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Abstract

Today’s aerospace industry is faced not only with the challenges of developing spacecraft
and supporting technologies to explore the unknown, but they must do so successfully with
tighter budgets and fewer personnel. Mission failure causes publicity that the industry cannot
afford in this economy. To maintain project schedules and prevent budget overruns, problems in
the spacecraft system design must be found early in the development stages. An approach to
using existing system design visualizations to aid system verification and validation in the early
design stages is described. These commonly used system design visualizations are used to create
and intent specification in a systems engineering development environment known as SpecTRM.
The intent specification is executable and analyzable, allowing system design flaws and
requirements problems to be determined prior to any hardware or coding development. An
example of the utilization of these system design visualizations to create an intent specification is
applied to the mobility and positioning system (MAPS) of a robot designed to process thermal

tiles on the space shuttle.
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Chapter 1
The Problem

The challenges in the aerospace industry today are no longer just to push the scientific
barrier and develop new technologies while successfully completing space exploration missions.
Dramatic budget cuts and lack of political and public support have forced the aerospace industry
to change the type of spacecraft and systems that are designed and built. The aerospace projects
that are now best known to the general public are those that fail before even attempting their
exploratory goals. To continue to receive funding for aerospace technology research and space
exploration, NASA and other industry leaders must produce spacecraft that can complete
successful missions.

Investigation board reports from recent aerospace mission failures show that insufficient
or not properly documented requirements and specifications are a leading cause for mission
failure. Errors in this stage of system development are far cheaper to correct and take less time
away from the development schedule, provided they are detected while still in the design
process. This chapter outlines the history of these types of system failures and the problems
engineers are faced with in the aerospace industry to lead the way for the systems engineering

approach discussed in this thesis.
1.1 Complex Systems in the Aerospace Industry

Spacecraft and other aerospace projects are excellent examples of complex systems.
Humans and computers work together to design, develop, build and operate these complex
systems to achieve system goals. As the systems in the aerospace industry grow in complexity, a
change is needed in the approach to system design. Most of the recent aerospace accidents can
be attributed to errors made in requirements and specifications during the system design and
development phase. In just one year three different NASA missions (Mars Climate Orbiter,
Mars Polar Lander, and the two Deep Space 2 micro-probes) failed due to causes that could be
traced to insufficiently written and followed requirements and specifications. Clearly, a change

in the approach to writing system requirements and specifications is needed if these complex



systems are to be successful given the new budget and time constraints imposed. The aerospace
industry cannot afford this lack of attention to system level design and integration to cause
further mission failures. Three accounts of these types of failures in spacecraft are described

below.

1.1.1 Ariane 5

The maiden flight of the Ariane 5 rocket was scheduled for June 4, 1996. The flight
ended in disaster approximately 40 seconds into the initial flight sequences when the launcher
deviated from its flight path and exploded. The report issued by the accident review board cited
the main cause of the accident as complete loss of guidance and attitude information 30 seconds
after liftoff. The flight was nominal until 36 seconds after main engine ignition when the backup
Inertial Reference System (SRI) failed, immediately followed by failure of the primary SRI.
This loss of guidance and attitude information caused the nozzles of the two solid boosters and
the Vulcain engine to swivel into the extreme position and the launcher veered off course. The
aerodynamic forces on the launcher caused disintegration to occur in the links between the solid
booster and the core stage, triggering the self-destruction of the launcher.

The failure of the primary and backup SRIs can be linked to two different problems in the
requirements and specifications for the Ariane 5. The first problem is that it was decided that the
Ariane 5 was sufficiently similar to the Ariane 4 that the same software could be reused without
making any changes. However, sufficiently similar was not similar enough for this software.
The preparation sequence for Ariane 5 was very different from Ariane 4, different enough that an
alignment function included in the Ariane 4 software to allow an aborted countdown to restart
did not apply to the Ariane 5. This function was “maintained for commonality reasons,
presumably based on the view that, unless proven necessary, it was not wise to make changes in
software that worked well on Ariane 4 [12]. Though the function was maintained, the software
was not tested with the Ariane 5 trajectory data that also differed from the Ariane 4 trajectory
data. Had this been done the results would have shown that significantly higher horizontal
velocity values from the Ariane 5 trajectory caused an error in the alignment function due to an
unprotected variable. This error led to an exception that caused the deflection of the solid rocket

boosters and high aerodynamic loads, forcing initiation of the self-destruction of the launcher



and its explosion. Had the requirements and specifications not excluded the Ariane 5 trajectory
data from system design, analysis and testing, it may have been detected before launch that the
Ariane 4 software could not be reused without significant changes.

The second, and possibly greater, problem in the requirements and specifications for
Ariane 5, was that the supplier of the SRI “was only following the specification given to it,
which stipulated that in the event of any detected exception the processor was to be stopped”
[12]. Had the SRI unit continued to at least supply the guidance and attitude system with
estimates of position, attempts could at least have been made to still salvage the launcher.
However, because of this design flaw, the processor was shut down and could not be restarted.
In addition, the redundancy designed for the Ariane 5 was to have identical copies of the
hardware and software as backups to the primary system. This means that both systems failed in
identical manners due to identical design problems that were in software that was unnecessary

for Ariane 5 and not even used in Ariane 4.

1.1.2 Mars Climate Orbiter (MCO)

The Mars Climate Orbiter (MCO) was part of the Mars Surveyor Program (MSP)
established by NASA in 1994. Its mission was to orbit Mars as the first interplanetary weather
satellite and to serve as a communications relay for the Mars Polar Lander (MPL) that was to
land a few months after MCO arrived at Mars. MCO and MPL were to follow two largely
successful missions in the Mars program, the Mars Pathfinder and the Mars Global Surveyor.
The design teams for MCO and MPL had only 26 months to prepare for these missions in order
to launch during the next minimum energy Earth-Mars transfer opportunity. To meet these goals
the two project teams had to use what they could from the designs of the previously successful
missions, despite differences in the spacecraft and a lack of familiarity with the necessary
spacecraft navigation information.

MCO launched on December 11, 1998 and was lost sometime during the Mars Orbit
Insertion (MOI) on September 23, 1999. The spacecraft signal was lost over 30 seconds earlier
than predicted for Mars occultation loss of signal and never appeared again. The investigation

team was able to determine from the spacecraft telemetry that MCQO’s trajectory was nearly 170
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kilometers lower than planned at the time of MOI. This resulted in either the destruction of the
spacecraft in the atmosphere or re-entry into heliocentric space [18].

As in Ariane 5, the errors that led to this accident can be traced back to problems in the
requirements and specifications for MCO and in the system engineering process for the mission.
The “root cause” identified by the investigation committee was that the software file used in
MCO trajectory modeling was in English units, rather than the metric units that were specified
and expected by navigation teams, creating an erroneous trajectory for the spacecraft. The data
from this file was used for each Trajectory Correction Maneuver (TCM) to correct the spacecraft
trajectory en route to Mars, but in effect compounding the error.

The Project Software Interface Specification (SIS) to be used for MCO required the
output of the application code SM_FORCES to be in metric units of Newton-seconds. This code
is used as part of the angular momentum management procedure. To keep the spacecraft’s
reaction wheels unsaturated, thruster firings are used for Angular Momentum Desaturation
(AMD). Each time an AMD event occurs, the spacecraft data is sent to the ground, processed by
SM_FORCES, and placed in an AMD file. The AMD files are then used to model the forces on
the spacecraft from the thruster firings and determine the spacecraft trajectory. While the
software on the spacecraft had the correct units, the ground software did not, and it was the
ground version of the AMD files used to determine the spacecraft trajectory. This problem was
not even noticeable for the first few months of cruise to Mars because the ground software
system was not used due to other reported errors.

MCO is a clear example of difficulties with implementing requirements and
specifications in complex mission design. Here the requirements existed, but due to
miscommunication and lack of specification use, an accident still occurred. The system
engineering process for MCO was not sufficient to ensure that all participants followed the
supplied requirements and specifications. The process also was lacking in transitional plans
from design to operations, as the trajectory problem could have been detected by the operations
crew early enough in the cruise phase to perform another TCM to possibly save the mission, if
they were properly trained for MCO operations and the differences in this spacecraft design and

operations from those of MGS.
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1.1.3 Mars Polar Lander (MPL)

The Mars Polar Lander (MPL) was another part of the Mars Surveyor program. Its 90-
day mission was to study the surface environment, weather and geology at the landing site. MPL
was designed to send its data to Earth through a relay from MCO. Given that MCO had already
been lost when MPL was to land, MPL could also communicate either directly to Earth or
through the Mars Global Surveyor satellite.

MPL was launched on January 3, 1999 and arrived at Mars after an 11-month cruise on
December 3, 1999. Trajectory correction maneuvers were performed for MPL based on
recommendations discovered during the MCO accident review. As occurred for MCO, there was
a loss of signal from MPL when entering the Martian atmosphere and the spacecraft was not
heard from again. Due to a lack of any telemetry data during the entry and landing phase of
MPL, the probable cause for spacecraft lost was determined to be premature shutdown of the
descent engines by the flight software.

The landing legs of the lander were to deploy from a stowed state to the landing position
at an altitude of approximately 1500 meters above the Martian surface. This deployment occurs
while the lander is still attached to the parachute. A Hall Effect magnetic sensor on each leg
generates a voltage when the leg contacts the surface. When the first landing leg detects the
surface a command from the flight software directs the engine to cut-off. Should the sensor in
that leg fail, then the second landing leg would trigger the engine cut-off to prevent tipping the
lander over. The flight software also was required to protect against a false touchdown signal or
failed sensor in the landing legs.

It was known that the sensors on the landing legs generated a false signal when deployed
due to the movement of the legs from stowed to deployed. The flight software was to ignore the
signals from these events, but the requirements and specifications of these events were not
described to the software engineers, and thus were not properly accounted for in the flight
software. Once the lander was at an altitude of 40 meters and the sensor data was enabled, the
engine shutdown command was followed and the lander would free fall to the surface and impact
at a velocity of 50 miles per hour [1].

The errors found in these three accidents could have been prevented had the system

designers taken their design and written requirements and specifications for the mission that
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properly communicated the information to all those involved in the project. Using the
requirements and specifications formulated in this way, a formal approach to validating the
system could be applied to detect requirement errors, such as those found in these accidents, long
before the system ever leaves the design phase. The next chapter defines system engineering and
discusses visualizations commonly used in system design. These visualizations are then used to
create an intent specification. Intent specifications and SpecTRM are a formal approach to
system engineering and will be described in Chapter 3. The next section describes factors in the
aerospace industry that are making the development of successful next generation spacecraft a

difficult feat.

1.2 Current Problems in the Aerospace Industry

The aerospace industry is not just plagued with the external problems of budget cuts,
public opinion and political sway. There are also difficulties within the aerospace industry that
need to be addressed to adequately change the system engineering process and reduce the errors
seen in the accidents presented earlier in this chapter. The problems presented here add to the
complexity of developing a suitable system engineering process for developing successful

spacecraft.

1.2.1 Miscommunication Among Designers, User and Operators

The background, experience and focus of the people working together on any given
aerospace project are widely varied. This type of multi-disciplinary project team is common in
the aerospace industry, particularly in the system development phase. Spacecraft are composed
of a variety of different subsystems including attitude determination and control,
communications, power, propulsion, structures, thermal and other specialized subsystems
depending on the spacecraft payload. Once launched, flight software controls the subsystems
and allows the spacecraft to accomplish the mission objectives. The engineers and scientists on
these teams are experts in fields varying from mechanical engineering to computer science to
geology. These individuals have extremely diverse backgrounds, talents and communication

skills and are often not used to presenting their subsystem needs and abilities to others who have
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no knowledge of their specialty. The terminology and language each of these experts uses to
convey subsystem operation is frequently different, even when referring to the same or similar
concepts. Modeling and design tools and problem solving approaches also differ, leaving little to
no common ground for system level understanding. In addition, users of the system are often not
incorporated into the design phase of the mission, forcing an operator or end-user to adapt to the
user interface designed even if it is contradictory to previous training or innate sense. These
differences and communication problems among team members can lead to misunderstanding or
omission of mission critical details in the system. A common communication platform is needed
to facilitate understanding among diverse team members and decrease ambiguity in system
design. At the same time, this platform needs to be easy to implement without a significant
training period to allow all team members easy access to the information. This will be discussed

in the following sections.

1.2.2 Usage of Requirements Documentation in the Design Phase

As was described in the Mars Climate Orbiter accident report, even when requirement
and specification documentation exists, that does not always mean it is used by those it is most
intended to aide. Not only is the use of requirement and specification documentation not
enforced among design team members, it often is not provided to subsystem team members
actually designing the details of the subsystem components. When the documentation is
provided it is frequently in a format that is difficult to understand or use in subsystem design and
modeling. Many times the different people working within a subsystem do not get to provide
any input into the document, resulting in requirements and specifications written by those who
are not most experienced with that subsystem function. System level knowledge, such as this
documentation, needs to be captured and recorded in an easily readable format so that it can be
disseminated to all team members working on the spacecraft. Rationale behind the requirement
and specification decisions also needs to be documented so that design decisions can be
understood and reviewed if needed. This also ensures that the information is passed on to the
next generation of spacecraft engineers who need to understand the rationale behind why these

system level decisions were made.
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1.2.3 Lack of Formal Validation of Requirements and System Integration Prior
to Build and Test Stages

Formal requirements specifications are frequently not used in complex system design
because it is felt that there is too much training involved in learning how to use a formal model.
Formal modeling is not traditionally covered in the curriculum of most engineering disciplines,
nor is it exposed to new hires when starting in the aerospace industry, or any engineering related
field. As many professionals already in the industry believe formal models to be unreadable and
difficult to learn due its base in complex mathematics, their use is extremely infrequent, despite
the value gained from their utilization. A platform for using formal requirements specification
needs to be easy to learn and easily readable by all those team members who need to use the
information it contains. The specification needs to be easy to create by any team member so that
as changes and developments in the design process are discovered, the specification can be
changed if necessary and the system can be analyzed and executed again to see how the change
will affect other system components. With a formal requirements specification, this can happen
in the design stages when system changes are still easy and inexpensive, rather than during
hardware integration when a quick fix approach may lead to a solution that has farther-reaching

system problems.

1.3 Summary

The aerospace industry is currently faced with two different types of problems. The
current economy and political climate is limiting the funding available to the aerospace industry.
This is compounded by the highly publicized failures of recent space missions, taking away
public support from space research. The other problems are those within in the aerospace
industry itself. A lack of understanding between engineers with different backgrounds can lead
to costly mistakes. Poor usage of requirement and specification documentation in the design
stages of spacecraft development can also lead to system level problems that are not discovered
until much later in the mission development timeline, causing budget and schedule problems and
jeopardizing the mission. As the system design process progresses and design changes are made,

the rationale behind these changes must be documented for future knowledge and to ensure that
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the changes are in agreement with the other design requirements and specifications. With the
conception of new and more complex missions, a formal validation of requirements and
specifications prior to the build and test phase is necessary to ensure mission success throughout

the later stages of mission development.

1.4 Thesis Outline

This thesis proposes using existing system design visualizations to create intent
specifications for analyzing and executing complex system designs in the development stages.
Chapter 2 provides background on Systems Engineering and some commonly used System
Design Visualizations. These visualizations are examples from system design and product
development texts that show graphical representations of complex systems. The data displayed
through these visualizations will then be used to synthesize an intent specification in SpecTRM.

Chapter 3 describes the systems engineering development platform called SpecTRM.
SpecTRM is a toolkit that allows users to create intent specifications that can be analyzed and
executed to evaluate the design in the development stages. This allows requirement and
specification problems to be detected at an earlier stage in the system development process to
avoid budget and schedule overruns, and system failures.

Chapter 4 demonstrates how the system design visualizations feed data into an intent
specification in SpecTRM with the Mobility And Positioning System (MAPS). MAPS is part of
the shuttle Thermal Tile Processing System (TTPS), which is a mobile robot system designed to
service tiles on the Space Shuttle. The goal of this system is to save humans from performing
the tedious and potentially toxic task that spans the time between shuttle landing and re-launch,
lasting up to 4 months. Finally, Chapter 5 contains the conclusions drawn from the research and

example case.
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Chapter 2
Systems Engineering and System Design
Visualizations

This chapter defines System Engineering and reviews some commonly used System
Design Visualizations used in system development. Different sources have different definitions
for System Engineering and related terms, so a few different views will be presented here. The
visualizations presented are examples from systems engineering texts and papers. These
visualizations are different manners of presenting information during the design phase of
complex systems. Some visualizations are based on the same information, but present the data in
a different manner, showing different relationships involved in the system. Utilizing these
existing system design visualizations to synthesize an intent specification is then outlined, with

an example of such a synthesis presented in Chapter 4.

2.1 Systems Engineering

As complex systems in the aerospace industry become more heavily reliant on software
for system operations after launch, a strong systems engineering development process in the
design phase becomes increasingly important. Accidents involving computers are usually due to
flaws in the software requirements, not coding errors or hardware failures [7]. Incorporating
software development into the systems engineering process from the beginning stages of the
system design helps engineers recognize how hardware and software must interact in the system,
and allows for more complete requirements specification. Documentation of the requirements is
also especially important in complex systems where software designers and other engineers may
be very unfamiliar with the functions of other hardware and software in the system. Thorough
documentation, trade-off analyses and testing increases the quality of requirements specifications
by uncovering problems early in the lifecycle and decreasing the cost of correcting these
mistakes. Requirements specifications are analyzed before any code is ever written or any

hardware implementation is completed, saving time and money if changes are necessary.
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A system can be defined as a group of related components that function together to
complete a common goal or task. The systems seen in the aerospace industry are becoming
increasingly complex. The factors adding to system complexity are the component interactions
and interdependencies within the system. These detailed interactions between system
components mean that no individual part of the system can be engineered independently of the
rest of the system, or the part may not function properly when it is later introduced to the rest of
the system. A view of the entire system with individual component operations and interactions
must be used in system development in order for the components to function correctly in their
system level capacity. This approach to design is called systems engineering.

Many different definitions exist for the term systems engineering, though all contain
similar ideas. A Space Systems Engineering course at MIT defines system engineering as ‘“the
ensemble of coordinated analyses, simulations, and processes which lead to the design of a
technical product which best meets the needs of an identified customer” [14]. This approach
tells the “whole story” of a system, including the why, which, what, how, when, and where, to
the customer in order to meet the customer’s needs. Here, “why” refers to the requirements that
define the customer’s needs and the point of the mission being conducted. “Which” is a trades
analysis to compare different system architectures to determine what best meets the requirements
and customer needs. “What” is the design that fully describes the system to be built and
operated. “How” is the program plan to provide for an organizational structure for the system,
allocation of resources, schedule, and information dissemination. ‘“When” is the schedule for
system development stages. Lastly, “where” refers to hardware flow details, obtaining
components, the facilities for integration, test, and validation, as well as checkout and launch
[14].

Another definition for systems engineering comes from the NASA Systems Engineering
Handbook, where systems engineering is “a robust approach to the design, creation and
operation of systems” [15]. This approach also consists of identifying and quantifying system
goals, creating alternative design concepts, performing a trade-off analysis of these designs,
selecting and implementing the best design, verifying that the design was properly built and
implemented and finally assessing how well the system meets the goals [15]. While the
definition of the term is different, the approach contains many of the same ideas as that from the

previous definition.
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The International Council on Systems Engineering also has a different definition:
“Systems engineering is an interdisciplinary approach and means to enable the realization of
successful systems. It focuses on defining customer needs and required functionality early in the
development cycle, documenting requirements, then proceeding with design synthesis and
system validation while considering the complete problem. Systems engineering integrates all
the disciplines and specialty groups into a team effort forming a structured development process
that proceeds from concept to production to operation” [4].

Systems engineering has also become recognized as a separate department for studies at
MIT. The MIT Engineering Systems Division (ESD) first defines systems architecture as “the
process by which standards, rules, system structures and interfaces are created in order to achieve
the requirements of a system; trade-off studies may precede the determination of system
requirements.” [13] This more closely fits the definitions described above for system
engineering. However, the ESD characterizes system engineering as “a process for designing
systems that begins with requirements, that uses and/or modifies an architecture, accomplishes
function and/or physical decomposition, and accounts for the achievement of the requirements
by assigning them to entities and maintaining oversight on the design and integration of those
entities...Systems architecting creates a system design at a high, abstract level, whereas systems
engineering is often associated with refining such a design; by blending the two processes one
accomplishes the assignment of functions to physical or abstract entities, and the definition of
interactions and interfaces between the entities.” [13] This definition better recognizes the fact
that not all parts of system engineering are tangible components, but that software components
also need to be factored into the development processes.

Systems engineering is multidisciplinary. The complex systems in aerospace are
composed of many different subsystems, including everything from human operations to
software to electronics and fuel. Engineers taking part in the system development process come
from all different disciplines to contribute to the overall system functionality. Systems
engineering is also all inclusive of all aspects of the system at hand. It involves subsystem and
component trade-off analyses and evaluation of customer need and requirements satisfaction at
each stage in the development lifecycle. The systems engineering approach to complex systems
development also means that the engineers working on different system components are

cognizant of the rest of the system and how other system components function in the overall
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system. Finally, systems engineering throughout the system development lifecycle reduces costs
by creating design alternatives at each development stage so that a problem at one stage in

development does not send the entire system development back to square one.

2.2 System Design Visualizations

Visualizations have long been used a way to enhance cognition of information,
particularly large and complex amounts of information [2]. Graphics become a common ground
for understanding between people whose backgrounds and disciplinary languages differ. The
majority of the published work on visualizations for cognition revolves around displaying data
and not on systems or development processes. This does not mean that visualizations are not
used in system design, but rather how they function in terms of information understanding has
not been widely studied. The visualizations that are described in the following sections are taken
from texts on system design and system design documents themselves to demonstrate how multi-
disciplinary engineering teams use visualizations to enhance system understanding during the

development lifecycle.

2.2.1 System Process Flow Diagrams

System process flow diagrams are common at the beginning of system design to
determine system components and the basic links between these components. They are block
diagrams where the blocks represent different subsystems in the complex system and arrows
from one block to another block represent interactions between the subsystems. This
visualization is useful in complex systems because it can be made as detailed or as all-
encompassing as necessary depending on what part of the design or design lifecycle is being
represented. Figure 1 shows a sample system process flow diagram for a spacecraft modeling
project at the highest level. The block labeled Spacecraft Model can then be made into a
separate system flow diagram of its own to show the interactions of the subsystems it contains.
Notice in this version of the diagram there are no arrows linking the subsystem blocks within the

Spacecraft Model block, as that level of detail is not part of this particular diagram.
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Figure 1. Sample System Process Flow Diagram

System process flow diagrams are easy to construct and well understood by multi-
disciplinary project team members. They also provide a good amount of system level

information that can be easily incorporated into an intent specification.

2.2.2 Tree Diagrams

Tree diagrams are another commonly found visualization tool in system development.
Tree diagrams are composed of nodes and branches. The nodes can represent different things
depending on the function of a given tree, for example if using a tree diagram for a preliminary
hazard analysis a node may represent an event that occurred leading to a hazard. A node can
also represent a piece of hardware or even a subsystem. The branches in a tree diagram represent
unidirectional links to the next node, and often have conditions attached to them. Tree diagrams
can be used to converge to one node, or as diverging from one node as shown in Figure 2. This
is highly dependent on what information is being conveyed through the diagram. Tree diagrams
are useful in identifying parts of a subsystem and the breakdown within a subsystem as is shown
in Figure 2 part A. They are also useful in preliminary hazard analysis when brainstorming ways

in which it is possible to reach a particular hazardous state as shown in Figure 2 part B.
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Figure 2. Sample Tree Diagrams

Tree diagrams are a very familiar and comfortable visualization for conveying
information. They are simple to use and can be expanded or collapsed as necessary for whatever
level of design is being addressed. They can also be easily tailored to many different system

design needs.
2.2.3 N? Diagrams

N? Diagrams are useful matrix notation visualizations for showing the interactions of
different subsystems and even the actual variables and information needed in the interactions.
This diagram is helpful in determining if a reordering or restructuring of the elements in the
diagram would help simply parts of the system. Boxes that are checked represent inputs to the
subsystem in the column from the subsystem in the row. If the box is checked above the
diagonal indicate a linear flow of the system. Boxes checked below the diagonal indicate that
information from one subsystem was returned to another and could possibly change the effect on

all other subsystem again that required outputs from that subsystem.
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Design
Vector X X X X X X X X
Science
Vector X X X X X X X X
Instr. X X X X X
Acquistion X X X X X
Rover
Init. X X X X X
Environ. X X
Auto.
Init. X X X X
Comm. 2| X X
Rover X X
X Power X
Auto. X
Comm. 3

Figure 3. Sample N” Diagram
Sample based on a Mars Rover Design Tool [14]

The sample N? diagram shown in Figure 3 shows a system that is mostly linear in
function but does have one iterative step, as the box between Rover and Power is checked below
the diagonal. This kind of interface information is valuable, particularly when developing the

software in the system development phases.

2.2.4 State Transition Diagrams

State transition diagrams are very important in system design. This is a visualization that
helps coordinate development of the system states. Depending on the system being designed,
this can include operating states, states of individual parts of the subsystems, and states displayed
to the user. The executable intent specifications that will be discussed in the next chapter are
based on an underlying state machine model, so these diagrams are very useful in creating intent
specifications. State transition diagrams show the feasible states of a particular part of a system,
and how transitions from one state to another can occur. Figure 4 shows a simplified state
transition diagram for a simple spacecraft [5S]. The nodes here are the different possible system

states. The links between the different states represent conditions for changing from one state to
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another. In this example there is only one condition on each link, but it is possible in a much

more complex system to have multiple conditions that are required to leave a given state.

Failure

“Go” status )
Nominal

Operations Another

Failure

Resolved

Planned
Shutdown

Contingency
Operations

Power on

Planned or
Emergency
Shutdown

Figure 4. Sample State Transition Diagram

As with the other diagrams shown thus far, this diagram is very easy to create and

understand, as well as useful in synthesizing intent specifications.

2.2.5 User and Task Models

User and Task Models are important visualizations in complex system design in helping
to identify the potential for mode confusion in a system. The aerospace industry utilizes
automation in many systems to cut personnel costs, and also to further research in the automation
field. However, the use of automation in complex systems creates different types of problems
because of the new type of interaction between the human operator and the automated system.
Creating user and task models helps the design team to recognize designs that could potentially

lead to mode confusion, where the user or operator is not aware of the mode the system is
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currently in or how it got there. Figure 5 shows the user and task models created for a flight

management system case study [16].
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Figure 5. Sample User and Task Model [16]

S

Information from models such as these is very important in synthesizing intent
specifications as accidents caused by mode confusion are often due to a lack of requirements to

prevent the confusion from occurring.

2.2.6 Input/Output Diagrams

Input/Output diagrams are blackbox representations of what goes into and out of a
subsystem or subsystem component. They can be simple diagrams that only show the inputs and
outputs to one given subsystem as shown in Figure 6, or they can show multiple components and
the inputs and outputs passed between them. Input and output information is important in system

design to ensure that the information that each subsystem needs is generated and passed from
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other subsystems. Figure 6 shows inputs coming from two different sources and outputs being

sent to three different subsystems.

Input A1 Input A2

Input B1
P — Output C1

Subsystem —» OQutput D1
—» Output E1

—»

Figure 6. Sample Input/Output Diagram

2.2.7 Key Metric Value Charts

Key Metric Value Charts are tabular methods of representing system design information.
Tables can display large amounts of information in an organized and easily understandable
format. The types of system information that can be presented in this way includes design
limitations, input and output lists separated by subsystems, user defined limits, and much more.

Figure 7 shows a sample chart of required inputs and outputs from different spacecraft

subsystems.
Subsystem Inputs From Outputs To
Power Max. Temp. Ranges Environment Power Available Communications
Power Rqmnt. over time All Subsystems
Communications Power Available Power Power Rqmnt. over time Power
Data Volume Instruments
Data Rate
Data Storage Rqmnt.
Instruments Power Rqmnt. over time Power

Figure 7. Sample Key Metric Value Chart — Inputs/Outputs
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This chart would be used in the system design phase to ensure that the different
subsystem team members know exactly what information they must be able to provide for other
subsystems to consider when designing their own subsystems. For example, the power
subsystem would need to know the power each subsystem requires when operating in order to
use an appropriately sized power system to accomplish the mission tasks. This information
details the links and interfaces between subsystems in another format for multi-disciplinary team
members to understand when designing their separate subsystem. Another key metric value

chart may display component attributes, as shown in Figure 8 [5].

Subsystem Component Weight (kg) Power (W)

ADCS Sun Sensor 0.5 0.1
Communications S-band antenna 0.9 0
Receiver 1.8 4

Transmitter 2 4.4

Diplexer 1.2 0
Power Solar Arrays 0.04 -
Batteries Capacity/35 -

Figure 8. Sample Key Metric Value Chart — Subsystem Component Attributes

Attributes such as these can be used as values to satisfy the input and output information
a subsystem needs for system integration. These values are also used when creating executable
models for system operations. Data from charts such as these provide the values and variables

necessary to give definition to the system design in an intent specification.

2.3 Summary

System design visualizations are valuable tools in systems engineering, particularly in the
design phase of the system development lifecycle. Left alone the visualizations do provide
useful information to multi-disciplinary team members, but they do no more than just provide
information. The data these visualizations contain can be put to much more use in system

engineering if they are utilized to synthesize an intent specification. Now the information is not
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only useful and easy to understand, but it is also executable, and more valuable in determining
requirements and specifications needed for a successful complex system. The next chapter
describes a systems engineering development platform for creating these intent specifications to

enhance the systems development process.
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Chapter 3
SpecTRM

A platform is needed to use the systems design visualizations described in the previous
chapter to construct executable system models. This chapter discusses intent specifications and
SpecTRM as a platform for this approach to systems engineering. The system design
visualizations provide the information for an intent specification that can be built in SpecTRM.
SpecTRM is a toolkit for creating intent specifications and performing formal analyses on the
model. Finally, a recent system engineering application of SpecTRM is discussed in which
separate intent specifications are created for reusable generic spacecraft components in order to

utilize SpecTRM as a platform for Component-Based Systems Engineering.
3.1 Intent Specifications and SpecTRM

An intent specification is documentation of the analysis, design, implementation and
operation for a system. The structure of an intent specification is based on human problem
solving and supports basic system engineering principles. Specifications are used to perform
analysis, review software designs, debug, maintain, and reengineer systems as needed. Primarily
an intent specification differs from a standard specification in structure. Intent specifications are
structured as a set of models designed to describe the system from different viewpoints
throughout the entire system development process. The structure facilitates the tracing of
system-level requirements and design constraints down into the detailed design and
implementation. It assists in the assurance that system properties, such as safety and system
security, are incorporated and implemented in the design from the beginning. The structure also
reduces the costs of implementing changes and reanalysis when system changes occur. Intent
specifications enhance problem-solving performance because they help designers extract the
important information necessary for a system without making any modelling assumptions.
System designers and engineers are not limited to a specific manner of carrying out the system
design tasks in intent specifications, but rather the information needed to accomplish these tasks

is recorded and whatever strategy the designer chooses to take in using the information can be
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taken. No additional specification is involved in this process (assuming that projects produce the
usual specifications), but simply a different structuring and linking of the information produced
so that specifications are used more often and correctly in the development and evolution process
[8].

An intent specification is comprised of seven levels as shown in Figure 9 [8]. It is
important to note that the different levels do not represent refinement, as in other more common
hierarchical structures. In an intent specification the levels represent a different model of the
same system and support a different perspective of the complete system. The model at each
level may be described in terms of a different set of attributes or language. Refinement and
decomposition occurs within each level of the specification, rather than between levels [8].

The top level, or Level 0, is a project management view of the system and provides
insight into the relationship between the plans and project development. Level 1 of an intent
specification is the customer view. This level assists system engineers and customers in agreeing
on what should be built and whether that has been accomplished. It includes system goals, high-
level requirements, design constraints, hazards, environmental assumptions, and system
limitations. Level 2 is the System Design Principles level. This is the system engineering level
used by engineers to reason about the system in terms of the governing physical principles and

laws that apply to the system being designed.
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Figure 9. Intent Specification Hierarchy
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The third level, or Blackbox Model level, enhances reasoning about the logical design of
the system as a whole and the interactions between system components, including system
functional states, without being distracted by implementation issues. Level 3 acts as an
unambiguous interface between systems engineering and component engineering to assist in
communication and review of subsystem blackbox behavioural requirements and to reason about
the combined behaviour of individual components using informal review, formal analysis, and
simulation. The language used on this level, SpecTRM-RL, is based on an underlying formal
model, so it can be executed and subjected to formal analysis while still being readable to multi-
disciplinary team members with minimal training and expertise in discrete math.

The next two levels provide the information necessary to reason about individual
component design and implementation issues. Finally, the sixth level provides a view of the
operational system. Each level is linked to the levels above and below it. These links provide
the relational information that allows reasoning across the hierarchical levels and tracing from
high-level requirements down to implementation and vice versa. When working with the system
design on a particular level these links provide the rationale and answers to design questions,
especially during maintenance activities.

A very important part of an intent specification is that the intent information is present to
represent the design rationale upon which the specification is based. This design rationale is
integrated directly into the specification so that any new person reading the intent specification
for the first time will know why certain design choices were made by another designer. The
underlying assumptions supporting the design are also documented at each level. These
assumptions are especially important in operational safety analyses. When conditions change
such that the assumptions are no longer true, then a new safety analysis is necessary. While a
safety analysis document may record these assumptions, the system implementation to which
they refer may not have a record of these effects. Without a means for linking these assumptions
and how the changes will affect the system overall, a system safety engineer cannot easily
determine what the system response will be to a change in this assumption or what part of the
system it will most affect [8].

Intent specifications also integrate the safety database and information with the
development specification and database so that all necessary information needed by team

members in the design phase for design tradeoffs and system analyses is available. When the
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safety information system is separate from the development specifications and database,
designers run the risk of not utilizing safety information at the beginning of the design
development process. This leads to information being ignored or argued away as it is too late in
the development phase to easily change the design, and any such change would become quite
costly. Integrating system safety information into system development at the beginning stages of
development ensures that safety is considered throughout the design process and included in
analyses and testing from the start [8].

Interface specifications and specification of important aspects of environmental
components are also integrated into the intent specification, as are human factors and human
interface design. The separation of human-automation interface design from the main system
and component design can lead to serious deficiencies in each. Finally, each level of the intent
specification includes a specification of the requirements and results of verification and
validation activities of the information at that specification level [8].

SpecTRM stands for Specification Toolkit and Requirements Methodology. It is a
development environment that allows users to easily create, modify and analyze intent
specifications. SpecTRM includes many features important to the intent specification process.
First, an empty intent specification in SpecTRM contains headings that, when filled out, help
ensure specification completeness. SpecTRM provides this initial intent specification structure
to the user to ensure completeness and include system design aspects that may have been ignored
otherwise. SpecTRM also provides an easy link creator. Links between levels provide
traceability within the specification from the highest requirements all the way down to
implementation. This is especially useful for tracking changes in design and rationales and for
performing interface testing. Finally, SpecTRM provides various analyses that can be performed

on the Level 3 blackbox model [17].

3.1.1 Analyses

SpecTRM currently provides two analyses that can be performed on the individual intent
specifications. These are non-determinism and robustness analyses. A model is deterministic if
for any given system state and set of inputs, there is only one transition for each state and mode

[17]. A model is robust, if for any given system state and set of inputs, a transition exists. That
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is, a behavior is defined for all possible inputs [17]. These analyses allow the system engineers
to eliminate all inconsistencies and incompleteness before the simulation is run. The Level 3

models can be checked automatically for these properties [3].

3.1.2 Simulations

Perhaps the greatest advantage to utilizing intent specifications and SpecTRM is that the
models created are executable. The Level 3 blackbox model is a formal representation of an
underlying state machine, so the model can be executed given a set of inputs. Individual models
can be executed in isolation and multiple models can be executed in an environment in which
they interact with each other. Components can be linked to their parent subsystems and the
subsystems to the controller to simulate the system-as-a-whole.

Executable models are extremely beneficial to the system development process. These
simulations allow system developers to observe the results of interactions between components
and the functionality of the subsystem specification and model. This is done at a point in the
development lifecycle before code is written or hardware is fabricated, allowing changes to be
made and errors to be corrected before costly steps are taken in the system development process.
This is also especially important in system software engineering where code maintenance needs
to be addressed, particularly in the aerospace industry where maintenance changes to be made
can occur after launch. An executable state machine provides the system software maintainers
with the ability to incorporate changes to the code from the formal requirements specification,
and simulate the effects those changes will have on the rest of the system, again before any code
has been implemented or uplinked to the system. This way system engineers can see the affects
of system changes on the overall system before any implementation occurs, and potentially
hazardous errors can be avoided.

Executable blackbox models help developers to perform trade-off analyses. Engineers
can simulate alternative design strategies and determine which approach is most suitable given
the constraints and requirements of the system. Instead of a development team needing to create
their own platform to perform such trade analyses, the same goal can be achieved by utilizing
SpecTRM. Once the trade-off analysis is complete, the development team already has an intent

specification for their chosen design in place and ready for more detailed design work.
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Lastly, just as different types of system design visualizations can aid in creating an intent
specification, different types of visualizations of the underlying state machine can also allow
users to facilitate the creation of a mental model of the system’s functioning. A high quality
mental model of the system will improve the requirements creation and reviewing process [2].
Clearly, having a formal and executable blackbox model of the system provides engineers with
the variety of benefits that aid in the proper implementation of a component-based development

approach.

3.1.3 SpecTRM-GSC

SpecTRM-GSC stands for SpecTRM-Generic Spacecraft Components. SpecTRM-GSC
utilizes the SpecTRM platform to create separate executable intent specifications for different
generic spacecraft components. The components are generic to support good practices is
spacecraft design reuse. SpecTRM-GSC also contains component-level fault protection, laying
the foundation for a fault protection scheme that parallels the spacecraft development process.
The formal portion of the SpecTRM-GSC can also be analyzed individually, as part of their
parent subsystem, or at the system-level before any implementation has taken place. The
creation of such a database of spacecraft components enhances the system design process by
providing an existing component framework for beginning spacecraft system design that can be
easily tailored to a specific spacecraft’s needs through defining the design values that make the

component specific to the particular spacecraft being designed.

3.2 Summary

Intent specifications and SpecTRM provide a platform for creating executable models to
be utilized in the system development process. Intent specifications capture the design
information from system design visualizations and record the rationale behind the design choices
made at each step in the development lifecycle. They abstract away the details of design so that
the specifications can also be reusable from one project to the next. Various analyses can be
performed in SpecTRM, which aids in the development of autonomous systems. System

performance can be tested through simulation before any hardware is built or any code is written.
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During maintenance, changes to the software can be easily documented and incorporated into the
new system. Engineers can also simulate design alternatives for trade-off analyses as well as
visualize the underlying state machine to obtain a different perspective of the system. The
creation of SpecTRM-GSCs also aids the spacecraft development process by providing complete
intent specifications for generic spacecraft components in a reusable and customizable format.
The next chapter provides an example of using systems design visualizations to create an intent

specification using SpecTRM as applied to a real system.
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Chapter 4
MAPS Example

MAPS stands for Mobility and Positioning System. It is a subsystem of the Thermal Tile
Processing System (TTPS). The TTPS is a system designed to service the thermal tiles on the
space shuttle after the spacecraft has returned to earth. The current process involves humans
visually checking each of the tiles and injecting a chemical into them with a handheld tool to
waterproof the tiles. This is a tedious process that usually spans the entirety of the three to four
months the orbiter is on the ground between missions. In addition, the chemical, DMES, used to
waterproof the tiles is extremely toxic to humans, making heavy suits and respirators necessary
for completing these tasks while also working in a crowded area [10]. The hope for the TTPS is
that it will reduce the need for multiple inspections of individual tiles as the robot will have a
much better ability to see tile defects than the naked human eye. It would also eliminate the need
for humans to perform this tedious and potentially hazardous task in an area already congested
with other workers servicing other parts of the shuttle. The original robot for the TTPS was
designed as a research project at CMU with funding from NASA. While it was delivered to
NASA in 1994, there is no knowledge of it being used in shuttle servicing operations [10]. The
robot design used in this example has been modified from the original for safety and to improve
the system example [10].

MAPS was chosen for this case study for two important reasons. First, it is part of a
complex system with many links to other subsystems. The system design visualizations
described in Chapter 2 can be used to show these links and the system flow into and out of
MAPS as it relates to the larger, complex system. Second, isolating one subsystem from the
TTPS allows the design details of MAPS to be illustrated in the design visualizations and
incorporated into a Level 3 blackbox model. This chapter demonstrates the creation of system
design visualizations for MAPS and how the information provided in these visualizations can be

used in populating an intent specification in SpecTRM.
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4.1 MAPS System Design Visualizations

Chapter 2 outlined seven different system design visualizations. In this section, those
visualizations will be used to describe MAPS and to demonstrate their use in the MAPS design.
MAPS is one of many subsystems that make up the mobile robot in the TTPS. A preliminary
hazard analysis performed at the beginning of the system design phase helps to alert multi-
disciplinary team members to potentially hazardous state the system could assume. Identifying
these hazards early in the design allows time for engineers to mitigate and even eliminate system

hazards. Figure 10 shows a tree diagram for part of a preliminary hazard analysis for MAPS.

Violation of minimum separation
between mobile base and objects

1

Uncommanded Object moves Movement commanded when a
or Unintended into robot path proximity-sensing or other
Motion safety related hardware system
? is inoperable
?
Does not stop Does not stop Operator issues Mobile base

when fast enough command that commanded to
commanded when violates minimum unsafe position

commanded separation by TSS

Figure 10. MAPS Hazard Tree Diagram

This tree diagram shows the factors that could occur and lead to the hazard of violating
minimum separation between the mobile base and other objects in the shuttle servicing area. By
knowing what factors could lead to the minimum separation violation hazard, engineers can
design the system to safely function to avoid this hazard from leading to an accident.

Since MAPS is one of many different subsystems comprising the mobile robot

component of the TTPS, it would be good to know what other subsystems are on the mobile
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robot and how they work together. Figure 11 is a system process flow diagram for the mobile

robot to show these interactions in the mobile robot system.

Digital
Aural and Camera
Visual Alert (DC)
(AS)
Manipulator
System Log T —: Arm (MA)
(SL) <4 Mobility Tile
and Servicing p{ Vision (VS)
oy . —>
Location > Positioning (TSS)
(MAPS) > DMES
(LS) .
¢ — | Injection (IS)
Motor
Controller
MC) Safety Fuse Proximity-
¢ SF)  [¥7] Sensing (PSS)

Figure 11. Mobile Robot System Process Flow Diagram

This system process flow diagram shows that MAPS interacts with five other subsystems in the
TTPS, the Aural and Visual Alert Subsystem (AS), the System Log (SL), the Location
Subsystem (LS), the Motor Controller (MC), and the Tile Servicing Subsystem (TSS). Other
subsystems on the mobile robot indirectly affect MAPS through the TSS or through commands
issued to other subsystems that are controlled by MAPS. This diagram shows the basic
interactions that the MAPS subsystem has during nominal TTPS operations.

An N? diagram is another useful visualization to provide more detail about the
interactions occurring between the mobile robot subsystems. The N2 diagram in Figure 12
shows the subsystem interactions directly with MAPS. The subsystems not directly
communicating with MAPS were omitted, as the MAPS design is the focus of this system

analysis.
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Subsystem X
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X MAPS X X X
Motor
Controller
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Visual Alert
Subsystem

System Log

Figure 12. N? Diagram for MAPS Subsystem Interactions

This diagram also demonstrates a possible progression for system modeling of the mobile robot.
This part of the system is mostly linear in terms of information passed from one subsystem to the
next, except for the interactions between MAPS and the TSS. This is a flag to system designers
that the integration of these two systems must be carefully designed and tested to prevent
interface problems.

The N? diagram in Figure 12 can be made larger and more detailed by incorporating more
rows and columns between the subsystems and listing each of the different relevant subsystem
inputs and outputs. Since the intent specification to be developed from these visualizations is
focusing on MAPS alone, it is not necessary to identify all of the inputs and outputs for the
subsystems listed in the N* diagram. Only the MAPS inputs and outputs are of concern, so they
can be better displayed by using an input/output diagram as shown in Figure 13. This diagram
shows exactly what information MAPS must provide to other subsystems, or receive from other
subsystems in order to function properly within the TTPS. By naming each of the inputs to and

outputs from MAPS in Figure 13, more detail is provided about each of these variables.
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Deactivate-Visual-Alert Motors_on_position

Activate-Aural-Alert
Deactivate-Aural-Alert

Figure 13. MAPS Input/Output Diagram

MAPS is responsible for issuing the movement commands to the MC as supplied to
MAPS ceither by the operator or by the TSS. To accomplish its tasks, MAPS must have
operating modes that allow for safe operation depending on what MAPS is currently trying to
accomplish and what the state of the entire TTPS is at the time. The MAPS movement control
operating modes are Initialization, Computer Mode, Operator Mode, and Halted Mode. Each of
these modes has different system constraints when in that operating mode and for transferring
from that operating mode to another. One manner of displaying information about these modes
is in a key metric chart. The chart describes the requirements for transferring to each of the
movement control modes, as well as from which modes transfer is allowable. Safety constraints
and rationales for each of the modes and mode requirements can also be included, as is seen in
Figure 14. By displaying the operating modes and the requirements in this way, engineers can
see how the system can change modes and what problems can occur if not all transitions are

properly designed in the system.
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Mode

Mode Requirements

Safety Constraint

Initialization Mode

Enter Initialization at Powerup

Enter Initialization after Safety Fuse
reset

System must reinitialize after a
safety fuse reset event to prevent
previously uncompleted movement
from being continued, putting the
mobile robot into a possible hazard
situation

Operator Mode Enter Operator Mode from The joystick must be connected and
Initialization in the neutral position to enter
Operator mode
Enter Operator after a temporary
shutdown The deadman switch must be
depressed to enter Operator mode
Enter Operator after deadman switch
is released MAPS will default to Operator
mode after Initialization to ensure
Enter Operator after Human the robot is not moved using
Operator command to switch to automation without notice to the
Operator rest of the staff in the shuttle
maintenance area
While in Operator mode only
movements from the joystick will
be recognized, all TSS commands
will be ignored
Computer Mode Enter Computer after Human All joystick commands while the
Operator commands to switch to robot is in Computer mode will be
Computer ignored so as not to interfere with
TSS and MAPS commands or cause
inadvertent robot movement
Release of the deadman switch will
allow the human operator to
immediately halt robot movement
and switch to Operator mode
Halted Mode Enter Halted when Safety Fuse Other subsystems may be still

enters Halt State

operating while the movement
control mode is in Halted, so the
movement control system must
only switch to Initialize after Halted
to allow the system and the human
operator to know the current system
state

Figure 14. MAPS Movement Control Mode Key Metric Chart
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Now that the movement control modes are known, and rules for entering each mode are
documented, a state transition diagram can be created to better visualize the state changes and be
sure that only one transition from one mode to another is possible. The state transition diagram

in Figure 15 shows the designed mode transitions for MAPS.

Initialize
lS)YStem Sequence Humin
owerup operator
Complete Operator command to

Computer
Deadman
Switch

released

Initialization

Safety Fuse
Halt

Safety Fuse
reset

Figure 15. MAPS Movement Control State Transition Diagram

Now it is easier to see that once the system enters Halted mode, it is only possible to get out of
that mode by going to Initialization. This is important to prevent mobile robot movement while
there may be a problem in one of the subsystems, or while there are problems in the operating
environment of the robot.

Mode confusion is a relatively new problem in the aerospace industry as more and more
systems are adding automation and making the human operators into system monitors, rather
than the humans operating the system directly. When a system relies on humans to monitor, but
not interactively operate a system, a new type of error can occur, known as mode confusion.
Mode confusion is when an automated system enters a mode without the human operator
knowing that a change has occurred. The human operator may know that the mode has changed,

but does not know what mode the system is now in, or he may not know what caused the mode
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change to occur, or in the worst case scenario, the operator may not know that a mode change
has occurred at all, and still believes the system to be operating in a different mode. This kind of
confusion can lead to serious accidents. User and task models help engineers to recognize if a
potential for mode confusion exists in a system so that design changes may be made to prevent it.
Figure 16 shows a user and task model for MAPS describing the situations that cause MAPS to

stop the mobile robot.

Automation Behavior

Deadman
Switch Safety Fuse Control Panel
released Halt Safety Fuse Alert
Switch to l Robot
Operator »| Stop R.ObOt < arrives at
Mode Motion work zone
MAPS
disabled
Operator Task Model

Object in path of robot

or other work Release Deadman Switch

environment hazard
Stop
»| Robot
Human operator Motion
control of robot
movement Switch to Operator Mode

Control Panel Safety
Fuse Warning Alert

Figure 16. MAPS User and Task Model
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The task model shows the five different situations that could occur to cause MAPS to
stop the mobile robot. In the user model, the operator is directly responsible for two of the
actions: releasing the deadman switch on the control panel and switching MAPS to Operator
mode. A Safety Fuse to the Halt state alert would also be displayed to the operator on the control
panel, so the operator would know if the robot was stopped for this reason. The operator will not
know, however, if the mobile robot stops because it has reached the work area it was directed to
or if it stops because MAPS was disabled. This problem can lead to significant work delays if
the operator is unsure of what to do to get the robot to begin moving again, or if any action on
the human operator’s part is required at all. It could also lead to a hazard if the operator tries to
command the robot to move but it has begun servicing a tile in its commanded position. The
user and task models bring this discrepancy to the attention of the design team so that the
problem can be dealt with in the design. Instead of having a problem such as this, a simple
solution such as displaying a status message to the operator that MAPS has been disabled or that
the robot has arrived at its location can be incorporated into the design instead.

These visualizations were used to create an intent specification for MAPS in the
SpecTRM environment. The next section describes how the data from these visualizations can
be easily translated into SpecTRM-RL and used to populate Levels 1, 2 and 3 of an intent

specification.

4.2 SpecTRM-RL Examples of Visualization Information

This section describes how the information on MAPS presented in the system design
visualizations can be used to synthesize an intent specification in SpecTRM to create an
executable system model based on requirements and design specifications. Appendix A provides
complete Levels 1, 2 and 3 of the MAPS intent specification.

Level O of the specification was left blank in the MAPS specification, as it is particular to
the organization and engineering team of the project. Since a project management group does
not exist for this project, Level 0 would be filled in once it is determined. Level 1 of the
specification includes the system-level goals, requirements and constraints. The system process
flow in Figure 11 identifies the subsystems that need to be included in the intent specification

and have high-level functional requirements, even if the detailed design is not focusing on that
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subsystem’s function. For example, Figure 17 demonstrates a high-level functional requirement
for the TSS, based on the subsystem relationships shown in the system process flow diagram in

Figure 11, as well as the N2 diagram in Figure 12.

[TSS-FR2.2] When the mobility and positioning system is being commanded by the
on-board TSS, it shall provide the route of travel and a destination. Locations shall
be provided in world coordinates. [—1.4.2.2] [12.1.1] [{2.4.2.6] [12.4.5.3]
Rationale: For safety reasons, the operator is responsible for mobile base
movement. However, to allow for potential autonomy and thus more efficient
operation, the TSS can directly issue movement commands to the mobility and
positioning subsystem. Any TSS movement commands must be monitored by the
operator.

Figure 17. Level 1 Functional Requirement

This specifies part of the relationship of the TSS to MAPS at a high-level. This
requirement also includes four links at the end. These are hyperlinks within SpecTRM to link
different parts of the intent specification for design traceability. The first link points to the
subsystem goal, also at Level 1. Goals are included for documentation and intent completeness,
but are too high level to be requirements. They are not necessarily testable, and there may be
many system designs that meet the system’s goals that are unacceptable due to other constraints.
High-level requirements are generated from the goals and constraints present at this level. These
are the “shall” statements that specify what the system is to do and are the testable requirements.

The remaining three links point down to design principles at Level 2 that provide
information about the route determination and coordinates for robot movement. The rationale
also informs the engineering design team as to why this relationship exists and what its intended
role is in the entire system. In this example, the rationale specifies the need to alert the human
operator of the movement commands issued by the TSS to avoid the potential mode confusion
problem identified by the MAPS user and task model in Figure 16. The information from the
user and task model is captured in this rationale on Level 1 and will also be considered when
applying this high-level functional requirement to a design principle on Level 2.

These high-level functional requirements and constraints can also be found in key metric
charts, such as the one for the MAPS movement control modes. An example safety-related

design constraint can be taken from the information in Figure 14 and can be seen in Figure 18.
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[MAPS-SC1] The mobile base must move only when commanded by the operator or
when commanded by the TSS and approved by the operator. [—H1]
[>MAPS-FR2.5]

Rationale: The mobile robot must not move if there are objects in its path or If its
subsystems are not stowed for movement.

Figure 18. Level 1 Safety-Related Design Constraint

The links at the end of the safety constraint point to the hazard this constraint is to mitigate and
the functional requirement it constrains. This safety constraint is expanded in sub-constraints to
include in detail the different ways that MAPS must stop the robot from moving to prevent a
hazard. These sub-constraints of the MAPS-SCI1 safety constraint can be found in Appendix A.
Another part of Level 1 in SpecTRM is information on the preliminary subsystem hazard
analysis. A hazard analysis at this level involves identifying system hazards, defining a safety
policy, classifying the hazards, and performing a hazard analysis. The hazards in the TTPS
relate to human injury or damage to the orbiter. The identified hazards must be eliminated or
mitigated by the system design. If a hazard cannot be eliminated, then the design features and
development procedures that were used to reduce the hazard level must be documented and
presented to the system management and customers before the system development process can
resume. Testing is not enough to mitigate a hazard because it is impossible to know if all
possible occurrences or situations to cause a hazard are known, before the hazard actually occurs.
A fault tree is one common way of performing a hazard analysis, and a portion of the
MAPS fault tree was shown in Figure 10. The information in this tree diagram can be used to
create a hazard log entry in SpecTRM. Figure 19 shows the hazard log entry created using the
tree diagram. Level 1 information shown in the hazard log description consists of general
background, historical information, environment descriptions, assumptions and constraints,
system functional goals, operator requirements, interface requirements, design and safety
constraints and information about the verification and validation requirements and results on the

information at this level. There are also hyperlinks to each of these references.
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H1: Violation of minimum separation between mobile base and objects (including
orbiter and humans.)

Subsystem: MAPS, vision system, proximity sensing system, motor controller location
system, visual and aural alert system, operator displays and controls
Operation/Phase: movement from one work zone to another
High-Level Casual Factors:
Uncommanded or unintended motion;
Not stopping when commanded or not stopping fast enough;
Operator issues command that violates minimum separation between robot and
object;
Mobile base commanded to unsafe position by TSS;
Movement commanded when a proximity-sensing or other safety related hardware
system is inoperable;
Object moves into robot path.
Level and Effect: A1-2
Safety Constraints:
Mobile base must move only when commanded [«MAPS-SC1] [«MAPS-FR2.4];
Mobile base must stop when commanded [«MAPS-SC2] [«SF-FR2] [«SF-FR1];
Mobile base must not be commanded to an occupied position [«MAPS-SC2];
The operator shall supervise all robot base movement [«-OP1];
The operator shall authorize all robot base movements before they are performed,
including movements commanded by the TSS [«-OP2] [«Con5];
The operator must have information about objects in robot path and the ability to
stop the mobile base within 0.5 sec [«-OP2] [«-OP3] [«-Disp1] [«Con5]
[«-Con6];
Movement warnings must be provided [«MAPS-FR6] [«~MAPS-SC9] [«-AS-FR1];
Mobile base must not move if any safety-related subsystem is not operational
[«MAPS-SC8] [«-SF-FR3] [«-SF-FR4];
The motor controller must be able to stop the motion of the mobile base within 0.2
seconds of receiving a STOP command [«MC-SC1];
The maximum velocity of the robot must be no more than 30cm/sec [«MC-SC2];
The proximity sensing subsystem shall send a signal to the safety fuse in the event of
contact with any external object [«PSS-FR1];
It must be possible to move the mobile base out of the way manually in case of an
emergency [«MB-SC3];
Analyses Performed:
Actions Taken:
Status:
Verification:
Final Disposal (Closeout Status):
Responsible Engineer:
Remarks:

Figure 19. Level 1 Hazard Log Description

Level 2 of the intent specification specifies the design principles used to implement the

47



Level 1 requirements. Figure 20 provides an example of a design principle taken from the
MAPS movement control key metric chart in Figure 14 and state transition diagram in Figure 15
and linked to a safety-related constraint from Level 1 (Figure 18). It defines the conditions for

entering one of the movement control modes in MAPS.

[2.4.7.1] Initialization Mode: MAPS enters initialization mode on powerup and
after the safety fuse is reset. [TMAPS-SC1.5]

Rationale: When the safety fuse signals a problem with the robot, there is likely to
be some type of repair action changing the state of the robot and therefore requiring
the entire initialization sequence and ensuring the robot is in a safe state before
movement.

Figure 20. Level 2 Design Principle

Level 3 of the intent specifications contains a formal, blackbox model of the component’s
externally visible behavior. The formal models, which are based on state machines, are specified
using a language called SpecTRM-RL that was designed with reviewability and ease of learning
as goals. Experience in using the language on industrial projects shows engineers can learn to
read SpecTRM-RL models with about ten to fifteen minutes of training. This allows for formal
models based on the system requirements to be easily constructed and analyzed prior to hardware
and software development. The resulting document is in English and is easily readable by multi-
disciplinary design team members.

The behavior of MAPS, or the logic for determining subsystem function, sending outputs
to other subsystems, and changing the inferred operating state, is specified using a tabular
notation called AND/OR tables. The rows of the tables indicate AND relationships, while the
columns represent ORs. This logic can be used to represent state and mode transitions, such as
those shown in the MAPS movement control state transition diagram in Figure 15. Figure 21
shows the transition conditions required for the “MovementControl” supervisor mode to take the
values “Initialization,” “Operator,” “Computer” and “Halted” as they were described in Figure
15. Using the AND/OR tables in Figure 21, the MAPS operating mode ‘“MovementControl” will
transition to a different mode if any of the columns in the transition table evaluate to true. In
other words, if the “MovementControl” mode was previously Initialize and the “Safety Fuse” is

in the state “Safe” and “Powerup” is False, then “MovementControl” will transition to
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“Operator.” “MovementControl” will also transfer to “Operator” if the “Safety Fuse” is still in
the state “Safe” but now “Deadman switch” is in the state “Released” and the previous mode of
“MovementControl” was “Computer.”

As seen in the four transition tables, there are several statements with an asterisk in the
OR column. This represents a “don’t care” condition. In the example in Figure 21, the control
mode “doesn’t care” what the switch position is if it is not coming from the “Computer” mode.
A separate alert and control will ensure that the switch is pressed in case it needs to be released

again to change the “MovementControl” mode again.

= |nitialization

Fowerup

SafetyFuse in state Safe

(=1]

= Cperator

Fowerup

[T]

Previous Yalue of MovementContaol is Initialization

[=™]

Frewvious Value of MovementControl is Computer

DeadmanSwitch in state Released
SafetyFuse in state Safe

(=4
(=[]

= Computer

Fowerup

Select-Computer-MMode

LeadmanSwitch in state Depressed

Frevious Yalue of MovementContral is Operator

(== 1H]T]

= Halt=d
Fowerup

SafetyFuse in state Halt

=1l

Figure 21. Level 3 And/Or Table

Since the blackbox model is based only on the system’s externally visible behavior,
inputs and outputs are other main SpecTRM-RL elements. The input/output diagram for MAPS
shown in Figure 13 describes the major inputs to and outputs from MAPS. Information from this
diagram can be used to create the Level 3 inputs and outputs for the intent specification. Figure

22 shows an example output from the MAPS input/output diagram. The Move-Velocity output

49



from MAPS to the motor controller is the signal that causes the MC to begin robot motion.
When the triggering condition shown by the AND/OR table in Figure 22 is met, the Move-

Velocity command is issued and the MC begins robot motion.

Output Command

Move-Velocity

Destination: Motor Controller
Fields:
Mame: MC
Type: {velocity, Position, Powerup}
Acceptable Yalues: Ay
Lnits:

Reversed By: Motors-off

Description: When received the motor controller moves the body to the desired position using the velocity
specified in infsec, infsec, radians,
All four motors are turned on and initialized for velocity servoing rode.

Comments: Used for velocity mode

References: 2.4.6.1, 2.9.5, 2.4.6.3.3, MAPS-5CZ.3, MAPS-SC1.2, MAPS-SC1.4, 2.4.2.1, MA-FR2,
MaP5-5C5.1

TRIGGERING CONDITION

MovementContral in mode Cperatar
SafetyFuse in state Safe
LeadmanSwitch in state Depressed
Jovstick is deflected

Manipulator arm is stowed
Stablizer legs are retracted

Maotion Alert system is operational

=l =l SISl Sl EIE]

MESSAGE CONTENTS

Field: [»alue:
Mode ['Yelocity

Figure 22. Level 3 Output Command

SpecTRM has other elements that allow the blackbox behavior to be modelled.
Functions in SpecTRM-RL are written in an Ada-like programming script. This script allows
users to calculate values from system inputs. It can be used to calculate the duration that a

variable is valid or to calculate an exact value of a subsystem variable. Another SpecTRM
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element known as a macro allows users to abstract common logic and to increase readability. A
macro can take a piece of an AND/OR table from another part of the model and give it a name.
This name can then be substituted for that table portion elsewhere in the model. The macro
definition is a single AND/OR table. This table will evaluate to true or to false. When the table
is true, the macro as a whole evaluates to true where it is used in other model elements.
Similarly, if the table is false, then the macro evaluates to false.

The elements of the SpecTRM blackbox include output commands, output values, modes,
states, macros, functions, command inputs and input values. Other information contained at
Level 3 includes communication channels, operational procedures, user models and the results of
performing various analyses and simulations on the blackbox model. The blackbox model for

MAPS can be found in Appendix A.

4.3 Summary

MAPS is a case study for using system design visualizations to synthesize an intent
specification. The subsystem interactions with other parts of the TTPS make MAPS a good
representative system to illustrate how visualizations describing these interactions and design
details can be used to create an executable and analyzable model in SpecTRM. An intent
specification was created for the MAPS subsystem. Rationale was captured at each level of
development and links provide traceability throughout the entire document. The blackbox
system behavior was specified to allow further system level analysis and future simulation of

MAPS together with the other subsystems that comprise the mobile robot part of the TTPS.
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Chapter 5
Conclusion

An increase in system complexity is a major obstacle for the aerospace industry, and any
other technology driven industries. This complexity is a result of the combination of
implementing emerging technologies, particularly automation, and advanced industry goals.
Software has become an integral part of complex system design, especially in spacecraft.
Software now controls not only the spacecraft hardware, but also the onboard science and
operations. It was hoped that trading in the simplicity of the previously used hardware designs
for the flexibility and abilities of software would decrease system complexity, but the reverse has
been seen to happen. Software can provide a solution for some design problems, however the
lack of software integration throughout the system development process and the lack of
understanding of the full workings of the system software have made today’s spacecraft even
more complex.

Returning to the hardware dependent predecessors is not a solution to this problem. As
space exploration goals grow more ambitious, so does the need for autonomous spacecraft
control systems. Artificial intelligence has not yet reached a development level where scientists
are willing to trust spacecraft control completely in an automated system. This means
incorporating a human operator in the system, and increasing the complexity yet again by having
to determine and define the human-machine relationship in the system.

In addition to the increasing system complexity, the aerospace industry faces many other
engineering challenges. The diverse education and experience of multi-disciplinary system
design teams creates a large communication problem. Engineers working on different
subsystems use different tools and languages to express their system needs and capabilities, with
little overlap. Miscommunication of key information for subsystem interfaces during the system
design phase can lead to costly errors later in system development. The poor usage of
requirements and specification documentation in the system design phases also leads to system
design problems. These documents are typically not made available to the design engineers
performing the detailed subsystem design, nor are they in an easily usable and readable format.

If the documents are used, the rationale behind the decisions is often missing, making design
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changes difficult and time consuming. This is even more difficult if the problem is not detected
early in the development lifecycle. There needs to be a common medium through which
engineers from different disciplines can communicate clearly and effectively and successfully
analyze and execute the system level design prior to hardware manufacturing and software
coding.

The current economy does not allow for spacecraft system engineering to exist as it once
did. Budget cuts and public disinterest in space exploration have made mission funding and
staffing much more difficult. Where shortcuts were taken, the price was paid, and several
successive spacecraft failures were greatly publicized. While the budgets for these spacecraft
were relatively low, the failed missions were still lost dollars, and resulted in a lack of public
support for the continuation of space exploration. The aerospace industry must now find a way
to change its approach to spacecraft engineering in order to produce successful spacecraft and
exploration missions under tight budget constraints.

This thesis proposed a different approach to spacecraft system development to address
the needs of the aerospace industry. The approach uses system design visualizations already
used by multi-disciplinary design teams to synthesize the requirements and specifications for the
system. These requirements and specifications form an intent specification that includes design
decisions and the rationales behind them. In this approach, subsystem designers take part in the
requirements and specification generation, and are not just bound by them.

The intent specification is created in a systems engineering development environment
known as SpecTRM. SpecTRM is a toolkit that allows users to create intent specifications that
assist engineers in managing the system requirements, design and development process. An
intent specification provides more structure than a plain requirements document and makes the
information contained more readable and accessible to project participants. By utilizing intent
specifications, engineers can detect specification errors early in system development so that
changes can be made and errors fixed before leaving the design phase. Engineers can also trace
the design choices made in the development lifecycle and detail the rationale behind the choices
made.

This thesis provided an example of utilizing system design visualizations to create an
intent specification as applied to the MAPS subsystem of the Thermal Tile Processing System.

MAPS was chosen as the test case for evaluating this method for synthesizing intent
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specifications because it is part of a complex system with a high level of subsystem interactions,
and it can be modeled separately from the rest of the system for subsystem level details. System
design visualizations for different aspects of MAPS were created to demonstrate the use of
visualizations in system design. The information from those visualizations were then used to
create a MAPS intent specification for formal analysis.

Through applying this methodology on MAPS, it was shown how many of the problems
outlined in Chapter 1 can be solved. The use of SpecTRM helps to solve the problems of design
decision traceability through the recording of rationale at every stage of development. In
addition, the use of SpecTRM-RL at Level 3 of the intent specification provides a readable and
unambiguous formal specification that provides a common language with which engineers can
easily communicate their requirements specifications. This blackbox model of MAPS in Level 3
of SpecTRM is based on a state machine model that does not actually require a background in
discrete mathematics to create. A minimal amount of training is necessary to create SpecTRM
models that can be formally analyzed and executed.

An important benefit of using this approach to system design is the rigorous development
of requirements specifications. The intent specification created by this process can be
thoroughly analyzed for major inconsistencies and incompleteness prior to the next development
stage. In addition, system functions can be easily simulated and the results of these simulations
analyzed for deficiencies in the requirements specifications. This enables many errors and
inadvertent omissions to be found early in the system development lifecycle. Errors and other
problems found in this phase are far easier and less costly to fix than those found once
implementation has begun. In addition, the overall system is designed from a safety standpoint
with a goal of eliminating hazards wherever possible, rather than having to justify the risk of a
hazard occurring if an error is found later in the system development lifecycle.

The material presented here on utilizing system design visualizations to synthesize intent
specifications demonstrates the potential for application in complex system design. Any industry
driven by developing technology, especially with an emphasis in adding automation to system
implementation, can benefit from using this approach to link a formal approach to requirements
specifications with existing system design techniques. The results of this thesis merit further

investigation into the use of system design visualizations in synthesizing intent specifications.
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Appendix A
MAPS Intent Specification

Level 0: Program Management Information

This section contains pointers to the program management documents for this project.

Program Management Plans

This section contains pointers to the software and hardware development plans and other
management information.

The following is an outline from IEEE Standard 1058 (dated 1987) for software project
management plan:.

1. Introduction
1.1 Project Overview
1.2 Project Deliverables
1.3 Evolution of the Software Project Management Plan
1.4 Reference Materials
1.5 Definition and Acronyms

2. Project Organization
2.1 Process Model
2.2 Organizational Structure
2.3 Organizational Boundaries and Interfaces
2.4 Project Responsibilities

3. Managerial Process
3.1 Management Objectives and Priorities
3.2 Assumptions, Dependencies, and Constraints
3.3 Risk Management
3.4 Monitoring and Controlling Mechanisms
3.5 Staffing Plan

4. Technical Process
4.1 Methods, Tools and Techniques
4.2 Software Documentation
4.3 Project Support Functions

5. Work Packages, Schedule and Budget
5.1 Work Packages
5.2 Dependencies
5.3 Resources Requirements
5.4 Budget and Resource Allocation
5.5 Schedule

System Safety Plan

The updated and current System Safety Plan would be included here or a pointer to it would exist
here. Within this plan there will be pointers to the various parts of the intent specification that
implement the parts of the plan, such as the hazard list, various hazard analysis results etc.
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The system safety program plan (SSPP) is a management document that describes the system
safety objectives and how they will be achieved. It provides a regulatory agency, contracting agency, or
manager with a baseline (a basis of understanding among multiple groups and within a single group at a
time) with which to evaluate compliance and progress. Specifying a plan should be the first step in any
safety-critical project.

Plans for subsystem safety should be part of the SSPP rather than in separate documents. Many
standards exist for program plans - each is a little different, but all contain similar information. Devising a
general plan for everyone is not practical, however: Each plan needs to be tailored to its project and golas
and to fit the corporate culture and management system.

Although one plan will not suffice for all types of projects, the following information might be
included in a comprehensive plan.

I. General Considerations

A.

moo

F.

Introduction

B. Scope and Purpose
Objectives
Applicable Standards
Progress Reporting
Documentation and Reports

II. System Safety Organization

SFTOTMMOO®T>

. Personnel Qualification and Duties
. Functional Organization

. Staffing and Manpower

. Communication Channels

Responsibilty, Authority and Accountability
Subcontractor Responsibilities

. Coordination
. System Safety Groups/ System Working Groups

Safety Program Interfaces with Other Disciplines
Reliability
Maintainability
Design and Software Engineering
Software Development
Configuration Management
Quiality Assurance
Human Factors
Test
Industrial Safety

III. System Safety Program Schedule

A.
B.
C.

Critical Checkpoints and Milestones
Start and Completion Dates of Tasks, Reports, Reviews
Review Procedures and Participants

IV. System Safety Criteria
A. Definitions

B.
C.

D.
E.

Start and Completion Dates of Tasks, Reports, Reviews
Review Procedures and Participants
Hazard Severuty Categories
Hazard Probability Levels
Risk Assessment
System Safety Procedure
Safety Design Criteria
Hardware
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Software

F. Special Contractual Requirements

V. Safety Data

A.

B.
C.

Data Requirements
Deliverable
Non-Deliverable
Hazard Tracking and Reporting System
Requirments and Use of Safety Data
Hazard Data Collection
Lessons Learned
Documentation and Files (Safety Data Library)
Records Retention

VI. Hazard Analyses (Types, Documentation and Expected Uses)

>

-n -

Preliminary Hazard Analysis

B. System Hazard Analyses
C.
D
E

Subsystem Hazard Analyses (including Software Hazard Analyses)

. Operating System Hazard Analyses

Integration of Subcontractor Analyses with Overall System Hazard Analyses
Tracing of System Hazards into Subsystems

VII. Verification

A.
B.
C.

Safety Related Testing
Special Demonstrations
Review and Feedback Procedures

VIII. Audit Program
IX. Operations

A.
B.
C.

Emergency and Contingency Procedures
Configuration and Control Activities
Training

X. Hazard and Incident Reporting and Investigation During Operations
XI. Special Safety Activities

>

Range Safety

B. Facility Safety
C.
D
E

Explosives Safety

. Nuclear Safety
. Chemical and Biological Safety

Safety Policy
The Safety Policy of the Thermal Tile Processing System, and the MAPS subsytems, will be in

accordance with the Safey Policies of the agencies that will use this system, namely NASA Dryden Flight

Research Center or NASA Kennedy Space Center.

Level 1: System-Level Goals, Requirements, and

In this example, some arbitrary choices are made about what information to put at Level 1-this
specification is only an example ad there is no real customer and thus no way to determine what is needed
in the customer model. Some of the information included here may be more appropriate at Level 2 for some

Constraints

systems and vice versa.
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Introduction

(The following description is adapted fromA Mobile Robot System for Ground Servicing Operations
on the Space Shuttk by K. Dowling, R. Bennett, M. Blackwell, T. Graham, S. Gatrall, R. O'Toole, and H.
Schempf. The original Tessellator robot was designed as a research project in the Robotics Dept. at CMU
with NASA funding. This specification was derived from one that students pursuing a master's degree
created for a project at the SEI. Changes have been made from the original specification in order to satisfy
our different goals.)

The Thermal Tile Processing System (TTPS) is designed to service tiles (the thermal protection
system) on the Space Shuttle, thus saving humans from a laborious task tha begins within minutes after hte
Shuttle lands and ends just prior to launch - typically three to four months. Upon landing at either the
Dryden facility in California or Kennedy Space Center in Florida, the orbiter is brought to either hte
Mate-Demate Device (MDD) or the Orbiter Processing Facility (OPF). These large strucutres provide access
to all areas of the orbiters.

The Shuttle is covered with several types fo heat resistant tiles that protect the orbiter's aluminum
skin during the heat of reentry. While the majority of the upper surfaces are covered with flexible insulation
blankets, the lower surfaces are covered with silica tiles. These tiles have a glazed coating over soft and
highly porous silica fibers. The tiles are 95% air by volume which makes them extremely light but also
makes them capable of absorbing a tremendous amount of water. Water in the tiles causes a substantial
weight problem that can adversely affect launch and orbit capabilites for the shuttles. Because the orbiters
may be exposed to rain during transport and on the launch pad, the tiles must be waterproofed. This task is
accomplished through the use of a specialized hydrophobic chemical, DMES, which is injected into each and
every tile . There are approximately 17,000 lower surface tiles covering an area that is roughly 25m x 40m.

In the current process, DMES is injected into a small hole in each tile by a handheld tool thpumps
a small quantity of chemical into the nozzle. The nozzle is held against the tile and the chemical is forced
through the tile by a pressurized nitrogen purge for several seconds. The nozzle diameter is about
1 cm but the hole in the tile surface is about 0.1 cm. The heights range from 290 cm to 400 cm from the
floor of the OPF. It takes about 240 person hours to rewaterproof the tiles on an orbiter. Because the
chemical is toxic, human workers have to wear heavy suits and respirators whie injecting the chemical and,
at the same time, maneuvering in a crowded work area. One goal for using a robot to perform this task is
to eliminate a very tedious, uncomfortable, and potentially hazardous human activity.

The tiles must also be inspected. By inspecting the tiles more accurately than the human eye, it is
hoped that the Thermal Tile Servicing System will reduce the need for multiple inspections. During launch,
reentry, and transport, a number of defects can occur on the tiles. These defects are evidenced as
scratches, cracks, gouges, discoloring, and erosion of surfaces. The tiles are examined for such defects to
determine if they warrant replacement, repair or no action. The typical procedure involves visual inspection
of each tile to see if there is any damage and then assessment and categorization of the defects according
to detailed checklists. Later, work orders are issued for repair of individual tiles.

The TTPS has three main parts: a mobile robot (called the Tessellator), a separate (off-board)
computer (called the Workcell Controller) that controls the overall thermal tile processing tasks, and a
human operator to monitor and control the other two components.

The Tessellator robot is designed to inspect each tile and inject the waterprooing chemical.
Because there are so many tiles, Tessellator divides (or tessellates) its work area into uniform work spaces,
inspecting tiles in each area with as little overlap between work spaces as possible.

Before each inspection shift, the operator enters instructions into the Workcell Controller about
shuttle position and inspection sequence. The Workcell Controller workstation creates jobs for the
Tessellator robot and updates other NASA databases after the robot uploads data gathered during the
course of the shift. This data includes tile images, records of tiles injected and inspected, and other
pertinent job data. In addition, robot status data is used to monitor robot operation.

At the beginning of the shift, the Tessellator is downloaded a job. The job consists of a series of
files describing the locations, sequences, target IDs, orbiter parking measurements, etc. Tessellator then
uses a rotating laser to position itself under the shuttle, and the robot's camera locates the exact tile to be
inspected. Because the shuttle's belly is not flat, Tessellator customizes its upward movement to each tile:
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Two vertical beams on either side of the robot raise the manipulator arm, which holds hte injection tools
and camera. A smaller lifting device raises the arm the rest of the way.

By comparing the current state of each tile with the state of the tile at previous inspections,
Tessellator characterizes anomalies in tiles as cracks, scratches, gouges, discoloring, or erosion. The robot
also indicates when it is unsure of what is wrong with a tile, so the supervisor can reanalyze the tile on the
screen of the Workcell Controller. At the end of a shift, Tessellator's updated tile information is entered into
existing NASA databases.

On board, a computer controls Tessellator's high-level processing tasks while low-level controllers
and amplifiers direct arm and wheel motions. Two more computers control the robot's vision and injection
systems. If anything goes wrong - rising compartment temperatures, low battery level, or other changes -
safety circuits will shut the robot down, and Tessellator will correct the problem.

MAPS(the mobility and positioning system) issues movement commands to the motor controller,
which controls the mobile base of the robot. MAPS in turn is controlled either by the operator or an
on-board computer called the Planner. The operator controls robot movement and positioning using a
hand-held joystick. The planner controls robot movement and positioning by providing MAPS with a
specification of the destination and route.

The Tessellator robot is unstable when the maipulator arm is extended, so stabilizer legs are used
to provide stability. These legs must be retracted when the robot is in motion. MAPS is responsible for
controlling the stabilizer legs.

Historical Information

We know of no previous robots used to service the orbiter thermal protection system nor of any attempts to
build such a robot. Although the CMU Tessellator robot was delivered to NASA in 1994, as far as we know it
has not been used in Shuttle operations. We have changed the design from the original in order to enhance
safety and to make it a better example for our purposes.

Environment Description

MAPS is one subsytem of the Thermal Tile Processing System. MAPS stands for Mobility and
Positioning Subsystem and is one of the subsytems functioning on the mobile robot itself. MAPS interacts
directly with four other subsystems in the TTPS:

Tile Servicing Subsystem (TSS) - The TSS is responsible for directing and coordinating all tile servicing
operations including positiong of the manipulator arm, operation of the vision subsystem and operation of
the DMES injection system. The TSS is also responsible for directing movement of the mobile robot to
the correct position for tile servicing.

Motor Controller (MC - The MC is responsible for controlling the wheels and wheel motors on the mobile
robot.

Aural and Visual Alert Subsystem (AS) - The AS is responsible for providing movement warnings to any
humans in the area of the mobile robot during movement and operations.

System Log (SL) - The SL maintains a log of data and information recorded during TTPS operations for
analysis and study of system performance and actions.

Assumptions

[EA.1] The MAPS subsystem is working within the TTPS.

Rationale: This intent specification describes the Mobility and Positioning Subsytem for the spashuttle
Thermal Tile Processing System. It is not intended for use outside of the TTPS project.
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[EA.2] The mobile robot will be able to operate effectively in a crowded and busy workspac{MB-FR.2]
Rationale: The work areas of the Orbiter Processing Facility can be very crowded. The facilities provide
access to all areas of the orbiters through the use of intricate platforms that are laced with plumbing,
wiring, corridors, lifting devices, etc. After entering the facility, the orbiters are jacked up and leveled.
Substantial structure then swings around and surrounds the orbiter at all sides and at all levels. With the
exception of the jackstands that support the orbiters, the floorspace directly beneath the orbiter is initially
clear but the surrounding structure can be very crowded. The robot must negotiate jackstands, columns,
workstands, cables, and hoses. In addition, there are hanging cords, clamps, and hoses. Because the robot
might cause damage to the ground obstacles, cable covers will be used for protection and the robot system
must traverse these covers.

Constraints

[EC.1] The Tessellator Robot must be no more than 1.1m (42") wide when stowed.
Rationale: The facility personnel access doors are 1.1m (42") wide.

[EC.2] The Tessellator Robot must be no more than 2.5m (100") long.
Rationale: The layout within the OPlallows a length of 2.5m (100") for the robot.

[EC.3] The Tessellator Robot must be no more than 1.75m (70") high when stowed and extend to reach
tiles between 2.9 and 4 meters away. [MB-FR.3]

Rationale: There are some structural beams whose heights are as low as 1.75m (70"), but once under the
orbiter the tile heights range from about 2.9 meters to 4 meters.

[SC.1] Use of the TTPS must not cause or contribute to an unaccpetable loss (accident) edefined by
Shuttle management.

Rationale: There is no gain in tile servicing or replacement if the automated system is not as safe as the
existing system.

System Goals and High-Level Requirements

The System Goals and High-Level Requirements are described for the TTPS and broken down by
subsystem. Only those goals and requirements relating to general TTPS function and the function of the
MAPS subsytems are explained in detail, as the rest is out of the scope of this project. Note that the
Safety-Related constraints are separated by subsystem in this specification for clarity, and are not all
located in the Environment Description.

Thermal Tile Processing System (TTPS)

The Thermal Tile Processing System has components located in the control room and on a mobile rob. t
These components operate together to achieve the system functional requirements.

System Goals
[TTPS-FG.1 The TTPS shall inspect the thermal tiles for damage caused during launch, reentry and
transport. [TTPS-FR.1] [TTPS-FR.2]

Rationale: The purpose of the TTPS is to inspect thermal tiles on the space shuttle carefully arthoroughly
to detect damage and decide which tiles need replacing prior to the next flight of the particular orbiter being
serviced.

[TTPS-FG.2 The TTPS shall apply waterproof chemicals to the thermal tiles. [TTPS-FR.3]

Rationale: The purpose of the TTPS is to utilize a robot to perform DMES injection into each (the thermal
tiles on the shuttle as the chemical is hazardous to human health.
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High-Level Requirements

[TTPS-FR.1 The TTPS shall inspet each tile to identify tiles with defects.[TTPS-FG.1]

Rationale: Sensors on the TTPS will be able to detect damage unseen by the naked eye and better
determine which tiles need to be replaced.

[TTPS-FR.2 The TTPS shall assess and categorize each defect identified. [TTPS-FG.1]
Rationale: The TTPS is not responsible itself for replacing damaged or defective tiles. It must create a log
to indicate which tiles need replacement.

[TTPS-FR.3 The TTPS shall inject DMES into each tile. [TTPS-FG.2]
Rationale: The TTPS is responsible for correctly and accurately injecting DMES into each of the serviced
tiles to waterproof the tiles.

System Limitations
[TTPS-L.1 Use of the TTPS must not negatively impact the flight schedules of the orbiters moithan
that of the manual system being replaced.

[TTPS-L.2  Maintenance costs of the TTPS must not exceed TBD dollars per year.

Workcell Controller (WCC) Requirements and Constraints

The Workcell Controller is responsible for the overall processing being performed by the mobile robot.

Subsystem Goals

[WCC-FG.1 The WCC shall have control over the thermal tile processing performed by the mobile robot.
Rationale: The WCC is the hardware in the control room that has control over the Tessellator robot on the
facility floor. Through this device, the system knows the job to be completed during any given shift and the
opeartor can monitor the robot's operations.

High-Level Requirements

[WCC-FR.1 The WCC shall download data from the NASA databases for the Tessellator robot to use
during a shift. [WCC-FG.1]

Rationale: Data will be stored reagarding what part of the orbiter has already been serviced. This
Iinformation will be downloaded prior to beginning a shift to ensure no area is missed by the TTPS and no
area is unnecessarily serviced twice.

[WCC-FR.2 The WCC shall create instructions for the Tessellator robot. [WCC-FG.1]
Rationale: The WCC will know the areas on the orbiter still to be serviced and can create the service
schedule for the current shift,

[WCC-FR.3 The WCC shall monitor robot operation to ensure tasks are completed.[WCC-FG.1]
Rationale: The WCC is in the control room and is the human operator's link to the robot on the facility
floor. Information passed through the WCC will allow human monitoring of robot operations.

[WCC-FR.4 At the end of a shift, the WCC shall update NASA databases with tile images, records ctiles
injected and inspected, and other pertinent data.[WCC-FG.1]

Rationale: The work databases must be updated with the work completed on each shift to ensure all areas
of the orbiter are serviced and no area Is unnecessarily serviced twice.
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Safety-Related Constraints

[WCC-SC.1' The instructions provided to the Tessellator must not result in any tiles beinmissed in the
inspection or waterproofong process. [WCC-FG.1] [H8]

Rationale: Per NASA safety plans, no tile shall go uninspected, therefor the WCC is responsible for issuing
Instructions for servicing areas that may overlap previously inspected areas, but cannot miss any tiles.

Mobile Robot Requirements and Constraints

The mobile robot consists of a mobile base carrying a tile servicing subsytem, a mobility and positioning
subsystem, a location subsystem, a motor controller, a digital camera, a manipulator arm, a DMES injection
subsystem, a vision subsystem, a system log, and everal safety subsystems included simply to provide
safety functions including a safety fuse, a proximity-sensor, and an alerting subsystem.

Mobile Bas e (MB)

The Mobile Base (MB) provides the structure for the robot and all of its subsystems located in the orbiter
processing facility.

Subsystem Goals

[MB-FG.1 The MB shall support, contain, and transport the tile servicing equipment[MB-FR.1] [MB-FR.2]
[MB-FR.3]

Rationale: A stable and sturdy structure is necessary for the tile servicing equipment to function properly
and within the specified accuracy limits.

High-Level Requirements
[MB-FR.1 The MB shall be able to carry all the mobile robot subsystem componen. [MB-FG.1]
Rationale: The MB is responsible for the robot structure and support of all subsytem components.

[MB-FR.2 The MB shall be able to move smoothly in any direction and to cross cablcovers on the floor.
[EA.2]1[MB-FG.1] [H3]

Rationale: The facility floor is very crowded with other workers and equipment., The MB needs to be able
to smoothly pass over or manuever around obstacles during operation.

[MB-FR.3] The MB shall be able to raise its inspection and injection equipment to the levrequired for
servicing the tiles, from 2.9 meters to 4 meters. [EC.3] [MB-FG.1]

Rationale: The robot must be able to enter the facility floor through a certain set of doors and under a
beam, but then must extend to service the tiles on the shuttle.

Safety-Related Constraints

[MB-SC.1' The MB must protect against fire and explosion.[H€]

Rationale: In case of fire or other explosion in the facility work area, the MB needs to be protected avoid
exposure of the DMES to humans in the area.

[MB-SC.2. The MB must be movable in case of an emergency.
Rationale: In case of an emergency on the facility floor or failure of the TTPS, the MB must be able to be
moved by humans in the area to gain access to emergency exits.

Tile Servicing Subsytem (TSS)

The TSS coordinates the tile servicing activities of the Tessellator Robot, including positioning of the MB,
positioning of the Manipulator Arm and DMES injection operations.
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Subsystem Goals
[TSS-FG.1 The TSS shall direct and coordinate all tile servicing operations, including tt positioning of
the manipulation arm, the operation of the vision subsystem, and the operation of the DMES injection

system. [TSS-FR.1]

Rationale: The TSS is the subsystem responsible for all positioning and tile servicing operations.

[TSS-FG.2 The TSS shall direct movement of the MB to the correct postion for tile servicing[TSS-FR.2]
Rationale: To facilitate the TTPS, the TSS will determine positioning and movement for the MB, as
monitored by the human operator in the control room.

High-Level Requirements
[TSS-FR.1 The TSS shall plan the course of action required to complete a given tasl [TSS-FG.1]
[TSS-FR.1.1 The TSS shall raise the manipulator arm to the location of the tile to beserviced.
[TSS-FR.1.2 The TSS shall identify damaged tiles using the vision subsyster.1
[TSS-FR.1...1] The TSS shall compare the current state of each tile with the state
of the tile at previous inspections.
[TSS-FR.1.2.2 The TSS shall characterize anomalies in tiles as cracks, scratches,
gouges, discoloring, or erosion.
[TSS-FR.1.2.3 The TSS shall indicate if unsure what is wrong with a tile so the
operator can reanalyze the tile on the screen of the workcell controller.
[TSS-FR.1.3 The TSS shall command the operation of the DMES injection subsysteln
Rationale: The TSS shall be responsible for planning and commanding tile servicing opeartions to the other
TTPS subsystems on the MB.

[TSS-FR.2 The planner shall determine the next work location and the most optimal route of travto it
while avoiding obstacles[TSS-FG.2]
[TSS-FR.2.1 The TSS shall inform the operator about the next desired work zone location.
[TSS-FR.2.2 When the mobility and positioning system is being commanded by tron-board
TSS, it shall provide the route of travel and a destination. Locations shall be provided in world coordinates.
[MAPS-FG.2]
[TSS-FR.2.3 The TSS shall determine whether an adequate location has been achievecbefore
beginning any tile servicing operations.
Rationale: For safety reasons, the operator is responsible for mobile basemovement. However,to allow
for potential autonomy and thus more efficient operation, the TSS can directly issue movement commands
to the mobility and positioning system. Any TSS movement commands must be monitored by the operator.

Safety-Related Constraints

[TSS-SC.1 The TSS must not move the manipulator arm unless the vision system is operation. [H4]
Rationale: The vision system is necessary for determining if it is safe to move the manipulator arm, the
arm shall not move without visual confirmation.

[TSS-SC.2. The TSS must not command the manipulator arm into contact with any object unlesrequired
for servicing. [H4]

Rationale: DMES chemical is toxic to humans, and could cause damage to other sensitive shuttle
components. Manipulator arm contact must be minimized to avoid accidental exposure to DMES.

[TSS-SC.3. Chemicals must not be injected without providing a warning to humans in the are [H7]

Rationale: DMES is toxic to humans and alert must be issued in case humand are working in an area near
to that of the MB.
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[TSS-SC.4. The injection system must not be operated unless the mobile base is stopped in the work
zone and the manipulator arm has moved the injection tool to the proper tile. [H7]
Rationale: Accidental release of DMES chemical must be avoided.

Mobility and Positioning (MAPS)

The MAPS subsytems is responsible for issuing movement commands to the MC based on the plans supplied
by either the TSS or the human controller in the control room.

Subsystem Goals

[MAPS-FG.1 MAPS shall control the movement of the robot around the work area and position it in the
appropriate locations in the hangar for tile servicing.[MAPS-FR.1]

Rationale: The MAPS subsystem is responsible for commanding robot movement in the work area.

[MAPS-FG.2 MAPS shall command robot navigation according to commands from an operator-controlled
hand-held joystick or according to routes and destinations provided by the TSS[TSS-FR.2.2] [MAPS-FR.2]
[MAPS-FR.3] [MAPS-FR.4]

Rationale: The MAPS subsystem accepts navigation commands either from the TSS when in computer
controlled operations, or from the human operator in the control room via the joystick controller.

[MAPS-FG.3] MAPS shall control robot base stabilization and provide movement warnings. [MAPS-FR.5]
[MAPS-FR.6]

Rationale: The MAPS subsystem will provide system warnings for movement to the humans in the work
area and the human operator in the control room.

[MAPS-FG.4 MAPS shall store information about the operation of MAPS and the mobile robot as a whole
in the System Log.[MAPS-FR.7]

Rationale: The recording of a variety of performance data will enable NASA systeriengineers to fine tune
the operation of the robot and its software and also assist in maintenance and operational audits.

High-Level Requirements
[MAPS-FR.1' MAPS shall generate motor control commands to maneuver the robot to the zonerequired

for the current job session. [MAPS-FG.1]
Rationale: MAPS is the subsystem responsible for issuing movement commands to the motor controller.

[MAPS-FR.2' MAPS shall provide a computer-controlled mode of operation wheraoutes and destinations
are provided by the on-board TSS. [MAPS-FG.2] [MAPS-SC.4]
Rationale. Human control of MAPS throughout the long and tedious tile servicing proce is impractical.
More efficient movement, particularly in tight spaces, can be commanded by the computer. Sufficient
confidence cannot be obtained in the automated implementation of some safety-related robot operations,
and therefore human movement control will be used during some limited but particularly hazardous TTPS
operations.

[MAPS-FR.2.1 MAPS shall accept a set of target positions and final destination from the TSS

[MAPS-FR.2.2 MAPS shall generate appropriate commands to the motor controller tdirect the
MB to the final destination position via the immediate target positions.

[MAPS-FR.2.3 MAPS shall notify the TSS and the user interface when a satisfactory zone has
been achieved or when it has failed to complete a commanded move and the reason for any failure.

[MAPS-FR.2.4 MAPS shall move into the Computer mode of operation in response to an
appropriate message from the operator.

[MAPS-FR.2.5 MAPS shall notify the operator when it has entered Computer Mode.

[MAPS-FR.2.5.1] MAPS shall ignore all commands from the joystick while irComputer

Mode.

Rationale: To prevent inadvertent joystick deflectio.from affecting robot movement, commands
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from the joystick on the operator’s control panel are ignored while in Computer Mode.

[MAPS-FR.2.6 MAPS shal stop all motion and begin in Operator Mode upon receipt of a
command to change from Computer Mode to Operator Mode.

Rationale. The robot must cease all motion when the command is issued to prevent hazardous
movement of the robot.

[MAPS-FR.3. MAPS shall provide an operator-controlled mode of operation wheremovement is
commanded via a joystick located on the operator's control panel [MAPS-FG.2] [MAPS-SC.4]
Rationale. Operator control is safer when environmental conditions are uncertain or in particularly
hazardous state. Manual control will also be used during routine maintenance operations and at TTPS
Powerup.

[MAPS-FR.3.1 MAPS shall default to Operator Mode at powerup or after any type ctemporary
shutdown or movement inhibition.

[MAPS-FR.3.2. In Operator Mode, movement commands to MAPS shalcome from the position
of the joystick on the operator's control panel.

[MAPS-FR.3.3' MAPS shall be able to respond to either single joystick motion commands cto
any combination of commands.

[MAPS-FR.3.4 While in Operator Mode, all movement messages from the TSS shall b ignored.

[MAPS-FR.4. MAPS shall determine robot position using the Location Subsystem [MAPS-FG.2]
Rationale: The TTPS Location Subsystem provides MAPS with MB position information in the work area.

[MAPS-FR.5 MAPS shall control the deployment and retraction of the stabilizer legs[MAPS-FG.3]
Rationale: MAPS controls all robot movement, including the stabilization of the mobile base when it reaches
its destination for tile servicing.

[MAPS-FR.6. MAPS shall control the activation and deactivation of the aural and visual alert syste. |
[MAPS-FG.3]

Rationale: MAPS will be aware of all robot movement and the state of the mobile base at all times,
therefore it is the subsystem to issue proximity warnings to humans in the work area.

[MAPS-FR.7. MAPS shall send messages to the system log about all events and errors MAPS shasend
messages to the system log about all events and errors related to MAPS operation[MAPS-FG.4]
Rationale: MAPS has complete information about the opearting state of the robot and shall send this
information to the system log for later shift planning and system analysis.

Safety-Related Constraints

[MAPS-SC.1] Tolerances for movements must be modifiable after delivery.
Rationale: Movement space in the facility may change after the robot is in use.

[MAPS-SC.2] Accleration or decceleration when starting or stopping motion under normecircumstances
must be low to allow a smooth start amd a smooth stop at the destination

Rationale. A smooth start and stop are necessary to minimize wear on the robot hardware and reduce
maintenance time and cost. This is also a constraint that is a trade off with the need for the immediate
stopping of movement of the robot in case of emergency.

[MAPS-SC.3] Mobile base acceleration, decceleration, and velocity must be modifiable after delivery.
Ratfonale. The appropriate units of acceleration and decceleration must be determinethrough trialand
error. In addition, hardware changes in the robot or temporary or permanent operational changes in the
OPF and the OPF environment could require changes to these values in the future.

[MAPS-SC.4] The mobile base must move only when commanded by the operator or whecommanded

by theTSS and approved by the operator [MAPS-FR.2] [MAPS-FR.3]
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[MAPS-SC.4.1° MAPS must not enter Operator Mode unless the joystick is physicallconnected to
the robot and the joystick is in the neutral position.

[MAPS-SC.4.2° The robot must not move unless the deadman switch is depresse.d

[MAPS-SC.4.3' If the operator releases the deadman switch and then later depresseit again, all
previous commands must be ignored and a new command must be issued before any robot movement
occurs.

Rationale. A long enough time may exist between releasing the deadman switch and
depressing it again that the environment may have changed and previous commands may no longer be safe.

[MAPS-SC.4.4 When the safety fuse is in the HALT state, the mobile base must not be capable
of performing any kind of movement.

Rationale: All robot movement must stop if there is any doubt about a problem in one of the TTPS
subsystems and the safety fuse was tripped.

[MAPS-SC.4.4.1° MAPS must not begin movement if the safety fuse is in the HALT state
or if the state of the safety fuse is unknown.
[MAPS-SC.4.4.2° MAPS must stop all movement and notify the operator if the safefuse

goes into the Halt state during a move or if the state of the safety fuse is indeterminable.

[MAPS-SC.4.5 MAPS must reinitialize itself and all the subsystems it controls when the safety
fuse changes from HALT to SAFE state. Any previous uncompleted movement commands must be discarded.

Rationale. The system may be nonoperational for a long time while the problem th:triggered the
safety fuse is being identified and fixed. When the system is restarted, the environment around the body
may have changed and the previous movement commands may be inappropriate.

[MAPS-SC.5] The mobile base must stop when commandeu.l

[MAPS-SC.5.1° Release of the deadman's switch must cause the robot to cease motion.Motion
must remain disabled until the switch is depressed again.

[MAPS-SC.5.2° When the operator releases the deadman switch, the robot must deccelerate
quickly to avoid rolling into the obstacle the operator is trying to avoid.

Rationale. The operator is tasked to release the deadman switch during a move when ti robot is
about to impact an obstacle. Rapid decceleration is required to avoid rolling into the obstacle the operator is
trying the avoid. However, such rapid decceleration is hard on the robot mechanisms and should be used
only when necessary to avoid a hazardous condition.

[MAPS-SC.5.3’ If the robot is in Operator Mode and the joystick is returned to the nornrposition,
all robot motion must cease.

[MAPS-SC.6] The mobile base must not be commanded to an occupied position.
Rationale: Commanding the robot to an occupied position violates the system safety plan and the minimum
separation between obstacles constraint.

[MAPS-SC.6.1’ The operator must be kept informed of the location of the robot and obstacles
in the work area.

[MAPS-SC.6.2. Human override capability must be maintained at all times in either operating
mode.

[MAPS-SC.6.3. When operating in Computer Mode, MAPS must notify the user interface the
direction and route of a move amd must require operator permission before commencing motion.

[MAPS-SC.7] The manipulator arm must move only when the stabilizers are fully extencd.
[MAPS-SC.7.1° MAPS must ensure that the stabilizers are fully extended prior to enabling
manipulator arm movement.

[MAPS-SC.8] The mobile base must not move when the stabilizers are extende.]

[MAPS-SC.8.1  The stabilizers must be retracted prior to commencing motion.

[MAPS-SC.8.2. If stabilizer retraction or deployment fails, MAPS must notify the Operator arthe
TSS of the failure.

[MAPS-SC.8.3° Wheel motors must be turned off while the stabilizer legs are extended and
powered back up when the legs are retracted.
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[MAPS-SC.9] The manipulator arm must be stowed during all mobile base movement.

[MAPS-SC.10° The stabilizer legs must be deployed whenever the manipulator arm is not stowe.d
[MAPS-SC.10.1' The manipulator arm must not be extended when the stabilizers arretracted.
[MAPS-SC.10.2' The stabilizers must not be retracted until the stabilizer arms are full'stowed.

[MAPS-SC.11° The mobile base must not move if any safety-related subsystems are nonoperatior.al
[MAPS-SC.11.1 MAPS must check that all safety-related systems are operational before
beginning any movement.

[MAPS-SC.12° MAPS must provide movement warnings to workers in the facility floor.
[MAPS-SC.12.1° Visual movement alerts must start 10 seconds before mobile basemovement
begins and aural alerts must start 5 seconds before movement begins.
[MAPS-SC.12.2’ Both visual and aural alerts must be activated continuously until movement is
completed.

Rationale. The aural and visual alert system is provided to prevent injury to any humarin the
area. Because of the relatively low acceleration and velocity of the robot, five seconds should be adeguate
to allow humans to move out of the way. Alerts that begin too long before robot movement may lead to
human delay in moving out of the way. The longer period for the visual alert is provided to allow humans to
complete any critical actions before moving. These times may need to be changed on the basis of
operational experience.

[MAPS-SC.13’ The mobile base must not move while the DMES system is in operatic.n

Location System (LS)

The LS is responsible for providing information to MAPS regarding the robot location in the work area for
robot movement.

Subsystem Goals

[LS-FG.1 The LS shall provide information about the location of the mobile base in the processing facility.
[LS-FR.1]

Rationale: MAPS requires information about the exact location of the robot in the work area to determine
movement to the next tile servicing area.

High-Level Requirements
[LS-FR.1. Upon request the LS shall provide the location of the MB in world coordinates wifan accuracy
of + 10 centimeters. [LS-FG.1]

Motor Controller (MC)

The MC controls the wheels and wheel motors on the mobile baseas instructed to by MAPS for MB
movement.

Subsystem Goals

[MC-FG.1 The MC shall command the wheels and wheel motors on the MB when instructed tby MAPS.
[MC-FR.1] [MC-FR.2]

Rationale: MAPS commands all movement of the MB and will issues motor on and off commands to the MC
as necessary for movement.

High-Level Requirements
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[MC-FR.1 The MC shall provide power to the motor that drives the robot whee. [MC-FG.1]
Rationale: The MC will turn on the appropriate whell motors for robot movement when commanded by
MAPS.

[MC-FR.2 The MC shall provide modes of operation appropriate both for control by : automatedsystem
and for control by a human operator. [MC-FG.1]

Rationale: The MC needs to be able to accept commands from MAPS based on TSS directions and human
operator commands.

Safety-Related Constraints

[MC-SC.1' The MC must be able to stop the motion of the MB within 0.seconds of receiving a stop
command.

Rationale: A command to stop the robot must be acted on immediately to avoid collision or othhazardous
situations.

[MC-SC.2. The maximum velocity of the robot must be no more that 30cm/sec.
Rationale: This maximum velocity allows quick and safe stopping of the robot in case of emergency.

Digital Camera (DC)

The DC is used to detect obstacles in the path of the robot while the TTPS is operating in the work area.

Subsystem Goals

[DC-FG.1 The DC shall provide information to the operator about obstacles in the path of the Muring
movement.

Rationale: The DC is the obstacle alerting subsystem for the robot. It gives information to other
subsystems regarding obstacles in the path of robot movement.

Manipulator Arm (MA)

The MA is the subsystem responsible for lifting the tile servicing tools and DMES injection equipment to the
tiles being serviced. It is commanded byb the TSS.

Subsystem Goals

[MA-FG.1. The MA shall raise the inspection system and injection system components to the levof the

tiles being serviced. [MA-FR.1]

Rationale: The MA is the structural base for the tile servicing and DMES injecting equipment and must raise
to the tiles it is servicing on the orbiter.

High-Level Requirements

[MA-FR.1] The MA system shall provide the mobility necessary for the inspection ar DMES injection tools
to reach the tiles on the orbiter. [MA-FG.1]

Rationale: The MA needs to rise from its stowed position for robot movement and robot entry onto the
facility floor to the level of the tiles being serviced on the orbiter.

[MA-FR.2] The manipulator arm controller shall provide the position and status of the arm upcrequest

directly to theTSS, the operator, or MAPS. [MA-FG.1]

Rationale. In the original CMU design, the TSS received information aboLthe manipulatorarm and was

responsible for determining whether movement was allowed. However, because of the importance of the
information for safety and the difficulty of verifying Al software, the system design was changed so that the
information can be obtained directly by MAPS.
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Safety-Related Constraints
[MA-SC.1] The manipulator arm must be designed to bemanually operated should the need arise.

[MA-SC.2] The manipulator arm design must keep the inspection and injection tools steady enoucto
allow accurate operation.

[MA-SC.3] Movement of the manipulator arm must be capable of being disabled by the operator the
planner.

DMES Injection Subsystem (IS)
The IS is responsible for applying the DMES chemical to the tiles being serviced by the TTPS.

Subsystem Goals

[IS-FG.1] The IS shall inject DMES checmical to the tile being serviced by the TTPS. [IS-FR.1] [IS-FR.2]
Rationale: The IS is the subsystem responsible for DMES injection into the thermal tiles.

High-Level Requirements

[IS-FR.1 The injection system shall be controlled entirely by the planner. [IS-FG.1]

Rationale: Only the planner knows when the MA is steady enough for DMES injection and when the robot
has come to a complete and full stop for injection to occur to minimize any possibility of human exposure to
the chemical.

[IS-FR.2 The injection tool shsall release DMES into a tile. [IS-FG.1]

Safety-Related Constraints

[IS-SC.1. DMES injection subsystem must be inhibited when the manipulator arm is stowed or motion.
Rationale: If the arm is not properly aligned with a tile being serviced, the DMES chemical could leak out
and come into contact with other humans in the work area.

Vision Subsystem (VS)

The VS is responsible for analyzing the tiles and detecting damage that may call for tile replacement.

Subsystem Goals

[VS-FG.1] The VS shall perform the tile registration and inspection tasks.

Rationale: THe VS is the subsystem located on the MA that will be raised to each tile for inspection and
Injection.

High-Level Requirements
This is beyond the scope of this project. THe VS requirements would be documented here regarding
sensors and reading taking and results.

System Log (SL)

The SL acts as the recorded data from each shift of operation of the TTPS. All data regarding robot
movements and any failures is logged for later study and shift planning.

Subsystem Goals
[SL-FG.1] The SL shall provide an automated data recording and information transfer function to the
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TTPS. [SL-FR.1] [SL-FR.2] [SL-FR.3]

Rationale. This automated function is expected to increase the data integriticompleteness, anc accuracy
of reports and thus to provide great values in tracking and planning work. Robot status information should
be helpful in monitoring robot operatio.

High-Level Requirements

[SL-FR.1 The SL shall be capable of holding the information collected during a work sh. [SL-FG.1]
Rationale: All data should be stored on the robot until it can be downloaded after a shift has been
completed.

[SL-FR.2. The SL shall contain the information determined during system design to be useful  for
operations, maintenance, and safety or operations audits, including at least tile images, records of tiles
injected or inspected, and robot status information. [SL-FG.1]

Rationale: All data that needs to be analyzed or is desired by system engineers needs to be cited for
logging to ensure it is captured.

[SL-FR.3. Upon request, the SL shall transfer the information collected during a work shift tthe WCC.
[SL-FG.1]

Rationale: In case the robot shutsdown due to a failure or emergency, the data from the SL may be helpful
in determining the problem.

Safety Fuse (SF)

The SF acts as an emergnecy stop system for the TTPS. It can be triggered by a subsystem failure
automatically, or by the human operator from the control room.

Subsystem Goals

[SF-FG.1] The SF shall provide an emergency stop function to the TTPS. [SF-FR.1] [SF-FR.2] [SF-FR.3]
[SF-FR.4] [SF-FR.5]

Rationale: The SF functions as the emergency stop for the TTPS and can be triggered either by a
subsystem or by the human operator from the control room.

High-Level Requirements

[SF-FR.1 The emergency stopping of the mobile base or the manipulator arm motion shall bperformed
at a low hardware level via safety circuits. [SF-FG.1]

Rationale: A simple mechanisms is desired for the SF so that it is reliable for shutdown cases.

[SF-FR.2 If the SF detects as unsafe state, all robot motion shall be electrically inhibited within 0.1
seconds by stopping the operation of any hardware actuator on the mobile base, including those controlling
the wheels, the manipulator arm, and the injection system. [SF-FG.1]

Rationale: To avoid a hazardous condition, all robot movement and processes must cease if the safety fuse
Is tripped to avoid an accident.

[SF-FR.3 Upon a status request, the safety shall indicate whether the robot is in a state where it ccbe
moved safely or not. [SF-FG.1]

Rationale: Additional information about the robot state is necessary to determine if the robot can resume
operation after the SF has been triggered.

[SF-FR.4 Only the operator shall be able to reset the safety fuse. [SF-FG.1]

Rationale: This feature was changed from the original CMU Tessellator design. Providinthe software,
particularly the TSS software which is written using Al techniques, with this function will involve a safety
analysis that would be at best expensive and at worst impossible. The triggering of the SF indicates a
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serfous condition that could lead to robot or orbiter damage and requires a high level of assurance that the
condition has been removed before enabling movement again.

[SF-FR.5 The operator shall be able to query the SF for the cause of the shut-dow. [SF-FG.1]
Rationale: TO ensure the opeartor understands the cause for shut-down, or can determine the cause, the
opeartor will be able to find out from the SF what subsystem caused the trigger.

Proximity Sensing System (PSS)
The PSS is responsible for detecting nearby obstacles during robot shift work and signaling the system
about the proximity of potential collisions.

Subsystem Goals

[PSS-FG.1] The PSS shall protect flight hardware by providing proximity sensing to the TTPS. [PSS-FR.1]
Rationale: The PSS is the proximity alert system for the TTPS to avoid collisions with other obstacles in the
facility work area.

High-Level Requirements

[PSS-FR.1 The contact strips in the Proximity Sensing System shall send a signal to the ¢ in the event of
contact with any external object. [PSS-FG.1]

Rationale. The SF can stop the base faster that a human operator can detect a sign:and react. However,
this system design decision has important ramifications with respect to operator complacency and alertness.
Training and operational audits should be used to ensure that operators are not overly depending in the PSS
to avoid accidents.

Aural and Visual Alert System (AS)

The AS is the subsystem responsible for alerting humans in the work area of the robot about robot
movement to prevent accidents.

Subsystem Goals

[AS-FG.1' The AS shall provide warnings about mobile base movement to any humans in the area of the
robot. [AS-FR.1] [AS-FR.2]

Rationale: To avoid obstacle collisions, the AS will warn humans in the area when the robot is moving so
that they can be sure not to get in the way of the robot.

High-Level Requirements

[AS-FR.1] Whenever any part of the robot is in motion, aural and visual indications shall be provided to
alert humans in the vicinity of robot movement. [AS-FG.1]

Rationale: Both aural and visual alerts are needed to account for any individual human visual aural
deficiencies. In addition, visual warnings may be provided earlier than the aural ones in order to provide
longer advance warning before more disruptive aural signals.

[AS-FR.2] The MB movement alert system shall be controlled by MAF. [AS-FG.1]
Rationale. As MAPS provides all commands to the motor controller, it knows whenever thbase is about to
start movement and when it has stopped.

Operator Task Requirements

This section contains assumptions, requirements, and constraints involving operator tasks and behavic .
The information is used in the operator task analyses, the design of the operator interface, the MAPS logic,
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operator(user) manuals, and training plans and programs.

[OP-FR.1 The operator shall supervise all robot base movemeniand tile servicing.

Rationale: If the operators are required to interact every few minutes with the system .order to monitor
base moves, then the attractiveness of the system to users is far less that one that needs only infrequent
attention. Therefore, the size of the work areas will be adjusted to satisfy the goal of approximately one
base move per half hour. Once per half hour translates roughly into 80 moves during the course of
rewaterproofing the orbiter, which results in a workspace of 300 tiles. In addition, with approximately
15,000 tile servicing steps and only a few hundred base moves at most, total task time is affeceted primarily
by time to service a tile and very little by the time to move the I B.

[OP-FR.2 The operator shall authorize all robot base movements before they are performedincluding
movements commanded by the TSS.

Rationale: The TSS can drive the robot more smoothly and directly then the operator, but tfoperator is
required to oversee the robot movement both to monitor the TSS movement for errors and for safety
assurance. With the over-ride control, the operator can stop the motion at any time and observe progress
of the robot in the course of a move. This design feature was included in the original Tessellator robot
because it allowed a simple to implement upgrade path for the software for robot autonomy. The
operator-override option allows full autonomy mode but also allows the robot to be shut down at any time
by the operator.

[OP-FR.3 The operator shall stop the robot immediately if any obstacle appears in the robot pe..h
Rationale: The operators will have adequate visibility of thwork area to prevent collision. that may be
undetected by other subsystems in the TTPS.

[OP-FR.4 The operator shall be responsible for handling SF alerts and for resetting the Siwhen the

system is ready for restart.

Rationale: By requiring the operator to initiate the restart sequence, this ensures that the operator is aware
that something caused a system reset and the SF can be queried or the reason for the reset can be
investigated.

[OP-FR.5 The operator shall be able to drive the robot independently of the TSS by use of joystick.
Rationale: While the computer can move the robot precisely, human robot movement contrmay be safer
in situations where the environment is uncertain. In addition, this design feature will be useful if during
operations it is determined that simply monitoring robot movement leads to inadequate alertness on the
part of the operator and more direct control is necessary to assure safety.

Controls

The Controls section describes the control panel for the human opeartor involved in robot operations.

Subsystem Goals

[Con-FG.1] The Controls shall allow effective achievement of all assigned operator tasks ar d
responsibilities as determined by the task analysis and system safety analysis. [Con-FR.1] [Con-FR.2]
[Con-FR.3] [Con-FR.4] [Con-FR.5] [Con-FR.6] [Con-FR.7]

Rationale: The Controls system is developed along with the operators to ensure that the proper information
s communicated to the human opeartor for nominal system operations.

High-Level Requirements

[Con-FR.1] Controls shall include at minimum a joystick and a deadman switch. Additional controls, such
as dials, switches, buttons, or keyboard shall be provided as deemed necessary to perform the tasks
identified in the operator task analysis. [Con-FG.1]
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Rationale: Too many input or output devices could cloud the operator's understanding of the system or
cause accidental movement of the robot.

[Con-FR.2 A joystick shall be provided to allow the operator to control the movement of the robot base.
[Con-FG.1]
Rationale: A joystick is required for human operator directed movement during Operator Mode.

[Con-FR.3 The operator must be able to provide fine-grain enough movement of the joystick to control
robot motion accurately enough to avoid obstacles and damage to the Shuttle or the robot. [Con-FG.1]
Rationale: During Opeartor Mode control of the robot, all movement directions come from the operator via
tha joystick.

[Con-FR.4 The joystick shall be capable of being effectively operated by a man or a woman with
average manual dexterity and strength as defined in the IEEE Standard. [Con-FG.1]
Rationale: Any qualified opeartor should be able to easily and effectively use the joystick system.

[Con-FR.5 The operator shall be provided with a deadman switch that allows or inhibits robcmovement.
Movement must stop within 0.5 seconds after releasing the deadman switch. [Con-FG.1]

Rationale: The deadman switch will be used as sthe primary means for the operator to authorize
immediate stopping of all robot movement.

[Con-FR.6 The operator shall be provided with an emergency stop facility that stops all robot motion,
including the MA and IS, within 0.5 seconds of activating it. [Con-FG.1]

Rationale: While the deadman switch will be used to stop movement of the MB, t/operator needs the
ability to stop other moving parts on the robot in case of emergency. The emergency stop button, which
will be directly connected to the SF, also provides a backup to the deadman switch (which is implemented
through software) in case the robot does not stop when the deadman switch is released because of a
hardware failure.

[Con-FR.7 Upon request, the joystick controller shall initiate a joystick calibratic. [Con-FG.1]
Rationale: Joystick position must be calibrated to the feel of the current opeartor to ensure the expected
movement of the robot occurs when the joystick is used.

Displays

The Display system deals with the presentation of information to the operator from the robot.

[Disp-FR.1 The GUI and other control panel displays shall provide the operator with enough information
about the status of the robot and the work area that the operator is able to avoid hazards and to perform
necessary operational tasks as determined by the operator task analysis.

Hazard List and Hazard Log
Accident Definition

An accident is an unacceptable loss, as defined by NASA Shuttle program management. Unacceptable
losses and their severity levels are:

Level 1:
A1-1: Loss of orbiter and crew(e.g., inadequate thermal protection)
A1-2: Loss of life or serious injury in processing facility

Level 2:
A2-1: Damage to orbiter or to objects in the processing facility that results in the delay of a launch and/or
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result in a loss of greater than TBD dollars.

A2-2: Injury to humans requiring hospitalization or medical attention and leading to long-term or permanent
physical effects.

Level 3:
A3-1: Minor human injury (does not require medical attention or requires only minimal intervention and
does not lead to long-term or permanent physical effects).

A3-2: Damage to orbiter that does not delay launch and results in a loss of less than TBD dollars.

A3-3: Damage to objects in the processing facility (both on the floor or suspended) that does not result in
delay of a launch nor loss of greater than TBD dollars.

A3-4: Damage to Tessellator robot

Safety Policy

All hazards related to human injury or damage to the orbiter must be eliminateor mitigated by the system
design. A reasonable effort must be made to eliminate or mitigate hazards resulting at most in damage to
the robot or objects in the work area. For any hazards that cannot be eliminated, the hazard analysis as
well as the design features and develoment procedures, including any tradeoff studies, used to reduce the
hazard level must be documented and presented to the customer for acceptance.

Hazard level will be determined by worst potential severity. Hazards that can result in human injuor
damage to the orbiter must be eliminated or mitigated if they are not judged to be physically impossible or
they are caused by physica/conditions that are judged to have a likelihood occurrence of more than one in a
million over a 20 year period. All types of software (logical) errors will be considered to be possible and
likelihood arguments cannot be used to reduce safety efforts related to those errors. A qualitative
evaluation of software-related hazard likelihood is acceptable, but as with quantitative evaluations, must be
justified to Shuttle Program management and cannot be based simply on the use of testing and good
software engineering processes.

Hazard Log

The following hazards have been identified for the mobile robot. Only those hazards related to the operation
of MAPS have been evaluated in detail for this example intent specification. A complete system hazard
analysis would require full analysis of all the hazards.

H1: Violation of minimum separation between mobile base and objects (including orbiter and humans.)
Subsystem: MAPS, VS, PSS, MC, LS, AS, operator displays and controls
Operation/Phase: movement from one work zone to another
High-Level Casual Factor:
Uncommanded or unintended motion;
Not stopping when commanded or not stopping fast enough;
Operator issues command that violates minimum separation between robot and object;
MB commanded to unsafe position by TSS;
Movement commanded when a proximity-sensing or other safety related hardware system
is inoperable;
Object moves into robot path.
Level and Effecli: A1-2
Safety Constraints:
MB must move only when commanded;
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MB must stop when commanded;
MB must not be commanded to an occupied position;
The opertor shall supervise all robot base movement;
The operator shall authorize all robot base movements before they are performer/,
including movements commanded by the TSS;
The operator must have information about objects in robot path and the ability to stop the
MB within 0.5 sec;
Movement warnings must be provided;
MB must not move if any safety-related subsystem is not operatior;al
MC must be able to stop the motion of the MB within 0.2 seconcof receiving a stop
command;
Maximum velocity of the robot must be no more than 30cm/sec;
PSS shall send a signal to the safety fuse in the event of contact witany external object;
It must be possible to move the MB out of the way manually in case of emergency.
Analyses Performed:
Actions Taken:
Status:
Verification:
Final Disposal (Closeout Status):
Responsible Engineer:
Remarks:

H2: Robot movement with stabilizers extended
Subsystem: MAPS, stabilizer legs
Operation/Phase: Movement from one work zone to another
High-Level Casual Factor:
Robot moves without retracting stabilizers.
Level and Effecl: A3-4
Safety Constraints:
MB must not move if stabilizers are extended;
Stabilizers must be retracted during all MB movement.
Analyses Performed:
Actions Taken:
Status:
Verification:
Final Disposal (Closeout Status):
Responsible Engineer:
Remarks:

H3: Robot base becomes unstable
Subsystem: MAPS, stabilizers
Operation/Phase: All
High-Level Casual Factor:
Stabilizers not deployed while arm extended;
Stabilizers retracted while arm extended;
Robot falls over while crossing covers or other obstacles.
Level and Effect: A1-2
Safety Constraints:
MA must move only when stabilizers are fully deploye;i
Stabilizer legs must not be retracted until MA is fully stowe.]
Analyses Performed:
Actions Takern:
Status:
Verification:
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Final Disposal (Closeout Status):
Responsible Engineer:
Remarks:

H4: Manipulator arm hits something

Subsystem: Planner, MAPS, VS, MA, TSS, PSS

Operation/Phase: All

High-Level Casual Factors:
Arm commanded into an object;
MB moves without arm being completely stowed.

Level and Effect: A2-1, A2-2

Safety Constraints:
MA must be stowed before movement starts;
MB must ensure accuracy of 10cm for positioning and 1mm for tilservicing tasks;
TSS must not move the MA unless the vision system is operational;
TSS must not command the MA into contact with any object unless required fctile

servicing;

PSS must send a signal to the SF in the event of contact of MA witany external object;
MA must keep the inspection and injection tools steady enough to allow accuraloperation;
Movement of the MA must be capable of being disabled by the operator or LMAPS.

Analyses Performed:

Actions Takern:

Status:

Verification:

Final Disposal (Closeout Status):

Responsible Engineer:

Remarks:

H5: Damage to robot caused by robot component operation or failure
Subsystem: All
Operation/Phase: All
High-Level Casual Factors:
Mobile robot operates with low oil level.
Level and Effect: A3-4
Safety Constraints:
When the SF is in the Halt state, the MB must not be capable of performing arkind of
movement.
Analyses Performed:
Actions Taken:
Status:
Verification:
Final Disposal (Closeout Status):
Responsible Engineer:
Remarks:

H6: Fire or explosion
Subsystem: All
Operation/Phase:All
High-Level Casual Factors:
DMES achieves explosive mixture.
Level and Effect: A1-2
Safety Constraints:
MB design must protect against fire and explosion.
Analyses Performed:
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Actions Taken:

Status:

Verification:

Final Disposal (Closeout Status):
Responsible Enginee:

Remarks:

H7: Contact of human with DMES
Subsystem: IS, TSS, VS
Operation/Phase:
High-Level Casual Factor:;
DMES released in the wrong place.
Level and Effecti: A2-2
Safety Constraints:
MB must not move while DMES system is in operation;
Chemicals must not be injected without providing a warning to humans in the area;
IS must not be operated unless the MB is stopped in the work zone anthe MA has moved
the injection tool to the proper tile;
DMES subsystem operation must be inhibited when the MA is stowed or imotion.
Analyses Performed:
Actions Taken:
Status:
Verification:
Final Disposal (Closeout Status):
Responsible Engineer:
Remarks:

H8: /nadequate thermal protection
Subsystem: IS, TSS, VS, MAPS, WCC
Operation/Phase: All plus operation of Orbiter
High-Level Casual Factors:
Damaged tiles not detected;
DMES not applied correctly.
Level and Effeci: Al-1
Safety Constraints:
The instructions provided to the mobile robot must not result in any tiles beirmissed in
the inspection or waterproofing proces.:
Analyses Performed:
Actions Taken:
Status:
Verification:
Final Disposal (Closeout Status):
Responsible Engineer:
Remarks:

Verification and Validation

Review Procedure
A review board that is independent of the development team verifies levels 1, 2 and 3 of MAPS. Multiple
iterations of this review process can be performed to help ensure that the analysis reflects the actual

operation of the system. Suggestions for improvement are added as necessary and evaluated in the next
iteration of the review process.
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Participants
None currently for the TTPS project.

Results
None to date.

Level 2: System Design Principles

The material in this level of the intent specification has been completed only for MAPS and those
interactions of other subsystems with MAPS. The specifications for the other subsystem functions is beyond
the scope of this project.

TTPS System Interface Design

Tile Servicing Subsystem
TSS — MAPS

Maps-Move: Used to command robot movement. The parameters indicate a route that MAPS is tfollow
(a set of waypoints), with the last point on the route being the desired work zone.

Maps-Disable Used to indicate to MAPS that movement is currently not legal. For example, thwould be
used to indicate that DMES application has not been completed or that the manipulator arm is not ready to
be stowed.

Maps-Enable: Used to indicate to MAPS that movement is currently legal. This message is used treverse
the Maps-Disable message.

MAPS — TSS

Status-Message: Used to return the success or failure of the Maps Move command. A status message is
also generated any time Computer Mode is entered or exited. The message will contain a code indicating
the success or failure of the commands, the latest position of the robot, and the command to which the
status message is responding.

Display

MAPS — Display

MAPS-operating-mode Sent whenever the MAPS operating mode changes. Contains the new
operating mode.

Display-Position-Report Sent any time MAPS reads the scanner and determines a new position for the
robot. The parameters represent the location of the robot (X,Y, and 0) with respect to world coordinates.
This information can be displayed numerically or graphically.

Display-Request-Move-Permission Sent prior to making any move. The route specified must be
displayed to the operator, preferably in a graphical fashion. The set of waypoints contains X,Y,0
coordinates of each waypoint that makes up the route. A maximum of 20 waypoints can be provided. In
addition to displaying the route for the operator's review, the following textual message should be displayed:
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"Permission to move along the displayed route is requested. Please depress and hold the
deadman's switch to athorize this move. You may lift the deadman's switch at any time to suspend this
move."

Display-error: Sent any time an error condition is encountered.
Control Panel

Control Panel—™ MAPS

Select-Operator-Mode: Used to switch MAPS into Operator Mode.

Select-Computer-Mode Used to switch MAPS into Computer Mode.

Disable-Operation Used to disable MAPS operation. The message will normally be used during
maintenance, for example, if some type of maintenance or checking operations are performed on the
joystick.

Enable-Operation Issued at powerup and after a Disable-Operation command.

Joystick

MAPS — Joystick

Joystick-init Initializes the hardware to read values from the joystick. Sent once at powerup.

Joystick — MAPS

Joystick-zero: Sent in response to a Joystick-init command. Records the current offsets as the zero X,Y, 0
position. This should be called once with the joystick in the home position (offsets may be hardwired later).

Joystick-status: Sent in response to a Joystick-init command. It contains the status of the joystick, either
operational or not operational (i.e., unplugged).

Joystick-position Sent as a move command to MAPS whenever the joystick stops in a non-neutral
position and the deadman switch is depressed or whenever the joystick returns to the neutral position.
Includes the position of the joystick in the x,y,0 values, with a range limit of -128 to +127.

Joystick-Button1: Sent whenever joystick button 1 is depressed or released.

Joystick-Button2: Sent whenever the joystick button 2 is depressed or released.

Log Manager

MAPS — Log Manager

Log: Logs events identified by a "log code" into the log file.

Motor Controller
MAPS — Motor Controller

Reset: Resets the motion control board to its default (powerup) state. Should be called before arother
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actions are peformed with the board. Sets the acceleration and deceleration for all four motors to the same
value. Also sets the maximum velocity (centimeters per second). The velocity is measured at one of the
wheel contact points. Velocity must be in the range of 0 to 30 centimeters/second.
Move-velocity(X,Y,0): Used for velocity mode. When received the motor controller performs the
kinematics on the body relative (x,y,0) velocity specified in (in/sec, in/sec, radians/sec), and sets the
appropriate wheel velocities. This routine causes motion to occur.

Move-relative(X,Y,0): Used for position mode.When received the motor controller performs the
kinematics on the body relative (x,y,0) desisred position specified in (inches, inches, radians) and then
moves the mobile base using the acceleration and velocity values from set_acceleration and set_velocity,
respectively.

Stop: Causes the vehicle to deccelerate to a complete stop. The motors remain on and servoing. In velocity
mode, all velocities are set to zero.

Motors-off: Turns all four motors off to a freewheeling state. Any queued commands will be flushed.

Motors-on -velocity: Turns on all four motors and initializes them for velocity servoing mode. Initial
velocities are set to zero.

Motors-on-position: Turns on all four motors and initializes them for position servoing. The position
queue is flushed.

Motor Controller— MAPS
Motion-status: Sends the current motion status: (1) the movement mode, (2) the on/off status of each of

the four wheel motors, (2) indication that an error occurred, and (3) completion of a movement. Sent
whenever the status changes.

Stabilizers

MAPS — Stabilizers

Legs-Down: Causes the stiff legs to be deployed. If the stiff legs are already deployed, the message has
no effect. In either case, the error-status parameter returns a success or failure code.

Legs-Up: Causes the stiff legs to be retracted.If the stiff legs are already retracted, the message has no
effect. In either case, the error-status parameter returns a success or failure code.

Position-Request: Request for the stabilizer leg controller to provide the current status of the stabilizers.

Stabilizers — MAPS

Stabilizer-Status-Message: Sent in response to a legs-down, legs-up, or position-request message or
whenever the status of the stabilizer changes.

Laser Scanner

MAPS — Scanner
Get-Scanner-Position Requests the latest position calculated by the scanner.
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Scanner — MAPS
Send-Position:Provides the current position (x,y,0) in world coordinates. Sent in response to a
Get-Scanner-Position message.

Safety Circuit

MAPS — Safety Circuit

Read-Safety-Circuit: Request for safety-circuit status.

Safety Circuit— MAPS

Safety-Circuit-Status: Sent in response to a Read-Safety-Circuit message or whenever the safety circuit
status changes.

Arm Controller
MAPS — Arm Controller

Check-Arm-Positiol: Request for arm status.
Enable-Arm-Movement Enables arm movement.

Disable-Arm-Movement Disables arm movement.

Arm Controller— MAPS

Arm-Status: Sent in response to any command from MAPS.
Motion Alert System

MAPS — Motion Alert System
Check-alert-system-status : Requests alert system status.
Activate-visual-alert: Sent to initiate a visual alert.
Deactivate-visual-aleri: Sent to stop a visual aler.
Activate-aural-alert: Sent to initiate an aural alert.

Deactivate-aural-alert: Sent to stop an aural alerl.

Motion Alert System — MAPS

Alert-system-status: Sent in response to a check-alert-status message or whenever the alert system
status changes.

Controls and Displays
Control Panel
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[DP.1] The control panel provides the operator with the ability to issue commands to tl planner, to MAPS,
and to other system components and to check their status.

[DP.1.1° Common action such as setting the Operator or Computer Mode arimplemented using
buttons, dials, or switches rather than requiring more tedious and time-consuming keyboard inputs or
even mouse clicks. Keyboard and mouse entries should be limited to infrequent activites or those that
cannot be implemented using buttons, switches, or dials.

[DP.2] The control panel includes an emergency stop button that directly activates the ¢and shuts down
power to all robot components within 0.5 seconds of being pushed. The emergency stop button must
be located where it is always within the operator's reach.

[DP.3] A deadman switch is used to authorize or stop MB movement. Thdeadman switch is activated by
two joystick buttons, one on top and one on the bottom of the joystick handle. Movement does not occur
unless one or both sticks are depressed and stops within 0.5 seconds after the button(s) is released.

[DP.4] The user interface can invalidate certain operator optionswhen such operations are not legal or
unsafe. For example, selection of Computer or Joystick mode is possible only when the SF is not in the
HALT state.

Rationale. Although MAPS should ignore such illegal or unsafe commands, an extra lev of protection is
provided by this design. Care must be taken not to block any operator options that might be needed by the
operator, particularly in emergency.

Joystick
[DP.1] The joystick controller must be initialized prior at powerup. This involve setting the maximum
velocity; x,y, and 0 thresholds, max throw constants, and speed factor.

[DP.2] The operator drives the robot by deflecting a joystick in the direction the operatwould like the
robot to travel. Deflection of the joystick away from the operator results in forward robot motion while
deflection towards the operator results in backward robot motion. Deflection to the left and right produces
corresponding robot motions to the left and right.

[DP.3] The robot is rotated by rotating the joystick handle. Rotation of the joystick han in a clockwise
direction results in clockwise (as viewed from above) rotation of the robot. Likewise, counterclockwise
rotation of the handle results in counterclockwise robot rotation.

[DP.4] Speed is controlled according to the amount of deflection of the joystick. Motion iproportional
such that a small deflection of the joystick results in a slow movement while a larger deflection results in a
faster motion.

[DP.5] The joystick has a neutral position that signals the joystick is not commanding animotion. The
joystick provides its position relative to this neutral position in the form of x,y, and 0.

Displays

The displays provide the following information: position of the robot, position of the stabilizer legs (deployed
or not deployed), position of the MA (stowed or not stowed), the route provided by the planner, the status
of the SF and the reason for being in the HALT state if it is, a view of the area ahead of and round the
robot, and pictures of the tiles.

Operator Task Design Principles
Preliminary Task Analysis for MAPS
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T1 Enter instructions for TSS into Workcell Controller
T2 Powerup and Initialize Tessellator
T2.1 Initialize laser scanner and make any laser scanner ber code changes.
T2.2 Set normal and emergency acceleration and deceleration values.
T2.3 Calibrate joystick.
T2.4 Set Operator Mode parameters (max velocity; X,Y,0 thresholds).
T3 Set or change MAPS operating mode.
T3.1 Determine appropriate mode.
T3.2 Select mode.
T4 Monitor Computer-Controlled Movement
T4.1 Read displayed route
T4.2 Authorize all mobile base movement
T4.2.1 Check that stabilizers are retracted
T4.2.2 Check that manipulator arm is stowed
T4.2.3 Read and check disla' ed route
T4.2.4 Press deadman switch
T4.3 Monitor movement
T4.3.1 Monitor movement on screen
T4.3.2 Release deadman switch id obstacles observed in path
T4.4 Process error messages
T5 Control mobile base movement and positioning using the joystick
T5.1 Check screen for obstacles
T5.2 Check that stabilizers are retracted
T5.3 Check that manipulator arm is stowed
T5.4 Depress deadman switch
T5.5 Operate joystick
T5.6 Release deadman switch and return joystick to neutral position
T5.7 Process error messages

T6 Check tile state on screen of Workcell Controller if TSS asks for help
T7 Monitor tile servicing
T8 Handle errors and failures

T8.1 Handle safety fuse reset
T8.1.1 Query fuse for cause
T8.1.2 Take corrective action
T8.1.3 Reset fuse after problem has been fixed
T8.2 Process system error messages
T8.3 Notify maintenance about breakdowns
T8.4 Manually stow manipulator arm
T8.5 Manually extend or retract stabilizer legs
T8.6 Manually turn off wheel motors
T8.7 Press emergency stop if unsafe conditions occur

Movement and Positioning Design Principles
MAPS Initialization

[DP.1] During system initialization, MAPS resets the MC interface.

[DP.2] During system initialization,MAPS initializes the joystick.

[DP.3] During system initialization, MAPS establishes that the robot iin a proper and safe startup state.
[DP.3.1. MAPS verifies the SF is in the SAFE state.

[DP.3.2. MAPS verifies the MB is stopped.
[DP.3.3. MAPS verifies the LS and AS are operational.
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[DP.4] During system initialization, MAPS determines the initial positioof the robot andsends a status
message to the operator.

[DP.5] MAPS does not accept anynon-initialization commands untilinitialization is complete.

MAPS Movement Control

[DP.1] MAPS issues movement commands only if the following conditions are true:
SF is in the SAFE state
MA is stowed
Stabilizer legs are retracted
Joystick is in the neutralposition
Deadman switch is Depressed
SF and AS are both operational

[DP.2] MAPS issues visual and aural warnings to humans in the TTPS work area.

[DP.2.1° MAPS activates a visual alert 10 seconds before MB movement begins.

[DP.2.2° MAPS activates an aural alert 5seconds before movement begin.

[DP.2.3 Both alerts are shutdown in Computer Mode when the final destination is reachewor the
deadman switch is released.

[DP.2.4° Both alerts are shut down inOperator Mode when the joystick is returned to neutral
position.
Rationale. The aural and visual alert system is provided to prevent any injurty to humans in tiarea.
Because of the relatively low acceleration and velocity of the robot, five seconds should be adequate to
allow humans to move out of the way. Alerts that begin too long before robot movement may lead to
human delay in moving out of the way. The longer period for the visual alert is provided to allow humans to
complete any critical actions before moving. These times may need to be changed on the basis of
operational experience.

[DP.3] When informed by the TSS, the operator, or the SF, that motion inot legal, MAPS stops all
movement operations and prohibits any further operations until informed that movement is again allowed.
Once movement becomes legal again, MAPS will return to Initialize mode to reset all movement values.
Rationale. Starting up movement in the previously active mode is dangerous as different procedurcould
still be running in the robot processor, casuing the robot state to be different than the operator's assumed
state of the system. This could cause serious system problems, thus a system reset in Initialize mode is
necessary.

[DP.4] The default acceleration and deceleration values are normally used, buacceleration anc
deceleration values can also be changed via the user interface. An emergency deceleration value is used
for an emergency stop when the operator releases the deadman switch.

[DP.5] When commanding movement, translation in the x-y plane is performed firsfollowed by any
required rotation. Either can be skipped if they are not necessary.

[DP.6] A movement is considered complete only whe the robot arrives in the desired work area.
[DP.6.1. In ComputerMode, the work zone is assumed to be the last waypoint on the route.
[DP.6.2. In OperatorMode, the robot is assumed to be in the work zone only whetthe deadman

swtich is released and the joystick returns to the neutral position. A new movement command must be

issued for further movement to occur.

[DP.7] While external position information will be provided to MAPS in world coordinat, MAPS must issue

commands in robot-relative coordinates. World coordinates must be translated to robot-relative
coordinate outputs. MAPS uses a standard package of matrix math routines to do this converison.
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Position Determination
[DP.1] Position determination occurs immediately following system initialization.

[DP.1.1’ In Computer Mode this occurs prior to thebeginning and completion of each route
segment.

[DP.1.2’ In Operator Mode this occurswhen the joystick is returned to the neutral positic.
Rationale. Position determination after a move is used to provide feedback on previotcommands in order
to detect errors in carrying them out. MAPS must also know the current robot position before it can send a
new relative displacement command to the MC. It is unsafe to assume that the robot position is the same
as after the last movement command.

[DP.2] Any time the robot position is determined, a message is sent to the user interfaceindicating the
present location of the robot.

Stabalization

[DP.1] Prior to attempting movement, MAPS turns the drivetrain motors ¢, ensures that the arm is
stowed, disbales the MA, and issues a command to retract the stabilizers.

[DP.2] Once the robot has arrived at the commanded work zone, MAPS commands deployment cthe
stabilizers and turns the motors off.

[DP.3] Once the stabilizers are fully extended, MAPS enables arm movemer.t

[DP.4] In the event stabilizer retraction or deployment fails, MAPS notifies the operator and ttplanner of
the failure.

Rationale. The planner needs to know if stabilizer deployment has failed so it does not send any arm
movement commands. The operator needs to be informed so the failure can be diagnosed and repaired.

Movement Control Mode Selection
At any time, MAPS is in one and only one of the following four modes: Initialization, Computer Mode,
Operator Mode and Halted Mode.

[DP.1] Initialization Mod« MAPS enters initialization mode at powerup and after SF rese.:

[DP.2] Operator Mode MAPS transitions to Operator Mode from Initialization Mode, after thdeadman
switch is released, or upon receipt of a command from the Operator to change to Operator Mode. If a
movment message is received from the TSS while operating in Operator Mode, that message will be
ignored and an error message returned to the TSS.

[DP.3] Computer Mode MAPS changes to Computer Mode only upon receipt of a message tdo so from
the operator. If a joystick move command is received while operating in Computer Mode, that command is
ignored and an error message returned to the operator.

Rationale: If the operator wants to change to Operator Mode while the TSS is generatinmovement
commands, the fastest and best way to do this is to release the deadman switch. An accidental movement
of the joystick should not result in a new Mode or movement command while in Computer Mode.

[DP.3.1. When MAPS receives a message to change to Operator Mode, all current waypoints and
movement messages are discarded. Any subsequent computer-controlled movement messages require a
new movement command from the TSS.

Rationale. The most likely reason for the operator to interrupt Computer Mode operati is that he
or she has detected a problem with the route displayed, such as unsafe conditions along the route. In
addition, the robot position or environment may have changed while in Computer Mode, and previous
movement messages may be obsolete.
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[DP.4] Halted Mode MAPS moves into Halted Mode whenever the system is in a state where

movement is unsafe. This occurs when it detects that the SF is in the HALT state. MAPS transitions to
Initialization Mode from Halted Mode when the SF returns to SAFE state.

Rationale. While the robot is not operational, subsystems or the environment may changstate from that
assumed by MAPS or the operator. After leaving the Halted Mode, transition back to Computer or Operator
mode will require reinitialization of these modes and updating any MB or environment state information
used by MAPS.

Computer Mode

[DP.1] Initializatior Any time the operating mode changes to Computer Mode, before issuing any
movement commands MAPS first selects position mode for the motor control interface, determines the
position of the robot, and generates a status report to the TSS and operator.

[DP.2] Motor Control In Computer Mode, the motors are controlled using position moc. MAPS makes
all requests to the MC using a move-relative command, which is provided with a value fcx and ) or for 0.
Preset acceleration, deceleration, and velocity values are used. The normal stop command is used to allow
for a gradual stop when MAPS is completing a move while the emergency stop command is used for a rapid
deceleration of the interruption of motion is requested from the operator through the deadman switch.

[DP.3] Route Determination The route to the work area as well as the final destination ispecified in a
message from the TSS. A route that contains zero length is logged as an error and a normal stop is
commanded.

[DP.3.1. A "route" consists of a movement to zero or more intermediatdocations, and then a
single movement to a final terminal location.

[DP.3.2. If the desired movement consists of a single route segment, the move iconducted as a
straight line from the current robot location to the desired work zone. If the move consists of more than
one route segment, then the move is conducted as a sequence of straight line moves between the
waypoints.

[DP.3.3] MAPS moves the robot along a straight line from the starting point relative tthe robot,
considered the origin, to a point specified in the move instructions. Given ex distance and a ) distance,

MAPS issues the appropriate commands to cause the robot to move a distance equal to2 +y2. If MAPS is
given a rotation value for 0 degrees, MAPS instructs the robot to rotate 0 degrees relative to its starting
position when the move command is given.

[DP.3.4] MAPS will need to calculate new coordiantes during a move any time thoperator
releases the deadman switch and the robot pauses. Given the values X', Y' and 0' read from the current
position, new values X,Y and 0 are computed by:

new X = Final _X-X'
new_ Y = Final Y-Y
new_0 = Final 0-0'

[DP.3.5] If a move is calulated or commanded that results in a zero or near zero (lesthan 10
centimeters) length, the move is not executed.

Rationale. This requirement is used to prevent commanding a near zero lengt.move and thus
“ittering" around zreo. In addition, the limit of required accuracy of the LS is 10 centimeters.

[DP.4] Movement Contra When operationg in Computer Mode, MAPS acepts movemencommands
from the TSS and issues motor commands to the MC to move the robot.

[DP.4.1° Before starting motion, MAPS notifies the user interface of the direction anroute of a
move and waits for operator permission. It does not begin the move until it detects that the deadman
switch has changed from the released to the depressed position. MAPS then continues along all route
segments as long as the switch remains depressed. If the deadman switch is released, MAPS stops all
movement and reverts to Operator Mode.
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Rationale. Releasing the deadman switch before the movement is complete is likely result from
the operator having information about possible obstacles in the computer-generated path. The operator will
need to take over at this point.

[DP.4.2° For each motion command, MAPS takes a reading ofthe current robot positiol,
calculates the difference between the actual robot location and the desired robot location, converts the
difference into a robot relative move and performs the move. Following completion of the move, MAPS
takes a reading of the robot location.

Rationale. As with any physical motion, there is a very real possibility that the actu.motion does
not exactly match the intended motion. Feedback from the outside environment must be taken into
account to accomodate this potential error and determine if the position achieved is "close enough” to the
fdeal location by using a set of tolerances. The built-in tolerances can be changed during system
Initialization. If the desired location was not achieved, supplemental moves are calculated and
commanded up to the maximum number of attempts allowed.

[DP.4.2.1° An attempt is a series of one or more commandecmoves, each preceeded
and followed by a scanner query and a check if the target has been reached.

[DP.4.2.2. MAPS uses a set of coordinate tolerances forintermediate route locations and
a set of tight coordinate tolerances for the completion of the final route location.

[DP.4.2.2.1 If the robot is moving via intermediate locations, loosetolerance
of 6 inches and 5 degrees is used for the inermediate loations. If after 10 attempts the robot
position is still outside the tolerance limits, MAPS notifies the TSS and the user interface of the error and
stops all motion.

Rationale. Ten attempts should be adequate to reach the desired position. Ten
unsuccessful attempts probably indicates a problem that needs to be handled by the TSS or the operator.

[DP.4.2.2.2' Following the completion of the final route segmentthe current
robot position and orientation are compared against the desired robot location and orientation. If a
difference of more than 2 inches or 1 degree exists, up to 10 supplemental moves are calculated and
attempted. If after 10 supplemental moves the robot position is still outside the tolerance limites, MAPS
notifies the TSS and user interface of the error and stops all motion.

[DP.4.3. The robot continues to move until one of the following events occurs: the robhas
arrived at the desired destination, the deadman switch is released, the SF leaves the SAFE state, or another
error condition is detected.

[DP.5] Status Messages: MAPS sends the following status messages:

When Computer Mode is entered or exited, MAPS generates a status message to the TSS and
user interface.

When MAPS completes a commanded move, the TSS and the user interface are notifie.d

If MAPS fails to complete a commanded move, an error message is returned to the TSS and the
user interface identifying the reason for the failure.

When the final destination has been reached, MAPS notifies theTSS and the user interfac.e

If a movement message is received from the planner when not operating in Computer mode, MAPS
returns an error message to the planner and to the operator.

If a joystick deflection occurs while in computer mode, MAPS informs the operat.r

Operator Mode

[DP.1] Initializatior When the operating mode changes to Operator mode and before issuing any
movement commands, MAPS ensures that the joystick is connected and in the neutral position, selects
velocity mode for the motor control interface, determines the position of the robot, and generates a status
report to the TSS and operator.

[DP.2] Motor Control When Operating in Operator Mode, all move requests are made through a
move-velocity command. A multiplier is used to increase or decrease the velocity in joystick mode. The
values of the speed factor can be set from the interface and changed interactively during MAPS execution.
Stopping motion is achieved by issuing a move-velocity request of zero for X,Y, and 0.
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Rationale. Move velocity commands are more appropriate for joystick control and better match an
operator's mental model of how movement will occur under joystick control. Being closer to what humans
naturally expect will make control and monitoring more effective and efficient. It should also reduce training
requirements, particularly when an emergency or high stress situation occurs.

[DP.3] Movement Control MAPS converts operator deflections of the joystick into movemercommands
to the motors. Translation from world coordinates to robot relative coordinates is performed.

[DP.3.1° MAPS accepts the following values as parameters that can be reset durig operations:

-Maximum velocity The maximum velocity that can be commanded by the joystick in ardirection.
The units used are inches per second for X and Y and radians per second for 0

-X,Y, and 0 threshold:. These thresholds values give the minimum amount of joystick deflection
required before that axis will be considered to have moved from the centered position. The values are
determined during joystick calibration.

Rationale. The joystick will almost never return to the absolute location when releasec The
nature of the mechanics are such that the "zero" position of the joystick is slightly variable. As a result, the
"dead zone" that corresponds to an undefiected joystick must be expanded slightly to allow for this
difference.

-Joystick maximum throw constant: In order to provide a proportional joystick, the amount of
joystick deflection relative to the full-scale deflection must be calculated. These maximum throw constants,
one for each of X,Y, and 0, indicate the number that the joystick interface returns when the joystick if
deflected full scale along the indicated axis.

-Joystick speed factor This value allows the tester or system integrator to select a "high gear" or
"low gear" for the robot during run-time operations. The value is externally visible and can be set through
the interface, but it is not intended to be an operator feature. Allmovement commands are multiplied by
this value prior to being sent to the motor controller.

[DP.3.2] A joystick reading must be scaled into a percentage of the total deflectiopossible. The
ratio of the current reading to the total possible deflection is first calculated. This percentage is then applied
to the maximum possible velocity to yield a scaled velocity between zero and the maximum velocity,
proportional to the reading supplied.

[DP.3.3. All robot mobile base motion ceases when the joystick is returned to thneutral position.
Joystick deflections are ignored if the deadman switch is not depressed.

Information and Error Logging
MAPS records events (including both errors and succesful moves) intthe SL.
The following events are logged:
- A move or command is completed successfully.
- The safety fuse changes to the HALT state.
- The safety fuse changes to the SAFE state.
- MAPS enters Computer Mode.
- MAPS enters Operator MOde.
- A transition in to Computer Mode is interrupted and cancelled.
- A transition in to Operator Mode is interrupted and cancelled.
- MAPS operation is enabled.
- MAPS opertion is disabled.
- MAPS operation is stopped due to the operator releasing the deadman switch during a move.
- MAPS begins a movement along a segment other than the final segment in computer mode.
- MAPS begins movement along the final segment of a move.
- MAPS attempts a retry of the same move.
- The number of attempts tp reach a location exceeds the threshold limit.
- MAPS completes a route successfully.
- A motor control error is detected.
- The joystick is not connected.
- The joystick is deflected away from the neutral position, preventing MAPS from entering Operator
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Mode.
- A motor control failure occurs during joystick operations.
- The initialization of the joystick fails.
- Retraction of the stiff legs fails.
- Deployment of the stiff legs fails.
- MAPS is unable to read the scanner data file during initialization.
- A position is read from the scanner.
- MAPS is unable to read scanner data.

Mobile Base

[DP.1] Tessellator's chassis and actuators are stiff.
Rationale: The Tessellator's high stiffness design ensures therobot's accuracy.

[DP.2] Omnidirectional wheels move the robot smoothly in any direction and over cable covers on tifloor.

[DP.3] The MB is formed by a rigid welded steel frame in order to provide a very stiff base frorwhich to
operate the manipulator. The base supports two enclosures for electronics and waterproofing equipment
as well as an on-board nitrogen tank and a battery cage.

[DP.4] Automated screw jacks can be commanded to descend from the base and contacthe floor. Once

the base reaches a particular work area, the stiff legs are deployed from the base to descend and contact
the floor in order to provide a rigid base from which to work. Before the MB moves, the stiff legs must be
retracted.

Rationale. Although the roller wheels on the mobile base are not soft and have a high durometirating,

they are compliant enough to affect accuracies and stability of the system at full MA reach. The screw jacks
are needed to lock out this compliance and provide a stable, non-compliant platform. In addition, in order
to reduce the amount of MB movement and to perform the required task in work zones that are not free of
obstacles, the MA must sometimes reach out beyond the perimeter of the base and additional stability is
required under these conditions.

[DP.5] The exposed parts of the MB are constructed of materials that are intrinsically sa.’e

[DP.6] Electrical components are sealed in aluminum enclosures and purged with gaseous nitrogenHeat
pipes cool the electrical compartments and the injection tool plate without circulating chemical-laden air
through the electronic parts.

Rationale: DMES is flammable as well as toxic. E lectrical components need to be isolated from the
chemical.

Location Subsystem

[DP.1] The LS provides the location of the robot irworld coordinates (x and ) with respect to a given
position in the orbiter facitlity. To determine position with the required accuracy, the LS uses a laser
scanner and information from the VS.

[DP.2] A rotating eye laser scanner reads bar-code targets that are precisely located in the facility.
Triangulation from three or more of the many bar code targets gives robot position within a few centimeters.

[DP.2.1’ The laser scanner only takes position readings while the MB is immobi.e

Rationale. The scanner triangulations calculations assume a static base and cannccorrect the
readings to take into account the MB motion. If the positioning system changes, then this design principle
may no longer hold.

[DP.2.2° The laser scanner must be initialized by the operator before first use with bacodes and
scanner codes. Any changes to these locations after the initial setting will be made by the operator.
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[DP.3] Position is determined using three frames of reference and corresponding transformbetween
them. First, the orbiter is parked within some position error that is known and measured as a hormal
procedure. This position and position error data provides the ability to compute an orbiter-facility
transform. Second, the transform between the robot and the facility is given by the laser positioning
system. Third, the loop is closed through the vision system, which precisely identifies the position of a
specific tile whose position on the orbiter is already known. Together, this information provides the ability
to determine a precise robot-orbiter transform.

Rationale. Triangulation from three or moreof the many targets can give robot position within few
centimeters, which is precise enough to find a specific tile. The orbiter tile positions are known very
accurately and the tile position can be registered with the vision system used for inspection.

Motor Controller

[DP.1] Mecanum wheels use a novel roller design to obtain three-degree-of-freedom motion in thplane,
pure rolling contact for accurate postioning, and non-singular motions for small and precise final motions.
Rationale: The size constraints of the vehicle coupled with the close quarter navigation needed for
operating in the OPF requires a locomotion system of high maneuvarability.

[DP.2] The drivetrains for locomotion are in the diameter of the wheel hub and consist of a brushle<DC
motor, resolver for positioning and communication, a brake, a cycloidal reducer providing 225:1 gear
reduation with exceptional stiffness, and a locking hub that couples the output of the reducer to the wheel.
The locking hub allows the operator to disengage the wheels directly from the drivetrain completely.
Rationale. In an emergency, the ability to disengage the wheels will allow towing or pushing t machine
out of the way.

[DP.3] The drive system is able to move the robot over 10cm high steps and up tp 20% grades.

[DP.4] The drivetrain suspension is a simple rocker-arm design much like those on heavconstruction
equipment. This design is very simple and acceptable for the top robot speed of 30cm/sec. The MB
supports two enclosures for electronics and waterproofing equipment as well as an on board nitrogen tank
and battery cage.

[DP.5] When commanded to do so, the MC provides power to the motor, which drivethe robot wheels.

The MC accepts two kinds of commands. In position or relative displacement mode, the kinematics on the
body relative (x,y,0) desired position are computed and the robot is driven in the desired direction based on
previously set acceleration and velocity values. The second mode is velocity mode, where the kinematics on
the body relative (x,y,0) velocity are computed and the appropriate wheel velocities are set.

[DP.6] All position (x and y) and rotation (0) information must be provided to the MC robot-relative
coordinates.

[DP.7] The operator can set the normal and emergency acceleration and deceleration values cpreset
defaults can be used. During a normal stop, the normal deceleration values are used. During an
emergency stop, the robot will stop faster, using the emergency deceleration value.

[DP.8] The MC must be reset before any actions are performed and following any error.It takes
approximately 3 seconds for the motion controller and the motion enabling hardware to properly configure.

Manipulator Arm

[DP.1] Because the shuttle belly is not flat, Tessellator customizes its upward movement to eacile: Two
vertical beams on either side of the robot raise the MA, which holds the injection tools and camera. A
smaller lifting device raises the arm the rest of the way.

[DP.2] A physical interlock is used that does not allow the MA to be deployed while ttstiff legs are
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retracted.

Rationale. The physical interlock provides backup to the mobility and positioning softwaconstraints.
Software may not work correctly while physical interlocks can and do fail on occasfon. Neither alone
provide adequate assurance.

[DP.3] Once the base reaches the work area and the stiff legs are deployed, the MA unfolcitself from its
stowed configuration. All motions of the MA are designed to be manually operated should the need arise.
Rationale. In the course of periodic maintenance and servicing, it is expected that this feature wprove
usefu.

[DP.4] The MA provides a number of motions, some redundant to reach the tiles. The firscalled

Major-Z, raises the arm vertically. A second vertical motion is then used to lift the later sections of the MA.
Atop this motion there is a 360 degree rotating motion.

Rationale. The two motions are used because a single telescoping device could not provide tf combination
of stroke length, short unextended height, payload, and accuracy as needk d.

[DP.5] The MA is counterweighted and preloaded to keep the inspection and injectictools steady. All MA
motions have absolute encoding to give position at all times, even in the event of power cycling or computer
failure.

Digital Camera

[DP.1] At least one digital camera is mounted in a position where it can provide the operator with
information about the state of the area around the Tessellator robot. A second camera system is located on
the MB and can transmit an image of the area in a 120 degree arc in front of the robot.

Rationale. The digital camera eliminates the need to make assumptions about whether the robus within

the visual field of the operator at all times or not. The camera providing an image from above provides the
operator with a view of the obstacles in the work area all around the MB. The camera mounted on the MB
itself looking forward provides the realtive position of the image with the direction the operator should move
the joystick and thus can reduce erroneous joystick commands.

[DP.2] The DC images are sent directly to the operator interface.

Safety Fuse

[DP.1] The SF is located between the computer servo outputs and the motor amplifiers. monitors a
large number of analog and digital sensor values, and functions as a smart fuse.

[DP.2] In the event that any parameter goes out of nominal operating rani, the SF removes power from
the amplifiers and brakes, effectively locking the actuatuors.

[DP.3] If the SF goes into the HALT state, the operator can query the SF for the causof the shutdown
and take corrective actions.

[DP.4] The SF can be reset by any command from the operator.

Proximity Sensing

[DP.1] Proximity sensing is used around the robot base and on sections cthe manipulator arm.
[DP.2] If the PSS senses anything too close to the robot, it sends thiinformation directly to the SF.

Rationale. The SF is alerted instead of the operator because the fuse can stop the robcfaster than the
operator can detect the receipt of a message from the PSS and then release the deadman switch.
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Aural and Visual Aleris
[DP.1] The visual alert system has colored flashing lights visible from alocations at a specified distance
around the MB.

[DP.2] The aural alert system provides a sound that can be heard from anywhere in the vicinity of the MB.

Verification and Validation

This section includes requirements on and information about the validation of the design principles included
in this level of the Intent Specification.

Level 3: Blackbox Behavior
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System Blackbox Behavior - MAPS

Mobility and Positioning System (MAPS) Model
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