero at the p = 0.01 confidence level.

The slant cstimates cannot be so easily determined from this data, because the experimental
paradigm makes some slant cstimates unlikely — for instance, people resist placing the patches on
top of the occluding contour, so that the largest surface slants will never be chosen. Subjects show
a similar resistance to placing the patches in the center of the occluding contour, so that the smal-
lest surface slants are never chosen. If we take the range of slants subjects will actually chose to
correspond to the range 0 — /2, then we can obtain a value for the subjects cstimates of surface

slant. In this casc the subjects showed a bias of 4-6.69°, and a standard deviation of 16.35°.

This experiment demonstrates that people are able to utilize purely local image information to
determine the orientation of the surface. The fact that people are able to estimate surface shape from
a local analysis of shading, and the fact that the estimates of shape produced by such an anaiysis
are similar to the human percept make it reasonable to believe that people obtain information about

surface shape through use of the local analysis of shading developed in this thesis! .

Errors in shape perception. Do the errors people make in estimating shape from shading oc-
cur as predicted by the theory? Two examples have been found of images for which people are unable

to correctly utilize shading: one is when curvature and foreshortening “"cancel” as in the Hindenburg

It is not reasonable to claim that people use only local analysis to determine surface shape, of course, as will be
discussed in the following sections.
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illusion (seec figure 0-1 (A)), and the other is the inability of pcople to correctly utilize the shading in

photographic negatives. In both of these cases the theory predicts the human percept.

Underestimation of surface relief. In the Hindenburg illusion the relief of the surface is un-

derestimated, so that the figure looks flatter than it actually is. In this image shading is the only source

of information about surface shape interior to the bounding contour. This underestimation of relief

is as predicted by the theory, as demonstrated by figure 3-8 which shows the result of local estimation

of shape for the Hindenburg image. Thus both the human visual system and this theory show the

same underestimation of surface relief vhen surface curvature is arranged so as to partially cancel

the effects of foreshortening. This underestimation would not be expected if people were performing
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a global analysis of the shading information; for such an analysis the relationship of curvature and

foreshortening is a matter of complete indifference.

Inability to use shading in photographic negatives. Pcople are very poor at using the
shading in photographic negatives, as demonstrated by figure 4-2 (A). On the Ieft side of figure 4-2
(A) is a normal image, while on the right side is a photographic negative. The photographic negative is
disturbing to most pcople, and the shape of the surface is unclear even though the contour and texture

information is the same as in the positive image.

In photographic negatives, the image intensity of a surface patch ¢ with a Lambertian reflectance

function, albedo p;, and illuminated with intensity A is
I= m;'.ix(Pj)‘(Nj' L)) — piA(N; - L)

Thus the point k& where & = max;(p;A(N; - L)), i.e., the brightest point in the original image, now
assumes an intensity value of zero, and the darkest point in the original image now becomes the
brightest point. Let us investigate what happens to our estimator of slant with photographic negatives.

The slant estimator was

—4
2
o =a~(n-v—,—’n —oﬁ) (16)

where zy is the z component of the surface normal, equal to the arccosine of the surface slant, and
o2 is the variance of the surface curvature distribution. This estimator of Z v was predicated upon the

following identities, as explained in chapter 2 section 4:

d’ _ pNd®N-L
I~ pAN-L
_ —K1(Puy - L)du? — kp(pyy - L)dv?
N-L
—r3(N - L)du? — k3(N - L)dv?
N-L
= —rldu? — k2dv?

The key steps in deriving this relationship is that the terms p, A and N - L all divide out. But if we
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substitute the cquation for image intensity we derived for photographic negatives we find:

I= max{p,MN; - L)) — pid(N;- 1)

dl = —p,\(dN; - L)
4% = —p\(dN; - L)

and thus
d?I —pAd?N - L
T - max;{p;A(N; - L)) — pAN - L
. p(“cl(puu ) L)du2 + K‘Z(pvv ) L)d‘l)2)
© maxy{pi(N; L) —pN- L

......

We can go no farther in the chain of deductions we forged before; the terms stubbornly refuse to dis-
appear, and thus the quantity V27/ /I, wihich before was a measure of the slant of the surface, is now
a meaningless quantity. Thus when applied to photographic ncgatives, this algorithm for estimating

surface shape produces erroneous results (see also figure 4-3).

Thus both the theory and human perception are unable to utilize the shading in photographic
negatives. Note that peoples inability to utilize shading information in negatives cannot be explained
by the fact that brightness relations are reversed in negatives fi.e., they are generally brighter at
edges and darker where the surface faces the viewer), because people are fully able to utilize shading
information in elcctron microscope images, which have the same brightness relations as photographic

negatives, as shown by figure 4-2 (B) (Jeft side).

The failure of human perception on negatives, but not on electron microscope images, rules out
any theory in which shading information is used in only a rough, qualitative manner. Any such theory
would perforce perform as well on both photographic negatives and electron microscope images. In
addition, the ability of people to utilize the shading in EM images shows that people cannot be using
shading in a Tkeuchi and Horn style algorithm, because such an algorithm functions by making use of
a few standard reflectance maps. EM images have a reflectance map radically unlike the reflectance
map of any naturally occuring scene, thus it is implausable that the human visual system has somehow
provided such a reflectance map. Further, if by some chance people had use of such a reflectance map

they would be able to adequately function on photographic negatives — because, as shown by Ikeuchi
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and Horn, their algorithm is quite insensitive to small changes in the reflectance map so that the
difference between the map for an EM image and that for a photographic negative should produce
only a small difference in the cstimated shape, instead of the relatively massive collapse experienced

by people.

Thus there are three points of evidence which indicate similarity between the theory of this thesis

and the theory which accounts for the human perception of shape from shading information:
(1) Pcople are able to use local shading information to estimate surface shape.

(2) Estimates of surface shape made from a local analysis of shading as per this theory arc similar to

human estimates of shape — even for EM images.

(3) Both make crrors on the same images: when curvature cancels foreshortening, and on
photographic negatives.
These three points appear to indicate that people do in fact make substantial use of a local analysis

of shading information, as described in this thesis, to determine shape.

2.2 Estimation Of Surface Orientation: Similarity Of Algorithm

One of the more interesting aspects of this theory of local shape estimation is that is does not
work for photographic negatives — just as people cannot use the shading information in photographic
negatives, This observation is evidence of similarity between the theory of this thesis, and that of the
human visual system. An example demonstrating the similarity of algorithm is offered by electron
microscope (EM) images.

Electron microscopes do not produce pictures py a normal imaging process, rather they operate by
bombarding a sample with elcctrons and recording voltage potentials nearby, as diagrammed in figure
4-2 (C). This unusual process produces images where the reflectance function is approximately the

reciprocal of the Lambertian reflectance function, i.e.

I=kN-v)~!
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Figure4-2.  (A) A normal photograph (lef) and its photographic negative (righs). Note that shape is
difficult to perceive in the the negative image, even though both the positive and the negative have the
same contour information. (B) An Electron Microscope (EM) image (leff) and its photographic nega-
tive (right). Note that even though the EM image superficially looks like the photographic negative,
we can casily use the shading information in this image. Further, we seemingly cannot use the shading
information in the photographic negative of the EM image, even though this negative supecrficially
looks like a normal image. (C) Electron microscopes do not produce pictures by a normal imaging
process, rather they operate by bombarding a sample with electrons and recording voltage potentials
nearby.

INTENTIONAL DUPLICATE EXPOSURE
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same contour information. (B) An Electron Microscope (EM) image (les1) and its photographic nega-
tve (right). Note that even though the EM image superficially looks like the photographic negative,
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information in the photographic negative of the EM image, even though this negative superficially
looks like a normal image. (C) Electron microscopes do not produce pictures by a normal imaging
process. rather they operate by bombarding a sample with electrons and recording voltage potendals
nearby.

INTENTIONAL DUPLICATE EXPOSURE
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Figure 4-3, (A) shows the luminance profile for a normal image of a sphere, (B) shows the luminance
profile for an EM image of a sphere, and (C) shows the luminance profile for a photographic negative of
2 normal image. Note that while both (B) and (C) have reversed contrast relative to (A). the profile of (B)
is both narrower than (C) and flatter on the top. (D) shows the valucs of V2/ /1 across the normal sphere
image, (E) shows the values of V?/ /1 across the simulated EM image of a sphere. and (I) shows the values
of V2I/I across the photographic negative of the sphere image. This difference between (F) and D) or (B)
proves Lo be critical when we go to estimate the object’s shape, as the slant of the surface is estimated using
V2i/1. Thus for (D) we correctly obtain a sphere, for the EM image we use (E) and obtain a shape much
like (B), whereas for (F) we obtain only bizzare and inconsistent surfaces. Photographic negatives of EM
images suffer the same fate as photographic ncgatives of normal images, producing values of V"’I/I much
like those shown (I). Thus the shape estimators developed in this thesis produce a correct cstimate of shape
for a normal sphere image, an almost correct estimate of shape for an I{M image of a sphere, and fail for the
photographic negatives of both normal and EM images — which agrees with human perception {see section
4 of the appendix for more detail).

where & is a constant (Ikeuchi and Horn 1981). These imnages look superficially very much like

photographic negatives, as shown by the normal EM image on the left side of figure 4-2 (B).

Due to some quirk of the human visual system, people arc able to correctly perceive shape these
odd images. Further, people are unable to utilize the shading information in the photographic ncga-

tives of EM images, even though negatives of KM images have the same brightness relations as in
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normal images (sce figure 4-2 (A) - on the left is a normal image, on the right a photographic nega-
tive, and (B) — on the Ieft is a normal EM image, on the right the photographic negative of the

image).

The ability of people to use the shading in an EM image is a mistake of the visual system, as such
images are impossible in normal human cexperience. It is however a fortuitous mistake which results
in the correct impression of shape. The inability of pcople to utilize the shading in the negatives of
EM images (which otherwisc look much more like normal images than do EM images) underlines the

accidental nature of peoples ability to use the shading in EM images.

Itis therefore of considerable interest to note that the cstimators of surface shape developed in this
thesis still function with the reflectance function of an EM image — and not with the negative of
an EM image. The correct functioning of the shape estimators on an EM image was demonstrated
in figure 3-13. The reason the shape estimators function with EM images is shown in figure 4-3.
Figure 4-3 (A) shows the Tuminance profile for a normal image of a sphere, figure 4-3 (B) shows the
luminance profile for an EM image of a sphere, and figure 4-3 (C) shows the luminance profile for
a photographic negative of a normal image. Note that while both (B) and (C) have reversed contrast
relative to (A), the profile of (B) is both narrower than (C) and flatter on the top. This difference in
luminance profile proves to be critical when we 80 to estimatc the object’s shape. Recall that the slant
of the surface was found to be inversely proportional to the square root of V2I /I, and so to cstimate
the slant we first computed V2I/I. Figure 4-3 (D) shows the magnitude of V2/ /I across the normal
sphere image, figure 4-3 (E) shows the magnitude of V2T /T across the FM image of a sphere, and
figure 4-3 (F) shows the m.gnitude of V2/ /1 across the photographic negative of the sphere image. It
is clear that (D) and (E) are quite similar, there is only a small difference between them, which leads
to a very slight flattening of the estimated surface in the EM image (i.c., a shape much like the FM
image’s luminance profile). On the other hand, (F) is quite different from (1), so that a shapc estimate
based on (F) would result in bizzare and inconsistent surfaces. Photographic negatives of EM images

suffer the same fate as photographic negatives of normal images, producing values of V2] /I much
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like those shown in figure 4-3 (F). Thus the shape cstimators developed in this thesis produce a correct
estimate of shape for a normal sphere image, an almost-correct cstimate of shape for an EM image of
asphere, and fail miserably for the photographic negatives of both normal and EM images — just like

people {for more dctail sce section 4 of the appendix).

The fact that both the estimators of this thcory and the human visual system make the same
fortuitous "mistakes" which result in the correct interpretation of the shading in EM images, and
incorrect interpretations for photographic negatives, is strong evidence of the similarity between the

algorithm developed here and the algorithm employed by the human visual system.

2.3 Constraint Of Contour On Shading: Similarity Of Theory

We have secn that pcople are able to-use local shading to estimate surface shape — and that people
make systematic crrors in the interpretation of shape when only shading information is present. In
chapter 2 we showed that the three-dimensicnal interpretation of imaged contour may be used to
constrain the shading-derived estimates of surface shape, and examples of this constraint were shown
in chapter 3. This constraint provides a sufficient explanation of the human perception of shape, both

correct and incorrect, in all of the cxamples examined.

The Hindenburg image provides a controlled situation in which we may investigate the interaction
of contour with shading in a situation where the shading alone is insufficient to provide the correct
imprcssioﬁ of shape. Figure 3-18 (A) shows a shading-only Hindenburg image, in which the true relief
of the surface is not apparent. In’ figures 3-18 (B) and (C) a contour has been added to the shading-

only image; this contour brings out the correct relicf of the Hindenburg figure.

Figure 3-18 (C) is intcresting because although it gives a correct impression of shape, it actually
contains no morc information about shape than figure 3-18 (A) which gives a flat impression of
shape. All that has been changed between figures 3-18 (A) and (C) is to distinguish some of the
iso-brightness contours of (A). Because distinguishing some of the iso-brightness contours does not

add any information about shape, this cxample demonstrates that the improved impression of shape
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to the image.

Figure 3-18 (D) shows an example where the addition of contours to the image docs not result in
an improved impression of shape. Thus the addition of contour information is not always sufficient to
show the relief of the imaged surface; any theory of the interaction of contour and shading must be

able to cxplain failures such as this.

Chapter 3 demonstrated how the theory of this thesis uses imaged contour to provide the necessary
constraint to obtain a correct estimate of shape in figures 3-18 (B) and (C), and why the theory cannot
employ the imaged contours in figure 3-18 (D) to obtain an accurate cstimate of shape. A graphic
explanation of how the theory uses contour to constrain the interpretation of shape in these images is
contained in figure 3-19. In these three examples the constraint of contour on shading, as developed in

chapter 2, is sufficient to account for the human percept? .

Several other synthetic images have been cxamined, and in each case this mechanism correctly
accounts for the human percept. Figure 3-20 shows a natural image in which the the contour and
shading information have been used together to produce a correct estimate of shape, an estimate

which agrees with the human percept.

Thus the theory of chapter 2 provides a sufficient account in the examples for which people are able
to employ constraint from contour to determine shape correctly. Further, in those examples where
the theory is unable to use the contour information to determine shape, people are also unable to
make use of contour information. The agreement of this theory with the human percept, on both
examples where people are successfully able to estimate shape and on examples where people incor-
rectly estimate shape, provides strong evidence that the theory by which people employ contour to
estimate shape is similar to the theory developed here. There are of course likely to be several ways in

which people use imaged contour to constrain the interpretation of shape; in light of thesc examples,

2People appear to use certain assumptions in order to interpret line drawings without shading (Stevens 1980), for instance,
that the contours are geodesics or that the surface is "locally cylindrical” in the neighborhood of the contour. In these
examples the contours are not sccn to be geodesics, nor is the surface "locally cylindrical”, thus people seem to make
stronger assumptions about the relationship between contour and surface in the absence of shading than when shading
is present.
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Figure 4-4. The probe sheet given to human subjects in order to estimate illuminant direction. Subjects were
asked to pick the disk whose surface normal (the "nail” stuck into the disk) pointed toward the illuminant.

however, it scems likely that the mechanism discussed here plays a significant part in the process.

2.4 Estimation Of llluminant Direction: Similarity Of Theory

Chapter 2 developed a maximum-likelihood estimator for the illuminant direction; in chapter 3
this estimator was tested on synthesized images and natural images and found to accurately cstimate
the illuminant direction. In order to cor~pare the theory on which this estimator was developed to

the human visual system we must first determine how well pcople can estimate the illuminant direc-
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tion, after we have accomplished this we can compare human performance to that of the maximum-

likclihood estimator (see also Pentland 1979, 1982 a, b).

Human Accuracy at estimating illuminant direction. Subjects (N = 15) were given a
probe shecet which contained pictures of disks at various oricntations, with the surface normal drawn
in. This is shown in figure 4-4. Subjects were then shown a series of pictures of spheres illuminated
from various directions, and asked to pick the disk-probe whose surface normal most closely pointed
toward the illuminant. The results of this experiment show that the human subjects can estimate
both the tilt 77, of the illuminant dircction and the slant o, of the illuminant direction, with a stand-
ard deviation of less than twclve degrees.® This experiment provides us with an lower limit on the
accuracy of the cstimates of illumination direction given by subjects when using the probe-sheet

method, and thus an estimate of the experimental error inherent in this testing situation.

Estimates of Illuminant Direction for Natural Images. The next cxperiment was to have
the human subjects (again, N = 15) usc the probe sheet‘to estimate the illuminant direction for
a series of digitized p:tures of natural objects such as rocks and logs. The photographs of these
objects were made under natural illumination conditions, so that these images of natural objects do
not have a point-source illuminant Digitized pictures were used so that both the human subjects and
our maximum-likclihood estimator, which was implemented on a computer, would receive exactly the

same image information.

Figure 4-5 shows a comparison of the estimates of illuminant direction given by human subjects
and the estimate of illuminant direction given by the maximum-likelihood estimator. The slant com-
ponent of the illuminant direction (the inclination in depth, away from the image plane) and the
tilt component (the image-plane component of the direction) are shown separately. The previous
experiment found that the mean of the estimates given by human subjects had an error of up to ten

degrees when using the probe-sheet method to estimate the illuminant direction in images of spheres.

3This figure of twelve degrees is actually -omewhat better than the subjects ability to estimate local surface orientation
under the same conditions (Stevens, 1979). This shows that the estimates given by subjects couldn’t have been made
by, for instance, determining the surface orientation of the brightest point on the surface.
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Figure 4-5. A comparison of the estimates of illuminant direction given by human subjects and the
maximum-likelihood estimator, for fourteen images of natural objects. (A) shows the comparison for

the tilt component of the illuminant direction, and (B) shows the comparison for the slant component
of the illuminant direction.
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The relationship between the variance of the estimates of illuminant direction given by human

subjects, and the variance of the estimate of illuminant direction produced by the maximume-likelihood estimator.
There is a correlation of 0.63 between the variance of the two sets of estimates, significant at the p < 0.05
level. The dashed line is the linear regression line relating the variance of the two estimation procedures.

*Thus figure 4-5 shows that for images of natural objects, the estimates given by human subjects and

the computer-generated estimates agree to within the experimental error which would be expected

on the basis of the results of the previous experiment. We conciude then that there is no significant

difference between the two estimates of illuminant direction in this experiment.

One further piece of evidence of the equivalence of the theory underlying the human and

maximum-likelihood estimates comes from the variance of the two estimates.

The maximum-

likelihood estimator generates, for each image, a confidence statistic along with its estimate. This

confidence statistic is proportional to the variance of the estimate for that image (given the assump-

tions of the procedure). We can compare. the variance of peoples estimates for a particular picture to

the variance of the maximum-likelihood estimate (as predicted by the confidence statistic).
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Figure 4-6 shows the results of comnparing the variance of the estimates of illuminant direction
given by human subjects to the variance of the estimate of illuminant direction produced by the
maximum-likelihoed estimator. There is a correlation of 0.63 between the variance of the two sets
of cstimates, significant at the p = 0.05 level. The linear regression line relating the human and
maximum-likelihood variance is shown as a dashed line in figure 4-6; the cocfficients of the regression
are significantly different from zero at the p = 0.01 level. The significant relationship between
the variance of the two estimation procedurcs (human and maximum-likelihood) shows that when
one of the two finds enough information in the image to make a low-variance estimate, so docs the
other estimation procedure. This then is evidence showing that the human and maximum-likelihood

estimation procedures utilize equivalent information for making their estimates.

Thus therc are two points of evidence which show that the theory developed in this thesis is
and the method used by human subjects for estimating illuminant direction are based on equivalent

assumptions and utilize equivalent information:

(1) Both give the same estimates (to within experimental error) for both artificial scenes of il-

luminated spheres, and for images of natural scenes consisting of pictures of rocks and logs.

(2) There is a significant correlation between the variance of the human and maximum-likclihood
estimatcs of illuminant dircction. This shows that the two methods of estimaticn utilize cquivalent

image information.

2.5 Estimation Of llluminant Direction: Similarity Of Algorithm

One of the example images is of particular importance, because it is an example where people
incorrectly stimate the illuminant direction. Because people mis-estimate the illuminant direction
in this image, it may be used as a test of the similarity of algorithm. When the image of the rock
shown in figure 4-7 was given to human subjects, they erroneously estimated the illuminant direction
by about 120 degrees (it is actually illuminated from the left top, not the right top as all but two

of the fifteen subjects reported). What is significant is that the estimate given by the maximum
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Figure 4-7. Picture of a rock for which both human estimates of illuminant direction and the maximum

likelihood estimate agreed, but were objectively wrong. Actual illumination direction is top right, not top left

as reported by all but two of the fiffteen human subjects
likclihood estimation procedure agreed with the estimate given by the human subjects, even though
both estimates of illuminant direction were objectively wrong. This image is a case which violates
the assumptions on: which the human estimates of illuminant direction are based; the human estimate
was objectively wrong. The special significance of this case is that it also violates the assumptions of
our maximum likelihood estimation procedure in such a manner that it produces exactly the same

estimate as the human subjects. This is strong evidence that the algorithm by which people estimate

illuminant direction is simiiar to the algorithm describéd here.

2.6 Secondary Characteristics

One of the prime tests of the similarity of algorithm is that the secondary characteristics of the

INTENTIONAL DUPLICATE EXPOSURE
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the assumpuons on which the human esumuates of illuminant direction are based: the human estimate
was objecuvely wrong. ‘The special significance of this case is that it also violates the assumptions of
our maximum likelihood esumation procedure in such a manner that it produces cxactly the same

estinate as the hurman subjects. This is strong evidence that e algorithm by which people estimate

iluminant direction is similar to the algerithin deseiibed here.

2.6 Secondary Characteristics

One of the prime tests of the simdarity of algenthum 1s that the seeondarsy characteristics of the

INTENTIONAL DUPLICATE EXPOSURE
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Figure 4-8. The human spatio-temporal threshold surface, measured using stabilized drifting gaatings (Kelly
1979). . '

two systems must be the same. In the case of vision, the most thoroughly investigated "secondary
+
characteristic” is spatial frequency sensitivity. Thus we should ask whether the algorithm proposed in

chapter 3 has the same spatial frequency sensitivity as the human visual system.

The algorithm proposed in chapter 3 has multiple possible spatial frequency characteristics. If one
considers the V2G(z, y) filter used to measure V7, or the d2G(z, ) filter used to measure d21,
then the scnsitivity to changes in image intensity is best characterized as a sensitivity to the second
derivative of image intensity. If one considers the dG(z, y) filter used to measure df however, then
the sensitivity is best characterized as a sensitivity to the first derivative of image intensity. Thus for
the algorithm to match human data, the human data will have to show sensitivity to both first and

second derivatives.

Good measures of human spatial frequency sensitivity have been available for over fiftcen years,
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Figure 4-9. (A) The cross-section of the "average" receptive field, assuming detection is mediated by an
isotropic detector. This receptive field structure implies that the human visual system may be considered to
be sensitive to the second derivative of image intensity. (B) The cross-section of the "average” receptive field,
assuming detection is mediated by a dircctional detector, as it must be at some stage of the visual system if
the direction of motion is to be discerned. This receptive field structure implies that the human visual system
may also be considered to be sensitive to the first derivative of image intensity. This is not contradictory;
different stages of the visual system may use the input information differently, resulting in both first and
sccond derivative sensitivity.

and these show that humans have an approximately bandpass sensitivity to the rate of change in
image intensity for a fixed stimulus velocity (see Robson 1966 and Kelly 1966). Kelly 1979 recently
reported completing the measurement of the entire spatio-temporal threshold surface, using counter-
phase sine wave gratings which were stabilized on the retina so that both spatial and temporal varia-

tion could be carefully controlled. This threshold surface is shown in in figure 4-8.

Kelly points cut that one may take the inverse Fourier transform of this sensitivity function to

obtain the cross-section of the "average” receptive field, shown in figure 4-9 (A). The cquation of this
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inverse transform is

_ 1 2 2—3
y = 5~(14 62")(1+2?)

In performing this inverse transform one must make an assumption about how sensitivity varics with
direction; a standard assumption is that detection sensitivity is the same for all orientations, which-
results in the symmetric receptive ficld shown. Kelly 1975 and later Marr and Hildreth 1980 point out
that this receptive field structure is well modeled by VzG(z, y), the Laplacian of a two-dimensional

Gaussian. This implies that people are sensitive to the second derivative of image intensity.

People, however, are also able to determine the direction of motion in such detection tasks, im-
plying that the human sensitivity to changes in image intensity must be directional. As shown by
Levinson and Sckuler 1975, the variation in sensitivity for moving sine wave gratings is exactly half
that of counter-phase gratings. They present this result together with other evidence to show that
counter-phase gratings such as used by Kelly are analyzed in the human visual system by independent

motion-sensitive detectors.

Thus it appears that not only the moving sine wave gratings employed by Levinson and Sekuler but
also the counter-phase gratings employed by Kelly are analyzed by motion-sensitive detectors. If we
accept this, then in performing the inverse Fourier transform we must assume that the sensitivity is
dircctional rather than isotropic, and as a result we obtain the asymmetric "average" receptive field

cross-section shown in figure 4-9 (B) (Bracewell 1978). The equation of this inverse transform is
= %(12;-(1 + 2%) — 6z — 362%)(1 4 2?)—*

This receptive field structure is best modeled by a first derivative operator such as dG(z, y), implying

that peoples sensitivity is also proportional to the first derivative of image intensity.

It therefore secems that the human sensitivity to changes in image intensity may be reasonably
characterized by either the first or second derivatives, as typified by the linear operators V"’G(zy) and
dG(z, y), depending on how we conceptualize the detector. If we assume thet detection is mediated

by an isotropic detector, then the sensitivity is best characterized as sccond derivative; if however
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the detector is directional, then the sensitivity is best characterized by the first derivative. Perhaps
this should not be too surprising; different stages of the visual system may make different uses of the
same input, resulting in functionally different sensitivities at the various stages. How the visual system
might reasonably obtain both first and second derivative outputs from the same retinal organization is

discussed in the next section.
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3 Neurophysiology

Chapter 3 described an algorithm for performing the computations required by the theory on a
digital computer. These computations may equally well be carried out by neurons in a biological
visual system (see Ullman 1979). To address the question of whether there is cvidence that they
actually are carried out by a biological visual system, we will first have to propose a biological
implementation of the algorithm, and then compure that implementation to the neurophysiological

evidence.

3.1 Neurophysiology And Measurement Of Image Information

In chapter 3 the measurement of dI, d2I and V2I was discussed. It was not specified exactly
how these quantities were to be calculated, except that they were the results of convolutions with
the image. Such convolutions are exactly analogous to receptive ficlds with sensitivity characteristics
such as are shown in figure 3-1. It is inefficient and costly to have a scparate "retinas” with different
receptive fields, we would rather have a single retina with a limited number of types of receptive field
which we could then combine to produce the desired effective receptive field. One such organization
of receptive ficlds which implements the algorithm of chapter 3 is described here; it consists of three

separate steps:

Step 1. The first step is to construct the circularly-symmetric "on-center” and "off-center” cells
which are known to populate the retina, First discovered by Kuffler 1952, 1953, the response charac-
teristics of these cells were described by Roderick and Stone 1965 a, b, and by Enroth-Cugell and
Robson 1966 as the interaction of a smaller central excitatory receptive ficld with a larger surrounding
inhibitory receptive field, resulting a receptive field structure typified by figure 4-10 (A). Working
from anatomical and neurophysiological data (Cajal 1911, Dowling and Boycott 1966, Boycott and
Dowling 1969) Richter and Ullmar: 1981 have shown that the characteristics of the X~ and Y-type

retinal garglion cells may be closely modeled by subtracting the output of central photoreceptors
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Figure 4-10.  (A) Making circularly-symmetric on-center and off-center retinal ganglion neurons,
whose response is proportional to V[+ = max(V?I,0) and V2~ = max(— V2], 0) respec-
tively, as a consequence of their receptive field shape. (B) Making oriented on-center and off-center
cortical neurons by summing circularly-symmetric on-center and off-center neurons, their response

is proportional (for a fixed stimulus velocity) to d2I} = max(d%}, 0) or d27 s = max(—d?2j,0)
depending upon whether on-center or off-center neurons were summed,
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from the output of the surrounding phatoreceptors.

Accepting these descriptions of the on-center and off-center cells, we find that these cells response
is proportional to the positive and negative portions of V27, that is, the on-center respond propor-
tional to V2I+ = max(V?J, 0) and the cff-center proportional to V2/— = max(—V?2I,0). As
the on- and off-center cells occur across the entire retina, this results in the outputs V2/+(z, y) and

V2I~(z, y) at each point (z, y) in the image.

Step 2. The second step is to combine both on-center and off-center outputs into linear arrays,
by summing the outputs of several of units which lie along a line oriented in a particular direction,
resulting in the receptive ficld characteristics shown in figure 4-10 (B). Cortical neurons with such
a receptive field were first described by Hubel and Wiesel 1962, who suggested that these receptive
fields were the result ot; the summation of the outputs of circularly-symmetric on- and off-center
cells along a particular oricntation. The response of cortical neurons is, of course, conditional upon
stimulus motion as well as stimulus shap.e, and so this reccptive field shape may not be taken as a
complete description of cortical neurons but only as a description of their response to a constant-

velocity stimulus.

The particular receptive field organization shown here was suggested by Bishop et al 1973, Glezer
et al 1973 and Shiller ef a/ 1976a. Shiller et al 1976b suggest that all cortical receptive fields may
be constructed of subficlds of this type. Rose 1979, Daugman 1980 show that the observed corti-
cal neuron receptive field shape can indeed be constructed by the linear summation of circularly-

symmetric on- and off-center neurons,

The spatial frequency versus orientation sensitivity expected of such a receptive field is consistent
with the actual sensitivity data as reported by De Valois et al 1977, 1979. This is important because
it shows that the image information carried by the cell is completely described by its receptive field
response characteristics, as shown in figure 4-10 (B). This is the expected result if the input to these

neurons is the linear summation of circularly-symmetric on- and off-center neurons.

Accepting these descriptions of cortical receptive fields, we find that the response of the cortical
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neurons to a constant-velocity stimulus is proportional to d2I; = max(d?h, 0) if the neuron is
constructed from entirely on-center neurons, or d*I; = max(—d2]), 0) if constructed from entircly
off-center neurons, where @ is the image dircction perpendicular to the dircction along which the

circularly-symmetric neurons were summed.

Step 3. The final step in obtaining the image information required is to combine the responses
of the neurons of steps 1 and 2. If a cells responsc is proportional to the sum (or difference) of the
responses of the ncurdns from steps 1 and 2, then the activity of that cell is a measure of the following

types of image information:

The summed response of on- and off-center retinal ganglion cclls is proportional to [V2I), while

the difference between such cells response is proportional to V27, This is shown in figure 4-11 (A).

Similarly, the summed response of on- and off-center cortical neurons with oricntation @ is |d2]9|,

while the difference between the responses of such neurons is d2J;. This is shown in figure 4-11 (B).

If on- and off-center cortical neurons of orientation 8 are summed with an offset of two-thirds their
width, then the result is |d], and the difference of such neurons is dfy. This is shown in figure 4-11
(C). Obtaining dJ; in this manner is not rigorously exact, as with V2J and d2J;, however it is a very
close approximation as demonstrated by figure 4-11 (D) which compares the receptive field necessary
to exactly obtain dJj to this approximation to dly. As this figure shows, the approximation proposed

here is very good; the diffcrence averages less than 2 percent of the maximum value.,

The receptive fields of the neurons constructed by adding and subtracting the basic oriented cor-
tical neurons of step two correspond quite well to the cortical neuron receptive fields observed by
Shiller et al 1976b. Their S cell type corresponds to the basic cortical neuron receptive field con-
structed in step 2 (figure 4-10 (B)); their S, receptive field is the same as that shown in figure 4-11
(C), and their complex cell receptive field is the same as shown in figure 4-11 (B). All but one of their
remaining receptive field types (S7) are constructed of the S) and S, receptive field types with various

combinations of directionality.
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Figure 4-11. The responsc of a cell is completely determined by its receptive ficld; thus any cell with
a receptive field such as pictured here will carries the image information shown in this figure. Thus we
may use the circularly-symmetric on-center and off-center retinal neurons and the oriented on-center
and off-center cortical neurons to (A) Compute V2I and |V2I|, (B) Compute d%J and |d2J|, (C)
Compute dJ; and |dJ;| The graph in (D) is a comparison between the exact receptive field required to
compute df and the approximation used here. As can be seen, the approximation is a good one.
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For both the X-type retinal ganglion ccll described in step 1, and the simple cortical neuron
described in step 2, the receptive field response characteristics of a cell seem to completely determine
the responses of the cell* . The image information carried by such a cell is thercfore purely a
consequence of its receptive ficld response characteristics. Thus the responses of ncurons driven by
adding or subtracting the output of these neurons will be proportional to one of the types of image

information assumed by the theory of this thesis, and thus a measure of the image information.

The assertion that the response of these cells is proportional to certain image information is a direct
consequence of the organization of the constituent receptive ficlds, and the lincar summing of these
ficlds. We need assume nothing else. Thus any ccll with the receptive ficlds described here will have a

response which is a measure of the particular image information.

What remains uncertain is whether the remainder of the visual system is constructed so as to utilize
this information, e.g., are complex cells responding to 'd% or spatial frequency? They certainly have
tuning curves for both properties; however the correct interpretation of the 1esponse of such a cell
must depend upon how such responses are used by cells later in the system. Thus the answer to
whether or not the information carried by a cell is used must wait until a significantly larger portion of

the visual system is well understood.

3.2 Neurophysiolegy And The Estimation Algorithm

We have seen that the measurement of the required image information (specifically, dJ, d?Jp, and
V2]) is a plausible hypothesis for the early stages of visual processing. Is the estimation of surface

shape as described in this thesis also plausible?

The computations required to estimate surface orientation from shading information are simple
once given the input information. The tilt estimator simply requires comparing the cutput of several
differently-oriented complex-type cortical neurons with aligned receptive fields; the orientation with

the largest response is the direction of surface tilt. Similarly, determining the surface type only re-

4The response of a Y-type retinal ganglion cell is strongly dependent upon temporal aspects of the stimulus; see Richter
and Ullman 1981 for a discussion of the implications this has for the information carried by such cells.
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quires counting the number of oricntations which have zero response within a group of complex cells

with aligned receptive fields.

The estimator of slant proposed in this theory is slightly more complicated. with two operational
components: the receptive ficld structure shown in figure 4-11 (A), censtructed from adding on- and
off-center retinal ganglion cell outputs, and division by the image intensity, /. We have already shown
that the receptive ficld structure is plausible. Division by I is equivalent to Webers Law, and so it

appears quite reasonable to posit such division by I occurring carly in the system.

The simplicity of the required operations, the fact that the image information is available, and the
fact that these operations actually recover surface shape from the image makes it scem likely that these
estimation operations are being performed. Unfortunately, there is little direct neurophysiological
evidence for or against the proposition that the visual system is performing these estimation opera-

tions. We must therefore wait for further neurophysiological evidence.

Summary. [ believe that the relevance of this thesis to the study of ncurophysiology is as follows:

(1) Any neuron in carly in the visual system is performing a local analysis of the image, because its

receptive field is limited.

(2) The theory presented here describes what kind of information about the viewed scene is

theoretically available from such a limited receptive field.

(3) This theory is a working theory which actually recovers information about the shape of the

world by analyzing the data available with a limited receptive field.

(4) This working theory has strong resemblances to well-known structure in the visual system; the
computations are simple and therefore it is plausible that the desired image information concerning

shape concerning shape can be extracted early in the visual system.

From these four points it seems that it is worth examining the hypothesis that neurons early in the

visual system are carrying out the local analyscs of the image suggested by this theory.



Appendix

1 Introductory Calculations

There are some special relationships which hold between d*I and the propertics of the surface,
relationships which we will use in many of the following proofs. We may discover these relations by
expanding the terms of the Hessian of image intensity in terms of 8y, 6, and 2y, (sce the development

of equation (10)):
(d:z: Ty Laz\(dz\ _
dy) Iry Iuy (d )—
p)\((¢u ¢.2)(dz))T —&1(Puu - L) 0 ((¢11 ¢12)(dx))
d21 22/ \dy . 0 —K(Pvy - L) J\\P21  ¢22/\dy

We start by cxpanding the terms of the projection matrix ®, letting ¢; = cosf), s; = sinf), ¢ =

cosf, and s, = sin ;:
¢ =z5 10— 815
$12 = 25 15 + 816
b1 = —zxN 5100 — 1%

b0 = —z5 a8 + ac
If we let now let ¢uu = —pNPuw - L and ¢,y = —pAPyy - L then we may obtain from the Hessian

the following three expressions

L. =K fuu¢%] +K'2§vv¢§1
Iyy = nlfuu¢f2 + n2§vv¢%2
I:ry = Ki¢uuPr1912 + K2$uuP21922

If we expand the various ¢ terms we obtain

2 __ ,—2.22 —1 2.2
1) = 2N cic; — 2z 1025152 + 8183

¢f2 = z‘,J"’cfs% + 2zﬁlclcgslsz + sfc%
#2, = 2 2s2c2 + 225 cico818; + €285
¢2, = zx 8352 — 225 c160815) + cich
drdi2 = 25 °Csce — 25 sie1st + z2x 'sicics — siscs

— =22 — | 2 2
P21¢22 = 2815200 + leslc]s2 — 2y SI1C1C5 — C|8C2
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From these expressions we can obtain the following special relationships:
2 —2.2 | 2 —
Vil=1I.,+ [yy = K'lguu(z,\l 9 + '51) + K’ngr(zN?s% + Cf)

Atey =41,
ITU = (K16uu — st‘vu)zﬁlslcl

whilcate; =0
2
Ir: =n]§uﬂ5% + K26u0CY

e p a—2,2 —22

Iyy R1uu? N 6 +’c2§vvzlv 8
—1 1

Izy =(K/2gl‘va _nlguuzN )SlCl

andate; = s, = +/2/2

K1 —2 .2 K2 —929
Ly = 5 6unlen’e} — s1) + el — )
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2 Proof Of Claims

Claim. Given that Pyuy = Perv = Puvy = Pruw = 0 then d2N is parallel to N, and perpen-
dicular to dN.
Proof

We can show that d2N is perpendicular to dN and parallel to N as follows:

Continuing in our use of the Monge patch defined by p = ue; + ve, + f(u, v)e; to represent

the surface, then
N = —f.e1 — fie2a 4 €3
Vi+7i412

Note that this definition of the surface does not require that < or e, be along a principal dircection,

but only that they lie in the tangent plane to the surface. Therefore any property of the derivatives of
p with respect to u are also properties of the dirivatives along any direction of interest; we need only
change the definitions of e and e, so that e lics along the dircction of interest to demonstrate this.
Letting M =1+ fi + f f, and M,, be the partial of M with respect to u then in the direction e
AN =(—fuM =2 4 MM ),
+ (—AoM 2 MM ey
— %M"3/2Mue3
N —(—fauaM ™V - JuM My — MM - LM M ey
(a2 JoM M — MM MM, ey
- (—%M—W?Mﬁ + %M"‘3/21\/fuu)e3
Because the surface is tangent to the plane of the co-ordinate system (u, v), the partials f, and f, are

zero, M = 1, M,, = 0 and M,,, = 2f,, + 2f,.. Thus
dN = ‘_fuuel + "‘fvue2 d2N = —‘fuuuel _fvuue2 + (fuu + j;m)e(!

If the third derivatives of p are zero then Ny, - N, = 0, showing that d?N is perpendicular to dN,

and d2N points in the same dircction as the surface normal e.
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3 Proofs Of The Propositions

Proposition (Sufficiency). The sccond derivative of any pattern of image intensities can he
accounted for by a second-order surface.

Proof

The sccond derivative of image intensity is specified completely by three numbers, I, I,y and
I;y. The images corresponding to second-order surfaces are described by the Hessian derived in

developing equation (10):
(dz)T Ly I (da:)_
dy Ixy Iyy dy o
p}\((% ¢n)(dx))T —&1(Puu - L) 0 ((¢u ¢12)(dz))
2 ¢2/\dy : 0 —#2(Pvy - L) J\\b21  ¢22/\dy

If any three numbers Iz, Iy and I, = I, can be accounted for by this Hessian, then the proposi-
tion is proved. In fact, it suffices to show that any three numbers I, I, and Iy can be accounted for

by this cquation with the tilt aligned with the y axis, i.e., with 6 == 7/2.
From previous calculations, at &, = n/2 so thatc, = 0

2 2
I:rz = K1{uus] + K26v1Cy
—2 2 —2.2
Ly = KiuuzN 6] + KaguoZ iy 8
—1 —1
Izy = (K'lguuzN — K2$vul )81C]

where ¢uy = —pAPuw - L and ¢, = —pApyy - L. We may assume that €1, K2, ¢y and ¢y, may take

on any values, and 1 > 25,2, —r >0, >

Given any two values for I, I, we can use the above equations expressing thcse quantities in

physical variables to solve for first for ¢2 and s?, and then for K;¢yy Iy Doing this we obtain

2 __ I:r:t—"'clguu 2 n2§vv‘—'I:t::
d= o bus gl e T

K26vy — Kifuu KoSyv = KiSuu

KiSuu == K26py — Jzz — yyz?V
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We then are left with one cquation in two unknown quantitics, 2y and K2¢y:
9 5
I;y = (’ngv - Irr)(zf\/'c?fvv - Iyy)

Thus whatever the values of I ; and I, we may still pick values of zy and x,¢,,, such that the correct

valuc of I, is obtaincd. @
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Proposition (Generality Of A Point-Source liluminant). Given that a surface has a
Lambertian reflectance function, any constant distribution of ilfumination is equivalent to a distant

point source.
Proof

Let us represent the distribution of illumination by the function L(a, 7). where L(o, T} is & vector
pointing in the direction (o, 7) of magnitude cqual to the amount of flux coming from that direction.

Given a Lambertian reflectance function such that for a distant point-source
I=pAN-L

where p\ is a constant, then the image intensity for an arbitrary distribution of illumination will be

= / pAN - Lo, T)dodT

= phzpn / 7 (o, 7)dodT + pAyn / y.(o, 7)dodT + phzn /
o,T o,7 o

z (o, T)dodT

where N = (zn, Un, 2n) and L(o, 7) = (zL(o, 7), y.{o, 7),2.{o, 7). By the mean-valuc thcorem,
this is equivalent to the image intensity which would be caused by a Lambertian surface illuminated

by a point-source somewhere in the hemisphere which is the range of (o, 7),i.c.,
I=p\'N-L
where \* is a scalar, and L* == (z; -, Y.+, 2.+) is a unit vector whose componcnts are

T = / z; (0, 7)dodT
o,T

Y = / y(o, 7)dodT
o,

2z = / 2o, 7)dodT
o,

This result applies throughout all areas of the surface which can "see" all of the light sources (i.e., as
long as the surface is not self-occluding). For a Lambertian surface the equivalent point-source is at

the weighted mcan of the distribution of illumination. e
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Proposition (Illuminant Direction). Under the assumption that change in surface normal is
isotropically distributed, the following regression gives a maximum-likclihood estimate of 7, the tilt of

the illuminant direction within a regicn:

dly )
. I . —l1 dT2
V=[] o
YL
dl,)

where d7; are the means of df over the region along each of n image directions (dz;, dy,),Bisa2 X n

matrix of dircctions (dz;, dy,) and BT indicates the transpose of 4. The illuminant tilt, 7;, is given by

7, = tan™! (':—/11)
. z,

and the full illuminant direction L = (z;, y;,2; ) is given by
- 2 -2 a2
L 73 1 / EL+9L
ry = — _ = 3 I —_— Tl
L k YL k 2L )

k= \/E(dI?) — E(dI)?

where

Proof

If we measure the derivative of image intensity along a particular image direction (dz, dy), we are

are observing

dI = pAdN - L

We will assume that thc mean of dN is zero, because the expected value of dN is zero on average over
all directions in all scenes, and the mean is zero for images of a large class of common objects. Thus
the value of the z component of dN, dz, measured along any one image dircstion, has a zero-mean

distribution, and thus [2(dz), the expected value of dz, is also zero.
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A maximum likelihood estimate of the illuminant tilt can be found by performing a least-squares
regression of the mcan of the distribution of d7 along each image direction onto a model of the
expected variation in the mean as a function of image direction. If we write L = (z7,1,,2.) and ata

point dN = (dz,dy, dz) then
dI = pA\dN - L = p\(dzz;, + dyy;, + dzz1)

E(dI), the expected value of dI along a particular image dircction given n measurements of ¢ along

that image dircction, is

1 n
E(dl) = p\— > (dzdzy + dyy. + dzz.)

n

n ’ n n \
= p\ il zLZdz+yL2dy+zLZdz}' (23)

= pNzLE(dz) + yr.E(dy) + 2.E(dz))
= pMzrdZ + y.dy + 0)

where dz and dg are the mean values of dz and dy as observed along that image dircction, and

E(dz) =0.

Under the assumption that E(dN) = 0, then £dz; = dz and Rdy; = df, where £ is the mean
projected surface curvature and (dz,dy;) the differential step in the image along which dI was
measured. If we introduce a differential dr which may be thought of as the expected magnitude of
dN, i.e., as E(|dN|), then we may also write this as zdr = dZ and ydr = dg, where 24+ yl=1
and z/y = dz;/dy;. Using dr, equation (23) provides a modcl which we may use in a regression to
recover the values z;, = pAz;dr and §;, = pAy,dr, and thus the tilt of the illuminant, as it is cqual

totan—!(4, /%,.). This regression is as follows.

Letting d1; be the average of dI over the region along image direction (dz;, dy;), then our regres-
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sion model is
(d?l\ dz; dy

dl, dzy dy |f ZL

\dT.) \dz. du

If we denote the matrix of directions (dz,, dy;j by 3, and let AT indicatc the transposc of §, then the

maximum likelihood estimate of Z;, and ¥, is the following least-squares regression

(a1,
I, —! . d_Ig
= [ﬁTﬁ] g
YL

\d_ln.

The variance of our cstimate of the illuminant direction can be calculated from this least-squares

regression, giving us confidence intervals for the illuminant direction. It remains to obtain an cstimate
of pAdr in order to obtain z,, y and z;, = /1 — 3 — y? fromZzg and ;.

If we again let dN = (dz, dy,dz) and L = (z, y,2.) then E(dI?), the variance of dT along a

particular image direction is

E(dI) = E(Pz}\2(-‘ﬂl.d$ + yrdy + 21,d2)2)

= E(p2?\2(xid:l:2 + yidy2 + z'fdz2 + 2z y dzdy + 2212, dzdz + 2yLzLdydz))
l n n n
= p2}\2n — l(:v:%‘zti:r:2 + yi Zdy2 —|—zi Edz2

n n n
+ 2z, y. 2 dzdy + 2z 21, Z dzdz + 2y 2, Z dydz)

(24)

and as dz and dy are both indcpendent of dz, and E(d2) = 0, the final two cross-terms vanish.
We now require estimates of the variance of the dz, dy and dz components of @N. Using a sphere
as a model, we find that we may re2sonably set variances Var(dz) = Var(dy) = Var(dz) = dr?,

so that by using the relations zdr = dz and ydr = dg we obtain E(dz?) = z%dr? 4 dr?,
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E(dy?) = y?dr? + dr? and E(dz2) = dr2. Thus from cquation (24)

E(dI?) = p2}\2(zi(:c2dr2 +drh) 4+ vl (y%dr? 4 dr?) 4 22dr? 4 2:1'Ly,,zydr2)
= PPN(ozs.+ yuPdr? + (3 + o, + 2 )ar?)

As L is a unit vector, we then have
E(dI?) = p2?\2((zz1‘ + yy )%dr® + er)
We then note that
E(d])* = (pNdzz,, + dgy.))* = (pMzz, 4 yyL)dr)? = p*\ zz;, + yy, )2dr?
and thus for any particular image dircction we have
E{dI?) — E(dI)? = p*fdr?

We may now estimate zz, y, and 2,
. - / 22 4 a2
_ZL __ _ (33[, -+ yL)
T = % YL = 7 zL=1{/1— _7@'2—

k= phdr = \[E(d?) — E(dI)?

where

This completes the proof of this proposition. e
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Proposition (Surface Convexity). The niaximum likelihood estimate of surface convexity in
a direction (dz, dy), i.c., whether the surface is becomiag closer {concave) or farther (convex) from
the viewer as one moves along that direction, assuming that y, o are identically distributed and that

surface orientation is uniformly distributed, is

convez sgn(zpdz + y.dy) = sgn(dI)
concave  sgn(zrdz + y.dy) 7% sgn(dl)

where L = (z,, yr, 21.) and d/ is measured in the direction (dz, dy)
Proof

Consider the expression for d1, equation (7):

é11 d12\[fdz
dl = pk('—nl(pu . L) ’—Kf‘l(pv : L)) (7)
' 21 $22/\dy
where
(¢11 ¢12) ( cosf, sinﬁj)(z};l 0)( cosf sinﬂ;)
¢ = =
$21 P22 —sind, cos®J\ 0 1/\—sin® cost
and where

01 = angle between the projection of the surface tilt and the direction of the first principal curvature
2n = the z component of the surface normal N = (zn, yn, 2n)

8, = the tilt of the surface

If we assume that 6, zy and 6, are uniformly distributed, then the distribution of surface orienta-
tion and the distribution of oricntation of the principal directions is isotropic from the standpoint of
the viewer and thus the mean surface orientation will be directly toward the veiwer. Thus &, the

- projection matrix, will not affect the mean value of d1.

To show this we note that if 0, is taken to be uniformly distributed, then the first rotation matrix in
¢ will on average be the identity matrix as is as likely that therc be an occurance of a surface with
as an occurance of a surface with —#;, Similarly, the probability of an occurance of a surface with a
particular zy and 6 is balanced by the probability of a surface with zx' and 6, -+ #/2. Thus the mean

surface orientation is directly toward the viewer, and ® has no effect on the mean of d1.
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This means that it suffices to analy.e the simpler equation (S), which gives dI in the surface co-
ordinate system:

dl = pN—~i(py - L)du — ro(p, - L)dv) (5)
From (5) we may obtain
I,=—p\sipy- L I, = —phgyp,,- L (25)

But at the point P in a co-ordinate system tangent to the surface, p, = e, and p, = ey, thus
Pu-L==z andp, L = y;, where L = (z, yy,2.). Ask; and ; arc assumced to be uniformily
distributed,

E(fer]) = E(lsa) = £ > 0

where E' is the expected value operator, and & is the expected magnitude of &y and x,. Thus we may

reduce ecquation (25) to
E(L) = sgn(—k))pNez,  E(I,) = sgn(—r2)pMyL
Because pA& > 0, then on average
Iu Iv
sgn(—k1) = sgn(—=)  sgn(—kz) = sgn(->)
zL YL

Thus on average if dI along some direction is of the same sign as the projection of the illuminant
vector onto that direction, then the surface is convex; if they are of opposite sign then the surface is

concave. Thus on average

convez  sgn(z dz + y dy) = sgn{d])
concave  sgn(zrdz 4 yrdy) 7~ sgn(dI)

where d is measured along direction (dz, dy). e
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Proposition (Tilt of the Surface). Given the smooth, homogencous surface assumed by equa-
tion (10), and I, 5% Iy, Iy 4 0, then the tilt of the surface is the image direction in which the
second derivative of image intensity, d?I, is greatest.
Proof

As in the introductory calculations, we will let ¢, = —pAPuu - L and ¢pp = —pApye - L, and
will adopt the notation ¢; = cos 0y, 51 = sinf), cg = cosf, s, = sinf,. We then recall these results

proven in the introductory calculations:

Atcg = :t 1,
2I.ry = 261¢undi1012 + 2696 0u 21622
= 2('€l§uu - Ing'm.)ZElS]C]

whilcatcy = s = :}:—‘{3

Iyy - Ir.z = K*lfuu(b%l + K’2(vv¢%l
- leuu‘ﬁ?z - ’C2§uv¢gz
= 2('51§uu - vau)z]vlslcl

Thus 2Ly atc; = fliscqualto fyy — Iz ate = 8 = j:lé.
Given I, I, and I, we may solve for the angle 0,, which is the tilt of the surface, as follows.

We know that given I, I, and I, we may obtain thesc quantitites in any other image plane co-

ordinate system (z°, ") which is a rotation of (z, y) by the angle 7. First we note that
dz dy
L.=L% 4%
* “dzt  ds’

I

dz dy
. = I —_— +I _—.
Y zdy' Ydy

The standard rotation transformation is
*
T =zcr + Y8,
*
Yy = —z& + yer
where 8, and ¢, are the sine and cosine of the angle 7, and the inverse of this rotation transformation

is
* L
g=z'c,—y's
y=z'6+y'c
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Thus
dz —c _di. —s dz _
dz* dz dy'
and so
I, = Ic, -+ I3,
I, = —Ls, + Is:
Similarly,
Lo — d(l;+) dz d(I.r') dy
T dz gz* dy dz’
_dly) dz | d(ly) dy
vy T T4z dy* dy dy'
d(Ir') dz d(Iz') dy
II.y. = ry
dz dy’ dy dy
resulting in:

I.‘r:‘:t‘ = IITC?' + [yysg + 212113"(:"'
Ly = 2283 + Iyyeh — 2I,ysrcr
Ix‘y‘ = —I8:¢c; + Iyysrc‘r + L-y(CE - 83)

Thus to obtain 6,, the tilt of the surface, we need to find 7 such that the quantity I, — L+, at
a rotation of the co-ordinates by 7 + /4, is equal to the quantity 2I,++ 0+, at a rotation of the co-

ordinates of 7. That is, we find 7 such that

Lpye—Lpepe = Urrs%r+x/4) + Iyyc(21+1/4) - 2IIys(T+‘l/4)c(‘r+r/4))
- (szCfr+,/4) + Iyys%r+w/4) + 2Ly S/ 2)C(r+2/49)
3 ——211381-01- + 2Iyy.STC-,. + 211![(63 — 812_) —3 II“y”

Using the identities ¢2 — 82 = ¢, and 2s,¢, = $,,, we may reduce this equation to obtain
4 T T q

(Iyy - zz)c(2r+1'/2) - 2Iry5(2r+1r/2) = (Iyy - :1)321 + 2Izyc2'r
then noting that €2, 4»/2 = —827 and 82r.x/2 = C2, We Oblain
—(Iyy - Izz)52'r - 2I.ryc2r = (Iyy - 13)321' + 2Izy521'

and thus

"2(Iyy — L) — 4I:tyc2r =0
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21,
T= ltan—l =
2 L — 1y,

The angle 7 is then the direction of the tilt of the surface. Note that there is an ambiguity of 4 in

Solving for 7 we find

this solution; this reflects the inherent convexity/concavity ambiguity of the imaged surface. Note also

that when Iy = 0 and I, = Iy that both this solution and the tilt are undefined.

This angle is also the direction of maximum @*1. In order to show this, we find the angle 7 for
which I-,- attains a maximum over all rotations of the image plane co-ordinate system. I, is equal

to

I;‘.z" = IJ'C12' + I"J!Is*iz’ + 213!137’(:7

The maximum of I»,+ occurs at

0 = (Iyy — Iez)28,¢; + 2Lry(c2 — 82)
= (Lyy— L:2)s2r + 2IryCor

so that the angle 7 for which d?7 attains its maximum is also

2L,
T = ltan—l =L
2 I:—1,,

Thus the direction 7 in which d2[ attains its maximum, is also the direction of the tilt of the surface. ®
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Proposition (Normalized Laplagian). Given the smooth, homogencous surface assumed by

cquation (10) then
VI 2,
I

2
= —K2BN —HEn

where &y, is the surface curvature along the surface tilt direction and &y, is the surface cunvature in the
orthogonal dircction, zxis the z component of the surface normal, equal to the cosine of the slant of

the surface.
Proof

In chapter 2 section 4 it was shown that in the surface co-ordinate system

21 pAPN-L
I~ pMN-L
"'K'l(puu . L)du2 - M(pvu : L)dv2
- N-L
—Kk3(N - L)du? —£3(N- L)dv?
- N-L

= —x2du? — k2dv?

We may repeat these operations using the general expression for A2I, equation (19):

—k1(Pun - L) 0 ((¢u m)(dz)) T((m m)(dz))
d?I = p\
-0 —K’z(pvv'L) d21 ¢22/\dy $21 ¢22/\dy
(10)
to obtain
a2 —} 0 ((¢n m)(dz)) T((¢u ¢'12)(dw)) -
I 0 —«x2/\\d21 ¢22/\dy da1 ¢/ \dy

In the first section of this appendix we calculated that
VI = L + Iy = Ki6uu(zn 26} + 83) + raguol2n st + 1)
where ¢y = —PNPuy - L and ¢, = —pAPyy - L. Thus using cquation (26) we find that

_V_Zf__z-22 N o 2(,—2:2 1 2
I EPY ci + 1) K2y 51+ ¢i)
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Using Eulers thcorm,

Ky = K1 c0520, + K9 sin? 8,

we find that for &, along the tilt dircction, 8, = ) and thus for &,, along the tilt direction and k., in

the perpendicular direction, that

2

Vi 2,—2 _
m

= —K\EN

I

which completes the proof. e
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Proposition (Estimation Of Slant). Assuming a uniform distribution of surface curvature, and
the smooth, homogeneous surface assumed by equation (10), then the maximum-likelihood estimate of

2N, where 2y is equal to the arccosine of the slant of the surface, is

—2
_ o |V 2
AN=061TTIT%
where o2 is the variance of the distribution of surface curvatures.

Proof

From the previous proposition,

= ” - IC?IZI_V.2 - K‘?n"

vy
I

Assuraing that k; and k9 are uniformly distributed, then
2 2 2
E(K'l) = E(K“Z) =0,
‘where o2 is the variance of the distribution of k and k. Thus for a fixed zn,

{

v
I

) — B — 2t —R2)

= o(en? +1)

—2
2( v 2)
2N =0, T —0,

This completes the proof of the proposition. e

Thus
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4 Positive Images, EM Images And Photographic Negatives

Figure 4-3 of chapter 4 shows how the slant cstimator |W2I/1] functions correctly on positive
images, approximately correctly on Flectron Microscope (EM) images, and fails on photographic
negatives. This section of the appendix goes through the examples of figure 4-3 more explicitly, so
that the reader may fully' understand why the estimator works on positive images and EM images, but

not on photographic negativcs.

Figures 4-3 (A), (B) and (C) show the image intensity profiles across the middle of a sphere in,
respectively, a positive image, EM image and photographic image. In (A) a Lambertian surface with
unit albedo and incident illumination is assumed, with the illuminant at the viewers position, so that
I = N - V. In (B) the image intensity is given by I = (N - V)™, which is the form of the reflectance
function for EM images. In (C), the same imaging geometry was assumed as in {(A), except that the
brightest point in the original, positive image was taken to have an intensity of 1.05, so that the image

intensity is givenby I = 1.05 — N - L.

Figures 4-3 (D), (E) and (F) show the result of applying the sl:-it estimator, | W21 /1|, to the profiles
in (A), (B) and (C). Note that as the theory requires that the range of | W21 /1) be scaled so that z lies
between zero and one, the values of |V2I/I| shown in (D), (E) and (F) have been scaled to the same
range, 0.0 — 1.0. In chapter 2 section 4 it was shown that for normal images |V21/1} is proportional

to the foreshortened curvature, i.e.,

IS W

I dN-L

= ||d2N
NL lld“N|

~|

so that we expect to see a smooth cup-like shape as the result of calculating |V2I /1| for the profile of

(A); this is shown in figure 4-3 (D).

For the EM image I = (N - V)™! (figure 4-3 (B)), we have that

OIS0 AN YY) (- )N V) 20N V)N
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It just so happens that for regions of small slant, the values of this function arc small, and as the slant
becomies larger the values increase approximately proportional to 252 (just as for normal images), as
shown by figure 4-3 (E). It is worth emphisizing that there is no particular reason why this should
be so; it is simply a result of the rather peculiar process of image generation used by the scanning

clectron microscope.

For the photographic negative I = 1.05 — N - L (figurc 4-3 (C)), we have

d2r —d2N-L

2
I 1.05—N-L

Because of the constant 1.05, no further reduction of this function is possible. For N ncar L, the smail
values of I result in a blow-up of the quantity |[d2I /1|, as shown by figure 4-3 (F). In this example
the blow-up occurs for N = V, producing a symmetric result, however with any other illuminant
dircction the result would not be symmetric. Further, the amount of blow-up is dependant upon what
other objects are in the scene, and if the brightest object in the original scene is very much brighter
than the object under consideration the result will be uniformily small estimates of slant regardiess of
the actual surface slant. Thus in a photographic negative of a complex scene the slant estimator will

give a different pattern of error for each object.

If we propose a slightly more complex scheme we can obtain results which are, perhaps, more in
line with informally reported subjective experience. Let us first normalize image intensities by setting
the darkest point in the image to the valuc one and then apply the shape estimators. In normal images
this procedure achieves correction for the deleterious effects of large amounts of diffuse illumination,
which can sometimes cause the effective point-source illuminant to shift rapidly. In EM images this
procedure has no effect, as for all objects in an EM image the darkest point alrcady has a value of
one. In photographic negatives, however, this procedure results in the correct estimation of shape
only in those scencs with one albedo and onc illuminant. In scenes with a wide range of albedos
or considerable diffuse illumination the surface relief will be underestimated for all but the brightest

objects. This normalization scheme produces results which correspond more closely with informatly
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reported subjective experience; however additional cxperimentation is needed before this slightly

more complex scheme can be seriously advanced.
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