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ABSTRACT
With but a glance we can recognize a seemingly unlimited variety of objects. Our

proficiency at recognition, however, belies the complexity of the task and the multiplicity
of information sources we exploit in elegant coordination. This thesis explores how one
source of information, the shapes of objects, can provide an initial clue to the identity of
objects. We ask, What properties of the bounding contours and surfaces of objects should
be represented, whether by people or vision machines, to facilitate visual recognition? How
can these properties be computed from images? What principles and natural constraints
underly our choice of properties?

One principle is key. Our descriptions of a shape should not change with every small
shift in our viewing position. That is, cur descriptions should decouple the shape of an
object from its position and orientation with respect to the viewer. This principle is used,
along with computational arguments and psychophysical observations, to motivate a scheme
for carving curves and surfaces into parts and then describing those parts. For smooth
plane curves the scheme involves extrema and inflections of signed curvature. For smooth
surfaces the scheme involves extrema and inflections of the prir:cipal curvatures along
lines of curvature. In both cases minima of curvature define part boundaries; maxima and
inflections anchor the internal part descriptions. The scheme is then extended to include
curves with cusps and surfaces with discontinuities of the tangent plane.

Thesis Supervisor: Whitman Richards, Professor of Psychophysics
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1. introduction

1.1. Three observations

We easily interpret squiggles or grey dots on a sheet of paper as objects in various
spatial relationships. This ability is demonstrated in figure 1-1. From this figure we can make
three straightforward but informative observations about our recogniticn of visual objects.
First, we recognize most of the objects in the figure although we have no prior idea what
those objects might be when we first inspect the figure. Second, we can recognize several
of the objects even though the figure only informs us of their shapes. Finally, we do not
immediately recognize those objects for which the figure provides an insufficient amount of
shape.!

What do these observations teil us about our visual recognition of objects? To
understand the import of the first observation we must realize that recognition, reduced to
its essentials, requires matching a description of what is seen against a store of descripticns
already in memory. This matching could proceed in one of twe basic ways - brute force or
intelligent guessing. A brute force matcher simply dredges up the descripticns in memory
one by one and compares them with the visual description until it finds a match. On
average the brute force matcher must examine half of the items in its memory, a formidable
task for memories of the magnitude we presumably possess. An intelligent guesser only
searches through certain items in memory, being informed in its selection either by contextual
knowledge, such as the time and place, or by properties of the visual description of the
object, or by both. Assuming that we are intelligent guessers, the first observation indicates
that though ordinarily we may direct our forays through memory using both context and
properties of the visual description of the object, we can if necessary drop our reliance on
context and use only properties of the description. We can do this, according to the second
observation, even when the visual description of the object is restricted to statements about
its geometry. As indicated by the third observation, however, the geometrical descriptions
must exceed some minimum level of richness or we will fail to recognize the object.

These descriptions of shape, their construction from images, their necessary properties,
their likely properties, and their role in initiating the first searches through memory, these
are the subjects of this investigation. We restrict our atiention to these topics, not because
context Is unimportant, not because the more general problem of recognition Is less
interesting, but because the more elementary topics are important building blocks for a

1Quantification of shape is discussed in chapters two and four.



comprehensive theory of visual recognition and because they form a weil circumscribed set
of issues with the promise of a greater degree of tractability than the general problem.

1.2. The problem
What is the precise problem to be solved? | propose the following:

. How can early representations of shape be transformed into representations suitable
to initiate the recognition process?

Much is packed into that question. To define the problem more clearly, in this
chapter we will look briefly at the meaning of the terms representation and shape. We
will then explore what is meant by the phrases early visual representations of shapze and

representations appropriate for recognition.

Once the problem question is defined we will spend the latter half of the chapter
examining the relevant literature, using this literature as a means to further clarify the
problem. The chapter closes with a statement of the philosophy of the approach. Chapter
2 develops a representation for recognition of plane curves. Chapter 3 extends this
representation to surfaces. Chapter 4 introduces the notion of “natural scale’, a necessary
notion if the theories of chapters 2 and 3 are to be applied to the images of real shapes,
not just to shapes admitting a concise analytic specification. Chapter 4 then describes an
implementation of the representation for curves developed in chapter 2. Chapter 5 explores
the relation between these representations and the results of some experiments on human
visual recognition. The appendix is a listing of the lisp code described in chapter 4.

1.3. Recognition

In the simplest case, recognition involves matching a description with an item in
memory. For example, the description “has four wheels and flies” might be matched
with the item "airplane” in memory, which has a similar, though probably more detailed
description. Of course things can get arbitrarily more complicated. The first attempted
matches may not succeed, but may initiate efforts to augment the original description in
specific promising details, while in parallel different parts of memory are being searched.
Such extra effort might turn up a different match for “has four wheels and flies”, such as
“trash truck"'.



Figure 1. Some squiggles and gtey-leve} images
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Looked at from a broader perspective, recognition is a paradigm example of a form
of nondemonstrative inference - induction. An inductive inference is an argument whose
conclusion is supported by its premises but is not logically guaranteed to be true by the
premises. For visual recognition the role of premises is played by the descriptions of shape,
color, motion and texture provided by earlier vision, together with any relevant background
knowledge or contextual information possessed by the observer. The conclusion, via
nondemonstrative inference, is the identity of the visual object.?

When making an inductive inference one is well advised to assess all the relevant
knowledge in one's possession before making a conclusion. There is evidence that human
observers do in fact consider background knowledge and contextual constraints in deciding
the identity of objects in their field of view. For instance, an ellipse in one context might
be taken to be an eye (e.g., in the context of a schematic face), while in another context it
might be taken as a foreshortened circle. The unhappy conclusion is that visual recognition
is not normally performed in a modular fashion (see Fodor 1982 on modularity). That is,
anything known by the observer could potentially be used to help decide what is being
observed. This nonmodularity does not promote research tractability.

To circumvent this, the strategy taken here is to investigate a subproblem of the visual
recognition problem, a subproblem for which there is evidence of functional modularity.
This evidence was discussed before and illustrated in part by figure 1-1. In brief summary,
although one cannot reasonably predict the contents of the figure prior to seeing it, and
although for several objects only geometrical information is presented, the objects contained
in the figure are, with few exceptions, readily recognized.

It appears, then, that we can recognize some objects using shape information alone.
We can do so even without prior expectations regarding object identity and, consequently,
no prior contextual clues as to what parts of memory should be searched first or what
background knowledge is applicabie.® This raises the question, How can the recognition
process get started without prior expectations or contextual cues? How does one decide
what parts of memory to search first and what background knowledge to exploit?

It seems clear, in this case, that the only possible answer is that the decision to explore
a certain part of memory, or to invoke specific background knowledge, must be based on

? Realizing that visual recognition is a species of induction, we can gather insights on our problem
from the relevant philosophicai literature. Goodman (1955), for instance, notes ihat the predicates
used to state one's premises can dramatically alter the conclusions drawn. In fact, given a set of data,
one can choose the predicates used to describe that data such that conflicting inductive conclusions
are supported. Further, for any conclusion one chooses, there exisls a manner of describing the data
which ficenses the desired conclusion. Thus, in the case of the visual recognition of shapes, one's
choice of primitives and of organization for the representations is crilical and must be well motivated.
Much of the discussion of chapters 2 and 4 is devoted to this issue.

3Again, the functional modularity claim here is that we can use shape in isolation, not that in general
we do use shape in igolation.



computations involving the object’s shape alone. Somehow there must be an analysis of the
object's shape, performed independently of general background knowledge® (i.e. performed
“pottom up”), which provides a sufficiently useful first key or index into memory to get the
recognition process started. This suggests the utility of a set of bottom up rules for the
initial analysis and description of curves and surfaces. The majority of this investigation is
devoted to discovering what these rules might be. These rules provide an important answer
to our original question, How can early visual representations of shape be transformed into

representations suitable to initiate the recognition process?

1.4. Representations

A representation is a formal system which models some domain. A familiar example is
the common road map. A road map is a representation which models, among other things,
the layout of streets, railroads and important buildings of a region. To use a representation
effectively as a model one must know what are its primitive symbols and what entities of
the domain they represent. On a road map the primitive symbo's and their meanings are
typically indicated in a key. The key might tell, for instance, which symbols stand for
airports, roads and schools. In essence, the key states what information about the domain
is made explicit in the representation. Cther information may be contained implicitly in the
representation, such as, h the case of the road map, how many government buildings lie
between the airport and the high school along the shortest path between them. Recovering
implicit information from a representation generally requires more work than recovering
what it makes explicit. Thus it is important to design a representation to make explicit the
information that is needed o accomplish the task at hand.

1.4.1. Representations of shape

The word shape is used here to refer to the geometry of an object’s surface in three
dimensions, or to the geometry of a region’s bounding contour in two dimensions. A shape
representation, then, is a formal system which makes explicit some aspects of the geometry
of the bounding surfaces or contours of cbjects.

Unfortunately, it appears that the aspects of shape most easily and directly made
explicit by early visual processes aré not the aspects best suited for the task of recognition.
This statement will be defended shortly. The consequence, however, is that somehow
the early shape representations must be transformed so that the appropriate, and hitherto
implicit, aspects of shape are made explicit. This leads us back to our original question:

sMore precisely, the only background knowledge available is knowledge of geometry and topology.

10



How can early visua! representations of shape be transformed into representations suitable
to initiate the recognition process?

1.4.2. Early visual representations of shape

The earliest visual representation available to a system is generally a two-dimensional
image which gives the light intensity® (and perhaps chromaticity) at each point in the image.
However ihe starting point for the work presented in chapters 2_4 is not the raw irage.
Instead it is assumed that bitmap representations are available for plane curves and that
depth map representations are available for surfaces in three dimensions. In this section
these early visual shape representations are described briefly.

Two points about these early representations should be noted: 1) they represent the
visible curves or surfaces completely, and 2) they represent curves and surfaces in a manner
which depends criticaliy on the position of the viewer.

1.4.3. Early curve representations: Bitmaps

A bitmap representation is a two-dimensional array (or grid), B(z,v), which contains a
1 in locations where a curvé segment is present, and a 0 otherwise. A bitmap representation
of the curve y = z, for example, would contain 1's along one diagonal of the array and 0's
elsewhere.

Considerable work on the detection of edges in images makes it reasonable to expect
that a vision system can produce something equivalent to @ bitmap representation of curves
(see Marr & Hildreth 1980; Hitdreth 1980; Zucker, Hummel & Rosenfeld 1977; Horn 1973;
Falk 1972). However there aré several problems yet to be solved before this endeavor can
be considered successful, particularly problems regarding the detrimental effects of ncise
and variations in illumination on the connectivity and shape cf the curves computed by
current approaches (Richards, 1983).

1.4.4. Early surface representations: Depth maps

A depth map representation is a two-dimensional array which contains in each array
entry the (relative) distance between the viewer and the nearest patch of surface in the
corresponding visual direction.® The terms 24 D-sketch (Marr 1982) and intrinsic image

SMore precisely, the image irradiance i8 givCn.

sOf course, contiguous elements of the array needn't be located next to each other in whatever
physical system actually implements the array. This non-isomorphism between array element contiguity
and physical location of the storage of elements is common in the storage of arrays on computers.

11



(Tenenbaum & Barrow 1978) are also commonly used to refer to some variant on the notion
ot depth maps. Considerable work on the problems of inferring three-dimensional shape
from shading (Pentiand 1982; Bruss 1681; Ikeuchi & Horn 1981, Horn 1975), texture (Witkin
1081; Stevers 1081; lkeuchi 1980), motion (Hoffman 1082; Hoftman & Flinchbaugh 1982,
Prazdny 1980; Longuet'Higgins & Prazdny 1980; Uliman 1979; Koenderink & Van Doorn
1976) and stereo (Grimson 1981; Marr & Poggio 1979) makes it reasonable to expect that a

vision system can produce something equivalent to @ depth map representation of surfaces.

1.4.5. properties of early shape representations

To a large extent the naturé of these early shape representations is dictated by what
can be computed from images with relative ease. They are not tailored in any way to the
requirements of recognition, nor should they be since, presumably. they are also to be
employed in tasks cther than recognition, such as manipulation.

One consequence of this is that 2 shape description couched in oné of these
representations depends essentially on the relative positions of the observer and the
observed. This viewer dependenceé of the descriptions can be illustrated by considering
analytic descriptions of the ellipsoid az? + by* + cz? = 1. ifthe observer's line of sight fies
along the z axis, the description is of the form x(u,v) = (v \/(T‘:'ar?:’biﬁ)/'c). where u
and v are the observer's coordinates. If the line of sight moves to the z axis, the description
changes to x(u,v) = (u,v, \/(-r:sm). Clearly any change in viewing geometry
changes the resulting description. 1t is not difficult to convince oneself that the same is true
of the bitmap and depth map shape representations. As will be seen, this is an undesirable

property if one's task is recognition.

There is an important sense in which these early representations are complete rep-
resentations of the visible contours and surfaces. The sense is that, within the limits
of resolution imposed by the imaging system, these representations in principle contain
sufficient information to specity uniquely the geometry of the visible portions of surfaces
and contours. For example, from a depth map one can compute the coelficients of the
first and second fundamental forms (Spiva 1972 volume 2) at each point, which, by the
fundamental theorem of surfaces (Do Carmo 1979). specify the surface uniquely up to
rotation and translation. Consequently, implicit in these early representations is all possible
information regarding the geometry of the visible curves and surfaces, even though only
certain aspects of shape aré made explicit in these representations. and even though the
aspects made explicit are not directly suitable for recognition. Thus our goal is to determine
which implicit aspects of shape need to be made explicit for the task of visual recognition,
and how this transformation is to be accomplished.

12



1.5. Representations {or recognition

We have hinted that the early representations of shape already described are inap-
propriate for the task of visual recognition, their inappropriateness due not to a dearth of
information, but to the form of the representations. The wrong information is made explicit.

The information needed for recognition is buried in an implicit form.

What information should be made explicit, and in what form, to expedite the recognition
process? How are we to evaluate a representation for recognition? Perhaps the most
thorough analysis of this problem is given by Marr and Nishihara (1978) who propose three
criteria for judging the usefulness of a representation for shape recognition. These criteria,
briefly, are: 1) computability, the feasibility of computing the representation from images,’ 2)
scope and uniqueness, the range of shapes that can be described using the representation
and how close to canonical are the descriptions for each shape, and 3) stability and
sensitivity, the degree to which the representation captures the similarities between shapes
within its scope while simultaneously noting important subtle differences® They note that
these criteria affect three aspects of a representation’s design: 1) The coordinate system
chosen (whether or not it is dependent on the viewing geometry), 2) the primitives, the
basic units of shape in the representation, and 3) the organization imposed on the shape
descriptions by the representation. The next two sections examine these criteria and design

considerations in more detail.

1.5.1. The criteria in more detail

The computability criterion is the obvious requirement that a proposed representation
for recognition should, in principle, be possible to construct from the available image data.
This notion can be extended to the criterion that, other factors being equal, a representation
is preferable if it requires less computation for its construction.

The scope/uniqueness and stability/sensitivity criteria can be understood by a simple
example. Suppose we propose & representation which assigns the description 99" to
every shape. Such a representation has the broadest possible scope; since every shape
imaginable is, by stipulation, given the description “99" no shape is outside the scope of
the representation. This representation also saticfies the uniqueness criterion. Regardless
of viewing geometry, or any other factor, each shape is assigned the same description every

TMarr and Nishihara call this criteria accessibility.

8The stability/sensitivity issue has long been a subject of philosophical discussion under the names
“ynity and diversity” and “form and freedom”.

13



time it is seen. Since there is no possibility for multiple descriptions to arise for a given
shape, the uniqueness criterion is satisfied ®

The patent absurdity of this representation is due to its .evere violation ot the
stability/sensitivity criterion. The description 99" in no way reflects the stable properties
of shapes while simultaneously capturing the subtle, yet saiient, nuances which differentiate
them. Note the difference here botween stability and uniqueness. A r=presentation is unique
for a single shape if the same description is computed time and again when the shape is
seen. It is stable for a class of shapes if the description makes explicit those aspects of
shape which are common to the class.

Evaluating one of the early visual representations of shape against these criteria is
also a useful exercise, not only to understand the criteria but to understand why the early
representations are inappropriate for recognition. Consider depth maps. The depth map
representation of surfaces has the broadest possible scopeé since every surface can be
assigned a depth map. However the unigeness criterion is badly violated. Any change in
viewing geon .ry will, in general, change the depth map description assigned to a surface.
Whereas the uniqueness criterion states that ideally only one description should ever be
produced for a shape, in principle the number of depth map descriptions of a surface is
unlimited (assuming unlimited resolution). This viewer dependence of the early visual shape
representations will be dealt with in more detail in chapters 2 and 4.

Depth maps also violate the stability/sensitivity criterion.  Nothing in depth map
descriptions makes explicit the commonalities among members of a class of shapes while
simultaneously noting the variations. Depth maps of various goblets, for example, do not
make explicit the fact that they all have three basic parts: a base, a stem, and a bowl. Nor
do they make explicit how the shape of one stem varies from that of another.

Finally, depth maps aré computabie from images as evidenced by work on inferring
three-dimensional shape from shading, texture, motion and stereo. Thus at least the weaker
form of the computability criterion is satisfied.

1.5.2. The design considerations in more detail

Coordinate System. An important design consideration when trying to satisfy the unique-
ness criterion is the type of coordinate system used in the representation. As noted by
Marr and Nishihara, there are two pas.c types of coordinate system. A representation
whose desciiptions depend on the viewing geometry is said to employ a viewer dependeit

R

? Remember that multiple descriptions are undesirable for recognition because as the number of
potential descriptions of a shape increase the memory needed to store them and the computations
needed to find the right match also increase.

14



coordinate system. Since multiple descriptions can arise using a viewer dependent cocr-
dinate system, representations intended for recognition should instead be designed using
viewer independent coordinate systems. viewer independent coordinate systems can be
established by exploiting the geometry of the object of interest. Using the natural axes of
shapes is @ popular method for doing this.

Primitives. The primitives of a representation are its tasic units of shape. in a depth map
the primitive is the distance, from the observer's current viewpoint, to each point on an
object. Among representations intended for recognition two basic types of primitives have
been proposed: region based and boundary based. A region based primitive makes explicit
properties of the volume (in three dimensions) or area (in two dimensions) occupied by a
shape. The mast common region based primitive is the axis, both in two dimensions and
three dimensions. A boundary based primitive makes explicit properties of the surface (in
‘hree dimensions) or bounding curve (in two dimensions) of a shape. The representations
proposed in chapters 2 and 3 use boundary pbased primitives.

Organization. Finally, the structure or organization of a representation can be used to
encode various properties of shapes such as the spatial relationships of the primitive shape
units.  Particularly useful is a hierarchical organization of the primitives which assigns
descriptions of more prominent shape features to more prominent positions in the hierarchy
and descriptions of finer details to lower positions (Marr and Nishihara 1978, Hollerbach
1975). Such an organization facilitates the simultaneous satisfaction of the stability and

sensitivity criteria.

1.6. Previous 2-D represenlations

In this section we examine some of the previous literature on representing curves with

the intent to clarify the issues already discussed.

1.6.1. Fourier descriptors

The method of Fourier descriptors represents a plane curve by the coefficients of
its Fourier transform. This representation can be constructed with relative ease once the
curve has been isolated in an image and therefore satisfies the computability criterion.
Strictly speaking, its scope is limited to periodic Curves, but it has been shown to represent
arbitrary curves quite well. If the coefficients of the Fourier series are properly parametrized,

15



Figure 2. Slability & sensilivily is not low vers_\;s high frequency.

the Fourier description can satisly the uniqueness criterion by being invariant under two-
dimensional rotations, translations, and uniform scaling.

It might also seem that Fourier descriptors satisty the stability/sensitivity criterion
since low frequency Fourier components are decoupled from the higher frequency ones.
However the decouplin‘g needed to separate the stable aspects of a shape from its finer
aspects is in the spatial domain, not the frequency domain.!® For example, in figure 1-2, a
natural decomposition of the curve is into a square wave, each cycle of which has its own
unique minor pattern of squiggles superimposed. The square wave is the basic form (to be
captured by a representation satistying the stability criterion), the minor squiggles constitute
" the freedom (to be captured by a representation satisfying the sensitivity criterion). But note
that this decomposition is not one of low versus high frequencies. In fact the square wave
contains higher frequencies than the minor squiggles. Low pass filtering the curve would
not necessarily eliminate the minor squiggles, and would simultaneously eliminate the high
frequencies needed for the square wave.

1.6.2. Symmetric axis and smoothed local symmetry representalions

Blum (1973) introduced a representation of two-dimensional shapes that exploits natural
axes of symmetry. These axes can be found by taking the union of maximal disks that touch
at least two points of the bounding contour of the shape. Equivalently, if one set fire to the
entire boundary of the shape and noted where the fires first met in its interior, the resulting
contours would be Blum's axes of symmetry.

19, addition, some of the predicates of shape description which are convenient in the spatial domain,
such as “cusp", are represented by ap infinite series in the fourier domain.
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Figure 3. Stabilily/sensitivity vioi;lion.
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The symmetric axis representation is easily derived from images, satisfying the com-
putability criterizn. Its scope is all two-dimensional shapes with closed bounding contours.
With a modicum of effort the axes could be represented in a manner that is invariant under
two-dimensional rotations, translations and uniform scaling, thus satisfying the uniqueness
criterion (in two dimensions, not three). However, as noted by Agin (1472), the symmetric
axis representation can violate the stability/sensitivity criterion severely. Figure 1-3, taken
from Agin, shows how a minor change in a bounding contour can dramatically change the
entire representation. Efforts are underway to repair this deficiency using a different means
of computing axes of symmetry, called the method of smoothed local symmetries (Brady
1982a, Brady 1982b).

1.6.3. Contour representations using curvature

As will be explained in more detaii in chapter 2, representations of bounding contours
using curvature decouple the rotation and translation of a contour from its shape. More work
must be done, however, to decouple the scale and thus satisfy the uniqueness criterion.
Constructed properly, a curvature representation can have all smooth contours within its
scope, and can satisfy the stability/sensitivity criterion (chapter 2). The computability of such
a representaticn from images is an open question, but first steps toward an implementation
are discussed in chapter 2.
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Figure 4. Annéave‘s cal

Curvature has been used by several investigators to segment a curv into parts.!!
Attneave (1954) has demonstrated that extrema (minima and maxima) of curvature are
perceptually salient to human observers. In one clever figure, he redrew a line drawing
of a cat by connecting points of high curvature with straight lines. The result, shown in
figure 1-4, is quite recognizable. Duga and Hart (1974) suggest as a result that extrema of
curvature might be used for curve segmentation. This is also proposed by Brady (1982a).
Hollerbach (1975), in his analysis of Greek vases, segments their bounding contours into
parts at zero-crossings of curvature. For computational reasons, and to account for the
fact that a curve seems to have different parts when it undergoes a figure-ground reversal,
in chapter 2 we propose that minima of curvature, not extrema or zeroes, be used for
curve partitioning. For curves with C' discontinuities this rule is extended to partitioning at
concave, but not convex, Cusps.

1.7. Generalized cylinders

Since Binford's (1971) introduction of a class of shapes called generalized cylinders,
much work has been devoted to developing them as an axis-based means of representing
three-dimensional shapes for recognition (Brooks 1981; Marr & Nishihara 1978; Nishihara
1977: Marr 1977; Vatan 1976; Nevatia 1974; Agin 1972). A generalized cylinder is more

11 partitioning a curve into parts is an important step lcward designing a representation which satisties
the slability/sensitivity criterion. More on this in chapter 2.
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general than a cylinder in that it may have a curved axis, its Cross section need not be

circular and the cross section may be scaled as a function of position along the axis.

A representation whose primitives areé generalized cylinders has scope restricted to
tnose shapes naturally decomposed into (a hierarchy of) generalized cylinders, such as
the trunks and limbs of animals. Faces, for instance, aré not naturally decomposed into
generalized cylinders and are thus outside the scopé of these represenlalions;.12

An advantage of generalized cylinders is that representations employing them can
satisly the uniqueness and stability/sensilivity criteria. For example, Marr and Nishihara
propose that the cylinders be organized in a hierarchy, with cylinders capturing larger
portions of a shape positioned higher in the hierarchy. The position and orientation of a
cylinder is specified relative to the one above it in the hierarchy. This effectively decouples
the overall disposition of a shape from the shape itseli, allowirig uniqueness of description.
The hierarchical organization decouples the larger and more stable aspects of a shape from
the finer details, satistying the stability/sensitivily criterion.

Unlike the previous representations discussed, the most serious issue with generalized
cylinders is computability. There is as yet no satisfactory way to derive generalized cylinder
descriptions from depth maps of images despite much effort on the problem. Several
approaches to the problem proposed in the literature are examined by Nishihara (1977) and
found wanting. Rather than review these again, we will examine the approach proposed by
Nishihara.

Nishihara (1977) proposed a “ridge operator” for finding the axes of generalized
cylinders. The ridge operator looks at local regions of a depth map and, as the name
suggests, determines for each region if there is a ridge passing through. A ridge is a local
extrema (or a contour of local extrema) in the depth map. The local ridge assertions are
linked into chains 10 form the axes.

In general a ridge operator axis is not uniguely associated with a locus of points on
the surface nor with the volume defined by the surface. Thus the axes generated by the
ridge operator violate the uniqueness criterion.!?

As an example of this violation of the uniqueness criterion, consider figure 1-5 which
illustrates the ditferences in axes picked out by the ridge operator in two different views of
a torus (a generalized cylinder with a planar curved spine and a constant sweeping rule,
resembling a doughnut). When viewed from above, the axis defined by the ridge operator
is a closed planar contour. When viewed obliquely, the axis becomes open and non-planar.

-
12The observation that faces are easily recognized, but not easily represented by generalized cylinders,
was the original impetus for developing the representations presenled in chapters 2 and 3.

130y, conversely, the 8Cope of the ridge operator i8 limited.
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Figure 5. Ridge operator axes on a torus
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Figure 6. Ridge operator axes on a volume with a straight spine
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The difficulty in the torus example is due to the torus’ curved spine. However, one can
easily construct counterexamples to the ridge operator using volumes with straight spines.
Consider the sinusoidaily elliptic cylinder (figure 1-6) given by:

x = x(8,¢) = (6, cos ¢, cos 0 sin ¢)

where —oo < 8 < o0, and 0 < ¢ < 27. A change in @ is associated with translation along
the axis of this surface. At 8§ = 0 the cross section of the surface is a circle of radius 1.
As @ increases (or decreases) the cross section is in general an ellipse whose eccentricity
varies with cosé.

The !ocus of points picked out by the ridge operator on the sinusoidally elliptic cylinder
is a sinusoid whose amplitude depends on how the sec is rotated about its spine with
respect 1o the observer. That the locus of points is in general a sinusoid rather than, say, a
straight line, is not a problem. One may in fact want the locus of points computed at a fine
enough scale to be curved in a manner that reflects important properties of the surface.
What is a problem is the fact that the amplitude of the sinusoid is a function of the viewer's
position with respect to the surface. This violates the uniqueness criterion.

To summarize, representations employing generalized cylinders can in principle provide
uniqueness, stability, sensitivity and large scope. Attempts to compute generalized cylinders
from depth maps or images have had limited success.
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1.8. Philosophy of the approach

Our discussion of the problem of visual recognition thus far has intentionally been
ambiguous about whether we are considering machine or human recognition. Actually the
theory to be presented here is intended to be a {partial) theory of both machine and human
visual recognition.

This has proved distressing to some psychologists. Some have argued that since the
theory is an idealized account of visual recognition, ignoring much of the nonmodularity
and little understood feedback systems known to exist in the human visual system, it is
therefore irrelevant to human vision. While the observation is accurate, the conclusion is
quite surprising, certainly counter to the conclusion drawn under similar circumstances in
the other natural sciences. Newtonian physics, and relativistic physics for that matter, are
also idealizations of true physical law. Few would conclude from this that the theories of
Newtonian and relativistic physics are irrelevant to a true understanding of physical law. A
more appropriate conclusion is that it is the nature, perhaps also a limitation, of scientific
inquiry to study a subject by constructing successively better idealizations.

How, then, can the psychological validity of the theory of visual recognition be
tested, if it is to be taken seriously as a psychological theory? Don't the psychological
data underdetermine the theory? If that is the case, isn't it impossible to ascertain the
psychological validity of the theory?

Again, the observation is true, but the conclusion is surprising. It is true that the
psychological data underdetermine a theory of visua! recognition. But this is true of the
data in all fields of natural science. That is what makes theory construction interesting.
Chomsky (1980, 11-12) gives a cogent description of what constitutes supporting evidence
for a psychological theory:

“| am interested, then, in pursuing some aspects of the study of mind,
in particular, such aspects as lend themselves to inquiry through the
construction of abstract explanatory theories that may involve substantial
idealization and will be justified, if at all, by success in providing insight and
explanations. From this point of view, substantial coverage of data is not a
particularly significant result; it can be attained in many ways, and the result
is not very informative as to the correctness of the principles employed. It
will be more significant if we show that certain fairly far--eaching principles
interact to provide an explanation for crucial facts-the crucial nature of
these facts deriving from their relation to proposed explanatory theories. It
is a mistake to argue, as many do, that by adopting this point of view one
is disregarding tho data. Data that remain unexplained by some coherent
theory will continue to be described in whatever descriptive scheme one
chooses, but will simply not be considered very important for the moment.”

This approach, of showing “that certain fairly far-reaching principles interact to provide
an explanation for crucial facts” is adopted here. Chapters 2 and 4 develop some principles
in detail. These principles are expected to pertain to human and machine vision. Chapter 5
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relates them to relevant observations about human visual recognition in an attempt to justify
them as a psychological theory.

We can make significant progress toward elucidating useful principles by noting that
vision is goal oriented. Human observers are presented with two time varying images and
must attempt to infer from them useful properties of the world. These inferences of useful
properties of the world are, for the most part, inductive inferences because the mapping
from the world onto the images is many to one. That is, for any set of images there is
an infinite set of possible configurations of the world that are equally consistent with the
images. To decide among them the observer must bring 1o vear knowledge regarding the
world he happens to inhabit.'*

For example, if one wants to infer the three-dimensional structure of an object from
time-varying images of its jeatures (i.e., from motion), one is faced with a fundamental
ambiguity. Regardless of the quantity of image data available, there are an infinite number
of structures which are consistent with the data. If, however, oné brings to bear knowledge
about objects in our visual world, particularly the knowledge that objects are often rigid, it
is possible to determine whether the image data are consistent with a rigid interpretation,
given that certain sufficiency conditions are met by the data (Hoffman 1982, Hoffman &
Flinchbaugh 1982, Longuet-Higgins & Prazdny 1980, Ullman 1979). Experiments have shown
that if there is a unique rigid interpretation the human visual system takes it (Ullman 1979).

In short, three categories of knowledge are particularly germane for visual non-
demonstrative inferences:

e the image data
e« relevant knowledge about the structure of the visual world
e knowledge of lawful relationships between the world and the images

An important aspect of understanding vision, then, is to discover what are useful goals, what
properties of the world are desirable to be inferred from images, what knowledge about the
world is necessary to make the inferences, and under what conditions the image data is
sufficient to grant credence to the inferences. A theory of vision which addresses these
questions is called by Marr and Poggio (1977) a computational theory. A computational
theory is to be distinguished from the particular algorithm which is used to implement the
theory aund the hardware (or wetware) in which the algorithm is embodied (Dennett 1978,
Marr & Poggio 1977). Itis at the level of the computational theory that we hope to “...

14The more general the knowledge the better. Other things being equal, knowledge of geometry,
mathematics and physical law is preferable in early vision to more specific knowledge, such as that |
am in an office and will probably be seeing oftice furniture. This is because the general knowledge i
applicable more often than the specific and lends itselt to the design of “informationally encapsulated"
vision modules (see Fodor 1982, on informational encapsulation).
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principles interact to provide an explanation for crucial facts

show that certain far-reaching
tations of shape be

.. and to answer our problem question, How can early visual represen
transformed into representations suitable to initiate the recognition process?
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2. Representing plane curves

2.1. Overview

In this chapter the problem of representing plane curves for recognition is addressed.
Smooth curves are discussed first followed by curves with a finite number of discontinuities
of the tangent. The treatment in this chapter assumes the curves are given at least piece-
wise by analytic functions so that the tools of differential geometry can be applied. In
chapter 4, where an implementation of the ideas in this chapter is presented, the problem of
extending notions of difterential calculus to nowhere differentiable functions is addressed so
that bitmap representations of curves, not just analytic representations, can be transformed

into representations for recognition.

2.2. Notation and terminology

A plane curve can be specified by the vector function:

a(t) = (z(t)y(t)), teR

where t is an arbitrary parameter. If the parameter is arc fength, s, along the curve then 1(s)
is used rather than aft) to specify the curve. We restrict our attention to curves a:[a, b] — R?
which are C! for all ¢ € [a, b} and which are immersions, i.e. which satisfy a(t) = da/dt 7 0
for all t € [a,})].

Derivatives with respect to a parameter other than arc length are indicated by primes
(e.g. o'(t) is the first derivative of aft)). Derivatives with respect to arc length are indicated
by dots (e.g. 5(s) is the second derivative with respect to arc length of 4(s)). The tangent
of the curve at 7(s) is 4(s).

The orientation (or direction) of a curve is not the same as its rotation. A curve admits
only two orientations, the two directions along which the curve may be traversed. A curve
admiis a continuum of rotations in the interval (0, 2], obtained by spinning the curve in the
plane.



The magnitude of the curvature at ~(s) is given by [(s)|. For space curves in general
the curvature is not a signed quantity. However for a plane curve it is possible to give the
curvature a sign. This can be done by assigning a unit vector, called the principal normal
unit vector, to each point on the curve such that the principal normal is always orthogonal
to the tangent vector 4(s) and always points to the right side of the curve when the curve
ic traversed in the chosen orientation. The sign of curvature at a point positive if the angle
between the principal normal and 5(s) is zero. The sign is negative if this angle is 180
degrees. An important consequence of this definition is that the curvature at each point
along a curve flips sign when the orientation (direction of traversal) of the curve is reversed.

2.3. Goals

Our goal in this chapter is to transform vector function representations of plane curves
into representations which are suitable for the task of object recognition. Criteria were
discussed in the first chapter by which the suitability of a representation for recognition
may be judged. The basic ideas are simple. First, a representation for recognition should
articulate shapes into a natural hierarchy of parts and spatial relations, decoupling the basic
form of a class of shapes from the minor variations exhibited by members of the class.
That is, the representation should capture the form and freedom displayed by objects in
the world. This is the stability/sensitivity criterion. Second, the representation should be
able to describe the dasired range of shapes. In our case the range should be as broad
as possible since we are interested in computing shape descriptions bottom up and using
them as a first index into a memory of shapes. Third, changes in viewing geometry should
not lead to multiple descriptions of the same object. Ideally only one shape description
should be produced from all viewing positions. Realistically one should hope to keep the
number of descriptions to a minimum. The problem of course is that multiple descriptions
require more memory for storage and more processing for matching during recognition.
Note that the intent is not to ignore information about position and rotation of the shape.
(For instance, the rotation of a shape is important information when trying to recognize the
shape, as evidenced by the fact that a square and diamond look different or that a map of
the United States turned on its side looks like a face). Rather the intent is to decouple the
rotation, position and overall scale of an object from its shape so that these factors can be
dealt with independently in the recognition process. Finally, the representation should be
computable from images or it is useless. This will be the burden of chapter three.
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2.4. Decoupling rotation and position

A description of a plane curve using the representation y(s) = (z(s), ¥(s)) depends
critically on the position, rotation and overall scale of the curve. Consequently, any rules for
partitioning a plane curve into parts based on this representation must also be dependent
on viewing geometry. The parts defined by such rules would have to be different, in general,
when the viewing position changed. A prerequisite to a viewpoint independent articulation
of a curve into parts, then, is a representation which decouples the disposition of the curve
in space from its shape.

A major step toward accomplishing this is provided by the fundamental existence and
uniqueness theorem for space curves (Do Carmo 1976, Lipschutz 1969).

Theorem: Let «(s) and 7(s) be arbitrary continuous functions on a < s < b. Then there
exists, except for position and rotation in space, one and only one space curve ~ for which
x(s) is the curvature, 7(s) is the torsion and s is a natural parameter along .

Since we are dealing with plane curves here, 7(s) is always zero. Thus we have that
for plane curves a representation based on the curvature x(s) as a function of arc length
yields descriptions which are unique up to position and rotation in the plane. This provides
a means to effectively decouple the position and rotation of the curve from s shape. We
could represent a curve, for example, by the four-tuple (6, z,y, x(s)) where g is the rotation
of the curve, z and y its translation and «(s) its curvature parametrized by arc length. We
have decoupled, not eliminated, the disposition of the curve from the shape of the curve.
The disposition of the curve is still available to be used in the recognition process.

2.5. Scale independent parts

Curvature is independent of rotation and translation, but not independent of scale.
For example, two circles of differing radii have differing curvatures (since curvature is the
inverse of the radius) even though they have the same shape. Therefore a description in
terms of curvature alone does not provide complete viewer independence. Nor does it yet
partition a curve into parts and spatial relations.

A solution to both problems can be found in the inflections and extrema of curvature.
An inflection of curvature on a curve ~(s) is a point where the curvature x(s) changes
sign. An extremum of curvature is a point where dy(s)/ds = 0. The property of being
an inflection point or a local extremum of curvature is independent of scale. |f some
combination of inflections and extrema or both is used to carve a curve into parts then
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Figure 1. Minima of ‘curvature (slashes). Arrows indicale curve orientation.

2

the part definitions will be completely viewer independent. The q:estion is, which points
should be used? Attneave (1954), Duda and Hart (1973) and Brady (1982) all suggest that
maxima and minima pcints should be used to define part boundaries. Hollerbach (1975)
used inflections. ‘

An impcriant technical point should be clarified here. An extremum of curvature can
be either a point of local maximum or minimum curvature depending upon which of the
two possible orientations (directions of traversal) of the curve is selected. A change in
orientation of a plane curve flips the sign of curvature everywhere along the curve so that
a point of maximum curvature becomes a point of minimum curvature and vice-versa.

A change in orientation of a plane curve can be uniquely associated with a reversal
in which side of the curve is considered “figure’ and which side is considered *‘ground”.
The convention adopted here is that the figure of a curve is to the left and its ground to
the right as the curve is traversed in the chosen orientation. Thus knowing which side of a
curve is figure determines the choice of orientation on the curve, or, conversely, choosing
an orientation determines which side is figure by convention. Minima are then typically
associated with concavities of the figure and maxima with convexities (see figure 2-1). It
is possible however for minima to have positive curvature, as in the case of convex closed
curves, or for maxima to have negative curvature, as when the orientation of the convex
closed curve is reversed.

Maxima, minima and inflections of curvature are all candidate points for partitioning a
curve into units in a viewer independent manner. To choose among them we should require



Figure 2. Joining parls yields concave cusps in the resuliing silhouette.

that the units chosen reflect natural parts of shapes {Marr 1977, Marr 1982). Fortunately,
when 3-D parts are joined to create complex objects concave cusps will generally be created
in the imaged sithouette (figure 2-2). If one assumes the parts are joined at random, then
by general position the probability that this is the case is one. By smoothing the silhouette
we have that the parts meet each other at minima of curvature. This suggests that only
minima of curvature, not maxima or inflections, be used to segment a curve into paris since
segmeniation of the image at minima of curvature immediately encodes in a straightforward
manner an important property of the natural world which is not captured by maxima or

inflections.

2.6. Qualitative description of parts: Contour codons

The arguments of the previous section lead to the conclusion that minima of curvature
should be used to define parts along plane curves. The first minima encountered in
fraversing a part in the chosen orientation is called the tai/ of the part. The second (and
last) minima encountered is called the head. This does not imply that maxima and inflections
have no role to play in the representation. Maxima and inflections will be used to provide
successively more detailed viewer independent descriptions of the individual parts.

The first level of description of the individual parts is a qualitative one. Five qualitatively



Figure 3. Contour codons. Slashes are minima, dots are inflections.
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different types of parts can be identified based on the sign of curvature of the point of
maximum curvature on the part and the signs of the two minima which define the beginning
and end of the part. These five types of parts, called “‘contour codons', are defined in
table 2-1 and illustrated in figure 2-3. The first column, labelled “codon”, gives the name
of the codon. The second column, labelled “tail", gives the sign of curvature of the tail of
the codon. The third column gives the sign of curvature of the head of the codon. The
final column gives the sign of curvature of the point of maximum curvature oi the codon.
These five codon types exhaust the qualitatively different possibilities (assuming that when
x(s) = 0, d(s)/ds # 0).

The names of the codons given in table 2.1 are based upon the number of inflections
the codon has and the sign of the tail of the codon. A type 0 4+ codon, for instance, has
no inflections of curvature and has a positive tail. A type 2 codon has two inflections. 2 is
actually an abbreviation for 2 —, since there is no 2 + codon possible.

Contour Codon Definitions
Codon Tail Head Maximum
0- - - -
0+ + + +
1- - + +
1+ + - +
2 - - +
Table 2-1



Figure 4. Codons strings for some curves. Arrows for orientation.
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A top level description of a curve using the codon notation is a string whose elements
are in the set 04,0 — —, 14,1 — —,2. The sequence of the string indicates the sequence
of the codons on the curve. Some example curves with their top level codon descriptions

are given in figure 2-4.

Not all codons strings of length two are allowable. A codon string of length two is
allowable only if the head of the first codon of ihe string has the same sign of curvature as
the tail of the second codon. Table 2-2 shows for each conceivable codon double whether
or not that double is aliowable. The column gives the first codon of the double, the row is
the second codon of the double. A 4- indicates that the pair is allowable, a — that it is not.
One can see from the table that of the 25 possible codon doubles only 13 are allowable.

Legal Codon Doubles
Codon 0- 0+ 1- 1+ 2
0- + - + - +
0+ - + - + -
1- - + - + -
14 + - + - +
2 + - + - +
Table 2-2

The fact that not all conceivable codon combinations are allowable suggests that the top
level codon description of curves may be amenable to available error correction techniques.
Consider, for example, the codon string ...c,_ic;¢, +1.... if all codons combinations were
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Figure 5. Orientation and mirror reversals
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allowable then ¢, could take any one of the five codon values. Thus the value of ¢, would
not be constrained by its context. However, as shown in table 2-3, the value of a codon
is highly constrained by the values of its two surrounding neighbors. The row specifies
the codon to the left of the middle codon of the triple. The column specifies the codon to
the right. The entry for a given row and column shows all the allowable codons for that
particular context. From the table it can be seen that 64 per cent of the possible contexts
constrain the allowable set of codons to a unique value. On average the allowable set size
is 1.36.

Legal Codon Triples
Codon 0- 0+ 1- 1+ 2
0- 0-2 1- 0-2 1- 0-2
O+ 1+ 0+ 1+ 0+ 1+
1- 1+ 0+ 1+ O+ 1+
1+ 0-2 1- 0-2 1- 0-2
2 0-2 1- 0-2 1- 0-2
Table 2-3

The top level ccdon representation of a curve decouples aspects of the shape of the
curve from its disposition in space and its overall scale. Consequently the codon string
description is invariant under rotations, translations and uniform scalings of the contour.
However the codon description is not invariant when the orientation (direction of traversal)
of the curve is reversed or when the curve is subjected to a mirror reversal (see figure 2-5).
The question naturally arises, Are there simple rules that define how the codon description



Figure 6. Skew symmelry indicated by codon description. 9.
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of a contour is transformed when the contour undergoes a mirror reversal or a change of

orientation?

In the case of a mirror reversal thie rule is quite simple. The mirror transform of a codon
string is obtained by reversing the direction in which the string is read (right to left rather
than left ot right) and reversing the sign attached to each type 1 codon. This rule can be
used to find symmeiries within a single contour. !f, for exampie, one half of a codon string
is found to be the mirror transform of the remainder of the string, a necessary condition for
the curve to be symmetric has been found (see figure 2-6). Note that this applies to skew
symmetry as long as zeroes of curvature are not made to appear or disappear by the skew.

When the orientation of a curve is reversed the codon string transformation rule, called
the lock-key transform, is unique but apperently not simple. It is perhaps most easily
specified as a map from pairs of concatenated codons to codon singletons. The codon
doubles which map to each codon singleton are:

{oro*)ot1t)1—0*)(171%)} » 07
{(0=07)} ~ ot
{(0=07) (0" 17)} = 17
{ato7)(207)} ~ 1t

{1t 17)1*+ 2)(217) (22)) + 2

L]



2.7. A perceptual note

Before developing the codon description in more detail, it is interesting to note a parallel
between the human perception of contours and the codon representation of contours. In
figure 2-7(adapted from Attneave 1971) are two semicircular regions each having a wavy
boundary where typically a straight boundary is drawn. The question is, What is the relation
between the wavy bounding contours of the two regions?

Most first time viewers deny that there is any obvious relation between the two wavy
contours. In fact the two contours are identical! The contours fit together like two pieces
of a jigsaw puzzle to form a complete circular region. Why does the same curve look so
different?

From an information processing perspective, the same curve could laok different if for
some reason the curve is given different descriptions by the human visual system. Apparently
the only salient contextual difference between the two curves is that the figure-ground
reiations, induced by which side of each curve is darkened, are reversed between them.
Thus it appears that the human visual system describes the same curve quite differently
when the curve undergoes a figure-ground reversal.

As mentioned earlier, a reversal in figure and ground of a curve also reverses the
orientation (direction of wraversal) of the curve. This induces a change in the sign of
curvature along the entire curve. In particular, maxima and minima of curvature swap
places on the curve. Since the codon parts are defined by the minima of curvature, the
part definitions and descriptions change when figure and ground reverse (see figure 2-5).
The parts actually move around on the curve. The codon strings transform according to the
lock-key rule of the previous section. Consequently the codon system describes the same
curve quite diﬂerenfly when the curve undergoes a figure-ground reversal, an interesting
parallel with human vision.

This result would not obtain if the part boundaries were defined using only inflections
of curvature, or if both maxima and minima were used as suggested by some previous
investigators. If boundaries are defined by minima, maxima, minima and infiections, or
maxima and inflections then the part definitions will change under an orientation reversal.
Among these four possibilities, however, minima are used since segmentation of a curve
at minima of curvature encodes in a straightforward manner an important property of the
natural world which is not captured by the other options, namely natural part boundaries.



Figure 7. Two wavy curves

2.8. Positive minima

The justification for using minima of curvature as part boundaries, which is illustrated
in figure 2-2, is that randomly placed parts meet at minima of curvature. However one
can see that figure 2-2 only shows that parts will meet at minima with negative curvature,
not positive curvature. But the codon definitions presented earlier use positive minima as
boundaries in addition to the negative minima. Has a mistake been committed?

Not really (or the subject probably would not be raised!). Whatever descriptive scheme
one chooses, positive minima will figure prominently, along with inflections and maxima,
since they allow scale invariant descriptions. One could define part boundaries only at
negative minima and throw positive minima into the descriptions of these larger parts aiong
with the maxima and inflections. Alternatively one could opt for using all minima as part
boundaries, leading to smaller parts and simpler descriptions for the parts. As long as one is
clear about what is going on either approach is acceptable. The second alternative is used
here because of the convenient codon notation that arises from using all minima as part
boundaries, and because the description of each part becomes simpler and more uniform.

There is another, more subjective, reason. Consider the possible partitions of an ellipse
presented in figure 2-8. Of all the partitions shown, the partition at the (positive) minima
seems the most natural.

Underlying this issue is the notion of the “strength" of a part boundary. Roughly, the
more negative the curvature is at a minimum the stronger the part bourdary. Mirima of
positive curvature have the least strength. Figure 2-9 shows a progression of part boundaries
going from strongest to weakest. Note that cusps, having infinite curvature, can give the
strongest part boundaries.!

'Cusps are discussed in more detail later in this chapter.



- Figure 8. Par—l-ﬁions of an ellipse
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Figure 9. Part boundaries of decreasing strength

2.9. Quantilative description of parts

The codon string is but the top level description of a curve. Infinitely many ditierent
curves can have the same codon string. What is needed is more quantitative description
attached to each element of the string. VYet this quantitative information must itself be
represented in a form which decouples shape from disposition and scale. This is possible
by exploiting extrema and inflections of curvature. What follows is a list of the most obvious
quantitative measures.



Since all elements of a codon string need not represent equal arc length curve parts,
an important quantitative measure is the relative arc length of each codon. The relative arc
length can be computed by dividing tha arc length of each codon by either the arc length
of the longest codon of the curve or by the arc length of the longest codon within a certain
neighborhood whose size is specilied in terms of number of codons. This gives a measure
between zero and one inclusive which does not depend on disposition or overall scale.

Although the number of inflections and maxima contained in a codon can be inferred
from the codon type, their positions within the codon cannot. If their positions are described
as a percentage of the total length of the codon segment then they are appropriately
invariant.

The curvature at the extrema of curvature in each codon can be described either
relative to the extremum with maximum curvature over the entire curve or relative to an
extremum with maximum curvature over Some local neighborhood.

As illustrated in figure 2-10, two codon segments can have identically placed maxima
and inflections, identical curvatures at the maxima and minima, and yet appear quite different.
The difference is the behavior of the curvature between the extrema and inflections. This
behavior can be summarized in an appropriately invariant manner by the integral of curvature
between each of these points. There is a quite simple method for determining this integral
since:

b
'/; x(s)ds = 6(b) — 6(a),

where 6(s) is the angle of the tangent at +(s) given by 6(s) = tan~'(y'(s)/z'(s)). A
representation which notes the integral of curvature between these points will give different
descriptions for the two curves in figure 2-10.

2.10. Curves with cusps

2.10.1. Terminology

The codon representation of smooth plane c'irves can be extended to plane curves
with a finite number of cusps. A cusp is a point on a curve where the first derivative is
not continuous (see figure 2-11a). The following terminology is useful for discussing cusps
(figure 2-11b). Let ~(s) be a plane curve parametrized by arc length, and let 7(s) be a cusp
point. At 4(s;) there are two tangents. The “first tangent” is detined as
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Figure 10. Curves wiih differing integrals of curvature

t; = lim '7(’&' — A’) — 1(‘:)
As—0 —As

where As — 0 through positive values. The "second tangent” is defined as

t — lim 7(’( +A6)—"(")
2 As—0 As

where again As — 0 through positive values. Intuitively the first tangent is associated with
the side of the cusp first traversed in an orientation and the second tangent with the other
side.

The "first lip"” of the cusp is the image under v of the open interval (sc —¢,8.) where ¢
is sufficiently small that there are no extrema or inflections of curvature and no cusps in the
lip. Similarly the “second lip" is the image under ~ of the open interval (8¢, sc + ¢€) where ¢
is sutficiently small.

if t, and t, are the first and second tangent respectively, ther the cusp angle, 6., is

6. = cos™!(t; - —tp)



Figure 11. Cusp terminology
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2.10.2. Segmentation

For purposes of partitioning a curve into codon segments, cusps are divided into two
classes. If an ¢ step along the first tangent at the cusp takes one to the left of v, i.e. into
the figure side of the curve for the chosen orientation, then the cusp is called concave.
If the ¢ step takes one to the right of 4, i.e. to the ground side of 4, then the cusp is
convex. The argument presented in section 2-5 (and figure 2-2) provides motivation for
partitioning curves at concave cusps, but not at convex cusps. Consequently our extended
segmentation rule is to partition a curve into codon segments at minima of curvature and
at concave cusps (figure 2-12).

Let minima of curvature and concave cusps be referred to collectively as “generalized
minima". Similarly let maxima of curvature and convex cusps be referred to collectively
as “generalized maxima". Then the segmentation rule can be characterized succinctly as
partitioning at generalized minima.

With the inclusion of cusps it is clear that two codons, a and b, may be joined smoothly
or at a cusp. Smooth joins are indicated by the operation ao b. Joins at cusps are indicated
by a+ b. Smooth joins are subject to the restrictions of table 2-1 whereas cusp joins are not.

2.11. Codon descriplion exiended for cusps

For purposes of description cusps are divided into two types. Cusps whose first and



Figure 12. Segmeniation at generalized minima—

Figure 13. Cusp types crossed with concave/cenvex
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second lips have the same sign ol curvature are called symmetric. Those whose lips have
opposite signs are called asymmetric. Each type is further described by noting the sign of
curvature of the first lip, leading to four categories illustrated in figure 2-13. A convenient
shorthand for the cusp types isS+,8—, A+ and A—. Figure 2-13 also illustrates that
each of the four types ot cusps can be either concave Or COnvex.




Figure 14. Number of generalized maxima varies
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When cusps are allowed, the number of generalized maxima in one codon segment
can range from zero to a large number (figure 2-14 shows a case where there are none
and a case where there are three). The number of generalized maxima in a codon segment
becomes, then, an important part of the codon description. A detailed description would
include the type of each generalized maximum and the type of each cusp.

Finally, let generalized minima, generalized maxima and inflections of curvature be
referred to collectively as "distinguished points". Then describing the normalized positions
of maxima and inflections in smooth codon segments can be generalized to describing the
normalized positions of distinguished points for curves with cusps. Likewise, the integral of
curvature between extrema and inflections may be generalized to the integral of curvature
between distinguished points.

2.11.1. Inflections without minima

Simply for thoroughness it should be noted that it is possible to have arbitrarily many
inflections within a codon segment when cusps are allowed. The reason is that there need
not be a point of minimum curvature between two generalized maxima even though there
is an inflection between them. For this to happen at least one of the two generalized
maxima must be a convex cusp. An example is given in figure 2-15 for the case where
both generalized maxima are cusps. Let v(so) be the first cusp traversed and 1(s,) the
second. Let the arc length from +(so) to 9(s,) be I. Then if the curvature between 1(80)
and q(s;) is given by x(s) = s — I/2), 60 < s < I and ¢ constant, then there is no point of
minimum curvature but there is an inflection at s = 1/2. There is no minimum (or maximum)
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Figure 15. Inflections without minima
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of curvature in this example because there is no minimum (or maximum) s. For any s € {0,{)
it is the case that s/2 < s < (s +!)/2, giving elements of (0,!) strictly less or greater than s.

2.12. Codon hierarchies

The treatment of codons thus far has intentionally ignored, for sake of simplicity, the
fact that the codon description of a curve depends upon the resolution with which the curve
is examined. At one degree of resolution a curve may appear to contain only a handful of
codons. Closer inspection reveals, however, that nested within each of these bigger codons
is a handful of smaller codons. Again, nested within each of these smaller codons is yet
another handful of even smaller codons, and so on ad infinitum.

Clearly, then, one level of codon string description in isolation is necessarily incomrlete.
Each codon of the codon string at one level must have a pointer to another subordinate
codon string which describes the codons nested within it. Each member of each of these
subordinate codon strings has a pointer to its own subordinate codon string, etc. The result
is that a curve is described by a hierarchy of codon strings rather than by a single string.

A hierarchy of codon string descriptions is a useful means to satisfy the stability/sensitivity
criterion, at least in part. The hierarchical descriptions decouple some grosser aspects of
the shape of a curve from some of the finer aspects.
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Figure 2-16 gives an idea how a hierarchy of codon strings could be organized. It
also shows how the more quantitative descriptive information could be attached to the
qualitative codon descriptions. Of course the number ot levels in the hierarchy is imited by
the resolution cf the human visual system. At some point the hierarchy must be terminated
and finer scale effects summarized perhaps as texture predicates attached to the smallest
scale codons that are represented in the hierarchy.

2.13. Summary

| propose the following rule for dividing smooth plane curves into parts: Divide a curve
into parts at minima of signed curvature. For curves with cusps this rule extends to dividing

a curve into parts at concave Cusps in addition to minima of curvature.

| argue that this rule is useful because of the following: 1} the parts defined by this
rule do not vary with similarity transforms in the plane, 2) when two objects are intersected
concave cusps or minima of curvature (for smoothed curves) will generally be created in the
imaged silhouette (figure 2-2) and 3) the parts defined by this rule look natural. Evidence
for the psychological role of this rule is presented in chapter 5.

Conveniently, an exhaustive qualitative classification of parts can be given. | call these
the five codon types.? In addition metrical properties can be assigned to codon parts ina

manner that is invariant under similarity transforms in the plane.

Much is left to do to understand our ability to recognize objects from their silhouettes.
Of particular interest is the question of how a codon description of a curve is used as a first
index into a memory for shapes. The duality between bounding contours and the areas they
bound also needs to be developed. It is likely that both contour and area based predicates
figure in our judgements of similarity and identity of objects.

3This nomenclature was suggested by W. Richards.
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Figure 16.
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3. Representing surfaces

The previous two chapters develop a representation of plane curves for recognition.
In this chapter the project is to develop a similar representation for surfaces in three
dimensions. For a large class of surfaces it turns out that it is a simple matter to extend the
notions applied to plane curves. This is somewhat surprising since surfaces are much more
complicated in their locai geometry than plane curves. For example, rather than having a
single curvature at each point, as is the case with curves, there are two principal curvatures
associated with orthogonal directions at each point on the surface.

Smooth surfaces are discussed first followed by surfaces with contours of discontinuity
of the tangent plane. | propose that for purposes of segmentation it is advantageous to
analyze the principal curvatures independently rather than to use a measure such as the
Gaussian curvature (where the principal curvatures are multiplied together). In particular,
the segmentation rule argued for in this chapter is the following: Divide a surface into parts
at minima, along the lines of greatest curvature, of the greatest principal curvature. Or
instead divide a surface into parts at minima, along the lines of least curvature, of the least

principal curvature.

3.1. Surfaces of revolution

Before engaging in a detailed mathematical analysis of surfaces, it would be helpful to
develop our intuitions on a simple class of surfaces, surfaces of revolution. A surface of
revolution can be obtained by spinning a plane curve about an axis which lies in the plane
and does not touch the curve (figure 3-3). For image planes parallel to the axis of rotation,
the projected silhouette of a surface of revolution is simply the original plane curve used to
generate the surface.

From chapter 2 we already have a rule for dividing the plane curve into parts. Whatever
rule we have for surfaces should divide (he surface of revolution into parts in a manner
consistent with the rule we already have for dividing its silhouette into parts. To satisfy this
constraint the partitioning contours on a surface of revolution must be circles on the surface
which pass through the minima of curvature of the generating plane curve (see figure 3-4
for examples). The rule stated earlier fo; partitioning surfaces does in fact define exactly
these circles as the dividing contours. To see this, however, will require a brief tour through
the differential geometry ot surfaces.
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3.2. Notation and terminology

Tensor notation, which allows concise expression of surface concepts, is adopted
in this chapter (see Dodson and Poston 1979, Lipschutz 1969). A vector in R is x =
(z', 22, 2%). A point in the parameter plane is (u', u?). A surface patch is x = x(u', u?) =
(z'(u!, u?), 23(u}, ¥¥), z3(u', u?)). Partial derivatives are dennted by subscripts:

X ——c‘-,l X = ox X9 = o7 etc
1= 3ul’ 727 au?’ 127 3ulou?’ )
A tangent vector is dx = x,du! + Xodu? = x,du' where the Einstein summation

convention is used. The first fundamental form is

| = dx - dx = x; - X;du‘dw’ = g,;du’dv’

where the g;; are the first fundamental coefficients and 1, 7 =1, 2.

The differential of the normal vector is the vector dN = N,du' and the second
fundamental form is

. N=d’x-N=x,, " Ndu'dw’ = b.jdu‘duj

where the b,, are the second fundamental coefficients ands, j=1,2.

A plane passing through a surface § orthogonal to the tangent plane of S at some
point P and in a direction du‘:du’ with respect to the tangent plane intersects the surface
in a curve whose curvature at P is the normal curvature of S at P in the direction du‘:du’.
The normal curvature in a direction du':du’ is k, = lI/l. The two perpendicular directions
for which the values of k. take on maximum and minimum values are called the principal
directions, and the corresponding curvatures, k; and k., are cailed the principal curvatures.
The Gaussian curvature at P is K = kiky. The mean curvature is H = (k: + k2)/2. Aline of
curvature is a curve on a surface whose tangent at each point is along a principal direction.
A point P is planar it ky = k, = 0, parabolic if K =0 and either k; 7% 0 or k2 # 0, elliptic it
K > 0, and hyperbolic it K < 0.

Just as a plane curve can have one of two orientations, so an orientable surface can
have one of two orientations of its field of surface normals.! On a sphere, for instance, the
surface normals can either point inward to its center or outward like a porcupine. Reversing
the orientation of a surface reverses the sign of the principal curvatures on the surface just

1 Avoiding technicalities, a surface is orientable if one can consistently assign a field of surface
normals over the entire surface. A Moebius strip is an example of a surface where this is not possibie.
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as reversing the orientation of a plane curve reverses the sign of curvature ali along the

curve.

3.3. Goals

As mentioned in the first chapter a surface patch representation x(u', u?) for a surface
S is inappropriate for recognition because it is a viewer dependent representation, violating
both the uniqueness criterionn and the stability/sensitivity criterion. Our goal in this chapter
is to transform a surface patch representation into a representation which is suitable to
initiaie the recognition process. This transformation will proceed in the same three stages
as for plane curves. First the rotation and translation of the surface will be decounled (not
discarded) from the shape. Then scale independent parts will be defined. Finally, the parts
will be given viewpoint independent descriptions.

Simpler surfaces will be examined first followed by more complicated ones. Simplest
are the developable surfaces, those containing only parabolic and planar points. Then
surfaces of revolution will be studied. Finally, more general smooth surfaces and surfaces
with contours of discontinuity of the tangent plane will be studied.

3.4. Decoupling rotation and position

For plane curves it is possible to decouple the shape of a curve from its disposition
in the plane by using the curvature as a function of arc length. The analogous move for
surfaces is to use the two principal curvatures. The principal curvatures at a point do not
depend upon the viewing geometry and are thus an effective means of decoupling the shape
of a surface from its rotation and translation in space. That the principal curvatures at a
point do not depend on the viewing geometry can be proved as follows. Each principal
curvature is a normal curvature. The normal curvature in some direction is given by the ratio
of the first and second fundamental forms in that direction, i.e. k,, = llI/l. Since both the first
and second fundamental forms are invariant under a parameter transformation (Lipschutz
1969, p.172, 175) the normal curvature is also invariant. Hence the principal curvatures do
not depend upon the viewing geometry.

However the matter is not as simple for surfaces as for curves. One can show that x(s)
specifies a plane curve uniquely by the fundamental theorem of curves. But it is not true
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that by specifying k; and k, as a function of the two surface parameters one has specified
the surface uniquely up to disposition in space. What is missing at each point are the
principal directions. Consequently our analysis will deal with the principal curvatures and
with lines of curvature. It will be possible in this manner to define and describe parts in a
viewer independent way.

3.5. Scale independent parts

The principal curvatures, like the curvature of plane curves, are not independent of
the overall scaling of the shape. For example, two spheres of differing radii have differing
principal curvatures? even though they have the same shape.

The way out of this problem for plane curves is to base the segmentation rules and part
descriptions upon the inflections and extrema of curvature. For surfaces the analogous way
out is to base the segmentation rules and part descriptions upon inflections and extrema
of the normal curvature of lines of curvature.® Note that the claim is that the rules depend
upon extrema and inflections of the norma! curvature, not merely the curvature, of the
lines of curvature. The two curvatures are equal only when the lines of curvature are also
geodesics, i.e. curves for which the geodesic curvature, ,, is everywhere zero.* Note also
that only one of the two normal curvatures is associated with a given line of curvature.
For our purpose of segmentation into parts, only the extrema and inflections of the normal
curvature associated with that line of curvature are of interest in the analysis along that line

of curvature.

A given extremum point of normal curvature along a line of curvaidre can be either a
maximum or minimum depending upon the orientation of the field of surface normals on the
surface. From a practical perspective, a surface is simply a boundary between the object
on the inside and the ground on the outside. A convention is needed here, in a manner
similar to the case of plane curves, to associate the two possible orientations of the field
of surface normals with the figure-ground relations. For plane curves the figure side of
the curve is to the left and the ground side to the right as the curve is traversed in an
orientation. For surfaces a convenient convention is to say that the surface normals point to

2Actually every normal curvature on a sphere is a principal curvature since all normal curvatures are
identical.

°Recal! that a line of curvature is a curve on a surface whose tangent at each point is along a
principal direction.

‘The total curvature of a surface curve at a point can, in general, have a component along the
surface normal at that point and a component in the tangent plane at the point. The component along
the normal is the normal curvature. The tangent plane component is the geodesic curvalure.
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the figure side of the surface. If a sphere is considered the bounding surface of a solid ball,
for instance, then the surface normals are taken to be inward pointing by convention. If the
sphere is a bubble in some surrounding medium then the surface normals are taken to be
outward pointing. Thus if the figure-ground selations are known then the surface orientation
is known. If the surface orientation is known then the figure-ground relations are known by
convention. Minima of normal curvature of a line of curvature are then generally associated
with concavities of the figure and maxima with convexities. It is possible however for minima
to have positive normal curvature, as in the case of an ellipsoid with inward pointing surface
normals. It is also possible for maxima to have negative normal curvature, as in the case of
an ellipsoid with outward pointing normals.

Maxima, minima and inflections of normal curvature along lines of curvature are all
candidate points for partitioning a surface into units in a viewer independent manner. To
choose among them we require that the units chosen reflect natural parts of shapes, as
in the case of plane curves. When 3-D parts are joined to create complex objects, the
contour of the join will generally be concave (figure 2-2). This suggests that oniy minima of
normal curvature, not maxima or inflections, be used to segment a surface into parts since,
again, segmentation of a surface at minima of normal curvature along lines of curvature
immediately encodes in a straightforward manner an important property of the natural world
which is not captured by maxima or inflections. This leads to the following segmentation
rule: Divide a surlace into parts at minima, along the lines of grealest curvature, of the
greatest principal curvature. Or divide a surface into parts at minima, along the lines of

least curvature, of the least principal curvature.

This segmentation rule is applied to several classes of surfaces in the next sections.

3.6. Segmentation of developable surfaces

Developable surfaces are a special case of ruled surfaces. A ruled surtace is a surface
generated by a one parameter family of lines (Do Carmo 1976). A one parameter family of
lines {g(u'), w(u')} is & correspondence that assigns to u! € (a, b) C R a point a(u') € ®?
and a vector w(u') € 8?3, w(u') # 0, such that both a(u') and w(u') depend differentiably on
u!. For each u' € (a,b), the line L{u') which passes through o(u') and is parallel to w(u') is
called the line of the family at u!.

Given a one parameter family of linas {a(u'), w(u')}, the associated ruled surface is
given by the parametrization
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x(u!, v’) = g(u') + Pu(n'), uv'€(a,l)CR, uwPER

The curve a(u') is called a directrix, and the lines are called the rulings of the surface
x. In what follows we assume, without loss of generality, that u' is arc length aiong a
and that |w(u')] = 1. A ruled surface is said to be developable if the scalar triple product
(w, w1, a1) = 0 everywhere on the surface. Intuitively this means that w, w, and o, lie in a
plane.

In the next two subsections we determine the segmentation contours for two nonex-
haustive cases of developable surfaces: the cylinder and the cone.

3.6.1. Cylinders

A cylinder is a developable surface where ¢ is contained in a plane and w(u') is parallel
to a fixed direction in ®3, that is w, = 0. For a cylinder x; = a; + u?*w, = a; (since w; = 0)
and x, = w. The first fundamental coefficients are then

X (l 0)
Gij = X; - Xy =
’ J 0 1

The surface normal is

X
= ]XXQ = lew =alx1‘!
Xy X x| Jey X w| 7T

The second fundamental coeflicients are

bij = Xij-N= ((9"' a, ) 0) — (lgnl 0)
0 0 0 0

Since g,2 = b;2 = 0 the principal curvatures on a cylinder are

ky = by /911 = |an|

ky = b22/g22 =0
The expression for k, is the magnitude of the seccnd derivative of a with respect to arc
length (with sign determined by the orientation of the field of surface normals) which is
simply the curvature along the directrix a. The directrix and its translations are, in fact, one
sat of lines of curvature and the rulings the other set.> As expected, the curvature along the

5The u' and u® parameter curves on a patch without umbilical points are lines of curvature if and

only if at every point on the patch g,2 = b2 = 0. When the parameter curves are lines of curvature
the expressions for the principal curvatures are much simplified, as illustrated in the last displayed
equation. (See Lipschutz 1969, 186).



Figure 1. A cylinder with segmentation and figure ground reversal

rulings, k2, is zero. Consequently no segmentation contours arise from the rulings (since
there are no minima of the normal curveture, k;). Only the minima of k, along the directrix
and its translations are used for segmentation.

Figure 3-1 shows a cylinder and its segmentation contours (dotted lines) for one of the
orientations of the field of surface normals. The segmentation contours break the cylinder
into parts that seem natural to human observers. If one examines the figure long enough
one can experience a figure ground reversal similar to that lor plane curves. When this
happens the bumps of the surface become dips and vice-versa. Notice that when figure
and ground reverse the natural segmentation lines shift away from the indicated dotted lines
to the contours that were previously maxima of k;. This occurs because the figure ground
reversal is associated with a reversal in the surface orientation and, hence, in the sign of k,
everywhere on the surface. Contours of maxima of k; and contours of minima of k; swap
places and the new segmentations aiong the new minima become apparent.

Segmentation rules which use Gaussian curvature, rather than analyzing the principal
curvatures independently, fail on this example and on cones. They fail because the Gaussian
curvature is everywhere zero, making impossible any segmentation based only upon the
Gaussian curvature. Yet human observers readily and consistently segment into parts
surfaces whose Gaussian curvature is everywhere zero.
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3.6.2. Cones

For analysis of ruled surfaces we may take the line of striction to be the directrix
without loss of generality (Do Carmo 1976, p. 190). The line of striction is a parametrized
curve o(u') such that a; - w; = 0, u' € (q, b) and a lies on the trace of x. In the case of a
cone a; = 0 and the line of striction is simply the vertex of the cone. With this choice of
directrix for cones x; = u?w, and x, = w. The metric tensor is

(u?)%(1 - w1) 0)

gl'J'=xi'xj=(
0 1

The surface normal is

_ XXX vy Xw) _ wixw
i X xg| - fu?lwn Xwl o fwi]

The second fundamental coefficients are

w?(21, w, wn)/|wi 0)

b.~=x.~-N=(
J J 0 0

Since g;,2 = b3 = 0sthe principal curvatures on a cone are

kl — b“/g“ _ u2(1.‘.’ls v, '-."ll) — (yll,y, y“)
(u2)?(w) - wy)|w:] uZjw, |3
k2 = b22/g22 =0

The u! and u? parameter curves are lines of curvature. As expected, the principal
curvature along the u? parameter curve, k,, is everywhere zero. The expression for k,
along the u! parameter curves (where u? is constant) does not depend on u2. Thus the
contours of minima of k, are straight lines which pass through the vertex of the cone. An
example cone is shown in figure 3-2 with segmentation contours indicated by dotted lines.
The resulting parts seem the natural ones.

3.7. Segmentation of surfaces of revolution

A surface of revolution is a set § C R® obtained by rotating a regular plane curve a
about an axis in the plane which dees not meet the curve. Let the z'2* plane be the plane
of a and the z* axis the rotation axis. Let
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Figure 3. Surface of revolution

N= (zlc, z,8, —31)
The second fundamental coefficients are

nn—nm 0 )

bij =xi;-N= ( 0 -—zn}

Since g;2 = b2 = 0 the principal curvatures of a surface of revolution are

ky =bii /g =zun — a1
ky = b22/922 = —m /3

The expression for k, is identical to the expression for the curvature along a. In fact
the meridians (the various positions of a on §) are lines of curvature, as are the parallels.
The curvature along the meridians is given by the expression for k, and the curvature along
the parallels is given by the expression for k.. The expression for k; is simply the curvature
of a circle of radius z multiplied by the cosine of the angle that the tangent 10 makes with
the axis of rotation.

Observe that the expressions for k, and k; depend only upon the parameter u!, not u?.
In particular, since k; is independent of uf there are no extrema or inflections of the normal
curvature along the parallels. The paraliels are circles. Consequently no segmentation
contours arise from the lines of curvature associated with k;. Only the minima ol k, along
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Figure 4. Segmentation contours for surfaces of revolution.

— = = = =\ U (partition contours not necessarily
at points where x'=0)




the meridians are used for segmentation. Figure 3-4 shcws several surfaces of revolution
with the minima of curvature along the meridians marked. The resulting segmentation

contours appear quite natural to human observers.

Figure 3-5 illustrates that reversing the orientation (of the surface normals) of a surface
of revolution causes us to carve the same surface difterently. The top and bottom figures
are identical, except that one is rotated 180 degrees from the other. The dotted circular
lines in the top figure are the segmentation contours according to our rule for surfaces.
Note that they lie in the vaileys of the top figure. in the bottom figure they no longer lie
in the valleys but on the peaks. By reversing the field of surface normals the signs of
the principal curvatures everywhere have reversed. Contours of minima become contours
of maxima and vice versa. Consequently the part boundaries are not invariant under an
orientation reversal.

3.8. Segmentation of the torus

A torus in R3 is the surface in ®R3, shown in figure 3-6, which is obtained by revolving
a circle about a line not passing through the circle. A convenient parametrization for the
torus is

x(u', u?) = ((b+ asin u?)(cosu'), (b+ asin u?)(sinu'), acos u) b>a

Let sinu' be abbreviated s and cosu' be abbreviated ¢!. Then the first partials are
x, = (—(b+as?)!, (b+ as?)c!, 0) and x, = (ac’c', ac?s!, —as?). The metric tensor is

(b+as?)? 0 )

gij=xi'x1=(
0 a?

The surface normal is

N= 1 X%2 XX2 _, (—c'4?, —a's?, —c?)
|x1 X X'zl

The second fundamental coeflicients are

(b + as?)s? 0)

b,'J=X.','-N=(
0 a



Figure 5. Part boundaries shift when suiface orientation reverses




Figure 6. A torus
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Since g1 = b2 =" the u! and u? parameter curves are lines of curvature and the
principal curvatures of a torus are

ky = b /gn = 82/(5 + 0-’2)
ky = by /922 = a!

The principal curvature k, is associated with the u' parameter curves and k; with
the u? parameter, curves. k, is a constant so the torus is not segmented using the u?
parameter curves. k; is not a constant, but it is independent of u'. Therefore the torus is
not segmented using the u' parameter curves either. The conclusion is that the torus is
one indivisible unit based on our segmentation rule.

This is a different result than would be obtained using a segmentation rule proposed
by Koenderink and Van Doorn (1975, 232). They suggest that hyperbolic points of a surface
be used to divide it into parts. The hyperbolic points of a torus are indicated in figure 3-6.

3.9. Segmentation of the general ellipsoid

Let the ellipsoid be given in spherical coordinates by (figure 3-7)

2

x(u}, 4?) = (asinu®cosu’, bainu®sinu', cosu?) a>H>1



Figure 7. General ellipsoid: dotted contours are partlitions

Let subscripted s's and c's indicate sines and cosines of the parameters. Then

ox
a__u‘ = X = (—08182, b".'clp 0)
ax
.a_u—2 = X9 = (aC1C2, bc2’l: _’2)

The metric tensor is

b, = 83(a%2 4+ b3c?)  siciscy(b? — a?)
Y t s cy80ca(b? — a?) ci(a?c} + b%s3) + 83

The surface normal is

X; X X2
N= —"——"°==(-b , — , —abc d
X, X 2| ( 97C) as;s2, —0 2)/

where

d= \/bTa%cf + a?82s? + a?b%c}
The second partials are
Xy, = (—asacy, —bsy 82, 0)

Xjp = (—acj8), dcy 3, 0)
X3, = (—as2¢), —bs; 82, —c3)
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So the second fundamental coefficients are

abs?/d 0
b.,-=x.,--N=( 2/ )

0 ab/d

Since gi2 = g21 7 0 the u' and u?-parameter curves are not in general lines of curvature on
the ellipsoid. The differential equation for the lines of curvature on any surlace is (Lipschutz
1969)

(911612 — br1g12)du’ du' + (911622 — by1g22)du’ du® + (g12b22 — g22b12)du?du® =0

which for an ellipsoid becomes quite unwieldy. Rather than solve a differential equation for
the lines of curvature and then try to find the equations for the principal curvatures along
the lines of curvature, we exploit the symmetry of the ellipsoid to determine the contours of
minima of normal curvature along the associated lines of curvature. We will show that the
curves u? = 7/2 and u' = 0 are lines of curvature. We will then show that the minima of
normal curvature on these curves all lie on the curve u! = v/2. Then by the symmetry of
the ellipsoid it will follow that all such minima must lie on the curve u' = 7 /2, making this
curve one of the two partitioning contours determined by our rule. A similar approach will
show that the curve u! = 0 is the second partitioning ccntour.

We note first that for the parameter curve u? = 7/2 the metric tensor becomes

a?s? + b2c2 0)

9ij=xi'xj=(
0 1

and the second fundamantal coefficients become

b;’j=x|'j'N=

ab(b?c? 4 a2s3)~1/2 0
0 ab(b?c? + a%a2)—1/2

Since g12 = 0 and b;, = 0 the curve u? = /2 is a line of curvature. The associated principal
curvature is

K= b“/gu = ab(a’af + b’c%)_a/2

The extrema of curvature occur when 8x/8u! = 0.

.13 3 -
BoT —Eab(aQJf + b2c?) 5’2(2a2c,a| — 2b28;¢,) =0



This implies that

b%s,c; = ac; 8

which occurs when u! = n7/2, n = 0,1,2,3. Thus the extrema of normal curvature aiong
this particular line of curvature occur at the four points where the line of curvature intersects
the z and y axes. The points of intersection on the z axis are the images of the parameter
points (u!, u?) = (0, 7/2) and (u', u?) = (m, 7/2). The points of intersection on the y axis
are the images of the parameter points (u', u?) = (7/2, 7/2) and (u', u?) = (—n/2, 7/2). At
the points of intersection with the z axis the relevant principal curvature is « = a/b%. At the
points of intersection with the y axis x = b/a®. Since a > b > 1 then a/b% > b/a? and the
minima are the points on the y axis.

Next we consider the curve u’ = 0. Along this curve the metric tensor simplifies to

b2s2 0
9i; = X - X; =
’ ’ 0 a%c+ s

The second fundamental coefficients simplify to

as3/\/s% + a2c? 0 )
0 a/V/s% + a%cl

Since g, and b,, are both zero the curve u' = 0 is a line of curvature. The associated

normal curvature along this line of curvature is

K = bya/gas = a(s2 + a?c3)73/2

with the partial derivative

orx 3 -
53 = —ia(azcg + 82)5/2(2s5¢, — 2a%c28;) = 0

This implies that

aac2 82 = G82C3

which occurs when u? = n7/2, n = 0,1,2,3. Thus the extrema of the normal curvature
associated with this line of curvature occur where the iine of curvature intersects the z and
z axes. At the intersection with the z axis the relevant principal curvature is « = a. At the
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intersection with the z axis x — a~2, Thus the minima occur along the > axis at the images
of the parameter points (u’, u?) = (0, 0) and (u, u?) = (0, 7).

Combining this result with the minima from the curve u? — m/2 we find that both pairs of
minima lie on the curve u' — /2. By the Symmetry of the allipsoid it is clear that all the
other minima of normal Curvature from this family of lines of Curvature must also lie on the
curve u! = #/2. Thus this curve, which is the interseciion of the yz plane with the ellipsoid,
is a partition of the ellipsoid as defined by our rule.

Next we consider the curve u! — 7/2. Along this curve the metric tensor simplifies to

a?s? 0
9ij = X; - X, =
’ ’ 0 b2c§+a§

The second fundamental coefficienis simplify to

b = X N — bs3/v/s3 + b2c2 0
v 0 b/\/3I + 623

Since ¢, and b2 are both zero the curve u! = /2 is a line of curvature. The normal
Curvature associated with this line of curvature ig

& = ba2/g20 = s} + b2c2)—3/2

with the partial derivative

ok 3
5uE =~ M8} + 88 2(20s0, — Woeray) — 0

This implies that

630252 = bng C2

which occurs when u2? — nr/2, n = 0,1,2,3. Thus the extrema of the normal curvature
associated with this line of curvature occur where the line of Curvature intersects the y and
z axes. At the intersection with the z axis the relevant principal curvature is x — b—2, At
the intersection with the y axis x = b. Thus the minima occur along the z axis, at the
images of the parameter points (u', u?) = (n/2, 0) and (v', ?) = (7/2, 7). These minima
both lie on the curve u' = ¢ By the Symmetry of the ellipsoid it is clear that ali the other
minima associated with thig family of lines of Curvature must also lie on this curve, Thus
the second partitioning contour defined by our rule is the curve u! — 0 (actually without the
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two points where this contour intersects the z axis). This is the contour of intersection of
the ellipsoid with the zz plane. The first partitioning contour was the intersection with the
yz plane. These contours may be imagined better by looking at figure 3-7.

Should these two partitioning contours pe treated independently, or should they be
taken together to define the part boundaries? Treated independently they each divide the
ellipsoid into halves. Taken together they divide the ellipsoid into quadrants. The division
into halves seems the more natural, suggesting that the contours be treated independently.
The fact that for some surfaces only one family of lines of curvature gives rise to partitioning
contours also argues that the partitioning contours from the two families of lines of curvature
be treated independently.



Figure 8. Flattened SOR: dotted contours are partitions

these contours
should be slightly
bowed up or down
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3.10. Flattened surfaces of revolution

Let a flattened surface of revolution be given in cylindrical coordinates by (figure 3-8)

x(u!, u?) = (f(u') con(u?), af(u)sin(u?), u') 0 <a<1

Let s's and c's indicate sines and cosines of u?. Let f(u') be abbreviated to f and let
dots over the f's indicate derivatives with respect to u!. Then the metric tensor is

]2(4:’ +a*?)+1 flsa?— l))

B = X% = ( f}ac(aﬁ —1) f2(.§ + a?c?)

The second fundamental form is

bij =x;;-N= (_aj/d ’ )
0 af/d

where d = \/a2¢? 4 ¢2 a’]a

Since x, -x; # 0 in general, the parameter curves are not in general lines of curvature.
However when f = 0 then x; - x, = 0 8o that contours where this holds are lines of
curvature. These contours are elliptical cross sections of the flattened surface of revolution,
cross sections having either the greatest or least major axis locally.
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Along these lines of curvature the associated principal curvature is

Kk = bz /922 = af ~'(s* + a%c?) 3/

Its extrema occur when

Ox/du? = —3.5af (a4 8%)3/%(—2a%cs + 2c8) = 0

which happens when a%sc = sc. This implies that u?=nx/2, n=0,123. Forn even
x = a—2f—! and for n odd x = af—!. Thus the minima occur when u? is 7/2 or 3x/2. All
such points lie on the intersection of the ys plane with the flattened surface of revoluticn.
Since the yz plane is a plane of symmetry of the surface it follows that the two contours
where it intersects the surface constitute one partition defined by the surface partitioning
rule. This is a “weak"” partition, one where the value of the principai curvature is always
positive at its minimum.

To determine the other family of partitioning contours we begin by noting that when
u? is nx/2 the metric tensor becomes

wern=(F0 0

0 f3a?

for n even, and

a.-,-=x.~-x,-=(}2"2+l o)

0 - f’

for n odd. Thus the u!-parameter ‘curves given by u? = nr/2 are lines of curvature. These
curves are also the intersection of the flattened surface of revolution with the zz plane or
the yz plane. For n even the associated principal curvature is

k= by fgn = —f(1+ 1)

andfornodd itis

x = by /g = —af(1+ 0]2)_'/’



The extrema of these two curvatures do not, in general, occur at the same values of u'.8
Thus the partitioning contours on tie flattened surface of revolution are not, in general,
planar. So as a surface of revolution is flattened, the partitioning contours which are at first
" circles become more elliptical and usually bow either up or down slightly.

| am grateful to Alan Yuille for pointing this out to me, and for being of great assistance in several of

the derivations in this chapter. Yuille also disproved the interesting conjecture that a contour defined
by the surface partiticning rule always lies on & line of curvature from the opposite family of lines of
curvature. He found the right conoid to be a counterexample.



3.11. Surfaces with discontinuities

Our partitioning rule is easily extended to surfaces with discontinuities of the tangent
plane. These discontinuities come in two basic classes, concave and convex. Intuitivety,
a concave discontinuity points into the object and a convex discontinuity points out of the
object. Then by the argument advanced in chapter 2 (figure 2-2) a surface should be brokzn
into parts at concave discontinuities, not at convex discontinuities. The argumant is that
when two objects are intersected their line of intersection is always (with probability one) a
concave discontinuity regardless of the shapes of the two objects.

3.12. Elbows

An apparent problem for the partitioning rules we have discussed in this chapter are
“elbows" (figure 3-9a). The problem with elbows is that they prevent a closed partitioning
contour. Consequently the partition is always incomplete. This is true not only for surfaces
with discontinuities of the tangent plane but also for smooth surfaces with elbows.

As can be seen in figure 3-9b, however, there is good reason for the rule to only specify
part of the segmentation contour - the appropriate way to continue the segmentation is
inherently ambiguous. Each of the three divisions shown in figure 3-9b is equally good (or
bad).

We can augment our rule to handle this circumstance by suggesting that the best
contour of division is the one with the smallest arc length. This eliminates the second
possibility shown in figure 3-9b. This also explains why we prefer only one of the possible
divisions in figure 3-Sc.

Elbows may also occur on entirely smooth surfaces. For example, a torus which has
been scaled along one axis has two elbows. The following derivation will show that the
surface partitioning rule gives rise to two open semicircular contours, one on the inside of
each elbow.

Let the torus be given by the parametrization

x(u', u?) = ((b+ asin u?)cos u'), d(b + asin uw?)(sinu'), acosu?) b>a, d>1

This corresponds in figure 3-6 to expanding the torus along the x2-axis. Let subscripted
o's and c's indicate sines and cosine of the parameters. Then the first partials are x, =
(—(b + as2)sy, d(b+ as;)c;, 0) and %2 = (ac2c1, adcasy, —asy).

The metric tensor is



(a)

(b)

(c)

Figure 9.
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(b + as2)*(s2 + d%c?)  acqcy (b + asy)(d® — 1))

i = xl' - X, = .
% ? (GCQC}S](b + as}(d? —1)  a?(c3? + d?c2s? + s2)

The surface normal is

_ X3 X X

= m = (—43201. —38,382, —502)/1'

where

f = \[d?s3e] + o}s3 + d2c]

The second fundamental coefficients are

dso(b + asy)/f 0
0 ad/f

Since g;2 # 0 the u!'- and u2-parameter curves are not in general lines of curvature.
However, along the curve u? = x/2 we have c; = 0, s, = 1, and

(b+ a)%(s2+d%2) 0 )

9.','=X."Xj=(
0 a?

implying that this is a line of curvature. The second fundamental coefficients are

bij = xij-N = (d(b+a)/h y )
0 ad/h

where

The principal curvature along this line of curvature is

x=by /g1 =d(b+a)"'h?

The extrema of curvature occur where dx/6u! = 0.

:T‘i = —1.5d(b + a) 22 + 82)~%/2(201¢; — 2d%811) = 0



Since d > 1 this implies that d%c,s; = ¢;s,, which occurs for u! = nr/2 and n a natural
number. Maxima of curvature occur when n is odd, minima when n is even.

A similar analysis shows that the contour u? = —n/2 is a line of curvature whose
extrema of curvature occur for u! = nr/2 where n is a natural number. The difference is
that maxima of curvature occur when n is even, minima when n is odd.

Finally, at the parameter point (7/2, 0) we have that s; =1, ¢; =0, 3, =0, ¢, =1 and
find that the metric tensor is

e x x._(b"‘ 0)
T e et

implying that at this point the u!- and u2-parameter curves are in principal directions. The
second fundamental form is

by =x;-N=(0 )
v 0 ad,

Hence x; = b11/¢:1 = 0. By symmetry this also holds for «, at the parameter points
(—m/2,0), (—n/2, n), (r/2,7). At each of the two elbows then we have found that the
innermost point of the el'bow is @ minima of x;, the outermost is a maxima, the uppermost
and lowermost points have x; = 0. By symmetry, then we have that the two partitioning
contours at the elbows are the open semicircles u! = /2, r <u? <0andu! = —7/2, 7 <
u? < 0. Again, a rule which says to complete unclosed partitioning contours with the
shortest path would give the appropriate resuit.

3.13. Summary

In this chapter | propose the following rule for partitioning smooth surfaces into parts:
Divide a surface into parts at minima, along lines of greatest curvature, of the greatest
principal curvature. Or (ivide a surface into parts at minima, along lines of least curvature,

of the least principal cu:vature.

| argue this rule is useful for the following reasons: 1) the parts defined by this rule
do not vary with changes in viewing geometry, 2) when two objects are intersected their
(smoothed) contour of intersection corresponds to the contour defined by this rule (when
the minima of normai curvature are negative) and 3) the parts defined by this rule over all
surfaces analyzed thus far look quite natural.

Much is left to do to obtain 2 representation of surfaces for recognition It would
be desirable to obtain an exhaustive classification of all possible surface parts, as the five
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codon types are for plane curve parts. (In the case of surfaces of revolution the possible
surface parts are in fact direct exte:nsions of the five codon types for plane curves. This is
not true for more general surfaces.) it would then be desirable to construct a vocabulary to
state the spatial relationships between the parts. However, a clear and well motivated rule
for defining surface parts is an important first step.
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4. Discovering natural scales

In chapter 2 we used some basic tools of differential geometry to develop a repre-
sentation for recognition of smooth and piece-wise smooth plane curves. Of particular
importance in this development were the notions of the tangent vector and the curvature
at a point on a curve. Codon part boundaries, for instance, were defined using minima of
curvature.

We also noted that the codon description of a curve depends upon the resolution
at which the curve is examined. This !ead us to postulate nested hierarchies of codon
descriptions for a single object.

Now the notion oi nested hierarchies of codon descriptions, of codons nested within
larger codons, is strictly nonsense from the point of view of differential geometry. I codon
part boundaries are defined as being at minima of curvature, then given some analytic curve
there is one and only cne set of minima of curvature along that curve and therefore only
one level of codon description. There can be no hierarchy. The reason, of course, is
that differential geometry defines the tangent and curvature at a point entirely in terms of
properties of the curve in a vanishingly small neighborhood of the point, leading to a unique
answer at each point.! As long as the tangent and curvature are uniquely defined at each
point then there is really only one level of codon description.

Our visual systems, however, can assign more than one tangent to a single point
on a curve. Figure 4-1, for instance, shows an ellipse with a high frequency sinusoidal
modulation added. {f we inspect the curve closely the tangents we assign are largely due to
the high frequency sinusoid. if we inspect the curve less carefully the tangents we assign
are predominated by the ellipse. At any one point on this curve, then, we can assign two
independent tangents. In some cases these tangents are identical, but at most points these
two tangents are different. In fact one can easily construct examples where the two tangents
are orthogonal.

From this demonstration we conclude that the rules our eyes use {o assign tangents
to points on a curve are not the same rules used in traditional differential geometry. In
particular, our eyes assign tangents in a manner which depends upon the scale of resolution.
Further, our eyes are not capricious in their choice of scales. Rather, the choice of scales
and the subsequent assignment of tangents is quite consistent across observers. Perhaps,
then, our use of the word ‘“assign’ is misleading as a description of how we choose
tangents. “Discover” is closer to the truth.

!Actually the tangent and curvature for a plane curve are unique up to a change in orientation of the
curve.
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In this chapter we implement the theory of chapter 2. That is, we develop a set
of algorithms which begin with a bitmap representation of a curve and deliver a codon
description. To do this we need more theory, a theory of “natural scale” that allows us to
define what we mean by the tangent and curvature on curves where the standard definitions
cannot apply. The standard definitions of tangent and curvature require a curve to be,
respectively, once and twice continuously differentiable. Our bitmap curves, however, are
nowhere differentiable. Their nondifierentiability arises from two sources. First, the contours
in the world which give rise to the image contours are fractals (Mandelbrot 1977 and 1982,
also Witkin 1981). Fractals are nondifferentiable functions. Second, the imaging process
fractures curves into small segments in order to represent them on a discrete grid.

After developing definitions for the tangents and curvature on nondifferentiable curves
we turn to the problem of integrating the local tangents and curvature along a curve into
an analytic and more global description. From this description we compute the codon
description.

The implementation is written in zeta-lisp and runs on a Lisp Machine with an attached
four plane color monitor. Some example contours and the codon descriptions computed by
the lisp code are examined. The lisp code itsell is presented in the appendix.

4.1. Differential quantities on fractal curves

4.1.1. Tangents on fractal curves

It is helpful to review how the tangent is defined for differentiable curves to see how
best to adapt the notion of tangent to the case of nondifferentiable curves.

The tangent direction of a curve a: [a,b] — R? at any time t is the direction of the
limit of lines through aft) and aft’) as t' — t. This limit exists if o'(t) exists and is non-zero.
If o/ is continuous at ¢, then this limit can be described as the limit, as ¢, t, — t, of the
direction of the line through aft,) and a(t,) since this line is parallel to the tangent through
af¢) for some ¢ between t, and ¢, (see figure 4-1a).

i one plots the orientation of the line between oft,) and oft;) as the two points
approach oft) one expects a curve such as that shown in figure 4-1b. The curve wanders
unpredictably when the points are distant from «(t). As the points draw near to o(t) the
curve asymptotes to the tangent direction.

If a similar plot is constructed for a fractal curve, the random behavior of the plot
persists regardless how close the two points approach the point of interest (see figure 4-1c).

73



The tangent simply does not exist in the classical sense. One can specify the tangent
meaningfully only if one simultaneously specifies the scale.?

For digitized fractal curves, the curves of interest in our application, there is a lower
bound on the minimum scaie at which a tangent can be computed. The two points used
to determine a tangent can get no closer to the pixei of interest than its two neighboring
pixels.? Digitized fractal curves exhibit the wandering tangent illustrated in figure 4-1c. At
smaller scales, however, the randomness in tangent angle is due more to the quartization
of the curve than to the fractal nature of the curve itself.

4.1.2. Curvature on fractal curves

A story similar to the one for tangents also applies to curvature.

The curvature of a curve a: [a,b] — R? at any time t is the inverse of the radius of the
osculating circle to aft). The osculating circle is the limit of the circles through a(t,), a(t2)
and Q(ta) as ty, ty, t; — t (see ﬁgure 4-2).

If one plots the curvature of the circle defined by the three points as they approach «o(t)
one obtains a graph having an asymptote like figure 4-1b. If a similar plot is constructed for a
fractal, the result is like figure 4-1c, having no asymptotic value. Again the curvature simply
does not exist in the classical sense. One specifies the curvature at a point meaningfully
only in conjunction with the simultaneous specification of a scale.

4.2. Natural scale

The tangent angle and curvature at a point on a nondifferentiable curve are fun-
damentally contingent upon scale. Yet they are critical for the codon representation of
curves. It seems then that the codon scheme, developed as it was for well behaved smooth
curves, must give multiple (a euphemism for “a very large number of'') descriptions for
nondifferentiable curves even when the viewing geometry does not vary. This would be
quite unfortunate since any real imaging system delivers only discretized curves. A hierarchy
of codon descriptions is desirable, a continuum of descriptions is not.

*The scale of resolution discussed here should not be confused with the overall scaling of a curve
mentioned in the previcus chapter. The codon description is invariant under an overall scaling of
a curve because it is based on extrema and inflections of curvature. The codon description is riot
invariant under changes in scale of resolution since at different scales of resolution diiterent extrema
and inflections become accessibie to the observer.
3pixel is short for “'picture element".
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Figure 1. Tangents on differentiable and fractal curves
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Figure 2. Curvature on difierentiable curves
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A simple observation about the human perception of fractal curves suggests that there
is a way out of this problem (if we can find it). This observation is illustrated in figure
4-3. The figure shows several fractal curves with small x's marked on certain points. The
question is, What is the tangent to each curve at the points marked by the x's? We have
no difficulty answering. Indeed, the answers across observers are quite consistent. Yet,
because the curves are fractals, there are literally an infinite number of “right’ answers.
Why the concensus among human observers?

Apparently there are “natural” scales to the human observer. Simply by inspecting a
curve we all consistently discover the same natural scale(s). Note that the natural scales of
a curve seem to be discovered, not imposed, by our visual systems. Were they imposed,
the scale that seemed natural would not vary from curve to curve, as it does in the figure.
There is a sense in which the natural scale is imposed. We can only see a finite range of
scaies at any one time, so any natural scales we discover must be within that range. This
range, however, is quite large, between four and five orders of magnitude. In this section
a method for discovering natural scale tangents and curvatures at points on (quantized)
fractal curves wiil be proposed.

First we need some assumptions and terminology. Assume that the image plane has
a hexagonal tesselation. Assume that the discretized curve is oniy one pixel thick at every
point. Then a convenient analogue for the arc length between two points on a smooth curve

‘This estimale comes from dividing our field of view, about 180 degrees, by our best spatial resolution,
about two seconds of arc.

76



Figure 3. Some fractal curves

is the number of pixels between two points on a discretized curve. The ‘“pixel arc length"
will be denoted by s and curves by c.

Let us plot the ang’le of the chord between two points ¢(s,) and ¢(s;) as s,, 82 — s
such that ¢(s;) and ds,) are always equal pixel arc length away from os) and on opposite
sides of ¢(s). Suppose that, instead of the consistent randomness of figure 4-1c, a plot such
as figure 4-4 is obtained having “tangent plateaus”. These tangent plateaus are regions of
the plot where the chord angle does not vary much over a wide range of scales. Tangent
plateaus of sufficiently long extent and sufficiently low variance of the chord angle are likely
candidates for determining natural scale tangents to fractal curves. If there are no such
plateaus, if the plot of the chord angle is truly random over all scales, then the choice of a
set of scales as ‘‘natural” is surely arbitrary.

Some obvious problems for this definition of natural scale are the following: 1) How
many tangents should go into the variance computation at each scale, 2) how low should
the variance be to qualify as a natural scale, and 3) how long should the plateau be to
qualify as a natura! scale.

On the first problem, if an arbitrarily fixed number of tangents, say twenty, is picked as
the window for the variance computation then the whole scale issue is begged. A window
of two tangents would always be sensitive to the curve quantization even at large scales,
certainly an undesirable result. A huge window of fixed size would be too insensitive for
the smaller scales. Thus we need a window whose size varies with the scale at which the
variance is {0 be computed. This is the approach taken in the implementation (see figure
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360 , Figure 4. Tangent plateaus for determining natural scale
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4.5a). To find the natural scale tangent(s) at some point P on a curve we send two "bugs"

walking away from P at equal speeds along the curve. After each bug takes a step two new
windows are formed, whose sizes are proportional to the distance of the bugs from P, with
each bug in the center of its window. Suppose, for example, the proportionality constant
is 0.4. Then when the bugs are ten pixels away from P the windows are four pixels wide,
two pixels in front of the bugs and two behind. When the bugs are 100 pixels from P the
windows are forty pixels wide. If we assign positive values to pixel distances to the right of
P and negative values to distances to the left of P, then the window for the bug to the right
of P would extend from pixel 80 to pixel 120 while the window for the bug to the left of P
would extend from pixel -80 to pixel -120C.

The tangents within the windows are defined as the angles of the lines between
corresponding pixels in the two windows. Corresponding pixels are pixels of the same
absolute value but opposite sign, such as pixels 80 and -80. Once all the tangents are
determined within the windows, the variance of the tangents is computed. Each such
variance computation is represented by one point in the variance plot of figure 4-5b. The
bugs take one step forward and the whole procedure is repeated, leading uitimately to the
entire plot of figure 4-5b. Minima of this variance plot are candidate natural scales for the
tangent at P. Of course some minima are lower than others, with the consequerice that
some natural scales may be more natural than others.

Figure 4-6a shows that, as one expects, there can be more than one natural scale
tangent at a point on a curve. The curve in the figure is an ellipse with some high frequency,
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Figure 5. Variance computation for natura! scale tangents
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low amplitude, sinusoidal modulation of the y-coordinate. The X's in the figure indicate the
points about which the natural scale computation was performed. The straight lines indicate
both the angle and scale of the natural scale tangents found about the X. In some cases
the tangents at the smaller and larger scales can be almost mutually orthogonal.

Figure 4-6b shows the result when the tangents at the two scales are computed for
every point on the ellipse, stored in two separate lists, and integrated (in a manner to be
explained shortly) to give two scale dependent analytic representations of the curve. The
two resulting curves correspond nicely to our perception.

Finding natural scale tangents is simpiy a means to an end as far as the codon theory
is concerned. What the codon approach really needs is the natural scale curvature since
the codon part boundaries and part descriptions are based upon extrema of curvature.
Unfortunately the straightforward approach of finding tangent plateaus that works well for
discovering natural scale tangents does not seem to generalize for the case of curvature. An
algorithm was designed to find curvature plateaus in a manner analogous to that for tangent
plateaus. The resulting variance plots did not show well defined minima. In retrospect this
makes sense. One would expect to find a curvature plateau at a scale only if the curve is
an arc of a circle at that scale.

An alternative approach is to compute an analytic approximation of the curve based
on the natural scale tangents and then to use the analytic representation to compute the
codon description. Ideally such an approximation should satisfy several criteria:

e It should be able to approximate every continuous function on some interval [a,b]} with
arbitrary accuracy. Otherwise there might he classes of curves for whicin no reasonable
codon description could be given simply because of the approximation used.

o It should approximate well the derivatives of a function, in addition to the function
itself. For instance, it should not osciliate about the function. Otherwise the codon
description, which relies heavily on these derivatives, will be inaccurate.

° It should be at least twice continuously dilferentiable everywhere on the interval. Qur
visual systems are not sensitive to higher order discontinuities.

. It should require no iteration for its computation, or very few iterations. Otherwise the
computations become too expensive and time consuming.

e It should require only local support for its computation. This means that the approxima-
tion at one point should not depend on the entire function being approximated.

A particularly simple class of approximating functions which satisfies these criteria is
the class of cubic b-splines (Schumaker 1981). For plane curves, a cubic b-spline is a
piece-wise polynomial approximation of the form (Foley & Van Dam 1982)
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Figure 6. Two natural scales discovered by the algorithm for one curve
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(redrawn from a computer driven color display)
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Bit) = (=(t), ¥(t)

where

z(t) = a,t3 + b,t? + c.t + d;,
y(t) =ayt> + b2 +ct+d,, 0<t<1

In matrix notation this is simply

z(t) = TC;,
y(t) = TC,

where
T=[t¢1)

C. = [a:: b: c; d:]T
Cy=Ilaybyc, dy]T

The restriction on the parameter ¢ does not limit the generality of the b-spline since it is a
segment by segment approximation.

To determine the four coefficients in the vectors C; and C, four control points are
needed. Let the control points be P; == (z,, i), s = —1, 0, 1, 2. Then the coefficients of the
b-spline from near P, to near P, are given by

Cz=MGz
C, = MG,
where
-1 3 3 1
M=l 3 6 30
6.3 0 3 0
1 4 1
and

G, = [z—1 20 2, 23]
Gy =ly—1voy1 v

M is called the spline matrix, G, and G, the geometry vectors.
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Figure 7. A curve whose natural scale changes gradualiy

From this formulation of cubic b-splines it is clear that their computation is non-iterative
and requires only local control, i.e., the four points in the geometry vector. A different
geometry vector is used for each spline segment.

If we are to use b-splines as our approximating functions we must first answer an
imporiant question: How.should the control points be chosen? If we want the b-spline to be
a natural scale approximation then our choice of control points must somehow be faithful
to the tangents we have discovered at a natural scale. And how can we talk about the
tangents (plural) at one natural scale along the cu-re? Consider the curve of figure 4-7.
The natural scales at each end of the curve appear to be quite different.

To talk about the tangents at one natural scale along a curve we must turn our
attention from the image curve back to the world. Shapes in the world exhibit various
natural scales because they are often composed of various processes. The outline of a
tree, for instance, incorporates at least two major processes, the branches and the leaves.
We should expect, then, that the image of the tree's outline would display corresponding
natural scales. These natural scales in the image should be approximately as spatially
uniform as their corresponding processes in the world. Consequently one should expect
to find natural scale tangents whose scale does not vary much over that part of the curve
under the influence of one process. Since more than one process may influence a given
segment of curve one might find more than one set of natural scale tangents, each set
varying little in scale.

In practice one firds that the plot of the tangent variance as a function of scale (as in
figure 4-5b) does not change radically from one point to the next along a curve. It is thus
quite easy to put the minima from one variance plot in correspondence with the minima



from the plots of neighboring points. In this manner it is possible to collect the natural scale
tangents of each natural scale into the correct global lists.

How should we choose the control points for one natural scale? It appears that we
must somehow reiate our choice of control points to the list of natural scale tangents at
that scale. Otherw.;e why wou!d the b-spline approximation warrant the iabel “natural’’?

Unfortunately | have no tight theory of how best to choose the control poirts given the
natural scale tangents along a curve. What iollows is a description of how I in fact did so,
its only merit being, other than a few justifications here and there, that it works well. Here
it is.

The natural tangents are computed at each point along a curve and stored in lists,
one list for each natural scale. Let us restrict our aitention to one such list. Every time
the natural tangents along the curve rotate by twenty degrees, a control poi-t is placed
on the curve. When this has been done for the entire curve, the contro! points are then
mare evenly spaced along the curve using a local averaging and a cubic b-spline fit through
them. Some examples of the resulting curves are shown in figure 4-6b.

Now some justifications. First, why choose the number of control poinis so that on
average the tangent rotates twenty degrees between them? Why not choose five degrees
or ninety degrees? This spacinq problem is important. If the contro! points are too closely
spaced then the resuiting b-spline will be influenced too much by scales smaller than the
scale of interest. If they are spaced too far apart then the spline will be influenced by larger
scales, possibly to the exclusion of the scale of interest.

A rough upper bound on the spacing can be set by asking what is the minimum number
of control points needed to approximate a circle such that the approximation is not easily
distinguished visually from a true circle.® Four is certainly insufficient. The resulting spline
looks more like a rounded square than a circle. The minimum for a pleasing circle is about
eight control points, or one every forty five degress. To be conservative, let us choose ten
control points as the minimum and thus about thirty five degrees as the upper bound on
the spacing between control points.

The lower bound on the spacing beiween control points must be sufficiently large
that the b-spline washes out the smaller scale effects. If forty five degrees i1s the absolute
maximum spacing to capture a scale, then two or three times that spacing, say 110 degrees,
should ve enough to wash out a lot of a scale. Consequently, if our lower bound on control
point spacing for the desired scale is such that on average it works out to a spacing of
110 degrees or more for the smaller scale then we should be able to eliminate most smaller
scale effects. If, on average, the smaller scale fangents rotate at least between five and

®A circle is chosen because it is the simplest closed plane curve.
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ten times faster than the tangents of the scale of interest, this would imply a lower bound
on control point spacing of between twenty two and cleven degrees respectively. Thus our
optimal spacing for capturing one scale while ignoring both larger and smaller scales is
likely to ke somewhere between eleven degrees and thirty five degrees.

Atter placing control points every twenty degrees along the curve why space the points
more evenly? First, this puts more points on the segments of curve which are straight,
leading to a better approximation. This also spaces out the control points in high c irvature
segments of the curve, reducing the magnitude of the discontinuity of the third derivative
at the jeins between spline segments and thereby reducing the probability of finding false
extrema of curvature at these puints.* Why use a local averaging window, rather than a
global one, to space the control points? A local window doesn't require an integration of
information over large regions of space. In addition, a local window allows a reasonable
spacing of points for curves such as the one shown in figure 4-7, whereas a global window
would not.

We are now in a better position to appreciate the significance of figure 4-6. This
figure illustrates that a given curve can have more than one naturai scale, and that the
approach outlined here can discover them. Again the key is that the natural scales must
be discovered, not imposed. However, the particular algorithm presented in this chapter is
not likely to be the one our visual systems use. Qur visual systems seem to rely on banks
of filters of various sizes for early processing (V2G filters according to Marr and Hildreth
1980, and Marr and Ullman 1980). A biologically plausible algarithm for determining natural
scales would probably need to be able to discover the natural scale tangents by looking at
the outputs of these filters of various sizes.

After obtaining the b-spline approximation at a natural scale we find extrema of
curvature which are maxima of the absolute value of curvature. This implies that all extrema
of curvature are found except positive minima and negative maxima. Positive minima and
negative maxima are difficult to localize directly because they are points having a relatively
low signal to noise ratio. However their presence, and consequently the complete codon top
level description, can be inferred entirely from the pattern of the signs of the other exirema
of curvature. This is done using the finite state machine illustrated in figure 4-8. The circles
with Q's in them are states ot the machine. The starting state is the circle labelled Q0. Each
state has two arcs leaving it, one labelled + and one labelled -. These arcs indicate which
state to go into next depending upon whether the sign of the next extrema of curvature is
positive or negative. Some arcs have a codon label attached to them. This indicates that
as an arc is traversed its codon label should be added to the growing codon description.

€S. Ullman has pointed out that this might be done more effectively using quartic b-splines rather
than cubics.



Figure 8. Finile state machine which computes codon top level description
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Figure 4-9 shows the extrema and codon descriptions computed in this manner for
one curve. Since the curve has two visible natural scales the algorithm shows two separate
sets of extrema and codon descriptions. This figure illustrates that the codon description
one obtains for a curve depends upon the natural scale at which one inspects the curve.
An ability to decouple natural scales in this manner is a prerequisite to satisfying the
stability/sensitivity criterion mentioned in the first chapter.

4.3. Natural scale and effective dimension

In his book The fractal geometry of nature Mandelbrot (1982) discusses several ways
of defining the dimension of a curve or surface. Some of these are novel in that they allow
non-integer values for the dimension. Another, which he cails the effective dimension, is
unusual in that he claims it should not be defined precisely, but rather left as an intuitive
notion. Since his concept of effective dimension has some interesting connections with our
concept of natural scale we will here note this relationship.

Mandelbrot explains what he means by effective dimension with an example of a ball
of thread:

“... a ball of 10 cm diameter made of a thick thread of 1 mm diameter
possesses (in latent fashion) several distinct effective dimensions.

To an observer placed far away, the balli appears as a zero-dimensional
figure: a point. (Anyhow, it is asserted by Blaise Pascal ard by medieval
philosphers that on a cosmic scale our whole world is but a point!) As seen
from a distance of 10 =m resolution, the ball of thread is a three-dimensional
figure. At 10 mm, it is a mess of one-dimensional threads. At 0.1 mm, each
thread becomes a column and the whole becomes a three-dimensional
figure again. At 0.01 mm, each column dissoives into fibers, and the ball
again becomes one-dimensional, and so on, with the dimension crossing
over repeatedly from one value to another. When the ball is represented by
a finite number of atomlike pinpoints, it becomes zero-dimensional again.
An analogous sequence of dimensions and crossovers is encountered in a
sheet of paper.

The notion that a numerical result shou!d depend on the relation of object to
observer is in the spirit of physics in this century and is even an exemplary
illustration of it."

The effective dimension of a shape depends on the relation of object and observer. In
particular it depends upon the rules used by the visual system of the observer to organize,
structure, and represent his images of the object.” These are the rules we have tried to
motivate and to state explicitly in our discussion of natural scale. The theory of natural

"0t course, these rules are worthwhile only to the extent that they caplure useful aspects of the
structure of the observer's visual worid. The structure imposed by a visual system is useful only if
it bears a non-arbitrary relationship to the structure of the world. Vision is a process of veridical
hallucination.



Figure 9. Extrema of curvature, and resulting codon desc:i;lion
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Figure 10. Natural scales visible at one time
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scales can explain why the effective dimension of an object changes with scaie, and the
algorithm presented for computing natural scales can explain how this change of dimension
is accomplished.

Mandelbrot's discussiun of effective dimension is potentially misleading on one point.
His example cf the ball of string might seem to imply that at most one effective dimension
can be seen at any one time. However, as illustrated earlier by our wiggly ellipse, an object
may reveal several different natural scales simultaneously. A helpful way to think about
this is shown in figure 4-10. The long straight line in the figure represents the continuum
of scales at which some object can be considered. Movement to the left along the line is
movement to smaller scales, movement to the right is to laiger scales. The spikes along
the curve indicate natural scales of the object as defined by the tangent plateau rule. The
box indicates the window of scales available to the visual system of the observer at any
one time, about four or five orders of magnitude for human observers as notcd earlier. By
looking at an object through a microscope or simply getting closer the cbserver can slide
the box along the line to its left. By stepping back the observer can shift the box to the
right. The number of spikes in the box varies as the box shifts left or right along the line
and needn’t be just one, indicating that the number of natural scales visible to the observer
at one time is variable and needn't be just one.



4.4. Summary

The intent of this chapter and the lisp code in the appendix is to show that it is possible
to compute a codon representation for real imaged curves. To do this, however, requires
redefining several of the properties of the local geometry of plane curves - particularly the
tangent at a point. Our redefinition involves the notion of “natural scale"”, the notion that
our visual systems discover useful scales at which to describe the geometry of curves (and
surfaces). The concept of natural scale is still only vaguely understood. It must eventually
be made more precise and related fo the real world processes which govern the shapes of

objects in the visual world.



5. Relation to human perception

5.1. Predictions

The theory of shape representation presented in the previous chapters, although by no
means complete, makes several clear predictions about human perception and memory for
shapes. The clearest predictions come from the rule for dividing a plane curve into parts
and from the rule for dividing a surface into parts. For ease of reference we restate these
two rules.

Segmentation rules:
1. Plane curves: Divide a plane curve into parts at minima of signed curvature and
concave cusps.
2. Surfaces: Divide a surface into parts at minima, along lines of greatest curvature, of
the greatest principal curvature. Or else divide a surface into parts at minima, along
lines of least curvature, of the least principal curvature.

Recall that when figure and ground are reversed for a curve, the sign of the curvature
everywhere along the curve also flips. In particular minima of curvature, which define part
boundaries, become maxima of curvature and maxima beceme minima. Similarly, recall that
when figure and ground are reversed for a surface the signs of the normal curvatures at
each point also reverse. This follows from a convention linking the choice of figure and
ground with the choice of the field of surtace normals, and from the tollowing equation for
normal curvature:

k&, =x-N

where «,, is the normal curvature, « is the curvature vector of an arbitrary curve on the
surface at the point of interest, and N is the surface normal at the point. When figure
and ground reverse, the surface normal N changes direction by 180 degrees and the
resulting scalar product for the normal curvature must change sign. Of interest here is the
consequence that minima of the greatest principal curvature along lines of greatest curvature
must become maxima of the least principal curvature along lines of least curvature when
figure and ground reverse. In other words, the partitioning rule for surfaces predicts that
the same surface should be cut into parts differently when figure and ground reverse.

For convenient reference | state these and other predictions that follow from the
partitioning rules.
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Predictions:

1. When a plane curve undergoes a figure-ground reversal, the visual system should
segment it into parts differently (since the positions of the minima of curvature change).

2. When a surface undergoes a figure-ground reversal, the visual system should segment
it into parts differently (since the positions of the minima of normal curvature along
lines of curvature change).

3. Recognition memory for parts of plane curves cut at minima of curvature should be
better than any other cuts, better, in particular, than cuts at maxima of curvature.

4. Parts of plane curves cut at minima of curvature should appear more natural to
observers than cuts at maxima, inflections or some combination of these.

5. Parts defined by minima of curvature should be the parts to which we most naturally
assign verbal labels.

6. The mirror image of a plane curve should be judged more similar to the original curve
than the figure-ground reversal of the original curve (since the division into parts should
be the same for the mirror reversal but not for the figure-ground reversal).

In this chapter | compare these predictions with human performance and find an
interesting correspondence. First | present three experiments designed to test predictions
3, 4, and 6. Then | examine nine perceptual demonstrations, some mentioned earlier in
chapters 2 and 3. Finally, in an epilogue | discuss in outline how a theory of the visual
interpretation of faces might benefit from the rules and representations proposed in this

thesis. o

5.2. Experimenis

In this section | examine three experiments designed to test some of the six previously
stated predictions. The first experiment tests the prediction that parts defined by minima
should appear more natural to human observers than parts defined by maxima, inflections
or some combination of these (prediction 4). The second experiment tests the prediction
that the mirror image should be more similar to the original curve than the figure-ground
reversal (prediction 6). The last experiment tests whether recognition memory for parts of
plane curves cut at minima is better than for other cuts (prediction 3).

5.2.1. Experiment 1: Naturalness

Subijects in this experiment were read the following instructions:

“I will give you a pile of 8 cards. On the front of each card is a black object on a white
background. On the back of each card are several candidate ‘parts’ of the black object.
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Choose the one part which is the most natural part of the black object. Then write down
the number that appears on the front of the card and the letter that appears next to the part
you have chosen. You may flip the card back and forth as often as you wish. There are no
time constraints.

“What is a natural part? Consider the sentence ‘The boy hit the ball'. A natural way
to break tnis sentence would be to group the words ‘the boy' and ‘the bail'. An unnatural
grouping would be the phrase ‘hit the'. Consider also this figure:&A natural grouping
might be into a circle and an x. An unnatural grouping might be: >

“Once again, be sure to choose what you feel are natural parts of the black object -
not of the white background. And be sure to judge each card independently — do not let
the black objects on other cards you have already seen affect your judgement of the natural
pari. of the black object you see next.”

The front and back of an example card are shown in figure 5-1. Each card was four
by six inches. The parts of the curve shown or the backs of the cards were cut either
at minima of curvature, maxima of curvature, minima and maxima, minima and inflections,
or maxima and inflections. On no card were more than one quarter of the parts cut at
minima. Nine subjects were run, all students and staff of the MIT psychology department.
On average subjects choose parts cut at minima of curvature 95.8% of the time, which is
significantly above chance, ¢(8) = 8.01, p < .0n1.

Some of wne cards were simply figure-ground reversals of each other. Subjects
consistently choose parts cut at minima of curvature, even though this meant cutting the
same curve differently when figure and ground were reversed. Thus it appears that parts
defined by minima of curvature seem more natural to observers than parts defined by
maxima of curvature or any of the other options mentioned above.

5.2.2. Experiment 2: Mirror versus figure-ground reversal

Subjects were read the following instructions:

“This is a curve similarity test. | will show you one wiggly curve for four seconds. Then
| will cover it up. Finally | will show you two wiggly curves. Choose the one wiggly curve
that you feel is most similar to the first wiggly curve.”

In al!, twenty trials were presented to each of ten subjects. An example tripie of shapes
is shown in figure 5-2. The cards were four by six inches and were presented about two feet
from the subject using a cardboard apparatus which allowed the experimenter to manually
cover and uncover the cards. On the trials of interest the two shapes shown together were
both simple transforms of the original shape. One of the two was a mirror reversal of the
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Figure 1. A shape and various parls
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Parts a, h, and j are all cut at minima of curvature.
Subjects chose part j most often as the most natural.




original. The uther of the two was a figure-ground reversal of the original. These trials
comprised half (ten) of the trials. The other ten were catch trials in which the second two
shapes were not related to the first by either a mirror reversal or a figure-ground reversal.

By showing the curves to subjects as displayed in figure 5-2 it is clear that the bounding
contour of the figure-ground reversed curve is identical to the original, just translated a little
and rotated less than about 30 degrees. The mirror reversed curve, however, is not only
translated and rotated slightly, it is also flipped in a manner that cannot be undone by
any rotation in the plane. Thus if the similarity judgements are related to the number
and complexity of the transfurmations needed to bring each curve into congruence with
the original, one would predict that the figure-ground reversed curve, requiring the fewest
transformations, should be most similar to the original. On the other hand, the codon theory
espoused here predicts that the mirror reversals should appear more similar to the originals
than do the figure-ground reversals. This is predicted because the segmentation rule carves
the original and the mirror reversal into the same set of parts, with only the order of the parts
reversed. However the segmentation rule carves the original and figure-ground reversal into
entirely different parts. Assuming that parts figure prominently in judgements of similarity
and identity of objects, it follows that the mirror reversal, having the same parts as the
original, should be more similar to the original than the figure-ground reversal, which does
not have the same parts.

The codon prediction was confirmed by the subjects, who picked the mirror reversal
as most similar to the original 94% of the time on average, which is significantly greater
than chance, t(9) = 3.48, p < .005. In figure 5-2, for instance, the bottom left half moon is
mirror reversed from the half moon on the right, and appears more similar to it than does
the haif moon in the upper left which is figure ground reversed.

Ten other subjects were run on this experiment with the stimulus figures placed
horizontally, with the semi-circular sections of the curves below. Subjects picked the mirror
reversal 91% of the time on average, again significantly greater than chance.

5.2.3. Experiment 3: Recognition memory for parts

This experiment failed, but in an interesting way. Here is how it was intended to
proceed. Subjects were shown a small white semi-circular region with a wiggly bounding
contour joining the ends of the semi-circle (similar to the shapes in figure 5-2). The white
region was prasented foveally (within two degrees from the point of fixation) against a black
background in a tachistoscope for 150 milliseconds. Then a pattern was flashed for 50
milliseconds to erase any icon. Then a small dark wiggly curve against a white background
was presented. Subjects were to indicate as quickly as possible, by pressing one of two
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Figure 2. Example stimuli for experiment 2
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keys, whether or not the small wiggly curve was a part of the bounding contour of the
original white region.

There were twenty trials of interest. In fact only ten different bounding contours were
shown in the twenty trials. The twenty trials were constructed from ten bounding contours by
using each contour twice but with opposite sides of the contour being the white figure. Thus
subjects saw the same bounding contour twice during the course of the twenty trials, but
the second presentation was figure-ground reversed from the first. For both presentations
of the same bounding contour the small wiggly curve used as a probe was identical, and
was, in fact, a part of the original bounding contour. However the wiggly curve was chosen
so that for one presentation of the bounding contour the wiggly curve went from one minima
of curvature to the successive minima. Necessarily this means that for the prasentation
of the figure-ground reversal of the same bounding contour this wiggly probe went from a
maxima of curvature to the successive maxima.

The codon theory makes a clear prediction here. Subjects should correctly identify the
wiggly probe as a part of the bounding contour more often when the probe runs between
minima than when it runs between maxima. This is because the natural parts stored in
memory, according to the theory, are parts defined by minima of curvature.

The experiment failed because subjects did not always see the small white region as
figure against a dark background. Often subjects saw different figure-giound relations on
different portions of the same bounding curve, implying that in these brief flashes the visual
system does not seem to require global consistency in the assignment of figure and ground.
Figure and ground seemed to be determined locally by which assignment would give the
“best” local part. Color and texture cues did not seem to help.

One subject reported consistently seeing the black surrounding region as figure.
Subsequent analysis of his data showed that he never made errors for probes which were
between minima for the black figure, but made many errors for probes which were between
maxima. It is likely, then, that the experiment will work if a method can be devised for
forcing the figure-ground choice in brief exposures of contours. Perspective cues, motion
cues, or perhaps even stereo cues are possible candidates.

5.3. Demonstrations

Sometimes the construction of explanatory theories in a field can rely in large part on
the careful examination of what everyone already knows. Linguistic theories are a prime
example. By careful analysis of grammaﬁcality judgements linguists can construct theories
of extraordinary depth and explanatory power. Grammaticality judgements are empirical

97



Figure 3. The reversing circle

data to the linguist, data with the same status as data obtained frem elaborate experiments,
but with one big advantage - they are obtained with much greater ease.

Visual demonstrations can serve the same purpose for theories of vision as gram-
maticality judgements do for theories of language. Visual demonstrations are empirical
data, data with the same' status as data obtained from more elaborate visual experiments.
Careful analysis of visual demonstrations may provide empirical confirmation for aspects of
an existing thecory and suggest needed modil. ‘.tions to the theory. It is with this motivation
that | examine the nine demonstrations of this section.

5.3.1. Reversing circle

Figure 5-3 is a demonstration first described by Fred Attneave (1971). Regarding this
figure Attneave says:

... you can make a perfectly good reversing figure by scribbling a meaning-
less line down the middle of a circle. The line will be seen as a contour or a
boundary, and its appearance is quite different depending on which side of
the contour is seen as the inside and which as the outside. The dillerence
is so fundamental that if a person first sees one side of the contour as the
object or figure, the probability of his recognizing the same contour when
it is shown as part of the other half of the field is little better than il he had
never seen it at all ... The point of basic interest in figure-ground reversal
is that one line can have two shapes ... The perceptual representation of
a contour is specific to which side is regarded as the figure and which as
the ground. Shape may be invariant over a black-white reversal, but it is
not invariant over an inside-outside reversal.

Attneave's point is quite important. The same curve looks so different when figure-
ground reversed because the visual system builds an entirely diflerent representation for
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the curve. In consequence, for any theory of shape representation to be psychologically
plausible it is necessary that the theory (1) predict two widely divergent descriptions of
the same curve, one for each choice of figure and ground, and (2) make this prediction
in a principled manner. The codon theory satisfies this condition by (1) defining the
fundamental parts of a shape by a rule which necessarily gives different parts when figure
and ground reverse, anc (2) motivating the partitioning rule by a powerful natural constraint.
The partitioning rule is stated above. The motivating constraint is the fact that when two
arbitrarily shaped parts are joined to create a composite shape, concave cusps will always
(with probability one) be created in the imaged silhouette (figure 2-2). By smoothing the
silhouette we have that the parts always meet each other at minima of curvature, which is
precisely the partitioning rule.

Not all conceivable schemes have this property of yielding different parts when figure
and ground reverse. If one defines parts by inflections of curvature (Marr 1977, Hollerbach
1975) or by maxima and minima (Brady 1982a) then the part boundaries will not move when
figure and ground reverse.

This reversing circle illustrates one further important point made by Attneave (1971).
Our visual assignment of differing descriptions to the same curve does not depend on any
previous familiarity with the curve. This implies the existence of a descriptive system whose
rules pertain only to the geometry of the curve, not to top down knowledge of the identity
of the object. The codon scheme, with its minima rule for defining parts, is consistent with
this observation.

5.3.2. The face-goblet demonstration

One of Edgar Rubin's most striking examples of visual reversal is the face-goblet shown
in figure 5-4. Of this figure Rubin says:

The reader has the opportunity not only to convince himself that the ground
is perceiveu  shapeless but also to see that a meaning read into a field
when it is fig. : is not read in when the field is seen as ground.

In other words, at any moment one can either see the goblet or one can see the faces,
but not both simultaneously. Apparently the visual system is expleciting another powerful
regularity aLout the visual world: At most one side of a visible bounding surface can be

filled with a solid at any moment.

The face-goblet demonstration shows clearly that the minima rule cuts the same curve
into different parts when figure and ground reverse (part boundaries are indicated by dashes
across the curves). For the face-like curve on the left the rule divides the curve into a
forehead, nose, upper lip, lower lip, and chin. For the goblet-like curve the rule divides
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Figure 4. The face-goblel demonstration

the curve into a base, two parts of a stem, and a bowl. As one can verify by looking,
the part boundaries have actually moved around, in agreement with prediction 1. It is
interesting that the parts defined by the minima rule are easily assigned verbal labels in this
demonstration, such as nose, chin, base, and bowl (prediction 5). This observation should
be pursued further to see if indeed there is a parallel here to Rosch's (1977) observation
that “basic colour terminology appears to be universal and that perceptually salient focal
colours appear to form natural prototypes ior the development of colour terms. Contrary to
initial ideas, the coiour space appears to be a prime example of the influence of underlying
perceptual-cognitive factors on linguistic categories."

5.3.3. The rabbit-duck figure

Figure 5-5 shows the rabbit-duck figure first used in 1900 by psychologist Joseph
Jastrow. Of this figure Attneave (1971) says:

Some of the most striking and amusing ambiguous figures are pictures
(which may or may not involve figure-ground reversal) that can be seen as
either of two familiar objects, for example a duck or a rabbit ... What is
meant by “familiar’ in this context is that the visual inputs can be matched
to some acquired or learned schemata of classes of objects. Just what such
class schemata consist of ~ whether they are like comnposite photographs
or like lists of propertias - remains a matter of controversy. In any case the
process of identification must involve some kind ol malching between lhe
visual input and a stored schema. If two schemata match the visual input
about equally well, they compete for ils perceptual interpretation; somelimes
one of the objects is seen and sometimes the other. Therefore one reason
ambiguity exisls is that a single input can be matched to dilferent schemata.

The important observation for our purposes is that the two interpretations of the rabbit-
duck figure do not involve a figure-ground reversal. According to the minima rule, then,
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Figure 5. The rabbit-duck figure

the two interpretations must arise not because the figure is cut up in different ways but
because the same parts are assigned different roles. That is, dilferent parts obtain for the
same curve by the minima rule only if the curve is subjected to a figure-ground reversal.
The rabbit-duck figure does not involve a figure-ground reversal, just a reinterpretation of
the same figure. Consequently both interpretations must have parts which start and stop at
the same points according to the minima rule.

Inspection of the figure reveals that this is indeed the case. For example, the
same section of the bounding contour which is an ear under the rabbit interpretation
becomes the upper half of the bill in the duck interpretation. The part boundaries have
not physically shifted cn the contour, as they do in the face-goblet demonstration. Instead
the same physical parts simply get relabefled. Another example of this is the hawk-goose
demonstration shown in figure 5-6.

5.3.4. Escher’s symmetry drawings

In figure 5.7 is one of Escher's many captivating tesselations of the plane. Here a
switch of attention from the white birds and fish to the black birds and fish necessarily
involves a figure-ground reversal. Consequently the minima of curvature rule predicts that
a segment of curve which is a single part for one assignment of figure and ground should
be split among parts in the other assignment. To verify that this occurs, consider the black
fish in the center. The minima rule carves out its tail fin as a single part. When the white
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Figure 6. The hawk-goose demonsﬁation

Figure 7. A tesselation of the plane by Escher

bird behind it is seen as figure the same contour participates in three separate parts: the
beék. neck, and wing. Once again it is interesting to note that a piece of contour receives
a simple verbal label if it starts and stops at successive minima, but the same segment of
contour does not when figure and ground are reversed.

5.3.5. The cosine surface

Figure 5-8 shows two identical surfaces, each rotated 180 degrees from the other in
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Figure 9. The reversible Schroder staircase

the piane of the page. In this demonstration the preference of the visual system for an
interpretation which places the object below rather than overhead causes the visual system
to assign different figure-ground relations to the two presentations of this surface. Now
according to prediction 2 this figure-ground reversal should be accompanied by a different
division of ihe surface into parts. It is quite clear that the division into rings is different
between the two presentations of the surface. The doited circular contour which falls in the
middie of a ring in the bottom presentation of the surface falls between two rings in the top
one. To verify that no tricks are being played here, one can stare at one o} the surfaces
and watch what happens when the page is turned upside down.

5.3.6. The Schroder staircase

Figure 5-9 shows the well known reversible Schroder staircase. | have placed a dot on
two adjacent step faces of the staircase. Observe that sometimes the two dotted faces are
organized together into one step. When figure and ground reverse these same two dotted
faces become organized as faces on two different steps. Again a figure-ground reversal
induces a change in the way the same shape is organized into parts, and does so in a way
predicted by the surface partitioning rule.

5.3.7. The stacked cubes figure

Somewhat more complicated than the Schroder staircase, but illustrating the same
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Figure 8. The cosine surface
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Figure 10. The stacked cubes figure

effects of the surface partitioning rule, is the well known stacked cubes demonstration of
figure 5-10. | have placed three dots on the cube in the center, one on each of its visible
faces. When figure and ground reverse the same three faces become members of three
different cubes. Once again we see that the division of a surface into parts changes when
figure and ground reverse, as predicted by the surface partitioning rule.

5.3.8. The crater illusion

The final in my parade of demonstrations that illustrate the approach taken in this
thesis is the crater illusion (figure 5-11). If this figure is turned upside down on: notices
that bumps turn into depressions and vice-versa. The explanation most often given is that
we are accustomed to an overhead light source anc will choose an iterpretation consistent
with overhead illumination (Frisby 1979, Schiffman 1976, Gregory 1966).

This explanation is unlikely on two counts. First, the direction of light source plays no
role in similar depth reversals such as the ones discussed earlier in this chapter (Kaufman
1974 also notes this). That is, shading is unnecessary for the perception of illusory debth
reversals. Second, natural scenes often have more thar: one effective light source, making
the light source direction a weak basis for an explanatory theory of this phenomenon.

What seems more likely is that the visual system prefers an interpretation which places
an object below rather than overhead. When a shaded image is turned upside down, the
visual system must reverse figure and ground, and consequently the field of surface normals,
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Figure 11. The crater illusicn
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to keep the object from ending up overhead. This reversal implies an attendant flip in the
sign of normal curvature everywhere, making bumps into depressions and vice-versa.

5.4. Summary

In this chapter | test a few clear perceptual predictions of the codon theory using both
new experiments and familiar perceptual demonstrations. These predictions follow from
the claim that parts of curves and surfaces are defined by minima of curvature, and that
therefore the parts should be different when figure and ground reverse. | find that some
tests of judgements of shape similarity and part naturalness are indeed consistent with the
codon theory. Iln addition a memory probe test, though not yet properly working, also gives
promise of supporting some predictions of the theory.

The experiments reported in this chapter are just a beginning. iMore detailed predictions
of similarity based on the metrical properties of codons need to be checked. More detailed
studies of memory for shape need to be performed. The conclusion that part boundary
strength is related to the magnitude of curvature at minima of curvature needs to be tested.
Both theoretical and experimental work is _needed 1o discover the relation between boundary
based schemes, such as codons, and region based schemes, such as generalized cylinders.
For example, can the predictions of similarity of shapes using the two schemes be pitted
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against each other to see under which conditions each predominates? Both theoretical
and experimental work is needed to discover how surface occlusions are exploited in
determining surface parts. Ultimately the theory and experiments need to reintroduce
contextual information and oth~r top down information that must inevitably play an important
role in understanding the problem of visual recognition in all its complexity. The problem
is a big one, and the further theoretical and experimental exploration required should keep
many researchers tantalized and intrigued for years to come.
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Epilogue: Face interpretation

Initially this thesis was to be a theory of face recognition and interpretation. Unsatisfied
with extant theories of face perception which relied on isolated features, such as hair or
eye color, or which mentioned but never really explored configural properties, | decided
that | would try to develop a theory of face perception which focussed on the shapes of the
surface of the face. | speculated that, given an appropriate representational scheme, the
shape of a face might yield such secrets as the age, sex, race, emotions, and identity of the
individual. A quick literature search would reveal a representation of shape that, with little
remodelling, would be appropriate for faces.

| still think the shapes of faces can be made to betray interesting secrets. | don't
think there is a representation of shape in the literature which is suited for the task. Using
generalized cylinders to represent faces, for example, is comparable to forcing square pegs
into round holes. Consequently, this thesis represents some haltering steps in the direction
of a representation with pretenses of being appropriate for the shapes of faces. A rigorous
test of the segmentation rules proposed here will come when they are applied to real depth
maps of more complex natural surfaces, such as faces. Issues like scale, quantization, and
noise will come to the fore and will have to be dealt with in a principled manner.

But suppose thét an elaborated version of the schemes presented here, or some other
scheme, turns out tc be appropriate for representing the surfaces of faces. How can
properties like age, race, sex, and mood be inferred from the shape of the face?

Once again the role of natural constraints in explanatory theories of visual inferences
cannot be overemphasized. In the case of faces many of the constraints will ultimately have
their source in genetics. For example, systematic differences in faces due to sex and race
must at rooi be genetic. On the other hand, systematic differences in faces due to age likely
have genetic and environmental components.

Whatever the underlying source of the constraints, | suggest that they are all expressed
at one or more of three basic levels of face structure: (1) the deep structure, which includes
the bones and cartilage of the face, (2) the middle structure, which includes the muscle and
fat of the face, and (3) the surface structure, which includes the skin and facial hair.

A concrete example is helpful: the deep structure of the face differs systematically
between the two sexes. According to Gray's anatony, the female skull has thinner walls, less
strongly marked muscular ridges, less prominent glabeila and superciliary arches, smaller
air sinuses, a sharper upper margin of the orbit, a more vertical forehead, more prominent
frontal and parietal eminences, a more fiattened cranial vault, 2 more rounded contour to
the face, smoother facia! bones, a smaller maxilla and mandible, and smaller teeth. Not all of
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these differences in deep structure between the sexes are reflected in the surtace structure
of the face, but those that are can often be exploited to determine the sex of the individual,
thereby cutting the the search space for recognition in half. Gray, however, makes the
following disclaimer about these skull differences (p. 151), “A well marked male or female
skull can be easily recognized as such, but in some cases the respective characteristics are
so indistinct that the determination of the sex may be difficult or impossible®.

To a large extent the deep structure determines what is unique or characteristic of
a given face. From the deep structure alone it is possible to infer the race, age, and as
just mentioned above, the sex. The deep structure largely determines whether the face is
square, rcunded, narrow, or wide. The shape of the jaw, nose, upper cheek, and forehead
all reflect the structure of the underlying bone. In addition, the deep structure remains
relatively invariant for long periods of time. This facilitates recogmition despite changes in
hair style, skin tone, and other changes in surface structure.

Quantitative studies of the deep structure of faces performed by dentists are one
potential source of useful characterizations (Enlow 1975). Dentists recognize three basic
types of facial profiles: orthognathic, retrognathic, and prognathic. These categories depend
upon the spatial relationship between the mandible and the maxiila. A retrusive mandible
and a convex profile are characteristic of the retrognath. The prognath, in contrast, has a
protrusive mandible and a concave profile. The orthognathic profile strikes a happy medium
between these two extremes.

The mandible is also an important indicator of age. As one grows from youth to
adulthood the angle between the ramus and corpus of the mandible decreases from about
140 to 110 degrees (Gray 1977). The mandible takes a more prominent role in the overall
structure of the face. As one approaches old age the angle again increases and the
mandible becomes edentulous and less prominent.

The two nasal bones are an informative part of the deep structure in that their shape
varies considerably from individual to individual and between races (Enlow 1975), and in
that the overlying skin reflects quite faithfully the curvature of these bones. Generally the
nasal bones have negative Gaussian curvature. The absolute magnitude of this curvature
is much less in orientals that europeans. The curvature of the nasal bones increases from
infancy to adulthood.

The point of all this is simply to show that the deep structure of a face provides a
potentially powerful lacus of constraints for the tasks of segmentation, identification, and
interpretation. A fuller understanding of ihese constraints may come from an examination
of the literature in the fields of dentistry, plastic surgery, art, perception, and basic anatomy.
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| have tried to give some idea of the role of the deep structure in determining the shape
of the visible surfaces of a face. Similar accounts can be developed for the middle and
surface structures. Knowledge of the constraints embodied at each of these three levels
should make possible reliable inferences about age, sex, race, identity, and even mood,

from the surface shapes of a face.
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we flag s nil i/'codon-lmnsilion-rable is not
* initialized.")

(defvar CODON-STRING-TABLE nil
w .+ codon print names™ )

(defvar LP-ARRAY nil
w e array of points left of the point being analyzed by
o compure-tangenr-vaﬁances")
(defvar RP-ARRAY nil
w.s array of points right of the point being analyzed by
N compute-langent-variances" )

(defvar TV-ARRAY nil
v . grray of langen! variances asa function of scale about a point")
(defvar PTS-ARRAYS-INITED nil
{ created" )

weer flag is nil if the right and left point arrays are no

(defvar TVLIST nil

w.:+ list of tangent variances as a function of scale about a poini™)
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Qo * FUNCTIONS *

TS 2 A2 2R R 2R 2 2 22 2]

(defunp A-DEMO ()

(prog (:t1n natural-tangents-list t1 sl knot-list-tmp equal-spaced-knot-list
knot-pt pt-coords tangent-angle knot-x pi-coords-list knot-y
x-coefficient-1ist y-coefficient-1list unequal-spaced-knot-1ist)

(setq t1n (norm-list (setq t1 (dig-curv-list 200 0.035)) 3))
: (setq tin (norm-list (setq t1 (dig-curv-cusp)) 3))
(c]ear%
(disp-1ist tin)
(setq natural-tangents-list nil
pt-coords-11st nil)
(do i 15 (1+ i) (= i (- (length tin) 15))
(multiple-value (nil nil) (compute-tangent-variances tln i nil))
(multiple-vatlue (tangent-angle pt-coords) (nat-tans))
(push tangent-angle natural-tangents-Tlist)
(push pt-coords pt-coords-1ist))
(setq natural-tangents-list {nreverse natura]—tangents-1ist)
pt-coords-iist (nreverse pt-coords-list))
(setq s1 (smooth-1ist natural-tangents-list 6))
(multiole-value {(unequal-spaced-knot-list nil equal-spaced-knot-1ist)
(make-knots s1 pt-cooerds-list 0 nil b)) :
(setq knot-tist-tmp (copylist equal-spaced-knot-1list))
(dotimes (i (lengtlh equal-spaced-knot-1list))
(setq knot-pt (pop knot-list-tmp)
knot-x (car knot-pt)
knol-y (cadr knot-pt))
(draw-x knot-x kpot-y))
(breep)
(print "type a space to see the spline")
(terpri)
(prinil-then-space "type a c to clear screen first")
(if (= (tyi) 99)
(clear)) ,
(multiple-value (x-coefficient-list y-coefficient-list)
(spline-pts-to-coefficients equal-spaced-knot-1ist)
(display-spline x-coefficient-1ist y-coefficient-list
(dreep)
(print "type a space to see the spline curvature")
(tyi)
(graph-spline-curvature x-coefficient-list y-coefficient-1list)
(setq extrema-1list
(spline-curvature-extrema x-coefficient-list y-coefficient-1list))
(multiple-value (codon-string codon-1list)
(codon-top-level-description extrema-list))
(print "codon string is")
(print codon-stringg
(nreep)
(print "type a space to see the extrema")

ét{i)
clear)
(display-spline x-coefficient-1ist y-coefficient-1list)
(dolist (item extrema-listi)
(draw-x (car (cadr item))(cadr (cadr item))))
(breep)
print “"type a space to see the natural tangents plot")
tyi)
(cleari
(disp-1ist (norm-1ist natural-tangents-list 100))
(beep-rise)
(print "type a space to see the smoothed natural tangents plot")

tyi
%c*e;r)
116
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(disp-Tist (norm-list s1 100))
(spoob)

(return x-coefficient-list y-coefficient-Tist sl natural-tangents-list)))

(defun B-SPLINE-COEFFS (pl p2 p3 p4)

}5bﬁNM¢umﬂthMmﬁmrxnmanMswjhuyumanmumdmmnu
salistof four b-spline cocfficients
(prog (geometry-vector b-coeffs bcoef-list)
(setq geometry-vector (make-array ‘(4 4) ":TYPE "ART-FLOAT)
b-coeffs (make-array '(4 4) ":TYPE 'ART-FLOAT))
(aset pl1 geometry-vector 0 0) ::initialize gcomelry vector
(aset p2 geometry-vector 1 0
(aset p3 geometry-vector 2 0
(aset p4 geometry-vector 3 0

(if (null b-spline-matrix-flag) ... be surc splinc-matrix is set up
(init-bs-matrix))

(math:multiply-matrices spline-matrix geometry-vector b-coeffs)
(setq bcoef-1list nil)

(push (//$ (aref b-coeffs 3 0) 6.0) bcoef-1list

(push (//$ (aref b-coeffs 2 0) 6.0) bcoef-list

(push (//$ (aref b-coeffs 1 0) 6.0) bcoef-list

(push (//$ (aref b-coeffs 0 0) G.0) bcoef-1list)

(return bcoef-1list)))

(defun CODON-TOP-LEVEL-DESCRIPTION (curgztg{e-extrema-Iist
(cel curvature-extrema-list)
(state 0) (codon-list nil)
(new-codon nil) (codon-string " "))

(if (not codon-transition-table-initialized)
(codon-transition-table-init))
(dolist (current-extremum cel)
(if (>= (car current-extremum) 0)
(setq new-codon (aref codon-transition-table state 0;
)

state (aref codon-transition-table state 1
(setq new-codon (aref codon-transition-table state 2;
state (aref codon-transition-table state 3)))

(if (not (null new-codon))
(setq codon-1ist (append codon-list (1ist new-codon)))))

(dolist (new-codon codon-1list)
(setq codon-string (string-append codon-string
(aref codon-string-table new-codon))))
(values codon-string codon-list))

(defunp CODON-TRANSITION-TABLE-INIT ()
(setq codon-transition-table (make-array '(5 4) “TYPE 'ART-Q)
codon-transition-table-initialized t)

(aset 4 codon-transition-table 0 1
(aset 1 codon-transition-tabls 0 3

aset 2 codon-transition-table 1 l;
aset 0 codon-transition-table 1 2
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(aset

(aset
(aset
(aset
(aset

(aset
(aset
(aset
(aset

(aset
(aset

(setq
(aset
(aset
(aset
(aset
(aset

(retu
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1 codon-transition-table 1 3)
2 codon-transition-table 2 0
3 codon-transition-table 2 1
4 codon-transitinn-table 2 2
1 codon-transition-table 2 3
1 codon-transition-table 3 0
3 codon-transition-table 3 1
3 codon-transition-table 3 2
1 codon-transition-table 3 3
3 codon-transition-table 4 1)
1 codon-transition-table 4 3)

codon-string-table (make-array 5 "TYPE 'ART-Q ))
"0- " codon-string-table 0

"0+ " codon-string-table 1

"1- " codon-string-table 2

"1+ " codon-string-table 3

" 2 " codon-string-table 4)
rn t))

(defun COMPUTE-CRVTR-VARIANCES

(1list-of-points &OPTIONAL
(point (// (length list-of-points) 2.) point-given-by-user)
(closed-curve t? (scale-ratio 0.5 scale-ratio-by-user))

:compute-crvir-variances: tried to find natural scale curvatures, but failed

(length-of-1ist temp-list-pts new-center left-points right-points
crawl-1imit s-plus-dels s-minus-dels sum-crvtrs sum-sqd-crvtrs
crv-stack crv-list crv-sqd-stack crv-sqd-1ist mean-crv-list
crv-var-list s-plus-dels-new s-minus-dels-new crawl-s Ipt rpt
crvtr j-dig-2 crv-sqd mean-crv crv-var crl mcl cvl dels
pt-coords pt-x-coord pt-y-coord curvature)

(setq length-of-1list (len?th list-of-points)

temp-list-pts (copylist list-of-points))

(if point-given-by-user ;. verify user supplied point is in range
(if (or (signp 1 (- length-of-1ist point))(signp 1 point))
(ferror nil "user given point for computing crvtrs is not in list")))

(if scale-ratio-by-user ;. check scale ratio between 0 and 1
(if (or (signp 1 scale-ratio) (signp 1 (-$ .999999 scale-ratio)))
(ferror nil "scale ratio not between 0 and-1"})})

(if closed-curve .2 for closed curves put point in middle
(setq temp-list-pts
(rotate-list temp-list-pts (- point (// length-of-list 2.)))
new-center (// length-of-list 2.))
(setq new-center point))

setq left-points nil) .. put points in right and left list (from center)
dotimes (i new-center)
(push (pop temp-list-pts) left-points))
(setq right-points (cdr temp-list-pts)
global-right-points (copylist right-points) .. fordisplaying natural crvs
global-left-points (copylist left-points)
global-scale-ratio scale-ratio)

(setq pt-coords (pop right-points)
pt-x-coord (pop pt-coords}
pt-y-coord (pop pt-coords))

(setq crawl-limit ;.. distance to crawl along curve from center poin!

1190
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(-$ (//% (min (length left-points) (length right-points))

(+$ 1.0 (//% scale-ratio 2.0})) 1.0)))

s-plus-dels 0
s-minus-dels 1
sum-crvtrs 0

sum-sqd-crvtrs 0
crv-stack nil
crv-list nil
crv-sqd-stack nil
crv-sqd-Tist nil

mean-crv-list nil
crv-var-iisti nil)

(setq

(dotimes (s crawl-limit)
(setq dels

s-plus-dels-new

s-minus-dels-new

crv-stack
crv-sqd-stack
crawl-s S)

(dotimes (j (- s-minus
(setg sum-crvirs
sum-sqd-crvirs

(setq crv-stack
crv-sqd-stack
s-minus-dels

(dotimes (j (- s-plus-
(setq 1pt
rpt
crvtr

curvature
crv-sqd
sum-crvtrs

sum-sqd-crvtirs

j-dig-2
curvature
curvature
crv-sqd
crv-sqd

(push
(push
(push
(push

(setq mean-crv

location of end of variance window

S location of start of variance window
2iosum of ervir values in window
cosum of squared crvir vales in window

all ervtrs in current window

sallervtrs from point o crawl-limit

sooali squared ervirs in current window

call squared ervirs from paint to crawl-limit

Jrallmean ervirvalues from point to crawl-limit
Jooall ervtr variance values from point to crawl-limit

seHloop from point 1o crawl-limit

(/7/% (+$ (+% s 1.0) scale-ratio) 2.0) ;> window size/?
(fixr (+$ s 1.0 dels)) onew window end

(fixr (-3 (+% s 1.0) dels)) Joonew window start
(nreverse crv-stack)

(nreverse crv-sqd-stack)

~dels-new s-minus-dels)) ;: newsum ofcrvirs in window
{(-% sum-crvtrs (pop crv-stack))
(-$ sum-sqd-crvtrs (pop crv-sqd-stack))))

(nreverse crv-stack)
{nreverse crv-sqd-stack
s-minus-dels-new) :

dels-new s-plus-dels)) iz add new values 1o window
(pop left-points) Sopr=(xy)
(pop right-points) . Lorpt = (xy)

(find-circle (- (pop 1pt) pt-x-coord)
(- (pop lpt) pt-y-coord)
(- {pop rpt) pt-x-coord
(- (pop rpt) pt-y-coord))

(car crvtr)
(*$ curvature curvature)
(+$ sum-crvtrs curvature)
(+$ sum-sqd-crvtrs crv-sqd)

grv—]ist)
crv-stack)
crv-sqd-list)
crv-sqd-stack))

(//$% sum-crvtrs (length crv-stack))

crv-var (-$ (//% sum-sqd-crvtrs

(+$
s-plus-dels

(push mean-crv

(push crv-var crv-var-

(return

{setg crl

(list (setq cvl (nreverse crv-var-1is
(setq mcl (nreverse mean-crv-1i

(length crv-stack))
mean-crv mean-crv))
s-plus-dels-new)

mean-crv-1list)

list))

)
)))

(nreverse crv-1list)))

(defun COMPUTE-TANGENT-VARIANCES
(1ist-of-points &80OPTIONAL

point (// (len
ciosed-curve t

y

th list-
(scale-

of-points) 2.) point-given-by-user)
ratio 0.4 scale-ratio-by-user))
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(prog

::: (compute-tangent-variances list) 1akes a list of positions of points

s on a curve specified relative to the first pot in the list and

s computes tangent angle variances as a function of scale. One can

x:wmdﬁwluWNIHMnWthﬂIhrmnmwmunwubrmkwLonnWW

o+ the middle point of the list is the default. 1f I is specified then

e the curve is assumed closed unless otherwise stated in the argument list.

20 Returns multiple values.

n

(1length-of-1list temp-list-pts new-center left-points right-points
crawl-1imit s-plus-dels s-minus-dels sum-tangents sum-sqd-tangents
tan-stack tan-list tan-sqd-stack tan-sqd-list mean-tan-list
s-plus-dels-new s-minus-dels-new crawl-s 1pt rpt

tangent j-dig-2 tan-sqd mean-tan tan-var dels)

(setq length-of-list (length list-of-points)
temp-list-pts (copylist list-of-points))

(if point-given-by-user
ooverify user supplied point is in range
(if (or (signp 1 (- length-of-1ist point))(signp 1 point))
(ferror nil "user given point for computing tangents is not in list")))

(if scale-ratio-by-user
2o cheek scale ratio between 0 and 1
(if (or (signp 1 scale-ratio) (signp 1 (-$ .999999 scale-ratio)))
(ferror nil "scale ratio not between 0 and 1")))

(if closed-curve
:20 Jor closed curves put point in middle
(setq temp-list-pis
(rotate-1ist temp-list-pts (- point (// length-of-1ist 2.}))
new-center (// length-of-list 2.))
(setq new-center point))

(setq left-points nil) -

::2 put points in right and lefi list (from center)

(dotimes (1 new-center)

(push (pop temp-list-pts) left-points))

(setq right-points (cdr temp-list-pts)
globa]-right-points (copylist right-points) ::: for displaying natural tans
global-left-points (copylist le t-points)
global-scale-ratio scale-ratio)

(setq crawl-1imit «:xdistancc 1o crawl along curve from center point
(fixr (-$ (//8% (min (length left-points) (length right-points))
(+$ 1.0 (//% scale-ratio 2.0))) 1.0)))

- (setq s-plus-dels 0 ::: location of end of variance window

s-minus-dels 1  :::location of start of variance window
sum-tangents 0 .2 sum of tangent values in window
sum-sqd-tangents 0 2o sum of squared tangent values in window
tan-stack nil crall angents in current window

tan-list nil 2:oall tangents from point to crawl-limit
tan-sqd-stack nil 22 all squared tangents in current window
tan-sqd-1ist nil 22 all squared tangents fiom point to crawl-limit
mean-tan-list nil xiu”HHWHIangﬂHlWhNWfﬁ”HpUMIM)HﬂH+HMNI
tvlist nil) . all tangent variance values from point to crawl-limit

(dotimes (s (min crawl-limit (fixr (*$ 0.15 length-of-list))))
222 loop from point to crawl-limit

(setq dels (7/% (+$ (+$ s 1.0) scale-ratio) 2.0) ::: window size/2
s-plus-dels-new fixr (+$ s 1.0 dels)) 1 new window end
s-minus-dels-new Sfixr (-$ (+$ s 1.0) dels)) 20 new window start
tan-stack (nreverse tan-stack
tan-sqd-stack (nreverse tan-sqd-stack)

crawl-s s)

(dotimes (j (- s-minus-dels-new s-minus-dels))
::: new sum of tangents in window
(setq sum-tangents (-$ sum-tangents (pop tan-stack))
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sum-sqd-tangents (-$ sum-sqd-tangents (pop tan-sqd-stack))))

(setq tan-stack (nreverse tan-stack)
tan-sqd-stack (nreverse tan-sqd-stack)
s-minus-dels s-minus-dels-new)
(dotimes (j (- s-plus-dels-new s-plus-dels)) 2:oadd new values (o window
(setq 1pt (pop left-points) oipt = (xy)
rpt (pop right-points) ot =(xy)
tangent (1ine-angle (pop lpt)(pop 1pt)(pop rpt)(pop rpt))
tan-sqd (*$ tangent tangent)
sum-tangents (+$ sum-tangents tangent)
sum-sqd-tangents (+3$ sum-sqd-tangents tan-sqd)
j-dig-2 R
(push tangent tan-list)
(push tangent tan-stack)
(push tan-sqd tan-sqd-list)
(push tan-sqd tan-sqd-stack))
(setq mean-tan (//% sum-tangents (length tan-stack))

tan-var (-$ (//% sum-sqd-tangents
(length tan-stack))
(+#$ mean-tan mean-tan))
s-plus-dels s-plus-dels-new)

(push mean-tan mean-tan-1ist)
(push tan-var tvlist))
(setq tvlist (nreverse tvlist))

(return (nreverse mean-tan-list)
(nreverse tan-1list))))

(defun DIG-CURV-CUSP (&OPTIONAL (steps 300))
(prog ggetq pts-list nil)
(dotimes (i steps)
(setq x (+$ -5.999 (+$ 12.0 (//% (fioat i) (float steps)))))
(cond ((< x -2.0)
Esetq y (~ (+$ x 4.0) 2)))
((< x 2.0)
_(gsetq y (¢ x2)))
(setq y (~ (-$ x 4.0) 2))))
(push (list x y) pts-list))
(return (nreversc pts-list))j))

{defun DIG-CURV-LIST (&OPTIONAL (steps 100.)(size 0.05)(start 0.0))

::: dig-curv-list creates a list of points on a digitized analytic
<o function. The list members are lists of the form (x y).
5 1/29/82
(prog (curv-list scale x arg y-new ydif yabs ytmp ysign dig-point y)
(setq curv-list nil
scale (/7% 1.0 size))

(d?:;?gsx(j stepszix (+$ start j))
arg (+£ start (*$ j s!ze))
y-new fix }-$ scale ssin arg))))

: ' y-new fix (+$ scale (+$ (sin arg)
: : (¢$ 0.1 (sin (8 10.0 arg)))))))
d ((si j
cons g3,

yabs {;bg-ng¥f¥;
(if (signp e yabsx
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(setq ysign 1.0)
(setq ysign (//% ydif yabs)))
(dotimes (1 (+ 1 yabs )
(setq ytmp (fix (+$ y (*$ ysign 1)))
dig-point (list x ytmp)) :
(push dig-point curv-1list})))

(t (setq dig-point (list x y-new))
(push dig-point curv-list)))

(seta y y-new))
(return (nreverse curv-list))))

(defunp DISPLAY-SPLINE (xcoefficient-i1ist ycoefficient-1ist &OPTIONAL (res 50))

sodisplav-spline: takes two lists. one of coefficients of powers for the x coordinate
22mand the other of coefficients of powers for the y coordinate of a b-spline. and displays
2o the spline on the lisp machine screen
(prog (num-coeffs xc yc resolution-scaling new-x-coeffs new-y-coeffs
ax bx cx dx ay by cy dy tp x-coord y-coord)
(setg num-coeffs (length xcoefficient-list)
xc (copylist xcoefficient-1list)
yc (copylist ycoefficient-1list)
resolution-scaling (//$ 1.0 res))

(dotimes (i num-coeffs)
(setq new-x-coeffs (pop xc)
new-y-coeffs (pop yc{
ax (car new-x-coeffs
bx (cadr new-x-coeffs)
cx (caddr new-x-coeffs)
dx (cadddr new-x-coeffs)
ay (car new-y-coeffs)
by (cadr new-y-coeffs)
cy (caddr new-y-coeffs)
dy (cadddr new-y-coeffs))
(dotimes (j res) ’ :
(setq tp (+$ (float j) resolution-scaling)
x-coord (+$ dx (+*$ tp (+% cx (*$ tp (+$% bx {+$ tp ax) ;))) shorner’s
y-coord (+$ dy (8 tp (+8 cy (+$ tp (+3% by (+$ tp ay))))})) ..rule
(if (and (= i 0)(= j 0))
(disp-setpos x-coord y-coord
(disp-drawline x-coord y-coord))})
(return num-coeffs)))

(defun DISP-LIST (dsplst &OPTIONAL (x-flg nil)
. (x-pt (fixr (//% (float (length dsplst)) 2.0)}))

oicdisp-list: displays a list of points on the lisp machine
22 joined by line segments. The list of points is a list of
2 lists, each of the form (x y). 7730782 Optionally the user
2 can specify that an x be drawn through one of the points.

(prog (dsplst-tmp pt 1stlen xval yval)
setq dspist-tmp copylist dspist
) pt pop dsplst-tmp)
disp-setpos (pop pt) (pop pt))
setq Istlen (length dsplst-tmp))
dotimes (m Istlen)
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(setq pt (pop dsplst-tmp))
(setq xval (pop pt)
_ yval (pop pt))
(if x-f1 :
(if (signp e (- x-pt (1+ m)))
(draw-x xval yval
(disp-drawline xval yval)
(return 1stlen)))

(defun DBAN—CIRCLE (x0 y0 r)

= draw-circle: draws a circle of given x, y center and radius
(prog (theta newx newy)
(disp-setpos (fixr (+$ x0 r)) (fixr y0))
(dotimes (i 72)
(setq theta (*$ 5.0 degrees-to-radians (+$ 1.0 (float i)))
newx (+% x0 (+$ r (cos theta)))
newy (+$ y0 (*$ r (sin theta))))
(disp-drawline newx newy))))

(defunp DRAW-X (xval yval &OPTIONAL (x-size 16.))

e draw-x: draws an x through the specified point

(disp-setpos (+ xval x-size) (+ yval x-size)) -
(disp-drawline (- xval x-size) (- yval x-size))
(disp-setpos (- xval x-size) (+ yval x-size))
(disp-drawline (+ xval x-size) (- yval x-size}))

(defun FILL-IN-LIST (pts-1st)

= fill-in-list: 1akes a list of points which are not necessarily
2 spatially contiguous and returns a list which fills in between
;2 the points in a linear fashion.

(prog (out-list old-pt old-x old-y new-x new-y yd xd xabs xsign apt
slope ytm ytm-new ytm-dif ytm-abs xtm ytm-sgn ytt
tmplst yabs ysign ytmp)

(setq tmplst (copylist pts-1st)
out-Tist nil
old-pt (pop tmpist))
(push old-pt out-Tist)
(setq old-x (pop oId-pt;
old-y (pop old-pt))
(dolist (new-pt tmplst)
(setq new-x (pop new-pt)
new-y (pop new-pt)

yd (- new-y old-y
xd {- new-x old-x
yabs abs yd

xabs abs xd))

(if }signp e yabs)
setq ysign 1.0)
(setq ysign (//$ yd yabs)))
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(if (signp e xabs)
(setq xsign 1.0)
(setq xsign (//% xd xabs)))
(cond ((signp e xabs)
(dotimes (i yabs)
(setq ytmp (+ old-y (= (1+ i; ysign))
apt (1ist old-x ytmp)
(push apt out-list)})

(setq slope (//% yd xd)

ytm old-y)
(dotimes (1 xabs)
(setq ytm-new (fix (+$ old-y (+$ (1+ i) slope xsign)))

ytmn-dif (- ytm-new ytm)
ytin-abs (abs ytm-dif)
xtm (+ old-x {» (1+ i) xsign)))
(if (signp e ytm-abs)
(setq ytm-sgn 1.0)
(setq ytm—s?n (/7/% ytm-dif ytm-abs)))
(dotimes (1 (1+ ytm-abs))
(setq ytt (fix (+3$ ytm (*$ ytm-sgn 1)))
apt (list xtm ytt))
(push apt out-]ist;)
(setq ytm ytm-new)))
(setq old-x new-x
0ld-y new-y))
(return fsetq out-list (nreverse out-list)))))

(defun FIND-CIRCLE (x1 yl1 x2 y2)

(find-circle x1 yl x2 y2) finds the circle through the given points and the point 0,0.

(prog (al bl cl1 a2 b2 c2 x0 y0 xdenom ydenom curvature)
(setq al (»$ x1 -2.0
bl (+$ yi1 -2.0
¢l (+% (*$ x1 x1)(+$ yl y1))
a2 (+$ x2 -2.0
b2 («$ y2 -2.0
c2 (+% (=% x2 x2)(+$% y2
xdenom (-% (+$ al b2)(~ a2 b1 g
ydenom (-%$ (+$ a2 bl)(+$ al b2)))
(if (or (signp e xdenom) (signp e ydenom))
(setq x0 nil
y0 nil
curvature 0)
(setqg x0 (//% (-% (*$ bl c2)(+$ b2 cl))
xdenomg
y0o (/7% (-$ (+$ al c2)(+$ a2 c1))
vdenom)
curvature (//% 1.0 (sqrt (+$ (=% x0 x0) (3 y0 y0))))))
(return (1ist curvature x0 y0))))

(defun m’w—PARABOLA (xla yla x2a y2a x3a y3a)
f nd-parabola
Thts routine takes the x,y coordinates of three poinis and fits
ia general parabola through them and the point 0,0.

The graph of the equation:
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naxt2 + bxy+eyt2 tdx +t ey + f=0
is a parabola only if
br2-4ac =0

o2 We assume that the point (0.0) is one of the points, so that f = 0.
o We then divide through by e. SuncncmhuJ;fmiabcd

s Smee in generat there are two solution sets, par returns a list
2of two lists cach comaining, in order, the four elements a b c d

.'.'.:(c l.f=0)

(prog (x1 y1 x2 y2 x3 y3 hl1 h2 h3 h4 h5 h6 h7 h8 k1 k2 k3 dc cl1 c2 bl b2
al a2 vl v2 dcs fg dl1 d2)

(zetq x1 (vloat xla
y1 (float yla
x2 (float x2a
y2 (float y2a
x3 (float x3a)
y3 (float y3a)
hl (-% (+$ x1 x1) (+$ x1 x2 XZ;;
h2 (-$ (+$ xl yl x2) (+$ x2 y2 x1
N3 (-$ (+3 x2 y1 y1) (+$ y2 y2 x1))
hd (-% (+$ x2 yl) (+% x1 y2))
hs (-8 (*+$ x3 x1 x1) (+$ x1 x3 x3
h6 (-3 (+$ x1 yl x3) (=% x3 y3 xl$
D7 (-3 (+$ y1 y1 x3) (+3 y3 y3 x1
h8 (-% (*$ x3 yl) («$ x1 y3
k1 (-$ (*$ hi h8) (*$ h4 h5
k2 (-$ (+¥ h2 h8) («$ h4 hé
k3 (-$ (+$ h3 h8) («$ h4 h7
dc (-% (*$ k2 k2) (o$ k1 k3)))
(cond ((signp e k1)
(setq c1 0.0
c2 0.0
b! 0.0
b2 0.0)

(cond (}and (signp e hl) (signp e h5))
setq al nil
az nil))
((signp e hl)
(setq al (/7% (-$ 0.0 h8) hb)

a2 al))
(t (setq al (//% (-% 0.0 ha) hi)
a2 al))))
({signp e k23
(setq a1 0
a2 0.0
b1 0.0
b2 0.0)

(cond ({and (signp e h3) (signp e h7}))
(setq ¢l nil
c2 nil))
({signp e h3)
(setq cl (//8 (-$ 0.0 h8) h7)
c2 cl))
(t (setq cl (//% (-$ 0.0 h4) h3)
c2 cl);))
(t (cond ({s1gnp 1 dc
setq dcs 0.0
fg t))
(t (setq fg nil
dcs (sqrt dc) ))
(setq v1 (*$ 2.0 (//$ -$ dcs 2) kl;
v2 (*$ 2.0 (//% (-$ 0.0 dcs kZ) k1)
cl (//% (+$ -4.0 ha) (+ «$ vl vl hl (*$ 4.0 vl h2)(+$ 4.0 ha{;;
c2 /43 *$ -4.0 h4) i+ 2% v2 v2 h1l)($ 4.0 v2 h2)(+*$ 4.0 h3
h1 (eSS vi 1)
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(setq

(if (s

(setq al (//8 (+$ (+$ bl h2)(+$ c1 h3
+$ b2 h2)
b1 hG)(e

b2 (*+$ v2 c2))
ignp e hb)

az
a2

(778 (+$%

(setq al (//$ (+$ (=
(778 (+$ (*$ b2 h6)($ c2 h7
dl (//% (+% (+$ al x1 x1)(+*$ bl x1 yl1)(=

!

11709782 11:34:51

&

+«$ ¢c2 h3
cl h7)

3

d2 (/78 (+$ (+$ a2 x1 x1)(*$ b2 x1 y1)(»$
(return (list (list al bl c1 dl)(1ist a2 b2 c2 d2)))))

222 The following 1est cases have been passed by the find-parabola routine:(7/26/82)
i (find-parabola 1.0 1.0 2.04.0-1.01.0) == (-1.00.00.00.0)
2o (find-parabola 1.0 -1.0 2.0-4.0-1.0-1.0) = (1.0 0.00.00.0)
2 (find-parabola 1.0 2.0 2.0 6.0 -1.0 0.0) - (-1.0 0.0 0.0 -1.0)
22 (find=parabola 1.00.38190601 2.0 1.0 3.0 1.69722436) =~ (-1.0 2.0-1.00.0)
22 (find-parabola - 1.0 - 2. 18614066 -4.0 -6.5894542 - 10.0 - 14.2291182)
gron(-204.0-20-50)

L (find-parabola 1.0 4.0 2.0 28.0 3.0 72.0) = (-10.0 0.0 0.0 6.0)
2o Uind-parabola -2.0 1.0 -6.0: 2.0 0.0 -1.0) = (0.0 0.0 1.0 1.0)

OO T T

Page 13

(defun GRAPH-SPLINE-CURVATURE (x-coefficient-1ist y-coefficient-list)
(prog (spline-curvature-list xc yc curvature-list)

(defunp
(setq

(aset
(aset
(aset
(aset

(aset
(aset
(aset

aset
aset

(aset
aset
aset

(setq spline-curvature-list nil

(dotimes (i (length x-coefficient-list

(c
(d

xCc (copylist x-coefficient-list
yc (copylist y-coefficient-list

)

(multiple-value (nil nil nil nil curvature-list)
(spline-curvature-extrema-between-knots (pop xc)(pop yc)))
(setq spline-curvature-list (append spline-cCurvature-list curvature-list)))

lear
isp-

(return t spline-curvature-list)))

INIT-BS-MATRIX ()
spline-matrix (make-array '(4 4) ":TYPE 'ART-FLOAT)
b-spline-matrix-flag t)

Lt -

spline-matrix
spline-matrix
spline-matrix
spline-matrix

spline-matrix
spline-matrix
spline-matrix

spline-matrix
spline-matrix

spline-matrix
spline-matrix
spline-matrix

return t))

b b b [N =YX o]
N - nNO N O WN = O
A A et Nt e —

www NN

(defunp LINE-ANGLE (x11 y11 x12 y12)

%1st (norm-1ist spline-curvature-list 12000))

*+* line-angle: takes the coordinates of 2 2-d points and returns
.. the angle of the line between them. Gives a value between 0
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2:oand 2*pi in radians. (verified 7/29/82)

(return (atan2 (-$ y12 y11) (-$ x12 x11))))

(defun MAKE-KNOTS (tan-list pts-list SOPTIONAL (offset 3) }closed nil)
(window 5) . assumed v be odd (its the number of delias - not knots)

(preg (tarray len parray last-tan last-crd knot-list tmp-tan k
equal-arc-length-knot-1ist)
(setq tarray (make-array (selq len (length pts-list)) ':leader-list '(o
parray (make-array len ‘:leader-1list '(0

(fillarray tarray tan-list
(fillarray parray pts-list

(setq last-tan (aref tarray offset)
last-crd (aref parray 0)
knot-list nil
last-index 0
deltas-list nil
equal-arc-length-knot-list nil)

(push last-crd knot-1list)

unequally spaced knots

(do i (1+ offset)(1+ i)(= i (1- len))
(setqg tmp-tan (aref tarray i)) ‘
(if }greaterp (abs (-% last-tan tmp-tan)) 0.35) :::knot cvery 20 degrees
setq last-tan tmp-tan
last-crd (aref parray i)
k (push (- 1 last-index) deltas-1list) :: forlocally equal spacing of knots
last-index i
k (push last-crd knot-1list))))
(setq knot-1ist (nreverse knot-list)
k (// (length pts-Tist)(Tength knot-1list))})

equall}: spaced knots

(dotimes (i $1ength knot-1ist))
(push (aref parray (fix (+$ (float i) k)))
equal-arc-length-knot-list)%
(push (aref parray {(1- (length pts-list))) equal-arc-length-knot-Tist)
(cond (closed :: append the first iwo knots 1o the end of the knot list
push (aref parray (fix k)) egual-arc-length-knot-list)
push (aref parray (fix (*» 2 k))) equal-arc-length-knot-list)))

locally equally spaced knots

(cond (closed
(dotimes (i (1+ (// window 2)))
(setq tmp-1st (rotate-1ist deltas-list (- 0 i)))
(push (car tmp-1st) deltas-1list))))
(setq deltas-1ist (nreverse deltas-1ist)
del-array (make-array (length deltas-1list) "TYPE 'ART-FLOAT)
locally-equal-deltas ni1l
locally-oqual-knot-1ist nil)
fillarray del-array deltas-list)
setq first-time-through-loop t) '
(do i (1- window) (1+ 1) (= i (1- (length deltas-1list)))
setq del-sum 0)
do ) 1 (1- ;) (= j (- 1 window))
setq del-sum 8+ del-sum (aref del-array j))))
(if first-time-through-lcop
(setq firsi-knot-index (fixr (*$ (// window 2)
' //% (float del-sum)

h el

ffset t))
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(float window))))
first-time-through-loop nil))
(push (//% (float del-sum) (float window)) ‘locally-equal-deltas))
(setq locally-equal-deltas (nreverse loca]ly-equal-de¥tas))
(1f (not closed) :
(setq first-knot-index (+ first-knot-index 15)))
(push (aref parray first-knot-index) locally-equal-knot-list)
(setq next-knot-index first-knot-index)
(dolist (item locally-equal-deltas)
(setqg next-knol-index (fixr (+$ next-knot-index item)))
(push (aref parray next-knot-index) locally-equal-knot-1list))

(return knot-1list equal-arc-length-knot-1ist locally-equal-knot-list)))

(defun MAKE-PARABOLA (a b c d x)

2o make-parabola:

wronparabola of formaxt2 + bxy + eyt2 +dx +y + 0 =10
sl routinge computes the y value for the given x val,uo

Joand returns il routine is for generating

2rdata 1o cheek the find-parabola routine.

220 Do notuse this routine if ¢ = 0. its simple enough 10 do by hand
s ife=0anyway.

(prog (bp cp anl an2 dis dc
- (setq dis (- (*$ b b) (+$ 4.0 a c)))
(cond ((signp e dis&
(setqg bp (+$ 1.0 (*$ b x))

cp (*+% (*% a x x) (+$ d x)z

dc (sqrt (-$ (+$ bp bp% (*$ 4.0 c cp)))
anl {//% (-$% dc bp) (*+$ 2.0 c))

an2 (//$ (-$ 0.0 bp dc) (+$ 2.0 c))))

(t (setq anl nil
an2 nil
(return (1list anl an2)

. (defun MOUSE-CURVE (&OPTIONAL (num-pts 200.))

2> mouse-curve: reads the mouse movements and stores a specified number of
oo points in a list
W

(prog éo}d-mouse-x old-mouse-y mouse-1ist new-mouse-x new-mouse-y)
clear)
(setq old-mouse-x (disp-x sys:mouse-x
old-mouse-y (disp-y sys:mouse-y
mouse-list nil)
(disp-setpos old-mouse-x old-mouse-y)
(dotimes (i num-pts)
(setq new-mouse-x (disp-x sys:mouse-x
new-mouse-y (disp-y sys:mouse-y))
(cond ((or (signp n (- old-mouse-x new—mouse-xgg
(si?np n (- old-mouse-y new-mouse-y)})
(push (list new-mouse-x new-muuse-y) mouse-list)
{disp-drawline new-mouse-x new-mouse-y))
(t (setg i (1- 1))))
(setq old-mouse-x new-mouse-x
oid-mouse-y new-mouse-y))))

(defun NAT-TANS (&OPTIONAL
(var-thrsh 0.0005)
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(prog

(sr global-scale-ratio))

:::nat-tans: lakes a tangent varianee list computed by
::: compute-tangent-varances and finds the most natural
sroaangems. 1t returns multiple values.

oo
"

(garbage min-1imit nat-scl-1st new-nat-scl
pt-index 1-point r-point

npl 1x

ly rx ry num-nat-scales

tinlst tmp ydif xdif tangent-angle tangent-angle-list)
(if (not pts-arrays-inited)
(sety 1p-array (make-array 500 “TYPE “ART-Q

(f
(1
(f
(s

illarray 1p-array global-le
illarray rp-array global-right-points)
illarray tv-array

etq min-limit 4.

rp-array (make-array 500 "“TYPE "ART-Q
tv-array (make-array 500 "TYPE "ART-FLOAT)
pts-arrays-inited ti)

t-points)

viist)

nat-scl-1st nil ::/ist of natural scales
new-nat-scl nil) . possible new natural scale
(dotimes (i (length tvlist))
(if (signp 1 (- var-thrsh (aref tv-array i))) .. isvar-val > var-thrsh?
(if (and (not (null! new-nat-scl)) (signp le (- min-Timit i))) . yes

(setq garbage (push new-nat-scl nat-scl-1st)
new-nat-scl nil))

(setq new-nat-scl i ;[ no

min-limit (+ i 10 (fixr («$ (float i) sr))))))

(if (not (null new-nat-scl)) .. incaseone runsoul of list .
(push new-nat-scl nat-scl-1st))
(setq num-nat-scales (length nat-scl-1st) -
npl nil
tangent-angle-list nil
tinlst nil
(dotimes (1 num-nat-scales)

(setq

(push
(push

(push
(return

tmp (pop nat-scl-1st)
pt-index (fixr (+$ tmp 1.0 (//% (*$ (+$ tmp 1.0) sr) 2.0)))
pt-index (fixr tmp)

1-point (aref 1p-array pt-index;
r-point (aref rp-array pt-index

1x (car 1-point)

ly (cadr 1-point)
rx (car r-point)
ry (cadr r-point)
xdif (-% rx Ix
ydif (-$ ry 1y ,
tangent-angle (1ine-angle 1x 1y rx ry))

tangent-angle tangent-an?le-list)

(sqrt (+3 (*$ xdif xdit)

(*$ ydif ydif))) tinlist) .. lengths of natural 1angents

(list 1-point r-point) npl)) .. endpoints of natural tangents
tangent-anglie (aref rp-array 0) tangent-angle-list tinlst npl)))

(defun NORM-LIST (nrmlist &OPTIONAL (y-scaling 1.0)

(xlower 5.0)(xupper 1000.0)(ylower 5.0)(yupper 1000.0))

2.2 and lower values specified

2 one can give cither a list where each member of the list is itself
oo alist of the furm (x y), or one can give a list of y values where
22 x values are implicitly to go from 0 to the length of the list

*+: norm-list: scales a Iisl/g{ points to fit between the upper
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s 7/30/82

(prog (nrmlst-tmp xmax xmin ytmp ymax ymin nrmlen npt xtmp xrange yrange
xrange-allowed yrange-allowed xratio yratio scalef outlst
newx newy)
(setqg nrmlst-tmp (copylist nrmlst)
xmax -999999.0
xmin 9999999.0
ymax xmax
ymin xmin
nemlen (length nrmist))

(dotimes (i nrmlen) :
(setq npt (pop nrmist-tmp)
(if (listp npt)

setq xtmp (pop npt)

ytmp ¥~$ y-scaling (pop npt)))
(setq ytmp (+$ npt -scaling)
xtmp (float i{))

(setq xmax (max xmax xtmp
Xmin (min xmin xtmp
ymax (max ymax ytmp
ymin (min ymin ytmp)))

(setq xrange (-$ xmax xmin)
yrange (-% ymax ymin)
xrange-allowed (-$ xupper xlower
yrange-allowed (-$ yupper ylower
xratio (//% (float xrange) (float xrange-allowed;
yratio (//$ (float yrange) (float yrange-allowed ;
scalef (//8 1.0 (float ?max xratio yratio)))
nrmist-tmp (copylist nrmist)
outist nil)

(dotimes (1 nrmlen)
(setq npt (pop nrmist-tmp))
(if (Vlistp npt)
setq xtmp (pop npt)
ytmp (+$ y-scaling (pop npt)))
(setqg ytmp (*$ y-scaling npt)
xtmp gfloat i)))
(setq newx (+% xlower (+$ scalef (-$§ xtmp xmin ;
newy (+$ ylower (#$ scalef (-$ ytmp ymin )
(push (Tist newx newy) outlst))

(return (nreverse outlst))))

(defun ROTATE-LIST (1st &OPTIONAL (times 1))

J:srotate-list: takes the car of a list and puts it at the end
n’{ the list. If a number is provided, the list is rotated

‘22 the iumber of times specified. If the number is negative
222 the list is rotated back wards.

..: (verified 7/29/82)

"

setq tmplist (copylist 1st))
if (signp ge times)
(dotimes (1 times)
(setq tmp (pop tmpist)

tmplst (nreverse tmplst
tmpist (push tmp tmpist
tmplist (nreverse tmpist)))

(dotimes (i (- times))

(prog gtmplst tmp)

13N
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{setq tmpist (nreverse tmplst)
tmp (pop tmplst)
tmplist (nreverse tmplst
tmplst (push tmp tmplst))))
(return tmplst)))

(defun SMOOTH-LIST (alist &OPTIONAL (window-size 5))
(prog (11 atlst tempsum window si ws temp tvalue)
(setq 11 (length alist)
atlst (copylist alist)
tempsum 0.0
window nil
sl nil
ws (float window-size‘{
(dotimes (1 (1- window-size
(setq temp (pop atlst)
tempsum (+$ tempsum temp))
{(push temp window))
(dotimes (i (- 11 window-size))
(setq temp (pop atlst)
tempsum (+$ tempsum temp)
tvalue (//$ tempsum ws),
(push tvalue sl)
(push temp window)
(setq window (nreverse window)
temp (pop window)
tempsum (-% tempsum temp
: window (nreverse window);)
(setq s1 (nreverse s1))
(return sl1)))

(defun SPLINE-COORDS (x-coeffs y-coeffs tp)
(lets ((ax (car x- coeffs);
{bx (cadr x-coeffs ;
(cx (caddr x-coeffs
(dx (cadddr x-coeffs))
(ay (car y-coeffs);
(by (cadr y-coeffs))
(cy (caddr y- coeffs)
(dy (cadddr coeffs
(values (+$ dx (= * tp (+$ cx S tp (+$ bx (*$ tp ax;;;;;; honwrs
(+$ dy (+$ tp (+$ cy (+$ tp (+3 by ( *5 tp ay ))) i:irule

(defun SPLINE-CURVATURE (x-coeffs y-coeffs tp)
(lets ((ax (car x-coeffs);
(bx (cadr x-coeffs ;
(cx (caddr x-coeffs))
(ay (car y- coeffs)g
(by (cadr y-coeffs ;
(cy (caddr y-coeffs))

(n2 (-8 (»$ 6.0 ay bx)(+$ 6.0 ax by
(n1 (-8 (+$ 6.0 ay cx)(+$ 6.0 ax cy
(n0 (-$ (*$ 2.0 by cx)(+$ 2.0 bx cy
(d4 (+$ (+$ 9.0 ay ay)(+$ 9.0 ax ax
(d3 (+$ (*$ 12.0 ay by)(*$ 12.0 ax bx)))
(d2 (+$ (+$ 6.0 ay cy)(+»$ 6.0 ax cx
(¢$ 4.0 by by)(v$ 4.0 bx bx)
dl (+$ (=% 4.0 by c*)(-s 4.0 bx ¢cx)))
d0 (+3 (*$ cy cy)(*3 cx cx))))
(778 (+% (% n2 tp tp)(+$ nl1 tp) nl)

(~ (sqrt (+$ (+$ d4 tp tp tp tp)(+$ d3 tp tp tp)
(*$ d2 tp tp)(«$ d1 tp) d0)) 3.00))))

(defun SPLINE-CURVATURE-EXTREMA (x-coefficient-1ist y-coefficient-1list
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8OPTIONAL (steps 50)(closed nil)
8AUX (xc (copylist x-coefficient-Tist))
(yc (copylist y-coefficient-1list))
(spline-curvature-array ::: i know its wasieful
(make-array (* 2 (length xc)) “TYPE 'ART-Q))
curvature-list
(x-coeff-arr
(make-array (* 2 (length xc)) “TYPE 'ART-Q))
(y-coeff-arr
(make-array (* 2 (length xc)) “TYPE 'ART-Q))
(angle-array
. (make-array (length xc) “TYPE 'ART-FLOAT))
tangent-x-0 tangent-y-0
tangent-x-1 tangent-y-1 tmp tmp-crv-1st)

(setq an?le-array (make-array (* 2 (length xc)) “TYPE 'ART-FLOAT))
(setq offset-array (make-array (* 2 (length xc)) "“TYPE 'ART-8B)
num-zeroes 0)
(dotimes (i (length xc))
(muitiple-value (tangent-x-0 tangent-y-0)
(spline-unit-tangent (car xc)(car yc) 0))
(multiple-value (tangent-x-1 tangent-y-1)
(spline-unit-tangent (car xc)(car yc) 0.9999)
(setq inflection (spline-zeroes (car xc)(car yc))) ...0<inflection <1 ifthere’s an inflection
(aset (car xc) x-coeff-arr (+ i num-zeroes
(aset (car yc) y-coeff-arr (+ i num-zeroes;;
(multiple-value (nil nil nil nil curvature-list)
(spline-curvature-extrema-between-knots (pop xc)(pop yc) steps))
(cond ((< inflection 0.0) :: noinflections in spline scgment
(aset curvature-list spline-curvature-array (+ i num-zeroes))
(aset («% 57.29577866

(atan2 (-$ (+$ tangent-x-0 tangent-y-1) .. sinofangle
(*$ tangent-x-1 tangent—y-O;)
(+$ (+$ tangent-x-0 tangent-x-1) :: cosofangle
(*$ tangent-y-0 tangemt-y-1))))

angle-array (+ 1 num-zeroes))
(aset 0 offset-array (+ i num-zeroes)))
(t .2 spline segment has inflections
(aset (setq tmp (fixr (+3 50.0 inflection))) offset-array (+ ! i num-zeroes))
(aset 0 offset-array (+ i num-zeroes))
(aset (aref x-coeff-arr (+ i num-zeroes)) x-coeff-arr (+ i 1 num-zeroes))
(aset (aref y-coeff-arr (+ i num-zeroes)) y-coeff-arr (+ i 1 num-zeroes))
(multiple-value (tan-x tan-y)
(spline-unit-tangent (aref x-coeff-arr (+ i num-zeroes))
(aref y-coeff-arr (+ i num-zeroes)) inflection))
(aset (+$ 57.29577866
(atan2 (-$

(+$

(*$ tangent-x-0 tan-y)
(*$ tan-x tangent-y-0))
(*$ tangent-x-0 tan-x
(+$ tangent-y-0 tan-y))))
angle-array (+ 1 num-zeroes))
(aset (-g 57.29577866
(atan2 (-$ (+$% tan-x tangent-y-1
(*$ tangent-x-1 tan-y))
(+$ (+$ tangent-x-1 tan-x
(+$ tangent-y-1 tan-y))))
angle-array (+ 1
(setg tmp-crv-1st ni

) i num-zeroes))
1
(dotimes (j tmp)
(push (pop curvature-list) tmp-crv-1st))
aset (nreverse tmp-crv-1Ist) spline-curvature-array (+ i num-zeroes))
}aset curvature-1list spline-curvature-array (+ 1 i num-zeroes))
(setq num-zeroes (1+ num-zeroes)))))
(cond (closed ... ifcurveis closed allow wrap-around at ends of list
(aset (aref angle-array 0)
angle-array
(setq tmp (+ (length x-coefficient-list) num-zeroes)))
aset (aref angle-array 1) angle-array (+ tmp 1))
aset (aref spline-curvature-array 0) spline-curvature-array tmp)
aset (aref spline-curvature-array 1) spline-curvature-array (+ tmp 1))

19N
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x-coeff-arr tmp)

(aset (aref x-coeff-arr
x-coeff-arr (+ tmp 1))

(aset (aref x-coeff-arr
saset (aref y-coeff-arr y-coeff-arr tmp)

aset (aref y-coeff-arr y-coeff-arr (+ tmp 1))
(setq num-zeroes (+ 2 num-zeroes))))

(Yoop |\:A(l?-lRENi FROM 1 TO (- (+ num-zeroes (length x-coefficient-list)) 2)
(and (or (and (> (+$ §aref angle-array i)
aref angle-array (1- i))) 0.0)
(> (abs (aref angle-array 1))
(abs (aref angle-array (1- i)))))
(< (*$ (uref angle-array i)
(aref angle-array (1- i))) 0.0))
(or (and (> (+$ (ar-f angle-array i)
(aref angle-array (1+ i))) 0.0)
(> (abs (aref angle-array i))
(abs (aref angle-array (1+ i)))))
(< (»$ (aref angle-array i)
(aref angle-array (1+ i))) 0.0))
(> (abs (aref angle-array i)) 156.0))

COLLECT

(lets ((abs-curv-1st (mapcar 'abs (aref spline-curvature-array i)))
(max-curv (apply 'max abs-curv-1st))
(max-index (find-position-in-list-equal max-curv abs-curv-lst))
(param (//$ (float max-index) (float steps))))

(list (spline-curvature (aref x-coeff-arr i)(aref y-coeff-arr i)
param)
(multiple-value-list -
(spline-coords (aref x-coeff-arr i)(aref y-coeff-arr i)

—O O
N N o o

param))
: (?;ef x-coeff-arr ij(aref y-coeff-arr i)
1
INTO
extrema-jist
FINALLY

(return extrema-list)))

(defun SPLINE-CURVATURE-EXTREMA-BETWEEM-KNOTS (x-coefficient-list y-coefficient-1list

8OPTIONAL (steps 50))

.22 and the other for y b-spline coefficients. 1t returns a value between 0 and 50 (resolution
22 can be changed optionally by the user) giving the extremunt of curvature of the spline
> or nil if there is no extremum other than the parameter boundaries.
(prog (ax bx cx ay by cy n2 nl n0 d4 d3 d2 d1 dO
curvature-max curvature-min max-index min-index
curvature-list step-size tp
(setq ax (car x-coefficient-list)
bx (cadr x-coefficient-1list)
cx (caddr x-coefficient-1ist)
ay (car y-coefficient-list)
by {cadr y-coefficient-list)
cy (caddr y-coefficient-1list)

n2 (-$ (+$ 6.0 ay bx;(ts 6.0 ax by
nl (- (*$ 6.0 ay cx)(+$ 6.0 ax cy
n0 (-% (*$ 2.0 by cx)(*$ 2.0 bx cy
d4 (+$ (+$ 9.0 ay ay)(+$ 9.0 ax ax
d3 (+$ (*$ 12.0 ay by)(s$ 12.0 ax bx))
d2 (+$ (+$ 6.0 ay cy)(+$ 6.0 ax cx
*$ 4.0 by by){+$ 4.0 bx bx
d1 (+$ (+$ «$ 4.0 bx cx
d0 (+$ (*$ cy cy cx cx))

4.0 b{(s

-+ spline-curvature-extrema-between-knots: takes iwo lists. each of length 4, one for x b-spline coefficients
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curvature-list nil
step-size (//% 1.0 steps))
(dotimes (i steps)
(setq tp (+$ (float i) step-size))
(push (/7% (+$ (+$ n2 tp tp)(=+$ nl tp) no)
(~ (sqrt (+% (=% d4 tp tp tp tp)(+$ d3 tp tp tp)
(«3 d2 tp tp)(+$ dl tp) d0)) 3.00))
curvature-list))
(setq curvature-list (nreverse curvature-list)
curvature-max (apply 'max curvature-list)
max-index (find-position-in-list-equal curvature-max curvature-list)
curvature-min (apply 'min curvature-list)
min-index (find-position-in-list-equal curvature-min curvature-list))
(return max-index curvature-max min-index curvature-min curvature-list)))

(defun SPLINE-PTS-TO-COEFFICIENTS (control-list)

22 splime-pis-1o-coeflicients: takes a list of x.v control points of length
rat least four and nuduple value remrns iwo lists. The first is a list
2rof coefficients for the x coordinate of the b-spline. Fach member of the
solistis arselfa list of four coefficients for the powers of the spline

212 pavameter. The second hstis a list of cocfjicients for the y coordinate
;12 of the b-spline.

(prog (ct) cpl cp2 cp3d xcoeff-list ycoeff-list cpd4 xcoeffs ycoeffs)
= romake sure there are at least four points for spline ]
(if. (¢ (length control-list) 4)
(ferror nil "need at least four points for b-splines"))
(setq ctl (copylist control-Tlist) ‘
cpl (pop ctl)
cp2 (pop ct})
cpd (pop ctl)
xcoeff-list nil
ycoeff-list nil)
(dotimes (i (length ctl))
(setq cp4 (pop ctl)
xcoeffs (b-spline-coeffs (car cpl)(car cp?)(car cp3)(car cpd))
ycoeffs (b-spline-coeffs (cadr cpl)(cadr cp2)(cadr cp3)(cadr cpd))
cpl cp2 '
cp2 cpld
cp3 cpd)
(push xcoeffs xcoeff-1list
(push ycoeffs ycoeff-1list))
(return (nreverse xcoeff-1list) (nreverse ycoeff-1list))))

(defun SPLINE-UNIT-TANGENT (xcoefficients ycoefficients
8OPTIONAL (parameter-value 0.0 parameter-supplied)
' 8AUX tangent-x tangent-y tan-magnitude)
::: spline-unit-tangent: tukes two lists of length four. One list contains the coefficients for
22 the x component of a cubic b-spline segment, the other contains the cocfficients for the y
2 component. Optionally one can specify a parameter value between O and 1 inclusive.
222 The unit wngent to the spline at the parameter value is returned. Multiple value return
i is used for the x and y components of the langent.
(if parameter-supplied
(if for (< parameter-value 0.0)(> parameter-value 1.02)
ferror nil "parameter must be between 0 and for for spline-unit-tangent”)))
(setq tangent-x (+$ (caddr xcoefficients)
(*$ 2.0 (cadr xcoefficients) parameter-value)
(*$ 3.0 (car xccefficients) parameter-value parameter-value))
tangent-y (+$ (caddr ycoefficients)
»$ 2.0 (cadr ycoefficients) parameter-value)
*$ 3.0 (car ycoefficients) parameter-value parameter-value))

tan-magnitude (sqrt (+$ (+$ tangent-x tangent-x)

121
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(*$ tangent-y tangent-y))))
(values (//$ tangent-x tan-magnitude)
(//% tangent-y tan-magnitude)))

(defun SPLINE-ZERQCES (xcoefficients ycoefficients)
(prog (a b c d param pl p2)
(setq a (+$ 3.0

(-$ (*$ (car ycoefficients)(cadr xcoefficients
(¢$ (car xcoefficients)(cadr ycoefficients))))
b («$ 3.0
(-$ (+$ (car ycoafficients)(caddr xcoefficients))
(*$ (car xcoefficients)(caddr ycoefficients))))
c (-8 (+$ (caddr xcoefficients)(cadr yccefficients))
(*$ (caddr ycoefficients)(cadr xcoeff1c1ents)))
d (-$ (*$ bb)(+$ 4.0 ac)))
(cond ((or (= a 0.0)(< d 0.0))
(setq param -1.0))
(t
{setq p1 (//% (-% (sqrt d) b) ($ 2.0 a)&
p2 (//% (-$ 0.0 b (sqrt d)) (=$ 2.0 a))
param -l 0)
(if (and (< p1 1.0)(> pl1 0.0))
(setq param pl))
(if (and (< p2 1.0)(> p2 0.0))
(setq param p2))))

(return param)))

135
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;-*- Mode:LISP ; Fonts:CPTFONT.TR101,.CPTFONTB,TR10IB ,HL10;: Base:10-+»-

(defconst RED l)
(defconst GREEN 2
(defconst BLUE 3)
(defconst YELLOH 4&
(defconst MAGENTA b)
(defconst CYAN 6;
(deiconst WHITE
(defconst PINK 8)
(defconst PASTEL-BLUE 9)
(defconst ORANGE 10)
(defconst BLACK 11)

(defunp COLOR-CLEAR ()
(funcall color:cotor-screen ':clear-screen))

(declare (special phi cp sp ip theta ct st rho x y z jp yp xold yold))

(defunp CSRr-COLOR (8&optional (xrot 30) (xyscale 12.0{ (zscale 35.0) (xcent 288) (ycent 18
(funcall color:color-screen ':clear-screen)
(setq phi (*3% xrot 0.0174533)

cp (cos ph1g
sp (sin phi))
(dotimes (i 36)
(setqg ip (+% 4 0 (+$ (float 1) 10.0))
theta (+$ ip 0.0174533)
ct (cos theta)
st (sin theta)
xold 0
yold 0)
(dotimes (j 900)
(setq rho {+$ (float j) 0.0174533)
x (*$ rho ct xyscale)
y (*$ rho st xyscale)
z (*$ (cos rho) zscale)
yp (-3 (+% (*$ y cp) (*3 z sp))))
(color:color-draw-line (fix (+3 xold xcent))
(fix (+$ yold ycent))
(fix (+$ xcent x))(fix (+$ ycent yp)) green)
(setg xold x
yold yp)))
(dotimes (1 3&
(setq ip (+$ 180.0 (+$ (float i) 360.0))
rho (*$ ip 0.0174533)
xoid 0
yold 0)
(dotimes (j 144)
(setq jp (+$ 4.0 (% (float j) 2.5))
theta (+$ jp O. 0174533;
ct (cos theta;
st (sin theta
x «$ rho ct xyscale
«$ rho st xyscale
z (*$ (cos rho) zscale)
yp (-$ (+$ (s$ y cp) (% z sp))))
(if s1?np e

(if (oddp (fix j))

(color:color-draw-line (fix §+$ xold xcent))(fix (+3% yold ycent??
(fix (+$ xcent x))(fix (+$ ycent yp)) yellow)
(color:color-draw-line (fix (+$ xold xcentg)(flx (+$ yold ycent))
fix (+$ xcent x))(Tix (+$ ycent yp{) black)))

(setq xold x

yold yp))) ) .
(color:color-princ "Cosine surface - Dotted lines are minima" 100 400 orange))

(defunp BLUE-BACKGROUND (&optional (brightness 80))
(color:write-color-map 0 0 0 brightness))

(defunp RED-BACKGROUND (&optional (brightness 60))
11A
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(color:write-color-map 0 brightnéss 00))

{defunp GREEN-BACKGROUND (&optional (brightness 40))
(color:write-coler-map 0 0 brightness 0))

(defunp

YELLOW-BACKGROUND (&optional (brightness 30))

(color:write-color-map 0 brightness brightness 0)

(defunp CANDY-COLOR-MAP ()

{biue-background)

(color:write-color-map 1 255 0 0 ired
(color:write-color-map 2 0 255 0 igreen
(color:write-color-map 3 0 0 255) :blue
(color:write-color-map 4 2556 255 0) ;yellow
(color:write-color-map 5 2656 0 255) ;magenta .
(color:write-color-map 6 0 2556 255) ;blue-green (cyan)
(color:write-color-map 7 255 255 255) ;white
(color:write-color-map 8 200 90 150) ipink
{(color:write-color-map 9 50 200 200) ;pastel blue
(color:write-color-map 10 200 50 0) iorange
(color:write-color-map 11 0 0 0) :black

(defun DISP-LIST-COLOR (dsplst 8OPTIONAL (1list-color green) (x-flg nil)

(x-pt (fixr (//8% (float (length dsplst)) 2.0)))
(x-color red))

2o disp-list: displays a list of points on the lisp machine
2 joined by line segments. 711)10 list of points is a list of
2 lists, each of the form (x y). 7730782 Optionally the user
2:ocan specify that an x be drawn through one of the points.

19
”

(prog (dsplst-tmp pt xold yold 1stlen xval yval)
(setq dsplist-tmp (copylist dsplst)
pt (pop dsplst-tmp)
Istlen (length dsplst-tmp)
xold (fixr (pop pt g
yold (fixr (pop pt)))

(dotimes (m 1stlen)
(setq pt (pop dsplst-tmp))
(setq xval (fixr (pop pt))
yval (fixr (pop pt)))
(if x-f1
(if ?signp e (- x-pt (1+ m)))

(draw-x-color xval yval x-color})))
(color:color-draw-line xold yold xval yval list-color)
(setq xoid xval yold yval))

(return 1stlen)))

(defun NORM-LIST-COLOR (nrmist 8OPTIONAL (y-scaling 1.0)

(prog

(xTower 115.0)(xupper 475.0)(ylower 0.0)(yupper 300.0))

1 norm-list: scales a list of points to fit between the upper
:rand lower values specified

::: one can give either a list where each member of the list is itself
2ralist of the form (x y), or one can give a list of y values where
10 x values are implicitly to go from 0 to the length of the list

52 1/30/82

(nrmist-tmp xmax xmin ytmp ymax ymin nrmlien npt xtmp xrange yrange
xrange-allowed yrange-allowed xratio yratio scalef outlst
newx newy)
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(setq nrmlst-tmp (copylist nrmist)
xmax -999999.0 :
xmin 9999999.0
ymax xmax
ymin xmin
nrmlen (length nrmlst))

(dotimes (i nrmlen)
(setq npt (pop nrmlst-tmp))
(if (listp npt)
(setq xtmp (pop npt)
ytmp (+$ y-scaling (pop npt)))
(setq ytmp (+*% npt y-scaling)
xtmp (float i)))-
(setq xmax (max xmax xtmp
xmin (min xmin xtmp
ymax (max ymax ytmp
ymin (min ymin ytmp)))

(setq xrange {-3 xmax xmin)
yrange (-$ ymax ymin) :
xrange-allowed (-$ xupper xlowe ;
yrange-allowed (-5 yupper ylower
xratio (//% (float xrange) float xrange-allowed
yratio (//% (float yrange) (float yrange-allowed
scalef (//% 1.0 (float {max xratic yratio)))
nrmlst-tmp (copylist nrmist)
outlst nil)

(dotimes (i nrmlen)

(setqg npt (pop nrmlst-tmp))
(if (1listp npt)

(setq xtmp (pop npt)

ytmp §t$ y-scaling (pop npt)))
(setq ytmp (+*$ y-scaling npt)
xtmp (float i)))
(setq newx (+$ xlower (+*$ scalef (-$ xtmp xmin
newy (+% ylower (+$ scalef é-$ ytmp ymin;;;)

(push (1ist newx (-$ 360.0 newy)) outlist))

(return (nreverse outlst))))

(defunp DRAW-X-COLOR (xval yval &OPTIONAL (x-color red) (x-size 8.))

*:* draw-x-color: draws an x through the specified point

(color:color-draw-line (fixr {+ xval x-size

fixr (+ yval x-size)
(fixr (- xval x-size

g;}fixr (- yval x-size)
x-color)
(color:color-draw-line (fixr (- xval x-size))(
(fixr (+ xval x-size))(
x-coior))

(defun GRAPH-SPLINE-CURVATURE-COLOR (x-coefficient-1ist y-coefficient-list
&OPTIONAL (spline-color pink))
(prog (spline-curvature-list xc yc curvature-list) '
(setq spline-curvature-list nil
xc (copylist x-coefficient-list;
yc (copylist y-coefficient-1list ;
(dotimes (i (length x-coefficient-list))
(multiple-value (nil nil nil nil curvature-list)
(spline-curvature-extrema-batween-knots (pop xc)(pop yc)))
ssetq spline-curvature-list sappend spline-curvature-list curvature-list)))
disp-list-color (norm-1ist-color spline-curvature-list 3000) spline-color

zreturn t spline-curvature-list)))

fixr (+ yval x-size))
fixr (- yval x-size))

(defunp DISPLAY-SPLINE-COLOR (xcoefficient-l1ist ycoefficient-Tist

- . o~
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&OPTIOMAL (spline-color pink)
(res 50))

:xMwMqumthHMWhyxcmpq%mﬁMMWSWmemﬁNMPxammmMe
-+ and the other of coefficients of powers for the y coordinate of a b-spline, and displays
<22 the spline on the lisp machine screen
(prog (num-coeffs xc yc resolution-scaling new-x-coeffs new-y-coeffs tmp
ax bx cx dx ay by cy dy tp x-coord y-coord)
(setq num-coeffs (length xcoefficient-list)
xc (copylist xcoefficient-list)
yc (copylist ycoefficient-list)
resolution-scaling (//$ 1.0 res))

(dotimes (i num-coeffs)
(setq new-x-coeffs (pop xc)
new-y-coeffs (pop yc;
ax (car new-x-coeffs
bx (cadr new-x-coeffs)
cx (caddr new-x-coeffs)
dx (cadddr new-x-coeffs)
ay (car new-y-coeffs)
by (cadr new-y-coeffs)
cy (caddr new-y-coeffs)
dy (cadddr new-y-coeffs))
(dotimes (j res) ,
(setq tp (*$ (float j) resolution-scaling)
x-coord (+$ dx (*$ tp (+$ cx (=% tp (+$ bx (+$ tp ax))
) y-coord (+% dy (*$ tp (+$ cy (+§ tp (+$ by (=3 tp ay))
(if (and (= i 0)(= j 0)) :
(setq xold x-coord yold y-coord)
(setq tmp (color:color-draw-line (fixr xold)(fixr yold)
(fixr x-coord)(fixr y-coord) spline-color)
xold x-coord yold y-coord))))
(return num-coeffs))) ‘

)))) cchorner’s
))))) sinde

(defunp A-DEMO-COLOR (8OPTIONAL (closed nil))
(prog (:t1n natural-tangents-list ti sl knot-list-tmp equal-spaced-knot-list
knot-pt pt-coords tangent-angle knot-x pt-coords-1ist knot-y codon-string
; x-coefficient-1ist y-coefficient-1list unequal-spaced-knot-list
: codon-1list extrema-list)

)
(if closed
(setq L1n (norm-1ist-color (setq tl (dig-curv-list-closed))
(setq tin (norm-list-color (setq tl (dig-curv-1ist 200 0.035)) 3)))
(color-clear)
(candy-color-map)
(disp-1ist-color tin)
(color:color-princ "ORIGINAL QUANTIZED CURVE" 175 375 orange)
(print "type a space to continue")
(tyi) ) )
(setq natural-tangents-list ni)
pt-coords-1list nil)
(if closed .
(dotimes (i (length tln))
(multiple-value (nil nil) (compute-tangent-variances tin i closed))
}mu\tiple-value (tangent-angle pt-coords) (nat-tans))
push tangent-angle natural-tangents-list)
(push pt-coords pt-coords-list)?

(do 1 15 (1+ i) (= i (- (len th tin) 15)) :::don'tdo ends cf open curve
(multiple-value (nil nil? (compute-tangent-variances tin i closed))
(multiple-value (tangent-angle pt-coords) (nat-tans))

(push tangent-angle natural-tangents-list)
(push pt-coords pt-coords-1list)))

(setq natural-tangents-list (nreverse natural-tangents-1list)
pt-coords-11st ‘nreverse pt-coords-11st))

(setq s1 (smooth-1ist natural-tangents-list 6))

139
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(multiple-value (unequal-spaced-knot-1ist equal-spaced-knot-1ist)
(make-knots sl pt-coords-list 0 closed))
(setq knot-list-tmp (copylist equai-spaced-knot-1list))
(color-clear) -
(disp-1ist-color tin)
(dotimes (i (length equal-spaced-knot-list))
(setq knot-pt ?pop knot-list-tmp)
knot-x (car knot-pt)
knot-y (cadr knot-pt)
(draw-x-color knot-x knot-g)
2golor;color-princ "EQUALLY SPACED KNOTS AT NATURAL SCALE"™ 105 375 orange) -
reep
(prin. "type a space to see the spline"”)
(terpri)
(prinl-then-space "type a ¢ to clear screen first™)
(if (= ‘tyi) 99)

(color-clear))
(multiple-value (x-coefficient-list y-coefficient-1ist)
spline-pts-to-coefficients eaual-spaced-knot-1ist})) -

(display-spline-color x-coefficient-list y-coefficient-list)
(cotor:color-princ "NATURAL SCALE B-SPLINE" 150 375 orange)
(dreep)
Eprint "type a space to see the spline curvature")
tyi)
(color-clear)
(graph-spline-curvature-color x-coefficient-list y-coefficient-list)
(setq extrema-list
(spline-curvature-extrema x-coefficient-list y-coefficient-1ist 50 closed))
(color:color-princ "B-SPLINE CURVATURE"™ 220 375 orange)
(nreep)
(print "type a space to see the extrema")
(tyi)
(color-clear) :
(display-spline-color x-coefficient-list y-coefficient-Tist)
(dolist (item extgema-list) -
(draw-x-color (car (cadr item))(cadr (cadr item))))
(multiple-vaiue (codon-string codon-list)
(codon-top-level-description-color extrema-1ist closed))
(print "codon string is")
(print codon-string
(color:color-princ "CURVATURE EXTREMA AND CODON DESCRIPTION" 140 375 orange)
(breep)
print “"type a space to see the natural tangents plot")

tyi)
(color-clear) ) -
(disp-1ist-color (norm-list-color natural-tangents-list 100)) -

gcolor:color-princ "UNSMOOTHED NATURAL TANGENTS PLOT" 120 375 orange)
beep-rise) ‘

print "type a space to see the smoothed natural tangents plot")

tyi)

(color-clear)

(disp-list-color (norm-list-color s1 100 g
(color:color-princ "SMOOTHED NATURAL TANGENTS PLOT" 115 375 orange) -
(spcob)

(return x-coefficient-list y-coefficient-tist s1 natural-tangents-1list)))

(defunn A-DBL-DEMO-COLOR (&OPTIONAL (closed nil))

.
*
.
1

(prog

{;tin natural-tangents-list t1 s1 knot-list-tmp equal-spaced-knot-list
knot-pt pt-coords tangent-angle knot-x pt-coords-list knot-y codon-string
x-coefficient-list {-coeffic1ent-list unequal-spaced-knot-1list
codon-list extrema-list)

)
(if closed
(setq t1n (norm-1ist-color (setq ] sdig-curv-list-closod 500.);{)
(setq tin Snorm-list-color (setq t1 (dig-curv-1ist 200 0.035)) 3)
color-clear
candy-color-map)
disp-list-color tln&
color:color-princ "ORIGINAL QUANTIZED CURVE" 176 376 orange)
print "type a space to continue")

140
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(tyi) . _ _
(setq natural-tangents-list nil
pt-coords-11st nil
nat-tan-1st-2 nil)
(if closed
(dotimes (i (length tin))
(multiple-value (nil nil) (compute-tangent-variances tin i closed))
(multiple-value (nil pt-coords tan-ang-1st nil tan-pts-1st) (nat-tans))
(push (car tan-ang-1st) natural-tangents-1list)
(if (> {length tan-ang-1st) 1)
(push (cadr tan-ang-1st) nat-tan-1st-2)
(push (car tan-ang-1st) nat-tan-1st-2))
: (push tangent-angle natural-tangents-list)
{push pt-coords pt-coords-list)

(do 1 15 (1+ 1) (= 3 (- (Yength tin) 15)) :::don't doends of open curve
(multiple-value (nil nil) (compute-tangent-variances tln i closed))
(multiple-value (tangent-angle pt-coords) (nat-tans))

#push tangent-angle natural-tangents-list)
push pt-coords pt—coords-list)?)

(setq natural-tangents-list (nreverse natural-tangents-list)
pt-coords-1ist (nreverse pt-coords-1list)
nat-tan-1st-2 (nreverse nat-tan-1st-2))

(setq s1 (smooth-l1ist natural-tangents-list 6)
s12 (smooth-list nat-tan-1st-2 6))

(dotimes (p 2)
(multiple-value (unequal-spaced-knot-list equal-spaced-knot-list)

(make-knots si pt-coords-list 0 closed))
(setq knot-list-tmp (copylist equal-spaced-knot-list))
(color-clear)
(disp-list-color tin)
(dotimes (i (length equal-spaced-knot-list))

(setq knot-pt (pop knot-Tist-tmp)

knot-x (car knot-pt)
knot-y (cadr knot-pt

(draw-x-color knot-x knot-
%color:co]or-princ "EQUALLY SPACED KNOTS AT NATURAL SCALE" 105 375 orange)
breep)
(print "type a space to see the spline")
(terpri) .
(prinl-then-space "type a c to clear screen first")
(if (="(tyi) 99)

(color-clear))

(multiple-value (x-coefficient-1list y-coefficient-Tist)

(spline-pts-to-coefficients equal-spaced-knot-list))
(display-spline-color x-coefficient-1list y-coefficient-1ist)
color;co]or—princ "NATURAL SCALE B-SPLINE" 150 375 orange)
dreep
(pri?t "type a space to see the spline curvature").
(tyi
(color-clear)
(graph-spline-curvature-color x-coefficient-list y-coefficient-1list)
(setq extrema-1list

(spline-curvature-extrema x-coefficient-list y-coefficient-1ist 50 closed))

{color:color-princ "B-SPLINE CURVATURE" 220 375 orange)
nreep)
print "type a space to see the extrema")

tyi
gcolor-cloarz
display-spline-color x-coefficient-list y-coefficient-1ist)
(dolist (item extrema-list)
.(draw-x~-color scar (cadr item))(cadr (cadr item))))
(muitiple-value (codon-string codon-list)
(codon-top-level-description-color extrema-1ist closed))
print "codon string is")
print codon-string
color:color-princ "CURVATURE EXTREMA AND CODON DESCRIPTION" 140 375 orange)
breep)
print "type ‘a space to see the natural tangents plot")
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(tyi)

(color-clear) .

(disp-list-color (norm-list-color natural-tangents-list 100))
(color:color-princ "UNSMOOTHED NATURAL TANGENTS PLOT" 120 375 orange)
(beep-rise) :

(print “"type a space to see the smoothed natural tangents plot")
(tyi)

(color-clear)

(disp-list-color (norm-1ist-color sl 100))

(color:color-princ "SMOOTHED NATURAL TANGENTS PLOT" 115 375 orange;

(spoob)

(setq st s12}))
(return x-coefficient-list y-coefficient-list sl natural-tangents-list)))

(defun CODON-TOP-LEVEL-DESCRIPTION-COLOR (curvature-extrema-1ist
&OPTIONAL (closed nil)
& AUX
(cel curvature-extrema-list)
(state 0) tmp (codon-list nil)
(new-codon nil) (codon-string " "))

(if (not codon-transition-table-initialized)
(codon-transition-table-init))

(cond (closed :::allowwraparound for closed curves
(setq cel (append cel (list (car cel)))). ,
(if (>= (car (car cel)) 0) i first extrenum is O 0 then we need 10 append wo extrema
(setq cel (append cel (1list (cadr cel)))))))

(dolist (current-extremum cel)
(if (>= (car current-extremum) 0)
(setq new-codon (aref codon-transition-table state Og
state (aref codon-transition-table state 1))
(setq new-codon (aref codon-transition-table state 2‘
state (aref codon-transition-table state 3)))
(it (not (null new-codon))
(setq codon-list (append codon-list (list ngw-codnn%)
tmp (color:color-princ (aref codon-string-table new-codon)
(fixr (+$ (car (cadr current-extremum)) 9.03;
(fixr (+$ (cadr (cadr current-extremum)) 9.0))
yellow))))
(dolist (new-codon codon-1list)
(setq codon-string (string-append codon-string
(aref codon-string-table new-codon))))
(values codon-string codon-list))

(defun DIG-CURY-LIST-CLOSED (&OPTIONAL (steps 300.) (scaling 60.0))

dig-curv-list creates a list of points on a digitized analytic
2:2 function. The list members are lists of the form (x y).
207729782 .

(prog (curv-list x arg y-new size)
(setq curv-list nil
size (//% 6.31 steps))

(dotimes (j steps)
(setq arg (*$ g size)
X «$ 2.0 scaling (cos arg))
y-new (+$ scaling (+d (sin ar
' «$ 0.04 (sin (*$ 256.0 arg))))))
(push (1ist x y-new) curv-list)) '
(return (nreverse curv-list))))
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(defun TV-DEMO (pt-index closed)
(prog ()
(color-clear)
(cand¥-color-map)
(if closed .
(setq tin (norm-list-color (setq t1 (dig-curv-list-closed 600.))))
(setq tin (norm-list-color (setq t1 (dig-curv-1ist 200 0.035)) 3);)
(disp-list-color tIn green t pt-index red
(color:color-princ "NATURAL SCALE TANGENTS ABOUT THE X" 140 375 yellow)
(multiple-value (nil nil) (compute-tangent-variances tin pt-index closed}))
(multiple-value (tan-ang tan-pos tan-ang-list tan-len-list end-pts-list)
(nat-tans))
(setq epl (copylist end-pts-list))
(dotimes (1 (length end-pts-Tlist))
(setq pt (pop epl)
xo (car (car pt)
yo {(cadr (car pt
x1 (car (cadr pt)
y1 (cadr (cadr pt)))
(color:color-draw-Tine (fixr xo)(fixr yo)(fixr x1)(fixr y1) (4 1 5)))
(disp-list-color (norm-list-color tvlist 2.5 115.0 475.0 200.0 3€0.0))
(return («$ tan-ang 57.29578) tan-pos tan-ang-list tan-len-list end-pts-list)))
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