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Abstract 
 
 

Knowledge of how groups of people interact is important in many disciplines, e.g. 
organizational behavior, social network analysis, knowledge management and ubiquitous 
computing. Existing studies of social network interactions have either been restricted to 
online communities, where unambiguous measurements about how people interact can be 
obtained (available from chat and email logs), or have been forced to rely on 
questionnaires, surveys or diaries to get data on face-to-face  interactions between people. 
 

The aim of this thesis is to automatically model face-to-face interactions within a 
community. The first challenge was to collect rich and unbiased sensor data of natural 
interactions. The "sociometer", a specially designed wearable sensor package, was built to 
address this problem by unobtrusively measuring face-to-face interactions between people. 
Using the sociometers, 1518 hours of wearable sensor data from 23 individuals was 
collected over a two-week period (66 hours per person). 

 
This thesis develops a computational framework for learning the interaction structure 

and dynamics automatically from the sociometer data. Low-level sensor data are 
transformed into measures that can be used to learn socially relevant aspects of people's 
interactions –  e.g. identifying when people are talking and whom they are talking to. The 
network structure is learned from the patterns of communication among people. The 
dynamics of a person’s interactions, and how one person’s dynamics affects the other’s 
style of interaction are also modeled. Finally, a person’s style of interaction is related to the 
person’s role within the network. The algorithms are evaluated by comparing the output 
against hand-labeled  and survey data. 
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Chapter 1: Introduction 

“Social scientists, particularly economists, have a fatal attraction for working on 
theoretical propositions with mathematical models and avoiding the real world.” 

      Richard Cyert (1994)  

 

In almost any social and work situation our decision-making is influenced by the 

actions of others around us. Who are the people we talk to? For how long and how often? 

How actively do we participate in the conversations we have?  Can we identify  people’s 

interactions automatically? Can we identify the individuals who talk to a large fraction of 

the group or community members? Such individuals, often referred to the connectors, play 

an important role in information diffusion [1]. Answers to these questions have been used to 

understand the success and effectiveness of a work group or an organization as a whole. 

Thus, knowing  the connection structure and nature of communication among people within 

a community are important in trying to understand the following phenomena:  (i) diffusion 

of information (ii) group problem solving (iii) consensus building (iv) coalition formation 

etc. Although people heavily rely on email, telephone and other virtual means of 

communication, research shows that high complexity information is mostly exchanged 

through face-to-face interactions [2]. Informal networks of collaboration within 

organizations coexist with the formal structure of the institution and can enhance the 

productivity of the formal organization [3]. Furthermore, the physical structure of an 

institution can either hinder or encourage communication. Usually the probability that two 

people communicate declines rapidly with the distance between their work location [2, 4]. 

Being able to measure the relationship between communication networks and different 

environmental and organizational attributes will enable us to create better workplaces with 

improved communication and collaboration among their members.  The knowledge of 

people’s communication patterns can also be used in improving context-aware computing 
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environments that is not only aware of the user but also how she is embedded in the larger 

collective.   

 
Figure 1-1: Role of from face-to-face interaction in high complexity information exchange 
(from Prof. Allen's paper [2]) 

To date, most of the research in social network analysis and organizational 

communication that analyze interaction patterns are based on self-reports. However, studies 

show that self-reports correspond poorly to communication behavior as recorded by 

independent observers [5]. Getting observational data on  communication is important in 

the studies of networks in organizations and other social collectives. But human interactions 

are diffuse and unpredictable and thus very difficult to observe directly. Existing methods 

that use humans observers to record communication in groups are impractical, as it would 

require observers to be placed in every possible location conversations may occur, or have 

observers follow every member of the group. The observation of face-to-face verbal 

message exchange behavior in large collective groups can only be made practical if an 

acceptable replacement for human coders is found.  

As wearable computers become more and more integrated into our daily life it 

provides the opportunity to use appropriate sensors to capture information about how 

groups of people interact over periods of weeks, months and even years. This work 
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demonstrates the feasibility of using wearable sensor packages that are uniquely designed to 

collect auditory, motion and identification data from people wearing them and methods to 

detect and identify face-to-face communication patterns in organizations and other social 

groups. 

As many of our interactions over the course of weeks and months are repetitive, if we 

are able to collect sensor data from people over an extended period of time it will be an 

ideal dataset for using statistical pattern recognition algorithms to reliably learn reoccurring 

patterns in communication among group members. The main hypothesis of this thesis is 

that these patterns of communication in groups can be captured by wearable sensors worn 

by the group and recognized by machine learning methods, thus serving as a viable 

alternative for human coders.  

Our first task is to design a wearable platform that is acceptable and adopted by a large 

user base and captures reliable data from the user. The collected data from the wearable is 

used to extract robust interaction features from the data which can identify when people are 

talking, who they are talking to and the duration and nature of our face-to-face interactions. 

The next task is to use these features to statistically estimate the group structure and the 

dynamics of  communication within the network. Doing this will allow us to answer some 

of the following questions: are some people better connected than others? Does the physical 

layout of groups have noticeable effect on communication?  How does the communication 

pattern vary over the course of the day? How do individual interaction dynamics affect each 

other during conversations? 

In summary, this work outlines a complete system that enables a sensor-based 

approach to measuring interactions between groups of people, addressing issues from 

sensor selection to sensor packaging to robust feature extraction and dynamic models of 

group interaction.     

1.1 Motivation and Background 

“We like to think of ourselves as individuals capable of making up our 
own minds about what we think is important, and how to live our lives. 
Particularly in the United States, the cult of the individual has gained a 
large and devoted following, governing both our intuitions and our 
institutions. Individuals are to be seen as independent entities, their 
decisions are to be treated as originating from within, and the outcomes 
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they experience are to be considered indicators of their innate qualities 
and talents. 

It’s a nice story, implying as it does not only the theoretically 
attractive notion that individuals can be modeled as rationally optimizing 
agents, but also morally appealing message that each person is 
responsible for his or her own actions. However, there is a difference 
between holding someone accountable for their actions and believing the 
explanation for those actions is entirely self-contained. Whether we are 
aware of it or not, we rarely, if ever, make decisions completely 
independently and in isolation. Often we are conditioned by our 
circumstances, our particular life histories and our culture. We also can 
not help but be influenced by the mesmerizing pool of universally 
available, often media-driven information in which we continually swim. In 
determining the kind of person that we are and the background picture 
against which our lives play out, these generic influences determine both 
the expertise and the preferences we bring into and decision-making 
scenario. But once we are in the scenario, even our experience and 
predispositions may be insufficient to sway us entirely one way or the 
other. This is where the externalities – whether information, coercive, 
market or coordination externalities – enter to play a crucial role. When 
push comes to shove, humans are fundamentally social creatures, and to 
ignore the role of social information in human decision making – to ignore 
the role of externalities – is to misconstrue the process by which we come 
to do the things we do.”[6] 

 

This work was greatly motivated by research done in understanding human behavior 

and interactions in four separate disciplines -  (i) social network analysis (ii) mathematical 

models of network topology and dynamics  (iii) social psychology  and (iv) ubiquitous and 

pervasive computing. One of the goals of this work is to make connections and build upon 

these somewhat disconnected research areas. Below we discuss these areas of research in 

more detail and make connections to the work done in this thesis.    

Social network analysis focuses on uncovering the patterns of people’s interactions 

from data. Many believe that the success or failure of societies and organizations often 

depends on the patterning of their internal structure. This area of research characterizes the 

relationship among groups of people[7-10]. Based on network data gathered primarily from 

surveys, self-reports, or online behavior, the goal is not only to learn the topology but also 

to understand the roles and position of the members of the network. The emphasis is on 

analysis techniques that can explain the behavior of the collective – be it in an organization, 

school or communities[11-14]. It is important to note that many of these techniques make 



 23

very insightful discoveries by asking simple but relevant questions or queries about the 

nature of communication of groups. For example, Tyler and Huberman [14] could identify 

could identify both formal and informal networks within an organization just using ‘to’ and 

‘from’ fields of email logs. The were also able to identify leadership roles within the 

communities. Adamic and Adar used the Stanford University online alumni community to 

measure different social network phenomena [15]. However one of the pressing problems 

in analyzing the face-to-face social network is data collection which is mostly done by 

tedious manual input from members of the network being studied or by human observers. 

We  address this problem of data collection and ways to move the burden of observing 

human communication from human-observer to machines. Once we are able to do this, 

previous work in social network analysis provides rich set of tools on how to interpret and 

understand the data.   

Recently, significant amount research efforts has been in the ‘science of networks’ - 

deriving models that can explain how information propagates, contagious disease spreads, 

and even terrorist organizations operate. A popular approach is to propose a model and then 

validate it based on how well the model explains various phenomenon observed by the 

system [16-19]. Some work focuses on the generalizability of the models to different 

domains starting from statistical physics to social networks to the worldwide web.  Another 

important direction of this research is how one can use local/partial  information about the 

network structure to propagate information or search for targets efficiently [20-22]. 

Statistical approaches to understanding the topology and dynamics of how groups of 

people exchange ideas or propagate information has been done for online communities and 

the worldwide web [23, 24], where there is an abundance of data and measurements of 

system parameters are uncertain. But using similar techniques to study the informal 

networks that arise from face-to-face interactions have not been explored much. A few 

reasons why there has been so much emphasis on working with online/virtual communities 

are – (i) online data is more readily available for analysis  (ii) there is much less ambiguity 

in online data compared to sensor measurements of face-to-face interactions. Whereas it 

may be trivial to figure out whether A sent an email to B but quite difficult to figure out 

whether A spoke to B using sensors such as microphones, cameras etc. So there are two 

stages of studying face-to-face communication – (i) extracting reliable measurements from 
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sensors and then (ii) using these features to extract meaningful parameters that explain the 

pattern of interactions.  

There is also a long history of work in the social sciences aimed at understanding the 

interactions between individuals and influencing their behavior.  In the psychology 

community, there are many instances of work studying these effects.  At a simple level, in 

the work of Wells and Petty [25], the authors show how a person's opinion could be 

significantly influenced by repeated head nodding from the audience.  At a more complex 

level the structural relationships between people and their physical proximity can effect the 

collaboration pattern and adoption of new ideas[4, 6]. Studies of this kind give us 

interesting insights into the workings of human dynamics.  In many cases, the 

experimenters have been able to take quantitative measures of behavior changes by looking 

at task performance, questionnaire responses or by manual annotation of audio-visual data.  

However, interaction trends and dynamics are hard to infer from small amounts of hand 

annotated data. Current technology enables us to record massive amounts of data which can 

be a treasure trove of information if we can sieve through this data automatically.  At the 

same time, referring back to psychology literature we can identify interaction features that 

are meaningful and informative in interpreting behavior and serve as guideline on the types 

of features that we need to extract from our data in order to do analysis.  

In the field of ubiquitous and pervasive computing researchers have been working for 

years in sensor-based approaches to modeling humans and dealing with sensor uncertainty 

and noise. There has been work in trying to understand the identity and activity of people in 

meeting rooms, offices and even in open public-spaces [26-31]. The basic notion of 

context-aware computing is to give computers the ability to understand one’s surroundings. 

However, so far the focus is on the single-person perspective: to understand what and who 

is around the user of the system and to better provide information or resources to that 

person. One important aspect often ignored is how others fit into a person’s interaction 

network which can be an important factor in designing a better context-aware agent 

or environment. 
Some research in using sensors to support face-to-face communication comes close to 

being able to analyze how people tend to interact within a community. The work with 

active badges focus mainly on presence rather than actions of people – e.g. the Olivetti 

badge system developed by AT&T could identify a person’s location in a building but not 



 25

whether they were talking or with whom [32]. A few initiatives in utilizing or learning 

social-network structure using sensors are beginning to emerge [33], however, so far these 

systems only look use proximity information to make inferences. One of the earliest such 

systems is the ‘lovegety’  which is more of facilitator of face-to-face conversation. The 

‘lovegety’ would connect individuals of the opposite sex within five meter radius of the 

user based on the settings of the users. ‘IntelliBadge’ is a radio frequency tracking device 

that can be use to track movement of people and visualize the pattern of their movement. As 

the identity and some attributes are associated with the device it can be used to do some 

social network analysis – i.e. are users with similar interests more likely to congregate in 

certain areas? Two other systems called ‘nTag’ (based on the thesis work of Rick Borovoy 

[34]) and ‘Spotme’ [33] are tools that facilitate networking among participants of large 

events and monitor the pattern of movements and virtual communication with the users. 

None of these systems have the ability to identify and analyze face-to-face communication. 

 

 

          

Figure 1-2: (a) Olivetti badge (b) Lovegety (c) InteliiBadge 

         

Figure 1-3: (a) nTag  (b) SpotMe 
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In the interests of studying the interactions between humans and the influences of 

various experimental variables, we worked on an experimental setup we called the 

"Facilitator Room".  Our goal was to use computer vision, speech processing, and machine 

learning tools towards quantifying how much one person is influencing another's 

behavior[35]. The main problem we encountered in the Facilitator room was obtaining 

natural interactions. If the goal is to map, explain and eventually influence human 

communication and interactions the ability to get sensor measurements from people in their 

regular setting without imposing any special constraints or requirements is critical. In order 

to overcome the constraints imposed by the Facilitator room, we built the ‘sociometer’ to 

measure interactions in groups without changing their daily patterns of interaction. 

1.2 Roadmap 

We are now ready to describe our work on sensing and modeling human interactions. 

As mentioned above this work covers a broad range of material from different research 

areas. We will describe and refer to the appropriate literature when describing our 

experiments, methods and analysis in the following chapters. This chapter provided the user 

with the motivation behind this work and positioned the work amongst the research efforts 

in social network analysis, social psychology, artificial intelligence and ubiquitous 

computing. The remainder of the thesis is organized as follows: 

• Chapter 2 introduces the sociometer, the wearable sensor package that is used for 

data collection and describes the data collection process and how we address issues 

such as user acceptability and privacy. It includes a summary of our subjects’ 

reaction to the sociometer.  

• Chapter 3 describes the features and learning methods that we use in the thesis to 

process low level sensor data and extract information that are relevant for modeling 

interactions .  

• Chapter 4 presents an analysis of  the social network based on proximity and 

interactions. We analyze some individual and group properties that arise in our 

dataset. We compare the outputs from the sensor data with hand labeled ground truth 

and also survey data collected during our experiment.  
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• In Chapter 5, we explore the dynamics of people’s interactions and how we 

quantitatively measure how much a person’s style of interaction affects another 

during an interaction.  

• The concluding Chapter 6 outlines the contributions and future directions.  
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Chapter 2: The Sociometer 

To our knowledge, there are currently no sensor-based data-driven methods for 

modeling face-to-face interactions within a community. This absence is probably due to the 

difficulty of obtaining reliable measurements from real-world interactions. One has to 

overcome the uncertainty in sensor measurements. This is in contrast to modeling virtual 

communities where we can get unambiguous measurements about how people interact – the 

duration and frequency (available from chat and email logs) and sometime even detailed 

transcription of interactions [36, 37].  

In the following subsections we will describe how we use wearable sensors to collect 

face-to-face interaction data. Data collected using wearables can be cheaper and more 

reliable than the data obtained using human-delivered questionnaires, because a sensor-

based approach is free from recall failures and personal interpretation bias of surveys, and 

does not need to use expensive human coders/observers. The ability to discover face-to-face 

communication networks automatically allows researchers to gather interaction data from 

larger groups of people. This can potentially remove one of the current bottlenecks in the 

analysis of human networks: the number of people that can be surveyed using manual 

techniques.  

2.1 Design Issues and Wearability of the Sociometer 

One of the key aspects of wearable systems is their wear-ability. The design of 

wearables needs to be suited to the human body and should not interfere with fluid human 

motion. Very often wearable devices are built just to meet the technical requirements and 

little attention is given to the design issues. However,  if wearable computing and sensing 

devices are to become popular among the mainstream population, the interaction between 

the wearable and the human body needs to be smooth and seamless. In building the 
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sociometer we took the design of the device seriously as we needed to have subjects other 

than the researchers wear it for an extended period of time.  

The sociometer has been designed for the comfort of the wearer, aesthetics, and 

placement of sensors that are optimal in getting reliable measurements of interactions. A 

very useful guideline on the design considerations for a wearable is outlined in ‘Design for 

Wearability’ [38] which was the result of seven years of study with a variety of 

commercial, military and industrial wearable and mobile devices. Below we list the key 

principles described in ‘Design for Wearability’ that one needs to keep in mind while 

designing a wearable and comment on how well the sociometer meets these design criteria: 

 

1. Unobtrusive placement – Areas that (i) are relatively same size across adults (ii) 

that have low movement/flexibility and (iii) and have large surface area are good 

candidates for the placement of a wearable. The figure below depicts the regions 

that the researcher found best suited for placing wearables. For the sociometer, we 

chose the collar and shoulder area which did not interfere with the dynamics of the 

body. The area is close to the mouth and hence placing the microphone in a suitable 

area to pick up the speech of the wearer. 

 

            

Figure 2-1: Areas in the body that are best suited for placing wearables. Images from [38] 
 

2. Defining the shape – Having concavity against the body, convexity outside the 

surfaces of the form and soft edges ensures comfort and stability . The shape of the 

sociometer conforms to all these design requirements. 
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3. Human movement – Wearables should be designed around more active areas so 

that the form does not interfere with changes in body form resulting from 

movement. The collar placement did not restrict the movement of our subjects in 

typical activities performed in office/work environment. 

4. Human perception of size – there is an aura around the human body that the brain 

perceives as part of the body and typically between 0-5 inches from the body. If a 

wearable fit within the perceived size the wearer will feel more comfortable and at 

ease. The sociometer is about 2.5 inches of the body. 

 

 

Figure 2-2: Aura around the human body. Image from [38] 
 

5. Size variation –  The device should be able fit as many types of users and also 

adjust to the weight gain/loss of the single user. The convexity of the sociometer 

can be adjusted to fit the varying sizes of the shoulder area.    

6.  Attachment and weight – Wrapping wearables around the body is more 

comfortable than a single point attachment. The sociometer wraps around the left 

shoulder and neck area for better weight distribution and user comfort. 

7. Weight – The weight of a wearable should not hinder the movement or balance of 

the human body. Our wearable design achieves this through the wrap around 

attachment. 

8.  Aesthetics – A wearable is a very personal device that a person has on her body. It 

is important that the design has some aesthetic appeal and is not a conglomeration 

of the necessary hardware. The sociometer made a stylistic statement which was 
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received mostly with positive reviews. As with any design, it is almost impossible 

to get an objective measure of how good our design was.  

2.2 Sensors 

To reliably measure verbal  face-to-face communication we need sensors that can 

capture interaction features. We need to know when someone is speaking, who they are 

speaking to, the duration of their interaction etc. To record the identity of people in an 

interaction, the sociometer is equipped with an infra-red (IR) transceiver that sends out 

unique ID for the person and receives ID from other people within the wearer’s proximity. 

The device has a microphone that records the audio.  

The sociometer hardware is an adaptation of the hoarder board, which is a wearable 

data acquisition board, designed by the electronic publishing and wearable computing 

group at the Media lab [39, 40]. The board has an IR transceiver, a microphone, two 

accelerometers, on-board storage, and its own power supply. The wearable stores the data 

locally on a 256MB compact flash card and is powered by four AAA batteries. A set of four 

AAA batteries is enough to power the device for 24 hours. Everything is packaged into a 

shoulder mount that it can be worn all day without any discomfort.  

The sociometer records the following information for each individual:  

1. Information about people nearby (sampling rate 17Hz – sensor IR) 

2. Speech information (8KHz - microphone) 

3. Motion information (50Hz - accelerometer)  

Other sensors (e.g. light sensors, GPS etc.) could be added in the future using the 

extension board.  

The success of IR detection depends on the line-of-sight between the transmitter-

receiver pair. The sociometer has four low powered IR transmitters. The use of low 

powered IR transmitters is optimal because (i) we only detect people in close proximity as 

opposed to far apart in a room (as with high-powered IR) and (ii) we detect people who are 

facing us and not people all around us (as with RF transmitter). The IR transmitters in the 

sociometer create a cone shaped region in front of the user where other sociometers can 

pick up the signal. The range of detection is approximately six feet, which is adequate for 

picking up face-to-face communication. The design and mounting of the sociometer places 

the microphone six inches below the wearer’s mouth, which enables us to get good audio 
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without a headset. The shoulder mounting also prevents clothing and movement noise that 

one often gets from clip-on microphones.  

 

 
Figure 2-3  The wearable sensor board 

 

 

Figure 2-4  The shoulder mounted sociometer 
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Figure 2-5: Close-up of the sociometer showing the concavity against the body, soft edges 
and wrap around effect for better wearability 

2.3 The data collection method 

The formal structure and physical layout of an organization has been shown to impact 

the collaboration and communication patterns of people [2]. Thus we wanted our 

experimental design to include variations in these variables. In our experiment we selected 

participants such that we had (i) participants that belonged to different groups within the 

overall organization, (ii) had the majority of the members within a group participate in the 

experiment and  (iii) the participants were physically distributed within the building.   

The data collection was done at the MIT Media Lab were different research group 

members volunteered to wear the sociometer. The subjects represented four separate 

research groups at the lab, and most of the members within a research group participated in 

the study. The participants were a mix of students, faculty and administrative support staff 

and were distributed across different floors of the building. The Media lab is a four story 

high building with research groups housed on the lower level and third and fourth floors. Of 

the four groups participating in our study, two were from the third floor, one group from the 

fourth floor and the other from the lower level. Figure 2-6 show the distribution of the 

participants in this study overlaid on the floor plan of the building, each color represents a 

different research group. The users had the device on them for six hours a day (11AM –

5PM) while they were on or around the MIT campus. The subjects did wear the device both 

indoors and outdoors, e.g., they had the device on when they went outside the building for 
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lunch or to go to the bookstore etc. We conducted the experiment in two stages – (i) the 

single group stage where 8 subjects from the same research group wore the sociometers for 

10 days (two full work weeks - 60 hours of data per subject). (ii) the multi-group stage 

where 23 subjects from 4 different research group wore the sociometers for 11 days (over 

two full work weeks and 66 hours of data per subject) and  a total of 1518 hours of 

interaction data. The initial data collection for the single group stage (the author’s own 

research group) was done primarily to debug our system and ensure all the experimental 

flaws were fixed before we collected the larger data.   

 
Figure 2-6: Distribution of people participating in the experiment. Different colors 

represent different research group 

Over the course of the experiment, 25 different users wore the device and most of them 

were satisfied with the comfortable and aesthetic design of the device. Despite the comfort 

and convenience of wearing a sociometer, we are aware that subject’s privacy is a concern 

in any study of human interactions. Most people are wary about how this information will 

be used.  To protect the user’s privacy we agree only to extract speech features, e.g. energy, 
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spectral features, from the stored audio and never to process the content of the speech. But, 

to obtain ground truth we need to label the data somehow. For evaluation purposes in this 

thesis, we had four subject label their own data. Each subject labeled two days worth of 

data each. Another option maybe to garble the audio such that the content is unintelligible 

but the identity and pitch of the speaker is preserved [41]. In future versions of the 

sociometer we will store encrypted audio instead of the audio, which can also prevent 

unauthorized access to the data. 

We take the following measures to address the privacy concerns of our subjects – (i) 

the identity of the subjects aren’t revealed at any point during or after the study (ii) no 

transcription or speech recognition is done on the data (iii) each individual could withdraw 

from the study at anytime and the data collected from them would be destroyed (iv)  the 

data collected from the subject will be used for this study only (v) the subjects were given 

an explanation of the experimental procedures and the consent form will included details 

about the nature of data that is being collected (vi) the data is stored in a secure computer 

only accessible by the principal and associate investigators and (vii) the ground-truth data 

from four different participants were labeled by the subject themselves and not the 

experimenter. The project is approved by MIT’s Committee on the Use of Humans as 

Experimental Subject (COUHES) application # 2889. 

2.4 User Reaction and Acceptance

At the end of the data collection phase we conducted a survey to gauge the acceptance 

of the sociometer among the users. Table 2-1 summarizes the results from this survey 

results. 21 out of the 23 the users completed the survey. The overall reaction of the users is 

positive – the main complaint about the design is that the Velcro backing on the sociometer 

can sometimes snag on clothing.  Some users commented that sometime they felt the device 

would fall of as it was not securely attached or fastened to the body. 

Some researchers, other than those who participated in the experiment, have also 

expressed interest in using the device because of the functionality, form factor and 

unobtrusive design. Four units are currently being used by Professor Stacy Wolski in the 

Department of Communication at the University of Texas at Austin in her research, three 

units are being used by the  House N project at MIT. However, we do feel in order to have 

much broader acceptability the sociometer needs to be made smaller, but two key attributes 
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need to be maintained: (i) cannot be cumbersome to wear (ii) must be effortless for the 

wearer to use.  We realize the users had a certain amount of trust in the experimenter and 

were convinced that the audio data will not be listened to or transcribed at any point. Future 

incarnations of the sociometer will be much more widely acceptable if features are 

processed on the fly, and the raw audio is never stored.  

  

 

How much did the 
sociometer interfere 

with your normal 
interactions? 

Never 
(7) 

Few times 
(14) 

Most of the 
time (0) 

Always 
(0) 

Would you wear an 
audio data collection 

device only if 
transcription is not 

done? 

Don’t care 
(6) 

Yes 
(12) 

Do not like 
wearing it, even 
if transcription 

is not done 
(3) 

Would never 
wear any data 

collection 
device 

(0) 

What did you think 
of the design of the 

sociometer? 

Loved it! 
(4) 

Liked it 
(13) 

Did not like it 
(4) 

Hated it! 
(0) 

How comfortable 
was the device? 

Did not 
notice it was 

there 
(5) 

Comfortable 
(7) 

Somewhat  
Uncomfortable 

(9) 

Uncomfortable 
(0) 

Table 2-1: Exit survey of the users 
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Figure 2-7: Various subjects wearing the sociometers during the two-week data 

collection period. 
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2.5 Summary 

In this chapter we have presented the design criteria used to build the sociometer. We 

have described our experiment design and the steps we took to protect the privacy of the 

users. The sociometer enabled us to collect continuous data of people’s daily interactions in 

their natural settings, opening up the possibility of  collecting interaction data without 

relying on human observers or requiring additional effort from individuals to fill out 

surveys or questionnaires. Finally we presented how the subjects felt about the design of the 

sociometer and the idea of wearing a audio data collection device.  
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Chapter 3: Features and Models 

One of the goals of this work is to identify face-to-face vocalic message exchanges, 

regardless of what is being said or what meanings are assigned to the messages. Although, 

the content of the messages is no doubt an important part of the interaction, knowing whom 

we communicate with and how the flavor of the interaction changes based on the identity of 

the person can provide strong cues about the connections/relationships we have with others 

in our community. 

In order to achieve this goal we need to obtain the following information from our 

data: (i) when are two people in face-to-face proximity (ii) when is someone speaking (iii) 

who is the conversational partner and (iv) how often and for how long do a pair interact (v) 

what are the dynamics of the interaction. In this chapter, we describe the features and 

models we use to answer the above questions. 

3.1 Proximity Features 

The data from the IR receiver can be used to detect proximity to other IR transmitters. 

The receiver measurements are noisy – the transmitted ID numbers that the IR receivers 

pick up are not continuous and are often bursty and sporadic. The reason for this bursty 

signal is that people move around quite a lot when they are talking, so one person’s 

transmitter will not always be within the range of another person’s receiver. Consequently 

the receiver will not receive the ID number continuously at 17Hz. Also each receiver will 

sometimes receive its self ID number. We pre-process the IR receiver data by filtering out 

detection of self ID number as well as ensuring that the proximity relation is symmetric (if 

receiver #1 detects the presence of tag id #2, receiver #2 should also receive tag id #1). This 

pre-processing helps to maintain consistency between different information channels.  
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3.2 Audio Features 

In order to identify if two people are interacting we first need to reliably identify 

regions of speech  from all other ambient noise. Because of the close placement of the 

microphone with respect to the speaker’s mouth we can use a simple energy-based 

threshold to segment the speech of the user from the speech of others in close proximity.  

The recent thesis work of Sumit Basu [42] identifies a set of audio features that can be 

used to detect voiced regions (speech regions that have pitch) within an audio stream very 

reliably. These features are robust to ambient noise and do not require the use of a close 

talking microphone.  

In this section we will briefly describe these features and why they are capable of 

detecting voiced speech in regular work environment. For more details about the feature 

selection process and experiments done to test the robustness of the features in varying 

amounts noise  please refer to [42]. 
Human speech can be separated into two broad categories – (i) voiced and (ii) 

unvoiced speech. The voiced region has more energy in the low frequency range and carries 

well over distance. Figure 3-1, shows the spectogram of a speech segment, notice the 

banded/periodic structure of voiced speech. Because voiced regions are periodic (with pitch 

period) they produce structured set of peaks in the FFT magnitude domain. Basu selects 

features that can capture these periodic properties of  voiced speech – (i) non-initial 

maximum of autocorrelation peaks (ii) number of autocorrelation peaks and (iii) spectral 

entropy.  

        
 

Figure 3-1: Spectrogram of 17s of audio data from the sociometer 
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Autocorrelation  

The autocorrelation A of  a signal y[n] is calculated as follows: 
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Autocorrelation is calculated per audio frame, where an audio frame in our case is 256 

samples of audio (audio is recorded at 8 KHz). The autocorrelation results from a voiced 

frame (frame #150) and an unvoiced frame (frame #750) are shown in Figure 3-2. 

       

 

Figure 3-2: Autocorrelation results (a) voiced frame (b) unvoiced frame 
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Relative Spectral Entropy  

Spectra of voiced regions will have strong peaks in FFT magnitudes arising from pitch 

period, whereas unvoiced regions will have a more noisy spectrum. The relative spectral 

entropy is calculated as follows: 

[ ][ ][ ]log ,  where [ ][ ] [ ]spec
yYH Y YM yω

ωωω ωω ω
= − =�
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Relative spectral entropy (KL divergence between the current spectrum and mean 

spectrum of the neighboring regions) is more robust in outdoor situations.  

 

 

Figure 3-3: FFT magnitude of (a)voiced frame (#150) and (b)unvoiced frame (#750) 
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Figure 3-4: (a) KL divergence between the current spectrum and the mean spectrum. 
Notice the distance is greater in voiced regions. Relative entropy of frame #150 is 0.85 and 
frame # 750 is 0.24 (b) The spectrogram of the audio segment 

 

Energy 

The energy E of a signal y[n] is calculated as follows: 

 

Because of the placement of the sociometer, the energy level of the wearer will be 

significantly higher than other voiced speech in the environment. We will use this feature to 

distinguish the wearer’s speech. 
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Figure 3-5: Energy from one of the participants in the conversation overlaid on the 
spectogram. The energy values have been scaled for viewing. 

 

3.3 Computational  Modeling Techniques 

 "Graphical models are a marriage between probability theory and graph theory. 
They provide a natural tool for dealing with two problems that occur throughout 
applied mathematics and engineering -- uncertainty and complexity -- and in 
particular they are playing an increasingly important role in the design and 
analysis of machine learning algorithms. Fundamental to the idea of a graphical 
model is the notion of modularity -- a complex system is built by combining 
simpler parts. Probability theory provides the glue whereby the parts are 
combined, ensuring that the system as a whole is consistent, and providing ways 
to interface models to data. The graph theoretic side of graphical models provides 
both an intuitively appealing interface by which humans can model highly-
interacting sets of variables as well as a data structure that lends itself naturally 
to the design of efficient general-purpose algorithms.  
 
…. Moreover, the graphical model formalism provides a natural framework for 
the design of new systems." --- Michael Jordan, 1998.  
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In this thesis we mainly use two types of graphical models as our main modeling tools:  

(i) Hidden Markov Models (HMM) and (ii) the Influence Model. HMMs have been widely 

and successfully used in modeling various time-series data, e.g. in speech recognition, 

gesture/activity recognition, etc. The Influence model originally developed by 

Asavathiratham [43], captures the interaction between two or more interacting time-series 

data. In this thesis, we cast the Influence model in a graphical model framework. We 

generalize the model with hidden states/observations and describe an algorithm for learning 

the parameters of this model from data.      

We will describe the Influence Model in significant depth and detail. However, we will 

only briefly describe the HMM and make reference to relevant literature for readers who 

seek to get more detail. For those interested in reading more about graphical models - the 

general framework for representation, learning and inference, we strongly recommend the 

upcoming book by Jordan and Bishop [44]. 

3.3.1 Hidden Markov Models 

Hidden Markov models are stochastic finite state machines and one of the simplest 

forms of time-series models. It is a first order Markov model, where the state sequence is 

not directly observable. The observations are dependent on the state of the model. An 

HMM is specified by its first order Markov state transition probability, initial state 

probabilities and observation/emission distribution. For more details about HMMs and how 

to learn the parameters of an HMM from observations please refer to [45]. Figure 3-6 

shows a graphic description of an HMM – (a)-(c) drawn based on Dan Ellis’ class-notes 

[46]. 

 

 

Figure 3-6: HMM is specified by (a) initial state probability (b) state transition matrix and 
(c) observation probability (d) graphical model representation of an HMM 



 48

 

3.3.2 The Influence Model 

Now picture two or more Markov processes that have their own dynamics but also 

interact with each other and effect each other’s dynamics. We can think of building a model 

by stacking a series of HMMs and connecting their state transitions, e.g. a coupled HMM 

(CHMM). However, the learnability and interpretability of a model greatly depends on its 

parameterization. The "Influence Model," developed as a generative model by Chalee 

Asavathiratham in his PhD dissertation[43], is a tractable means of representing the 

influences a number of Markov chains have on each other. The model describes the 

connections between many Markov chains with a simple parameterization in terms of the 

“influence” each chain has on the others. We later found a similar model also proposed by 

Saul and Jordan[47].  

Asavathiratham showed how complex phenomena involving interactions between 

large numbers of chains could be simulated through this simplified model, such as the 

up/down time for power stations across the US power grid.  The Influence model is a 

tractable framework for understanding the global system and its steady state behavior. The 

representation of the model makes the analysis of global behavior possible, which otherwise 

would become intractable with increasing number of individuals or agents. 

In Asavathiratham’s description all states were observed. He did not develop a 

mechanism for learning the parameters of the model – he assumed that they were known 

apriori.  Learning the model parameters from observation in an important requirement in 

our case. We generalize the model with hidden states/observations and develop an 

algorithm for learning the parameters of this model from data.  We then show the 

performance of this algorithm and describe the characteristics of the solution space using 

synthetic data.   

The graphical model for the influence model is identical to that of the generalized N-

chain coupled HMM[48], but there is one very important simplification.  Instead of keeping  

the entire 1
1 1( | ,..., )i N

t t tP S S S− − , we only keep 1( | )i j
t tP S S −  and approximate the former with: 

1
1 1 1( | ,..., ) ( | )i N i j

t t t ij t t
j

P S S S P S Sα− − −=�  
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In other words, we form our probability for the next state by taking a convex 

combination of the pair-wise conditional probabilities for our next state given our previous 

state and the neighbors’ previous state.  As a result, we only have N QxQ tables and N α  

parameters per chain, resulting in a total of NQ2 + N2 transition parameters, where N is the 

number of chains and Q is the number of states per chain. This is far fewer parameters than 

the CHMM where the total number of parameters is of NQN+1.  The real question, of course, 

is whether we have retained enough modeling power to determine the interactions between 

the participants. Asavathiratham refers to the α 's as "influences," because they are constant 

factors that tell us how much the state transitions of a given chain depend on a given 

neighbor.  It is important to realize the ramifications of these factors being constant:  

intuitively, it means that how much we are influenced by a neighbor is constant, but how we 

are influenced by it depends on its state.  This simplification seems reasonable for the 

domain of human interactions and potentially for many other domains.  Furthermore, it 

gives us a small set of interpretable parameters, the α  values, which summarize the 

interactions between the chains.  By estimating these parameters, we can gain an 

understanding of how much the chains influence each other.   

        

Figure 3-7 Graphs for (a) a generalized coupled HMM and (b) an Influence Model. Shaded 
nodes are observed and the others are hidden nodes 
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3.3.2.1 Learning for the Influence Model 

The problem of estimating the Influence Model from data can be stated as follows. We 

are given sequences of observations, { }itx , from each chain, i . The goal is to estimate the 

amount of influence, ijα , that chain j has on chain i, along with the pair-wise conditional 

probability distributions that describe this inter-chain influence, 1( | )i j
t tP S S − . In this section 

we develop methods for doing this and illustrate them with synthetic data. 

 

Expectation-Maximization Method 

In  Figure 3-7 we show the graphical model for the most general form of the Influence 

Model with hidden states and continuous observations. Fitting this model to data requires us 

to maximize the likelihood of Influence Model over its free parameters. The likelihood 

function can be readily written as: 

 

0 0 0 1( , ) ( ) ( | ) ( | ) ( | )ji i i i i i
t t ij t t

ji i t
P S X P S P x S P x S P S Sα −

� �
� �
� �

= �∏ ∏∏  

 

One possibility for estimating the parameters of this model is Expectation-

Maximization. The E-step requires us to calculate ( | )P S X  which in most cases amounts 

to applying the Junction Tree algorithm (exact inference) or other approximate inference 

algorithms. We will discuss the possibilities for doing inference on this model later. The M-

step is specific to this model and requires maximizing the lower bound obtained in the E-

step. Examining this expression we can see that the M-step for all the parameters except the 

ijα ’s is only trivially different from the HMM[49]. However, we can readily write down the 

update equations for the ijα ’s by noticing that they are mixture weights for N conditional 

probability tables analogous to a mixture of Gaussians. The ijα  update equations are 

obtained by following the derivation of the M-step for a Gaussian mixture (i.e. introduce a 

hidden state to represent the “active” mixture component and then take an expectation over 

its sufficient statistics): 
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The “ i
tc j= ” event means that at time t  chain i  was influenced by chain j , and the 

“ i
tS k= ” event means that chain i  was in state k  during time t . 

Unfortunately, exact inference of the Influence model is computationally intractable 

because of the densely connected hidden variables [50]. Variational methods or approximate 

inference techniques may be alternate tractable methods for learning the full model.  

 

The Constrained Gradient Descent Method 

Imagine a slightly different situation where we already have the state transition 

probabilities of the influence model (e.g. we have voicing/unvoicing states for N different 

individual participating in a conversation).  Now our states are observed but the influence 

values are still hidden, we called this model the observed Influence Model (Figure 3-8). 

During learning we need to estimate the inter-chain influences ijα s. 

 

Figure 3-8: The observed influence model. Shaded nodes are observed and the others are 
hidden nodes 

The observed Influence model is an unusual DBN where the observed nodes are 

strongly interconnected and the hidden states are not. This presents problems for inference 
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because marginalizing out the observed state nodes causes all the hidden states to become 

fully connected across all time and all chains. Unless we apply an approximation that can 

successfully decouple these nodes, a maximization procedure such as EM will not be 

tractable. However, there is a simpler way to estimate the ijα  values in our observed 

scenario. Let us first examine how the likelihood function simplifies for the observed 

Influence Model: 

0 1( |{ }) ( ) ( | )i i j
ij ij t t

ji i t
P S P S P S Sα α −

� �= � �
� �

�∏ ∏∏  

 

Converting this expression to log likelihood and removing terms that are not relevant 

to maximization over ijα  yields: 
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We can further simplify this expression by keeping terms relevant to chain i : 
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This per chain likelihood is concave in ijα , which can be easily shown as follows: Let 
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This is concave since for any 0 1w< ≤  and 0 1,α α : 
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 (using Jensen’s inequality) 

 

Now take the derivative w.r.t. ijα : 
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Re-parameterize for the normality constraint: 
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Now take the derivative w.r.t. ijβ : 
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We need to maintain the following constraints on ijβ  to fulfill the normality 

constraints on ijα : 
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These constraints can be enforced with the following log boundary functions: 

*
1 1argmax log ( | ) (1 ) ( | ) log 1 log

ij

i j i N
ij ij t t ij t t ij ij

t j j j j
P S S P S S A B

β
β β β β β− −

� �
= + − + − +� �

� �
� � � � �  



 54

We update the derivative to reflect these log boundary penalties: 
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The gradient and the per-chain likelihood expression above are inexpensive to 

compute with appropriate rearranging of the conditional probability tables to form the i
tB  

vectors. This along with the facts that the per-chain likelihood is concave and the space of 

feasible ijα ’s is convex means that this optimization problem is a case of constrained 

gradient ascent with full 1-D search (see [51]).  Furthermore, in all examples, 20 iterations 

were sufficient to ensure convergence. 

 

3.3.2.2 Performance of the Learning Algorithms 

 

To evaluate the effectiveness of our learning algorithm we show results on synthetic 

data. The data is generated by an Influence Model with 3 chains in lock step: one leader 

which was evolving randomly (i.e., flat transition tables) and 2 followers who meticulously 

followed the leader (i.e., an influence of 1 by chain 2 and a self-influence of 0). We 

sampled this model to obtain a training sequence of 50 timesteps for each chain. These state 

sequences were then used to train another randomly initialized Influence Model.  For this 

learned model, the 1( | )i j
t tP S S −  were estimated by counting and the ijα ’s by maximizing 

the likelihood with gradient ascent as described above. The resulting influence graph is 

shown along with a typical sample sequence in Figure 3-9.  Note how the “following” 

behavior is learned exactly by this model – chains 1 and 3 follow chain 2 perfectly.  

The alpha matrix captures the strength of chain 2’s dynamics on chains 1 and 3 very 

well. The learned alpha matrix is: 

 

0.0020 0.9964 0.0017
0.2329 0.4529 0.3143
0.0020 0.9969 0.0011

� �
� �
� �
� �� �

 



 55

 

 

Figure 3-9 The evaluation pipeline for testing the Influence Model on the lockstep 
synthetic data: (a) the graph for the generating model at time t and t+1 (b) the training 
sequence (c) the learned influences (α’s) – the thickness of the lines corresponds to the 
magnitude of the influence.  Note that the strong influence of chain 2 on 1 and 3 was 
correctly learned.  

We also evaluated the Generalized Coupled HMM (i.e. full state transition tables 

instead of the mixtures of pair-wise tables) on this data using EM, using the Junction Tree 

Algorithm for inference[44]. Again we sampled from the lock step model and trained a 

randomly initialized model.   In this case, the learned model performed reasonably well, but 

was unable to learn the “following” behavior perfectly due to the larger number of 

parameters it had to estimate ( 1
1 1( | ,..., )i N

t t tP S S S− −  vs. 1( | )i j
t tP S S − ). 

In order to measure the effect of training data size on the quality of the model, we test 

how well the learned model predicts the next state of the follower chains given the current 

state of all the chains for different size training set.  Table 3-1 shows the prediction results 

for both the Influence Model and the Generalized Coupled HMM (GCHMM). Clearly, the 

Influence Model requires a lot less training data to model the dynamics accurately.  

 
Training 

Data Size 
Influence Model 

Chain # 
1              3 

GCHMM 
Chain # 

1            3 
10 100% 99.5% 67% 50.5% 
20 99.5% 100% 66% 90.5% 

50 100% 100% 100% 100% 
100 100% 100% 100% 100% 

Table 3-1: Prediction Results for the follower chain in the synthetic dataset 
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3.4 Summary 

In this chapter, we have described the main features and computational models that we 

will be using on our sensor data collected. Now we are ready to move forward and learn the 

social network structure and interaction dynamics among the network of people who were 

equipped with the sociometers. 
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Chapter 4: Learning the Social Network 

With a large dataset of natural interactions from a social group, a set of features and 

computational tools in hand we are ready to analyze various aspects of group interactions 

and map the social network. We start at the simplest level by looking at the proximity map, 

determined from the infrared (IR) sensors. These sensors can detect when people are facing 

each other within a range of approximately six feet, which is the spatial arrangement in 

which people would typically be if they were having a conversation. Even this very simple 

IR measure can provide a reliable estimate of the average statistics of people’s social 

networks. However, proximity alone does not tell us enough about whether two individuals 

interact. In order to get a better picture of the communication flow we need to be able to 

detect when people are talking, who they are talking to and how often they talk to each 

other. We present in this chapter our analysis of vocalic interactions, and network maps 

based on such interactions. During the data collection phase we also collected a daily self-

report from each subject about the interactions they had during the time they were wearing 

the sociometer.  We compare our automatic methods against the survey data and also hand-

labeled data.  

4.1 Proximity Map 

The IR data can tell us who is within face-to-face proximity of whom. However, as we 

mentioned earlier, people move around quite a lot when they are talking, so one person’s 

transmitter will not always be within the range of another person’s receiver. We need to 

detect the contiguous time chunks (an episode) during which people are in proximity, 

starting from a bursty IR signal.  A hidden Markov model (HMM) is trained to learn the 

pattern of IR signal received over time. Typically an HMM takes noisy observation data 

(the IR receiver data) and learns the temporal dynamics of the underlying hidden node and 
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its relationship to the observation data. The hidden node in our case has the binary state 1 

when the IDs received come from the same episode, and 0 when they are from different 

episodes.  

In order to train the model, we hand-label the hidden states by labeling 6 hours of data. 

The HMM uses the observation and hidden node labels to learn its parameters. We can now 

use the trained HMM to assign the most likely hidden states for new observations. From the 

state labels we can estimate the frequency and the duration of two people being within face-

to-face proximity. Figure 4-1 shows five days of one person’s proximity information. Each 

gray bar in the sub-image identifies a person with whom the wearer is in close proximity, 

and the length of the bar shows the duration of contact. Note that we are also able to detect 

when multiple people are in close proximity at the same time. 

The IR data provides no information about whether two people are actually having a 

conversation. They may just have been sitting face-to-face during a meeting. Also, there are 

many instances where we have a conversation with someone with being face-to face, e.g. 

walking along the corridor and having a chat, sitting at a 90˚ angle to someone, or having a 

conversation with someone whose at your office door while you are sitting at your desk 

oriented towards the monitor. In general the IR data did not prove to be a reliable indicator 

of the fine-structure of actual interactions. In data labeled by four subjects IR tags identified 

9 out of the 23 pairs of interactions that were labeled. The performance further dropped 

when we calculated accuracy numbers for each five minute chunks of labeled data. 

However, if we just want the an average picture of the interaction over the course of the 

experiment the tag data performs well, but we loose the finer grain breakdown of the 

network interaction patterns that we initially set out to obtain. Table 4-1 summarizes the 

performance of the IR tags in identifying interactions at different time granularities. When 

analyzing the survey data, we found that only 54% of the time both individuals in a 

conversation pair acknowledged having a conversation and only 29% acknowledged having 

the same number of conversations with each other.  Such inconsistencies are not unique to 

this experiment but are known drawbacks of personal recall based method [5]. This also 

highlights the need for automatic techniques that aren’t susceptible to the fallibility of 

human memory.   
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Figure 4-1 - Proximity information for one individual. Each sub-image shows one day's 
information. Each row within the sub-image corresponds to a different person. Bursty raw 
sensor data transformed into the contiguous time chunks using HMM. 

 

 

 Accurate detection 

Per 5 minute chunk  
using hand labeled data 

19% 

Per conversational pair 
using hand labeled data 

39% 

Over all days – per 
conversation pair using 
survey data 

86% 

(10% false rejection) 

Table 4-1: Performance of the IR tags 

 

 

    Day 1 

   Day 2 

   Day 3 

   Day 4 

   Day 5 
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Figure 4-2: Network map based on proximity information. x-axis and y-axis values 
represent subject ID number, and the color value indicates, for each subject, the proportion 
of  their total interactions that they have with each of the other subjects. 

4.2 Identifying Interactions 

Face-to-face proximity data can give us an average picture of the network. It does not 

say much about whether there was real interaction and nothing about the dynamics of the 

interaction between a conversational pair. In order to do that, we need to start looking at 

speech information. In this section we describe how we segment speech from other ambient 

sounds, identify conversations, and segment speakers within conversation chunks. 

4.2.1 Segmenting Speech Regions 

In Chapter 3, we described some discriminatory features for detecting voiced speech 

that have been shown to be robust to ambient noise[52]. We use these features to train a two 

state HMM that can segment voiced speech for other sounds in the environment. The 

observation variables are the autocorrelation and spectral entropy features, which were 
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described in the previous chapter. We model the emission probability P(Ot|St) of the HMM 

with a single Gaussian. The HMM is trained on a two-minute segment of hand labeled data. 

Because the hidden nodes of the HMM were labeled (voiced/unvoiced), training was trivial 

in our case. Figure 4-3 and Figure 4-5 show the features and segmentation output of the 

HMM for a sample audio chunk. 

 

Figure 4-3: Speech features overlaid on a spectogram: (a) auto-correlation maximum (b) 
number of autocorrelation peaks (c) relative spectral entropy. Note that measures (a) and (c) 
indicate that voiced speech is present when they are high, whereas measure (b) indicates 
speech when its value is low. 

 

In order to test the performance of the HMM we took the data that was labeled by four 

different subjects, who each labeled two days worth of data. Each five minute chunk was 

labeled as containing speech or just environmental background noise.  We tested whether 

our algorithm found voiced regions in all the segments containing speech and its 

performance on segments containing no speech. The false alarm rate was less than 0.1% on 

over nine hours of data labeled as containing no speech. It detected voicing in all the five 

minute chunks labeled as containing speech, however we do not have a finer grain 
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performance number on correct identification rate. However, Sumit Basu, in [42], showed 

less than 2% error in detection on telephone speech at 10dB noise. He was using a two-

layer HMM that was doing segmentation of voicing and speech chunks, so the accuracy 

number may not be exactly comparable. 

 

Figure 4-4: Voicing false alarm per five minute chunks of audio 

 

Figure 4-5: Segmentation of voiced region  
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Figure 4-6: Energy-based segmentation of wearer's speech (a) energy signal of speaker A, 
(b) energy signal of speaker B, (c) segmentation of the speakers  

4.2.2 Segmenting Speakers 

The voicing segmentation gives us regions that contain human speech. However, many of 

these regions do not contain any speech from the wearer, but instead contain speech from 

other people who were talking in the vicinity. Because the sociometer microphone is placed 

quite close to the mouth of the wearer (about 6”-8” from the mouth), we can distinguish the 

wearer’s speech from all other speech by just using simple energy features. We do the 

energy based segmentation in two ways: (i) we train a simple Gaussian classifier on the  

energy features within the voiced region or (ii) if we already knew that two people are 

having a conversation (we will see how we do that in the next section), we can use the 

energy ratio between the two sociometer audio signal to segment the wearer’s speech.  
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4.2.3 Finding Interactions 

So far we have shown how to reliably identify speech regions and speakers, but not 

how to find who is talking to whom. We already have the features necessary to find pair-

wise interactions. If two people are in a conversation with each other, we expect to see 

some correlation between the audio features of the two participants. If we have the voicing 

segmentation of each of the audio data stream, the mutual information between the pair tells 

us how predictable a person’s voicing state is, given the voicing state labels of another. 

Using mutual information measure to find conversations from multiple streams of audio 

was first proposed in [42].  

 

Figure 4-7: The voicing labels of two subjects having a conversation. Note how highly 
correlated their voicing labels are. This is because each person’s microphone picks up the 
voicing both from the wearer and from their conversation partner.  

 

If we compute the mutual information between the voicing labels of two audio streams 

that are having a conversation versus any other pair we will observe a sharp peak in the 
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mutual information value when we have the correct pair at the correct time. The 

conversation mutual information measure is calculated as follows: 

,

[ ] ( [ ], [ ])

( [ ] , [ ] )
( [ ] , [ ] ) log

( [ ] ) ( [ ] )

ij i j

i j
i j

m n i j

a k I v t v t k
p v t m v t k n

p v t m v t k n
p v t m p v t k n

= −

= − =
= = − =

= − =�
 

where vi and vj are two voicing streams from subject i and subject j and m and n are 

the states (we have two states: 0 for unvoiced and 1 for voiced frames). Our data streams 

are all time-stamped, so we can calculate the mutual information between all cross-pairs. 

Although the clocks of the device were synchronized every other day, there are slight drifts. 

This affects the mutual information score as it relies on the tight synchrony between the two 

channels of data. In order to tackle this problem we compute the mutual information value 

for each one minute segment for all pairs of subjects over ± 30s time window (the drift was 

always observed to be less than 30s). For each one-minute segment, the maximum value 

within the sliding window is selected as the final score. The choice of using one minute 

chunks of conversation does put a lower limit on the duration of interaction we can detect. 

However, if we use a time window that is shorter than one minute then this significantly 

lowers the accuracy – computing mutual information over a short duration can give rise to 

many false peaks. Intuitively this makes sense, the mutual information score over a longer 

duration will result in a sharp peak only if the two channels are synchronized. For short 

segments it is not inconceivable that we will see random spurious synchronization between 

two data streams. This will make the mutual information score less reliable by giving rise to 

many false positives.   
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Figure 4-8: Mutual information score with varying window length (a) 15 seconds (b) 30 
seconds (1) 1 minute (d) 2 minutes 

 

Figure 4-8 shows the effect we mention above. We compute the mutual information 

score for 15 seconds, 30 seconds, 1 minute and 2 minutes chunks of data. For each case we 

calculate the score for the correct pair (i.e. when the data streams were synchronized and 

the pair were having a conversation) and over multiple other incorrect pairs (pairs that 

weren’t having a conversation).  The x-axis is the sample pairs (#376 is the correct pair) and 

the y-axis is the mutual information score. Notice when we use shorter time windows (15s 

or 30s) the mutual information is not very informative (lots of false positives) and cannot be 

used to find out whether a pair is interacting. However, the reliability improves significantly 

when we use a one minute or two minute chunk of data. For our experiments we calculate 

mutual information for all pairs (23 choose 2 = 253) for one minute chunks. The 

consequence of doing this is if a pair does not interact for almost one minute we aren’t able 
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to detect that conversation. We feel that this is not a terrible price to pay, as most 

conversations other than casual greetings are usually longer than one minute.   

We tested how well the mutual information score performed in detecting the 

interactions in our hand-labeled data set. As mentioned in the previous section, we had four 

different subjects label two days worth of data each. We had a total of 48 hours of data that 

was labeled. Each five minute chunk was given a label that contained the name of the 

person whom the subject was interacting with (if the subject was also participating in the 

experiment) or was labeled as ‘conversation with other’, ‘background speech’ or 

environmental ‘background noise’.  As there was only one label per five minute chunk, we 

did not know whether a conversation was less or more than a minute in duration. In order to 

get separate accuracy numbers for segments greater than a minute, the author labeled her 

data on a one minute scale.  Table 4-2 gives the accuracy numbers for mutual information 

based interaction detection. 

 Accuracy 

All segments 
(estimated from 48 hours of 
data from 4 subjects) 

63.5% 

Segments greater than one 
minute 
(estimated from 12 hours of 
data from 1 subject) 

87.5% 

Table 4-2: Accuracy in identifying interactions based on mutual information score 

4.3 Interaction Network 

Now that we are able detect interactions between people, we can analyze the actual 

communication patterns that occur within the community. We use the voicing labels 

computed from the participants audio to compute pair-wise mutual information. These 

labels are obtained prior to speaker segmentation and thus some chunks may not contain 

any voiced speech from the actual wearer. Consequently, a high mutual information score 

between wearer A and wearer B can arise from any of the following scenarios: (i) wearer A 

is participating in a conversation with wearer B (ii) wearer A or B is participating in a 

conversation with someone else nearby but not to each other or (iii) neither A or B are 

participating in a conversation but their microphone is picking up another conversation 

happening nearby. We want to use the mutual information between wearer A and wearer B 
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to identify conversations between them and not the other false positive scenarios described 

above. We achieve this making sure that both A and B have voiced regions contributed by 

them (using energy-based speaker segmentation classifier) within the time window that they 

have a high mutual score.  

Figure 4-9(a) shows the mutual information matrix for one of the subjects (ID 8) for a 

given day. Each row of the matrix is the mutual information between that subject and 

another experiment participant. The x-axis is time and mutual information is calculated for 

every one minute segment. Notice the subject has high mutual information score with ID 2, 

3 and 20 for about an hour (between minutes 68-122) for that day, however in this case they 

were all listening to a talk by another individual. Hence, the voicing energy for  ID 8 

(Figure 4-9(c) ) for that time window is minimal. Filtering the mutual information score 

with this energy measure results in Figure 4-9(b) which eliminates the false positives that 

arise from multiple subjects picking up conversations nearby simultaneously. Figure 

4-10(a-c) shows an example of when there was actual conversation going on between ID 13 

and ID 21. We use this method to identify who is talking to whom, when and for how long. 

As a result, we can again look at the overall network matrix, this time based on 

conversations rather than proximity. In order to get exact accuracy measures for this matrix, 

we would need to have all the interactions labeled over all subjects. However, Table 4-2 

presents the accuracy of detecting conversations on a subset of the dataset.  As this subset 

was collected under the same condition as the rest of the dataset, we expect the performance 

will be similar for the entire the dataset.  
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Figure 4-9: (a) mutual information score between ID 8 and all other cross IDs. (b) mutual 
information score filtered by the voicing energy of ID 8 (c) The voicing energy for ID 8. 
The x-axis is time in minutes (6hours) and y-axis is the ID numbers. 
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Figure 4-10: (a) mutual information score between ID 13 and all other cross IDs. (b) 
mutual information score filtered by the voicing energy of ID 13 (c) The voicing energy for 
ID 13. The x-axis is time in minutes (6hours) and y-axis is the ID numbers. 
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Figure 4-11: Interaction matrix. Each row corresponds to a different person. ID 1 and ID 11 
were not assigned. The values are proportional to fraction of total interaction. The 
microphone of ID 15 failed most of the days we conducted the experiment and ID 23 did 
not have the sociometer on most of the time. So we have excluded their data in future 
analysis. 

Figure 4-11 is the network matrix based on interaction. Each row shows the 

interactions of one person with other people in the network. The value of each entry (row i 

column j) is equal to  person i’s interaction with person j as a fraction of person i’s total 

interaction. Subject IDs  2-8 belong to group 1, IDs 9,10,12-14, and 18 belong to group 2, 

IDs 15-17 and 19 to group 3 and 21-24 to group 4, IDs 20 and 25 were physically co-

located with groups 1&2 (no one was assigned ID# 1 or 11). Figure 4-12 shows each 

person’s ego-network as a bar graph. Note, that there are a few individuals who have broad 

connections across groups - this type of individuals usually can have an  effect on the 

information flow within the community. To get a more intuitive picture of the interaction 

pattern within the group of people who were equipped with sociometer, we visualize the 
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network diagram by performing MDS (multi-dimensional scaling) on the geodesic 

distances. This type of visualization is commonly used in social network analysis [7]. 

 

 

Figure 4-12: Distribution of interaction. Each subplot depicts a subject's interaction with 
other experiment participants – x-axis shows the subject ID number and y-axis is the 
fraction of interaction. Note how some people interact with a much smaller subgroup than 
others.  
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Figure 4-13: Network diagram based on multi-dimensional scaling of geodesic distances.  
Node numbers represent the subject IDs. 

The link structure for the nodes is calculated by thresholding or binarizing the 

interaction matrix, and the distances between a pair of nodes is the length of the shortest 

path connecting the two nodes. Multi-dimensional scaling provides a visual representation 

of the pattern of proximities among the set of people based on some distance measure [53], 

we use the geodesic distance as our distance metric. MDS method projects points from a 

higher dimensional space to a lower dimensional space (2D in our case) such that the 

distances in the projected space is as close as possible to distances in the original space. 

Figure 4-13 shows the network visualization obtained via MDS. The nodes are colored 

according to  physical closeness of office locations (using the same colors that were 

assigned to subjects in Figure 2-5, where the location of the participants were overlaid on 
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the building map). People whose offices are in the same general space seem to be close in 

the communication space as well. In the next section we show the effect of distance on the 

overall communication pattern. 

4.3.1 Effects of Distance on Face-to-face Interaction 

The architecture or the structural layout is known to affect the communication within 

an organization or community[2, 54, 55]. We measured how the probability of 

communication changes as the physical distance between the subject increase. Figure 4-14 

shows the probability of communication as a function distance between offices. We 

grouped distances into six different categories – (i) office mates (x-axis 0) (ii) 1-2 offices 

away (x-axis 1) (iii) 3-5 offices away (x-axis 2) (iv) office on the same floor (x-axis 3) (v) 

offices separated by a floor (x-axis 4) (vi) office separated by two floor (x-axis 5). 

 

Figure 4-14: Probability of communication as a function of office distance. The distance is 
grouped into six different categories. 
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We measured what proportions of a group’s interactions are within the group, as 

opposed to with other groups members. Overall 73% of the interactions were within group 

and 27% across group. Figure 4-15 shows the per group breakdown – group 3 however has 

almost equal amounts of within and across group interactions. This group in general had 

very few interactions, and was the quietest group in our experiment. This is also consistent 

with their self reports. 

 

Figure 4-15: Distribution of within group and across group interactions for each of the 
participating groups 

4.3.2 A Few Other Observations  

In this section we present some analysis of individual speaking characteristic and how 

speaking activity changes through the course of the day. These analyses were done using 
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the segmented voicing labels calculated from each subject, i.e. based on the amount of 

talking time for each person. 

Figure 4-16 shows the average minutes of voicing energy above threshold detected per 

hour for each of the subjects. The least ‘talkative’ subjects are ID 16 and 17, which also 

validates our observation that group 3 (ID 16,17 and 19) had the lowest amount of 

interactions with other participants.  Among our subjects, those who were faculty members 

were more talkative than students. 

 

Figure 4-16: Average minutes of voicing per hour for the subjects 

 

The average talking pattern throughout the day was calculated based on the fraction of 

time that speech was detected from a wearer’s device (for every one-minute unit of time). 

Figure 4-17 shows the daily pattern averaged over all the subjects and over nine days. This 

result is quite intuitive, as talking peaks during  lunch time and also in the late afternoon 
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when students often take breaks (the weekly Media Lab student tea is also held in the 

afternoon).  

These types of analysis of network behavior are much harder to do using surveys or 

self-reports, whereas they are easily extracted from the analysis of the sensor data.  

 

 

Figure 4-17: Speech activity over the course of the day averaged over all subjects 

 

4.3.3 Centrality Measure 

Centrality measures are extensively used in social network analysis to understand an 

individual’s involvement within a community. These measures are primarily non-

directional based only on the presence or absence of link between nodes/people and not the 

directionality of the links. The aim of these measures is to identify individuals who have the 

most control over or are most central to the network [56]. There are various centrality 
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measures based on the number of links, as well as the importance of the links in 

maintaining the connectedness of the network. 

One particular measure is the ‘betweenness centrality’, which tries to measure how 

much control an individual has over the interaction of other individuals who are not directly 

connected [57]. The idea behind betweenness centrality is that if an individual lies between 

the shortest path of two other individuals then he/she has control over their interaction. 

Shimbel [58], who was one of the first people to recognize the importance of betweenness 

stated the following:   

 

Suppose that in order for (actor) i to contact (actor) j, (actor) k must be used as 
an intermediate station. (Actor) k in such a network has a certain “responsibility” 
to (actors) i and j. If we count all of the minimum paths which pass through 
(actor) k, then we have a measure of the “stress” which (actor) k must undergo 
during he activity of the network. A vector giving this (count of minimum paths) 
for each (actor) of the network would give us a good idea of the stress conditions 
throughout the system”  

 

If gjk are the number of geodesics linking two actors and all the geodesics are equally 

likely to be chosen. And if individual i is involved in gjk(ni) geodesics between j and k. The 

betweenness for i is calculated as follows: 

 

Individuals with high betweenness play a role in keeping the community connected and 

removing someone who has high betweenness can result in isolated subgroups [14, 57]. 

We estimated the betweenness centrality of the communication network as shown in 

Figure 4-11, however the link values are converted to binary 0/1 values. Some notable 

aspects of the betweenness measures shown in Figure 4-18 are the following: (i) ID 8 was 

assigned to the author who communicated with the subjects to coordinate data collection 

and hence the high betweenness measure may be biased (ii) ID 7 was an undergraduate 

student working with the author, note ID 7 mainly interacts with ID 8 and has a 

betweenness of 0 (iii) ID 16 and 17 are our least communicative subjects, and have low 

betweenness scores (iv) ID 4, although very tightly integrated within group 1, is mostly 

isolated from other groups and consequently has a low betweenness score.   
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Figure 4-18: Betweenness centrality of the interaction network 

4.4 Summary 

In this chapter, we started by analyzing the face-to-face proximity network for the IR 

data, quickly realizing that proximity information alone leaves out much of the interesting 

details of the social network. In order to get those details, we need to know who talks to 

whom within the community. We describe how we model and segment speech, speaker and 

interactions using the audio features described in Chapter 3. Then we analyze the social 

networks based on real interactions and measure various properties of the network, 

including the effects of different individuals and physical distances on the communication 

patterns within the network. We also compute the centrality score of the individual in our 

network, a measure that is often used in social network analysis to identify the importance 

of various people in maintaining the connectivity of the overall network. We compare the 

performance of various algorithms, using either survey data or hand-labeled data from the 

subjects.  
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Chapter 5: The Dynamics of Interaction 

We mentioned as one of the goals of this thesis that we want to model the dynamics of 

a person’s interaction and how one person’s dynamics affects another’s style of interaction. 

So far we presented the overall characteristics of interactions observed among the 

individuals in our network. But with the necessary features and tools at hand we are ready 

to embark on our final task – modeling the dynamics of interaction and how people 

influence each others dynamics. In this chapter, we will describe how we go about 

quantitatively modeling a person’s dynamics during interactions and how this dynamics 

changes with changing conversational partner. How do different individuals ‘influence’ our 

interaction style? What can we say about those who tend to influence other people? We also 

look at how we can use the make use of the network structure to construct a dynamic model 

that could capture how messages/information may propagate within that community. 

5.1 Turn-taking patterns 

The main aspect of the interaction dynamics we will focus on is turn-taking. We want 

to measure the turn-taking patterns of individuals and how they differ from each other. We 

will use these individual dynamics to later estimate how much an individual’s overall 

pattern changes during her interaction with another specific individual.   

We start by defining a “turn”. For each unit of time we estimate how much time each 

of the participants speaks, the participants who has the highest fraction of speaking time is 

considered to hold the “turn” for that time unit. For a given interaction, we can easily 

estimate how a pair participating in the conversation transitions between turns. In Chapter 

4, we described how we segment speech, speaker and interactions. We use the speaker 

segmentation output within conversations to estimate the turn-taking transition probability. 

Because most of the conversations in the dataset are between pairs, we transition between 
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two states: speaker A’s turn and speaker B’s turn. We selected eighty conversations which 

were on average of 5 minutes long to compute the individual turn-taking dynamics. In 

selecting the conversation we made sure that we had at least four different conversation 

partners for each individual and multiple conversation instances for the same conversational 

pair. 

 

 

Figure 5-1: Example of turn-taking pattern between a pair. The purple line identifies who is 
holding the turn. The red and blue line the fraction of speaking time for the two people. 

 

Once we have estimated the turn-taking transition probabilities for the individuals we 

can  measure how similar or dissimilar they are from each other. Figure 5-2 shows the 

output of multidimensional scaling of the transition probabilities using a Euclidean distance 

metric (which is equivalent to projecting onto the first two principal components). The x 

and y axes here are the projection coefficients for the two principal components – the x-axis 

mainly varies based on individual’s overall talk-time and y-axis varies based on the 

duration an individual holds her turn. So, a point in the upper left corresponds to an 
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individual who talks little and does not hold her turn for a long time, and a point in the 

lower right represents a talkative person who holds her turn for longer. From Figure 5-2, 

we observe that a number of people are quite similar to each other in their turn-taking 

behavior and are clustered in the center; these individuals tend to talk as much as they 

listen, e.g. IDs 19, 12, 20 etc. Some of the people on the edges have more skewed turn-

taking and turn-holding patterns, e.g. IDs 9, 6, 17, and 22. The ellipses around each 

individual’s average style show the variance in that speaker’s turn-taking over different 

conversations. Figure 5-2 demonstrates that individuals have distinctive turn-taking styles 

and that these turn-taking patterns are not just a noisy variation of the same average style. 

Certain individuals vary their styles more than others and later in this chapter we will show 

how the extent of variability is related to the person’s role within the social network 

obtained from betweenness centrality. In this figure, we show the turn-taking styles of 

seventeen individuals out of the twenty-one that we have been analyzing so far, because 

these seventeen are the ones who were participants in the eighty conversations selected. 

Later we will use ten of these subjects to do further analysis (IDs 2-10 and 14). As we 

mentioned earlier in this chapter, we want each subject to have at least four different 

conversation partners, in order to estimate their mean behavior and how they change or are 

influenced by other people’s interaction behavior. Calculating influence measures for a 

subject who has only one conversation partner would be pointless, as there would not be 

any difference between the person’s overall turn-taking behavior versus her behavior with a 

specific individual.  

In this thesis, we have recorded and analyzed turn-taking styles at a finer time 

granularity than had been done before, and also over multiple conversations in natural 

settings. Such analysis would be extremely difficult or almost impossible to do using 

human-coders.  Being able to automatically estimate people’s interaction style allows us to 

study more concretely the differences between individual turn-taking styles. We explore the 

connection between the role of individuals within their social network and how they 

communicate with others.  Furthermore, automated data analysis opens the possibility to 

study whether one’s gender or formal position in  the network has any influence on one’s 

interaction style.  
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Figure 5-2: Multidimensional scaling of the average turn-taking transition tables estimated 
from eighty conversations averaging five minutes each. Each individual’s mean transition is 
given by the red circle and the ellipse around shows the variance in speaker’s style over 
different conversations.  

5.2 Estimating Influences from Turn-taking Dynamics 

When we talk to other people we are influenced by their style of interaction. 

Sometimes this influence is strong and sometimes insignificant – we are interested in 

finding a way to quantify this effect. We probably all know people who have a strong effect 

on our natural interaction style when we talk to them, causing us to change our natural style 

as a result. For example, consider someone who never seems to stop talking once it is their 

turn to talk, she may end up imposing her style on us, and we may consequently end up not 

having enough chance to talk,  whereas in most other circumstances we tend to be an active 

and equal participant.    

How would we go about quantifying these type of influences? When we calculate the 

average transition probabilities for individuals over all the conversations they participate in, 
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Probability of person holding turn Probability of person giving up 

turn to conversation partner 

Probability of conversation partner 

holding turn 

Probability of conversation partner

giving up turn 

we learn how much individuals hold their turn and how much they transition back and forth 

with their conversation partner. So the average transition table also describes the turn-taking 

behavior of the individual’s average partner. Consequently, if we rotate the transition table 

by 180º we will get the turn-taking dynamics of the average partner (see Figure 5-3) – the 

matrix entries will remap as follows: (1,1) → (2,2), (1,2)→(2,1), (2,1)→(1,2) and 

(2,2)→(1,1) 

 

 

 

      

 

   

 

 

 

 

Figure 5-3: An example average transition table for a person's turn-taking behavior. 
Rotating the transition matrix by 180 degrees gives us the turn-taking behavior of the 
'average' conversation partner for that person 

 

When two people are interacting it is plausible their average turn-taking dynamics will 

affect each other and the resulting turn-taking behavior for that interaction will be a blend 

of the two transition matrices. If someone affects our average pattern a lot we may adapt to 

the behavior of that person’s ‘average conversation partner’, if we are not affected at all we 

will probably maintain our average dynamics completely, or the resulting interaction 

behavior may be somewhere in between the two extremes. How would we model and learn 

the affect of the interaction patterns on each other? 

Let us recall the Influence Model from chapter 3, where we described a computational 

framework to model effects like the one we describe above. In the influence model the 

transition probability of interacting dynamic processes is formed by taking a convex 

combination of the pair-wise transition probabilities. For a two chain (two person) model 

the transition probabilities will be –  

0.75 0.25 

0.35 0.65 
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we will call the two person interaction model the blended interaction model. 

The cross transition matrix in this case 1 2
1( | )t tP S S −  and 2 1

1( | )t tP S S −  are the 180º 

rotated transition matrix of the conversation partner. Now by learning the ijα  values we can 

measure the effect of influence on one another’s turn-taking behavior. 

 

Figure 5-4: A cartoon representation of how two people influence each other's style of 
interaction 

We learn the influence values for all the pair-wise conversations we selected. In order 

to evaluate whether this model buys us any additional benefit over than just using the 

personal model, we estimate the reduction in KL divergence by using the blended 

interaction vs. using the personal interaction model. By using the blended model we were 

able to reduce the KL divergence by 32%. Since in the blended model we add extra degrees 

of freedom we tested if the better fit was statistically significant by using the F-test – the p-

values was less than 0.01 implying the blended model is a significantly better fit to the data. 

In calculating the F-test score, we used the sum of square difference between the transition 
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tables instead of the KL divergence score. To make sense of all the pair-wise influences we 

aggregated all the influences an individual has on all other conversation partners she 

interacts with. This would identify individuals who overall tend to affect the others’ 

dynamics to a greater degree than average. Figure 5-5 show this aggregated influence value 

for the subset of people participating in the set of eighty conversations analyzed. 

  

Figure 5-5: Aggregate influences scores of a subset of the subjects 

One aspect of the influence values we observed was that if two interaction matrices are 

very similar (KL divergence close to zero) the influence scores often tend to be very high 

for the conversation partner and low for the subject. This influence is not very meaning 

however, as both individuals behave similarly and the resulting blended is almost the same 

individual model. So we re-estimated the aggregate influences by weighting the influence 

values by the KL divergence between the transition matrices used in estimating them.  

5.2.1 Correlating Influence Values with Centrality Scores 

In Chapter 4 we calculated the centrality scores for the subjects, which is a measure of 

an individual’s importance in maintaining the connectedness of the network. We discovered 

a suprising and highly statistically significant correlation between a person’s influence 

score and their centrality. Figure 5-6 shows the weighted influence values along with the 

centrality scores. It seems like a person’s interaction style is indicative of their role within 
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the community based on centrality measure. Note that ID 8 (the author) is somewhat of an 

outlier – a plausible explanation for this can be that during the data collection ID 8 went and 

talked to many of the subjects (which is not her usual behavior). This resulted in the author 

having high centrality (based on link structure) but not high influence based on her 

interaction style. 

We computed the correlation between the influence values and the centrality scores, 

both including and excluding the outlier subject ID 8. The correlation excluding ID 8 was 

0.90 (p-value < 0.0004, rank correlation 0.92) and including ID 8 it was 0.48 (p-value 

<0.07, rank correlation 0.65). The two measures, namely influence and centrality, are 

highly correlated, and this correlation is statistically significant when we exclude ID 8, who 

was the present author, and whose centrality was therefore artifactually large due to being 

the coordinator of the sociometer project. 

 
Figure 5-6: Weighted influence value and centrality measure for a subset of the subjects 
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5.3 Propagation of Information 

An important property of networks is how information spreads. The pattern of people’s 

communication regulates how information propagates within the community. We have 

already calculated the communication link structure of the people within our experimental 

community in Chapter 4. We used this link structure to calculate the centrality score of the 

people. However, these links were binary, based on whether a person had interactions with 

someone else or not. But as we saw from the interaction matrix, also in chapter 4, the 

amount of communication that people have with others varies significantly. We can use the 

interaction amount to weight the links with others in the network. A weighted link structure 

can be used to build a dynamic model of interacting objects (or people), as proposed in the 

influence model. Using the weights in the link matrix as the influence values, we can build 

a model of propagation of information. 

In this section, we build a simple model of information flow using the influence model 

framework. All the analysis presented in this section is obtained via a set of simulations, as 

during the data collection phase we did not have any experiments that would test and record 

how a real piece of information propagated. We assume the influence a person has on 

another is the fraction of her total interaction with that person. We also assume, once a 

person has some information she has it forever – thus other people can only effect the 

person’s states if she doesn’t have the information already, i.e. information can not be taken 

away. We do not make distinction between probability of communication and probability of 

exchanging information. If two people are likely to interact then they are just as likely to 

share information. Although quite a simplistic approach,  it seems intuitively plausible and 

simple threshold based models have been proposed for modeling diffusion of information 

[8, 59]. 

We use this model to estimate how long it would take for a message or piece of 

information to reach the entire network for different initial messengers. If someone is not 

embedded within the community we can imagine it may take a lot longer for the message to 

diffuse through the network.  We sample from the network using different initial 

messengers and  estimate the time it takes for the message to spread throughout the 

community. For each subject, we sampled 20 sequences in order to estimate the average 

spreading time. Figure 5-7 shows the average time needed for a message to spread given 
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different initial messenger. For each subject the figure shows the fraction of population 

reached for each incremental unit of time. If message originated at ID 16 it takes the longest 

amount of time to spread through the network – ID 16 also was the least talkative with very 

low centrality.  

Figure 5-7: The time it takes for a piece of information to spread for different initial 
messenger 

 

In the next two figures, we show a sample simulation of how message might propagate 

for two different initial messengers. In the first case, the subject has low aggregate 

influence, low centrality, and in the second case the subject has high aggregate influence 

and high centrality values.  Consequently, the time to spread is also significantly different 

for the two subjects. 
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Figure 5-8: Message spreading when initial messenger is ID 7 
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Figure 5-9:Message spreading when initial messenger is ID 5 

5.4 Summary 

In this chapter we moved from “who” to “how”, exploring the dynamics of people’s 

conversations. We used  “turn-taking” as a quantitative measure of someone’s 

conversational style. When a person is talking, they may either continue to talk, or pause to 

listen to their conversation partner. Similarly, when they are listening, they may either 

remain silent, or may start to talk. Each individual’s overall average pattern of conversation 

is summarized by the probabilities of their making each of these types of transition. Having 

derived this quantitative measure of “overall conversational style”, we were then able to 

t=0 t=5

t=15 t=20
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measure, for each individual, the degree to which her conversation partners tend to conform 

to her overall style. This measure is the “influence value” for that person, and is computed 

using the Influence Model that was presented in Chapter 3. 

We then explored the question of whether these influence values, derived from each 

individual’s conversational dynamics, correlated with people’s centrality scores, which 

were derived in Chapter 4 from their connectivity as nodes in the overall social network. 

We found a strikingly high correlation between these two separate measures, indicating that 

if a person’s one-on-one conversations tend to go “their way”, then the overall flow of 

communication in the social network tends to go “their way” as well. An interesting 

direction for possible future studies will be to explore whether this correlation between pair-

wise conversation and network-graph measures will continue to hold in larger sample sizes. 

Finally, we carried out simulations to explore possible ways in which information 

might propagate within the social network structure. We found that the rate at which 

information flows can vary greatly, depending on the connectedness of the initial 

messenger. 
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Chapter 6: Conclusions 

“I do not fear computers. I fear the lack of them.” 
Isaac Asimov 

6.1 Contributions 

The main contribution of this thesis is to have demonstrated the feasibility of learning 

social interactions from raw sensory data.  In this thesis we have presented a framework for 

automatic modeling of face-to-face interactions, starting from the data collection methods 

and working up to computational methods for learning the structure and dynamics of social 

networks. Specific contributions of this thesis include: 

• The first successful experiment in learning the communication patterns by 

equipping a group of people within a community with wearable sensing 

devices. Carefully considering functionality, design and the privacy concerns 

of users, we built the sociometer as a solution to the problem of how to 

unobtrusively collect natural interaction data. A big hurdle in using perceptual 

sensing to model human behavior was that of collecting and being able to use 

real-world data from natural scenarios. We solved the problem of collecting 

the data by building an appealing and unobtrusive device, and the noisy real-

world data was made relatable to social-network level phenomena by a 

variety of preprocessing steps. 

• The thesis work generated a unique dataset of interaction data from twenty 

three individuals. This dataset recorded six hours of data daily for a period of 

two-weeks. Such continuous sampling of interaction behavior would not be 

feasible using standard social network sampling methods (i.e. surveys, human 
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observers, personal diaries etc). Previous sensor-based recordings of large 

groups of people have been limited to collecting only proximity information 

from infra-red and radio-frequency transmitters. This thesis is the first to 

move beyond proximity, in this case by measuring conversational interactions 

in large groups. 

• Having collected and preprocessed the social interaction data, the thesis then 

explored methods for computationally modeling the underlying social 

network structure. We have integrated methods from speech processing, 

conversational scene analysis and machine learning to demonstrate that it is 

possible to extract information about people’s patterns of communication 

without imposing any restriction on the user’s interactions, or the 

environment in which the user usually functions. 

• We have analyzed social network data at much finer time granularity than had 

been done before.  

• Investigating conversational dynamics: analyzing not only whom we talk to, 

but also how we talk to them. We have presented results that demonstrates 

distinctive and consistent turn-taking styles for individuals.    

• A new interaction model for quantitatively capturing the effects of one 

person’s turn-taking behavior on another. We capture how much our 

interactions deviate from our average turn-taking pattern for certain 

conversation partners. We have presented new results on how some 

individuals tend to influence people’s dynamics more than others. 

• A new result that shows strong statistically significant correlation between a 

person’s aggregate influence value and her centrality score. Indicating the 

possibility that a person’s style during one-on-one conversations may be 

indicative of the person’s overall role in the connectivity of the network. 

Although during the data collection stage of the project we recorded the audio of the 

subject, none of the analysis and results on this thesis rely on the recognizing the spoken 

words that formed the semantic content of the interaction. This thesis shows that it is 

possible to get rich information about people’s interaction with others and how they are 

embedded in their social network, without being too intrusive of their privacy. 
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6.2 Future Directions 

This thesis is the first step in trying to answer some of the traditional questions in 

social network analysis and organizational behavior, using new sets of sensing and analysis 

tools. It attempts to explore new questions that were not addressable using traditional 

techniques. The resulting work has opened up a number of possible avenues for future 

experiments and research. In this section we list a few of these directions that we think are 

the most interesting: 

• Influence and centrality – a sustainable correlation? We discovered a 

strong correlation between people’s talking style and the role they play in 

connecting the network. This connection needs to be explored further, with a 

greater number of people and in different environments. Is this correlation an 

artifact of the specific community that we were looking at, or is it a more 

general effect which holds for different communities? Do communities with 

very different centrality distributions also have very different influence 

distributions? 

• Comparing face-to-face vs. online behavior – How similar or dissimilar are 

people’s patterns of online social behavior, compared to their face-to-face 

interactions? Are the people who are the strong influencers during face-to-

face interaction also the ones with strong influence values during email or 

chat communications, or is this measure dependent on the mode of 

communication? 

• Additional sensing modalities  – For the analyses done in the thesis, we used 

only the audio data from people. However, it has been shown that people also 

affect each other’s body language[1, 25]. Other sensory channels, such as 

accelerometers, EKG, or galvanic skin response, are additional modalities that 

could be included for richer analysis of people’s face-to-face communication 

behavior. 

• Analyzing the interaction style among three or more people – In this thesis 

we looked at turn-taking behavior in conversations that had two participants. 
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An interesting question to explore would be whether interactions within a 

triad could be modeled by combining dyad models. 

• Measuring information flow – An experiment that tests the real path of 

information flow would be important in understanding the value of the links 

between people. Can we improve the flow of information by adding new links 

to the individuals through whom the greatest amount of information flows? 

Or can we add alternate paths in the network, to reduce the reliance on people 

who are currently over-used within the network. 

• Evolution of the network over time – One of the major advantages in real-

time sensing and automatic modeling is that we can now potentially analyze 

the long term trends of the network. A fruitful line of exploration would be to 

study networks over a long period (months, or even years) and analyze how 

they evolve over time. Can we detect the significant transition points where a 

lot of changes are taking place – e.g. during layoffs, or for a person’s own 

network during relocation? 

• Adding value for the users – At present the people wearing the sensing 

devices do not obtain any direct benefit from participating in the study. In 

order for such sensing technology to be widely acceptable they need to 

provide some additional value to the user, over and above the broader but 

impersonal value obtained from understanding the network behavior. One 

incentive may be to provide a detailed dairy to the user of her communication 

patterns with different people, or even simple measures such as how much 

people talk over the course of the day. However, more economically viable 

incentives probably exist, and we are interested in exploring such 

possibilities. 

• Beyond the Sociometer – The participants in the current experiment were 

already far more familiar than average with the concept of wearable 

computing, and hence much more accepting of it.  However, in order for a 

more diverse community of people to accept wearing sensors for a significant 

part of the day, we need to improve upon the current form factor of the 

sociometer. What will the next generation of the sociometers look like? Will 

they be incorporated into a watch or be part of a PDA or cell phone, or will 
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they be something completely different? The form factor and wearability 

issues need to be considered seriously. Even in the unusually accepting 

community of the MIT Media Lab, the broad user base in the present study 

was achievable only as a result of  extensive efforts to make the sociometer 

easy to use, and much less cumbersome than is the norm amongst existing 

wearable devices. 

6.3 Concluding Remarks 

Insights into how humans communicate and function as a group can enable us to build 

better and smarter context aware systems, and also tools that support collaboration. By 

giving computers the ability to move beyond focusing on the actions or behavior of a single 

individual, and by trying to understand and model the networked community, we can 

extend the capabilities of current intelligent systems.  

Ever since Stanley Milgram’s famous “small world” experiment that showed that any 

individual is connected to any other through a short chain of social ties (consisting of six 

people, on average)[60], researchers have been trying to understand the mysteries of human 

networks. Although many have proposed different topologies that explain the short path 

length property of human networks, few have addressed the question of “why” – are some 

people’s mannerism and style of interacting indicative of having  a hub or a connector 

status within the network. In human communication networks, understanding the micro-

level dynamics may hold answers to understanding macro-level behavior. We believe that 

discovering ties between individuals’ behavior patterns and their roles within the network 

may provide insights into understanding networks, beyond just topology and path length. 

Social psychologists have tried for a long time to understand how people change their 

behavior patterns as they interact with others, but have been limited by the problem of how 

to record and analyze large groups of people. We are now beginning to have the data 

acquisition devices and the computational tools what will make these problems tractable for 

the first time, allowing for richer and more scalable explorations than could previously be 

imagined.  
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