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Abstract

The effect of characteristic length scales, through dimensional and microstructural miniatur-
izations, on mechanical properties is systematically investigated by recourse to instrumented
micro- and/or nanoindentation. This technique is capable of extracting mechanical prop-
erties accurately down to nanometers, via rigorous interpretation of indentation response.
Such interpretation requires fundamental understandings of contact mechanics and under-
lying deformation mechanisms. Analytical, computational and experimental approaches are
utilized to elucidate specifically how empirical constitutive relation can be estimated from
the complex multiaxial stress state induced by indentation. Analytical formulations form a
framework for parametric finite element analysis. The algorithms are established to predict
indentation response from a constitutive relation (hereafter referred to as “forward algo-
rithms”) and to extract mechanical properties from indentation curve (hereafter referred to
as “reverse algorithms”). Experimental verifications and comprehensive sensitivity analysis
are conducted. Similar approaches are undertaken to extend the forward/reverse algorithms
to indentations using two ore more tip geometries.

Microstructural miniaturization leads to novel class of materials with a grain size
smaller than 100 nm, hereafter referred to as “nanocrystalline” material. Its mechani-
cal properties are observed to deviate greatly from the microcrystalline counterparts. In
this thesis, experimental, analytical and computational approaches are utilized to elucidate
the rate and size dependent mechanical properties observed in nanocrystalline materials.
Indentations, as well as micro-tensile tests, are employed to attain various controllable
deformation rates. A simple analytical model, hereafter referred to as Grain-Boundary-
Affected-Zone (GBAZ) model, is proposed to rationalize possible rate-sensitivity mecha-
nism. Systematic finite element analysis integrating GBAZ model is conducted with cali-
bration against the experiments. The same GBAZ model, further utilized in the paramet-
ric finite element study, is capable of predicting the inverse Hall-Petch-type phenomenon
(weakening with decreasing grain size) at the range consistent with the literature.

Thesis Supervisor: Subra Suresh
Title: Ford Professor of Engineering
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Chapter 1

Introduction

Current trends in the microelectronic, tribological coating and biomedical industries are

driving characteristic dimensions and microstructures of engineered materials and systems

down to the microscopic and nanoscopic size scales. The mechanical properties of such

materials have been observed to deviate greatly from those of their conventional counter-

parts, ostensibly due to confined dimensions (e.g. in coating) and confined microstructures

(e.g in ultra-fine crystalline and nanocrystalline materials with grain sizes of 100-1000 nm

and less than 100 nm, respectively). To design the devices at this length scales against

mechanical failure during fabrication and operation, their mechanical properties need to

be accurately determined in a systematic manner, both prior to and during their services.

Among many other mechanical testing techniques, depth-sensing instrumented indentation

provides a convenient method to precisely assess the mechanical behavior of such materials,

by recourse to careful interpretation of a force-depth (P − h) response.

Over the past few decades, indentation has rapidly gained its reputation for ver-

satile property extraction due to its flexible specimen requirement, non-destructive testing

and ability to probe localized properties. In particular, indentation has frequently proved

to be the only means available to extract mechanical properties from sophisticated, con-

strained material systems (e.g. multilayered metallization in ultra large scale integration

(ULSI) devices); novice material systems which are difficult, if not impossible, to produce

in bulk quantities (e.g. nanocrystalline materials); or embedded feature in microstructure
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(e.g. connecting ligaments in foam). Despite the extensive range of applications, precise

interpretation of the indentation curves is necessary for this technique to become a viable

method of mechanical property determination. Interpretation of such curves involves an

understanding of contact mechanics and fundamental mechanisms which define the defor-

mation behavior of the materials involved.

To this end, analytical, computational and experimental approaches are utilized to

elucidate the contact mechanics complexity during indentation, specifically how empirical

constitutive relation can be estimated from the intricate multiaxial stress state induced by

indentation. An analytical expression for Young’s modulus is further developed from solu-

tions of an elastic half space being indented by a rigid, axially symmetric punch [1]. On the

other hand, analytical expressions for plastic information rely on a self-similar solution of an

elasto-plastic material under spherical indentation [2] and sharp (i.e. Vickers and Berkovich)

indentation [3, 4]. Using dimensional analysis, closed-form analytical functions can be iden-

tified correlating empirical constitutive description to indentation response. Coefficients of

these dimensionless functions are accurately determined by recourse to systematic finite

element analysis of indentation computational modeling. Further rearrangements of these

functions reveal

• forward algorithms that predict an indentation response from an empirical constitutive

relation, and

• reverse algorithms that predict an empirical constitutive relations from an indentation

response.

In addition, experimental indentations of materials, whose mechanical properties are known

a priori, are conducted to verify the forward/reverse algorithms. Similar approaches are

pursued to extend the algorithms to dual indenters or more.

In addition to dimensional miniaturization, indentation is often employed to analyze

the effect of microstructural miniaturization (e.g. in ultra-fine crystalline and nanocrys-

talline materials). These novice material systems have been recognized for their appealing

mechanical properties [5–21], such as increased yield strength/hardness/fracture strength,

22



superior resistance to wear/corrosion/crack initiation, and pronounced rate sensitivity (in-

creased strength with increasing strain rate), among many others. Despite recent progress

within the context of nanocrystalline materials, fundamental understandings of mechanisms

underlying the mechanical properties are not clear, if not conflicting (e.g. experimental data

on the strain-rate sensitivity of nanocrystalline metals by [7, 8]). Hence, quantitative con-

clusion cannot be drawn from the vast amount of literature data. Cautious analysis of the

literature data reveals that inconsistency may arise from the different testing techniques

chosen to attain various strain rates. To minimize the artifacts, rate-sensitive data should

be collected from the same experimental setup.

To this end, experimental, analytical and computational approaches are utilized to

elucidate the effect of rate sensitivity on the mechanical properties of nanocrystalline mate-

rials. In addition to the micro-tensile test, indentation has yet again proved ambidextrous

due to its ability to vary controllable load/strain rate within the same experimental setup.

A simple analytical model (called Grain-Boundary-Affected-Zone model, see Chapter 5),

which is predicated upon the premise that grain boundary is atomically sharp and atoms

nearby grain boundary are more likely to move, is proposed. Systematic finite element anal-

ysis integrating GBAZ model is conducted with calibration against the experiments. The

properly configured GBAZ model is then rationalized for the possible mechanism governing

rate-sensitivity in nanocrystalline materials. The same GBAZ model is further illustrated

with the capability to predict the observed size effect, namely inverse Hall-Petch-type phe-

nomenon (see Section 5.5), at the critical grain size range consistent with experimental and

atomistic calculation results reported in the literature..

The main objective of this thesis is to use computational tool (within the context

of finite element analysis), based on analytical formulations and guided by the relevant

experiments, to quantify the effect of size scales on the mechanical properties. The compu-

tational modeling is focused on instrumented indentations with single or dual indenter(s),

and deformation mechanism in nanocrystalline materials. The thesis is organized in the

following manner:

§ Chapter 2 presents a systematic parameter study of indentation simulation within

the context of finite element analysis and theoretical framework. Using dimensional
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analysis, the forward and reverse algorithms are proposed with experimental verifica-

tions, and the comprehensive sensitivity analysis is conducted. Significant issues, e.g.

representative strain and uniqueness of the prediction, are discussed in details.

§ Chapter 3 extends the proposed algorithms in Chapter 2 to indentation using two or

more indenters, by recourse to similar approach. Improvement over single indentation

algorithms is discussed with regard to uniqueness and sensitivity. Possible extension

to multiple indenters algorithms is explored.

§ Chapter 4 presents the experimental assessment of the representative stresses esti-

mated from the instrumented sharp indentation using previously proposed algorithms

in Chapters 2 and 3. The representative stress concept may be utilized to construct

the entire stress-strain curve, provided that multiple indentations are conducted on

the target material with different levels of known plastic pre-strain.

§ Chapter 5 proposes the possible mechanism for rate-sensitivity observed in nanocrys-

talline materials, by recourse to systematic finite element analysis of newly devel-

oped Grain Boundary Affected Zone (GBAZ) model, whose parameters are calibrated

against the experiments. The same GBAZ model is shown with consistency to size

effect observed (namely inverse Hall-Petch-type phenomenon) in the literature.

§ Chapter 6 presents a summary of conclusions and discusses directions of the future

work.
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Chapter 2

Computational Modeling of the

Forward and Reverse Problems in

Instrumented Sharp Indentation

In this chapter∗, a comprehensive computational study was undertaken to identify the

extent to which elasto-plastic properties of ductile materials could be determined from in-

strumented sharp indentation and to quantify the sensitivity of such extracted properties to

variations in the measured indentation data. Large deformation finite element computations

were carried out for 76 different combinations of elasto-plastic properties that encompass

the wide range of parameters commonly found in pure and alloyed engineering metals;

Young’s modulus, E, was varied from 10 to 210 GPa, yield strength, σy, from 30 to 3000

MPa, and strain hardening exponent, n, from 0 to 0.5, and the Poisson’s ratio, ν, was fixed

at 0.3. Using dimensional analysis, a new set of dimensionless functions was constructed

to characterize instrumented sharp indentation. From these functions and elasto-plastic

finite element computations, analytical expressions were derived to relate indentation data

to elasto-plastic properties. Forward and reverse analysis algorithms were thus established;

the forward algorithms allow for the calculation of a unique indentation response for a

given set of elasto-plastic properties, whereas the reverse algorithms enable the extraction

∗This article is published in Acta. Mater., Vol. 49 (2001), p. 3899, with co-authors: M. Dao, K. J. Van
Vliet, T. A. Venkatesh and S. Suresh. [22]
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of elasto-plastic properties from a given set of indentation data. A representative plastic

strain εr was identified as a strain level which allows for the construction of a dimensionless

description of indentation loading response, independent of strain hardening exponent n.

The proposed reverse analysis provides a unique solution of the reduced Young’s modulus

E∗, a representative stress σr, and the hardness pave. These values are somewhat sensitive

to the experimental scatter and/or error commonly seen in instrumented indentation. With

this information, values of σy and n can be determined for the majority of cases considered

here provided that the assumption of power law hardening adequately represents the full

uniaxial stress-strain response. These plastic properties, however, are very strongly influ-

enced by even small variations in the parameters extracted from instrumented indentation

experiments. Comprehensive sensitivity analyses were carried out for both forward and

reverse algorithms, and the computational results were compared with experimental data

for two materials.

2.1 Introduction

The mechanical characterization of materials has long been represented by their hardness

values [23, 24]. Recent technological advances have led to the general availability of depth-

sensing instrumented micro- and nanoindentation experiments (e.g., [23–36]). Nanoinden-

ters provide accurate measurements of the continuous variation of indentation load P down

to micro-Newtons, as a function of the indentation depth h down to nanometers. Ex-

perimental investigations of indentation have been conducted on many material systems

to extract hardness and other mechanical properties and/or residual stresses (e.g., [25–

27, 31, 35–39, 43, 44], among many others).

Concurrently, comprehensive theoretical and computational studies have emerged

to elucidate the contact mechanics and deformation mechanisms in order to systematically

extract material properties from P versus h curves obtained from instrumented indentation

(e.g., [3, 25, 27, 33, 34, 38–42]. For example, the hardness and Young’s modulus can be ob-

tained from the maximum load and the initial unloading slope using the methods suggested

by Oliver and Pharr [27] or Doerner and Nix [25]. The elastic and plastic properties may

be computed through a procedure proposed by Giannakopoulos and Suresh [41], and the
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residual stresses may be extracted by the method of Suresh and Giannakopoulos [43, 44].

Thin film systems have also been studied using finite element computations [45–47].

Using the concept of self-similarity, simple but general results of elasto-plastic in-

dentation response have been obtained. To this end, Hill et al. [2] developed a self-similar

solution for the plastic indentation of a power law plastic material under spherical indenta-

tion, where Meyer’s law† was given a rigorous theoretical basis. Later, for an elasto-plastic

material, self-similar approximations of sharp (i.e., Berkovich and Vickers) indentation were

computationally obtained by Giannakopoulos et al. [3] and Larsson et al. [4]. More recently,

scaling functions were applied to study bulk [33, 34, 40] and coated material systems [47].

Kick’s Law (i.e., P = Ch2 during loading, where loading curvature C is a material constant)

was found to be a natural outcome of the dimensional analysis of sharp indentation (e.g.,

[33]).

Despite these advances, several fundamental issues remain that require further ex-

amination:

1. A set of analytical functions, which takes into account the pile-up/sink-in effects

and the large deformation characteristics of the indentation, needs to be established

in order to avoid detailed FEM computations after each indentation test. These

functions can be used to accurately predict the indentation response from a given

set of elasto-plastic properties (forward algorithms), and to extract the elasto-plastic

properties from a given set of indentation data (reverse algorithms). Giannakopoulos,

Larsson and Vestergaard [3] and later Giannakopoulos and Suresh [41] proposed a

comprehensive analytical framework to extract elasto-plastic properties from a single

set of P − h data. Their results, as will be shown later in this study, were formulated

using mainly small deformation FEM results (although they performed a number of

large deformation computations). Cheng and Cheng [33, 34, 40], using an included

apex angle of the indenter of 68o, proposed a set of universal dimensionless functions

based on large deformation FEM computations, but did not establish a full set of

closed-form analytical functions.

†Meyer’s law for spherical indentation states that P = Kam

Dm−2 , where m is a hardening factor, D is the

indenter’s diameter, a is the contact radius of the indenter, and K is a material constant.
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2. Under what conditions and/or assumptions can a single set of elasto-plastic proper-

ties be extracted from a single P − h curve with reasonable accuracy? Cheng and

Cheng [40] and Venkatesh et al. [42] discussed this issue. However, without an ac-

curate analytical framework based on large deformation theory, this issue can not be

addressed.

3. What are the similarities and differences between the large and small deformation-

based analytical formulations? Chaudhri [48] estimated that equivalent strains of 25%

to 36% were present in the indented specimen near the tip of the Vickers indenter.

These experimentally observed large strains justify the need for large deformation

based theories in modeling instrumented sharp indentation tests.

In this paper, these issues will be addressed within the context of sharp indentation and

continuum analysis.

2.2 Theoretical and Computational Considerations

2.2.1 Problem Formulation and Associated Nomenclature

Figure 2-1 shows the typical P−h response of an elasto-plastic material to sharp indentation.

During loading, the response generally follows the relation described by Kick’s Law,

P = Ch2 (2.1)

where C is the loading curvature. The average contact pressure, pave = Pm
Am

(Am is the

true projected contact area measured at the maximum load Pm), can be identified with the

hardness of the indented material. The maximum indentation depth hm occurs at Pm, and

the initial unloading slope is defined as dPu
dh

∣∣
hm

, where Pu is the unloading force. The Wt

term is the total work done by load P during loading, We is the released (elastic) work

during unloading, and the stored (plastic) work Wp = Wt −We. The residual indentation

depth after complete unloading is hr.
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Figure 2-1: Schematic illustration of a typical P − h response of an elasto-plastic material
to instrumented sharp indentation.

As discussed by Giannakopoulos and Suresh [41], C, dPu
dh

∣∣
hm

and hr
hm

are three inde-

pendent quantities that can be directly obtained from a single P − h curve. The question

remains whether these parameters are sufficient to uniquely determine the indented mate-

rial’s elasto-plastic properties.

Plastic behavior of many pure and alloyed engineering metals can be closely ap-

proximated by a power law description, as shown schematically in Fig. 2-2. A simple

elasto-plastic, true stress-true strain behavior is assumed to be

σ =





Eε for σ 6 σy

Rεn for σ > σy

(2.2)

where E is the Young’s modulus, R a strength coefficient, n the strain hardening exponent,

σy the initial yield stress and εy the corresponding yield strain, such that

σy = Eεy = Rεn
y (2.3)
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Figure 2-2: The power law elasto-plastic stress-strain behavior used in the current study.

Here the yield stress σy is defined at zero offset strain. The total effective strain, ε, consists

of two parts, εy and εp:

ε = εy + εp (2.4)

where εp is the nonlinear part of the total effective strain accumulated beyond εy. With

Eqs. (2.3) and (2.4), when σ > σy, Eq. (2.2) becomes

σ = σy

(
1 +

E

σy
εp

)n

(2.5)

To complete the material constitutive description, Poisson’s ratio is designated as ν, and the

incremental theory of plasticity with von Mises effective stress (J2 flow theory) is assumed.

With the above assumptions and definitions, a material’s elasto-plastic behavior is

fully determined by the parameters E, n, σy and n. Alternatively, with the constitutive

law defined in Eq. (2.2), the power law strain hardening assumption reduces the mathe-

matical description of plastic properties to two independent parameters. This pair could
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be described as a representative stress σr (defined at εp = εr, where εr is a representative

strain) and the strain-hardening exponent n, or as σy and σr.

2.2.2 Dimensional Analysis and Universal Functions

Cheng and Cheng [33, 34] and Tunvisut et al. [47] have used dimensional analysis to propose

a number of dimensionless universal functions, with the aid of computational data points

calculated via the Finite Element Method (FEM). Here, a number of new dimensionless

functions are described in the following paragraphs.

As discussed in Section 2.2.1, one can use a material parameter set (E, ν, σy and

n), (E, ν, σr and n) or (E, n, σy and σr) to describe the constitutive behavior. Therefore,

the specific functional forms of the universal dimensionless functions are not unique (but

different definitions are interdependent if power law strain hardening is assumed). For

instrumented sharp indentation, a particular material constitutive description (e.g., power-

law strain hardening) yields its own distinct set of dimensionless functions. One may choose

to use any plastic strain to be the representative strain εr, where the corresponding σr is

used to describe the dimensionless functions. However, the representative strain which best

normalizes a particular dimensionless function with respect to strain hardening will be a

distinct value.

The following section presents a set of universal dimensionless functions and their

closed-form relationship between indentation data and elasto-plastic properties (within the

context of the present computational results). This set of functions leads to new algorithms

for accurately predicting the P − h response from known elasto-plastic properties (forward

algorithms) and new algorithms for systematically extracting the indented material’s elasto-

plastic properties from a single set of P − h data (reverse algorithms).

For a sharp indenter (conical, Berkovich or Vickers, with fixed indenter shape and

tip angle) indenting normally into a power law elasto-plastic solid, the load P can be written

as

P = P (h,E, ν, Ei, νi, σy, n), (2.6)
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where Ei is Young’s modulus of the indenter, and νi is its Poisson’s ratio. This functionality

is often simplified (e.g., [49]) by combining elasticity effects of an elastic indenter and an

elasto-plastic solid as

P = P (h,E∗, σy, n), (2.7)

where

E∗ =
[
1− ν2

E
+

1− ν2
i

Ei

]−1

(2.8)

Alternatively, Eq. (2.7) can be written as

P = P (h,E∗, σr, n), (2.9)

or

P = P (h,E∗, σy, σr), (2.10)

Applying the Π theorem in dimensional analysis, Eq. (2.9) becomes

P = σrh
2Π1

(
E∗

σr
, n

)
(2.11)

and thus

C =
P

h2
= σrΠ1

(
E∗

σr
, n

)
(2.12)

where Π1 is a dimensionless function. Similarly, applying the Π theorem to Eq. (2.10),

loading curvature C may alternatively be expressed as

C =
P

h2
= σyΠA

1

(
E∗

σy
,
σr

σy

)
(2.13)
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or

C =
P

h2
= σrΠB

1

(
E∗

σr
,
σy

σr

)
(2.14)

where ΠA
1 and ΠB

1 are dimensionless functions. The dimensionless functions given in Eqs.

(2.11) to (2.14) are different from those proposed in [33, 34], where the normalization was

taken with respect to E∗ instead of σr or σy.

During nanoindentation experiments, especially when the indentation depth is about

100 to 1000 nm, size-scale-dependent indentation effects have been postulated (e.g., [30,

50, 51]). These possible size-scale-dependent effects on hardness have been modeled using

higher order theories (e.g., [50, 51]). If the indentation is sufficiently deep (typically deeper

than 1 µm), then the scale dependent effects become small and may be ignored. In the

current study, any scale dependent effects are assumed to be insignificant. It is clear from

Eqs. (2.11) to (2.14) that P = Ch2 is the natural outcome of the dimensional analysis for

a sharp indenter, and that it is independent of the specific constitutive behavior; loading

curvature C is a material constant which is independent of indentation depth. It is also

noted that, depending on the choices of (εr, σr), there are an infinite number of ways to

define the dimensionless function Π1. However, with the assumption of power-law strain

hardening, it can be shown that one definition of Π1 is easily converted to another definition.

If the unloading force is represented as Pu, the unloading slope is given by

dPu

dh
=

dPu

dh
(h, hm, E, ν, Ei, νi, σr, n) (2.15)

or, assuming that elasticity effects are characterized by E∗, the unloading slope is given by

dPu

dh
=

dPu

dh
(h, hm, E∗, σr, n) (2.16)

Dimensional analysis yields
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dPu

dh
= E∗hΠ0

2(
hm

h
,

σr

E∗ , n) (2.17)

Evaluating Eq. (2.17) at h = hm gives

dPu

dh

∣∣∣∣
hm

= E∗hmΠ0
2(1,

σr

E∗ , n) = E∗hmΠ2(
E∗

σr
, n) (2.18)

Similarly, Pu itself can be expressed as

Pu = Pu(h, hm, E∗, σr, n) = E∗h2Πu(
hm

h
,

σr

E∗ , n) (2.19)

When Pu = 0, the specimen is fully unloaded and, thus, h = hr. Therefore, upon complete

unloading,

0 = Πu(
hm

hr
,

σr

E∗ , n) (2.20)

Rearranging Eq. (2.20),

hr

hm
= Π3(

σr

E∗ , n) (2.21)

Thus, the three universal dimensionless functions, Π1, Π2 and Π3, can be used to relate the

indentation response to mechanical properties.

2.2.3 Computational Model

Axisymmetric two-dimensional and full three-dimensional finite element models were con-

structed to simulate the indentation response of elasto-plastic solids. Figure 2-3(a) schemat-

ically shows the conical indenter, where θ is the included half angle of the indenter, hm is

the maximum indentation depth, and am is the contact radius measured at hm. The true

projected contact area Am, with pile-up or sink-in effects taken into account, for a conical

indenter is thus
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Figure 2-3: Computational modeling of instrumented sharp indentation. (a) Schematic
drawing of the conical indenter, (b) mesh design for axisymmetric finite element calcula-
tions, (c) overall mesh design for the Berkovich indentation calculations, and (d) detailed
illustration of the area that directly contacts the indenter tip in (c).
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Am = πa2
m (2.22)

Figure 2-3(b) shows the mesh design for axisymmetric calculations. The semi-infinite sub-

strate of the indented solid was modeled using 8100 four-noded, bilinear axisymmetric

quadrilateral elements, where a fine mesh near the contact region and a gradually coarser

mesh further from the contact region were designed to ensure numerical accuracy. At the

maximum load, the minimum number of contact elements in the contact zone was no less

than 16 in each FEM computation. The mesh was well-tested for convergence and was

determined to be insensitive to far-field boundary conditions.

Three-dimensional finite element models incorporating the inherent six-fold or eight-

fold symmetry of a Berkovich or a Vickers indenter, respectively, were also constructed. A

total of 11,150 and 10,401 eight-noded, isoparametric elements was used for Berkovich

and Vickers indentation, respectively. Figure 2-3(c) shows the overall mesh design for

the Berkovich indentation, while Fig. 2-3(d) details the area that directly contacts the

indenter tip. Computations were performed using the general purpose finite element pack-

age ABAQUS [52]. The three-dimensional mesh design was verified against the three-

dimensional results obtained from the mesh used previously by Larsson et al. [4]. Unless

specified otherwise, large deformation theory was assumed throughout the analysis.

For a conical indenter, the projected contact area is A = πh2 tan2 θ; for a Berkovich

indenter, A = 24.56h2; for a Vickers indenter, A = 24.50h2. In this study, the three-

dimensional indentation induced via Berkovich or Vickers geometries was approximated

with axisymmetric two-dimensional models by choosing the apex angle θ such that the pro-

jected area/depth of the two-dimensional cone was the same as that for the Berkovich or

Vickers indenter. For both Berkovich and Vickers indenters, the corresponding apex angle

θ of the equivalent cone was chosen as 70.3o. Axisymmetric two-dimensional computational

results will be referenced in the remainder of the paper unless otherwise specified. In all

finite element computations, the indenter was modeled as a rigid body, and the contact

was modeled as frictionless. Detailed pile-up and sink-in effects were more accurately ac-

counted for by the large deformation FEM computations, as compared to small deformation

computations.
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2.2.4 Comparison of Experimental and Computational Results

Two aluminum alloys were obtained for experimental investigation: 6061-T651 and 7075-

T651 aluminum, both in the form of 2.54 cm diameter, extruded round bar stock. Two

compression specimens (0.5 cm diameter, 0.75 cm height) were machined from each bar

such that the compression axis was parallel to the extrusion direction. Simple uniaxial com-

pression tests were conducted on a servo-hydraulic universal testing machine at a crosshead

speed of 0.2 mm/min. Crosshead displacement was obtained from a calibrated LVDT (linear

voltage-displacement transducer). As each specimen was compressed to 45% engineering

strain, the specimen ends were lubricated with TeflonTM lubricant to prevent barreling. In-

termittent unloading was conducted to allow for repeated measurement of Young’s modulus

and relubrication of the specimen ends. Recorded load-displacement data were converted

to true stress-true strain data. Although the true stress-true strain responses were well

approximated by power law fits, these experimental stress-strain data which were used as

direct input for FEM simulations, rather than the mathematical approximations (see Fig.

2-4). For 7075-T651 aluminum, the measured Young’s modulus was E = 70.1 GPa (ν =

0.33); and for 6061-T651 aluminum, E = 66.8 GPa (ν = 0.33).

Indentation specimens were machined from the same round bar stock as discs of the

bar diameter (3 mm thickness). Each specimen was polished to 0.06 mm surface finish with

colloidal silica. These specimens were then indented on a commercial nanoindenter (Micro-

Materials, Wrexham, UK) with a Berkovich diamond indenter at a loading/unloading rate

of approximately 0.2 N/min. For each of three maximum loads (3, 10, and 20 N), five tests

were conducted on two consecutive days, for a total of ten tests per load in each specimen.

Figure 2-5 shows the typical indentation responses of both the 7075-T651 aluminum and

6061-T651 aluminum specimens, respectively. The corresponding finite element computa-

tions using conical, Berkovich and Vickers indenters are also plotted in Fig. 2-5. Figure

2-6 shows the equivalent plastic strain (PEEQ) within the 7075-T651 aluminum near the

tip of the conical indenter, indicating that the majority of the volume directly beneath the

indenter experienced strains exceeding 15%. Assuming only the σ− ε constitutive response

obtained from experimental uniaxial compression, the computational P − h curves agree

well with the experimental curves, as shown in Fig. 2-5. The computational P−h responses

37



0

100

200

300

400

500

600

700

800

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
True Strain

T
ru

e 
S

tr
es

s 
(M

P
a)

7075T651 Al

6061T651 Al

0

100

200

300

400

500

600

700

800

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
True Strain

T
ru

e 
S

tr
es

s 
(M

P
a)

7075T651 Al

6061T651 Al

Figure 2-4: Experimental uniaxial compression stress-strain curves of both 6061-T651 alu-
minum and 7075-T651 aluminum specimens, respectively.
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Figure 2-5: Experimental versus computational indentation responses of both the 7075-T651
aluminum and 6061-T651 aluminum specimens, respectively.
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PEEQPEEQ

Figure 2-6: Contour plot of the equivalent plastic strain (PEEQ) within the 7075-T651
aluminum near the tip of the conical indenter, indicating that the majority of the volume
directly beneath the indenter experienced strains exceeding 15%.

of the conical, Berkovich and Vickers indentations were found to be virtually identical.

2.2.5 Large Deformation vs. Small Deformation

Giannakopoulos et al. [3], Larsson et al. [4], Giannakopoulos and Suresh [41], and Venkatesh

et al. [42] have proposed a systematic methodology to extract elasto-plastic properties from

a single P − h curve. The loading curvature C was given as

C = M1σ0.29

[
1 +

σy

σ0.29

] [
M2 + ln

(
E∗

σy

)]
(2.23)

where M1 and M2 are computationally derived constants which depend on indenter geom-

etry. The representative stress σ0.29 is defined as a true stress at true plastic strain of 29%.

It is interesting to note that, after rewriting σ0.29

(
1 + σy

σ0.29

)
as σy

(
1 + σ0.29

σy

)
, Eq. (2.23)

is consistent with Eq. (2.13).

Figure 2-7 shows the comparison between the large deformation solution, small

deformation solution and the predictions from Eq. (2.23), using the four model materials

39



15

20

25

30

35

40

45

50

3 3.5 4 4.5 5 5.5 6 6.5

C
/ (

σ� y
+σ

� 0.2
9)

ln (E*/σ�y)

A-Zn Alloy B-Refractory Alloy C-Al Alloy D-Steel

large deformation
small deformation
previous formulation: eq. (20)

15

20

25

30

35

40

45

50

3 3.5 4 4.5 5 5.5 6 6.5

C
/ (

σ� y
+σ

� 0.2
9)

ln (E*/σ�y)

A-Zn Alloy B-Refractory Alloy C-Al Alloy D-Steel

large deformation
small deformation
previous formulation: eq. (20)

large deformation
small deformation
previous formulation: 

large deformation
small deformation
previous formulation:Eq. (2.23) 

Figure 2-7: Comparison between the large deformation solution, small deformation solution
and the previous formulation (Eq. (2.23)) using four model materials. For all four cases
studied, large deformation theory always predicts a stiffer loading response.

listed in Venkatesh et al. [42] (see Table 2.1). From Fig. 2-7, it is evident that Eq. (2.23)

agrees well with the small deformation results and that, for all four cases studied, large

deformation theory always predicts a stiffer loading response.

In addition, 76 different cases covering material parameters of most engineering

metals were studied computationally. Detailed examination showed that large deformation

solutions are not readily described by Eq. (2.23), but rather are better approximated within

±10% (for the conical indenter with θ = 70.3o) by a new universal function given by

C = N1σ0.29

[
1 +

σy

σ0.29

] [
N2 + ln

(
E∗

σ0.29

)]
(2.24)

where N1 = 9.4509 and N2 = -1.2433 are computationally derived constants specific to the

indenter geometry. This expression is consistent with the dimensionless function shown in

Eq. (2.14).
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Table 2.1: Four cases studied to compare large vs small deformation theory.

Case System E (GPa) Yield Strength (MPa) n ν

A Zinc alloy 9 300 0.05 0.3
B Refractory alloy 80 1500 0.05 0.3
C Aluminum alloy 70 300 0.05 0.28
D Steel 210 500 0.1 0.27

2.3 Computational Results

A comprehensive parametric study of 76 additional cases was conducted (see Table 2.2 for a

complete list of parameters). These cases represented the range of parameters of mechanical

behavior found in common engineering metals: that is, Young’s modulus E ranged from 10

to 210 GPa, yield strength σy from 30 to 3000 MPa, strain hardening exponent n from 0

to 0.5, and Poisson’s ratio ν was fixed at 0.3. The axisymmetric finite element model was

used to obtain computational results unless otherwise specified.

2.3.1 Representative Strain and Universal Dimensionless Functions

The first dimensionless function of interest is Π1 in Eq. (2.12). From Eq. (2.12),

Π1

(
E∗

σr
, n

)
=

C

σr
(2.25)

The specific functional form of Π1 depends on the choice of εr and σr. Figure 2-8 shows

the computationally obtained results using three different values of εr (i.e., εp = 0.01, 0.033

and 0.29) and the corresponding σr. The results in Fig. 2-8 indicate that for εr < 0.033,

Π1 increased with increasing n; for εr > 0.033, Π1 decreased with increasing n. Minimizing

the relative errors using a least squares algorithm, it is confirmed that when εr = 0.033, a

polynomial function Π1

(
E∗

σ0.033
, n

)
= C

σ0.033

‡ fits all 76 data points within a ±2.85% error (see

‡See Appendix A.1 for a complete listing of functions.
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Table 2.2: Elasto-plastic parameters used in the present study (ν is fixed at 0.3) For each of
the 19 cases below, strain-hardening exponent n is varied from 0, 0.1, 0.3 to 0.5, resulting
a total of 76 different cases

Case E [GPa] σy [MPa] σy/E

19 combinations of E and σy 10 30 0.003
10 100 0.01
10 300 0.03
50 200 0.004
50 600 0.012
50 1000 0.02
50 2000 0.04
90 500 0.005556
90 1500 0.01667
90 3000 0.03333

130 1000 0.007692
130 2000 0.015385
130 3000 0.023077
170 300 0.001765
170 1500 0.008824
170 3000 0.017647
210 300 0.001429
210 1800 0.008571
210 3000 0.014286
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Figure 2-8: Dimensionless function Π1 constructed using three different values of εr (i.e., εp

= 0.01, 0.033 and 0.29) and the corresponding σr, respectively. For εr < 0.033, Π1 increased
with increasing n; for εr > 0.033, Π1 decreased with increasing n. A representative plastic
strain εr = 0.033 can be identified as a strain level which allows for the construction of Π1

to be independent of strain hardening exponent n.
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Figure 2-9: For a given value of E∗, all power law plastic, true stress-true strain responses
that exhibit the same true stress at 3.3% true plastic strain give the same indentation loading
curvature C. A collection of such plastic stress-strain curves are schematically illustrated
in the figure.

Fig. 2-8(b)). A representative strain of εr = 0.033 was thus identified. The corresponding

dimensionless function Π1 normalized with respect to σ0.033 was found to be independent

of the strain hardening exponent n. This result indicates that, for a given value of E∗, all

power law plastic, true stress-true strain responses that exhibit the same true stress at 3.3%

true plastic strain give the same indentation loading curvature C (see Fig. 2-9). It is noted

that this result was obtained within the specified range of material parameters using the

material constitutive behavior defined by Eq. (2.2).

Figure 2-10 show the dimensionless functions Π2 and Π3. Within a ±2.5% and a

±0.77% error, Π2

(
E∗
σr

, n
)

= 1
E∗hm

dPu
dh

∣∣
hm

‡ and Π3

(
σr
E∗ , n

)
= hr

hm

‡ fit all 76 sets of com-

puted data shown in Figs. 2-10(a) and 2-10(b), respectively. Several other (approximate)

dimensionless functions were also computationally derived. Figure 2-11(a) shows the dimen-

sionless function Π4

(
hr
hm

)
= pave

E∗
‡ within ±13.85% of the computationally obtained values

for the 76 cases studied. It is noted that the verified range for Π4 is 0.5 < hr
hm

< 0.98. Fig-

ure 2-11(b) shows dimensionless function Π5

(
hr
hm

)
= Wp

Wt

‡ within ±2.38% of the numerically

computed values for the 76 cases. The verified range for function Π5 is the same as that
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for Π4, i.e. 0.5 < hr
hm

< 0.98. From Fig. 2-11(b), it is obvious that Wp

Wt
= hr

hm
is not a good

approximation except when hr
hm

approaches unity.

According to King [53]

E∗ =
1

c∗
√

Am

dP

dh

∣∣∣∣
hm

(2.26)

where linear elastic analysis gives c∗ = 1.167 for the Berkovich indenter, 1.142 for the Vickers

indenter and 1.128 for the conical indenter. Large deformation elasto-plastic analysis of the

76 cases showed that c∗ ≈ 1.1957 (within ±0.9% error) for the conical indenter with θ =

70.3o. This value of c∗, which takes into account the elasto-plastic finite deformation prior

to the unloading, is about 6% higher than the small-deformation, linear-elastic solution. It

is noted that the initial unloading response is expected to be entirely elastic, and the linear

elastic solution is quite accurate compared to the large deformation solution. Assuming the

same relative influence of the large deformation elasto-plastic solution on the elastic solution

for the Berkovich and Vickers geometries, the adjusted values of c∗ were proposed to be

1.2370 and 1.2105, respectively. This completes another important dimensionless function

Π6 ,

Π6 =
1

E∗√Am

dP

dh

∣∣∣∣
hm

= c∗ (2.27)

For a conical indenter with θ = 70.3o, noting that Am = πa2
m, Eq. (2.27) can be rewritten

as

Π6C =
1

E∗am

dP

dh

∣∣∣∣
hm

= c∗
√

π ≈ 2.12 (2.28)

Note that Eq. (2.28) is simply a revision of Eq. (2.26) in light of the computationally

derived values of c∗. In Oliver and Pharr [27], c∗
√

π = 2 (i.e., c∗ = 1.128, the linear elastic

solution) was used. Table 2.3 tabulates the values of c∗ used in the current study and in

the literature.

It is noted that Π3 and Π4 are interdependent, i.e., function Π4 together with di-
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Table 2.3: The values of c∗ used in the current study.

c∗ Small deformation Large deformation
linear elastic solution[53] elasto-plastic solution[22]

Conical 1.128 1.1957
Berkovich 1.167 1.2370
Vickers 1.142 1.2105

mensionless functions Π1, Π2 and Π6, can be used to solve for Π3. Function Π5 relates Wp

Wt

to hr
hm

. Alternative and/or more concise universal dimensionless functions (i.e., Π1 to Π5),

which fit the same set of data taken from the 76 cases examined in the present study, may

also be explored.

2.3.2 Forward Analysis Algorithms

The forward analysis leads to prediction of the P − h response from known elasto-plastic

properties. With the available dimensionless functions Π1, Π2, Π3, Π4, Π5 and Π6, the

forward analysis algorithm is readily constructed. One such set of algorithms is shown in

Fig. 2-12. Alternatively, hr
hm

can also be obtained using function Π3 instead of Π4. As

discussed earlier, Π3 and Π4 are interdependent functions.

To verify the accuracy of the proposed algorithms, uniaxial compression and inden-

tation experiments were conducted in two materials: 7075-T651 aluminum and 6061-T651

aluminum. Values for E and σy were obtained from the resulting experimental true stress-

true total strain data. The value for σ0.033 was then determined from the true stress-true

plastic strain data. Finally, a power law equation was fit to the true stress-true plastic

strain data (see Fig. 2-4) to estimate a value for n (see Table 2.4). The Poisson ratio ν

was not experimentally determined, and was assigned a typical value of 0.33 for aluminum

alloys. The parameters Ei and νi were assigned values of 1100 GPa and 0.07, respectively;

these are typical values for diamond taken from the literature [54]. Microhardness speci-

mens were prepared identically to the microindentation specimens, and were indented on

48



For
ward pro
blem: 
E
, 
n
, 
σ
y
, 
ν
        
       
C
, 
h
r
, 
p
ave
,


set 
P
m
 


or 
h
m


p
u


t

m


,

W
d
P


d
h
 W
h


1
 0
.
0
3
3

0
.
0
3
 y


y

3


n

E


σ

σ
 σ



 

=
 +

 

 



 


1
0
.
0
3
3

0
.
0
3
3


*
E

C
 σ


σ


 


 


 


 


=
 Π


4

a
v
e
 r


m

*


p
 h


h
E



 


 


 


=
Π


*


u

m


m

*


1


c


d
P

A


E
 d
h
h

=


Obtain 
σ
0.033


Obtain 
C


Sol
ve for


Obtain 
A
m


Set
 
h
m
 or 
P
m
 (
P
m
 = Ch
m
)


m


m


2
 
 ,
 

*


3
3


*


0
.
0


u
 n

d
P


h

d
h
h


E

E


σ


 


 


 


 


=
 Π
 Obtain
 u


m


d
P


d
h
h


r


m


h


h


p
ave


2


p
 r

5


t
 m


W
 h


W
 h



 


 


 


=
Π
 Obtain

p


t


W


W


Figure 2-12: Forward Analysis Algorithms
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Table 2.4: Mechanical property values used in forward analysis.

Material E ν E∗ σy σ0.033 nc Vickers hardness pave

(GPa) (GPa)a (MPa)b (MPa)
[

kgf
mm2

]
d (MPa)e

Al6061-T651 66.8 0.33 70.2 284 338 0.08 104.7 1108
Al7075-T651 70.1 0.33 73.4 500 617.5 0.122 174.1 1842

a Calculated from Eq. (2.8) using Ei = 1100 GPa and νi = 0.07 for the diamond indenter.
b Estimated at 0% offset strain.
c Estimated from power law fit.
d Averaged from 10 and 5 hardness tests (P = 0.1 kgf) for Al 6061-T651 and Al 7075-T651

specimens, respectively.
e Estimated from the hardness number assuming that changes in impression size during unloading

can be ignored.

a commercial microhardness tester to a maximum load of 0.1 kgf over a total test time

of 20 s. Vickers hardness was calculated as HV = 1.8544P/D2, where P is load (in kgf)

and D is the average length of the indentation diagonals (in mm) as observed under an

optical microscope with a 40× objective lens. The algorithm shown in Figure 2-12 was

applied to solve for C, hr
hm

, Am, pave and dP
dh

∣∣
hm

. Table 2.4 lists the mechanical property

values used in the forward analysis. Tables 2.5(a) and 2.5(b) list the predictions from the

forward analysis, along with the values extracted from the experimental indentation data

for 7075-T651 aluminum and 6061-T651 aluminum specimens, respectively. As proposed

in [27], the experimental values of dP
dh

∣∣
hm

listed in Table 2.5 were obtained by first fitting

a power law function P = A(h − hr)m to 67% of the unloading data and then evaluating

the derivative at h = hm. From Table 2.5, it is evident that the present forward analysis

results are in good agreement with the experimental P − h curves.

2.3.3 Reverse Analysis Algorithms
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Table 2.5: Forward analysis results on (a) Al 6061-T651 and (b) Al 7075-T651 (max. load
= 3 N).

C [GPa] %err Ca dP
dh

∣∣
hm

%err
dP
dh

∣∣
hm

Wp
Wt

%err
Wp
Wt

(a) Al 6061-T651
Test 1 27.4 -1.6% 4768 1.6% 0.902 0.8%
Test 2 28.2 1.2% 4800 2.3% 0.905 1.2%
Test 3 27.2 -2.4% 4794 2.2% 0.904 1.1%
Test 4 27.3 -2.2% 4671 -0.4% 0.889 -0.6%
Test 5 27.0 -3.2% 4762 1.5% 0.889 -0.6%
Test 6 27.6 -0.9% 4491 -4.2% 0.891 -0.4%
Ave 27.4 4715 0.896

STDEV b 0.6 110.9 0.007
STDEV/Xprediction 2.1% 2.4% 0.8%
Forward Predictionc 27.9 4691 0.894

(b) Al 7075-T651
Test 1 42.0 -4.2% 3665 2.2% 0.833 1.0%
Test 2 40.9 -6.9% 3658 2.1% 0.838 1.7%
Test 3 42.3 -3.7% 3654 1.9% 0.832 1.0%
Test 4 43.1 -1.7% 3744 4.5% 0.836 1.5%
Test 5 43.5 -0.7% 3789 5.7% 0.839 1.8%
Test 6 44.6 1.6% 3706 3.4% 0.831 0.9%
Ave 42.7 3703 0.835

STDEV b 1.6 128.1 0.011
STDEV/Xprediction 3.7% 3.6% 1.3%
Forward Predictionc 43.9 3585 0.824

a All errors were computed as Xtest−Xprediction
Xprediction

, where X represents a variable.
b STDEV =

√
1
N

∑N
i=1(Xtest −Xprediction)2, where X represents a variable.

c Assume ν = 0.33 and Berkovich c∗.
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The reverse analysis implies estimation of the elasto-plastic properties from one

complete (i.e., loading and full unloading) P − h curve. In a similar manner, the dimen-

sionless functions Π1, Π2, Π3, Π4, Π5 and Π6 allow us to construct the reverse algorithms.

A set of the reverse analysis algorithms is shown in Figure 2-13. Alternatively, due to the

interdependence between Π3 and Π4, the dimensionless function Π3 can be used instead of

Π4 to solve the reverse problem, although this alternative set of algorithms involving Π3 is

not as straightforward as that proposed in Figure 2-13. For those experiments for which it

is difficult to measure hr accurately, as proposed by Giannakopoulos and Suresh [41], one

can measure Wp

Wt
instead and use the dimensionless function Π5 to obtain hr

hm
.

To verify the reverse analysis algorithms, twelve experimental P−h curves (six from

6061-T651 aluminum specimens and six from 7075-T651 aluminum specimens) shown in Ta-

ble 2.5 were analyzed to extract elasto-plastic properties of the indented specimens; results

are shown in Table 2.6. From Table 2.6, it is clear that the proposed reverse algorithms

yield accurate estimates of E and σ0.033, and give reasonable estimates of σy (especially af-

ter taking an average from the six indentation results) which agree well with experimental

compression data. It is noted that changing the definition of σy to 0.1% or 0.2% (instead of

0%) offset strain would not affect the conclusions. The average pressure pave also compares

well with values estimated from experimental microhardness tests. The fractional errors

observed in obtaining n are somewhat misleading, due to the fact that n ¿ 1. Although

the errors obtained from individual P − h curves were relatively large in a few cases, the

values averaged from a number of indentation tests appeared to be more reliable. Results

in Table 2.6 also show that the proposed reverse algorithms give better predictions than

Oliver and Pharr [27] and Doerner and Nix [25] methods for extracting E∗ values. This

improved calculation of elastic properties is likely due to the fact that sink-in/pile-up effects

were taken into account with present model, while they have been neglected before.

2.3.4 Pile-up/Sink-in and Contacted Area

Additional dimensionless functions not used in either forward or reverse algorithms are Π7

and Π8 illustrated in Figs. 2-14 and 2-15, respectively. In Fig. 2-14, the contact height (hc)

is defined as the height of the indentation contact at the maximum depth, as schematically
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shown in Fig. 2-16. It is obvious that the material experiences sink-in when hc
hm

< 1,

pile-up when hc
hm

> 1 and neither when hc
hm

= 1. The horizontal dash line in Figs. 2-14(a)

and 2-14(b) indicates hc
hm

= 1. Therefore, all the points above this dash line are pile-up

cases; whereas, those below the dash line are sink-in cases. Fig. 2-14(a) clearly shows that

for materials with large value of σy

E (> 0.012), sink-in is observed for all values of n. On

the other hand, for materials with small value of σy

E (6 0.012), both pile-up and sink-in

can be observed depending on the degree of work hardening n. In the case of highly work-

hardened materials (n > 0.3), sink-in is expected even for the materials with small value

of σy

E . Similar conclusion is found for the computational works of [33, 55] with the apex

angle of 68o and the experimental works of [24, 56, 57]. The general conclusion is that the

pile-up/sink-in behavior depends on both strain hardening exponent (n) and the ratio σy

E .

Fig. 2-14(b) also implies that the pile-up/sink-in behavior does not only depend on

the residual depth ratio hr
hm

but also strain hardening exponent (n). The critical value of hr
hm

= 0.875 (as suggested by [41] using small deformation theory) is applicable only for small

n 6 0.3. Fig. 2-14(b) is consistent with Fig. 2-14(a) because the lower hr
hm

, the more elastic

the material implying the higher σy

E .

From Fig. 2-16, the contact radius (am) is related to the contact depth (hc) via

am = hc tan(θ) (2.29)

As mentioned earlier, for a conical indenter Am = πa2
m can be used to convert Fig. 2-14(b)

to Fig. 2-15. Likewise, the dimensionless contact area (Am
h2
m

) does not only depend on the

residual depth ratio hr
hm

but also strain hardening exponent (n). Superimposed on Fig. 2-15

are six points calculated from small deformation theory FEM [41], indicating that small

deformation theory FEM may not accurately capture the indentation contact area.
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2.4 Discussion of Uniqueness, Sensitivity and Representative

Strains

2.4.1 Uniqueness in Forward and Reverse Analyses

In order to verify the proposed forward algorithms shown in Fig. 2-12, computational

results from the 76 sets of elasto-plastic parameters were taken as input to predict the P −h

responses. Each of the forward analyses resulted in a single set of output
(
C, hr

hm
, dP

dh

∣∣
hm

)

which agreed well with the FEM-predicted P − h response.

Similarly for the reverse problem, the 76 cases of the forward analysis (output)

results were used as input to verify the reversibility of the reverse analysis algorithms

proposed in Fig. 2-13. In only two cases,
(σy

E , n
)

= (0.033, 0.5) and (0.04, 0.5) with very

high hardening (n = 0.5), the reverse analysis yielded two solutions of n (E∗ and σr still

gave the correct answers). Reverse analysis on the remaining 74 cases resulted in a single,

accurate re-construction of the initial elasto-plastic parameters.

As established in the literature (e.g., [27, 34, 38]), E∗ may be uniquely obtained

from a single P − h curve via Eq. (2.26). Alternatively, noting that pave = Pm
Am

, it is readily

shown that dimensionless functions Π4 and Π6 can be combined to solve for E∗ and Am.

From known E∗, the dimensionless function Π1 can be used to determine the value of σ0.033

(see Fig. 2-8(b)). Consequently, after both E∗ and σ0.033 are determined, strain hardening

exponent n can be determined by dimensionless function Π2 or Π3 (see Figs. 2-10(a) and

(b)). It was found in the current study that, when the assumptions of the model are valid,

a single value for E∗ and σ0.033 can be determined for all cases. Furthermore, except for

cases where σy

E > 0.033 and n > 0.3, one single value of n can be determined as well.

(although both σy and n are highly sensitive to even small variation in P − h response)

Examining Fig. 2-10(a) in detail, when σy

E > 0.033
( σy

E∗ > 0.03
)

and n > 0.3, the n = 0.5

curve crossed the other three curves, which indicates the solution of n may not be unique

using dimensionless function Π2 in that region; a single solution of n may be obtained using

dimensionless function Π3 instead. The above arguments regarding uniqueness can only

be valid when the P − h responses can be measured accurately and precisely. Therefore,
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Table 2.7: Uniqueness of reverse analysis

Mechanical Property Solution unique?

E∗ Yes
Hardness (pave) Yes

σr Yes
σy when n 6 0.3 Yes

when 0.3 < n 6 0.5 and σy

E∗ < 0.03 Yes
when 0.3 < n 6 0.5 and σy

E∗ > 0.03 ?

with accurate P − h curves, the uniqueness of the reverse problem can be ensured for low

hardening materials (i.e., n 6 0.3); the uniqueness can also be preserved if σy

E∗ < 0.03

for higher hardening materials (i.e., 0.3 < n 6 0.5). Considering the fact that each of the

dimensionless functions Π1, Π2, . . ., and Π6 carries a small amount of uncertainty, definitive

conclusion can not be drawn as yet regarding the uniqueness of the reverse analysis when
σy

E∗ > 0.03 and 0.3 < n 6 0.5. Table 2.7 summarizes the above mentioned results.

Cheng and Cheng [40] examined whether uniaxial stress-strain relationships of ma-

terials can be uniquely determined by matching the loading and unloading P − h curves,

calculated using their FEM analysis and scaling relationships, with those measured exper-

imentally. By showing that there could be multiple stress-strain curves for a given set of

loading and unloading curves, the conclusion was that the material stress-strain behavior

may not be uniquely determined from the loading and unloading P − h response alone. All

seven cases presented in [40] were examined. For the four cases presented in Fig. 3(a) of

Ref. [40], the values of σy

E∗ are beyond the range of the current study. That is, the ratio of
σy

E∗ given by these four cases (∼ 10−1) may not accurately describe any metallic engineering

alloys (see, e.g., [58]), but may describe certain ceramics or engineering polymers, which

are not well-described by power law plasticity. Therefore, the non-uniqueness of these cases

is physically irrelevant to the scope of our analysis. In contrast, the cases reported in Fig.

3(b) of Ref. [40] are within our range of parameters
( σy

E∗ ∼ 10−2 to 10−3
)
. The current

forward analysis predicts three P − h responses which are statistically unique in terms of
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the calculated curve parameters such as C, hr
hm

, dP
dh

∣∣
hm

. This statistical uniqueness does not

directly contradict Cheng and Cheng’s assertion of non-uniqueness, as they used a different

apex angle in their FEM simulations, and as the P − h curves appear visually similar. The

maximum variation in curve parameters calculated by our forward analysis of these three

cases was an 8% change in dP
dh

∣∣
hm

. The present reverse analysis provides a unique solution

in that, even if the calculated loading curvatures (C) were mathematically identical for two

separate P −h responses, small variations in terms of dP
dh

∣∣
hm

or hr
hm

are sufficient to calculate

a unique value of n and, consequently, a unique value of σy for each case. However, these

small variations in curve parameters may not be visually apparent when plotting these P−h

responses simultaneously. In fact, as experimental scatter may cause such variation in P −h

curve parameters, the issue of sensitivity in these analyses is an important consideration.

2.4.2 Sensitivity to Forward Analysis, Reverse Analysis and Apex Angle

For forward analysis, the sensitivity of the predicted P−h response parameters to variations

in the input mechanical properties of the indented material was investigated for the 76

cases examined in this study. The results showed that a ±5% change in any one input

parameter (i.e., E∗, σy or n), would lead to variations of less than ±6% in the predicted

results
(
C, hr

hm
, dP

dh

∣∣
hm

)
.

As discussed in Venkatesh et al. [42], the accuracy with which the mechanical

properties of the indented material can be estimated through reverse analysis could depend

strongly on the accuracy with which the P − h responses are measured. The sensitivity of

the estimated mechanical properties to variations in the input parameters obtained from

the P − h curves was investigated for the 76 cases examined in this study, as well. For

each of these cases, the sensitivity of the estimated elasto-plastic properties to variations

in the three P − h curve parameters−C, dP
dh

∣∣
hm

, and Wp

Wt
−about their respective reference

values (as estimated from the forward analysis) was examined. The results are summarized

in Table 2.8. In general, sensitivity to reverse analysis is different for each individual case,

thus the maximum variations listed in Table 2.8 are conservative estimates. For a more

practical interpretation of the sensitivity to reverse analysis, Fig. 2-17 shows statistical

results through the average values and the error bar indicating 99% confidence interval (not
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Table 2.8: Sensitivity to reverse analysis

Changes in input parameters
Maximum variations in ±2% ±2% ±0.25% ±4% ±4% ±0.5%
estimated propertiesa in C in dP

dh

∣∣
hm

in Wp

Wt
in C in dP

dh

∣∣
hm

in Wp

Wt

E∗ ∓2% ±4% ∓9.5% ∓4% ±8% ∓19%
σ0.033 +12%/-10% -8%/+11% 0.9% +29%/-19% -15%/+25% ±1.7%

σb
y (n 6 0.1) +18%/-24% -22%/+16% +31%/-45% +28%/-43% -39%/+24% +39%/-96%

σb
y (n > 0.1) +85%/-29% -27%/+81% +70%/-33% +103%/-53% -50%/+96% +71%/-57%

pave ∓2% ±4% -18%/+20% ∓4% ±8% -34%/+42%

a All errors were computed as Xvaried−Xreference
Xreference

, where X represents a variable.
b Estimated by setting n=0 when there are multiple solutions or no solution for n, or setting n=0.5

when the solution for n is greater than 0.5 (which is outside the scope of our parameter study)

just the maximum variation as shown in Table 2.8).

It is evident that E∗ displayed weak sensitivity with respect to C and dP
dh

∣∣
hm

, and

strong sensitivity to Wp

Wt
; σr displayed moderate sensitivity to C, dP

dh

∣∣
hm

and Wp

Wt
; for low

hardening materials (n 6 0.1), σy displayed moderate sensitivity to C and dP
dh

∣∣
hm

, and

strong sensitivity to Wp

Wt
; for higher hardening materials (n > 0.1), σy displayed strong

sensitivity to all three parameters; pave displayed weak sensitivity to C and dP
dh

∣∣
hm

, and

strong sensitivity to Wp

Wt
. The results of the reverse sensitivity analysis shown in Table

2.8 are consistent with the reverse analyses of experimental P − h curves listed in Table

2.6. The greater scatter in computed σy values in Table 2.6 reflects the stronger sensitivity

with respect to σy. If data scatter is random in nature, it is expected that taking the

averaged value from a number of indentation tests may significantly reduce the error, as

clearly demonstrated in Table 2.6.

In addition, the sensitivity of the P−h response as computed from FEM calculations

to variations in the apex angle θ of the indenter was investigated for the four cases A, B,

C and D listed in Table 2.1. The results are summarized in Table 2.9 and Fig. 2-18, where

the respective reference values (as calculated from the FEM computed P − h curves) were

taken at θ = 70.3o. From Fig. 2-18 and Table 2.9, the dependence of C, dP
dh

∣∣
hm

and Wp

Wt

to variations in the apex angle appears to be quite significant and approximately linear.

61



-3
0%

-2
0%

-1
0%0%10
%

20
%

30
%

-4
%

-3
%

-2
%

-1
%

0%
1%

2%
3%

4%

dX
/X

dE/E

dhdP

W
t

W
p

C

-3
0%

-2
0%

-1
0%0%10
%

20
%

30
%

-4
%

-3
%

-2
%

-1
%

0%
1%

2%
3%

4%

dX
/X

dE*/E*

dhdP

W
t

W
p

C

-1
5.

0%

-1
0.

0%

-5
.0

%

0.
0%

5.
0%

10
.0

%

15
.0

%

20
.0

%

25
.0

%

-4
%

-3
%

-2
%

-1
%

0%
1%

2%
3%

4%

dX
/X

-7
5%

-5
5%

-3
5%

-1
5%5%25
%

45
%

65
%

85
%

10
5%

12
5%

-4
%

-3
%

-2
%

-1
%

0%
1%

2%
3%

4%

dX
/X

-4
0%

-2
0%0%20
%

40
%

60
%

80
%

-4
%

-3
%

-2
%

-1
%

0%
1%

2%
3%

4%

d
X

/X

dσra/σra dpave/pave

dσy/σy

(a
)

(b
)

(d
)

(c
)

Figure 2-17: Sensitivity charts for reverse analysis showing the average variations in (a) E∗,
(b) σ0.033, (c) σy and (d) pave due to ±4% perturbation in C (solid line), dP

dh

∣∣
hm

(dotted

line) and Wp

Wt
(dash-dotted line), with the error bar indicating 99% confidence interval.
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Table 2.9: Apex angle sensitivity of A, B, C, and D (four cases)

Maximum variations \ Apex angle 68o 69o 70.3o (reference) 72o

∆C / Cref -20.4% -12.1% 0% +19.3%

∆
(dP

dh

)
/
(dP

dh

)
ref -11.7% -7.7% 0% +9.0%

∆
(

Wp

Wt

)
/
(

Wp

Wt

)
ref

+5.7% +3.0% 0% -4.8%
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Figure 2-18: Sensitivity of (a) loading curvature C and (b) plastic work ratio Wp

Wt
to varia-

tions in apex angle for four model materials. A two-degree variation in apex angle resulted
in 15-20% variations in loading curvature C and up to 6% variations in plastic work ratio
Wp

Wt
.
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Taking θ = 68o as used in [33, 34, 40] as an example, deviation from the reference apex angle

by 2.3o results in maximum variations of -20%, -11.7% and +5.7% in terms of C, dP
dh

∣∣
hm

and
Wp

Wt
respectively (see Table 2.9). As evident in Table 2.8, variations of this magnitude are

beyond the error tolerance limit of reverse analysis. The universal functions based on a 68o

apex angle may significantly differ from those obtained using a 70.3o apex angle, although

certain trends with respect to various parameters may be similar. As commercially available

diamond indenters normally come with the specification of the apex angle within ±0.5o.

The resulting maximum variations in P − h curve parameters as estimated from FEM

computations are around ±3%, ±3%, and ±1% in terms of C, dP
dh

∣∣
hm

and Wp

Wt
respectively,

which are within the error tolerance limit of the reverse analysis.

2.4.3 Representative Strains

The concept of representative strain was first introduced by Tabor [23] to relate its corre-

sponding representative stress to the hardness value. Tabor [23] suggested a representative

plastic strain of 8-10% based on experimental observations. This original definition does not

represent any apparent physical transition in mechanical response. Giannakopoulos et al.

[3] and Giannakopoulos and Suresh [41] used a “characteristic strain” of 29-30% within the

context of Eq. (2.23). Giannakopoulos and Suresh [41] suggested that the region of material

experiencing strains beyond 29% under the indenter exhibits plastic “cutting” character-

istics and may be modeled using slip line theory. In the current study, a representative

plastic strain εr = 0.033 was identified as a strain level which allows for the construction of

a dimensionless description of the indentation loading response (i.e., Eq. (2.12)), indepen-

dent of strain hardening exponent n. Here, the underlying connections between these three

different definitions and the corresponding representative strain levels are discussed.

To understand these different representative strain values, it is important to note

that the dimensionless function Π1 in Fig. 2-8(b), used to identify εr = 0.033 has a different

functional form than that used by the earlier researchers, e.g., Eq. (2.23). Therefore, it is

possible for these different definitions to result in different solutions. Equation (2.24) is a

modification of Eq. (2.23) and, as mentioned in Section 2.2.5, can fit all 76 cases studied

reasonably well. For low strain hardening materials, σ0.29 ≈ σr(≈ σy), and thus Eq. (2.24)
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can be rewritten as

C ≈ N1σ0.29

(
1 +

σy

σ0.29

)[
N2 + ln

(
E∗

σr

)]

=
(

σy + σ0.29

2

){
2N1

[
N2 + ln

(
E∗

σr

)]}

=
(

σy + σ0.29

2

)
Π1N

(
E∗

σr

)

(2.30)

within a 5.5% error of Eq. (2.24) for all the 76 cases computed in the current study; Π1N

is a dimensionless function. One can solve for εr that gives σr as an arithmetic average

between σy and σ0.29:

σr =
σy + σ0.29

2
(2.31)

If it is assumed that σy ≈ σ|ε=0.002, then Eq. (2.31) becomes

Rεn
r ≈

R · 0.002n + R · 0.29n

2
(2.32)

and thus

εr ≈
(

0.002n + 0.29n

2

) 1
n

(2.33)

For low hardening materials with 0 < n < 0.15, Eq. (2.33) gives 0.024 < εr < 0.038,

which is fairly close to 0.033. This exercise indicates that: (1) εr = 0.033 obtained in

the current study is fundamentally linked to the “characteristic strain” of 0.29 given in

the literature, and the differences in the magnitude of the strain come from their different

functional definitions; (2) σ0.033 taken at the 0.033 representative strain is a ”weighted

average” of the stresses over the range between εy and εp = 0.29. Additional computations

confirmed that stress-strain behavior beyond εp = 0.29 has little effect on a material’s P −h

response.
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Earlier studies by Tabor [23] and Johnson [37] gave a representative strain at about

εr = 0.08. This estimation relied on experimental data which indicated that

H

σr
=

pave

σr
≈ 3.0 (2.34)

where H is the hardness expressed in units of pressure. Again, it is noted that the functional

form defined by Eq. (2.34) is different from those used to define representative strains of

3.3% or 29%, and it is natural that different functions may lead to different results. To

better understand this problem, a new dimensionless function can be defined

pave

σr
= Π9

( σr

E∗ , n
)

(2.35)

Similar to the procedure taken to obtain σr = 0.033 (see Fig. 2-8), errors were minimized

using the least squares method to fit results obtained from the 76 cases studied. It was

found that when σr = 0.082, a best fit function within a ±5.96% error was achieved with

the following n-independent function

Π9 =
pave

σ0.082
≈ −15.4944

(σ0.082

E∗
)2
− 15.1699

(σ0.082

E∗
)

+ 2.7497 (2.36)

A representative strain of σr = 0.082 was thus identified. Figure 2-19 shows Eq. (2.36)

plotted against the FEM data. Also plotted in Fig. 2-19 are the four cases studied in

Section 2.2.5. Equation (2.36) predicts Π9 = pave

σ0.082
≈ 2.75 for both steel and aluminum

listed in Table 2.1. It is noted that, in Tabor’s original study [23], when there was no pre-

straining, pave

σ0.08
was found to be 2.6 and 2.84 (instead of being very close to 3.0) for annealed

copper and mild steel, respectively; this is in good agreement with the predictions from Π9.

Although different functional definitions were used by Tabor and the present study,

the same set of modeling assumptions and fitting algorithms were used to derive a charac-

teristic strain of 8.2%. This exercise shows that these two values are fundamentally linked

to one another. Thus, the apparent disparity comes not from discrepancies in data, consti-

tutive modeling, or fitting procedures, but rather from the choice of functional definitions

that were used to relate certain indentation parameters to certain mechanical properties.
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Figure 2-19: Dimensionless function Π9. A best fit function within a ±5.96% error was
achieved with a representative plastic strain εr = 0.082 and its corresponding stress σ0.082

2.5 Conclusions

In this chapter, dimensional analysis and large deformation finite element studies were per-

formed to elucidate the mechanics of instrumented sharp indentation. Systematic experi-

ments were conducted to verify the theoretical results. The key results of this investigation

can be summarized as follows.

1. Using dimensional analysis, a set of new universal, dimensionless functions was con-

structed to characterize instrumented sharp indentation. From these functions and

elasto-plastic finite element computations, solutions were formulated to relate inden-

tation data to elasto-plastic properties.

2. Forward and reverse analysis algorithms were established based on the identified di-

mensionless functions. These algorithms allow for the calculation of the indentation

response for a given set of properties, and also for extraction of some elasto-plastic

properties from a given set of indentation data, thus obviating the need for large-scale

finite element computations after each indentation test.
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3. The proposed forward analysis algorithms work well and robustly; a ±5% error in any

input parameter results in less than ±6% in the predicted values of C, dP
dh

∣∣
hm

or hr
hm

.

Theoretical predictions compare well with experimental P − h curves.

4. The proposed reverse analysis algorithms were found to predict E∗ and σ0.033 quite

well, and σy reasonably well for the few cases studied. Although greater scatter was

found in the computation of σy, the averaged value approached the experimentally

measured yield strength σy. The average pressure pave also compared well with values

estimated from experimental microhardness tests.

5. Assuming large deformation in FEM simulations and an isotropic power law elasto-

plastic constitutive description of the material within the specified range of material

parameters, except for cases where σy

E > 0.033 and n > 0.3, the reverse algorithms

were able to predict one single set of values for E∗, σ0.033 and σy; furthermore, if the

power law assumption holds, the full stress-strain response can be estimated.

6. For sharp indentation of power law hardening pure metals and alloys, a representa-

tive strain εr was identified at 3.3%. Within the same theoretical framework, it was

demonstrated that the apparent disparities between the value of 3.3% identified in

the current study and the values of 8% and 29% proposed in the literature stem from

the different functional definitions used to obtain these values, rather than from any

intrinsic differences in mechanistic interpretations.

7. A comparative study showed that the P−h responses obtained using large deformation

theory exhibited loading curvature C considerably greater than those obtained using

small deformation theory.

8. Comprehensive sensitivity analyses were carried out for both forward and reverse

algorithms. Forward analysis algorithms were found to be accurate and robust. For

the sensitivity to reverse analysis, E∗, σ0.033 and pave displayed weak or moderate

sensitivity to variations in C, dP
dh

∣∣
hm

, and Wp

Wt
; for low hardening materials (n ≤ 0.1),

σy displayed moderate sensitivity to C and dP
dh

∣∣
hm

, and strong sensitivity to Wp

Wt
; for

higher hardening materials (n > 0.1), σy displayed strong sensitivity to all three

parameters. Sensitivity of the P −h responses to apex angle deviations were found to

be significant with even an 1−2o deviation; nevertheless, the P−h response variations
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with respect to apex angle deviations less than ±0.5o were within the tolerance limit

of the reverse analysis.

9. It is noted that plastic properties of materials extracted from instrumented indentation

are very sensitive to even small variation in the P − h responses. Nevertheless, the

present computational study provides a mean to determine these plastic properties,

which may not be easily obtainable by other means in small volume structures, and

further provides an indication of the level of the sensitivity to experimental indentation

data.
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Chapter 3

Depth-Sensing Instrumented

Indentation with Dual Sharp

Indenters

In this chapter∗, a methodology for interpreting instrumented sharp indentation with dual

sharp indenters with different tip apex angles is presented by recourse to computational

modeling within the context of finite element analysis. The forward and reverse algorithms

(as defined in Sections 2.3.2 and 2.3.3, respectively) were constructed on the basis of the-

oretical and computational foundations established in the previous chapter. This chapter

also focuses on the uniqueness of the reverse algorithm and its sensitivity to variations in

the measured indentation data in comparison with the single indentation analysis on Vick-

ers/Berkovich tip, discussed in the previous chapter. Finite element computations were

carried out for the same 76 combinations of elasto-plastic properties chosen in the previous

chapter (see Table 2.2) for each tip geometry (i.e., 50o, 60o and 80o cones). Young’s modu-

lus, E, was varied from 10 to 210 GPa; yield strength, σy, from 30 to 3000 MPa; and strain

hardening exponent, n, from 0 to 0.5; while the Poisson’s ratio, ν, was fixed at 0.3. Using

dimensional analysis, additional closed-form dimensionless functions were constructed to

relate indentation response to elasto-plastic properties for each indenter tip geometry. The

∗This article is published in Acta. Mater., Vol. 51 (2003), p. 3713, with co-authors: M. Dao and S.
Suresh. [59]
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representative plastic strain εr, as defined in Section 2.3.1, was constructed as a function

of tip geometry in the range of 50o and 80o. Incorporating the results from 60o tip to the

single-indenter algorithms, the improved forward and reverse algorithms for dual indenta-

tion can be established. This dual-indenter reverse algorithm provides a unique solution of

the reduced Young’s modulus E∗, the hardness pave and two representative stresses (mea-

sured at two corresponding representative strains), which establish the basis for constructing

power-law plastic material response. Comprehensive sensitivity analyses showed much im-

provement of the dual-indenter algorithms over the single-indenter results. Experimental

verifications of these dual-indenter algorithms were carried out using a 60o half-angle cone

tip (or a 60o cone equivalent 3-sided pyramid tip) and a standard Berkovich indenter tip

for two materials: 6061-T651 and 7075-T651 aluminum alloys. Possible extensions of the

present results to studies involving multiple indenters are also suggested.

3.1 Introduction

The previous chapter on instrumented indentation involving a single sharp indenter estab-

lished a set of dimensionless functions, which took into account the pile-up/sink-in effects

and finite strain beneath the indenter. These functions were used to predict the indentation

response from a given set of elasto-plastic properties (forward algorithms), and to extract

the elasto-plastic properties from a given set of indentation data (reverse algorithms). A

representative strain of εr = 3.3% for a Berkovich or Vickers indenter (equivalent to a 70.3o

cone) was identified with which the indentation loading curvature could be normalized

independently of the material hardening exponent for a very wide range of elasto-plastic

properties (see Section 2.3.1). For most common metallic systems, a single set of elasto-

plastic properties was extracted from a single P − h curve. The accuracy of the analysis,

however, was found to be sensitive to the small experimental errors (see Section 2.4.2).

Cheng and Cheng [40] and Venkatesh et al. [42] discussed the uniqueness issue and the

former presented a number of computationally non-unique cases.

It is clear that two important fundamental issues remain which require further in-

vestigation:
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1. Uniqueness of the reverse analysis for the range of material properties examined; and

2. The accuracy and sensitivity of the reverse analysis.

In this chapter, these issues will be addressed within the context of dual sharp

indentation, continuum analysis and experimental observations.

3.2 Framework for Analysis

3.2.1 Problem Formulation and Nomenclature

A comprehensive framework using dimensional analysis to extract closed form universal

functions was developed in the previous chapter. A representative plastic strain εr was

identified as a strain level which allows for the construction of a dimensionless description

of indentation loading response, independent of strain hardening exponent n; εr = 3.3% for

Berkovich, Vickers or 70.3o apex-angle cone tip. It was also found that for most cases, three

independent quantities−C, dP
dh

∣∣
hm

, and hr
hm
−obtained from a single P−h curve are sufficient

to uniquely determine the indented material’s elasto-plastic properties under certain ranges

of validity (see Table 2.7). Although the estimation of σy and n in certain ranges could

be prone to considerable sensitivity from a variation in these three P − h characteristics

(see Table 2.8), a reverse analysis algorithm proposed in Section 2.3.3 predicts stress at

representative strain, σ0.033, robustly.

It is expected that, with different indenter geometries (i.e. different apex angles),

the representative strain would be different (e.g. εr = εr(θ)). In fact, a ±2o variation

in apex angle can result in a ±20% change in loading curvature C (see Fig. 2-18). This

observation suggests a possibility of determining σy and n more precisely using dual indenter

geometries (two representative stresses). An additional representative stress σr can be

identified from a loading curvature of a P − h curve using a second indenter of which its

tip geometry is different from Berkovich/Vickers. The question remains whether two P −h

curves from two different indenter tips can yield unique solution for a broader range of

material’s elasto-plastic properties with improved accuracy than previously demonstrated

with a single indentation.
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3.2.2 Dimensional Analysis and Universal Functions

For a sharp indenter of apex angle θ, the load required to penetrate into a power law

elasto-plastic solid (E, ν, σy and n) can be written as

P = P (h, E∗, σy, n, θ), (3.1)

where E∗ is reduced Young’s modulus (as defined in Eq. (2.8)), commonly introduced [49]

to include elasticity effect (Ei, νi) of an elastic indenter. Define σr as the stress at the

representative strain εr in Eq. (2.5); Eq. (3.1) can be rewritten as

P = P (h,E∗, σr, n, θ), (3.2)

Using dimensional analysis (see Section 2.2.2, Eq. (3.2) becomes

P = σrh
2Π1θ

(
E∗

σr
, n, θ

)
(3.3)

and from Kick’s law, as defined in Eq. 2.1

C =
P

h2
= σrΠ1θ

(
E∗

σr
, n, θ

)
(3.4)

where Π1θ is a dimensionless function.

A complete set of universal dimensionless functions for a single indenter is listed in

Appendix A.1 (Eqs. (A.1)-(A.6)) for an apex angle of 70.3o (Berkovich and Vickers equiva-

lent). In the this chapter, Π1θ functions at different apex angles (e.g. 50o, 60o or 80o) will be

constructed. The original algorithms in the previous chapter can be modified to accurately

predict the P −h response from known elasto-plastic properties (forward algorithms) and to

systematically and uniquely extract the indented material’s elasto-plastic properties from

two sets of P − h data of two different indenter geometries (reverse algorithms).
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Figure 3-1: Schematic drawing of the customized 60o cone and 60o cone equivalent 3-sided
pyramid with the appropriate angles such that the projected area at a given depth is the
same.

3.2.3 Computational Model

It is generally known that axisymmetric two-dimensional finite element model can be used

to capture the result of full three-dimensional model as long as the projected area/depth

of the two models are equivalent (see Section 2.2.3). Computations were performed using

the general purpose finite element package ABAQUS [52]. For both Berkovich and Vickers

indenters, the corresponding apex angle θ (see Fig. 2-3) of the equivalent cone was calculated

to be 70.3o. The detail of mesh design was modified from Fig. 2-3 such that at the maximum

load, the minimum number of contact elements in the contact zone was no less than 12 in

each FEM computation. The mesh was well-tested for convergence and was determined

to be insensitive to far-field boundary conditions. In all finite element computations, the

indenter was modeled as a rigid body; the contact was modeled as frictionless; and large

deformation FEM computations were performed
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3.2.4 Comparison of Experimental and Computational Results

The same two aluminum alloys (6061-T651 and 7075-T651) were prepared, as described in

Section 2.2.4, for indentation using a Berkovich tip and a second indenter tip with different

geometry. The specimens were indented on a commercial nanoindenter (MicroMaterials,

Wrexham, UK) with the Berkovich, 60o cone and 60o cone equivalent 3-sided pyramid at

a loading/unloading rate of approximately 4.4 N/min. Figure 3-1 shows the schematic

drawing of the 60o cone and 60o cone equivalent 3-sided pyramid with the appropriate

angles. For the Berkovich tip, the maximum loads for both aluminum alloys were 3 N with

a repetition of 6 tests. For the other two indenter tips, the Al6061-T651 specimens were

indented to 1.8 and 2.7 N with a repetition of 3 and 10 tests, respectively; whereas the

Al7075-T651 specimens were indented to 3 N with a repetition of 6 tests. From all the

tests, the data were repeatable. For comparison with the single indentation results, the

Berkovich indentation data of Al6061-T6511 specimens examined in the current chapter

were taken directly from Table 2.5.

Figure 3-2(a) shows the typical indentation response of the 6061-T651 aluminum

specimens under Berkovich and 60o cone indenter tips, superimposed with the corresponding

finite element computations. Figure 3-2(b) shows the same for the 7075-T651 aluminum.

Using experimental uniaxial compression (see Fig 2-4) as an input for the simulation, the

resulting P − h curves agree well with the experimental curves, as demonstrated in Figs.

3-2(a) and 3-2(b).

3.3 Computational Results

A comprehensive parametric study of 76 cases was conducted (see Table 2.2 for a complete

list of parameters) representing the range of parameters of mechanical behavior found in

common engineering metals. Values of Young’s modulus E ranged from 10 to 210 GPa,

yield strength σy from 30 to 3000 MPa, strain hardening exponent n from 0 to 0.5, and

Poisson’s ratio ν was fixed at 0.3. The axisymmetric finite element model was used to

obtain computational results, unless otherwise specified.
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Figure 3-2: Experimental (Berkovich and 60o cone tips) versus computational indentation
responses of both (a) 6061-T651 and (b) 7075-T651 aluminum specimens.
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The dimensionless functions Π1θ for different apex angles (e.g. 50o, 60o or 80o) were

constructed in addition to the Π1θ function at 70.3o angle (Berkovich and Vickers equivalent)

presented earlier in Section 2.3.1. It is noted that the apex angle of 60o is commonly used in

commercial indenters for scanning the surface profile or performing indentation tests. The

second indenter tip geometry is chosen to be 60o cone.

3.3.1 Representative Strain and Dimensionless Function Π1 as a Function

of Indenter Geometry

The first dimensionless function of interest is Π1θ in Eq. (3.4). Using subscript “a” to

denote θ = 70.3o in eq. (3.4), it follows that

Π1a

(
E∗

σr,a
, n, θ = 70.3o

)
=

Ca

σr,a
(3.5)

It was found in Section 2.3.1 that for θ = 70.3o a representative strain of 0.033 could

be identified, such that a polynomial function Π1a

(
E∗

σ0.033

)
= Ca

σ0.033
fits all 76 data points

within a ±2.85% error†. It is worth noting that the corresponding dimensionless function

Π1a normalized with respect to σ0.033 was found to be independent of the strain hardening

exponent n.

Following the same procedure, one can identify the Π1θ functions with different

apex angles (i.e. different tip geometries). Three additional angles were studied here. For

θ = 60o, a representative strain of 0.057 could be identified, where a closed-form function

Π1b

(
E∗

σ0.057

)
= Cb

σ0.057

† fits all 76 data points within a ±2.51% error; here the subscript“b”

is used to denote the case for θ = 60o. For θ = 80o, a representative strain of 0.017 could

be identified, where a closed form function Π1c

(
E∗

σ0.017

)
= Cc

σ0.017

† fits all 76 data points

within a ±2.71% error; here the subscript “c” is used to denote the case for θ = 80o. For

θ = 50o, a representative strain of 0.082 could be identified, where a closed-form function

Π1d

(
E∗

σ0.017

)
= Cd

σ0.017

† fits all 76 data points within a ±2.49% error; here the subscript “d”

is used to denote the case for θ = 50o. The representative strain can be correlated with the

half tip angle via a simple linear function (see Fig. 3-3(a))

†See Appendix A.2 for a complete listing of functions.
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Figure 3-3: (a) A relationship between representative strain and indenter apex angle. (b)
A generalized dimensionless function Π1θ for θ = 50o, 60o, 70.3o and 80o.
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εr(θ) = −2.185× 10−3θ + 0.1894 for θ in degree (3.6)

or a more accurate quadratic function, within ±1.63% error,

εr(θ) = 2.397× 10−5θ2 − 5.311× 10−3θ + 0.2884 for θ in degree (3.7)

To extend the capability of the present dual indentation algorithm, the choice for the second

indenter geometry can be chosen between 50o and 80o. By correlating the coefficients in

eqs. (A.1), (A.7), (A.8) and (A.9) with apex angle θ, Π1θ

(
E∗
σεr

, θ
)

= Cθ
σεr

fits all 4×76 = 304

data points within a ±3% error, as shown in Fig. 3-3(b).

3.3.2 Forward Analysis Algorithms

In the following sections, the dual indenter geometries of the 70.3o and 60o pair are exam-

ined. The forward analysis leads to prediction of the P − h response from known elasto-

plastic properties. Following the procedure outlined in Section 2.3.2, an updated forward

analysis algorithm for generalized dual indentation is shown in Fig. 3-4. The complete

prediction of P − h response can be readily constructed for θ = 70.3o using dimensionless

functions Π1a to Π6a, while the prediction of loading curvature can be obtained for any

θ ∈ [50o, 80o] using Π1θ.

To verify the accuracy of the proposed algorithms, uniaxial compression and Berkovich

indentation experiments were conducted in two well-characterized materials: 6061-T6511

aluminum and 7075-T651 aluminum (see Fig. 2-4). Additional indentation experiments

using a different tip geometry (either a 60o cone or an equivalent 3-sided pyramid) were

performed on both 6061-T651 and 7075-T651 aluminum samples. The mechanical property

values used in the forward analysis were obtained directly from Table 2.4, where (E, ν,

σy, n) are (66.8 GPa, 0.33, 284 MPa, 0.08) and (70.1 GPa, 0.33, 500 MPa, 0.0122) for

Al6061-T651 and Al7075-T651, respectively. Table 3.1(a)‡ − (c) list the predictions from

‡Table 3.1(a) reproduced from Table 2.5 here for easier comparison.
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the forward analysis (using Π1a to Π6a and Π1b) for 6061-T651 aluminum specimens, along

with the values extracted from the Berkovich indentation, the 60o cone indentation, and the

60o cone equivalent 3-sided pyramid indentation experiments, respectively. Table 3.2(a) −
(b) lists the predictions from the forward analysis (using Π1a to Π6a and Π1b) for 7075-T651

aluminum specimens, along with the values extracted from the Berkovich indentation and

the 60o cone equivalent 3-sided pyramid indentation experiments, respectively. From Tables

3.1 and 3.2, it is evident that the present forward analysis results are in good agreement

with the experimental P − h curves.

3.3.3 Reverse Analysis Algorithms

Since a single P −h curve is sufficient for estimation of the elasto-plastic properties, the use

of two complete P −h curves would give redundant information. Therefore, there are many

possible ways to construct the reverse analysis algorithm; however, the most reliable path

is presented here. The proposed reverse algorithm utilizes a complete P −h curve obtained

under Berkovich or Vickers indenter and a loading portion of a second P − h curve under

a conical indenter of apex angle θ ∈ [50o, 80o] (or its equivalent 3-sided pyramid). In the

present study, θ = 60o is chosen. The dimensionless functions Π1a to Π6a and Π1θ allow us

to construct an improved reverse algorithm. A set of the dual indentation reverse analysis

algorithms is shown in Fig. 3-5.

To verify the dual indentation reverse algorithms, six Berkovich indentation curves

shown in Table 3.1(a) and three 60o cone indentation curves shown in Table 3.1(b) from

6061-T651 aluminum specimens were first analyzed (using Π1a to Π6a and Π1θ). Table 3.3

shows the dual indentation results, along with part of the single indentation results from

Table 2.6. In the reverse analyses, each case comprises one set of Berkovich indentation

parameters shown in Table 3.1(a) and an average loading curvature Cb shown in Table

3.1(b) for the 60o cone indentation.

Additional verification for the dual indentation algorithms was performed on 7075-

T651 aluminum specimens. Six Berkovich indentation P − h curves shown in Table 3.2(a)

and six 60o cone equivalent 3-sided pyramid indentation curves shown in Table 3.2(b) were

analyzed (using Π1a to Π6a and Π1θ). Table 3.3(b) shows the dual indentation results, along
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Table 3.1: Forward analysis on Al 6061-T651 indentation experiments using (a) Berkovich
(max. load = 3 N) (b) 60o cone (max. load = 1.8 N) and (c) 60o cone equivalent 3-sided
pyramid (max. load = 1.8 N).

Al 6061-T651 C [GPa] %err Ca dP
dh

∣∣
hm

%err
dP
dh

∣∣
hm

Wp
Wt

%err
Wp
Wt

(a) Berkovich with Pm=3 N
Test A1 27.4 -1.6% 4768 1.6% 0.902 0.8%
Test A2 28.2 1.2% 4800 2.3% 0.905 1.2%
Test A3 27.2 -2.4% 4794 2.2% 0.904 1.1%
Test A4 27.3 -2.2% 4671 -0.4% 0.889 -0.6%
Test A5 27.0 -3.2% 4762 1.5% 0.889 -0.6%
Test A6 27.6 -0.9% 4491 -4.2% 0.891 -0.4%

Ave 27.4 4715 0.896
STDEV b 0.6 110.9 0.007

STDEV/Xprediction 2.1% 2.4% 0.8%
Forward Predictionc 27.9 4691 0.894

(b) 60o cone with Pm=1.8 N
Test B1c 11.27 0.0%
Test B2c 11.23 -0.4%
Test B3c 11.32 0.5%

Ave 11.27
STDEV b 0.04

STDEV/Xprediction 0.3%
Forward Predictionc 11.27

(c) 60o cone equivalent 3-sided pyramid with Pm=1.8 N
Test B1p 12.03 0.0%
Test B2p 11.39 -0.4%
Test B3p 11.97 0.5%

Ave 11.80
STDEV b 0.60

STDEV/Xprediction 5.4%
Forward Predictionc 11.27

a All errors were computed as Xtest−Xprediction
Xprediction

, where X represents a variable.
b STDEV =

√
1
N

∑N
i=1(Xtest −Xprediction)2, where X represents a variable.

c Assume ν = 0.33 and Berkovich c∗.
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Table 3.2: Forward analysis on Al 7075-T651 indentation experiments using (a) Berkovich
(max. load = 3 N) and (b) 60o cone equivalent 3-sided pyramid (max. load = 3 N).

Al 7075-T651 C [GPa] %err Ca dP
dh

∣∣
hm

%err
dP
dh

∣∣
hm

Wp
Wt

%err
Wp
Wt

(a) Berkovich with Pm=3 N
Test A1 40.7 -7.1% 3636 1.4% 0.839 1.8%
Test A2 42.6 -2.8% 3637 1.4% 0.831 1.2%
Test A3 41.5 -5.5% 3498 -2.5% 0.829 1.1%
Test A4 40.7 -7.2% 3636 1.4% 0.835 -0.6%
Test A5 40.8 -7.0% 3566 -0.5% 0.834 -0.6%
Test A6 41.2 -6.0% 3600 0.4% 0.831 -0.4%

Ave 41.2 3595 0.833
STDEV b 1.6 51.7 0.00956

STDEV/Xprediction 3.7% 1.4% 1.2%
Forward Predictionc 43.9 3585 0.824

(c) 60o cone equivalent 3-sided pyramid with Pm=3 N
Test B1p 17.41 -7.9%
Test B2p 17.52 7.4%
Test B3p 16.95 -10.4%
Test B4p 17.75 -6.2%
Test B5p 18.08 -4.4%
Test B6p 17.90 -5.4%

Ave 17.60
STDEV b 1.37

STDEV/Xprediction 7.2%
Forward Predictionc 18.92

a All errors were computed as Xtest−Xprediction
Xprediction

, where X represents a variable.
b STDEV =

√
1
N

∑N
i=1(Xtest −Xprediction)2, where X represents a variable.

c Assume ν = 0.33 and Berkovich c∗.
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with the single indentation results. In the reverse analyses, each case comprises one set of

Berkovich indentation parameters shown in Table 3.2(a) and an average loading curvature

Cb shown in Table 3.2(b) for the 60o cone equivalent 3-sided pyramid indentation.

According to the flow chart shown in Fig. 3-5, the predictions of E∗ and σ0.033

by the dual indentation algorithm should yield the similar accuracy to those by the single

indentation algorithm.

From Table 3.3(a) and (b), it is clear that the proposed reverse algorithms yield

accurate estimates of σ0.033, σ0.057 and E∗, and give reasonable estimates of σy (especially

after taking an average from the six indentation results), which agree well with experimental

uniaxial compression data. It is noted that changing the definition of σy to 0.1% or 0.2%

(instead of 0%) offset strain would not affect the main conclusions. According to the

flow chart shown in Fig. 3-5, the improvement of the dual indentation algorithm over the

single indentation algorithm reflects upon yield strength (and consequently strain hardening

exponent) estimation, as clearly illustrated by comparing the first and last column pairs in

Table 3.3(a) and (b). This improved calculation of plastic properties is likely due to the

fact that the second indenter geometry results in more accurate estimations of the second

representative stress σ0.057 at 5.7% plastic strain in addition to the representative stress

σ0.033 at 3.3% plastic strain.
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3.4 Uniqueness of the Dual-Indentation Forward and Re-

verse Analysis

3.4.1 Uniqueness of the Forward Analysis

In order to verify the proposed forward algorithms, computational results from the 76 sets

of elasto-plastic parameters were taken as input to predict the entire P − h responses of

θ = 70.3o and the loading curvature for θ = 60o. Each of the forward analyses resulted in

a single set of output
(
Ca,

hr
hm

, dP
dh

∣∣
hm

and Cb

)
, which agrees well with the FEM-predicted

P − h response.

3.4.2 Uniqueness of the Reverse Analysis

In order to verify the proposed reverse analysis algorithms, the 76 cases of the forward

analysis (output) results were used as input to verify the uniqueness of the reverse analysis

algorithms. All 76 cases resulted in a single, accurate re-construction of the initial elasto-

plastic parameters. For the single-indentation reverse algorithm in Section 2.4.1, two cases

out of the same group of 76 cases resulted in no solution. The improvement over our

previously proposed reverse algorithm [1] came from the fact that the dimensionless function

Π2a or Π3a, which is not monotonic in n when E∗
σ0.033

< 50 for Π2a or σ0.033
E∗ < 0.005 for Π3a,

is no longer used in the present reverse algorithm. Within the range of our current study,

the dual indentation algorithm resolves the uniqueness problem.

Cheng and Cheng [40] discussed the non-uniqueness issues by showing that multiple

stress-strain curves could result in a visually similar loading and unloading curve. However,

such cases were based on the FEM results of 68o apex angle. Following an approach similar

to that in Cheng and Cheng [40] for our FEM results of 70.3o apex angle, Fig. 3-6 shows a

set of three visually similar FEM indentation responses of steel with different yield strength

and strain hardening exponent. It is worth noting two points here. First, when these

three visually similar FEM indentation responses (small but with finite differences in the

P − h characteristics) were input into the single indenter reverse algorithm (see Fig. 2-

12), three unique sets of mechanical properties can be obtained, although the accuracy is
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Figure 3-6: An example of the uniqueness problem solved by the second indenter.

sensitive to small experimental scatters. Second, using a second indenter for analysis helps

in reducing the non-uniqueness problem and improving the accuracy, as clearly shown by the

different loading curvatures of the second indentation response from 60o cone tip. The dual

indentation reverse algorithm shown in Fig. 3-5 is thus capable of accurately performing

the reverse analysis on these three curves.

3.5 Sensitivity of the Dual Indentation Analysis

3.5.1 Sensitivity of the Forward Analysis

Similar to the sensitivity analysis performed in Section 2.4.2, a ±5% change in any one input

parameter (i.e., E∗, σy or n) would lead to variations of less than ±7.6% in the predicted

results
(
Ca,

hr
hm

, dP
dh

∣∣
hm

and Cb

)
. The rather small variability confirms the robustness of

the forward algorithm.
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Table 3.4: Normalized Standard Deviations in Properties Estimation using Dual Indentation
Reverse Algorithm

∆output in \ ∆input in ±2% Ca ±2% dP
dh

∣∣
hm

±1% Wp

Wt

Normalized STDEV in E∗ 1 1 1
estimated propertiesa σ0.033 1 1 1

σy (n ≤ 0.1) 1 0.45 0.20
σy (n > 0.1) 0.83 0.34 0.18

pave 1 1 0.53

a The normalized STDEV is calculated from STDEVdual

STDEVsingle
, where STDEV

=
√

1
N

∑N
i=1(Xvaried −Xreference)2 and Xvaried represents a percentage deviation from Xreference.

3.5.2 Sensitivity of the Reverse Analysis

The sensitivity of the estimated mechanical properties to variations in the input parameters

obtained from dual P − h curves was investigated for the 76 cases examined in this study.

For each of these cases, the sensitivity of the estimated elasto-plastic properties to variations

in the four P−h curve parameters−Ca,
dP
dh

∣∣
hm

,
Wp

Wt
and Cb−about their respective reference

values (as estimated from the forward analysis) was analyzed. The variations of ±1%, ±2%,

±3% and ±4% in Ca,
dP
dh

∣∣
hm

,
Wp

Wt
and Cb about their forward prediction values were fed into

the reverse algorithm. The outputs from reverse algorithm were statistically analyzed in

the similar fashion as described in Section 2.4.2. As shown in Figs. 2-13 and 3-5, the

improvement of the dual reverse algorithms reflects in the estimation of yield’s strength.

Hence, similar to Fig. 2-17, Fig. 3-7(a) and 3-7(b) show the sensitivity chart for σ0.057 and

σy, respectively. Superimposed on Fig. 3-7(b) is the result from single indentation reverse

analysis (see Fig. 2-17) for comparison. From Fig. 3-7(b), the average variations and the

99% confidence interval error bar in dP
dh

∣∣
hm

and Wp

Wt
are significantly reduced.

Furthermore, the outputs from reverse algorithm were statistically compared with

the original values of elasto-plastic properties. The standard deviations (STDEV) were

calculated for each ±x% variation, thus sampled over 2× 76 = 152 data points, and com-
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Figure 3-7: Sensitivity charts for reverse analysis showing the average variations in (a) σ0.057

and (b) σy due to ±4% perturbation in Ca (solid line), dP
dh

∣∣
hm

(dotted line), Wp

Wt
(dash-dotted

line) and Cb (long-dash line), with the error bar indicating 99% confidence interval.
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pared with that of single indentation. Table 3.4 lists the specific values of STDEV of the

dual indentation normalized with that of the single indentation at ±2% Ca, ±2% dP
dh

∣∣
hm

and ±1%Wp

Wt
, typically found in the experimental scattering. Other variations in the P − h

curve parameters follow the similar trend shown in Table 3.4. Significant improvement of

yield strength (for a two-parameter power law plastic constitutive law) was achieved due to

the second plasticity parameter, σ0.057, which can be predicted as robustly as σ0.033. For

instance, within ±1% experimental error in Wp

Wt
, the average error in the estimated yield

strength was reduced by 80% using the dual indentation algorithm.

3.6 Extension to Multiple-Indentation Analysis

To further improve the accuracy and reduce the sensitivity of the reverse algorithm, multiple

indenter geometries may be used. This multiple indentation analysis requires a complete

indentation curve of Vickers/Berkovich indenter and a loading indentation curve of other

tip geometries, θ ∈ [50o, 80o]. A set of the multiple indentation reverse algorithms is shown

in Fig. 3-8. It is similar to that of dual indentation except at the last step where yield

strength and strain hardening exponent are to be determined. For each indenter geometry

(θ), a pair of representative strain and stress can be determined using generalized dimen-

sionless function Π1θ and εrθ in Eqs. (A.10), (3.6) and (3.7) respectively. By statistically

fitting (least square error) these stress/strain values with the power hardening equation

(Eq. 2.5), σy and n can be determined. On the other hand, the dual indentation algo-

rithms shown in Fig. 3-4 can be easily extended to different tip geometries θ ∈ [50o, 80o].

Given a set of elasto-plastic properties, one can predict a complete indentation response for

Vickers/Berkovich indenter and a loading indentation response for arbitrary indenter tip

geometries.

3.7 Conclusions

In this chapter [60], dimensional analyses and large deformation finite element studies were

performed to address the uniqueness problem in the extraction of material properties from
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Figure 3-8: Multiple Indentation Reverse Analysis Algorithms.
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instrumented sharp indentation and to improve the accuracy and sensitivity of the algo-

rithms used to extract such properties. The key results of this investigation can be sum-

marized as follows.

1. Using dimensional analysis, additional universal, dimensionless functions were con-

structed to correlate elasto-plastic properties of materials with indentation response

for 50o, 60o and 80o cones (or their equivalent 3-sided pyramids). Choosing a pair

of Berkovich (or Vickers) and 60o cone (or its equivalent 3-sided pyramid), forward

and reverse analysis algorithms were established based on the identified dimension-

less functions. These algorithms allow for the calculation of indentation response for

a given set of properties, and also for extraction of some plastic properties from a

dual set of indentation data, thus obviating the need for large-scale finite element

computations after each indentation test.

2. Assuming large deformation FEM simulations and an isotropic power law elasto-

plastic constitutive description within the specified range of material parameters, the

present reverse algorithms using dual indenters (Berkovich/Vickers and cone of 60o

apex angle) were able to predict a single set of values for E∗, σy and n. Furthermore,

the full stress-strain response can be estimated from the power law assumption.

3. The accuracy of the dual indentation forward/reverse algorithms were verified in two

aluminum alloys (6061-T651 and 7075-T651) with an improvement over the single

indentation forward/forward algorithms.

4. The proposed dual indentation forward algorithms work well and robustly with similar

sensitivity to the single indentation forward algorithms; a ±5% error in any input

parameter results in less than ±7.6% in the predicted values of Ca,
hr
hm

, dP
dh

∣∣
hm

or Cb.

5. The proposed dual indentation reverse algorithms were found to predict E∗, σ0.033 and

σ0.057 quite well, and σy reasonably well for the cases studied. Comprehensive sensitiv-

ity analyses show that σy displayed much reduced sensitivity to all P − h parameters

due to the second plasticity parameter that can be robustly estimated; whereas, E∗,

σ0.033, σ0.057 and pave displayed similar sensitivity to the single indentation algorithms.

6. The extension of forward/reverse algorithms to using multiple indenter geometries,

94



50o 6 θ 6 80o, was proposed with generalized functions of representative strain and

indentation loading curvature.

Final remark: An independent computational study using multiple indenters was recently

published in Acta Mater [61]. Their findings extended the results from chapter 2 and were

consistent with the results presented in this chapter. Nonetheless, this chapter addresses new

results which include experimental verification and the uniqueness of the reverse analysis.
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Chapter 4

Experimental Assessment of the

Representative Stress Estimates

from the Instrumented Sharp

Indentation

In this chapter, experimental assessment of the representative stresses σ0.033 and σ0.057

estimated from single [22, 39] and dual [59] indenters algorithms are critically examined,

by analyzing the P − h responses of two metallic materials subjected to different levels of

tensile plastic strains prior to indentation. A highly cold-work pure copper that exhibits

elastic-perfectly plastic response and an annealed aluminum 6061-T651 alloy that shows

considerable work hardening are chosen for their contrasting plastic behavior. Results show

that the single indenter methodology proposed by Dao et al. [22, 39] accurately predicts a

series of σ0.033, which are offset by the prior plastic strains. In turn, it is shown that the full

stress-strain curves can be constructed by connecting the σ0.033 data. Further, by indenting

the same set of strained specimens using a three-sided pyramid tip that is equivalent to a

60o cone indenter, and analyzing the results with the dual indenter methodology proposed

by Chollacoop et al. [59], a series of σ0.057 is similarly obtained.
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4.1 Introduction

Depth-sensing instrumented indentation has become a popular technique in the recent past

for mechanical property evaluation of materials. Development of instruments that can mea-

sure load, P , and depth of penetration, h, with high accuracy (to µN and nm, respectively)

and a better understanding of contact mechanics problems through computational modeling

are the two main factors responsible for this. In a typical instrumented indentation test,

the P −h data are continuously recorded for a complete cycle of loading and unloading and

is analyzed [23–25, 27, 30, 32–36]. A key factor that goes into this analysis is the contact

area between the indenter and the specimen. At micro- and nano-length scales, the material

underneath the indenter piles-up or sinks-in against the faces of the indenter, depending on

yield stress to elastic modulus ratio and work hardening behavior of the indented material

(see Fig.2-14) Hence, it is difficult to measure the true contact area accurately either by

simple geometric arguments or through microscopic observations (the latter especially in

nanoindentation). Considerable research has been done to overcome this difficulty and stan-

dardized methodologies that circumvent this problem are now available [27, 38, 41, 42, 62]

It is now possible to evaluate properties such as the elastic modulus, E, and hardness, H,

of a given material routinely and reliably. Despite these advances, robust and relatively

straightforward methodologies for extraction of plastic properties such as yield stress, σy,

and the work hardening exponent, n, of metallic materials from the P − h curves are not

yet available. It would be highly desirable to be able to extract these properties from inden-

tation data, especially σy, because they are highly sensitive to the microstructures, history,

and dimensions of the specimens, and also technological reasons (e.g., the yield behavior

of Cu or Al interconnect lines in integrated circuits is essential for modeling their reliabil-

ity). Additionally, a method that does not require the measurement of contact imprint is

desirable from an industrial stand-point-of-view.

A key aspect in achieving this goal is to understand the strain distribution under-

neath the sharp indenter, which is assessed through the identification of a characteristic

(or representative) strain, εr. Several different values for εr were attributed in literature

(discussed in Section 4.2). Recently, a characteristic stress at εr = 3.3% was identified

by Dao et al. [22, 39], who have conducted large-strain finite element analysis of Vick-
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ers/Berkovich indentation on a power-law hardening elastic-plastic solids. On this basis, a

methodology to assess properties of materials within the context of single [22, 39] and dual

[59] indentations were proposed. Note that Section 2.4.3 clearly demonstrates the link be-

tween different values of εr, and concludes that the apparent disparity stems from a choice

of functional definitions used to relate indentation parameters to mechanical properties, but

not the discrepancies in data or underlying theoretical assumption.

The objective of this chapter is to provide critical experimental assessment of the

concept of the characteristic stress. For this purpose, indentation experiments were con-

ducted on two metallic materials with distinct mechanical response: a highly cold-worked

Cu that exhibits elastic-perfectly plastic behavior and a well annealed Al alloy that strain

hardens considerably. The methodologies proposed by Dao et al. [22, 39] and Chollacoop

et al. [59] were employed to ascertain the possibility of constructing the stress-strain curves

from indentation data. This chapter is organized in the following manner. First, relevant

literature pertaining to the concept of characteristic strain underneath a sharp indenter is

briefly reviewed in Section 4.2. A reader should refer to Chapters 2 and 3 for details of the

single and dual indenters methodologies. Materials and experimental details are presented

in Section 4.3, and the analysis of the results is presented in Section 4.4. This chapter

concludes with a brief summary and identification of possible avenues for utilization of the

characteristic stress concept.

4.2 Theoretical Background

For ductile metals that are heavily cold-worked, Tabor [23] has shown that the mean pressure

or the hardness can be related to the representative yield stress of the material in uniaxial

compression, εr, by a simple expression

H = Cεr (4.1)

where εr is some ‘representative’ measure of the flow stress of the deformed metal at the

tip of the indenter. Tabor’s experiments have shown that the factor of proportionality,
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known as the constraint factor, C, is in the range of 2.6 to 3.0. Tabor suggested that for

annealed metals under spherical indentation, σr = φ[εo + α(a/R)], where εo is the initial

strain in the test sample, α(a/R) is the strain introduced by the indentation process in the

‘representative region’, and α is a numerical factor. For conical or pyramidal indentations,

where the hardness does not depend on the size of the indentation due to the principle of

geometrical self-similarity, it is not possible to set the scale of an indentation without some

external reference. On the basis of his experimental observations, Tabor proposed that the

representative strain introduced within the plastically deformed region εr is ∼ 8% for the

case of a Vickers indentation.

Chaudhri [48], by conducting a detailed experimental study of subsurface strain

distribution around a Vickers indent in Cu, reported that the maximum strain hardening

occurs in a subsurface region adjacent to the tip of indentation. His estimated value of this

maximum strain was in the range of 25%-36%, considerably higher than that proposed by

Tabor. This strain value correlates well with small-strain finite element analysis conducted

by Giannakopolous et al. [3] on work-hardening solid. Chaudhri also pointed out that the

maximum strain under the indentation might depend on the strain hardening characteristics

of the material. While a high value of ∼ 30% appears reasonable for the maximum strain,

validity of its use as representative strain remains questionable.

Recent works by Dao et al. [22, 39], who have extended the concept developed in

[3, 4, 41] by employing a large-strain finite element analysis in the context of single [22, 39]

and dual [59] indentations, demonstrate that the representative strains are∼ 3.3% and 5.7%,

respectively. On the basis of this work, explicit closed-form dimensionless functions are

constructed, which are in turn utilized to develop forward and reverse analysis algorithms.

While the forward algorithm predicts the indentation response (i.e the P − h curve) with

the materials’ elasto-plastic properties as input parameters, the reverse algorithm predicts

materials’ elasto-plastic properties from the indentation response.

From Section 2.4.2, error sensitivity analysis shows that in the single indenter re-

verse algorithms, the reduced Young’s modulus, E∗, and a representative stress at 3.3%

plastic strain, σ0.033, were accurately predicted with some sensitivity to experimental scat-

tering typical seen in instrumented indentation. Provided that the assumption of power law
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hardening adequately described the full uniaxial stress-strain response, the yield strength

(σy) and strain hardening exponent (n) could be predicted but suffered a strong sensitivity

to small variation in the indentation response. In the dual indenters reverse algorithms as

discussed in Section 3.5.2, the representative stress at 5.7% plastic strain, σ0.057, was also

accurately predicted, and the estimates for yield strength were shown to be less sensitive

to variation in the indentation response.

However, a critical assessment of the aforementioned methodologies has not been

performed hitherto, which is the objective of this chapter. For this purpose, two different

materials, one that work hardens whereas the other exhibits elastic-perfectly plastic behav-

ior, are selected. These materials were subjected to different levels of plastic strains prior

to indentation. The idea behind this is that the reverse algorithms should predict stresses

that correspond to 3.3% plus the prior plastic strains, enabling the construction of the en-

tire stress-strain curves which can then be compared to the uniaxial stress-strain curves to

assess the accuracy of the predictions.

4.3 Experiments

Two materials were utilized for experimental investigation: a highly cold-worked pure cop-

per and aluminum 6061-T651 alloy, both in the form of 4.76 mm (3/16 in) thick sheet. Four

dog-bone specimens, with 50.8 mm (2 in) gage length, 9.53 mm (3/8 in) gage width and

38.1 mm (1.5 in) grip length, were machined from each sheet. The aluminum specimens

were fully annealed in atmosphere at 415 oC for 2.5 hours (O temper) to obtain the highest

hardening. Typical uniaxial tensile tests were conducted on a screw-driven universal testing

machine at a cross-head speed of 1.27 mm/min (0.05 in/min) The elongation was obtained

from an extensometer. Each copper specimen was strained to approximately 1.6%, 4%,

7.3% and 10% engineering strain before unloading and thus labeled Cu1, Cu2, Cu3 and

Cu4, respectively. On the other hand, each aluminum specimen was strained to approx-

imately 0.8%, 3%, 5% and 7% engineering strain before unloading and thus labeled Al1,

Al2, Al3 and Al4, respectively. These strain values used in both materials were chosen so

that each specimen was plastically deformed before unloading in the incremental manner.
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Table 4.1: Averaged mechanical property determined from experimental tensile test.

Material E νa E∗ σy nd σ0.033 σ0.057

(GPa) (GPa)b (MPa)c (MPa) (MPa)

Cu 112.76 0.3 111.42 238 0.029 258 262
Al 65.95 0.33 69.37 25 0.295 94 113

a From literature value [54]
b Calculated from Eq. (2.8) using Ei = 1100 GPa and νi = 0.07 for the diamond indenter.
c Estimated at 0% offset strain.
d Estimated from power law fit.

Indentation specimens were machined (approximately 10 mm long) from the gage

section of each strained specimen (Cu1, Cu2, Cu3, Cu4, Al1, Al2, Al3 and Al4) and from the

grip section of Cu1 and Al1 (labeled Cu1gs and Al1gs, respectively). The Cu1gs and Al1gs

specimens were polished deeper than other specimens to completely remove any marking

from the gripping. All specimens were polished to 1 µm diamond paste. The polished

samples were then indented on a commercial nanoindenter (MicroMaterials, Wrexham, UK)

with a Berkovich and a 60o cone equivalent three-sided pyramid diamond tips at a loading

and unloading of 0.1 N/s. To ensure that each indent was independent of its neighbors, the

spacing between the consecutive indents was at least ten times the approximate indentation

radius. Limited by the indenter specimen size and the maximum depth allowed in the

nanoindenter, the copper and aluminum specimens were indented with the maximum load

of 12 and 4 N, respectively under the Berkovich tip, with 1 mm spacing between each indent.

On the other hand, the copper and aluminum specimens were indented with the maximum

load of 4 and 2 N., respectively under the 60o cone equivalent three-sided pyramid tip, with

1 mm spacing between each indent. Please note that the maximum load was estimated

from the forward algorithms [22, 39, 59]. For all indentation specimens, at least six tests

were conducted to ensure the repeatability.
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Figure 4-1: Experimental uniaxial tension true stress-true strain responses of (a) copper
and (b) aluminum samples with the best power law fit and the pre-strain value projected
down on strain axis.
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Table 4.2: Maximum true stress and true strain from the tensile test of each strained
specimen prior to indentation.

Sample Cu1 Cu2 Cu3 Cu4 Al1 Al2 Al3 Al4

σ (MPa) 252.15 256.56 261.97 268.33 59.09 94.08 109.30 120.85
εpre strain 1.63% 4.01% 7.05% 9.61% 0.81% 3.07% 4.97% 6.79%

σ0.033 (MPa) 261 264 266 268 101 118 129 138
σ0.057 (MPa) 263 266 268 269 118 131 140 148

4.4 Results and Discussions

Load-displacement data for both materials were converted to true stress-true strain data, as

shown in Fig. 4-1. It was clear that all specimens of each material were repeatable and each

specimen was pulled to plastic deformation region. For each material, the Young’s modulus

was measured from the initial elastic region, and the power law hardening Eq. (2.5) was

fitted to the plastic region, as shown in Table 4.1. For comparison with the results from

reverse algorithms, the reduced Young’s modulus was calculated using Eq. (2.8), and and

σ0.033 and σ0.057 were estimated from Fig. 4-1. In addition, Table 4.2 lists the values of true

stress and true strain each specimen was pulled to. Note that this strain was used to offset

the predicted representative stress when compared to the unstrained sample, whereas the

corresponding stress was taken as the new yield strength due to work hardening.

For each material and indenter tip, the six indentation curves were statistically

analyzed by calculating the average and standard deviation in the incremental range of

0.5 µm and 0.2 µm for loading and unloading sections, respectively. Fig. 4-2(a) and Fig.

4-2(b) show the average curve with the error bar indicating 99% confidence interval from

six tests under both indenter tips for the copper and aluminum specimens, respectively.

Both sets of data were repeatable as measured by a small error bar of 99% confidence

interval. From [22, 39, 59], the loading curvature of the indentation response was rigorously

shown to be depending on the reduced Young’s modulus and the representative stress only.

Thus, the low strain hardening observed in copper specimens predicted the similar values
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Figure 4-2: Experimental indentation responses (each illustrated by the average with the
error bar of 99% confidence interval from 6 tests) under both Berkovich and 60o cone
equivalent three-sided pyramid tips for (a) copper and (b) aluminum specimens.
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of representative stress and thus similar indentation curves, as shown in Fig. 4-2(a). On

the other hand, the high strain hardening observed in aluminum specimens predicted the

increasing values of representative stress and thus stiffer indentation curves with increasing

pre-strain values, as shown in Fig. 4-2(b).

The individual indentation responses under both tips for copper and aluminum

samples, as representatively shown in Fig. 4-2 were subjected to the single and dual indenter

reverse algorithms detailed in [22, 39, 59]. The predictions for reduced Young’s modulus,

σ0.033 and σ0.057 were shown in Figs. 4-3(a), (b) and (c), respectively. It was clear that

the predictions from the reverse algorithms well matched the experimental values from the

tensile tests. Note that a lesser scattering in σ0.057 when compared to σ0.033 may have to

do with tip blunting effect because the Berkovich tip has been extensively used whereas the

60o cone equivalent three-sided pyramid tip is customized and much less used prior to the

experiments conducted here.

By superimposing a series of predicted σ0.033 and σ0.057 from each specimen onto the

average experimental tension stress-strain curves with the power-law fit, Figs. 4-4(a) and

4-4(b) clearly show that the uniaxial tension results were well bounded by the predictions

from the reverse algorithms.

4.5 Conclusions

Experiments were conducted to critically assess the representative stress concept, proposed

by Dao et al. [22, 39] and Chollacoop et al. for single and dual indenters algorithm,

respectively. Two materials of contrasting plastic behavior (very low strain-hardening pure

copper and very high strain-hardening annealed aluminum alloy) were plastically strained

prior to indentations under both Berkovich and 60o cone equivalent three-sided pyramid

tips. A series of σ0.033 were predicted from single indenter reverse algorithms, showing

clearly the good agreement with uniaxial tensile stress-strain curve. Better agreement was

achieved for a series of σ0.057 for dual indenters algorithms possibly due to a more perfect

tip. This representative stress concept allows the possibility to construct the entire stress-

strain curves, with better accuracy and less sensitivity, from multiple indentations of one

106



0

50

100

150

200

250

300

GS               1                2                 3                4

 

σ 0.
03

3 (
M

P
a)

Specimens

 Cu
 Al

0

50

100

150

200

250

300

 

Cu (Exp value)

Al (Exp value)

(b)
 

0

20

40

60

80

100

120

Al (Exp value)

Cu (Exp value)

GS               1                2                 3                4

 

 

E
* 

(G
P

a)

Specimens

 Cu
 Al

0

20

40

60

80

100

120(a)

Cu (Exp value)

Al (Exp value)

0

50

100

150

200

250

300

GS               1                2                 3                4

σ 0.
05

7 (
M

P
a)

Specimens

 Cu
 Al

0

50

100

150

200

250

300

 

 

 

(c)

Figure 4-3: The prediction of (a) reduced Young’s modulus (the experimental values from
uniaxial tensile test span over ±1 standard deviation), (b) σ0.033 and (c) σ0.057 of copper
and aluminum specimens from the single and dual indenters reverse algorithms [22, 39, 59]
(each illustrated by the average with the error bar indicating the standard deviation, along
with the experimental values from uniaxial tensile test).
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or more indenter tips, provided that each indentation is performed at different levels of

previously plastic-strained specimens.
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Chapter 5

Computational Modeling of

Nanocrystalline Materials

In this chapter∗, the effects of rate sensitivity and grain size upon mechanical properties

of nanocrystalline materials are investigated by recourse to the continuum modeling within

the context of finite element analysis. Systematic experiments have been performed to

investigate the rate-sensitivity of deformation in fully dense nanocrystalline Ni using two

different experimental techniques: depth-sensing indentation and tensile testing. Results

from both types of tests revealed that the strain-rate sensitivity was a strong function of

grain size. Specifically microcrystalline and ultra-fine crystalline pure Ni, with grain size

range of > 1 µm and 100-1000 nm, respectively, exhibited essentially rate-independent

plastic flow over the range 3 × 10−4 to 3 × 10−1 s−1, whereas nanocrystalline pure Ni

with a grain size of approximately 40 nm, exhibited marked rate-sensitivity over the same

range. A simple computational model, predicated on the premise that a rate-sensitive grain-

boundary affected zone (GBAZ) exists, was shown to explain the observed effect of grain

size on the rate-dependent plastic response. The same GBAZ model was further utilized

in the parameter study of grain size effect on rate-independent plastic response (i.e., flow

stress as a function of grain size at the quasi-static deformation rate). The results predicted

inverse Hall-Petch-type relation at the similar grain size range observed in the literature.

∗This article is published in Acta. Mater., Vol. 51 (2003), p. 5159, with co-authors: R. Schwaiger, B.
Moser, M. Dao and S. Suresh. [16]
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5.1 Introduction

Nanocrystalline materials, with grain size typically smaller than 100 nm, are known to

possess some attractive properties, such as high yield and fracture strengths [63–65], im-

proved wear resistance [66, 67], and superplasticity at relatively low temperatures [14, 68],

compared to their microcrystalline counterparts with grain size typically larger than 1 µm.

Recently, there has been growing experimental evidence that nanocrystalline materials also

exhibit highly strain-rate sensitive mechanical properties [7, 8]. However, experimental data

available to date in the literature on the strain-rate sensitivity of nanocrystalline metals are

very limited, and quantitative results are not conclusive.

Lu et al. [7] studied the effects of strain rate on the tensile flow and fracture behavior

of nanocrystalline electrodeposited Cu specimens with a mean grain size of about 30 nm.

The strain to failure was found to increase significantly with increasing strain rate, which

is different from the behavior seen in conventional Cu where the fracture strain decreases

slightly at higher strain rates. The flow stress was only mildly dependent on strain rate;

within the strain rate range of 6× 10−5 to 1.8× 103 s−1 the flow stress at 1% plastic strain

increased from about 85 to roughly 150 MPa.

Dalla Torre et al. [8] studied nanocrystalline electrodeposited Ni with a mean grain

size of about 20 nm over a wide range of strain rates. Their results partly contradicted

the results of Lu et al. [7] in that the ductility decreased with increasing strain rate for

strain rates ranging from 5.5×10−5 to 5.5×10−2 s−1. The tensile strength was observed to

be approximately 1500 MPa and essentially constant for strain rates between 7× 10−5 and

5.5×10−2 s−1, but increased significantly for strain rates of 101 to 103 s−1 to values as high as

2600 MPa. The same trends shifted to slightly higher strain rates were observed on coarser-

grained Ni [8]. Wang et al. [13] observed a loading-rate sensitivity in electrodeposited

nanocrystalline Ni subjected to tensile and creep tests. Enhanced strain-rate sensitivity at

room temperature with decreasing grain size was also found in nanoindentation experiments

on nanocrystalline oxides, such as TiO2 and ZnO [69, 70].

Many of the results available in the literature cannot easily be compared. The

different techniques used to produce the materials result in widely different internal struc-
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tures and processing-induced artifacts, such as contamination, porosity, and residual stress.

These differences render it difficult to identify the mechanisms responsible for differences in

mechanical properties. Another common problem is that only a limited amount of material

is typically available to conduct experiments, often with sub-sized specimens. Furthermore,

experiments at different strain rates generally involve different specimen designs, loading

methods, displacement and strain monitoring techniques, and precision of data. Lu et al.

[7] and Dalla Torre et al. [8], for instance, compare results from quasi-static tensile tests

with data obtained from high strain rate dynamic loading. Using different instruments, test

techniques and loading methods, often requires use of a differently sized specimen [7], which

may influence the mechanical response measured [8]. Most theoretical/computational stud-

ies, including atomistic simulations [71, 72], and continuum-micromechanics based models

(e.g. [73, 74]), focus on yield strength and related deformation mechanisms, but do not de-

scribe the rate-dependent mechanical behavior of nanocrystalline materials under realistic

load or strain rates.

There is a critical need for examining the strain-rate sensitivity of nanocrystalline

metals and alloys through consistent and systematic data obtained over a wide range of

strain rates using a single experimental technique in a fully dense, high purity, and well-

characterized material. These results should then be confirmed using a different, indepen-

dent method on the same materials. Indentation is the preferable method, since the tested

volume of material is scaleable with respect to the microstructure. In this manner, strain-

rate sensitivity of nanocrystalline (nc), ultra-fine crystalline (ufc), and microcrystalline (mc)

specimens of the same material can be studied using a single specimen geometry and load-

ing configuration over a wide strain-rate range where the deformed volume of the material

in each case samples a sufficient number of grains for extraction of reliable data. The

present study investigated electrodeposited nc and ufc Ni, which was fully dense and well

characterized. Parallel tensile tests at different loading rates were also performed to verify

independently the trend extracted from the indentation experiments. The results from the

electrodeposited nc and ufc Ni were compared with conventionally produced mc Ni. In or-

der to provide a rationale for interpreting deformation mechanisms, a simple computational

model was proposed. The computational results were consistent with both the indentation

and tensile experiments.
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Using the proposed model, the parameter study of grain size effect on flow stress in

nc-Ni exhibited the inverse Hall-Petch-type relation, where the flow stress decreased with de-

creasing grain size opposing the conventional Hall-Petch relation [75, 76] typically observed

in the microcrystalline counterpart. The predicted critical grain size for the transition

from Hall-Petch to inverse Hall-Petch-type relations was consistent with the experimental

observation and the atomistic simulation reported the literature [5, 65, 77–88].

5.2 Experimental details

5.2.1 Materials and specimen preparation

Nickel specimens of different grain sizes were investigated. Fully dense, nanocrystalline

Ni sheets were procured from Integran Technologies Inc. (Toronto, Canada). They were

produced by electrodeposition and were of 99.8% and 99.9% purity and nominal grain

sizes of 20 and 200 nm, respectively. The foils had a thickness of about 150 µm. The

electrodeposited materials of nominal 20 and 200 nm grain size will henceforth be denoted

as nc and ufc Ni, respectively. These foils were ground and polished on one side using SiC

paper of 500, 1200, 4000 grain size and diamond suspensions of 6, 3, 1, and 0.25 µm grain

size. The thickness of the specimens after the polishing procedure was about 100 µm. For

comparison, microcrystalline Ni foils of commercial purity were polished following the same

procedure.

The specimens used for indentation testing were rectangular with about 10 mm

side length. They were glued onto Al cylinders using a standard cyanoacrylate glue (“su-

perglue”). For tensile tests, sub-sized dog-bone specimens were cut from the Ni foils by

electrical discharge machining. The width and length of the specimen gage section were 5

and 20 mm, respectively. The shoulder radius was 6 mm and the shoulder width 2 mm.

The specimen thickness was equal to the foil thickness.
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5.2.2 Indentation test methods

Two different indenters were used in order to test the electrodeposited Ni foils over a wide

range of loads and load or strain rates. This approach also facilitated a comparison of the

effects of different indenter designs on the experimental scatter seen for the different grain

sizes. The indenters used were: MTS NanoXP system (MTS Systems Corporation, Eden

Prairie, MN, USA) for probing the specimens to a depth of 1 µm (maximum load capability:

500 mN, maximum indentation depth: 500 µm), and Micromaterials Microindenter (Micro-

Materials Ltd., Wrexham, UK), which is capable of applying loads in the Newton-range, for

indenting samples to depths of 3 µm. In all tests, diamond Berkovich tips with a pyramidal

tip shape and a tip radius of approximately 150 nm, were used.

The Nanoindenter XP uses a coil-magnet assembly for loading a probe, and mea-

sures the displacement into the sample with a capacitance gage. In addition to load and

displacement data, the instrument provides continuous measurement of the contact stiffness

via a superimposed AC signal during loading [27]. Constant loading rate experiments as

well as tests at a constant indentation strain rate [89] can be performed. Details of this

instrument can be found elsewhere [27, 90].

In these experiments, the specimens were tested at different constant indentation

strain rates. The indentation strain rate (ε̇ind) is defined as the rate at which the indenter

penetrates into the material ḣ
h , where h is indentation depth. From the hardness definition,

H = P
A = P

Bh2 → P = Bh2H, where B is a proportionality constant relating the projected

area of indentation to its depth squared. The indentation strain rate is then given by

Ṗ

P
=

B(2hḣH + h2Ḣ)
Bh2H

= 2
ḣ

h
+

Ḣ

H
(5.1)

With the assumption of constant hardness throughout the indentation depth (no size effect),

Ḣ ≈ 0 simplifies Eq. (5.1) to

ḣ

h
=

1
2

Ṗ

P
= ε̇ind (5.2)
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The Nanoindenter XP is then applying the loading rate and adjust the load according to the

feedback unit such that the ratio of 1
2

Ṗ
P equals to the indentation strain rate ḣ

h prescribed

by the user.

The specimens were first loaded to a depth of 1 µm, and the maximum load was

held constant for 10 s. Then the specimens were unloaded to 20% of the maximum load

and the load was held constant for a period of 60 s while the displacement was monitored

to determine the displacement rate produced by thermal expansion in the system. Finally,

the load was removed completely. The displacement data were corrected assuming a con-

stant drift rate throughout the test. In all experiments, the contact stiffness was recorded

continuously during the loading segment. Indentation strain rates of 0.01, 0.025, and 0.1

s−1 were applied. For each strain rate 5 and 10 indents were performed for the nc and ufc

Ni, respectively.

The Microindenter is a pendulum-based depth-sensing indentation system with the

load applied horizontally through a coil-magnet assembly. The tip displacement is mea-

sured with a parallel plate capacitor. The machine is mounted in an enclosure held at a

constant temperature to minimize thermal drift effects in the displacement sensing system.

Experiments at constant loading rates of 3.8, 12.0, 40.5, and 186.1 mN/s were performed.

The loading sequence was as follows: the tip was brought into contact with the material

and held there at a load of 100 µN for 60 s while the displacement was monitored. The

measured displacement rate was attributed to thermal drift in the system and used to cor-

rect the displacement data. Subsequently, the specimen was indented at a constant loading

rate to a depth of 3 µm. The load was held constant at its maximum value for 10 s. Finally,

the samples were unloaded at the respective loading rates. For each foil and load rate, 10

indents were performed

The indentation hardness was extracted from indentation data. For the strain-rate

controlled experiments, the hardness was determined continuously throughout the depth

of indentation. The results obtained from load-rate controlled indentation were analyzed

according to the procedure outlined by Oliver and Pharr [27]. The unloading curves, how-

ever, were shifted to the end of the loading segments, in order to compare the hardness

at the applied maximum loads. This procedure allows for capturing the influence of load
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or strain rate on indentation hardness, since creep effects during the hold segment would

partially eliminate hardness changes due to the applied strain or load rate. Although this

procedure introduces a certain error as the contact stiffness slightly increases during creep

due to the depth increase, the hold segment is required to reduce the effect of creep on the

unloading curve, particularly at higher load or strain rates [91]. However, it was found that

the error introduced by this procedure was negligible compared to the experimental scatter.

The unloading curves were then fitted with a power law for the data points lying between

20% and 80% of the maximum load.

5.2.3 Tensile test methods

The trends extracted from indentation tests were verified by using another independent

experimental method, i.e. the tensile test. All tensile tests were performed on a computer-

controlled hydraulic testing machine (Instron Dynamight, Instron Corporation, Canton,

MA, USA) with a load cell capacity of 1 kN. Position-controlled experiments with three

different stroke displacement rates were performed. Strain was measured with an exten-

someter (10 mm gage length) to a maximum strain of 2.5%. The strain data obtained

from the extensometer was used to correct the stroke displacement data for machine com-

pliance by comparing the two stress-strain curves in the elastic regime. Since the samples

were strained to fracture (strains > 2.5%), the strain derived from the corrected stroke

displacement was used for further analysis.

5.3 Results

The nc Ni investigated in this study has been extensively characterized in an earlier study

[92], which revealed a narrow grain size distribution with a mean grain size of approximately

40 nm. Growth twins were found to be prevalent. The grain interior appeared to be clean

and devoid of dislocations. The grain boundaries showed no evidence of second phase

particles or films. The grain size distribution on the surface of the ufc Ni was not unimodal

and a number of grains were significantly larger than the average grain size of 320 nm,

which was estimated from quantitative image analysis.
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5.3.1 Constant strain-rate indentation experiments

Figures 5-1(a) and (b) show P − h curves obtained from the ufc and nc specimens, re-

spectively. In both cases three different indentation strain rates were applied. The curves

obtained from the ufc Ni show considerable scatter, Fig. 5-1(a). Within the experimental

scatter, no difference between the different indentation strain rates was observed. The P−h

curves given in Fig. 5-1(b) for the nc material, however, show a distinct and experimentally

detectable effect of indentation strain rate. With increasing strain rate, a higher indentation

force is required in order to impose the same displacement. The loads applied during the

experiments on the nc material were considerably larger than those for the ufc material for

a given indenter penetration depth (Fig. 5-1).

In Fig. 5-2, the hardness is plotted versus the depth of indentation as determined

continuously during indentation for both the ufc and nc specimens. The hardness of the

nc Ni is significantly higher than that of the ufc Ni. The scatter in the ufc Ni data is

considerably larger than in the data obtained from the nc Ni. Within the scatter a clear

strain rate effect on the indentation response of the ufc Ni cannot be inferred. In case of

the nc Ni, however, the hardness increases with increasing indentation strain rate. The

hardness values of the nc Ni are between 5.8 and 6.4 GPa at maximum indentation depth,

whereas the hardness of the ufc Ni is almost a factor of two smaller. The slight hardness

decrease of the nc Ni with increasing indentation depth was attributed to the compliance

of the experimental setup.

5.3.2 Constant load-rate indentation experiments

The P − h curves of the ufc and nc Ni at constant load rates for larger indentation depths

are shown in Fig. 5-3. Four different load rates were applied. The unloading portion of

the curves was shifted to the depth achieved at the end of the loading segment. Hardness

versus load rate is plotted in Fig. 5-4 at h = 2800 nm. In case of the ufc Ni, the hardness

is constant, whereas in case of the nc Ni the hardness increased with increasing load rate.
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Figure 5-1: Load-displacement (P − h) curves of the (a) ufc Ni (320 nm grain size) and (b)
nc Ni (40 nm grain size). The average curve including error bars (95% confidence interval)
of 10 and 5 curves, respectively, at three different indentation strain rates is shown.
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increasing strain rate

Figure 5-2: Hardness versus indentation depth for nc and ufc Ni. The hardness was de-
termined continuously during indentation for three different indentation strain rates. The
average of 10 and 5 indents for ufc and nc Ni, respectively, are shown.

5.3.3 Tensile tests

Stress versus strain calculated from the compliance-corrected stroke displacement for ε̇ =

3 × 10−1 s−1 for the different materials tested is shown in Fig. 5-5(a). Yield strength as

well as tensile strength (TS) increase with decreasing grain size. For the mc Ni foil only the

beginning of the curve is shown, as fracture occurred at about 30% strain. Figure 5-5(b)

shows stress-strain curves obtained from the nc Ni deformed at three different strain rates.

The flow stress increases with increasing strain rate.

5.4 Discussion

5.4.1 Experimental Trends

In both indentation and tensile tests, a strengthening effect due to grain size reduction

was consistently observed. The indentation hardness of nc Ni is almost twice as high as
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ultra-fine crystalline Ni

(a)

(b)

Figure 5-3: Load-displacement (P − h) curves of the (a) ufc Ni (320 nm grain size) and
(b) nc Ni (40 nm grain size). The average curves of 10 and 5 curves, respectively, at four
different load rates are shown.
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Figure 5-4: Hardness versus load rate for nc and ufc Ni at h = 2800 nm. The hardness was
determined at the indentation depth at maximum load for four different load rates (3.84,
12.0, 40.53, and 186.12 mN/s). The average of 10 indents for ufc and nc Ni are shown.

the hardness of ufc Ni. In the tensile tests, the TS of the three types of materials tested

increased from about 450 MPa for mc (grain size: 10 µm) to about 920 MPa for ufc (grain

size: 320 nm) and to more than 1600 MPa for nc Ni (grain size: 40 nm). However, this

increase in strength was accompanied by a significant ductility reduction; the strain at

TS is reduced from 30% for the mc Ni to only about 2-3% for the nc and the ufc Ni foils.

Generally, the strength as well as the hardness values compare well with the values presented

by Dalla Torre et al. [8]. However, the overall trends observed in the present experiments

are different and can be well described by a simple computational model, which is based on

recent experimental observations and simulations.

Ex-situ transmission electron microscopy (TEM) studies of nc metals have revealed

that grains are essentially dislocation-free [92, 93]. The authors argue that the grain bound-

aries act as dislocation sinks due to image forces. However, during in-situ straining experi-

ments in the TEM dislocation activity in the grain interior has generally been observed for

grain sizes larger than 100 nm [94–97].
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(a)

(b)

Figure 5-5: Stress versus strain (a) for nc, ufc, and mc Ni at a strain rate ε̇ = 3×10−1 s−1

and (b) for nc Ni at three different strain rates.
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Kumar et al. [92] performed TEM on the same material investigated in the present

study and found that the grain boundaries were atomically sharp and that no amorphous

phase was present at the grain-boundary regions, as suggested by Keblinski et al. [98].

High-resolution TEM studies revealed that in electrodeposited nc materials, crystallinity is

maintained up to the grain boundary [92]. These studies also included in-situ TEM on nc

Ni where dislocation activity within grain boundaries was observed at grain sizes as low as

30 nm.

5.4.2 Computational Model

Molecular dynamics simulations of mechanical deformation of nc Cu [71, 72] and nc Ni [99]

suggest that grain-boundary atoms as well as atoms up to 7-10 lattice parameters away

from the grain boundary are heavily involved in plastic deformation. Deformation was

mostly found to be taken up by atoms at and nearby grain boundaries. It was further

suggested that the material near grain boundaries was easier to deform [71, 72] and that

the associated deformation mechanisms are likely to be rate-sensitive [71, 72]. However,

the specific deformation mechanisms have not yet been identified and more investigations

are necessary. Here, the present study proposes the concept of a grain-boundary affected

zone (GBAZ), which broadly refers to a region adjoining the grain boundaries in nc metals

where the crystalline lattice is elastically strained despite the ostensible absence of any point

defects. Atoms within this GBAZ are more likely to be involved in the deformation process.

However, atomistic simulations are still very limited by the time-scale and consequently the

strain-rate sensitivity of nc materials under realistic strain rates has not yet been studied.

In the available continuum-mechanics based models (e.g. [73, 74]), the change in

mechanical properties as a function of grain size is based on a change in the volume fraction

of a grain-boundary phase that is often assumed to be amorphous. A rate-dependent version

was developed [100] also assuming a significant volume fraction of an amorphous grain-

boundary phase.

Assuming a three-dimensional cubic grain structure, the volume percentage of the

GBAZ can be estimated as:
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Table 5.1: Estimation of the volume percentage of the GBAZ.

Grain size (nm) Width of GBAZ (vol%)
Ten lattice parametersa Seven lattice parametersa

20 44.1 32.6
30 31.3 22.7
40 24.2 17.4
50 19.7 14.1
300 3.5 2.4
400 2.6 1.8

a Lattice parameter for Ni: 0.352 nm [101]

GBAZ vol% = 100%− (dGS − dGBAZ)3

d3
GS

(5.3)

where dGS is the average grain size, and dGBAZ is the thickness of the GBAZ from the grain

boundary. A simple spherical grain model would result in the same equation as Eq. (5.3).

Table 5.1 lists the estimated volume percentage of the GBAZ in nc and ufc Ni with different

grain sizes. Considering a GBAZ of 10 lattice parameters, the volume percentages of GBAZ

are estimated to be 44.1 vol% at dGS = 20 nm and 2.6 vol% at dGS = 400 nm.

The following assumptions are made in the GBAZ model:

i. A GBAZ in a nc or ufc material spans a distance of about 7-10 lattice parameters

away from the grain boundary.

ii. The GBAZ is plastically much softer than the grain interior.

iii The GBAZ deforms with a positive rate sensitivity.

iv Under tensile loading conditions, a strain-based material damage criterion is intro-

duced to capture the onset and progression of failure.

A simple power-law type rate-dependent constitutive response is used for the GBAZ:
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Table 5.2: Materials parameters used in the model. Refer to Eq. (5.4) and Fig. 5-6

E (GPa) ν Initial σy (GPa) θ m

Grain interior nc Ni 200 0.3 2.8 0 −
Grain interior ufc Ni 200 0.3 0.95 0 −

GBAZ 200 0.3 0.55 0 0.03

local damage initiation strain εr = 100%; damage duration strain ∆εf = 1%;
residual strength σr = σGBAZ

y
1000

ε̇p = ε̇o

(
σ

σo

)m

(5.4)

where ε̇p is the plastic strain rate, ε̇o is the reference strain rate, σo = σo(εe) is the effective

von Mises stress at the reference strain rate, εe is the effective strain, σ is the effective

material strength at the current strain rate ε̇p, and m is the rate sensitivity exponent.

Computational parametric studies were performed using a simple linear hardening consti-

tutive behavior for both the grain interior and the GBAZ (see Fig. 5-6(a)), with the initial

yield stress defined by σy and a strain-hardening rate defined by θ. For tensile loading

conditions, a simple strain-based failure/damage criterion was postulated as the following.

The material failure/damage initiates at εp = εf , and the material strength drops linearly

to a residual strength of σr(∼0) within an additional strain of ∆εf . The accumulated plas-

tic strain is considered to be decisive for material failure. No damage is introduced when

material is deformed under compression, because void formation, the most dominant failure

mechanism for the present material [92], is suppressed during compression.

For modeling uniaxial tensile tests of nc Ni, two-dimensional grains of hexagonal

shape were separated by a finite border region of GBAZ, as shown schematically in Fig.

5-6(b). A unit cell model with periodic boundary conditions was used. Different GBAZ

volume fractions can be studied by varying the GBAZ depth (dGBAZ) in relation to the size

of the grain interior. Meshes were designed such that the element size was comparable to the

typical atomic diameter assuming that the grain size is tens of nanometer. Computational
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(a)

(b)

Figure 5-6: Schematic illustration of the computational model. (a) Linear hardening consti-
tutive behavior for both the grain interior and the GBAZ with the initial yield stress σy and
a strain-hardening rate θ. Material failure/damage under tension is assumed to initiate from
εp = εf , and the material strength drops linearly to a residual strength of σr(∼0) within an
additional strain of ∆εf . (b) Two-dimensional grains of hexagonal shape separated by the
GBAZ preserving crystallinity to the atomically sharp grain boundary. Periodic boundary
conditions were applied and a unit cell model was used in all computations.
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results using two volume fractions of GBAZ, 2% (representing a grain size of 300-400 nm)

and 25% (representing a grain size of 30-40 nm), will be presented. About 2500 elements

were used in the computations. The material’s parameters used in the calculations are

summarized in Table 5.2.

For modeling indentation experiments, the following procedure was adopted. Com-

putational tensile experiments without damage were conducted. The calculated effective

tensile stress-strain curves at different strain rates were fitted using Eq. (5.4) in order to

extract the material properties, which were used to calculate the load-displacement (P −h)

response during indentation. Tensile as well as indentation behavior were consequently ob-

tained using the same set of parameters describing the GBAZ and the grain interior. A

commercial general-purpose finite element package, ABAQUS (version 6.3, ABAQUS Inc.,

Pawtucket, RI) was used. A user sub-routine was constructed in order to integrate the

rate-sensitive hardening behavior.

Figures 5-7(a) and (b) show the computational stress-strain curves of ufc Ni and nc

Ni, respectively; the results include the TS as well as failure predictions. For the ufc Ni

almost no difference can be seen (Fig. 5-7(a)), whereas in case of the nc Ni, the TS as well

as the strain at TS increase significantly with increasing strain rate ( Fig. 5-7(b)). The flow

stress and the TS of the ufc Ni can be seen to slightly increase with increasing strain rate,

whereas the strain at TS decreased, which is different compared to the nc Ni.

Figures 5-8(a) and (b) show the predicted indentation curves of nc Ni at different

indentation strain and load rates, respectively. The computed results capture the experi-

mentally determined trend and show a similar magnitude of separation between different

loading conditions (compare with Figs. 5-1(b) and 5-3(b)). Computational indentation

results for ufc Ni are not illustrated here and showed vanishingly small differences between

different strain rates, which is consistent with the experimental curves shown in Figs. 5-1(a)

and 5-3(a).

Figure 5-9 shows the experimental and computational results from tensile tests for

the nc and ufc Ni. For nc Ni, the offset yield stress at 1% plastic strain (open squares)

increases from an average of about 1390 MPa to about 1540 MPa for a strain-rate increase

from about 3 × 10−4 s−1 to 3 × 10−1 s−1. No such strain rate effect was found in Ref. [8]
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(a)

(b)

Figure 5-7: Computational stressstrain curves at three different strain rates for (a) ufc Ni
and (b) nc Ni.
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(a)

(b)

s-1

s-1

s-1

Figure 5-8: Computational P−h curves for nc Ni obtained at (a) three different indentation
strain rates and (b) four different load rates.
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Figure 5-9: Comparison of experimental and computational results for tensile tests of nc
and ufc Ni. The 1% offset yield stress and the strain at TS are shown versus strain rate.

for the same strain rates, although it has to be noted that the authors evaluated the TS

rather than flow stress. Thus, the strength reported in Ref. [8] could be influenced by the

onset of necking and therefore not necessarily comparable to the effect on flow stress at 1%

plastic strain. In ufc Ni, an increase in flow stress with increasing strain rate could not be

clearly identified (compare Fig. 5-9, filled squares). The experimentally found trends are

also reflected in the computational results: the 1% offset yield stress is essentially constant

in case of ufc Ni and increases with strain rate in case of nc Ni. It is further noted that

the absolute values obtained from experiments and computations compare pretty well for

the assumptions invoked in the model. Simultaneously, in nc Ni the strain at TS increased

by about 0.5% from 3.16% to 3.65% indicating a slight ductility increase (Fig. 5-9, open

circles). A grain size reduction from 320 to 40 nm resulted in an increase in strain at

maximum stress from about 2% to more than 3% (Fig. 5-9), which is consistent with the

computational results. In the case of the ufc as well as of the mc Ni tested, there was

no significant changes of the stress-strain behavior with the applied strain rate within the

scatter of the experimental data. Dalla Torre et al. [8] compared the failure strains and

observed different behavior. For their nc material, the strains decreased with increasing
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strain rate. However, the present results showed failure strain to be highly defect-sensitive

and, hence, not to be sufficiently reliable to determine strain rate effects.

The indentation response of nc Ni is strongly affected by the applied strain or load

rates, whereas no such behavior was found for the ufc specimens (Figs. 5-1-5-4). The

indentation hardness at 1 µm depth increased from 5.7 GPa at ε̇ind = 0.01 s−1 to 6.4

GPa at ε̇ind = 0.1 s−1. A similar trend was observed at higher loads: the hardness

increased by almost 10% when the loading rate was increased from 3.8 to 186.1 mN/s. This

general behavior could be reasonably well captured by simulating the indentation response

using the simple computational model introduced above. As the nc and ufc Ni foils have

been produced by the same method, with comparable density and purity, it is likely that

the observed rate sensitivity is a consequence of the grain size only. The fact that no

strain-rate effect was observed in ufc Ni is not related to the smaller number of grains

deformed during indentation. This was ensured by indenting to a depth of 2.8 µm where a

significantly larger number of grains have been sampled, and still no such strain-rate effect

occurred. However, a potential rate effect in the ufc material may be hidden due to the

large scatter in experimental data. In particular, the P −h curves to 1 µm depth of the ufc

Ni show considerable variations. These variations could be related to the inhomogeneous

grain structure at the specimen surface or variations in texture within the sampled volume.

Furthermore, a deformation layer at the surface due to mechanical polishing is likely to be

responsible for larger scatter. However, a strain-rate sensitive deformation behavior was

not observed in the 2.8 µm deep indents or in the tensile tests, where the influence of the

surface is negligible. Therefore, it was reasonable to attribute the hardness increase with

increasing indentation strain rate in the nc Ni to the small grain size.

It is obvious from the present experimental results shown in Figs. 5-1-5-5 that the

overall plastic deformation of nc Ni is highly rate-sensitive. Due to the lack of dislocation

sources, the grain interior of the nc material is expected to deform at stress levels close to

the theoretical strength. If the grain interior contributes only little to the overall plastic

deformation, the rate-sensitivity observed in nc Ni would be expected to arise from the grain

boundaries and the nearby regions, i.e. the GBAZ. Recent molecular dynamics simulations

[102] suggest that thermally activated single atomic jumps near the grain boundaries in

nc metals play a major role in plastic deformation corroborating the positive strain-rate
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sensitivity of the GBAZ postulated in the model.

In the literature, conflicting trends of the dependence of failure strain on strain rate

have been reported [7, 8]. The proposed computational as well as present experimental

results show that in nc Ni the strain at TS increases with increasing strain rate. Note

that the computed results represent the material’s constitutive behavior assuming uniform

deformation “everywhere” in the sample. However, this assumption is not valid beyond

TS, since inhomogeneous deformation becomes dominant once necking occurs. Hence, the

failure strain is very sensitive to material and sample imperfections. This could be a possible

reason for the inconsistent trends reported in the literature.

5.5 Inverse Hall-Petch-Type Phenomenon

To further verify the proposed GBAZ model, additional parametric studies on grain size

were conducted by recourse to the unit cell model developed in Section 5.4.2. The goal is to

correlate the variation in flow stress to grain size variation in the nanometer range. Using

the GBAZ concept, two competing factors are identified in nc materials.

i. Grain interior: as grain size decreases, the yield strength increases approaching the

theoretical limit for the critical grain size too small to accommodate a single disloca-

tion.

ii. GBAZ: as grain size decreases, the GBAZ volume percentage increases resulting in a

decrease in yield strength because GBAZ is plastically softer than grain interior.

By properly invoking plastic behavior of grain interior and GBAZ at various grain size, the

critical grain size can be attained. The grain size was determined by varying the GBAZ

volume fraction in Eq. 5.3, with the assumption of three-dimensional cubic grain structure.

To study the effect of grain structure assumption, a two-dimensional columnar structure

of hexagonal cross-section was introduced in the parameter study, where grain size can be

calculated from the volume percentage of the GBAZ via the simple geometrical relation,
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Figure 5-10: Literature data for microstructured Nickel superimposed with Hall-Petch re-
lation.

GBAZ vol% = 100%−
(dGS, hex − 2√

3
dGBAZ)2

d2
GS, hex

(5.5)

The same constitutive relation for GBAZ is assumed, as shown in Table 5.2. Nonethe-

less, that for grain interior is grain size dependent. As discussed in Section 5.4.2, when the

grain size is below the critical grain size geometrically necessary to accommodate a single

dislocation (nc), the yield strength should approach the theoretical yield strength, as shown

in Table 5.2. For the larger grain size (mc or ufc), the grain interior is able to accommodate

dislocations, and thus the yield strength should follow the Hall-Petch relation described by

σHP = σyo + kHPd−
1
2 (5.6)

σHP = 7.967 + 0.2415d−
1
2 MPa (d in meter) (5.7)

Figure 5-10 shows the Hall-Petch plot [103, 104] for pure nickel at grain size larger than 1

µm because the deviation from Hall-Petch relation becomes significant at grain size smaller

than 1 µm (see Fig. 4 of [103]). Least-square fitted with Eq. (5.6), Fig. 5-10 yields the

frictional stress (σyo) and Hall-Petch slope (kHP) of 7.967 MPa and 0.2415 MPa·m1/2 (or
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Table 5.3: FEM parameter study for size effect.

Parameters Values

GBAZ vol% 0.02, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5
Grain size (dGS) Eqs. (5.3) and (5.5)

Grain interior yield strength σTH from Table 5.2 and σHP from Eq. (5.7)
GBAZ mechanical properties Same as in Table 5.2

Strain rate 4.2×10−4, 1.7×10−2 and 0.5 s−1

7.636 GPa·nm1/2) respectively (see Eq. (5.7)). As discussed in [105], the unusually low

frictional stress from Fig. 5-10 agrees well with the hardness Hall-Petch data, provided that

the Vickers hardness was approximately three times the compressive flow stress at 7.5%

strain. It was later confirmed by another hardness experiment [106].

A systematic parameter study was performed on the grain size and grain interior

plasticity. The grain sizes were varied from a few hundreds nanometer to tenths of nanome-

ter by changing the GBAZ fraction in Eqs. (5.3) or (5.5). The grain interior plasticity

assumed Hall-Petch or theoretical yield strengths for a given grain size. In addition, the

simulation was performed at three different strain rates. Table 5.3 summarizes the model

description for the current parameter study. As a result, the total number of simulations

are 11 (GBAZ fraction) × 2 (grain structure assumption) × 2 (grain interior yield strength

assumption) × 3 (strain rate) = 132 cases totally.

The simulations were performed using the general purpose finite element package

ABAQUS Standard. Different strain rates were implemented in the similar fashion to the

previous section. The resulting effective FEM stress-strain curves were collected, and the

1% offset flow stress was determined for each case. The choice of 1% offset strain was

chosen rather than 0.2% because of a gradual deviation from the elasticity in the initial

plastic regime of the FEM stress-strain curves. Figure 5-11 shows the normalized 1% offset

flow stress with the shear modulus versus the logarithmic grain size from all cases in the

parameter study. For the assumption of the theoretical yield strength within the grain,

the weakening effect with decreasing grain size was observed. As the grain size began to
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Figure 5-11: Normalized 1% offset flow stress versus grain size for various assumptions and
strain rates.

(a) (b)
Figure 5-12: Contour plot of equivalent plastic strain assuming theoretical strength for grain
interior with GBAZ fractions of (a) 2% and (b) 25%, both at a strain rate of 4.2×10−4 s−1.
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(a) (b) (c)

Figure 5-13: Contour plot of equivalent plastic strain assuming Hall-Petch yield strength
for grain interior with GBAZ fractions of (a) 5%, (b) 25% and (c) 50%, all shown at a strain
rate of 4.2×10−4 s−1. Note the gray region denotes PEEQ < 0.001.

decrease from a few hundred nanometers, the 1% offset flow stress slightly decreased due

to a small GBAZ fraction. At this end, the much stronger grain interior sustained most of

the deformation elastically and dominated the overall response of the unit cell, as shown

in Fig. 5-12(a). Due to localization within GBAZ, the overall normalized 1% offset flow

stress was below (not exactly equal to) the normalized theoretical yield strength of the grain

interior (σTH
G ≈ 0.04). As the grain size decreased further below 100 nm, the 1% offset flow

stress started to drop quickly because of the increasing contribution from the GBAZ region.

Figure 5-12(b) depicts the heavily deformed mesh in the relatively large GBAZ region. In

this range, the plastically weaker GBAZ region began to dominate the overall deformation

of the unit cell, and thus lower the 1% offset flow stress dramatically.
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For the assumption of the Hall-Petch yield strength within the grain, Fig. 5-11

shows that there is a transition from strengthening to weakening effects with decreasing

grain size. The grain size at which this transition occurred was in the range of 20 - 30 nm,

depending on the assumptions of the strain rate and the grain structure (Eqs. (5.3) and

(5.5)), in accordance with the value reported in the literature [5, 65, 77–88]. As the grain

size started to decrease from a few hundred nanometers, the 1% offset flow stress increased

due to the increasing yield strength within the grain as predicted by Hall-Petch relation

Eq. (5.7). Unlike the theoretical yield strength case above, Fig. 5-13(a) shows that both

grain interior and GBAZ deform plastically. Since the GBAZ yield strength is fixed at 550

MPa (see Table 5.2) and the grain interior yield strength increases with decreasing grain

size (Eq. (5.7)), the plastic deformation begins to localize in the GBAZ region as the grain

size decreases. Figure 5-13(b) shows the contour plot of the equivalent plastic strain at 25%

GBAZ fraction where the normalized 1% offset flow stress is maximized (open diamond

symbol in Fig. 5-11). The fact that the gray region in the mesh experienced less than 0.1%

equivalent plastic strain implies that the plastic deformation begins to conform within the

GBAZ region. This conclusion is further confirmed in Fig. 5-11(c) where the entire grain

interior experienced less than 1% equivalent plastic strain (gray region) for the case of 50%

GBAZ fraction.

Figure 5-11 also indicates that below the transition grain size, the normalized 1%

offset flow stress curves overlap regardless of the assumption in grain interior yield strength.

As mentioned previously, the assumption of theoretical yield strength within the grain is

favored below the critical grain size whereas that of Hall-Petch yield strength is favored

above the critical grain size. Although the two curves overlap, it does not necessary mean

that both underlying assumptions are the correct mechanisms. The Hall-Petch response

happens to overlap the theoretical curve plausibly because once the grain interior yield

strength exceeds the GBAZ yield strength by certain amount, all the plastic deformation

is confined in the GBAZ region. Hence, the global yielding of the unit cell is dominated by

the GBAZ plasticity regardless of the grain interior yield strength.

The strain rate effect is also captured in Fig. 5-11. In spite of the assumption in grain

interior yield strength, the normalized 1% offset flow stress increases with increasing strain

rate (from open symbol, filled symbol to line) because the faster strain rate strengthens the
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Figure 5-14: Comparison of strength predicted by rule of mixture and GBAZ unit cell
model.

GBAZ region as explained in Section 5.4.2. The strain rate effect is more pronounced as

the grain size decreased due to a larger GBAZ fraction. The upward shift in the normalized

1% offset flow stress also shifts the transition grain size in the Hall-Petch case to the left

by about 10 nm.

In comparison with the FEM results, the present study follows a simple rule of

mixture approach [74, 100, 107, 109–112] that envisages the nanocrystalline materials as a

composite structure of two phases: grain interior and GBAZ. The yield strength is estimated

via the following equation.

σ = fGBAZσGBAZ + (1− fGBAZ)σGrain (5.8)

where σGrain assumes theoretical or Hall-Petch yield strength, and fGBAZ is determined

from Eq. (5.3) or (5.5) depending on the grain structure assumption. Therefore, the total

of four analytical expressions are constructed. Since the rule of mixture prediction Eq.

(5.8) has no rate-dependent term, it is fair to compare the rule of mixture result to the unit

cell result at the slowest strain rate (quasi-static approximation), as shown in Fig. 5-14.
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It is obvious that rule of mixture result has the similar trend as the GBAZ result but the

absolute values are different. This discrepancy directly reflects the underlying assumption

in the rule of mixture model. The damage distribution within each phase is predetermined

from the volume fraction; whereas, such distribution is determined from inter- and intra-

phase interaction in GBAZ model. No matter how many phases (e.g. crystallite, grain

boundary, triple junction and quadruple node) [100, 113, 114] are identified in the composite

model Eq. (5.8) (volume percentage weighted sum), phase interaction is not accounted for

unless there is a product term between different phases. For a large grain size, the rule of

mixture predicts a yield strength close to the theoretical value (σTH
G ≈ 0.04); whereas, the

localization predicted by GBAZ model lowers an estimate for the yield strength. The same

reason can be used to explain the relative shift of the rule of mixture curve to the left.

5.6 Conclusions

In this chapter, strain-rate sensitivity of nanocrystalline nickel was investigated by recourse

to systematic well-controlled experiments and continuum-micromechanics based model (i.e.

GBAZ model). The GBAZ model was further utilized in the parameter study of grain size

dependent flow stress in the mc, ufg and nc ranges. The key results can be summarized as

follows.

1. Nanocrystalline pure nickel was found to exhibit a positive strain-rate sensitivity in

flow stress, an effect that was not found in ufc and mc nickel. This rate sensitivity

was confirmed by two independent experimental methods, namely depth-sensing in-

dentation and tensile testing. The strain-rate sensitivity was observed to be related

to the grain size.

2. A simple computational model with a strain-rate sensitive GBAZ that is softer than

the grain interior has been introduced. The model, implemented in conjunction with

finite element analysis, captures the general trends observed in the present experi-

ments.

3. Two competing grain size dependent factors were identified and modeled quantita-

tively using GBAZ model in the finite element analysis.
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4. The proposed GBAZ model predicts consistent critical transition grain size with lit-

erature values (≈ 10-30 nm).

5. For the same set of constitutive description, consistent results obtained for both rate

effect and size effect in nanocrystalline nickel.
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Chapter 6

Concluding Remarks and

Suggestions for Future Work

The key contributions of this thesis, as a result of experimental, analytical and computa-

tional approaches, are the following.

1. Comprehensive parameter studies of indentation simulation within the context of large

deformation finite element analysis establish the forward and reverse algorithms. The

forward algorithms predict indentation response from a given set of elasto-plastic

properties; whereas, the reverse algorithms extract the empirical constitutive relation

from a single set of indentation response. Experimental verifications show improve-

ment over other methods previously proposed in the literature. The uniqueness issue

is discussed and the conditions leading to unique predictions are identified. The rep-

resentative strain of 3.3% plastic strain proposed herein is illustrated in consistency

with previously proposed values in the literature. Extensive sensitivity analyses of

tip angle, forward and reverse algorithms are conducted and the results are statisti-

cally analyzed. The extracted plastic properties are markedly sensitive to even small

variation in the indentation response.

2. Based on the robustly predicted stress at representative strain proposed for single

indentation, the forward and reverse algorithms are extended to indentation using
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two or more tip geometries (tip half angle of between 50o and 80o). Experimental

verifications, using a 60o cone equivalent three-sided pyramid tip, illustrate improved

accuracy over the previously proposed algorithms for single indentation with Vick-

ers/Berkovich tip. The representative strain is correlated with the indenter tip half

angle. Significant reduction in the scattering is illustrated for reverse algorithm sensi-

tivity; whereas, a similar result is obtained for forward algorithm. The non-uniqueness

issue is completely resolved, at least for the range of parameter study, with a second

tip geometry, as clearly illustrated by a non-uniqueness example suggested in the

literature.

3. The experimental assessment of the stress at representative strain, predicted in re-

verse algorithms, is illustrated with possible avenues for utilization of the represen-

tative stress concept to predict an entire stress-strain curve more accurately and less

sensitive.

4. Based on the evidences provided by in situ and ex situ transmitted electron micro-

scope and detailed atomistic calculation of nanocrystalline materials, a simple ana-

lytical model is proposed to capture the observed trend in rate-sensitive deformation.

The model is predicated upon the premise that grain boundary is atomically sharp;

atoms nearby grain boundary (Grain-Boundary-Affected-Zone) is likely to move upon

deformation and possesses positive rate-sensitivity constitutive relation. Finite ele-

ment analysis integrating this GBAZ model well captures trends in rate-dependent

mechanical properties observed in both micro-tension and indentation experiments.

With the concept of GBAZ model, two competing grain size dependent factors are

identified and modeled quantitatively using GBAZ-integrated finite element analy-

sis. Using the same set of GBAZ model parameters, critical transition grain size is

predicted to be consistent with literature values.

5. Interactive computer software is constructed to facilitate the implementation of the

proposed forward and reverse algorithms for both single and dual indentations. The

forward algorithms interface is often used to estimate the maximum load range re-

quired to achieve desired indentation depth in a load-controlled indentation apparatus,

if the mechanical properties of the samples are approximately known. On the other

hand, the reverse algorithms interface is particularly beneficial for analysis of large
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amount of indentation data. The software is also capable of performing comprehensive

sensitivity analysis of forward/reverse algorithms and machine compliance.

With an ever-increasing utilization of depth-sensing instrumented indentation tech-

nique as an experimental tool to extract and study mechanical properties of small-volume

materials, the fundamental and technological development established in this thesis has laid

out explicitly the step-by-step methodology in solving complex multi-stress state indentation

problem. For instance, this indentation methodology can be extended to (i) materials with

additional dimensional/geometrial constraints (e.g. passivated/unpassivated thin film, line

and island), (ii) materials with other constitutive laws (e.g. visco-elastic/plastic, pressure-

sensitive and temperature-dependent), (iii) materials under various deformation mode (e.g.

dynamic impact, creep and fatigue), and of course any combination of these situations.

Some of these extensions have already been attempted by various researchers and the re-

sults can be found in the literature. Each complication introduces additional degrees of

freedom and variables in the calculation, which would require larger amount of parametric

study cases to ensure the accuracy of the prediction.
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Appendix A

Dimensionless Functions

A.1 Single Indentation Algorithms

In this section, six of the dimensionless functions identified in Chapter 2, i.e. Π1, Π2, Π3,

Π4, Π5, and Π6, are listed explicitly.

Π1 =
C

σ0.033
= −1.131

[
ln

(
E∗

σ0.033

)]3

+ 13.635
[
ln

(
E∗

σ0.033

)]2

−

30.594
[
ln

(
E∗

σ0.033

)]
+ 29.267 (A.1)

Π2

(
E∗
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, n

)
=

1
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dPu

dh

∣∣∣∣
hm

=

(−1.40557n3 + 0.77526n2 + 0.15830n− 0.06831)
[
ln

(
E∗

σ0.033

)]3

+

(17.93006n3 − 9.22091n2 − 2.37733n + 0.86295)
[
ln

(
E∗

σ0.033

)]2

+

(−79.99715n3 + 40.55620n2 + 9.00157n− 2.54543)
[
ln

(
E∗

σ0.033

)]
+

(122.65069n3 − 63.88418n2 − 9.58936n + 6.20045) (A.2)
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Π3

(σ0.033

E∗ , n
)

=
hr

hm
=

(0.010100n2 + 0.0017639n− 0.0040837)
[
ln

(σ0.033

E∗
)]3

+

(0.14386n2 + 0.018153n− 0.088198)
[
ln

(σ0.033

E∗
)]2

+

(0.59505n2 + 0.034074n− 0.65417)
[
ln

(σ0.033

E∗
)]

+

(0.58180n2 − 0.088460n− 0.67290) (A.3)

Π4

(
hr

hm

)
=

pave

E∗ ≈ 0.268536
(

0.9952495− hr

hm

)1.1142735

(A.4)

Π5

(
hr

hm

)
=

Wp

Wt
= 1.61217

{
1.13111− 1.74756

[
−1.49291

(
hr
hm

)2.535334
]

− 0.075187
(

hr

hr

)1.135826
}

(A.5)

Π6 =
1

E∗√Am

dP

dh

∣∣∣∣
hm

= c∗ (A.6)

where values of c∗ are tabulated in Table 2.3

A.2 Dual Indentation Algorithms

In this section, four of the dimensionless functions identified in Chapter 3, i.e. Π1b, Π1c,

Π1d, and Π1θ, are listed explicitly. Note that the subscript “a” denotes the single indenter

equation with apex angle of 70.3o (i.e., Π1a = Π1 from Eq. (A.1), Π2a = Π2 from Eq. (A.2),

. . . )

For θ = 60o, Π1b =
Cb

σ0.057
= −0.154

[
ln

(
E∗

σ0.057

)]3

+ 0.932
[
ln

(
E∗

σ0.057

)]2

+

7.657
[
ln

(
E∗

σ0.057

)]
− 11.773 (A.7)
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For θ = 80o, Π1c =
Cc

σ0.017
= −2.913

[
ln

(
E∗

σ0.017

)]3

+ 44.023
[
ln

(
E∗

σ0.017

)]2

−

122.771
[
ln

(
E∗

σ0.017

)]
+ 119.991 (A.8)

For θ = 50o, Π1d =
Cd

σ0.082
= 0.0394

[
ln

(
E∗

σ0.082

)]3

− 1.098
[
ln

(
E∗

σ0.082

)]2

+

9.862
[
ln

(
E∗

σ0.082

)]
− 11.837 (A.9)

For any θ in [50o,80o], the general fit function for Π1θ is

Π1θ =
Cθ

σεr

= (−2.3985× 10−5θ3 + 6.0446× 10−4θ2 + 0.13243θ − 5.0950)
[
ln

(
E∗

σεr

)]3

+

(0.0014741θ3 − 0.21502θ2 + 10.4415θ − 169.8767)
[
ln

(
E∗

σεr

)]2

+

(−3.9124× 10−3θ3 + 0.53332θ2 − 23.2834θ + 329.7724)
[
ln

(
E∗

σεr

)]
+

(2.6981× 10−3θ3 − 0.29197θ2 + 7.5761θ + 2.0165)

(A.10)
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Appendix B

Microsoftr Excel Program for

Automatic Forward/Reverse

Analysis

This chapter aims to provide a detailed explanation of the Microsoftr Excel Macro program

constructed to facilitate the automatic analysis of forward/reverse algorithms proposed in

Chapters 2 and 3. For reverse algorithms (that enable the extraction of elasto-plastic prop-

erties from a given set of indentation data), the program also incorporated those methods

proposed by Doerner and Nix [25], Oliver and Pharr [27] and Suresh et al. [38, 41, 42] for

comparison. In addition, the algorithms to extract fracture toughness [115] and residual

stress [43, 44] from instrumented sharp indentation have been implemented for broader

usage of the current program. This chapter is intended not to explore in depth into these

two topics; therefore, the readers may refer to the wealth of literature (e.g. [115–130]

for fracture toughness and [31, 43, 44, 131–133] for residual stress determinations, among

many others)

Although the Visual Basic based optimizer toolbox “Solver” in Microsoft Excel may

not be as accurate as the optimization toolbox in Matlab, the current Macro program has

been extensively verified and tested against various higher-level numerical solving tools

(e.g. Matlab, Maple and Fortran language) to ensure the accuracy within the scope of the
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computation involved in forward/reverse algorithms. The obvious advantages of choosing

Microsoft Excel for numerical solving are the user-friendly (Point-and-Click) interface, easy

transferability and worldwide availability of Microsoft Office. The current capabilities of

the Macro program are

• the forward algorithms for Berkovich (or Vicker, 70.3o cone) indenter [3, 4, 22, 35,

38, 39, 41, 42] and for 60o cone (or the 3-sided equivalent pyramid) indenter [59];

• the reverse algorithms for Berkovich (or Vicker, 70.3o cone) indenter [3, 4, 22, 25, 27,

35, 38, 39, 41, 42] and for dual (Berkovich and 60o cone) indenters [59];

• sensitivity analyses of machine compliance and single/dual forward/reverse algorithms;

• single/batch calculation of single/dual forward/revese algorithms;

• fracture toughness estimation∗; and

• tensile/compressive elastic residual stress and plastic residual strain determination†.

B.1 Requirement

In order to use this Macro program, the computer must have Microsoft Excel installed

with the Solver Add-in‡. In addition, ensure that Microsoft Visual Basic is aware of Solver

library as follows. On Microsoft Visual Basic toolbar, Tools → References → check the

SOLVER BOX. If it shows “MISSING: SOLVER”, highlight it and click Browse. Search for

Microsoft Excel solver library (typically C:\Program Files\Microsoft Office\Office\Library\
Solver\Solver.xla).
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Figure B-1: Schematic overview of Microsoft Excel Macro program coded for For-
ward/Reverse algorithms: a) front introductory page, (b) forward analysis, (c)-(h) reverse
analysis and (i) last reference page
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c1 c2 d e f g h b

Figure B-2: Zoom in of Fig. B-1(a) showing the worksheet “Cover” of the Macro program

(i)

(ii)

(iii) (iv)

Figure B-3: Zoom in of Fig. B-1(b) showing the worksheet “Forward Analysis” of the Macro
program
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B.2 Forward Algorithms

The schematic overview of the Macro program is shown in Fig. B-1. Figs. B-1(a) and B-1(i)

are the first and last worksheets in the Excel file, and do not have any program code (see

a magnified version in Fig. B-2 and Fig. B-11). Fig. B-1(b) is the stand-alone worksheet

used in forward algorithms, which is magnified and shown in Fig. B-3 with the following

details.

(i) The input region for elasto-plastic properties of the material (E, ν, σy and n), elastic

properties of the indenter tip (Eiandνi) and maximum indentation load (Pm).

(ii) The output region for the predicted indentation characteristics (C, hr
hm

, Wp

Wt
, dP

dh

∣∣
hm

,

pave, am, Am) for Berkovich and Cb for 60o cone.

(iii) The predicted indentation response using the information shown in region (ii).

(iv) The data points used to construct the indentation curves shown in region (iii).

B.3 Reverse Algorithms

Figs. B-1(c) - B-1(h) are the worksheets used in the reverse analysis. The sequence of

computation is as follows.

1. Indentation data (from P −h curve) can be imported using worksheet “GenericData”

(Fig. B-1(c1)) or worksheet “NanoTestData” (Fig. B-1(c2)) depending on the data

format. Worksheet “NanoTestData” is customized for the data format obtained from

the commercial nanoindenter (MicroMaterials, Wrexham, UK); otherwise, worksheet

“GenericData” should be used for any other data format. Fig. B-1(c1) is magnified

and shown in Fig. B-4 with the following details.

∗requires a measurement of radial crack length after complete unloading
†requires an indentation response of the same material without residual stress
‡refer to Microsoft Excel manual.
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(i) The input region for indentation data points obtained from any commercial in-

denter: force (Newton) and depth (meter) go to column A and B, respectively.

(ii) Manual machine compliance (meter/Newton) can be entered at the cell “C1”.

(iii) Button “Initialize” is designed to clear all the data in this and subsequent work-

sheets; whereas, button “Clear” is designed to only clear the data in this work-

sheet. Button “Format” is designed to format indentation data point for further

calculation. Once the indentation data is format, click button ”Proceed” to go

to next stage of calcuation (worksheet “ColumnData,” as shown in Fig. B-6.

On the other hand, (for indentation data from MicroMaterials indenter) Fig. B-1(c2)

is magnified and shown in Fig. B-5 with the following details.

(i) The input region for indentation data points obtained from MicroMaterials in-

denter (file extension .ldd).

(ii) Manual machine compliance (meter/Newton) can be entered singly at the cell

“C1,” or multiply as a column starting at cell “C6”. The latter suggests the

parametric study of machine compliance. By default, the program always looks

for a machine compliance in either cell “C1” or column starting at cell “C6”.

(iii) Button “Initialize” is designed to clear all the data in this and subsequent work-

sheets; whereas, button “Clear” is designed to only clear the data in this work-

sheet. Button “Separate” is designed to separate each individual indentation

test from a raw data in columns A & B. Button “BatchCalc” is designed to au-

tomatically perform the complete reverse analysis on all indentation tests listed

in columns A & B; whereas, button “BatchCalcMC” extends “BatchCalc” to a

series of machine compliance entered as the column starting at cell “C6”.

(iv) Button “CopyHighlightedToNextPage” is designed to copy the highlighted col-

umn pair to the next step (worksheet “ColumnData,” as shown in Fig. B-6).

(v) Button “BatchCalcIfAlreadySeparated” is designed to automatically perform

the complete reverse analysis on all the already separated indentation pairs

from columns H rightward; whereas, button “BatchCalcKicksOnlyIfAlreadySep-

arated” only performs Kick’s fit (see Eq. (2.1)). Button “BatchCalcMCKick-

sOnly” limits ”BatchCalcMC” to only the Kick’s fit.
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(vi) The indentation responses in column H rightward are previewed here.

2. Next step of reverse analysis is to identify the loading and the first 67% of the un-

loading portion for each indentation curve. Fig. B-1(d) is magnified and shown in

Fig. B-6 with the following details.

(i) Each indentation curve is copied from the previous step into columns A & B.

(ii) Button “Clear” is designed to only clear the data in this worksheet. Button

“BreakToColumn” is designed to section a single indentation curve into the load-

ing portion, the first 67% of the unloading portion and the remaining 23% of the

unloading portion. Button “CopyToNextPage” is designed to copy all three

portions of the single indentation curve to the next step (worksheet “RawData-

Manipulation,” as shown in Fig. B-7). Button “CreepCorrection” is designed to

remove any creep remaining in the indentation curve during the hold at maxi-

mum load. Button “CopyCreepCorrectionToNextPage” is designed to copy all

three portions of the single indentation curve that is already corrected for creep

to the next step (worksheet “RawDataManipulation,” as shown in Fig. B-7).

(iii) The indentation curve showing three sections.

(iv) Button “FullPhNoCreep” is designed to assemble three sections (with creep cor-

rection) of the indentation curve.

(v) The indentation curve showing three sections after creep correction.

(vi) The assembled indentation curve after creep correction.

3. Next step of reverse analysis is to fit the loading portion to Kick’s law (Eq. (2.1)) and

the first 67% of the loading portion to the power law P = A(h − hr)m (see Section

2.3.2). Fig. B-1(e) is magnified and shown in Fig. B-7 with the following details.

(i) Log-log plot of the loading portion (ignore the first 10%) superimposed with the

best fit.

(ii) The loading portion of the indentation curve is shown in columns H & I.

(iii) Button “Reset” is designed to reset all fitting parameter in this worksheet. But-

ton “Kickonly 2nd Indenter” is designed to only fit the loading portion with

Kick’s law. Button “Analyze” is designed to both fit the loading portion with
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Kick’s law and the first 67% of the unloading portion with a power law. But-

ton “Analyze More” is designed to repeat “Analze” if the resultant fits are not

satisfied by the user.

(iv) The first 67% of the unloading portion is shown in columns AA & AB.

(v) Button “Powerlaw” allows the user to perform additional power-law fit to the

first 67% of the unloading

(vi) The remaining 23% of the unloading portion is shown in columns AK & AL.

(vii) Button “Overwrite” allows the user to directly input the value of indentation

characteristics (C, Wp

Wt
, dP

dh

∣∣
hm

and Pm) into the range (AS14:AS18). Button

“ClearOverwrite” is designed to clear the range (AS14:AS18).

4. Next step of reverse analysis is to allow for a visual check of the fits for both loading

and unloading portion. Fig. B-1(f) is magnified and shown in Fig. B-8 with the

following details.

(i) Button ”Proceed” allows the analysis to proceed to the next step (worksheet

“ReverseAnalysis,” as shown in Fig. B-9).

5. Next step of reverse analysis is the main calculation of (E∗, pave, σr, σy and n) from

(C, Wp

Wt
, dP

dh

∣∣
hm

) gathered in the previous worksheets. Fig. B-1(g) is magnified and

shown in Fig. B-9 with the following details.

(i) Button “SolveReverse” allows for the automatic execution of the reverse algo-

rithms (Figs. 2-13 and 3-5). Button “ExportReverse” allows the prediction of

material’s elasto-plastic properties to be exported to the next worksheet as a

single row (useful for batch calculation).

(ii) The input region for elastic properties of the indenter tip (Eiandνi), the tip index

(Berkovich or Vickers) and estimate of material’s poisson ratio (νi).

(iii) The input region showing indentation characteristics (C, Wp

Wt
, dP

dh

∣∣
hm

) gathered

in the previous worksheets. The radial crack length can be entered at cell “C19”

for fracture toughness estimation.

(iv) The output region for elasto-plastic properties of the material (E∗, E, pave, σr,

σy and n) from various methodology.
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(i) (ii)

(iii)

Figure B-4: Zoom in of Fig. B-1(c1) showing the worksheet “GenericData” of the Macro
program

(v) Button “UnstressedMat’l” is similar to button “SolveReverse” except that the

program remembers the results as the reference for residual stress calculation.

Button “StressedMat’l” should be executed after the stressed indentation curve

has been analyzed from Figs. B-1(c) to B-1(f). The determination of residual

stress is shown at cell “BG11” of the next worksheet (“RevMultiple”).

(vi) Button “Vickers/Berkovich” is similar to button “SolveReverse” except that the

program remembers the results as the reference for dual reverse algorithms. But-

ton “2nd indenter” should be executed after the 60o cone indentation curve has

been analyzed from Figs. B-1(c) to B-1(f). The plastic properties from dual

indenter algorithms are shown at the range (K14:K16).

(vii) The predicted stress-strain curve from the reverse algorithm.

6. The results from reverse analysis are summarized within a single row for each inden-

tation curve, as shown in Fig. B-1(h) or magnified in Fig. B-10.
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(i)

(iv)

(vi)

(iii)(ii)

(v)

Figure B-5: Zoom in of Fig. B-1(c2) showing the worksheet “NanoTestData” of the Macro
program
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Figure B-6: Zoom in of Fig. B-1(d) showing the worksheet “ColumnData” of the Macro
program
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(i)

(ii
)

(ii
i)

(iv
)

(v
)

(v
i)

(v
ii)

Figure B-7: Zoom in of Fig. B-1(e) showing the worksheet “RawDataManipulation” of the
Macro program
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(i)

Figure B-8: Zoom in of Fig. B-1(f) showing the worksheet “P-h Curve” of the Macro
program

(ii)
(iii)

(iv)
(v) (vi)

(vii)

(i)

Figure B-9: Zoom in of Fig. B-1(g) showing the worksheet “Reverse Analysis” of the Macro
program
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Figure B-10: Zoom in of Fig. B-1(h) showing the worksheet “RevMultiple” of the Macro
program
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Figure B-11: Zoom in of Fig. B-1(i) showing the worksheet “Credits” of the Macro program
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