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Abstract

Computational fluid dynamics (CFD) is now widely used throughout the fluid dy-
namics community and yields accurate models for problems of interest. However,
due to its high computational cost, CFD is limited for some applications. Therefore,
model reduction has been used to derive low-order models that replicate CFD behav-
ior over a restricted range of inputs, and various frameworks have been developed.
Unfortunately, the majority of those methods are limited to linear cases and do not
properly handle reduction of nonlinear systems.

In order to overcome restrictions of weak nonlinearity and the costly representa-
tion of the system’s nonlinearity found in other nonlinear reduction approaches, a
trajectory piecewise-linear (TPWL) scheme is developed for a CFD model of the two-
dimensional Euler equations. The approach uses a weighted combination of linearized
models to represent the nonlinear CFD system. Using a set of training trajectories
obtained via a simulation of the nonlinear CFD model, algorithms are presented for
linearization point selection and weighting of the models. Using the same training tra-
jectories to provide a snapshot ensemble, the proper orthogonal decomposition (POD)
is used to create a reduced-space basis, onto which the TPWL model is projected.
This projection yields an efficient reduced-order model of the nonlinear system, which
does not require the evaluation of any full-order system residuals, while capturing a
large portion of the nonlinear space.

The method is applied to the case of flow through an actively controlled supersonic
diffuser. Convergence of the TPWL approach is presented for both full-order and
reduced-order cases. The TPWL approach and the POD combine naturally to form an
efficient reduction procedure and the methodology is found to yield accurate results,
including cases with significant shock motion. Reduced-order PWL models are shown
to be three orders of magnitude more efficient than the nonlinear CFD for simulation
of a representative test case.

Thesis Supervisor: Karen E. Willcox
Title: Assistant Professor
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Chapter 1

Introduction

1.1 Motivation

Computational fluid dynamics (CFD) is now widely used throughout the fluid dy-

namics community. It produces accurate models for many problems of interest in

aerodynamic design and analysis. However, in order to ensure accuracy, CFD re-

quires that the flow domain is finely discretized in critical regions. Therefore, the

cost of obtaining solutions rapidly becomes prohibitive for nonlinear unsteady prob-

lems, even for today’s computers.

Applying flow linearization is a first step toward resolving this issue [20]. If the

unsteady disturbances are small and the unsteady solution can be considered to be a

small perturbation about a steady-state flow, then the nonlinear CFD models can be

linearized. Since the computing cost of the nonlinear CFD is mostly driven by solution

of the nonlinear equations, which typically involves a large matrix factorization at

every time step, a linearized model has greatly reduced computational time due to

the fact that only one matrix factorization is required.

While a substantial gain can be obtained from using linearization, limitations

remain in applications for which model size and cost are issues. Since the use of

CFD has broadened outside aerodynamics into multidisciplinary applications such as

aeroelastic analysis [53], even linearized models are computationally too expensive. In

such an application, both fluid dynamics and structural dynamics equations are solved

in an iterative fashion. If both use high-fidelity dynamical systems, the computational

cost rapidly becomes expensive.

Another application where computational cost is an issue is control design. Active

flow control has been used for various applications in order to enhance stability of

unsteady flow, such as for stabilization of compressor surge in jet engines [15, 39].

Small disturbances in the incoming flow can have large repercussions on the system

stability. Active flow control can be used efficiently in design in order to prevent such

phenomena. The development of an efficient controller requires that the flow dynamics
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are accurately captured. CFD offers the degree of accuracy required, but at a high

computational cost. While a substantial gain can be obtained using linearization, the

number of states in the system is still too large for control design and for online control

implementation. Optimal control design involves solving the Riccati equations with

a dynamical system of dimension n. Since the cost of computing these solutions is

O(n3), it is necessary that the equations contain a low number of states.

Model order reduction techniques provide a way to systematically determine low-

order models that capture the relevant dynamics of the CFD model while being

computationally very efficient. The basic idea is to project the high-fidelity CFD

equations onto a set of basis functions which span the flow solution space efficiently.

While model reduction is now a well established approach for large linear systems,

addressing the problems that arise for consideration of nonlinearity remains a chal-

lenging task. Applying model order reduction directly on a linearized model neglects

nonlinear effects, which restricts the range of validity to small perturbations about a

steady state. Again, an application such as control design may require a range of per-

turbations outside this small domain of validity of linearized models. Therefore, both

model order reduction and the capacity to handle large deviation from steady-state

conditions are often required in addition to the need for computational efficiency.

The research presented here aims to achieve accurate, efficient, low-order models

valid beyond the linearization restriction by combining two methods previously de-

veloped. The POD is used for model reduction, while a TPWL approach is used to

capture nonlinear behavior efficiently. Before describing the approach in detail, the

next section presents the background of relevant research in the area of model order

reduction for both linear and nonlinear systems, as well as control design.

1.2 Background

1.2.1 Reduced-order linear models

A range of model order reduction algorithms has been developed for large-scale linear

time-invariant (LTI) systems. The common approach is to project the governing

equations onto a reduced-space basis.

One approach to obtain a projection basis is by computing the eigenmodes of the

system [21]. However, solving such an eigen-problem is typically an issue in itself,

since it requires computing the eigenmodes of a system with ten of thousands of

degrees of freedom even in two dimensions.

Another group of model order reduction algorithms uses Krylov subspace methods

to construct the projection basis. Using an orthonormal basis of the Krylov subspace,

a reduced-order model is constructed which matches a certain number of moments

of the transfer function of the original system. Thus, the transfer function of the

16



reduced-order system approximates well the original transfer function around a spec-

ified frequency, or collection of frequency points [18]. Krylov subspace algorithms are

suitable for reduction of large-scale systems because of their low computation cost.

A number of Krylov-based model order reduction algorithms have been developed,

including techniques based on the Lanczos method [14, 16] and on the Arnoldi algo-

rithm, such as for RLC circuits [48], compressor aeroelastic models [57] or active flow

control [33].

Another possibility to obtain a basis is the proper orthogonal decomposition

(POD) [7, 50]. This method, first introduced by Lumley [36] in the context of turbu-

lence, is widely used for reduction in CFD applications. It computes a set of empirical

eigenfunctions using flow solutions, which are more commonly called snapshots [50].

These snapshots can either be obtained from time domain simulations [45], or derived

in the frequency domain by exploiting the linearity of the governing equations [19, 24].

Snapshots of the dual CFD system can also be included in the POD process, yielding

an approximate balanced truncation [56]. A reduced-order model is then obtained by

projecting the governing equations onto the reduced space spanned by the POD basis

vectors. Both eigenmodes and POD methods for reduced-order modeling applications

are reviewed by Dowell et al. [11] and a more generic overview of linear methods can

be found in Antoulas et al. [2].

A newly developed technique, Fourier model reduction (FMR), resolves some of

the issues found in other model order reduction methods of LTI systems [55]. While

both POD and Krylov subspace algorithms do not guarantee quality of the reduced-

order model, i.e. the resulting model may be unstable and no error bound is available,

the formulation of the FMR algorithm preserves stability properties of the original

system and provides a rigorous error bound on the reduced-order model output. Also,

FMR makes efficient use of the system input-output behavior during reduction, while

the other methods only account for the system inputs. FMR, which can be efficiently

combined with balanced truncation, provides accurate, stable and reduced-order mod-

els for linear CFD applications if the transfer function of the original system is smooth.

However, all the methods just described are applicable to linear problems, which

means assuming small disturbances about a given linearization point. When a sub-

stantial increase in nonlinearity is observed, an extension to those methods is required.

1.2.2 Reduced-order nonlinear models

Although most of the methods have been developed for LTI systems, a number of

the techniques just described, or some of their variations, have been extended to the

nonlinear case with varying success.

One approach to generate reduced-order models for nonlinear systems is a poly-

nomial (Taylor) expansion of a system’s nonlinearity, and subsequent application of

Krylov projection methods [9, 37, 42]. Similar solutions can be found with bilin-
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earization of the nonlinearity [42], as well as a Volterra series expansion followed by

a suitable projection [28, 29, 47]. However, the main drawback of those methods is

that they are limited to applications with ’small’ input disturbances, or more generally

called weakly nonlinear systems, and that the quadratic and higher order expansion

terms are very expensive to compute.

POD has also been applied to nonlinear systems [6, 22, 30, 58]; however, in these

applications, even if the problem of weak nonlinearity is solved, the issue of an ef-

ficient representation of the nonlinearity in the reduced-order model is inadequately

addressed. While the resulting nonlinear models do have a reduced number of states,

they still require flux evaluations of the original high-order CFD model. Thus, at

each iteration, one needs to reconstruct the full state, compute the full-order flux and

then project back the solution. Since most of the computation cost is driven by the

flux evaluations, the resulting system is hardly more efficient than the original one

when an implicit timestepping method is used [40], if not even worse. This fact was

shown in [40], where using a reduced-order model provided small savings for a RC

circuit application, while the high complexity of a second example, a one dimensional

reaction diffusion problem, demonstrated a higher cost in doing so.

In order to overcome both issues of weak nonlinearity and the costly represen-

tation of the system’s nonlinearity, a trajectory piecewise-linear (TPWL) scheme is

developed in Rewienski [43, 44]. The basic idea is to represent a nonlinear system

as a weighted combination of linear models. The linear models are obtained by lin-

earizing the nonlinear system at various points along a training trajectory. By using

a weighted combination of various linear models, a broader range of the nonlinear

space is spanned compared with using a single model. In addition, the TPWL system

allows an efficient representation of the reduced-order model. This technique, com-

bined with Arnoldi reduced order models, has been successfully applied to nonlinear

analogue circuits and micromachined devices [43, 44]. Also for this application, a

truncated balanced realization (TBR) algorithm has been combined with the TPWL

model order reduction approach by Vasilyev [51, 52]. TBR, demonstrated to yield

superior accuracy when compared to Krylov-based methods, has guaranteed error

bounds and a stability preservation property [49]. The resulting TPWL reduced-

order models were shown to be accurate and demonstrated good performance for

strongly nonlinear circuits and micro-electro-mechanical systems.

The various problems related to the use of reduced-order nonlinear systems are

summarized within Figures 1-1, 1-2, 1-3 and 1-4.

Figure 1-1 presents a depiction of the use of LTI models inside a nonlinear space.

While LTI models are economical in computational cost, their limited range of validity

can be critical for applications where nonlinearity is an issue. Figure 1-2 presents the

technique consisting of a polynomial expansion of the nonlinearity and clearly shows

the problem of weak nonlinearity described before. While a broader range of the

nonlinear space is spanned, the model is still limited to perturbations around the
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Figure 1-1: Linearization points inside a 2D nonlinear full-order state space (left)
and reduced-order state space (right). Circles denote suitable regions for use of each
linearization point.

Figure 1-2: Polynomial expansions around linearization points inside a 2D nonlinear
full-order state space (left) and reduced-order state space (right). Suitable regions
for use of each methodologies are depicted.

initial linearization point.

The second type of reduced-order nonlinear systems described previously, consist-

ing of direct application of a POD basis to the nonlinear system, is depicted in Figure

1-3. Here, two characteristics are emphasized. First, it can be seen that the use of

the POD basis reduces the range of validity of the resulting reduced-order model.

Also, in order to simulate the reduced-order model, information from the full-order

nonlinear space is required. Thus, the resulting reduced-order model, despite span-

ning a smaller range of validity than the original system, is still inefficient for time

simulation.

Finally, Figure 1-4 presents the PWL framework and its relationship to current

methodologies. First, both reduced-order and full-order systems are able to capture

a wide range of applications inside the nonlinear space through the use of multiple

linearization points. Secondly, the resulting reduced-order model is efficient because it

can carries out online simulations independently of the full-order systems. Therefore,
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Figure 1-3: Region of validity of a nonlinear reduced-order model using direct pro-
jection of the full-order system (right). The arrow depicts the full-order nonlinear
information (left) required by the reduced-order model in order to be computed.

Figure 1-4: Collection of various linearization points inside a 2D full-order nonlin-
ear state space (left) and reduced-order state space (right). Circles denote suitable
regions for use of each linearization. In both cases, a piecewise-linear (PWL) set of
linearization points is combined to widen the range of validity.

the PWL framework addresses the problem of weak nonlinearity while yielding an

efficient representation of the nonlinearity.

This work considers the TPWL approach for a jet engine flow control problem.

The TPWL method will be used in conjunction with a single POD basis, and will

focus on overcoming weak nonlinearity restrictions while finding a cost-efficient rep-

resentation of the nonlinearity in the reduced system. The steps toward the creation

of a single linearized model are summarized in Figure 1-5. Starting from the full-

order model (1), one could either take path (A) by projecting the system onto a

reduced-order basis (2) and then applying linearization to obtain a reduced-order

LTI model (4), or path (B) where linearization is performed first, followed by projec-

tion. Through the combination of multiple reduced-order LTI models (4), a TPWL

scheme will be built for control design. The next section describes the background of

control design and its close relationship with model order reduction.
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Figure 1-5: Advantages and disadvantages of various representations of the nonlinear
space.

1.2.3 Control design

The optimal feedback control of a linear system is a subject which has been exten-

sively studied [1]. With a quadratic functional cost in both state and control, and

the assumption of full state knowledge, the optimal control is fully described by a

linear state feedback law. The control gains can then be obtained by solving a dif-

ferential/algebraic Riccati equation. The success of this linear-quadratic regulator

problem lies in the development of robust and efficient algorithms for solving the

Riccati equation.

When the system is described by nonlinear dynamics, the optimal state feed-

back law is described in terms of the solution of the Hamilton-Jacobi-Bellman (HJB)

equation [35]. This equation provides the solution to the optimal control problem for

generic nonlinear systems; however, in most cases, such as active flow control, it is

impossible to solve it analytically. This issue led to a motivation in the development

of new methods to approximately obtain the solution to the HJB equation.

Some of those methodologies made use of the systems described in the previous

section. For instance, Garrard et al. [17] made use of power series in order to extend

the linear system for nonlinear applications. Similar solutions using bilinearization of

the nonlinearity have been obtained in [8].

Other techniques have also been developed specifically for control purpose and can

be classified into two different branches. The first approach makes use of successive

approximation, where an iterative process is used to find a sequence of approxima-

tions approaching the solution of the HJB. This is achieved by solving a sequence of
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generalized Hamilton-Jacobi-Bellman equations (GHJB), and is discussed in [34, 46].

Other discussions of this technique have been performed for more concrete applica-

tions, and use a Galerkin procedure to find numerical solution to the GHJB equation

[3, 4]. The second technique, the state-dependent Riccati equation (SDRE), is an

extension of the Riccati equation to nonlinear systems [10, 54]. Here, the coefficients

in the SDRE are functions of the state instead of being constant-valued as in the

linear case. However, this approach makes the equation much more difficult to solve

and the resulting control only suboptimal. A comparison between some of those

methodologies is performed in [5].

The development of various reduction techniques provided another promising ap-

proach to perform suboptimal feedback design on reduced-order models. The typical

approach, called “reduce-then-design”, consists of reducing the model and then de-

signing a controller using standard designs such as linear-quadratic-gaussian (LQG),

minmax, or H∞ [25, 31]. More specifically in fluid dynamics, the “reduce-then-design”

approach has been studied for active flow control of linear cases in [33], using Krylov-

based models, as well as for nonlinear cases in [13, 32], using POD, and [23], using

Lagrange interpolation. Also, an alternative technique, called “design-then-reduce”,

performs the controller design prior to the reduction process. A benefit to this philos-

ophy is that robust low order systems and insight into sensor placement and design

can be obtained [25, 26, 27].

In summary, the methodologies currently used for control design of nonlinear

system are far from established. In all cases, the resulting control is either weakly

nonlinear and expensive to compute, or suboptimal. The TPWL is an attempt to

address those issues, by combining the reduction offered by POD with the efficiency

and accuracy of multiple linear systems .
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1.3 Outline

This thesis is arranged as follows:

Chapter 2 first introduces the inlet problem in which active flow control is required

and thus, model order reduction. The nonlinear CFD model is described, followed

by a presentation of the POD reduction framework. The system of equations is then

linearized for implementation in the TPWL framework.

The TPWL concept is fully explained in Chapter 3. Two different methods for

linearization points generation are included, followed by the weighting procedure de-

scription. Then, using the POD reduction framework previously presented, the PWL

models are projected onto a reduced-order state space.

Chapter 4 presents results of the application of the TPWL scheme for various

sets of full-order linear models. Both methods for linearization points selection are

compared. Conclusions on each are drawn, and the most promising method is selected

with an appropriate set of linear models for reduction.

Chapter 5 presents the application of the POD to the selected PWL system. First,

an analysis of the number of states required to match the full system is performed, for

both time and frequency domain snapshot ensembles. Results of the application of

the system to multiple disturbances is then presented. In addition, an analysis of the

weighting procedure is performed, followed by a computational performance analysis

of all nonlinear, full-order and reduced-order methods.

Finally, Chapter 6 presents conclusions and directions for future work.

23



24



Chapter 2

Computational Model

The first section of this chapter presents the computational framework for a flow

control design inside a supersonic jet inlet. An unsteady formulation that results in

a CFD framework to simulate supersonic flows in an engine inlet is described. The

nonlinear set of equations obtained will be presented and described in the second

section, in which an overview of the CFD model is presented; more details can be

found in Drela [12] and Lassaux [33].

Due to computational expense, the nonlinear CFD model cannot be used directly

for control design. Thus, one needs to replicate the behavior of the nonlinear set of

equations with a reduced-order model. In this work, the POD method will be used.

The theory of POD will be reviewed, and an algorithm to obtain the projection basis

will be given. The projection of the nonlinear equations onto the POD basis will

be presented. Finally, a framework to derive linearized models and their associated

reduced-order models will be described.

2.1 Supersonic Inlet problem

The computational model is based on the case of flow through a supersonic diffuser.

Figure 2-1 shows the contours of Mach number at steady-state conditions inside the

fixed geometry of a supersonic diffuser that operates at a freestream Mach number

of 2.2.

In steady-state operation, a shock forms downstream of the throat. In practice,

the incoming supersonic flow is subject to perturbations, such as atmospheric density

disturbances. Such perturbations in the flow may cause the shock to move upstream

of the throat, and eventually to be expelled from the diffuser. This phenomenon,

known as inlet unstart, causes huge losses in engine performance and thus is highly

undesirable. The common practice to avoid such a phenomenon is to design the inlet

in such a way that the shock forms far downstream of the throat. Hence, even if the

geometry is fixed, small perturbations will not unstart the inlet. However, a shock
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Figure 2-1: Contours of Mach number for steady flow through supersonic diffuser.
Steady-state inflow Mach number is 2.2.

further downstream means a substantial increase in shock strength. Since the size

of the shock is directly proportional to the pressure losses inside the inlet, a design

tradeoff is how to keep a shock close to the throat while avoiding unstart situations.

In [38], an inlet geometry was designed in which the pressure losses were relatively

low, i.e. in nominal operation, the shock is located nearby the throat. In order to

prevent inlet unstart, an active control mechanism of the shock was designed. Using

throat bleeds (mass flow dumping both upstream of the throat and between the throat

and the normal shock), the position of the shock can be maintained away from the

throat. The bleed flow must be determined in real time using a controller.

Figure 2-2 presents a schematic of the actuation mechanism. Incoming flow with

possible disturbances enters the inlet and is sensed using pressure sensors. The con-

troller adjusts the bleed accordingly in order to control the position of the shock and

to prevent it from moving upstream. In simulations, it is difficult to automatically

determine the shock location. The average Mach number at the diffuser throat pro-

vides an appropriate surrogate that can be easily computed. In practice, upstream

pressure sensing is used, and the controller adjusts its output, the bleed, accordingly

in order to control the position of the shock and to prevent it from moving upstream.

Figure 2-2: Supersonic diffuser active flow control problem setup.

In order to obtain a fully operational controller, one needs to include a number of

inputs, such as acoustic waves, air bleed, temperature variation, etc. For simplifica-

tion purposes, this thesis will focus only on a set inputs, u(t), described by density
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perturbations. The output of the system, y(t), will monitor the position of the shock

by computing the value of the average Mach number at the throat.

The next section describes the nonlinear set of equations obtained from fluid

dynamics relations used by the computational models in order to model the flow

inside the diffuser.

2.2 Nonlinear CFD Model

In order to track accurately the position of the shock with a full-order nonlinear

model, the solution through the entire inlet must be known at every time during

the simulation. The full nonlinear solution in the inlet can be obtained using a

CFD model. Here, the problem is assumed to be two-dimensional, compressible and

inviscid, thus the solution is governed by the Euler equations. A formulation based

on a finite volume method developed on the computational domain showed in Figure

2-3 will be described. The code used was designed by Drela [12] and extended to

unsteady cases by Lassaux [33]. First, a steady solver generates a structured grid,

whose streamwise gridlines are unknowns of the numerical scheme and are constrained

so that they approximate the flow streamlines. By knowledge of the gridline direction

and the streamtube mass flow (constant), the flow velocity at each grid point is

obtained. Figure 2-3 presents the streamwise gridlines and streamtubes.

Figure 2-3: Computational domain for finite-volume formulation [33].

Lassaux [33] added the unsteady components required for time dependent analysis.

First, the steady solver is used to determine the steady-state solution and steady-state

grid. Then, the grid is frozen and during the unsteady calculations, the flow velocity

is specified via its projections on both the streamwise gridline, q, and the normal-to-

gridline direction, q⊥.

The discrete Euler equations are derived from the integral form of the unsteady,

two-dimensional equations, which are the usual statements of mass, momentum, and
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energy:

∂

∂t

∫∫

ρdV +

∮

dm = 0

∂

∂t

∫∫

ρ ~QdV +

∮

~Qdm +

∮

pd ~A = 0

∂

∂t

∫∫

ρEdV +

∮

Hdm = 0 (2.1)

where the flow variables are the density, ρ, the total velocity vector, ~Q, the pressure,

p, the energy, E, and the total enthalpy, H. The quantity dm = ρ ~Q · d ~A is the mass

flux element across the conservation cell boundary, d ~A = dA · n̂, where dA is a surface

element and n̂ is a unit vector pointing outward from the control volume. The discrete

Euler equations approximate the integral form of the continuous Euler equations on

small control volumes or control cells. The flow solver uses as state variables q, q⊥,

ρ, and H, where q and q⊥ are the streamwise and normal components of the velocity
~Q, respectively. Hence, the flow velocity is fully specified with the knowledge of the

q and q⊥ variables. The location of each of those variables on the grid domain can be

seen on Figure 2-4.

Figure 2-4: Geometric grid (solid lines), conservation cell (bold dashed lines), and
variable locations [33].

Notice that in contrast with other state variables, q⊥ is located at the vertices

of the cell faces, rather that at their midpoints. Such formulation is convenient for

imposing the wall boundary condition on the system [33]. The cell faces ~a and ~b are

defined by the geometric grid nodes x and y. ~N and ~S, the mean quasi-normal vector

and mean streamwise vector, respectively, are obtained from the cell faces ~a and ~b.

They are used in order to obtain qa and qa
⊥, the velocities decomposition relative

to the conservation cell coordinates. An auxiliary pressure π is also defined at the
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midpoints of the~b faces to distinguish it from the usual pressure p on the quasi-normal

faces ~a. The finite volume formulation is used to solve for the flow quantities at the

midpoints of each of these vectors.

Using a structured grid for spatial discretization, the discrete Euler equations can

be represented as a nonlinear dynamical system of the form:

ẋ(t) = f(x(t), u(t))

y(t) = h(x(t)) (2.2)

where x(t) ∈ Rn is a generalized state vector containing the n unknown flow quantities

q, q⊥, ρ and H, at each of the L points in the computational grid:

x(t)T = [q1(t), q⊥1(t), ρ1(t), H1(t), q2(t), q⊥2(t), ρ2(t), H2(t),

· · · , qL(t), q⊥L(t), ρL(t), HL(t)]

f is a nonlinear vector-valued function, u(t) ∈ Rl is the input to the system, and

y(t) ∈ Rk contains the system outputs, which are defined by the nonlinear function

h. The number of inputs, l, and number of outputs, k, are usually small compared

with the number of states, n.

However, since such a nonlinear system is computationally expensive to solve,

it does not allow controller design. The next two sections will focus on finding a

projection basis in order to convert this system into one of much smaller order, while

preserving its relevant input-output behavior.

2.3 Proper Orthogonal Decomposition

The POD is a popular approach which creates a basis by extracting the most dominant

modes of a given series of snapshots. Those snapshots can be obtained either in the

time or frequency domain. In the former, a time simulation of the system for a

characteristic unsteady flow is performed and instantaneous solutions (snapshots) are

obtained at selected times. The latter obtains the snapshots from solutions of a

frequency domain formulation of the governing equations at selected frequencies. In

both cases, the snapshots obtained are combined to produce an orthogonal set of basis

vectors which represents the solution x in some optimal way that will be described

below. The criterion for choosing the basis vectors was first posed in variational form

in [50]. The basis vector V is chosen in order to maximize the following cost [7]:

max
Φ

〈|(x, Φ)|2〉
‖Φ‖2

=
〈|(x, V )|2〉

‖V ‖2
(2.3)
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where (x, Φ) denotes the scalar product of the basis vector with the field x(i)(z), so

that:

‖V ‖2 = (V, V ) (2.4)

Also, x(i)(z) is the instantaneous flow field at a time ti in the geometrical field z, and

〈〉 represents a time-averaging operation. We can rewrite Equation (2.3) so that we

obtain a constrained optimization problem of the form

max
‖Φ‖2=1

〈|(x, Φ)|2〉 (2.5)

from which we can form the Lagrangian function

`(Φ, λ) = 〈|(x, Φ)|2〉 − λ[‖Φ‖2 − 1] (2.6)

where λ is the Lagrange multiplier for the constraint on the norm of the basis vector.

Differentiating Equation (2.6) and setting its result to be zero gives that the maximum

is obtained with the function V , which is an eigenfunction of the kernel K defined by

K(z, z′) =
1

N

N
∑

i=1

x(i)(z)x(i)(z′) (2.7)

where the number of snapshots, N , should be sufficiently large. The eigenvectors of

K are of the form

V =
N

∑

i=1

Ψix
(i) (2.8)

where Ψi are coefficients yet to be determined. Assuming ergodicity, the interchange-

ability of the time average with the ensemble average, the following may be obtained:

CΨ = λΨ (2.9)

In which λ is the Lagrange multiplier, and R is the correlation matrix defined by the

inner product of the snapshot quantities

Rij =
1

N

(

x(i), x(j)
)

(2.10)

where
(

x(i), x(j)
)

denotes the inner product between x(i) and x(j).

Equation (2.9) has a complete set of orthogonal eigenvectors with corresponding

eigenvalues

Ψ = [Ψ1, Ψ2, . . . , ΨN ]

λ1 ≥ λ2 ≥ . . . ≥ λN

The following steps provides a guide for the construction of the POD basis V

30



using the method of snapshots in time domain.

1. Obtain N snapshots x(i) from a CFD calculation, where each snapshot corre-

sponds to a flow solution at a particular instant in time. The time step between

each snapshots is usually equally spaced in time, but this is not necessary. Also,

this time step should be small enough to capture the important dynamics of

the system.

2. Form the correlation matrix R by computing the inner product between every

pair of snapshots with Equation (2.10).

3. Compute the eigenvalues λi and eigenvectors Ψ(i) of R.

4. The magnitude of the jth eigenvalue, λj, describes the relative importance of

the jth POD basis vector, Vj, which is computed by

Vj =

N
∑

i=1

Ψ
(j)
i x(i) (2.11)

where Ψ
(j)
i denotes the ith component of the jth eigenvector of R.

5. The orthogonal POD modes V can then be normalized such that

(Vi, Vj) = δij

where δij is the Kronecker delta defined as follows

δij =

{

1 if i = j,

0 if i 6= j.

In order to obtain a much smaller number of states in the reduced-order model,

m � N , the basis V can be truncated using a heuristic criterion. This method is

based on the fact that a sufficiently large amount of the “energy” contained in the

snapshot collection can be captured by a reduced number of states. The relative

energy ej captured by each mode j is given by the POD eigenvalues as

ej =
λj

∑N
i=1 λi

(2.12)

The value of m will be chosen such that
∑m

j=1 ej > E, where E, the total energy

included in the basis, is usually set to be 99% to 99.99% of the total energy of the

system.
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2.4 Reduced-order models

A reduced-order model can be obtained by considering a projection of the state vector

x using the basis obtained from POD:

x(t) = V x̂(t) (2.13)

where x̂(t) ∈ Rm is the reduced-order state vector, containing the time-dependent

amplitudes of m basis vectors, contained in the columns of the matrix V . The basis

vectors must be selected appropriately, so that the state x can be accurately repre-

sented in the reduced space.

Applying the projection (2.13) to the nonlinear system (2.2), the resulting reduced-

order model is of the form

˙̂x(t) = V T f(V x̂(t), u(t))

ŷ(t) = h(V x̂(t)) (2.14)

In order to preserve stability of the fully discrete system, simulation of system (2.14)

requires implicit time stepping. Using a second-order accurate backward Euler time

discretization scheme, Equation (2.14) simplifies to:

˙̂x(t) ≈ 3x̂n − 4x̂n−1 + x̂n−2

2∆t
= V T f(V x̂n, un) (2.15)

where ∆t corresponds to the time stepping used, and the superscript n, to the time

index of the current solution. Therefore, one needs to solve the nonlinear system of

equations:

F (x̂n) = 3x̂n − 4x̂n−1 + x̂n−2 − 2∆tV T f(V x̂n, un) = 0 (2.16)

for x̂n, which is typically done using Newton iteration. Hence, the Jacobian should

be evaluated at every Newton iteration inside a given time step to obtain the flux

term f(·). Thus, simulation of system (2.14) is no more efficient than the original

system (2.2), since most of the computation time is driven by the flux term evaluation

[40]. To obtain an adequate reduced-order model for simulations, a more efficient

representation of the nonlinearity in the reduced space is required, which is the subject

of the next chapter. However, applying linearization is a first step toward resolving

this issue, which is described in the next section.
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2.5 Linearized Models

Efficient linearized models can be extracted from the system (2.2) by using a poly-

nomial expansion of the nonlinearity, or more specifically a Taylor expansion about

some state (xi, ui), which, following Phillips [41], expands f as:

f(x, u) = f(xi, ui) + Ai(x − xi) + Bi(u − ui)

+
1

2
Wi(x − xi) ⊗ (x − xi) + . . . (2.17)

where ⊗ is the Kronecker product, and Ai and Wi are, respectively, the Jacobian

and the Hessian of f(·) evaluated at the state (xi, ui). The matrix Bi = ∂f
∂u

is also

evaluated at (xi, ui). Dropping the quadratic and higher terms of (2.17), the nonlinear

system (2.2) can be linearized about any given state to yield a state-space model of

the form:

ẋ(t) = Aix(t) + Biu(t) + [f(xi, ui) − Aixi(t) − Biui]

y(t) = Cix(t) (2.18)

where Ci = ∂h
∂x

is also evaluated at (xi, ui).

The vector of unknowns x(t) can be written as

x(t) = xi + x′
i(t) (2.19)

where xi, fixed in time, is the value of state vector x at the linearization point i,

and x′
i(t) contains the perturbation of the n unknown flow quantities about that

linearization point xi.

The linearized equation (2.18) can then be expressed as

ẋi
′(t) = Aix

′
i(t) + B1iu(t) + B2i

y(t) = Cix
′
i(t) + C0i (2.20)

where B2i = f(xi, ui) − Biui and C0i = Cixi.

The linearized system (2.20) is efficient for time computations, since a second-

order accurate backward Euler time discretization scheme can be implemented as

follows:

ẋi
′(t) ≈ 3x′n

i − 4x′n−1
i + x′n−2

i

2∆t
= Aix

′n
i + B1iu

n + B2i (2.21)

and can be solved:

x′n
i = [3I − 2∆tAi]

−1
{

2∆t[B1iu
n + B2i] + 4x′n−1

i − x′n−2
i

}

(2.22)
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where I is the identity matrix. The advantage of Equation (2.22) is that only one ma-

trix factorization is required and can be carried out before the simulation. However,

due to its large number of states, the system (2.20) still remains too large for appli-

cations such as controller design. A reduced-order linearized model can be obtained

by applying the projection (2.13) to the system (2.20) yielding

d

dt
x̂′

i(t) = Âix̂
′
i(t) + B̂1iu(t) + B̂2i

ŷi(t) = Ĉix̂
′
i(t) + C0i (2.23)

where the reduced-order matrices are given by

Âi = V T AiV

B̂1i = V T B1i

B̂2i = V T B2i

Ĉi = CiV (2.24)

Since the terms B2i and B̂2i are constant in time for a given linearization point,

they can be considered as acting upon second “inputs” to the systems, which are

constant in time and equal to one. Note that if (2.20) and (2.23) were linearized

about steady state, i.e. x0 and x̂0, the value of B2i and B̂2i would be zero.

2.6 Summary

This chapter first described a high-fidelity set of nonlinear equations able to model a

complex flow structure over a wide range of inputs. However, such a level of accuracy

is only obtained with expensive computation time. Thus, the next section presented

the POD methodology, which applied to the nonlinear set of equations, provided a

reduced-order model. Again, even though the number of states was reduced, this

model was demonstrated incapable of being solved with higher efficiency than the

original model. The last section linearized the reduced-order model and provided

an efficient and low-order model, but restricted to small perturbations from steady

state. Thus, the resulting reduced-order linearized model does not accurately capture

nonlinear behavior.

The next chapter will therefore focus on finding a suitable way to capture nonlinear

behavior within the reduction framework just described. To do so, a set of linearized

models will be combined, and a PWL model will be created.
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Chapter 3

Trajectory Piecewise-Linear

Scheme

In the second chapter, we defined a flow control problem in which model order re-

duction is needed to design a controller in order to achieve stability of the engine.

The nonlinear CFD has been linearized and then reduced using POD. However, as

the nonlinearity in the system increases, such a model becomes inadequate.

This chapter presents a methodology to approximate nonlinear behavior using

a set of linearized models described previously. The different steps comprising this

methodology are summarized in Figure 3-1. First, using a relevant range of inputs,

the nonlinear CFD is simulated. Using the set of snapshots obtained, both POD basis

computation and choice of linearization points are performed. The set of linearized

models can then be projected to create a reduced-order PWL model. The system

obtained can be simulated according to a specified weighting procedure.

Figure 3-1: Steps in building and simulating a TPWL model.
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The first section of this chapter will described the TPWL methodology. The two

remaining sections will present the two pieces of Figure 3-1 not yet described, i.e. the

model selection, using two different algorithms, and the weighting procedure. Both

model selection and model weighting presented are applicable to either the full-order

PWL model or reduced-order PWL model.

3.1 Methodology

In Rewienski [43], an efficient, approximate method to represent nonlinear circuit

systems is presented and tested. It is proposed that by using a weighted combination

of multiple linear models, nonlinear behavior can be modeled. The linear models are

obtained via linearization of the nonlinear system at different solutions in time. An

approximation to the nonlinear system can then be obtained by using a weighted

combination of the closest linear models to the current solution in time.

Figure 3-2: Collection of various linearization points inside a 2D nonlinear state space.
Circles denote suitable region for use of each linearization point. Figure adapted from
Rewienski [43].

Figure 3-2 presents a two-dimensional conceptual view of a series of linearized

models. The range of validity of each of the corresponding linearized models is denoted

by the circles. Creating such a set of linearized models could become much more

expensive than solving the nonlinear equations themselves when either the number

of dimensions or the size of the models increases. A more efficient way to create this

set of models would be by using a “training trajectory”, as shown on Figure 3-3.

Plotted on Figure 3-3 are four linearization points, x1, x2, x3 and x4, along a “train-

ing trajectory”, which is obtained through a simulation of the nonlinear system. In
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Figure 3-3: Collection of linearization points x1, x2, x3 and x4 in a 2D state space.
Circles denote suitable region for use of each linearization point. Trajectory A is
called the training trajectory. Figure based on Rewienski [43].

order to capture the most relevant dynamics of the system, the range of inputs simu-

lated for the training trajectory should reflect dynamics of interest for the application

at hand. For instance, in Figure 3-3, trajectories such as B and C will be well repre-

sented by the set of linear models, while trajectory D may demonstrate poor results,

since it lies beyond the range of validity. The linearization points can be chosen using

one of the two approaches defined in the next section.

3.2 Model selection

When traveling along the training trajectory, the selection of new linearization points

can be executed in several ways. However, the method used should be able to define

an appropriate range of validity for each of the linearized models. The next two

subsections address this problem via two different methods. The first focuses on the

relative distance between the current state x(t) and a given linearization point xi,

while the second tracks the residual due to the truncation error in the linearization

process.

3.2.1 State deviation criterion

The first approach to model selection considers N snapshots, taken from the training

trajectory. The algorithm compares each pair of snapshots by computing the two-

norm of the distance between them. When this difference is larger than a specified
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criterion, δmin, a new linearization point is selected. The value of δmin sets the distance

between subsequent linearization points; therefore, lowering its value implies increas-

ing the number of models in the system. This approach is described by the pseudo-

algorithm below, which takes as inputs δmin and the matrix X = {x(1), x(2), ..., x(N)}
containing N CFD snapshots, and returns the vector linP t, which contains the col-

umn index in X of the selected linearization points.

Algorithm 1
(Choice of linearization points, first method)
Function linPt = linearizationPoint1(X, δmin)

N = size(X, 2)

linP t = [0]

for i = 1 : N

k = size(linP t)

δ = ∞
for j = 1 : k

δ′ = ‖x(i)−x(linPt(j))‖

‖x(linPt(j))‖

δ = min[δ, δ′]

end

if (δ > δmin)

linP t = [linP t i]

end

end

3.2.2 Nonlinearity deviation criterion

The second approach considers the same N snapshots. This time, the algorithm

compares each pair of snapshots by computing the residual due to the truncation in

the nonlinearity expansion, g(x, u). The truncation used in Equation (2.18) implies

the following residual about point xi:

gi(x, u) = f(x, u) − f(xi, ui) − Ai(x − xi) − Bi(u − ui) (3.1)

One way to monitor the evolution of the nonlinearity is to compare the deviation

of gi(x, u) of each snapshot with respect to steady-state conditions, (x0, u0). Thus,
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Equation (3.1) becomes:

g0(x, u) = f(x, u) − f(x0, u0) − A0(x − x0) − B0(u − u0) (3.2)

The value of g0 at a linearization point i will be denoted by gi
0. When one of the 2-

norms between a given g0 and all residuals of linearization points previously saved, gi
0,

becomes larger than a specified criterion, ∆min, a new linearization point is selected.

The value of ∆min sets the distance between subsequent linearization points, but this

time by monitoring change in the residual due to truncation. The pseudo-algorithm

below describes the method, and is using as new inputs the steady state Jacobian A0,

the steady state input matrix B0, the matrix U = {u(1), u(2), ..., u(N)} containing the

N inputs to the system, and the matrix F = {f (1), f (2), ..., f (N)} containing the N

CFD fluxes corresponding to the snapshots in X. Again, it returns the vector linP t,

which contains the column index in X of the selected linearization points.

Algorithm 2
(Choice of linearization points, second method)
Function linPt = linearizationPoint2(X, U, ∆min, A0, B0, F )

N = size(X, 2)

linP t = [0]

for i = 1 : N

g
(i)
0 = f (i) − f (0) − A0(x

(i) − x(0)) − B0(u
(i) − u(0))

k = size(linP t)

∆ = ∞
for j = 1 : k

∆′ = ‖g(i)
0 − g

(linP t(j))
0 ‖

∆ = min[∆, ∆′]

end

if (∆ > ∆min)

linP t = [linP t i]

end

end

A comparison between the efficiency in capturing the relevant domain of validity

of a linearization point for both methods is performed in the next chapter. The next

section describes a procedure to assemble a set of linearization points into a PWL

model.
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3.3 PWL model weighting

With an appropriate set of linearization points created, a TPWL scheme can be

assembled in order to model nonlinearity. Consider a weighted combination of s

linearized models of the form:

s−1
∑

i=0

ω̃i(x)
{

ẋ′
i(t) = Aix

′
i(t) + B1iu(t) + B2i

}

s−1
∑

i=0

ω̃i(x)
{

yi(t) = Cix
′
i(t) + C0i

}

(3.3)

where ω̃i(x) are weights depending on the value of the perturbation about the lin-

earization point xi. It is assumed that for all x,
∑s−1

i=0 ω̃i(x) = 1. The weights ω̃i(x)

are then obtained using the distance ‖x(t) − xi‖ between the linearization point xi

and the current solution x(t). The procedure below, following Rewienski [43], ensures

that the “dominant” model i is that corresponding to the linearization point xi that

is the closest to the current state of the system. The inputs are the current state x

and the matrix Xs = {x1, x2, ..., xs} containing the s linearization points.

Algorithm 3
(Weights computation)
Function ω̃ = weighting(x, Xs)

1. For i = 1, ..., s compute:
di = ‖x(t) − xi‖2.

2. [m, k] = min{di : i = 1, ..., s}.

3. a) For i = 1, ..., s compute:
ω̃i = (exp(di)/m)−25.
or

b) For i = 1, ..., s, ω̃i = 0
ω̃k = 1.

4. Normalize ω̃i.

First, Algorithm 3 obtains the difference di between the current state x(t) and the

linearization point xi. The minimum distance is given by m and corresponds to the

model with index k. Then, the weights can be computed in two different ways. The

first method shows a weighted sum strongly concentrated on the closest model, while

the second uses only the closest model at the time. As will be presented later, each

formulation yields slightly different results. The last step in the algorithm ensures

that the summation of the s weights is unity.
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3.4 Reduced-order PWL model weighting

With the PWL methodology valid for any set of linearized models, it can be applied

directly to the linear reduced-order models obtained previously. Using the TPWL

representation of the nonlinear system, an efficient reduced-order model can now be

obtained using the projection (2.13) applied to (3.3), yielding a reduced-order TPWL

model as follows.

s−1
∑

i=0

ω̃i(x̂)
{ d

dt
x̂′

i(t) = Âix̂
′
i(t) + B̂1iu(t) + B̂2i

}

s−1
∑

i=0

ω̃i(x̂)
{

ŷi(t) = Ĉix̂
′
0i(t) + C0i

}

(3.4)

where the reduced-order matrices are defined as before in (2.24). As in the linear

case, this representation is efficient, since all reduced-order matrices in (3.4) can be

precomputed. Note also that the weights ω̃i are computed as a function of the reduced-

order state x̂. Thus, Algorithm 3 now has as inputs x̂ and X̂s, the reduced-order state

and reduced-order linearization points matrix respectively. The TPWL approach fits

well within the context of POD-based model reduction, since a simulation of the

nonlinear system can provide both the snapshots for computation of the POD basis

vectors and also a set of instantaneous flow states from which to select the linearization

points.

3.5 TPWL summary

The final TPWL reduction approach can be summarized following Figure 3-1. First,

simulate the nonlinear CFD model for a range of forcing functions and conditions that

are representative of the application at hand. Second, from the resulting snapshot

collection, calculate a set of POD basis vectors. Third, from the same snapshot

collection, select a set of linearization points using either Algorithm 1 or Algorithm

2. Fourth, using the dominant POD basis vectors, project each linearized model to

obtain a set of reduced-order linear state-space systems. Finally, combine these low-

order state-space systems using the TPWL representation and a set of weights from

Algorithm 3. More implementation details can be found in Appendix A.

This approach will now be demonstrated for the case of flow through the supersonic

diffuser shown in Figure 2-2. First, each methodology for the linearization points

selection will be discussed in the next chapter, with corresponding results for the

full-order TPWL models. Next, in Chapter 5, reduced-order TPWL models will

be constructed, and the results compared with full nonlinear CFD outputs will be

presented.
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Chapter 4

Full-order TPWL results

In order to obtain an accurate set of reduced-order TPWL models, the ability of the

full-order set of models to replicate the nonlinear CFD first needs to be tested. The

first section of this chapter presents the set of incoming density disturbances used

for test cases in this thesis. Then, the next two sections present results of PWL

models using both linearization point selection strategies developed in the previous

chapter. A recommendation for the most appropriate methodology for the selection

of linearization points is made, and a set of models is selected for reduction in the

last section.

4.1 Test cases

A number of test cases will be presented to demonstrate the TPWL methodology.

In all cases, the input considered is an incoming density disturbance and the output

of interest is the average Mach number at the throat of the diffuser. The six differ-

ent temporal distributions considered for the input are presented in Figure 4-1, and

vary temporally either with a Gaussian pulse or a sinusoidal distribution of various

frequencies and amplitudes. The Gaussian distribution is described by

ρ′(t) = −Λρ0e
−α(t−tpeak/f0)2 (4.1)

while the sinusoidal distribution is described by

ρ′(t) = −Λρ0 sin ω0t (4.2)

where the nominal frequency f0 equals a0/h, the inlet speed of sound divided by the

height of the inlet, ω0 = 2πf/f0, and the non-dimensional time, tpeak, sets the time at

which the perturbation peaks. The parameter α sets the sharpness of the perturbation

(i.e. its frequency content), Λ corresponds to the amplitude of the perturbation, and

ρ0 is the nominal value of freestream density. In specifying a time step for unsteady
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Figure 4-1: Incoming density disturbances. Top: Gaussian distributions. Bottom:
sinusoidal distributions.

Case Λ tpeak α

1 1% 20 0.03f 2
0

2 2% 20 0.03f 2
0

3 3% 20 0.03f 2
0

Table 4.1: Data used for the Gaussian distribution.

simulations, one period is defined by T0 = 1/f0. The parameter values corresponding

to the six different input functions are presented in Tables 4.1 and 4.2.

Nonlinear CFD results are obtained by simulation of the full system using those

disturbances, and snapshots at each time step are saved. The next two sections will

describe two different methodologies for the selection of linearization points, follow-

ing the two algorithms described in the previous chapter. In each section, once the

linearization points have been determined, the validity of the TPWL representation

must be tested. In order to do so, the outputs of the system, the average Mach number

at the throat, for both the nonlinear CFD and the full-order TPWL approximation

given by Equation (3.3) are compared. Note that all tests in this chapter are per-

formed using option [b] in step 3 of Algorithm 3, i.e. only the single closest linearized

Case Λ ω0

4 1.5% 0.65
5 2% 0.35
6 3% 0.65

Table 4.2: Data used for the sinusoidal distribution.
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Case number
δmin 1 2 3 6

∞ 1 1 1 1
0.030 1 3 4 7
0.020 2 4 8 16
0.015 3 6 16 31
0.012 4 11 23 41
0.010 5 16 28 50
0.008 6 20 34 70
0.006 12 29 48 100
0.005 15 36 56 118
0.004 20 42 69 147

Table 4.3: Number of models given by different values of δmin for cases 1, 2, 3 and 6.

model at every time step is used. The second option of the weighting procedure will

be discussed in the next chapter.

4.2 Linearization points selection using δmin (state

deviation criterion)

Using Algorithm 1 for different values of δmin and the snapshots previously obtained,

various sets of models are found. Table 4.3 shows the number of models as a function

of the choice of δmin for four of the cases, where Algorithm 1 was applied to each

case separately. For each case, it can be seen by how much the number of models

grows as the distance between linearization points is decreased. By comparing the

number of models for a given δmin, one gains some insight to the importance of the

state fluctuations during a simulation. For example, a Gaussian distribution of 3%

can be seen to introduce a higher degree of perturbation into the system than one of

1%, requiring substantially more models for a given δmin.

The results using different sets of models from Table 4.3 are shown on Figures 4-2

and 4-3, where the variation of the average Mach number at the throat due to the

disturbance of case 3 is plotted against time. Here, both the training trajectory and

the disturbance were a Gaussian distribution of 3% amplitude.

First, it can be seen on Figure 4-2 that only one linearized model cannot capture

the nonlinear behavior of the shock motion. Also, initially, as the value of δmin is

decreased, the match between the PWL model and the nonlinear CFD improves. With

28 models (δmin = 0.01), the PWL model provides a reasonable accuracy compared

with the nonlinear CFD. However, inconsistent behavior arises when the number of

models is increased beyond 28. Figure 4-3 presents the effect of lowering the value

of δmin below 0.01. First, when the number of models is slightly increased, some
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Figure 4-2: Nonlinear response plotted against various TPWL model combinations
for a Gaussian incoming disturbance of 3% amplitude. Training trajectory obtained
from the same simulation.

oscillations appear around the time when the shock moves back downstream of the

throat, i.e. at time t/T0 ≈ 50. Then, as δmin is decreased further, the system fails

completely to capture the relevant behavior of the CFD. This behavior is caused by

an inadequacy in the method of choosing the linearized models. Recall Equation (2.2)

ẋ(t) = f(x(t), u(t))

y(t) = h(x(t))

As can be seen from Figure 4-3, for t/T0 < 30, the input u(t) in Equation (2.2)

perturbs the system and has the dominant effect over ẋ(t). However, for t/T0 > 30,

the input u(t) becomes zero and Equation (2.2) is only driven by the state correction

itself (ẋ(t) = f(x(t), 0)). However, Figure 4-3 shows that large variations in the

output are observed even when u(t) = 0, in particular as the shock moves back

downstream of the throat at t/T0 ≈ 50. Thus, any error in the state induced for

t/T0 < 30, will be propagated into ẋ, back into x and so forth, until the system returns

to steady state. For the system under consideration, the output y, the average Mach

number at the throat, is also very sensitive to errors in the state. Thus, it it essential

to accurately capture the passage of the shock in critical regions of interest, such as

at t/T0 ≈ 25, in order to avoid an error propagating through the system. It can be

inferred from Figure 4-3 that the state deviation criterion does not accurately capture

the relevant behavior of the shock. Even as the number of models is increased, an

error in state is observed at t/T0 = 30. This error is large enough to cause poor

prediction of the output for t/T0 > 50. This prediction does not improve as δmin
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Figure 4-3: Top: Gaussian incoming density disturbance with 3% amplitude. Bottom:
Nonlinear response plotted against various TPWL model combinations for a Gaussian
incoming disturbance of 3% amplitude. Training trajectory obtained from the same
simulation.

is decreased, since the state deviation criterion does not properly resolve the critical

region.

Figures 4-4 and 4-5 show TPWL results for all of the Gaussian amplitudes, using

values of δmin equal to 0.01 and 0.005, respectively. For each case, the training

trajectory corresponds to the desired incoming disturbance. In the first figure, a

linear combination of 5, 16 and 28 models have been used for the cases corresponding

respectively to Gaussian distributions of amplitude of 1%, 2% and 3%. For the second

graph, a linear combination of 15, 36 and 56 models have been used.

Comparing these figures, one gains insight to the value of δmin required in order

to obtain a good match between the PWL model and the nonlinear CFD. As Figure

4-2 shows, a minimum number of models is needed to capture a sufficiently high

degree of nonlinearity. However, as Figures 4-3, 4-4 and 4-5 demonstrate, taking

too many models may cause undesirable results. In particular, oscillations may be

observed or behavior may be inaccurately captured in regions where an error in state

is propagated. This is observed in the middle plot of Figure 4-4 at a time t/T0 ≈ 35

as well as on lower plot of Figure 4-5 at a time t/T0 ≈ 50. Both of those errors were

the result of an inappropriate resolution of the nonlinearity induced by the shock

motion around t/T0 ≈ 25. While the output at that time was accurately captured, a

small error was created in the state and was propagated through the system, which

explains the later fluctuations in the results.

In summary, the state deviation criterion can provide basic guidance on the choice

of the linearization points. However, as it has been demonstrated, the method is

unreliable and an “optimal” number of models must be found for each case. Thus,
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training trajectory for each case was the same as the simulation. Linearized models
were selected using δmin = 0.01. Hence, 5, 16 and 28 models have been used.
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this procedure would not be useful in the context of finding a set of models that can

be used for a wide range of disturbances. A better approach is to use a criterion

based on the linearization residual, as is demonstrated in the next section.

4.3 Linearization points selection using ∆min (resid-

ual deviation criterion)

As demonstrated in the previous section, the quality of the TPWL models using the

state deviation criterion is strongly sensitive to the set of models that are selected.

The residual deviation criterion was applied to the same snapshot ensemble, resulting

in a different set of linearization points. In order to compare the effectiveness of

each method, the position of the chosen linearization points is examined for both

algorithms. Figure 4-6 presents the location of the selected linearization points in

time using each algorithm for cases 1, 2 and 3.

The usefulness of the second method can be seen rapidly; more models are con-

centrated in the region where the nonlinearity is high, i.e. when the shock motion

is important (t/T0 ≈ 25 and t/T0 ≈ 50). Conversely, the first method concentrates

models in regions were the perturbation is negligible (t/T0 ≈ 22 and t/T0 ≈ 40). Since

the state deviation criterion is not concentrating enough models when the shock mo-

tion is important, an error is induced in the solution at this point (t/T0 ≈ 25) during

the simulation. The position in time when the shock moves back downstream of the

throat (t/T0 ≈ 50) is very sensitive to that error, as demonstrated in the last section.

Therefore, an algorithm which concentrates the models where the nonlinearity peaks

is more appropriate for constructing an accurate TPWL model.

Recall that the choice of linearization points for the residual deviation criterion

is based on the quantity g0(x, u), which tracks the residual due to the truncation in

the expansion of the nonlinearity about steady-state conditions. Figure 4-7 shows

the value of g0(x, u) at four different points in time during a simulation of case 3. By

definition, g0(x0, u0), the residual at steady-state conditions, is zero. Also at steady-

state conditions, the components of the state related to the shock have indices in the

range 8000-9000. During the simulation, the shock motion induces nonlinear changes

in the state. The new indices where the nonlinearity of the shock motion occurs can

be tracked by the value of g0(x0, u0). As it can be seen on Figure 4-7, nonlinear

residuals clearly appear along the path of the shock. Thus, the value of g0(x0, u0) is

a good indicator of the nonlinear effect due to the shock motion.

In addition, this indicator can provide information about the time step required

for the training simulation. For instance, if for a given value of ∆min it was found that

new linearization points were selected at every time step, a finer time step should be

used. Thus, it can be seen as a quantitative guidance in the process of generating a

sufficient number of linearization points.
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Figure 4-7: Plots on the left show the values of the components of g0(x, u) at various
times during a simulation of case 3. The plots on the right show the corresponding
instant in the simulation, denoted by a circle.
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∆min # of Models

∞ 1
1.0 13
0.8 21
0.6 34
0.5 41
0.4 53
0.3 76
0.2 115
0.1 254

Table 4.4: Number of models given by different values of ∆min applied to the complete
snapshot collection.

Using this residual deviation criterion to select linearization points, simulation of

the system for case 3 has been performed and good agreement with the nonlinear

CFD has been obtained. In particular, unsatisfactory behavior as the number of

linearization points is increased is no longer observed. The next section focuses on

those results, but by using a combination of all the training trajectories instead of

taking them independently.

4.4 Full-order TPWL model

In the context of finding a reduced-order model that is valid over a range of flow

conditions, the different input cases would not be considered separately. Rather, the

snapshots from each would be combined to derive a TPWL system that captures

all training trajectories. To achieve this, all 1440 snapshots obtained from the three

different training trajectories of 1%, 2% and 3% Gaussian disturbances were combined

to form one large data set. Linearization points were then selected from the complete

set using Algorithm 2 for various values of ∆min. Table 4.4 shows the total number

of models for a range of ∆min values.

The results using different sets of models from Table 4.4 are shown on Figure 4-8,

where the average Mach number at the throat is plotted against time. Here, the

incoming density disturbance following a Gaussian of 3% amplitude was used, and

the training trajectories were composed of cases 1, 2 and 3.

Recall that only one linearized model cannot capture the nonlinear behavior of

the shock motion. As the value of ∆min is decreased, the match improves with an

increasing number of models. With 254 models, the TPWL system provides a very

accurate approximation to the nonlinear CFD model for this case.

Those simulations used 12 time steps per period, i.e. a total of 960 steps for

the complete simulation. It is important to note that with a coarse time step, high
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Figure 4-8: Nonlinear response plotted against various TPWL model combinations
for a Gaussian incoming disturbance of 3% amplitude. Training trajectories obtained
from the cases 1, 2 and 3. Model selection using the ∆min criterion.

errors are induced in the shock portion (t/T0 ≈ 25) and the same problem previously

observed with the state deviation criterion appears. The convergence for the time

step procedure can be tracked on Figure 4-9.

From Figure 4-8, it can be seen that using 254 models yields the most accurate

results; however, in order to balance an acceptable level of accuracy with computa-

tional efficiency, 115 models will be used for further calculations. Figure 4-10 presents

the simulation of those 115 models applied to the sinusoidal inputs of cases 4, 5 and

6. Note that these cases were not considered explicitly as part of the training trajec-

tory set; however, they would be expected to fall within the range of validity of the

existing ensemble. Very good agreement between the full nonlinear CFD and the set

of combined models can be seen for cases 4 and 5. For the larger amplitude of case

6, some discrepancy with the CFD is observed. This case is particularly challenging,

since the inputs are oscillating at the limit of the range of validity of the models.

Also, the nonlinear CFD model itself was close to instability in this case, since the

amplitude of the shock oscillation was gradually increasing in subsequent periods.

Nevertheless the TPWL approach shows a dramatic improvement over using a single

linearized system and can capture important shock motion with reasonable accuracy.

Using this set of 115 models obtained with the residual deviation criterion, the

next section will focus on the creation of appropriate PWL reduced-order models.

Also, the weighting procedure using a combination of multiple models, which was too

costly to study here, will be examined.
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Figure 4-9: Increase in accuracy with time step refinement. Nonlinear response plot-
ted against a TPWL model combination of 254 models (∆min = 0.1), for a Gaussian
incoming disturbance of 3% amplitude.
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Figure 4-10: Full-order TPWL simulation for sinusoidal inputs. 115 models have been
used, corresponding to a ∆min = 0.2. From top: Case 4, case 5, case 6.
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Chapter 5

Reduced-order TPWL results

In the last chapter, a TPWL model was obtained by considering a range of training

trajectories and a linearization point selection criterion based on the linearization

residual. A model was obtained that was able to replicate the behavior of the non-

linear CFD for a range of inputs characterized by the training trajectories. The

present chapter considers the same cluster of models on which model order reduction

is performed.

The first section presents the different parameters to consider in order to obtain

an accurate reduced-order TPWL model. In the second section, the set of models

from the previous chapter is projected onto a reduced-order state space using only a

small number of states. As for the full-order system, this cluster is tested for various

incoming disturbances. The third section introduces the weighting procedure using

a combination of multiple models. Results are shown and compared between each of

the two weighting methods. Finally, the last section discusses the performance of the

TPWL reduced-order models and compares with that of the nonlinear and full-order

TPWL methods.

5.1 Reduction analysis

This section first describes the creation of the snapshot ensembles for both time and

frequency-domain POD bases. Then, a range of results is presented which demon-

strates the accuracy improvement gained by increasing the number of states in the

reduced system. This is achieved through the comparison of the transfer functions of

both full-order and reduced-order systems.

The advantage of generating the snapshots in the time domain in conjunction with

the TPWL framework is that both can be executed efficiently at the same time. It is

important to note that, as for the training trajectory used for linearization points se-

lection, the snapshot selection should span all operating conditions of interest. Thus,

the snapshots can be obtained efficiently from the same training trajectory used to
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Energy (%) # Time basis vectors # Frequency basis vectors

99.0000 9 11
99.9000 18 30
99.9900 33 55
99.9990 61 80
99.9999 110 99

Table 5.1: Percentage of total energy captured by various number of basis vectors
included in the basis.

create the PWL model.

Using this approach, the time domain snapshot ensemble has been generated

from the same three training trajectories used in the previous chapter, i.e. the three

Gaussian input pulses given in Table 4.1. For each trajectory, 480 snapshots were

collected corresponding to the solution of the nonlinear CFD at every time step (6 time

steps per period), yielding a total of 1440 snapshots for the time domain basis. The

solution at every time step was saved; however, one could have selected snapshots

differently, in order to focus more on a specific behavior of the flow. POD basis

vectors were then calculated. The relative energies ej associated to the first 120 POD

eigenvalues are plotted in Figure 5-1. Following Equation (2.12), the number of basis

vectors required in order to capture a given level of the total energy can be seen in

Table 5.1.
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Figure 5-1: First 120 POD eigenvalues for both a cluster of 1440 snapshots in time
domain, and 2415 snapshots in frequency domain, given as relative energy of the total
of each ensemble.

While the time domain basis can be obtained efficiently from the same training

trajectory of the PWL model, it could arise that relevant information at particular
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frequencies is not captured accurately. Collecting snapshots in the frequency domain

can resolve this issue. While obtaining the basis in the time domain requires snapshots

from the nonlinear CFD simulation, the frequency domain methodology requires an

extra step. It consists of extracting the frequency snapshots of the various linearized

systems inside the PWL model cluster. In general, this option will require a much

larger cost to execute, but could provide advantages over the time domain basis in

some applications. It could also be used in cases where simulation of the nonlinear

CFD model is prohibitive. For example, for turbomachinery applications, solution

in the frequency domain allows spatial periodicity of the system to be exploited and

thus provides a significant computational advantage.

The construction of the frequency domain basis first requires the sampling of an

appropriate range of frequencies in each of the linearized systems of the PWL model.

One way of choosing an appropriate frequency range is by looking at the sharpness of

the disturbance, thus the significant frequencies present. The input takes the form:

ρ(t) = e−α(t−t0)2 (5.1)

In order to obtain the frequency content, a Fourier transform is performed on Equation

(5.1):

ρ(ω) =
1

2
√

πα
eiωt0e

−ω2

4α (5.2)

Figure 5-2 shows that only frequencies ranging from 0.0 to 0.13 are relevant for the

assumed range of incoming disturbance. Hence, we will want to match this entire

range for all of the transfer functions of the PWL model. Transfer functions of both
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Figure 5-2: Frequency content of the input.
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inputs of each of the 115 models previously selected were used for the snapshots

ensemble. Ten frequencies for the first input between f/f0 = [0.0 - 0.20] were used,

in addition to the zero frequency of the second input, which is constant in time and

equal to one. Therefore, the resulting ensemble contained all the relevant frequencies

ranging from 0.0 and 0.13. Using both the real and imaginary part of each solution,

a total of 2415 frequency-domain snapshots were generated. Figure 5-1 also shows

the relative energies ej associated to the first 120 POD eigenvalues for this set of

snapshots. Again, the number of basis vectors required in order to capture a given

level of the total energy is presented in Table 5.1.

Using the fact that both time domain and frequency domain eigenvalues are de-

caying exponentially, a selection of the most dominant modes, corresponding to the

largest eigenvalues, will be sufficient for the projection basis. However, a substantial

amount of modes will still be required because of the high complexity of the flow

problem. This can be observed on Figure 5-3, where the contours of perturbation

Mach number of the six first modes of the time domain POD basis are plotted. It

can be seen that five out of the six dominant basis modes are strongly driven by

the normal shock motion. The remaining mode, the fourth one, captures the oblique

shock. Although not plotted, the next twelve dominant modes also capture the nor-

mal shock motion. The main result of this phenomenon is that most of the basis

energy is dominated by large perturbations in a few flow variables due to nonlineari-

ties, with a resulting decrease in accuracy for the perturbations of smaller amplitude.

Since all the different levels of this multi-scale problem can have similar importance,

the quality of the resulting reduced-order PWL model can be badly impacted if not

enough states are included inside the basis. In such a case, the resolution of the small

perturbations would not be captured with sufficient accuracy. This could lead to poor

results, such as those observed previously on Figures 4-5 and 4-9, where small errors

in the state prediction translated into large errors in subsequent outputs. The main

drawback of this phenomenon is that a POD basis is often limited in its number of

states by a stability issue, i.e. a large POD basis often yields unstable reduced-order

models.

Using both the time domain and the frequency domain basis, the PWL model

is projected into reduced-order PWL models of various sizes. Figures 5-4 and 5-5

present the transfer function from incoming density disturbance to average throat

Mach number for model number 57 out of the 115 models. They present the com-

parison between the full-order model and various number of states included in the

reduced-order model for both the time domain and the frequency domain basis.
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the time domain POD basis.
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Figure 5-4: Transfer function from incoming density disturbance to average throat
Mach number for model number 57 out of 115 (∆min = 0.2). Comparison between full-
order linear model versus various sizes of reduced-order models using a time domain
basis.
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Figure 5-5: Transfer function from incoming density disturbance to average throat
Mach number for model number 57 out of 115 (∆min = 0.2). Comparison between
full-order linear model versus various sizes of reduced-order models using a frequency
domain basis.
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Both bases show very good agreement for the relevant range of frequencies (f/f0

= [0.0 - 0.13]) when they are composed of at least 110 states. The advantage of using

the frequency-domain snapshots is that it allows matching of the transfer function

over a range of frequencies to be controlled more easily. Note that for the frequency

domain basis, the entire range of frequency plotted, f/f0 = [0.0 - 0.20], was included

in the basis. However, the deviations at higher frequencies in Figure 5-4 demonstrate

the danger of applying the reduced models outside their range of validity for the time

domain basis and emphasizes the importance of selecting the training trajectories

appropriately. The relatively large number of states required in the reduced-order

model reflects the complexity of the flow dynamics in this application.

The formulation (3.4) contains a second input term, B2, for which the dynamics

must also be accurately captured in the reduced-order model. Due to the form of this

term (i.e. there is no explicit input u2), only the match at zero frequency is relevant.

At zero frequency, the transfer function of the second input is given by:

GB2 = CA−1B2 (5.3)

While the reduced-order transfer function will be denoted by:

ĜB2 = ĈÂ−1B̂2 (5.4)

The error associated to the second input can then be expressed as:

ε =
ĜB2 − GB2

GB2

(5.5)

Figure 5-6 shows the value of ε as a function of the number of states in the reduced-

order model. Note that this is the same basis used to create the results shown in

Figures 5-4 and 5-5. As before, using 110 reduced states yields an acceptable level of

accuracy.
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5.2 Simulation results

Using a ∆min of 0.2 and the corresponding 115 linearization points, a set of reduced-

order models is created by projection of each linearized model onto the reduced space

spanned by the first 110 POD basis vectors of both time-domain and frequency-

domain bases. Since a sufficient number of POD basis vectors is used to define the

reduced space, accurate reduced-order models can be obtained.

Using this set of 115 reduced models with the system defined by (3.4), the TPWL

scheme is tested. Results are presented for the weighting procedure using only the

closest linearized model at every time step (option [b] in step 3 of Algorithm 3).

Figures 5-7 and 5-8 present the simulation results of this final system for various

incoming density disturbances.
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Figure 5-7: Simulation using 115 reduced-order PWL models composed of 110 states
each. From top: Gaussian distribution of 1%, 1.5%, 2%, 2.5%, and 3% amplitude.

Figure 5-7 plots the average Mach number at the throat of two reduced-order PWL

models in response to Gaussian pulses of 1%, 1.5%, 2%, 2.5%, and 3% amplitude. A

time domain POD basis has been used to create the first reduced-order PWL model,

while a frequency domain POD basis has been used to create the second one. Both

systems were composed of 110 states. Good agreement is achieved for all disturbances.

The small discrepancy noted for the response of case 3 is a replication of the one found

with the full-order PWL system.

More results are shown on Figure 5-8, where the same models are tested under

sinusoidal inputs (cases 4, 5 and 6), which were not explicitly included in the training

sampling process. Similar behavior as for the Gaussian responses is observed; results

for the smaller amplitude sinusoids are excellent, but discrepancy is again observed

for the 3% amplitude in the lower plot. Again, as it was observed with the full-order
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Figure 5-8: Simulation using 115 reduced-order PWL models composed of 110 states
each. From top: Case 4, case 5 and case 6.

PWL system, case 6 was oscillating at the limit of the range of validity of the clusters

of models and therefore is more challenging to capture accurately.

5.3 Weighting procedure

As the next section will demonstrate, using a combination of models at the same

time during a simulation (option [a] in step 3 of Algorithm 3) becomes rapidly very

expensive to execute. Therefore, only the second approach using the closest model

has been examined so far. However, it might seem advantageous to combine multiple

models at the same time to achieve a better approximation of the nonlinearity. Note

that one particular aspect of the weighted combination is that it only takes the

model(s) that are in the immediate neighborhood of the current solution. Therefore,

adding more models at a given time may not be expected to have a large effect. Figure

5-9 presents the relative weights for three models during a simulation. Here, six time

steps per period were used. It can be seen that Algorithm 3 strongly concentrates

the weights on an individual model, and switches from one to another rapidly.

Both weighting procedures have been compared for various incoming disturbances.

Figure 5-10 is descriptive of what is happens with this approach in most of the

situations considered. Plotted are the simulation results of the 115 models reduced

to 110 states for both weighting procedures. It can be seen that inside the sensitive

area where the shock is oscillating nearby the throat (t/T0 ≈ [25 − 35]), the method

using a combination of models fails to match the nonlinear CFD. This inaccuracy

was also observed in other similar simulations. In addition, as discussed earlier, this

weighting procedure is more computationally expensive than using a single model.
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Therefore, no further investigations of this procedure have been performed, since the

combination of inaccuracy and inefficiency make this option unattractive.
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Figure 5-9: Weights distribution for 3 of the 115 linearized models during a portion
of a simulation of case 3.
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using only one model at the time versus using a weighted sum of models. 115 models
composed of 110 states each have been used.
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5.4 Computational performance analysis

The performance of the proposed TPWL ROM technique, based on selecting a col-

lection of linearization points from a state-space trajectory of the original nonlinear

system, is considered. First, the efficiency of the basis creation for both time and

frequency domain is discussed. Then, the performance of the optimal reduced-order

PWL model is compared to that of the full-order and nonlinear systems. All algo-

rithms were implemented in Matlab, with the exception of the nonlinear solver, which

was running under Fortran. The tests were performed on a Linux workstation with

Pentium IV processor and 512MG Ram.

Before performing a simulation, the projection basis must be created, and the

full-order PWL model projected onto the reduced-order space. This step involves

computing the correlation matrix (2.10) from the snapshot ensemble and extract-

ing its eigenvalues and eigenvectors. However, an extra step was required for the

frequency-domain. While the time-domain method made efficient use of the CFD

training trajectories, the frequency-domain method required solution at each of eleven

frequency points for each of the 115 models, which was computationally expensive.

From the previous section, it has been seen that both methods yield similar matches

for the transfer function. However, the advantage of using the frequency-domain

method is that it is easier to ensure that the relevant range of frequencies in the

transfer function is sampled. Conversely, the time-domain basis can be efficiently

created during the training trajectory.

Figure 5-11 presents the various operations required by a simulation of the PWL

model, broken into off-line and online computation time. Off-line time consists of

the time to load and factorize, if possible, the PWL model, while the online time in-

cludes all the computations that would be necessary for simulation in real time. For

reduced-order models, the off-line time also includes the time for projection. Path

(A) and (B) denote respectively option [a] and option [b] in step 3 of Algorithm

3, the weighting procedure. All simulations have been performed using a second-

order accurate backward Euler time discretization. Thus, one of the computational

advantages of simulation with linearized state-space models is that factorization of

the system matrix can be performed only one time during the off-line initialization.

Online simulation is then very rapid, requiring only forward and backward substitu-

tions. However, one particular aspect of the weighting procedure using a combination

of models (option [a] in step 3 of Algorithm 3) is that it does not allow a priori factor-

ization of the matrices, since the relative weighting of the combined Jacobian matrices

varies at each time step. Thus, a matrix factorization is required at every time step

during the simulation, which is computationally costly.

Table 5.2 presents the total off-line time required for each system in order to launch

a simulation. Presented for each method are the number of piecewise-linear models,

the number of states in each system, and the off-line time required. Those times are
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Figure 5-11: Off-line and online computational operations required for a simulation.

Method #Models #States Pre-factorization Off-line model
(Y/N) generation

Full-order TPWL 254 11730 N 1371s
Full-order TPWL 115 11730 N 588s
Full-order TPWL 76 11730 N 388s
Full-order TPWL 76 11730 Y 539s
Reduced-order TPWL 115 110 Y 1656s
Reduced-order TPWL 76 110 Y 1073s

Table 5.2: Off-line computational cost to load, project and factorize each PWL
method.

directly proportional to the size of each system (number of models and number of

states). The pre-factorization column in Table 5.2 shows whether the system matrices

have been factorized off-line (Y) or online (N). A relatively high level of memory is

required in order to load at once a multitude of full-order systems. Thus, a lack of

memory did not allow off-line factorization of the 115 and 254 set of full-order models.

Table 5.3 presents a comparison of the online computational time needed for the

nonlinear CFD, the full-order PWL and the reduced-order PWL methods. The data

in Table 5.3 correspond to a simulation of case 3. The difference between the different

online times is attributable to two phenomena. The first one, as described before,

is that off-line factorization allows a faster simulation of the system. Another issue

that arises is that of storage requirements. For the large systems considered here,

it is not practical to store a large number of Jacobian matrices in memory. The

matrices must therefore be loaded as they are required. These two factors combine to

make weighting option [a] extremely unattractive. This can be seen in the data for a

simulation of 76 full-order PWL models using weighting option [a], which has a very

high computational time. This time arises from the need to load 76 Jacobian matrices

and compute one matrix factorization at every time step. Moreover, this weighting

option did not yield accurate results as was described in the previous section.
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Method #Models #States Weights Pre-factorization Online
option (Y/N) simulation

Nonlinear - 11730 - - 7200s
Full-order TPWL 254 11730 b N 1316s
Full-order TPWL 115 11730 b N 1233s
Full-order TPWL 76 11730 a N 10065s
Full-order TPWL 76 11730 b Y 803s
Reduced-order TPWL 115 110 a N 301s
Reduced-order TPWL 115 110 b Y 5s
Reduced-order TPWL 76 110 b Y 5s

Table 5.3: Computational performance for each method applied to simulations of case
3.

Most relevant is the performance of the reduced-order PWL models. Table 5.3

shows the results for three different sets of models. All three show a significant de-

crease in computational time compared with the nonlinear CFD simulation. Once

again, use of weighting option [a] is considerably more expensive (due now to fac-

torization at every time step) and does not yield any significant improvement in

accuracy. The recommended approach, using weighting option [b], results in models

that are extremely computationally efficient. Using these models, a simulation that

took several hours using CFD can be performed in just five seconds with a high level

of accuracy.

Finally, it should be noted that direct projection of the nonlinear system onto

the reduced-space basis would yield a “reduced” model of the form (2.14). Using

an implicit time discretization, this implementation would yield almost no computa-

tional savings over the nonlinear CFD results, since the full-order nonlinear term f(·)
remains in the model.

5.5 Summary

In summary, the method of snapshots was used in both time domain and frequency

domain in order to create POD bases. Because of the high complexity and multi-

scale nature of the flow dynamics, more states than usual were included in the POD

bases. The input-output behavior of the reduced-order PWL models was then tested

via the comparison of their transfer functions with the full-order systems. Using

various disturbances, the resulting reduced-order PWL models have been tested and

compared to the nonlinear CFD. The reduced-order PWL models shown very good

agreement with the nonlinear CFD, while being computationally very efficient.
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Chapter 6

Conclusion

This work combined two methodologies in order to model nonlinear fluid dynamic

behavior in a cost-effective way. Through a POD projection of a TPWL system,

efficient reduced-order PWL models have been obtained.

6.1 TPWL methodology

The assembly of a reduced-order PWL model relies on several choices and steps. The

following final process is recommended and can be tracked on Figure 3-1:

1. Perform a series of nonlinear CFD calculations which should span all operating
conditions of interest.

2. Using the snapshots created, select the linearization points using the residual
deviation criterion described in Chapter 3.

3. Using the snapshots created, create an orthogonal time-domain POD basis for
projection.

4. Project the full-order PWL model onto a reduced-order PWL model using the
POD basis.

5. Simulate the reduced-order PWL model.

6. Weight the models according to the weighting procedure using only the single
closest model at the time, option [b] in step 3 of Algorithm 3.
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6.1.1 Algorithmic choices

The algorithm just described is based on recommendations concerning the lineariza-

tion point selection methodology, the snapshots creation following either a time-

domain or a frequency-domain analysis, and the choice of the weighting procedure.

• The linearization points selection can be performed in various ways. Two

methodologies have been studied, and the residual deviation criterion has been

demonstrated to be an effective tool in capturing the domain of validity of a

linearized model, since it concentrates models in regions where the nonlinear

changes are important. Conversely, the state deviation criterion demonstrated

poor capabilities in doing so.

• The POD approach has been used for reduction of the PWL system. Snapshots

have been obtained from both time-domain and frequency domain analysis.

However, only the time-domain approach can be combined efficiently with the

TPWL framework, since both require training trajectories which should span

all operating conditions of interest. Thus, the snapshots only need to be created

once and used for both linearization point selection and POD basis creation.

The resulting efficiency of the methodology made this option very attractive

when combined with the TPWL scheme. Conversely, the frequency-domain

analysis can be useful for applications where particular frequencies are diffi-

cult to capture inside a time-domain analysis or when the nonlinear code is

prohibitively expensive to simulate, as for some turbomachinery applications.

• Simulations require weighting of the PWL model. Due to its failure to cap-

ture with accuracy the nonlinear behavior and its high computational cost, the

weighting procedure using a combination of models at every time step was re-

jected. Instead, only one model at a time was used during simulation. The

choice of that model was based on a state deviation criterion.
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6.1.2 Algorithm performance

The final model reduction methodology created a reduced-order PWL model with the

following characteristics:

• A large number of states is required for the projection basis, since the ba-

sis energy must include multi-scale behavior, i.e. accurate resolution for both

small linear perturbations and large nonlinear perturbations must be captured.

Therefore, a reduced-order PWL model with a relatively large number of states

has been obtained (∼ 100) in order to maintain a reasonable level of accuracy.

However, the size of the reduced-order PWL model will depend on the per-

formance requirements and dynamical behavior of a given application, thus is

considered to be problem-dependent.

• Accuracy of the projection has been tested through the comparison of the trans-

fer functions of both full-order and reduced-order PWL models. Good agree-

ment for both inputs have been obtained with 110 states.

• Disturbances to the operating conditions have been used to assess the quality

of the resulting system when compared to the nonlinear CFD. An acceptable

level of accuracy has been obtained.

• The reduced-order PWL system shown a strong gain in efficiency over the non-

linear CFD, demonstrating an economy of three orders of magnitudes on the

computational time.

In summary, the TPWL methodology has been demonstrated as a viable approach

for obtaining accurate, efficient, reduced-order models for nonlinear CFD applications.

For the application considered, very good agreement with nonlinear CFD results

was obtained, even in cases that included significant shock motion. The method

yields reduced-order models that accurately capture important flow dynamics and

are computationally very efficient.
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6.2 Recommendations for Future Work

A number of open questions remain as the subject of future work. Although sys-

tematic algorithms have been suggested in this paper, the selection of the training

trajectories, the snapshot collection, and the linearization points remains an ad-hoc

process. The lack of quality guarantees on the resulting reduced-order models is also

unsatisfactory. However, it is important to note that these are unaddressed issues as-

sociated with the use of POD which also appear in model reduction of linear systems

and are commonly ignored. More rigorous reduction techniques with associated error

bounds exist, such as reduction based on Fourier modes of the discrete time system

[55]. Here are some extensions that should be considered for this work:

• Develop a TPWL framework using a more rigorous method to obtain the

reduced-order models, such as FMR. Using such a technique will create reduced-

order models in different spaces (no common basis). Therefore, a basis-to-basis

framework will be required. The advantage of POD is the fact that only one ba-

sis is used for the projection of all models. Note that TPWL has been combined

with TBR for reduction of stable models in [51, 52].

• Investigate the POD basis behavior when a wider range of information is in-

cluded in the snapshot ensemble. As has been demonstrated, the system non-

linearity induces a requirement for a large number of states in the reduced-order

PWL model. Therefore, it is important to study how well the model behaves

when the information required increases.

• Identify a weighting procedure able to capture efficiently both state and non-

linearity residual deviation from a given linearization point. Both measures are

relevant for the choice of linearization point because they both participate in

the definition of the range of validity of a linear model. Therefore, the current

weighting procedure could be enhanced by making efficient use of both criteria.

• Develop a controller design using the reduced-order PWL framework.
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Appendix A

Implementation details

It should be noted that in order to simulate the set of equations given by Equations

(3.3) and (3.4), one needs to find a common representation of the state for each model.

Let recall Equation (2.19):

x(t) = xi + x′
i(t)

For two linearization points i and 0, with x0 being the steady state condition,

Equation (2.19) can be expressed as:

x′
i(t) = x′

0(t) − [xi − x0] (A.1)

Combining this result with Equations (3.3) and (3.4), we obtain a set of rotated

equations with a common state perturbation about steady state as follows:

s−1
∑

i=0

ω̃i(x)
{

ẋ′
i(t) = Aix

′
i(t) + B1iu(t) + B2i

}

s−1
∑

i=0

ω̃i(x)
{

yi(t) = Cix
′
i(t) + C0i

}

(A.2)

and

s−1
∑

i=0

ω̃i(x̂)
{ d

dt
x̂′

i(t) = Âix̂
′
i(t) + B̂1iu(t) + B̂2i

}

s−1
∑

i=0

ω̃i(x̂)
{

ŷi(t) = Ĉix̂
′
0i(t) + C0i

}

(A.3)

where the rotated matrices will now be composed of:

B2i = B2i − Ai(xi − x0)
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B̂2i = B̂2i − V T [Ai(xi − x0)]

C0i = C0i − Ci(xi − x0) (A.4)

Hence, a given state perturbation can easily be encoded. Also, since a time dis-

cretization, such as backward Euler, can be applied, the resulting system matrix can

be inverted just once.
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