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Abstract

Multiscale materials modeling has emerged in recent years as a significant concept
and the only viable approach to understand the mechanical response of materials by
linking modeling research at different length scales and time scales, including quan-
tum mechanics, atomistics modeling, mesoscale modeling and continuum modeling
together. The role that atomistic modeling plays is important and indispensable in
that it can generate understanding of the physics and pass this mechanistic under-
standing as well as important parameters to higher level simulations. This thesis
presents theories and simulations of defect nucleation and mobility in BCC transition
metal molybdenum using atomistic methods, with the two primary defects of interest
being dislocations and deformation twinning, and emphasis on the atomistic mecha-
nisms and measures. The contributions presented in the thesis may be regarded as
advances in both methods development and mechanistic understanding of dislocation
mobility and twinning nucleation.

For atomistic studies of dislocations in a simulation cell of finite size, new methods
have been derived to (1) calculate the atomic displacement field under PBC and gener-
ate atomic dislocation configuration from this displacement field; (2) quantify artificial
image effect for a dislocation moving within the periodic cell and optimize geometry
of simulation cell to minimize such effects. These methodological breakthroughs serve
as the basis for atomistic studies of dislocations and are used repeatedly in this thesis.

To understand the complex plasticity behavior of BCC metal molybdenum, we
need to first understand the most fundamental problem of core structure and lattice
resistance of straight dislocations before considering more complicated structures in-
cluding kinks, jogs, junctions, etc. In this thesis, we examine the two major types of
dislocations that are of primary interest in BCC molybdenum: screw dislocations,
which is the major plasticity carrier at low temperatures, and edge dislocations,
which become important at elevated temperatures. For screw dislocations, the is-
sue of whether core is polarized or not is explored by a static calculation of core
structure for the first time by a tight-binding potential. The screw core structure
is determined to be non-polarized; however, the magnitude of Peierls stress, which
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is a measure of the lattice resistance to dislocation motion and is calculated accu-
rately using a local-driving-force method in this thesis, remains rather high despite
of the non-polarized core, suggesting that core polarization is a secondary and less
important effect compared to core planarity. For edge dislocations in molybdenum,
the core structure and Peierls stress is calculated using a Finnis-Sinclair potential
and it is shown that edge dislocation in Mo has a planar core structure and a core
width of approximately 11Å, is indeed very mobile and has a Peierls stress of only 25
MPa, after correction for image effects due to boundary conditions. This new result
is consistent with experimental observations of high mobility of edge dislocations and
clearly rejects the proposal of kink mechanisms operating on edge dislocations that
arose in the literature as a result of previous inaccurate Peierls stress calculations
yielding an unrealistically high value of 700 MPa. These static calculations on core
structure and Peierls stress for edge and screw dislocations clarifies two fundamental
issues and is a major step towards understanding of the complex plasticity behavior
of BCC metals.

Furthermore, the dynamics of dislocations under stress is examined. The motion
of edge dislocations is simulated at a range of temperatures and stresses. At stresses
above Peierls stress and below 500MPa, dislocation mobility is controlled mainly by
phonon drag which is evident from the linear relation between stress and velocity
as well as the decreasing velocity with increasing temperature. At stresses above
500MPa, relativistic effect appears and the linear relation between stress and velocity
is replaced by an asymptotic behavior.

The above studies focus on the atomistics of dislocation motion in molybdenum;
however, deformation twinning, as the alternative plastic deformation mechanism,
deserves equal amount of attention and is studied atomistically in this thesis. Ho-
mogeneous twin nucleation and growth in molybdenum is examined atomistically for
the first time in 3D molecular dynamics (MD) simulations, where the geometry of
the nucleated twin is determined and the growth of the twin is analyzed. To under-
stand the twin nucleation and growth phenomena better in a low-dimensional space, a
physically-motivated 1D atomic chain model is developed. Using the 1D chain model,
it is found that the minimum twin structure has two layers instead of three as found in
previous pair-potential calculations. Furthermore, the model provides simple energy
measures for the competition between dislocation-based slip and twinning, describes
the minimum-energy path leading to twin embryo as well as its bifurcation from the
slip path, and allows us to study the 4-stage wave-steepening process that is inher-
ent to the nucleation of twin embryos and any other homogeneous defect nucleation
phenomena.

Thesis Supervisor: Sidney Yip
Title: Professor of Nuclear Engineering
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Chapter 1

Introduction

1.1 Background

The world that we live in is made of materials. Everywhere we look we see products

made from materials of different kinds: metals, semiconductors, ceramics, plastics,

composites. All of these have been made possible by various developments in ma-

terials science and engineering. As a matter of fact, materials have the milestones

of progress during the evolution of mankind. All civilizations have been categorized

by the materials they used: the Stone Age, the Bronze Age, the Iron Age, etc. (see

Figure 1-1.) From metal making in the ancient times to the development of steel and

aluminum alloys that made the industrial age possible, from the discoveries of plas-

tics and other polymers in the early 20th century to the invention of semiconductors

in the middle of the 20th century that created worldwide industrial developments in

communications, computers and consumer electronics, each breakthrough in mate-

rials science has had a tremendous impact on human civilization, just like the old

saying goes, a grain of sand can change the world. As we strive to live a better life

and build a better world, constant advances and inventions in materials science is a

must.

Throughout its history, materials science has been largely an experimental sci-

ence. However, with the introduction of computers and the exponential growth of
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Figure 1-1: Evolution of mankind. Each stage of civilization is categorized by the
material they use.

CPU speed ever since, computer modeling and simulation of large systems have been

made feasible and have found wide applications in many important fields, such as

weather forecasting, logistic optimizations, DNA sequencing and genomic analyses,

etc. The same goes true for the materials science research field. Computational ma-

terials science quickly emerged as a new research field by itself. Different from the

traditional trial-and-error approach in designing new materials with desired proper-

ties, computational materials science applies high performance computing to materials

research and seeks both understanding of materials behavior and predicting power in

a wider range of parameter space than previously available to achieve the same goal

– to design new material with improved performance. This is still a young field and

there is still only a limited number of researchers in this field; however, it has been in

constant growth as it becomes more accepted both by academic researchers and by

industrial users, and as powerful computers become more easily available.

The goal of computational materials science is towards design of new materials of
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desired properties. It is a theoretical approach, whose primary function is two-fold:

(1) To explain and suggest experiments.

Many problems in materials science are too complex for analytical methods to

be very useful. Computational materials science provides the theory that is needed

to understand current experiments and help plan new experiments. This is what we

refer to as “understanding”. Computer modeling is a powerful tool to probe material

behavior under various conditions and it can provide insight into the controlling

mechanisms that are responsible for material properties of interest.

The future of computational materials science in explaining experiments largely

depend on the improvements on both the computing power and the computational

models that is used. For the former aspect, current available computer process-

ing speed and memory on a typical shared-memory cluster or Beowulf PC cluster

(32 or more processors, 1-2 gigabyte per processor) are large enough to do many

computations that were simply impossible in the past, but they are still far from

large enough to do large computations with high accuracy that is required in many

problems. For example, density functional theory (DFT) calculations can now only

handle calculations of up to several hundred atoms and the situation would get only

marginally better with higher computing speed and larger memory since computing

resources required by DFT calculations scale as ∼ N3. For less accurate methods

such as molecular dynamics (MD) or dislocation dynamics (DD), the scaling situa-

tion is better but the thirst for more computing power does not change much. For

the latter aspect, the success of the model in explaining experimental results largely

relies on how much the modeled system deviated from the real experimental con-

ditions. To make the connection between theoretical calculations and experimental

results, one must improve the model to better resemble the real condition. However,

theoretical models typically have various constraints that one can not avoid such as

boundary conditions, size constraints, time-scale constraints, etc. It then become the

researcher’s task to try to capture the essence of the problem by using appropriate

models under these constraints.
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Figure 1-2: Different length scale of modeling methods.

(2) To predict material behavior and replace experiments with modeling.

Once the validity of a computer model is unequivocally demonstrated, one can

progress to replace some experiments with models. Tremendous savings in both time

and money can be achieved once this stage is reached. For industrial users, this will

hopefully speed up the R&D process to develop new materials as well as cut down the

associated cost; this is the main reason why we see a constant growth in industrial

interest and presence in material modeling research. Comparing to the first function

as we mentioned above (“understanding”), we refer to this function as “prediction”

and it is even more ambitious than the first one. However, this two aspects are

closely connected and “prediction” can only come after a good “understanding” of

the physics behind the problem that we are trying to solve.

It is a major breakthrough in material science and engineering that computer

modeling is now capable of providing valuable help in reducing experimental efforts,

shortening product development cycles and offering deeper fundamental understand-

ings. Attracting talents from diverse backgrounds (physics, mechanical engineering,

chemical engineering, computer science ...), the young field of computational materi-
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als science has shown a great prospect and is growing fast. Although computational

materials experimental validation of material modeling and simulations will remain

a necessity in the foreseeable future and it should not be expected that computers

would eventually make materials developments in the laboratory obsolete, constant

developments in the modeling concepts and ideas as well as the computing power will

surely bring the field of computational materials science forward in an unprecedented

pace.

Computer modeling of materials is mainly limited by the length and time scales

of the processes that can be studied. As shown in Figure 1-2, different modeling

techniques can handle only a specific range of length scale. Ab initio method, also

called first principles, is the most accurate method of all because it uses quantum

mechanics of electrons to describe interactions between atoms; however, it is very

expensive computationally and can only handle up to several hundred atoms with

computing capabilities as of today. Molecular Dynamics (MD) method uses semi-

empirical potential models to describe atomic interactions and therefore can model

systems with up to billion atoms and therefore covers a length scale of approximately

101−103 Å. In short, microscopic methods are more accurate in describing the material

responses but is severely limited by available time and length scale. On the other

hand, the mesoscopic and macroscopic methods are coarse-grained methods and are

less accurate, but they make larger length and time scales accessible and are much

closer to real applications.

If only the theories and models at different scales can be connected and macro-

scopic material behavior be understood through fundamental physics, the challenge

to understand the immense complexity of real material behavior can be answered.

This naturally leads to the multiscale approach [1]. Multiscale materials modeling

aims to develop improved description of material behavior through the incorporation

of information about materials structures and processes from various length and time

scales as necessary. Many important problems could be attacked under this multiscale

scheme efficiently. Modeling materials strength against deformation and failure is one
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Figure 1-3: Multiscale Modeling of Material Strength. Courtesy of Lawrence Liver-
more National Laboratory.

of the most prominent problems that hopefully can be addressed with this multiscale

approach.

Mechanical strength of materials not only differs from one material to another,

but more importantly, is sensitively dependent on material microstructures. In crys-

talline materials, the microstructures are made up of all kinds of lattice defects: point

defects, dislocations, twins, grain boundaries, voids, cracks, etc. The deformation be-

havior of each individual type of defect and how they interact with each other during

the deformation process have to be understood from the atomistic scale before this in-

formation is passed onto larger scale models towards developing a constitutive model

of material strength [2]. As shown in Figure 1-3, multiscale strength modeling links

models from different length scales and time scales together. True physics is preserved

by information passing from the lower length and time scale models to higher length

and time scale models, and it can provide a mechanistic-informed strength model

with predicting power.

The role that atomistic modeling plays in the grand picture of multiscale modeling

is important and indispensable. It can generate understanding of the physics and

pass this mechanistic understanding as well as important parameters to higher-level
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simulations. Without this understanding and parameters, the higher-level simulations

would become buildings without base and will not be able to reflect the true physics,

therefore lacking of predictive power is guaranteed. However, producing physical

understanding from atomistic models is difficult due to several reasons: (1) The

atomistic model may not be accurate enough to capture the physics; (2) More accurate

methods, though, is computationally expensive and can only treat highly limited

systems, sometimes their results contain artifacts of the limited size; (3) Due to the

large dimension involved, in order to comprehend the generated results and translate

it into a physical picture that human beings can comprehend and make use of, it

is often necessary to reduce the problem size to either a small number of degrees of

freedom (DOF) or small number of order parameters that is a function of the general

coordinations yet captures the essence of the problem, and this is not a easy task.

1.2 Problem Statement

This thesis presents theories and simulations of defect nucleation and mobility in

BCC transition metal molybdenum using atomistic methods, with the two primary

defects of interest being dislocations and deformation twinning, and emphasis on the

atomistic mechanisms and measures.

There are two important types of dislocations in Mo: screw dislocation controls

the low temperature plasticity while edge dislocations are important at high tem-

peratures. Despite the amount of research on dislocations in bcc metals, there are

still a number of unresolved issues and inconsistencies that have not been properly

addressed in previous studies. An example is that the Peierls values reported in the

literature are often higher (in some cases lower) than their true values, e.g., previous

calculations in the literature yielded a Peierls stress of 700 MPa for edge disloca-

tions [3], which is against the experimental observation that edges are highly mobile

even at very low stresses, and kink mechanism was proposed to reconcile the obvious

discrepancy. Another example is the screw dislocation core structure polarization
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controversy. These controversies in core structure and Peierls stress hinder the true

physical understanding of the plasticity problem and shall be resolved in an accurate

and reliable manner by designing more accurate simulation models and improving

simulation methods.

While the above discussion concerns property of dislocations at 0K, it is also

important to understand dislocation mobility under given temperature and stress

conditions. Due to various reasons (simulation settings, computational constraints,

etc.), not much has been done in this area except for the early work of Baskes and

Clapp [4, 5] and recent work of Gumbsch and Gao [6]. Yet one has to realize

that such work will not only provide valuable insights into the dynamic behavior of

dislocations but can also provide larger-scale modeling, e.g., dislocation dynamics,

with parameters that can not be acquired otherwise, e.g., drag coefficients. This is

another area calling for exploration.

On the other hand, deformation twinning, as an alternative plastic deformation

mode, is relatively under-studied and not well understood when compared with dis-

locations. The competition between twinning and dislocation-based slip is not yet

understood atomistically, and the atomistic details of twin nucleation and migra-

tion are still unclear. It is evident that we need to acquire understanding to these

fundamental phenomena from atomistic models.

The above mentioned problems serve as motivations and objectives for this thesis

work and will be discussed and treated in detail in the following chapters.

In this thesis, we describe five related contributions which may be regarded as

advances in both methods development and mechanistic understanding of dislocation

mobility and twinning nucleation.

(1) New methods have been derived to: (a) calculate the atomic displacement field

under PBC and generate atomic dislocation configuration from this displacement field;

(b) quantify artificial image effect for a dislocation moving within the periodic cell

and optimize geometry of simulation cell to minimize such effects.
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(2) The core structure and Peierls stress of screw dislocations in BCC molybde-

num, which is a major plasticity carrier at low temperatures, is calculated for the first

time using a tight-binding potential and the results are compared with semi-empirical

potentials where core polarization and its influence on Peierls stress is examined.

(3) Core structure and Peierls stress for edge dislocations in BCC molybdenum is

calculated using Finnis-Sinclair potential and it is shown that edge dislocation in Mo

which has a planar core structure and a core width of approximately 10Å, is indeed

very mobile and has a Peierls stress of only 25 MPa. This clearly rejects the proposal

of kink mechanisms operating on edge dislocations that arose in the literature because

of previous inaccurate Peierls stress calculations yielding an unrealistically high value

of 400− 700 MPa.

(4) The motion of edge dislocations is simulated at a range of temperatures and

stresses. At stresses above Peierls stress and below ∼ 500MPa, dislocation mobility

is controlled mainly by phonon drag which is evident from the linear relation between

stress and velocity, the decreasing velocity with increasing temperature, as well as the

constant drag coefficient. At stresses above 500MPa, relativistic effect appears. The

linear relation between stress and velocity is broken, and drag coefficient increases

approximately linearly.

(5) The mechanism of twin nucleation and growth is examined in 3D molecular

dynamics (MD) settings and then a physically-motivated 1D atomic chain model

is developed and it provides simple energy measures for the competition between

dislocation-based slip and twinning, describes the transition path leading to twin

embryo as well as its bifurcation from the slip path, and allows us to study the

4-stage wave-steepening process that is inherent to the nucleation of twin embryos.

The thesis is structured exactly in the same order as the above contributions.

We start our discussion in Chapter 2 by first introducing the methodologies of

creating dislocations under PBC and correctly treating image effect due to PBC.

These methodologies serve as the technical foundation for the atomistic studies on
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dislocations that follow. Chapter 3 and 4 presents my results on core structure and

Peierls stress for edge and screw dislocations in molybdenum respectively. Chapter 5

deals with dynamic motion of edge dislocations. Chapter 6 presents the very recent

work of mine on atomistic analysis of deformation twinning in Mo. It contains two

main sections – the MD analysis part and the 1-D Chain Model part, whereas a four-

stage strain localization model is also presented. I found great joy in writing this

chapter and recommend readers who are short of time to skip the previous chapters

and read this one. Chapter 7 summarizes the thesis and discusses the future work

directions beyond single defect nucleation and mobility.
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Chapter 2

Dislocations under Periodic

Boundary Conditions

In this chapter, we discuss one of the most important methodological issues in atom-

istic modeling of dislocations - how to treat boundary conditions and its effects. We

present recent contributions on the study of effect of one specific boundary condi-

tion, periodic boundary conditions (PBC), on modeling dislocation core energy and

mobility.

In the first section, we will introduce the problem of conditional convergence in

modeling of dislocations under PBC and present our solution. In the next three

sections, we present three applications of the method: (1) calculate the atomic dis-

placement field under PBC, which is directly used to prepare arbitrary dislocation

configurations; (2) quantify artificial image energies in dislocation simulations and

arrive at an accurate core energy; (3) quantify artificial image energy barrier for a

dislocation moving within the periodic cell, where such barriers for edge and screw

dipole configurations under PBC have been evaluated for different cell geometries and

optimal aspect ratio of the cell has been identified to minimize the artificial energy

barrier.

This work has been published and more detailed discussions can be found in
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[7, 8, 9].

2.1 Conditional Convergence and the Solution

In atomistic modeling studies, because of the discreteness (atoms) and finiteness

(limited number of atoms that can be simulated), some type of boundary condition

has to be used. Popular boundary conditions include periodic boundary conditions

(PBC), fixed boundary conditions, and more recently, atomistic-continuum bound-

aries. When using one of these boundary conditions, one important question one

must ask before getting any modeling results and interpreting the results is: what

effects does the boundary condition have on the modeling results and can we quan-

tify it? Unfortunately, this question often does not receive its share of attention due

to a popular view held by many researchers that as long as the simulation cell size

is big enough, the boundary effect should diminish and can be ignored. As will be

proved once and again in this chapter and Chapter 3, this argument is wrong. For

atomistic modeling of dislocations, boundary effect can lead to artificial results that

significantly deviates from true numbers.

In this study, we focus on one specific type of boundary condition: PBC. It has

many advantages: (1) PBC makes it possible to preserve the translational symmetry

of crystal lattice with a finite cell size; (2) PBC can be used to avoid surface effects;

(3) PBC is simple to implement. Because of these merits, it is widely used in Density

Functional Theory (DFT) and Molecular Dynamics (MD) calculations as well as

Dislocation Dynamics (DD). However, as with any other boundary conditions, PBC

introduces artificial things to the model. What it does is that it introduces infinite

number of identical images of the simulation supercell and the artificial effect due to

these images must be quantified.
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Figure 2-1: Schematic of an atomistic simulation cell (solid rectangle) containing a

dislocation dipole with Burgers vector ±~b and separated by ~a under PBC along ~c1,
~c2 and ~c3 (out of plane). To facilitate calculation of the image energy, we introduce
“ghost” dislocations (in white) at the cell boundaries.

2.1.1 PBC and Conditional Convergence

Let us consider an atomistic simulation supercell that contains a dislocation dipole.

As shown in Figure 2-1, the simulation supercell is periodic along ~c1,~c2 and ~c3 direc-

tions (~c3 is normal to paper). The dislocation lines are parallel to ~c3. The Burgers

vectors of the dislocation dipole are ~b and −~b, respectively; the separation between

the dipole is ~a.

The stress field in the PBC cell is the sum of the stress fields of the primary

dipole in the simulation supercell and the infinite number of image dipoles located

on a periodic lattice characterized by ~c1 and ~c2:

σij(~r)≡
∑
~R

σdipoleij (~r − ~R) , (2.1)

where ~r specifies the position of the evaluated point, ~R specifies positions of the

image dipoles with respect to the primary dipole, and the summation runs over the

two-dimensional lattice ~R = n1~c1 + n2~c2 (n1, n2 are integers and −∞ < n1, n2 <∞).
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Since the stress field of a straight dislocation decays as R−1 while the stress field

of a dislocation dipole decays as R−2, the sum of stress fields of the image dipoles

by their absolute values diverges logarithmically and therefore the series in Eq. 2.1 is

not absolutely convergent.

∑
~R

|σdipoleij (~r − ~R)| ∼
∫ ∞ 1

R−2
· 2πR · dR ∼

∫ ∞ dR

R
∼ ∞ (2.2)

This does not mean the summation in Eq. 2.1 does not converge; indeed it does

converge due to partial cancellations of terms with opposite signs. Therefore, the

summation in Eq. 2.1 converges conditionally, i.e., for any real number c, there is a

rearrangement of the summation series such that the new resulting series will con-

verge to c. In other words, by changing summation ordering, e.g., choosing different

summation boundary shapes, the straightforward (naive) summation will converge to

different numbers. Therefore, the naive summation cannot provide a definite solution

for the true stress field in the periodic cell.

Shown in Figure 2-2 is an example of such conditional convergence behavior when

calculating stress field at (x = 0.1L, y = 0.5L) for an edge dislocation dipole located

at (x = 0.25L, y = 0.25L) and (x = 0.75L, y = 0.75L), respectively, in a cell with

dimensions c1 = c2 = L. The stress is plotted in units of b·G
2π(1−ν)

. We show results for

three different summation orderings: summation by expanding concentric circles, by

expanding ellipses, and by expanding rectangles. Each summation ordering results in

a converged series, but the value they converge to are wildly different.

The same conditional-convergence problem occurs in the evaluation of strain field

because stress and strain are linked by the elastic constants. Similarly, summation of

displacement field whose derivative is strain, is also conditional convergent.

We will now show the interaction energy between the primary dipole and the

image dipoles also has the conditional-convergence problem.
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Figure 2-2: Conditional convergence of stress field summation. Naive summation
results in different converged numbers when three different summation orderings are
used: expanding circles, expanding ellipses and expanding rectangles. One can rea-
sonably expect even much wilder behavior since it has been mathematically proven
that the conditional convergence series can converge to any real number when sum-
mation order is varied.

The physical meaning of such interaction energy can be clearly seen if we consider

an atomic configuration corresponding to the schematic plot in Figure 2-1. The total

energy of the atomistic configuration Eatm (in excess of the energy of perfect lattice

with same number of atoms) is well-defined and can be directly calculated using

atomistic methods (MD or DFT). Two terms contribute to Eatm: the core energy

and the elastic energy, with the division between the two determined by core cut-off

radius (rc). Further dissecting the elastic energy contribution to primary-primary

interaction and primary-image interaction, one can see that Eatm consists of three
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parts: core energy of the two dislocations (2Ecore), interaction energy between the

two primary dislocations (Eprm), and the interaction energy between the primary

dipole and image dipoles (Eimg):

Eatm = 2Ecore(rc) + Eprm(rc) + Eimg , (2.3)

In order to calculate core energy for a given rc, one shall evaluate Eprm(rc) and

Eimg with elasticity theory [10, 11]. Evaluating Eprm(rc) is straightforward; however,

calculating Eimg is less so and is again a conditional-convergence problem:

Eimg =
1

2

∑
~R

′Edd(~R) (2.4)

Edd(~R) is the interaction energy between two dipoles separated by vector ~R and

the summation runs over ~R = n1~c1 +n2~c2 (n1, n2 are integers and −∞ < n1, n2 <∞)

which specifies positions of the image dipoles with respect to the primary dipole. The

prime symbol indicates the exclusion of the self-interaction (n1 = n2 = 0). Since only

half the interaction energy should be ascribed to the primary cell while the other half

should belong to the image cell, the factor 1/2 was added before the summation.

Edd(~R) can be readily calculated from elasticity theory. Let us consider a screw

dipole in isotropic media:

Edd(~R) =
µb2

2π
ln(|~R + ~a| · |~R− ~a|/R2) . (2.5)

For large R, Edd(~R) ' µb2

2π
a2

R2 cos2θ ∼ R−2. Therefore,

∑
~R

Edd(~R) ∼
∫ ∞ 1

R2
· 2πR · dR

∼
∫ ∞ dR

R

∼ [lnR]∞ →∞ (2.6)
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Again, this series is a convergent series because of cancellation of terms with

opposite signs but it is only conditional convergent and its value depends on the

summation ordering 1. Attempts to obtain the value of Eimg with a straightforward

summation will only result in an arbitrary number being reported. Most of the earlier

reports dealing with dislocation image sums in PBC ignored the issue of conditional

convergence and did not specify the summation order. The credit-worthiness of the

reported numbers are therefore highly suspicious.

2.1.2 Image Summation Method

Available methods to resolve the conditional convergence problem include summing

dislocation walls for edge dislocations [12, 13, 14] and performing fast multipole cal-

culations [13] or Ewald-like summations for screw dislocations [15]. However, all

the proposed methods are applicable only to isotropic media, leaving the effects of

anisotropy without scrutiny. In this section, we present our new solution to the

problem which is fully applicable to anisotropic media.

Figure 2-3: Create a dislocation dipole by making a cut and displacing the two sides
of the cut surface relative to each other.

1Similar problems arises in evaluating Coulomb interactions of dipole lattices and typically treated
using Ewald method.
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By evaluating the reversible work to create a dislocation dipole in the periodic

cell, we obtain an expression for the elastic energy of the dipole, expressed in terms

of its stress field σ(~r) in the PBC cell.

Eel = −1

2

∫
dAjbiσ

0
ij(~r) +

1

2
Sσ2V, (2.7)

where the integral extends over the area enclosed by the dislocation dipole, σ =

〈σ(~r)〉V is the stress averaged over the cell volume V , σ0(~r) = σ(~r)− σ, and S is the

elastic compliance tensor.

Eq. (2.7) follows from the combination of two steps, first creating a perfect lattice

under a uniform stress field and then creating a dislocation dipole by making a cut

on a surface (under stress) and displacing the two sides of the surface relative to

each other, as shown in Fig. 2-3. The elastic energy is therefore composed of a

defect contribution, which depends only on the stress field variation σ0(~r), and a bulk

contribution varying quadratically with the average stress σ.

One can express σ0(~r) as the summation of variations in the stress due to the

individual dislocation dipoles. Denote the stress field of a dipole at ~R by σdipole
ij (~r− ~R);

this summation is absolutely convergent since the stress difference between two field

points decays like R−3. To connect with the existing approach mentioned above, we

note that the integral of the stress field of one dipole over the region enclosed by the

primary dipole equals to minus the interaction between the two dipoles, so that

Eprm = −1

2

∫
dAjbiσ

dipole
ij (~r) (2.8)

and

Edd(~R) = −
∫
dAjbiσ

dipole
ij (~r − ~R). (2.9)

It then follows that Eimg can be rigorously written as

Eimg =
1

2

∑
~R

′Edd(~R) +
1

2
Ajbiσ

err
ij +

1

2
Sσ2V , (2.10)
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where σerr
ij =

〈∑
~R σ

dipole
ij (~r − ~R)

〉
V

, and the summation here involves the same col-

lection of image dipoles as in the first term of Eq. (2.10) plus the primary dipole

contribution (~R = 0). Eq. (2.10) shows that what is missing in Eq.(2), besides a term

describing the bulk stress effect, 1
2
Sσ2V , is a dipole correction 1

2
Ajbiσ

err
ij , which is

−1/2 of the interaction between the primary dipole and the average stress introduced

by the primary and image dipoles. This is similar to that derived by Wolf [16] in

treating Coulomb interaction summations in electric dipole lattices. The correction

is non-zero only if the primary cell contains a nonzero dipole moment [17]. If one

can group every two neighboring cells to form a dislocation quadrupole array [18],

its image summation is then free from this dipole correction. It is important to

note the difference between σerr and σ. The former is average stress arbitrarily in-

troduced into the PBC cell when summing the image dislocations, whose effect has

to be subtracted out completely. On the other hand, σ is the “physical” average

stress determined by atomistic simulations, whose contribution to the total energy is

expressed in the quadratic term in Eq. (2.7).

One can show that the dipole correction can be exactly canceled by introducing

a set of specially chosen “ghost” dislocations to interact with all the dipoles. This is

analogous to the fictitious charges introduced in [19] to cancel the dipole correction

in the lattice of electric dipoles. As shown in Figure 2-1, “ghost” dislocation with

Burgers vector α~b can be placed at ~c1/2, −α~b at −~c1/2, β~b at ~c2/2, and −β~b at −~c2/2,

with α,β satisfying ~a = α~c1 + β~c2. In this way Eimg becomes,

Eimg =
1

2

∑
~R

′(Edd(~R)− Edg(~R))− 1

2
Edg(0) +

1

2
Sσ2V, (2.11)

where Edg(~R) represents the interaction energy between a dislocation dipole (at offset

~R) and the “ghost” dislocations. The summation in Eq. (2.11) is absolutely conver-

gent because the “ghost” dislocations have exactly the same dipole moment as the

primary dipole, so that Edd(~R) − Edg(~R) ∼ R−3 for large R. Since Eq. (2.11) does

not depend on the explicit form of dislocation interactions, our method is applicable
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to dislocations of any character in a general anisotropic elastic medium.

The above solution is presented for evaluation of elastic energy due to image in-

teractions. However, the same method can be applied to evaluate stress, strain, or

displacement field of dislocations in PBC. More generally, the solution is for recon-

struction of the total elastic field of a periodic array of field sources. A simple recipe

has been presented where one first compute the lattice sum of the field sources fol-

lowing some arbitrarily summation order, then measure and subtract the spurious

part of the field that appears due to conditional convergence. This approach restores

the translational periodicity of the supercell and guarantees the uniqueness of the

solution. In the following section, this method is used to different stages of atomistic

modeling of dislocations and one will realize the importance of the method by then.

2.2 Creating Atomic Configurations of Dislocations

The first step of modeling dislocations atomistically is to create an atomic configu-

ration of dislocations. This task may seem trivial because according to the math-

ematical models of dislocations, we can follow a simple 3-step recipe to accomplish

our task: (1) Make a cut in the cell, the cut may range from a whole half plane, if

you are creating a single dislocation in infinite medium or with fixed boundaries, to

a circular disk, if you are creating a dislocation loop within your simulation cell; (2)

Shift the atoms on the two sides of the half planes relatively by a Burgers vector,

and move the other off-core atoms by amounts prescribed by elasticity; (3) Insert or

delete atoms if needed. However, there are many troubles associated with this pro-

cess. First, the implementation of the procedures may seem relatively straightforward

for simple edge or screw dislocations, but become cumbersome for mixed dislocations.

Second, moving atoms using elasticity is good, but one will get unwanted mismatches,

sometimes even stacking faults, at the boundary if a simple elastic solution assuming

the dislocation being in infinite medium is applied. Third, insertion and deletion of

atoms are somewhat arbitrary and if not done properly, can lead to point defects near
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created dislocations. Furthermore, because the prepared configuration is so far from

equilibrium configuration, it usually takes a long time for it to relax to minimum

energy state. Finally, still because of the crudeness of the prepared configurations,

the dislocation introduced may move away from the intended sites during the process

of relaxation. In summary, this simple recipe is very crude, cumbersome, and may

lead to serious problems in some cases.

Figure 2-4: Displacement field generated for a screw dislocation dipole under PBC.

Instead, one should apply the image summation method to obtain the true dis-

placement field considering the effect of the periodic images of the primary disloca-

tions, using anisotropic elasticity. With this accurate displacement field (certainly

only for regions away from the core), one move the atoms accordingly and can create

an initial configuration which is very close to ground energy state. Since the core
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region can not be well described by elasticity, the dislocation core atoms need further

relaxation. However, for the atoms far from core region, the prescribed displacement

are already very close to equilibrium values, if not exactly the same.

This two-step process is shown in Figure 2-4 and Figure 2-5, where the displace-

ment field is first calculated using image summation method, and then a discrete

atomic representation of this field is generated as the atomic configuration.

Figure 2-5: After obtaining the displacement field using image summation method,
this continuous field is mapped to discrete lattice to produce an real atomic configu-
ration.
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2.3 Calculating Core Energy of Dislocations

We apply the image summation method to extract the core energy of the edge disloca-

tions in BCC metal Mo using the Finnis-Sinclair (FS) potential [20]. We use a simula-

tion cell with ~c1,~c2,~c3 along [111],[101],[121] directions respectively, with ~a = ~c2/2 and

~b = ±[111]/2. The dislocation dipole is created by following the procedures described

in the previous section and the configuration obtained is then relaxed under zero

stress. (After the relaxation, there is an overall strain on the cell to accommodate the

plastic strain introduced by the dislocation dipole, so that it has zero average stress

and the last term in Eq. (2.11) vanishes. The atomic structure is shown in Figure 2-6.

The elastic constants for the potential model are C11 = 464.7GPa, C12 = 161.5GPa,

C44 = 108.9GPa, and Voigt average values are µ = 125.98GPa, ν = 0.2932.

Figure 2-7 shows the variation of total energy per unit dislocation length (Eatm)

with cell dimension ~c2, while ~c1 is fixed. For a given simulation cell, we calculate

the corresponding elastic energy Eprm + Eimg through Eq. (2.11) and use anisotropic

elasticity theory for individual dislocation interaction energies. The expression for

the interaction energy are obtained by integration of the stress expression from[10].

For two parallel dislocations separated by (x, y), their interaction takes the form

E ∼ ln(x + pαy), with pα being roots of a sixth order polynomial. The elastic

constants used for elasticity calculations are taken from the reported values for the

FS potential.

The core energy predicted by anisotropic elasticity is Ecore = 0.324± 0.002eV/Å,

at rc = b = 2.7256Å, (corresponding to α = 1.66). On the other hand, using µ as a

free parameter, isotropic elasticity gives Ecore = 0.382 ± 0.002eV/Å, (corresponding

to α = 1.81), significantly different from anisotropic results. Thus dislocation core

energies obtained under the assumption of elastic isotropy can be in appreciable error

even when the energy prefactor is fitted to atomistic data.
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Figure 2-6: Atomic structure of edge dislocation dipole in Mo a simulation cell under
PBC. The dipole is created by removing a layer of atoms between the two dislocations.
The high energy atoms in the dislocation core are plotted in dark color.

2.4 Quantifying Artificial Image Energy Barriers

The previous section shows that the image summation method can be applied to ac-

curately calculate core energies of dislocations. In this section, we concern ourselves

with identifying the image effects for simulating dynamic motion of dislocations un-

der PBC. We will use the image summation method to calculate the artificial energy

barrier due to image interactions and compare the results with atomistic calcula-

tions. Important implications for simulation geometry design is discovered and will

be discussed at the end of section.
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Figure 2-7: Calculating core energy of an edge dislocation in Mo using an edge dislo-
cation dipole configuration under PBC cell. Core energy is obtained by subtracting
linear elastic energy Eel (isotropic 2) and anisotropic 3) from atomistic total energy
Eatm (◦), and then divide by 2. Anisotropic elasticity is shown to give a very accurate
core energy result.

In simulating dynamic motion of dislocations under PBC, an issue of practical

concern is whether there exists an optimal cell geometry for atomistic simulation

studies of dislocations. Linear elasticity predicts that when ~a is kept at ~c1/2, Eimg

is only dependent on the cell aspect ratio. Figure 2-8 shows the predicted image

interactions not only decrease with increasing aspect ratio, as one would expect, with

anisotropy effects reducing the magnitude, but also the energies can change sign. This

information is noteworthy because a simulation cell with small magnitude of image

energy Eimg would have higher accuracy in determining both the core energy and the

Peierls stress τPN , both of which are static parameters of dislocation core that can be

used to infer dislocation mobility at finite temperature and finite stress conditions.
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Figure 2-8: (a) Schematic of the total energy variation with relative displacement x,
∆E being the maximum. (b) Variation of ∆E with cell aspect ratio c2/c1 for edge
dislocations in Mo, with the same set up as in Figure 2-7. Anisotropic elasticity
predicts ∆E = 0 at c2/c1 = 2.918 (3). Isotropic elasticity predicts a monotonic
decrease of ∆E with increasing c2/c1 (2). Atomistic simulations with c1 = 15, 20 and
30[111] are shown in ×, ◦ and + respectively.

Cell geometry will also affect the dynamics of simulated dislocations. Indeed,

cell geometry generally affects the total elastic interactions and hence the dynamics

of dislocations in atomistic simulations. A question of practical interest is whether

there exists an optimum cell geometry for which the elastic interactions are minimized.

Consider a simulation cell (Figure 2-8(a)) containing two edge dislocations separated

by ~a = ~c2/2; each of the dislocations can only glide along ~c1. The system energy

is then a periodic function of their relative displacement x along ~c1 direction, the

energy barrier being a result of an oscillatory image stress field superimposed on any

applied external stress. Linear elastic considerations show that the energy variation

has extrema at x = 0 and x = c1/2, so that ∆E = E(x = 0) − E(x = c1/2),

a function only of the cell aspect ratio, is an appropriate measure of the internal
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dislocation interaction. For dislocation mobility simulations [21] a minimum value

∆E is desirable for obtaining an accurate relation between the dislocation velocity

and the applied stress.

Figure 2-9: Calculating ∆E directly from atomistics. First we prepared a number
of atomic configurations corresponding to different relative displacement values, 0b,
1b, 2b,...,etc. Then these configuration are relaxed and the final energy of each one is
represented by a data point in this picture. This gives us the atomistically reproduced
image energy variation curve, which is more accurate than the isotropic predictions,
but requires much more computational efforts.

Results for the energy barrier determined separately by isotropic and anisotropic

elasticity calculations are compared in Figure 2-8(b). Isotropic linear elasticity pre-

dicts ∆E to decrease monotonically with increasing aspect ratio without becoming

negative, whereas the anisotropic calculation predicts ∆E to vanish at the aspect

ratio of c2/c1 = 2.918. Also shown in Figure 2-8(b) are direct atomistic simulation

results (see Figure 2-9 for details) for the artificial image energy barrier for three cell

sizes, showing a converging behavior toward the elasticity result.

The vanishing of the energy barrier at the special aspect ratio implies a complete
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Figure 2-10: Variation of ∆E with cell aspect ratio c2/c1 for screw dislocations in
Mo. Anisotropic elasticity predicts a reverse of sign at c2/c1 ≈ 2.2 while isotropic
elasticity predicts a monotonic increase of ∆E approaching zero.

cancellation among the primary and image interactions, thus allowing unhindered

dislocation glide in the PBC simulation cell. Direct atomistic simulations confirm

that ∆E indeed is greatly reduced at a cell geometry close to the predicted c2/c1.

For example, at ~c1 = 20[111] and ~c2 = 64[101], simulation gives ∆E = 0.091meV/Å,

corresponding to a maximum internal stress of about 0.3MPa. In contrast, typical

stresses applied in mobility simulations are in the range of 10− 1000MPa [21].

It may appear that the atomistic results in Figure 2-8(b) indicate a significant

size dependence. Indeed, a contributing factor could be the higher order (e.g. ∼ 1/r)

terms in the elastic interactions which is not in place if ones uses linear elastic theory.

However, the difference due to higher-order elastic terms appear to be rather small.

One may have noticed that the energy scale in the same figure is about 2 orders

of magnitude smaller than typical values for migration barriers for dislocations and

conclude that the effect here is rather small. However, be aware that as aspect ratio
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further decreases, a more-than-linear increase in ∆E will lead to significantly higher

image energy barriers.

The existence of special geometries, arising from elastic anisotropy, is not a unique

phenomena for edge dislocations. Indeed, for screw dislocation dipole in Mo, we have

discovered similar behavior, as shown in Figure 2-10. The special aspect ratio in

this case is different from the previous case of edge dipole, meaning that this special

value of aspect ratio is not a universal number and have to be computed separately

for different systems.

According to Figure 2-8(b), for edge dislocation mobility simulations in Mo using

periodic boundary conditions, the aspect ratio c2/c1 of the simulation cell need to be

larger than 3 ∼ 4 to make image interaction effects negligibly small. This prediction

is confirmed by direct Molecular Dynamics simulations. Figure 2-11 shows the Virial

stress oscillation during MD simulations of moving edge dislocation dipoles with cell

aspect ratio at 3.8 and 1.65 respectively [22]. The simulations are performed at 20K

with a constant shear rate of 0.4× 10−9s−1. The Virial stress oscillation for the large

aspect ratio is very small and mainly comes from thermal fluctuation, while that for

the small aspect ratio clearly shows a sinusoidal pattern, which is an artifact due to

the image interactions. In the edge mobility studies that we are going to discuss in

Chapter 5, an aspect ratio of 3.5 is chosen to minimize the image effect and give a

better description of dislocation velocity response under finite temperature and finite

stress conditions.
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Figure 2-11: Variation of total energy E and Virial stress σ, and dislocation displace-
ment X in MD simulations of edge dislocation motion, with cell aspect ratio c2/c1

at (a) 3.8 and (b) 1.65. The fluctuation in (a) is small and is mainly due to thermal
noise, while the large oscillations in (b) is clearly due to the image interaction artifact.
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Chapter 3

Core Structure and Peierls Stress:

Screw Dislocations in Mo

In this chapter, atomistic results on core structure and Peierls stress, τP , for screw

dislocations in BCC metal molybdenum are presented. In the first section I review

the experiments on deformation behavior of BCC metals, which serve as background

knowledge for this chapter as well the following two chapters both of which deal with

edge dislocations in BCC metal molybdenum. In the second and third section, the

core structure and Peierls stress of screw dislocations in Mo are calculated using an

environment-dependent tight-binding potential and are compared to results obtained

using empirical potentials; furthermore, the importance and validity of this study is

evaluated by putting it into a larger picture that has been built up by a great number

of previous atomistic and experimental studies. In the final section, atomistic results

on mobility of kinks on screw dislocation are presented and current understanding of

kink mobility and its relation to screw dislocation mobility is reviewed by considering

recent atomistic, experimental and theoretical findings.

It is worth noting that the plasticity behavior of BCC metals is quite complicated

and it is not the purpose of this thesis to resolve all the issues in the atomistic

framework. Instead, we are going to focus on a small number of topics and try to

clarify the issues there as cleanly as possible. In this chapter and the following chapter,

two issues will be addressed using atomistic calculations. One is the core structure
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and Peierls stress for straight screw dislocations, the other is the core structure and

Peierls stress for straight edge dislocations. There are quite a large number of other

important issues, e.g., anomalous slip, effect of kinks, jogs, and junctions, etc., that

are not covered in entirety or not covered at all in this thesis. The author will try to

give brief discussions about current understandings of these issues where appropriate;

in the meantime, interested readers should refer to [2, 23, 24, 25] for complete coverage

of these topics.

3.1 Experiments on Deformation Behavior of BCC

Metals

3.1.1 BCC Metals

BCC (body-centered cubic) metals and alloys have been heavily used by human kind

ever since the Iron Age. Their most useful property is high strength over a wide range

of temperature and straining conditions, which makes them the ideal candidates for

structural applications and high temperature conditions. Indeed, BCC iron alloys are

the most widely used and the most important structure material, mainly due to the

abundance of iron ores on earth, as well as the relatively straightforward technologies

for metal extraction and high formability at reasonable temperatures. BCC metals,

e.g., the refractory metals Mo, W, Nb, Ta and others, also served as important

elements for more specialized applications: when used in combinations with Fe, they

can greatly improve the quality of structural materials.

Compared to other types of metals, i.e., FCC (face-centered cubic) metals and

HCP (hexagonal close packed) metals, BCC metals exhibit certain general plastic-

ity behaviors such as the prominent temperature and strain-rate dependence of the

yield stress, features of slip crystallography, and the existence of a ductile-to-brittle

transition at low temperatures. These plasticity behaviors of BCC metals have the

root in their common lattice crystallography and are closely related to the defect

microstructure and dislocation activities, e.g., the ductile-to-brittle transition is a
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Table 3.1: Bulk properties of BCC transition metals [26, 27, 10, 28]. Elastic constants
C11, C12, C44 in GPa, melting temperature in K, cohesive energy Ecoh in eV, and
thermal conductivity κ in Wm−1K−1. Note that Group 6 metals Cr, Mo and W
generally have a larger shear modulus C44 and thermal conductivity κ than Group 5
metals V, Nb and Ta.

Z ele. conf. C11 C12 C44 Tm Tb Ecoh κ
V 23 [Ar]3d34s2 227.9 118.7 42.6 2163 3680 5.31 30.7
Nb 41 [Kr]4d45s1 246.6 133.2 28.1 2742 5017 7.57 53.7
Ta 73 [Xe]4f 145d36s2 266.0 161.2 82.4 3293 5731 8.10 57.5
Cr 24 [Ar]3d54s1 387.1 103.5 100.8 2130 2944 4.10 93.7
Mo 42 [Kr]4d55s1 464.7 161.5 108.9 2896 4912 6.82 138
W 74 [Xe]4f 145d46s2 522.4 204.4 160.6 3695 5828 8.90 174
Fe 26 [Ar]3d64s2 242 146.5 112 1808 3134 4.29 80.2

manifestation of the inability of dislocations to multiply and/or move fast enough, at

low temperatures, to relieve the stress concentrations that are the causes of cracking.

Transition metals in group 5(VB), such as V, Nb, Ta, and group 6(VIB) such

as Cr, Mo, W, and Fe in group 8 (VIII) all have BCC structure. A comparison of

the bulk properties of these BCC metals including V, Nb, Ta, Cr, Mo, W, and Fe is

shown in Table 3.1. In this thesis, we will focus on the properties of molybdenum, as

a representative of BCC transition metals.

In the following text, we will discuss several important aspects of BCC plastic-

ity, namely features of slip crystallography, temperature and orientation dependence

of plasticity, anomalous slip, and dislocation microstructure. Individual dislocation

mobility measurements, which we discuss at the beginning of Chapter 5, will be also

be discussed briefly here. One can also refer to [29, 30, 31, 32, 33, 34, 35, 26, 36, 9],

where the experiments on the temperature and orientation dependence of plasticity of

BCC metals, as well as their relationship with the core structure of screw dislocations

are discussed in great details.
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(a)

(b)

(c)

Figure 3-1: Slip traces of BCC Mo deformed at 353 and 413K under uniaxial tension
along the direction near the center of the standard triangle. (a) Slip lines on face 1
after 0.045 tensile strain. (b) Slip lines on face 2 after 0.045 tensile strain. (c) Slip
lines on face 2 after 0.175 tensile strain [37].
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3.1.2 Slip Crystallography and Slip Asymmetry

The dominant dislocation type has Burgers vector of a
2
〈111〉, which is the smallest

repeat vector of the BCC lattice. a〈100〉 dislocations are also observed. The latter are

usually considered to be reaction products between a
2
〈111〉 dislocations, e.g., a

2
[111]+

a
2
[11̄1̄] = a[100].

Slip trace analysis (for example, see Figure 3-1) reveals slip in {110}, {112}

and even {123} planes of the 〈111〉 zone [37, 38, 39, 10]. At higher temperatures,

the so-called pencil or non-crystallographic slip is observed such that the slip plane,

on average, follows the maximum resolved shear stress (MRSS) plane, with the slip

traces having a wavy appearance [40, 41, 42]. The waviness of the slip traces can be

interpreted as the result of cross slip of screw dislocations between {110} and {112}

planes.

Both atomistic calculations and experimental observations suggest that there are

no stable stacking faults in BCC metals, at least in ambient conditions. This suggests

that dislocations in BCC metals should not dissociate in a planar, FCC-like fashion.

Combining this with the fact that the BCC screw dislocation cores are observed to

be rather compact (disregard of the fine structure of the screw core, i.e., whether it

is polarized or not), and the pre-dominance of screw dislocations already mentioned,

one can see that plasticity in BCC metals should be strongly influenced by cross-slip

processes. 1

As shown in Figure 3-2, under pure shear deformation at temperatures between

77 and 293K, shearing along two opposite directions on (112) plane have different

responses and are labeled “soft” (favorable for twinning) and “hard” (anti-twinning)

respectively. On the other hand, shearing on (110) plane did not generate visible

asymmetry. Figure 3-2(a) shows the stress-strain curves for three different shear

1The very term “cross-slip” coined to describe rather infrequent events where the dislocation
changes glide plane in FCC metals, could be somewhat misleading when used to describe the motion
of screw dislocations in BCC metals. Given its compact core, a screw dislocation does not have to
first constrict in order to change its glide plane; there would be always more than one glide plane that
is available. The selection of glide plane and resulting slip crystallography are likely to be governed by
rather more subtle effects in the core of the screw dislocation than the planar dissociation invariably
observed in FCC metals.
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(a)

(b)

Figure 3-2: (a) Stress strain curve of Mo under direct shear. (b) Estimated bounds
for critical resolved shear stress to nuclear slip on different planes [43].

62



(a) (b)

Figure 3-3: Tensile stress-strain curve of Mo. (a) Uniaxial tension along A direction
(inside the standard triangle) at 293 and 493K. (b) Uniaxial tension along 〈110〉 and
〈100〉 from 77 to 573K [44, 45].

orientations at three different temperatures, while the estimated CRSS of different slip

systems is shown in Figure 3-2(b). The twinning anti-twinning asymmetry observed

when shearing on (112) plane has its root in the BCC lattice crystallography and can

be actually predicted by atomistic calculations as will be shown later in Chapter 6 of

this thesis.

3.1.3 Temperature and Orientation Dependence of Plasticity

In contrast to FCC metals where intrinsic lattice resistance to dislocation motion

is vanishingly small and the resistance to plastic deformation mainly comes from

dislocation interactions with impurities or other dislocations, BCC metals generally

exhibit a strong lattice resistance to dislocation motion. As a result, the yield stress

of BCC metals rises dramatically as temperature approaches zero. In addition, slip

in BCC metals also exhibit strong orientation dependence, most of which can be

accounted for by the anisotropy of intrinsic lattice resistance to dislocations.
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Figure 3-4: Tensile stress-strain curve of Mo along 〈101〉, 〈010〉, 〈111〉 directions under
(a) 293K and (b) 77K [46].

Figure 3-3(a) shows stress-strain curves of Mo at two different temperatures [44].

The sample was under uniaxial tension along the direction marked as A inside the

standard triangle. This loading condition favors single slip on {110}〈111〉 system

with Schmid factor ≈ 0.5. While at 493K three-stage hardening was observed, the

crystal at 293K is much stronger and exhibits parabolic hardening. Figure 3-3(b)

shows the stress-strain curves at high symmetry tensile directions [45] such as 〈110〉

and 〈100〉, where multiple slip systems are favored. The increase of yield stress with

decreasing temperature is also clearly seen in multiple slip orientations. As shown in

Figure 3-4, a slight asymmetry in stress between tension and compression is found at

low temperature (77K) but not at higher temperature (293K).

The critical resolved shear stress (CRSS) τ0 for Mo single crystals as a function

of temperature was measured using tension and compression tests by Kaufmann et

al. [47], as shown in Figure 3-5. As temperature approaches zero, the CRSS goes

to 750MPa. More recent experiments by Seeger et al [49, 48] presents a more reli-

able and complete set of data on temperature dependence of CRSS using two types

of tests, i.e., isothermal straining tests and incremental-strain-temperature-lowering
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Figure 3-5: Temperature dependence of the critical resolved shear stress of 〈110〉 Mo
single crystals for tension (•) and compression (N) [47].

tests, as shown in Figure 3-6 where the extrapolated CRSS for zero temperature is

∼ 870MPa. 2 These experimental results on temperature dependence of CRSS have

been explained well using kink-pair theory by Seeger et al in [49]. However, as shown

by Professor Ali S. Argon in [50], of the three temperature regimes outlined in [49]

and shown in Figure 3-6, Regime II and III indeed should be one and a carefully

derived double kink nucleation model fits very well with the experimental data in

Figure 3-6.

Stress-strain relations have also been measured for other BCC metals, such as

2This value is usually regarded as the experimental indication of the minimum stress to move
the dislocation across the lattice, namely the Peierls stress, and can be compared with atomistic
calculations which will be discussed in following sections.
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Figure 3-6: Temperature dependence of flow stress for 〈110〉 Mo single crystals by
Seeger et al [48].

Table 3.2: Orientation dependence of the CRSS (in MPa, resolved on the M.R.S.S.
plane) for BCC metals at 77K. [uvw] represent directions near the corner or the center
of the standard triangle. (Table 1 of [35].)

Tension Compression
[110] [100] [111] [uvw] [110] [100] [111] [uvw] Ref.

W 730 353 416 485 [51]
W 584 283 255 [52]
Ta 323 179 172 273 [53]
Ta 353 283 264 221 [54]
Ta 406 297 337 338 [55]
Ta 400 278 293 275 259 221 309 300 [56]
Fe 270 200 [57]
Mo 471 151 393 137 [53]
Mo 577 214 647 320 [58]
Mo 500 170 250 [37]
Nb 254 165 108 214 [53]
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(a) (b)

Figure 3-7: Orientation of the primary slip plane and the anomalous plane with
respect to the tensile axis. (a) Stereographic plot. (b) 3-dimensional plot [68]. For
the specified tensile direction, the Schmid factor on the primary slip plane (011) is
∼ 0.5, while on anomalous slip plane (1̄01) it is only 0.25 ∼ 0.3 [68].

Nb [59, 60], W[52], Fe[61, 62, 63], etc, and strong temperature and orientation depen-

dence of yield stress has been found as a general behavior. The orientation dependence

of CRSS for several BCC metals at 77K are compiled by Duesbery et al. [35], which

is reproduced here in Table 3.2.

3.1.4 Anomalous Slip

First discovered in VB metals such as Nb and Ta [64, 65, 66] and later for Mo under

low temperature at small strains [67], anomalous slip [67] occurs at low tempera-

ture in high purity BCC metals, and derives its name from the fact that its Schmid

factor is much lower than that of the primary slip system, so that its occurrence is

“unexpected” (see Figure 3-7).
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Figure 3-8: Dislocation microstructure in Mo under 2% tensile strain along [110] at
77K [47]. The many long screw dislocation segments that one sees directly reflects the
low mobility of screw dislocation compared with other types of dislocations, which is
a result of anisotropy of the BCC lattice.

3.1.5 Low Temperature Dislocation Microstructure

As shown in Figure 3-8 [47], TEM micrographs of deformed molybdenum sample

show characteristic features of long screw dislocations often stretching along many

microns, with no or very little deviation from the perfect screw orientation. This

anisotropy of dislocation microstructure directly reflects the anisotropy of dislocation

mobility. In other words, the dominance of screw dislocations in the sample reflects

their low mobility compared to other species of dislocations, e.g., edge dislocations.

The pre-strained microstructure dominated by long screw segments is produced by

rapidly moving edge dislocations under stress. This is verified by In situ TEM obser-

vations [69] where it has been shown very clearly that screw dislocations move much
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Figure 3-9: Dislocation microstructure in Mo under 5.8% tensile strain at 293K [47].
With higher strain and higher temperature, aside from the long screw segments, large
amounts of debris are found in the form of vacancy and interstitial loops. Simula-
tions [25] suggest this may be the result of cross slip of screw dislocations.

slower than edge and mixed dislocations at low and moderate temperatures. For

example, in pure molybdenum at room temperature the velocity of screw dislocation

has been estimated to be 40 times lower than that of edge dislocations [70, 71].3

Another common element of the low temperature microstructure in BCC met-

als is a high concentration of debris in the form of vacancy and interstitial loops,

which are often observed after deformation, as shown in Figure 3-9 [47]. The debris

concentration typically increases with increasing straining rate. As shown in kinetic

Monte Carlo simulations by Cai et al [75, 25], this could be due to cross-slip of screw

dislocations, where kink-pairs on different planes are nucleated on the same screw

dislocation, non-planar defects (which is referred to by some as “cross-kinks” [76])

is formed as the kinks collide, and eventually the dislocation extracts itself from the

3It is worth mentioning that some early experimental measurements of dislocation velocities in Mo
have suggested that screws actually move faster than edges [72, 73, 74]. Firstly, these measurements
suffered from surface related enhancement of screw dislocation mobility; secondly, the method of
using chemical etching on the surface to monitor dislocation motion in the bulk itself is highly
inaccurate and prone to artifacts. Therefore we consider these measurements unreliable and not
necessarily representative of dislocation mobility in the bulk.
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(a) (b)

Figure 3-10: At 493K with 2.1% strain, dislocation microstructure of Mo differs
substantially from that at 293K: (a) Edge dipoles and elongated loops. (b) Long
bundle of primary edge dislocations [44].

conflict by moving by purely conservative double-kink nucleation, leaving a prismatic

loop behind.

3.1.6 High Temperature Dislocation Microstructure

As shown in Figure 3-10, the dislocation microstructure at 493K differs substantially

from that at 77K and 293K (Figure 3-8 and Figure 3-9). Screw dislocations can

no longer be found, because the screws have gained high mobility at this elevated

temperature and due to their ability to cross slip, they have annihilated with each

other. What is left are the edge dislocations that are constrained to their glide planes

and can not easily annihilate with each other. In Figure 3-10(a), the dislocation

microstructure consists of edge dipoles and elongated loops; in Figure 3-10(b), dis-

locations are organized into long bundles of primary edge dislocations that are not

connected with each other. At larger strains, formation of cellular structure have also

been observed [45].
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3.2 Core Structure of Screw Dislocations in Mo

At low temperatures the plasticity of BCC metals is controlled by screw dislocations.

To understand the complex deformation behavior of BCC metals that have been

discussed in the previous section, one first needs to understand the core structure

and lattice resistance to straight screw dislocations. As one may soon find out, this

problem, though of fundamental importance, have been discussed for a long time in

the literature yet no convincing conclusions have been reached. This is indeed the

motivation for this work where the issue of screw core structure will be addressed by

a thorough review of existing research as well as careful atomistic calculations using

a tight-binding potential model [77, 78].

3.2.1 Previous Research on Screw Core Structure in Mo

The rich research on core structure of screw dislocations in BCC metals is a direct

reflection of the importance of the problem as well as the difficulty of solving it. Al-

though the problem has not been completely solved yet, the long history of human’s

understanding of screw core in BCC has already become a classic and is worth while

discussing here. The early ideas about the structure of screw dislocation core are cen-

tered around the hypothesis of FCC-like planar splitting for explaining the observed

slip phenomenology [79, 80, 81]. In a drastic departure, Hirsch in the year of 1960

suggested that screws can actually dissociate in more than one plane and that such

a non-planar dissociation behavior can explain the observed high Peierls barrier and

the strong temperature dependence of the yield stress [82]. Initially, several variants

of screw dislocation splitting were proposed (see Vitek’s review article on this: [31]);

however, with the advent of computer simulations, the thinking eventually converged

to the well-known three-way dissociation into three equivalent {110} planes. Vitek et

al [83, 31] and Duesbery et al [35, 26] have clearly shown that such a dissociation 4 can

4The term “dissociation” implies that the perfect screw dislocation splits into several partials
or fractional dislocations, which does not seem to be appropriate for describing the screw core, we
will refer to dislocation core spreading as “polarization”, resulting from a symmetry-breaking core
reconstruction.
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(a) (b)

Figure 3-11: Differential displacement map of screw dislocation core in BCC metals,
(a) unpolarized core [15, 84, 85], (b) polarized core [31].

occur even when no plane of the {111} zone contains a stable stacking fault. Vitek

used differential displacement map to show the polarization of the screw dislocation

core. As shown in Figure 3-11(b), it is quite clear from the differential displacement

vectors (which plots an arrow between atoms, with the length of the arrow propor-

tional to the relative displacement of these two atoms using perfect crystal lattice as

reference) that the screw dislocation core in BCC Mo is polarized. Until this point,

it seems that human thinking (Hirsch’s idea) and computer modeling results (Dues-

bery and Vitek) have perfectly converged and the problem is solved; however, due

to the inaccurate nature of the fitted semi-empirical potentials that Duesbery and

Vitek used in their calculations, the results that they obtained can never be fully

validated before it is checked by more accurate models, i.e., ab initio calculations.

However, since modeling dislocation requires relative large number of atoms (at least

in hundreds for screw problems and more for edges due to the spreading of the edge

core in directions parallel to the Burgers vector), the checking had been practically

impossible.

Not surprisingly, with the continuous-growth of available computing power and

the growing availability of ab initio codes, the checking is finally made possible. In

2000, the ab initio calculation of screw core structure in molybdenum by Ismail-Beigi

and Arias [15] surprisingly gives a different picture. Using a 5a[110] by 3[112] cell

(90 atoms) that contains a dislocation quadrupole, this pioneering study resulted in
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a relaxed core structure of screw dislocation that shows no D3 symmetry breaking,

i.e., the spreading of the core along only three out of the six possible 〈112〉 directions

that was observed in previous calculations using Finnis-Sinclair or MGPT potential is

now replaced by an even spreading of the core along all size 〈112〉 directions. Because

of the extremely high dislocation density in this calculation (one dislocation per 25

atoms), this calculation may be subject to artificial effects and the results obtained are

therefore not reliable. On the other hand, this calculation brings about a new picture

of the screw core that can not be ignored. Indeed, this served as the motivation that

drove several different research groups, including us, to calculate by themselves the

core structure and Peierls stress of screw core structure.

In the following section, we will show that our calculation of the core structure

for straight screw dislocations in bcc molybdenum actually verified the unpolarized

core structure and a discussion will be in place as to the core polarization issue.

3.2.2 Setting Up the Atomic Configuration

Before setting up the atomic configuration, we need to first determine the geometry

of the simulation cell. There are two major considerations:

(1) Since we are using periodic boundaries, we are bound to make the total Burgers

vector zero, i.e.,
∑ ~bi = 0.

(2) We would like to make the stress field at the location of the simulated dis-

location due to other dislocations in the primary cell and the image dislocations in

the image cells zero. In other words, the forces on one dislocation from all other

dislocations should cancel each other to arrive at zero.

Consider a screw quadrupole configuration as shown in Figure 3-12. The primary

simulation box, which is shown with blue lines, has a square shape, i.e., Lx = Ly = L.

X axis being the horizontal direction, Y the vertical direction, and Z normal to

paper. The two positive dislocations are positioned at (L
4
, L

4
) and (3L

4
, 3L

4
), while the

negative dislocations at at (L
4
, 3L

4
) and (3L

4
, L

4
). This quadrupole arrangement offsets

the positive dislocation lattice and the negative dislocation lattice by exactly (L
2
, L

2
)

and therefore makes all the image stress cancel to zero. The quadrupole setting
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Figure 3-12: A quadrupole configuration with a square box shape makes the image
stress zero and therefore is an ideal setting for simulating screw dislocations with
small cells. However, the size of the cell can actually be reduced by half simply by
redefining the box vector in Y as shown with red dotted lines.

is therefore an ideal choice for modeling dislocations in small cells. Indeed this is

similar to the configuration that Ismail-Beigi and Arias used in their calculation. It

is exactly because of the cancellation of the image forces on each dislocation that

made the relaxation within such a tiny cell converge.

However, it should not be hard for one to notice that the simulation box can

be redefined in many ways to cut the box size by half yet producing exactly the

same configurational settings. Shown in the figure (red dotted lines) is one way of

redefining the box where ~LX remains unchanged but ~LY are redefined. Not only the
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X component of ~LY is added by LX
2

, but also the Z component of ~LY need to be

added by b
2
, where b is the Burgers vector. This can be seen from the fact (L,L) is

a lattice repeating vector whereas (L
2
, L

2
) is not. In order that no artificial defect is

being created due to incompatibility of the box vector, b
2

must be either added or

subtracted from ~LY ’s Z component.

After redefining the box vector, one can simply keep half of the original atoms

who satisfy 0 < Yi ≤ L
2

and map them into the new box which now contains a screw

dislocation dipole instead of a quadrupole but have a tilted shape.

Similarly, one can also redefine a dipole box that has its vertices at (L
4
, L

4
), (3L

4
, 3L

4
),

(5L
4
, L

4
), (3L

4
,−L

4
). In this case, the Z component of LX and LY both need to be

adjusted by b
2
.

Although seemingly trivial, this reduction of size is vital for the size-sensitive DFT

studies. Since now we can study exactly the same problem with half number of atoms

and the scaling of DFT computational cost with number of atoms is approximately

3, we have saved the computational cost by roughly 87 percent!

3.2.3 Preselection of Cell Size

In this study, the coordinate system is aligned as: ~X: [112̄], ~Y : [1̄10], ~Z: [111].

The dislocation line is along ~Z. Since we study straight screw dislocations only, there

is no need for LZ to be big. In all the tight-binding studies, we use ~Z=1
2
[111], i.e.,

exactly 1 layer in Z direction. For the empirical potential calculations, since there is

a requirement that box dimension must be at least two times potential cutoff length,

we have adopted 3 layers, therefore the total atom number is also 3 times that of

tight-binding system.

Before the tight-binding calculations, we first looked at the size-dependence of the

relaxed core structure using empirical potentials. Using Finnis-Sinclair potential, we

created and relaxed several configuration of different sizes: Config A3×5: 3a[112̄] ×

5a[[1̄10] Config A5×7: 5a[112̄]× 7a[[1̄10] Config A7×11: 7a[112̄]× 11a[[1̄10]

Relaxation of these structures yielded different results. For Config A3×5, the cre-

ated quadrupole configuration is not stable and the structure relaxes back to perfect
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Figure 3-13: Config A5×7 relaxed using Finnis-Sinclair. Atoms color-encoded by local
shear strain.

BCC crystal structure. This implies that the dislocations under this setting is indeed

too close to each other and the size of the cell (proportional to the distance between

the dislocations) should be increased. Interestingly, this structure is actually stable

in the DFT calculations by Ismail-Beigi and Arias as well as our tight-binding calcu-

lations, which will be shown soon. Under Finnis-Sinclair model the screw core will

extend along 3 of the 6 possible 〈112〉 directions and that makes the annihilation of

the screw dislocations separated by only 10Å unavoidable.

The other two configurations do properly relax and the relaxed configuration is

shown in Figure 3-13 and Figure 3-14 respectively, with the atoms color-encoded

by local strain. For the ease of viewing, the dipole configuration is restored to the

quadrupole orthogonal coordinate system.

Color-encoding with local strain helps us see the core qualitatively, but does not

give us quantitative details about the core structure. Similar to plotting misregistry

between two atomic rows for a planar edge dislocation core to analyze the core profile,

we shall plot the differential displacement map to visualize the screw core structure,
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Figure 3-14: Config A7×11 relaxed using Finnis-Sinclair potential.

as is explained below.

Figure 3-11 shows differential displacement maps (DDM) [86] of screw disloca-

tions. Each circle represents a column of atoms. The dislocation line and Burgers

vector are parallel to the atom columns, i.e. along z direction (out of the plane). The

DDM map is constructed by first computing the atom displacement (along z direc-

tion) with respect to perfect lattice for each column. The arrows then indicate the

difference between displacements of neighboring columns. The length of the arrow

is proportional to the magnitude of displacement difference and the direction of the

arrow indicate the sign of the displacement difference, i.e. the column that the arrow

points to has a larger displacement than the column on the other end of the arrow.

Because the lattice is periodic in z direction by Burgers vector b, the displacement

difference, i.e. the differential displacement, between any two columns can be only

defined modulo b. By convention, the differential displacement is always mapped into

the domain of (−b/2, b/2] by adding or subtracting multiples of b. Among the three
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Figure 3-15: DDM for Config A5×7 relaxed using Finnis-Sinclair.

atoms in Figure 3-11(a) that surround the center of dislocation, the DDM arrows

form a closed circuit. The differential displacement between any two atoms out of

these three, going counterclockwise, is b/3. By going around any circle containing

the dislocation center, one accumulates a total displacement b. We should emphasize

that while the arrows in the DDM are all in the plane for convenience of visualization,

the displacement component they represent is strictly out of the plane.

Now we plot the differential displacement maps for the two relaxed configurations

that we obtained using Finnis-Sinclair potential. The results are shown in Figure

3-15 and Figure 3-16, respectively.

From the DDM of the 5× 7 configuration, one can see that the extended arms of

screw cores have obviously touched each other and may cause inaccuracies in both

predicting the core structure and the Peierls stress (τP ). Therefore we choose 7× 11

configuration as the one used in the following tight-binding studies.
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Figure 3-16: DDM for Config A7×11 relaxed using Finnis-Sinclair potential.

3.2.4 Core Structure from Tight-Binding Model

Starting from the configuration that we pre-selected from FS calculations, i.e., ~X =

7a[112̄], ~Y = 11a[1̄10], ~Z = 1b, we calculate screw core structure in Mo using an

environment-dependent tight-binding potential model [77, 78]. The differential dis-

placement map of the relaxed configuration is plotted in Figure 3-17. The screw core

is evidently unpolarized as compared to the polarized core in Figure 3-16.

Looking in more details at the two different kinds of screw cores given by em-

pirical potential and tight-binding, one finds that regardless of the details of misfit

distribution, the core is rather compact. Similar to the core spreading predicted by

Peierls-Nabarro model in the planar core case, the screw core spreads into the planes
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Figure 3-17: DDM for 7× 11 configuration relaxed using an environment-dependent
tight-binding potential [77, 78].

of the {111} zone to reduce elastic-energy. Unlike in the 1D planar core case, it is not

directly obvious in which directions and planes does the spreading entail. The fine

structure of the core is dependent on subtle details of atomic interactions in the core.

As already discussed, some atomistic models predict nearly equal core extensions in

all directions (therefore giving a unpolarized core) while others show a characteristic

splitting into three 〈112〉 directions on {110} planes of the zone (predicting a po-

larized core). Regardless of whether the core is polarized or not, the compactness

of the screw core is expected to give rise to a large Peierls stress, which is an effect

described by the Peierls model of dislocation core. It is evident that, for a dislocation

to translate from one lattice position to the one adjacent, the more extended the core

the less each atom in the core has to move relative to its neighbors. While clearly
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more atoms take part in the translation of a wider core, the Peierls barrier for the

wider core is lower because of the highly non-linear character of interatomic interac-

tions in the core. This effect is also seen from a well known correlation between the

core width and Peierls stress in FCC metals [87]. The opposite effect can also occur

- a dislocation with narrow core, notably in Si, can have very high Peierls stress,

approaching the ideal shear resistance of the crystal [88].

The detailed structure of screw dislocation core in BCC metals has been examined

extensively through atomistic simulations [89, 90, 15, 91, 92, 93, 85], particularly with

regard to the effects of in-core relaxation. Most of the earlier calculations predicted

a polarized core structure that was seemingly observed in HREM experiments [94],

while some recent calculations predicted an unpolarized core, as in this tight-binding

calculation. The reason why polarization is considered an important issue and have

attracted such intense research efforts is that the details of the atomic rearrangement

in the dislocation are believed to have an effect on the lattice resistance to dislocation

motion, i.e., Peierls stress τP . As we proceed to quantify the Peierls stress for the

polarized core, we shall soon uncover whether core polarization plays an important

role in determining τP or not.

3.3 Lattice Resistance to Screw Dislocations in Mo

Peierls stress, a simple measure of lattice resistance, can be measured by atomistic

models. However, two major errors may arise in such a calculation: interatomic

potential and boundary conditions. On one hand, empirical potentials are usually

fitted to equilibrium properties, so there is no guarantee it will work properly at large

strains. On the other hand, more accurate methods, i.e., tight-binding models (TB)

and density functional theory (DFT) provide accurate energetics but it has severe size

limits, so core overlapping and image stress effects are significant and may introduce

significant error to modeling results. Added to these are the difficulties in extracting

the Peierls stress from atomistic calculation results in periodic boundary conditions

(PBC) where both image stress due to PBC and inaccuracy in virial stress can give
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rise to significant errors, as will be shown in the next chapter, where the calculated

critical virial stress for edge dislocation varies by more than one order of magnitude

when cell geometry is changed.

A systematic scheme circumventing the above difficulties is to use so-called First-

Principles Greens Function Boundary Condition (FP-GFBC) to study a single dislo-

cation [85]. This method eliminates the need of using the periodic boundaries and can

be used to model a single dislocation. Alternatively, we have developed formalisms

for PBC calculations to extract the core energy and Peierls stress [95, 7, 8] that

manifests invariance with respect to supercell geometry, position and direction of the

dislocation dipole.

On the current problem of screw dislocations in BCC molybdenum, we apply these

methods to model both core energy and Peierls stress using both the Finnis-Sinclair

potential [20, 96] and the tight-binding model [77, 78].

The Finnis-Sinclair potential [20, 96], which have been shown to predict a polarized

screw core, gives a core energy of 0.300 eV/Å at r0 = b and a Peierls stress of 1.9

GPa. The energy (E) and energy difference (∆E) curve used in the local driving

force method calculation of Peierls stress is shown in Figure 3-18.

The tight-binding potential, which predicts an unpolarized screw core, gives a core

energy of 0.371 eV/Å at r0 = b, and a Peierls stress of ∼ 3.6 GPa. The energy (E)

and energy difference (∆E) curve used in the local driving force method calculation

of Peierls stress is shown in Figure 3-19.

Upon careful examination of the core structure evolution as the strain is gradually

increased, we have found that the unpolarized core structure which is calculated to

be the ground state at zero stress soon changes from non-planar to almost planar, as

shown in Figure 3-20. This suggests that whether the core is polarized or not at zero

stress state may not be important to its mobility at all, whether it is planar or not

is. Non-polarization is much more a minor issue compared with non-planarity.
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(a)
(b)

Figure 3-18: Evaluating τP with the local driving force method using Finnis-Sinclair
potential model relaxation results. (a) E. (b) ∆E. D0 and D1 correspond to the two
dislocation configurations where the dislocation sits at x = 0 and x = b, respectively.
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(a)
(b)

Figure 3-19: Evaluating τP with the local driving force method using tight-binding
model relaxation results. (a) E. (b) ∆E. D0 and D1 correspond to the two dislocation
configurations where the dislocation sits at x = 0 and x = b, respectively.
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(a)

(b)

(c)

Figure 3-20: Differential displacement map of Mo screw dislocation under stress. As
stress increases, the Mo screw core changes from non-planar to almost planar.
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3.4 Summary on Core Structure and Peierls Stress

for Straight Screw Dislocations

Using a tight-binding model, we have calculated the core structure, core energy,

and the Peierls stress for straight screw dislocation in BCC Mo. In contrast to

the results given by previous empirical potential calculations that predicted polarized

screw core, and in agreement with recent ab initio calculations that predicted non-

polarized core structure, the core structure we have obtained at zero stress state is

not polarized. This leads us to believe that the polarization effect predicted by the

empirical potentials may be an artifact of the potential models.

However, the core polarization issue may not be an important factor in determin-

ing the mobility of the screw dislocation. This view is supported by our calculation

of Peierls stress at 3.6 GPa and the calculation by Rao and Woodward as well [85].

Our observation that the core undergoes profound changes from non-planar to almost

planar shape as applied stress is increased further validates our view that whether

the core is polarized at zero stress state is not of primary importance in the screw

mobility picture. Similar effects indeed have been reported before by Duesbery and

Vitek [30, 32] where the dislocation core structure changes profoundly under shear

stress approaching the maximum (Peierls) sustainable level effectively wipe out the

features of core structure observed at zero stress.

In this tight-binding study, we have applied shear stress strictly on {110} plane.

However, if we vary the orientation of the shear loading and therefore the orienta-

tion of the maximum resolved shear stress plane (MRSSP), it is expected that the

variation of CRSS will be in violation of Schmid law. Due to constraints in available

computational power, an atomistic study of non-Schmid effects using tight-binding

model is beyond our reach at this stage. In the following text, we will review and

discuss existing results obtained by semi-empirical potentials in the literature.

In atomistic simulations when the applied stress reaches the Peierls value, a screw

dislocation responds by moving along one of the crystallographic planes of the 1
2
〈111〉

Burgers vector zone, most often a {110} plane closest to the MRSS plane. Depending
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Figure 3-21: Screw dislocation Peierls stress for different loading stress directions in
the {111} zone. The solid line shows the prediction of Schmid law and the symbols
show typical atomistic simulation results [91].

on the interatomic potential, the translation plane can be {112} [32] as well. For

example, the FS model potential predicts that screw dislocations in Mo move along

{110}, but in Ta they move along {112} [26]. Also, screw dislocations simulated by

using Finnis-Sinclair’s model of bcc-Fe are observed to move on either a {112} or a

{110} plane depending on the orientation of the MRSS plane [97]. The slip-plane

selection and critical stress condition for screw dislocations are clearly in violation

of the Schmid law [98]. For example, in cases where the screw dislocations show a

definite preference to glide, say, on {110} plane the Schmid law specifies which of the

three {110} planes of the zone will be selected, as well as the level of applied stress

σij at which the dislocation should begin to move, the latter being given by

σijsij = τPN , (3.1)

where τPN is the Peierls stress and sij is the Schmid tensor of the given plane. For a
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pure shear stress σ applied along the Burgers vector, the relation reduces to

σ = τPN/ cos(χ), (3.2)

where χ is the angle between the MRSS plane and the nearest {110} plane. Relative

to the Peierls stress for χ = 0, the Peierls stress variation specified by the Schmid law

is shown in Fig. 3-21. The variation simulated using an atomistic model of Mo, also

shown, is clearly in considerable disagreement with the Schmid law [99, 98]. This and

almost all other atomistic calculations reported so far showed that the motion of screw

dislocation in BCC metals at low temperature does not follow the prescriptions of

Schmid law [98]. The origin of the non-Schmid behavior is largely due to the twining-

anti twining asymmetry of the BCC lattice, which makes χ = 30◦ and χ = −30◦

drastically different from each other. In addition to the non-Schmid χ-dependence,

other stress components have been found to affect the critical stress, most notably

the components perpendicular to the Burgers vector [100, 101, 102]. Duesbery and

Vitek [26] traced such non-Schmid effects to a coupling between the applied stress

and a small but resolvable edge components of displacement observed in the core of

the screw dislocations. An extensive and thorough analysis of various non-Schmid

couplings affecting the motion of screw dislocations in BCC metals was presented by

Duesbery in [24].

3.5 Kinks on Screw Dislocations

As we have inferred from experimental observations [69] as well as direct calculations

using atomistic methods, the Peierls stress of a screw dislocation is considerably

higher than that of non-screw components; therefore, it is usually assumed that the

macroscopic yield stress at low temperatures is closely related to this stress, or more

generally, the critical stress to move the screw dislocation.

A Peierls stress of GPa order signifies a correspondingly high energy (Peierls)

barrier and motion of screw dislocation at non-zero temperatures via thermally and
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stress-activated kink mechanisms.

The model we have used so far have been of quasi-2D nature that has no thickness

in dislocation line direction. To model kink mechanisms, we have set up a 3D MD

simulation where a pre-existing kink has been put on to the straight dislocation dipole,

as shown in Figure 3-22.

(a) (b) (c)

Figure 3-22: (a) Creation of screw dislocation dipole in a PBC simulation cell by
displacing the two layers of atoms besides the cut plane by b relative to each other,
followed by force relaxation. (b) Creation of kinks on screw dislocation by putting
two copies of cells in (a) with an 1/2[111̄] in between. (c) Atomic arrangement of (b).

As shown in Figure 3-22(a), taking a cell with box vectors 4[112̄], 14[11̄0] and

5[111], we make a cut on the (112̄) plane and displace the two adjacent layers of atoms

by b = 1/2[111] relative to each other. The remaining atoms are displaced according

to the linear elastic displacement field of the dislocation dipole under PBC, and the

atomic arrangement relaxed using conjugate gradient. As shown in Figure 3-22(b),

we create kinks on the two screw dislocations by placing two copies of the cell in (a)

with an 1/2[111̄] offset between them. The basis vector along the dislocation line is

redefined; it is no longer parallel to [111], so that the kink leaving the cell at one end

re-enters the cell from the other end 5 The configuration is then relaxed by conjugate

5In fact, an additional number of atoms need to be inserted between the cut planes of the two
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gradient method yielding the atomic arrangements in Fig 3-22(c).

The critical stress to move the kink at zero temperature is estimated to be ∼

20MPa using static relaxation method. This value is comparable to the Peierls stress

for straight edge dislocations (∼ 25 MPa, as will be presented in the next chapter),

indicating the high mobility of kinks on screw dislocations. This is also in agreement

with Duesbery’s early observations that that nucleated kinks experience very low

resistance to their motion along the screw line [33].

This also means that the kink migration barrier is indeed low relative to the

kink-pair nucleation barrier and the energy of a stand-alone kink [90, 28].

Furthermore, we apply a shear stress of τ = 40 MPa to the simulation cell at

T = 300K and zero pressure and find the pre-existing kink on screw is highly mobile

and the drag coefficient is estimated from its velocity and the applied stress to be

B = 4.5×10−5Pa·s, even slightly lower than that of straight edge dislocations under

the same condition (1.8×10−4Pa·s).

What we have learned from above calculations is that the lattice resistance to

kinks on screw dislocations is negligibly small, comparable to that of edge dislocations.

This finding, verified by both static relaxations and finite-temperature calculations,

infers that kink nucleation rather than kink migration is the controlling mechanism

for screw dislocations in BCC metals. Indeed, the experimental data of temperature

dependence of CRSS shown in Figure 3-6 is found to be in excellent agreement with

a kink nucleation model proposed by Argon [50].

cells. This is because the cut plane between the two cells are not parallel to the Burgers vector. The
number of atoms to be inserted can be calculated from [10].
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Chapter 4

Core Structure and Peierls Stress:

Edge Dislocations in Mo

This chapter presents atomistic studies on core structure and Peierls stress, τPN , for

edge dislocations in BCC metal molybdenum. Using a Finnis-Sinclair potential [20,

96], the core structure of the edge is found to be planar and ∼ 11Å wide. The

critical stress to move an edge dislocation is calculated using different simulation cell

geometries and it is found that the calculation results varies significantly with the

aspect ratio of the simulation cell, from 630MPa for an aspect ratio of 0.8 to 25MPa

for aspect ratio of 4. As the aspect ratio is increased, the calculated critical stress

converges to 25MPa, which is the true Peierls stress τPN for edge dislocations in Mo.

Comparing to previous calculation of τPN quoted in the literature [3] which yielded

a rather high τPN , of 400−700MPa, the author believes that the previous calculation

gave an over-estimation of true τPN due to lacking of correction for boundary effects

which is an artifact introduce to the simulation by boundary conditions that are used

and should be taken out. The corrected τPN provides a more consistent picture of

edge dislocation mobility.
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4.1 Background

As have been reviewed in the previous chapter, from experiments people have found

that there are two important types of dislocations in Mo. Screw dislocations control

the low temperature plasticity while edge dislocations are important at high tempera-

tures because screws become more mobile at elevated temperatures and can annihilate

with each other through cross-slip while edge dislocations are confined to their glide

planes. In other words, the inability for edge dislocations to climb easily at high

temperature resulted in the experimental observation of edge dipoles and elongated

dislocation loops, as shown in Figure 3-10.

The slip system most commonly observed for edge dislocations in molybdenum is

({110}〈111〉 and this will be the slip system we study in this chapter.

Since edge dislocations are observed to be extremely mobile, it is expected that

the lattice resistance to edge dislocation motion, characterized by Peierls stress τPN ,

should be rather low. In the literature, we have found no direct measurement of the

critical stress to move the edge dislocation in molybdenum; however, a rather crude

estimate of τPN can be made from experimental results. Combining the experimental

observations that edge dislocations move ∼ 25 − 40 times faster than screws [69]

and that the yield stress of Mo at low temperatures which is controlled by screws

has an extrapolated value of ∼ 800MPa at 0K, a rough estimate of lattice resistance

to edge dislocation can be made to be ∼ 30MPa. However, previous calculation of

τPN by Duesbery and Xu [3] yielded a τPN of 400 ∼ 700 MPa for edge dislocation

in molybdenum using Finnis-Sinclair potential [20]. This value is rather high and

intuitively contradictory to the experimental knowledge of edge dislocations in Mo.

Although the authors argued that kinks on edge dislocation can be used to explain

the high mobility of edges since the critical stress required to move a kink on edge

dislocation is much lower than the value calculated for straight edge dislocations,

the argument is not convincing and the overall picture for edge dislocation mobility

become a confusing one.

On the other hand, with the tools (PBC image effect evaluation) and insights we
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gained (magic box geometry that makes image effect diminish) in Chapter 2, it seems

necessary and natural to apply the new methods to re-calculate the τPN for a more

reliable number. This is the main task of this chapter and will be discussed in details

soon.

4.2 Core Structure of Edge dislocation

Using an improved version of Finnis-Sinclair potential for molybdenum [20, 96], the

ground state of edge dislocation core in Mo is calculated by first preparing an atomic

configuration that contains an edge dislocation dipole under PBC and then relaxing

it (minimizing total energy of the simulated system).

The dimension of simulation cell is chosen to be 20a[111] (109Å) in ~X direction,

80a[1̄01] (356Å) in ~Y direction, and 3a[12̄1] (23Å) in ~Z direction, with a total of

58320 Mo atoms. The edge dislocation dipole is introduced and the location of the

two edge dislocations are (0.25, 0.25) and (0.25, 0.75) in the reduced coordinates.

Burgers vector is ~b = a
2
[111] with length b =

√
3

2
a = 2.7256Å.

The cell dimension in ~X and ~Y are chosen such that the aspect ratio is approxi-

mately 3.5 and as predicted by anisotropic linear elasticity as well can be confirmed

by real atomistic static relaxation calculations, the artificial image energy barrier for

the single dislocation when it is moving along the glide plane is approximately 5×10−4

eV/Å, shown in Figure 4-2. Therefore, the image effect introduced in this simulation

settings is negligible. This ensures that during the relaxation process, the edge dis-

location will be indeed pinned down at the lattice site where it was introduced into

by the lattice energy barrier, rather than the image energy barrier that is introduced

artificially due to the periodic boundaries.

Indeed, if the image energy variation is big, see Figure 4-1, it is also possible

that the whole energy landscape is dominated by this artificial variation and the

dislocation introduced at the initial lattice site may become unstable and move during

the process of relaxing the configuration. Even worse is that it will not stop at

the global minimum, instead it may stop in the midway and get trapped by the
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Figure 4-1: Top figure shows the ideal picture of periodic energy variation as a func-
tion of dislocation position along the glide plane in the Peierls framework. This is
impossible to reproduce in simulations because of boundary effects introduced. In
the case of periodic boundaries, the energy landscape will be modified by a super-
position of the original energy landscape (which has the periodicity of 1b and the
artificial image energy curve (which has the periodicity exactly equal to simulation
cell dimension in the gliding direction. The image energy variation, shown in the
center figure, could be big depending on the geometry of the cell, especially aspect
ratio. The modified energy landscape may be far from the ideal one and cause wild
behavior of dislocations both during the process of atomistic relaxation or molecular
dynamics calculations. The calculated value for Peierls stress will also be affected, as
shown in the figure.
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Figure 4-2: Artificial image energy variation is mainly a function of the aspect ratio
of the simulation cell. An elongated cell will give much smaller image effect than a
square-shaped cell. Aspect ratio of 3.5 is adopted in all the studies presented in this
chapter and the image effect is negligible. (3: anisotropic linear elasticity prediction;
2: isotropic linear elasticity prediction; ×, ◦ and +: atomistic calculations with
c1 = 15, 20 and 30[111].)

balance between the artificial image energy and the Peierls energy variations. That

is something one should definitely avoid.

After conjugate-gradient energy minimization of this carefully chosen configura-

tion, the relaxed configuration is viewed using AtomEye [103, 104]. With the atoms

color-coded by local strain, the atomic configuration which contains two dislocations

under PBC is shown in Figure 4-3, with detailed picture of the core shown in Figure

4-4.

As is evident from the pictures, the edge dislocation core is of planar shape and

the highly-strained atoms only show up on the two atomic rows that are immediately

above and below the glide plane. Further above and below the glide plane, one can

see the difference in the compressive strain field and the tensile strain field that is

characteristic of edge dislocations.
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Figure 4-3: Relaxed edge dislocation dipole configuration with atoms color-coded
according to local strain. The dimension of simulation cell is 20a[111] (109Å) in ~X,

80a[1̄01] (356Å) in ~Y , and 3a[12̄1] (23Å) in ~Z direction, with a total of 58320 Mo
atoms.
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Figure 4-4: Core region magnified for atomic configuration in Figure 4-3. Again,
atoms are color-coded by local strain.

Aside from the qualitative picture in Figure 4-3, one can actually take the two

atomic rows that are immediately above and below the glide plane and calculate

the misregistry between them. From the misregistry curve, one can quantitatively

determine the edge dislocation core profile and therefore the core width. This is

shown in Figure 4-5.

Using the Peierls-Nabarro model [105, 106, 10, 107, 108, 109]:

τPN = A · exp(−αζ
b

) (4.1)

where µ = 151.5GPa is the shear modulus, ζ = 5.5Å is the dislocation half-width that

we get from the atomistic relaxation described above, ν = 0.31 is the Poisson ratio,

b =
√

3
2
a = 2.7256Å is the burgers vector, A = 2µ/(1 − ν) = 439.1GPa, and α = 2π

for edge dislocations, one can estimate the Peierls stress for the edge dislocation to be:

τPN = 1.3 MPa

This is indeed a rather small number and indicates an extremely low lattice resistance
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Figure 4-5: Misregistry along [111] direction. This value is calculated for the two
atomic rows between which the edge dislocation resides. Edge dislocation core, defined
as the region where misregistry is between b

4
and 3b

4
, has a width of ∼ 11Å. Top figure

shows the whole curve, while the bottom figure shows the details around the core.
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to edge dislocations in molybdenum. Since this model assumes a sinusoidal form which

is highly idealized, it may give inaccurate τPN . Also worth mentioning is the fact that

the model is extremely sensitive to the core halfwidth value ζ simply because ζ is in

the exponent term. Using ζ = 5.5Å will give you τPN = 1.3MPa, but using ζ = 4.5Å

will give you τPN = 13.7MPa. However, the core width value itself is not of high

accuracy and may indeed have small changes when the dislocation moves. Therefore,

the number we just computed is highly approximate and can only be trusted probably

within 1 order of magnitude.

In the recent work of Wang [110], after correcting an error in the original Peierls-

Nabarro model, prediction of Peierls stresses for a large number of different crystals

have been made and reasonable agreement with experimental data is observed. For

edge dislocation in BCC Mo, τPN is predicted to be ∼ 130MPa. This value is higher

than the estimations made above by 1 − 2 orders of magnitude and the discrepancy

is mainly due to an under-estimation of the core width. The values we have just

obtained above made use of the core width results from atomistic relaxations and

therefore is expected to yield a more accurate value. As a matter of fact, with the

introduction of γ-surface information, various schemes have been designed to evaluate

τPN more accurately without full atomistic calculations and among them, the semi-

discrete variational Peierls framework by Bulatov et al [111] has shown to produce

highly accurate results. As one takes in more atomistic information and relaxes more

assumptions which were made in the Peierls model, it is expected that the predicted

value of Peierls stress will be closer to true τPN . However, this is not the main

theme of this chapter and below we will instead use full atomistic calculations to

calculate τPN . It is generally expected that such atomistic calculation will yield more

accurate predictions of τPN and indeed we will get a definitive number for τPN of

edge dislocation in Mo. However, It should also be noted that even when using full

atomistic calculations, extra caution needs to be taken in setting up the simulation

to avoid large errors in the simulation results.

In the following section, we will calculate τPN directly with atomistic methods,

namely, by static relaxation method using Finnis-Sinclair potential [20, 112]. The
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τPN value we get will be corrected for image effect and is much more accurate than

the above Peierls-Nabarro model estimation. But it is always helpful to get some

rough numbers first to get a qualitative picture.

4.3 Peierls Stress of Edge Dislocation

As have been introduced at the beginning of this chapter, the motivation of this

calculation is really two-fold: (1) Previous calculations in the literature [3] gave a

rather big number for τPN of edge dislocation in molybdenum which seems to be

contradictory to experimental observations. There is a good reason to suspect the

calculated number was inaccurate since the effect of the boundary conditions that

they used in that calculation was not evaluated and could potentially be big. (2) In

Chapter 2, we have just developed the tools that enables us to quantify the image

effect due to the periodic boundary conditions. It shall be natural to make use of the

newly acquired machinery to try to clarify the issue of τPN for edge dislocations in

molybdenum.

Indeed, a single parameter ∆E (as defined in Figure 2-8) was defined and used to

represent the magnitude of the image effect. This parameter ∆E can be calculated

either from linear elasticity using the image summation method developed in Chapter

2 and described in more details in [7, 8, 9], or from atomistics where you prepare a

number of dislocation configurations and use static relaxation method to discretely

sample the total energy variation with respect to relative displacement between the

two dislocations in the simulation cell. The atomistic approach is more accurate and

self-consistent. The beauty of it is that it does not need anything from continuum

theory and everything is done in a “fully atomistic” way. The drawback is that

requires more computation. Either approach would give you the result of ∆E as

an indication of image energy variation as the dislocation moves. A large ∆E value

should be taken as a serious warning against adopting the current cell geometry. In

the following studies, we will use several different cells that have different aspect ratios

η = C2

C1
but the same size (C1 × C2 is constant) to see whether they will give rise to
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different τPN results and how big a different it makes to use different aspect ratios.

Figure 4-6: Calculate Peierls stress by applying shear stress σxy to the simulation cell
until the dislocations are able to move across the PBC cell.

4.3.1 Method for calculating τPN

Using Parrinello-Rahman method [113] combined with static relaxation technique,

i.e., energy-minimization using conjugate-gradient plus steepest-descent methods, we

apply a shear stress σxy (as shown in Figure 4-6) to the simulation cell that was set

up to contain an edge dislocation dipole separated by exactly half the box height,

i.e., C2

2
. The dislocation may start moving at certain applied shear stress value σ1.

However, this value is not recognized as the critical stress. Because the initial setting

of the dislocation dipole where the two dislocations have zero relative displacement in
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~X, i.e., [111] direction is indeed an energy maximum if one considers the image energy

variation only (the setting where the relative displacement in ~X is C1

2
corresponds to

an energy minimum in the image energy variation curve). So the initiation of motion

at this point may have some help from the image stress (if aspect ratio is chosen to

be inferior) and stress at this point σ1 will be an under-estimate of the true Peierls

stress value τPN . At this stress, the dislocation will move by one or several Burgers

vectors before the decreased image stress cause the dislocation to stop motion and get

trapped at another lattice position. As we further increase the applied stress σxy, the

dislocation may move further. Above certain critical stress value σ2, the dislocation

is able to move beyond the image energy minimum and from there on a continuous

motion of dislocation is assumed. We will record σ2 as the critical stress needed to

move the edge dislocation.

Realizing the symmetric property of the image energy curve (the middle curve in

Figure 4-1), one should also be able to see that:

σ1 < τPN < σ2 (4.2)

and:

τPN ∼
σ1 + σ2

2
(4.3)

if the difference between σ1 and σ2 is negligible compared to the absolute value of

tauPN .

σ1 is an under-estimation of τPN , whereas σ2 is an over-estimation of τPN . The

method of recording σ2 as “the” Peierls stress is consistent with the notion that

Peierls stress is indeed a critical stress needed to move the dislocation across the

lattice sites, however, it will always give us a value larger than or equal to true τPN .

The best scenario that makes σ2 = τPN is when ∆E = 0 and image effect diminishes.

Otherwise, σ2 > τPN and the difference between the two is a monotonic increasing

function of ∆E.

One may be tempted to use σ1+σ2

2
as an estimation for τPN . Certainly this would

a valid option since this number in some cases is closer to true τPN than both σ1 and
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σ2; however, τPN ≈ σ1+σ2

2
is only true for small ∆E scenarios. If ∆E is large, then

this relation does not hold and the average value of σ1 and σ2 will not be a good

representation of τPN .

To be self-consistent, σ2, the minimum stress required to move dislocation across

the periodic box, will be used in all the following calculations.

4.3.2 True Peierls Stress and Effect of Cell Aspect Ratio

Now we look at the result of calculated critical stress (to be exact, σ2) with varying

simulation cell shape. All the simulation cells we used have about the same cross-

sectional area in xy plane (C1·C2≈4×104 Å2), but the aspect ratios are different,

ranging from 0.8 to 3.8. The variation of calculated critical stress that may be taken

as an estimation of τPN with aspect ratio is shown in Figure 4-7, where the effect of

PBC on calculated critical stress is quantified for the first time.

The calculated critical stress value that one may naively take as τPN changes by

more than one order of magnitude (a factor of ∼ 30 between the lowest and the

highest value of critical stress) from ∼ 700 MPa to ∼ 25 MPa as the cell shape is

changed from an almost-square shape to an elongated shape. As one can see, at low

aspect ratios, calculated stress value increases monotonically with decreasing aspect

ratio and it is expected that even larger stress values will be produced if we keep

lowering aspect ratio.

The previous value of 400− 700 MPa corresponds to the high value portion of the

curve in Figure 4-7. It is about 20 times the true Peierls stress value τPN = 25 MPa.

4.3.3 Conclusion and Insights

On the core structure and Peierls stress for edge dislocations in molybdenum, a care-

ful recalculation of Peierls stress τPN using Finnis-Sinclair potential yield a converged

value of 25 MPa. In contrast to the previously reported value of 400 − 700 MPa,

this value is a true representation of the Peierls stress (within the physical picture

described by Finnis-Sinclair potential model) and is drastically lower. This value sig-
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Figure 4-7: Calculated critical stress using the method as described changes by more
than one order of magnitude when the cell shape is changed from an almost-square
shape to an elongated shape. The converged value of critical stress at large aspect
ratios is ∼ 25 MPa.

nifies the extremely low lattice resistance to edge dislocations in BCC metal molyb-

denum. It also implies that earlier proposition of kink mechanisms operating on edge

dislocation is unnecessary and most possibly untrue. Due to their low τPN , edge dislo-

cations in molybdenum are unlikely to support stable kinks. As will be demonstrated

in next chapter, edge dislocation mobility is not changed with the introduction of an

pre-existing kink. It will be yet another direct proof that kinks do not play a role in

the edge dislocation mobility picture.

As we have stated above, all the simulation cells adopted in this calculation only

differ in aspect ratio but not in size, yet they produced critical stress values that

differ by more than a factor of 30. If there is anything it proves, it is the common
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notion among atomistic researchers that as long as you use a large atomistic model,

all the artificial effects would diminish. This is not true. In this case, even when a

one-million-atom configuration is used to calculate Peierls stress, one could still get

totally wrong results if the aspect ratio η = C2

C1
is not chosen appropriately. On the

other hand, in many cases bigger model size will give you better results, e.g., larger

distance to the surface will make the surface effect smaller, etc. However, one shall

always go through the trouble of proving something before naively trust something

and start the simulation blindly.

The above calculation of the convergence behavior of calculated τPN with increas-

ing aspect ratio is also a direct validation of the image energy variation model that

we presented earlier in Chapter 2.

We have calculated τPN for several configurations. Indeed, in order to get the

correct value for τPN , one does not need to reproduce the whole curve as shown in

Figure 4-7. A single calculation with an appropriately large aspect ratio is guaranteed

to produce an accurate measurement of τPN for intended dislocations.
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Chapter 5

Mobility of Edge Dislocations in

Mo

In this chapter, we will discuss our simulation results on edge dislocation mobility

in BCC molybdenum. In contrast to the previous two chapters, this is a discuss on

dynamics of dislocations rather than static mobility measures such as zero-stress zero-

temperature core structure and Peierls stress. Static relaxation technique is replaced

by finite temperature molecular dynamics simulations and the measured quantity also

changes from Peierls stress (τPN) to dislocation velocity (v). In the simulated stress

regime, edge dislocation exhibited high mobility and its motion is governed by viscous

drag, with drag coefficients in the 10−5 Pa·s range. At high velocities (greater than

half shear wave velocity, i.e., v > cs/2), relativistic effect will appear and increase

the drag coefficient approximately linearly and lead to an asymptotic behavior of

dislocation velocity towards shear wave velocity.

We being this chapter with a briefly review of experimental mobility measurements

in BCC molybdenum. In the second section we discuss the technical details of the

simulation, including the geometry setup of the simulation cell and the methods

of locating dislocation position and extracting dislocation velocity from it. In the

third section, we present the mobility results, namely the functional dependence of

dislocation velocity over a range of temperatures and stresses, importance of kinks.
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5.1 Review of Experimental Mobility Measurements

As we have reviewed in the previous chapter, from experiments people have found

that there are two important types of dislocations in Mo: screw dislocations control

the low temperature plasticity while edge dislocations are important at high temper-

atures simply because screws become more mobile at elevated temperatures and can

annihilate with each other through cross-slip while edge dislocations are confined to

their glide planes. In other words, the inability for edge dislocations to climb easily

at high temperature resulted in the experimental pictures that we in Figure 3-10 and

alike.

In Chapter 3 we have reviewed the several most important aspects of BCC plastic-

ity. Now let us briefly review the experimental understanding on dislocation mobility,

which concerns both edge and screw dislocation, and other types of dislocations, too.

Individual dislocation mobility measurements could not only provide valuable in-

formation and insight towards our fundamental understanding of mechanical strength,

but can also serve as a reference point for the atomistic models of dislocations that

we developed from computer simulations. However, due to the high expense and

experimental difficulty in obtaining high purity molybdenum single crystal samples

and the difficulty in introducing single dislocations and accurately measuring their

mobility, not much data are available for single dislocation mobility.

One of the earliest measurements of individual dislocations mobility in molybde-

num was performed by Prekel et al. [72]. Edge dislocations were introduced by in-

denting the surface using a sharp sapphire stylus rather than surface scratching [114]

because dislocations nucleated near the scratch surface were previously found to be

not moving unless stress is so high that grown-in dislocations move as well. Dislo-

cation positions, as revealed by etch pits, are shown in Figure 5-1(a). In Figure

5-1(b) dislocation velocity as a function of resolved shear stress on {110} and {112}

planes. Mobility of edge dislocations is seen to be higher on {112} planes, and to be

increasing with increasing temperature. The authors found the dislocation velocity

data are in support of the kink mechanism with kink activation energy fitted to be
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(a) (b)

Figure 5-1: Early edge dislocation mobility measurements with etch pit method by
Prekel et al. [72]. (a) Dislocation etch pits from the indenter, revealing the positions
of dislocations. (b) Dislocation velocity measurements as a function of stress in unit
of (kg/mm2) at different temperatures and slip planes.

0.63eV. However, as we have shown in the previous chapter, even straight edge dis-

locations have very low lattice resistance and kink mechanism is not considered to

play any role in edge dislocation motion; therefore this experimental result appears

to be in conflict with our atomistic results. The reason of the obvious disparity may

well be explained by the artifacts in the experimental measurements from interactions

of the edge dislocation with the surface, as was found in [74] where a thin surface

film always appeared on etched Mo sample and strongly impeded dislocation motion.

Grown-in dislocations and point defects in the sample could also have contaminated

the experimental results.

On the other hand, early experimental reports by Leiko [73, 115, 116, 117] where

screw dislocations are shown to have high mobility is also inconsistent with current

atomistic understandings of screws where straight screw dislocations are believed

to have critical stress at 2 − 3 GPa and can therefore not move readily without

assisting kink mechanisms. As we plot the results from Leiko (supposedly for screw)

and Prekel (supposedly for edge) together, as did by Nadgornyi [74] (Figure 5-2, a

confusing picture is presented where screw dislocations are shown to be much mobile

than edges. Most like these results have been contaminated by surface effects, as
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Figure 5-2: A confusing picture generated by comparing dislocation velocity mea-
surements of edge (from Prekel et al.) and screw (from Leiko et al.) as a function of
stress[74]. It is inconsistent with atomistic understanding of the much higher lattice
resistance for screws than edges.

suggested by Matsui [118], where screw dislocations intersecting with the free surface

may be forced to bend toward a mixed configuration thus substantially increase their

mobility. Therefore, both velocity measurements may contain substantial errors and

should not be trusted.

(a) (b)

Figure 5-3: Dislocation mobility in Mo by in situ high voltage electron microscopy[69]
is sufficiently free from surface effects and provides a more consistent picture of dis-
location mobility in Mo.
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More recent in situ TEM observations, as shown in Figure 5-3, are sufficiently

free from artificial surface effects and seem to provide convincing results [69].

All these experiments, however, measure dislocation velocities from a different

time scale than we have in simulations and the magnitude of dislocation velocity are

not directly comparable. On the other hand, we believe developments on simulation

techniques, e.g., MD acceleration techniques by Voter et al [119, 120], may soon make

the direct comparison of the two possible.

5.2 Difficulty and Motivation fo Dislocation Mo-

bility Simulations

Due to various reasons, not much has been done in the area of MD simulation of

dislocation mobilities, except for the early work of Baskes and Clapp [4, 5] and

recent work of Gumbsch and Gao [6].

The main reason is probably that due to the limited size of atomistic simulations, it

is hard to measure accurately the steady-state velocity of a dislocation, not mentioning

whether you can actually reach the steady-state. This will been shown in the later

analysis of our MD simulation results of edge velocities and also is evident from the

early work of Baskes and Clapp [4, 5] where one can clearly see that the velocity

of the dislocation may be still in the process of climbing up to equilibrium velocity

before the simulation had to be terminated due to computational limitations.

Another challenge is to keep track of the dislocation position as it moves within the

simulation cell. As will be shown later, this can be done by either geometry analysis

of misregistry or energy analysis. In both cases, reasonable amount of work need to

be done to locate the dislocation core as it moves and large amount of simulation data

need to be processed and analyzed in real time. If simulation box is tilted, the tilting

also need to be considered in arriving at the real position change of the dislocations.

The factor that severely limits the simulation capability is the computational cost

of such simulations of dislocation mobility. Firstly, the simulation cell size must
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be sufficiently large to minimize core-overlapping, dislocation-dislocation interaction,

and other artifacts such as surface effect if free surface is used. If dislocation operates

in the viscous drag regime, then kinks are not important and simulation cell size

can be reduced in the dislocation line direction. Otherwise, the dimension of the

simulation box in dislocation line direction has to also be reasonably large to allow

for kink nucleation and migration. Indeed, single kink migration shall be reasonably

well approximated by a small cell, but double kink nucleation shall need a large cell

dimension in the direction of dislocation line. Secondly, the simulation has to be

run long enough for the dislocation to reach steady-state motion. This usually takes

several picoseconds and is not a severe problem. Thirdly, after the dislocation reached

steady-state motion, its motion shall be simulated for sufficiently long (large number

of timesteps) to reduce measurement errors which is approximately proportional to

the square root of length of simulation time. Because of all these requirements, the

simulations of dislocation mobility could be potentially very expensive. In the studies

presented below, each of the simulations of edge dislocation mobility takes from half

a day to one week of CPU time on a AMD Athlon 1.33GHz personal computer.

Realizing this is still simulation in the phonon drag regime, one can immediately see

how expensive a realistic simulation of dislocation motion through kink mechanism

can be. No doubt it requires massive power of modern parallel computers and it

is arguably worth doing since probably same insights could be drawn from static

calculations as well, most likely at significantly lower cost of hardware, software, and

man power. However, one has to realize that such dynamic simulations will not

only provide valuable insights into the dynamic behavior of dislocations, but can

also provide larger-scale modeling, e.g., dislocation dynamics, with parameters that

can not be determined by other means, e.g., drag coefficients. This is indeed the

motivation of the work presented here for edge dislocations in molybdenum [21, 121,

122].
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5.3 Setting Up the MD Simulation

Molecular dynamics simulation is a powerful method for probing the structure and

dynamics of extended crystalline defects like grain boundaries [123] and dislocations.

While the velocity of an isolated dislocation in an FCC metal has been obtained

using fixed border conditions to transmit the driving force [4, 5], very little is known

about the underlying mechanistic details, such as the role of kinks on the mobility

of a straight dislocation, and steady-state velocity measurements were not obtained

either. Another issue that has not been addressed adequately is how a specific border

condition modifies the local driving force acting on the defect core.

In this study we simulate by molecular dynamics (MD) the motions of edge dis-

locations in a BCC metallic molybdenum lattice. Most of the discussions focus on

the mobility of an initially straight edge dislocation and some results on edge disloca-

tions with pre-existing kinks will also presented. In this section, we first discuss the

methodological issues of properly setting up the MD simulation and extracting the

dislocation position and velocities.

5.3.1 Geometry Settings of Initial Configuration

The first thing that is of foremost importance is to decide which boundary condition

to choose. We use periodic boundary conditions in all the studies that follow. The

decision to adopt the periodic boundary conditions (PBC) stems mainly from the

fact that with periodic boundaries constant motion of dislocation could be achieved

since there is no real space boundary that the dislocation have to stop at and as the

dislocation traverses the simulation box and exits the simulation cell it essentially

enters the cell from other end. In other words, we will be simulating the relative

shifting of two infinite dislocation arrays, one positive and the other one negative,

and the simulation can go on forever.

Another important reason for adopting the periodic boundary conditions is that

the image interaction effects associated with PBC have recently been clarified [7, 8, 9],

to the extent that one can now accurately and self-consistently quantify these effects,

113



as have been discussed in Chapter 2.

It shall also be decided as to how we put the dislocations in the PBC cell. In

this case, an edge dipole need to be present and there are mainly two options. One

is to put them on the same glide plane, but this would be an inappropriate choice

for this simulation because the two dislocations of opposite signs will start moving

in opposite directions and will soon annihilate with each other which will make the

simulated system become perfect crystal 1. The other option is to place them on

different glide planes so that they can not annihilate with each other unless through

climb motion which should be very difficult due to high energy barriers. The latter

shall be adopted. But how far apart should their glide planes be? To minimize

interaction between the two dislocations, they should be set apart from each other by

exactly half the box dimension in Y direction (perpendicular to both the dislocation

line direction and the Burgers vector direction).

It is also important to make the decision on how the simulation cell geometry is.

As we have shown in Chapter 2 and Chapter 4, the aspect ratio plays a big role in

determining the magnitude of the image effect due to the periodic boundaries. A

good aspect ratio should be at least larger than 2, which means the edge dislocation

configuration will have an elongated shape in Y , i.e., [110] direction.

The initial position of each of the dislocations on their respective glide planes

does not matter much, because the dislocation will start moving and their relative

displacement will change during the simulation anyway.

Now we should create the dislocation configuration. Figure 5-4 shows the specific

procedure we are adopting to create a particular edge dislocation dipole. Starting

with a rectangular atomic cell with box vectors at 20[111], 80[1̄01] and 3[12̄1] respec-

tively, we first remove a layer of atoms on an (111) plane (the shaded region) and

then displace all other atoms according to the linear elastic displacement field of a

dislocation dipole in a periodic cell, the solution to which can be obtained using the

1In fact, if the lattice resistance to dislocaiton motion is large, then it may be possible for the
dislocations of opposite signs to be trapped in their initial lattice positions. That is not the case
here, since edge dislocations in molybdenum has a very low Peierls stress value: τP = 25MPa.
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Figure 5-4: Setting up an edge dislocation dipole by removing a layer of atoms in the
shaded plane, and displacing the atoms according to displacement field prepared us-
ing methods described in Chapter 2, followed by conjugate gradient force relaxation.
Atomic arrangement around the dislocation core is shown with the core atoms (high-
lighted) having the largest potential energy as well as maximum disregistry across
the two atomic layers on the either side of the glide plane.

method outlined in Chapter 2 and [7, 8, 9]. After conjugate gradient relaxation ,

we obtain an atomic configuration with two edge dislocations with opposing Burgers

vector a/2[111], each lying on a (1̄01) glide plane and separated from the other by

a distance of 40[1̄01]. The inset in Figure 5-4 shows the detailed relaxed atomic

arrangement around the dislocation core.

5.3.2 Extracting Dislocation Position and Velocity

To extract dislocation velocity from the MD trajectories, we need to identify the

position of the dislocation core as a function of simulation time. Atomic position
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data can be saved at various time intervals and geometrical analysis is performed off-

line; however, this would require very large disk space and is not an optimal solution.

Since only velocity data are desired, we can carry out the geometrical analysis on-line

to determine the core position for every dislocation segment at each MD time step,

and save this information to data files.

Given the system configuration, we would like to quantitatively estimate the dis-

location position. Since the dislocation line is approximately parallel to Z-axis, we

divide the simulation cell along Z-axis into slices each of which contains only one layer

of atoms. For each slice, we first find out the two rows of atoms which are imme-

diately above and below the slip plane. Then we calculate the disregistry between

these two rows as a function of X-coordinate. This function periodically extends to

infinity due to the periodicity along X-axis. In Figure 5-5 this function is plotted

within 3 periods for both the upper dislocation segment and the lower segment. The

point which corresponds to maximum misregistry is then identified and taken to be

an estimate of the core position. For a more numerically consistent estimation, we

use several points near this maximum and do local parabolic fitting. The peak of the

fitted parabola indicates the estimated core position of this dislocation segment. The

procedure of fitting is also shown in Figure 5-5 where we used 4 data points for the

parabolic fitting.

From the estimates of the dislocation core positions for all the segments, we con-

struct the profile of the dislocation line, and by repeating the procedure at successive

timesteps, we can follow the time evolution of the dislocation profile. Thus we can

observe the details of dislocation glide. Shown in Figure 5-6 is a dislocation profile

evolution plot. This 3D plot shows how the dislocation line shape changes with time.

(The dislocation line is 36 repeat distances long.) This information is not of much use

in this case, since in the stress regime that we are going to study, the edge dislocations

exhibit high mobility and kinks do not play a role in the mobility picture. However,

evolution of the dislocation line profile with time may uncover important features

of dislocation motion in other cases. For example, see Figure 5-7 for a dislocation

profile evolution picture that clearly shows the double kink nucleation and migration
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Figure 5-5: Disregistry as function of X-coordinates for both the upper dislocation
segment and the lower one. Four-point parabolic fitting is used to determine the
position of dislocation core.
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behavior of screw dislocations in semiconductor silicon.

Figure 5-6: Evolution of dislocation profile (T = 20K, σ = 0.07GPa).

By averaging along the dislocation line, we get the average line position of disloca-

tion. Plotting against time and fitting to a straight line gives the dislocation velocity

as the slope of the fitted line 2.

As shown in Figure 5-8, dislocation position variation can be directly translated

to instantaneous velocity of the dislocations. After the initial incubation stage, dis-

location velocity stays around an equilibrium value under constant stress. It is also

shown that the initial large variation of virial stress quickly disappeared and the

applied shear stress is controlled well by the Parinello-Rahman method. Therefore,

excluding the initial incubation time, both velocity and stress can be obtained with

certain precision.

2The incubation time portion of the curve should be disgarded since that part represents a stage
where velocity gradually increases from 0 to steady-state value.
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Figure 5-7: Evolution of dislocation profile for screw dislocations in silicon. Generated
by kinetic Monte Carlo simulation by Cai et al. Double kink nucleation and migration
processes are clearly seen from this dislocation profile evolution picture.

5.3.3 The Potential Model

The MD results we present in this chapter are obtained using the Finnis-Sinclair

empirical potential model [20] as revised by Ackland and Thetford [96].

The function form of the FS potential is given below,

V ({~ri}) = VN + VP , (5.1)

VN = −A
∑
i

√
ρi, (5.2)

ρi =
∑
j

φ(rij), (5.3)

VP =
1

2

∑
ij

v(rij) + vc(rij), (5.4)

φ(r) =

 (r − d)2 + β(r − d)3/d, r ≤ d

0, r > d
(5.5)

119



Figure 5-8: Dislocation position, velocity and virial stress variation in a MD simula-
tion at T = 300K and τ = 600MPa under zero pressure. The two separate data lines
correspond to the upper and lower dislocations in the simulation cell respectively.

v(r) =

 (r − c)2(c0 + c1r + c2r
2), r ≤ c

0, r > c
(5.6)

vc(r) = B(b0 − r)3 exp(−αr), (5.7)

where VP represents a pairwise repulsive interaction accounting for the core electron

overlap and VN describes metallic cohesive energy. The cohesive energy per atom

varies as the square root of the effective electron charge density ρi. Although the

theoretical justification of the functional form of FS potential was thought to be valid

only for metals with nearly half filled d band, such as VIB metals Mo, W, etc, it

was later shown by Ackland et al. [124] that it is applicable for all band fillings after

charge neutrality of each atom is considered, so that the square root form can be used

for noble metals and Ni as well.

The Finnis-Sinclair potentials were constructed for seven BCC metals, V, Nb,

Mo, Ta, Cr, Fe, W. It is a EAM-type many-body potential that has 7 parameters
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that are fitted to experimental results on lattice constants a, cohesive energy Ecoh

and three elastic constants C11, C12, C44. Computationally this is a rather efficient

potential model since this many-body potential has a small potential cut-off radius

between 2nd and 3rd neighbors and the energy evaluation does not involve angular

calculations. However, as have been reported in [125], it results in low thermal ex-

pansions and describes surfaces poorly. As pointed out in [126], angular terms need

to be introduced and indeed this was done by Moriary at LLNL, who constructed a

new potential called MGPT potential [127] based on the Generalized Pseudopotential

Theory [128, 129, 130]. This potential was constructed for molybdenum. Unfortu-

nately, this potential is rather slow because it has not only 2-body and 3-body in-

teraction but also 4-body interaction terms. With all this added computational cost,

this potential can only be used for static relaxations in simulating atomistic disloca-

tion systems [3, 90]. Finite temperature MD simulation of dislocations requires fast

potentials and MGPT is not an option.

The version of Finnis-Sinclair potential we use is from the 1987 Phil. Mag. paper

by Ackland and Thetford [96]. They found out that the original version of FS potential

give unphysical results for system under large compression, and added an extra 2-

body term to correct for this. The correction term would not show when the system

is under tension. This revision is only for five of the metals: V, Nb, Ta, Mo and W.

5.3.4 Image Effects in A Periodic Simulation Cell

The problem of dislocation motion generally refers to the movement of a single dis-

location moving in an infinite lattice. To relate this problem to that of a dislocation

dipole, two effects need to be considered, one is the interaction between the two

dislocation forming the dipole and the other is the interaction between these two dis-

locations and their images which are introduced by the periodic boundary conditions.

Both interactions may be treated in the framework of linear elasticity. We will denote

the interaction energy associated with these two effects as Eelas; it is actually an en-

ergy per unit length of dislocation. Refer to Chapter 2 for the method of calculating

Eelas. We will apply this result to give an estimate of local driving force acting on the
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dislocation.

From linear elasticity and atomistic simulations we find that Eelas varies in an

oscillatory manner with the offset x (along X direction in Figure 5-4) between the two

dislocations forming the dipole. We can define the maximum slope max dEelas/dx =

σintb as a measure of the total effect of PBC, where σint is the maximum internal

stress acting on the dislocation with b the Burgers vector. For the simulation cell

shown in Figure 5-4, the variation of Eelas can be well represented by a sinusoidal

function, Eelas = A sin( x
12b

) + const., where A = 0.98× 10−3eV/Å. The corresponding

maximum internal image stress is σint = 6.7MPa, which is much smaller than the

typical values of applied shear stresses (40 ∼ 7000MPa). For this particular case it

appears that the image effects due to the periodic cell are quite small.

The following studies on dislocation velocity all use a simulation that is 40b long

along ~X direction, i.e., [111] direction. We can also calculate the maximum image

stress value by approximating the image energy curve as a sinusoidal curve. Eelas =

A sin( x
40b

)+const., where A = 0.4×10−3eV/Å. The corresponding maximum internal

image stress is σint = 1MPa, which is negligible compared to the applied shear stress

on the simulation cell. values of applied shear stresses (40 ∼ 7000MPa). Therefore,

the image effect is essentially zero for the simulation cell geometry we have adopted.

5.4 Velocity Simulation Results

By varying the temperature and stress values we apply to the simulation, we get

different velocity outputs and can compile this output data into a velocity surface as

a function of stress and temperature, as shown in Figure 5-9.

One can rotate this velocity surface around to explore its features, mainly the

stress dependence and temperature dependence of velocities.

5.4.1 A Discussion on the Four Regimes

The dynamic properties of dislocations are determined by not only the intrinsic prop-

erties of the dislocation in the crystal but also the magnitude and distribution of
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Figure 5-9: By simulating a range of temperature and stress conditions, we have
obtained a data array of velocies that can be plotted as a velocity surface.

driving forces. At zero temperature, continuous glide motion of dislocations occurs

only if the applied stress σ exceeds a critical stress σc0 which is equal to the maximum

glide resistance σ̂. (σc0 should be equal to τPN for a single dislocation gliding in infinite

medium.) The value of σ̂ = σc0 depends on the type and the distribution of the glide

resistance peaks. At finite temperatures, however, macroscopic continuous glide of a

dislocation can occur with the help of fluctuations at any stress up to σc ≤ σc0 . In bcc

metals, four specific regions of the dislocation velocity can be demarcated[131, 132].

In the first region, the motion is controlled by the thermal release of dislocation from

some equilibrium positions in the obstacle resistance profile. This is the thermally

activated region at v ≤ 10−5cs (cs is the velocity of sound in the solid) where the

dislocation motion is jerky and the dependence v(σ) is highly non-linear. Also the
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velocity increases with temperature, and imperfections affect the dislocation motion

greatly. The second region, at 10−5 < v/cs < 10−2, is regarded as a continuation of

the previous region, the motion being sensitive to all the contributions to the glide

resistance. In both, the applied stress σ is below the mechanical threshold σ̂ = σc. In

the third region where v ≥ 10−2cs, the drag resistance is predominant. Here σ > σc,

the dependence v(σ) is linear, the velocity decreases with temperature and depends

weakly on the concentration of imperfections. Lastly, in the fourth region at v ∼ cs,

some relativistic effects can be observed.

5.4.2 Temperature Dependence of Dislocation Velocity

In Figure 5-9, the temperature effect on velocity is found to be minimal at high

stress values. For example, dislocation velocity at applied shear stress of 5 GPa keeps

constant for different temperatures simulated.

It is only at low stress values that the temperature effect becomes evident. For

shear stress at 40 MPa, measured dislocation velocity is a monotonic decreasing func-

tion of temperature. This shows us that the dislocation motion is not governed by

a thermally-activated process; rather, it is governed by viscous drag in the studied

stress regimes. Since Peierls stress for edge dislocation is only ∼ 25MPa, the applied

shear stress values are all greater than Peierls stress and therefore dislocation mo-

tion is only impeded by phonon drag. The drag coefficient B, which is defined as

B = σ · b/v, is an important parameter to characterize the behavior of dislocation in

this regime.

Although there is no experimental data on the temperature dependence of the

drag coefficient for molybdenum, experiments on other materials have shown a similar

behavior, e.g., experiments in copper [133] have produced a monotonic increasing drag

coefficient B with increasing temperature. Theoretical calculations on phonon drag is

discussed in details in [134] and qualitative trend is found to agree with the simulation

results.
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Figure 5-10: Stress-dependence of dislocation velocity shows a decreasing stress ex-
ponent m, as defined by v ∝ σm. At low stresses, m = 1, while as stress increases to
6 GPa, m decreases to approximately 0.25.

5.4.3 Stress Dependence of Dislocation Velocity

Figure 5-10 shows that in the stress range we have studied, the stress sensitivity

coefficient as defined by v ∝ σm, decreases from m = 1 for low stress values to

m = 0.25 for high stress values up to 6GPa.

The initial linear dependence of v(σ) is a distinctive feature of the third regime

that we discussed earlier in this section. This is best characterized by looking at the

drag coefficient B = σ · b/v. Indeed, as shown in Figure 5-11, drag coefficient in this

stress regime remains approximately a constant at 6× 10−5Pa · s.

At higher stresses (σ > 400 MPa), drag coefficient B shows an approximate linear

growth with increasing stress. One should also notice a small positive curvature that

indicates an even higher slope for drag coefficients at higher stresses. The first-order

transition point where drag coefficient start to grow almost linearly corresponds to
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Figure 5-11: Stress-dependence of dislocation velocity is best shown by plotting the
drag coefficient B against stress. B is defined as B = σ · b/v. At low stresses (σ < 0.4
GPa), drag coefficient remains constant, whereas at higher stresses, drag coefficient
B starts to grow in an approximately linear fashion, with a small positive curvature.

a dislocation velocity value of approximately half the shear wave speed, cs. Indeed,

this transition is caused by the relativistic effect when the velocity of dislocation

approaches sound velocity.

5.4.4 Pressure Dependence of Dislocation Velocity

Figure 5-12 shows that as pressure is increased, mobility of dislocation is decreased

monotonically. The rate of the decrease is more than linear.

Reason for the decrease in mobility can be traced to the change that take place

in γ-surface. As the lattice is pushed tighter and tighter, the energy barrier in the γ-

surface (unstable stacking fault energy) does not increase much, but due to decreased

lattice spacing, shear modulus, i.e., the slope of the γ-surface at lattice origin, will

be increased. The ideal shear strength will increase as well. This shall lead to an
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Figure 5-12: Pressure-dependence of dislocation velocity is shown by plotting the
drag coefficient B against pressure. The decrease in dislocation mobility (increase in
drag coefficient B), is due to both a smaller lattice spacing under compression, and
the increase in shear modulus.

increase in the critical stress of dislocation and will lower the dislocation mobility.

5.4.5 Importance of Kink Mechanism

For edge dislocations, due to extremely low lattice resistance, it is quite possible that

no stable kinks can be supported on an edge dislocation, not mentioning whether

their nucleation and migration would actually play a role in edge mobility. In this

study, a pre-existing kink is introduced to the edge dislocation, as shown in Figure

5-13 and measurements of dislocation velocity are compared with the one where there

was no pre-existing kink.

It is found that the dislocation velocity does not change with the introduced pre-

existing kink compared to no initial kinks. This indicates that kink mechanism is not

the controlling mechanism in the simulated stress regime.

127



Figure 5-13: Pre-existing kinks introduced to initial configuration did not enhance
edge dislocation mobility, indicating that kinks on edge dislocations in Mo is not
important and kink mechanism is not the controlling mechanism, in the studied stress
regime.

5.5 Summary

In this chapter, we have simulated the dynamics of single edge dislocation by sim-

ulating its motion, observing its dislocation line profile, and extracting dislocation

velocity data to analyze the dependence of dislocation mobility on stress, tempera-

ture and pressure. Temperature-dependence reveals the phonon-drag mechanism in

low-temperature region. Stress-dependence shows up in the low-velocity region as a

constant drag coefficient; but for velocities higher than cs
2

, relativistic effect will cause

the drag coefficient to grow approximately linearly, with a small positive curvature.

In the simulated stress and temperature ranges, kink mechanism is not found to be
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an important factor in determining edge dislocation mobility.

The calculated drag coefficients can be passed on to dislocation dynamics codes

(DD) as valuable inputs to allow the DD simulation to incorporate finite temperature

velocity behavior of dislocations, or to any other dynamic models that need to consider

the velocity stress relationship at finite temperature.
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Chapter 6

Deformation Twinning in BCC

Molybdenum

In the previous three chapters, we have discussed the static and dynamic measures of

dislocation mobility in molybdenum. In this chapter, another important plastic defor-

mation mechanism in BCC metals, deformation twinning, is studied using atomistic

methods. First, MD results on atomistics of twinning nucleation and growth in BCC

molybdenum is presented. Then, to analyze the nucleation of twins, 1-D chain model

is developed and a simple form energy criterion for describing competition between

twinning nucleation and dislocation-based slip is presented. Minimum-energy path

analysis for twin nucleation reveals different stages for the perfect crystal to nucleate

the twin. A general 4-stage wave steepening model to describe the strain-localization

(energy-localization) process is proposed. Putting an small sinusoidal shear wave per-

turbation on top of the strain field of the 1-D chain near the critical point where the

defect nucleation occurs, we follow the dynamics of the 1-D chain and the four stages

of strain localization is clearly demonstrated. Beyond current problem of twinning

nucleation, the 4-stage wave-steepening model can find its application in nucleation

of other types of defects.
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6.1 Background

Deformation twinning and slip are the main plastic deformation mechanisms through

which crystals can accommodate large strains. Deformation twins have long been

identified in BCC, HCP, and lower symmetry metals and alloys, and are now found

to be formed in many FCC metals and alloys, in ordered alloys and other inter-metallic

compounds, in elemental semiconductors and compounds, in other non-metallic com-

pounds such as calcite and sodium nitrate, and even in complex minerals and crys-

talline polymers [135, 136].

Figure 6-1: Mirror symmetry about the twin plane is characteristic of twins.

Experiments with single crystals have shown that some structures e.g., FCC met-

als, do not normally twin unless under appreciable strain or very high strain rates,

while in others, e.g., BCC and HCP metals, twins are easier to form. Twinning is

often characterized by very rapid formation of twinned regions and gives large load

drops in the stress-strain curves. The relative contribution of twinning to the overall

strain increases when temperature is lowered or strain rate is increased. In general,

deformation twinning operates at low temperature, high stress(strain), high strain

rate, and in crystals of lower symmetry where number of slip systems are limited.

The classical definition of twinning requires that the twin and parent lattices are

related by a mirror reflection in the twin plane 1, as shown in Figure 6-1. A real

atomic configuration of twinning is shown in Figure 6-2, where a twinned region is

enclosed by the twin boundaries.

1This is usually referred to as Type I twin, whereas in some cases, twin and parent lattices are
related by a rotation of 180◦ and it is usually referred to as Type II twin.
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Figure 6-2: Atomistic configuration that shows a twinned region enclosed by the twin
boundaries (the green atoms). Atoms are color-coded by local shear strain.

(a) (b) (c)

Figure 6-3: Schematics of slip and twinning. (a) Undeformed crystal; (b) Deformation
through slip; (c) Deformation through deformation twinning.

The schematic plot in Figure 6-3 shows the difference between deformation twin-

ning and slip. As the perfect crystal shown in Figure 6-3(a) is sheared, the excessive

shear strain can be relieved by either slip or twinning. In the case of slip, as shown

in Figure 6-3(b), relative displacement happens between two layers only, one imme-

diately above the slip plane and one below. Atoms move by whole numbers of lattice

spacing, and lattice orientation remains unchanged. In the case of twinning, as shown

in Figure 6-3(c), deformation twins form by highly co-ordinated individual atom dis-

placements the magnitude of which is of fractional lattice spacing, and the lattice

orientation of the twinned region is changed.

Crystallographically, an operative slip mode is usually, but by no means invariably,
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characterized by the closest packed plane and direction of the structure. The operative

twinning modes can be similarly selected by a combination of easy atomic “shuffling”

and minimum magnitude of the associated shear [137]. The assumption of minimum

shear with no shuffles, in fact, leads to the correct prediction of the actual twinning

modes of almost all the metallic single lattice structures. However, the twinning

elements selected by crystallographic considerations may not be fully accurate since

the operative twinning mode is determined by the energy of the interface, rather than

the magnitude of the twinning shear.

In FCC metals, the twin lattice points are on coincidence sites and a deforma-

tion twin may be regarded as a stack of intrinsic stacking faults. The energies of an

intrinsic stacking fault and the {111} twin boundary are similar and small. How-

ever, in BCC metals, it has been found by Vitek [138] that the twin lattice points

are translated away from coincidence sites by a non-repeat lattice vector to form a

“isosceles” type interface that destroys the reflection symmetry across twin bound-

ary, and the minimum number of faults that would be mechanically stable is three.

However, the calculations were carried out using a pairwise potential that is inade-

quate in describing the BCC metals and the lowest energy structure predicted may

be unreliable.

Similar to most first order phase transformations which are divided into nucleation

and growth stages, it is usually assumed that separate consideration should be given

to the formation of a small twin region and to its subsequent growth into a large

twin. The reason is two-fold: (1) the spontaneous formation of a large twin is difficult

to envisage; (2) the finite positive energy of the twin interface implies an energetic

barrier to the formation of a very small volume of twinned crystal. The analogy

with phase transformation may be extended in that twin nuclei may form under the

action of an applied stress in a region of near-perfect crystal (homogeneous nucleation)

or form from a suitable pre-existing defect configuration (heterogeneous nucleation).

Twinning is normally nucleated heterogeneously from some defect configuration, but

in highly prefect crystals homogeneous nucleation of twins have been observed to

occur, e.g., in cadmium and zinc [139] and the stresses to induce twinning are an
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order of magnitude higher than those usually measured on macroscopic specimens.

The focus of this thesis will be on the homogeneous nucleation of twins.

In classical nucleation theory, the energy of a small embryonic twin which is as-

sumed to be separated from the parent phase by a sharp interface is calculated by

assuming that the embryonic region has a defined volume and surface area and that

macroscopic parameters such as surface free energy or elastic stiffness are relevant.

A general assumption is that the shape is an ellipsoid with three axes, two of them

in the twin plane and one normal to twin plane. This problem can be solved within

the framework of anisotropic elasticity. However, due to the high non-linearity at

the interface, the twin interfaces should be treated with atomistic methods, either

semi-empirical potentials or more accurately, first principle calculations.

The critical stress required for growth of twins by spontaneous nucleation of suc-

cessive loops of twinning dislocation is generally believed to be much smaller than the

corresponding estimate for formation of a twin nucleus, and growth by spontaneous

nucleation of new layers is considered to be a possible mechanism.

Furthermore, existing models on defect-assisted nucleation and growth of twins,

which is of great importance but will not be covered in this thesis, are discussed in

details in [136]. To briefly summarize, most models of defect-assisted twin nucleation

are based on the dissociation of some dislocation configuration into a single- or multi-

layered stacking fault which then serves as the twin nucleus, whereas models of twin

growth involve either repeated nucleation of successive layers or a pole mechanism

or cross-slip “source” mechanism which allows a single twinning dislocation to move

through successive twin planes. Since appreciable core overlap is usually present,

linear elastic theory is inadequate and atomistic calculations are required to verify the

models, e.g., the pole mechanism; however, few work has been done in this aspect due

to the large simulation size required for testing these models, difficulty in setting up

the desired defect configuration atomistically, and difficulty in treating the simulation

boundaries properly.

The twinning system observed in experiments for BCC molybdenum [140] is

{112}〈111〉. We will focus on this orientation in the following atomistic studies,
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sometimes using the {110}〈111〉 slip system for comparison.
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6.2 MD Simulation of Twinning Nucleation and

Growth

Using finite temperature molecular dynamics simulations, the nucleation and growth

of deformation twins can be directly observed and analyzed.

We begin our atomistic study of deformation twinning in Mo by quasi-2D molec-

ular dynamics simulations in two different kinds of loading condition: mode-I loading

with pre-existing crack, and shear loading with no pre-existing defects. Then we ex-

tend the atomistic study to full 3D. A 3D atomistic picture of twin nucleation and

growth is presented for the first time and mechanistic insights are gained from the

full 3D simulation.

6.2.1 Quasi-2D Model-I Loading with Pre-Existing Crack

In this simulation, we set up an atomic configuration that is perfect BCC crystal

except for an ellipsoidal void in the center, as shown in Figure 6-4(a). To favor

twinning, we choose the X,Y ,Z axes to be along [1̄1̄0], [001],and [1̄10] respectively.

The ellipsoidal void has a dimension of 60Å in X and 30Å in Y and is introduced by

removing atoms in the ellipsoidal region. Uniaxial tension is applied in Y direction

and this is essentially a mode-I loading if we consider the two horizontal edges of the

void which are separated by 60Å to be two separate blunt cracks.

The maximum resolved shear stress plane is the 45◦ plane which has a Schmid

factor of 0.5. The (112̄) twin plane is at an angle of φ = 35.3◦ with X and the Schmid

factor is cos(φ) · cos(90◦− φ) = 0.47. As uniaxial tension is applied, equivalent shear

on (112̄) plane is of twinning sense and twin nucleation and growth will be favored.

If we apply uniaxial compression or rotate lattice orientations by 90◦, then equivalent

shear on (112̄) plane will be of anti-twinning sense and dislocation-based slip will be

favored.

The overall dimension of the simulation cell is 231.4Å in X (along [1̄1̄0]), 232.9Å

in Y (along [001]), and 8.9Å in Z (along [1̄10]). The thickness in Z is minimal and
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(a) (b)

Figure 6-4: (a) The initial atomic setup of the quasi-2D simulation. The simulation
cell is 231.4Å in X direction (along [1̄1̄0]), 232.9Å in Y direction (along [001]), and
8.9Å in Z direction (along [1̄10]). Uniaxial tension is applied in Y direction. (b) A
zonal plot that shows the important crystallographic directions on the xy plane. The
angle between the (112̄) twin plane and X direction is φ = 35.3◦, whereas the angle
for (110) slip plane is 90◦. As an uniaxial tension stress is applied in Y , the Schmid
factor for (112̄) plane is cos(φ) · cos(90◦ − φ) = 0.47.

therefore this is a quasi-2D simulation.

As shown in Figure 6-5, twin is nucleated at crack tip and grows into the bulk

on (112̄) plane in [111] direction. The twin region can be distinguished from the

untwinned region by either geometry analysis or by energy analysis. In Figure 6-5,

we have color-coded the atoms by individual atomic energy and atoms in the twin

region have higher energy than the bulk and therefore have different colors from the

bulk.
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Figure 6-5: Crack-tip region magnified. Showing the twinned region by using energy
color-coding on atoms.

The stress matrix at the point when twin is nucleated is:

σ =


σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 =


−2.74 0 0

0 −10.03 0

0 0 −2.78

GPa

This stress matrix is in the Cartesian coordinate system that we adopted in the

simulation, with axes x̄i, i = 1, 2, 3. To transform this stress matrix into another

Cartesian coordinate system with axes x̄i
∗, i = 1, 2, 3, where x̄∗1 aligns on the (112̄)

twin plane, we first calculate the direction cosine matrix c, where cik = cos∠(x∗i , xk):

c =


cos(φ) cos(90◦ + φ) 0

cos(90◦ − φ) cos(φ) 0

0 0 1

 =


0.816 −0.578 0

0.578 0.816 0

0 0 1


where φ = 35.3◦. Therefore, the transformed stress matrix in the twinning coordinate
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system is:

σ∗ = cσcT =


−5.17 3.44 0

3.44 −7.60 0

0 0 −2.78

GPa
The critical resolved shear stress is therefore 3.44GPa with the pre-existing crack. As

we will show in the next simulations, when there is no pre-existing defects (disloca-

tions, cracks, etc.) in the crystal lattice, a much larger CRSS is required to nucleate

twins.

Figure 6-6: A picture of the full atomistic simulation cell. At this stage, twin is
already nucleated at the crack tip and have propagated by significant length. The
twinned region is clearly visible due to different lattice orientation from the bulk.

As shown in Figure 6-6, after the initial twin nucleation at the crack tip, the
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twins have propagated by significant distances on {112̄} planes. The twinned region

is clearly visible due to its different lattice orientation from the bulk, and the mirror

symmetry about the twin boundary is also evident.

Shown in Figure 6-7 are the snapshots of the atomic configuration during the twin

propagation.

Under shear stress of ∼ 3.5GPa, the nucleated twin starts to propagate and its

speed increases quickly in about 0.3 nanosecond to steady-state velocity of∼ 2300m/s.

However, due to the periodic boundary condition, eventually the propagation of the

twin is impeded and stopped, as the final atomic configuration shows.

As we analyze the atomic structure of the twin in Figure 6-7 and Figure 6-8, we

see that slightly away from the propagating front of the twin the twinned region is

of two-layer structure 2, whereas the structure of the propagating front of the twin is

of partial edge dislocation character. Away from the propagating front, the twinned

region becomes more and more thicker, from 2 layers to 6 layers.

As have been discussed at the beginning of this section, we can rotate the loading

orientation by 90◦ so that the equivalent shear is of anti-twinning sense. As shown

in Figure 6-9, the new loading orientation in the anti-twinning sense no longer favors

twinning and dislocation emission from crack tip is instead observed. The CRSS

for dislocation emission can also be calculated by transforming the stress matrix at

critical point to the (112̄) plane coordination system. The transformed stress matrix

is

σ∗ = cσcT =


−9.03 2.05 0

2.05 −7.93 0

0 0 −6.72

GPa
and CRSS on (112̄) plane is 2.1GPa, lower than the twinning CRSS of 3.5GPa ob-

tained in previous simulation. The dislocations emitted from the crack tip are pure

a
2
[111]{112̄} edge dislocations. Interested readers can refer to [141, 142] for current

models of dislocation nucleation at crack tip.

2As will be shown in later 1D chain analysis, two-layer structure is the minimum structure that
is energetically meta-stable.
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t = 0.366 ns t = 0.368 ns

t = 0.370 ns t = 0.372 ns

t = 0.374 ns t = 1.000 ns

Figure 6-7: Sequence of atomic configurations during MD simulation. Atoms color-
coded by energy with the color map shown above.
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Figure 6-8: Atomic details at the propagating front of the twin and at the crack tip.

Figure 6-9: Loading orientation changed to anti-twinning sense and dislocation emis-
sion from crack tip is observed.
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6.2.2 Quasi-2D Shear Loading on Perfect Crystal

In this section, we simulate twin nucleation and growth in perfect crystals that has

no pre-existing defects embedded in.

Figure 6-10: A picture of the early stage of twin growth. The twin has already been
nucleated.

In this simulation, we set up an initial atomic configuration of molybdenum that

has perfect BCC crystal structure. For convenience, we choose the X,Y ,Z axes to

be along [111], [101̄],and [1̄21̄] respectively. The dimension of the simulation cell is

199.0Å in X (along [111]), 192.7Å in Z (along [1̄21̄]), and 8.9Å in Y (along [101̄]).

The thickness in Y is minimal and therefore this is a quasi-2D simulation.

Shear loading is applied at a constant rate of 1× 108 s−1 on (1̄21̄) plane, i.e., the

xy plane, in [111] direction. This is the twinning direction whereas the opposite will

be the anti-twinning direction.
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As the shear loading is increased, the deformation of the crystal changes from

linear elastic to nonlinear elastic, and finally plastic deformation occurs through twin

nucleation growth, as shown in Figure 6-10.

Figure 6-11: The energy and shear stress curve with respect to applied strain. The
large energy and stress relief due to twin nucleation and growth is evident.

We plot the energy and shear stress data as a function of applied shear strain in

Figure 6-11. Evident from the plot is that both energy and shear stress will start

decreasing at critical strain of 7.84% due to twin nucleation, and as the twin grows,

both of them continue to decrease until finally the twin band is fully formed and no

longer grows. From then on, the stress-strain relation becomes linear elastic again.

The energy drop is as much as 1000 eV and the shear stress drops from 12.4GPa to

close to zero.

Next we look at the atomic structure of the nucleated twin embryo at critical

stress of 12.4GPa and critical strain of 7.84% in Figure 6-12. The central portion of

the twin embryo has a thickness of 2-3 layers while its edge is thinner. If one considers
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Figure 6-12: A closer look at the twin embryo.

the edge to be 1-layer thick then it can be considered as a twinning dislocation that

is a partial edge. The propagation of this twinning dislocation controls the rate at

which the twinned region grows in the {112} plane. From the MD simulation data,

we estimate the velocity of the twinning dislocation to be ∼ 6000 m/s, which is

comparable to the longitudinal wave velocity in Finnis-Sinclair Mo (6700 m/s) and

in the transonic region.

The out-of-plane growth of nucleated twin is much slower than the in-plane growth

and its velocity is estimated to be a factor of ∼ 30 times lower.

Since we are using periodic boundary conditions, the two propagating fronts of

the twinned region will eventually encounter each other and merge together to finally

form a flat twin band, as shown in Figure 6-13. The twinned region has a structure of

11 layers. We analyze the layer-by-layer relative displacements in Figure 6-14. Rela-

tive displacements are plotted in units of Burgers vector: 1b = 2.73Å against the layer

index. (The atomic layers that are in the bulk and are away from the twin boundaries

all have relative displacements close to zero and are not shown in the plot.) The rela-

tive displacement distribution of the twin is essentially: (0, ..., 0, b
3
, b

3
, ..., b

3
, b

3
, 0, ..., 0).

This is in agreement with results from the 1D chain analysis which we will discuss
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Figure 6-13: 11-layer twin structure after the twinned region merged with itself due
to PBC.

Figure 6-14: The relative displacement curve for the 11-layer twin structure.
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later in the chapter.
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6.2.3 3D Shear Loading on Perfect Crystal

The quasi-2D simulation that we discussed in the previous two sections have provided

some useful information on the twin nucleation and growth; however, the quasi-2D

model is highly restrictive and may miss important features that can only be observed

and studied in a full 3D model.

In this section, we set up a full 3D atomistic model that removes the restrictions

imposed by quasi-2D models and simulate twin nucleation and growth in a more

realistic settings.

The initial atomic configuration of molybdenum has the perfect BCC crystal struc-

ture. Same as the previous simulation of quasi-2D shear simulation on perfect crystal,

we choose the X,Y ,Z axes to be along [111], [101̄],and [1̄21̄] respectively. The dimen-

sion of the simulation cell is 199.0Å in X (along [111]), 192.7Å in Z (along [1̄21̄]),

and 198.6Å in Y (along [101̄]). Now we have enough thickness in Y and certain

important features of twin nucleation and growth that are impossible to appear in

quasi-2D simulations,, e.g., dislocation loop nucleation, can now be modeled in this

3D simulation.

The simulation temperature is kept constant at T = 10K. At this low temperature,

atomistic pictures of twinning suffer very little from thermal fluctuations and appear

in a clear manner which will make the geometry analysis much easier and less prone to

error. Shear loading is applied at a constant rate of 3× 106 s−1 3 on (1̄21̄) plane, i.e.,

the xy plane, in [111] direction. This is the twinning direction whereas the opposite

will be the anti-twinning direction.

As shown in Figure 6-15 and Figure 6-16, twin nucleation and growth occurs above

a critical shear stress of 12GPa and a critical shear strain of 8%. Both energy and

shear stress experience sharp drop as the twin is nucleated and grows, as shown in

Figure 6-17.

In Figure 6-15 we look at the twin from above the simulation cell with a view angle

of approximately 45◦ and can see the twin region is quite flat and has a ellipsoidal

3We were able to achieve this low strain rate by first bringing the system to a point that is close
to critical point using a high strain rate, and then changing the strain rate to a much smaller value.
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Figure 6-15: A picture of the twin disk in the middle of its growth. Its form is that of
a ellipsoidal disk. However, the edges of the disk is as thin as 1 layer and the center
of the disk is the thickest.

shape. (Only the atoms in the twinned region are shown whereas the bulk atoms

have been removed for viewing convenience.)

In Figure 6-16 we look at the atomic configuration from the side, i.e., shown in

the picture is a xz plane that was obtained by making a cut through the center of the

twin and the normal-to-paper direction is parallel to Y axis. The twin boundary can

be identified by following the light-colored atoms which have different colors from the

bulk atoms due to their higher local strain values. With the twin boundary identified,

one can see that the twin is thickest at the center while becoming thinner and thinner

off the center. Overall shape of the twin is roughly like that of a spaceship or a

football, except it is much thinner. (One may attempt to describe the twin to have a

penny shape, but it is not accurate either due to the difference in thickness of the twin

at the center and at the edge.) The shaded area surrounding the twin corresponds
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Figure 6-16: A side-view picture of the twin disk in the middle of its growth. From
this angle, its shape is more like that of a spaceship. The edges of the disk is as thin
as 1 layer and the center of the disk is the thickest.

to atoms having relative large elastic displacements and its shape better resembles a

spaceship.

This is the first time that detailed information on the shape of homogeneously

nucleated twins is obtained by a full 3D atomistic simulation. Combining the infor-

mation one has obtained from these two figures, one can imagine in 3D space what

the twin looks like. Indeed, by looking at the twin from various view angles, we have

concluded that the twin is a relatively think disk, thickest in the center (multiple lay-

ers) and thinnest at the edge (down to one layer), and the twin disk has an ellipsoidal

shape.

Now let us take a detailed look at the atomic configurations during the twin

nucleation and growth from different view angles.
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Figure 6-17: Total energy of the atomistic system and shear stress is plotted against
the applied shear strain. Drastic drops in both energy and stress accompanies the
nucleation and growth of the twin.

1. Top view:

Shown in Figure 6-18 is the sequence of snapshots of the atomic configuration

during the initial stage of twin nucleation and growth. We look at the configu-

ration from the top, i.e., we are looking at xz plane and Y direction is normal

to paper.

From this view angle one can clearly see that the shape of the twin is more like

an ellipse rather than a round disk. This is a manifestation of the anisotropy

of dislocation mobility in molybdenum, i.e., screw dislocations have much lower

mobility than non-screw components. The edge of the twinned region is indeed

a loop of twinning dislocations, with the upper and lower edges being of screw
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k)

Figure 6-18: Evolution of the twin (top view).
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(k)

Figure 6-19: Evolution of the twin (side view).
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type, the left and right edges being of edge type, and the parts in between being

of mixed type. Since screw dislocation has lower energy and lower mobility

than other components, it is the slowest during the expansion of the twinning

dislocation loop and caused the overall ellipsoidal shape of the twin.

(a)

(b)

Figure 6-20: Side view of the twin. Only one slab of atoms is shown. (a) The slab is
cut normal to Y axis and through center of twin, with the result being that the edge
components of the twinning dislocation loop are shown. (b) The slab is cut normal
to X axis and through center of twin, thus the screw components of the twinning
dislocation loop are shown.

2. Side view:

We now make a cut normal to Y axis and through the center of the twin, and

look at the half configuration from the side. This cross-sectional view of the

twin provides us with information complimentary to that from the previous

view angle. It is clear from Figure 6-19 that the twinned region is a flat disk

that is thickest at the center and gets thinner and thinner approaching the edge.

Shown in Figure 6-20 is detailed view of the atomic configuration as in Figure

6-19(g). By geometry analysis one can identify the twin boundary and see that

the edge of the twin disk is a twinning dislocation loop that has a Burgers vector
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of only 1
3
~b, with a full Burgers vector ~b = a

2
[111]. Alternatively, one can also

consider the edge of the twin disk as a one-layer twin. The twin becomes thicker

and thicker approaching the center, becoming two layers within several Å’s and

then three layers, four layers, etc, becoming thickest at the center.

3. 3d view:

By now one should be able to fully construct a mental picture of the twin in 3d

space from Figure 6-18 and Figure 6-19. As a confirmation, 3d snapshots are also

shown in Figure 6-21, where one can see that the previous observations about

the shape of the twin are correct. As the twin grows, the expansion of the twin

disk in the {112} plane is much faster than its out-of-plane growth. The in-plane

growth is also anisotropic, causing the twin disk to resemble approximately the

shape of an ellipse.

From the MD simulation, the velocity of the twinning dislocation while the twin

disk was in expansion is estimated to be ∼ 6000m/s, comparable to longitudinal wave

speed in molybdenum, which is between 6000 and 7000 m/s from both experiments

and Finnis-Sinclair potential. This is within expectation given the extra-large applied

shear stress of 12GPa.

Due to the periodic boundary conditions, the twin disk will grow to merge with

itself, similar to that observed in quasi-2D simulation of shear loading on perfect

crystal. Simulation observations after that point is of little interest but it is interesting

to note that once the twin region is fully formed it relieves large amount of shear strain

and can even accommodate extra strain through further elastic deformation.

In summary, we have simulated the nucleation and growth of {112}〈111〉 defor-

mation twins in BCC metal molybdenum using a Finnis-Sinclair potential model.

Several different loading conditions have been simulated while our main focus is on

the 3D simulation of homogeneous twin nucleation and growth in a perfect crystal.

It is always dangerous to have prejudgements before looking at simulation results

which will inevitably lead one to interpret the results differently, i.e., you see what

you expect to see. Therefore, I have tried to maintain an objective perspective in



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k)

Figure 6-21: Evolution of the twin (a 3d view).
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examining the simulation results and I believe the following conclusions can be made

from the simulations:

• The nucleated twin is of ellipsoidal disk shape and its thickness gradually de-

creases from the center to the edge where the twin has only a thickness of only 1

layer and can be considered a twinning dislocation loop that has Burgers vector

of 1
3
~b, where ~b = a

2
[111].

• The in-plane expansion of the twin disk is rather fast under the high stresses

applied, having a speed comparable to sound velocity; whereas out-of-plane

growth of the twin disk is much slower, requiring twinning dislocation loop

nucleation on top of the existing twin.

• The critical strain for twin nucleation in perfect crystal is simulated to be around

8% and the critical stress is about 12GPa, compared to much lower values

in the pre-existing crack case. In real experiments, with pre-existing defect

microstructure as well as a much lower strain rate than the ones used in the

above simulations, the strain at which deformation twinning starts to play a

significant role will be much lower than the values reported here.

• Across the twin layers, the relative displacement distribution of the twin is

approximately: (0, ..., 0, b
3
, b

3
, ..., b

3
, b

3
, 0, ..., 0).

In this section we have used large size molecular dynamics simulations to simulate

deformation twinning in BCC molybdenum in a finite-temperature settings with rel-

atively high-strain rate. Analysis of the MD results have provided us with valuable

information about the geometry and characteristics of the homogeneously nucleated

twin. In the next section, we will take a drastically different approach to study twin

nucleation, namely, we will abandon the less important degrees of freedom and con-

centrate on the most important ones to arrive at definitive measures for twinning

nucleation at the atomistic level.
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6.3 1-D Chain Model Analysis

In this section, we design a simple model, the 1-D Chain Model, to study the twin

nucleation problem. The philosophy of the model is to ignore the unimportant degrees

of freedom (DOF) and study only the most important DOF’s; by doing this, the

problem is greatly simplified without losing the true physics and can then be studied

thoroughly in a low-dimension space.

We will first elaborate on the motivation for designing this model and describe

the model, then proceed to apply the model to 1-layer, 2-layer, and multi-layer cal-

culations. Finally, we will summarize the insights that we have gained from these

calculations.

6.3.1 Motivation

From the previous section of MD analysis of twin nucleation and growth, one can

see that large-size MD simulations can indeed provide useful informations as to the

structure and mobility of the twin. However, due to the large size of the simulations,

it is very difficult for human beings to fully understand a defect phenomena in such a

high-dimensional space. What human beings can understand, though, is phenomena

in low-dimensional space. The so-called “insights” on defect mechanisms, in some

sense, is always achieved by a reduction of dimensional space only after which the

large amount of information can be made compact and be understood better by

human beings. The challenge is: how to achieve the reduction in DOF’s without

losing essential physics?

We can draw some inspiration from the problem of dislocations. In the study of

dislocations, we usually start from the problem of straight dislocation and study its

core structure and Peierls stress, which one can call “primary effects”, before moving

on to consider the “secondary effects” such as kinks, jogs, junctions, etc. Here in

the problem of twinning, we can also start from “primary” effects before moving on

to “secondary” effects. Considering the change of thickness of the twinned region

from 1-layer at the edge of the twin disk to multiple layers at the twin center to
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be “secondary” effects, we can then focus on the “primary” effects where the twin

thickness is assumed to be the same everywhere. In other words, let us now consider

an infinitely extended flat twin. Essentially, this is to ignore the in-plane relaxation

and assume all the atoms in the same xy layer are all moving in the same fashion.

Considering the fast in-plane relaxation that we observed in the previous section’s MD

simulations, the most important mode of motion, which I consider to be the layer-to-

layer relative shift, is not lost and essence of the problem is preserved. Furthermore,

after this model analysis, one can extend the model to incorporate the “secondary”

effects to come up with a full-blown model for twin nucleation.

This is indeed the 1-D Chain Model that we will describe below in more details.

With this model, we will be able to study the twinning problem in a much lower di-

mensional space and arrive at quantitative measures and much more thorough analysis

than what one can achieve in a larger dimensional space.

The approach we take here in designing the 1-D Chain model and carrying on

various analysis in low-dimensional space drastically differs from the approach we have

been adopting in the previous atomistic studies that we discussed in the thesis. In

the previous calculations we have been always trying to go into more atomistic details

to discover something; however, here we take an abstraction approach, stepping back

and drastically simplify the problem in an effort to understand better the physics in

a low-dimensional space where the essence of the problem resides.

6.3.2 The Model

As have been discussed, the 1-D Chain Model assumes all the atoms on the same

{112} layer to be linked together rigidly. As one atom moves, all the other atoms on

this layer follow its motion and the whole layer of atoms move in the same direction

by the same amount.

Shown in Figure 6-22 is an example of such a 1-D Chain. Each atom represents a

whole layer of atoms. Each atom has three degrees of freedom: in x, y, and z. In this

problem, the most important DOF is x for each atom, while y and z can be either

allowed to relax or held fixed.
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Figure 6-22: 1-D chain model is indeed a MD simulation of an atomic chain that fully
represents the real shear displacement behavior of the (112) layers.

For example, in Figure 6-22 we have a 1-D Chain that consists of n atoms. Each of

these atom, say, atom #i, has its own coordinates (xi, yi, zi). The absolute value of xi

does not mean much, whereas ∆xi = xi+1 − xi is the relative displacements between

neighboring layers in [111] direction and is a very important order parameter that we

will use in the 1-D chain analysis.

For a N-atom 1-D Chain under PBC, there are N ∆xi’s and 3N DOF’s. The

other 2N DOF’s in yi and zi’s (or, equivalently, in ∆yi and ∆zi’s) shall be allowed to

relax with given ∆xi’s.

We can write total energy of the system as: E = E(∆x1,∆x2, ...,∆xi, ...,∆xn). It
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(a) perfect crystal (b) 1-layer: slip

(c) 2-layer: twin embryo (d) 3-layer: larger twin

Figure 6-23: Schematics of slip and twinning. (a) Undeformed crystal: all ∆xi’s are
close to zero. (b) Deformation through slip (1-layer), relative displacement concen-
trated between two layers and all ∆xi’s are close to zero except one of them. (c) A
2-layer twin: All ∆xi’s are close to zero except two of them. (d) A 3-layer twin: All
∆xi’s are close to zero except three of them.

means for any given configuration (∆x1,∆x2, ...,∆xi, ...,∆xn), we can construct the

corresponding atomic configuration and calculate energy for the atomic configuration

using semi-empirical potential models or electronic structure calculations 4. In this

case, we use a modified Finnis-Sinclair potential model [20, 112] for all the 1-D Chain

calculations.

As shown in Figure 6-23, slip and twinning can both be described by the 1-D Chain

model. The perfect crystal in Figure 6-23(a) corresponds to a 1-D Chain where all

∆xi are zero or close to zero. Slip deformation in Figure 6-23(b) corresponds to a

4One can also use simpler models, e.g., assuming the atoms are harmonic oscillators and write a
corresponding Hamiltonian for the system. However, it will be a much poorer representation of the
true atomic interactions and shall not be used in this 1-D chain analysis where one often has large
local strains which requires more accurate models.

162



1-D Chain where all ∆xi’s are close to zero except for one of them. Therefore, we call

this “1-layer” deformation. A two-layer twin in Figure 6-23(c) corresponds to a 1-D

Chain where all ∆xi’s are close to zero except for two of them. A three-layer twin in

Figure 6-23(d) corresponds to a 1-D Chain where all ∆xi’s are close to zero except

for three of them. One can further extend the consecutive number of non-zero ∆xi’s

to have multiple-layer twins.

On whether to relax ∆yi’s and ∆zi’s, the physical answer is yes: one should

always allow the DOF’s in Y and Z to relax to have a more physical answer. One

can immediately see that in 1-layer case, this is essentially the γ-surface calculation.

Therefore, one can see this 1-D Chain model calculation as a multi-layer γ-surface

calculation: E = γ(∆x1,∆x2, ...,∆xi, ...,∆xn).

However, in some cases, the relaxation in Y and Z are not essential and does not

change the physics, as will be shown in the example below. In those scenarios, one can

save tremendous computing time by not relaxing Y and Z and yet get the physical

answer. This consideration may well turn out to be very important in computationally

expensive model calculations, e.g., electronic structure calculations.

6.3.3 One Layer Analysis

We begin our 1-D Chain model calculations from the 1-layer case. By fixing all the

∆xi’s except for one (∆x1) to zero and varying ∆x1 from 0 to 1b, we obtain the

energy curve with respect to ∆x1, as shown in Figure 6-26 for (1̄10)[111] slip system

and in Figure 6-25 for (1̄1̄2)[111] slip system which is also a twin system. The energy

E = E(0, ..., 0,∆x1, 0, ..., 0).

For (1̄1̄2)[111] slip system, we first calculate E(0, ..., 0,∆x1, 0, ..., 0) without re-

laxing yi’s and zi’s. As shown in Figure 6-24, the energy barrier for slip is 0.84eV,

or in terms of energy per unit length in normal-to-paper direction(Y ): 0.189eV/Å.

Critical shear stress in positive direction is 30.26GPa, whereas critical shear stress in

negative direction is 30.27GPa. The difference is minimal, not reflecting the twinning

anti-twinning asymmetry characteristic of this slip system.

Then we repeat the calculation with relaxations in Y and Z. As shown in Figure
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Figure 6-24: 1-layer analysis for (1̄1̄2)[111] twin system, without relaxation in Y and
Z.

6-25, the energy barrier becomes 0.82eV, or in terms of energy per unit length in

normal-to-paper direction(Y ): 0.184eV/Å. Critical shear stress in positive direction

is 33GPa, whereas critical shear stress in negative direction is 29GPa. The difference

between the two is a result of the asymmetry about ∆x1 = b
2

in the energy curve

in Figure 6-25. The softening in the energy curve at approximately ∆x1 = b
3

did

not result in a meta-stable energy state; however, this is closely related to twin

nucleation and in the 2-layer analysis below we will see it turning into a local energy

minimum that corresponds to a 2-layer twin. The softening in the positive direction

causes the experimentally observed difference in CRSS for twinning and anti-twinning

directions, and the twinning anti-twinning asymmetry will be best viewed in the 2-

layer or multiple-layer analysis settings that we will soon get to.

For comparison, we also calculate E(0, ..., 0,∆x1, 0, ..., 0) for (1̄10)[111] slip system.

As shown in Figure 6-26, the energy barrier for slip is 0.42eV, or in terms of energy
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Figure 6-25: 1-layer analysis for (1̄1̄2)[111] twin system, with relaxation in Y and Z.

per unit length: 0.163eV/Å. Ideal shear strength can be identified as the maximum

slope in the energy curve to be 15.13GPa. Firstly, the critical stress for this slip

system is much smaller than that for {112}〈111〉, since this slip system is the primary

slip system due to the large separation between layers (2.23Å compared to 1.28Å for

{112}〈111〉 slip system). Secondly, the energy curve is fully symmetric about ∆x1 = b
2

and therefore the resistance to positive and negative shear are the same. This is in

contrast to the twinning anti-twinning asymmetry for {112}〈111〉 slip system.

The 1-layer analysis is similar to the γ-surface calculation where one obtains the

misfit energy by a rigid shift between two half crystals along a glide plane. This

calculation reveals that there are no meta-stable energy states except for at ∆x1 = n·b,

where n is an integer, which means there are neither stable stacking faults nor stable

partial edge dislocations on both slip systems.
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Figure 6-26: 1-layer analysis for (1̄10)[111] slip system.

6.3.4 Two Layer Analysis – Twin Embryo

Next we increase the number of free DOF’s so that two of the ∆xi’s are allowed to take

non-zero values. In this 2-layer analysis, we will calculateE = E(0, ..., 0,∆x1,∆x2, 0, ..., 0).

For (1̄1̄2)[111] slip system, we first calculate E(0, ..., 0,∆x1,∆x2, 0, ..., 0) without

relaxing yi’s and zi’s. Now we have two independent variables: ∆x1 and ∆x2. When

plotting energy as a function of ∆x1 and ∆x2, we can plot it as an energy surface,

as shown in Figure 6-27. In the figure, ∆x1 and ∆x2 are both normalized to b, and

energy of the 1-D chain is plotted in units of eV. The height of the energy surface

at given (∆x1, ∆x2) resembles the value of the energy E(∆x1,∆x2). Valleys in the

energy surface correspond to local energy minima and hilltops correspond to local

energy maxima. Due to lattice periodicity of 1b, the energy surface is periodic in
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Figure 6-27: Energy surface in 2-layer analysis for (112)[111] twin system, without
relaxation in Y and Z.

both ∆x1 and ∆x1 with a periodicity of 1b and therefore we only need to calculate

the region of 0 ≤ ∆x1,∆x2 < 1b, as is shown in the figure.

Two important features emerge from the energy surface plot: one is the exis-

tence of a twinning local energy minimum, the other is the twinning anti-twinning

asymmetry.

As one can see in Figure 6-27, except for the energy minima at whole numbers of

lattice spacings, i.e., (∆x1,∆x2) = (0, 0), (0, b), (b, 0), (b, b), there exists an additional

local energy minimum at approximately (∆x1,∆x2) = ( b
3
, b

3
) (to be exact, the mini-

mum is at (0.32b, 0.32b).) This local energy minimum corresponds to a 2-layer twin

structure. The energy barrier for the system to jump from the (0, 0) energy valley to

the ( b
3
, b

3
) valley is 0.706eV, with the saddle point located at (0.36b, 0.16b), whereas
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the energy barrier for the jump from (0, 0) to (b, 0) is 0.769eV, with the saddle point

located at (0.5b, 0.1b).

Figure 6-28: Energy contour in 2-layer analysis for (112)[111] twin system, without
relaxation in Y and Z.

The energy landscape can be viewed more clearly in a contour plot as shown

in Figure 6-28. The contour lines are color-coded by energy, with deep blue being

0eV and deep red being 1.66eV. In Figure 6-29 the energy contour is shown only for

0 ≤ ∆x1,∆x2 < 0.55b so that the details around the twin minimum can be seen more

clearly.

From the energy contour plot one should be able to easily identify the local energy

minima and maxima which are center of converging circles. The twin minimum

is located to be at (0.32b, 0.32b), with the energy being 0.652eV. The nearby local
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Figure 6-29: Energy contour in 2-layer analysis for (112)[111] twin system, without
relaxation in Y and Z. We only show the region 0 ≤ ∆x1,∆x2 < 0.55b so that the
details around the twin minimum can be seen more clearly.

energy maximum at (0.22b, 0.22b) with energy of 0.749eV represents the maximum

energy barrier to jump from (0, 0) to the twin minimum. However, this is not the

true energy barrier. Indeed, the saddle point that represents the minimum energy

required to complete the transition is located at (0.36b, 0.16b) (or symmetrically at

(0.16b, 0.36b)), with the true energy barrier determined to be 0.706eV. The lowest

energy path that leads the system from (0, 0) to the twin minimum passes this saddle

point and the whole path can be determined by following the sparsest separation

between the energy contour lines, i.e., climbing the energy mountain with the path

that has the smallest slope and such a path will be shown later for the relaxed case.

Similarly, we can determine the saddle point for transition from (0, 0) to (b, 0) to
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be at (0.5b, 0.1b), with the energy barrier being 0.769eV.

From these analysis, we can see that the 2-layer twin represents an energetically

meta-stable structure that can be formed with an activation energy of 0.7eV per 1-D

chain. In the competition with dislocation-based slip which is represented by the

transition from (0, 0) to (b, 0), twinning is guaranteed to win when positive shear is

applied, because the energy barrier for the system to jump from (0, 0) to ( b
3
, b

3
) is

0.706eV, smaller than the energy required for slip (0.769eV).

However, if negative shear is applied, then the transition from from (b, b) to ( b
3
, b

3
)

has a different path. Notice the huge mountain that separates the two with the

mountain top being at 1.66eV. The system will try to bypass the mountain and

inevitably fall into the slip minimum at (b, 0) or (0, b). Therefore, the system will

never twin under negative shear.

The energy barrier for slip under negative shear is even higher than the energy

barrier for slip under positive shear: 0.859eV. However, since twinning becomes im-

possible, this is the only deformation mode and will always be favored.

The difference in energy barrier between positive shear and negative shear high-

lights the twinning anti-twinning asymmetry on {112} that can be observed in ex-

perimental CRSS measurements, as have been discussed in Chapter 2. Here we have

shown that the asymmetry is due to the existence of a twinning energy minimum and

consequent lower energy barriers when positive shear is applied.

Now we redo the calculation with relaxations in Y and Z and see whether the

physics is changed.

As shown in Figure 6-30, the twin minimum again shows up in the energy surface.

In Figure 6-31 we take a side view so that the normal-to-paper direction is parallel

to ∆x2 axis. From both figures, the twin minimum is clearly visible. The energy for

the twin minimum is 0.611eV and the exact location of the twin minimum remains

at (0.32b, 0.32b).

Shown in Figure 6-32 is the energy contour plot for the relaxed case. Again, we

can determine the energy barriers for transition between the energy minima. Under

positive shear, the system can either twin or slip. The energy barrier for twinning is
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Figure 6-30: Energy surface in 2-layer analysis for (112)[111] twin system, with re-
laxation in yi’s and zi’s.

0.672eV with the saddle point at (0.36b, 0.16b), whereas the energy barrier for slip is

0.736eV with the saddle point at (0.5b, 0.09b). Under negative shear, the system can

only slip, with an energy barrier of 0.808eV.

Utilizing the energy contour, we can also plot out the whole minimum-energy

path for either slip or twinning. As shown in Figure 6-33, the minimum-energy

path for twinning connects the perfect lattice energy minimum (0, 0) and the 2-layer

twin minimum ( b
3
, b

3
) whereas the minimum-energy path for slip connects the perfect

lattice energy minimum (0, 0) to the slip minimum (b, 0). The two paths bifurcates at

(0.29b, 0.03b), before either of the saddle points have been encountered. The system

can either twin or slip after the bifurcation point; however, since the twinning path

has a lower energy barrier (0.672eV) than the slip path (0.736eV), twinning will be
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Figure 6-31: Energy surface in 2-layer analysis for (112)[111] twin system, with re-
laxation in yi’s and zi’s. A side view so that the normal-to-paper direction is parallel
to ∆x2 axis.

favored.

From this analysis, we can define a simple energy criterion for competition between

twinning and slip. We denote γtwin as the activation energy for the twin nucleation in

the 1-D chain model, and γslip as the activation energy for slip. Then we can compare

γtwin to γslip to see which mode will be favored when they come into competition:

Twinning favored, if γtwin < γslip;

Slip favored, if γtwin > γslip.

For (1̄1̄2)[111] system, γtwin = 0.672eV < γslip = 0.736eV; therefore, twinning is

favored and (1̄1̄2)[111] is a twin system.

This simple energy criterion can be used to identify or confirm twin systems in
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Figure 6-32: Energy contour plot in 2-layer analysis for (112)[111] twin system, with
relaxation in Y and Z.

simple and complex structures.

For comparison, we have also calculated the energy surface E(∆x1,∆x2) for

(1̄10)[111] slip system. As shown in Figure 6-34, the only energy minima are at

(0, 0), (b, 0),(0, b), and (b, b). There is no twin minimum in the energy surface and

the only choice for system under shear is to slip. The energy surface is completely

symmetric about ( b
2
, b

2
). The energy barrier for (1̄10)[111] slip is 0.422eV, much lower

than the energy barriers for (1̄1̄2)[111] slip or twin, again in agreement with the fact

that {110}〈111〉 is the experimentally observed primary slip system; the minimum-

energy path is extremely simple in that it is a straight line connecting (0, 0) and (b, 0)

and the saddle point is the center of the line at ( b
2
, 0).
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Figure 6-33: 2-layer minimum-energy path analysis for (112)[111] twin system, with
relaxation in Y and Z.

Figure 6-34: 2-layer analysis for (110)[111] slip system.
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6.3.5 Multiple Layer Analysis

Figure 6-35: Multiple-layer analysis for (112)[111] slip system. Minimum energy is
plotted as a function of increasing shear strain imposed on the 1-D chain.

Now let us extend the 1-D chain analysis to multiple layers. Now we allow N of

the ∆xi’s to take non-zero values (N > 2). In this N -layer analysis, we will calculate

E = E(0, ..., 0,∆x1,∆x2, ...,∆xN , 0, ..., 0).

Since now we have more than 2 independent variables (nonzero ∆xi’s) and together

with the dependent variable (energy) the total number of variables is greater than 3

and can not be easily visualized like we did in the 1-layer and 2-layer analysis. Instead

of plotting all of the ∆xi’s out explicitly, we now plot only the total displacement in

X, Σ∆xi. The minimum-energy path is followed as the total displacement in [111] is

increased from 0 to b
3
, 2b

3
, etc., and the minimum energy is plotted against the total

displacement normalized by b
3
, as shown in Figure 6-35.

Evident from the plot is that there is no meta-stable states for total displacement

of b
3
, but starting from 2b

3
there are energy minima that correspond to nucleated
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Figure 6-36: Details of the minimum energy curve as a function of increasing shear
strain imposed on the 1-D chain.

Figure 6-37: Minimum-energy path plotted in 3D space defined by ∆x1, ∆x2 and
∆x3.
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twins. The energy minimum at 2b
3

corresponds to a 2-layer twin, the energy minimum

at b corresponds to a 3-layer twin, etc. As we impose greater and greater shear

strain on the 1-D chain, a 2-layer twin is firstly nucleated which is then followed

by subsequent twin growth. The energy barrier for twin growth in the 1-D chain

model is approximately equal to the twin nucleation barrier, and the energies of the

multiple-layer twins are also approximately the same: from 2-layer twin to 10-layer

twin, they all have an energy of about 0.6eV.

Figure 6-38: Minimum-energy path plotted in 3D space defined by ∆x1, ∆x2 and
∆x3. View angle different from previous figure.

Shown in Figure 6-36 is a more detailed picture of the energy vs. shear strain

plot. From this plot one can see that there are small differences between the different

layers of twin structure. One obvious feature is that the growth from 2-layer to 3-

layer twin is associated with a slightly higher energy barrier and is rewarded with a

lower energy minimum at 3-layer structure. One can expect the initially nucleated

2-layer twin to be short-lived due to its higher energy than the 3-layer twin and the

fact that usually the externally applied shear will tilt the energy landscape to make

the difference more pronounced than shown in the figure. However, the 2-layer twin

is the minimum structure for twin nucleation and it is the right twin embryo that we
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should study.

Figure 6-39: Minimum-energy path plotted in 3D space defined by ∆x1, ∆x2 and
∆x3. Still another view angle.

The minimum-energy path analysis is essentially the same for multiple layer cal-

culations, but the visualization of the path becomes much harder than in the 1-layer

and 2-layer case. In Figure 6-37, 6-38 and 6-39 we look at the minimum-energy path

for the system as the total applied shear strain is increased. The path is plotted in

a 3-D space defined by ∆x1, ∆x2, and ∆x3. Starting from 0 total strain, initially

all the ∆xi’s take on the same amount of shear strain, which shows up as a straight

line pointing out from (0, 0, 0) in the direction of (1, 1, 1). Then the system sees that

it is more beneficial energetically to distribute the strain unevenly and the result is

one of the ∆xi’s, in this case, ∆x2, takes a much greater value than the others, this

shows up as a turning point in the path plots. Soon ∆x2 grows to approximately b
3

and the system comes to the bifurcation point where it needs to decide whether to

go down the twinning path or the slip path. Due to the lower energy barrier ahead

in the twinning path than in the slip path, the system decide to take the twinning

path, overcomes the energy barrier for the twin nucleation, and forms the 2-layer

twin. Now the system stands very close to (0, b
3
, b

3
). As shear strain is increased, the
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system overcomes the next energy barrier and the 2-layer twin grows to 3 layers. Now

the system stands close to ( b
3
, b

3
, b

3
). Further straining the system will make the twin

grow larger, but the action can not be analyzed well in this 3-D plot.

6.3.6 Insights

The 1-D chain model have proven to be a powerful tool to analyze the twin nucleation

and growth problem. From the above calculations, we are able to draw the following

conclusions and insights:

First, on {112}〈111〉 system, two-layer twin structure is stable and shall be consid-

ered a legitimate twin embryo. Previous results by Vitek [138] reported that minimum

twin structure in BCC molybdenum has three layers is most probably inaccurate due

to the pairwise potential used in the calculation.

Second, this 1-D chain model calculation goes much further than the previous

calculations of twin structures in that now we can not only find out the stable defect

structures by searching for energy minima but can also analyze the energy landscape

and find out the minimum-energy path as well as the saddle points. The twinning

problem, in this low dimensional space, becomes a well-defined mathematical problem

that we can solve with full confidence. The solution we provided is obtained by a

combination of optimization techniques including grid search (a mapping of the whole

energy landscape at grid points), first-order energy minimization (minimizing energy

with the help of first-order derivatives, i.e., the forces), and constrained optimization

(given total shear strain, minimize energy). Unlike usual energy minimization stud-

ies with normal techniques, e.g., nudged-elastic-band method, which usually suffer

from the uncertainties introduced by the initial guess, there is no arbitrariness in the

solution we have obtained and the solution is a robust and sound one.

More importantly, using the 1-D chain model, we have formulated a method to

identify the twin systems by looking for twin energy minima in low-dimensional space

defined by ∆xi’s. Once a twin energy minimum is identified, one can proceed to

apply the simple energetic criterion to confirm whether twinning will be favored in

competition against slip on the particular system: twinning is favored if γtwin < γslip;
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otherwise slip is favored.

Finally, path analysis reveals that system undergoes several stages where distri-

bution of energy(strain) behaves differently. This can be shown more clearly in the

4-stage wave-steepening analysis in the next section.
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6.4 4-Stage Wave-Steepening in Defect Nucleation

As have been discussed in the previous section, the minimum-energy path analysis

of the 1-D chain under applied shear strain revealed that there are several distinct

stages before the 2-layer twin is nucleated. In the initial stage, the applied shear

strain is equally partitioned among all the layers; later, one of the layers starts to

take on more strain than others; then, the shear strain on this particular layer keeps

growing until the system comes to a bifurcation point where the local strain on this

layer is already rather large; finally the system decides on which defect structure to

form and in the previous case, twin nucleation is favored against slip and a 2-layer

twin is nucleated as a result.

This strain localization process can also be understood in the context of energy

distribution. Since in the 1-D chain model, energy is closely related to shear strain

which is fully represented by the ∆xi’s, the process of strain localization is indeed

also a process of energy localization.

It is relatively straightforward to understand the strain/energy localization process

in the context of energy landscape. By looking at the energy surfaces and energy

contours like the ones shown in the previous 2-layer 1-D chain analysis, one can

understand the reason for the strain/energy localization is that given the total shear

strain, the system will favor the structure that gives the lowest energy. Under small

shear strain, lowest-energy structure is the one where strain is equally partitioned.

Under high shear strain, lowest-energy structure changes to something that has a

local concentration of strain (energy).

In this section, we take a new view angle and analyze the strain/energy localization

process in a 4-stage wave-steepening context. The concepts introduced here applies to

the universal problem of defect nucleation and may have long-reaching implications.

As shown in the top figure of Figure 6-40, we have an initial perfect crystal struc-

ture that has zero strain. The horizontal axis is the [1̄1̄2] direction and the vertical

axis is the Burgers vector direction, [111]. We impose an initial sinusoidal wave per-

turbation on the system by displacing the atoms in [111] direction by the amount
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Figure 6-40: Setup of the simulation. The first graph shows the initial crystal struc-
ture. We impose an initial sinusoidal wave perturbation on the system by displacing
the atoms by the amount designated by the sine function.

designated in the sine curve. Further more, we apply a homogeneous shear strain

on the whole system, as shown in the bottom figure of Figure 6-40. After these two

steps, we have the atomic configuration whose strain field contains a homogeneous

component and a small wave perturbation. We use this configuration as the initial

configuration and run MD simulation at a temperature of T = 10K. The dynamics of

the system is followed and the strain(energy) localization process is analyzed together

with the evolution of initial wave that we put in.

Although we have shown more than one atoms for each (1̄1̄2) layer in Figure 6-40,

the atoms on the same layer are indeed connected rigidly and the system is a 1-D

chain of atoms. In other words, this is a simulation of the dynamics of the 1-D chain

under initial small wave perturbation.

In particular, we are interested in the behavior of the system at the critical point,

i.e., how does the strain get localized and formed the defect? Therefore, we will use

a shear strain of 0.215 which is very close to critical point. With the help from the

introduced wave perturbation, defect will be nucleated and let us analyze the different

stages of the nucleation process.
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Figure 6-41: First stage: linear growth.

1. Stage 1: Linear Growth

As shown in Figure 6-41, the initial stage is characterized by the linear growth of

the sinusoidal wave. In this stage, the sinusoidal shape of the wave is maintained

and the only change to the wave is in the amplitude. This stage can be well

described by continuum theory.

This stage corresponds to the equal-partitioning of the strain (energy) among

all the atoms (layers). Strictly speaking, at any given moment, the strain or

energy for the different atoms (layers) are not exactly the same. However, no

deviation from the equal-partition can last with the oscillation of the wave.

2. Stage 2: Non-Linear Growth

As the simulation goes on and the amplitude of wave grows larger and larger, the

linear description no longer holds and non-linear behavior emerges, as shown

in Figure 6-42. This stage is characterized by the non-linear growth of the

wave. Now the wave no longer maintains its initial sinusoidal shape and the

wave-front steepens due to increasing non-linearity. Despite the steepening,
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Figure 6-42: Second stage: non-linear growth.

continuum description still holds.

In this stage, the equal-partition of strain (energy) among the atoms has the

tendency to become broken. However, it is not yet completely broken.

3. Stage 3: Shear Shock Formation

In this stage, the wave steepening caused the wave-front to shrink to a level

where atomically sharp shock is formed, as shown in Figure 6-43. At this stage,

continuum description no longer holds at the shock and the system can only be

described in atomistic terms.

Now the equal-partition of strain as well as energy among the atoms (layers) are

completely broken, with a smaller number of atoms (layers) making the sacrifice

and taking on much greater strain than the others.

4. Stage 4: Formation of Atomic Defect

With the shear strain already localized, now the system further proceeds to

make a decision to form a local defect (defects), as shown in Figure 6-44. This

stage, by no doubt, can only be described atomistically. What type of defect
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Figure 6-43: Third stage: shear shock formation.

Figure 6-44: Last stage: formation of atomic defect.
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is formed is an atomistic decision. Whether it is going to be a dislocation or

twins or other kinds of defects, the decision is determined by the atomistic

energy landscape. The important parameters that affects this decision are the

activation energy barrier for the defect formation and the defect energy itself.

In summary, in the above 1-D chain dynamics simulation, we have introduced a

normal mode perturbation wave to probe the behavior of the atomic system close to

instability. The introduced perturbation wave is a shear wave that has a wave length

of the dimension of the cell, and the probed instability is a shear instability.

From the simulation, we have followed the evolution of the perturbation wave and

are able to characterize the process of defect nucleation into four stages: linear growth,

non-linear growth, shear shock formation, and finally formation of atomic defect. The

wave-steepening process is seen to be intimately related to the localization of strain

and energy. It is also worth mentioning that the wave-steepening which results in

defect nucleation can not happen without growing non-linearity. A model that has

no built-in non-linear considerations will not be able to reproduce these results.
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6.5 Summary

In this chapter, we have studied the nucleation and growth of deformation twins in a

BCC metal molybdenum using atomistic models.

We began our study by large-size molecular dynamics simulations in both quasi-

2D and 3D. In particular, 3D simulation revealed several important features of twin

nucleation, namely, the geometry characteristics of the nucleated twin and the speed

of twin growth in different directions.

Although the large-size simulations provided a way to directly observe twin nu-

cleation and growth, it is difficult to analyze the simulation results due to the large

number of DOF’s. A physically-motivated 1-D chain model drastically simplifies the

problem yet manages to capture the most important physics. In this chapter, we

have shown that the 1-D chain model calculations can be very powerful in completely

and thoroughly describe the twin nucleation and growth in a low-dimensional space.

Important insights about the initial structure of the twin embryo as well as a simple

energetic criterion have been developed from the 1-D chain model analysis. Further

ahead we see that combining the 1-D chain model with elasticity would have a great

potential in accurately describing the twin nucleation and growth phenomena in given

materials.

The process of twin nucleation can be understood in a more general framework.

Namely, homogeneous nucleation of any type of defect is closely related to the process

of strain (energy) localization. Using 1-D chain dynamics simulation, we have catego-

rized the strain (energy) localization process into four stages where a wave steepening

picture provides us a clear view of how the strain is localized. This new perspective

is general enough to apply to formation of any kind of defects.
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Chapter 7

Summary and Outlook

7.1 Summary of Work

In this thesis, atomistic work on the nucleation and migration of two types of defects,

dislocations and twinning, and presented for a BCC metal molybdenum. For dislo-

cations, three contributions are presented, as discussed in Chapter 2, Chapter 3 and

4, and Chapter 5, respectively:

1. PBC Image Correction

Due to the finite size of atomistic models, atomistic studies of dislocations always

use certain type of boundary conditions. The result is that the atomistic model

differs from the ideal situation of a dislocation in an infinite medium. It not only

makes the task of creating initial dislocation configuration more complicated, but

also may introduce artificial effects to the simulation. Before discussing any actual

calculations, it is important to first clarify how dislocations can be set up in a finite

simulation cell and what are the correction effects that need to be considered. In this

thesis the Periodic boundary condition(PBC) has been used in all the simulations

that have been performed.

Creating a dislocation configuration under PBC involves two steps: (1)Calculate

the displacement field ~u(x, y, z) under PBC; (2)Create dislocation configuration ~ri

from ~u(x, y, z). For the first step, one needs to evaluate ~u(x, y, z) due to an infinite
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array of dislocations that arise from PBC and the problem is known to be conditionally

convergent. One of the solutions is to subtract a linear field from the result that one

gets from a finite summation, which then removes the mismatched ~u(x, y, z) at the

periodic boundaries [7, 143, 8]. The second step is essentially a mapping between

continuous field ~u(x, y, z) and its discrete representation ~ri. I have found that the

usual treatment of evaluating ~u(x, y, z) at the lattice sites and then moving atoms

from these lattice sites by the same amounts yields inaccurate positions for atoms.

The treatment itself is also not self-consistent. A mathematically sound solution

for the atomic positions x, y, z that is self-consistent is to require that ~u(x, y, z) =

(x − xL, y − yL, z − zL), rather than ~u(xL, yL, zL) = (x − xL, y − yL, z − zL),where

(x, y, z) is the real atomic position and (xL, yL, zL) is the nearby lattice site. (The

solution to the equation in each bounded region, i.e., between lattice sites, can be

obtained using numerical methods like Newtons method, binary search, etc.) This

guarantees the uniqueness of the mapping between displacement field and real atomic

representation and that appropriate numbers of atoms are generated. This two-step

process is illustrated in Figure 2-4 and Figure 2-5.

After an atomic dislocation configuration is generated, one should not start the

simulations without quantifying the artificial effect of the image dislocations that

are introduced by PBC. Contrary to common belief that using large size simulation

cells will make the image effects diminish, the artificial image energy barrier for a

dislocation moving within the periodic cell can still be very high, regardless of the

simulation cell size. We have evaluated such barriers for edge and screw dislocation

dipole configurations under PBC for different cell geometries and found that it is a

sensitive function of the aspect ratio of the cell, as shown in Figure 2-8. The optimal

aspect ratio, one which minimizes the artificial energy barrier, has been identified and

used in later simulations.

2. Core Structure and Peierls Stress for Screws in Mo

Screw dislocations in Mo, due to its importance in low temperature plasticity,

have been the object of intense atomistic studies; however, controversies remain even
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for the very fundamental problem of core structure and Peierls stress. On the core

structure of screw dislocations, it has long since been recognized that it exhibits “3-

way splitting” (to be called the “polarized core”) and it has been considered the

source of high lattice resistance to screw dislocations. However, recently a “symmet-

ric core” (“unpolarized core”) has been obtained by density functional theory (DFT)

calculations by Arias [144]. In this thesis we have computed the screw core struc-

ture using yet another model – the tight-binding model. Since this potential model

is less computationally intensive than the DFT calculations, we now can afford a

larger simulation cell to make the dislocation packing less dense which results in a

better approximation to the real core structure. Adopting a quadrupole configuration

that minimizes the image stress, we have obtained a relaxed screw core that shows

unpolarized core structure, the differential displacement map of which is shown in

Figure 3-11, together with that for polarized core obtained from Finnis-Sinclair and

MGPT semi-empirical potentials. Since both DFT and tight-binding model predict

an unpolarized core, we believe the ground state of the screw dislocation core to

be unpolarized. It is natural to expect that an unpolarized core will be more com-

pact and therefore will exhibit higher mobility. How big a difference this makes and

whether this will bring the Peierls stress down to values comparable to experimental

critical resolved shear stress (CRSS) of 400 − 700MPa, will not be known until the

Peierls stress is accurately determined.

Traditionally, the Peierls stress (τP ) is calculated by shearing the simulation cell

until the dislocation moves and recording the virial stress at that moment. However,

as we have discussed above, the effects of boundary conditions can introduce large

errors in the result, affecting the result by more than one order of magnitude. The

inaccurate nature of virial stress also adds to the unreliability of the result. To acquire

an accurate Peierls stress, we have implemented the local-driving-force method [95]

which is based on the Gibbs free energy concept and therefore does not suffer from

the problems of the virial stress and image stress effects. Using this method, we

have obtained a Peierls stress of ∼ 3GPa using tight-binding model. A comparative

study using the Finnis-Sinclair semi-empirical potential predicts τP to be 1.93GPa.
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Since τP from tight-binding unpolarized screw core remains rather high, it leads to

the conclusion that whether the core is polarized or not does not affect the order

of magnitude of τP . What we can also learn from this is that although empirical

potential models predict incorrectly the fine structure of screw cores, quantitative

prediction of Peierls stress does not seem to deviate from the more accurate methods

too much and therefore may still be acceptable.

Since the straight screw dislocation indeed has a very high τP , it implies that kink

mechanisms may be important for screw dislocations in Mo. Using MD, we have

simulated migration behavior of kinks on screw dislocations, as shown in Figure 3-22.

We find that at applied stresses as low as 40 MPa, the kink on screw dislocation moves

at a rather high velocity, with a viscous drag coefficient comparable to that of edge

dislocations. This signifies the low lattice resistance of kinks on screw dislocations and

also implies that the controlling process is kink nucleation rather than kink migration,

since the kink nucleation activation barrier is ∼ 0.7 eV, as shown by Ngan [145].

3. Core Structure and Peierls Stress for Edges in Mo

Edge dislocations in Mo, having a planar core structure, are widely believed to be

highly mobile and do not contribute much to material plasticity at low temperatures.

However, recent atomistic studies by other researchers [3] have found an unreasonably

high Peierls stress for straight edge dislocations. This is a rather confusing result

although one can hypothesize that the high mobility of edge dislocations observed in

experiments is due to kink mechanisms.

We first examine the core structure of the edge dislocation. As in Figure 4-3, the

high-energy core atoms consist of two rows of atoms that highlight the planar nature

of the edge dislocation in Mo. We also plot the misregistry between these two rows to

quantify the core width of edge dislocations. The unrelaxed configuration which was

prepared using elasticity and the recipes described above had a core width of only

5Å, while the Finnis-Sinclair relaxed core has a width of ∼ 10Å. The wide and planar

core structure will naturally lead to low lattice resistance, i.e., τP , as predicted by

simple Peierls-Nabarro model and will be soon verified using atomistic calculations.
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Using a PBC dipole setting, we have carefully calculated the Peierls stress (τP ) for

edge dislocation in Mo with varying cell geometry, specifically the aspect ratio of the

simulation cell. There are two major findings: (1) The calculated Peierls stress varies

significantly (from 700MPa to 25MPa) with the aspect ratio, as shown in Figure

4-7. The 30-fold difference due to the artificial image energy barrier signifies the

importance of the correction for boundary condition effects. (2) The converged value

of τP is 25MPa, one order of magnitude lower than previously reported, suggesting

a large image effect in the previous calculation. This results confirms that edge

dislocation has extremely low lattice resistance and is highly mobile even as a rigid

line without any assistance from kink mechanisms.

4. Edge Dislocation Mobility and Drag Coefficients

Using Parinello-Rahman MD, we have simulated edge dislocation motion under

constant temperature and constant stress conditions with varying loading conditions.

At zero pressure, a mobility data array corresponding to a range of stress (40MPa to

7GPa) and temperature (40K to 1000K) has been obtained and we have the following

findings: (1) The temperature dependence of dislocation velocity is most pronounced

at low stresses, where the behavior of increasing velocity with decreasing temperature

signifies that the dislocation motion in the simulated stress regime is not a thermally-

activated process but one that is controlled by viscous drag (phonon drag). As applied

shear stress increases, temperature dependence of dislocation velocity becomes less

visible, giving approximately the same velocity values across different temperatures,

as shown in Figure 5-9. (2) Stress dependence of dislocation velocity, which can be

characterized using the exponent m if one considers that v ∝ σm: Since the simulated

stresses are all greater than τP of edge dislocations, 25MPa, and the dislocation motion

is only impeded by viscous drag, there is a linear relation between v and σ and

therefore m = 1 in low stress regions (σ < 0.4GPa). Drag coefficient in this region is

approximately a constant, 6× 10−5Pa · s. However, as the stress is further increased,

dislocation velocity becomes greater than half the shear wave speed cs = 3260m/s,

the relativistic effects kick in and the linear relation between σ and v gives way to an
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asymptotic behavior where σ theoretically could grow up to theoretical shear strength

σmax as v approaches the Raleigh surface wave speed cR = 0.9345·cS = 3050m/s. The

exponent m quickly drops to values close to 0.25 and the drag coefficient B is no longer

a constant; rather, it becomes an increasing function of σ and exhibits approximately

linear growth with σ, as shown in Figure 5-10 and Figure 5-11, growing to a value of

7.7×10−4Pa·s at σ = 7GPa. These simulation results of drag coefficients can be used

in a variety of models, including dislocation dynamics, mesoscopic models, and any

model that incorporates dislocation mobility in the viscous drag regime. The different

behavior of drag coefficient at low and high stresses is also an important discovery

that indicates the importance of relativistic effects when dislocation velocity becomes

comparable to sound velocity. (3) Dislocation velocity is also found to be a decreasing

function of external pressure, as shown in Figure 5-12(d).

Another interesting finding of the present work is that at a velocity close to vR

and stress close to 7GPa, a discrete jump in dislocation velocity to longitudinal wave

speed vl is observed. This jump in dislocation speed is accompanied by a profound

change in the dislocation core, still planar but much wider.

On the subject of twinning nucleation and growth, we have adopted two different

approaches.

In the first approach, twinning nucleation process is simulated using MD method.

The simulations are done in three different settings: quasi-2D pre-existing crack with

mode-I loading, quasi-2D shearing of perfect crystal, and 3D shearing of perfect crys-

tal. In the quasi-2D crack case, twin is nucleated at the crack tip and continues to

grow into the bulk on a (112) plane. In the perfect crystal shearing cases, twin is

nucleated at a random site (due to lack of pre-existing defects as nucleation sites) at

about 12GPa of critical stress and 7.9 percent strain. More importantly, it is found

that after the initial nucleation of a circular twin disk, the disk keeps its circular

shape during its growth while its sharp edges expand at speeds of roughly 6000 m/s,

comparable to the longitudinal wave speed cL = 6740 m/s.
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The first approach has its merit in that the full atomistic process of nucleation

and growth can be captured; however, it involves an unnecessarily large number of

degrees of freedom, most of which may not be essential to the physics. Therefore, a

second approach is taken to analyze the twinning process. A 1-D chain model is used

to capture the most important degrees of freedom, i.e., the relative shift between the

planes as well as relaxation normal to the shift plane, while in-plane relaxations are

ignored. With this approach, we have only N parameters if we are to study N layers.

In this highly condensed parameter space, the energy surface is calculated and it is

revealed that there is no energy minimum that corresponds to meta-stable partial

slip when N = 1; however, there exists an energy minimum at (∆x1 = b
3
,∆x2 = b

3
)

that corresponds to a 2-layer twin embryo, as shown in Figure 6-30. Comparing to

earlier results by Vitek using a pair potential that predicted no stable 2-layer twin

embryo exists (therefore, the minimum layer of twin is 3), our calculation uses a better

potential model and therefore is more likely to provide a more realistic picture. To

confirm this a DFT 1-D chain analysis will be undertaken.

With the 2-layer being the twin-embryo, we have studied the energy contour of

(∆x1,∆x2) and identified the minimum-energy path that leads from perfect lattice

to twinned 2-layer structure, as well as the path corresponding to slip process. The

bifurcation point of the two paths is found to be near ( b
3
, 0). More importantly,

the low-energy path clearly shows that initially strain is distributed evenly between

different layers and the strain localization only happens at later stage when wave

steepening caused by increasing nonlinearity. A four-stage description of the wave-

steepening process can offer much insight towards the understanding of the formation

of twin embryos. Moreover, the wave-steepening description is applicable to more

general problems of nucleation of defects that could include dislocations and defects

alike.

Summary

Atomistic studies in dislocation and deformation twinning modeling have been

presented to highlight the particular challenge of understanding plastic behavior of
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metals at the atomistic level. As we have illustrated in the dislocation modeling con-

tributions, one has to consider the difference between the model and the intended

settings and remove or minimize any artifacts arising from these differences. In the

deformation twinning modeling contributions, we have clearly shown that a reduc-

tion of degree of freedoms leads us directly to the core of the problem and a clear

physical picture of the nucleation process. In both cases, atomistic calculations have

provided mechanistic understanding as well as quantitative measures for nucleation

and migration of the the defects of interest.

7.2 Outlook

The most exciting part of this thesis is the final section on twinning nucleation analy-

sis. One can always find great beauty in simplification and generalization of complex

systems and complicated problems. The challenger is how to make the simplifications

without loosing the real physics.

The 4-stage defect nucleation process by wave-steepening is another example of

generalization. Further along this direction, more research can be and should be done

to quantify the criterions for transition from one stage to the next. Good amount of

work has been done for the transition from the 1st stage to the second (see Li et al,

Nature, 2002), while the others await to be explored.

In the direction of dislocations, a coupling between atomistic and continuum mod-

els has been demonstrated to be possible and this is one exciting area where significant

progress can be made with the so-called “atomistically-informed” continuum models.

A philosophical issue about atomistic modeling of materials is that since it is

a stand-alone simulation approach, one can either do everything with “full atom-

istic”, or try to use knowledge from other levels of modeling, e.g., elasticity theory. I

find great beauty in both. An example for the former case is the local-driving-force

method derived by Ju Li in his Ph.D. thesis which beautifully calculates the resis-

tance to defect migration by using a very local atomistic region and invariance was

demonstrated to hold with respect to size and defect environment. An example for
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the latter case is the semi-discrete model work by Vasily V. Bulatov in 1996 where

atomistic information is coupled with elasticity theory to accurately produce Peierls

stress values and it is demonstrated to be very accurate and powerful. It is my belief

that both approaches are critically needed to give the atomistic modeling the much

needed predicting power.
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