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ABSTRACT 
 
The once through nuclear fuel cycle adopted by the majority of countries with operating 

commercial power reactors imposes a number of concerns. The radioactive waste created in the 
once through nuclear fuel cycle has to be isolated from the environment for thousands of years. In 
addition, plutonium and other actinides, after the decay of fission products, could become targets 
for weapon proliferators. Furthermore, only a small fraction of the energy potential in the fuel is 
being used. All these concerns can be addressed if a closed fuel cycle strategy is considered 
offering the possibility for partitioning and transmutation of long lived radioactive waste, 
enhanced proliferation resistance, and improved utilization of natural resources. It is generally 
believed that dedicated advanced reactor systems have to be designed in order to perform the task 
of nuclear waste transmutation effectively. The development and deployment of such innovative 
systems is technically and economically challenging. In this thesis, a possibility of constraining 
the generation of long lived radioactive waste through multi-recycling of Trans-uranic actinides 
(TRU) in existing Light Water Reactors (LWR has been studied.  

Thorium based and fertile free fuels (FFF) were analyzed as the most attractive candidates 
for TRU burning in LWRs. Although both fuel types can destroy TRU at  comparable rates (about 
1150 kg/GWe-Year in FFF and up to 900 kg/GWe-Year in Th) and achieve comparable fractional 
TRU burnup (close to 50a/o), the Th fuel requires significantly higher neutron moderation than 
practically feasible in a typical LWR lattice to achieve such performance. On the other hand, the 
FFF exhibits nearly optimal TRU destruction performance in a typical LWR fuel lattice 
geometry. Increased TRU presence in LWR core leads to neutron spectrum hardening, which 
results in reduced control materials reactivity worth. The magnitude of this reduction is directly 
related to the amount of TRU in the core. A potential for positive void reactivity feedback limits 
the maximum TRU loading. Th and conventional mixed oxide (MOX) fuels require higher than 
FFF TRU loading to sustain a standard 18 fuel cycle length due to neutron captures in Th232 and 
U238 respectively. Therefore, TRU containing Th and U cores have lower control materials 
worth and greater potential for a positive void coefficient than FFF core. However, the 
significantly reduced fuel Doppler coefficient of the fully FFF loaded core and the lower delayed 
neutron fraction lead to questions about the FFF performance in reactivity initiated accidents.  

 The Combined Non-Fertile and UO2 (CONFU) assembly concept is proposed for multi-
recycling of TRU in existing PWRs. The assembly assumes a heterogeneous structure where 
about 20% of the UO2 fuel pins on the assembly periphery are replaced with FFF pins hosting 
TRU generated in the previous cycle. The possibility of achieving zero TRU net is demonstrated. 
The concept takes advantage of superior TRU destruction performance in FFF allowing 
minimization of TRU inventory. At the same time, the core physics is still dominated by UO2 fuel 
allowing maintenance of core safety and control characteristics comparable to all-UO2. A 
comprehensive neutronic and thermal hydraulic analysis as well as numerical simulation of 
reactivity initiated accidents demonstrated the feasibility of TRU containing LWR core designs of 
various heterogeneous geometries. The power peaking and reactivity coefficients for the TRU 
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containing heterogeneous cores are comparable to those of conventional UO2 cores. Three to five 
TRU recycles are required to achieve an equilibrium fuel cycle length and TRU generation and 
destruction balance. A majority of TRU nuclides reach their equilibrium concentration levels in 
less than 20 recycles. The exceptions are Cm246, Cm248, and Cf252. Accumulation of these 
isotopes is highly undesirable with regards to TRU fuel fabrication and handling because they are 
very strong sources of spontaneous fission (SF) neutrons. Allowing longer cooling times of the 
spent fuel before reprocessing can drastically reduce the SF neutron radiation problem due to 
decay of Cm244 and Cf252 isotopes with particularly high SF source. Up to 10 TRU recycles are 
likely to be feasible if 20 years cooling time between recycles is adopted. Multi-recycling of TRU 
in the CONFU assembly reduces the relative fraction of fissile isotopes in the TRU vector from 
about 60% in the initial spent UO2 to about 25% at equilibrium. As a result, the fuel cycle length 
is reduced by about 30%. An increase in the enrichment of UO2 pins from 4.2 to at least 5% is 
required to compensate for the TRU isotopics degradation.   

The environmental impact of the sustainable CONFU assembly based fuel cycle is limited by 
the efficiency of TRU recovery in spent fuel reprocessing. TRU losses of 0.1% from the CONFU 
fuel reprocessing ensure the CONFU fuel cycle radiotoxicity reduction to the level of 
corresponding amount of original natural uranium ore within 1000 years. 

The cost of the sustainable CONFU based fuel cycle is about 60% higher than that of the 
once through UO2 fuel cycle, whereas the difference in total cost of electricity between the two 
cycles is only 8%. The higher fuel cycle cost is a result of higher uranium enrichment in a 
CONFU assembly required to compensate for the degradation of TRU isotopics and cost of 
reprocessing. The major expense in the sustainable CONFU fuel cycle is associated with the 
reprocessing of UO2 fuel. Although reprocessing and fabrication of FFF pins have relatively high 
unit costs, their contribution to the fuel cycle cost is marginal as a result of the small TRU 
throughput.  Reductions in the unit costs of UO2 reprocessing and FFF fabrication by a factor of 
two would result in comparable fuel cycle costs for the CONFU and conventional once through 
cycle. An increase in natural uranium prices and waste disposal fees will also make the closed 
fuel cycle more economically attractive. Although, the cost of the CONFU sustainable fuel cycle 
is comparable to that of a closed cycle using a critical fast actinide burning reactor (ABR), the 
main advantage of the CONFU is the possibility of fast deployment, since it does not require as 
extensive development and demonstration as needed for fast reactors. The cost of the CONFU 
fuel cycle is projected to be considerably lower than that of a cycle with an accelerator driven fast 
burner system. 
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Chapter 1. Introduction 
 

1.1. Background 
 

Nuclear energy is an integral part of the global energy market. Today, it is the largest non-

polluting energy source. Almost 17% of the world’s electricity is generated from 444 nuclear 

reactors as of December 31 2002 [Nuclear News, 2003]. Six different reactor types are currently 

in service, but only two contribute to power generation considerably (Figure 1.1.1). These are the 

Pressurized Water Reactors (PWR) and the Boiling Water Reactors (BWR) together referred to as 

Light Water Reactors (LWR). Presently, 262 PWRs supply 236,236 MWe, while 93 BWRs 

contribute 81,071 MWe. Most of the reactor units under construction are also of LWR-type. The 

LWRs dominate the current nuclear electricity market with total power share of almost 90% due 

to their well developed technology and the extensive experience accumulated over many years of 

safe and reliable operation. 
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Figure 1.1.1. Reactors in operation by type and their generation capacity in 2002. 
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The majority of existing commercial power reactors operate in a once-through fuel cycle in 

which the nuclear fuel, after its discharge from the core, is destined for long-term geological 

storage.  

 

Such a strategy raises a number of potential concerns. Radioactive isotopes in the spent 

nuclear fuel (SNF) have to be isolated from the environment for hundreds of thousands of years 

before their activity decays below the level of the natural uranium ore that was originally used for 

manufacturing of the fuel. As a result, sophisticated engineering barriers must be designed in 

order to prevent the release of long lived radioactive isotopes in the spent fuel from leaking into 

the environment. The design of such barriers is both scientifically and economically challenging. 

The main design challenge is associated with uncertainties that are large in numbers and in their 

magnitude relative to the long term behavior of the materials comprising the engineering barrier 

and to the variation in local environmental conditions (such as climate, geology, hydrology etc.) 

over periods of time well beyond the range of certainty of prediction of any existing scientific 

model. Moreover, the models that attempt to predict the evolution of the nuclear waste package 

and its content with time are difficult to assess and verify because of extremely long time periods 

involved. These uncertainties make the regulatory and legislative processes related to repository 

design and construction particularly challenging.   

 

Proliferation resistance of the spent nuclear fuel is an additional concern. The Pu in the SNF 

shortly after its discharge from the reactor is largely protected by the high levels of radiation 

originating from the decay of fission products (FP). In geologic storage of the SNF, the FP will 

decay in a few hundreds of years to the levels at which the Pu becomes accessible more easily. 

Therefore, the repository might become an attractive target for nuclear proliferators within a few 

hundreds of years after its closure. Although sufficient barriers against potential Pu diversion will 

still exist even after FP decay, the general public concern over nuclear proliferation issues may 

trigger a decision to explore alternative fuel cycles that would avoid long term storage of weapons 

usable materials.  

 

Similar to fossil fuels such as natural gas, coal, and oil, uranium is not an inexhaustible 

resource. In the once through fuel cycle, only about 0.5% of the potential energy content of the 

original uranium ore (or about 5% of the enriched uranium energy content) is recovered. If the 

SNF from the once through fuel cycle is stored in an irretrievable geological repository, this 

energy potential cannot be reclaimed. Currently however, the relative costs of natural uranium 
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and SNF reprocessing do not favor Pu recovery and use as a fuel to enhance the utilization of 

natural resources.  

 

At the same time, sustainable development is a major goal of modern society. The recently 

issued roadmap for Generation IV nuclear energy systems [DOE/Generation IV International 

Forum, 2002] clearly recognizes this fact. According to the Gen IV roadmap, sustainable 

development implies improved utilization of natural resources extending their availability to 

future generations. The advantage of nuclear power for the global environment as a non-polluting 

energy source is particularly emphasized. Moreover, in a sustainable economy, the environmental 

impact of the future nuclear energy system fuel cycles must be minimized both in the long and in 

the short terms. Therefore, allowing accumulation of long lived radioactive materials in the 

environment and wasteful management of natural resources is irresponsible towards future 

generations and contradicts the principles of sustainable development. 

 

Finally, the planning, construction, and approval of the long term geological repository, as 

proved to be in the case of the United States, is a rather costly and time consuming process. In 

addition, any repository has a limited storage capacity. In the US, for example, the existing 

44,000 metric tons of SNF are increasing at a rate of about 2,000 MT/year which would fill up the 

statutory capacity of the planned geological repository at Yucca Mountain site by the year 2015. 

Re-licensing of the repository for increased capacity or construction of a second one will be 

required thereafter even if no new nuclear plants are built in that period. In the likely scenario of 

expanding global nuclear power generation in the next few decades, the availability and 

construction costs of SNF geological repositories may become a major issue facing a large public 

opposition.  

 

In summary, the currently employed once through fuel cycle strategy leads to  

- accumulation of nuclear material in the environment that represents a long term 

radiological threat 

- proliferation concerns due to growing stockpile of Pu which would be potentially 

accessible after the decay of fission products  

- regulatory and safety uncertainty due to scientific and engineering challenges in 

modeling of the long term waste package behavior in the repository 

- poor utilization of natural resource which is inconsistent with sustainable economic 

development goals 
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- additional costs associated with limited geological storage capacity in the case of an 

expanding nuclear power economy.    

 

 

 

1.2. Transmutation Strategies Review 
 

 

Once through fuel cycle options 

 

Some of the issues listed above can be partially addressed within the constraints of the once 

trough fuel cycles through a number of potential strategies. The most straight forward approach is 

to increase fuel burnup. A recent analysis of the high burnup fuel strategies [Xu Z., 2003] 

revealed notable positive impact of the high burnup on the spent fuel characteristics e.g. SNF 

volume and decay heat per unit energy produced. High burnup however does not improve the 

natural uranium utilization if higher enrichment is required to achieve it.  

 

Introduction of thorium into the once through LWR fuel cycle through heterogeneous seed-

blanket core arrangements [Wang D., 2003], [Todosow M., et al., 2002] can also reduce short 

term decay heat generation and spent fuel mass and volume by up to 50% in comparison with 

conventional UO2 once through fuel cycle.  

 

High burnup also enhances proliferation resistance of the fuel cycle. Increasing the burnup of 

conventional UO2 fuel from currently common 50 MWd/kg to 100 MWd/kg may reduce the Pu 

production rate by about 35% [Xu Z., 2003]. Also, higher fractions of even Pu isotopes (Pu238, 

240, 242) in the discharged fuel lead to increased spontaneous fission neutrons background which 

prevents manufacturing of a reliable nuclear weapon. In addition, elevated heat generation due to 

high concentration of Pu238 would cause degradation of conventional high explosives required to 

trigger the Pu based nuclear explosive device. Utilization of thorium in the seed-blanket once 

through fuel cycle reduces Pu generation rate by a factor of 2 to 3 in comparison with 

conventional UO2 fuel cycle [Wang D., 2003], [Todosow M., et al., 2002].  

 

Reactor systems based on the “Breed and Burn” (B&B) concept [Feinberg S.M. et al., 1958], 

[Yu K. et al., 2002] have particularly high uranium utilization potential. In the Breed and Burn 
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reactor, the uranium in the fresh fuel feed does not require any enrichment. At the same time, 

very high burnup levels can be achieved through the core arrangements with dedicated regions 

where Pu can be effectively bred and the regions where Pu generated in former region can be 

effectively fissioned [Ficher G.J. et al., 1979].  However, B&B concept employs fast spectrum to 

provide effective breeding of Pu. As a result, Pu in the spent fuel is rich in Pu239 isotope (over 

80% of total Pu [Yarsky P., 2003]) which raises significant proliferation concerns. 

 

As discussed above, selected issues of the once through fuel cycle can be addressed via 

extended fuel burnup. However, the extent of these benefits is limited by the fuel performance 

with respect to its ability to withstand radiation damage and exposure to severe reactor operating 

conditions for long periods of time. Alternative fuel designs such as coated TRISO particles 

suggested for use in advanced gas cooled reactors (Pebble Bed Modular Reactor – PBMR [Koster 

A. et al., 2003] and Gas Turbine-Modular Helium Reactor  - GT-MHR [LaBar M. P., 2002]) can 

maximize the benefits of the high burnup in the once through fuel cycle.  

 

 

Partitioning of the spent nuclear fuel  

 

Recycling of the SNF is the ultimate approach to diminishing the concerns over the nuclear 

waste in the once through fuel cycle to a considerable extent. Even after irradiation, the major 

part of the fuel is uranium (Figure 1.2.1). Uranium is practically non radioactive and if separated 

from the rest of the irradiated fuel constituents with adequate efficiency can be stored as a low 

level waste (LLW) or reintroduced into the fuel cycle. This would allow a major reduction in 

volume of the SNF and enhance the effective storage capacity of geological repository. 

 

Pu constitutes about 1% of the SNF. It can be used as fuel virtually in any type of reactor. 

Recycling plutonium in LWRs is a common practice in Europe, Russia, and Japan. Other 

countries also consider Pu recovery and develop SNF reprocessing technologies and 

infrastructure for that purpose. Typically, recovered Pu is mixed with depleted or natural uranium 

in UO2-PuO2 mixed oxide (MOX) form. Currently, the spent MOX fuel assemblies are not 

reprocessed. Nevertheless, even single path Pu recycling results in significant improvement in 

natural uranium utilization and proliferation resistance characteristics [Pellaud B., 2002].  
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Fission products typically amount to less than 4% of the spent fuel but most of them are 

stable or very short lived. Only about 0.4% of the fission products are of a significant importance 

(Figure 1.2.1). Relatively short lived Cs137 and Sr90 are responsible for most of the decay heat 

production in the first few decades after fuel discharge from the reactor. Separation of Cs and Sr 

from the spent fuel constituents for dedicated storage would practically eliminate the heat load 

management issue in the repository design. The activity of all fission products collectively 

decreases below the level of natural uranium ore required to manufacture the initial fuel in a few 

hundreds of years (Figure 1.2.2).  

 

 

Figure 1.2.1. Typical composition of the spent nuclear fuel [DOE/NE, 2003]. 

 

Long lived fission products (LLFP) I129 and Tc99 represent a small fraction of the SNF 

(about 0.1%). These isotopes were identified as significant contributors to the long term radiation 

dose from the repository due to their high solubility in water [Van Tuyle G.J., 2001]. However, 

Tc99 and I129 can be transmuted to short lived isotopes if subjected to epithermal neutron flux. A 

number of studies showed the possibility of Tc99 and I129 transmutation in both thermal and fast 

spectrum reactors [Brusselaers P. et al., 1996], [Krivitsky I. and Kochetkov A. L., 2000], [Hejzlar 

P. et al., 2001]. The consensus on whether fast or thermal spectrum systems are more efficient 

with regards to LLFP transmutation has not yet been reached and different LLFP transmutation 

concepts are still under investigation. The factors affecting the best concept choice are: 

transmutation rates, achievable burnup fractions, available technologies, and the effects of LLFP 

95.6% is uranium – can be dispositioned 
as Class C low-level waste or recycled 
 
3% is stable or short lived fission products 
that do not pose major disposal challenges 
 
0.3% is cesium and strontium that decay 
out in a few centuries (and are the primary 
near term HLW heat source) 
 
0.1% is long lived iodine and technetium 
which can be transmuted in thermal reactors  
 
0.9% is plutonium which can be burned as a 
fuel in any reactor 
 
0.1% is long lived actinides which can be 
effectively fissioned in fast spectrum reactors 
or accelerator driven systems (ADS) 
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transmutation targets on other performance characteristics of transmutation system. A 

transmutation system of any type will require increased fissile inventory or external neutron 

source to compensate for the parasitic neutron absorption in the targets containing LLFP.  
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Figure 1.2.2. SNF Radiotoxicity for ingestion as function of time after discharge. 

 

Only about 0.1% of the spent fuel is minor actinides (MA). Some of them are very long 

lived. In the repository, Pu and MA (also regarded as Transuranic elements – TRU) are 

responsible for most of the radiotoxicity of the SNF after decay of the fission products in the 

period between 1000 and 1M years after discharge (Figure 1.2.2). In the countries practicing fuel 

reprocessing, the high level radioactive waste, including MA and all the fission products, is 

incorporated in chemically stable host matrix (typically vitrified in glass). Only such vitrified 

waste is intended for geological storage. This fuel cycle strategy alone allows  

- major reduction in volume of high level nuclear waste (by about 40% in France) 

- improvement in uranium utilization through single path Pu recycling as MOX fuel 

- enhancement of proliferation resistance characteristics of the fuel cycle due to 

degradation of Pu isotopic vector [Pellaud B., 2002] 
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However, some of the fuel cycle issues mentioned earlier remain open. The HLW 

conditioning into more compact and chemically stable form does not necessarily imply safer 

repository in the long term because long lived radioactive materials will be still present in the 

environment. Moreover, most of the potential fuel energy still remains un-recovered. Finally, 

proliferation resistance improvement due to less attractive Pu isotopics after its recycling may be 

offset by the increased proliferation risks due to the mere fact of Pu separation during SNF 

reprocessing which creates more opportunities for its diversion [Lowenthal M.D., 2002]. 

 

 

Transmutation strategies 

 

Reduction in radiotoxicity of the nuclear waste intended for geological storage is clearly the 

most important goal for sustainable economic development and relying heavily on nuclear power 

as major non-polluting energy source. The objective is to reduce the nuclear waste radiotoxicity 

to a level below that of the uranium ore from which it originated within the time frame  that 

engineering barriers preventing radioactive materials from leaking into the environment can be 

designed with high degree of reliability (less than 1000 years [DOE/NE, 2003], [OECD/NEA, 

2002]).   

 

Long lived radioactive nuclides can be transmuted to short lived or stable nuclides via 

neutron capture or fission reactions. By fissioning the actinides from the SNF the following goals 

can be achieved. Long lived nuclides are converted to generally short lived fission products 

reducing the long term radiotoxicity. Potentially weapons usable material (mainly Pu) is 

eliminated reducing proliferation risks. Finally, valuable energy potential is recovered extending 

uranium resources.  

 

Numerous studies have been conducted on various options for radioactive waste 

transmutation since 1980’s. None of them was realized primarily due to economic factors. The 

suggested transmutation systems can be categorized as presented in Table 1.2.I.  Each of the 

categories is discussed below in some details. Figure 1.2.3 schematically shows the proposed 

transmutation concepts.  
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Table 1.2.I. Technology options for transmutation systems and fuel cycles. 

System feature  Proposed options 

Neutron spectrum Fast, thermal, combination of two 

Type of coolant Water, gas (CO2, He), Liquid metal (Pb, Pb-Bi, Na) 

Type of fuel Metallic, Oxide, Nitride, combined (CERMET, CERCER) 

Fuel matrix Fertile free, Th, UO2 (MOX) 

Neutron source Critical, Accelerator driven (ADS) 

Fuel cycle Once through deep burndown, closed with multi-recycling 

Recycling reactors Single tier, multi-tier system  

Nuclides intended for transmutation Pu, Pu + MA, Pu + MA + LLFP 

Transmutation target type Homogeneous (mixed with fuel), Heterogeneous targets 
 

 

 

 

Figure 1.2.3. Transmutation system concepts 
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Fast vs. thermal spectrum systems 

 

It is generally acknowledged that a fast neutron spectrum is more advantageous than a 

thermal spectrum with regards to TRU transmutation [Wiese H.W., 1998] simply because of the 

fact that fast neutrons are capable of inducing fission in almost all actinides while thermal 

neutrons can induce fission in only about half of them. This feature of the fast spectrum leads to 

better neutron economy. In the thermal spectrum system, neutrons are required first to convert 

some of the actinides to fissile nuclides by neutron capture and only then destroy them by fission. 

Moreover, the capture to fission cross-section ratio is comparable in magnitude for most of the 

nuclides in the fast spectrum which prevents buildup of higher MA isotopes (e.g. Cm) [Salvatores 

M., 2002].  

 

The effectiveness of TRU transmutation in thermal reactors can be argued by the fact that 

MAs have large absorption cross sections in thermal spectra. In such spectra, the conversion of 

MAs by neutron capture to fissile nuclides can be very rapid. The high fission cross sections of 

the fissile isotopes in thermal spectra in turn allow their fast and effective destruction. In addition, 

the absolute magnitude of the thermal spectrum cross sections for neutron absorption is 200-300 

times larger than those for fast neutrons. Thus, at a given power level a thermal spectrum system 

requires a significantly smaller actinide inventory, even though fast systems operate at higher 

neutron flux levels than thermal systems. This ultimately implies that thermal spectrum systems 

will discharge a smaller amount of minor actinides for reprocessing and, therefore, potentially 

reduce reprocessing costs. However, this is to be evaluated against particular designs of both the 

manufacturing and reprocessing facilities. For example, pyrochemical reprocessing and advanced 

fuel fabrication techniques [Wade D.C. et al., 1988] or on-line fuel reprocessing for the molten 

salt fuel systems [Vergnes J. et al., 2002] may offer significant benefits with respect to the 

economics of waste transmutation. 

 

In the case of LWRs, the introduction of TRU into the core may reduce the requirements for 

burnable absorbers. The neutrons captured in even-even TRU nuclides which cannot be directly 

fissioned by thermal neutrons are not lost as in the case of burnable poison but transmuted to 

useful fissile nuclides. Careful choice of TRU amount and elemental composition can reduce the 

reactivity swing of the core to an extent where burnable absorbers would no longer be needed. 

The possibility of using TRU as a “fertile” poison in long-life reactor cores is demonstrated in 

[Peryoga Y. et al., 2002]. 
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Additionally, a comparison of fast and thermal systems with equal TRU destruction rates and 

driven by external neutron source reported in [Bowman C.D., 2001] shows that equilibrium 

inventories of all the actinides including Cm are considerably smaller for the thermal system due 

to the higher effective cross-sections. Furthermore, the reduced Pu inventory also reduces the 

proliferation potential of the fuel cycle. 

 

 

Coolant and fuel choice 

 

The neutron spectrum of the system largely drives the choice of the coolant which by itself 

has a minor impact on transmutation capabilities of the system. The fast systems are limited to 

liquid metal (Na, Pb) or gas (He, CO2) coolants (Figure 1.2.3). All three technologies: sodium, 

lead, and gas-cooled reactors are promising concepts and they were chosen for development as 

candidates for future nuclear energy systems by the Generation IV roadmap committee 

[DOE/Generation IV International Forum, 2002]. Considerable research activities are currently in 

progress throughout the world aiming at the development of lead or lead-bismuth eutectic cooled 

reactor systems for waste transmutation. Pb-Bi coolant offers a number of safety advantages over 

Na, while much more operating experience is available for Na cooled systems. A number of 

commercial as well as small scale research Na cooled fast reactors have been operated throughout 

the world. Transmutation of Pu and MA in sodium cooled fast reactors was successfully 

demonstrated by several studies [Hill R.N., 1995], [Kuraishi H. et al., 2001]. The experience with 

lead cooled reactors originates in the Russian navy propulsion program. The development of 

commercial power Pb (or Pb-Bi) cooled reactor (BREST concept) is also actively pursued in 

Russia [Orlov V.V., 2003]. Lead can effectively serve as a coolant and as a spallation neutron 

source in accelerator driven systems (discussed below). A number of Pb/Pb-Bi cooled critical fast 

reactor concepts were proposed and analyzed revealing a high potential for transmutation of TRU 

[Kuznetsov V.V. et al., 1995], [Hejzlar et al., 2001], [Romano A. et al., 2002]. 

 

He or CO2 gas can be used as a coolant in either fast or thermal systems typically in 

combination with a graphite moderator. The conventional light water cooled reactors and their 

potential for waste transmutation is the main subject of this thesis and will be discussed later. 
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A number of factors dictate the choice of the fuel form. The ideal transmuter fuel should 

combine the following features.  

- minimal generation of secondary actinides 

- neutronic features allowing optimal spectrum for transmutation while maintaining safe 

operation characteristics 

- high burnup capabilities 

- simple and economic handling and reprocessing  

- good thermal and mechanical properties that would promote reactor safety 

A recent review of fertile free fuel candidates for transmutation of actinides in various 

reactor types has been conducted at MIT [Long Y. et al., 2003]. 

 

 

Critical vs. external neutron source driven systems 

 

The presence of significant quantities of MA in a fast spectrum core particularly in 

combination with fertile free matrix fuel leads to degradation of feedback coefficients and inferior 

transient behavior of the reactor. Some of the safety features of fast spectrum TRU transmutation 

systems can be significantly improved if they are designed as subcritical systems driven by 

external neutron source. The concept of Accelerator Transmutation of Waste (ATW) was 

originally conceived in Los Alamos Nation Laboratory [Bowman C.D. et al., 1992] and it is 

presently actively advocated by C. Rubia [Carminati F. et al., 1993]. In this concept, the neutrons 

that drive a sub-critical reactor are produced through spallation process. The beam of accelerated 

to high energy protons impacts typically heavy metal target and initiates a cascade of secondary 

lower energy neutrons and some protons. Some neutrons are produced via direct collisions with 

the nuclei of the target while the majority are produced as excited target nuclei get rid of their 

excess energy by “boiling off” additional neutrons. In such a process, up to 30 neutrons can be 

produced per one 1GeV incident proton.  

 

Sub-critical accelerator driven systems (ADS) enable the design of reactor cores that would 

otherwise be very challenging to operate. In addition, the external neutron source allows the 

control neutronic reactivity by adjustment of proton beam current which eliminates the concerns 

over prompt critical power excursion accidents and need for burnable absorbers. However, it does 

introduce a concern about accelerator beam overpower. In addition, ADS systems are still 
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susceptible to Loss of Flow (LOFA) and Loss of Heat Sink (LOHS) accidents and therefore 

require additional measures to assure their safety. 

 

Moreover, the technology for the design of large accelerators and for their coupling with the 

reactor requires extensive development to improve the overall system reliability, capacity factors, 

and reduce the development and deployment costs. A 1999 DOE review of the US Accelerator 

Transmutation of Waste (ATW) program concluded that operation of an ATW prototype or 

demonstration unit might take as long as 20 years to implement and would cost as much as $11 

billion. Full implementation of ATW in the United States for treating civilian spent nuclear fuel 

would require several decades and could cost hundreds of billions of dollars [Bresee J.C., 2003].  

 

Production of electricity and improved resource utilization can partially offset the costs 

related to ADS technology. In addition, thermal spectrum molten salt fueled ADS, as pointed out 

in [Bowman C.D., 2000], may require up to 4 times smaller accelerator due to reduced neutron 

leakage and reduced reactivity control requirements which would also facilitate better economic 

performance of ADS. 

 

On the other hand, critical fast spectrum systems with carefully designed safety features may 

appear to be more favorable candidates for TRU transmutation as they can potentially provide 

comparable to ADS transmutation capabilities but at lower cost and with greater reliability due to 

utilization of more mature technologies [Hejzlar et al., 2003], [Romano A., et al., 2002].   

 

 

Fuel Cycles 

 

The proposed fuel cycles for transmutation of waste differ in several respects. Depending on 

the main goal of transmutation Pu or Pu, MA, and LLFP can be considered. Suggested fuel cycle 

strategies also included single path with maximized deep burndown of TRU or multi-recycling of 

Pu and MA in one or multi-tier systems. Several examples of the proposed fuel cycles are 

presented in Figure 1.2.4.   

 

The concern over growing Pu stockpile from commercial LWR spent nuclear fuel in addition 

to significant quantities of weapons grade (WG) Pu from dismantled nuclear warheads [Albright 

D. et al., 1997] resulted in extensive research effort aiming at the reduction of the excess amounts 
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of Pu. Numerous studies initiated by the US DOE confirmed the possibility of disposition of 

reactor grade (RG) and WG Pu in the form of mixed PuO2-UO2 oxide fuel in all major currently 

existing reactor types: [Westinghouse Electric Co., 1994] and [Combustion Engineering Inc., 

1994] for PWRs, [GE Nuclear Energy, 1994] for BWRs, and [AECL Technologies Inc., 1996] for 

Canadian heavy water reactors (CANDU). Thorium and fertile free fuel matrices appear to be 

more effective for Pu burning than MOX because no secondary Pu is generated. Possibility of Pu 

burning in fertile free matrix fuel in PWRs peripheral assemblies and achieving the sustainable Pu 

inventory was demonstrated by [Chodak P., 1996]. The full fertile free fuel loaded PWR core for 

disposition of RG and WG Pu was analyzed in [Kasemeyer U. et al., 1998] and shown to be 

feasible. 

 

RG and WG plutonium disposition using thorium based fuels has been widely studied as 

well. For example, potential feasibility of burning WG and RG Pu are discussed in [Lombardi C. 

et al., 1999] and [Phlippen P.W. et al., 2000]. They addressed several issues of reactor control and 

safety as well as issues concerning multi-recycling of Pu. Alternative fuel design for more 

efficient thorium assisted Pu disposition in PWRs based on Seed-Blanket fuel assembly concept 

was proposed and discussed in [Galperin A. et al., 1998]. Feasibility of using Th-Pu fuel in high 

conversion BWRs is discussed in [Downar T. et al., 2000]. Various other reactor systems such as 

High Temperature Gas-cooled Reactors [Ruetten H.J., 2000b] and fast spectrum reactors 

[Tommasi J. et al., 1998] with Pu-Th fuel were also suggested and examined. These studies 

showed that thorium based fuels can efficiently perform the task of RG and WG plutonium 

stockpile reduction while maintaining acceptable safety and control characteristics of the reactor 

systems studied. However, no significant improvement in the spent fuel repository characteristics 

can be achieved through single path Pu burning in thorium matrix [Reutten H.J., 2000a]. 

 

The recent and most comprehensive transmutation systems and fuel cycle strategy studies 

were reported in [OECD/NEA, 2002] as a part of a joint nuclear waste partitioning and 

transmutation effort by OECD member countries and in [Van Tuyle G.J., 2001] in the framework 

of formerly Advanced Accelerator Application (AAA) program sponsored by the US DOE. The 

most significan findings of these studies are summrized in [Finck P., 2002]. In both studies, the 

main goal of waste transmutation was the reduction of radiological impact of nuclear waste on the 

repository and surrounding environment to the extent that very long term storage would no longer 

be needed. The tradeoffs between single path burndown and multi-recycling as well as 

advantages and drawbacks of the single tier versus multi-tier approaches are discussed.  
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Figure 1.2.4. Examples of Fuel Cycles 

 

In the multi-tier approach [Hill R.N. et al., 2002], Pu in the form of MOX is recycled once or 

multiple times in existing LWRs or advanced gas cooled reactors to achieve major TRU mass 

reduction using conventional technologies and therefore maximizing the economic benefits. 

While in the second tier, small amounts of residual Pu, MA, and LLFP are burnt in fast reactors 

or ADS via multiple recycling to the extent required to achieve the radiotoxicity reduction goal. 
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The single tier system considered in [OECD/NEA, 2002] was self supporting fast reactor system 

with closed fuel cycle and zero net generation of TRU. This strategy implies a distant future 

scenario where the entire fleet of nuclear reactors is of the described type.   

 

The single path burndown fuel cycle strategy suggests reprocessing of the existing LWR 

spent fuel and subsequent once through deep burnup of Pu or TRU in various transmuter systems. 

For example, GT-MHR was proposed for disposition of Russian WG Pu and is said to achieve a 

destruction efficiency of up to 90% of fissile Pu per path [Kodochigov N., 2002]. However, none 

of the single path transmuter systems can achieve the degree of TRU destruction sufficient 

enough to satisfy the radiotoxicity reduction criteria (Figure 1.2.5 [Van Tuyle G.J., 2001]). This 

conclusion is consistent with the findings elaborated later in this thesis. 

 

 

Figure 1.2.5. Radiotoxicity relative to NU ore for the single path burdown scenario [Van 

Tuyle G.J., 2001]. 

 

Additionally, both OECD and AAA studies came to a common conclusion that in principle, 

all analyzed fuel cycle options are capable of achieving the radiological and TRU mass reduction 

goal provided that multi-recycling of TRU with relative losses to the waste stream of less than 

0.1% can be achieved. 

 

Multi-recycling strategies to constrain generation of Pu and TRU in LWRs were also 

recently studied by several groups. Advanced Pu Assembly (APA) concept [Puill A. et al., 2001] 
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was proposed and possibility of Pu inventory stabilization in PWRs was confirmed. The APA 

combines large annular internally cooled fertile free fuel pins containing Pu and standard UO2 

fuel pins as shown in Figure 1.2.6.  

 

Such a configuration allows effective Pu consumption through high moderator to fuel 

volume ratio in Pu bearing region and fertile free matrix. Annular geometry also helps to 

accommodate high power peaking in Pu pins. However, APA cannot be combined with 

conventional assemblies in the same PWR core because of the differences in thermal hydraulic 

designs.  

 

 

 

Figure 1.2.6. Advanced Plutonium Assembly [Puill A. et al., 2001] 

 

The alternative CORAIL assembly concept [Aniel S. et al., 2001] was proposed. All fuel 

pins in the CORAIL assembly have identical geometry. However, the pins on the assembly 

periphery contain Pu or TRU [Taiwo T. A. et al., 2002] in the MOX form. The availability of 

existing technology for reprocessing and fabrication of MOX fuel is the main advantage of the 

CORAIL concept. The equilibrium TRU concentrations in the CORAIL fuel cycle are relatively 

high (about 36 kg per assembly) due to the presence of fertile U238 which results in additional 

TRU generation and therefore deteriorates TRU destruction efficiency. 
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TRU recycling in thorium based PWR fuel was studied recently [Todosow M. et al., 2002]. 

The analysis showed that for Th based fuel options equilibrium TRU inventory can also be 

achieved. However, re-enrichment of recovered from the fuel uranium is required to maintain 

constant fuel cycle length.  

   

 

1.3. Thesis Objectives and Scope 
 

The main objective of this thesis is to develop an innovative fuel cycle for Light Water 

Reactors (LWRs) featuring the lowest possible impact on the environment from the radioactive 

constituents in a spent nuclear fuel. The current analysis attempts to evaluate the potential of 

LWRs to manage the radioactive waste they produce in a sustainable mode. The technical 

feasibility of such an operation mode would offer more affordable solution to the once through 

fuel cycle problems due to the possible utilization of the existing reactors and technologies.   

 

A major constraint on this study, therefore, is complete compatibility of the sustainable fuel 

cycle with the current generation of LWRs. Namely, all reactor core operation and safety 

characteristics must remain comparable to those of the reactor operating on a conventional once 

through fuel cycle.   

 

The present effort examines two major fuel cycle strategies that can be applied to the 

existing fleet of LWRs without an immediate requirement to develop additional transmutation 

system technologies such as advanced fast reactors or ADS. The fuel cycle strategies studied are  

- once through burndown of TRU in LWR systems alone but with several alternative fuel 

types 

- TRU multi-recycling scenario based on the most efficient with respect to TRU 

transmutation potential fuel option 

 

The additional goals of this thesis as they are addressed in the following chapters are 

- to identify the fuel form which is most effective for transmutation of TRU in LWRs and 

at the same time allows one to maintain acceptable reactor safety and operation 

characteristics 

- to evaluate the effect of once trough burndown scenario on the waste performance 

characteristics in the repository  
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- to evaluate the neutronic feasibility of achieving the equilibrium with respect to TRU 

generation state by multiple recycling of TRU from the spent fuel 

- to evaluate the effect of the sustainable fuel cycle with zero net TRU generation on the 

repository 

- to identify and address the potential challenges associated with multi-recycling of TRU 

in LWRs 

- to perform economic analysis of the sustainable LWR fuel cycle and compare it with 

conventional once through fuel cycle and alternative two-tier system of LWR and 

Advanced fast spectrum Actinide Burner Reactor (ABR). 

 

 

1.4. Foreseen Technical Challenges Associated with TRU Recycling 
 

As discussed earlier, TRU transmutation in thermal spectrum reactors and in particular in 

LWRs imposes a number of potential design challenges. 

 

Some of the MA have relatively small cross-sections for neutron absorption even in thermal 

spectrum in addition to relatively long half lives. As a result, these nuclides (typically Cm244, 

Cm246, Cm247, Cm248, and Cf252) require relatively long time and high concentrations to 

saturate in the thermal spectrum. Furthermore, changes in TRU isotopic vector with burnup and 

with the number of TRU recycles result in degradation of TRU transmutation efficiency, shorten 

the fuel cycle length, and lead to increased TRU loading requirements. 

 

A harder neutron spectrum, as a result of increased TRU concentration in the core and 

changes in TRU isotopic composition, may lead to positive void reactivity coefficient. This would 

ultimately limit the maximum TRU concentration. Lower worth of the core reactivity control 

materials is also expected as a result of the neutron spectrum hardening.  

 

The effective delayed neutron fraction (βeff) is expected to be smaller for TRU containing 

LWR core because practically all Pu and MA isotopes have lower βeff than U235 in conventional 

LWR core. The change in the fuel and moderator temperature reactivity feedbacks and prompt 

neutrons lifetime decrease are probable additional consequences of the harder neutron spectrum. 

As a result, some of the core safety criteria may be violated during the reactor response to rapid 

reactivity initiated transients.   
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Finally, the increased concentrations of TRU nuclides in the fuel cycle would complicate the 

fuel handling, reprocessing, and fabrication due to increase levels of radiation. Some of the higher 

MA nuclides mentioned above in particular Cm244, Cm246, Cm248, and Cf252 have relatively 

high branching ratio to spontaneous fission (SF). The neutrons released in SF process are very 

hard to shield so that accumulation of SF neutrons emitting nuclides would aggravate the TRU 

containing fuel handling and fabrication problem. Additionally, the TRU separation based on the 

aqueous reprocessing techniques may not be suitable for the reprocessing of fuels with high TRU 

concentrations. The organic solvents used for separation of TRU from the fission products 

degrade rapidly when exposed to high radiation or elevated temperatures caused by the decay of 

TRU. As a result, non-aqueous separation techniques based on pyrochemical or pyrometallurgical 

reprocessing may be required. 

 

  

1.5. Thesis Organization 
 

This thesis consists of ten chapters. The first chapter briefly introduced the problematic 

issues associated with once-through fuel cycle such as accumulation of long lived radioactive 

waste, proliferation resistance, and poor utilization of natural resources. Then, short overview of 

the suggested in the past solutions and strategies was presented. The possibility of addressing the 

most important once through fuel cycle issues using exclusively the existing LWRs was proposed 

and justified.  The list of potential associated technical challenges was subsequently presented.  

 

The evaluation of neutronic performance of the two most promising cycles, with respect to 

the TRU destruction capabilities, fuel matrix candidates is presented in Chapters 2 and 3 focusing 

on thorium oxide and fertile free fuel matrices respectively. TRU destruction rates and TRU 

residual fractions in the spent fuel are the main parameters of interest in the discussion. The 

reactivity feedback coefficients and soluble boron reactivity worth are also reported as primary 

indicators of practical fuel design feasibility. 

 

Chapter 4 compares the evaluated thorium oxide and fertile free fuel options in terms of their 

repository performance characteristics in a once through burndown scenario aiming at the 

reduction of existing TRU stockpile and at constraining future TRU generation. The performance 
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of reference once-trough fuel cycle and mixed oxide (MOX) based fuel is also reported for the 

comparative assessment.  

 

Since fertile free fuel showed superior performance in terms of TRU burning capabilities, it 

was chosen as the best option for the evaluation of sustainable fuel cycle with zero net production 

of TRU. In Chapter 5, a heterogeneous Combined Non-fertile and UO2 (CONFU) fuel assembly 

concept is introduced. The possibility of achieving an equilibrium state with respect to TRU 

inventory and fuel cycle length is demonstrated.  

 

Chapter 6 addresses feasibility issues of practical CONFU assembly based core design. 3-

dimensional whole core neutronic simulation results are reported for a number of considered 

design alternatives including micro- and macro-heterogeneous CONFU assembly design options, 

fully fertile free TRU containing core, and the reference PWR UO2 fueled core. The analysis is 

focused on the evaluation of the core power peaking factors, cycle length, reactivity coefficients, 

and control rods and soluble boron reactivity worth. The performed thermal hydraulic analysis 

aiming at the evaluation of MDNBR margin for analyzed cases is also reported. 

 

The dynamic behavior of the cores containing TRU in response to the reactivity initiated 

accidents is analyzed in Chapter 7. A simple computer model created for such an assessment is 

described and the results of the simulations are presented. Additional concerns related to loss of 

coolant accident (LOCA) in TRU containing cores are discussed in some details. 

 

Chapter 8 presents the results of environmental hazard characteristics of the sustainable 

LWR fuel cycle. Some practicality issues related to possibility of the fuel cycle infrastructure 

facilities to handle multi-recycling of TRU are discussed. The decay heat, photon, and neutron 

doses from spontaneous fission of TRU are reported as a function of the number of TRU recycle 

paths. A brief review of the existing and prospective TRU reprocessing options is also presented. 

 

In Chapter 9, the results of the fuel cycle cost and the total cost of electricity estimations for 

the sustainable LWR based fuel cycle are compared with those of the once-through reference 

cycle and with alternative (LWR and fast actinide burner reactor) double strata fuel cycle. 

 

Finally, Chapter 10 summarizes the main findings and conclusions of this thesis. 
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Chapter 2. Fuel Choice for Actinide Transmutation in LWRs 
 

An LWR fuel cycle aiming at the reduction of waste burden must take advantage of 

innovative fuel materials capable of producing less TRU than currently employed UO2 fuel. Pu 

and MA are products of the neutron capture reactions in uranium. Naturally, to facilitate the 

objective of improving the long term characteristics of the nuclear waste, the amount of uranium 

present in the fuel has to be minimized. However, in addition to reduced TRU generation, the 

innovative fuel materials have to fulfill several other requirements.  

 

- Be able to provide high burnup. Thus, new fuel materials should have better or comparable 

to UO2 performance under irradiation.  

- The properties of new fuel materials should be such that the fuel design will have adequate 

heat removal capabilities in order to maintain or improve the thermal margin of the existing 

LWRs operating at their nominal power and during accident conditions.  

- If recycling of the TRU is considered, the fuel matrix should be relatively easy to handle in 

order to reduce reprocessing costs. On the other hand, if the once-through TRU burning 

strategy is employed, the fuel matrix should provide good capabilities for fission product and 

actinide retention for a very long term.  

- Innovative fuel materials must be chemically compatible with light water coolant and the 

cladding and have acceptable performance under irradiation with respect to the release of 

fission gas, swelling, and degradation of their thermal and mechanical properties. 

 

In light of these considerations, we examine two base fuel matrix materials: thorium dioxide 

(ThO2 – thoria) and neutronicaly inert fertile free matrices. Capabilities of both fuel options with 

respect to TRU destruction efficiencies and rates were evaluated along with some feasibility 

assessment of practical designs. Finally, both fuel matrix material options are compared to each 

other and to the conventional way of burning TRUs which is based on the existing uranium-

plutonium mixed oxide (MOX) technology. 
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2.1.  Thorium Based Fuels 
 

If introduced into the LWR fuel cycle, thorium as a primary fertile material in the core has a 

good potential for reducing the TRU generation simply due to its lower than uranium position in 

the periodic table. Longer neutron capture and decay chains have to take place in thorium to result 

in Pu or MA isotopes. However, significant quantities of U233 and long lived radioactive Pa231 

generated in a thorium fuel mitigate this advantage. U233 is a valuable fissile isotope that, if 

recycled, can improve fuel utilization and due to its continuous generation from the thorium can 

increase fuel burnup and reduce core reactivity swing during a fuel cycle. At the same time, U233 

is a weapons usable material with relatively low spontaneous neutron source. Thus, its 

accumulation reduces attractiveness of the thorium based fuel cycle from the proliferation 

resistance standpoint.  Addition of natural or depleted uranium to the fuel for the sake of limiting 

U233 concentration in uranium below the weapons usability limit will result in increased TRU 

generation.   

 

Although Th232 has a lower resonance integral than U238 its response to the fuel 

temperature increase (Doppler broadening) is greater, which results in a more negative fuel 

temperature reactivity coefficient than that of the uranium fuel – a desirable feature in case of 

transients with rapid reactivity increase. At the same time, the smaller delayed neutron fraction of 

U233 than of U235 has a negative effect on reactivity initiated accidents. This is particularly 

important for the Th-TRU mixtures where βeff is considerably smaller than that of the uranium 

fuel all through the in-core residence time.   

 

In the fuel performance area, thoria is found slightly more advantageous than UO2. ThO2 

thermal conductivity is slightly higher than that of UO2 at comparable temperatures in addition to 

about 500 °C higher melting point [Oggianu S.M. et al.,] (Table 2.1.I). 

 

In ThO2 compound, thorium has its highest possible and the only oxidation state +4, which 

makes it very stable and almost chemically inert [Belle J. et al., 1984]. Therefore, thoria is 

expected to be a very durable waste form for the spent fuel. If the fuel recycling strategies are 

considered, however, reprocessing of the thoria fuel is somewhat complicated for the same reason 

and therefore it is expected to be more expensive than reprocessing of UO2 fuel. The presence of 

U232 isotope inevitably generated in Th fuel primarily as a result of (n,2n) reaction in U233 may 

further complicate reprocessing and add to its cost. U232 decay chain products emit highly 
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penetrating hard γ radiation which will require additional shielding and remote handling of the 

fuel.  This complication is less critical if TRU recycling in conjunction with use of ThO2 matrix is 

desired because TRUs other than U232 are likely to dominate the γ and neutron radiation doses 

and will require remote handling as well.  

 

The heavy metal density in thorium oxide is slightly lower than in uranium oxide which is 

additional disadvantage (Table 2.1.I). 

Table 2.1.I. Physical properties of some nuclear fuel materials, [CRC Press, 2000] 

 U UO2 Pu PuO2 Th ThO2 

Melting point, °C  1135 2827 639 2390 1750 3390 

Phase change, °C 660    1400  

Theoretical density, g/cm3 18.9 10.96 19.8 11.50 11.7 10.00 

Thermal Conductivity at 600 °C, W/cm-°C 0.42 0.045   0.45 0.057 
 

Finally, the interest in breeder reactor technologies including Th cycle in 1960’s and 1970’s 

resulted in accumulation of significant experience and produced a vast knowledge database 

covering different aspects of thorium fuel cycle [Lung M. et al., 1997]. This knowledge and 

experience can be effectively put in use should the interest in thorium cycle in connection with 

TRU burning be renewed. 

 

The focus of this section is on establishing the practical limits for Pu and MA burning 

efficiency and on the feasibility of thorium based fuel in PWRs. The main parameters of interest 

are the rate of total Pu and MA destruction and residual fraction of trans-uranic nuclides (TRU) in 

discharged fuel. The former parameter is, effectively, the number of kilograms of TRU that are 

burnt per unit energy produced by the fuel. The latter parameter indicates the amount of TRU that 

will have to be recycled or disposed of in the nuclear waste repository.  

 

The fuel composition (relative amounts of Th, Pu, MA and U in the fuel) and lattice 

geometry will affect both of these indices: the burning efficiency and rate of TRU destruction. 

Therefore, the study reported here consists of several parts. First, homogenous reactor grade 

PuO2-ThO2 mixtures are studied covering a wide range of possible compositions and geometries. 

Then, the effect of the addition of a small amount of natural uranium to the fuel was investigated. 

This option is important for the once-through TRU burning scenario where the discharged fuel 

will be sent directly to the repository. In this case, U233 generated from Th232 has to be 
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isotopically diluted (denatured) in order to eliminate potential nuclear proliferation threats. Next, 

MAs were also considered as part of the fuel and the efficiency and destruction rates of Pu, MA 

and total TRU were investigated.  

 

The PWR fuel lattice allows a certain degree of freedom in optimizing the fuel to moderator 

ratio. This ratio defines the degree of neutron moderation and, therefore, absorption and fission 

reaction rates in different HM nuclides in the fuel. For that reason, a scoping study was carried 

out to evaluate the effect of the fuel lattice geometry on Pu and MA destruction performance for 

each fuel composition considered. 

 

Heterogeneous core geometries may be beneficial if Pu and MA can be concentrated in 

separate fuel assemblies in the core allowing more flexibility in fuel lattice optimization and fuel 

management schemes.  Therefore, the potential of heterogeneous core configuration to burn Pu or 

MA more efficiently was also explored on the basis of two dimensional 2x2 assemblies colorset 

segment. Figure 2.1.1 schematically depicts the topology of all investigated cases. 

 

Figure 2.1.1. Topology of investigated cases. 

 

Finally, feasibility of utilization of TRU-loaded thorium based fuels in the current generation 

of PWRs was studied by a comparative analysis of the reactivity coefficients and soluble boron 

worths for a number of realistic TRU-Th cases, typical MOX and conventional all-U fuel. In 

current PWRs, only moderate changes in the fuel assembly configuration are possible in order to 
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optimize fuel performance parameters. Additionally, denaturing of bred U233 is a required 

constraint for a practical design. In light of these two considerations, only denatured cases with 

H/HM ratios between the reference case and the reference +40% case were evaluated in terms of 

reactor operational characteristics.  

 

2.1.1.  Benchmark of Computational Tools 
 

The first step in this investigation was the assessment of computational tools and data 

libraries available for neutronic analysis of TRU transmutation options. These include the 

CASMO-4 Fuel Assembly Burnup Code [Edenius M. et al., 1995] and MCODE [Xu Z. et al., 

2002] – an MCNP4C and ORIGEN2 coupling code. Two benchmarks– a pin cell and a fuel 

assembly having a repeating typical PWR lattice are evaluated. 

 

Pin Cell Benchmark  

 

The first benchmark calculations were performed using CASMO-4 and MCODE for 

homogeneously mixed PuO2-ThO2 fuel in PWR pin-cell and fuel assembly geometries. The fuel 

composition included 95.5 weight % of Th and 4.5 weight % of reactor grade Pu. The fuel 

composition, geometry and parameters for the benchmark runs were chosen to be identical to 

those used in a benchmarking task performed within the framework of IAEA Coordinative 

Research Program (CRP) on "Potential of Thorium-based Fuel Cycles to Constrain Plutonium 

and to Reduce the Long-Lived Waste Toxicity" [Ruetten H.-J. et al., 2000]. This benchmark was 

performed by the CRP participants from 8 different countries. Each participating team used its 

own computational tools and data libraries. None of the teams used either CASMO-4 or MNCP-

ORIGEN type computer codes.  

 

The PWR pin-cell geometry and operating conditions used for the first part of the 

benchmark are shown in Figure 2.1.1.1. Detailed materials composition for each zone can be 

found in [Ruetten H.-J. et al., 2000] and [MacDonald P. et al., 2002]. 

 

The task of this benchmark was to calculate the fuel burnup at a constant power (21.1 kW/m) 

as a function of time, without using any burnable poison for reactivity control. The following 

parameters were calculated for a burnup of 0, 30, 40 and 60 MWd / kg of iHM: neutron 
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multiplication (kinf ), total neutron flux, average energy per fission, residual amount of plutonium, 

fraction of fissile plutonium, amount of generated minor actinides,  and amount of bred U233. 

 

Selected results of the PWR pin cell benchmark obtained from CASMO-4 and MCODE are 

compared with IAEA CRP results in Tables 2.1.1.I through 2.1.1.III. The fuel criticality is 

predicted with reasonable accuracy by all codes. The results for the average energy per fission, 

average neutron flux, Pu isotopes destruction rate as well as build-up of U233 and minor actinides 

are also in a good agreement, as documented in [MacDonald P. et al., 2002]. 

 

 Figure 2.1.1.1 Reference Pin Cell Geometry.   

Since the details about the codes used by other participants were not available to us, the 

discussion of the possible reasons behind the differences will be focused on CASMO4 versus 

MCODE results. The discrepancy in kinf ranges between about 2% ∆ρ at BOL to about 5% at 

EOL. The BOL criticality predicted by CASMO4 is slightly higher than that predicted by 

MCODE and other codes. CASMO4-calculated reactivity, versus MCODE results, is higher even 

though the fuel temperature used in MCODE was lower than the fuel temperature of 1023K 

defined in the benchmark. Note that the cross-section data for fuel nuclides used in MCODE 
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calculations were available only at the temperature of 900K. The reasons for this discrepancy 

most likely lie in the different libraries used in MCODE and CASMO4, as discussed below. 

Table 2.1.1.I. Infinite Medium Neutron Multiplication Factor as a Function of Burnup 

Burnup(MWd/kg) 0.0 30 40 60 
Germany 1.136 0.908 0.862 0.810 
Russia 1.123 0.915 0.876 0.838 
China 1.131 0.913 0.868 0.824 
Korea 1.118 0.910 0.870 0.830 
India 1.112 0.889 0.851 0.822 
USA 1.110 0.911 0.873 0.832 
Japan 1.135 0.921 0.881 0.841 
Netherlands 1.125 0.925 0.887 0.848 
CASMO4 (MIT) 1.142 0.915 0.870 0.824 
MCODE (MIT) 1.121± 0.0014 0.916±0.0013 0.874±0.0012 0.837±0.0012 

 

Table 2.1.1.II. Residual Amount of Plutonium (Pu / Pu initial) as a Function of Burnup 

Burnup (MWd/kg) 0.0 30 40 60 
Germany 1.00 0.42 0.29 0.13 
Russia 1.00 0.43 0.31 0.16 
China 1.00 0.40 0.28 0.12 
Korea 1.00 0.41 0.28 0.14 
India 1.00 0.41 0.29 0.14 
USA 1.00 0.43 0.30 0.16 
Japan 1.00 0.43 0.31 0.16 
Netherlands 1.00 0.43 0.31 0.16 
CASMO4 (MIT) 1.00 0.43 0.30 0.16 
MCODE (MIT) 1.00 0.43 0.31 0.16 

 

Table 2.1.1.III. Bred U233 Fraction (U233 / Pu initial fissile) as a Function of Burnup 

Burnup(MWd/kg) 0.0 30 40 60 
Germany 0.00 0.37 0.44 0.50 
Russia 0.00 0.40 0.47 0.53 
China 0.00 0.39 0.45 0.51 
Korea 0.00 0.41 0.48 0.54 
India 0.00 0.40 0.47 0.51 
USA 0.00 0.41 0.48 0.54 
Japan 0.00 0.38 0.44 0.50 
Netherlands 0.00 0.41 0.48 0.54 
CASMO4 (MIT) 0.00 0.36 0.42 0.47 
MCODE (MIT) 0.00 0.38 0.44 0.50 
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The slope of the criticality curve calculated by CASMO4 is steeper than that obtained by 

MCODE. There are two reasons for this disagreement:  

 

1. Differences in the number of fission products and actinides tracked in MCODE. One 

hundred fission products and 29 actinides were tracked in the MCODE calculation while 

about two hundred fission products and over 35 actinides were considered in the 

CASMO4 depletion calculations.  

2. Differences in libraries between these two codes. MCODE utilized primarily ENDF-VI 

cross-section data. CASMO4 cross-section data are based on data files JEF-2.2 and 

ENDF/B-VI that are processed by NJOY-91.91 to generate libraries in 70 energy groups 

in CASMO4 format.  

 

Also to be noted is that CASMO4 has higher recoverable energy per fission than ORIGEN2.1 

but exhibits faster burnup rate, i.e. against the expectations based on fission energy difference. 

Thus, the effect of differences in fission products and cross sections is more important than the 

differences in recoverable energy per fission.  

 

 

PWR Lattice Calculations  

 

This part of the benchmark was performed in order to assure the capability of CASMO-4 

and MCODE computer codes to manage assembly level 2D transport calculations with fuel 

depletion. As in the first part of the benchmark, the results obtained with CASMO-4 and MCODE 

will be compared to the results obtained by the participants of the IAEA Coordinative Research 

Program. 

 

The calculations were performed for a 17x17 PWR fuel assembly with octant symmetry. 

The assembly included 25 water hole positions without guide tubes. The assembly cans were not 

considered. The calculations were carried out at a constant specific power of 37.7 kW/kg of initial 

HM and with zero buckling. The assembly and fuel pin geometry as well as the material 

compositions are described in details in [Ruetten H.-J. et al., 2000] and [MacDonald P. et al., 

2002]. 
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The task of the second part of the benchmark was to compare the following parameters: 

criticality as a function of burnup between 0 and 60 MWd/kg, fuel composition as a function of 

burnup (Major actinides), local pin-by-pin power distribution, moderator temperature coefficient 

(MTC) for 0 and 60 MWd/kg, Doppler coefficient (DC) for 0 and 60 MWd/kg, and soluble boron 

worth (BW) for 0 and 60 MWd/kg. 

 

Select results are compared in Tables 2.1.1.IV through 2.1.1.V and in Figure 2.1.1.2. 

Detailed description of the benchmark results can be found in [MacDonald P. et al., 2002]. The 

criticality predictions by different codes agree within about 2.5% at the BOL and within 3.5% at 

60 GWd/t. The results obtained from both CASMO4 and MCODE fall within this range of 

uncertainty. The BOL eigenvalue predicted by CASMO4 is slightly higher (by 1.7%) than that 

predicted by MCODE. Although, the fuel temperature was the same in both codes’ models 

(900K), the trend of higher reactivity prediction by CASMO4 at BOL and lower reactivity 

prediction at EOL remained the same as in the pin cell benchmark. The reasons for the 

differences are the same as discussed above for the unit cell calculations. 

 

As in the pin cell benchmark task, the same number of nuclides (100 fission products and 29 

actinides) was tracked in MCODE depletion calculations. All fuel pins in the MCNP (MCODE) 

assembly model were defined as a single material. Thus, the effects of local neutron flux 

differences on burnup of individual pins could not be fully accounted for. Despite this 

simplification, the agreement in the fuel isotopics prediction between MCODE, CASMO4 and 

IAEA benchmark results is plausible since the differences in neutron flux within the assembly are 

small.  

 

Table 2.1.1.IV. Infinite Medium Neutron Multiplication Factor versus Burnup. 

Burnup, 
MWd/kg Russia Japan Korea India Israel CASMO 

(MIT) 
MCODE 

(MIT) 

0 1.1890 1.1987 1.1734 1.2076 1.1956 1.2035 1.1836 ± 0.0013 

0.5 1.1569 1.1670 1.1384 1.1736 1.1643 1.1721 - 

20 1.0298 1.0521 1.0123 1.0372 1.0290 1.0360 1.0233 ± 0.0013 

40 0.9147 0.9527 0.9057 0.9104 0.9119 0.9115 0.9124 ± 0.0011 

60 0.8315 0.8657 0.8310 0.8294 0.8314 0.8188 0.8318 ± 0.0011 
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Figure 2.1.1.2. Pin-by-pin Relative Power Distribution in PWR Fuel Assembly at 60 MWd/kg 
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Table 2.1.1.V. Reactivity Coefficients (× 104) for 0 and 60 MWd/kg. 

0 MWd/kg 60 MWd/kg  
 MTC DC BW MTC DC BW 

Russia -3.500 -0.280 -0.380 -1.500 -0.360 -1.100 
Japan -2.696 -0.283 -0.341 -0.969 -0.378 -0.864 
Korea -3.774 -0.319 -0.394 -2.928 -0.453 -1.070 
Israel -3.333 -0.292 -0.400 -1.142 -0.477 -1.119 
CASMO -3.768 -0.235 -0.403 -2.544 -0.359 -1.175 
 

Reactivity coefficients were calculated only with CASMO4 because it has built-in 

capabilities for reactivity parameter calculations. Therefore, it was used for these purposes in this 

study. Pin-by-pin power distribution calculated with MCODE was performed for the BOL only 

since the computational time required for the depletion calculation of each fuel pin within the 

assembly is large for the currently available computer hardware.  The agreement on the pin-by-

pin power distribution prediction was found to be very good. All codes identified the hot fuel pin 

at the same location at BOL. The discrepancy in pin power prediction at EOL for different pin 

locations is between 5 and 10%. 

 

The BOL values of reactivity coefficients are in reasonable agreement. Some discrepancies 

in reactivity coefficients predictions were observed at EOL. These discrepancies may be 

attributed to different Pu isotope concentrations. However, the trend of change with burnup is 

predicted correctly by all the computer codes. 

 

In summary, the performed benchmark calculations confirm that CASMO4 and MCODE are 

suitable for scoping studies of thorium – plutonium based fuel designs. They predict reasonably 

well the criticality and composition of the fuel and their results fall within the uncertainties of 

other codes used by the participants in the IAEA international benchmark. The CASMO4 

computer code can also be used for estimation of the fuel reactivity coefficients with a reasonable 

degree of confidence. However, careful evaluation of the accuracy of different computational 

tools for fuel design with large loadings of MA has yet to be performed. It should also be noted 

that the accuracy of currently available nuclear data for MA nuclides is limited to a considerable 

extent. For example, the differences in thermal cross-sections of some MAs between major 

nuclear data files can range up to 30% [M. Delpech et al. 1996].  In addition, multi level spatial 

homogenization and collapsing of energy groups performed by typical deterministic codes to 
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calculate region average cross-sections may lead to inaccuracies in some heterogeneous geometry 

cases. In such cases, benchmarking of computational tools is particularly important. 
 

 

 

2.2. Neutronic Assessment of Thorium Fuel 
 

All burnup and criticality calculations in this study were performed using the CASMO4 fuel 

assembly burnup computer code [Edenius et al. 1995], which uses a 70 energy group neutron 

cross-section library.  

 

The burnup calculations were performed for a fuel pin cell geometry of a typical PWR. The 

reference fuel pin cell geometry and operating parameters used in the calculations are 

summarized in Table 2.2.I. 

Table 2.2.I Reference Pin-Cell Geometry and Operating Parameters. 

Fuel pellet diameter, mm 8.192 
Gap thickness, mm 0.082 
Outer Cladding diameter, mm 9.500 
Lattice Pitch, mm 12.6 
Fuel temperature, K 900 
Coolant temperature, K 583 
Power density, kW/l 104 
Reference H/HM ratio 3.64 

 

 

The effect of differences in the neutron energy spectrum was studied by changing the 

hydrogen to heavy metal atom ratio (H/HM). Different H/HM ratios were simulated by varying 

water density in the fuel pin cell of fixed reference geometry. For the purposes of the current 

study, this approach of varying H/HM can be considered neutronically equivalent to other more 

realistic options as demonstrated in [Xu Z. et al., 2002]. The H/HM ratios were varied in a wide 

range from about 0.002 to about 70. All fuel compositions analyzed in this study are summarized 

in Table 2.2.II.  

 

In cases with zero MA loading, the isotopic composition of the Pu vector that was used is 

shown in Table 2.2.III. This composition corresponds to Pu in the spent fuel from a typical LWR, 
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using all-U fuel with initial U-235 enrichment of 4.5% and irradiated to about 50 MWd/kg, 

immediately after discharge. Four different initial Pu loadings of 7, 9, 11 and 15w/o relative to 

total HM in the fuel (cases 1 through 4 in Table 2.2.II) were analyzed to cover the whole range of 

possible fuel cycle lengths.  

 

In Cases 5 through 8 in Table 2.2.II, 15w/o of natural uranium was added to the initial Pu-Th 

fuel composition in order to assure that the uranium proliferation index in the discharged fuel is 

smaller than 0.12. The uranium proliferation index is defined as: [Forsberg C.W. et al., 1999] 

 
233 235Weight of U + 0.6 × Weight of U < 0.12

Total Weight of Uranium
 (2.2.1) 

 

The initial Pu and MA isotopic composition of the Pu-MA-Th fuel (Cases 9 through 11 in 

Table 2.2.II) is shown in Table 2.2.IV. This composition corresponds to the isotopics of 4.2% 

enriched conventional UO2 fuel irradiated to 50 MWd/kg and then decayed for 10 years. Three 

different loadings of TRU in Th were studied, again, to cover a broad range of possible fuel cycle 

lengths. In the reference fuel pin cell geometry these three fuel compositions will result in 12, 18 

and 36 months operating cycle lengths respectively.  

 

In this part of the study, the amount of natural uranium added for denaturing of bred U233 

was chosen to be about 20% relative to the amount of thorium in the fuel. It was assumed that all 

MAs in the fuel have the chemical form of (MA)O2 with densities equal to the theoretical density 

of PuO2. 

 

Core leakage was neglected in these scoping studies and the reactivity limited single batch 

burnup (BU1) and fuel cycle length were estimated by calculating the burnup at which kinf of the 

fuel equals unity. The discharge fuel burnup was estimated using a 3-batch linear reactivity model 

[Driscoll M.J. et al., 1990], as 1.5×BU1.  
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Table 2.2.II. Summary of Studied Fuel Compositions 

Fuel 
Comp. Description Th, w/o Natural 

Uranium, w/o Pu, w/o MA w/o Isotopic vector 

1 Pu-Th unden. 93.0 - 7.0 - Table 2.2.III 

2 Pu-Th unden. 91.0 - 9.0 - Table 2.2.III 

3 Pu-Th unden. 89.0 - 11.0 - Table 2.2.III 

4 Pu-Th unden. 85.0 - 15.0 - Table 2.2.III 

5 Pu-Th den. 78.0 15.0 7.0 - Table 2.2.III 

6 Pu-Th den. 76.0 15.0 9.0 - Table 2.2.III 

7 Pu-Th den. 74.0 15.0 11.0 - Table 2.2.III 

8 Pu-Th den. 70.0 15.0 15.0 - Table 2.2.III 

9 Pu-MA-Th den. 63.58 13.54 19.82 3.05 Table 2.2.IV 

10 Pu-MA-Th den. 61.89 13.18 21.60 3.32 Table 2.2.IV 

11 Pu-MA-Th den. 58.51 12.47 25.15 3.87 Table 2.2.IV 

12 MOX - 93.00 7.00 - Table 2.2.III 

13 All-U - 100 (4.5% 235U) - - - 

 

 

Table 2.2.III Initial Pu Isotopic Composition in Th - Pu Fuel 

Isotope Weight % 

Pu-238 2.88 

Pu-239 54.60 

Pu-240 21.15 

Pu-241 15.30 

Pu-242 6.06 
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Table 2.2.IV. Initial Pu Isotopic Composition in Pu-MA-Th Fuel 

Isotope Weight % 

U-234 0.0001 
U-235 0.0023 
U-236 0.0019 
U238 0.3247 
Np-237 6.641 
Pu-238 2.7490 
Pu-239 48.6520 
Pu-240 22.9800 
Pu-241 6.9260 
Pu-242 5.0330 
Am-241 4.6540 
Am-242m 0.0190 
Am-243 1.4720 
Cm-242 0.0000 
Cm-243 0.0050 
Cm-244 0.4960 
Cm-245 0.0380 
Cm-246 0.0060 

 

 

The Doppler reactivity coefficient (DC), Moderator temperature coefficient (MTC), Void 

coefficient (VC) and Soluble Boron Worth (BW) were calculated for the compositions 5 through 

11 in Table 2.2.II at 3 different H/HM ratios and at 3 time points: beginning (BOL), middle 

(MOL) and end (EOL) of fuel irradiation. In order to simulate close to realistic operating reactor 

conditions, all reactivity coefficients were calculated assuming that the soluble boron 

concentrations are 1000 ppm, 500 ppm, and 0 ppm at BOL, MOL, and EOL respectively. 

The reactivity coefficients were calculated as follows. 

1 2 m

KMTC
K K T

∆
=

× ×∆
 (2.2.2) 

where ∆Tm is the moderator temperature difference between two moderator temperatures T1 and 

T2 and K1 and K2 are infinite medium neutron multiplication factors corresponding to 

temperatures T1 and T2, respectively.  
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1 2 f

KDC
K K T

∆
=

× ×∆  
(2.2.3) 

where ∆Tf  is fuel temperature difference between two fuel temperatures T1 and T2.  

1 2

KVC
K K V

∆
=

× ×∆
 (2.2.4) 

where ∆V  is the difference between two coolant void fractions V1 and V2.  

1 2

KBW
K K C

∆
=

× ×∆
 (2.2.5) 

where ∆C is boron concentration difference in ppm. 

 

 

RESULTS:  Pu-Th cases 

 

One of the most important characteristics of the fuel designed for Pu disposition is the Pu 

destruction rate; namely, the number of kilograms of Pu destroyed per unit energy produced by 

the fuel. Figure 2.2.1 shows Pu destruction rates normalized per 1 GWeYear for both the 

denatured and undenatured cases. The Pu destruction rate is relatively insensitive to the Pu 

loading and to the H/HM ratio in the neighborhood of the reference H/HM value.   

 

The rate of Pu destruction for low Pu loadings at low H/HM ratios (in the epithermal energy 

spectra region) exhibits an increase since the fuel cycle length in this region is relatively short 

(Figure 2.2.2) whereas fissile Pu239 burns out rather rapidly at the beginning of fuel irradiation, 

increasing total Pu destruction rate. Although high Pu destruction rates in this H/HM region can 

be achieved, very low fuel cycle length and, thus, frequent reprocessing makes these cases 

impractical and uneconomical. In contrast, the rate of Pu destruction for the fuel with high Pu 

loading monotonically decreases as H/HM ratio decreases (Figure 2.2.1). In this case, the energy 

derived from fission of U233 is substantial due to effective breeding in the epithermal and fast 

spectra. The initial Pu loading is high enough to sustain core criticality until a significant amount 

of U233 is generated. As a result, the Pu destruction rate is reduced because of the competition 

between neutron absorption in Pu and U233, although high burnup, in general, results in deeper 

Pu burning as shown in Figure 2.2.3. However, the calculated achievable burnup is an 

overestimate since neutron leakage was not considered. Additionally, due to the harder neutron 

spectrum, leakage is expected to be higher in Pu containing cores than in all-U core. 
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Figure 2.2.1 Energy Normalized Pu Destruction Rate 
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Figure 2.2.2. Reactivity Limited Burnup (BU1) vs. H/HM Ratio 
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Figure 2.2.3 also suggests that significantly deeper Pu burning (that is, lower fraction of 

residual Pu in discharged fuel) in a PWR core cannot be attained by the variation of H/HM ratio. 

However, there is an improvement from 67% up to 75% in destroyed Pu fraction by increasing 

the H/HM ratio from 3.64 to about 7 for undenatured fuel compositions (cases 1 through 4 in 

Table VII). Nevertheless, at high H/HM in a given core volume, the total initially loaded Pu will 

be smaller. 

 

Addition of uranium to the fuel decreases the Pu destruction rate as expected.  Figure 2.2.1 

illustrates this fact. At the reference H/HM ratio point, the addition of 15w/o of natural uranium 

reduces the rate of Pu destruction by about 20%, although this relative reduction in the 

destruction rate becomes smaller for “wetter” than reference fuel lattices. Even at the reference 

H/HM, 50% Pu destruction is possible. 

 

At the reference H/HM ratio, denaturing can almost double the amount of residual Pu (Figure 

2.2.3). However, at higher than reference H/HM ratios, the difference between the denatured and 

undenatured cases becomes smaller and even vanishes for highly over-moderated lattices. This is 

partially due to the fact that denatured cases in the over-moderated region achieve slightly higher 

burnup due to the higher BOL reactivity and more efficient consumption of Pu. Furthermore, the 

conversion of Th232 to U233 is more efficient while the breeding of Pu239 from U238 is less 

efficient in a well thermalized spectrum due to a higher thermal absorption but lower resonance 

integral for Th232 than for U238. Additionally, the sensitivity of the residual Pu fraction to 

H/HM ratio is notably greater for denatured cases than for undenatured cases. An increase of 

H/HM from the reference value to about 10 can reduce the residual Pu fraction nearly by a factor 

of 2.  

 

Changing the H/HM to such a high values is probably impractical in conventional PWRs. For 

the fixed core power and volume, an increase in H/HM through the variation of fuel pin diameter 

or total number of pins would mean a displacement of fuel on the expense of moderator and lead 

to either higher fuel temperature or heat flux to coolant. Increasing the H/HM should be done in 

way that would minimize the reduction in fuel loading per unit volume of the core. Using annular 

fuel pellets or annular internally cooled fuel is preferable to increasing the pitch to diameter ratio 

because it allows to keep fuel temperature and MDNBR within acceptable limits. In such case, 

the local fuel burnup will become a limiting factor if the cycle length is preserved. 

 



 61

Figure 2.2.4 shows the uranium proliferation index as a function of H/HM for denatured 

cases. Addition of 15 w/o of natural uranium seems to be enough to assure the proliferation 

resistance of uranium in discharged fuel for most of the calculated cases. In fact, the uranium 

proliferation index decreases with H/HM which indicates that the amount of natural uranium can 

be reduced for wetter fuel lattices, which also improves Pu burning performance. 
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Figure 2.2.3. Residual Pu Fraction 
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Figure 2.2.4 Uranium Proliferation Index 

 

RESULTS: Pu-MA-Th cases 

 

The potential of TRU destruction is an important feature of innovative fuel designs which 

can help the effort to reach sustainable fuel cycles. Only systems that utilize fuel which burns 

more TRU than originally loaded have the ability to reach an equilibrium state in a completely 

closed fuel cycle with zero net generation of TRUs. 

 

Thorium based fuels used for disposition of Pu and MA, although they do not create a new 

generation of Pu and MA, produce noticeable amounts of actinides originating from Th232. The 

most valuable nuclide for the sustainable closed fuel cycle scenario is U233. It typically 

constitutes over 90% of all Th chain isotopes. It has a large thermal fission cross-section; thus, it 

can be efficiently recycled. However, small amounts of other Th chain nuclides are long lived and 

radioactive. For example minute quantities of U-232 can significantly complicate fuel 

reprocessing and fabrication because of the presence of strong γ-emitters in its decay chain 

[Laughter M. et al., 2002]. Therefore, in a once-through actinide destruction cycle, with the main 

objective being to maximize the consumption of TRU per path, Th chain nuclides have to be 
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included in the total balance of actinides discharged to the repository. In such TRU burndown 

scenario, the presence U232 would attribute to intrinsic protection of the spent fuel from being a 

potential target for nuclear proliferators.  

 

Figure 2.2.5 reports TRU destruction rates normalized per 1 GWeYear for 3 different initial 

TRU loadings that in the reference PWR fuel pin cell geometry will result in 12, 18 and 36 month 

fuel cycle lengths (Figure 2.2.6), assuming 3 batch fuel management and typical PWR specific 

power. In this part of the study we report the TRU destruction rates and their residual amounts 

with and without including the Th chain nuclides in the total balance, since both indices are of 

interest.  

 

The following observations can be made. 

 

• The TRU destruction rates monotonically increase with increasing H/HM ratio over the 

whole investigated range of fuel lattice geometries. Therefore, it is always beneficial to keep 

H/HM as high as possible from the TRU destruction rate viewpoint.  

 

• The destruction rates of TRU without Th chain nuclides are not sensitive to the initial TRU 

loading.  

 

• The contribution of Th chain nuclides to total TRU destruction rate varies with H/HM and 

initial TRU loading. This variation originates in the fact that the efficiency of U233 buildup 

depends on H/HM as well as on other actinide inventories. 

 

Figure 2.2.7 shows the MA-only contribution to the total TRU destruction rate.  As can be 

observed, the actual reduction in MA inventory can be achieved only for highly over-moderated 

lattices if Th chain nuclides are included in the balance. If Th chain nuclides are not considered, 

the reduction of MA inventory is possible with a rate of about 100 kg per GWeYear. This rate 

appears to be remarkably insensitive to the initial TRU inventory and H/HM ratio in the range of 

practical interest (from 1 to 10). 

 

The fraction of residual TRU in spent fuel not including Th chain nuclides is shown in Figure 

2.2.8. The data plotted in Figure 2.2.8 suggests that the reference pin cell geometry is highly 

unfavorable from the effectiveness of TRU destruction standpoint. Higher initial TRU loadings 
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are preferable as they result in deeper TRU burnout for H/HM ratios close to the reference one. 

However, this difference vanishes as H/HM approaches 10. The maximum theoretically 

achievable degree of TRU burnout is about 50% of initial loading at H/HM of about 11.  
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Figure 2.2.5. Energy Normalized TRU Destruction Rate 
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Figure 2.2.6. Reactivity Limited Burnup (BU1) vs. H/HM Ratio 
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Figure 2.2.7. Energy Normalized MA destruction Rate 
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Figure 2.2.8. Residual Fraction of TRU (No Th chain nuclides) 

 

RESULTS: Reactivity Coefficients 

 

The results presented above suggest that higher than reference H/HM ratios are preferable for 

effective Pu destruction. Therefore, the reactivity coefficients were evaluated at H/HM values 

ranging from the reference PWR fuel pin cell to reference + 40% H/HM.  

 

All reactivity coefficients were calculated on the basis of a pin cell geometry. Core average 

reactivity coefficients would be somewhat different as the core is uaually composed of fuel 

assemblies with different accumulated burnup. The pin cell based calculations, however, can be 

used for comparison of different fuel designs with different compositions and H/HM ratios 

against the reference UO2 fuel evaluated on the same basis. 

 

Selected reactivity coefficients as well as soluble boron worth calculations are summarized in 

Table 2.2.V. All fuel compositions presented in Table 2.2.V correspond to the 18 months cycle 

length currently widely accommodated by the nuclear industry.  
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MOX fuel provides somewhat stronger Doppler fuel temperature reactivity feedback (DC) 

than all-U fuel, while Pu-Th fuel has even more negative DC than MOX. Wetter lattices yield 

slightly less negative DC than the reference one due to the lower epithermal flux, nevertheless, 

Pu-Th fuel in a wetter lattice has still more negative DC than the reference All-U fuel. 

 

Strongly negative DC is beneficial for transients associated with fuel temperature increase as 

it provides prompt negative reactivity feedback, however it results in larger reactivity insertion in 

startup and shutdown scenarios. Stronger DC may also be a disadvantage in the reactor’s response 

to sudden cooldown scenarios, such as a steam generator depressurization event.  

 

Calculated Moderator temperature and Void coefficients (MTC and VC respectively) for Th 

based fuels are negative and exhibit smaller variation with burnup than All-U and MOX fuel. The 

absolute values of MTC and VC of Pu-Th cases are close to those observed for typical MOX fuel 

while Pu-MA-Th fuels have MTC and VC values close to those of the All-U case. The calculated 

values of MTC and VC are consistent with those previously reported in [Lombardi C. et al., 199] 

and [Phlippen P.W. et al., 2000]. The effect of increased H/HM ratio is not particularly significant 

for Th based cases. All reactivity coefficients stay negative over the entire investigated range of 

H/HM values.  

 

Table 2.2.VI shows an example of the BOL reactivity control requirements and soluble boron 

worth (BW) for a number of calculated cases. The BOL whole core excess reactivity was 

estimated assuming a 3 batch core with linear burnup-reactivity dependence for each batch. 3% of 

∆ρ was allowed for leakage. No burnable poisons were considered. The BW of partially burned 

batches was assumed to be equal to the fresh batch BW, which is a conservative assumption since 

BW, generally, increases with the burnup due to depletion of fissile nuclides and therefore softer 

spectrum.   

 

Although Pu-Th and Pu-MA-Th fuels require much smaller initial excess reactivity to 

control, the soluble boron worth is much smaller than that of the All-U fuel. As a result, the 

soluble boron concentrations required to control the initial excess reactivity are comparable to 

All-U fuel and in some cases considerably higher. Increasing the loading of TRUs in Th based 

fuels leads to harder neutron spectra and, therefore, lower soluble boron worth. Higher than 

reference H/HM increases neutron moderation and, as a result, increases soluble boron worth.  
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In general, the relatively hard neutron spectrum in all TRU containing fuels necessitates that 

special attention be devoted to the design of reactor control. Utilization of enriched boron or 

gadolinium in control rods or as a burnable poison might be necessary to satisfy reactor safety 

criteria for Th-TRU fuel designs.    

 

 

Table 2.2.V  Reactivity Coefficients: Selected Results 

Dopler Coefficient, pcm/K 
Reference H/HM Reference + 40% H/HM Comp. 

No. 
 
Description BOL MOL EOL BOL MOL EOL 

6 Pu-Th den. -4.32 -4.65 -5.04 -3.43 -3.78 -4.22 

9 Pu-MA-Th den. -2.98 -3.02 -3.15 -2.63 -2.80 -3.02 
12 MOX -2.92 -3.09 -3.20 -2.36 -2.57 -2.70 
13 All-U -2.20 -2.93 -3.33 -1.82 -2.31 -2.75 

Moderator temperature Coefficient, pcm/K 
6 Pu-Th den. -49.05 -58.68 -73.47 -38.91 -50.40 -66.73 

9 Pu-MA-Th den. -18.53 -17.69 -23.40 -29.57 -33.17 -44.86 
12 MOX -40.63 -54.65 -73.78 -32.37 -46.92 -66.39 
13 All-U -22.17 -51.62 -77.79 -2.21 -26.00 -50.07 

Void Coefficient, pcm/%void 
6 Pu-Th den. -128.0 -156.8 -198.3 -104.8 -142.9 -190.4 

9 Pu-MA-Th den. -42.8 -41.4 -51.7 -70.8 -85.3 -115.8 
12 MOX -104.8 -145.3 -200.7 -86.0 -130.8 -190.8 
13 All-U -62.5 -145.7 -228.0 -10.8 -83.5 -164.8 

soluble boron worth, pcm/ppm 
6 Pu-Th den. -1.95 -2.28 -3.02 -2.82 -3.60 -5.15 

9 Pu-MA-Th den. -1.05 -1.03 -1.24 -1.73 -1.90 -2.24 
12 MOX -1.96 -2.37 -2.76 -2.88 -3.70 -4.85 
13 All-U -4.80 -5.22 -6.23 -6.65 -8.15 -11.90 
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Table 2.2.VI. Soluble Boron Requirements for Reactivity Control at BOL 

Reference H/HM 

Fuel 
Comp. 

Description 
 

K-inf 
(BOL), 
Pin cell 

Core Average 
reactivity (BOL), 

pcm 

SB worth 
pcm/ppm 

ppm 
needed 

for control 

5 Pu-Th den. 1.119 4098 -2.41 1699 

6 Pu-Th den. 1.146 5183 -1.95 2664 

7 Pu-Th den. 1.170 6136 -1.66 3703 

8 Pu-Th den. 1.216 7849 -1.24 6322 

9 Pu-MA-Th den. 1.062 1533 -1.05 1456 

10 Pu-MA-Th den. 1.078 2281 -0.97 2358 

11 Pu-MA-Th den. 1.109 3672 -0.81 4525 

12 MOX 1.206 7473 -1.96 3804 

13 All-U 1.380 12953 -4.80 2698 

Reference H/HM × 1.4 
5 Pu-Th den. 1.195 7092 -3.41 2080 

6 Pu-Th den. 1.216 7858 -2.82 2788 

7 Pu-Th den. 1.235 8501 -2.42 3512 

8 Pu-Th den. 1.269 9631 -1.92 5022 

9 Pu-MA-Th den. 1.100 3289 -1.73 1903 

10 Pu-MA-Th den. 1.111 3765 -1.62 2320 

11 Pu-MA-Th den. 1.133 4680 -1.41 3324 

12 MOX 1.275 9829 -2.88 3415 

13 All-U 1.440 14528 -6.65 2185 
 

 

It was also found that prompt neutron lifetime is significantly smaller than that of all-U fuel 

and comparable to MOX fuel values. More importantly, the effective delayed neutron fractions of 

Pu-Th fuel are smaller than the values for all-U by about a factor of two and smaller than MOX 

fuel values at EOL by more than a factor of 1.5, as shown in Table 2.2.VII. Smaller βeff is a major 

challenge for the cores fully loaded with Th-Pu fuel and the feasibility of reactor controllability 

under such low βeff requires further investigation. In addition, small reactivity worth of the control 

materials and low βeff values in Pu-Th containing PWR cores may lead to much higher reactivity 

in dollars vested in control rods and soluble boron in comparison with conventional UO2 and 
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MOX cores, which is a potential concern in reactivity initiated accidents. Smaller effective 

delayed neutron fraction is the consequence of the smaller delayed neutron yield of Pu239 and 

U233 in comparison to that of U235 and smaller fast fission contributions from Th232, which has 

a higher delayed neutron yield than U238.  Denatured Pu-Th fuels (cases 5 through 9 in Table 

2.2.II) have slightly more favorable βeff values than undenatured Pu-Th fuels (cases 1 through 4 in 

Table 2.2.II) because of the fast fission contribution from U238. 

 

The prompt neutron lifetime values indicate significantly faster reactor kinetics in comparison 

with All-U, MOX and even with Pu-Th cases. More importantly, the effective delayed neutron 

yield is below 0.003 for all calculated Pu-MA compositions which challenges the reactor core 

behavior in reactivity initiated accidents. 
 

Table 2.2.VII Effective Delayed Neutron Yield (βeff) × 103 

H/HM Ratio 
 

Reference Reference + 20% 

Composition BOL MOL EOL BOL MOL EOL 

1 (Pu – unden.) 2.98 2.76 2.46 2.99 2.84 2.42 
2 (Pu – unden.) 3.00 2.81 2.39 3.00 2.89 2.36 

3 (Pu – unden.) 3.01 2.77 2.41 3.01 2.88 2.44 

4 (Pu – unden.) 3.02 2.74 2.41 3.02 2.86 2.45 
5 (Pu – den.) 3.14 3.07 2.85 3.13 3.01 2.81 
6 (Pu – den.) 3.14 2.96 2.75 3.13 3.01 2.76 
7 (Pu – den.) 3.15 2.95 2.71 3.14 2.98 2.76 
8 (Pu – den.) 3.15 2.89 2.62 3.14 2.95 2.70 
9 (Pu-MA-den.) 2.63 2.57 2.53 2.69 2.65 2.63 
10 (Pu-MA-den.) 2.66 2.58 2.51 2.68 2.63 2.60 
11 (Pu-MA-den.) 2.62 2.50 2.43 2.65 2.58 2.55 
12 (All-U) 7.23 5.49 4.80 7.20 5.54 4.81 
13 (MOX) 4.01 4.10 4.15 3.92 4.06 4.15 
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2.3. Analysis of Heterogeneous Fuel Geometries 
 

Heterogeneous Pu-MA-Th fuel assembly geometries offer some potential advantages over 

the homogeneous Pu-MA-Th fuels. Assuming that Pu and MA come as separate streams from the 

separation process, the relative amounts of Pu and MA in the fuel can be varied so that most of 

the Pu can be concentrated in one type of fuel assemblies while all of the MA can be concentrated 

in another type of assemblies. Therefore, for each assembly type, the fuel lattice can be optimized 

to a certain degree for preferential destruction of either Pu or MA. Additionally, different fuel 

management schemes can be applied to the fuel assemblies containing different relative amounts 

of Pu and MA. As a result, assembly types that required to reach higher burnup (and, therefore, 

higher TRU destruction efficiency) can reside in the core for larger number of cycles than other 

types of fuel assemblies.  

 

An assessment of these potential advantages for an equilibrium core containing 

heterogeneous fuel configurations were performed with the CASMO-4 computer code that allows 

2D transport and burnup calculations of 2x2 segment (“colorset”) of fuel assemblies of different 

types. A schematic diagram of such 2x2 colorset of fuel assemblies is shown in Figure 2.3.1. 

Figure 2.3.1. Example of CASMO 2x2 colorset layout. 

 

The analysis of heterogeneous fuel configurations was performed through variation of fuel 

composition (Pu:MA:Th ratio) and variation of lattice H/HM ratio for each assembly type and the 

destruction efficiencies and destruction rates for Pu and MA averaged over the entire colorset 

Th–Pu
assembly 

Th–Pu-MA
assembly 

Th–Pu
assembly 

Th–Pu-MA
assembly 
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were examined. At the same time, a number of constraints were imposed in order to ensure 

feasibility of realistic designs: 

 

- Pu content in Pu-MA-Th assembly is large enough to provide colorset pin-power peak of 

less than 1.2 

- Variation of fuel pin diameter in H/HM optimization is in the range of ± 20 % of the 

reference one 

- Colorset average Pu to MA ratio is the same for all calculated cases and the TRU 

isotopic vector used is as presented in Table 2.2.IV. 

- Colorset average TRU loading is selected to provide average colorset discharge burnup 

corresponding to fuel cycle length of about 18 months assuming 3 batch reloading 

scheme for both types of fuel assemblies comprising the colorset. 

 

The results of this preliminary analysis show that no significant improvements in TRU 

destruction efficiencies or destruction rate can be achieved with heterogeneous fuel 

configurations via lattice optimization under the imposed constraints. The residual fraction of MA 

in the heterogeneous colorset never exceeded the corresponding value of homogeneous fuel of the 

same composition if simultaneous discharge of the entire colorset is assumed. This is due to 

relatively low power fraction generated by the Pu-MA-Th assemblies. However, above 50% of 

MA can be potentially destroyed (not including U233 and other Th chain nuclides) if Pu-MA-Th 

assemblies are driven to 100 MWd/kg burnup due to less frequent than Pu-Th assemblies 

refueling.  

  

Although the Pu-MA-Th assemblies exhibit very flat reactivity behavior during irradiation, 

the heterogeneous cores have higher power peaking factors than homogeneous cores due to the 

fact that Pu-MA-Th assemblies are sub-critical during the entire irradiation period.  

 

The calculated colorset average reactivity coefficients are comparable to those of the 

homogeneous Th-Pu-MA assembly. However, small local βeff in MA containing assemblies in the 

colorset may challenge the fuel performance in control rod ejection accident. The effect of small 

βeff will be offset to some extent by slightly more negative Doppler coefficient than in the 

reference UO2 case.  
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Additionally, feasibility of fuel designs with high loadings of MA may be limited by fuel 

handling and fuel material performance issues because of the increased γ-radioactivity and He 

generation in the fuel due to α-decay of relatively short lived MA (primarily Cm-242 that is 

produced by neutron captures in Am-241 and subsequent β-decay of Am-242). 

 

Finally, for the heterogeneous fuel types discussed above, proliferation resistance of the fuel 

cycle is somewhat compromised by the fact that the Pu is separated from the MA during certain 

stages of the cycle and, therefore, is less self-protected.  

 

  

2.4. Chapter Summary  
 

In this chapter, potential limits for the efficiency of Pu and MA destruction in Th based fuels 

of PWRs are discussed. The primary focus was on two performance indices: the rate of TRU 

destruction and residual fraction of TRU relative to initial TRU loading.  

 

The performed benchmark calculations confirmed that CASMO4 and MCODE are suitable 

for scoping studies of thorium – TRU based fuel designs. They predict reasonably well the 

criticality and composition of the fuel within the uncertainties of cross-section data libraries. 

 

The results showed that Th based fuel designs can be effectively used to reduce existing 

stockpiles of TRU in PWRs and, theoretically, can be part of a sustainable closed fuel cycle 

system with zero net generation of TRUs. 

 

The reasonably achievable rate of Pu destruction in Th based fuel is about 1000 kg of TRU 

destroyed per 1 GWeYear, while up to 50% of initially loaded Pu can, theoretically, be destroyed 

per path. The addition of MA to Pu and Th reduces the rate of destruction by about 10%. 

 

Denaturing of generated U233 with natural uranium degrades the efficiency of Pu 

destruction. However, denaturing is required only for the once-through fuel cycle. In that case, 

denaturing reduces Pu destruction rates by approximately 20%. The difference in the destruction 

rate and the residual Pu fraction between the denatured and undenatured cases decreases for 

wetter than reference lattices. 
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The calculated reactivity coefficients and their comparison with MOX and All-U fuel 

indicate the potential feasibility of Th based fuels utilization for transmutation of TRU in PWRs. 

 

Somewhat wetter fuel lattices than present PWRs are favorable from the TRU destruction 

efficiency and reactivity control perspectives. Pu and MA containing Th based fuels have 

significantly harder neutron spectra than for typical all-U fuel, which reduces control materials 

worth and imposes additional requirements on the design of reactor control features.    

 

It was found that heterogeneous fuel configurations, with fuel assemblies having different 

relative amounts of Pu and MA, are not capable of improving TRU destruction capabilities 

beyond those of the more simple homogeneous fuels. However, the option of choosing different 

fuel management schemes for different assembly types provides additional flexibility to destroy 

preferentially Pu or MA via variation of in-core residence time for each type of the assemblies.   
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Chapter 3. Fertile-Free Fuel 
 

Generation of TRUs in the fuel can be effectively constrained if the fertile isotope U238 is 

substituted partially or completely by a neutronically inert fertile free matrix material.  

 

Numerous studies carried out in the past have shown that the Reactors Grade (RG) and 

Weapons Grade (WG) Pu can be effectively burned in the fertile-free fuels (FFF) while 

maintaining comparable to current generation PWRs the reactivity control and safety 

characteristics of the fuel. ([U. Kasemeyer et al. 1998], [Baldi S. et al. 2001], [Lombardi C. et al. 

1999] and others) 

 

Pu or TRU can be either mixed homogeneously with or dispersed as micro-size particles in 

the inert matrix. The dispersed micro-particles approach provides additional flexibility in the 

choice of matrix materials. The matrix and the micro-particle materials can be separately chosen 

so that in combination they will provide good mechanical and chemical stability, radiation 

damage resistance, compatibility with the cladding material and water coolant in addition to good 

thermal properties and low parasitic neutron absorption.  The matrix material has also to be 

chemically stable in the nuclear waste repository environment, at the same time it should 

preferably allow a simple and inexpensive reprocessing.  

 

The focus of this section is mainly on a preliminary neutronic evaluation of the TRU 

containing FFFs. In particular, MgAl2O4 (Spinel) was chosen as a primary host matrix material 

and Yttria Stabilized Zirconia (YSZ) was chosen to be a part of the micro-spheres composition in 

order to enhance the irradiation and mechanical stability of the fuel particles. The dispersed micro 

particles structure allows confining the radiation damage to the fuel particles themselves and 

protecting the host matrix. The detailed arguments promoting the choice of these inert materials 

to be used in the current study are described in the Section 3.2. The development of FFF matrix 

materials requires significant amount of research and experimental work. The effect of different 

inert matrix materials on the neutronic performance is expected to be small because low cross-

section for interaction with neutrons is one of the major requirements for the matrix material 

choice.  

 

As in the previous section discussing the thoria based fuel, a series of benchmark 

calculations were performed for the fertile-free fuel using available computational tools in order 
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to evaluate their capability to handle non-conventional fuel designs with large loadings of TRUs. 

Then, TRU destruction rates and residual fractions of Pu and MA in the spent fuel were 

calculated for various fuel geometries and compositions. In addition, reactivity feedback 

coefficients were calculated for a number of cases to assess the feasibility of using FFFs in the 

current generation of PWRs.   

  

 

3.1. Benchmark of Computational Tools 
  

The CASMO4 computer code was used for evaluation of the fertile free fuels. This section 

addresses two primary concerns regarding the capabilities of CASMO4 to predict with a 

reasonable accuracy the criticality and nuclides evolution with burnup of the fuel micro particles 

dispersed in the inert matrix.  

 

- The CASMO4 utilizes 70 energy groups cross-sections library that were generated using 

the typical LWR energy spectrum. In the fuel with large loadings of Pu and MA, the 

neutron energy spectrum tends to be much harder than generally encountered in a 

conventional LWR. In addition, the 70 group library may not be sufficient to reflect the 

resonance structure differences of TRU nuclides which typically have minor contribution 

to total neutron absorption but which can be significant for the cases with high TRU 

loading and especially in FFF case. Therefore, a cross-section library with a larger 

number of energy groups might be needed to produce accurate results for TRU containing 

fuel designs. 

 

- CASMO4 cannot explicitly handle heterogeneous structure of the fuel pellet. Therefore, 

only homogeneously mixed fuel and matrix materials in a solid fuel pellet can be 

modeled. The additional level of heterogeneous structure in the dispersed particle fuel 

creates an additional resonance self-shielding effect, which would be completely 

neglected in the CASMO4 calculations. The magnitude of this effect depends on the 

particle’s size, composition and relative number densities of the matrix and the fuel. 

 

Three fuel pin cell burnup calculations were performed in order to assess the effect of using 

70 group cross-section library and the effect of the double heterogeneous structure on criticality 

and the isotopes evolution predicted by the CASMO4 code. 
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In the first case, the fuel micro sphere geometry was explicitly modeled in MCNP4C 

[Briemsmeister J. 2000].  The fuel pin cell geometry is schematically presented in Figure 3.1.1. 

The fuel micro particles were arranged in a simple cubic lattice with a total fraction of 30 v/o 

occupied by the fuel particles. All of the fuel particles had an identical diameter of about 150 µm. 

This particle size is close to the optimal one in terms of the mechanical and thermal properties of 

the fuel as well as its ability to sustain radiation damage [Long Y. et al., 2003],[Yuan Y. et  al., 

2001]. The burnup calculations were performed using the MCODE [Xu Z. et al., 2002] – MCNP-

ORIGEN linkage utility program. The ENDF-BVI based continuous energy cross-sections set 

was used for the MCNP calculations. The number of neutron histories in the Monte-Carlo 

simulation was chosen so that the sufficient number of collision events had occurred in nearly 

every fuel micro particle in order to ensure that the double-heterogeneous self-shielding effect is 

represented correctly. 

 

In the second case, the MCODE calculation was repeated for the fuel pin cell of identical 

geometry and materials composition except for the fact that in this case the fuel particles (TRUs 

and YSZ) and the Spinel matrix were homogeneously smeared over the entire fuel pellet volume.  

 

Finally, the homogeneously mixed fuel (TRU, YSZ and Spinel) case identical to the second 

one was calculated with CASMO4. 

 

Figure 3.1.2 reports the results of the criticality prediction by MCODE and CASMO4 for the 

three calculated cases. The difference in k∞ between the homogeneous and heterogeneous cases 

calculated with the MCODE is on the order of a fraction of a percent. At a number of data points 

the difference is larger than the statistical error. This suggests that k∞ value is somewhat higher in 

the heterogeneous case than in the homogeneous case although in general the overall double-

heterogeneity effect is small. In the case of UO2 TRISO micro particles used in Pebble-bed gas 

cooled reactors [Koster A. et al., 2003], the effect of double heterogeneity is appreciable 

[Lebenhaft J.R et al., 2002]. The observed small magnitude of this effect in the current 

benchmark case can be attributed to the small fuel particle size and relatively low concentrations 

of the fertile resonance nuclides in contrast to conventional UO2 fuel with its large concentration 

of U238.  Another reason could be the fact that the total resonance absorption in the fissile and 

fertile nuclides changes by a similar factor due to additional self-shielding introduced by the 

double-heterogeneous geometry so that the overall criticality of the system changes only 

marginally. The confirmation of these assumptions requires additional investigation. 
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Figure 3.1.1 Double-Heterogeneous Fuel Pin Cell Geometry 
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Figure 3.1.2 Criticality vs. Burnup for Homogeneous and Heterogeneous Geometries 

Fuel Particle: D = 150µ  
50 v/o TRU O2 
50 v/o YSZ  
Fuel Particles volume fraction in Spinel = 30 v/o 

Cladding: Zr-4, 6.5 g/cm3  

Coolant: H2O, 580K, 155 bar  
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In the homogeneous geometry, the difference between the values predicted by CASMO4 and 

those by MCODE ranges from zero to about 0.5%. At the beginning of irradiation k∞ values agree 

very well, but the difference increases with burnup up to about 100 MWd/kg then becomes rather 

constant up to 400 MWd/kg. The larger k∞ values predicted by MCODE can be mostly attributed 

to a discrepancy between the two codes in the prediction of Am242m evolution with burnup and 

due to a very large Am242m thermal fission cross-section (about 7000b). The Am242m number 

density as a function of burnup is shown in Figure 3.1.3. The Am242m number density calculated 

by CASMO4 is smaller than that calculated by MCODE by a factor of about 1.7 at 150 MWd/kg. 

The Am242m builds up primarily from neutron captures in Am241. Since the Am241 number 

density changes with burnup are very similar for both codes (Figure 3.1.4), a possible reason for 

the discrepancy in Am242m buildup can be the difference in the branching ratio between the 

metastable and ground state of Am242 in the codes or differences in cross-section libraries for 

Am242m as CASMO-4 uses the JEF2.2 cross section library while ENDF-VI was used in the 

MCODE calculation. 

 

The predictions by the two codes of the number densities of all the Np, Pu and Cm isotopes 

are in reasonably good agreement. Minor discrepancies in the number densities prediction are 

most likely due to the differences in the cross-section data sets used. Selected results for the 

important actinides are summarized in Appendix A.  
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Figure 3.1.3 Evolution of Am242m Number Density with Burnup 
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Am-241
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Figure 3.1.4 Evolution of Am241 Number Density with Burnup 

 

In conclusion, the CASMO4 computer code can be used in scoping studies of the FFF 

designs with a reasonable degree of confidence. The treatment of Am242 branching ratio in 

CASMO4 and cross-section library differences, which probably lead to considerable 

discrepancies in predicted Am242m number densities, require additional investigation. 

Otherwise, the predictions of criticality and TRU nuclides number densities by CASMO4 and 

MCODE are in a fairly good agreement.   

 

No effect due to the limited cross-section library energy group structure was observed. The 

effect of the fuel micro particles homogenization can be considered as minor and is neglected for 

the purposes of this study.  
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3.2. Choice of Inert Matrix Material 
 

The requirements for the fuel matrix materials include: 

- low neutron absorption 

- chemical compatibility with the cladding and the coolant 

- resistance to irradiation damage  

- large heat capacity 

- high melting temperature  

- high thermal conductivity 

- stable crystal structure in operating temperature range 

- low thermal expansion 

- good mechanical properties 

- availability and low cost 

- simple handling and fabrication 

- simple reprocessing 

- availability of industrial experience  

 

Potential candidate matrix forms that can meet the acceptable neutronics requirements are 

metallic, silicides, nitrides, carbides and oxides, and among desired crystalline structures types 

are peroskovites, fluorites, yag, and rutile [Long Y. et al., 2003].  

 

The use of metal, carbide and nitride fuels in LWRs is questionable because of their 

chemical interaction with water. An oxide is a preferred choice because of the vast experience in 

operation and manufacturing. The fluorite crystalline structure is also preferred for the same 

reason and because of its ability to incorporate actinides, rare earth elements and fission products. 

 

The remaining candidate inert materials considered are zircon ZrSiO4, stabilized zirconia 

(Zr,Y)O2-x and (Zr,Ca)O2-x, Al2O3, MgO, spinel MgAl2O4, CeO2, monazite CePO4, SiC and some 

metals [Long Y. et al., 2003].. 

 

Some of these candidates have significant disadvantages: 

- zircon (ZrSiO4) dissociates upon annealing to high temperatures and experiences 

extensive swelling under radiation 

- Al2O3 experiences amorphization and large swelling 
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- MgO disintegrates in the event of cladding failure under PWR conditions 

- monazite (CePO4) has poor radiation stability and poor thermal conductivity.  

- CeO2 experiences polygonization and temperature dependent swelling.  

However, the interest in some of these matrices still exists and their evaluation is in progress. For 

example, Mg and Ce oxide are being tested in France as potential candidates for Pu burning in 

LWRs. 

 

Stabilized zirconia is a very robust fuel matrix with very good irradiation stability. Zirconia 

can be stabilized by either calcium or yttrium oxide (yttria). Y2O3 has small neutron induced 

swelling. Yttria stabilized zirconia (YSZ) is chemically stable, has a high melting temperature and 

good irradiation stability. It is a superior actinides host matrix. CaO is also a good candidate to 

stabilize zirconia. It has very good thermo-mechanical properties. 

 

The major drawback of zirconia is its low thermal conductivity although addition of spinel 

can improve it. Spinel exhibits partial amorphization and polygonization and is unstable under 

fission product impact.  

 

The hybrid fuel concept, however, can minimize the irradiation damage to the spinel matrix. 

In such concept, TRUs are homogeneously mixed with stabilized zirconia to form a fluorite phase 

as small sized particles (fissile phase) and then the particles are dispersed in a spinel matrix. In 

this way, fission fragments damage can be localized primarily to the fissile phase and YSZ. 

Specially, if a buffer zone around the particles can be created to accommodate the escaping 

fission products. 

 

As a result, hybrid fuel types (CERCER or CERMET) are preferable to Solid Solution Pellet 

(SSP) fuel type because of the better potential to accommodate high fuel burnup. 

 

The multi-phase CERCER and CERMET have several advantages. The use of two-phase 

materials prevents radiation damage by fission products to the inert matrix. Less radiation damage 

to the matrix helps to avoid degradation of its thermal conductivity, which in turn allows for 

higher burnup. Somewhat complicated manufacturing, possible hot spots, and absence of 

thermodynamic stabilization are among potential drawbacks of this concept. 
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In order to localize effectively the radiation damage to the fissile phase, restrictions on the 

fissile phase volume fraction and micro particle size may apply. The fission products have a finite 

range in the fuel (~ 8 – 10 µm). So that the volume of the region affected by fission products can 

be minimized provided that the fuel particles are large enough. However, the thermal gradient 

between the matrix and the particles increases with increasing particle size. This may result in 

degradation of the effective thermal conductivity of the fuel and increase fission gas release rate. 

It was shown that preferable particles size should be in a range between 150 and 200 µm. [Y. 

Yuan et al. 2001]  

 

The CERCER fuel concept is currently being widely studied. The most promising matrix 

material proposed is MgAl2O4 (spinel) and TRUs are to be incorporated either in CaO or YSZ. It 

was also suggested to use Y3Al5O12 instead of spinel and cerium oxide for the fissile phase. 

 

In summary, for LWR applications, it is found that ceramic oxides are more promising than 

other materials, although currently ongoing research efforts have not yielded a broad consensus 

regarding the best matrix material yet. Zirconia (stabilized by yttria or calcia) and cerium oxide 

are currently considered as the most promising hosts for the TRU oxides [Long Y. et al., 2003]. 

The TRU – stabilized zirconia fuels must be dispersed in another material such as spinel 

(MgAl2O4) to enhance effective thermal conductivity of the fuel. The sensitivity of spinel matrix 

to fission product damage requires the use of hybrid CERCER type fuel with fissile phase 

particles containing TRU mixed with stabilized zirconia dispersed in a spinel matrix. The size of 

the particles must be in a range between 150-200 µm in order to minimize fission products 

damage to the spinel matrix. 
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3.3. Neutronic Assessment of Fertile-Free Fuel 
 

The basic calculation methods and assumptions regarding the reference fuel pin geometry 

and reactor operating conditions used in the evaluation of TRU-thoria fuel apply also to the 

results reported in this section. The TRU isotopic composition vector used is shown in Table 

3.3.I.  

Table 3.3.I. Reference TRU Isotopic Composition  

(UO2, 4.2 w/o U235, 50 MWd/kg Burnup, after 10 Years of Cooling) 

 

Isotope Weight % 

U-234 0.0001 

U-235 0.0023 

U-236 0.0019 

U-238 0.3247 

Np-237 6.641 

Pu-238 2.7490 

Pu-239 48.6520 

Pu-240 22.9800 

Pu-241 6.9260 

Pu-242 5.0330 

Am-241 4.6540 

Am-242m 0.0190 

Am-243 1.4720 

Cm-242 0.0000 

Cm-243 0.0050 

Cm-244 0.4960 

Cm-245 0.0380 

Cm-246 0.0060 
 

 

The fertile free fuel was evaluated with respect to two primary performance parameters: 

TRU destruction rate and achievable fractional burnup of TRU.  
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In the following analysis, we compare two possible PWR core arrangements: homogeneous 

and heterogeneous. The homogeneous option refers to the reactor core with a single type of fuel 

assemblies. Each of the assemblies is composed of TRU fuel with the isotopic vector presented in 

Table 3.3.I in combination with the fertile-free matrix. The heterogeneous reactor core includes 

two types of fuel assemblies. The fuel in the assemblies of the first type is composed of Pu only, 

while the fuel in the second type of assemblies is primarily composed of MA with some addition 

of Pu to sustain reasonable criticality constant of the assembly. This heterogeneous arrangement 

allows additional flexibility in optimization of TRU destruction efficiency. The Pu and Pu-MA 

containing assemblies can be optimized separately to burn efficiently the Pu and MA. In addition, 

the heterogeneous core allows separate fuel management schemes for the different types of 

assemblies. For example, if deeper MA burnup was found beneficial, the in-core residence time 

of the MA containing assemblies can be extended.  

 

   

Homogeneous Option 
 
Similar to the assessment of the TRU-thoria option, a scoping study was performed to 

investigate the TRU destruction rate and fractional burnup sensitivity to the fuel lattice H/HM 

ratio and initial TRU loading. 

 

The burnup calculations were performed for the pin cell geometry. The H/HM ratio was 

varied in a wide range of values by changing the coolant density for the fixed pin cell geometry. 

However, alternate ways to achieve different H/HM values are expected to yield similar results. 

 

The calculations were performed for 3 different initial TRU loadings of 10, 15 and 20 

volume percent relative to the fuel pellet volume, which corresponds to 33.3, 50.0 and 66.7 v/o of 

TRU in the fuel micro particle volume respectively. The remaining volume fraction of the fuel 

micro particle was occupied by YSZ. The spinel matrix occupied a fixed (70 v/o) fraction of the 

fuel pellet volume for all cases. The choice of these three compositions was due to the following 

considerations: (1) The 10 v/o of TRU composition represents a realistic reference case which 

results in approximately 18 months fuel cycle length in the reference PWR geometry. (2) The 20 

v/o of TRU is likely to be the limit of TRU loading from a materials behavior perspective as 

discussed in the previous section. 
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The results of the calculations are reported in Figures 3.3.1 through 4.3.5. The variation of 

H/HM ratio towards larger values results in a modest (up to 18%) increase in the reactivity 

limited burnup (Figure 3.3.1).  The higher achievable burnup in turn leads to a more efficient 

destruction of TRU as demonstrated in Figure 3.3.2. Fuels with different TRU loadings have 

about the same optimal discharge burnup value for over-moderated lattices. As a result, the 

minimal residual fraction of TRU is approximately the same (~40%) for the fuels with different 

initial loadings. In the reference geometry and 10v/o TRU loading, which provides discharge 

burnup corresponding to 18 month fuel cycle, about 53% of initial TRU can be destroyed per one 

fuel batch path through the reactor core.   

 

The difference in the discharge burnup for different H/HM values has no effect on the 

destruction rate (Figure 3.3.3). For the FFF, the TRU destruction rate is determined solely by the 

core power. For a typical PWR core power density, the TRU destruction rate is about 1140 kg per 

GWe Year. The slight variation in the destruction rate can be attributed to a small difference in 

energy per fission for different isotopes as they have different contribution to total power with the 

shift of neutron energy spectrum. 

 

Although wetter than reference fuel lattices seem to be more attractive from a burnup 

viewpoint, for a fixed core volume and total power, an increase of H/HM ratio will result in a 

reduction of fuel volume and increase of power density in the fuel. Therefore, only moderate 

modifications in the fuel assembly geometry may be possible because of the thermal-hydraulics 

constraints. Alternatively, if the total core power is not fixed, satisfactory thermal-hydraulic 

design may be feasible by lowering the specific power in the fuel. However, this will result in 

considerable reduction in TRU destruction rate. Figure 3.3.4 illustrates that fact. The data shown 

in Figure 3.3.4 was obtained assuming that H/HM was changed through variation of the fuel pin 

cell pitch for the fuel rods of a fixed diameter. 

 

The results of the calculations described above indicate that even in the reference PWR pin 

cell geometry the efficiency of TRU destruction is very close to the optimal one. This is a 

significant advantage because by using the reference assembly configuration, a near optimal 

burning efficiency can be achieved without impairing the destruction rate or changing the 

thermal-hydraulic design of the core. 
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Figure 3.3.1. Single Batch Burnup vs. H/HM Ratio 
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Figure 3.3.2. Residual Fractions of TRU in Discharged Fuel vs. H/HM Ratio 
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Figure 3.3.3 Energy Normalized Pu and TRU Destruction Rates vs. H/HM Ratio 
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Figure 3.3.4. Pu and TRU Destruction Rates per Reference Core Volume 
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A reference PWR “assembly” burnup calculation with FFF containing 10 v/o of TRU was 

performed to assess the validity of the “pin cell” geometry calculations and to evaluate the 

possibility of an additional TRU recycling stage.  

 

Burnable absorbers are likely to be used in a practical fuel design. Therefore, the burnable 

poison effect on the TRU destruction efficiency was also evaluated by calculation of a case with 

the addition of 1 v/o natural Er oxide (Er2O3) to the fuel. The main advantage of Er as a burnable 

absorber is the presence of a large absorption resonance in Er167 that overlaps with the fission 

resonance of Pu239. As a result, Er can potentially improve the fuel temperature reactivity 

feedback (Doppler Coefficient). The main disadvantage of Er is a reactivity penalty at the fuel 

discharge point due to the absorption in some of the residual Er isotopes. 

 

Figure 3.3.5 shows an example of criticality curves for the assembly calculations with and 

without burnable poison for the single once-through case and for the case with an additional stage 

of TRU recycling. The composition of the once-recycled TRU fuel was chosen such that all the 

unburned TRUs from the first stage (after the fission products separation) are included and 

enough “fresh” TRU is added to be able to reach the first stage fuel cycle length. 

 

Table 3.3.II summarizes the fractional TRU burnup for the poisoned and un-poisoned cases, 

with and without TRU recycling. The effect of BP addition is important since the BP 

considerably reduces TRU burning efficiency due to the residual reactivity penalty and loss of 

neutrons to BP that otherwise could be used for transmutation and fission TRU components.  

 

Degradation of TRU isotopic vector after the 1st path makes TRU recycling unattractive 

because of considerably lower fractional burnup in the case where minimal reprocessing is the 

first priority. If multiple reprocessing is not of a great concern, an equilibrium fuel composition 

can be achieved after several recycles with the fractional TRU burnup converging to values 

between 25% and 30%. However, for such a relatively low fractional burnup, fuel material and 

positive void reactivity coefficient limitations on maximum TRU loading, and the requirement of 

at least 70% make up of “fresh” TRU to sustain a reasonably long fuel cycle length make 100% 

fertile free homogeneous core impractical if it is solely considered for multi-recycling burndown 

of the existing stockpile of TRU. 
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Table 3.3.II. TRU Destruction in Homogeneous FFF Core: Normalized Material Flow 

Summary 
1st path 2nd path 

Case 
No BP With BP No BP With BP 

Discharge Burnup, MWD/kg 541 486 334 292 

TRU Loaded, kg / GWeY 2037 2264 3295 3774 

TRU Discharged, kg / GWeY 887 1112 2122 2594 

Pu Loaded,  kg / GWeY 1759 1954 2744 3137 

Pu Discharged, kg / GWeY 671 850 1623 1996 

% TRU Burned / path 56.5 50.9 35.6 31.3 

% Pu Burned / path 61.8 56.5 40.8 36.4 
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Figure 3.3.5 Criticality Curves for the FFF Assembly Cases 
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Macro-Heterogeneous Option 

 

As mentioned earlier, heterogeneous core configurations allow additional flexibility in the 

optimization of TRU destruction efficiency.  

 

This section examines the effect of variation of the relative amounts of Pu and MA in fuel 

assemblies as well as of the assembly lattice H/HM ratio on burning efficiency. Assuming that Pu 

and MA come in different streams from the chemical separation process, the relative amounts of 

Pu and MA can be changed so that most of the Pu is concentrated in one type of fuel assemblies, 

while all of the MA are concentrated in the second type of the assemblies. 

 

The destruction rate of TRU in FFF is determined only by the specific power in the core. 

Therefore, the main objective was an increase in reactivity limited burnup, which leads to a 

higher degree of TRU destruction. An additional goal was the investigation of the possibility to 

accelerate MA destruction rate at the expense of Pu destruction rate.   

 

The heterogeneous equilibrium core performance was modeled using the CASMO4 

“colorset” option.  This option allows 2D transport calculations with burnup for a 2x2 segment of 

different full size fuel assemblies (Figure 3.3.6). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3.3.6 Example of CASMO Colorset Layout 
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A systematic analysis of different heterogeneous assembly configurations was performed by 

varying separately the composition and H/HM of the two assembly types. Several constraints 

were imposed on the optimization to ensure the feasibility of a realistic design:  

- Colorset pin power peak ratio < 1.2. 

- TRU volume fraction in the fuel particles < 70 v/o ( < 20 v/o of the pellet volume). 

- Variation in the fuel pin diameter < ± 20%. 

- Colorset average Pu to MA ratio is conserved and equal to the one used in the homogeneous 

assembly evaluation (Table 3.3.I). 

 

Representative macro heterogeneous cases analyzed are listed in Table 3.3.I. In Table 3.3.I, 

the heterogeneous case 2 denotes a colorset with the lattice geometry identical to the 

homogeneous assembly case. The Pu and MA containing assembly lattice H/HM ratio was varied 

in a range of ±20 % of the reference one. In the case 1, the Pu containing assembly has higher 

than reference H/HM by 20% and the Pu-MA assembly has lower than reference H/HM by 20%, 

while in the case 3, the Pu containing assembly has lower than reference H/HM by 20% and the 

Pu-MA assembly has higher than reference H/HM by 20%. 

 

Table 3.3.I Representative macro heterogeneous cases 

 H/HM MA assembly H/HM Pu assembly 

Case 1 Reference – 20% Reference + 20% 

Case 2 Reference Reference 

Case 3 Reference + 20% Reference – 20% 

 

 

Selected results comparing the homogeneous and heterogeneous options are reported in 

Table 3.3.II. The heterogeneous cases 1 and 3 (Table 3.3.I) are the best performing cases in terms 

of reactivity limited burnup and MA destruction rate respectively. The results show that no 

significant improvement in heterogeneous colorset burnup can be achieved in comparison with 

the homogeneously mixed Pu and MA assembly. Moreover, the rate of MA destruction in the 

heterogeneous configurations is always lower than in the homogeneous assembly under the 

imposed constraints. The lower MA destruction rate is a direct consequence of always lower than 

average colorset power in Pu-MA assembly. 
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Table 3.3.II Efficiency of TRU Destruction: Homogeneous vs. Heterogeneous Option 

 
Burned as % of Initial 

 

 
Kg Burnt / GWeY 

 Case 

TRU Pu MA TRU Pu MA 
Homogeneous 56.3 61.6 23.0 1135 1072 63 
Heterogeneous, (case1) 56.4 62.5 16.1 1134 1090 44 
Heterogeneous, (case2) 55.4 61.5 16.4 1135 1089 46 
Heterogeneous, (case3) 54.3 60.2 16.6 1135 1088 48 

 

 

Although the heterogeneous option is not advantageous in terms of the TRU destruction 

efficiency in comparison with the homogeneous option, as mentioned earlier, the heterogeneous 

core configuration allows different fuel management schemes for different assembly types. An 

appropriate assessment of this option requires neutronic simulation of the whole core and was not 

performed in this study. In principle however, the degree of MA burnup can be improved by 

extending the MA assemblies residence time.  

 

The MA burning assembly can be designed to have a very flat reactivity over the entire 

irradiation time.  Figure 3.3.7 shows an example of criticality versus burnup curves for a number 

of possible compositions of the MA burning assembly. The flat reactivity would minimize the 

power peaking in heterogeneous Pu and Pu-MA assemblies core. However, the homogeneous 

option may be preferable because better transmutation efficiency can be achieved and because Pu 

and MA do not require separation during reprocessing.  
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Figure 3.3.7 Criticality of MA Burning Assembly 

 
 

3.4. Reactivity and Control Characteristics 
 

The results of the reactivity coefficient as well as soluble boron worth calculations are 

summarized in Table 3.4.I. Only the homogeneous FFF option was evaluated since the 

heterogeneous core arrangement does not offer any significant advantages from the TRU 

destruction efficiency perspective.  

 

The FFF assembly has a much lower value of DC than the conventional UO2 fuel case 

although its value is still negative. The presence of Er burnable poison does not improve DC 

notably. However, higher concentrations of Er enriched in Er167 isotope may have a significant 

impact on DC bringing it value close to that of the UO2 fueled core [Kasemeier U. et al., 1998] 

 

The soluble boron worth (BW) is considerably lower for FFF in comparison with All-U fuel, 

however, it is comparable with MOX fuel. The lower BW for the FFF is due to the much harder 
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(than in conventional PWR) neutron spectrum as a consequence of a strong thermal neutrons 

absorption in Pu and MA isotopes.  

 

The MTC and VC are also negative at BOL with the soluble boron concentration of 

1000ppm. Realistic values for MTC and VC can be obtained only with a whole core simulation 

with reasonable burnable poison design and will be discussed in a following chapter.  

 

Table 3.4.I. Reactivity Coefficients and Soluble Boron Worth 

FFF 1st path 
  

No Poison with 2%Er 
MOX All-U 

BOL -0.63 -0.75 -2.73 -2.03 

MOL -0.77 -0.77 -2.87 -2.65 DC 

EOL -1.04 -1.08 -3.03 -3.08 

BOL -21.88 -32.89 -42.48 -11.26 

MOL -32.39 -41.27 -54.36 -39.54 MTC 

EOL -51.75 -61.63 -73.98 -66.29 

BOL -54.07 -80.94 -112.48 -34.76 

MOL -92.02 -114.92 -148.78 -119.03 VC 

EOL -172.04 -197.64 -204.00 -205.98 

BOL -2.34 -2.51 -2.70 -6.11 

MOL -3.42 -3.46 -3.17 -7.09 BW 

EOL -8.02 -8.10 -3.91 -9.51 

 
 

The results obtained do not indicate any significant FFF implementation problem related to 

reactivity feedback coefficients. Compared to a reference PWR, the much smaller soluble boron 

worth, which is common for Pu and MA containing fuels, is likely to impose additional 

requirements on the reactor reactivity control design features. 

 

Another important fuel characteristic which directly affects the feasibility of reactor control 

is the effective delayed neutrons fraction (βeff).  
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Figure 3.4.1 reports the effective delayed neutron fraction for an FFF assembly as a function 

of burnup for the 1st and 2nd TRU burn down path. The βeff values for FFF at the beginning of 

irradiation are lower than 0.003 compared to about 0.007 for the UO2 fueled PWR cores at BOL. 

βeff increases monotonically with burnup due to an increasing contribution to the total power from 

Pu241 fissions and decreasing contribution of Pu239 fissions. Nevertheless, this relatively low 

initial value is likely to impose a major limitation on the feasibility of PWR core with 100% 

loading of TRU in FFF assemblies.   
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Figure 3.4.1 Effective Delayed Neutron Fraction × 103 vs. Burnup 
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3.5. Chapter Summary 
 

In summary, FFF has the best potential for burning TRU in LWRs. For the standard PWR 

fuel lattice and about 10% volume fraction TRU loading the efficiency of TRU destruction is 

close to optimal and slightly exceeds 50% of TRU burned per one path through the reactor core. 

For higher TRU loadings, a fuel lattice with higher than reference H/HM is preferable and also 

results in close to 50% of atomic burnup of TRU per path.  

 

Recycling of the once-through TRU burner is less attractive because of the degradation of Pu 

isotopics and, as a result, lower destruction efficiency (< 30 % atomic burnup at equilibrium), and 

the requirement for higher TRU loadings.  

 

The heterogeneous core concept implying two different assembly types with different 

relative amounts of Pu and MA cannot improve the efficiency of TRU destruction beyond that of 

the homogeneous core with only one type of the assemblies.  
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Chapter 4. Comparison of Fuel Options  
 

This chapter provides a comparison of the available fuel options with respect to their potential 

of burning TRU. Three types of fuel are considered: TRU-UO2 mixed oxide, TRU-ThO2 and 

fertile free fuel. The performance of each of these fuel types is evaluated in the following four 

categories:  

 

- neutronic performance: potential TRU destruction rates and TRU destruction efficiencies  

- feasibility of a practical design: safety and reactivity control, fuel performance at normal 

operation and during accidents 

- potential for long term radiotoxicity reduction in a once-through burndown fuel cycle 

scenario 

- proliferation resistance of the spent fuel 

 

 

4.1. Comparison of TRU Destruction Characteristics 
 

The comparison of neutronic performance is presented in Table 4.1.I. FFF-TRU-1 and FFF-

TRU-2 are the single path and double path TRU burndown FFF options discussed in Chapter 3. 

The Th-Pu and Th-TRU mixed oxide fuel options assume the addition of appropriate amounts of 

natural uranium for the purpose of denaturing the generated U233 below the non-proliferation 

threshold [Forsberg C.W. et al., 1998]. All the results were obtained from the assembly level 2D 

burnup calculations performed with CASMO4 code. The 18 months fuel cycle length was 

conserved in all cases reported in this chapter. 

 

Conventional UO2 MOX fuel has the lowest potential due to the generation of TRU from 

U238. ThO2 fuel has better performance because it is practically U238-free. However, the TRU 

destruction rate is about half that of the fertile free fuel because some of the energy is generated 

from bred U233. As a result, the efficiency of TRU destruction is lower than that of the FFF for 

the same atomic burnup. In the Th-Pu case, TRU are destroyed at lower rate than in Th-TRU case 

because the breeding of U233 in the latter case is less efficient. Th-TRU fuel requires higher TRU 

loading to achieve the same fuel cycle length which results in a harder spectrum which prevents 

efficient U233 breeding and efficient Pu239 destruction. The FFF, as expected, has the best 

neutronic performance with respect to TRU destruction capabilities.  

 



 100

Nevertheless, all fuel types are capable of burning TRU to some extent. Therefore, if repeated 

recycling of TRU is considered, these fuels, in principle, can be part of a combined cycle in 

which generation of TRU in UO2 fuel can be offset by TRU destruction. The sustainable, zero 

TRU generating fuel cycle based on the TRU-UO2 MOX fuel (CORAIL assembly concept [T. A. 

Taiwo et al. 2002]) and TRU-ThO2 fuel [M. Todosow et al. 2002] were shown to be feasible. The 

relation between the amount of TRU fuel and UO2 fuel in a sustainable fuel cycle is defined by 

the relative TRU destruction and generation rates. The higher the destruction rate the less TRU 

fuel is required to achieve sustainability. Thus, deviation of the reactor core characteristics from 

the reference UO2 core will be minimal if the amount of TRU containing fuel in the core is 

minimal.  In addition, a smaller amount of TRU recycling is required if more efficient TRU 

burning can be achieved, minimizing the fuel reprocessing cost. 

 

In a once-through burndown fuel cycle scenario, more efficient and faster TRU destruction 

are also clearly advantageous.  

 

Table 4.1.I. Burndown Scenario: Fuel options comparison. 

  AllU MOX-
Pu 

MOX-
TRU 

Th- 
Pu 

Th- 
TRU 

FFF- 
TRU-1 

FFF- 
TRU-2 

Discharge Burnup, MWd/kg 51 46 52 54 55 541 335 

TRU generation rate, 
kg/GWe-Y +260 -310 -480 -686 -793 -1150 -1150

Initial HM, kg/assembly 450 464 459 428 440 48.4 72.5 

Initial TRU, kg/assembly 0.0 32.5 74.8 42.8 100.5 48.4 72.5 

Discharged TRU, 
kg/assembly 5.5 25.3 63.6 26.8 82.0 21.4 46.7 

Fractional burnup: TRU - 0.22 0.15 0.37 0.18 0.56 0.36 

Fractional burnup: 
TRU+U233 - 0.22 0.15 0.25 0.14 0.56 0.36 

Discharged Pu , kg/assembly 5.0 23.8 55.2 24.5 70.4 17.1 35.7 

Discharged  Pu, kg/GWe-Y 237 152 179 122 173 82 84 
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4.2. Comparison of Proliferation Resistance Characteristics 
 

The proliferation potential of the spent fuel for each fuel cycle scenario is also a concern. The 

isotopic composition of Pu in the spent fuel for the different options considered is presented in 

Table 4.2.I. The proliferation potential of Pu is related to: (1) the fraction of Pu238 in it due to the 

significant Pu238 heat generation which complicates weapons assembly and maintenance, (2) 

fraction of even Pu isotopes (Pu238, Pu240 and Pu242) due to high spontaneous fission source 

which complicates weapons design and may cause a weapon to fizzle, and (3) to some extent, the 

fraction of Pu240 due to a very large resonance integral which slightly increases the critical mass. 

The most desirable weapon material is Pu239 with very low heat generation, low neutron source 

and the highest fission to capture cross-section ratio in the fast spectrum region among all Pu 

isotopes.  

 

As can be observed from the data in Table 4.2.I, spent fuel from any recycled Pu has 

improved proliferation resistance characteristics than initial UO2 spent fuel. MOX UO2 and ThO2 

fuel have similar characteristics while FFF has superior non-proliferation features. It has the 

highest Pu238 fraction among all other options. This is a consequence of two effects. Firstly, 

Pu238 builds up at higher rate through Np237 and Am241-Cm242 chains than in all other cases. 

Secondly, Pu239 burns out faster due to the absence of fertile nuclides which produce more 

Pu239 from U238 (MOX cases) or generate U233 which competes with Pu239 for neutron 

absorption (Th cases). Figure 4.2.1 shows the density change of Pu238 and Pu239 for the FFF-

TRU-1 and Th-TRU cases illustrating the above observations. 

 

Table 4.2.I. Discharge Pu Isotopic Composition.1 

  All U MOX-
Pu 

MOX-
TRU Th-Pu Th-

TRU 
FFF-

TRU-1 
FFF-

TRU-2 

Pu-238 2.8 3.3 8.0 4.2 7.9 17.2 15.7 

Pu-239 50.4 38.2 42.8 30.6 41.7 9.8 19.0 

Pu-240 23.8 30.5 28.9 30.3 30.9 31.4 35.4 

Pu-241 15.1 17.7 13.1 20.8 12.2 19.5 11.3 

Pu-242 8.0 10.3 7.1 14.1 7.3 22.1 18.5 
 

                                                 
1 The burnup is given in Table 4.1.I 
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Figure 4.2.1. Pu238 and Pu239 density change with burnup 

 

4.3. Comparison of Control and Safety Coefficients 
 

Table 4.3.I compares reactivity feedback coefficients, control materials reactivity worth and 

effective delayed neutron fraction for the considered fuel types. 

 

The Doppler coefficient is negative for all fuel types. FFF has the smallest magnitude of DC 

which can be a potential problem in rapid reactivity initiated accidents. This issue is addressed in 

Chapter 7 of this thesis. Pu-ThO2 fuel, on the other hand, has a highly negative Doppler 

coefficient which can impose problems in cooling down accidents and will require increased 

shutdown margin. All other fuel options are comparable to UO2 fuel.  

 

The MTC is a limiting factor only for the TRU-MOX fuel due to the higher loading required 

to achieve the same cycle length as with Pu-MOX and therefore more epithermal spectrum.  
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The reactivity worth of the control materials is reduced for all TRU containing fuels 

compared with UO2 fuel. The soluble boron worth is smaller by about a factor of two for all fuel 

types as compared with UO2. 

 

A small βeff is another common problem of TRU containing fuels. This fact in combination 

with a small Doppler coefficient raises particular concern about the fuel response to RIAs. 

 

Table 4.3.I. Safety and Reactivity Control Characteristics  

(2D assembly based depletion calculations). 

DC, pcm/K MTC, pcm/K BW, pcm/ppm βeff × 103 

 
BOL EOL* BOL EOL* BOL EOL* BOL EOL* 

All – U -2.20 -3.33 -22.2 -78.8 -4.80 -6.23 7.2 4.8 
Pu – MOX -2.92 -3.20 -40.6 -73.8 -1.96 -2.76 4.0 4.2 
TRU – MOX -2.19 -2.32 -0.86 +0.40 -1.64 -1.96 3.4 3.7 
Pu – Th -4.32 -5.04 -49.1 -73.5 -1.95 -3.02 3.1 2.8 
TRU – Th -2.98 -3.15 -18.5 -23.4 -1.05 -1.24 2.6 2.5 
FFF - TRU - 1 -0.63 -1.04 -21.9 -51.8 -2.34 -8.02 2.7 3.9 
FFF - TRU - 2 -0.64 -0.93 -15.6 -42.3 -2.00 -3.38 2.8 3.3 
* EOL – end of life (or end of fuel irradiation, Bdischarge = 1.5 × B1) 

 

 

4.4. Comparison of Spent Fuel Characteristics 
 

Finally, the fuel options considered were evaluated in terms of their repository performance 

characteristics in case of a once-through burndown scenario. The decay heat and radiotoxicity of 

the spent fuel were calculated for a period of time between 0 and 106 years after discharge from 

the reactor. The resulting values were normalized per total energy generated by this TRU-burning 

fuel including the energy from the recycled UO2 fuel that generated these TRU. ORIGEN2.2 

computer code [RSICC, 2002] was used for these calculations. In addition, the ORIGEN2.2 

library was updated with radiotoxicity coefficient in units Sv/Bq [ICRP, 1995]. 

 

The results of these calculations are presented in Figures 4.4.1 and 4.4.2. The results indicate 

that the once-through burndown option has no significant impact on waste characteristics in the 
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short or in the long term regardless of the TRU burning fuel type. As a result, multi-recycling of 

TRU is essential for appreciable improvement in the waste characteristics.  
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Figure 4.4.1. Normalized Ingestion Radiotoxicity 
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Figure 4.4.2. Normalized Decay Heat Generation 
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4.5. Summary 
 

In summary, the main advantage of MOX-TRU fuel option is the available industrial scale 

experience. It is an existing and in many aspects perfected technology although its TRU burning 

potential is limited.  

 

ThO2-TRU fuel has better neutronic performance and it is a very robust fuel and waste form 

which can make it the most attractive option for the once-through burndown cycle. However, the 

small βeff is a negative feature which must be evaluated in a comprehensive accident analysis. 

 

The FFF fuel has superior TRU destruction capabilities with acceptable fuel performance 

and core design features which potentially make it the best choice for the transmutation of TRU 

in LWRs provided sufficient research and development effort is undertaken in the fuel design 

area. 

 

Finally, comparison of the burndown cycle scenario waste characteristics has shown that 

none of the considered fuel options is capable of reducing the long term radiotoxicity and decay 

heat of the spent fuel to a considerable extent. Therefore, it is concluded that the only way to 

reduce substantially the impact of the nuclear fuel cycle on the environment is to keep all the long 

lived radioactive isotopes within the cycle and only allow the disposal of short lived fission 

products. The feasibility of such a fuel cycle is the main subject of subsequent chapters.  
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Chapter 5. A Sustainable PWR fuel cycle 
 

5.1. The CONFU Assembly Concept 
 

In this chapter, an innovative fuel assembly concept that would allow complete recycling of 

the TRU of a PWR fuel cycle is evaluated. This fuel assembly concept suggests displacing some 

of the UO2 fuel pins in conventional PWR assembly with Fertile Free Fuel (FFF) pins (Figure 

5.1.1). This concept is denoted as the Combined Non-fertile and Uranium (CONFU) assembly. 

Each time such a CONFU assembly is discharged from the core, the residual TRU from FFF pins 

and the TRU generated in UO2 pins are separated and recycled together into a new CONFU 

assembly with “fresh” 4.2% enriched uranium pins and FFF pins that include the TRU from the 

previous cycle. 

 

 

Figure 5.1.1. CONFU Assembly Configuration 

 

The focus of this chapter is on evaluation of the CONFU assembly concept with respect to 

its ability to achieve an equilibrium state with zero net generation of TRU and a constant fuel 

cycle length. The effect of multi-recycling on fuel cycle length, TRU isotopic composition, and 

reactivity coefficients is evaluated. Finally, some waste stream characteristics of the CONFU 

assembly based fuel cycle are presented and compared with those of the conventional UO2 once-

through fuel cycle.  

Guide tube 

Standard UO2 Pins 

FFF Pins 
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The major design constraints applied in this investigation can be summarized as follows. 

- TRU volume fraction in the fuel is maintained below 20 v/o 

- the local moderator to fuel volume ratio is varied within ± 40% of the reference UO2 fuel 

value  

- assembly pin power peaking is maintained below 1.25 throughout the fuel irradiation  

 

 

5.2. Preliminary Evaluation 
 

The number of FFF pins, initial loading of TRU and locations of FFF pins in the assembly 

have been adjusted in order to achieve an equilibrium state with balanced TRU generation and 

destruction. The TRU isotopic composition from the reprocessed UO2 spent fuel used in this 

analysis was identical to that used for the evaluation of the burndown scenario (Table 3.3.I, 

Chapter 3). The results of the preliminary evaluation show that between 48 and 60 FFF pins per 

reference 17×17 PWR fuel assembly is sufficient to attain an equilibrium TRU balance when 

keeping the TRU volume fraction in the fuel micro particles between 33 and 66 v/o (or between 

10 and 20 v/o of the total fuel pellet volume). 

 

The location of the FFF pins has a significant effect on power in the FFF pins and, therefore, 

affects TRU destruction efficiency.  The FFF pins generally have higher power when surrounded 

by UO2 pins or have extra coolant (guide tube) in their vicinity. For such configurations, the 

power in the FFF pins is too high to satisfy the thermal-hydraulic limits.  

 

Figure 5.2.1 shows several examples of the BOL pin-power maps for candidate CONFU 

assembly configurations and illustrates the effect of FFF pins location on their power. Grouping 

the FFF pins together and adding burnable poison (natural Er2O3) were explored as possible 

strategies to reduce pin peak power to acceptable values. The power map shown in Figure 5.2.1 at 

the right bottom corner (Case4) represents a possible CONFU assembly configuration with a 

reasonable power peaking factor of 1.25. In this particular case, 2 v/o of Er2O3 was added to the 

FFF pins.  The power map at the left bottom corner in Figure 5.2.1 (Case 3) represents another 

possible CONFU assembly configuration without employing any burnable poison.  

 

DNBR calculations were performed to ensure the feasibility of CONFU assembly thermal-

hydraulic design. Detailed single assembly modeling was done using the VIPRE-01 [Cuta et al., 
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1985] sub-channel analysis code which is widely used for evaluation of PWR thermal-hydraulics 

performance (Appendix A). The following assumptions were made to ensure conservative results: 

18% core overpower, 294.7 ºC inlet coolant temperature (i.e. 2ºC above nominal values), 1.56 

assembly to core average power peak, “chopped” cosine axial power profile with peak to average 

ratio of 1.55. 

 

The MDNBR value obtained for the un-poisoned CONFU assembly configuration (Case 3 in 

Figure 5.2.1) using W-3L correlation with l-grids is 1.721 which indicates that the concept can 

potentially have a sufficient thermal margin. 

 

Consequently, Case 3 and Case 4 shown in Figure 5.2.1 were chosen for further analysis as 

representative candidate configurations of un-poisoned and poisoned CONFU assemblies with 

acceptable thermal-hydraulic performance. More detailed discussion of thermal hydraulic 

performance is presented in Chapter 6. 

 

Up to 20 subsequent cycles were modeled to assess the possibility of a sustainable scenario 

from the net TRU balance viewpoint. 7, 10 and 20 years of decay time intervals were assumed 

between the fuel discharge and its next loading to the reactor core to assess the effect of short 

lived isotopes decay on the neutronic performance and on fuel reprocessing and handling between 

recycles. The number of FFF pins per assembly and the amount of TRU loaded each cycle was 

conserved. In this case, the convergence of fuel cycle length to some constant value and 

stabilization of TRU composition would be the primary indicators of approaching an equilibrium 

state.  

 

The presence of burnable poison in the FFF pins significantly impairs the efficiency of TRU 

destruction (Table 5.2.I) due to the lower power in FFF pins and competition for neutron 

absorption between TRU nuclides and the burnable poison.  Therefore, a higher initial TRU 

loading would be required for the CONFU assembly with burnable poison to achieve equilibrium. 

Tables 5.2.II and 5.2.III summarize the cycle-by-cycle fuel materials flows for the un-poisoned 

and poisoned CONFU assemblies respectively with 7 years of decay between reloadings.  
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Figure 5.2.1. CONFU Assembly BOL Pin Power Distribution: Selected Design Options and 

Results 

 

 

Table 5.2.I. TRU Destruction Efficiency for FFF Pins in CONFU Assembly (%) 

Recycle Stage 1 2 3 4 5 

TRU Burnup without BP 50.78 40.13 37.32 36.21 34.63 

TRU Burnup with BP 32.62 30.60 27.94 26.96 26.60 
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The results of the calculations presented above prove that a sustainable fuel cycle design is 

feasible. Table 5.2.II and Table 5.2.III show clearly that the TRU generation balance and the fuel 

cycle length are converging to constant values for both poisoned and un-poisoned CONFU 

assemblies.  

 

The effect of different inter-recycling (or cooling) times is illustrated in Figure 5.2.2. A 

decay period of 20 years noticeably (up to 10%) shortens the equilibrium fuel cycle length 

because of the decay of the important fissile Pu241 isotope to Am241 with a 14.4 year half-life. 

Am241 is difficult to transmute because following the neutron capture the daughter nuclide 

Am242 rapidly decays with high probability to Cm242 and then to Pu238. The α-decay of Cm242 

results in He accumulation in the fuel and may aggravate fuel pin pressurization problem due to 

release of the helium gas. However, long cooling times before fuel reprocessing were found to be 

beneficial for handling the fuel because of the partial decay of Cf252 and Cm244 isotopes and 

therefore a substantial reduction in the spontaneous fission neutron dose during fuel reprocessing 

and fabrication. The cooling time has a limited impact on the TRU net generation as shown in 

Figure 5.2.3. 

 

Figures 5.2.4 through 5.2.7 present the evolution of TRU isotopes with the number of TRU 

recycle stages. Each of the isotope concentrations shown in the Figures 5.2.4 through 5.2.7 is 

normalized per maximum value of its concentration between 1st and 20th recycle. The TRU 

isotopic vector composition saturates completely after about 20 recycles as far as most 

neutronically important isotopes are concerned.  However, the buildup of some Cm (246,247,248) 

and Cf (249,250,251,252) isotopes require significantly greater number of recycles to saturate 

completely. As mentioned earlier, the importance of these isotopes buildup lays in the fact that 

even their minute amounts can significantly complicate the fuel handling and reprocessing due to 

very high spontaneous fission (SF) neutron source. The buildup of Np236 isotope was observed 

due to an increasing fraction of U236 in the recycled uranium traces. 99.995% separation 

efficiency was assumed for the separation of TRU from UO2 fuel. No U-TRU separation was 

assumed for the reprocessed fertile free fuel.    
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Table 5.2.II. Un-Poisoned CONFU Assembly (Case 3): Materials Flow Summary (per 1 GWeY) 

 Recycle Stage 

 1 2 3 4 5 6 

Total HM Loaded, kg 16,149 18,698 19,330 19,470 19,538 19,582 

Uranium Loaded, kg 15,578 18,037 18,647 18,781 18,847 18,889 

TRU Loaded to FFF pins, kg 580 671 694 699 701 703 

TRU Discharged from UO2 pins, kg 209 227 231 231 228 230 

TRU Discharged from FFF pins, kg 285 402 435 454 458 457 

TRU Discharged Total, kg 495 629 665 684 685 687 

Net TRU generation, kg -85.1 -42.4 -28.7 -14.5 -15.8 -16.0 

Discharge Burnup, MWd/kg 68.3 59.0 57.1 56.7 56.5 56.3 

Discharge Burnup, EFPD 1428 1233 1193 1184 1180 1177 
 

Table 5.2.III. Poisoned CONFU Assembly (Case 3): Materials Flow Summary (per 1 GWeY) 

 Recycle Stage 

 1 2 3 4 5 

Total HM Loaded, kg 17,996 19,486 20,539 20,916 21,019

Uranium Loaded, kg 17,334 18,770 19,784 20,147 20,247

TRU Loaded to FFF pins, kg 671 727 766 780 784

TRU Discharged from UO2 pins, kg 218 232 239 241 242

TRU Discharged from FFF pins, kg 453 505 552 570 576

TRU Discharged Total, kg 671 737 791 811 817

Net TRU generation, kg -0.8 9.7 24.8 30.8 33.0

Discharge Burnup, MWD/kg 61.3 56.6 53.7 52.7 52.5

Discharge Burnup, EFPD 1279 1231 1168 1147 1142
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Figure 5.2.2. Fuel cycle length 
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Figure 5.2.3. Net TRU generation  
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Figure 5.2.4. Np isotopes evolution with the number of TRU recycles 
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Figure 5.2.5. Pu isotopes evolution with the number of TRU recycles 
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Figure 5.2.6. Am isotopes evolution with the number of TRU recycles 
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Figure 5.2.7. Cm and Cf isotopes evolution with the number of TRU recycles 
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It should also be noted that the equilibrium fuel cycle length is shorter than that of the 

reference 4.2% enriched UO2 fuel by up to 20% for all the cases with different cooling down 

periods. As a result, higher enrichments will be required for the UO2 pins in the CONFU 

assembly with equilibrium TRU isotopic vector in order to match the cycle length of the reference 

UO2 fuel. Degradation of the TRU isotopic composition results not only in a shorter fuel cycle 

length but also lower power in the fertile free pins throughout the cycle and therefore lower TRU 

destruction efficiency. In a standard PWR fuel lattice, an FFF pin with equilibrium TRU isotopic 

mixture is subcritical even at the beginning of irradiation as can be observed from Figure 5.2.8.  

 

The reactivity of FFF pins can be increased by 

- increasing TRU loading in FFF pins and reducing their number. This will increase the 

number of UO2 pins per assembly and therefore increase the fraction of the more reactive 

TRU from UO2 pins in the TRU mixture to be loaded into FFF pins in the subsequent 

cycle 

- improving neutron moderation (higher Vm/Vf) 

- increasing the interface area between FFF and UO2 pins since the thermal neutron flux is 

much higher in the UO2 region and can be shared more effectively with FFF pins. 

 

All three mentioned strategies have been explored. The TRU loading has a practical limit of 

20v/o defined by the fuel material performance under irradiation [Long Y. et al., 2003]. 

Therefore, significant reduction in the number of FFF pins per assembly cannot be realized. If the 

number of FFF pins is too small, the TRU destruction will be too small to match TRU generation, 

and a balance cannot be maintained. In addition, reduction of the number of FFF pins leads to a 

greater power imbalance between UO2 and FFF pins.  

 

Changing the lattice parameters is also undesirable because increasing the coolant volume 

while conserving the core volume and total power will increase the specific power density and 

decrease the fuel to coolant heat transfer area, unless unconventional fuel geometries are adopted.  

Additionally, the equilibrium TRU mixture remains subcritical for most of its core residence time 

even if Vm/Vf is increased from 1.67 to 7.8. Figure 5.2.9 shows the results of a single FFF pin cell 

burnup calculations with different TRU loading. The fuel pin with the first time recycled TRU in 

FFF pin with only 10 v/o loading has k-inf greater than one almost throughout the entire in-core 

residence time.  The FFF pins with equilibrium TRU vector, however, runs out of reactivity in a 

fraction of the first cycle. 
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The strategy of increasing the FFF-UO2 pins interface area has been found to be more 

effective. Some optimization in the location of FFF pins within the CONFU assembly to obtain 

acceptable power peaking and satisfy thermal hydraulic design requirements resulted in the 

configuration presented in Figure 5.2.10. These improvements in the equilibrium CONFU 

assembly design do not result in an increase in the fuel cycle length sufficient enough to match 

the reference UO2 fuel cycle length. The enrichment of UO2 pins in the equilibrium CONFU 

assembly has to be increased to 5% to achieve discharge burnup corresponding to that of the 

reference UO2 fuel (1350 EFPD).  The major characteristics of the equilibrium CONFU assembly 

are summarized in Table 5.2.IV. The fuel cycle length, net TRU generation, and TRU 

composition (with the exception of the above mentioned isotopes of Cm and Cf) remain constant 

from recycle to recycle. Thus, this assembly design was adopted for 3D core calculations, and for 

evaluation of the thermal hydraulic margins and economic analysis.  The results of these analyses 

are presented in subsequent chapters of this thesis. 

 

Table 5.2.IV Equilibrium CONFU Assembly Data 

Total HM per assembly, kg 393 

Uranium per assembly, kg 375 

Uranium Enrichment, % 5.0 

TRU Loaded to FFF pins, kg 17.54 

TRU volume fraction in FFF pins, v/o 20.0 

TRU Discharged from UO2 pins, kg 5.20 

TRU Discharged from FFF pins, kg 12.23 

TRU Discharged Total, kg 17.42 

TRU Burned in FFF pins, % 30.30 

Net TRU generation, kg -0.12 

BU3, MWD/kg 60.65 

BU3, EFPD 1348 
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Figure 5.2.8. Moderation effect on criticality of FFF unit cell at BOL with equilibrium TRU 

mixture 
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Figure 5.2.9. Burnup potential of well moderated FFF unit cell with equilibrium TRU 

mixture  



 119

 

 
 
 
      

Figure 5.2.10. BOL and EOL pin power distribution for COFNFU assembly containing 

equilibrium TRU mixture 

 

5.3. Waste Characteristics of the Sustainable Fuel Cycle 
 

The processes of TRU chemical separation and fuel fabrication are not perfect and have 

some limited efficiency. Therefore, complete TRU recycling is impossible because some TRU 

will inevitably have to be discharged to the environment in the waste stream of separation and 

fabrication processes. Additional calculations were performed to quantify the effect of TRU 

losses on repository load and compare it with conventional UO2 spent fuel characteristics. The 

total TRU losses during each recycle stage were assumed to be 0.1%. For conservatism, it was 

assumed that all the losses occur at one time point of 5 years after discharge. The waste stream 

characteristics were analyzed for the time interval between 0 and 1M years after separation. 

 

The results are reported in Figures 5.3.1 through 5.3.4. All the data summarized in Figures 

5.3.1 - 5.3.4 are normalized per cycle energy in GWe-Years. The results indicate that the activity, 

decay heat load and radiotoxicity due to TRU of the waste streams from the CONFU type fuel are 

up to 3 orders of magnitude lower than the same characteristics of the conventional once through 

UO2 fuel cycle for the entire time interval considered. The magnitude of this reduction is a direct 

consequence of the efficiency of TRU separation. Although 0.1% of reprocessing losses may be 
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an ambitious assumption for the existing practice, the efficiency of separation is expected to 

improve with accumulation of industrial experience and extensive R&D effort provided that the 

closed fuel cycle option is actively pursued. The efficiency of separation on the order of 0.1% is 

considered to be achievable by reprocessing experts using technologies developed under the 

Advanced Fuel Cycle Initiative (AFCI) program [DOE/NE, 2003].  

 

Figure 5.3.5 compares the UO2 and CONFU fuel cycles’ radiotoxicity relative to that of the 

equivalent amount of natural uranium ore. The CONFU cycle radiotoxicity decreases to the level 

of original uranium ore in about 1000 years period, which complies with the transmutation goals 

[Van Tuyle G.J., 2001]. 

 

It must also be noted that the data for environmental hazard characteristics reported here was 

obtained without any additional assumptions regarding the transport of radioactive nuclides. 

Namely, it was assumed that all the radioactive nuclides in the repository are immediately 

exposed to the environment and all engineering and geological barriers are ignored. In practice, 

some of the nuclides represent greater radiological concern in the long term not just because of 

the higher radiotoxicity but mainly due to their enhanced solubility in water and therefore greater 

mobility in the environment.  Long lived fission product, in particular, Tc99 and I129 represent 

from 0.04% to 0.1% of total spent fuel radiotoxicity during the period between 10 thousand and 1 

million years. However, these nuclides are major contributors to the collective dose from the 

repository in the same period due to their high mobility in the environment. Therefore, they must 

be also recycled in order to meet the collective dose reduction goal [Van Tuyle G.J. 2001]. The 

feasibility of Tc99 and I129 transmutation in various reactor types and the fuel cycle implications 

of Tc and I recycling are discussed in details in [Brusselaers P. et al., 1996].  

Figure 5.3.6 compares the contribution of fission products to the waste stream decay heat 

load of the once through UO2 cycle and closed CONFU cycle. The short term heat generation is 

dominated by the short lived fission products (SLFP). However, the total heat load decreases 

faster for the CONFU case because of the smaller contribution of the actinides. Figure 5.3.7 

shows the difference in percent between fission products heat generation for the UO2 and CONFU 

cases. The heat load level is up to 20% higher for the CONFU fuel case during the on-site cooling 

down period between 0 and about 5 years after discharge. However, the decay heat per energy 

produced in the CONFU cycle is somewhat lower during the period when the reprocessing is 

likely to take place. The decay heat per fuel assembly is always lower for the CONFU fuel 

because of the shorter equilibrium cycle as a result of TRU isotopics degradation. 
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Figure 5.3.1. TRU losses from CONFU assembly recycling process: Activity 
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Figure 5.3.2. TRU losses from CONFU assembly recycling process: Heat load 
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Figure 5.3.3. TRU losses from CONFU assembly recycling process: Ingestion radiotoxicity 
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Figure 5.3.4. TRU losses from CONFU assembly recycling process: Total SF and (α,n) 

neutron source 
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Figure 5.3.5. CONFU fuel cycle radiotoxicity relative to natural uranium ore 
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Figure 5.3.6. Fission products contribution to decay heat generation 
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Figure 5.3.7. CONFU fuel cycle fission products decay heat relative to UO2 cycle,  

100% × (PCONFU – PUO2) / PUO2 

 

5.4. Reactivity and Control Characteristics 
 

The CONFU assembly neutronic reactivity feedback coefficients should be close to the all 

UO2 assembly. However, both the UO2 enrichment and the addition of FFF pins may lead to a 

reduction in the presence of U238, thereby reducing the total resonance absorption in fertile 

nuclides. Therefore, the feedback coefficients need to be evaluated in order to assess the 

feasibility of retrofitting this concept into the current generation of PWRs. As in the previous 

sections of this thesis, the reactivity coefficients were calculated on an assembly basis at three 

time points – BOL, MOL and EOL with soluble boron concentrations of 1000ppm, 500ppm and 

0ppm at BOL, MOL and EOL respectively. The MOX and reference all-U assembly reactivity 

coefficients were also calculated on the same basis for comparison purposes. 

 

Selected results of the CONFU assembly reactivity coefficients and soluble boron worth 

(BW) calculations are reported in Table 5.4.I. The results show that all the coefficients as well as 
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BW fluctuate very slightly for different recycle stages. The DC tends to be more negative with 

increasing number of TRU recycles. Here, natural Er oxide was considered as a burnable poison 

to assess its effect on DC. The use of Er somewhat improves the DC of the CONFU fuel but the 

magnitude of this effect is small. Admixture of 2v/o of Er2O3 to FFF pins increases the absolute 

value of DC by up to 6%.  In general, all of the CONFU assembly reactivity coefficients and 

soluble BW differ only slightly from the reference all-U fuel, which indicates a good potential 

compatibility of the CONFU fuel concept with conventional PWR systems.  

 

Table 5.4.I. CONFU Assembly Reactivity Coefficients Summary 

   No Poison, Recycle Stages With Poison, Recycle Stages 

 MOX All-U 1 3 5 1 3 5 

BOL -2.73 -2.03 -1.77 -1.90 -1.90 -1.88 -1.95 -1.98

MOL -2.87 -2.65 -2.01 -2.17 -2.19 -2.11 -2.19 -2.23DC 

EOL -3.03 -3.08 -2.30 -2.41 -2.45 -2.33 -2.41 -2.44

BOL -42.48 -11.26 -13.33 -15.26 -15.64 -17.01 -17.62 -18.06

MOL -54.36 -39.54 -32.96 -36.03 -36.80 -37.20 -38.46 -38.79MTC 

EOL -73.98 -66.29 -55.08 -57.40 -58.25 -58.46 -59.02 -59.66

BOL -112.4 -34.76 -38.59 -44.37 -45.34 -47.95 -49.92 -50.88

MOL -148.8 -119.0 -96.35 -106.0 -107.9 -107.4 -111.5 -113.3VC 

EOL -204.0 -205.9 -161.2 -172.9 -175.5 -172.1 -176.9 -178.9

BOL -2.70 -6.11 -5.16 -5.51 -5.54 -5.41 -5.64 -5.70

MOL -3.17 -7.09 -5.61 -6.02 -6.07 -5.81 -6.08 -6.13BW 

EOL -3.91 -9.51 -6.98 -7.45 -7.57 -7.10 -7.43 -7.53

 

 

The harder than UO2 neutron spectrum and considerably lower BW in the Pu-MOX case are 

likely to result in higher soluble boron concentration requirements than assumed in this analysis. 

Consequently, MTC and VC in the MOX case may have less negative values than the current 

estimation. 
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An evaluation of the effective delayed neutron fraction was performed in order to assess the effect 

of buildup of Cm isotopes with particularly small βeff with the number of recycle stages.  The 

results are shown in Figure 5.4.1. The CONFU assembly βeff values at the beginning of fuel 

irradiation are moderately lower than corresponding values for the reference UO2 assembly 

because of Pu239 fissions in the fertile free pins. This difference disappears with burnup.  

 

The effect of the small βeff for Cm isotopes was not observed due to the very small amounts 

of Cm in the fuel and thus, negligible contribution to total assembly power. 
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Figure 5.4.1. Effective Delayed Neutron Fraction × 103 vs. Burnup for CONFU Assembly 
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5.5.  Chapter Summary  
 

In this chapter, the potential of fertile free fuel concepts to design a sustainable fuel cycle for 

conventional PWRs with complete TRU recycling was evaluated through 2D assembly level 

depletion calculations. Evaluation of the sustainable cycle with zero net generation of TRU was 

based on the Combined Non-Fertile and Uranium (CONFU) assembly concept where some of the 

uranium fuel pins are replaced with FFF pins destined for destruction of TRU generated in the 

previous cycle. The results indicate that the CONFU type assembly can be designed to achieve an 

equilibrium state in terms of net generation of TRU and at the same time have acceptable 

reactivity control characteristics. Acceptable thermal-hydraulic performance of the CONFU core 

is expected based on evaluation of local pin power peaking.  

 

Degradation of TRU isotopic vector with the number of recycles reduces the fuel cycle 

length of CONFU with equilibrium TRU mixture by up to 20% in comparison with the reference 

4.2% enriched UO2 fuel cycle length. The enrichment of UO2 pins in the equilibrium CONFU 

assembly must be increased to about 5% in order to match the fuel cycle length of the reference 

4.2% enriched UO2 fuel. The fact that the mass of U235 in the equilibrium CONFU assembly 

with 5% enriched UO2 pins is still lower than the mass of U235 in 4.2% enriched all UO2 

assembly may partially offset the increased cost of enrichment required for the CONFU fuel 

cycle. This effect is evaluated in the economics discussion of Chapter 9. 

 

The impact on the environment of the CONFU based fuel cycle with complete recycling of 

TRU is limited by the materials losses during reprocessing. The CONFU based fuel cycle waste 

stream may have up to 3 orders of magnitude lower TRU values than the once-through All-U fuel 

cycle. Radiotoxicity of the sustainable fuel cycle waste stream becomes comparable to 

radiotoxicity of the original equivalent amount of natural uranium ore at about 1000 years – well 

within the lifetime of current waste disposal containers. 

 

The buildup of some Cm and Cf isotopes that require a large number of recycles to saturate 

in LWR neutron spectra imposes potential limits on the number of TRU recycling stages due to a 

large spontaneous fission neutron source which can significantly complicate spent fuel handling, 

separation and fabrication procedures. Longer cooling time between recycles may be beneficial 

for reducing the SF neutron source. However, decay of valuable fissile isotope Pu241 shortens the 
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fuel cycle length. Therefore, higher make up UO2 enrichment will be required if longer cooling 

times are employed. 

 

The effect of Cm buildup on the effective delayed neutron fraction is negligible. The βeff 

values for the CONFU assembly are comparable with the reference PWR UO2 fuel. 
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Chapter 6. A Sustainable Fuel Cycle: Core Design Feasibility 
 
 

6.1. 3-Dimentional Core Neutronic Analysis 
 

The results of the analysis presented in the Chapter 5 were obtained from 2D fuel assembly 

level neutronic calculations. In practice, the neutronic characteristics of the whole core may differ 

significantly from the 2D assembly based results. It is difficult or practically impossible to 

extrapolate certain neutronic values obtained from the 2D calculations to the behavior of the 

whole core.  The presence of fuel assemblies of different types or with different burnup levels, the 

presence of the soluble boron in the coolant (with constantly changing concentration with burnup) 

and the neutron leakage from the finite core dimensions are difficult to reflect accurately in the 

assembly based simulations.   

 

In the proposed fuel cycle concept, significant amounts of TRU in the fertile free fuel matrix 

are assumed to be loaded into the core together with conventional UO2 fuel. This addition results 

in significant changes in reactivity feedback coefficients, reactivity worth of control materials, 

reactor kinetics parameters, and power peaking factors. Therefore, 3-dimensional whole core 

simulation is required to demonstrate the feasibility of TRU recycling in PWRs. At the same time 

however, a detailed core design and evaluation at a level needed for licensing is beyond the scope 

of this thesis. Therefore, certain simplifying assumptions are made in the present designs so that 

the core performance parameters and characteristics are not to be judged on an absolute scale. 

The magnitude of the core design characteristics presented in this section relative to each other 

and to the reference UO2 core should serve as the primary indicators of feasibility or measures of 

particular advantages of the suggested designs. 

 

The following cases were chosen for 3D core analysis to cover a wide range of possible 

options: 

- The reference 4.2% enriched UO2 fueled core.  

- A PWR core fully loaded with fertile free fuel containing TRU from reprocessed LWR 

fuel. 

- A PWR core loaded with CONFU assemblies with first time recycled TRU from spent 

LWR fuel. 

- A PWR core loaded with CONFU assemblies with equilibrium composition of TRU.  
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In addition, heterogeneous cores having a full scale UO2-fueled assemblies and fertile free 

fueled assemblies (macro-heterogeneous core) are explored as an alternative option for the 

CONFU (micro-heterogeneous) assembly core. The separation of fertile free fuel pins from the 

UO2 pin into different assemblies allows additional flexibility for the core design by choosing 

different fuel management scheme for the two assembly types. Longer than three cycles residence 

time for the fertile free fuel assemblies can allow deeper TRU burnup although it may challenge 

the fuel and cladding materials limits under irradiation.  

 

The macro heterogeneous cases considered are: 

- A PWR core loaded with UO2 and fertile free fuel assemblies with first time recycled 

TRU from spent LWR fuel (case 5) 

- A PWR core loaded with UO2 and fertile free fuel assemblies with equilibrium TRU 

composition (case 6) 

- A macro heterogeneous equilibrium TRU loaded core where FFF assemblies are 

managed in 4 and 5  batches while UO2 assemblies are reloaded in 3 batches (cases 7 and 

8 respectively) 

 

Table 6.1.I presents nomenclature and brief description of the calculated cases mentioned above. 

Table 6.1.I List of calculated 3D core simulation cases 

 Designation in 
the text Case description 

Case 1 UO2 Reference UO2 core 

Case 2 FFF Fully FFF loaded core with 1st time recycled TRU 

Case 3 CONFU-1 CONFU assembly core with 1st time recycled TRU 

Case 4 CONFU-E CONFU assembly core with equilibrium TRU composition 

Case 5 M-CONFU-1 Macro-heterogeneous CONFU core with 1st time recycled TRU 

Case 6 M-CONFU-E Macro-heterogeneous CONFU core with equilibrium TRU  

Case 7 M-CONFU-E4 Macro-het. CONFU core with eq. TRU – 4batch management for FFF 

Case 8 M-CONFU-E5 Macro-het. CONFU core with eq. TRU – 5batch management for FFF 
  

A number of design constraints were set to ensure that innovative fuel can be retrofit into existing 

PWRs without any major changes in the reactor technology, equipment or operating practices. 

- The 18 months fuel cycle length corresponding to 450 EFPD per cycle was maintained 

the same for all calculated cases. 
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- Core power density (104.5 W/cm3) is identical to UO2 reference core  

- 3 batch fuel management (except for the last two macro heterogeneous cases mentioned 

above) 

- Overall nuclear peaking factors are comparable to UO2 case 

- Negative reactivity coefficients at HFP condition throughout the core lifetime 

- Critical boron concentration should not exceed 2000 ppm at any time during the cycle 

- TRU loading in FFF is limited to 20 v/o due to the fuel performance constraints 

 

The main objectives of the 3D whole core simulation are 

- to ensure that the FFF component of the core can achieve a burnup level sufficient to 

maintain zero net TRU generation balance as predicted by the 2D analysis 

- to obtain 3-dimensional core power distribution with acceptable peaking factors to be 

used in thermal hydraulic analysis 

- to obtain dynamic core parameters, reactivity coefficients and control rod worths to be 

used in reactivity initiated accident analysis 

 

 

6.2. Local Pin Power Distribution Prediction Benchmark 
 

The local power peaking factors have a direct impact on thermal hydraulic design and can be 

obtained through 3D core simulation. The CASMO-SIMULATE code package is widely used by 

the nuclear industry for analysis of conventional UO2 cores and to some extent for MOX fueled 

cores. SIMULATE3, a 3D nodal diffusion code, includes a pin-power reconstruction module that 

can predict 3-dimensional pin power distribution in the UO2 core with exceptional accuracy (of 

less than 1%) that can be used in thermal hydraulic and licensing calculations [K.R.Rempe, et al. 

1989]. In the case of MOX fuel or FFF with the large loading of Pu or TRU, high thermal flux 

gradients may exist near the boundary between assemblies of different types so that the accuracy 

of pin power reconstruction accuracy may not be sufficient.  

 

A set of simple benchmark cases were carried out in order to evaluate the capabilities of the 

available academic version of SIMULATE3 to reconstruct pin power distribution in the CONFU 

assembly and in the full FFF assembly.  
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First, the single CONFU assembly pin power distribution predicted by CASMO4 was 

compared to the Monte Carlo – ORIGEN2.2 (MCODE) results for fresh and depleted CONFU 

assemblies. In the MCODE calculation, each fuel pin was modeled individually to obtain correct 

EOL pin power distribution within an assembly. In the next stage, a 2-dimensional colorset of 4 

CONFU fuel assemblies with different burnup as presented in Figure 6.2.1 (case B-2) was 

calculated with CASMO4 and the results were compared to those obtained with SIMULATE3. 

Additionally, a third set of calculations was performed for the 2x2 colorset of whole assemblies 

of UO2 and FFF pins. The setup of three benchmark cases is schematically presented in Figure 

6.2.1. 

 

 

Figure 6.2.1. Schematic views of pin power distribution benchmark cases 

 

The results of the three benchmark cases are presented in Figures 6.2.2 through 6.2.4. The 

data presented in Figure 6.2.2 is a direct fission heating (without γ-smearing) pin power 

distribution. γ-smearing was not considered because of the limited availability of MNCP photon 

interaction cross-section libraries for actinides with Z higher than 94. The agreement between pin 
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power distribution prediction of CASMO4 and MCODE is within 3% difference, which is 

sufficient for the purposes of this study.  

 

The SIMULATE3 pin power reconstruction option also produces reasonable accuracy for the 

CONFU assembly core (Figure 6.2.3). For the heterogeneous FFF and UO2 core (Figure 6.2.4), 

however, the discrepancy between CASMO4 and SIMULATE3 pin power distribution prediction 

is greater due to the large local flux gradient between assemblies of different types. In addition, in 

3D calculations performed for cores fully or partially loaded with FFF assemblies, the use of pin 

power reconstruction option caused severe convergence problems in the SIMULATE3 routines. 

Therefore, it was concluded that for the thermal hydraulic analysis of FFF assemblies loaded 

core, the radial and axial nodal power distribution obtained from the SIMULATE will be used in 

combination with CASMO4 pin power distribution with corresponding assembly burnup and 

additional 10% power increase to account for the introduced uncertainty due to the limitation of 

the calculations. 

 
The burnup dependant cross-section libraries are generated by CASMO and then used by 

SIMULATE for solving 3D nodal diffusion problem. The cross-sections are generated on a single 

assembly basis for each fuel type without accounting for the influence of different neutron spectra 

in the neighboring assemblies. Typically, the magnitude of this effect is small because of the 

relatively large size of the fuel assemblies – much larger than the neutron migration length. If, 

however, the differences in spectrum are substantial and the migration length is larger than for the 

typical UO2 lattices due to the harder spectrum, the effect can be more pronounced. Therefore, a 

depletion calculation of 2-dinensional colorset used for the benchmark case B-3 (Figure 6.2.1) 

was performed in order to estimate the magnitude of this effect. The k-infinity and relative power 

fraction for each type of the assemblies in the colorset were calculated as a function of burnup 

with SIMULATE and compared with CASMO values. The results are presented in Figures 6.2.5 

and 6.2.6. The agreement obtained was very good – within 0.5% for both k-infinity and power 

share prediction. Therefore, it was concluded that SIMULATE can perform 3D macro-

heterogeneous core calculations with an accuracy sufficient for the purposes of current analysis.   
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Figure 6.2.2. Difference (%) in pin power prediction (CASMO-MCODE)/CASMO:  

Case B-1 

 
Figure 6.2.3. Difference (%) in pin power prediction (CASMO-SIMULATE)/CASMO:  

Case B-2. 
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Figure 6.2.4. Difference (%) in pin power prediction (CASMO-SIMLATE)/CASMO:  

Case B-3. 
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Figure 6.2.5. Relative power fraction for UO2 and FFF assembly in colorset Case B-3. 
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Figure 6.2.6. UO2 and FFF assembly colorset criticality vs. burnup: Case B-3. 

 
 
 

6.3. Analysis Assumptions 
 

A standard Westinghouse 4 loop PWR core design was used as a reference for all 3D whole 

core simulations because it is one of the most common PWR plant designs throughout the world 

and in the United States. The major parameters of the reference core used for the calculations in 

this thesis are presented in Table 6.3.I. 

 

 

Core loading 

 

Table 6.3.II summarizes the equilibrium core fuel management data for each case. For cases 

1 through 6, an equilibrium core configuration was obtained by 3 subsequent core cycles with 

reloading of 1/3 of the startup core after each cycle. The startup core was loaded with 3 batches of 

fuel at 3 different exposure levels corresponding to 0, 1/2 of BU1, and BU1, where BU1 is a 

single batch reactivity limited burnup obtained from the 2D CASMO4 assembly burnup 

calculations.  
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For case 7, the equilibrium core was simulated in a similar manner except for the fact that 4 

reloading cycles were used to approximate the equilibrium core conditions. 52 fresh UO2 fuel 

assemblies were loaded in each cycle which is slightly more than 1/3 of the UO2 assemblies in 

order to accommodate the larger fraction of FFF assemblies in the core (Table 6.3.II) while 

maintaining the same fuel cycle length.  1/4 of the FFF assemblies were reloaded after each cycle. 

The startup core FFF assemblies’ average batch burnups were adopted from case 6 for once and 

twice burned assemblies. The initial burnup of the three-times burned FFF batch was assumed to 

be equal to the discharge burnup of the twice burned FFF batch from case 6.  

 

For case 8, correspondingly, 5 cycles were modeled to achieve the equilibrium core 

conditions. 1/3-rd of UO2 assemblies and 1/5-th of the FFF assemblies were reloaded with fresh 

ones each cycle. The initial average batch burnup in the startup core for the four-times burned 

FFF assemblies was assumed to be equal to the discharge burnup of the three-times burned FFF 

batch from the equilibrium core in case 7. 

 

Figures C.1 through C.5 in Appendix C show fuel loading maps for all calculated cases. For 

homogeneous cores (cases 1, 3 and 4) an identical fuel loading map was used to ensure consistent 

comparison of the results. In cases 2 and 5 through 7, different loading patterns were adopted 

because of the greater number of fuel types in the core (cases 5 - 8) or unacceptably high power 

peaking (case 2).  

 

In a realistic core design, the fuel loading pattern is optimized to maintain minimal power 

peaking throughout the cycle, to level out the control rod banks reactivity worth and to minimize 

the core leakage. In this study, optimization of loading pattern was not a major objective. 

However, a number of optimal core loading map features were maintained. A low leakage core 

loading strategy was adopted for all cases as can be observed from Figures C.1 through C.5 

keeping the fresh fuel assemblies away from the core periphery. Radial assembly power peaking 

of less than 1.5 was assumed to be acceptable because this value lies between the practically 

achievable and the maximum allowed peaking factor values. The radial assembly power peaking 

factor of 1.587 is normally used for the licensing thermal hydraulic calculations while radial 

peaking factors between 1.3 and 1.4 are typical for the currently operating PWR reactors.  
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Table 6.3.I. Reference core design parameters 

Plant description 
Number of primary loops  4 
Core thermal power, MWth  3411 
Plant thermal efficiency, %  33.71 
Plant electric power output, MWe  1150 

Core description 
Power density, W/cm3 104.5 
Average linear heat generation rate, W/cm  182.91 
Primary system pressure, MPa  15.5 
Total core flow rate, Mg/sec  18.63 
Core coolant mass flux, kg/m2-sec  2087.6 
Core inlet temperature, °C 292.7 

Fuel Rod 
Total number of fuel rod locations 50,952 
UO2 Fuel density, % of theoretical  94 
Pellet diameter, mm 8.192 
Pellet height, mm  13.4 
Gap thickness, mm  0.082 
Cladding material  Zircaloy-4 
Cladding thickness, mm  0.572 
Cladding outer diameter, mm  9.5 
Active fuel height, m 3.66 

Fuel Assembly 
Total number of fuel assemblies  193 
Lattice type  Square 
Assembly lattice geometry   17 × 17 
Number of fuel rods locations per assembly  264 
Number of grids per assembly  7 
Fuel rod pitch, cm  1.26 
Assembly pitch, cm  21.5 × 21.5 

Control Rod Cluster 
Neutron absorbing material  Ag-In-Cd 
Cladding material  304 SS 
Cladding thickness, mm  0.46 
Number of clusters  53 
Number of absorber rods per cluster  24 
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Table 6.3.II. Core loading description for calculated cases 

Fuel Management, 
batches 

  
UO2 

enrich-
ment 

% of FFF 
pins in the 

core 

FFF pins 
TRU 

loading, 
v/o 

UO2 
assemblies
loaded per

cycle 

FFF 
assemblies 
loaded per 

cycle 
UO2 

assemblies 
FFF 

assemblies

Case 1 UO2 4.20 0.00 - 64.3 0.0 3.0 - 

Case 2 FFF-1 - 100.00 10.0 0.0 64.3 - 3.0 

Case 3 CONFU-1 4.20 22.73 10.0 49.7 14.6 3.0 

Case 4 CONFU-E 5.00 18.18 20.0 52.6 11.7 3.0 

Case 5 M-CONFU-1 4.20 18.65 10.0 52.3 12.0 3.0 3.0 

Case 6 M-CONFU-E 5.00 18.65 20.0 52.3 12.0 3.0 3.0 

Case 7 M-CONFU-E4 5.00 24.87 20.0 52.3 12.0 2.7 4.0 

Case 8 M-CONFU-E5 5.00 20.73 20.0 51.0 8.0 3.0 5.0 

 

The reactivity worth of individual control rods as well as the worth of all control rods are 

important nuclear design parameters. Collectively, the worth of control rod banks should be high 

enough to satisfy the shutdown margin requirements for a particular reactor design. On the other 

hand, the reactivity worth of an individual control rod should not be too high to avoid high energy 

deposition in the fuel in case of a control rod ejection accident. Optimization of the loading 

pattern to balance the control rods worth and design of the control rod assembly were not the 

focus of our analysis and therefore were omitted. As a result, only average control rod worth 

values were used for the RIA analysis discussed in the following chapter. 

 

 

 

Burnable poison design 

 

The main objectives of the fuel assembly burnable poison design are 

- to control the excess reactivity during the cycle 

- to minimize the local pin power peaking  

- to minimize soluble boron requirements for the core excess reactivity control  

- to minimize global core power peaking through reduction of the fuel reactivity swing 

during irradiation. 
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The general requirements for any burnable poison are: constant and gradual depletion rate, no 

residual reactivity penalty and minimal impact on fuel performance characteristics.   

 

Limited effort was made to address the above issues in the burnable poison design for the 

fuel types used in the present analysis. The primary goals of the design were to minimize local 

power peaking within the CONFU assembly and to maintain the whole core soluble boron 

concentration below 2000ppm.  The burnable poison materials considered were: natural boron in 

the form of ZrB2 fuel pellet coating (IFBA) and natural erbium oxide (erbia) or natural 

gadolinium oxide homogeneously mixed with the fuel.  

 

Er167 is a strong resonance absorber with a large resonance overlap with fission resonances 

of Pu239 which is the major fissile isotope in TRU loaded fuel. Therefore, use of erbia as a 

burnable poison can potentially enhance the fuel Doppler coefficient. Additionally, Er167 tends 

to burn out gradually due to its large Resonance Integral (IR) and relatively small thermal cross-

section allowing the design of fuel with a very flat reactivity over its lifetime. However, the 

option of using erbia was discarded because of its typically large residual reactivity penalty 

(because of the presence of other isotopes in natural Er), significant impact on the efficiency TRU 

destruction, and limited effect on the Doppler coefficient. 

 

A large resonance integral makes Gd also an attractive candidate for the improvement of the 

fuel Doppler coefficient. However, much larger than Er167 thermal absorption cross-section of 

Gd155 and Gd157 may harden the neutron spectrum to such an extent that the addition of Gd 

will, in fact, result in less negative DC. Natural Gd oxide has negligible residual reactivity penalty 

but very large thermal absorption cross-section and therefore tends to burnout relatively quickly, 

potentially resulting in a high core power peaking. Nevertheless, the burnout rate can be slowed 

down if Gd is lumped into a few BP pins taking advantage of the self-shielding effect in Gd155 

and Gd157 with relatively large IR. In this manner, the effect of BP can be extended by higher Gd 

loading while the magnitude of reactivity reduction can be controlled by the number of BP pins in 

the assembly.  Although the lumping of Gd into a few BP pins improves the fuel assembly 

reactivity vs. burnup behavior and global core power peaking, it typically results in a high 

assembly local pin power peaking due to the strong power depreciation in Gd loaded pins. 

Additionally, if mixed with the fuel, Gd oxide degrades the fuel/matrix material properties such 

as thermal conductivity and melting point. 
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B10 constitutes about 20a/o of natural boron and it is an almost pure 1/v type absorber. It 

tends to burnout gradually and does not have any reactivity penalty. The distribution of boron 

within the assembly has small effect on its depletion rate or on initial reactivity depreciation. The 

major disadvantage of boron is the He gas production via the (n,α) reaction in B10 which results 

in pressurization of the fuel pin and limits the maximum BP loading. 

 

Gd oxide was used as a burnable poison for FFF assemblies in cases 2 and 5 because it 

results in minimal residual reactivity penalty and provides greater flexibility in adjusting the 

burnout rate and initial reactivity reduction. In the CONFU assembly cases, the use of Gd in FFF 

pins alone or in combination with natural boron (as ZrB2 IFBA) in UO2 pin was found to exhibit 

inferior performance due to a large power imbalance between the UO2 and FFF pins and 

relatively fast Gd depletion. Instead, ZrB2 IFBA design was adopted for both UO2 and FFF types 

of pins with different boron loadings to improve the CONFU assembly pin power peaking. Major 

parameters of BP designs used in all calculated cases are summarized in Table 6.3.III. 

Table 6.3.III. Burnable poison design summary 

 BP material Type BP pins per 
assembly 

BP 
loading 

Case 1 UO2 ZrB2 IFBA 264 0.052 mg/cm

Case 2 FFF-1 Nat. Gd mixed with fuel 52 2.5 v/o

UO2 pins ZrB2 IFBA 144 0.047 mg/cm
Case 3 CONFU-1 

FFF pins ZrB2 IFBA 60 0.094 mg/cm

UO2 pins ZrB2 IFBA 112 0.035 mg/cm
Case 4 CONFU-E 

FFF pins ZrB2 IFBA 48 0.082 mg/cm

UO2 pins ZrB2 IFBA 264 0.052 mg/cm
Case 5 M-CONFU-1 

FFF pins Nat. Gd mixed with fuel 52 2.5 v/o

UO2 pins ZrB2 IFBA 264 0.061 mg/cm
Case 6 M-CONFU-E 

FFF pins no BP - - -

UO2 pins ZrB2 IFBA 264 0.061 mg/cm
Case 7 M-CONFU-E4 

FFF pins no BP - - -

UO2 pins ZrB2 IFBA 264 0.061 mg/cm
Case 8 M-CONFU-E5 

FFF pins no BP - - -
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Fuel temperature reactivity feedback 

 

The Doppler reactivity coefficient has a significant effect on the reactivity of the whole core. 

Hence, SIMULATE3 has a model for calculating the fuel temperature in order to obtain the 

Doppler reactivity feedback in each node. The generalized form of the model equation is: 

 

T fuel = T coolant + A × P + B × P2 

 

where T fuel is the average fuel temperature in the node, P is the fraction of rated node averaged 

power, T coolant is the coolant temperature in the node. The coefficients A and B must be 

specified by the user. In addition, coefficient A can be a function of any two state variables (e.g. 

node exposure, void fraction, boron concentration etc.). Each fuel type in the core can have a 

different set of coefficients A and B and different dependence of A on the state variables. 

 

The FFF matrix has superior thermal conductivity to UO2 fuel and therefore for the same 

linear power generation rate will have lower fuel temperature. The separate sets of coefficients A 

and B to be used in the SIMULATE core analysis were calculated by solving numerically the one 

dimensional steady state heat conduction equation for cylindrical fuel pin with 14 equi-volumetric 

zones in the fuel pellet and temperature dependent thermal conductivity of the fuel. An approach 

for modeling the effective thermal conductivity of the dispersed fuel particles fuel is described in 

the following chapter. The resulting average fuel temperature as a function of relative power is 

plotted in Figure 6.2.1. The data presented in the Figure 6.3.1 was fitted to a second order 

polynomial for the local to nominal power ratios in the range between 0 and 2.5. The upper and 

lower bounds of this range correspond to maximum licensing power peak in a node and to hot 

zero power (HZP) conditions respectively. The obtained coefficients, used for the SIMULATE 

fuel temperature calculation input card, are as follows:  

 

FFF:   A = 289.5 B = 27.0 

UO2: A = 308.4 B = 81.1 
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Figure 6.3.1 Average fuel temperature as a function of relative to nominal node power   

 

 

 
6.4. 3D Core Neutronics Results 

 

The confirmation of the possibility of maintaining zero net balance for TRU generation and 

destruction in the fuel cycle is one of the major goals of the 3D whole core analysis. Table 6.4.I 

shows the TRU destruction efficiency and the TRU mass balance for all calculated cases. Both 

macro (Case 6) and micro (Case4) equilibrium TRU options can maintain zero net production of 

TRU. The micro heterogeneous CONFU assembly option is slightly superior to the macro option. 

This is due to the fact that the TRU in FFF pins generally have higher reaction rates when 

surrounded by UO2 pins and therefore affected by the UO2 neutron spectrum. In the macro 

heterogeneous case, the influence of UO2 spectra on FFF pins is small because of the large 

assembly size compared with the neutron migration length.  In fact, the effect of spectrum overlap 

is not reflected at all in the 3D SIMULATE calculation as discussed earlier.  
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Case 7, where the TRU equilibrium FFF assemblies are managed in 4 batches, seems to have 

a superior TRU destruction efficiency. However, this is mainly due to the fact that FFF pins 

comprise considerably larger fraction of the fuel in the core (Table 6.3.II): about 25% versus 

about 19% for Case 6. The TRU burnup performance achieved in Case 7 is fairly close to the 

limit because any increase in TRU core loadings would require further increase in UO2 

enrichment (or more frequent reloading of the UO2 assemblies) to maintain comparable fuel cycle 

length. In Case 8, for example, FFF pins account for about 20% of the fuel pins in the core and 

allow maintenance of comparable fuel cycle length without increasing the UO2 enrichment. At the 

same time, although higher fractional TRU burnup can be achieved by the longer irradiation time, 

the TRU destruction rate is not sufficient to maintain zero net balance of TRU. The tradeoff, in 

this case, is precisely as before: increasing the number of FFF assemblies at the expense of higher 

UO2 enrichment. Similar logic applies to all equilibrium TRU cases. 

 

Table 6.4.I. Burnup and TRU mass balance summary 

 
 

An additional objective of the 3D core analysis is to demonstrate the feasibility of practical 

core design by comparison of the TRU containing core neutronic characteristics to those of the 

reference conventional UO2 core.  Namely, the analysis addressed the following core 

characteristics: 

  

Discharge 
BU 

UO2 pins, 
MWd/kg 

Discharge 
BU 

FFF pins, 
MWd/kg 

TRU 
fractional 

BU 

TRU 
production,
kg/GWe Y

TRU 
destruction, 
kg/GWe Y 

Net TRU 
production,
kg/GWe Y 

Case 1 UO2 50.9 - - 300 - 300

Case 2 FFF-1 - 470 0.50 - 1160 -

Case 3 CONFU-1 53.1 527 0.56 232 299 -67.0

Case 4 CONFU-E 52.6 275 0.29 245 252 -6.8

Case 5 M-CONFU-1 51.0 504 0.53 244 252 -8.5

Case 6 M-CONFU-E 49.9 273 0.29 241 245 -3.8

Case 7 M-CONFU-E4 46.3 318 0.34 270 310 -40.2

Case 8 M-CONFU-E5 48.9 369 0.39 238 231 6.3
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- Maximum critical soluble boron concentration 

- Soluble boron reactivity worth (SBW) 

- Power peaking factors 

- Reactivity coefficients at hot full power (HFP) and hot zero power (HZP) conditions 

 

Furthermore, core kinetics parameters (namely, the 6 group delayed neutrons data and prompt 

neutrons lifetime) and individual control rod cluster worths were calculated to be used in 

reactivity initiated accident analysis as discussed in the following chapter.    

 

The critical soluble boron concentrations for Cases 1 through 6 are presented in Figure 6.4.1. 

The upper limit on the critical boron concentration emanates from two factors. Water chemistry 

considerations allow reactor operation with up to 2000 ppm of boron in the coolant. Positive 

moderator temperature coefficient at HFP is another factor that limits the maximum allowable 

boron concentration in the coolant.  

 

A critical boron concentration below 2000 ppm is practically feasible for all cases 

considered. The fully FFF loaded core (Case 2) is the most challenging to control. It has the 

lowest excess reactivity at BOL and yet the critical boron concentration required is the highest of 

all cases. As discussed earlier, the observed effect is a result of a harder neutron spectrum in the 

FFF core and, subsequently, lower boron reactivity worth. All other cases have comparable boron 

concentration requirements. Furthermore, even closer match between boron concentration values 

for Cases 1 and 3 through 6 can be obtained with some minor adjustments in the burnable poison 

loading.   

 

Figures 6.4.2 and 6.4.3 show maximum 3-D nodal power peaking factor and maximum 2-D 

radial assembly power peaking factor respectively as a function of burnup for the Cases 1 through 

6. The initial goal to design a core loading pattern that provides radial core power peaking factor 

lower than 1.5 was met for all cases. The results demonstrate that all considered TRU containing 

core options can be designed to have comparable peaking to the reference UO2 core and therefore 

comparable thermal margin. The comparable thermal margin for UO2 and micro heterogeneous 

CONFU cases is also expected due to the fact that high power FFF pins in a CONFU assembly 

are always surrounded by much “cooler” UO2 pins having below average power peaking. The 

effects of intra-assembly pin power peaking and detailed evaluation of thermal hydraulic margin 

for the cases considered are described in the following section.  
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Figure 6.4.1. Critical boron concentration: Cases 1- 6  
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Figure 6.4.2. Maximum 3-D nodal power peaking factor: Cases 1- 6  
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Figure 6.4.3. Maximum 2-D core radial power peaking factor: Cases 1- 6  

 

The moderator temperature coefficient (MTC) and distributed Doppler coefficient (DDC) 

were calculated at HFP and at HZP conditions. The distributed Doppler coefficient is defined as 

the reactivity change associated with a change in fuel temperature having the same spatial 

distribution as the power divided by the change in the averaged fuel temperature. The results of 

the DDC and MTC calculations at HFP conditions during core lifetime are presented in Figures 

6.4.4 and 6.4.5 respectively.  

 

The reactivity coefficients have negative values for the whole period of irradiation for all 

calculated cases. The magnitude of the DDC for the fully FFF loaded core (Case 2) is smaller 

than that of the UO2 core by almost a factor of four. Macro and micro heterogeneous (CONFU) 

core options have slightly less negative DDC (by up to 30%). Less negative temperature feedback 

than for the UO2 fuel case implies inferior core behavior in rapid reactivity excursions. 

 

The MTC was also found to be negative in all calculated cases (Figure 6.4.4). The MTC 

value is determined by the neutron spectrum and by the boron concentration in the coolant. As a 



 148

result, the MTC for Case 2 is less negative than MTC for all other cases primarily due to the 

substantially higher soluble boron concentration. The MTC values for Cases 3 through 6 are close 

to the reference UO2 fuel values.  

 

Figure 6.4.6 shows soluble boron reactivity worth (SBW) as a function of burnup for Cases 1 

through 6. The difference in reactivity worth of soluble boron is a direct consequence of neutron 

spectrum hardening due to the presence of large amounts of TRU with particularly high thermal 

absorption cross-sections. As a result, SBW is directly related to the amount of TRU in the core. 

The highest and lowest SBW values correspond to Case 1 and Case 2 respectively. For the 

combined, partially TRU loaded cores, the SBW decreases (Figure 6.4.6) with increasing TRU 

core loading (Table 6.3.II). All cases exhibit a general trend of increased SBW towards the end of 

the core life due to actinides depletion and resulting softening of the spectrum.  

 

The choice of a macro vs micro heterogeneous core structure has a minor effect on the SBW 

for cases with comparable TRU loading (Cases 4 and 6). The difference in SBW between micro 

(Case 4) and macro (Case 6) cores can be a result of FFF assembly locations. In Case 6, the fresh 

FFF assemblies with particularly hard neutron spectrum are positioned at the core periphery 

which mitigates the core average spectrum hardening effect due to preferential leakage of fast 

neutrons. As a result, SBW is slightly higher for the macro heterogeneous (Case 6) than for the 

micro heterogeneous (Case 4), despite a higher TRU loading in Case 6.  

 

The soluble boron worth, reactivity feedback coefficients and power peaking factors for 

Cases 7 and 8 (not shown in the Figures 6.4.1 – 6.4.6) are similar to those of Case 6.  
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Figure 6.4.4. Distributed Doppler coefficient: Cases 1- 6  
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Figure 6.4.5. Moderator temperature coefficient: Cases 1- 6  
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Figure 6.4.6. Soluble boron reactivity worth: Cases 1- 6  

 

 

 

6.5. Thermal Hydraulic Analysis 
 

Thermal hydraulic analysis was performed to examine feasibility of TRU loaded PWR cores 

by comparing their characteristics with the reference UO2 core. FFF pins generally have higher 

power rating when subjected to particularly high thermal neutron flux from the neighboring UO2 

pins or when in the vicinity of guide tubes with extra water that provides improved neutron 

moderation. Therefore, the fertile free TRU loaded fuel in a PWR core may have a moderately 

higher power peaking than in typical PWR. As a result, there is a need to study the effect of 

higher than typical power peaking on the reduction of MDNBR margin. 

 

The cases considered for analysis are UO2, FFF-1, CONFU-1, CONFU-E, M-CONFU-1, and 

M-CONFU-E as described in Table 6.1.I in Section 6.1. As a first step, single assembly 

calculations were performed for each case assuming conservative power peaking profiles for each 
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case. Then, the most limiting case was identified and the whole core simulation was performed 

for that case and for the reference UO2 PWR core. 

 

The VIPRE-01 sub-channel analysis computer code was used for the calculations of 

MDNBR. It is widely used by the nuclear industry for LWR analysis and it is approved by NRC 

for licensing applications.  

 

The reference typical Westinghouse design 4-loop PWR core parameters were used for all 

calculated cases (Table 6.3.I). All calculations were performed assuming 118% core average 

power to account for Condition I and II events. The inlet coolant temperature used was 294.7 °C 

(2 °C greater than nominal) and the total coolant flow rate was reduced by 5% to account for 

bypass flow and uncertainty associated with the core wide flow distribution. Additional 

assumptions used in the VIPRE model are presented in Table 6.5.I. 

 

L-type grids spread apart by 50.8 cm interval with mixing vanes were used. For turbulent 

mixing, a conservative value of β = 0.038 for the mixing coefficient of the grids with mixing 

vanes was assumed. 

 

Figure 6.5.1 schematically presents the modeled 1/8 of the hot assembly configuration with 

sub-channel and fuel rod numbering. The assembly relative pin power distribution was obtained 

from the 2D CASMO results at the burnup point with maximum peaking factor for each 

calculated case. The pin power distributions used for each case considered are presented in Figure 

6.5.2. A chopped cosine with peak to average ratio of 1.55 was used for the axial core power 

profile. This power shape normally provides conservative results. 

 

Two sets of calculations were performed. First, a radial assembly power peak of 1.587 

typically used for licensing calculations was assumed in all calculated cases. In the second set of 

calculations, the reference UO2 case radial assembly power peak remained the same (1.587) while 

the values for other cases were obtained as follows. The maximum over the lifetime 3D nodal 

power peaking factors for each case were obtained from the SIMULATE results. Relative to the 

UO2 case 3D nodal peaking factors were calculated and the radial 1.587 peak value was scaled 

accordingly for each case. In this approach, the licensing peaking factor is adjusted for each case 

to maintain the same margin between calculated and licensing power peaking values. Scaling the 

radial assembly licensing peaking factor with 3D nodal power peaking values was assumed to 
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reflect the effect of the differences in axial power shape profiles for different cases. The extra 

10% power increase was applied to macro heterogeneous cases to accommodate the uncertainty 

associated with pin power distribution at the interface between UO2 and FFF assemblies. 

 

 

Table 6.5.I. VIPRE-01 Model Assumptions 

Parameter Specification 

Axial power profile Chopped cosine, peak-to-average ratio =1.55 

Reactor power Overpower at 118% (4025MWth) 

Power deposited directly in coolant 2.6% 

Core mass flux Reduced by 5% (3542kg/s-m2) 

Core inlet temperature Increased by 2°C (294.7°C) 

Cross flow resistance coefficient KG = 3.15 Re-0.2   

Turbulent mixing model Gsw β=′ ; β=0.038 

Turbulent momentum factor FTM=0 

Axial friction coefficient for turbulent flow fax = 0.184 Re-0.2 

Form loss coefficient for mixing vane grids 0.8 

CHF correlation W-3L, mixing factor 0.043, grid spacing factor 0.066 

Void correlations Levy for subcooled void, HEM for bulk boiling and two-
phase friction multiplier 

Heat transfer correlations 
Dittus-Boelter for single-phase flow, Thom correlation plus 
single-phase correlation for subcooled and saturated nucleate 
boiling 
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Figure 6.5.1. 1/8 of the hot assembly model: channels and rods numbering 
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UO2 e = 4.2%        UO2 e = 5%       
                   
                   

1.03 1.00         1.03 1.00        
1.03 1.00 1.00        1.03 1.00 1.00       

 1.03 1.04         1.03 1.04       
1.03 1.00 1.00 1.04 1.03      1.03 1.00 1.00 1.04 1.03     
1.03 1.00 1.00 1.04 1.06      1.03 1.00 1.00 1.05 1.06     

 1.03 1.03  1.04 1.02 0.97     1.03 1.03  1.05 1.02 0.97   
1.02 0.99 0.99 1.02 0.98 0.96 0.95 0.94   1.02 0.99 0.99 1.02 0.98 0.96 0.94 0.94  
0.98 0.98 0.98 0.98 0.97 0.96 0.96 0.96 0.97  0.98 0.98 0.98 0.98 0.97 0.96 0.95 0.96 0.97

                   
CONFU-1         CONFU-E        

                   
                   

1.05 1.01         1.12 1.08        
1.05 1.01 1.01        1.12 1.08 1.08       

 1.04 1.04         1.11 1.10       
1.03 1.00 1.00 1.04 1.01      1.09 1.06 1.05 1.09 1.06     
1.01 0.98 0.98 1.02 1.02      1.07 1.03 1.02 1.05 1.05     

 0.96 0.96  0.97 0.94 0.87     1.03 1.00  0.99 0.96 0.87   
0.89 0.87 0.87 0.89 0.86 0.83 0.79 0.74   0.96 0.89 1.21 0.85 1.17 0.80 1.14 0.82  
1.19 1.19 1.19 1.19 1.18 1.15 1.13 1.15 0.72  0.82 1.10 0.75 1.04 0.73 1.05 0.79 0.87 0.90

                   
FFF-1         FFF-E        
                   
                   

1.11 1.05         1.05 1.00        
0.80 1.04 0.77        1.05 1.00 1.00       

 1.11 1.10         1.05 1.05       
1.11 1.05 0.77 1.12 1.09      1.05 1.01 1.01 1.07 1.06     
0.80 1.04 1.04 1.12 0.82      1.05 1.00 1.01 1.07 1.10     

 1.09 0.79  1.14 1.10 0.76     1.04 1.05  1.09 1.04 0.97   
0.79 1.04 1.04 1.10 0.76 0.99 0.98 0.98   1.03 0.98 0.98 1.03 0.98 0.94 0.92 0.90  
1.00 1.02 1.03 1.02 1.01 1.00 1.01 1.01 1.04  0.95 0.95 0.95 0.95 0.95 0.93 0.92 0.92 0.94

 

Figure 6.5.2. Pin power distributions used in the cases considered 
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The results of the single assembly VIPRE-01 calculations are presented in Table 6.5.II. The 

reference UO2 case has the largest MDNBR margin. The CONFU-1 and the UO2 assembly in the 

macro heterogeneous option M-CONFU-1 exhibit the most limiting DNBR performance. For 

these cases the margin is reduced by about 10% remaining however well above the postulated 

minimum value of 1.3 established for W3-L correlation.  

 

The macro heterogeneous cases do not represent a significant concern from the MDNBR 

performance perspective because the most reactive FFF assemblies can be positioned on the core 

periphery and therefore will exhibit lower than average power peaking. As a result, the MDNBR 

values for the FFF assemblies in the macro heterogeneous CONFU cases are greater than for the 

UO2 case even with extra power increase to account for the pin power peaking uncertainty. 

 

 

Table 6.5.II. Results of the single assembly analysis. 

Case 
Radial 
power 
peak 

MDNBR Hot 
rod 

Hot 
channel

Radial 
power 
peak 

MDNBR Hot 
rod 

Hot 
channel

UO2 1.587 1.73 17 14 1.587 1.73 17 14 

FFF-1 1.587 1.61 17 14 1.49 1.64 17 14 

CONFU-1 1.587 1.48 33 38 1.52 1.56 33 38 

CONFU-E 1.587 1.52 25 23 1.47 1.67 25 23 

M-CONFU-1 (UO2) 1.587 1.73 17 14 1.62 1.56 17 14 

M-CONFU-E (UO2) 1.587 1.73 17 14 1.61 1.70 17 14 

M-CONFU-1 (FFF) - - - - 1.38 1.93 17 14 

M-CONFU-E (FFF) - - - - 1.04 1.91 17 14 
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Whole core simulation 

 

The micro heterogeneous CONFU assembly with the first time recycled TRU showed the 

largest reduction in MDNBR margin in the single assembly calculations. Thus, this case was 

chosen for the full core VIPRE-01 simulation to estimate more realistic MDNBR for this case and 

compare it with the reference UO2 core value. The CONFU-EQ case was also analyzed for 

comparison. 

 

The full core was modeled by positioning the hot fuel assembly in the center and explicitly 

modeling the candidate limiting DNBR channels in this hot assembly. The channels were 

gradually lumped to increasingly larger regions towards the core periphery. An identical approach 

for the sub-channel lumping was employed for the UO2 and CONFU-EQ cases. Figures 6.5.3 and 

6.5.4 show the channel and rod numbering for the UO2 and CONFU-EQ cases in the hot 

assembly and in the whole core respectively. In the CONFU-1 case however, the suspected 

limiting DNBR sub-channel was expected to be between the neighboring assemblies. Therefore, a 

slightly different channel lumping scheme was used (Figure 6.5.5). The power peaking factors in 

the assemblies surrounding the hot assembly were artificially increased to match the hot assembly 

power to assure conservative results. Additionally, all the correlations, axial nodes division, grid 

parameters, and the boundary conditions were identical for both cases to ensure consistent 

comparison.  

 

The core wide radial assembly power distribution was obtained from the SIMULATE 

calculations at the burnup step with the highest peaking factor for all cases. The hot assembly pin 

power distribution was also obtained from the SIMULATE pin power reconstruction module 

which was shown to yield a sufficient accuracy for the pin power peaking prediction in the UO2 

and the CONFU-1 cases (see Section 6.2). 

 

The results of the full core VIPRE-01 calculations are consistent with single assembly 

simulation results. However, in contrast to single assembly case, channel 1 (Figure 6.5.3) appears 

to be the limiting MDNBR location in CONFU-EQ case despite the fact that the hot FFF pins are 

located on the periphery of the assembly. This is due to beneficial effect of mixing from cooler 

channels in neighboring fuel assemblies. The single assembly model did not account for the 

mixing effect. In addition, the channel 1 has higher total power input than any of the channels in 

the neighborhood of FFF pins.  
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Similarly to the single assembly calculation results, the MDNBR margin for the CONFU-1 

case is reduced by about 20% in comparison with the reference UO2 case. The DNBR as a 

function of relative active core height for the limiting MDNBR locations for the UO2, CONFU-

EQ, and CONFU-1 cases is depicted in Figure 6.5.6. The MDNBR value for the UO2 case is 1.71 

while the minimum DNBR value for the CONFU-1 case is 1.43. The CONFU-EQ case exhibit 

intermediate performance with MDNBR of 1.51. As before, all MDNBR values are greater than 

the established W3-L correlation limit of 1.3.  

 

 
 

Figure 6.5.3. Rod and channel numbering scheme for the hot UO2 and CONFU-EQ 

assemblies 
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Figure 6.5.4. Rod and channel numbering scheme for the UO2 and CONFU-EQ core 
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Figure 6.5.5. Rod and channel numbering scheme for the hot CONFU-1 assembly 
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Figure 6.5.6. DNBR as a function of fuel height 

 

 

6.6. Chapter Summary 
 

This chapter has presented the results of 3-dimensional simulation of cores partially or fully 

loaded with TRU.  In a previous chapter, the results of 2D fuel assembly level neutronic analysis 

suggested the possibility of attaining zero net generation of TRU in a closed PWR fuel cycle 

while maintaining the core neutronic characteristics comparable to a conventional UO2 core. The 

main objective of this chapter was to confirm the feasibility of a sustainable PWR fuel cycle by 

performing a detailed 3D whole core neutronic simulation and thermal hydraulic analysis for a 

number of representative core configurations. 

 

The calculated cases in the neutronic 3D core analysis included micro (CONFU) and macro 

(whole FFF and UO2 assemblies) fuel options. For each configuration, the first time recycled and 

equilibrium TRU compositions were studied. For the macro heterogeneous option, cases with 

FFF assemblies being managed in 3, 4 or 5 batches were evaluated. Additionally, two limiting 
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cases for the core fully loaded either only with FFF or only with UO2 assemblies were simulated 

for comparison. 

 

A series of computational benchmarking studies were performed to assure accuracy of the 

obtained results. In general, the benchmark results revealed good agreement between the code 

predictions with the exception of the limited credibility of pin power reconstruction from the 

SIMULATE code for macro heterogeneous configurations.    

 

The ZrB2 IFBA design was used as a burnable poison for UO2 and micro heterogeneous 

(CONFU) cases. Natural Gd oxide BP pins were used in macro heterogeneous FFF assemblies.  

 

Results of the analyses confirmed the feasibility of partially TRU loaded PWR core designs. 

The exposure levels achieved by the UO2 and FFF parts of the core proved the possibility of 

sustaining zero TRU generation within the PWR cycle, with both micro and macro heterogeneous 

options.   

 

The micro-heterogeneous CONFU option is slightly superior to the macro-heterogeneous 

one in terms of TRU destruction efficiency due to a more thermalized spectrum in FFF pin 

regions as they are surrounded by UO2 pins. In the whole FFF assembly in macro-heterogeneous 

cases, the spectrum “overlap” with UO2 pin regions is smaller resulting in slightly lower TRU 

burnup. For the same reason, the local pin power peaking is higher in the micro-heterogeneous 

CONFU case. The main advantage of the macro-heterogeneous option is a flexibility of fuel 

management and handling. Fresh FFF assemblies can be placed in the core periphery to ensure 

acceptable power peaking. Irradiation time can be varied separately for UO2 and FFF assemblies. 

Finally, less fuel handling would be required in the fuel cycle scheme where UO2 and FFF pins 

are to be reprocessed by different methods or in different locations. 

 

All neutronic characteristics of partially TRU loaded cores are comparable to those of a 

conventional UO2 core. The differences in core parameters relate to the neutron spectrum 

hardening as the loading of TRU in the core increases. The major consequence of this effect is to 

lower the control materials reactivity worth and therefore potentially require higher soluble boron 

concentration which can in turn result in a less negative moderator temperature coefficient.  
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Another consequence of the addition of TRU into the PWR core is a reduced Doppler 

coefficient because of the higher relative fissile to fertile actinide amounts. In other words, U238, 

the major contributor to the negative Doppler coefficient in conventional UO2 core is displaced 

with neutronically inert FFF matrix material.  The main concern regarding the reduced Doppler 

coefficient is that, in combination with smaller effective delayed neutron fraction, it may imply 

inferior core response to rapid reactivity initiated accidents. The TRU loaded PWR core behavior 

in such accidents is discussed in the Chapter 7. 

 

Thermal hydraulic calculations were carried out to study the MDNBR performance of the 

several suggested TRU loaded PWR core options. The single assembly simulations with 

conservative power peaking assumptions revealed that the TRU loaded cores have slightly 

inferior to the reference UO2 core MDNBR performance reducing the MDNBR margin by 10% to 

20% for the most limiting (CONFU-1) case. The whole core analysis was performed for the 

CONFU-1 case with detailed power distribution data obtained from 3D neutronics calculations to 

confirm the single assembly simulation findings. The results of the whole core and the single 

assembly calculations were found to be consistent. The MDNBR is reduced from the 1.71 for the 

UO2 case to 1.43 for the CONFU-1 case. Both values, however, remain above the W3-L 

correlation MDNBR limit of 1.3. 
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Chapter 7. Accident Behavior Considerations  
 

The presence of large amounts of TRU in a PWR core implies several major differences that 

can alter the dynamic behavior of the core under accident conditions.  

 

As mentioned earlier, a harder neutron spectrum than typical for UO2 fuel drives the impetus 

for re-assessment of the reactor control features. Generally higher concentrations of control 

materials would be required to compensate for their lower reactivity worth caused by the 

spectrum hardening. This effect is partially offset by the lower (than in all-UO2 fuel case) initial 

core excess reactivity due to presence of fertile TRU isotopes with high cross-sections for neutron 

absorption. These isotopes act in a way as fertile poisons reducing the reactivity swing of the fuel 

over its irradiation time.  

 

Another major implication of the large presence of TRU in a PWR core is reduced effective 

delayed neutron fraction (βeff) as most of the fissile TRU isotopes typically have βeff considerably 

lower than U235. This was also demonstrated in the previous chapter. The major consequence of 

the reduced βeff is inferior core behavior in rapidly developing reactivity initiated accidents.  

 

Introduction of the fertile free fuel matrix brings in an additional matter of concern. 

Displacement of U238 in a PWR core with a neutronically inert matrix leads to a significant 

reduction in the Doppler coefficient (DC). For a core fully loaded with FFF, the Doppler 

coefficient is reduced by about a factor of four relative to a typical UO2 core as shown earlier.  

 

One of the ways to improve DC of a FFF without impairing Pu or TRU consumption is by an 

addition of small amounts of Th232 into the fuel. [Lombardi, et al. 1999, Damen, et al. 1999, 

Akie et al. 1999] Thorium has about three times smaller resonance integral than U238 but much 

greater Doppler response to the fuel temperature changes.  

 

A negative value of the DC is an obvious requirement for a stable reactor operation under 

normal conditions. However, the magnitude of the DC is especially important in accidents. In 

very rapid reactivity initiated accidents, the DC provides the most important immediate negative 

feedback that prevents prompt critical power excursions. Therefore, the height and duration of a 

power pulse initiated by fast reactivity insertion into the core and, consequently, the total energy 
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deposited in the fuel during the pulse are directly related to the magnitude of the Doppler 

coefficient. 

 

According to the Nordheim-Fuchs model [Hetrick D.L., 1985] for a fast reactivity insertion 

accident, the total energy deposition in the fuel is given by the following expression: 

 

( )fuel p 0

DC

2 C   - 
E = 

ρ ρ β
α

 (7.1) 

 

where ρfuel Cp is the volumetric fuel heat capacity [J/cm3-K], ρ0 is the initial reactivity inserted, β 

is the effective delayed neutron fraction, and αDC is the Doppler coefficient. 

 

The model assumes a very short accident timescale and therefore neglects the delayed 

neutrons effect and heat transfer to the coolant. The total energy deposition in the fuel provides a 

measure of the fuel performance during the accident. The NRC specifies the value of 280 cal/g at 

any axial location in any fuel pin for UO2 fuel as a threshold value above which fuel damage and 

release of FP into the coolant is expected. [US NRC, 1974] This value corresponds to about 12.19 

kJ/cm3 of UO2 fuel. The fuel failure threshold expressed in units of energy per unit of fuel volume 

is a useful parameter for the comparison of UO2 and FFF because the density of the latter is about 

two times lower. The 280 cal/g fuel damage threshold value is under review as being excessively 

high for the high burnup fuels [Diamond D. et al., 2002]. 

 

The relation 7.1 clearly shows that the energy deposition in the fuel depends on a 

combination of parameters which differ considerably for the conventional UO2 and TRU 

containing cores. The smaller αDC and βeff for the FFF loaded core should make a negative 

contribution to the fuel performance in reactivity initiated accidents increasing the energy 

deposition in the fuel. However, lower ejected control rod reactivity worth (ρ0) in combination 

with a larger thermal inertia (ρfuel×Cp) of the FFF will compensate for the negative effects of the 

smaller αDC and βeff to some extent. 

 

Here we attemp to compare the fuel performance of the FFF containing cores with 

conventional UO2 core in reactivity initiated accidents (RIA) by constructing a physical model 

that will account for the differences in the neutronics as well as in fuel material properties of the 

two fuel types. A computer code was developed in Mathematica® programming environment 



 165

[Wolfram S., 1999] to solve a set of differential equations approximating the dynamic behavior of 

the reactor coupled with a one dimensional heat transfer model that provides the reactivity 

feedback to the neutronic part of the model.   

 

Realistic core average values for the DC, MTC, delayed neutron data, and reactivity worth of 

the ejected control rod are obtained from 3D SIMULATE calculations and used as input data for 

the developed computer code model. Temperature dependent materials properties were used to 

obtain a closer approximation to realistic core conditions. It has to be noted however, that the 

current analysis assumes the FFF in the form of (TRU)O2 – YSZ particles dispersed in MgAl2O4 

(spinel) matrix. Although fertile free matrix composition is not likely to affect significantly the 

steady state neutronic characteristics of FFF, the dynamic behavior of the core under accident 

conditions may be different because of the differences in thermal properties of the fertile free 

matrix. 

 

The developed code generates power, fuel, cladding, and coolant temperature profiles as a 

function of time after the control rod ejection accident (REA). The generated data is subsequently 

used for comparison of the considered cases to the reference UO2 fuel case.  

 

 

7.1.  RIA Analysis Code Model Description 
  

Reactor kinetics model 

 

A point reactor kinetics model [Hetrick, 1985] was used to describe the reactor power 

evolution with time. The model assumes that the spatial power distribution in the reactor is 

completely time independent. That is, the whole reactor core behaves in time as a zero 

dimensional power source. The point reactor approximation yields reasonable results for systems 

where the core dimensions are smaller or of the same order as the average migration length of 

neutrons in that system. Research and test reactors (due to their small dimensions) or fast 

spectrum reactors (due to large migration length) are examples of such systems. However, a 

typical PWR core has many times larger dimensions than the neutron migration length. Therefore, 

in the control rod ejection accident, where the power distribution changes rapidly with time, the 

point kinetics model assumptions are no longer valid.  More sophisticated computational tools 
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such as PARCS [Joo et al., 1998] employ a space-time dependent reactor kinetics model that 

reflects more accurately the dynamic behavior of large reactor systems such as PWRs.  

 

Nevertheless, the main objective of this part of the thesis is to evaluate the feasibility of 

innovative fuel designs for a sustainable PWR fuel cycle by providing a consistent comparison 

between conventional UO2 fuel and TRU containing FFF options rather than to obtain realistic 

accident analysis simulation results. Thus, it was concluded that the point reactor kinetics model 

is a sufficient approximation for purposes of the current study. A similar methodological 

approach was employed in [Damen and Kloosteramn 1999, 2000, 2001] for the neutronic analysis 

of surplus Pu disposition studies. Additionally, an elaborate PWR REA study performed with the 

PARCS computer code was reported in [Diamond et al., 2002]. The detailed 3D space-time 

kinetics analysis has shown that even the simplest point kinetics Nordheim-Fuchs model predicts 

the correct trends and sensitivities to various parameters.   

 

According to the point reactor kinetics model, the change of the reactor power with time is 

governed by the system of differential equations 7.1.1: 
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β
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∑
∑

 (7.1.1) 

 

 

Here, 6 groups of delayed neutrons were used. βi and λi are the yield and the decay constant 

corresponding to each of the delayed neutron group. Λ is the prompt neutrons generation time. P 

is the reactor power and the Ci is the concentration of the delayed neutron precursor isotopes for 

the group i. ρ(t) is the core reactivity which is equals to zero in steady state conditions. 
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Thermal feedback model  

  

Thermal hydraulic feedback for the neutronic point kinetics model is provided by solving a 

heat balance equation in three zones (fuel, cladding, and coolant) for each time step. The 

calculated fuel and the coolant temperatures are then used to calculate the change in reactivity for 

the subsequent time step. Linear Doppler and MTC feedback were assumed. Namely, the 

reactivity for the time step i is calculated as 

 
fuel fuel coolant coolant

i i-1 DC i i-1 MTC i i-1 =  +  (T - T ) +  (T - T ) ρ ρ α α  (7.1.2) 

 

where αDC and αMTC are the Doppler and moderator temperature coefficients respectively and Ti
fuel 

, Ti-1
fuel , Ti

coolant , Ti-1
coolant are the fuel and the coolant temperatures at the current and the previous 

time steps.  

 

The heat balance equation was solved numerically for each time step. The fuel region in the 

fuel pin was subdivided into 14 equivolumetric zones to reflect the differences in thermal 

properties as well as in radial power density for different fuel types and operating conditions. The 

set of differential equations 7.1.3 describes the change in the fuel, cladding, and coolant 

temperatures with time.   
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−
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(7.1.3)

 

where: 

Mj
fuel  – mass per unit length of the fuel in the region j (g/cm), 
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Mclad  – mass per unit length of the cladding (g/cm), 

Mwater  – mass per unit length of the water based on average water density (g/cm), 

Cpj
fuel  – temperature dependent specific heat of the region j (J/g-K), 

Cpclad  – temperature dependent specific heat of the cladding (J/g-K), 

Cpwater  – specific heat of coolant (J/g-K), 

Tj
fuel  – fuel temperature in the region j, (K) 

Tclad  – average cladding temperature, (K) 

Twater  – average coolant temperature, (K) 

Pj – power generated in the region j of the fuel (W/cm) 

hi,j – reciprocal of thermal resistance between the regions i and j, (W/cm-K) 
fuel
i, jT  – average fuel temperature between the regions i and j, (K) 

m
•

 – coolant mass flow rate per one fuel channel, (g/sec) 

Hcore – active core height, (cm) 

 

The thermal resistances between fuel regions were calculated as follows: 
fuel fuel
i jfuel

fuel fuel
i, j i j fuel

i
fuel
j

T T
2   k

2
h (T ,T )    

rLog
r

 +
π ×  

 =
 
  
 

 (7.1.4) 

where ri
fuel and rj

fuel are the mean radii of the fuel regions i and j and k is the fuel thermal 

conductivity. 

 

The thermal resistance between the outermost fuel region and the cladding was calculated as 

the sum of thermal resistances at the mean radius of the last fuel region, across the gap and the 

mean radius of the cladding region. Similarly, the resistance between the cladding and the coolant 

was obtained as a sum of resistances between the mean radius of the cladding region and the 

cladding outer surface plus the resistance associated with heat transfer from the cladding wall to 

the coolant bulk (Eq. 7.1.5). 

( )
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clad-water clad water
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2π  h  r + r /2 2π k 2π r  h

 
 
   

(7.1.5) 
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 The forced convection heat transfer coefficient from the cladding wall to coolant was 

calculated from the Dittus-Boelter single phase heat transfer correlation [Todreas N.E. and 

Kazimi M.S., 1990]. The gap conductance was obtained by solving the steady state heat balance 

equation under nominal operating conditions. The resulting value for the gap conductance of 

0.6084 W/cm2-K is typical for un-irradiated UO2 fuel. The effect of the fuel pellet dimensional 

changes under irradiation was neglected because gap closure for irradiated fuel will increase the 

gap conductance and improve the heat transfer to the coolant. This is a beneficial feature for the 

RIA therefore assuming unirradiated fuel gap conductance for all cases is a conservative 

assumption. 

 

The model assumes constant heat transfer coefficient to the coolant and linear moderator 

temperature coefficient feedback. Therefore, any changes in heat transfer or MTC due to boiling 

as a result of increased cladding temperature are neglected.  

 

The dependence of UO2 fuel thermal conductivity on temperature was obtained from [Fink 

J.K., 2000]. The recommended dependence has the following form 

where T is the fuel temperature in Kelvin   

 

The thermal conductivity of the FFF was calculated according to the Maxwell-Eucken 

equation for dispersed particle type fuels [Tong and Weisman, 1996] 

p

m
d

a k
1 1  b

k
k

1 + (a 1) b

 
− − 
 =

−
 

(7.1.7) 

where kd is the effective thermal conductivity of dispersion fuel, kp and km are the thermal 

conductivities of the particles and the matrix respectively, b is the particles volume fraction and a 

is given by  
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m

m p

3 ka
2 k  + k

=  (7.1.8) 

 

Equation 7.1.8 approximately holds up to the particle volume fraction of 0.5. 

 

The conductivity of the fuel micro particles composed of homogeneously mixed (TRU)O2 and 

yttria stabilized zirconia was calculated according to the Vegard’s law [Berna et al. 1997]. 

 

p (TRU)O2 (TRU)O2 YSZ YSZk  = k x  + k x× ×  (7.1.9) 
 

where kTRUO2 and kYSZ are the thermal conductivities of (TRU)O2 and YSZ respectively and 

xTRUO2 and xYSZ are their corresponding molar fractions. 

 

The data for thermal conductivity of TRU oxides is not available. PuO2 data was used instead as 

Pu comprises the major part of the TRU (>85w/o initially). The equation used for PuO2 

conductivity is recommended in [Carbajo J.J. et al. 2001] 

2

16347.89
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4.4819 10 4.418 10  T T
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− −

×
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× + ×
 (7.1.10) 

 

where T is the fuel temperature in Kelvin. 

 

The expressions used for the conductivity of spinel matrix, YSZ, [Yuan Y. et al. 2001] and 

Zircaloy-4 cladding [INSC] are presented in Equations 7.1.11 through 7.1.13. 

 
130009

T
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 (7.1.11) 

 
-4 -6 2

Zr 4k (T) 12.276 - 5.4348 10 T + 8.9818 10 T      [W/m/K]− = × × × ×  (7.1.13) 
 

where T is in Kelvin 

 

-4
YSZk (T) 2.0 + 4.72 10 (T - 300)       [W/m/K]= × ×  (7.1.12) 
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The resulting effective thermal conductivity of the dispersed FFF is compared with that of 

UO2 in Figure 7.1.1. 
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Figure 7.1.1. Thermal conductivity of UO2 and dispersed type FFF 

 

The UO2 fuel specific heat temperature dependence was also adopted form [Fink J.K., 2000]. 

The expression for Cp of UO2 fuel is given in Equation 7.1.14. 
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 (7.1.14) 

where T is the temperature in Kelvin. 

 

For the specific heat of the FFF, the Neumann-Kopp law was adopted to quantify the 

specific heat of complex materials [Seitz, 1940] 
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i iCp = x   Cp×∑  (7.1.15) 

where xi is the molar fraction of the material i in the mixture and Cpi is the specific heat of the 

material i.  

The specific heat of ZrO2 exhibits a weak dependence on Y2O3 content and on the 

temperature in the range between 600 and 1500K [Degueldre et al., 2003]. Therefore, it was 

assumed to be independent of the temperature for the purposes of this analysis and to be equal to 

0.45 J/g-K. The chosen value is conservative as it represents the lower bound of the available 

experimental data for the high temperature specific heat of zirconia [Hidaka, et al., 1997]. 

 

The specific heat data for Spinel was reported in [Matzke, et al., 1999]. The reported data 

was fit to a second order polynomial in the range between 800 and 1600K for the practical 

purposes of the numerical calculations. 

 

The equation recommended in [Carbajo et al. 2001] for PuO2 was used to approximate the 

specific heat of the (TRU)O2 component of FFF. 

 
548.68

2 T
2

PuO2 548.68
2 T

322.49 548.68 eCp (T) = 2 1.4679 10 T  [J/kg/K]
T e 1

−× ×
+ × × ×

 
− 

 

 (7.1.16) 

 

 

The resulting Cp of the FFF fuel exhibits a moderate variation with temperature. In the range 

of interest between 600K and 2000K, the Cp of the FFF varies between 1.0 and 1.15 J/g-K. Note 

that the Cp values of FFF are greater than those for UO2 fuel by more than a factor of three while 

the density of FFF is only about a factor of two smaller than UO2. This implies an overall larger 

thermal inertia for the FFF which is beneficial for the fuel performance in accidents.    

 

 

Fuel Pin Radial Power Profiles 
 

The radial power distribution within the fuel pin changes significantly with fuel burnup. The 

resonance self-shielding effect in U238 typically results in preferential buildup of Pu in the region 

near the fuel pellet surface (so-called “rim effect”). The power generated in the periphery of the 
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fuel pin increases substantially because of the high Pu concentration at the EOL. This power 

increase may cause undesirable fuel restructuring degradation of properties in the rim region and 

release of the fission gas. [Long Y. et al., 2000].  

 

The radial power shape in the fuel pellet, however, also affects the fuel temperature 

distribution within the fuel. A larger power fraction generated in the fuel periphery would result 

in lower maximum fuel temperature because effectively larger amount of heat would have to 

overcome lower thermal resistance in order to be conducted to the coolant.  

 

In the FFF pin, the concentration of fertile resonance actinides is lower than in the UO2 fuel. 

Thus, the rim effect is expected to be less pronounced than in the UO2 fuel. Detailed radial power 

distribution profiles were calculated for the FFF and UO2 fuel pins to reflect appropriately the 

differences in the rim effect for the two fuel types.  BOL and EOL distributions were obtained 

and then used in the thermal feedback module of the RIA analysis code for calculation of the 

temperature distribution in the fuel. 

 

UO2 and FFF unit cell burnup calculations were performed with the MCODE [Xu et al., 

2002]. Operating conditions typical for PWR core and identical to those used for the neutronic 

evaluation of the FFF option and the reference UO2 fuel were used. The MCNP model of the fuel 

region consisted of 14 burnup zones with the same dimensions as used for the thermal hydraulic 

feedback module. The schematic view of the MCNP fuel pellet model is presented in Figure 

7.1.2. The calculations were performed up to equivalent 1350 EFPD of fuel burnup. 

 

The resulting radial power profiles for the UO2 and the FFF at BOL and EOL are presented 

in Figure 7.1.3. The UO2 results are consistent with previously reported data [Long et al., 2000]. 

The BOL power distribution for the UO2 fuel is relatively flat while at the EOL the power peaks 

significantly in the rim of the pellet. The FFF on the other hand, exhibits a completely opposite 

trend. The power is generated preferentially in the outer region of the pellet at BOL due to a 

moderate self-shielding of fissile Pu resonances. At EOL the power is shifted towards the inner 

part of the FFF pellet because of the depletion of fissile Pu on the periphery. Furthermore, the 

power distribution in general is relatively even for the FFF pellet throughout the fuel lifetime as a 

result of considerably reduced overall resonance self-shielding effect.  

   

 



 174

 

Figure 7.1.2. Schematic representation of fuel burnup regions 
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Figure 7.1.3. Radial power profile for UO2 and FFF 
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7.2.  RIA Analysis Results 
 

The model developed for the RIA accident analysis has no built-in capabilities for 

representing heterogeneous fuel configurations such as the CONFU assembly. Therefore, the 

calculations were performed first for the UO2 and full core FFF case as two representative 

limiting cases. Each case was analyzed at four potentially operating condition states: at HFP-

BOL, HZP-BOL, HFP-EOL, and HZP-EOL. Then, the most limiting in terms of energy 

deposition and fuel temperature state was identified for each fuel type. Finally, the heterogeneous 

cases were analyzed at this most limiting state using the neutronics data for this heterogeneous 

option but performing the calculation twice: once using the FFF pins thermal properties then 

using the UO2 fuel properties. The comparison of the results would show which part of the 

heterogeneous assembly exhibits the limiting behavior.  

 

This strategy should provide a realistic approximation for the micro-heterogeneous CONFU 

option because of the small range of spatial separation of FFF and UO2 pins. The applicability of 

this strategy to the macro-heterogeneous CONFU case, however, is only marginal because the 

UO2 and FFF pins regions are large enough to be considered less neutronically coupled with each 

other especially on the very small timescales typical for RIA accidents. 

 

Table 7.2.I lists all the cases considered for analysis and summarizes the major nuclear data 

obtained from SIMULATE 3D calculations that was applied. Two additional assumptions were 

made. Since the fuel loading pattern was not optimized, neither for the reduction of power 

peaking factors nor for the smaller scatter in control rod worths, the average control rod worth 

values were used for each case and the nominal power level was assumed in all calculated cases. 

The power level at HZP conditions used was 1% of the nominal. The ejection of the control rod 

was assumed to occur in 100 ms with the constant rate of reactivity insertion. 

 

Table 7.2.II and 7.2.III show the results of the UO2 and the FFF REA simulation. Table 

7.2.II shows the maximum fuel pellet enthalpy increase during the power pulse following the 

REA. The enthalpy increase is reported in J/cm3 and cal/g units. The simulations were performed 

for the average core power. Therefore, the obtained energy deposition values are not conservative 

and cannot be compared to the fuel failure criteria of 280 cal/g. The primary purpose of this 

analysis is relative comparison of FFF and CONFU with the reference UO2 case. Nevertheless, 

the maximum fuel pellet enthalpy rise including a conservative 3D power peaking factor of 2.5 is 
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also included in Table 7.2.II. The UO2 core fuel enthalpy rise with 2.5 power peak agrees well 

with the corresponding value reported in a detailed PWR REA study performed with the PARCS 

computer code [Diamond D. et al., 2002]. EOL-HFP conditions case is the most limiting one for 

both fuel options. At EOL-HFP, the fuel pellet enthalpy rise in FFF case is more than a factor of 

two larger than in UO2 case.  

 

Table 7.2.III reports asymptotic increase in the fuel central line, cladding and coolant 

temperatures. As expected, the incremental temperature raise for the fuel, cladding and coolant 

are considerably higher for FFF case at all considered operating conditions. The results are a 

direct consequence of reduced DC and βeff for the fully FFF loaded core. 

 

Figures 7.2.1 through 7.2.6 illustrate the dynamic behavior of the FFF and UO2 fuels after 

the REA. The peak of the power pulse is almost a factor of four larger for FFF than for UO2 fuel 

at EOL-HFP conditions, again, as a result of considerably smaller Doppler coefficient and βeff 

(Figures 7.2.1 and 7.2.4). The EOL at HFP is associated with the highest peak power , but BOL at 

HFP has comparable total energy input. 

Table 7.2.I. List of analyzed cases and their neutronic parameters   

Case Operating 
conditions 

Irradiation 
time 

DC, 
pcm/K 

MTC, 
pcm/K 

prompt 
life time, 

sec 
βeff 

CRD 
worth, $ 

1 UO2 HFP BOL -3.24 -40.81 1.69E-05 6.03E-03 -0.97 
2 UO2 HFP EOL -3.28 -74.92 2.00E-05 5.18E-03 -1.41 
3 UO2 HZP BOL -4.52 -15.35 1.69E-05 6.03E-03 -0.99 
4 UO2 HZP EOL -8.55 -37.76 2.00E-05 5.18E-03 -1.25 

5 FFF HFP BOL -0.77 -18.52 6.95E-06 3.02E-03 -1.07 
6 FFF HFP EOL -0.92 -59.09 1.02E-05 3.40E-03 -1.42 
7 FFF HZP BOL -0.92 -5.51 6.95E-06 3.02E-03 -1.02 

8 FFF HZP EOL -2.02 -33.91 1.02E-05 3.40E-03 -1.26 

9 CONFU-1 HFP BOL -2.56 -34.47 1.37E-05 5.34E-03 -1.27 

10 CONFU-1 HFP EOL -2.59 -67.63 1.70E-05 4.82E-03 -1.45 

11 CONFU-1 HZP BOL -3.55 -11.07 1.37E-05 5.34E-03 -1.21 

12 CONFU-1 HZP EOL -6.17 -33.86 1.70E-05 4.82E-03 -1.50 
13 CONFU-E HFP BOL -2.88 -36.92 1.20E-05 5.51E-03 -0.99 
14 CONFU-E HFP EOL -2.75 -73.48 1.41E-05 4.94E-03 -1.26 
15 CONFU-E HZP BOL -3.94 -12.15 1.20E-05 5.51E-03 -0.90 

16 CONFU-E HZP EOL -6.23 -38.93 1.41E-05 4.94E-03 -1.13 
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Table 7.2.II. UO2 and FFF RIA results: energy deposition    

Core average power 2.5 power peak 
 Case Conditions Enthalpy 

rise, J/cm3 
Enthalpy 
rise, cal/g 

Enthalpy 
rise, J/cm3 

Enthalpy 
rise, cal/g 

1 HFP BOL 573 13.2 1433 32.9 
2 HZP BOL 91 2.1 228 5.2 
3 HFP EOL 725 16.7 1813 41.6 

UO2 

4 HZP EOL 152 3.5 380 8.7 
5 HFP BOL 1276 61.5 3189 153.9 
6 HZP BOL 761 36.7 1903 91.8 
7 HFP EOL 1498 72.3 3744 180.7 

FFF 

8 HZP EOL 714 34.4 1784 86.1 
 

Table 7.2.III. UO2 and FFF RIA results: fuel, cladding, and coolant temperature rise  

 Case Conditions ∆Tfuel, K ∆Tclad, K ∆Tcoolant, K 

1 HFP BOL 201.1 13.4 5.2 
2 HZP BOL 161.2 17.3 6.2 
3 HFP EOL 180.1 13.4 5.2 

UO2 

4 HZP EOL 84.5 10.1 3.4 
5 HFP BOL 306.8 32.4 12.1 
6 HZP BOL 388.7 50.4 18.5 
7 HFP EOL 192.4 17.7 6.4 

FFF 

8 HZP EOL 172.8 21.3 7.8 
 

The cladding surface temperature as a function of time for the UO2 and FFF are shown in 

Figures 7.2.2 and 7.2.5 respectively. The cladding peak temperature increase is about twice as 

large for the FFF than for UO2 fuel under the most limiting EOL-HFP conditions. In the HFP FFF 

cases, the peak cladding surface temperature exceeds water saturation temperature by up to 15 °C 

implying incipient boiling at some stage of the accident while the UO2 HFP-EOL cladding 

temperature exceeds Tsat of the coolant by about 5°C for a fraction of a second. However, this is 

not a significant concern with regards to reaching a DNB. Coolant boiling would enhance the heat 

transfer to coolant and the voiding would provide a very strong negative reactivity feedback 

reducing the power. The boiling heat transfer and void reactivity feedback effects were both 

neglected in this study. Note, however, that the analysis also neglected power peaking factors and 
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potential of having a larger than average reactivity worth of the ejected control rod. Therefore, the 

DNB limit is more likely to be reached for FFF than for UO2 fuel under the REA conditions 

should all the conservative values for the power peaking and CR worth apply. A recent review of 

LWR safety criteria during RIA concluded on the basis of accumulated experimental data that 

irradiated fuel failure is related to fuel pellet-cladding mechanical interaction (PCMI) and fission 

gas release effects rather than to critical heat flux [OECD/NEA, 2001]. 

 

The fuel meltdown, on the other hand, is one of the major concerns during the REA. Under 

nominal operating conditions, the FFF central line temperature is about 180K lower than that of 

the UO2 fuel at BOL under the same conditions due to a better thermal conductivity of the FFF.  

At the EOL, however, the difference reduces to just about 70K as a result of the rim effect 

discussed earlier. At the same time, the melting temperature of the Spinel matrix is about 2200K 

as opposed to about 2800K for the UO2. As a result, the FFF and UO2 fuels have different 

margins to melting at the steady state conditions. A new performance index is suggested to 

compare the relative margin to fuel melting reduction during the accident for the fuels of different 

types2. The quantity I, fuel melting margin degradation index, is defined as follows: 

 

 

 The index I takes up values between zero and unity. At steady state, the fuel nominal index 

of degradation of margin to melting is zero. The margin vanishes completely (I = 1) when the 

maximum fuel temperature reaches its melting point.   

 

The quantity I is plotted in Figures 7.2.3 and 7.2.6 for the UO2 and FFF cases respectively. 

The peak fuel temperature values are highest at HFP-EOL for both cases immediately following 

the CRE. The asymptotic values, however, are higher at HFP-BOL for both cases due to the 

considerably lower moderator temperature feedback at BOL especially in the FFF case (Table 

7.2.I). The evolution of the index I as a function of time after the CRE indicates that the peak 

margin reduction is about 30% for the FFF case while it stays just around 10% for the UO2 case.  

 

                                                 
2 Saha P. Private communication, 2003 

steady state

melt steady state

T(t)- T
(t) = 

T - T
I  (7.2.1) 



 179

0

1000

2000

3000

4000

5000

6000

-0.4 -0.2 0 0.2 0.4 0.6 0.8

Time, sec

Li
ne

ar
 P

ow
er

 R
at

e,
 W

/c
m

UO2-HFP-BOL

UO2-HFP-EOL

UO2-HZP-BOL

UO2-HZP-EOL

 

Figure 7.2.1. REA: Linear power vs. Time, UO2 fuel 
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Figure 7.2.2. REA: Cladding surface temperature vs. Time, UO2 fuel 
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Figure 7.2.3. REA: Fuel melting margin degradation vs. Time, UO2 fuel 
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Figure 7.2.4. REA: Linear power vs. Time, FFF 
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Figure 7.2.5. REA: Cladding surface temperature vs. Time, FFF  
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Figure 7.2.6. REA: Fuel melting margin degradation vs. Time, FFF 
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The HFP-EOL condition was identified as the most limiting, for both UO2 and FFF cases, 

with regards to the total energy deposition and the maximum fuel temperature. Therefore, the 

calculations for the micro-heterogeneous CONFU cases were performed at this state separately 

for UO2 and FFF pins with CONFU neutronic parameters to reveal the limiting fuel pin type.  

 

Table 7.2.IV and 7.2.V compare the results of the simulation. Table 7.2.IV reports the 

enthalpy increase for the nominal power condition and with conservative local power peaking of 

2.5 applied. Additional 15% of power increase was applied to FFF pins to reflect the power 

distribution within the CONFU assembly. Table 7.2.V reports the incremental fuel, cladding, and 

coolant temperature raise. As expected, the CONFU assembly performance is very close to the 

reference UO2 case due to their close neutronic characteristics. Here again, the FFF pins in the 

CONFU cases exhibit the most limiting performance. The CONFU-1 case is somewhat worse 

than the CONFU-E case because of the larger contribution of TRU to the total assembly power 

and therefore larger effect on the assembly average neutronic characteristics.   

 

The power evolution with time and the melting temperature margin degradation index (I) for 

the CONFU-1 and CONFU-E cases are compared with those of the UO2 case in Figures 7.2.7 

through 7.2.10. The power pulse peak height is the largest for the FFF pin in the CONFU-1 case 

while for the CONFU-E cases, the reference UO2 fuel exhibits larger power increase than both 

CONFU-E fuel types. 

 

The FFF pins are still the most limiting as far as the fuel melting is concerned. The melting 

margin degradation is 1.2 to 2 times larger for the FFF than for the UO2 pins in both the reference 

UO2 and CONFU cases due to the lower melting point of FFF spinel matrix and despite its 

enhanced thermal conductivity.  

 

 

 

 

 

 

 

 



 183

 

Table 7.2.IV. CONFU REA simulation results: energy deposition 

Core average power 2.5 power peak* 

Case Conditions 
Enthalpy 

rise, J/cm3
Enthalpy 
rise, cal/g 

Enthalpy 
rise, J/cm3 

Enthalpy 
rise, cal/g 

3 UO2  HFP EOL 725 16.7 1813 41.6 

10a CONFU-1 FFF HFP EOL 905 43.7 2603 125.6 

10b  UO2 HFP EOL 797 18.3 1993 45.8 

14a CONFU-E FFF HFP EOL 735 35.4 2112 101.9 

14b  UO2 HFP EOL 653 15.0 1632 37.5 

* power peaking factor of 2.875 is applied to FFF cases 

 

 

Table 7.2.V. CONFU REA simulation results: fuel, cladding, and coolant temperature rise 

Case Conditions ∆Tfuel, K ∆Tclad, K ∆Tcoolant, K 

3 UO2  HFP EOL 180.1 13.4 5.2 

10a CONFU-1 FFF HFP EOL 188.3 15.3 5.8 

10b  UO2 HFP EOL 186.7 15.9 5.8 

14a CONFU-E FFF HFP EOL 146.9 13.4 5.2 

14b  UO2 HFP EOL 169.1 12.8 4.6 
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Figure 7.2.7. REA: Linear Power vs. Time, UO2 – CONFU 
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Figure 7.2.8. REA: Linear Power vs. Time, UO2 – CONFU-E comparison 
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Figure 7.2.9. REA: Fuel melting margin degradation vs. Time,  

UO2 – CONFU comparison 
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Figure 7.2.10. REA: Fuel melting margin degradation vs. Time,  

UO2 – CONFU-E comparison 



 186

7.3. Loss of Coolant Accident Consideration 
 

The major difference in the Loss of Coolant accident (LOCA) between UO2 and FFF rises 

from the difference in the stored energy and specific heat for the two fuel types. In a typical PWR 

LOCA, the cladding temperature peaks twice: first, during the coolant blowdown phase of the 

accident and then during the reflood phase. Figure 7.3.1 depicts typical results of LOCA 

simulation [Iguchi T., 1998]. The blowdown peak cladding temperature is roughly proportional to 

the fuel stored energy, while the heat up peak is related to thermal inertia of the fuel.  

 

 

Figure 7.3.1. Example of cladding temperature vs. time during PWR LOCA  

(adopted from [Iguchi T., 1998]) 

 

Table 7.3.I compares the stored energy for FFF and UO2 fuel at the same power density. The 

FFF stored energy is somewhat lower (by about 10%) than that of UO2 fuel. However, the power 

peaking is typically higher in FFF pins than in UO2 pins in all UO2 core by about 5 to 15%. (1.2 

in the CONFU assembly vs. about 1.06 in the all-UO2 assembly) Therefore, the real difference in 

stored energy FFF pins would also be greater ( by about 8% in the case of additional 1.15 power 

peaking, Table 7.3.I) implying that FFF pins are more limiting than UO2 pins during blowdown 

phase in LOCA. 

Blowdown peak 
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Table 7.3.I. Stored energy comparison 

 UO2 
FFF 

nominal power 
FFF 

1.15 power peak

Density, g/cm3 10.4 4.94 4.94 

Specific heat, J/g-K 0.31 0.75 0.76 

Fuel temperature, K 935 855 905 

Stored energy [ρ×Cp×(Tfuel-Tcoolant)], J/cm3 1122 1011 1209 

 

 

Overall, the FFF fuel has a larger thermal inertia than UO2 due to a substantially larger 

specific heat of the spinel matrix which dominated the Cp value of the dispersed fuel. As a result, 

the Cp of FFF is fairly sensitive to the volume fraction of the spinel matrix. The Cp value of FFF 

ranges from about 0.7 J/g-K for 50v/o of spinel to slightly above 1 J/g-K for 70v/o. Re-flood 

capabilities in the course of LOCA should be comparable for the two fuel types because the same 

fuel pin and assembly geometry is used for both fuel options. The heat flux to coolant, however, 

is higher in the CONFU case than in all-UO2 case, despite identical fuel pin geometry, due to the 

higher power peaking in the FFF pins in CONFU assembly. 

 

Figure 7.3.2 qualitatively compares the performance of FFF under LOCA conditions with 

UO2. It shows the fuel temperature rise, starting from the reactor scram, under adiabatic 

conditions. Total core cooling capability loss was assumed implying that all the energy generated 

in the fuel is affecting its temperature increase. The curves presented in Figure 7.3.2 were 

obtained by integrating the energy conservation equation: 

  

 

where P(t) is the ANS standard decay power curve for infinite irradiation time [Todreas  N.E. and 

Kazimi M.S., 1990]. A constant Cp was assumed for simplicity.  

 

This simplistic analysis shows that the larger thermal inertia of the FFF results in a lower 

temperature rise rate and comparable or even favorable LOCA performance of FFF compared to 

that of the UO2 despite the lower melting temperature of the FFF. However, as mentioned earlier, 

t
fuel fuel

0
0

1T (t) = T  +  P(t)dt
ρCp ∫  (7.3.1) 
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the power peaking is typically higher in FFF pins by up to 15% which may result in higher decay 

power and therefore earlier fuel melting (Figure 7.3.2). 
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Figure 7.3.2. Fuel temperature raise during LOCA 

An additional concern with regards to LOCA applies to the very unlikely event of LOCA 

without scram accident or very significant local voiding in isolated region of the core. Figure 

7.3.3 shows the reactivity of different fuel assembly types in an infinite medium as a function of 

coolant void fraction. The loading of Pu or TRU was adjusted for each case to provide the fuel 

cycle length equivalent to 18 calendar months. It can readily be seen that FFF, Th-TRU, and 

MOX-TRU fuels exhibit positive reactivity feedback when the void fraction in the coolant 

reaches above 60%. Figure 7.3.3 shows that only the cases where Pu constitutes a considerable 

fraction of the fuel exhibit positive void reactivity feedback. This is due to two complimentary 

factors: high Pu loading and small U238 or Th232 fraction. 

 

All Pu isotopes can be fissioned by fast neutrons. Unlike in the thermal spectrum, fast fission 

cross-sections of all Pu isotopes have about the same order of magnitude. The fission neutrons 

yield per neutron absorbed (η factor) also increases with increasing incident neutron energy for all 
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Pu isotopes. Typically, shifting the neutron spectrum to epithermal region will result in a decrease 

in fuel reactivity due to the resonance absorption. However, additional spectrum hardening for Pu 

containing fuel will eventually result in a reactivity increase and positive void reactivity feedback. 

Absorption in Pu240 and Pu242 resonances at about 1 eV region is particularly important because 

of the large magnitude of these resonances. Th232 and U238, however, have fast fission cross-

section thresholds at relatively high energy. Also, the η factor of Th232 and U238 increase only 

moderately with incident neutron energy. As a result, assembly of finite critical dimensions is 

impossible if U238 or Th232 constitute a large enough fraction of the fuel. Therefore, the 

presence of these isotopes in the core mitigates the positive void reactivity effect caused by Pu 

cross-sections behavior in the fast spectrum. 

 

For the Pu-MOX and Pu-Th cases much smaller fissile fractions are needed for reaching 18 

months fuel cycle length than for the cases where MA are also part of the fuel. Higher TRU 

loading is required because of the additional thermal absorption by MA. In the fast spectrum 

however (e.g. in the case of significant voiding in the core), MA such as Np237 and Am241 have 

high fission cross-sections contributing to positive void reactivity feedback. On the other hand, 

smaller loading of Pu (no MA) implies higher fraction of Th232 or U238 in addition to softer 

neutron spectrum.  Therefore, the positive void feedback effect is not observed in the Pu-MOX 

and Pu-Th cases.  

 

Consideration of leakage in a finite system, which increases with increasing void fraction 

and spectrum hardening, does not substantially improve the picture. The leakage from a finite 

reactor core is roughly proportional to its surface to volume ratio (S/V) and to the average neutron 

migration length. Assuming a flat with “drooping ends” core power shape the leakage reactivity 

defect is given by [Driscoll et al., 1990]:  

 

The reactivity of the fuel assembly for the same set of cases corrected for spectrum 

dependant leakage in a finite dimension system is shown in Figure 7.3.4.  

 

The CONFU concept does not show a positive void coefficient trend for the range of void 

fractions up to 100% because of the minimal TRU loading in the core which is possible by 

utilization of fertile free fuel. The Th-TRU and MOX-TRU cases require much larger TRU 

leakage
S Mρ  =  × 
V 4

 (7.3.2) 
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content in the core to compensate for large thermal and resonance absorption of U238 and Th232. 

Therefore, positive void coefficients are possible in these two cases. 
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Figure 7.3.3. Unpoisoned fuel reactivity vs. coolant void fraction 
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Figure 7.3.4. Unpoisoned fuel reactivity corrected for leakage vs. coolant void fraction 
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7.4.  Chapter Summary 
 

This chapter addressed the issues of inferior neutronic characteristics of TRU containing 

cores concerning reactivity initiated and loss of coolant accidents. 

 

A computer model for simulation of the dynamic behavior of different fuel types was 

developed. The model accounts for the differences in the neutronic characteristics of the fuel as 

well as for its thermal properties. A numerical simulation of control rod ejection accident was 

performed for a number of cases of interest using this model.  

  

It was concluded that in order to achieve sustainability with regards to TRU generation, the 

application of the CONFU assembly concept to the PWR fuel cycle results in only minor 

deviation of fuel performance characteristics in reactivity initiated accidents. This similarity in 

fuel behavior is a consequence of the fact that the UO2 fuel dominates the neutronics 

characteristics of the core. The most efficient TRU destruction potential in FFF matrix in CONFU 

assembly allows minimization of the amount of TRU in the core and therefore mitigates the effect 

of TRU presence.   

 

The effect of improved thermal conductivity and higher specific heat of FFF compared to 

that of UO2 does not offset the effect of the lower melting temperature of the fertile free matrix. 

As a result, the FFF pins in the CONFU type fuel assembly exhibit more limiting performance 

than the reference UO2 fuel by having greater fuel melting temperature margin degradation during 

the REA. Therefore, fuel melting is expected at somewhat earlier stages of the transient in the 

FFF as was experimentally demonstrated in [Nakamura T., et al., 2003].  

 

The macro-heterogeneous CONFU cases were not analyzed because of the limited 

capabilities of the developed calculation procedure. However, it is expected that macro-

heterogeneous CONFU options will exhibit intermediate performance between micro-

heterogeneous CONFU cases and fully loaded FFF core under RIA conditions.  

 

High thermal inertia of the FFF indicates comparable or slightly better performance in 

LOCA than UO2 fuel with regards to the fuel melting, depending on the local peaking factor of 

the FFF. 
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In the case of LOCA without scram, full core FFF has a potential for positive void 

coefficient at high void fractions. The same effect is possible for Th and MOX based TRU 

containing fuels because of the higher fissile Pu loading requirement and displacement of fertile 

U238 and Th232. Similarly to UO2 fuel, the CONFU-type core exhibit always decreasing 

reactivity trend with increasing void fraction due to minimal TRU loading.   
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Chapter 8. Feasibility of TRU Multi-recycling 
 

It has been shown in previous chapters that existing PWR reactors can operate in a 

sustainable fuel cycle mode with zero net production of TRU, while maintaining the safety and 

control characteristics of the core comparable to those of the conventional UO2 fueled PWRs. 

This chapter addresses several issues related to the out-of-core aspects of the sustainable PWR 

fuel cycle and discusses the feasibility of TRU multi-recycling from a fuel reprocessing and 

fabrication perspective.  

 

The first concern relative to closed fuel cycles is associated with the availability of 

reprocessing technologies that can provide partitioning of TRU and fission products from the 

spent fuel efficiently to meet the environmental goals of sustainability and be economically 

viable. In addition, higher levels of radiation due to multi-recycling of TRU introduce an 

additional level of complexity into fuel reprocessing, handling and fabrication technologies, thus 

increasing overall costs of the fuel cycle. 

 

In this chapter, a brief overview of the fuel reprocessing technique is presented. Then, the 

key spent fuel characteristics such as decay heat load as well as γ and spontaneous fission neutron 

dose rates at the fuel reprocessing and fabrication stages are reported and compared with those of 

conventional MOX fuel in order to evaluate the feasibility of TRU multi-recycling in PWRs. 

 

 

8.1. Reprocessing Technologies Overview 
 

Aqueous Reprocessing 

Reprocessing of commercial LWR spent fuel is done routinely in many countries around the 

world on an industrial scale (France, UK, Russia) or ready to be implemented on an industrial 

scale (India, Japan) [National Research Council, 1996].  Extensive experience exists also in the 

United States although no commercial fuel reprocessing currently takes place. The reprocessing 

of spent LWR fuel is done for the purpose of Pu extraction and its subsequent use as MOX fuel in 

the commercial reactors. The current reprocessing practice also allows a substantial volume 

reduction of the waste by separation of non-radioactive uranium and conditioning of the 

remaining high level waste (HLW) into a chemically stable form for permanent geological 

disposal.  
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Aqueous and “dry” reprocessing are two conceptually different techniques that are currently 

being developed for the extraction and recycling of TRU in various transmutation reactor 

systems.  Aqueous processes involve chemical dissolution of spent fuel in inorganic solvent and 

subsequent use of various extracting agents to selectively extract species of interest. Ion exchange 

is another technique that allows TRU recovery from the aqueous phase. 

  

All of the suggested aqueous reprocessing methods are based on the PUREX process which 

is universally employed for the extraction of Pu from the spent fuel. It is a variation of solvent 

extraction techniques that uses tri-butyl phosphate (TBP) as an organic extracting agent which 

exhibits the property of extracting actinide cations in odd oxidation states. Pu (as Pu+4) and U (as 

UO2
+2) are recovered in the PUREX process with industrial yield over 99.9 %.   

 

The standard PUREX process however is not capable of extracting Np, Am, Cm with 

sufficient yields. Therefore, numerous modifications and additional steps were proposed as an 

extension to the PUREX process. The most significant challenge in aqueous processes is the 

separation of Am and Cm from lanthanides (Ln) fission products. The difficulty arises from the 

fact that Am, Cm and Ln are present in the solution in the same oxidation state (+3) and they have 

very similar ionic size, therefore, their chemical properties are very similar. Additionally, Ln are 

present in typical spent LWR fuel in much larger amounts (by more than a factor of 20) than Am 

and Cm. The actinide/lanthanide (An/Ln) separation can be accomplished in two ways: An-Ln 

co-extraction (TALSPEAK, DIDPA, TRUEX, TRPO and DIAMEX) with subsequent selective 

stripping using complexants such as DTPA or by selective extraction of An using extracting 

agents with high selectivity such as TPTZ or CYANEX-310 [OECD/NEA, 1999]. 

 

Am and Cm can be separated by two types of processes. The SESAME process utilizes the 

fact that Am can exist in solution in oxidation states higher than +3 which is practically 

impossible for Cm in aqueous medium. The DAIMEX process takes advantage of the difference 

in partition coefficients of Am and Cm in the DIAMEX solvent which allows extraction of Am, 

and leaves Cm in the aqueous phase given a sufficient number of separation stages.  

 

Np and long-lived fission products such as Tc99 and I129 can also be recovered by modified 

PUREX-type processes with yields sufficient enough to meet the sustainable fuel cycle 

environmental goals [OECD/NEA, 1999].  
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The vast operating experience and existing industrial capacities make PUREX based 

separation the most attractive option for TRU recycling in existing LWRs. The Advanced Fuel 

Cycle Initiative program (AFCI) in the US uses UREX+ as a reference process for actinide and 

fission products partitioning. UREX+ is also an extension of the conventional aqueous chemistry 

based PUREX process [DOE/NE, 2003]. The technological maturity status of various aqueous 

separation technologies is summarized in Table 8.1.I. 

 

Table 8.1.I Maturity status of aqueous separation technologies [OECD/NEA, 1999] 

  Feasibility in 
principle  

Engineering 
feasibility 

Industrial scale 
feasibility 

U - Pu separation PUREX Achieved industrially 
Np separation PUREX   (>95% sep.)  (~95% sep.) 

 DIDPA    
 HDEHP    
 TRUEX    
Am + Cm separation     
Based on An/Ln co-extractioin    
 TALSPEAK    
 DIDPA    
 TRUEX    
 TRPO    

Based on An selective extraction    

 TPTZ    

 Picolinamides    

 CYANEX301    

Based on percipitation     

 Ferricyanide    

Am – Cm separation     

 SESAME    

Tc separation PUREX  (insoluble Tc)   (soluble Tc) 

Tc – Platinum group metals separation    

Denitration precipitation    
Active Carbon 
adsorption    

I separation PUREX    
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The most significant disadvantage of aqueous reprocessing is the degradation of organic 

extracting agents in radiation fields. In the TRU multi-recycling scenario, the activity and decay 

heat load per unit volume of the spent fuel steadily increase for the initial recycle stages as will be 

demonstrated later in this chapter. Major modifications in the existing reprocessing plants will be 

required to partially overcome this complication. However, new plants are likely to be able to 

accommodate the design requirements. The required dilution of the actinide stream will lead to 

additional increases in volume of reactants and in waste volume per unit mass of the reprocessed 

spent fuel.  

 

It should also be noted that current aqueous reprocessing is based on the element-by-element 

separation approach which greatly complicates the system. Moreover, separation of potentially 

weapons usable nuclides at different reprocessing stages raises nuclear proliferation concerns. 

 

 

Pyrochemical Reprocessing 

 

The most promising concept among non-aqueous separation techniques is pyrochemical 

reprocessing. [Boullis et al., 2000] The concept is based on the high-temperature separation of 

actinides reduced to a metal state in molten salt media (usually alkali metal chlorides or 

fluorides). Typically, the spent fuel elements are dissolved in a molten salt eutectic at 

temperatures in a range between 500 and 800 °C which is then followed by selective recovery of 

the elements of interest. The separation of spent fuel constituents can be accomplished by 

different methods: separation by extraction, electrodeposition, or precipitation. Various types of 

pyrochemical reprocessing techniques have been actively studied around the world. At the 

Argonne National Laboratory (ANL), extensive research was carried out as a part of the Integral 

Fast Reactor (IFR) Program [Chang Y.I., 1989]. RIAR (Russia) is currently developing the 

technology for reprocessing of fast reactor MOX fuel in conjunction with vibro-packing fuel 

fabrication techniques [Bychkov A.V. et al, 1997].  

 

The well recognized advantages of the pyrochemical reprocessing are as follows. 

- Simplicity and compact size of the reprocessing plant  

- Reduced waste stream volumes in comparison with aqueous methods 

- As a result, the process is expected to be more economically attractive 
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- High proliferation resistance because Pu is never separated from the rest of TRU 

during the process 

- The process is completely insensitive to high radiation fields which allow 

reprocessing of the fuel after short cooling times as well as complete recovery and 

recycling of materials involved in the process 

- The process can be equally applied to different fuel types although an extra reduction 

to the metallic state step is required for non-metallic fuel forms  

 

Nevertheless, pyrocemical reprocessing is far from being ready for a large scale industrial 

deployment. Although comparable recovery yields for TRU have been reported for aqueous and 

pyrochemical methods [Koch, 2000], significant R&D effort must be carried out on pyro- 

reprocessing techniques for them to achieve an equivalent level of technological maturity as 

currently exists for the aqueous separation methods.  

 

The two types of separation processes can also be combined to achieve better economic 

performance and high recovery yields. It was suggested, for example, that uranium be removed 

from the spent fuel with an aqueous UREX process while the separation of TRU from the FP be 

done by an electrometallurgical process [Laidler J.J., 2000].  

 

Heterogeneous fuel types such as the CONFU assembly concept offer additional flexibility 

with respect to the choice of an optimal fuel reprocessing option. In the CONFU concept, the UO2 

fuel pins have standard design and typical PWR fuel burnups. Therefore, their reprocessing can 

be handled in conventional reprocessing facilities that were not originally designed to operate at 

high radiation fields. Both aqueous and pyrochemical options can be applied to reprocessing of a 

standard UO2 fuel depending on their availability and economic potential.  

 

The reprocessing of spent FFF pins, although more challenging due to the high levels of 

radiation, can be significantly simplified as it does not require uranium separation from the rest of 

the actinides. Uranium separation is one of the major steps in the separation process which 

involves the largest volume of materials. Therefore, avoiding the uranium separation step would 

potentially allow significant reduction in the reprocessing costs and waste volumes.  However, an 

inert oxide (e.g. ZrO2) is typically mixed with the fuel and that will require separation.    
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8.2. TRU Multi-recycling Feasibility Evaluation 
 

Apart from the availability and costs of the TRU separation technologies, the feasibility of a 

closed sustainable fuel cycle also depends on the complexity of fuel fabrication and handling. The 

fuel handling and fabrication are likely to require completely remote operation and extensive 

shielding as the radiation doses from the reprocessed TRU fuel are too high. Consideration of MA 

as part of the fuel cycle in addition to Pu is expected to increase significantly the levels of 

radiation from the reprocessed and re-fabricated fuel in comparison with conventional MOX fuel 

even during the first few recycle stages. In the case of multi-recycling, the very long saturation 

times for Cm246, Cm248 and Cf252 isotopes (Figure 5.1.6, Chapter 5) will result in continuous 

increases in the neutron dose rates from spontaneous fissions in these isotopes. Moreover, as 

mentioned earlier, the increased levels of radiation and heat generation will also complicate the 

fuel reprocessing causing degradation of organic extractants and increasing the volume of 

materials involved in the reprocessing as well as the volume of the reprocessing waste stream. 

The above comment however refers only to the aqueous reprocessing techniques. The impact of 

high radiation level environments on pyrochemical reprocessing is expected to be minimal. 

 

The total radioactivity, decay power, spontaneous fission (SF) source and dose rates from the 

reprocessed TRU containing fuel were calculated for different recycle stages to evaluate the effect 

of changing TRU composition on these fuel characteristics. The comparison of calculated values 

with the corresponding data of conventional MOX fuel would indicate feasibility and potential 

limitations of TRU multi-recycling in LWRs. 

 

 

Assumptions and Methodology  

 

The materials mass flows used in this chapter are obtained from the assembly based 

neutronic evaluation of the CONFU assembly reported in Chapter 5. The radiotoxicity, decay 

heat, neutron and γ sources were calculated with the ORIGEN2.2 [ORNL, 2002] computer code. 

The SF neutron and γ dose rates were calculated with MCNP4C [Briesmeister, 2000] using 

ANSI/ANS-6.1.1-1977 flux-to-dose conversion factors [Battat M. E., 1977]. The photon energy 

spectrum for the dose rate calculations was obtained from ORIGEN2.2. Spontaneous fission 

neutron energy spectra were constructed from Watt spectrum parameters for individual nuclides 

provided in Appendix H of the MCNP4C users manual [Briesmeister, 2000]. For the isotopes for 
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which no SF energy spectrum data was available, the data for the next closest isotope of the same 

element was used.  

 

The SF neutrons and γ dose rates were evaluated at the surface of an FFF pellet and at 1 m 

distance from the clad FFF pin. These two configurations were chosen for the analysis because 

the fuel pellet and the fuel pin represent two basic manufacturing units that must be handled in the 

fuel fabrication process. The medium surrounding a fuel pin was assumed to be dry air at 

atmospheric pressure.  

 

The (α,n) reaction neutron source was not considered in the dose rate calculations because no 

data regarding its energy spectrum was available. In addition, the (α,n) reaction neutrons have 

very small contribution to the total neutron source (typically less than 2%). Instead, the (α,n) 

neutron source was added to the SF source value which was then used for the MCNP dose rate 

calculations. Considering (α,n) neutrons as SF neutrons is a conservative assumption because 

(α,n) reaction neutrons typically have a softer spectrum than SF neutrons and therefore lower 

biological quality factors. 

   

 

Results and Discussion 

 

The environmental hazard characteristics of the fuel materials circulating in the sustainable 

fuel cycle based on the CONFU concept are summarized in Table 8.2.I and Figures 8.2.1 - 8.2.4.  

All values in the Table 8.2.I and in Figures 8.2.1 - 8.2.4 are normalized per unit cycle energy (in 

GWe Years) The CONFU fuel cycle environmental hazard characteristics were calculated at two 

time points between the recycles: at 5 years after discharge (fuel reprocessing) and at 7 years after 

discharge (new fuel fabrication). Only the actinide contributions to the fuel characteristics were 

considered. Thus, the effects of the fission products are ignored here. As can be observed from 

Table 8.2.I and Figures 8.2.1 - 8.2.4, the activity, decay heat load and radiotoxicity of the 

materials within the fuel cycle are converging to equilibrium values after 3 to 5 recycles.  The SF 

source is the only parameter that does not converge within the 5 cycles analyzed. As mentioned 

above, the SF source is one of the factors that limit the number of successive TRU recycles.   
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Table 8.2.I. CONFU Assembly:  Environmental Hazard Characteristics of the 

Actinides at the Time of Separation and Fabrication. (Normalized per 1 GWeYear) 

  Recycle Stage 

  1 2 3 4 5 

HM mass flow, kg 15018 17560 18197 18320 18436 

Radioactivity, Ci 7.73E+06 9.71E+06 9.97E+06 9.90E+06 9.86E+06 

Thermal Power, W 5.99E+04 1.04E+05 1.26E+05 1.37E+05 1.44E+05 

Ingestion Radiotoxicity, Sv 1.09E+10 1.75E+10 2.00E+10 2.08E+10 2.11E+10 

Separation  
Stage, 

 
5 years after 

discharge 
Total Neutron Source, #/sec 1.31E+11 3.45E+11 8.11E+11 1.77E+12 3.25E+12 

TRU mass flow, kg 495 629 665 676 686 

Radioactivity, Ci 7.06E+06 8.89E+06 9.14E+06 9.08E+06 9.05E+06 

Thermal Power, W 5.61E+04 9.73E+04 1.18E+05 1.28E+05 1.34E+05 

Ingestion Radiotoxicity, Sv 1.03E+10 1.64E+10 1.88E+10 1.95E+10 1.98E+10 

Fabrication 
Stage, 

 
7 years after 

discharge 
Total Neutron Source, #/sec 1.20E+11 2.92E+11 6.02E+11 1.20E+12 2.10E+12 

 

Figures 8.2.5 and 8.2.6 show the effect of longer cooling time between recycles at the fuel 

fabrication stage on SF source and the decay heat load respectively. The values of the first-time-

reprocessed UO2 fuel and once recycled as MOX are also shown for comparison purposes. The 

SF source and decay heat load from TRU in irradiated UO2 and MOX fuel were evaluated at 10 

years after discharge. 

 

Increasing the cooling time from 7 to 20 years substantially reduces the SF problem which 

can potentially increase the number of practically feasible recycles and reduce the cost of fuel 

reprocessing and handling. The SF source after 5 recycles is about twice that of the once 

reprocessed MOX fuel. The effect of cooling time on the TRU heat generation is also significant. 

The heat source from 20 years cooled TRU saturates after fewer recycle stages and at about 50% 

lower level than TRU recycled after 7 years of decay. The level of equilibrium 20 years cooled 

TRU heat load is only about 20% higher than first time reprocessed MOX after 10 years of 

cooling. The value of the SF source for the 5th recycle and 20 years cooling time of the CONFU 

fuel corresponds to 12.8 × 106 n/s per kg of HM in the fuel assembly or 391 × 106 n/s per kg of 

HM in the FFF pins. Both values are substantially lower than those reported for ADS TRU 

burners (670 × 106 n/s-kgHM) or ADS MA burners (1992 × 106 n/s-kgHM) [OECD/NEA, 

2002a].  
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Figures 8.2.7 and 8.2.8 show the SF neutrons, γ, and total dose rates at the FFF pellet surface 

and at 1 meter from the clad fuel pin respectively.  The approximate values of the γ radiation dose 

rates at the fuel pellet surface for conventional MOX fuel are represented by the shaded band on 

Figure 8.2.7. The values for MOX fuel are both calculated and obtained from references ([Bairiot 

H. et al., 1989], [Taiwo T. A. et al., 2002]). The wide range of the MOX values is due to 

differences in Pu loading, Pu isotopic composition, and the time since Am separation.  

 

During the first few early recycle stages, the dose rate from the fuel is dominated by the 

photon component. Only after 18-20 recycles, the photon and SF neutron doses become 

comparable. The initial photon dose rate is significantly higher (by a factor of 5 to 10) than that of 

the first time recycled typical MOX fuel. However, relatively simple shielding such as a few mm 

thick lead wall can significantly reduce the γ-photon dose rate to acceptable levels. Additionally, 

the photon dose rate increases substantially between the first and the 3rd recycle stages as a result 

of rapidly increasing concentrations of Pu238, Am241, and Cm243 and 244 (Figures 5.1.6 – 

5.1.8, Chapter 5) with relatively short half lives and high energy γ-photons associated with their 

decay. The slight decrease in the γ-photon dose rate after the 3rd recycle stage is again due to the 

slow decrease in the concentrations of the same isotopes. The γ dose rate becomes practically 

constant from about the 5th recycle and beyond. The moderate increase in the γ dose rate between 

5th and 20th recycle is due to the slow buildup of Cm isotopes which do not increase the γ source 

but slightly harden the γ-photon spectrum as illustrated in Figure 8.2.9. Otherwise, the γ-photon 

spectrum remains practically unchanged with the number of TRU recycles. 

 

The SF neutron dose rate increases monotonically with the number of recycles in the range 

up to 20 recycles (Figure 8.2.7 – 8.2.8). Initially, the Cm244 isotope is the major contributor to 

the neutron dose as illustrated in Figure 8.2.10. The contribution of Cf252 to the neutron dose 

becomes comparable to that of Cm244 only after about 10 recycles. After 20 recycle stages, 

Cf252 dominates the SF source and therefore the neutron dose rate from the fuel. Note that in this 

analysis, 20 years cooling time between recycles was assumed as was suggested by the results 

presented in Figures 8.2.5 and 8.2.6. If 20 years cooling time between recycles is adopted, the 

dose from SF neutrons is less of an issue for at least the first 10 TRU recycles. At the 10th recycle 

stage, the neutron dose rate becomes comparable to the 1st recycle stage γ dose rate. If γ doses at 

the first three recycle stages can be managed by the fuel fabrication facilities, the additional 

relatively small neutron dose contribution is likely to be possible to tolerate with simple shielding 

arrangements and therefore moderate increase in fuel fabrication cost.    
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An dditional matter of concern is the production of He gas in the fuel pins containing TRU 

as pointed out in [Taiwo T. A. et al., 2002]. The presence of relatively short lived isotopes 

Am241, Cm242,244, Pu238 that decay through emission of an α particle results in buildup and 

partial release of He gas to the fuel free volume. Increased gas pressure inside the pin may 

significantly affect the fuel performance especially under accident conditions.  

 

Taiwo T. A. et al. [2002] report however, that He generation in the CORAIL fuel (TRU-

MOX type) constitutes a relatively small addition (up to 20%) to the typical fission gas 

production and therefore is expected to have limited overall effect.   

 

For the fertile free fuel types, the important issue of fission gas retention is largely uncertain 

and it is currently being actively investigated. Thus, the particular problem of additional gas 

generation within the fuel due to TRU α decay should be carefully addressed in these studies.   

 

 

8.3. Chapter Summary 
 

In this chapter, the feasibility of a sustainable PWR fuel cycle was evaluated with respect to 

the ex-core aspects of the cycle. A brief review of the fuel reprocessing options is presented with 

the main focus on two reprocessing techniques: aqueous, based on a conventional PUREX 

solvent extraction process, and non-aqueous pyrochemical reprocessing.   

 

Generally, aqueous processes have a relatively higher level of technology maturity than the 

pyrochemical processes. However, the high sensitivity of organic extractants to radiation and 

TRU decay heat makes aqueous reprocessing less attractive in a multi-recycle mode. 

 

The elevated radiation field is not an issue of concern for the non-aqueous reprocessing. It 

can be implemented economically on a relatively small scale which can eliminate the need for 

spent fuel transportation over long distances. Moreover, simultaneous Pu and MA extraction 

enhances proliferation resistance of the cycle. 

 

The two types of reprocessing can be combined to achieve better economic performance. 

The heterogeneous structure of the CONFU assembly concept can provide additional flexibility in 

choice of the TRU separation option. For example, UO2 pins can be treated by a conventional 
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PUREX type process while FFF pins, where the main bulk of the assembly TRU is concentrated, 

can be processed by the advanced pyrochemical techniques. Furthermore, the uranium separation 

step is not required for the FFF pins which can potentially reduce the reprocessing costs. 

However, a reduction of TRU oxides to a metallic state and chemical separation of TRU from the 

inert matrix are required additional steps for pyroprocessing of FFF.  

 

The radiation and TRU decay heat power is likely to limit the practically feasible number of 

TRU recycle stages in the sustainable CONFU based fuel cycle. Therefore, the decay heat load, 

SF source and radiation dose rates were evaluated for different numbers of recycle stages and 

compared with corresponding data of the conventional 1st generation MOX fuel.  

 

The results demonstrate that the heat load and total radioactivity of the spent fuel saturates 

within 3 to 5 recycles at a constant equilibrium value which is up to a factor of 2 higher than the 

corresponding values after the 1st recycle. The SF source, however, monotonically increases due 

to slow buildup of the Cm and Cf isotopes.  

 

Increasing the cooling down period between the fuel discharge and its reprocessing from 7 to 

20 years may substantially mitigate the SF source growth problem. The value of SF source for the 

5 times recycled TRU in the CONFU assembly with 20 years cooling time is comparable to that 

of conventional MOX fuel. The increased cooling time also results in saturation of the decay 

power at significantly lower level which is also comparable to the typical MOX value and implies 

the potential feasibility of conventional aqueous reprocessing. 

 

The evaluation of radiation dose rates revealed that the photon dose dominates the total dose 

rate for the first 10 recycle stages if a 20 year cooling period is adopted. The photon dose rate 

saturates at a constant level which is about a factor of 2 higher than that of the TRU fuel after the 

1st recycle. The radiation dose values obtained are such that relatively simple shielding 

arrangements can be implemented to reduce the dose rates to the safe levels without substantial 

increase in the cost of fuel handling and fabrication facilities. The dose from SF neutrons 

however, increases monotonically with the number of recycle stages, and it reaches the equivalent 

photon dose rate level only after about 20 recycles.  It was concluded therefore that at least 10 

TRU recycles are possible with only minor changes in fuel handling and fabrication procedures. 
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The reprocessing and fabrication of the CONFU fuel after more than 20 recycles with 

equilibrium TRU composition are likely to require completely remote operation. The 

pyrochemical reprocessing and vibro-packing fuel fabrication techniques as suggested in 

[Bychkov et al., 1997] are potential candidates for the fuel treatment at these advanced stages of 

the sustainable fuel cycle. 
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Figure 8.2.1. Radioactivity of the CONFU Fuel Assembly 
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Figure 8.2.2. Decay Heat Generation of the CONFU Fuel Assembly 

 

0.0E+00

5.0E+09

1.0E+10

1.5E+10

2.0E+10

2.5E+10

1 2 3 4 5

Recycle stage

Sv
 /

 G
W

e 
Y

Ingestion Radiotoxicity, Sv At reprocessing

Ingestion Radiotoxicity, Sv At Fabrication

 

Figure 8.2.3. Ingestion Radiotoxicity of the CONFU Fuel Assembly 
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Figure 8.2.4. Total SF and (α,n) Neutron Source of the CONFU Fuel Assembly 
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Figure 8.2.5 SFS per fuel assembly: 7y vs. 20y decay comparison 
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Figure 8.2.6 Heat load per fuel assembly: 7y vs. 20y decay comparison 
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Figure 8.2.7. Dose rates at fuel pellet surface 
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Figure 8.2.8. Dose rates at 1 m from the fuel cladding surface 
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Figure 8.2.9. Photon energy spectra 
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Figure 8.2.10. Major contributors to SF source 
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Chapter 9. Sustainable Fuel Cycle: Economics Assessment 
 

Economic viability is crucial for any technological innovation. Therefore, the objective of 

reducing or eliminating the nuclear waste burden cannot be achieved unless the solution is cost 

competitive with the existing alternatives. Many of the proposed nuclear waste transmutation 

systems and their associated fuel cycles rely on innovative technologies whose economic 

performance is largely uncertain.  

 

Since LWRs are likely to remain dominant in the global energy market for at least the next 

few decades, development of LWR spent fuel reprocessing technologies would be required 

regardless of the particular waste transmutation scenario. Therefore, any sustainable fuel cycle 

option would equally benefit from technical improvements and cost reduction of LWR spent fuel 

reprocessing.  

 

The reprocessing of the TRU burner fuel is also a common challenge for all proposed 

transmutation concepts, since it is impractical to achieve in one transmutation path TRU burnup 

high enough to satisfy the environmental goal of radiotoxicity level below the original natural 

uranium ore level in less than 1000 years.  

 

A major difference among the various transmutation systems comes from their economic 

performance. As a result, utilization of proven LWR technology, particularly with already 

installed capacity, will provide maximum economic certainty and benefit as a transmutation 

option. The LWR is a proven technology and is the least expensive nuclear plant to build and to 

operate today. Moreover, the advanced dedicated transmutation systems would require large 

initial capital investment. In that respect, transition of the existing LWR plants to the sustainable 

CONFU based fuel cycle might be even more economically attractive because many of the 

existing nuclear plants have already paid off their initial capital investments. 

 

It is important to note, however, that the current market prices of natural uranium and 

uranium enrichment do not justify spent fuel reprocessing for the purposes of improved natural 

resources utilization. The closed fuel cycle therefore is mainly viewed as an alternative to direct 

geological disposal of the spent fuel which allows better management of the radioactive materials 

instead of leaving the nuclear waste in a repository to future generations with all the associated 

uncertainties. Although the transmutation of nuclear waste is a more responsible option for the 
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society than direct geological disposal, it can only be implemented if these two options are 

economically competitive.   

 

In this chapter, a simplified economic analysis of the sustainable PWR fuel cycle is 

presented. The fuel cycle and total electricity costs are calculated for the conventional once-

through fuel cycle and compared with those of the alternative sustainable PWR cycle based on the 

CONFU assembly concept as well as with the sustainable 1-tier fuel cycle based on an advanced 

fast spectrum TRU burning system [Romano A., 2003]. A single tier fuel cycle scheme assumes 

that all TRUs from the once through LWR fuel cycle are directed to a single type critical reactor 

where TRU are burned and recycled. Such a fuel cycle scheme was found to be the most 

economically attractive among other considered alternatives according to the results of a recent 

OECD waste transmutation study [OECD/NEA, 2002a]. 

 

 

9.1. Analysis Assumptions and Methodology 
 

The fuel cycle steps considered for the three fuel cycle options mentioned above are 

schematically presented in Figures 9.1.1 through 9.1.3 respectively. 

 

 

 

 

Figure 9.1.1. Once-through fuel cycle flowchart 
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Figure 9.1.2. Sustainable CONFU assembly PWR based fuel cycle flowchart 

 

 

Figure 9.1.3. Sustainable PWR – advanced Actinide Burner Reactor (ABR) fuel cycle 

flowchart [Romano A., 2003]. 
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The unit costs for the considered fuel cycle steps were primarily adopted from a 

comprehensive transmutation systems assessment by the OECD [OECD/NEA, 2002a]. The unit 

costs and time schedule for each fuel cycle step considered are summarized in Table 9.1.I. The 

waste disposal charges were calculated on the basis of 1 mill/kWh which is the current practice in 

the United States. The 1 mill/kW-h waste disposal fee was uniformly applied to the once through 

UO2 fuel cycle. The 1 mill/kW-h value corresponds to about 412 $/kgHM for the current fuel 

burnup of 50 MWd/kgHM. The waste disposal charges vary significantly from country to country 

depending on the local conditions and repository size and may range between 200 to over 1000 

$/kgHM [OECD/NEA, 2002a], [Bunn M. et al., 2003]. 

 

For the closed fuel cycles, 0.18 mills/kWh HLW conditioning and disposal costs were 

estimated by the OECD study [OECD/NEA, 2002a]. This includes the cost of vitrification and 

storage of short lived fission products. The 0.18 mills/kWh value assumes that constant amount of 

short lived fission products is produced per unit energy. 

 

The cost of dry cask spent fuel storage was calculated on the basis of $1.2 M cost of a single 

cask that holds 24 standard PWR fuel assemblies which translates to about 100 $/kgHM. This 

value is consistent with a recent interim storage of spent nuclear fuel assessment by Bunn et al. 

[2001]. Since the design of a dry cask is driven by the decay power generated in the spent fuel 

and because the FFF contains considerably smaller quantities of HM than conventional UO2 fuel, 

it is more logical to assume the dry cask storage cost in $ per unit decay heat load which is 

roughly proportional to the fission products inventory. In fuel assemblies which produced the 

same amount of energy, the fission product inventory will be similar. The discrepancy may arise 

from the difference in fission product yields for different actinides.  

 

The fission product inventory is not directly proportional to fuel burnup because some of the 

fission products saturate during fuel irradiation. The effects of fuel burnup on the decay heat after 

discharge is discussed by Xu Zh. [2003]. It was shown, however, that in the period between 3 and 

5 years after discharge, when a dry cask loading is expected to takes place, the decay heat power 

of UO2 fuel is roughly proportional to its burnup (Figure 9.1.4). Although relative deviation from 

proportionality between burnup and decay heat increases with time between about 5 and 30 years 

after discharge, the absolute magnitude of the decay power decreases more rapidly. 
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Figure 9.1.4. Relative magnitude of UO2 fuel decay power per GWe-Year after discharge 

from [Xu Zh., 2003].   

Additionally, the energy generated during the cycle per unit fuel volume for all fuel types 

considered in this study is similar (the equivalent 18 month fuel cycle length was an initial 

constraint of the analysis). Therefore, the FP concentrations should be comparable for all fuel 

cycle options and the assumption of decay heat proportionality to the total energy produced by the 

fuel should not introduce significant error into the final fuel cycle cost calculation results. 

Consequently, the dry cask storage charges were calculated in the units of $ per energy generated 

by the fuel based on the reference UO2 fuel burnup of 50 MWd/kgHM (Table 9.1.I).    

 

The expenses associated with dry cask storage were assumed to occur at fuel discharge. The 

situation is likely if the reactors’ on-site storage pool capacity is reached. In this case, for each 

assembly discharged from the reactor to the storage pool, one assembly must be moved from the 

pool to the dry cask. The expenses associated with interim storage of spent ABR fuel were 

neglected. 
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In the fuel cycle scenario which combines a standard PWR operating in a once-through UO2 

fuel cycle mode and an advanced fast spectrum actinide burner reactor (ABR), the installed 

capacity of ABR is enough to consume TRU at a rate which corresponds to TRU production rate 

of about 1.12 PWRs [Romano A., 2003]. Namely, the sustainable fuel cycle with zero net TRU 

generation can be maintained for the 1 ABR + 1.12 PWRs system. 

 

The unit cost of spent UO2 fuel reprocessing was based on reported contract prices of the 

existing reprocessing plants and assumptions made in [National Research Council, 1996] and 

[OECD/NEA, 2001]. The reprocessing costs on the order of 800 $/kgHM were estimated for the 

government owned reprocessing plant with annual throughput of 900 MTHM [National Research 

Council, 1996]. 

 

Table 9.1.I. Fuel cycle steps, unit costs summary, and schedule. 

Fuel cycle step Cost Unit 
Lead time to 
beginning of 
irradiation 

Natural Uranium 30.00 $/kg HM 12 months 

Conversion 5.00 $/kg HM 6 months 

Enrichment 80.00 $/kg HM 6 months 

Fabrication UO2 250.00 $/kg HM 3 months 

Fabrication FFF 11000 $/kg HM 3 months 

Reprocessing UO2 800 $/kg HM 24 months 

Reprocessing FFF 7000 $/kg HM 24 months 

Dry Cask storage 2.18 $/MWd at discharge 
HLW Disposal   
  (Once through cycle) 

 
1.00 

 
mill/kWhe  

HLW Conditioning and disposal 
  (Closed cycles) 

 
0.18 

 
mill/kWhe 

added uniformly 
to FCC 

 

The reference data for the PWR and ABR used for the fuel cycle cost calculations is 

summarized in Table 9.1.II. ABR is a recent concept developed at MIT. It is a fast spectrum 

reactor using fertile free fuel. Its fuel cycle is optimized for the superior TRU destruction and 

economic performance. The ABR design utilizes a super-critical CO2 power conversion cycle 

with up to 45% thermal efficiency. However, the costs of ABR technologies are more uncertain. 

Hence, a few of its parameters will be varied as a sensitivity analysis. 
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The same costs of FFF reprocessing and fabrication were assumed for the fertile free ABR 

fuel and FFF pins in the CONFU assembly.  

 

The levelized fuel cycle cost calculation methodology described in [OECD/NEA, 1994] and 

in [Handwerk C.S. et al., 1998] was used in this study. The levelized fuel cycle cost (FCC) is 

calculated as the ratio of present valued front-end and back-end fuel cycle expenses for 

equilibrium fuel batch to the present valued energy generated by the same batch. Equation 9.1 

gives a general expression for the FCC calculations. 

ix∆t
i

i
-xT

C e
FCC=

1-eE×
xT

∑
 (9.1.1)

where Ci is the direct cost of transaction i, ∆ti is the time between the transaction occurrence and 

the reference point (beginning of batch irradiation), T is the fuel batch in-core residence time, and 

x is continuous discount rate. No escalation of costs due to inflation was assumed. Annual 

continuous compounding discount rate of 10% was used.  

 

The data for capital and operation and maintenance (O&M) costs for ABR and PWR was 

obtained from [OECD/NEA, 2002a]. The total cost of electricity (COE) associated with fuel 

cycle, capital, O&M and decommissioning and dispostal (D&D) costs was also calculated as 

suggested in [OECD/NEA, 2002a] and given by the expression 9.1.2. 
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 (9.1.2)

 

where  UTC  – unit (total) capital cost 

  CF  – capacity factor 

  ψ – fixed annual discount rate 

fD&D – decommissioning and decontamination annual charge as a fraction of 

capital cost 

  fO&M – O&M annual charge as fraction of capital cost 
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Table 9.1.II. Reference PWR and ABR parameters 

 
 

9.2. Fuel Cycle Cost Estimates 
 

The results of the FCC and COE calculations are presented in Table 9.2.I. The CONFU-1 

FCC with first time recycled TRU is about 28% higher than the reference once through UO2 

cycle. The equilibrium TRU (CONFU-EQ) cycle is more expensive than the reference UO2 cycle 

by about 60% due to increased uranium enrichment required to sustain a cycle length comparable 

to the reference UO2 cycle as well as relatively high costs of the steps associated with TRU 

recycling. 

 

The FCC of this macro-heterogeneous equilibrium CONFU is somewhat higher than micro-

heterogeneous CONFU option due to slightly superior burnup performance of the latter. 

 

ABR [Romano A., 2003]  
Fuel in-core residence time 2.66 years 
Average fuel burnup 200 MWd/kgHM
Annual TRU consumption 259 kg 
Annual TRU loading 1231 kg 
Thermal power 700 MW 
Average capacity factor 0.90  
Thermal efficiency (Advanced SC CO2 cycle) 0.45  
Capital cost 2100 $/kWe 
PWR  
Fuel in-core residence time 4.5 years 
Annual TRU generation 230 kg 
Thermal power 3400 MW 
Average capacity factor 0.90  
Thermal efficiency  0.337  
Capital cost 1700 $/kWe 
Additional assumptions  
Annual discount rate 10 % / year 
O&M annual charge as fraction of capital cost 4 % / year 
Decommissioning annual charge as fraction of capital cost 8 % / year 
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The total cost of electricity for the CONFU-EQ and PWR-ABR cycle are comparable. 

Higher capital cost of ABR is offset by the neutronic advantages of fast spectrum with respect to 

TRU destruction. Changes in TRU isotopic composition does not significantly affect burnup 

performance of the ABR. In the CONFU cycle, on the other hand, the degradation of TRU 

isotopic vector results in a requirement for higher uranium enrichment which impairs the fuel 

cycle economics. Table 9.2.I also shows the FCC and COE for PWR and ABR parts of the ABR-

PWR fuel cycle. The UO2 fuel reprocessing expenses are attributed to the ABR fuel cycle. 

Therefore, the FCC of PWR in PWR-ABR system is lower than that of the once through PWR 

cycle.  

 

Although the FCC for the CONFU-EQ cycle is higher than the once through cycle, the total 

COE for the CONFU-EQ is higher by only about 8%.  

 

Figure 9.2.1 shows individual contributions of the considered fuel cycle transactions for the 

cases analyzed. Reprocessing of the spent UO2 fuel represents the largest expense for the closed 

fuel cycles. The next largest contribution to the cost of the closed fuel cycles is from fabrication 

the FFF fabrication and reprocessing. The cost of FFF reprocessing and fabrication in the 

CONFU-EQ case is lower than in ABR-PWR case because of the lower TRU inventory in the 

former system as a result of higher actinide cross-sections in thermal spectrum. However, the 

PWR-ABR system does not require higher UO2 enrichment because of the fast spectrum in ABR 

and its transmutation performance is not sensitive to TRU isotopic composition. As a result, the 

contribution of UO2 enrichment to the fuel cycle cost is substantially lower in PWR-ABR case. 

Table 9.2.I Fuel Cycle and Total Electricity Cost Summary (mills/kWeh) 

 FCC Capital + O&M 
Cost Total COE 

Once-through UO2 4.52 31.91 36.44 

CONFU-1 5.80 31.91 37.72 

CONFU-EQ 7.33 31.91 39.24 

M-CONFU-EQ 7.69 31.91 39.61 

PWR - ABR 7.48 33.38 40.86 

 PWR – 3400 MWth 3.70 31.91 35.62 

 ABR – 700 MWth  22.81 39.42 62.23 
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Nevertheless, the major advantage of the CONFU concept is the possibility of TRU transmutation 

in a sustainable mode without the introduction of new reactor concepts. The implementation of 

the CONFU based TRU transmutation strategy will allow to address the nuclear waste issue 

earlier. It will also provide extra time for the research and development effort on more advanced 

transmutation concepts without accumulation of TRU from the existing reactors. In addition, the 

1-tier system considered here is based on critical TRU burner reactor [Romano A., 2003]. In 

comparison with ADS, which are currently preferred choice for transmutation systems in Europe 

[Rubbia C. et al., 1997], the economic advantages of CONFU are projected to be significantly 

more pronounced than in the case of critical TRU burning systems. 
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Figure 9.2.1. Breakdown of FCC components 

 
A number of alternative fuel cycles were compared in OECD study mentioned earlier 

[OECD/NEA, 2002a] in terms of there economic performance and environmental impact. Figure 

9.2.2 shows the results of this comparison. Index RLOSS is defined as TRU losses to the 

repository relative to once through fuel cycle, while quantity RCOST represents total cost of 

electricity relative to that of the once through fuel cycle. Since both indices are relative 

parameters and the OECD/NEA [2002a] report was the main reference source of unit costs for the 
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current analysis, the corresponding values of RLOSS and RCOST for the CONFU and PWR-

ABR fuel cycles are also plotted in Figure 9.2.2. Both, the CONFU and PWR-ABR fuel cycles 

exhibit superior performance to any of the fuel cycles considered in OECD study primarily 

because both systems employ fertile free fuel technology which allows minimization of TRU 

inventory within the cycle.   

 

Two-tier systems considered in OECD study relied on conventional MOX technologies for 

burning Pu in the first-tier LWRs while residual Pu and MA from the first-tier are burned and 

recycled in the second-tier accelerator driven system. Such two-tier fuel cycles are not very 

effective economically due to a relatively poor Pu destruction efficiency in MOX fuel and high 

costs of development and deployment of accelerator technologies. However, the economics of 2-

tier fuel cycles can be significantly improved if FFF based LWRs or gas cooled reactors are used 

in the first-tier as Pu or TRU burners and critical fast spectrum reactors with fertile free fuel in the 

second tier as was demonstrated by Romano A. [2003]. 
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Figure 9.2.2. TRU loss vs. COE comparison of CONFU and PWR-ABR cycles with 

[OECD/NEA, 2002a] results. 
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9.3. Fuel Cycle Cost Sensitivities  
 

As mentioned earlier, the uncertainty in costs of spent fuel reprocessing and TRU target fuel 

fabrication is significant. However, development of innovative technologies can considerably 

reduce the cost of TRU recycling [OECD/NEA, 2002a]. A series of sensitivity calculations of the 

FCC to various fuel cycle stage unit costs was performed to evaluate the potential of the CONFU 

based fuel cycle to achieve an economic performance comparable to that of the once-through fuel 

cycle. Additionally, some assumptions regarding ABR technology have large uncertainties for 

example: its capital cost and feasibility of high thermal efficiency supercritical CO2 (SC CO2) 

power conversion cycle, which is currently being studied at MIT [Dostal V., et al., 2002].  

Therefore, the PWR-ABR fuel cycle cost sensitivity to ABR capital cost and thermal efficiency 

was also investigated. 

 

Figure 9.3.1 shows the FCC of equilibrium CONFU relative to the reference once through 

UO2 cycle as a function of fractional change in unit costs of UO2 fuel reprocessing, FFF 

reprocessing and FFF fabrication. As expected, the CONFU FCC exhibits greatest sensitivity to 

the UO2 fuel reprocessing cost. Although UO2 fuel reprocessing has the lowest cost per kg of 

feed, it has a major contribution to the FCC because of the volume of material to be reprocessed. 

Therefore, superior priority should be given to the development of conventional UO2 fuel 

reprocessing technologies. The data presented in Figure 9.3.1 also suggests that the CONFU 

concept can be economically competitive with the conventional once through fuel cycle if all 

three transaction unit costs are reduced by at least a factor of two which is somewhat lower than 

the most optimistic unit cost estimates reported in [OECD/NEA, 2002a]. 

 

Another change in the relative economic performance of the sustainable CONFU and 

conventional UO2 cycles may arise from the change in the federal waste disposal fee policy. It is 

still a matter of considerable debate whether 1 mill/kWh fee is sufficient for the financing of 

permanent repository construction at Youcca Mountain site especially if second repository will be 

required at some point. As an example, the cost of waste disposal in Japan is estimated to be eight 

times higher than in France and 13 times higher than in the UK [Saegusa A., 1999]. Higher 

waste disposal charges will increase economic attractiveness of the sustainable fuel cycle. 

 

Figure 9.3.2 depicts the FCC as a function of relative increase of the waste disposal cost for 

the CONFU-1, CONFU-EQ and once through fuel cycles. For the once through fuel cycle, the 
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waste disposal fee was increased up to eight times of its nominal value. Similarly, the cost of 

HLW conditioning and disposal for the closed cycles (0.18 mills/kWh) was increased by the same 

factor. The CONFU-1 FCC becomes even with UO2 cycle if the waste disposal costs are 

increased by a factor of 2.5 relative to the respective nominal values of the once through and 

CONFU-1 cycles. The single stage UO2 fuel reprocessing and TRU recycling in the form of 

CONFU-1 fuel, although not capable of major radiotoxicity reduction, can substantially reduce 

the volume of spent fuel intended for geological disposal. Therefore, the implementation of just a 

first stage of the CONFU cycle can postpone the need for additional repository capacity. The 

equilibrium CONFU cycle becomes economically competitive with the once through only for the 

waste disposal costs which are higher than nominal values by about a factor of 4.5 (1850 $/kgHM 

for once through cycle) which is higher than any current estimates.  

 

Although the price of natural uranium was relatively stable within the past decade, in a 

possible scenario of rapidly growing world nuclear generation capacity, the prices of natural 

uranium could increase. Higher natural uranium price would also encourage fuel reprocessing and 

recycling. 

 

Figure 9.3.3 shows the difference in FCC between CONFU and once through fuel cycles as a 

function of natural uranium unit cost. The CONFU-1 FCC reaches breakeven value with that of 

the UO2 cycle if natural uranium recovery becomes economical at a price of 150 $/kgHM. The 

difference between the equilibrium CONFU cycle and the once through is reduced from 60% to 

about 30% when the uranium price is increased to 150 $/kg/HM.   

 

The enrichment prices, on the other hand, are likely to fall as a consequence of new 

enrichment technologies or improvements in the existing ones. However, less expensive 

enrichment would increase the gap between the once-through and closed fuel cycle costs as 

illustrated by Figure 9.3.4. 

 

A nominal thermal efficiency of 45% was assumed for the SC CO2 power conversion cycle 

of ABR. Main advantage of the SC CO2 cycle is that such a high efficiency can be achieved at a 

relatively low reactor coolant outlet temperature on the order of 600 ºC MIT [Dostal V., et al., 

2002]. In order to achieve a similar efficiency with the more conventional He coolant, the reactor 

coolant temperature has to be increased by over 200 ºC challenging the performance of reactor 
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core materials. Conversely, a He cycle would provide only about 35% power conversion 

efficiency for the same core outlet temperature as in the SC CO2 case. 

 

The sensitivity of ABR fuel cycle cost to the power conversion efficiency is shown in Figure 

9.3.5. The fuel cycle cost of ABR is increased by almost 30% when the power conversion 

efficiency is dropped to 35%. However, an increase in the total cost of electricity of ABR is more 

moderate (about 10%) because the ABR FCC is smaller than its capital and O&M costs by about 

a factor of two. Furthermore, the COE of the PWR-ABR system is practically insensitive to the 

ABR conversion efficiency. Lower efficiency increases the ABR COE but it also reduces the 

relative ABR electric power fraction of the total PWR-ABR power so that overall effect is small. 

It should also be noted that thermal efficiency does not affect the efficiency of TRU destruction in 

ABR since the rate of TRU destruction is proportional to the thermal power of ABR. 

 

Figure 9.3.6 shows the PWR-ABR system FCC and COE relative to those of the CONFU-

EQ cycle. As discussed above, the variation of ABR thermal efficiency does not practically affect 

the relative COE of the CONFU-EQ and PWR-ABR systems. However, the fuel cycle cost of 

PWR-ABR at 45% thermal efficiency is higher than that of the CONFU-EQ by only about 2%, 

however, the difference in the FCC between the CONFU-EQ and PWR-ABR cycles increases to 

about 8% if the ABR thermal efficiency is 35%. Overall, the observed effect of ABR thermal 

efficiency on the relative performance of the considered fuel cycles is small. 

 

Figures 9.3.6 and 9.3.7 show the total cost of electricity for the PWR-ABR system as a 

function of ABR capital cost relative to the nominal PWR-ABR COE and to the CONFU-EQ 

cycle COE respectively. The variation of ABR capital cost by ± 400 $/kWe results in about 13% 

change of ABR COE and about 4% variation of PWR-ABR COE. The COE of ABR remains 

much higher than CONFU-EQ COE even if the capital cost of ABR is the same as for PWR. This 

is due to significantly higher FCC of ABR (Figure 9.3.7). However, the PWR-ABR system COE 

reaches break even with that of the CONFU-EQ cycle as the capital cost of ABR approaches the 

PWR nominal value. Application of super-critical CO2 power conversion cycle may substantially 

reduce a footprint of Balance of Plant (BOP) of ABR type reactor and therefore ABR capital 

costs by up to 40% in comparison with capital costs of a more conventional ALMR [Hejzlar P. et 

al., 2003]. The PWR-ABR system COE can be lower than that of the CONFU-EQ system by 

about 5%  if capital cost of ABR on the order of 1200 $/kWe can be achieved. 
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In general, the dependence of total cost of electricity of PWR-ABR system on the capital 

cost of ABR is also relatively weak because of the small ABR contribution to the total system 

power (see Table 9.1.II). 

 

Substantial capital cost reduction is also predicted for many advanced LWR systems such as 

AP-1000, EPR, SWR-1000, APWR and others. Figure 9.3.8 shows PWR-ABR and CONFU-EQ 

cycles COE as a function of PWR capital cost. Although all fuel cycles would benefit from PWR 

capital cost reduction, lower capital cost of PWR would result in higher relative to once through 

fuel cycle COE for both PWR-ABR and CONFU-EQ cycles. However, the sensitivity of PWR-

ABR system to PWR capital cost reduction is substantially greater than that of the CONFU 

system because of the relatively high capital cost of ABR which remains unaffected.  
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Figure 9.3.1 Sensitivity of FCC to changes in fuel reprocessing and fabrication costs 
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Figure 9.3.2. FCC Sensitivity to waste disposal cost 
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Figure 9.3.3. CONFU FCC Sensitivity to natural uranium price 
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Figure 9.3.4. CONFU FCC sensitivity to SWU price 
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Figure 9.3.5. Sensitivity of ABR COE and FCC to ABR power conversion efficiency 
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Figure 9.3.6. Sensitivity of ABR COE and FCC to ABR power conversion efficiency 
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Figure 9.3.7. ABR and PWR-ABR COE as a function of ABR capital cost 
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Figure 9.3.8. ABR and PWR-ABR to CONFU-EQ COE ratio as a function of ABR capital cost 
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Figure 9.3.8. Relative PWR-ABR and CONFU-EQ COE as a function of PWR capital cost 
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Additional illustration of sensitivity of FCC and COE to various fuel cycle parameters for the 

once through PWR, CONFU-EQ, and PWR-ABR fuel cycles is presented in Table 9.3.I. All fuel 

cycle parameters in Table 9.3.I were perturbed by a constant fraction (10%) relative to their 

nominal values. As discussed earlier, the CONFU-EQ and PWR-ABR fuel cycle costs are most 

sensitive to the cost of UO2 fuel reprocessing. The second most sensitive parameter for the 

CONFU cycle is the enrichment cost while for PWR-ABR fuel cycle the FFF fabrication is more 

important. This is due to the fact that equilibrium CONFU cycle requires higher UO2 enrichment 

than in PWR-ABR cycle. However, TRU inventory is larger in PWR-ABR system. Therefore, 

FFF reprocessing and fabrication have larger contribution to FCC of PWR-ABR than in the 

CONFU-EQ case. As expected, the COE of all fuel cycles exhibit the strongest dependence on 

the capital cost of PWR because capital and O&M costs constitute over 80% of total cost of 

electricity for all fuel cycles considered. 

 

 

Table 9.3.I. Sensitivity of CONFU-EQ and PWR-ABR cycle costs to various 

parameters 

 FCC, mills/kWh COE, mills/kWh 

Parameter PWR CONFU
-EQ 

PWR-
ABR PWR CONFU

-EQ 
PWR-
ABR 

All nominal values 4.52 7.33 7.48 36.44 39.24 40.86 

NU price +10% 4.62 7.42 7.56 36.53 39.33 40.94 

SWU price + 10% 4.67 7.47 7.60 36.58 39.38 40.98 

HLW disposal + 10% 4.62 7.35 7.50 36.54 39.26 40.88 

LWR Capital cost + 10% 4.52 7.33 7.48 39.63 42.43 43.43 

ABR Capital cost + 10% 4.52 7.33 7.48 36.44 39.24 41.63 

UO2 reprocessing + 10% 4.52 7.54 7.70 36.44 39.45 41.07 

FFF fabrication + 10% 4.52 7.45 7.63 36.44 39.36 41.01 

FFF reprocessing + 10% 4.52 7.39 7.56 36.44 39.30 40.94 
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9.4. Chapter Summary 
 

The economic performance of the sustainable CONFU fuel cycle is analyzed and compared 

with conventional UO2 once through fuel cycle. The fuel cycle cost calculations indicate inferior 

economics of the CONFU based versus conventional UO2 cycle. The difference in the FCC 

between the two fuel cycle options is about 60%. The total cost of electricity, however, is higher 

for the CONFU cycle by only 8%. The higher costs of the sustainable CONFU cycle are due to 

higher enrichment requirements as a result of the TRU isotopics degradation and relatively high 

costs associated with fuel reprocessing and re-fabrication. The UO2 fuel reprocessing has the 

largest contribution to the sustainable FCC. Reduction of reprocessing and FFF fabrication costs 

by a factor of two would result in comparable economic performance of UO2 and CONFU fuel 

cycles.  

 

The total COE of the CONFU based cycle and the combined PWR and advanced fast 

spectrum Actinide Burner Reactor (ABR) are similar. The neutronic superiority of the fast 

spectrum for TRU transmutation results in lower uranium enrichment requirements for PWR-

ABR cycle than for the equilibrium CONFU cycle which offsets the effect of considerably higher 

capital cost of ABR. The CONFU fuel cycle is expected to be significantly more economical than 

PWR-ABR cycle if financial risks associated with large capital investments for new nuclear 

power plants are considered. This is because the CONFU fuel cycle relies mostly on conventional 

LWR technologies with vast operating experience while the uncertainty in costs of fast reactor 

technologies is considerably higher. The COE of the equilibrium CONFU and single-tier PWR-

ABR systems is lower than that of the two-tier system with MOX LWR and ADS as a first and 

second tier respectively. However, two-tier system with FFF LWR and critical ABR as a first and 

second tier may prove to be more economical. 

 

The effect of ABR thermal efficiency and capital cost on PWR-ABR total cost of electricity 

is moderate due to a relatively small contribution of ABR to total PWR-ABR system power. 

Nevertheless, an additional and ultimate advantage of the CONFU cycle is the possibility of its 

application to the existing fleet of reactors with immediate environmental effect on the repository. 

 

Rethinking of the federal nuclear waste disposal fee and increase in natural uranium prices 

may improve economic performance of the CONFU fuel cycle in comparison with conventional 

once through cycle and may consequently facilitate its implementation.  
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Chapter 10. Summary and Recommendations 
 

The current US nuclear energy depends on a once through fuel cycle that is economic but 

raises a number of public concerns which retard the exploitation of the full potential of nuclear 

power to contribute to a sustainable development of human society. An issue of superior 

importance is the accumulation of long lived radioactive wastes in the environment which will 

require isolation for hundreds of thousands of years. Currently, the economic and environmental 

benefits of the long term geological storage of the nuclear waste are a matter of considerable 

uncertainty and debate throughout the scientific and political community. 

 

Partitioning and transmutation of spent fuel can greatly diminish the need for long term 

geological storage, improve utilization of natural resources, and enhance proliferation resistance 

of the nuclear fuel cycle. Numerous transmutation systems and closed fuel cycle concepts capable 

of achieving the nuclear waste transmutation goals have been proposed and investigated 

throughout the world. Implementation of such innovative fuel cycle approaches is not anticipated 

in the near future primarily because of the costs, as well as large uncertainty in costs, associated 

with the development of necessary transmutation technologies.  

 

Two categories of nuclear waste treatment technologies can be distinguished. The first 

category is related to the fuel cycle infrastructure and it includes the development of innovative 

techniques for the spent fuel reprocessing, partitioning of the actinides and fission products, and 

the transmuter system fuel fabrication and handling. These technologies must be an integral part 

of any fuel cycle option with no requirement for the long term geological repository regardless of 

the waste transmutation system type assumed. Another category of technologies that requires 

significant amount of research and development effort is the waste transmutation systems 

themselves. Fast spectrum critical or accelerator driven systems (ADS) are believed to be 

beneficial with respect to the TRU waste transmutation capabilities. However, such systems do 

not exist yet and their effective deployment and economic performance remains to be 

demonstrated.  

 

On the other hand, the possibility of utilization of the LWR for transmutation offers 

significant fuel cycle advantages. The application of TRU recycling within the existing LWRs 

would yield immediate results in the form of radioactive waste burden reduction and would 

eliminate the need for a relatively large waste repository capacity. Furthermore, the accumulation 



 234

of TRU can be already constrained during the time needed for the development and deployment 

of advanced ADS and fast reactor transmutation systems.  

 

In this thesis, the use of the PWR, as the most common reactor type, was evaluated with 

respect to its capabilities to operate in a sustainable mode with orders of magnitude reduction in 

the generation of TRU waste. Technical feasibility of such a fuel cycle was judged to be highly 

probable. The environmental impact of a single path TRU burndown scenario, in which TRU 

from the spent UO2 fuel are separated and burned once in PWRs, was also evaluated. 

 

 

10.1. Choice of Fuel for Transmutation of TRU in LWRs  
 

Thorium and fertile free fuel matrices were identified as the most promising candidates for 

TRU transmutation in LWRs due to the limited or absence of additional TRU generation in 

contrast to conventional mixed oxide (MOX) fuel.  

 

The rate of TRU destruction and fractional TRU burnup were evaluated for both fuel matrix 

types and various PWR assembly lattice geometries. The TRU destruction rate for fertile free fuel 

is limited solely by the specific power. A typical PWR can eliminate TRU via utilization of FFF 

at a rate of about 1140 kg/GWe-Year. TRU destruction rate in ThO2 matrix is about 900 kg/GWe-

Year and can be slightly improved by increasing the fuel lattice H/HM ratio.  Breeding of fissile 

U233 slows down the TRU destruction due to the competition of TRU and U233 for neutron 

absorption. In addition, if the once through burndown scenario is considered, U233 as a 

potentially weapons usable material must be isotopically diluted (denatured) by U238 to eliminate 

the proliferation concerns. Addition of U238 further degrades TRU destruction rate in a ThO2 

matrix. 

 

The residual TRU fraction in the discharged fuel is a primary indicator of the TRU 

destruction efficiency. Higher TRU fractional burnup ultimately implies economic benefits from 

smaller amount of material to handle in recycling. Although both ThO2 and FFF matrices can 

achieve about 50% of TRU destruction per path through the reactor core, ThO2 fuel requires 

much higher fuel lattice H/HM ratio than that of the reference PWR, while a destruction rate of 

over 50% can be achieved in FFF already with the reference fuel lattice geometry (Figure 10.1.1). 

Minimal requirements for changes in PWR assembly geometry to accommodate TRU hosting 
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fuel is a desirable feature. The TRU loading in the two fuel options shown in Figure 10.1.1 is 

sufficient to provide a comparable fuel cycle length of 18 month in the reference PWR fuel 

geometry. 
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Figure 10.1.1. TRU residual fraction in discharge fuel of a PWR transmuter core 

 

The feasibility of practical designs for thorium and FFF based PWR transmuter was assessed 

through comparison of reactivity feedback coefficients and soluble boron worth for the two fuel 

matrix options with those of the conventional MOX and reference PWR fuel. A brief summary of 

the comparison is presented in Table 10.1.I. All TRU containing fuels exhibit significantly 

reduced control materials reactivity worth due to the harder spectrum in comparison with UO2 

fuel which may require a redesign of the core reactivity control features. Reduced effective 

delayed neutron fraction may result in inferior reactor response to fast reactivity transients. In the 

FFF case, this problem is aggravated by significantly reduced fuel temperature feedback due to 

the reduced concentrations of fertile resonance nuclides. The high loading of TRU required to 

sustain a standard 18 month fuel cycle length in the case of TRU-MOX and TRU-ThO2 fuel 
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results in a less negative, or even positive, void coefficient. A positive void coefficient is the 

limiting factor on the maximum TRU loading in ThO2 or TRU-MOX cores. 

 

Table 10.1.I. Safety and control parameters of transmuter PWR core  

DC, pcm/K MTC, pcm/K BW, pcm/ppm βeff × 103 

 
BOL EOL BOL EOL BOL EOL BOL EOL 

All – U -2.20 -3.33 -22.2 -78.8 -4.80 -6.23 7.2 4.8 

TRU – MOX -2.19 -2.32 -0.86 +0.40 -1.64 -1.96 3.4 3.7 

TRU – Th -2.98 -3.15 -18.5 -23.4 -1.05 -1.24 2.6 2.5 

FFF – TRU -0.63 -1.04 -21.9 -51.8 -2.34 -8.02 2.7 3.9 

 

 

Nuclear waste characteristics were compared for different fuel options for the once through 

burndown fuel cycle scenario applied to PWRs. Such scenario assumes reprocessing of the 

conventional LWR spent fuel and single path recycling of TRU in the same system followed by 

permanent geological disposal. It was concluded that no major environmental benefits can be 

achieved by means of a once through TRU burndown strategy. The reduction in the spent fuel 

radiotoxicity in the repository is marginal or in some cases it is even non-existent compared to the 

conventional once through fuel cycle for the first 100 to 1000 years due to buildup of additional 

minor actinides (Figure 10.1.2).  The radiotoxicity data presented in Figure 10.1.2 is normalized 

per unit energy produced by each fuel type accounting for the energy of the reprocessed fuel from 

which the TRU were originally obtained.  

 

The release of TRU to the environment must be restricted to about 0.1% of their inventory in 

the fuel cycle in order to reduce the waste radiotoxicity below that of the original natural uranium 

ore in less than 1000 years. Such deep burnup of TRU with a residual fraction of less than 0.1% is 

impossible in any of the existing or proposed transmutation systems or fuel designs. Therefore, 

recycling of TRU is necessary in order to meet the environmental goals of transmutation. The 

recovery of TRU from the spent fuel with the efficiency of at least 99.9% becomes a major 

technological challenge.  
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Figure 10.1.2. Spent fuel radiotoxicity relative to once trough UO2 fuel cycle. 

 

 

10.2. Evaluation of a Sustainable Fuel Cycle 
 

The Combined Non-Fertile and UO2 (CONFU) assembly concept is proposed for multi-

recycling of TRU in existing PWRs (Figure 10.2.1). The assembly assumes a heterogeneous 

structure where only about 20% of conventional UO2 fuel pins on the assembly periphery are 

replaced with FFF pins hosting TRU generated in the previous cycle.  

 

Possibility of achieving a zero TRU generation on the net balance is demonstrated. Three to 

five TRU recycles are required to achieve an equilibrium fuel cycle length and TRU generation 

and destruction balance. Majority of TRU nuclides reach their equilibrium concentration levels in 

less than 20 recycles. The exceptions are Cm246, Cm248, and Cf252. Extremely small absorption 

cross-sections for these nuclides, even in a thermal spectrum, require relatively high equilibrium 

concentrations. Accumulation of these isotopes is highly undesirable with regards to TRU fuel 

fabrication and handling because they are very strong sources of spontaneous fission (SF) 

neutrons. The shielding of neutron radiation is more challenging than γ radiation which may lead 
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to increased fuel reprocessing and fabrication costs. Allowing longer cooling down of the spent 

fuel before reprocessing can drastically reduce the SF neutron radiation problem due to decay of 

Cm244 and Cf252 isotopes with particularly high SF source. However, longer cooling time also 

allows a valuable fissile nuclide Pu241 to decay to Am241 with the half life of about 14.4 years. 

Am241 is hard to transmute because of the fast decay of daughter nuclide Am242 to Cm242 and 

then to Pu238. In addition, Am241 is a source of high energy γ-photons which are also difficult to 

shield.  

 

Accumulation of He gas as a result of α – decay of some short lived actinides (primarily 

Cm242) may lead to internal pressurization of TRU containing fuel pins challenging the fuel 

performance especially under accident conditions.  

 

 

Figure 10.2.1. CONFU Assembly Configuration 

 

The relative fraction of fissile isotopes in the TRU vector is reduced from about 60% in the 

initial spent UO2 to about 25% at equilibrium. As a result, the fuel cycle length is reduced by 

about 30%. An increase in the enrichment of UO2 pins from 4.2 to at least 5% is required to 

compensate for the TRU isotopics degradation.   

 

The environmental impact of the cycle with recycling of TRU is limited by the efficiency of 

TRU recovery in the spent fuel reprocessing. Figure 10.2.2 compares the radiotoxicity of the 

actinides in a conventional UO2 once through fuel cycle with that of the reprocessing waste 

Guide tube 

Standard UO2 Pins 
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stream losses of 0.1% in the sustainable CONFU based fuel cycle. The achievable reduction in 

decay heat and radiotoxicity is up to a factor of 1000 compared to direct disposal of spent fuel in 

the once through fuel cycle.  

 

3-dimensional whole core neutronic simulations were performed in order to demonstrate the 

feasibility of CONFU concept. A number of potential CONFU candidate approaches for the 

whole PWR core design were simulated and compared to the reference UO2 and 100% fertile free 

TRU containing cores. The CONFU cases included micro-heterogeneous configuration where 

FFF pins are located in the periphery of each assembly (Figure 10.2.1) and macro-heterogeneous 

configurations where FFF pins occupy the whole assembly region. On average, the macro-

heterogeneous PWR core contains about 20% of FFF assemblies while the remainder is occupied 

by the conventional UO2 assemblies. For each of the core geometries, the first time recycled and 

equilibrium TRU compositions were considered as the two limiting cases.  

 

The results confirmed technical feasibility of the CONFU based sustainable fuel cycle. The 

burnup achieved by the UO2 fuel and FFF in both micro and macro heterogeneous configurations 

indicate the possibility of maintaining zero net balance of TRU in the closed fuel cycle. The 

neutronic characteristics e.g. power peaking factors and reactivity feedback coefficients of the 

CONFU cores are close to those of the reference UO2 core (Table 10.2.I). The presence of TRU 

leads to the hardening of neutron spectrum and results in somewhat reduced soluble boron worth. 

The extent of this effect is directly related to the total TRU inventory in the core. As a result, 

operation of all-FFF core, evaluated for the comparison purposes, is particularly challenging and 

requires high burnable poison loading to maintain soluble boron concentration within allowable 

range. The Doppler coefficient is also less negative than in all-UO2 core due to displacement of 

fertile U238 with fertile free matrix.   

 

The effect of heterogeneous assembly structure and higher than typical power peaking 

factors on the Minimum Departure from Nucleate Boiling Ratio (MDNBR) margin was also 

studied. A single assembly based analysis performed for all the considered CONFU assembly 

options, with conservative assumptions regarding the core power peaking factors, showed a 

moderate deterioration of the MDNBR margin (by about 10 to 15%) in comparison with all-UO2 

fuel. The detailed whole core thermal hydraulic simulation of the most limiting micro 

heterogeneous CONFU case with first generation of TRU and simulation of the reference UO2 
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core yielded MDNBR values of 1.43 and 1.71 respectively which is a reduction of about 20%. 

Both values however are higher than the W3-L correlation MDNBR limit of 1.3. 

 

Table 10.2.I. Summary of 3-Dimensional core analysis results 

Case 
Distributed 
DC, HFP, 

pcm/F 

MTC, HFP, 
pcm/F 

Soluble BW, 
pcm/ppm 

3D max. nodal 
power peaking 

factor 

 BOC EOC BOC EOC BOC EOC  

UO2 -1.80 -1.82 -22.7 -41.6 -6.88 -8.86 2.03 

FFF -0.43 -0.51 -10.3 -32.8 -3.03 -4.70 1.91 

CONFU-1 -1.42 -1.44 -19.2 -37.6 -5.70 -7.27 1.95 

CONFU-E -1.60 -1.53 -20.5 -40.9 -5.06 -6.41 1.88 

M-CONFU-1 -1.60 -1.61 -21.4 -40.0 -6.06 -7.98 1.88 

M-CONFU-E -1.63 -1.60 -25.5 -39.6 -5.45 -6.56 1.86 
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Figure 10.2.2. Actinide radiotoxicity of the sustainable CONFU fuel based cycle  
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10.3. Consideration of Accidents 
 

The reduced delayed neutron fraction and Doppler coefficient for the TRU containing 

CONFU cores may result in inferior core response to fast reactivity transients such as a Control 

Rod Ejection (CRE) accident. Additionally, the fuel material properties such as melting 

temperature, thermal conductivity, and heat capacity are very different for the UO2 and fertile free 

fuels. A simple computer model simulating the core response to a CRE accident was developed to 

assess these effects.   

 

The simulation approach is based on the point kinetics model for neutronics with thermal 

reactivity feedback and accounts for the differences in materials thermal properties. The reactor 

kinetics data and reactivity worth of individual control rods were obtained from the 3-dimensional 

whole core analysis. The simulation results of the CONFU and all-FFF cases were compared with 

those of the reference all-UO2 case. 

 

The CONFU fuel exhibits similar characteristics to all-UO2 fuel dynamic behavior because 

of the fact that the CONFU core physics is still dominated by the UO2 fuel. Efficient TRU 

destruction in FFF pins allows for the small TRU inventory and mitigates the negative effects of 

TRU presence in the core. Higher than UO2 thermal conductivity of FFF matrix does not offset 

the effect of lower FFF melting point. FFF pins in the CONFU assembly exhibit more limiting 

than UO2 pins performance in CRE accident due to larger relative degradation of margin to the 

fuel melting temperature.   

 

However, larger than UO2 heat capacity of the fertile free fuel matrix implies higher thermal 

inertia and slower response to transients which is a desirable feature. In the Loss of Coolant 

Accident (LOCA), the fuel melting temperature is reached at about the same time for the UO2 and 

FFF assuming instantaneous loss of all cooling capabilities and identical decay heat power 

evolution for both fuel types. Identical fuel pin geometries for FFF and UO2 pins in the CONFU 

assembly and in typical PWR assembly suggest similar behavior to all-UO2 fuel during LOCA 

with regards to re-flood capabilities. However, higher power peaking in FFF pins diminishes this 

potential advantage of FFF matrix. Additionally, the maximum cladding temperature during 

blowdown phase of LOCA is related to fuel stored energy rather than thermal inertia. At a 

comparable power level, the stored energy in UO2 and FFF pins is about the same despite higher 

Cp of the FFF due to its better thermal conductivity and therefore slightly lower temperature. The 
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stored energy is about 13% higher in FFF pins than in UO2 pins if local power peaking is 

considered.  

 

All-FFF, TRU-MOX, and TRU-ThO2 fuel have the potential for positive void coefficients 

during a LOCA without scram accident or in the case of substantial local voiding in the core. The 

positive void coefficient is a result of high TRU loading required to achieve a desired fuel cycle 

length. The CONFU core, similarly to the reference UO2 core, exhibits monotonic reactivity 

decrease with increasing coolant void fraction because of the high efficiency of TRU destruction 

in FFF pins and therefore minimal required TRU inventory.    

 

 

10.4. Feasibility of TRU Multi-recycling 
 

Multi-recycling of TRU was proven to be feasible with respect achieving an equilibrium 

state with zero net balance of TRU. However, the equilibrium TRU isotopic vector has a larger 

fraction of MA than the first time reprocessed UO2 fuel. Furthermore, some MA isotopes do not 

reach their equilibrium concentrations within 20 recycle stages. The buildup of these isotopes 

does not affect the core physics but it has a significant effect on the feasibility of fuel handling 

and reprocessing.  

 

Two major issues associated with an increased MA fraction in the TRU vector and buildup 

of non-saturating MA nuclides can be distinguished. First, reprocessing of the spent TRU 

containing fuel with conventional aqueous solvent extraction based methods may prove to be 

impossible due to the high levels of radiation resulting from increased MA content. The organic 

solvent agents rapidly degrade in the high radiation environment. This may limit the TRU fuel 

reprocessing options to the more advanced non-aqueous pyrochemical or pyrometallurgical 

techniques. Non-aqueous reprocessing can be potentially more economical than conventional 

aqueous reprocessing. Therefore, it can be implemented on a small scale close to the nuclear 

power generation units eliminating the requirement for spent fuel transportation over long 

distances.  

 

The second issue is related to manufacturing of TRU containing fuel. Increased radiation, 

especially from spontaneous fission (SF) neutrons, will require significant shielding and 

completely remote fuel fabrication and handling.  The buildup of SF neutrons emitting MA is 
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likely to be the limiting factor with respect to the number of practically feasible number of TRU 

recycles. 

 

Evaluation of TRU characteristics at the fuel reprocessing and fabrication stages indicate that 

the TRU activity and decay heat power approach their equilibrium values within 3 to 5 recycles. 

The activity saturates at a level about 30% higher than that of the first time recycled TRU, while 

the decay heat saturates at the level which is higher by about a factor of two than that of the first 

time recycled TRU.   

 

Monotonic increase of the SF source with the number of recycles can be significantly slowed 

down by extension of the cooling time between fuel discharge and its reprocessing. In case that 

the 7 years cooling time is extended to 20 years, the SF source for the 5 times recycled TRU in 

the CONFU fuel cycle would be comparable to that of the once recycled Pu in a typical PuO2-

UO2 MOX fuel (Figure 10.4.1). Moreover, decay heat generation saturates within a fewer number 

of recycles at about 50% lower level than in the case of 7 years cooling time. The equilibrium 

decay heat value with 20 years cooling is also comparable to the once recycled MOX fuel after 10 

year decay. The 20 years of cooling is possible if a large number of reactors would adopt the 

CONFU fuel with TRU recycling. In this case, the long time between recycles would not 

necessarily delay the attainment of an equilibrium state, as the spent fuel of one reactor could be 

recycled in the cores of other reactors.  

 

The total dose rate from TRU in re-fabricated “fresh” fertile free fuel is dominated by γ   

radiation for the first 10 recycles if the 20 years cooling time is adopted. The γ dose rate saturates 

within 3 to 5 recycles at an equilibrium value about twice as high as that of the first time recycled 

TRU. The SF neutron dose rate increases monotonically primarily due to the buildup of Cf250 

and Cf252 isotopes which results in an increase of SF source. However, the γ and SF neutron 

dose rates become comparable only after about 20 recycles. It was concluded that at least 10 TRU 

recycles should be feasible by implementation of relatively straightforward shielding 

arrangements to reduce the radiation dose rates during fuel fabrication to safe levels.  

 

Management of the CONFU fuel containing more than 20 times recycled TRU is likely to 

require completely remote handling and pyrochemical reprocessing. Advanced fuel fabrication 

techniques such as vibro-packing may be found particularly beneficial. Cm separation and storage 
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to reduce the radiation dose from TRU may be challenging because of the difficulties associated 

with separated Cm handling and potential criticality accidents.   
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Figure 10.4.1 SFS per fuel assembly: 7y vs. 20y decay comparison 

 

10.5. Sustainable Fuel Cycle Economics 
 

The uncertainty in cost estimation of the fuel reprocessing and TRU containing fuel 

fabrication represents the main difficulty in the evaluation of the sustainable fuel cycle economic 

performance. Median values for the unit costs reported in a comprehensive waste transmutation 

study [OECD/NEA, 2002] were adopted for the current analysis. 

 

Sixty percent increase in fuel cycle cost relative to conventional once through fuel cycle was 

estimated by a simple economic analysis of the sustainable PWR fuel cycle based on CONFU 

assembly concept. The increase in total cost of electricity (COE) however is only 8%. 
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The higher fuel cycle cost is a result of higher uranium enrichment in a CONFU assembly 

required to compensate for the degradation of TRU isotopics. The major expense in the 

sustainable CONFU fuel cycle is associated with the reprocessing of UO2 fuel. Although 

reprocessing and fabrication of FFF pins have relatively high unit costs, their contribution to the 

fuel cycle cost is marginal as a result of the small TRU inventory. A reduction in the unit costs of 

UO2 reprocessing and FFF fabrication by a factor of two would result in comparable fuel cycle 

costs for the CONFU and conventional once through cycle. An increase in natural uranium prices 

and waste disposal fees will also reduce the gap between the costs of the once through and closed 

fuel cycles.  

 

The economic performance of an alternative to CONFU closed fuel cycle was also 

evaluated. The system assumes once through fuel cycle operation of conventional LWR which 

provides TRU for a fast spectrum Actinide Burner Reactor (ABR) operating in a closed fuel 

cycle. The ABR is an innovative design which utilizes 700 MWth capacity and 45% efficient 

power conversion cycle. The ratio of LWRs to ABRs in the system is such that it provides zero 

net TRU generation. The total COE for the CONFU and LWR-ABR cycle are similar for the 

assumed set of operational characteristics of both systems. Neutronic superiority of the fast 

spectrum allows operation of PWR without requirements for UO2 enrichment increase. Lower 

uranium enrichment cost in PWR-ABR cycle offsets its higher capital and O&M costs in 

comparison with LWR CONFU based cycle. Nevertheless, the major advantage of the CONFU 

concept is the possibility of its application to the existing fleet of reactors with immediate 

realization of all the sustainable fuel cycle benefits. 

 

A number of alternative fuel cycles were compared in a comprehensive transmutation 

systems assessment by the OECD [OECD/NEA, 2002a] in terms of there economic performance 

and environmental impact. Figure 10.5.1 shows the results of this assessment. Index RLOSS is 

defined as TRU losses to the repository relative to once through fuel cycle, while quantity 

RCOST represents total cost of electricity relative to that of the once through fuel cycle. The 

results of the current analysis for the CONFU and PWR-ABR fuel cycles are also plotted in 

Figure 10.5.1 for the comparison. Both, the CONFU and PWR-ABR fuel cycles exhibit superior 

performance to any of the fuel cycles considered in OECD study primarily because both systems 

employ fertile free fuel technology which allows minimization of TRU inventory within the 

cycle.   
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Figure 10.5.1. TRU loss vs. COE comparison of CONFU and PWR-ABR cycles with 

[OECD/NEA, 2002a] results. 

 

 

10.6. Recommendations for Future Work 
 

The sustainable fuel cycle cannot be implemented unless it is economically competitive with 

the existing alternatives. Therefore, a major research effort should be directed to the development 

of UO2 fuel reprocessing and TRU containing fuel fabrication technologies aiming at reduction of 

their costs.  

 

The possibility of TRU recovery with the efficiency required to meet the environmental 

goals of the waste transmutation on a large industrial scale has yet to be demonstrated. The focus 

should be on the non-aqueous fuel reprocessing technologies as they offer significant advantages 

in proliferation resistance, a potential for reprocessing cost reduction, the capability of operation 

in high radiation environment, and reduction of the waste volume.  
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Long term environmental and non-proliferation benefits of the closed fuel cycle must be 

carefully evaluated against increased risks of radiation exposure and diversion of weapons usable 

materials during spent fuel reprocessing, fabrication and handling.  

 

The development of TRU hosting fuels is the most cost and time demanding task due to the 

requirement of fuel irradiation testing to investigate the fuel behavior under normal operating 

conditions and during accidents. Although the fertile free fuel is the most attractive option among 

the candidates because of its TRU destruction capabilities, it is the least explored option and 

therefore also requires major R&D effort.   

 

Strategies aiming at the reduction of the long term risks from the nuclear fuel cycle through 

application of the spent fuel partitioning and transmutation technologies have to be carefully 

evaluated against increased short term radiological and proliferation risks associated with 

additional spent fuel handling. Methodology development for the assessment of such tradeoffs is 

another important area of research. 

 

Finally, the CONFU assembly concept can also be utilized for reduction of the already 

existing stockpile of TRU from over 40 years of LWRs operation in the once through fuel cycle 

mode. The number of TRU hosting FFF pins per assembly can be increased to achieve net TRU 

destruction rather than zero balance while still maintaining acceptable neutronic characteristics. 

In contrast to the once through burndown scenario, the residual TRU can be recycled and 

refabricated to “fresh” FFF pins for the next CONFU cycle. The performance and technical 

feasibility of such a design as well as the operational and safety limits on TRU inventory are 

suggested as subjects for future investigation.   
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Appendix A.  Computational Tools 
 

This chapter presents a concise summary of computational tools used for this thesis. The 

major areas of research in this thesis are evaluation of the feasibility of the neutronic and thermal 

hydraulic design of innovative PWR fuel cycles as well as evaluation of the impact of these fuel 

cycles on the repository, fuel cycle facilities and biological environment. Modern computer codes 

widely used by the nuclear industry, academic, and research institutions were adopted for the 

analysis of tasks identified by the scope of this thesis. 

 

 

 

A.1. Neutronic Analysis  
 

CMS 

 

The Studsvik Core Management System (CMS) is a commercial computer code package 

developed for comprehensive neutronic analysis of PWR and BWR reactors. It is routinely used 

by utilities for fuel management calculations. The primary applications of the CMS code package 

include in-core fuel management and loading pattern optimization, evaluation of fuel cycle 

length, burnable poison design and requirements, various fuel and core licensing calculations e.g. 

reactivity coefficients and shutdown margin requirements. The CMS package consists of two-

dimensional transport code CASMO-4 [Edenius M., et al., 1995] used to generate homogenized 

burnup dependent macroscopic cross-sections library which is subsequently used in two-group 

three-dimensional nodal diffusion code SIMULATE-3 for the whole core neutronic analysis. The 

link between the CASMO and SIMULATE is realized via the auxiliary utility code TABLES-3 

which generates a binary macroscopic cross-sections library accessible to SIMULATE from the 

data generated by CASMO. The flow of CMS calculations is schematically presented in Figure 

A.1.1. 

 

CASMO4 and CMS code were the primary computational tools used in this thesis for the 

neutronic analysis of various fuel designs and fuel cycle options. 
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Figure A.1.1. CMS Calculations flow diagram 

 

CASMO 

 

CASMO-4 is a two-dimensional transport theory code used for burnup calculations of BWR 

and PWR fuel assemblies or simple fuel unit cells [Edenius M., et al., 1995]. It uses 70 energy 

groups cross-section library based on the ENDF/VI and JEF2-2 evaluated data files. The 

CASMO-4 code tracks the evolution of about 200 fission products and over 40 actinides ranging 

from Th232 to Cf252. 
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The code can handle generalized fuel assembly geometry with square or hexagonal pitch. 

Non symmetrical fuel assemblies with various burnable absorbers, control rod clusters, 

instrumentation channels, walls or water gaps can be modeled. Only cylindrical fuel rod geometry 

is allowed.  

 

The CASMO calculation flow diagram is presented in Figure A.1.2. The effective absorption 

and fission cross-sections in a resonance energy region are calculated using resonance integrals 

obtained from equivalence theorem. The fuel lattice shadowing effect is accounted for through 

analytically calculated Dancoff factors. 

 

The neutron energy spectrum is calculated by a collision probabilities method using prepared 

cross-sections. The spectrum is calculated for each individual fuel pin type, burnable absorber and 

water gap regions in the assembly. The spatial flux distribution and the eigenvalue are obtained 

from the two-dimensional transport theory calculation normally performed in a collapsed few 

energy group structure. In CASMO-4 version, the 2D Boltzmann transport equation is solved by 

the method of characteristics KRAM [Knott D., et al., 1995] in contrast to a more conventional 

collision probabilities method employed in earlier CASMO versions. The leakage effect is 

considered through adjustment of the results by performing the fundamental mode buckling 

calculation. 

 

The burnup calculation is performed for each individual fuel pin and burnable absorber 

region. A predictor-corrector algorithm is used. In the predictor-corrector approach, the depletion 

is performed twice – using the spectrum at the beginning and at the end of the timestep. Average 

isotope number densities between these two calculations are then used as initial values for the 

subsequent burnup step. 

 

The γ photon transport module calculates prompt and delayed γ sources and determines the γ 

detector responses.  
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Figure A.1.2. CASMO Calculation flow diagram 
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TABLES 

 

TABLES-3 code is used to generate a binary library of two-group burnup dependant multi 

dimensional cross-section tables for SIMULATE-3. In addition to cross-section data, 

discontinuity factors, fission product, detector, pin power reconstruction, kinetics, and isotopics 

data are processed by the TABLES code. TABLES can also be used to add or delete data from the 

SIMULATE library. 

 

Each data type with exception of pin power reconstruction, kinetics, and isotopics data can 

be represented in the library as a function of up to three state variables defined by the user. The 

pin power reconstruction, kinetics, and isotopics data is expressed as a summation of one 

dimensional (in exposure) base table and additional one dimensional tables containing 

derivatives.  

 

 

SIMULATE 

 

SIMULATE-3 is three-dimensional two-group nodal diffusion code used for the licensing 

level whole core neutronic analysis of LWRs [DiGiovine A. S., et al., 1995]. It can perform 

calculations for fuel shuffling and reloading in 2 or 3 dimensions and in various core symmetries. 

Other uses of the code include reactivity coefficient calculations, control rod worth, shutdown 

margin, and dropped or ejected rod worth calculations as well as xenon transients and the core 

follow support for plant operations.  

 

The code employs QPANDA neutronic calculation model with fourth order polynomial 

representation of intranodal flux distributions in two energy groups [Cronin J. T., et al., 1995]. 

Additional module provides pin power reconstruction capabilities. 

 

Thermal hydraulic module provides fuel and coolant temperature values in each node for the 

reactivity feedback calculation. The node average fuel temperature is modeled by second degree 

polynomial with respect to nodal power with coefficients defined by the user. The linear term in 

the polynomial can also be a function of any two state variables (e.g. exposure, coolant 
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temperature, or boron concentration). The thermal hydraulic model assumes no flow 

communication between assembly channels and the inlet flow distribution is defined by the user. 

 

 

MCNP 

 

MCNP [Briesmeister J.F., 2000] is a general purpose Monte Carlo particles transport code 

developed at Los Alamos National Laboratory. It can be used in neutron, photon or electron 

transport mode as well as in a mode which is any combination of the above three. In the Monte 

Carlo approach, unlike in deterministic methods, the particles transport problem is solved by 

following the histories of individual particles. The average particle characteristics in the physical 

system are determined by average behavior of simulated particles. The major advantage of Monte 

Carlo method is its capabilities of solving a particle transport problem in complex generalized 3-

D geometries which cannot be practically handled by deterministic methods. In principle, Monte 

Carlo simulation can yield the exact transport equation solution provided that physical models, 

nuclear data, and number of particle histories are sufficient. The major drawback of the Monte 

Carlo is considerably higher computation power requirements to achieve high accuracy of the 

results.  

 

MNCP provides great flexibility in definition of particles source distributions, system 

geometries and tallied parameters. The energy deposition tally allows calculation of spatial power 

distribution in the modeled system. Dose rates can be calculated through surface flux or point 

detector tallies with provided flux-to-dose conversion factors. Calculation of keff eigenvalue is 

also a standard feature of MCNP. 

 

 

ORIGEN 

 

ORIGEN2 [Croff A.G., 1980] is a point depletion and radioactive decay computer code 

developed at Oak Ridge National Laboratory. It is used for the analysis of isotopic composition 

and characteristics of materials contained in the nuclear fuel (radiotoxicity, decay heat power, 

photon and neutron emission etc.). ORIGEN has a fairly complete representation of isotopes. It 

follows the evolution of some 1700 nuclides including 130 actinides, 850 fission products and 
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720 activation products. One group cross-sections are used for the burnup calculations. The cross-

sections are obtained from the specified libraries compiled for various reactor types.  The cross-

sections for individual nuclides in the existing libraries can be substituted with those provided by 

the user. The matrix exponential method is used for solving the system of burnup and decay 

differential equations [Croff A.G., 1983]. Additional features of the ORIGEN code include power 

or flux normalization for the depletion calculations and possibility of modeling of continuous 

materials feed or removal.  

 

 

MCODE 

 

MCNP-ORIGEN Depletion program (MCODE) [Xu Z., et al., 2002] was developed at MIT 

to take advantage of MCNP capabilities to analyze generalized geometry systems and complete 

isotopics representation in ORIGEN2 depletion calculations for the analysis of various reactor 

systems. MCODE provides data exchange interface between MCNP and ORIGEN2. The MCNP 

is used to generate fluxes and one-group reaction rates for the most neutronically important 

nuclides in each burnup region defined by the user. The fluxes and reaction rates from MCNP are 

processed by the MCODE to update the ORIGEN2 libraries. The depletion is then performed by 

the ORIGEN using appropriate one-group cross-sections for the system analyzed which 

eliminates ambiguity of the results associated with the use of standard ORIGEN cross-section 

libraries.  

 

MCODE offers greatly simplified user interface, extensive and flexible output processor, and 

optional predictor-corrector algorithm depletion. In this thesis, the MCODE was mainly used for 

benchmarking and verification of the results obtained with CASMO4 and SIMULATE3 computer 

codes. 
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A.2. Thermal Hydraulic Analysis  
 

VIPRE 

 

VIPRE-01 (Versatile Internals and Component Program for Reactors; EPRI) code is widely 

used for thermal hydraulic analysis of LWRs [Cuta J.M., et al., 1985]. The code is used for 

evaluation of various reactor core safety limits such as Minimum Departure from Nucleate 

Boiling Ratio (MDNBR), Critical Power Ratio (CPR), fuel and cladding temperatures under 

normal operating conditions and in assumed accidents. 

 

The code solves finite difference equations for conservation of mass, energy, and momentum 

to predict three-dimensional velocity, pressure, and thermal energy fields as well as fuel 

temperatures for single and two-phase flow in PWR and BWR type cores. The equations are 

solved for an interconnected array of channels assuming incompressible thermally expandable 

homogeneous flow. No restrictions for stability are imposed on the time step or channel size. The 

code includes non-mechanistic models for sub-cooled boiling and vapor-liquid slip in two-phase 

flow despite general homogeneous formulation. 

 

The core geometry modeling is very general and provides a great deal of flexibility as the 

code uses sub-channel analysis modeling structure. The modeled region is represented by an array 

of adjacent sub-channels with lateral communication. Sub-channels in a fuel rods array can be 

represented individually or can be lumped to larger regions. The shape and size of the channels as 

well as their interconnection are effectively arbitrary.  

 

In this thesis, the VIPRE-01 computer code was used for the evaluation of MDNBR safety 

margins of innovative PWR fuel designs suggested for the analysis by the neutrinc feasibility 

studies.  
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Appendix B.  Double-Heterogeneous Effect Evaluation and 
Codes Benchmarking 

 

Evolution of Selected Actinides Number Densities with Burnup 
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Figure B.1. Np237 Number Density vs. Burnup 
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Figure B.2. Pu238 Number Density vs. Burnup 
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Figure B.3. Pu239 Number Density vs. Burnup 
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Figure B.4. Pu240 Number Density vs. Burnup 
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Figure B.5. Pu241 Number Density vs. Burnup 
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Figure B.6. Pu242 Number Density vs. Burnup 
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Figure B.7. Am241 Number Density vs. Burnup 
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Figure B.8. Am243 Number Density vs. Burnup 
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Figure B.9. Cm242 Number Density vs. Burnup 
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Figure B.10. Cm243 Number Density vs. Burnup 
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Figure B.11. Cm244 Number Density vs. Burnup 
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Figure B.12. Cm245 Number Density vs. Burnup 
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Figure B.13. Cm246 Number Density vs. Burnup 
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Appendix C.  Loading maps for 3-Dimensional core analysis 
 

 

 

 
R P N M L K J H G F E D C B A

01 B01 B02 B03 B04 B05 B06 B07

02 B54 B55 B56 A01 B53 A02 B57 A03 B08 B09 B10

03 B52 B64 C25 A24 C04 A25 C05 A26 C06 A04 C02 B58 B12

04 B51 C36 A47 C09 A44 C10 A59 C11 A27 C12 A45 C01 B13

05 B49 B50 A22 C14 A43 C15 A60 C16 A46 C17 A28 C18 A06 B14 B15

06 B48 A21 C19 A42 C20 A23 C21 C03 C22 A05 C23 A29 C24 A07 B16

07 B47 B39 A41 C26 A58 C27 C08 A62 C13 C28 A48 C29 A30 B59 B17

08 B46 A20 C31 A57 C32 C59 A61 C33 A63 C07 C34 A49 C35 A08 B18

09 B45 B63 A40 C37 A56 C38 C53 A64 C58 C39 A50 C40 A31 B11 B19

10 B44 A19 C42 A39 C43 A17 C44 C63 C45 A11 C46 A32 C47 A09 B20

11 B43 B42 A53 C48 A38 C49 A54 C50 A52 C51 A33 C52 A10 B22 B21

12 B41 C65 A18 C54 A37 C55 A51 C56 A34 C57 A55 C41 B23

13 B40 B62 C64 A16 C60 A36 C61 A35 C62 A12 C30 B60 B24

14 B38 B37 B36 A15 B61 A14 B25 A13 B28 B27 B26

15 B35 B34 B33 B32 B31 B30 B29

Type
Assemblies
 per 1/8 of 
the core

Label

UO2/CONFU FRS 6.5 UA

UO2/CONFU ONC 6.5 UB

UO2/CONFU TWC 5 UC  
 

Figure C.1. Core loading map: Cases 1,3,4 
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R P N M L K J H G F E D C B A

01 B01 B02 B03 B04 B05 B06 B07

02 B54 B55 B56 A01 A25 A02 A26 A03 B08 B09 B10

03 B52 A61 A59 A24 C04 A60 C05 A46 C06 A04 A47 A62 B12

04 B51 A57 B64 C09 A44 C10 A05 C11 A27 C12 B58 A45 B13

05 B49 B50 A22 C14 A43 C15 B59 C16 B11 C17 A28 C18 A06 B14 B15

06 B48 A21 C19 A42 C20 C03 C21 C25 C22 C07 C23 A29 C24 A07 B16

07 B47 A41 A58 C26 B63 C27 C36 C13 C02 C28 B57 C29 A48 A30 B17

08 B46 A20 C31 A23 C32 C64 C08 C33 C58 C30 C34 A52 C35 A08 B18

09 B45 A40 A56 C37 B39 C38 C01 C53 C65 C39 B53 C40 A50 A31 B19

10 B44 A19 C42 A39 C43 C59 C44 C41 C45 C63 C46 A32 C47 A09 B20

11 B43 B42 A18 C48 A38 C49 B61 C50 B25 C51 A33 C52 A10 B22 B21

12 B41 A53 B62 C54 A37 C55 A54 C56 A34 C57 B60 A49 B23

13 B40 A64 A55 A16 C60 A17 C61 A11 C62 A12 A51 A63 B24

14 B38 B37 B36 A15 A36 A14 A35 A13 B28 B27 B26

15 B35 B34 B33 B32 B31 B30 B29  

Type
Assemblies
 per 1/8 of 
the core

Label

FFF FRS 6.5 UA

FFF ONC 6.5 UB

FFF TWC 5 UC  
 

Figure C.2. Core loading map: Case 2 

R P N M L K J H G F E D C B A

01 UB29 UB28 UB27 FA07 UB26 UB25 UB24

02 FA08 UB31 UB30 UC12 FB05 UC11 FB04 UC10 UB23 UB22 FA06

03 FA09 UB33 UB32 UC13 UA12 UC31 UA11 UC30 UA10 UC09 UB21 UB20 FA05

04 UB35 UB34 FB06 UA13 UC32 UA29 FC03 UA28 UC29 UA09 FB03 UB19 UB18

05 UB37 UB36 UC14 UA14 UC33 UA30 UC45 UA43 UC44 UA27 UC28 UA08 UC08 UB17 UB16

06 UB38 UC15 UA15 UC34 UA31 FC10 UA44 FC09 UA42 FC08 UA26 UC27 UA07 UC07 UB15

07 UB39 FB11 UC35 UA32 UC46 UA45 UC51 UA51 UC50 UA41 UC43 UA25 UC26 FB10 UB14

08 FA10 UC16 UA16 FC04 UA46 FC11 UA52 UB53 UA50 FC07 UA40 FC02 UA06 UC06 FA04

09 UB40 FB12 UC36 UA33 UC47 UA47 UC52 UA49 UC49 UA39 UC42 UA24 UC25 FB09 UB13

10 UB41 UC17 UA17 UC37 UA34 FC12 UA48 FC05 UA38 FC06 UA23 UC24 UA05 UC05 UB12

11 UB42 UB43 UC18 UA18 UC38 UA35 UC48 UA37 UC41 UA22 UC23 UA04 UC04 UB10 UB11

12 UB44 UB45 FB07 UA19 UC39 UA36 FC01 UA21 UC22 UA03 FB02 UB08 UB09

13 FA11 UB46 UB47 UC19 UA20 UC40 UA01 UC21 UA02 UC03 UB06 UB07 FA03

14 FA12 UB48 UB49 UC20 FB08 UC01 FB01 UC02 UB04 UB05 FA02

15 UB50 UB51 UB52 FA01 UB01 UB02 UB03  

Type
Assemblies
 per 1/8 of 
the core

Label

UO2 FRS 6.5 UA
UO2 ONC 6.5 UB
UO2 TWC 6.5 UC
FFF FRS 1.5 FA
FFF ONC 1.5 FB
FFF TWC 1.5 FC  

 

Figure C.3. Core loading map: Cases 5 and 6 
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R P N M L K J H G F E D C B A

01 UB29 UB28 UB27 UB20 UB26 UB25 UB24

02 UB32 UB31 UA30 UC12 UC36 UC11 UC32 UC10 UA27 UB22 UB21

03 UB34 UB30 UC13 UC33 UA12 FB05 UB17 FB04 UA10 UC30 UC09 UB49 UB19

04 UB35 UC14 FB06 UA13 FC10 UA29 FC03 UA28 FC09 UA09 FB03 UC08 UB18

05 UB37 UA31 UC35 UA14 FD06 UA44 FD05 UA43 FD04 UA42 FD03 UA08 UC27 UA26 UB16

06 UB38 UC15 UA15 FC11 UA45 FA09 UA11 FA08 UA06 FA06 UA41 FC08 UA07 UC07 UB15

07 UB39 UC37 FB11 UA32 FD07 UA51 FA07 UC28 FA04 UA50 FD02 UA25 FB10 UC24 UB14

08 UB33 UC16 UB23 FC04 UA46 FA11 UC23 UB53 UC39 FA05 UA40 FC02 UB10 UC06 UB07

09 UB40 UC40 FB12 UA33 FD08 UA52 FA10 UC31 FA01 UA49 FD01 UA24 FB09 UC26 UB13

10 UB41 UC17 UA17 FC12 UA47 FA12 UA16 FA02 UA01 FA03 UA39 FC07 UA05 UC05 UB12

11 UB42 UA34 UC38 UA18 FD09 UA48 FD10 UA37 FD11 UA38 FD12 UA04 UC25 UA23 UB11

12 UB44 UC18 FB07 UA19 FC05 UA36 FC01 UA21 FC06 UA03 FB02 UC04 UB09

13 UB45 UB36 UC19 UC34 UA20 FB08 UB04 FB01 UA02 UC22 UC03 UB43 UB08

14 UB47 UB48 UA35 UC20 UC21 UC01 UC29 UC02 UA22 UB05 UB06

15 UB50 UB51 UB52 UB46 UB01 UB02 UB03

Type
Assemblies
 per 1/8 of 
the core

Label

UO2 FRS 6.5 UA
UO2 ONC 6.5 UB
UO2 TWC 5 UC
FFF FRS 1.5 FA
FFF ONC 1.5 FB
FFF TWC 1.5 FC
FFF TRC 1.5 FD  

 
 
 

Figure C.4. Core loading map: Case 7 

 
R P N M L K J H G F E D C B A

01 UB29 UB28 UB27 UB20 UB26 UB25 UB24

02 UB32 UB31 UC23 UC12 UA30 UC36 UA27 UC10 UC32 UB22 UB21

03 UB34 UC16 UA13 UC33 UA12 FC08 UB17 FC04 UA10 UC30 UA09 UC48 UB19

04 UB35 UA14 UC45 UC13 FB05 UA29 FA08 UA28 FB04 UC09 UC46 UA08 UB18

05 UB37 UC37 UC35 UC14 FA07 UA44 FD05 UA43 FD04 UA42 FA06 UC08 UC27 UC24 UB16

06 UB38 UC15 UA15 FB02 UA45 FE06 UA11 UC11 UA06 FE02 UA41 FB06 UA07 UC07 UB15

07 UB39 UA31 FC01 UA32 FD07 UA51 FE04 UB30 FE05 UA50 FD02 UA25 FC07 UA26 UB14

08 UB33 UC31 UB23 FA01 UA46 UC47 UB49 UA53 UB43 UC06 UA40 FA05 UB10 UC39 UB07

09 UB40 UA34 FC05 UA33 FD08 UA52 FE08 UB36 FE03 UA49 FD01 UA24 FC03 UA23 UB13

10 UB41 UC17 UA17 FB03 UA47 FE01 UA16 UC01 UA01 FE07 UA39 FB07 UA05 UC05 UB12

11 UB42 UC40 UC38 UC18 FA03 UA48 FD03 UA37 FD06 UA38 FA02 UC04 UC25 UC26 UB11

12 UB44 UA18 UC43 UC19 FB08 UA36 FA04 UA21 FB01 UC03 UC44 UA04 UB09

13 UB45 UC41 UA19 UC34 UA20 FC02 UB04 FC06 UA02 UC22 UA03 UC42 UB08

14 UB47 UB48 UC21 UC20 UA35 UC28 UA22 UC02 UC29 UB05 UB06

15 UB50 UB51 UB52 UB46 UB01 UB02 UB03  

Type
Assemblies
 per 1/8 of 
the core

Label

UO2 FRS 6.5 UA
UO2 ONC 6.5 UB
UO2 TWC 6.5 UC
FFF FRS 1 FA
FFF ONC 1 FB
FFF TWC 1 FC
FFF TRC 1 FD
FFF FRC 1 FE  

 

Figure C.5. Core loading map: Case 8 


