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ABSTRACT 

The goal of a design engineering organization is to design products that satisfy 
customers.  Reaching this objective is dependent, among other things, on five parameters: 
the customer expectations, the target percentage of satisfied customers, the nominal 
performance of the design, the variability in the manufacturing processes, and the 
sensitivity of the design performance to such variability.   
 
This work presents a unified methodology that is amendable to computer implementation 
for modeling these five parameters for products that are primarily mechanical in nature.  
The validity of this methodology is subject to five major assumptions: the nominal 
performance of the design matches the performance expected by the customer, the set of 
customer expectations can be represented completely by a set of geometric relationships 
and tolerances between features in the assembly, the degradation in product performance 
is due solely to quantifiable variability or mean shift in the assembly geometry, the 
variability in each geometric relationship is independent of the variability in any other 
geometric relationship, and any compliant parts in the assembly can be accurately 
modeled as sets of rigid parts connected with linearly-compliant joints. 
 
The assembly model is developed using a combination of Screw Theory, Network 
Theory, Homogeneous Transformation Matrices, and Probability Theory.  It is shown 
how this model can be used to verify the manufacturability of a mechanical assembly 
design.  It is also shown how the model and the results obtained from it can be used to 
improve the level of manufacturability of a design if it is found to be unacceptably low.  
To validate the effectiveness and accuracy of the methodology, an automated version 
written for Matlab® was used to model and analyze the manufacturability of an engine 
valvetrain.  The results of this case study are presented and compared to results using 
existing industry-standard tools.  Several suggestions for improving the manufacturability 
of the valvetrain are also proposed and discussed.   
 
Thesis Supervisor: Daniel E. Whitney 
Title: Senior Research Scientist 
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1. INTRODUCTION 

1.1 Motivation and Background 

One of the objectives of a design engineering organization is to design products that meet 

the expectations of as many customers as possible.  This can often be achieved via a top-

down design process in which high-level customer expectations are cascaded into a more 

specific set of product architecture specifications that are then mapped further onto a list 

of functional requirements.  Different methods for accomplishing this are presented by 

[Clausing], [Mantripragada and Whitney, 1998], [Pahl and Beitz], [Shukla], [Slocum], 

[Suh], [Ulrich and Eppinger], and others.  A functional requirement is partially 

characterized by defining a target for one of the explicit measurable characteristics of the 

product (e.g. a certain top-speed, power rating, weight, or efficiency) and each functional 

requirement can be tied directly through the cascading process to one or more customer 

expectations.  The set of functional requirements should capture not only the expectations 

of a “typical” customer, but should be defined so that it takes into account the variety of 

customers and usage scenarios for the product.  Thus functional requirements provide a 

quantifiable way for engineering to measure the performance of a product relative to the 

expectations of the customers. 

 

In addition to a target (e.g. the engine must be designed to deliver 200 HP), each 

functional requirement usually has a tolerance or limit that reflects the willingness of the 

customer to accept a product whose performance is less than the expectation (e.g. the 

engine must be designed to deliver no less than 195 HP).  A single product is said to 
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“meet a functional requirement” if the actual value of a functional requirement is equal to 

the target or within the tolerance of the functional requirement (e.g. the actual engine 

delivers 197 HP which is above the minimum of 195 HP).  A single satisfied customer is 

someone who buys a single product that meets all the functional requirements. 

 

There are two main factors that cause a customer not be satisfied.  First, there can be a 

difference between the nominal or theoretical performance of the design and the 

performance expected by the customer.   Discrepancies of this type come from the failure 

or inability of the engineering organization to produce a design, even in its nominal form, 

that meets the functional requirements.  Second, there can be a difference between the 

actual performance of the manufactured product and the theoretical performance of the 

design.   Such discrepancies are due to the interaction between the inherent variability in 

the available manufacturing processes capable of converting the design into an actual 

product and the sensitivity of the design to such variability.  This means it is possible for 

two customers with identical expectations and usage scenarios to buy the same product 

and have one satisfied but not the other.  For this reason, discussions regarding this 

second factor are usually framed by looking at the percentage of satisfied customers 

rather that the satisfaction of any single customer.  A design for a single product is 

considered a success if the actual percentage of satisfied customers is above a required 

target percentage.  This target percentage is usually set by looking at the needs and goals 

of the enterprise.   



 
 
 
 
 

14 

Given the discussion above, the objective of a design engineering organization is to 

design products that, when fabricated and assembled using the available manufacturing 

processes, meet all the functional requirements in the required target percentage of cases.  

Reaching this objective depends, among other things, on the following five parameters: 

•  Functional Requirements Targets and Tolerances 

•  Target Percentage of Satisfied Customers 

•  Nominal Performance of Design 

•  Sensitivity of Design to Manufacturing Process Variability  

•  Variability in Available Manufacturing Processes 

 

Reaching the design objective requires an organization that can efficiently and effectively 

deal with all the parameters listed above. For each product such organizations must, 

among many other things, be able to verify the extent to which the design objective will 

be met and remedy any shortcomings before the product is released to the market.  A 

major goal of this work is to develop a methodology that supports such verification 

efforts.  The list of parameters above suggests the following analogous set of remedies: 

•  Lower Functional Requirement Targets/Increase Tolerances 

•  Lower Target Percentage of Satisfied Customers 

•  Increase Performance of Nominal Design 

•  Reduce Sensitivity of Design to Manufacturing Process Variability 

•  Increase Capability of Available Manufacturing Processes 
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In exploring and applying the remedies above, the engineering organization will need to 

engage in both internal dialogue and interface with other organizations within the 

enterprise (e.g. marketing and manufacturing).  It is therefore important, among other 

things, that the engineering organization is able to assess the benefits, risks, and costs 

associated with each potential remedy and make the appropriate design changes.  A 

second major goal of this work is to create a methodology that supports such activities. 

 

1.2 Scope 

The validity of the methodology presented in this thesis is subject to the following five 

major assumptions: 

•  The Nominal Design Performance Matches the Customer Expectations 

•  All Functional Requirements Can Be Expressed Geometrically 

•  All Manufacturing Variability Can Be Expressed Geometrically 

•  All Variability in Geometry is Independent 

•  All Compliant Parts Can be Modeled as Sets of Rigid Parts Connected by 

Linearly-Compliant Joints 

 

The first assumption is that the performance of the nominal design matches the 

expectations of the customer.  For this to be true, the engineering organization must 

always be able to deliver a nominal design whose performance is theoretically sufficient.  

As such, this work does not provide any insight into what an engineering organization 

should do to create a competent nominal design and does not provide any means for 
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verifying that the performance of a nominal design has indeed hit the functional 

requirement targets.   

 

In short, the first assumption eliminates entirely one of the two main factors that can 

cause a customer to become dissatisfied: the discrepancy between the nominal 

performance of the design and the target performance expected by the customer.  What 

remains is how the second factor, the interaction between the inherent variability in the 

available manufacturing processes and the sensitivity of the design to such variability, 

relates to the required target percentage of satisfied customers.  In this work the 

relationship between this second factor and the required target percentage of satisfied 

customers will be referred to as the manufacturability of the design.  A design with a 

high level of manufacturability is one that either has relatively low sensitivity to the 

variability in the manufacturing processes, is made using manufacturing processes with 

relatively low variability, has a relatively low required target percentage of satisfied 

customers, or some combination of the three. 

 

The second assumption is that it is possible to map all functional requirement targets onto 

an equivalent set of nominal one-dimensional geometric relationships within the 

assembly (e.g. distances or angles between features or parts in an assembly).  Further, it 

must also be possible to map all tolerances associated with the functional requirements 

onto a set of equivalent limits on these relationships within the assembly.  In order for 
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such a mapping to take place, all the details of the nominal design must be known (e.g. 

the number of parts, geometry, joints).  

  

The third assumption is that all variability in the available manufacturing process can be 

expressed in geometric terms.  Implicit in this assumption is that the current capabilities 

of the available manufacturing processes that will carry out the various fabrication and 

assembly processes required can be measured and are known. 

 

Together, the third and fourth assumptions insure that all the parameters and performance 

measures associated with the design of a product are not only defined, but are effectively 

“normalized”.  This means that they all will have either units of angular rotation (e.g. 

radians or degrees) or units of length (e.g. inches or millimeters).  This also insures that 

the methodology developing in this work is context-free and can be applied to a variety 

of different assemblies.  Figure 1.1 shows an example of a process that might be used to 

convert a qualitative customer need into an equivalent set of geometric relationships and 

tolerances. 
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Customer 
Expectation 

Product 
Architecture 
Specifications 

Functional 
Requirements 

(with targets and 
tolerances) 

Geometric Relationships 
(with nominal values, 

directions, and 
specification limits) 

“I need something 
sturdy to set a 

flower bouquet on”  

A wooden three-
legged table with 

a round top 

Levelness:  
0 ± .035 rad 
Min. Buckling 
Load: 1000 N 

Levelness: 0 ± .035 rad (θx, θy)  
Min. Leg Diameter: 10± .1 cm 

 
Figure 1.1. Cascading Customer Needs into Geometric Relationships 

 

It is essential for the successful implementation of this methodology that the engineering 

organization posses the ability to create competent nominal designs and convert all 

important aspects of the design and the customer expectations into geometric terms as 

shown in Figure 1.1.  This requires knowledge of the parameters that govern design 

performance and how these parameters can be tied to the geometric relationships within 

the product.  For a discussion on this subject see [Whitney]. 

 

The last two assumptions are that the variability in one geometric relationship is 

independent of the variability in any other geometric relationship and that compliant parts 

can be modeled as sets of rigid parts connects by linearly-compliant joints.  These two 
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assumptions enable the use of several mathematical methods that would have otherwise 

been impractical or inaccurate.  

 

1.3 Thesis Goals 

The goal of this work is to develop a methodology, specifically applicable to products 

that are primarily mechanical in nature, that enables design engineering organizations to 

verify the manufacturability of an assembly and make improvements if necessary.  This 

methodology consists of three major components: 

•  Creating a Accurate Quantitative Model of a Mechanical Assembly Design 

•  Using the Model to Verify Manufacturability 

•  Using the Model to Support Manufacturability Improvement Efforts 

 

1.4 Prior Research 

Many approaches have been proposed to analytically model assemblies so that their 

nominal performance and manufacturability can be assessed and improved.  Researchers 

such as [Adams], [Chang and Perng], [De Fazio et al], [Gui and Mäntylä], [Shukla], 

[Söderberg and Johannesson], and others have proposed featured-based models that do 

not require the details of the design such as geometry to be known but provide ways to 

interrelate the parts to each other and assess the viability of the design in high-level ways.  

Such models are very useful for comparing concepts early in the product design process 

and detecting so-called tolerance chains or Datum Flow Chains but are not capable of 

providing precise quantitative statements regarding manufacturability.   
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Other models capture the assembly process in addition to the assembly design.  One such 

model presented by [Hu], based on what is called Stream-of-Variation Theory, 

characterizes the assembly process as a series of stages that each introduces some 

variability into the assembly.  The manufacturability of the final assembly is determined 

by looking at the combined effect of all the variability that is introduced during the 

assembly process. [Camelio, Hu, and Ceglarek], [Ceglarek and Shi], [Lee, Long, and 

Hu], [Shiu, Ceglarek, and Shi], and others have built on this theory to include variability 

in the geometry and stiffness of compliant parts using Finite Element Analysis, or FEA, 

and all types of variability distributions using Monte Carlo simulation.  Since the 

combination of FEA and Monte Carlo simulation is computationally infeasible in many 

cases, [Lui, and Hu] presented an alternate and more efficient approach called the 

Method of Influence Coefficients.  [Mantripragada and Whitney, 1998 and 1999] 

presented a related model for assemblies of rigid parts using a state transition approach 

taken from Control Theory where each assembly operation is treated as a state change 

that adds to the variability of the assembly.  [Kern and Thornton] also present a process-

based model that allows for a closed-form solution using two mathematical functions 

called the “DeltaP” “and “SigmaP” functions. 

  

Other approaches to modeling compliant assemblies have been proposed.  [Chang and 

Gossard] developed a model for compliant assemblies based on the first principles of 

static analysis of structures where the stiffness of the parts and joints are obtained using 
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FEA.  [Bihlmaier] has demonstrated how FEA can be combined with spectral analysis for 

modeling and analyzing compliant assemblies.  [Donald and Pai], [Fasse], and [Fasse and 

Zhang] use a lumped-parameter model where the stiffness is localized at the joints 

between parts and the part themselves are modeled as collections of compliantly-

connected rigid parts.  [Villarreal and Asada] introduce the concept of buffer zones to 

model assemblies containing parts with distributed, not localized, compliance (e.g. thin 

sheet metal).  [Ramana and Rao] present an in-depth review of all such techniques as 

applied to sheet metal assemblies. 

 

Other analytical assembly modeling techniques such as the offset method by [Requicha], 

the vector-based method of [Wirtz] and built upon by [Yau], and others have arisen to 

address the modeling of tolerances on geometric dimensions.  One such scheme, based on 

kinematics and torsors that was developed by [Clement et al], [Clement and Derochers], 

[Derochers], [Rivest, Fortin, and Morel], [Marguet], and others, is particularly relevant to 

this thesis.  In this approach, kinematic constraints are imposed on the motion of the parts 

by converting each part into a Technologically and Topologically Related Surface, or 

TTRS.  The TTRSs are then related to each other using Graph Theory [Maxwell and 

Reed].  Variation torsors are added to the model to simulate the effects of dimensional 

variability.  Typically, TTRS-based formulations are limited to rigid parts connect by 

lower-order kinematic pairs.  Manufacturability is usually expressed using a worst-case 

or root-sum-square approach (root-sum-square, or RSS, usually assumes that all the 

variables are independent and normally distributed).   
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[Laperriére and Lafond] and [Laperriére, Ghie, and Derochers] built on the TTRS model 

using “virtual joints” to locate features in space and represent variability and Jacobian 

matrices to find the sensitivities of the performance measures to this variability.  

Assemblies whose parts are joined to each other such that they are over-constrained (i.e. 

the kinematic constraints between the parts are such that locked-in stresses will arise if 

the geometry of the parts deviates from its nominal definition) are dealt with using a 

pseudo-inverse operation that provides a best-fit linear approximation.  While 

computationally attractive, the pseudo-inverse does not always give accurate results.  

This is because it does not take into account the compliance of the over-constrained parts.  

 

[Chase, Gao, Magleby, Sorenson] and [Gao, Chase, and Magleby] have also developed a 

kinematic approach where parts are related to each other using kinematic constraints.  

Dimensional variations, based on tolerances of both form and size, are treated as small 

kinematic adjustments.  Vector loops are used to connect the various parts and create a 

complete assembly model.  Manufacturability is estimated using a worst-case or RSS 

approach that relies on the linearized sensitivities derived from the kinematic assembly 

model.  For over-constrained assemblies, the efficient but sometimes inaccurate pseudo-

inverse operation is used. 

 

Another group of kinematic approaches utilizes Screw Theory, a six-dimensional vector 

algebra for representing forces and velocities [Ball].  [Konkar] and [Konkar and 
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Cutkosky] use Screw Theory to create instantaneous models that can be incremented to 

determine whether assemblies have full cycle mobility.  [Davies and Primrose] and 

[Davies, 1981, 1983a, 1983b, 1983c, 1995, and 2000] combine Screw Theory and 

Network Theory to create generalized instantaneous kinematic assembly models that can 

be used to determine the presence of any excess over-constraints (e.g. the potential for 

locked-in stress) or under-constraints (e.g. the parts can move relative to each other).  

Due to the instantaneous first-order nature of Screw Theory, these models only provide a 

“snapshot” of an assembly and must be updated to reflect different configurations of the 

assembly.  Also, none of these technique model compliant parts.  [Davidson and Shah] 

and [Davidson Mujezinović, and Shah] show how Screw Theory can be used in 

connection with Minkowski sums to find the worst-case envelope for critical geometric 

relationships in an assembly given dimensional variability.  [Tischler and Samuel] 

introduce variation as infinitesimal screws to determine the effect of slop in spatial 

linkages on their performance and precision.  [Fasse], [Fasse and Zhang], [Patterson and 

Lipkin, 1993a], and [Patterson and Lipkin, 1993b] combine Screw Theory with localized 

joint stiffness and compliance matrices to create models for representing robots and other 

dynamic systems. 

 

Another line of research involves methods for carrying out what is called tolerance 

analysis and tolerance synthesis (or allocation).  [Chase and Parkinson] and [Hong and 

Chang] provide detailed reviews of these methods.  Generally, tolerance analysis 

methods (see [Varghese, Braswell, Wand, and Zhang] [Sacks and Joskowicz] for 
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examples) look at whether the tolerances assigned to the dimensions or other parameters 

of a design will results in an assembly that is manufacturable.  On the other hand, 

tolerance synthesis approaches (see [Bjørke], [Chase, Greenwood, Loosli, and 

Hauglund], [Ngoi and Min], and [Terry]) are intended to find the best or lowest-cost set 

of dimensional tolerances given the nature of the design and the cost-performance 

tradeoffs of the available manufacturing processes.  Tolerance synthesis methods are 

often difficult to implement in practice because creating analytical functions that capture 

the cost-performance tradeoffs of manufacturing processes can be difficult.  [Ding, 

Ceglarek, Jin, and Shi] present an assembly process-oriented tolerance synthesis method 

specifically applicable to sheet metal assemblies. 

 

Many of the modeling techniques above depend in some form on Homogeneous 

Transformation Matrices, or HTMs, that are extremely useful for analytically relating 

parts, features, and coordinate frames to each other in 3-D space.  HTMs were first used 

by [Denavit and Hartenberg] to represent kinematic linkages and then by [Ahuja and 

Coons] and others for displaying CAD geometry on a computer screen.  [Ashiagbor, Liu, 

and Nnaji], [Paul], [Lee and Gossard], [Johannesson and Söderberg], [Sodhi and Turner], 

[Srikanth and Turner], [Whitney], and others have used them for creating generalized 

models of robots and assemblies that can also be used to capture their behavior in the 

presence of dimensional variability using Monte Carlo simulation, linearization of 

sensitivities, or related techniques. [Huang, Whitehouse, and Chetwynd] and others have 

derived specialized models that are only applicable to a specific subset of assemblies. 
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1.5 Modeling Approach Used In This Thesis 

This work uses the kinematic formulation based on Screw Theory and Network Theory 

developed by [Davies and Primrose] and [Davies, 1981, 1983a, 1983b, 1983c, 1995, and 

2000] to nominally model mechanical assemblies and detect excess over-constraints and 

under-constraints.  The ability to model compliant parts is added by treating compliant 

parts as sets of rigid parts connected by linearly-compliant joints similar to the techniques 

used in [Fasse], [Fasse and Zhang], [Patterson and Lipkin, 1993a], and [Patterson and 

Lipkin, 1993b].  Chains of HTMs and virtual joints [Laperriére and la Fond] are used to 

locate all features, parts, and the joints between parts relative to a global reference frame 

[Whitney].  Combined use of Screw Theory and HTMs enables the modeling of 

assemblies with closed-loops (e.g. mechanisms and linkages), open-loops (e.g. robot 

arms and end effectors), or both. 

 

A technique similar to that presented by [Gao, Chase, and Magleby] is used to model the 

directions of the dimensional variability and determine the sensitivity of the design 

performance to variability in those directions.  Comparing the method in [Gao, Chase, 

and Magleby] to the method presented in this thesis there are several key differences.  

First, the model in this work has the added capability of handling assemblies with 

compliant parts.  Second, the pseudo-inverse function is not used when analyzing over-

constrained assemblies and therefore the results are generally more accurate.  Finally, the 

dimensional variability is modeled more accurately by using a full distribution approach 
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based on traditional Probability Theory [Drake] instead of a second moment approach 

where only the mean and standard deviation of the variability are used.   

 

The manufacturability of the assembly design with respect to each customer expectation 

is expressed in this work as a Process Capability Index, or Cpk, which is obtained using 

the Most Probable Point method [Melchers], a technique that was first used in the field of 

civil engineering to asses and predict the reliability of structures like bridges and 

buildings.  The contributions of the variability in the dimensions to the variability in the 

assembly performance measures are also obtained via the MPP method.  The MPP 

method is not only computationally very efficient (since it does not depend on Monte 

Carlo simulation) but it is also quite accurate (since it does not depend on linearized 

sensitivities).  Exploiting these facts, several methods are presented in this thesis for 

optimizing the nominal values of the dimensions to maximize manufacturability, an 

option that is not possible with many other assembly modeling techniques.   

 

1.6 Thesis Organization 

The remainder of this thesis is divided into seven chapters.  Chapter 2 provides a 

framework for discussion by defining a set of terminology and how it is to be interpreted 

in this work.  Chapter 2 also takes a closer look at the various characteristics of 

mechanical assemblies and how these characteristics affect assembly behavior.  Chapter 2 

concludes with a brief discussion of what aspects of assemblies are and are not included 

in the methodology presented.   
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Chapter 3 discusses in detail the modeling procedure that is used to create a quantitative 

representation of a mechanical assembly design that accurately models its nominal and 

variable properties.  This procedure is divided into two phases: the Element Identification 

& Location Phase and the Element Quantification & Integration Phase. 

 

Chapter 4 reveals how the model developed in Chapter 3 can be used to verify the 

manufacturability of an assembly.  The verification process is composed of a suite of 

analysis techniques, namely Motion/Constraint, Sensitivity, Performance, Contribution, 

and Coupling Analyses.   

 

Chapter 5 discusses how the results from Chapter 3 and Chapter 4 can be used to support 

efforts to improve the manufacturability of the design.  These efforts are divided into 

three categories: System-Level, Parameter-Level, and Tolerance-Level Strategies.   

 

Chapter 6 shows how this methodology was applied to the design of a Roller Finger 

Follower, or RFF, Valvetrain on a V-8 Ford® Engine.  The scope was limited by looking 

at a single customer expectation: the level of unwanted vibration caused by the engine.  

This expectation was mapped geometrically to the rotation angle of the cam sprocket, 

since any error that angle causes undesirable and noticeable vibration.  Application of the 

methodology revealed that the combination of high variability in the manufacturing 

processes and high sensitivity of the design to that variability resulted in an assembly 
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with low manufacturability.  As validation of the methodology, these results were 

compared to predictions using other industry-standard tools.  Chapter 6 concludes by 

using the assembly model and the results it provided to suggest several ways to improve 

the manufacturability of the valvetrain. 

 

Finally, Chapter 7 presents a summary of the work presented in this thesis and highlights 

the strengths and weaknesses of the methodology.  Based on this discussion, some 

suggestions are made for future work.  These suggestions are divided into three groups: 

Improving Existing Capabilities, Adding New Capabilities, and Improving Computer 

Implementation.  The first group includes those changes that would improve the existing 

capabilities of the methodology so that it is more robust and generally applicable.  The 

second group contains suggestions for adding capabilities to the methodology so that it 

can be used earlier in the design process.  If possible, the methodology would not only 

serve as an evaluative tool, but also as a driver of design.  The third category discusses 

how the accessibility of the methodology could be increased through improved computer 

implementation and user interface. 
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2. CHARACTERIZING MECHANICAL ASSEMBLIES 

The goal of this chapter is to provide a foundation upon which a sound methodology for 

modeling, verifying, and improving the manufacturability of mechanical assemblies can 

be based.  In the first section of this chapter, a set of terminology and concepts as 

understood and used in this thesis are presented.  In the second section, a discussion is 

developed that addresses many of the characteristics that dictate assembly behavior.  

Finally, a summary of the chapter is presented including comments on what 

characteristics of assemblies are and are not addressed in this work. 

 

2.1 Terminology 

To eliminate the possibility for misinterpretation, it is important to define some basic 

terminology as it will be used in this work. 

Coordinate Frame:  A set of three orthogonal axes that forms the fundamental 

theoretical building block of mechanical design.  In this work assemblies are treated as 

sets of interrelated coordinate frames.  Coordinate frames can be located relative to each 

other in six independent directions.  Calling the three orthogonal axes X, Y, and Z, the 

directions can be labeled θx, θy, θz, x, y, and z. Directions θx, θy, and θz represent 

rotations about the X, Y, and Z axes respectively and directions x, y, and z represent 

translations along those same axes respectively.  In general, these directions need not be 

aligned with the coordinate axes X, Y, and Z of a coordinate frame. 

Feature: The fundamental physical building block of mechanical design. [De Fazio et al, 

1993] define a feature as “any geometric or non-geometric attribute of a discrete part 
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whose presence or dimensions are relevant to the product’s or part’s function, 

manufacture, engineering, analysis, use, etc, or whose availability as a primitive or 

operation facilitates the design process”.  In this work a feature is more narrowly defined 

as a geometric element (e.g. a surface, pin, slot, hole, end-effector) that is assigned a 

single coordinate frame and is important either because, 1) is interfaces with another 

feature or, 2) is critical to the function and/or performance of the assembly. 

Dimension: A geometric relationship between two features in a single coordinate 

direction (e.g. an angle between two planes in the θy direction or a distance between the 

axes of two holes in the x direction). 

Intra-Part Relationship: A set comprised of from one to six serially-linked dimensions 

that uniquely determines the position of one feature (and its coordinate frame) relative to 

another feature (and its coordinate frame). 

Part: A set of features interrelated via a set of intra-part relationships. 

Global Origin: A coordinate frame of an assembly that is used as the common reference 

for describing the location of all features in an assembly.  Coordinates relative to the 

global origin are referred to as assembly coordinates. 

Local Origin:  Any coordinate frame that is used as the reference for describing the 

location of one or more features.  Coordinates corresponding to a local origin are referred 

to as local coordinates.  The local origin used to locate all the features on a part is called 

the part origin and the corresponding coordinates are called part coordinates.  

Base Feature: The feature (and coordinate frame) associated with the global origin.  This 

could be a plane, point, pin, hole, etc. 
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Base Part1: The part containing the base feature [Whitney, Mantripragada, Adams, and 

Rhee]. 

Key Characteristic (KC): An important relationship between two features in an 

assembly.  [Thornton 1999] defines a KC as “[something] whose variation from nominal 

significantly impacts the final cost, performance [including quality], or safety of a 

product”.  In this work, a KC is more narrowly defined as a geometric relationship 

between two features along a single coordinate direction that has a nominal value and a 

specification limit.  This limit can be either an upper or lower specification limit but not 

both.  KCs in this work represent the expectations of the customer.  A KC is “delivered” 

or “met” if the target percentage of customers is satisfied with respect to the customer 

expectations that the KC represents.  

Mate2: A relationship between two parts, or more specifically two features on those 

parts, which allows relative motion in some directions and constrains it in others. 

Variability: The deviation from nominal in a measurable quantity as seen in a group of 

theoretically identical entities that is sometimes quantified via a variance or standard 

deviation [Drake].  Here the measurable quantities are the dimensions or the 

performance-related KCs and the group of entities is a batch of assemblies all based on 

the same design and fabricated and assembled using the same processes.  In this work the 

sole source of fluctuation in the KCs is the fluctuation in the dimensions due to the 

limited capabilities of the fabrication processes that actually set them.  The variability of 

all other parameters is assumed to be zero.   

                                                 
1 In some of the literature, the first part in an assembly sequence is referred to as the base part [Whitney]. 
2 [Whitney] defines a mate as a joint between two parts that participates in insuring that a KC is delivered.   
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Manufacturability: The ease in which a design can be turned into a physical product 

[Bralla].  In this work, it is used as a descriptor of an assembly’s design that indicates the 

extent to which the design, given the capabilities of the available manufacturing 

processes, will satisfy the required target percentage of customers.  Manufacturability is 

measured by comparing the level of variability seen in the performance-related KCs 

relative to their respective specification limits.  Increasing the specification limits, 

decreasing the variability of the performance-related KCs (by decreasing the sensitivity 

of the design to dimensional variability), or increasing the capabilities of the fabrication 

process will all increase manufacturability. 

 

Figure 2.1 uses a three-legged table as an example to illustrate some of the terms 

mentioned above. 

 

 
Parts Assembly 

Mate 

Feature 
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Origin 

9 
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Local 
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Coordinate 
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Level-
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KC’s  
(±θx, 
±θz) 

X 

Y 

Z 

X 
Y 

Z 

 
Figure 2.1. Visualization of Some Terminology Using a Table as an Example 
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2.2 Characteristics of Assemblies 

There are a host of factors related to assembly behavior and in this work they have been 

divided into four categories: 

•  Design 

•  Manufacture 

•  Use Environment 

•  Performance Measures 

 

The factors within the design category and some of the factors in the manufacture and use 

environment categories determine the nominal, or theoretically designed, behavior of an 

assembly.  The remaining factors in the manufacture and use environment categories 

determine how much an actual assembly’s behavior will deviate from nominal.  The 

performance measures category discusses how customer expectations are quantified.  

These four categories and the factors they contain (as discussed below) are not mutually 

exclusive or collectively exhaustive.  Nonetheless, they provide a useful context for the 

methodology presented in this work. 

 

2.2.1 Design 

All the factors in the design category are determined during the design process.  Each is 

responsible in part for the behavior of the assembly.  The following list contains the most 

important factors in this category relevant to this work: 
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•  Part-Status 

•  Loop-Status 

•  Mates 

•  Nominal Part Properties 

•  Constraint-Status 

 

A brief discussion of each now follows. 

 

Part-Status: The part-status is the term used in this work to refer to the connectivity of 

the assembly and is related to topology as described in the fields of Graph Theory 

[Maxwell and Reed] and Network Theory [Seshu and Reed] and [Davies, 1995].  At a 

general level, the part-status of an assembly is defined by specifying the number of parts 

an assembly has and the way in which those parts are connected to each other via the 

mates.  Consider the three tables in Figure 2.2, each consisting of ten identical parts: one 

top, three braces, three posts, and three feet.  Since the parts are connected in a different 

way in each case (even though the parts are the same), each assembly has a different part-

status and may also have a different behavior (e.g. ability to support external loads). 
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Foot 
Post 

Brace 

Top 
Brace 

 
Figure 2.2.  Three Tables Each with a Different Part-Status 

 

Loop-Status: The loop-status is the dual of part-status and is an equivalent but alternate 

way to describe the topology or connectivity of an assembly.  Loop-status is described by 

defining the number and nature of loops an assembly has and the set of parts, or more 

specifically features, each loop contains.  There are only two types of loops: 

•  Open-Loops 

•  Closed-Loops 

 

An open-loop is defined here as a group of connected features, mates, and intra-part 

relationships that includes the base feature (designated as the beginning of the loop), a 

feature that is connected to only one other feature via either a mate or an intra-part 

relationship (designated as the end of the loop), and the set of features, mates, and intra-

part relationships one encounters on a continuous path that connect the beginning and end 

of the loop.  A robot gripper (left side of Figure 2.3) is an example of an assembly with 
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an open-loop with the gripper feature at the end of the open loop and the base feature at 

the beginning of the open-loop. 

 

 
Open-Loop in 

Robot Arm 
Assembly 

Closed-Loop 
in 4-Bar 
Linkage 

Assembly 

Gripper 

Base 

 
Figure 2.3.  Examples of an Open-Loop and Closed-Loop 

 

A closed-loop is defined here as a group of connected  features, mates, and intra-part 

relationships where each feature in the group is related via mates or intra-part 

relationships to no more or less than two other features in the group.  A four-bar linkage 

(right side of Figure 2.3) is an example of an assembly with a closed-loop with the 

lengths of the bars serving at the intra-part relationships and the revolute joints serving as 

the mates.  Figure 2.4 shows the three tables in Figure 2.2 inverted with some of the 

open-loops and closed-loops identified in each case.  Notice that while each table consists 

of identical parts, each has a different loop-status and this may result in differences in 

behavior. 
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3 Open-Loops 

4 Closed-Loops 
3 Closed-Loops 

 
Figure 2.4. Identifying the Open-Loops and Closed-Loops in Assemblies 

 

Mates: As mentioned above, a mate is a relationship between two parts, or more 

specifically, two features on different parts.  Assemblies have the following two types of 

mates (one type which is divided further into two subcategories): 

•  Real 

o Non-Compliant 

o Compliant 

•  Virtual 

 

A real mate is an interface that actually exists in the real assembly between two features 

on separate parts.  Real mates are divided into two subcategories: non-compliant mates 

and compliant mates.  A non-compliant mate is defined here as an interface between two 

features on separate parts (e.g. a pin in a matching hole) that completely prohibits the 

relative motion between the parts in from zero to six coordinate directions and 

completely allows relative motion in the remaining coordinate directions without storing 

any energy.  Conversely, a compliant mate is defined here as an interface between two 
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features on separate parts (e.g. a spring-loaded hinge) that allows relative motion in from 

one to six coordinate directions and can transmit forces between the parts in at least one 

of those same directions while storing energy at the same time.  Real mates affect 

assembly behavior because they dictate the way in which parts interact with each other.   

 

Virtual mates, such as those used by [Laperriére and Lafond], do not actually exist in an 

assembly and as such do not affect its behavior in any way.  Rather, virtual mates are 

added solely for analysis purposes and their value will be shown in Chapter 4. An 

assembly has one virtual mate for each open-loop which connects the base feature to the 

feature at the end of the open-loop but does not store energy or enforce constraint in any 

coordinate direction.  Instead, a virtual mate allows total unrestrained motion of the end 

of an open-loop relative to the base feature in all six coordinate directions. 

 

Every mate (real or virtual) can be thought of as a serial chain of six elements and each 

element falls into one of the following four categories: 

•  Degree-of-Freedom (DOF) 

•  Degree-of-Constraint (DOC) 

•  Degree-of-Stiffness (DOS) 

•  Degree-of-Virtuality (DOV) 

 

A Degree-Of-Freedom, or DOF (the abbreviation DOF refers to either a single Degree-

of-Freedom or multiple Degrees-of-Freedom), is described by specifying a direction, a 
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nominal value, and a pitch.  The DOF direction is a vector (expressed in coordinates local 

to that DOF) along or about which the real mate completely allows the motion of one part 

relative to its mating part but does not transmit forces or store energy.  In other words, it 

is assumed in this work that DOF are frictionless and have zero stiffness.  The DOF 

nominal value is simply the distance or angle between the two coordinate frames of the 

mating features in the direction of the DOF.  The DOF pitch describes the type of motion 

allowed by the DOF and can be zero, infinite, or any positive real number.  A DOF with 

zero pitch describes a pure rotational motion.  A DOF with infinite pitch describes a pure 

translational motion.  A DOF with finite pitch describes a helical motion [Ball]. 

 

A Degree-Of-Constraint, or DOC (the abbreviation DOC refers to either a single Degree-

of-Constraint or multiple Degrees-of-Constraint), is described by specifying a direction, a 

nominal value, and a pitch.  The DOC direction is described by a vector (expressed in 

coordinates local to that DOC) along or about which the real mate can transmit a force (or 

moment) from one part to its mating part but does not allow motion or store energy.  In 

other words, it is assumed in this work that DOC are rigid (i.e. DOC have infinite 

stiffness).  The DOC nominal value is simply the distance or angle between the two 

coordinate frames of the mating features in the direction of the DOC. The DOC pitch 

describes the type of force (or moment) transmitted by the DOC and can be zero, infinite, 

or any positive real number.  A DOC with zero pitch describes a pure moment.  A DOC 

with infinite pitch describes a pure force.  A DOC with finite pitch describes a 

force/moment couple. 
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A Degree-Of-Stiffness (DOS) (the abbreviation DOS refers to either a single Degree-of-

Stiffness or multiple Degrees-of-Stiffness), is described by specifying a direction, a 

nominal value, a pitch.  A DOS direction is a vector (expressed in coordinates local to 

that DOS) along or about which a compliant mate can store energy, allow relative 

motion, and transmit forces between parts.  The DOS nominal value is simply the 

distance or angle between the two coordinate frames of the mating features in the 

direction of the DOS. The DOS pitch can be zero, infinite, or any positive real number.  

A DOS with zero pitch describes a torsional spring.  A DOS with infinite pitch describes 

a linear spring.  A DOS with finite pitch describes a torsional spring coupled to a linear 

spring.  A compliant mate can have from one to six DOS and the relationship between the 

motion allowed and forces transmitted by these DOS is contained in a stiffness matrix for 

the mate.  In this work all compliant mate stiffnesses are taken to be linear.   

 

A Degree-Of-Virtuality, or DOV (the abbreviation DOV refers to both a single Degree-

of-Virtuality or multiple Degrees-of-Virtuality) is just like a DOF, except it is a sub-

element of virtual mate instead of a real mate (real mates cannot have DOV).  A DOV 

always has a nominal value of zero, a pitch that is either zero or infinite, and a direction 

that is always aligned with one of coordinate axes of the feature at the end of an open-

loop (more will be said later about the direction of DOV). 
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It will also be assumed that the number and direction of DOF, DOC and DOS of all real 

mates in an assembly are constant.  It is also assumed that the DOF, DOC, and DOS of 

all mates are bidirectional. For a DOF, DOC, or DOS to be bidirectional, one of the 

corresponding conditions must hold: 

•  For DOF, motion in both the positive and negative sense must be allowed 

•  For DOC, motion in both the positive and negative sense must be prohibited 

•  For DOS, motion in both the positive and negative sense must store energy  

 

The first condition means that mates such as one-way clutches are not permitted. The 

second condition requires that mates such as the bottom of a flat block resting on a level 

planar surface must not only prevent the block from moving normally toward the surface, 

but also must prohibit its motion normally away from the surface.  The last condition 

means that compliant mates such as spring-loaded hinges must store energy when either 

opened or closed.  Mates that are not bidirectional are often called unidirectional or one-

sided [Whitney] and are not covered in this work.  Virtual mates do not exist in the actual 

assembly but, since by definition they do not constrain motion in any direction, they are 

inherently bidirectional. 

 

Some additional properties, form closure and force closure, are sometimes used to 

describe bidirectional DOC.  DOC exhibiting form closure are bidirectional because of 

the mating features alone (e.g. the DOC of a pin in a hole with no clearance) [Blanding].  

DOC exhibiting force closure are bidirectional because of an external force (e.g. gravity 
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or a spring) [Green].  In this work, all DOC exhibiting force closure are assumed to retain 

their bidirectionality under all circumstances.  In other words, features that are in contact 

remain in contact.  In reality, whether a DOC exhibiting force closure is bidirectional or 

unidirectional is situation dependent.  [Green] describes an effector as an element (e.g. 

spring or gravity) that insures that a DOC exhibiting force closure remains bidirectional 

at all times. 

 

The number of real mates in an assembly, and the DOF, DOC, and DOS each real mate 

has both affect assembly behavior.  As evidence, compare the behavior of the two tables 

in Figure 2.5.  Both have the same parts-status and loop-status but since the mates allow 

different DOF, they exhibit different behavior. 

 

 

These Mates 
Have 0 DOF 
& 6 DOC  

Table will not Collapse Table will Collapse 

These Mates 
Have 1 DOF 
& 5 DOC  

 
Figure 2.5.  Two Tables Only Differing in Type of Mates 

 

Nominal Part Properties: During the design phase, parts are assigned many nominal 

properties.  These properties, combined with the mates, part-status, and loop-status, 
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determine in large part the behavior of the assembly.  In this work, nominal part 

properties will be divided into the following three categories: 

•  Nominal Geometry 

•  Nominal Stiffness 

•  Other Nominal Properties 

 

Nominal part geometry in this work refers specifically to the set intra-part relationships 

that uniquely (i.e. the part geometry must not be over-specified) and completely (i.e. the 

part geometry must not be under-specified) describes the location of all features in a part.  

Each intra-part relationship is composed of a chain of serially-linked dimensions and 

each dimension is described by specifying a nominal value and a direction (expressed in 

coordinates local to that dimension).  Nominal part geometry can and most likely will 

affect assembly behavior. As an example, imagine a table similar to one of the ones in 

Figure 2.2 except that the design has been modified such that one leg is much shorter 

than the other two legs.  The levelness of this table will be much different than the 

levelness of the original table.  This discrepancy is completely due to the nominal 

geometry and not the part-status, loop-status, or mates. 

 

Nominal stiffness is a measure of the rigidity of part in the presence of applied loads.  

Sometimes it is defined in terms of two or more features on a part and how those features 

move relative to each other when known, yet balanced, forces are applied to those 

features.  Nominal stiffness is dependent, among other things, on the nominal geometry 
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(e.g. a thicker plate generally has higher stiffness) and the nominal properties of the 

material that the part is composed of (e.g. rubber has relatively low stiffness compared to 

steel).   

 

There are many assemblies whose behavior is affected by the stiffness of one or more of 

their members (e.g. wheel suspension, garage door, car fender made of sheet metal) and 

such assemblies are often referred to as compliant assemblies [Goldenshteyn].  To 

illustrate this point, imagine the how the ability of one of the tables in Figure 2.2 to resist 

applied loads would differ if the legs were made out of soft rubber instead of wood or 

steel.  Even if the assembly experiences no external forces during assembly or use, the 

nominal stiffness of the parts might still influence assembly behavior (e.g. its sensitivity 

to dimensional variability). 

 

As mentioned in Chapter 1, compliant parts are modeled in this work as sets of two or 

more smaller rigid parts connected by one or more linearly-compliant mates, each with 

one or more DOS [Donald and Pai].   Such an approach creates what is often called a 

lumped-parameter approximation that in many cases is a sufficiently accurate 

representation of the actual situation.  While this work gives no recommendation as to 

what the ideal lumped-parameter approximation is for a given part or what error is 

introduced by adopting such an approach, there are many techniques cited in the literature 

(see [Howell], [Fasse and Zhang], and  [Patterson and Lipkin, 1993b]).  Parts with 

distributed stiffness (e.g. a flimsy sheet metal plate), where neither the assumption of 
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infinite stiffness nor lumped finite stiffness is valid are not covered in this work.  

[Heubner, Dewhirst, Smith, and Byrom], [Shiu, Ceglarek, and Shi], and [Villarreal and 

Asada], and others discuss methods for modeling such parts.  Also, due to the definition 

adopted in this work for compliant mates, parts with nonlinear stiffness, even in a lumped 

finite stiffness sense, are not covered in this work. 

  

In addition to nominal stiffness and geometry, there are many other nominal part 

properties whose values are determined during design and affect assembly behavior.  

Among these are material strength, mass, density, surface finish, fatigue resistance, 

thermal conductivity, electric resistivity, emmisivity, thermal expansivity, and viscosity, 

just to name a few.  For example, the behavior of an aircraft wing is not just dependent on 

its shape and stiffness, but also its weight, strength, and fatigue resistance.  In this work, 

all such nominal part properties can only be modeled if they can be expressed in terms of 

the geometry or the compliance of the parts (e.g. express the mass of a part as a function 

of the part’s dimensions). 

 

Constraint-Status: The constraint-status is a property of the nominal design that indicates 

the nature of the relative motion allowed between parts and forces transmitted between 

parts in an assembly via their mates.  The constraint-status of an assembly is dependent 

on its part-status, loop-status, its mates, and the nominal properties of its parts [Whitney].  

At the highest level, the constraint-status of an assembly falls into one of the following 

four categories: 
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•  Properly-Constrained 

•  Under-Constrained 

•  Over-Constrained 

•  Both Over-Constrained & Under-Constrained 

 

Properly-constrained assemblies are those in which each and every part is uniquely 

located in all six coordinate directions by one or more mates it shares with other parts in 

the assembly [Kriegel].  Under-constrained assemblies are those in which there is at least 

one DOF of excess relative motion allowed between at least one pair of parts [Phillips, 

1984].  Over-constrained assemblies or are those in which at least two parts share mates 

that enforce one or more of the same DOC [Whitney].  Finally, it is possible for an 

assembly to be both over-constrained and under-constrained at the same time [Davies, 

1983b].  Loops and individual parts can also be referred to as properly-constrained, 

under-constrained, over-constrained, or both over-constrained and under-constrained (the 

only exception is that open-loops cannot be over-constrained).  Individual mates 

exhibiting form closure can also be over-constrained as described by [Slocum] but such 

over-constraints are not included in this work. 

 

Figure 2.6 shows four tables, each with a different constraint-status: one properly-

constrained, one under-constrained, one over-constrained, and one both over-constrained 

and under-constrained (each post in the over-constrained tables is being located in the six 
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coordinate directions by three different mates: one it shares with the top and two it shares 

with the two braces).  

 

 

Over-Constrained 
Table 

This post is being located in 
the x, y, and z directions by 

multiple mates 

All mates 
Allow  
0 DOF  

All mates 
Allow 1 

DOF 

Properly-
Constrained Table 

Under-Constrained 
Table 

All mates 
Allow  
0 DOF  

Over-Constrained & 
Under-Constrained Table 

This post is being located in 
the x, y, and z directions by 

multiple mates 

All mates allow  
0 DOF except 
feet can rotate 

Note: Table top is shown as 
transparent so mates can be seen 

 
Figure 2.6.  Four Tables Each with a Different Constraint-Status 

 

Problems can arise when unintended over-constraints or under-constraints exist in an 

assembly.  For example, if the under-constraints in the upper-right table in Figure 2.6 

were accidental, the table may unexpectedly collapse during use.  If the over-constraints 

in the bottom tables in Figure 2.6 were accidental, the table may be much harder to 

assemble than anticipated, especially if the parts are not fabricated to the exact nominal 

dimensions (which they won’t be).  There are many examples in the literature of such 

mistakes (see [Kriegel], [Hart-Smith], and [Sweder and Pollack]). 
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Due to the fact that under-constrained assemblies (and assemblies that are both over- and 

under-constrained) allow relative motion between their parts, a single snapshot of how 

the parts are connected is not sufficient to completely describe the assembly.  In this 

work, this is overcome by choosing a finite set of discrete configurations of the 

assembly.   Two configurations of the same assembly are distinguished from each other 

by looking at the locations of the parts relative to each other as expressed in the nominal 

values of the DOF of the mates.  Figure 2.7 shows two possible configurations for the 

under-constrained table in the upper right corner of Figure 2.6.  These two configurations 

are distinguished from each other by the comparing the angles between the braces and 

posts.  Such an approach is often called an incremental approach and has been used by 

[Konkar] and [Konkar and Cutkosky] to analyze and synthesize assemblies. 

 

 

These Mates 
Have 1 DOF 

Under-Constrained 
Table 

Configuration 1 
 

Configuration 2 
 

Post 

Brace 

Note: Table tops are 
shown as transparent 
so mates can be seen 

 
Figure 2.7. Two Different Configurations of the Same Table  
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2.2.2 Manufacture 

Equally as important as the design of the assembly, is the process that is used to 

physically create it.  Three main areas of the physical creation process are the following: 

•  Part Assembly 

•  Part Fabrication 

•  Part Inspection 

 

Each of these will now be briefly discussed. 

 

Part Assembly:  Part assembly is the process designed to take parts and connect them 

together into a single assembly.  The following two aspects of part assembly can 

potentially affect assembly behavior (one of which is further divided into two categories):    

•  Fixtures 

o Holding Fixtures 

o Locating Fixtures 

•  Adjustments 

 

Here a fixture is defined as anything that facilitates the process of relating parts to each 

other (e.g. a clamp, aligning jig, measurement tool, etc) [Campbell].  In this work two 

types of fixtures are identified: holding fixtures and locating fixtures.  Holding fixtures 

merely facilitate the process of joining parts together by placing them in close proximity 

to each other.  Due to their passive role, holding fixtures are not involved in any way in 
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the permanent locations of the parts relative to each other and so in the context of this 

work cannot affect assembly behavior. 

 

Locating fixtures, on the other hand, do take an active part in setting geometric 

relationships between features on different parts and therefore can affect assembly 

behavior.  Locating fixtures are just like parts in every way except they do not exist in the 

final completed assembly.  As such, the term “part” in this work will refer to either a part 

or a locating fixture.  While locating fixtures may also hold parts secure, they more 

importantly enforce temporarily one or more geometric relationships between two or 

more parts.  Before the locating fixtures are removed, a joining process is used to make 

these geometric relationships permanent so that when the locating fixtures are removed, 

the relative locations of the parts as set by the fixtures remains. 

 

When locating fixtures are used, the performance of the assembly is dependent as much 

on the properties of the locating fixtures as it is on the properties of the parts.  As an 

example, compare the two different ways to assemble legs for a table as shown in Figure 

2.8.  The one on the left uses a holding fixture whereas the one on the right uses a 

locating fixture.  It is clear that the straightness and length of the legs that come out of the 

assembly process on the right are dependent on the fixture whereas the properties of the 

legs assembled using the process on the left are independent of the fixture. 
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KC2    D1+ D2+ D4 

  

Brace 
  Post 

  

Foot   

Fixture   

  

  D 6   

Holding 
Fixture  

  

D 4   

D 2   
D 1   

Add Glue 
Here  

D 7 <   D 3 < 
  D 5 < 

  Brace 
  Post 

  

Fixture   

Foot 
  

KC1  

Applied Force  Applied Force  

KC2  

KC2 = D6 KC1 = D1+ D2+ D4 

Brace Post 

Foot 
Glue Legs 
Using 
Holding 
Fixture 

Add Top 

Glue Legs 
Using 
Locating 
Fixture 

Add Top 

Add Glue 
Here  

Locating 
Fixture  

Two Methods for Assembling Tables 

 
Figure 2.8. Comparing a Holding Fixture to a Locating Fixture  

 

Adjustments are the other aspect of part assembly that is relevant to this work.  

Adjustments are basically a combination of an inspection process, a calibration process, 

and a joining process [Adams].  First, a relationship between two features on different 

parts is measured and then it is adjusted to be within a certain target range by exploiting 

excess under-constraints that were intentionally left in the assembly during design.  Once 

the relationship is set, a joining process (e.g. welding or bonding) is used to secure that 

geometric relationship and remove the excess under-constraints.  Whether using the 

human eye or a precision measurement tool, all adjustments serve the identical purpose as 

locating fixtures.  For this reason, the term “locating fixture” in this work will refer to a 

locating fixture or an adjustment (this also means that the term “part” will refer to a part, 

a locating fixture, or an adjustment). 
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The way in which an assembly is physically put together is referred to as the assembly’s 

type-status [Whitney]. The type-status of an assembly is unrelated to the actual number 

of assembly steps used or the number of parts.  Instead it depends on whether or not 

locating fixtures are used during assembly.  The type status of any assembly falls into one 

of the following two categories: 

•  Type-I 

•  Type-II 

 

Assemblies that are assembled without any locating fixtures are categorized as Type-I.  

The three-legged table shown on the left side of Figure 2.8 is an example of Type-I 

assembly.  In such cases the locations of all the parts in the assembly are completely 

determined by the mates they share with other parts in the assembly.  Assemblies 

requiring one or more locating fixtures are categorized as Type-II [Mantripragada and 

Whitney, 1998].  The table shown on the right side of Figure 2.8 is an example of Type-II 

assembly.  For Type-II assemblies, care must be taken to properly design, fabricate, 

inspect, and model not only the parts, but the fixtures and adjustments processes as well.   

 

After each joining process involving a locating fixture, the assembly assumes a new state.  

The number of states an assembly has depends on the number of locating-fixture-

dependent joining processes the assembly undergoes.  A single fixture-dependent joining 

process begins when the assembly is placed in one or more locating fixtures and ends 

when the assembly is removed from at least one of those fixtures.  During those two 
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events multiple joining processes may actually occur but it is considered as a single 

process for the purposes of this work. 

 

In general, the total number of states an assembly has is equal to one more than the 

number of fixture-dependent joining processes. This means that by definition Type-I 

assemblies only have one state and Type-II assemblies will always have more than one 

state.  Further, each state of an assembly that is under-constrained (or both under-

constrained and over-constrained) must be described in terms of one or more 

configurations.  

 

To handle to various states in a Type-II assembly, concepts such as the Stream of 

Variation developed by [Camelio, Hu, and Ceglarek] and [Hu] and a State Transition 

approach presented by [Mantripragada and Whitney, 1997] have been proposed as 

methods for interrelating analytically the various assembly states of Type-II assemblies 

and account for the propagation of variability from state to state.   

 

If an assembly state in a Type-II assembly is over-constrained, there exists the possibility 

that the locating-fixture-dependent joining process that separates that state from the next 

state will lock in stresses that will cause the newly mated parts to deform and change 

location relative to each other in an effort to find a lower energy state once the parts are 

mated and the locating fixture(s) is/are removed.  This phenomenon is called springback 
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and it not addressed in this work.  For more on springback see [Hu], [Camelio, Hu, and 

Ceglarek], [Goldenshteyn], and [Liu and Hu]. 

 

Part Fabrication:  When part designs are released for fabrication and parts are actually 

made, the properties of these physical parts will always differ, even if only slightly, from 

the nominal design due to the limited capabilities of the fabrication processes.  For this 

reason dimensions are often assigned tolerances or tolerance zones [Foster].  

Understanding the relationship between the nominal assembly design and the variability 

in the part fabrication processes is critical to understanding assembly behavior.  In the 

case of the three-legged tables in Figure 2.2, if the geometry of the nine actual parts that 

make up the table legs deviates from the specified nominal geometry, the table might not 

be level when placed on a level floor even if the design dictates that is should be in 

theory.  Part fabrication not only includes processes such as casting and machining, but 

any process that alters the properties of the parts.  This could even be a process that 

inadvertently deforms the parts (e.g. a conveyor that dents the parts as it transfers them 

from one station to another).   

 

In this work it is assumed that only those fabrication processes that set the dimensions of 

the parts exhibit variability.  All other fabrication processes, including those that 

determine the stiffness of the compliant mates, are assumed to exhibit no variability.  

Further, even though dimensional variability may cause stiffness variability (e.g. a thicker 

beam will have a higher stiffness), such interactions are not covered in this work.  This 
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means that the stiffnesses of the compliant mates remain unchanged at their nominal 

values as contained in the corresponding stiffness matrices.  If it is essential that the 

effect of variability in the compliant mate stiffnesses be addressed, the only alternative 

presented here is to choose two or three designs differing only in the stiffness values of 

the compliant mates and create and compare the models and results obtained from those 

models for each case.  Unless this is done, the variability in the KCs will be dependent 

solely on the variability in the dimensions. 

 

As mentioned in Chapter 1, the variability of any one dimension is assumed to be 

independent of the variability of any other dimension.  A suggestion for eliminating the 

need for this assumption will be discussed in Chapter 7.  

 

In reality, dimensional variability can have many adverse effects on assembly behavior.  

Sometimes such variability can cause a change in loop-status and/or constraint-status.  

Notice in Figure 2.9 how the loop-status and constraint-status of a table changes in if the 

shaded braces are much longer than designed.  Also notice that the post in the lower right 

changes from being properly constrained to over-constrained.   
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4 Closed-Loops 
1 Closed-Loop 

Over-
Constrained 
Post 

Properly-
Constrained 
Post 

This brace 
too long 

This brace 
too long 

 
Figure 2.9.  Effect of Variability on an Assembly’s Part-Status & Constraint-Status 

 

Sometimes dimensional part variability can cause a change in the number of relative 

DOF or DOC between two parts.  Consider the block in a fixture shown in Figure 2.10.  

The block is designed to have one DOF with respect to the fixture.  If the block is too 

long, it may suddenly have zero DOF with respect to the fixture.  Also notice how the 

constraint-status of the assembly changes from being under-constrained to over-

constrained.   

 

Block has a 1 DOF 

Block  

Block has a 0 DOF 

Block  

Fixture Fixture 
 

Figure 2.10.  Effect of Variability on the DOF Allowed By a Mate 
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In this work it is assumed that dimensional variability does not cause the loop-status or 

constraint-status of an assembly to change.  If there exists a significant risk that the loop-

status, constraint-status, or the number and/or direction of the DOF, DOC or DOS of the 

mates of an assembly might change due to the dimensional variability, one or more KCs 

should be added to guard against such undesirable changes [Whitney]. 

 

A dimension whose value is uncertain (due to the limited fabrication process that sets it) 

can be modeled as a continuous random variable.  Random variables are commonly 

defined in terms of two functions, the probability density function, or PDF, and the 

cumulative distribution function, or CDF [Drake].  The CDF and PDF of a random 

variable are related so by knowing one, the other can be obtained, either mathematically 

or numerically.  Rather than define the exact value of a random variable, a PDF defines 

the probability density for each value of the random variable.  The area under any PDF 

function is always one but in general the value returned by an arbitrary PDF can be any 

non-negative real number.  A CDF is the integral of the PDF and defines the probability 

that the variable will take on a value that is less than or equal to a certain value.  The 

CDF always return a value between zero and one [Drake].   

 

While in theory a random variable can be assigned any PDF (as long as it integrates to 

one), in practice random variables are usually assigned PDFs that can be parameterized 

mathematically.  A PDF is parameterized by specifying the following two things: 
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•  Distribution Type 

•  Distribution Parameter(s) 

 

The distribution type specifies the general “shape” of the PDF.  Normal, Poisson, and 

Uniform are all examples of distribution types (many others exist) and each has its own 

unique properties.  Figure 2.11 shows the PDF and CDF for these distributions.  With 

each distribution type there are an infinite number of actual distributions, but all have the 

same general “shape”.   

 

 
 
 
 
 

CDF 

PDF 

Normal Poisson Uniform 

 
Figure 2.11.  The PDF and CDF for the Normal, Poisson, and Uniform Distributions 
 

Distribution parameters are what distinguish one distribution of the same type with 

another distribution of that same type.  For example, in the case of distributions that are 

of the Normal type, the mean value, generically denoted mx, and the standard deviation, 
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generically denoted σx, of those distributions distinguish them from each other.  If two 

distributions are both Normal and both have the same mean and standard deviation, then 

they are identical.  For distributions of the Uniform type, the characteristic parameters are 

the upper and lower limits on the variable, denoted generically, ulx and llx.  These are just 

two of the many distribution types that exist. 

 

In practice, the PDF and CDF functions for a dimension-setting fabrication process are 

usually obtained by measuring a sample of dimensions set by that fabrication process, 

plotting them, and choosing the distribution type (e.g. Rayleigh, Gamma, Uniform, 

Normal, etc) and associated parameters that result in a distribution that most closely 

matches the data. 

 

Part Inspection:  When a batch of parts is fabricated, there will always be variability in 

the properties of the parts in the batch.  Often the properties of these parts are then 

inspected (either one by one or in some other manner) to see if they actually have values 

at or near the nominal design values.  Sometimes parts are discarded or “reworked” based 

on knowledge gained from this inspection process.  Discarding or reworking parts can 

alter the shape of a PDF function (e.g. an inspection process might narrow the “shape” of 

a distribution or truncate its tails).  Since inspection processes alter the PDF and CDF, 

they can influence or reduce the variability exhibited by the KCs, which is precisely why 

they are usually carried out in the first place.   Imagine for example, a three-legged table 

manufacturing facility that includes a station where all the legs were inspected and those 
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that were longer than a certain length, denoted l, are discarded.  Finished tables leaving 

this manufacturing facility could never be taller than l plus the thickness of the tabletop.   

 

It is important to note that some inspection processes, like those based on zones derived 

from Geometric Dimensioning & Tolerancing, or GD&T, can create dependencies 

between variables [Foster].  The effects of such inspection processes are not included in 

this work but are addressed in the literature.  For example [Davidson and Shah] and 

[Davidson, Mujezinović, and Shah] look at the cases where GD&T is applied to 

rectangular and round faces respectively and [Whitney and Jastrzebski] suggest a 

multivariate statistical model to deal with the dependencies between tolerances of size 

and orientation of a surface. 

 

2.2.3 Use Environment 

The third are has to do with the environment in which the assembly is used or assembled.  

The following three subcategories in this area are addressed here: 

•  Applied Forces & Moments 

•  Temperature 

•  Other Use Factors 

 

Each of these subcategories will now be discussed. 
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Applied Forces and Moments:  Applied forces and moments can be either static or 

dynamic and both types can affect assembly behavior.  Sometimes these applied forces 

are intentionally applied to the assembly and are controlled so that they align with one or 

more intentionally designed-in under-constraints, as is the case with the turning of a 

crankshaft in an engine by the forces of gasoline combustion.  Other times these forces 

are not foreseen and become aligned with unintentionally designed-in under-constraints, 

like in the example of the collapsing three-legged table shown in Figure 2.5.  While 

including the effects of externally applied forces is not discussed in detail in this work, a 

suggestion for incorporating static external forces will be made at the end of Chapter 3. 

 

Temperature:  Both the geometry and stiffness of parts are often dependent on 

temperature.  KCs can also be dependent on temperature.  One could imagine that all of 

the tables in Figure 2.2 might get slightly taller if their temperature increased and the legs 

expanded in response.  In this work, the effects of temperature are only considered 

indirectly.  This is accomplished by first assuming that the nominal part geometry is 

defined for a specific temperature (e.g. room temperature).  Then, knowing the 

coefficient of thermal expansion for the materials of the parts, the variability in 

temperature can be modeled as an equivalent variability in part geometry [Paz and 

Leigh].  While no more mention of temperature effects will be made here, it should be 

assumed when dimensional variability is discussed, that the effects of temperature can be 

included in the manner just described.  The dependence of other part properties on 

temperature (e.g. stiffness or fracture strength) is also not considered.  If a customer’s 
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expectations are related to temperature, such expectations should be expressed using 

geometrically equivalent KCs.   

 

Other Use Environment Factors:  In addition to applied forces and temperature, there 

are many other environmental factors that effect assembly behavior.  Among these are 

humidity, pressure, atmospheric composition, exposure to light, exposure to sound, just to 

name a few.  While ideally a modeling technique would be able to capture all these 

interactions, this methodology can only capture them if they can be expressed in terms of 

the part geometry or part stiffness. 

 

2.2.4 Performance Measures 

In general there are numerous ways that assembly performance can be measured.  In this 

work, the only way in which performance is measured is via the KCs.  As defined above, 

a KC, or Key Characteristic, is a one-dimensional geometric relationship between two 

features with a nominal value and an upper or lower specification limit.  Under this 

definition, a one-dimensional geometric relationship with both an upper and lower limit 

must be represented by two separate KCs and a two-dimensional geometric relationship 

(e.g. the distance between two features in both x and y directions) with both an upper and 

lower limits in each direction must be represented by four KCs. 

 

Any two features that are related by a KC are called a KC feature pair.  In general a KC 

feature pair can related by anywhere from zero to twelve KCs (up to six directions and up 
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to two limits in each direction).  In this work the following two types of KCs are defined 

(one of which is further divided into two categories): 

•  Performance 

o Clearance 

o Alignment 

•  Linking 

 

Performance KCs are one-dimensional relationships between features that act as 

quantitatively measurable surrogates for those attributes or functions of an assembly that 

are important to the customer (e.g. cost, power, efficiency, etc).  All performance KCs 

have a nominal value and a specification limit that represent respectively the expectation 

of the customer and their willingness accept substandard performance.  Here, the 

manufacturability of an assembly will always be measured by comparing the variability 

in the value of the performance KCs relative to their specification limits.  In other words, 

two identical assemblies may have different levels of manufacturability if they have 

different sets of performance KCs (differing either in the features they relate, their 

nominal values, or their specification limits). 

 

Performance KCs are further divided into clearance KCs and alignment KCs.  Clearance 

KCs are binary in the sense that as long as the value is above a certain value, the 

functional requirement(s) related to that KC are met without any degradation in 

performance.  The specification limit for a clearance KC is a fixed positive number and 
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as such the larger the nominal value of a clearance KC, the more variability it can exhibit 

without affecting performance.  Clearance KC’s are similar in some respects to the 

“larger-is-better” quality characteristics presented by [Taguchi, 1992].   Conversely, 

alignment KCs are not binary which means that any deviation from nominal represents a 

degradation in performance and any deviation outside the specification limit is deemed 

unacceptable.  Alignment KC’s are similar in some respects to the “nominal-is-better” 

quality characteristics discussed by [Taguchi, 1992].    

 

Linking KCs are used only to connect together different assembly states of the same 

assembly.  The number of assembly states an assembly has depends on the assembly 

process as discussed in the manufacture section above.  Linking KCs differ from 

performance KCs in that they do not reflect the expectations of the customer directly but 

serve as vehicles for stringing together the various states of a Type-II assembly (Type-I 

assemblies do not have linking KCs).  Therefore, linking KCs will have a nominal value 

and a direction, but no specification limit. 

 

As one final note, it is important to realize that for assemblies containing one or more 

under-constrained (or both over-constrained and under-constrained) assembly states, it is 

possible that the KCs for the under-constrained state(s), may not be all defined in the 

same configuration.  In general, one need only specify enough configurations for an 

under-constrained assembly state to capture all the KCs. 
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2.3 Summary 

When modeling assemblies, lack of attention to any of the factors discussed above, 

including those not addressed by this thesis, can lead to inaccurate conclusions.  Table 

2.1 shows the factors discussed above divided into three categories.  The category on the 

left includes all the factors affecting the nominal assembly behavior.  The middle 

category includes all the factors that influence the variability in assembly behavior.  The 

category on the right lists those factors not considered in this work.  Caution should be 

taken whenever applying the methodology presented in this thesis to situations where the 

factors in the third category are present and deemed significant. 

 

Nominal Factors 
Included in this 

Work

Influences on 
Variability Included 

in this Work

Factors Not Included in 
this Work

Part-Status Unidirectional Mates

Loop-Status Mate Friction

Mate Properties Part Inspection Processes Distributed Part Stiffness

Part Geometry Non-Linear Part Stiffness

Part Stiffness Nominal Part Mass

Constraint-Status Other Nominal Part Properties

Assembly Process

Fixtures & Adjustements

Type-Status Dynamic Applied Forces

KCs Other Time-Dependent Factors

Temperature (indirectly) Variability in Applied Forces

Other Environmental Factors

Springback

Dependent Dimensional Variability

Dimension-Setting Fabrication 
Processes

Static Applied Forces 
(lightly)

Stiffness-Setting Fabrication 
Processes (lightly)

Variability in Other Nominal Part 
Properties

Variability in Other 
Environmental Factors

 
Table 2.1.  Characteristics of Assemblies Relevant to This Work 
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3. MODELING MECHANICAL ASSEMBLIES 

In the previous chapter, a list of important factors that affect assembly behavior was 

presented and discussed.  In this chapter, a unified approach for modeling assemblies that 

captures much of this behavior is presented.  This methodology is composed of the 

following two phases:  

•  The Element Identification & Location Phase 

•  The Element Quantification & Integration Phase 

 

The first half of this chapter describes the Element Identification & Location Phase.  

During this phase the various elements of an assembly that are relevant to 

manufacturability are identified and located relative to a global reference frame.  The 

important assembly elements include: assembly states, assembly configurations, parts, 

features, mates, intra-part relationships, closed-loops, open-loops, and KC-feature pairs.  

The second section of this chapter presents the Element Quantification & Integration 

Phase. During this phase, each of the elements is represented analytically and these 

various analytical representations are integrated into a coherent, unified matrix-based 

assembly model.  The model is partitioned into two matrices such that one matrix 

captures all the nominal properties of the assembly and the other matrix captures the 

variability properties of the assembly.   The final section of this chapter discusses the 

nature of the model and compares it to the traditional matrix-based model used in static 

analysis of structures.  
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To facilitate the understanding of the modeling procedure employed here, after each task 

is explained, its application will be illustrated using a fingernail clipper (see Figure 3.1).  

To eliminate complexity that only complicates understanding, the file and rivet (used to 

attach the file) that most common fingernail clippers have will not be discussed.  This 

leaves only three distinct entities in its final assembled state: the cutter, the handle, and 

the pin3.   

 

 

Pin 
Entity 

Handle Entity 

Cutter 
Entity 

 
Figure 3.1.  Photo of Fingernail Clipper with Parts Labeled 

 

3.1 Element Identification & Location Phase 

The first phase of the modeling methodology is to identify all the elements of the 

assembly that are relevant to the manufacturability of the assembly.  Figure 3.2 shows a 

flow diagram for this phase.  Each box corresponds to a task that must be completed and 

                                                 
3 the term “entity” is used instead of “part” because the term “part” has a specific meaning in this work.   
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the arrows between the boxes indicate the order in which they should be completed.  The 

numbers in parentheses indicate which subsection of Section 3.1 addresses the 

corresponding task. 

 

 

Identify 
Assembly States 

(3.1.1) 

For Each State 
Identify 

Configurations (3.1.2) 

For Each 
Configuration 

Identify Parts (3.1.3) 

Based on Feature Definitions Identify  
Intra-Part Relationships Connecting 

Features Within Each Part (3.1.6) 

For Each Part 
Identify 

Features (3.1.4) 

Based on Feature 
Definitions, Identify Real 

Mates Connecting 
Features On Different 

Parts (3.1.7)  

For Each Intra-Part 
Relationship Identify 
Chain of Dimensions 

Comprising It  
(3.1.6)  

For Each Dimension 
Identify Direction, 

Nominal Value, 
Distribution Type, & 

Distribution 
Parameters (3.1.6) 

For Each Real Mate 
Identify Chain of DOF, 

DOC, and DOS 
Comprising It (3.1.7) 

For Each 
DOS Identify 

Direction, 
Pitch, & 
Stiffness 
(3.1.7) 

For Each 
DOF 

Identify 
Direction & 
Pitch (3.1.7) 

 

For Each DOC 
Identify 

Nominal Value, 
Direction, & 
Pitch (3.1.7) 

 

Based on Feature 
Definitions 
Identify KC 

Feature Pairs 
(3.1.5) 

For Each KC 
Feature Pair 

Identify KCs & 
Their Type (3.1.5) 

For Each 
Alignment 

KC Identify 
Direction & 
Spec. Limit 

(3.1.5) 

For Each 
Clearance 

KC 
Identify 

Direction 
(3.1.5) 

For Each Linking 
KC Identify 

Configuration it 
Links & Dimension 
It Becomes (3.1.5) 

For Each Configuration 
Identify Independent 
Open-Loops (3.1.9) 

For Each Configuration 
Identify Independent 
Closed-Loops (3.1.9) 

For Each KC Identify 
Chain of DOF, DOC, DOS, 
& Dimensions Connecting 
Features It Relates (3.1.10) 

For Each Configuration 
Create An Annotated 

Liaison Diagram & Identify 
Its Base Feature (3.1.8)  

For Each Independent Open-
Loop Identify Chain of DOF, 

DOC, DOS, & Dimensions 
Comprising It  (3.1.10) 

For Each Independent Closed-
Loop Identify Chain of DOF, 

DOC, DOS, & Dimensions 
Comprising It (3.1.10) 

For Each DOF, DOC, DOS 
Identify Chain of DOF, DOC, 

DOS, & Dimensions Connecting 
It to Base Feature (3.1.10) 

 
Figure 3.2.  Element Identification Phase 
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Before explaining how to complete these tasks, a brief discussion on notation is in order.  

Throughout this thesis, a lower-case variable (a variable may be more than a single 

character) without brackets will always refer to a quantity of elements (e.g. dtt or mi,j).  

An upper-case variable without brackets will always refer to an actual element (e.g. Ai or 

Mi,j,k).  A bracketed variable will always refer to either a vector or matrix of values 

assigned to a set of elements (e.g. [Dn], [KCn]i,j, or [d 

l]i,j,k).  A bracketed variable with 

one or two subscripts inside the brackets will always refer to a specific value within a 

vector or matrix (e.g. [Cdi] or [Hl,n]i,j,k).  A bracketed variable with subscripts inside the 

brackets that are separated by colons refer to a sub-matrix of the vector or array (e.g.      

[f 

l
1:3,3:4]i,j,k would be a (3x2) matrix containing the first three entries in the third and 

fourth columns of matrix [f 

l]i,j,k).  Subscripts in parenthesis inside the brackets of a 

bracketed variable refer to the size of the vector or matrix (e.g. (k x l ) in [G(k x l )]i,j).  

Finally, empty matrices are denoted by [Ø], matrices of all zeros are denoted by [0( i x j )], 

where i and j are the number of rows and columns respectively, and identity matrices are 

denoted by [I(ixi)] where i is the size of the matrix.   

 

3.1.1 Identifying Assembly States 

As mentioned in Chapter 2, the number of states, denoted a, of an assembly is equal to 

one more than the number of locating-fixture-dependent joining processes.  For any 

assembly, its states can be labeled generically as Ai such that the set of all assembly states 

for that assembly is A1, A2,…, Aa.  In the case of the fingernail clipper, careful study 

reveals that the cutter entity is created by a single welding process.  Since welding is a 
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fixture-dependent joining process and that is the only such process used in its 

manufacture, the fingernail clipper must have two assembly states (a = 2).  These states 

will be labeled A1 and A2.  A1 is the state of the assembly before welding and A2 is the 

state after welding and when the fingernail clipper is completely assembled.  Because it 

has more than one state, the fingernail clipper is a Type-II assembly. 

 

 

Pin 
Entity 

Handle Entity 

Cutter 
Entity 

Cutter Entity 
made of two 
separate 
entities that are 
welded 

 
Figure 3.3.  Photo of Fingernail Clipper Showing Weld Location 

 
 

3.1.2 Identifying Configurations 

Every assembly state has at least one configuration and for those assembly states that are 

under-constrained there can exist more than one.  The configurations for an under-

constrained assembly state should be chosen so that all the KCs relevant to that assembly 

state are included in at least one of the configurations.  In general, the total number of 

configurations, bt, for an assembly is determined by using the following equation: 
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∑
=

=
a

i
ibbt

1

 

Equation 3.1 
 

In Equation 3.1, a is the number of assembly states and bi is the number of configurations 

in the ith assembly state.  ba would therefore be the number of configurations in the final 

assembly state.  Individual configurations themselves are labeled with a double 

subscripted B such that Bi,j is the jth configuration in the ith assembly state. For example, 

B4,2 is the second configuration of the fourth assembly state and b4 is the number of 

configurations in the fourth assembly state.  Analysis of the fingernail clipper reveals 

state A1 has a single configuration and state A2 has four configurations (b1 = 1, b2 = 4, 

and bt = 5).  All five configurations are shown schematically in Figure 3.4.   

 

 

Lower Cutter Entity 

Upper Cutter Entity 

Handle 

Pin 

Partially 
Assembled 

Configuration 
B1,1 

State A1 

Closed 
Configuration 

B2,1 

State A2 

Partially Open 
Configuration 

B2,2 

Open 
Configuration 

B2,3 

Clipping 
Configuration 

B2,4 

Locating fixture 
that aligns upper 
and lower cutters 

Lower Cutters and Upper 
Cuter Base are welded 
together here 

X 

Y 

X 

Y 

Z 

Z 

External Force 
pushing down 

on handle Cutter 

or -90 
-1.57 rad 

 
Figure 3.4.  Different Configurations and Assembly States of the Fingernail Clipper 
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All that is known about B1,1 right now is that it contains two entities (whose exact natures 

have not yet been defined) that are placed in a welding fixture.  B2,1, B2,3, B2,3, and B2,4 

correspond to the closed, partially open, open, and clipping configurations of a typical 

fully-assembled fingernail clipper.  To illustrate all the aspects of this methodology, it is 

only necessary to look at one configuration from each state so B1,1 and B2,2 have been 

chosen.  The remaining configurations will not be discussed further. 

 

3.1.3 Identifying Parts 

An arbitrary configuration Bi,j in an assembly contains pi,j rigid parts that are each labeled 

using a triple subscripted P such that Pi,j,k is the kth part in the jth configuration in the ith 

assembly state.  P1,1,3  would therefore be the third part in the first configuration of the 

first assembly state4.  Taking all factors into consideration for the case of the fingernail 

clipper, there are actually three parts that require modeling in B1,1, and four parts that 

require modeling in B2,2 (p1,1 = 3, p2,2 = 4).  Figure 3.5 shows schematics of B1,1 and B2,2 

with the parts labeled.  

 

                                                 
4 It is important to note that each locating fixture or adjustment process counts as a part and compliant 
entities must be treated as multiple parts connected by compliant mates.   
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P1,1,1 

Y 

Z 

P1,1,2 
 

P1,1,3 

P2,2,4 

P2,2,1 P2,2,3 

P2,2,2 
 

Compliant 
Mate 

 

Configuration B2,2 

Configuration B1,1 

Y 

Z 

P2,2,1 = P1,1,3 + P1,1,2  

or 90 
-1.57 rad 

 
Figure 3.5.   Schematics of Configurations B1,1 and B2,2 of the Fingernail Clipper
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B1,1 consists of three parts: a welding fixture labeled P1,1,1, a lower cutter labeled P1,1,2, 

and an upper cutter base labeled P1,1,3.  B2,2 consists of four parts: a cutter base labeled 

P2,2,1, an upper cutter body labeled P2,2,2, a pin labeled P2,2,3, and a handle labeled P2,2,4.  

Via the welding operation, the lower cutter (P1,1,2) and the upper cutter base (P1,1,3) in B1,1 

become the cutter base (P2,2,1) in B2,2.  The “cutter entity” in B2,2 is modeled as two parts, 

a cutter base (P2,2,1) and an upper cutter body (P2,2,2) that are joined by a compliant mate.  

This is necessary to capture the inherent compliance of the “cutter entity” (think of the 

rebounding nature of a fingernail clipper).  For now this is all that will be said about the 

mates since they will be discussed in detail later. 

 

3.1.4 Identifying Features 

An arbitrary configuration Bi,j in an assembly contains ei,j features that are each contained 

in one of the pi,j parts.  Features are each labeled using a triple subscripted E such that 

Ei,j,k is the kth feature in the jth configuration in the ith assembly state.  E2,3,2  would 

therefore be the second feature in the third configuration of the second assembly state.  A 

feature is defined because it either mates with a feature on another part or is used in 

evaluating the manufacturability of the assembly.  Each feature must also be assigned a 

coordinate frame.  Analysis of fingernail clipper reveals that B1,1 has six features and B2,2 

has eleven features (e1,1 = 6 and e2,2 = 11).  Table 3.1 is a table providing a description of 

the seventeen features for the fingernail clipper.  Schematics of the individual parts in 

B1,1 and B2,2 are shown respectively in Figure 3.6 and Figure 3.7 with their features 

identified and coordinate frames assigned. 
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Feature Description
E 1,1,1 lower lip on Fixture (mates to Lower Cutter) (base feature for B1,1)
E 1,1,2 upper lip on Fixture (mates to Upper Cutter Base)
E 1,1,3 notch on Lower Cutter (mates to Fixture)
E 1,1,4 top surface on Lower Cutter (mates to Upper Cutter Base)
E 1,1,5 bottom surface on Upper Cutter Base (mates to Lower Cutter)
E 1,1,6 notch on Upper Cutter Base (mates to Fixture)
E 2,2,1 notch on Cutter Base (base feature for B2,2)
E 2,2,2 top lip on Cutter Base (mates compliantly to Upper Cutter Body)
E 2,2,3 lower blade on Cutter Base
E 2,2,4 hole on Cutter Base (mate to Pin)
E 2,2,5 head of Pin (mates to Cutter Base)
E 2,2,6 slot in Pin (mates to Handle)
E 2,2,7 rod of handle (mates to Pin)
E 2,2,8 fulcrum tip of Handle (mates to Upper Cutter Body)
E 2,2,9 top surface of Upper Cutter Body (mates to Handle)
E 2,2,10 back end of Upper Cutter body (mates compilantly to Cutter Base)
E 2,2,11 upper blade on Upper Cutter Body  

Table 3.1.  Description of Features in the Fingernail Clipper 
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Note: Drawings not to scale 
 

Figure 3.6.  Features for Configuration B1,1 of the Fingernail Clipper 
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Figure 3.7.  Features for Configuration B2,2 of the Fingernail Clipper 

 

3.1.5 Identifying KC Feature Pairs 

An arbitrary configuration Bi,j in an assembly contains hi,j KC feature pairs that relate 

features on different parts and geometrically represent the expectations of the customer.  

KC feature pairs are labeled using a triple subscripted H such that Hi,j,k is the kth KC 

feature pair in the jth configuration in the ith assembly state.  H4,3,1  would therefore be the 

first KC feature pair in the third configuration of the fourth assembly state.  Analysis of 

fingernail clipper reveals that B1,1 has one KC feature pair labeled H1,1,1 and B2,2 has one 

KC feature pair labeled H2,2,1 (h1,1 = 1 and h2,2 = 1).  H1,1,1 relates E1,1,6, the notch in the 

upper cutter base to E1,1,3, the notch in the lower cutter.  H2,2,1 relates E1,1,11, the upper 

blade in the upper cutter body to E2,2,3, the lower notch in the cutter base.  These 

relationships are shown in Figure 3.9. 
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E1,1,6 & E1,1,3 
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& θz 
directions) 

Y 

Z 

Configuration B1,1 

E1,1,6 
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Figure 3.8.  KC’s For Configurations B1,1 of the Fingernail Clipper 
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Figure 3.9.  KC’s For Configurations B1,1 & B2,2 of the Fingernail Clipper  

 
 
An arbitrary KC feature pair, Hi,j,k is composed of  kci,j,k KCs, where kci,j,k is any number 

between one and twelve.  Each KC can be a linking KC or a performance KC and each 

performance KC can be either an alignment KC a clearance KC.  For an arbitrary 

configuration of an assembly, Bi,j, the total number of KCs in that configuration, kcti,j, is 

computed as follows: 
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Equation 3.2 
 

The set of all nominal values for the KCs of an arbitrary configuration, Bi,j, can be 

contained in a (kcti,j x 1) vector, [KCn]i,j called the configuration-level nominal KC value 

matrix.  The set of all KC directions (θx = 1, θy = 2 , θz = 3, x = 4, y = 5, and z = 6 

expressed relative to the coordinate frame local to the first feature in the KC feature pair) 

can be contained in a (kcti,j x 1) vector [KCd]i,j called the configuration-level KC 

direction matrix.  [KCnk]i,j is therefore the nominal value of the kth KC of the jth 

configuration in the ith assembly state.  Also, if [KCd3]2,2  equals six, then the third KC in 

the second configuration of the second assembly state is a distance along the Z-axis of a 

coordinate frame whose location is local to first feature in the corresponding KC feature 

pair. 

 

The total number of KCs in an assembly is denoted kctt.  Since a KC can be present in 

more than one configuration, the sum of kcti,j for all configurations does not in general 

yield kctt.  Explicitly this can be expressed as follows: 
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Equation 3.3 
 

The KCs for an entire assembly are labeled KC1, KC2,…, KCkctt.  KC5 is therefore the 

fifth KC of an assembly and as stated above can be included in more than one 

configuration.  The KCs in an entire assembly can be divided into two groups, kcl linking 

KCs and kcp performance KCs where: 

 

kcpkclkctt +=  
Equation 3.4 
 

For an arbitrary assembly, the set of all performance KC types (alignment = 1 and  

clearance = 2) can be contained in a (kcp x 1) vector [KCt] called the KC type matrix.  

The set of all performance KC directions (θx = 1, θy = 2 , θz = 3, x = 4, y = 5, and z = 6 

expressed relative to the coordinate frame local to the first feature in the KC feature pair) 

can be contained in a (kcp x 1) vector [KCd] called the performance KC direction matrix.  

The set of all performance KC nominal values can be contained in a (kcp x 1) vector 

[KCn] (angles should be expressed in radians not degrees) called the performance KC 

nominal value matrix.  [KCni] is therefore the nominal value of the ith performance KC in 

the assembly.  This means that if [KCd8] equals four, then the eighth performance KC in 

the assembly is a distance along the X-axis of a coordinate frame whose location is local 

to first feature in the corresponding KC feature pair. 
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The set of all specification limits offsets for the performance KCs can be contained in a 

(kcp x 1) vector, [KCl].  The set of all specification limits for the performance KCs can 

be contained in a (kcp x 1) vector, [KCL] (note that linking KCs do not require 

specification limits) called the KC specification limit matrix where the ith entry [KCLi] is 

computed as follows: 
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Equation 3.5 
 

Analysis of fingernail clipper reveals that B1,1 has four KCs and B2,2 has seven (kct1,1 = 4, 

kct2,2 = 7, and kctt = 11).  Of the eleven KCs, four are linking KCs and seven are 

performance KCs (kcl = 4 and kcp = 7).  These eleven KCs are described in Table 3.2.  

KC1, KC2, KC3, and KC4 in B1,1 are linking KC’s that collectively describe the alignment 

of the notch in the lower cutter relative to the notch in the upper cutter base in the z, x, y 

and θz directions after the welding operation as set by the fixture.  These linking KCs will 

become dimensions in B2,2 (this will be discussed in more detail below).  KC5, KC6, KC7, 

KC8, KC9, and KC10 are alignment KCs that describe the alignment in the +x, -x, +y, -y, 

+θz and -θz directions respectively between the upper blade on the upper cutter body and 

the lower blade on the cutter base in B2,2 (the “+” and “-“ signs indicate whether the 

performance KC has an upper or lower specification limit).  KC11 is a clearance KC that 

describes the gap (in the -z direction) between the upper and lower blades and has a lower 
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specification limit of zero (as long as the two blades don’t touch during the opening of 

the clippers, this KC11 is delivered).   

 

KC Feature Pair
Two Features it 

Relates

Number and Type of 
KCs relating each 
KC feature pair

KCs each KC feature pair 
contains

H 1,1,1 E 1,1,6 & E 1,1,3
4 Linking KCs,           
0 Performance KCs

Linking: KC 1 (+z), KC 2 (+x), 
KC 3 (+y), KC 4 (+θz)

H 2,2,1 E 2,2,11 & E 2,2,3

0 Linking KCs,            
7 Performance KCs:     
6 Alignment KCs &     
1 Clearance KC

Alignment: KC 5 (+x), KC 6 (-x), 
KC 7 (+y), KC 8 (-y), KC 9 (+θz), 
KC 10 (-θz)                         
Clearance: KC 11 (-z)

 
Table 3.2. List of KCs Derived from Each KC feature pair 

 

Figure 3.10 shows [KCn]1,1, [KCn]2,2, [KCd]1,1, [KCd]2,2, [KCt], [KCn], [KCd], [KCl] and 

[KCL] for the fingernail clipper example.  While for this assembly, [KCn] equals 

[KCn]2,2, this is not the case in general.  The nominal KC values in [KCn]1,1, [KCn]2,2, 

[KCn] and the specification limits of the alignment KCs in [KCL] will remain unknown 

until the parts are assembled analytically and the values in [KCn]2,2 are obtained.  Later in 

this chapter, it will be shown how to assemble the parts analytically and solve for the 

unknown KC-related values.   
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Note: While for this 
assembly, the nominal 
values and directions for the 
performance KC’s equal the 
nominal values and 
directions for KC’s in 
configuration B2,2 this is not 
generally the case 

 
Figure 3.10.  The KC Nominal Values, Directions, Type, & Specification Limits 

 
 
3.1.6 Identifying Intra-Part Relationships 

An arbitrary configuration Bi,j in an assembly contains ri,j intra-part relationships 

connecting features within parts.  Intra-part relationships are each labeled using a triple 

subscripted R such that Ri,j,k is the kth intra-part relationship in the jth configuration in the 

ith assembly state.  R2,3,1  would therefore be the first intra-part relationships in the third 

configuration of the second assembly state.  Analysis of fingernail clipper reveals that 

B1,1 has three intra-part relationships and B2,2 has seven intra-part relationships (r1,1 = 3 
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and r2,2 = 7).  Table 3.3 lists the intra-part relationships, the features they join, and a brief 

description of each. 

 

Intra-Part 
Relationship

Features It 
Joins

Description (directions of dimensions it contains)

R 1,1,1 E 1,1,1 & E 1,1,2 offset between upper and lower lips on fixture (x,y,θz)
R 1,1,2 E 1,1,3 & E 1,1,4 thickness of Lower Cutter (z)
R 1,1,3 E 1,1,5 & E 1,1,6 thickness of Upper Cutter Base (z)
R 2,2,1 E 2,2,1 & E 2,2,2 postion of top lip on Cutter Base (x,y,z,θz)
R 2,2,2 E 2,2,1 & E 2,2,3 position of lower blade on Cutter Base (x,y,θz)
R 2,2,3 E 2,2,9 & E 2,2,10 angle of bend in Upper Cutter Body (θx)
R 2,2,4 E 2,2,9 & E 2,2,11 position of upper blade on Upper Cutter Body (x,y,θz)
R 2,2,5 E 2,2,1 & E 2,2,5 distance to hole in Cutter Base (y)
R 2,2,6 E 2,2,6 & E 2,2,7 distance from head to slot on Pin (z)
R 2,2,7 E 2,2,8 & E 2,2,9 distance from rod to fulcrum tip on Handle (y)  

Table 3.3.  Description of Intra-Part Relationships in Fingernail Clipper 
 

An arbitrary intra-part relationship, Ri,j,k, is composed of a chain of di,j,k serially-linked 

dimensions, where di,j,k is any number between one and six (in assemblies with multiple 

assembly states, Ri,j,k can also be contain linking KCs from a previous assembly and these 

are also counted as dimensions when determining di,j,k).  For an arbitrary configuration, 

Bi,j, of an assembly, the total number of dimensions in that configuration, dti,j, is 

computed as follows: 
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Equation 3.6 
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The set of all nominal values for the dimensions of an arbitrary configuration, Bi,j, can be 

contained in a (dti,j x 1) vector, [Dn]i,j (angles should be expressed in radians not degrees) 

called the configuration-level dimension nominal value matrix.  The set of all dimension 

directions (θx = 1, θy = 2 , θz = 3, x = 4, y = 5 , and z = 6) can be contained in a (dti,j x 1) 

vector [Dd]i,j called the configuration level dimension direction matrix.  Entry [Dnk]i,j is 

therefore the kth dimension of the jth configuration in the ith assembly state.  For example, 

if [Dd3]2,2 equals one, then the third dimension in the second configuration of the second 

assembly state is an angle of rotation about the X-axis in the Y-Z plane of the coordinate 

frame local to that dimension.   

 

Since a single dimension may be included in multiple configurations, another counting 

variable, dtt, is defined as the total number of unique dimensions (now excluding linking 

KCs) for an entire assembly and in general: 

 

∑∑
= =

≠
a

i

b

j
ji

i

dtdtt
1 1

,  

Equation 3.7 
 

Dimensions for an entire assembly are labeled D1, D2,…, Ddtt.  For example, D7 would be 

the seventh dimension of an assembly and it can be included in one or more 

configurations.  For an entire assembly, the set of all nominal values for the dimensions 

in that assembly can be contained in a (dtt x 1) vector [Dn] called the nominal dimension 
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matrix.  The set of all dimension directions (θx = 1, θy = 2 , θz = 3, x = 4, y = 5 , and z = 

6) can be contained in a (dtt x 1) vector [Dd], called the dimension direction matrix.  The 

set of all upper and lower bounds on those dimensions (due to packaging constraints or 

fabrication limitations) can be contained respectively in two (dtt x 1) vectors [Dul] and 

[Dll], called respectively the upper dimension bound and lower dimension bound 

matrices.  [Dni] is therefore the nominal value of the ith dimension in the assembly.  If 

[Dd4] equals two, then the fourth dimension in the assembly is an angle of rotation about 

the Y-axis in the X-Z plane of the coordinate frame local to that dimension.   

 

An arbitrary dimension, Di, can be assigned a PDF, fDi (δi) , and a CDF, FDi (δi) that are 

characterized by specifying distribution type and the corresponding distribution 

parameters (depending on the distribution anywhere from one to three parameters are 

needed).  Each PDF and CDF also has an inverse (which may not be defined for all real 

numbers), denoted generically f -1
Di (δi) and F -1

Di (δi) respectively.  These functions take 

probability densities or probabilities as inputs and output the corresponding values that 

have those probability densities or probabilities.  The set of all distribution types can be 

contained in a (dtt x 1) vector of character strings, [Dt] called the dimension distribution 

type matrix.  Each row in [Dt] is a string of letters that equals the name of a distribution 

(e.g. ‘Normal’, ‘Uniform’, ‘Poisson’, etc), the set of all distribution parameters for these 

distributions can be contained in a (dtt x 3) matrix, [Dp] called the dimension distribution 

parameter matrix, where each row contains the distribution parameters for the distribution 
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of the corresponding dimension (if a distribution has less than three parameters, then the 

extra entries should be entered as “NaN” meaning “Not a Number”).   

 

Analysis of the fingernail clipper reveals that B1,1 has five dimensions and B2,2 has 

fourteen (dt1,1 = 5, dt2,2 = 14).  Of the fourteen dimensions in B2,2, four are linking KCs 

from B1,1 (therefore dtt = 5 + 14 - 4 = 15 instead of 19 as one might expect).  Table 3.4 

shows the chain of serially-linked dimensions that comprises each intra-part relationship 

for configurations B1,1 and B2,2 of the fingernail clipper.  For each intra-part relationship 

the chain starts at the first feature listed in the second column of Table 3.3 and ends at the 

second feature listed in second column of Table 3.3.  Figure 3.11, Figure 3.12, and Figure 

3.13 show schematically how the dimensions for the fingernail clipper relate to the 

features and intra-part relationships.  Figure 3.14 shows [Dn]1,1, [Dn]2,2, [Dd]1,1, [Dd]2,2, 

[Dn], [Dd], [Dul], and [Dll] for the fingernail clipper.  Figure 3.15 shows [Dt] and [Dp] 

that contain the distribution types and characteristic parameters respectively for the PDFs 

and CDFs representing each dimension of the fingernail clipper (while this example only 

uses distributions that are either Uniform or Normal, this methodology is not limited to 

such distributions).   
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Intra-Part 
Relationship

Features It Joins

Chain of Dimensions or Linking 
KC's Comprising Each Intra-

Part Relationship (in order 
from 1st feature to 2nd feature)

R 1,1,1 E 1,1,1 & E 1,1,2 D 1 ,D 2 ,D 3

R 1,1,2 E 1,1,3 & E 1,1,4 D 4

R 1,1,3 E 1,1,5 & E 1,1,6 D 5

R 2,2,1 E 2,2,1 & E 2,2,2 KC 1 ,KC 2 ,KC 3 ,KC 4

R 2,2,2 E 2,2,1 & E 2,2,3 D 6 ,D 7 ,D 8

R 2,2,3 E 2,2,10 & E 2,2,9 D 9

R 2,2,4 E 2,2,9 & E 2,2,11 D 10 ,D 11 ,D 12

R 2,2,5 E 2,2,1 & E 2,2,5 D 13

R 2,2,6 E 2,2,6 & E 2,2,7 D 14

R 2,2,7 E 2,2,8 & E 2,2,9 D 15  
Table 3.4.  Chain of Dimensions or KCs Comprising Each Intra-Part Relationship 

 
 

 

R1,1,3 = D5 = 1.36 

Upper Cutter 
Base ( P1,1,3 ) 
 

R1,1,2 = D4 = 1.36 

Lower 
Cutter 
( P1,1,2 ) 
 

Fixture  
( P1,1,1 ) 

R1,1,1 = D1, D2, D3 = 0,0,0 

B1,1 

Y1,1,3 

Z1,1,3 

Y1,1,2 

X1,1,2 

Dimension 
Directions: 
D1 =X 
D2 =Y  
D3 =θZ 
D4 =Z 
D5 =Z 

Y1,1,5 
Z1,1,5 

Y1,1,6 

Z1,1,6 

Y1,1,1 

X1,1,1 

Y1,1,4 
Z1,1,4 

 
Figure 3.11.  Dimensions for Configuration B1,1 of the Fingernail Clipper 
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Portion of 
Handle  
( P2,2,4 ) 

Pin 
( P2,2,3 ) 

R2,2,6 = D14 = 8.41 
Y2,2,5 

Z2,2,5 

Dimension 
Directions: 
D9 = θX 
D10 =X 
D11 =Y 
D12 = θZ  
D14 =Z 
D15 =Y 
 

R2,2,7 = D15 = -2.96 

X2,2,7 

Y2,2,7 

Upper Cutter 
Body ( P2,2,2 ) 

R2,2,3 = D9 = -.185 
Y2,2,10 

Z2,2,10 

D10 = -40.24 
D11 = -2.81 

Z2,2,9 

Y2,2,9 

Z 

Y 

D12 = 0 

Z2,2,11 

Y2,2,11 

Y2,2,6 

Z2,2,6 

X2,2,8 

Z2,2,8 

 
Figure 3.12.  Dimensions for Some Parts in Configuration B2,2  

 

 

Cutter  
Base ( P2,2,1 ) 

Y2,2,1 

Z2,2,1 

R2,2,1  

R2,2,5 = D13 =-35.18 

D6 =-40.34 

Y 

Z D6 =2.81 

Y2,2,3 

Z2,2,3 
D8 =0 Dimension 

(or KC) 
Directions: 
KC1 = Z 
KC2 =X 
KC3 =Y 
KC4 = θZ  
D6 =X 
D7 =Y 
D8 = θZ 
D13 =Y 

R2,2,1 = KC1, KC2 , KC3, KC3=? 

Y2,2,4 

Z2,2,4 

 
Figure 3.13.  Dimensions for Cutter Base in Configuration B2,2 
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Figure 3.14.  Dimension Nominal Values, Directions, and Upper and Lower Limits 

 

[ ] [ ]

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

04.96.2

04.41.8

05.18.35

0028.003.

73.289.2

028.24.40

001.185.

0035.0

91.275.2

02.34.40

006.36.1

01.36.1

0023.0015.

028.028.

03.0

DNaN

DNaN

DNaN

DNaN

DNaN

DNaN

DNaN

DNaN

DNaN

DNaN

DNaN

DNaN

DNaN

DNaN

DNaN

Dp

DNormal

DNormal

DNormal

DNormal

DUniform

DNormal

DNormal

DNormal

DUniform

DNormal

DNormal

DNormal

DUniform

DUniform

DNormal

Dt

−

−

−−
−
−

−

−−
−

==

 

 

 

 

 
Figure 3.15.  Distribution Types & Parameters for Dimensions 

 

Notice that some of the entries in [Dn]2,2 are unknown variables from [KCn]1,1.  In this 

way, two configurations of a Type-II assembly can be linked together.  In general, if the 
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set of dimensions for an arbitrary configuration, Bi,j, includes one or more linking KCs 

from one or more configurations of a previous state, when forming [Dn]i,j and [Dd]i,j, the 

nominal values (even if unknown) and directions of the linking KCs should be entered 

before the values and directions of the rest of the dimensions.  Following this convention 

facilitates the process of relating configurations to each other that will be shown in later 

in this chapter and also in Chapter 4.   

 
 
3.1.7 Identifying Real Mates 

An arbitrary configuration Bi,j in an assembly contains mi,j real mates that connect pairs 

of features. Mates are each labeled using a triple subscripted M such that Mi,j,k is the kth 

mate in the jth configuration in the ith assembly state.  M3,3,1  would therefore be the first 

mate in the third configuration of the third assembly state.   

 

Analysis of fingernail clipper reveals that B1,1 has three mates and B2,2 has four mates 

(m1,1 = 3 and m2,2 = 4).  Table 3.1 lists the mates, the features they join, and a brief 

description of each (more concise descriptions will be given later). Figure 3.16 and 

Figure 3.17 show the mates on the diagrams for B1,1 and B2,2. 

Real Mate Features It Joins Description
M 1,1,1 E 1,1,1 & E 1,1,3 rigid clamp allowing no motion
M 1,1,2 E 1,1,4 & E 1,1,5 two planar surfaces in contact
M 1,1,3 E 1,1,1 & E 1,1,6 clamp allowing some motion
M 2,2,1 E 2,2,4 & E 2,2,5 compliant revolute joint
M 2,2,2 E 2,2,6 & E 2,2,7 revolute joint
M 2,2,3 E 2,2,8 & E 2,2,9 revolute joint
M 2,2,4 E 2,2,2 & E 2,2,10 cylinder on planar surface  

Table 3.5. Description of Real Mates in Fingernail Clipper 
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Y 

Z 
M1,1,2 

M1,1,1 

M1,1,3 
E1,1,6 

E1,1,3 

E1,1,1 

E1,1,5 

E1,1,4 

E1,1,2 

 
Figure 3.16.   Enlarged Diagram of Configuration B1,1 Showing Real Mates 
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M2,2,4 
(Compliant)  
 

M2,2,3 

M2,2,2 

M2,2,3 

E2,2,3 
E2,2,11 

E2,2,1 

E2,2,2 

E2,2,10 

E2,2,9 

E2,2,4 

E2,2,5 

E2,2,6 

E2,2,7 

E2,2,8 

 
Figure 3.17.  Enlarged Diagram of Configuration B2,2 Showing Real Mates 

 



 
 
 
 
 

92 

An arbitrary real mate, Mi,j,k, is composed of a six elements where each element is either 

a DOF, a DOS, or a DOC.  In other words, Mi,j,k can be expressed as a continuous serial 

chain of fi,j,k DOF, ci,j,k DOC, and si,j,k DOS.  fi,j,k is the number of DOF in Mi,j,k.  

Likewise, ci,j,k is the number of DOC and si,j,k is the number of DOS in Mi,j,k.  In each 

chain, the DOC must always come first followed by the DOS and then the DOF.  fi,j,k, 

ci,j,k, and si,j,k for any real mate must always be zero or positive and will always obey the 

following relationship: 
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Equation 3.8 
 

If Mi,j,k is a compliant mate, then it will have an associated (si,j,k x si,j,k) matrix [Sk]i,j,k, 

called the mate-level stiffness matrix.  Entry [Skl,n]i,j,k is equal to the magnitude of force 

or moment transmitted in the direction of the lth DOS when a unit deflection occurs in the 

nth DOS.  If Mi,j,k does not have any DOS, then it is a non-compliant mate which means 

that [Sk]i,j,k, is a null matrix and Equation 3.8 simplifies as follows: 
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Equation 3.9 
 

For an arbitrary configuration Bi,j, the total number of DOF, fti,j, the total number of 

DOC, cti,j, and the total number of DOS, sti,j, are computed respectively as follows: 
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Equation 3.10 
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Equation 3.11 
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Equation 3.12 
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fti,j, cti,j, and sti,j for any configuration must always be zero or positive and must always 

obey the following relationship: 
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Equation 3.13 
 

For an arbitrary configuration, Bi,j, the initial guesses for the nominal values of the DOF 

and DOS and exact nominal values for the DOC are contained in a (fti,j x 1) vector, 

[Fn]i,j, a (sti,j x 1) vector, [Sn]i,j, and a (cti,j x 1) vector, [Cn]i,j respectively called the 

configuration level DOF, DOC, and DOS nominal value matrices.  [Cnk]i,j is therefore the 

nominal value of the kth DOC in the jth configuration of the ith assembly state (angles 

should be expressed in radians not degrees).  Upper bounds on the nominal values of the 

DOF and DOS are contained in a (fti,j x 1) vector, [Ful]i,j, and a (sti,j x 1) vector, [Sul]i,j, 

respectively called the configuration-level upper DOF and upper DOS bound matrices.  

Lower bounds on the nominal values of the DOF and DOS are contained in a (fti,j x 1) 

vector, [Fll]i,j, and a (sti,j x 1) vector, [Sll]i,j, respectively called the configuration-level 

lower DOF and lower DOS bound matrices.   

 

The directions and pitches for the DOF, DOC, and DOS are contained in a (fti,j x 4) 

matrix, [Fd]i,j, a (cti,j x 4) matrix, [Cd]i,j, and a (sti,j x 4) matrix, [Sd]i,j respectively called 

the configuration level DOF, DOC, and DOS direction matrices.  The first three entries in 
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each row of [Fd]i,j are the x, y, and z components of a unit vector that describes the 

direction of translational, rotational or helical motion allowed by a DOF,  the first three 

entries in each row of [Cd]i,j are the x, y, and z components of a unit vector that describes 

the direction in which forces, moments, or force/moment couples are transmitted by a 

DOC,  and the first three entries in each row of [Sd]i,j are the x, y, and z components of a 

unit vector that describes the energy-storing direction of a DOS.  The vector is located in 

a coordinate frame local to the corresponding DOF, DOC, or DOS.  The final entry in 

each row of [Fd]i,j, [Cd]i,j, and [Sd]i,j is the pitch of the DOF, DOC, or DOS and can be 

any number between zero (for pure rotation) and infinity (for pure translation).   

 

For example, to find the direction of the second DOS in the third configuration of the 

fourth assembly state, one would look at [Sd2,1:4]4,3.  Further, if [Cd2,1:4]4,3 equals     

[0.7071 , 0.7071 , 0 , ∞], this would mean the second DOC in third configuration of the 

fourth assembly state is capable of transmitting a pure translational force directed along 

an vector that is rotated forty-five degrees from the X-axis in the X-Y plane of the 

coordinate frame local to that DOC.  If [Fd3,1:4]1,1 equals [0 , 0 , 1 , 0], this would mean 

the third DOF in first configuration of the first assembly state is a pure rotational motion 

directed along an axis aligned with the Z-axis of the coordinate frame local to that DOF.   

 

For an arbitrary configuration, Bi,j, the stiffness matrices for all the compliant mates can 

be contained in an (sti,j x sti,j) matrix, [SK]i,j, called the configuration-level stiffness 

matrix that is composed as follows: 
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Equation 3.14 
 

Entry [SKk,l]i,j is equal to the magnitude of force or moment transmitted in the direction 

of the kth DOS when a unit deflection occurs in the lth DOS in configuration Bi,j.   

 

Since individual DOF, DOC, and DOS are sometimes present in multiple configurations, 

three other numbers, ftt, ctt, and stt are defined as the total number of unique DOF, DOC, 

and DOS in an entire assembly respectively.  Since DOF, DOC, and DOS may be present 

in multiple configurations, the sum of fti,j, cti,j, and sti,j for all configurations in an 

assembly does not generally yield ftt, ctt, and stt respectively.  This can be explicitly 

expressed as follows:: 
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Equation 3.15 
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The DOF, DOC, and DOS elements for an entire assembly are respectively labeled F1, 

F2,…, Fftt, C1, C2,…, Cctt, and S1, S2,…, Sstt.  For example, S9 would be the ninth DOS of 

an assembly and can be included in one or more configurations.  The directions and 

pitches for the DOF, DOC, and DOS of an entire assembly are contained in a (ftt x 4) 

matrix, [Fd], a (ctt x 4) matrix, [Cd], and a (stt x 4) matrix, [Sd] respectively called the 

DOF, DOC, and DOS direction matrices.  The first three entries in each row of [Fd] are 

the x, y, and z components of a unit vector that describes the direction of translational, 

rotational or helical motion allowed by a DOF,  the first three entries in each row of [Cd] 

are the x, y, and z components of a unit vector that describes the direction in which 

forces, moments, or force/moment couples are transmitted by a DOC,  and the first three 

entries in each row of [Sd] are the x, y, and z components of a unit vector that describes 

the energy-storing direction of a DOS.  The vector is located in a coordinate frame local 

to the DOF, DOC, or DOS.  The final entry in each row of [Fd], [Cd], and [Sd] is the 

pitch of the DOF, DOC, or DOS and can be any number between zero (for pure rotation) 

and infinity (for pure translation). 

 

For example to find the direction for S4 in the assembly one would look at [Sd4,1:4].  If 

[Fd6,1:4] equals [.866 , 0 , .5 , 2], this would mean the sixth DOF is a helical motion along 

a vector that is rotated thirty degrees the X-axis in the X-Z plane of the coordinate frame 

local to that DOF.  One radian of rotation about that vector will cause two length units of 

translation along that vector. 
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For an entire assembly, the nominal stiffness matrices can be compiled into an (stt x stt) 

matrix, [SK] (without subscripts outside of the brackets), called the assembly-level 

stiffness matrix.  Entry [SKi,j] is equal to the magnitude of force or moment transmitted in 

the direction of the ith DOS when a unit deflection occurs in the jth DOS of the assembly.   

 

Analysis of fingernail clipper reveals that configuration B1,1 has 6 DOF, 12 DOC, and 0 

DOS and configuration B2,2 has 6 DOF, 17 DOC, and 1 DOS.  There are no DOF, DOC, 

or DOS that are part of more than one configuration  (     ft1,1 = 6, ct1,1 = 12, st1,1 = 0, ft2,2 = 

6, ct2,2 = 17, st2,2 = 1, ftt = 12, ctt = 29, and stt = 1).  Table 3.6 shows the serial chain of 

continuous DOF, DOC, and DOS that comprise each real mate in configurations B1,1 and 

B2,2 of the fingernail clipper. Figure 3.18 shows [Fn]1,1, [Ful]1,1, [Fll]1,1, [Sn]1,1, [Sul]1,1, 

[Sll]1,1, [Cn]1,1, [Fd]1,1, [Sd]1,1, [Cd]1,1, [SK]1,1, [Fn]2,2, [Ful]2,2, [Fll]2,2, [Sn]2,2, [Sul]2,2, 

[Sll]2,2, [Cn]2,2, [Fd]2,2, [Sd]2,2, [Cd]2,2, [SK]2,2, [Fd], [Sd], [Cd], and [SK] for the 

fingernail clipper.  It is important to note that the values in [Fn]1,1, [Sn]1,1, [Fn]2,2, and 

[Sn]2,2 are only initial guesses for the nominal values.  This is because the actual nominal 

values of the DOF and DOS can only be determined exactly after the parts are assembled 

analytically.  Later how to solve for these values exactly (it is this solving process that 

requires the nominal values of the DOF and DOS to be bounded).   
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Figure 3.18.  DOF, DOC, and DOS Nominal Values, Directions, & Pitches 

 

Real Mate
Features It 

Joins
DOF 

(direction)
DOC (direction)

DOS  
(direction)

Chain of DOF, DOS, & 
DOC Comprising Each 

Real Mate (in order from 
1st Feature to 2nd Feature)

M 1,1,1 E 1,1,1 & E 1,1,3 None 6 (x,y,z,θx,θy,θz) None C 1 ,C 2 ,C 3 ,C 4 ,C 5 ,C 6

M 1,1,2 E 1,1,4 & E 1,1,5 3 (x,y,θz) 3 (z,θx,θy) None C 7 ,C 8 ,C 9 ,F 1 ,F 2 ,F 3

M 1,1,3 E 1,1,1 & E 1,1,6 3 (z,θx,θy) 3 (x,y,θz) None C 10 ,C 11 ,C 12 ,F 4 ,F 5 ,F 6

M 2,2,1 E 2,2,4 & E 2,2,5 1 (θz) 3 (x,y,z,θx,θy) None C 13 ,C 14 ,C 15 ,C 16 ,C 17 ,F 7

M 2,2,2 E 2,2,6 & E 2,2,7 1 (θx) 3 (x,y,z,θy,θz) None C 18 ,C 19 ,C 20 ,C 21 ,C 22 ,F 8

M 2,2,3 E 2,2,8 & E 2,2,9 1 (x,y,θx,θz) 3 (z,θy) None C 23 ,C 24 ,F 9 ,F 10 ,F 11 ,F 12

M 2,2,4 E 2,2,2 & E 2,2,10 None 3 (x,y,z,θy,θz) 1 (θx) C 25 ,C 26 ,C 27 ,C 28 ,C 29 ,S 1  
Table 3.6. Chain of DOF, DOC & DOS Comprising Each Real Mate 
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3.1.8 Creating Annotated Liaison Diagrams 

Using the data above, each assembly can be represented with bt annotated liaison 

diagrams [Bourjault], one for each configuration.  In this work, the annotated liaison 

diagram for an arbitrary configuration Bi,j consists of pi,j circles representing the pi,j parts 

(remember that compliant entities like the “cutter” are modeled as multiple parts related 

by compliant mates), ei,j nodes representing the ei,j features, mi,j arcs representing the mi,j 

real mates between parts, ri,j arcs representing the ri,j intra-part relationships inside of 

parts, and hi,j directed double lines representing the hi,j KC feature pairs.  Each real mate, 

intra-part relationship, and KC feature pair, must also be assigned a direction.  This 

direction always points away from the first feature in each relationship.  In addition, each 

annotated liaison diagram must be assigned a base feature. 

 

The annotated liaison diagrams for configurations B1,1 and B2,2, are shown in Figure 3.19.  

A key describing the six different symbols and the seven different labels used in the 

diagrams is shown in Figure 3.20.  The base feature for B1,1 is E1,1,1  and the base feature 

for B2,2 is  E2,2,1.  The base part for B1,1 is P1,1,1  (the fixture) and the base part for B2,2 is  

P2,2,1 (the cutter base). 
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Upper 
Cutter Base Lower  
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Fixture P1,1,1 

P1,1,3 

P1,1,2 

M1,1,1 

M1,1,2 

M1,1,3 

R1,1,1 

R1,1,2 
R1,1,3 H1,1,1 

Configuration 
B1,1 E1,1,1 E1,1,2 

E1,1,3 

E1,1,4 E1,15 

E1,1,6 

Configurations B1,1 and B2,2 are 
linked by setting R2,2,1=H1,1,1   
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Z 

Pin Handle 

M2,2,1 
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Cutter 
Base Upper Cutter 

Body 
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Z 

or -90 
-1.57 rad 

E2,2,4 

 

 
Figure 3.19.  Annotated Liaison Diagrams for Fingernail Clipper 

 

KEY for 
SYMBOLS 

= Part 

= Feature 

= Real Mate 

= Intra-Part 
Relationship 

= KC Feature 
Pair 

KEY for 
LABELS 

Part = Pi,j,k 

Feature = Ei,j,k 

Real Mate = Mi,j,k 

Intra-Part 
Relationship 

KC Feature 
Pair 

= Ei,j,k 

= Hi,j,k 

State = Ai 

Configuration = Bi,j 

= Base Feature 

 

 
Figure 3.20.  Key for Annotated Liaison Diagram 
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3.1.9 Finding Closed-Loops & Open-Loops 

An arbitrary configuration Bi,j in an assembly contains λi,j independent closed-loops and 

gi,j independent open-loops (it will be shown later how to find the set of independent 

loops for a configuration).  Independent closed-loops and independent open-loops are 

each labeled using a triple subscripted Λ or G respectively such that Λi,j,k is the kth 

independent closed-loop in the jth configuration in the ith assembly state and Gi,j,k is the kth 

independent open-loop in the jth configuration in the ith assembly state.  For an arbitrary 

configuration Bi,j, the number of independent closed-loops, λi,j can be computed as 

follows (adapted from [Seshu and Reed]): 

 

i

jijiji

bj

ai

for

pm
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K
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Equation 3.16 
 

A closed-loop exists in a configuration when one can start at a feature, traverse the arcs 

(either real mates or intra-part relationships) to other features, and return to the same 

feature without back tracking or crossing the path of travel.  The base feature should 

always be selected so that it is part of at least one closed-loop, unless the configuration 

has no closed-loops, in which case any feature will suffice.   
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An open-loop in a configuration exists when one can start at the base feature and traverse 

the arcs to other features, finally arriving at a feature that only shares one arc with other 

features (note that the feature at the end of each open-loop should be part of a KC feature 

pair, otherwise there is no reason to include the open-loop in the model).  Each open-

loop, Gi,j,k, is assigned a virtual mate, Vi,j,k, that is composed of a chain of six serially-

linked DOV that starts at the base feature and ends at the feature at the end of the open-

loop the virtual mate is assigned to.  Each open-loop must also be assigned to one of the 

hi,j KC feature pairs.  Each virtual mate contains one DOV for each of the coordinate 

directions local to a coordinate frame that is located at the first feature of the KC feature 

pair the open-loop is assigned to.  The DOV of virtual mates are always put in the 

following order: θx first, θy second, θz third, x fourth, y fifth, and z sixth. The total 

number of DOV, for an arbitrary configuration is equal to 6gi,j.  Individual open-loops 

and hence individual DOV are sometimes present in multiple configurations so vtt is 

defined as the total number of unique DOV in an entire assembly.  The DOV in an entire 

assembly are labeled V1, V2,…, Vvtt and in general: 
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Equation 3.17 
 

For a given configuration, a complete set of independent loops, both open and closed, 

exists when each loop in the set contains at least one real mate or intra-part relationship 

that is not shared by any other loop (either open or closed) and all real mates and intra-
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part relationships are part of at least one loop (either open or closed).  Figure 3.21 and 

Figure 3.22 indicate the locations of the independent loops in configuration B2,2 and B1,1 

of the fingernail clipper respectively (λ1,1 = 1, g1,1 = 0, λ2,2 = 1, and g2,2 = 2).  Table 3.7 

shows the set of features contained in each loop and the set of serially-linked DOV 

connecting the base feature to the end of each open-loop. 

  

 

Y 

Z 

E2,2,3 
E2,2,11 

E2,2,1 

E2,2,2 

E2,2,10 

E2,2,9 

E2,2,4 

E2,2,5 

E2,2,6 

E2,2,7 

E2,2,8 

Λ2,2,1 
G2,2,2 

G2,2,1 

 
Figure 3.21.  Enlarged Diagram of Configuration B2,2 Showing Independent Loops 

 



 
 
 
 
 

105 

 

Y 

Z 

E1,1,6 

E1,1,3 
E1,1,1 

E1,1,5 

E1,1,4 

E1,1,2 

Λ1,1,1 
 

Figure 3.22.   Enlarged Diagram of Configuration B1,1 Showing Closed-Loop 
 

Closed-Loop

Λ1,1,1

Λ2,2,1

Open-Loop
Features it Contains (in order 

from beginning to end)

Chain of  DOV 
Connecting Base and 
End Features (in order 
from Base to End)

KC Feature 
Pair it is 
assigned to

First Feature 
in this KC 
Feature Pair

G 2,2,1 E 2,2,1 ,E 2,2,2 ,E 2,2,10 ,E 2,2,9 ,E 2,2,11 V 1 ,V 2 ,V 3 ,V 4 ,V 5 ,V 6 H 2,2,1 E 2,2,3

G 2,2,2 E 2,2,1 ,E 2,2,3 V 7 ,V 8 ,V 9 ,V 10 ,V 11 ,V 12 H 2,2,1 E 2,2,3

Features it Contains (in order from beginning to end)

E 1,1,1 ,E 1,1,3 ,E 1,1,4 ,E 1,1,5 ,E 1,1,6 ,E 1,1,2 ,E 1,1,1,

E 2,2,1 ,E 2,2,4 ,E 2,2,5 ,E 2,2,6 ,E 2,2,7 ,E 2,2,8 ,E 2,2,9 ,E 2,2,10 ,E 2,2,2 ,E 2,2,1

 
Table 3.7.  Description of Each Loop of the Fingernail Clipper 

 

One way to identify the complete set of independent loops for a configuration uses the 

concept of a spanning tree [Seshu and Reed].  Here a spanning tree is seen as a simplified 

version of an annotated liaison diagram that includes only enough real mates and intra-

part relationships to connect all the features but still contains no closed-loops.  Once a 

spanning tree is identified, real mates and intra-part relationships are then added to the 
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spanning tree one at a time.  Each time a real mate or intra-part relationship is added, one 

or more closed-loops will be formed.  Arbitrarily, one of these closed-loops is chosen and 

it becomes part of the complete set of independent closed-loops.  Real mates and intra-

part relationships are continually added to the spanning tree one at a time until the 

annotated liaison diagram is complete and the complete set of independent closed-loops 

has been identified. 

 

Once the set of independent closed-loops has been identified, the set of independent 

open-loops can be added.  The set of independent open-loops contains one open-loop for 

each feature in the annotated liaison diagram (except the base feature) that only shares 

one real mate or intra-part relationship with another feature.  Both the open-loops and 

closed-loops in this complete independent set must be assigned directions.  An open-loop 

is always assigned a direction that points away from the base feature and point towards 

the feature at the end of the open-loop.  A closed-loop can be assigned either direction.  

Closed-loops are represented on an annotated liaison diagram with a directed circle and 

open loops are indicated by a double arrow pointing to the feature at the end of the open-

loop. 

  

Figure 3.23 shows how the spanning tree technique was used to find the loops for the 

fingernail clipper.  The completed annotated liaison diagrams including loops are shown 

in Figure 3.24.  A key for the labels and symbols is shown in Figure 3.25   
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Figure 3.23.  Finding the Closed-Loops of an Assembly Using Spanning Trees 
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Figure 3.24.  Completed Annotated Liaison Diagrams Including Loops 
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KEY for 
SYMBOLS 
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KC Feature 
Pair 

= Ei,j,k 

= Hi,j,k 

State = Ai 

Configuration = Bi,j 

= Base Feature 

= Independent 
Closed-Loop 

= Independent 
Open-Loop 

Independent 
Closed-Loop 

Independent 
Open-Loop 

= Λi,j,k 

= Gi,j,k 

 

 
Figure 3.25.  Key for Symbols and Labels in Annotated Liaison Diagram 

 
 

3.1.10 Finding Chains for DOF, DOC, DOS, Dimensions, KCs, & Loops 

For an arbitrary configuration, Bi,j, each of the λi,j independent closed-loops can be 

expressed as a chain of serially-linked DOF, DOC, DOS, and dimensions that connects 

the features in that closed-loop. Each of the gi,j independent open-loops can be expressed 

as a chain of serially-linked DOF, DOC, DOS, and dimensions that connects the base 

feature to the feature at the end of that open-loop.  Each of the kcti,j KCs can be expressed 

as a chain of serially-linked DOF, DOC, DOS, and dimensions that connects the first 

feature to the second feature related by the KC.  Finally, the location of each of the dti,j 
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dimensions,  fti,j  DOF, cti,j DOC, and sti,j DOS can be expressed as a chain of serially-

linked DOF, DOC, DOS, and dimensions that connects it to the base feature.   

 

If the dimensions are numbered 1 through dtt, the DOF are numbered dtt+1 through 

dtt+ftt, the DOS are numbered dtt+ftt+1 through dtt+ftt+stt, and DOC are numbered 

dtt+ftt+stt+1 through dtt+ftt+stt+ctt, then for an arbitrary configuration, Bi,j, the set of all 

chains describing the global location of all the dimensions can be expressed as a matrix 

[CHd]i,j, called the dimension chain matrix. [CHd]i,j has dti,j rows, one for each 

dimension in the configuration.  In general, the number of columns in [CHd]i,j, will be 

different for each assembly. 

 

The set of all these chains describing the global location of all the DOF, DOS, and DOC 

can be expressed as a matrix [CHm]i,j, called the mate chain matrix (the order of the rows 

is DOF first, then DOS, then DOC).  [CHm]i,j will always have 6mi,j rows but it can have 

any number of columns (just like [CHd]i,j). 

 

The set of all chains describing the independent closed-loops can be expressed as a 

matrix [CHc]i,j, called the closed-loop chain matrix.  [CHc]i,j, will always have λi,j rows, 

one for each independent closed-loop, but it can have any number of columns.  The set of 

all chains describing the independent open-loops can be expressed as a matrix [CHo]i,j, 

called the open-loop chain matrix.  [CHo]i,j has gi,j rows, one for each independent open-

loop, and can have any number of columns.  Finally, the set of chains describing the KCs 
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can be expressed as a matrix [CHk]i,j, called the KC chain matrix.  [CHk]i,j has kcti,j 

rows, one for each KC, and can have any number of columns. 

 

In summary, each row in [CHd]i,j, [CHm]i,j, [CHc]i,j, [CHo]i,j, and [CHk]i,j, contains a set 

of integers that correspond to a chain of elements for the appropriate dimension, DOF, 

DOS, DOC, closed-loop, open-loop, or KC.  The number of columns in [CHd]i,j, 

[CHm]i,j, [CHc]i,j, [CHo]i,j, or [CHk]i,j, is equal to the number of elements in the longest 

chain.  For rows with fewer elements, the extra entries at the end should be entered as 

zeros.  For each row, the sign of the ith entry with value j is positive if the direction of the 

corresponding chain is the same as the direction assigned to the intra-part relationship or 

real mate containing the jth dimension, DOF, DOS, or DOC.  The sign of the ith entry is 

negative if the direction of the corresponding chain is opposite the direction assigned to 

the intra-part relationship or real mate containing the jth dimension, DOF, DOS, or DOC.  

Figure 3.26 shows in [CHd]1,1, [CHm]1,1, [CHc]1,1, [CHo]1,1, and [CHk]1,1, for 

configuration B1,1 of the fingernail clipper. 
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Figure 3.26.  Chain Matrices Configuration B1,1 of the Fingernail Clipper 

 

Figure 3.27 shows [CHo]2,2 for configuration B2,2 of the fingernail clipper (while not 

shown, [CHd]2,2, [CHm]2,2, [CHc]2,2, and [CHk]2,2, for configuration B2,2 of the 

fingernail clipper are formed in the same way as [CHd]1,1, [CHm]1,1, [CHc]1,1, and 

[CHk]1,1).  Notice that the last seven entries of the first row in [CHo]2,2 are not officially 

part of the chain of DOF, DOS, DOC, and dimensions that connect the base feature to the 

feature at the end of open-loop G2,2,1.  These extra entries are needed so that the DOV of 
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virtual mate V2,2,1 assigned to G2,2,1 will be oriented in the same way as the DOV of 

virtual mate V2,2,2 assigned to G2,2,2.  This insures that the KCs are captured properly. 
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These last entries must be 
added so that the 
directions of the DOV of 
the virtual mate V2,2,1 
associated with open-loop 
G2,2,1 will be aligned with 
the first feature E2,2,3 in 
KC feature pair H2,2,1 as 
indicated in Table 3.7. 

 
Figure 3.27.  [CHo]2,2 for Configuration B2,2 of the Fingernail Clipper 

 

3.1.11 Summary of Element Identification & Location Phase 

This concludes the Element Identification & Location Phase.  Table 3.8, Table 3.9, Table 

3.10, Table 3.11, Table 3.12, and list a description of the variables and matrices that are 
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generated by completing the tasks of this phase and list their values or sizes in the case of 

the fingernail clipper. 

 

Variable Description Value

a Total # of assembly states 2
bt Total # of configurations 5

kctt Total # of KC’s 11
kcl Total # of Linking KC’s 4
kcp Total # of Performance KC’s 7
dtt Total # of Dimensions 15
ftt Total # of DOF 12
ctt Total # of DOC 29
stt Total # of DOS 1  

Table 3.8.  Assembly-Level Counting Variables for Fingernail Clipper  
 

Vector or 
Matrix

Description Size

[Fd ] DOF directions for entire assembly (12  x 4 )

[Cd ] DOC directions for entire assembly (29  x 4 )

[Sd ] DOS directions for entire assembly (1 x 4 )

[SK ] Nominal DOS stiffnesses for entire assembly (1  x 1 )

[Dn ] Nominal dimension values for entire assembly (15 x 1 )

[Dul ] upper limits for dimensions for entire assembly (15 x 1 )

[Dll ] lower limits for dimensions for entire assembly (15 x 1 )

[Dd ] Dimension directions for entire assembly (15 x 1 )

[Dt ] Distribution types for dimensions of entire assembly (15 x 1 )

[Dp ] Distribution parameters for dimensions of entire assembly (15 x 3 )

[KCt ] Performance KC types for entire assembly (7 x 1 )

[KCd ] Performance KC directions for entire assembly (7 x 1 )

[KCn ] Performance KC nominal values for entire assembly (7 x 1 )

[KCL ] Performance KC spec. limits for entire assembly (7 x 1 )  
Table 3.9.  Assembly-Level Matrices for Fingernail Clipper  
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Variable Description Value

b 1 Total # of configurations in state A 1 1

b 2 Total # of configurations in state A 2 4

p 1,1 Total # of parts in configuration B 1,1 3

e 1,1 Total # features in configuration B 1,1 6

m 1,1 Total # of mates in configuration B 1,1 3

r 1,1 Total # of intra-part relationships in configuration B 1,1 3

h 1,1 Total # of KC feature pairs in configuration B 1,1 1

λ1,1 Total # indpendent closed-loops for configuration B 1,1 1

g 1,1 Total # indpendent open-loops for configuration B 1,1 0

ft 1,1 Total # of DOF for configuration B 1,1 6

ct 1,1 Total # of DOC for configuration B 1,1 12

st 1,1 Total # of DOS for configuration B 1,1 0

dt 1,1 Total # of Dimensions for configuration B 1,1 5

kct 1,1 Total # of KC's for configuration B 1,1 4

p 2,2 Total # of parts in configuration B 2,2 4

e 2,2 Total # features in configuration B 2,2 11

m 2,2 Total # of mates in configuration B 2,2 4

r 2,2 Total # of intra-part relationships in configuration B 2,2 7

h 2,2 Total # of KC feature pairs in configuration B 2,2 1

λ2,2 Total # independent closed-loops for configuration B 2,2 1

g 2,2 Total # independent open-loops for configuration B 2,2 2

ft 2,2 Total # of DOF for configuration B 2,2 6

ct 2,2 Total # of DOC for configuration B 2,2 17

st 2,2 Total # of DOS for configuration B 2,2 1

dt 2,2 Total # of Dimensions for configuration B 2,2 14

kct 2,2 Total # of KC's for configuration B 2,2 7  
Table 3.10.   Configuration-Level Counting Variables for Fingernail Clipper 
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Vector or 
Matrix

Description Size

[Fn ]1,1 Guesses for Nominal DOF Values for configuration B 1,1 (6  x 1 )

[Ful ]1,1 Upper Limits on DOF values for configuration B 1,1 (6  x 1 )

[Fll ]1,1 Lower Limits on DOF values for configuration B 1,1 (6  x 1 )

[Fd ]1,1 direcions for DOF in configuration B 1,1 (6  x 4 )

[Sn ]1,1 Guesses for Nominal DOS Values for configuration B 1,1 (0  x 0 )

[Sul ]1,1 Upper Limits on DOS values for configuration B 1,1 (0  x 0 )

[Sll ]1,1 Lower Limits on DOS values for configuration B 1,1 (0  x 0 )

[Sd ]1,1 direcions for DOS in configuration B 1,1 (0  x 0 )

[SK ]1,1 Nominal DOS stiffness matrix for configuration B 1,1 (0 x 0 )

[Cn ]1,1 Nominal DOC values for configuration B 1,1 (12  x 1 )

[Cd ]1,1 direcions for DOC in configuration B 1,1 (12 x 4 )

[Dn ]1,1 Nominal dimension values for configuration B 1,1 (5  x 1 )

[Dd ]1,1 direcions for dimensions in configuration B 1,1 (5  x 1 )

[KCn ]1,1 Nominal KC values for configuration B 1,1 (4  x 1 )

[KCd ]1,1  KC directions for configuration B 1,1 (4  x 1 )

[CHd ]1,1 Matrix of dimension chains for configuration B 1,1 (5  x 13 )

[CHm ]1,1 Matrix of DOF, DOS,and DOC chains for configuration B 1,1 (18  x 12 )

[CHc ]1,1 Matrix of closed-loop chains for configuration B 1,1 (1  x 23 )

[CHo ]1,1 Matrix of open-loop chains for configuration B 1,1 (0  x 0 )

[CHk ]1,1 Matrix of KC chains for configuration B 1,1 (4  x 8 )
 

Table 3.11.  Matrices for Configuration B1,1 of the Fingernail Clipper 
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Vector or 
Matrix

Description Size

[Fn ]2,2 Guesses for Nominal DOF Values for configuration B 2,2 (6  x 1 )

[Ful ]2,2 Upper Limits on DOF values for configuration B 2,2 (6  x 1 )

[Fll ]2,2 Lower Limits on DOF values for configuration B 2,2 (6  x 1 )

[Fd ]2,2 direcions for DOF in configuration B 2,2 (6  x 4 )

[Sn ]2,2 Guesses for Nominal DOS Values for configuration B 2,2 (1  x 1 )

[Sul ]2,2 Upper Limits on DOS values for configuration B 2,2 (1  x 1 )

[Sll ]2,2 Lower Limits on DOS values for configuration B 2,2 (1  x 1 )

[Sd ]2,2 direcions for DOS in configuration B 2,2 (1  x 4 )

[SK ]2,2 Nominal DOS stiffness matrix for configuration B 2,2 (1  x 1 )

[Cn ]2,2 Nominal DOC values for configuration B 2,2 (17  x 1 )

[Cd ]2,2 direcions for DOC in configuration B 2,2 (17 x 4 )

[Dn ]2,2 Nominal dimension values for configuration B 2,2 (14  x 1 )

[Dd ]2,2 direcions for dimensions in configuration B 2,2 (14  x 1 )

[KCn ]2,2 Nominal KC values for configuration B 2,2 (7  x 1 )

[KCd ]2,2  KC directions for configuration B 2,2 (7  x 1 )

[CHd ]2,2 Matrix of dimension chains for configuration B 2,2 (14  x 14 )

[CHm ]2,2 Matrix of DOF, DOS,and DOC chains for configuration B 2,2 (18  x 19 )

[CHc ]2,2 Matrix of closed-loop chains for configuration B 2,2 (1  x 32 )

[CHo ]2,2 Matrix of open-loop chains for configuration B 2,2 (2  x 21 )

[CHk ]2,2 Matrix of KC chains for configuration B 2,2 (7  x 17 )
 

Table 3.12.  Matrices for Configuration B2,2 of the Fingernail Clipper 
 

3.2 Element Quantification & Integration Phase 

The second phase of the modeling methodology is the Element Quantification & 

Integration Phase.  The goal of this phase is to create analytical forms of all the elements 

of the assembly that are relevant to its manufacturability and combined them together 

into one unified model.  Figure 3.28 shows a flow diagram for this phase.  Each box 

corresponds to a task that must be completed and the arrows between the boxes indicate 
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the order in which they should be completed.  The numbers in parentheses indicate which 

subsection of Section 3.2 addresses the corresponding task. 

 

 

For Each Open-
Loop Create HTM 

Describing Location 
of its End Feature 
Relative to Base 
Feature (3.2.5)  

Starting With 1st Configuration 
of 1st State Solve Closed-Loops 
To Find Nominal Values for Its 

DOF & DOS (3.2.3) 

For Each KC Create 
HTM Describing 

Location of 1st 
Feature It Relates 

Relative to 2nd 
Feature It Relates 

(3.2.4) 

Create Twist 
Representation 
For Each DOF, 
DOS, DOV, & 

Dimension (3.2.7) 
Create Wrench 
Representation 

for Each DOC & 
DOS (3.2.7) 

Starting With 1st 
Configuration of 1st 

State Create Analytical 
Model For Each 

Configuration (3.2.8) 

For Each DOF, DOC, 
DOS, & Dimension 

Create Its Homogeneous 
Transformation Matrix 

or HTM (3.2.1) 

Solve For 
Nominal KC 
Values (3.2.4) 

For Each DOF, DOC, 
DOS & Dimension 

Create HTM 
Representing Its 

Location Relative to 
Base Feature (3.2.6)   

For Each Linking 
KC Enter Its 

Nominal Value As 
Nominal Value For 

Corresponding 
Dimension in Linked 
Configuration (3.2.4) 

For Each 
Alignment KC 
Solve For Its 
Specification 
Limit (3.2.4)  

For Each 
Configuration 

Create Loop-Mate, 
Part-Mate, and 

Loop-Dimension 
Matrices (3.2.2) 

 
Figure 3.28.  Element Quantification & Integration Phase 

 

3.2.1 Creating Homogeneous Transformation Matrices 

Homogeneous Transformation Matrices, or HTMs are ( 4 x 4 ) matrices that can be used 

to describe the nominal position and orientation (hereafter the combination of position 

and orientation will be called location) of one coordinate frame relative to another in all 
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six coordinate directions.  HTMs have been used by [Denavit and Hartenberg] to 

represent kinematic linkages, by [Ahuja and Coons] and others for displaying CAD 

geometry on a computer screen, by [Paul] and others for modeling robots, and by 

researchers such as [Lee and Gossard] and [Whitney] for modeling and connecting parts 

in assemblies.   

 

HTMs have several useful properties.  For two coordinate frames, denoted 1 and 2, the 

basic equation for the HTM, [Z12], that describes the location of coordinate frame 2 

relative to coordinate frame 1 is as follows: 

 

[ ] [ ] [ ]
( )[ ] 








=

× sf

z12RR12
Z12

310
 

Equation 3.18 
 

[z12] is a ( 3 x 1 ) vector that describes the position of the second coordinate frame 

relative to the first,  [RR12] is a ( 3 x 3 ) matrix that describes the orientation of the 

second coordinate frame relative to the first, and sf is a scaling factor, which will always 

equal one in this work.  Expanded, Equation 3.18 takes the following form: 
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Equation 3.19 
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[z121], [z122], and [z123] are the positions of coordinate frame 2 along coordinate frame 

1’s, X- (or first), Y- (or second), and Z- (or third) axes respectively.  [RR12i,j] is the 

direction cosine of the ith coordinate axis in the frame 1 to the jth coordinate axis in the 

frame 2.   

 

HTMs have two useful properties.  First, if [Z12] describes the location of frame 2 

relative to frame 1, and [Z21] describes the location of frame 1 relative to frame 2, the 

following relationship holds:  

 

[ ] [ ] 1−= Z21Z12  
Equation 3.20 
 

Second, if [Z12] describes the location of frame 2 relative to frame 1, [Z23] describes the 

location of frame 3 relative to frame 2, and [Z13] describes the location of frame 3 

relative to frame 1, the following relationship is true:  

 

[ ] [ ][ ]231213 ZZZ =  
Equation 3.21 
 

Extending the property shown in Equation 3.21 to n coordinate frames yields the 

following equation: 

 

[ ] [ ][ ] ( )[ ]n1nZZ23Z12Z1n −= K  
Equation 3.22 
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The HTM representation, denoted [Dl]i,j,k (or for a linking KC [KC 

l]i,j,k) for an arbitrary 

nominal dimension, Dl (or linking KC KCl) with nominal value, [Dnk]i,j (or [KCnk]i,j) and 

direction, [Ddk]i,j (or [KCdk]i,j), is formulated as follows (shown for dimensions but 

extends equally to linking KCs): 
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Equation 3.23 
 

Figure 3.29 shows the HTMs for each dimension in the fingernail clipper that were 

obtained by entering the values from [Dn] and [Dd] (see Figure 3.14) into Equation 3.23.  
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[KC1], [KC2], [KC3], and [KC4] are the values of the linking KCs from B1,1 that become 

dimensions in B2,2 and as such they are expressed in terms of the unknown values in 

[KCn]1,1 (it will be shown how to solve for these values later). 
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Figure 3.29.  The HTM Representations for the Fingernail Clipper Dimensions 

 

The HTM representation, [F 
l]i,j,k, [C 

l]i,j,k, or [S 
l]i,j,k for an arbitrary DOF, Fk, DOC, Ck, or 

DOS, Sk, with nominal value (or initial guess), [Fnk]i,j, [Cnk]i,j, or [Snk]i,j and direction, 
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[Fdk,1:4]i,j, [Cdk,1:4]i,j, or [Sdk,1:4]i,j respectively is formulated as follows (shown only for 

DOF but extends equally to DOC and DOS by swapping out the appropriate variables):  
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Equation 3.24 
 

Figure 3.30 shows the HTM representation for each DOF, DOC, and DOS of the 

fingernail clipper obtained by substituting values from [Fn]1,1, [Fn]2,2, [Fd]1,1, [Fd]2,2, 
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[Cn]1,1, [Cn]2,2, [Cd]1,1, [Cd]2,2, [Sn]1,1, [Sn]2,2, [Sd]1,1, [Sd]2,2, (see Figure 3.18) into 

Equation 3.23.  Notice that the HTMs for the DOF and DOS are expressed in terms of the 

values in [Fn]1,1, [Fn]2,2, [Sn]1,1, and [Sn]2,2 since they contain only guesses and not 

exact values (it will  be shown below how to solve for these values). 
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Figure 3.30.  The HTMs for DOF, DOC, & DOS of the Fingernail Clipper  
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3.2.2 Create Part-Mate, Loop-Mate, & Loop-Dimension Matrices 

Network Theory (see [Seshu and Reed], [Strang], and [Davies, 1981]) can be used to 

analytically relate the various elements in an assembly to each other.  In Network Theory, 

graphs containing arcs (in this case the arcs are the intra-part relationships, the mates, and 

the DOF, DOC, DOS, DOV and dimensions that comprise them) and nodes (in this case 

the nodes are the parts and features) like an annotated liaison diagram, can be converted 

into two-dimensional matrices with the columns representing arcs and the rows 

representing either the loops or the nodes.  Specifically, there are three such matrices that 

will prove useful in this work: the part-mate matrix5, [PM]i,j the loop-mate matrix, [LM]i,j 

and the loop-dimension matrix [LD]i,j. 

 

For an arbitrary configuration, Bi,j, a ({pi,j -1} x {cti,j + sti,j }) matrix, [PM]i,j, called the 

part-mate matrix, can be formed using the annotated liaison diagram.  Entry [PMk,l]i,j  is a 

“+1” if the head of the arc representing the mate containing the lth DOC or DOS (DOS 

should always go after the DOC) for configuration Bi,j touches the jth part (excluding the 

base part) and a “-1” if the tail touches the jth part.  Entry [PMk,l]i,j  is a “0” if the arc 

representing the mate containing the lth DOC or DOS for configuration Bi,j does not touch 

the jth part.  Figure 3.31 shows [PM]1,1 and [PM]2,2 for the fingernail clipper. 

                                                 
5 This matrix is also called the incidence matrix in the literature [Seshu and Reed]. 
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Figure 3.31.  The Part-Mate Matrices for the Fingernail Clipper Example 

 
For an arbitrary configuration, Bi,j, a ({λi,j +g i,j } x {fti,j + sti,j + 6g i,j }) matrix [LM]i,j, 

called the loop-mate matrix, can be formed using the annotated liaison diagram.  Entry 

[LMk,l]i,j  is a “+1” if the arc representing the mate containing the lth DOF, DOS or DOV 

(the order should be DOF, then DOS, then DOV) for configuration Bi,j is in the jth 

independent loop (open or closed) and points in the same direction as the sense of the 

loop and a “-1” if it is in the jth independent loop but points in the opposite direction as 

the sense of the loop.  Entry [LMk,l]i,j  is a “0” if the mate containing the lth DOF, DOS, or 

DOV is not part of the jth independent loop.  Remember that each open-loop has one 

virtual mate containing six DOV that connect the base feature to the feature at the end of 

an open-loop and point away from the base feature.  DOV can never be included in a 

closed-loop and may only be part of a single open-loop.  If included in an open-loop, the 

corresponding entry will always be a “-1” since DOV point toward the feature at the end 

of an open-loop and it is via the DOV that one returns from the end feature to the base 

feature.  
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For an arbitrary configuration, Bi,j, a ({λi,j +g i,j } x dti,j ) matrix [LD]i,j, called the loop-

dimension matrix, can be formed using the annotated liaison diagram.  Entry [LDk,l]i,j  is 

a “+1” if the arc representing the intra-part relationship containing the lth dimension for 

configuration Bi,j is in the jth independent loop (open or closed) and points in the same 

direction as the sense of the loop and a “-1” if it is in the jth independent loop but points 

in the opposite direction as the sense of the loop.  Entry [LDk,l]i,j  is a “0” if the intra-part 

relationship containing the lth dimension is not part of the jth independent loop.  Figure 

3.32 shows [LM]1,1, [LM]2,2, [LD]1,1, and [LD]2,2 for fingernail clipper configurations B1,1  

and B2,2. 
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Figure 3.32.  The Loop-Mate and Loop-Dimension Matrix the Fingernail Clipper 
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3.2.3 Solving the Closed-Loops 

An arbitrary closed-loop, Λi,j,k can be expressed as an HTM, [Λ]i,j,k, that is formed by 

multiplying in series, using Equation 3.20 and Equation 3.22, all the HTMs for the DOF, 

DOC, DOS, and dimensions that comprise the loop.  The order of multiplication for the 

HTMs of the DOF, DOC, DOS, and dimensions and can be obtained by looking at the 

appropriate row in [CHc]i,j.  Figure 3.33 shows the chain of matrices that is multiplied to 

form [Λ]1,1,1 for the fingernail clipper (see Figure 3.26, Figure 3.29, and Figure 3.30 for 

[CHc]1,1, and the HTMs for the DOF, DOC, DOS, and dimensions).  While not shown, 

[Λ]2,2,1 is obtained in the same manner.  Notice that [Λ]1,1,1 cannot be computed because 

the exact nominal values of the DOF in the chain remain unknown. 
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Figure 3.33.  Series of HTMs That One Multiplies To Get [Λ]1,1,1 

 

For an arbitrary configuration, Bi,j, [Fn]i,j and [Sn]i,j can be obtained exactly by solving 

the following optimization problem: 
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Equation 3.25 
 

Equation 3.25 must be solved for the configurations of an earlier state before moving 

onto the configurations of the next state.  This is because some of the dimensions in a 

configuration from a latter state will depend on the linking KCs from a configuration in a 

previous state.  βi,j in Equation 3.25 is the amount of potential stored energy in the 

compliant mates of configuration Bi,j.  βi,j
* is defined as the minimum stored energy for 

that configuration, and this occurs when the configuration is in static equilibrium.  The 

constraint ([Λ]i,j,k =[I(4x4)]) imposes the condition that the net distance traveled around the 

closed-loop in any direction is zero.  The bounds on [Fn]i,j and [Sn]i,j insure that the 

nominal values of the DOF do not exceed their allowable limits (e.g. most hinges due to 

practical considerations do not allow 360 degrees of rotation).  [Fn*]i,j and [Sn*]i,j are 
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defined as the set of nominal values for the DOF and DOS respectively that minimize the 

stored energy in configuration Bi,j.   

 

If an assembly configuration is under-constrained, then there will be more than one 

[Fn*]i,j and/or [Sn*]i,j that result in a minimum βi,j
*.  If this is the case, then one or more 

of the nominal values of the DOF and/or DOS should be fixed temporarily so that a 

unique [Fn*]i,j and/or [Sn*]i,j  can be found for each configuration.   

 

If the assembly is over-constrained, then it is possible that there may not exist a [Fn*]i,j 

and/or [Sn*]i,j such that the constraint in the optimization problem above is satisfied 

([Λ]2,2,1 = [I(4x4)].  If this is true, then the dimensions and mates have been specified in the 

design such that the parts in their nominal states cannot be assembled so that all the 

closed-loops actually close.  If the assembly is designed to have preload in its nominal 

state (i.e. locked in strain energy as in the case of some ball bearings due to over-

constraint) then some of the entities should be modeled as multiple parts connected with 

compliant mates using a lumped-parameter approach [Slocum].  Figure 3.34 shows β1,1
*, 

[Fn*]1,1, and [Sn*]1,1 for configuration B1,1 of the fingernail clipper obtained by solving 

Equation 3.25.  Since there were no compliant mates, the stored energy is automatically 

zero for B1,1. 
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Figure 3.34.  Solved Nominal DOF & DOS Values for Configuration B1,1  

 

3.2.4 Find HTMs and Nominal Values for KCs 

An arbitrary KC, KCi,j,k, can be expressed as an HTM, [kc]i,j,k, that is formed by 

multiplying in series, using Equation 3.20 and Equation 3.22, all the HTMs for the DOF, 

DOC, DOS, and dimensions that connect the two features being related by the KC 

(starting with the first feature).  The order of multiplication for the HTMs of the DOF, 

DOC, DOS, and dimensions and can be obtained by looking at the appropriate row in 

[CHk]i,j.  Figure 3.35 shows the chain of matrices that is multiplied to form [kc]1,1,1 for 

the fingernail clipper (see Figure 3.26, Figure 3.29, and Figure 3.30 for [CHk]1,1, and the 

HTMs for the DOF, DOC, DOS, and dimensions).  While not shown, [kc]1,1,2 through 

[kc]1,1,4 and [kc]2,2,1 through [kc]2,2,7  are obtained in the same manner. 
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Figure 3.35.  Series of HTMs That One Multiplies To Get [H]1,1,1 

 

The nominal value, [KCnl]i,j, of the lth KC in configuration Bi,j, can be found by entering 

its corresponding direction, [KCdl]i,j and the corresponding HTM [kc]i,j,k into the 

following equation: 
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Equation 3.26 
 



 
 
 
 
 

133 

Figure 3.36 shows [KCn]1,1, β2,2
*, [Fn*]2,2, [Sn*]2,2, [kc]2,2,1 through [kc]2,2,7, [KCn]2,2, 

[KCn], and [KCL], for the fingernail clipper.  [KCn]1,1 was obtained by entering the 

appropriate values from [KCd]1,1 (see Figure 3.10), and [kc]1,1,1 through [kc]1,1,4 (see 

Figure 3.35) into Equation 3.26.  The values in [KCn]1,1 (all linking KC values) were then 

used as dimensions in B2,2 so that β2,2
*, [Fn*]2,2, [Sn*]2,2, [Λ]2,2,1 (not shown), and [kc]2,2,1 

through [kc]2,2,7 could be solved for.  [KCd]1,1 (see Figure 3.10) and [kc]2,2,1 through 

[kc]2,2,7 were used to solve for [KCn]2,2, [KCn], and [KCL].   
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Figure 3.36.  Solved Nominal DOF & DOS Values for Configuration B2,2 
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Because B2,2 is under-constrained, the nominal value of F10 , the rotation angle between 

the handle fulcrum and the top surface of the upper clipper was set about the X-axis of 

the handle, was set at -1.57 radians (this is the point at which the cutters come closest to 

touching and this what distinguishes B2,2  from the other configurations in state A2 )  so 

that [Fn*]2,2 and [Sn*]2,2 are unique.  β2,2
* is positive because the nominal value of the 

compliant mate, M2,2,4, is nonzero.  This stored energy is what causes the handle to recoil 

after it is depressed in an effort to clip a fingernail.  In other words, in the absence of an 

external force, B2,4 will always revert back to B2,3 (see Figure 3.4). 

  

3.2.5 Finding HTMs for Open-Loops 

An arbitrary open-loop, Gi,j,k can be expressed as an HTM, [G]i,j,k, that is formed by 

multiplying in series, using Equation 3.20 and Equation 3.22, all the HTMs for the DOF, 

DOC, DOS, and dimensions that connect the base feature to the feature at the end of the 

open-loop.  The order of multiplication for the HTMs of the DOF, DOC, DOS, and 

dimensions and can be obtained by looking at the appropriate row in [CHo]i,j.  Figure 

3.37 shows the chain of matrices that is multiplied to form [G]2,2,1 and [G]2,2,2 for the 

fingernail clipper ([CHo]2,2 is not shown but Figure 3.29,and Figure 3.30 show the HTMs 

for the DOF, DOC, DOS, and dimensions in the chains).  
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Figure 3.37.  Obtaining [G]2,2,1 and [G]2,2,2 for the Fingernail Clipper 

 

3.2.6 Finding HTMs for Location of DOS, DOC, DOS, and Dimensions 

For an arbitrary DOF, DOC, or DOS in configuration Bi,j , its location relative to the base 

feature can be expressed as an HTM, [f l]i,j,k, [c
 l]i,j,k, or [s l]i,j,k, respectively that is formed 

by multiplying in series, using Equation 3.20 and Equation 3.22, all the HTMs for the 
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DOF, DOC, DOS, and dimensions that connect the base feature to the DOF, DOC, or 

DOS.  The order of multiplication for the HTMs of the DOF, DOC, DOS, and 

dimensions and can be obtained by looking at the appropriate row in [CHm]i,j.  Figure 

3.38 shows the chain of matrices that is multiplied to obtain [f 
8]2,2,2, the location of the 

revolute joint between the handle and the pin in B2,2 ([CHm]2,2 is not shown but Figure 

3.29, and Figure 3.30 show the HTMs for the DOF, DOC, DOS, and dimensions in the 

chains).  The HTMs representing the global locations of the other DOF, DOC, and DOS 

are obtained in the same way but are not shown here.  
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Figure 3.38.  Example of Obtaining the HTM for the Location of a DOF 
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For an arbitrary dimension (or linking KC) in configuration, Bi,j, its location relative to 

the base feature can be expressed as an HTM, [d 

l]i,j,k (or [kcl]i,j,k ) that is formed by 

multiplying in series, using Equation 3.20 and Equation 3.22, all the HTMs for the DOF, 

DOC, DOS, and dimensions that connect the base feature to the dimension.  The order of 

multiplication for the HTMs of the DOF, DOC, DOS, and dimensions and can be 

obtained by looking at the appropriate row in [CHd]i,j.  Figure 3.39 shows the chain of 

matrices that is multiplied to obtain [d11]2,2,10, the location of D11, the height of the upper 

cutter blade in the upper cutter body in the Z-direction in B2,2 ([CHd]2,2 is not shown but 

Figure 3.29, and Figure 3.30 show the HTMs for the DOF, DOC, DOS, and dimensions 

in the chains).  The HTMs representing the locations of the other dimensions relative to 

the base feature are obtained in the same way but are not shown here. 
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Figure 3.39.  Example of Obtaining the HTM for the Location of a Dimension 
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3.2.7 Finding Twists & Wrenches For DOF, DOC, DOS, DOV & Dimensions 

Screw Theory can be used to analytically represent the direction and magnitude of the 

relative displacement allowed between two parts by a DOF, DOS, or DOV, the direction 

and magnitude of the force transmitted between two parts by a DOC or DOS, and the 

magnitude and direction of variability of a dimension.  Screw Theory is a six-dimensional 

vector algebra that can be used for describing velocities and forces originally presented 

by [Ball].  Its many uses and the properties of its elements have since been explored in 

detail by [Baker], [Davies and Primrose], [Hunt], [Phillips, 1984 and 1990], [Roth], 

[Waldron] and others.  The two primarily elements of Screw Theory are the twist, a (1x6) 

vector denoted generically in this work as [ti], and the wrench, a (1 x 6) vector denoted 

generically in this work as [wi].  The base forms of a twist (in axis formation) and the 

base form of a wrench (in ray formation) are expressed as follows: 

 

[ ] [ ]zyxzyxi vvvt ωωω=  

Equation 3.27 
 

[ ] [ ]zyxzyxiw τττςςς=  

Equation 3.28 
 

A twist describes the instantaneous velocity (linear or angular) of a rigid body and is 

reference frame dependent.  A wrench describes the instantaneous force (linear or 

angular) acting on a rigid body and is likewise reference frame dependent.  Each twist (or 
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wrench) also has an associated line vector, called its instantaneous spin axis (ISA), and an 

associated pitch, which can be zero, any real positive number, or infinite.  Twists (or 

wrenches) with zero pitch describe pure linear velocities (or linear forces) along their 

respective ISAs.  Twists (or wrenches) with infinite pitch describe pure angular velocities 

(or angular forces, also called moments) along their ISAs.   Twists (or wrenches) with 

finite positive pitch describe velocities (or forces) that are helical in the sense that they 

have both a linear component along and angular component about their ISAs.  As a 

special case, the ISA of twist with infinite pitch (or a wrench with zero pitch) is not a 

single vector, but an infinite set of parallel vectors.  

 

The first three entries of a twist, ωx, ωy, and ωz are the instantaneous components, about 

the reference frame’s X-,Y-, and Z-axes respectively, of a rigid body’s angular velocity 

about the ISA of the twist.  The last three entries of a twist, vx, vy, and vz are the 

instantaneous components, along the reference frame’s X-,Y-, and Z-axes respectively, of 

the linear velocity of a point that is rotating about the ISA of the twist and is 

instantaneously situated at the origin of the reference frame.  If the twist has infinite 

pitch, then the first three entries are all zeros and the last three are simply the components 

of the linear velocity along the reference frame’s X-,Y-, and Z-axes respectively. 

 

The last three entries of a wrench, τx, τy, and τz are the instantaneous components, along 

the reference frame’s X-,Y-, and Z-axes respectively, of the force acting on a rigid body 

along the ISA of the wrench.  The last first three of a wrench, ςx, ςy, and ςz are the 
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instantaneous components, along the reference frame’s X-,Y-, and Z-axes respectively, of 

the angular force (also called a moment) that would be applied at a point instantaneously 

situated at the origin of the reference frame by the force acting along the ISA of the 

wrench.  If the wrench has zero pitch, then the last three entries are all zeros and the first 

three are simply the components of the moment about the reference frame’s X-,Y-, and Z-

axes respectively. 

 

Each DOF of a real mate can be represented by a unit twist and each DOC of a mate by a 

unit wrench.  The DOS of a mate must be represented by both a unit twist and a unit 

wrench.  The unit twist representation, [T l]i,j,k, for the kth DOF or DOS in configuration 

Bi,j whose direction and pitch is contained in [Fdk,1:4] or [Sdk,1:4], and whose global 

location is described by the HTM, [f l]i,j,k or [s l]i,j,k respectively, is computed as follows 

(adapted from [Whitney]): 
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Equation 3.29 
 

The unit wrench representation, [W 

l]i,j,k, for the kth DOC or DOS in configuration Bi,j 

whose direction and pitch is contained in [Cdk,1:4] or [Sdk,1:4], and whose global location 

is described by the HTM, [c 
l]i,j,k or [s 

l]i,j,k respectively, is computed as follows: 
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Equation 3.30 
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The (6 x 6) unit twist representation, [V ]i,j,k, for the virtual mate assigned to open-loop, 

Gi,j,k, whose global location is described by the HTM, [G]i,j,k is computed as follows: 
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Equation 3.31 
 

The set of all unit twists representing the nominal DOF, DOS, and DOV for an arbitrary 

configuration, Bi,j, can be contained in a ({ fti,j + sti,j + 6gi,j } x 6) matrix, [TM]i,j, and the 

set of all unit wrenches representing the nominal DOC and DOS for that configuration 

can be contained in a ({ cti,j + sti,j } x 6) matrix, [WM]i,j. [TM]i,j and [WM]i,j  are created 

by simply stacking the unit twists and unit wrenches on top of each other using the same 

order as the columns in [LM]i,j and [PM]i,j respectively (see Figure 3.32 and Figure 3.31) 

[Davies, 2000].   

 

Figure 3.40 shows [TM]1,1  and [TM]2,2  and Figure 3.41 shows [WM]1,1  and [WM]2,2  

for the fingernail clipper example.  The individual unit wrenches and unit twists were 
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obtained by using Equation 3.29, Equation 3.30, and Equation 3.31.  The HTM 

representations for the global locations of the DOF, DOC, and DOS were obtained as 

described above (see Figure 3.38 for an example) and [G]2,2,1 and [G]2,2,2, were taken 

Figure 3.37 above.  The directions and pitches of the DOF, DOC, and DOS were 

obtained from Figure 3.18. 
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Figure 3.40.  [TM]1,1 and [TM]2,2 for the Fingernail Clipper Assembly 
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Figure 3.41.  [WM]1,1 and [WM]2,2 for the Fingernail Clipper Assembly 

 

The unit twist representation, [U.
l]i,j,k, for the variability in the kth dimension (or linking 

KC) in configuration Bi,j whose direction and pitch is contained in contained in [Ddk,1:4]i,j 

and whose global location is described by the HTM, [d.
l]i,j,k is computed as follows 

(shown for dimensions bust extends equally to linking KC’s by substituting the 

appropriate variable): 
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Equation 3.32 
 

The set of all unit twists representing the variability in the dimensions (or linking KCs) 

for an arbitrary configuration, Bi,j, can be contained in a (dti,j x 6) matrix, [UD]i,j, called 

the dimensional uncertainty matrix. [UD]i,j is created by simply stacking the unit twists 

on top of each other using the same order as the columns in [LD]i,j (see Figure 3.32) 

[Gao, Chase, and Magleby].   
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Figure 3.42 shows [UD]1,1 and [UD]2,2 for the fingernail clipper example.  The individual 

unit twists were obtained using Equation 3.32.  The HTM representations for the global 

locations of the dimensions were obtained as described above (see Figure 3.39 for an 

example) and the directions of the dimensions were obtained from Figure 3.10 and Figure 

3.14.  Notice that some of the rows in [UD]2,2  correspond to the linking KCs from 

configuration B1,1 (these rows should always come first).  In this way the two assembly 

states are linked together.  In general this insures that dimensional variability of a former 

state propagates into the later state.  
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Figure 3.42.  [UD]1,1 and [UD]2,2  for the Fingernail Clipper Assembly 
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3.2.8 Creating the Complete Analytical Model  

Now that the mates and dimensions are analytically represented they can be integrated 

into one unified model.  For an arbitrary configuration Bi,j, [TM]i,j can be combined with 

[LM]i,j to create a ({6λi,j + 6gi,j } x { fti,j +sti,j+6gi,j}) matrix, [TL]i,j, called the twist-loop 

matrix, and [WM]i,j can be combined with [PM]i,j to create a ({6pi,j -6 } x {cti,j +sti,j}) 

matrix, [WP]i,j, called the wrench-part matrix as follows (adapted from [Davies, 2000]): 
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Equation 3.33 
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Equation 3.34 
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The “int” function accepts any real number input and outputs the next lowest integer 

from the input.  The “mod6” function accepts any integer input and outputs the integer 

remainder one gets when dividing the input by six.  Figure 3.43 shows [TL]1,1 and 

[WP]1,1 and Figure 3.44 shows [TL]2,2 and [WP]2,2 for the fingernail clipper example that 

were obtained using Equation 3.33 and Equation 3.34.  [TM]1,1 and [TM]2,2 were 

obtained from Figure 3.40, [WM]1,1 and [WM]2,2 were obtained from Figure 3.41, [PM]1,1 

and [PM]2,2 were obtained from Figure 3.31, and [LM]1,1 and [LM]2,2 were obtained from 

Figure 3.32.  

 

[ ]

[ ]

3,1,1

2,1,1

121110987654321

1,1

1,1,1

654321

1,1

000100000000

100000000000

010000000000

001000000000

072.20010000000

72.200001000000

000100000100

000000000010

000000000001

000000100000

000010010000

000001001000

001000

072.20100

72.200010

000001

100000

010000

P

Z

Y

X

Z

Y

X

P

Z

Y

X

Z

Y

X

CCCCCCCCCCCC

WP

Z

Y

X

Z

Y

X

FFFFFF

TL






























−
−

−
−

=

Λ
















−
−

−
−

=

θ
θ
θ

θ
θ
θ

θ
θ
θ

 
 
 
 
 

 

 
Figure 3.43.  [TL]1,1 and [WP]1,1 for Configuration B1,1 of the Fingernail Clipper 
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Figure 3.44.  [TL]2,2 and [WP]2,2 for Configuration B2,2 of the Fingernail Clipper 

 

In general, [TL]i,j has one column for each DOF, DOS, and DOV and one row for each of 

the six coordinate directions in each closed-loop and open-loop.  [WP]i,j has one column 

for each DOC or DOS and one row for each of the six coordinate direction of each part 

(excluding the base part).  If the columns of [TL]i,j are assigned variables compiled into a 

({fti,j +sti,j+6gi,j} x 1) vector, [Ω]i,j, with each variable representing the displacement 

allowed by the corresponding DOF, DOS, or DOV, and the columns of [WP]i,j are 
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assigned variables compiled into a ({cti,j+sti,j} x 1) vector, [φ]i,j, with each variable 

representing the force (or moment) transmitted by each DOC and DOS, then by setting 

each row in [TL]i,j and [WP]i,j equal to zero, (6λi,j+6gi,j+6pi,j-6)  conditions are imposed 

on these variables that collectively require the net change in the velocity around any 

closed-loop or open-loop in any of the six coordinate directions to be zero and the sum of 

the forces acting on each part (excluding the base part) in any of the six coordinate 

directions to be zero.  This can be expressed by the following two equations (adapted 

from [Davies, 2000]):   
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Equation 3.35 
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Equation 3.36 
 

In addition, if any of the real mates have compliance, then sti,j of the variables in [Ω]i,j 

(those associated with the columns representing the DOS) are related to the last sti,j of the 
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variables in [φ]i,j, (those associated with the columns representing the DOS) as follows 

(adapted from [Fasse]:  
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Equation 3.37 
 

Equation 3.35 is the mechanical equivalent of Kirchoff’s Voltage Law [Strang] requiring 

the net change in voltage (or displacement) around any loop (open-loop or closed loop) in 

a circuit (or configuration) to be zero.  Equation 3.36 is the mechanical equivalent of 

Kirchoff’s Current Law [Strang] requiring the net current (or force) entering a leaving a 

node (or part) in a circuit (or configuration) to be zero.  Equation 3.37 is the mechanical 

equivalent of Ohm’s Law [Strang] stating that the voltage drops across (or displacements 

allowed by) the resistors (or compliant mates) is equal to the resistances (stiffness values 

in the stiffness matrix) times the currents traveling through (or forces transmitted by) the 

resistors (compliant mates). 
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For an arbitrary configuration Bi,j, Equation 3.35, Equation 3.36, and Equation 3.37 can 

be combined into one system of equations as follows: 
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Equation 3.38 
 

[B]i,j, is a ({6mi,j+6gi,j+sti,j} x {6mi,j+6gi,j+sti,j}) matrix, called the nominal configuration 

matrix, and represents the assembly configuration in its nominal form including its mates, 

loops, and parts.  [Ψ]i,j, is a ({6mi,j+6gi,j+sti,j} x 1) vector that contains the unknown 

displacements allowed or forces transmitted by the DOF, DOC, DOS, and DOV of the 

mates.   
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For an arbitrary configuration Bi,j, [UD]i,j can be combined with [LD]i,j to create a 

({6λi,j+6gi,j} x dti,j) matrix, [UL]i,j, called the uncertainty-loop matrix and this is done as 

follows: 
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Equation 3.39 
 

Figure 3.45 shows [UL]1,1 and [UL]2,2 for the fingernail clipper example obtained using 

Equation 3.39 and the results shown in Figure 3.32 and Figure 3.42 .   
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Figure 3.45.  [UL]1,1 and [UL]2,2  for the Fingernail Clipper Assembly 

 

In general, [UL]i,j has one row for each coordinate direction of each closed-loop and 

open-loop and one column for each dimension.  If the columns of [UL]i,j are assigned 

variables compiled into a (dti,j x 1) vector, [∆]i,j, with each variable representing the 

difference between the nominal value of the dimension and the actual value of the 

dimension, by setting each row in [UL]i,j equal to zero, (6λi,j + 6gi,j)  conditions are 

imposed on these variables that collectively require the net change in the nominal values 

of the DOF, DOS, and DOV of around any loop (open or closed) in any coordinate 



 
 
 
 
 

156 

direction due to difference between the nominal and actual dimension values to be zero.  

This can be expressed as follows (adapted from [Gao, Chase, and Magleby]):   
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Equation 3.40 
 

To complete the variability model, a ({6mi,j+6gi,j+sti,j} x dti,j) matrix [U]i,j, called the 

uncertainty configuration matrix, can be formed and set equal to zero as follows (adapted 

from [Gao, Chase, and Magleby]):   
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Equation 3.41 
 

A matrix of zeros is added so that [U]i,j has the same number of rows as [B]i,j, namely one 

row for each coordinate direction of each closed-loop, open-loop, and part (excluding the 

base part) plus one row for each DOS.  If external forces exhibiting variability were 



 
 
 
 
 

157 

applied to the assembly, then [U]i,j would require a different formulation and could have 

additional columns, one for each applied force.  The first (6λi,j+6gi,j+sti,j) entries in each 

of those rows would all be zeros and the last (6pi,j - 6) rows would correspond to the 

components of the forces applied in each of the six coordinate directions to each of the 

parts (excluding the base part). 

 

With the nominal and variable properties of the assembly modeled, a unified model of the 

assembly can be created. For an arbitrary configuration, Bi,j, Equation 3.38 and Equation 

3.41 and can be combined as follows: 
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Equation 3.42 
 

If nominal static applied forces were present, then the last (6pi,j-6) entries of the zero 

vector on the right side of Equation 3.42 would be replaced with the resultant applied 

forces on each part excluding the base part in each of the six coordinate directions.  When 

there is no variability or uncertainty in the dimensions, the Equation 3.42 reduces to 

Equation 3.38.  If all the parts can be assumed to be rigid, then Equation 3.42 simplifies 

as follows (adapted from [Gao, Chase, and Magleby]): 
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Equation 3.43 
 

Equation 3.42 resembles, with some differences, the familiar equation used to conduct 

static load analysis of structures (like trusses) in equilibrium (adapted from [Paz and 

Leigh]): 

 

0ˆˆ =+ FLxK  
Equation 3.44 
 

K̂ is the global stiffness matrix and is analogous to the configuration matrix [B]i,j.  L
)

 is a 

matrix containing all the unit loads and/or displacements and is analogous to the matrix 

containing all the unit changes in dimensions, [U]i,j.  F  is a vector of scalars that 

combines the unit loads and deflections into a single loading case and is analogous to the 

vector containing the differences between the average values of the dimensions and the 

actual values of the dimensions, [∆]i,j.  Finally, x contains the changes in length/shape of 

the structure’s members (and/or the changes in internal forces acting through the 

members) that result from the loading case in x and is like the vector containing the 

changes in velocity and force at the mates, [Ψ]i,j.  
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The main difference between the system of equations in Equation 3.43 and the system of 

equation in Equation 3.42 are the unknown variables represented by x and [Ψ]i,j.  While 

x contains the changes in length/shape (and/or the change in forces acting through the 

members) of the structure members, [Ψ]i,j contains the displacements allowed and forces 

transmitted by the DOF, DOC, DOS, and DOV of the mates.  These variables are desired 

because in this work, manufacturability is defined as the variability in the KCs, which are 

by definition geometric relationships between features on different parts.  Thus to find the 

variability of the KCs, a model is needed whose solvable variables are the changes in 

location of the parts and the features they contain relative to each other rather than the 

internal forces and deflections of the parts. 

 

3.3 Summary 

In this chapter is has been shown how to create a model for the nominal configurations of 

an assembly.  While some of the equations and procedures presented in this chapter are 

complex, a major advantage regarding them is that all are completely amendable to 

computer implementation.  Using Matlab® programming language, an executable, 

entitled modeler.m, was developed that automatically creates the analytical assembly 

model ([B]i,j, [U]i,j, [TL]i,j, and [WP]i,j) and solves for the nominal KC values ([KCn]i,j) 

for a single configuration (Bi,j) of an assembly.  As inputs, modeler.m takes the vectors 

and matrices shown in Table 3.14 (see Table 3.13 for values for counting variable 

descriptions) and provides as outputs, the matrices shown in Table 3.15.  A copy of 

modeler.m is included in Appendix A.  It can be run on Release 13 of Matlab® and 



 
 
 
 
 

160 

requires the Optimization Toolbox to be installed.  In addition to using standard Matlab® 

functions and some specialized functions from the Optimization Toolbox, modeler.m 

calls two other subroutines called energyloop.m and combiner.m that are also included in 

Appendix A. 

 

To model an entire assembly, one must enter the appropriate inputs for the first 

configuration of the first assembly state and solve for the nominal values of the linking 

KC in [KCn]i,j.  Then these values can be entered as input dimensions for the linked 

configuration(s).  Repeating this procedure for all assembly states and configurations, one 

can obtain a model of the entire assembly. 

 

Variable Description
p i,j Total # of parts in configuration B i,j

e i,j Total # features in configuration B i,j

m i,j Total # of mates in configuration B i,j

r i,j Total # of intra-part relationships in configuration B i,j

h i,j Total # of KC feature pairs in configuration B i,j

λi,j Total # indpendent closed-loops for configuration B i,j

g i,j Total # indpendent open-loops for configuration B i,j

ft i,j Total # of DOF for configuration B i,j

st i,j Total # of DOS for configuration B i,j

ct i,j Total # of DOC for configuration B i,j

dt i,j Total # of Dimensions for configuration B i,j

kct i,j Total # of KC's for configuration B i,j  
Table 3.13.  Counting Variables for Configuration Bi,j of an Assembly 
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Vector or 
Matrix

Description Size

[Fn ]i,j Guesses for Nominal DOF Values (ft i,j  x 1 )

[Ful ]i,j Upper Limits on DOF values (ft i,j  x 1 )

[Fll ]i,j Lower Limits on DOF values (ft i,j  x 1 )

[Fd ]i,j Direcions for DOF (ft i,j  x 4 )

[Sn ]i,j Guesses for Nominal DOS Values (st i,j  x 1 )

[Sul ]i,j Upper Limits on DOS values (st i,j  x 1 )

[Sll ]i,j Lower Limits on DOS values (st i,j  x 1 )

[Sd ]i,j Direcions for DOS (st i,j  x 1 )

[SK ]i,j Nominal DOS stiffness matrix (st i,j  x st i,j )

[Cn ]i,j Nominal DOC values (ct i,j  x 1 )

[Cd ]i,j Direcions for DOC (ct i,j  x 4 )

[Dn ]i,j Nominal dimension values (dt i,j  x 1 )

[Dd ]1,1 Direcions for dimensions (dt i,j  x 1 )

[KCd ]i,j  KC directions (kct i,j  x 1 )

[KCt ]i,j  KC type (kct i,j  x 1 )

[KCl ]i,j  KC specification offsets (kct i,j  x 1 )

[CHd ]i,j Matrix of dimension chains (dt i,j  x ? )

[CHm ]i,j Matrix of DOF, DOS,and DOC chains (6m i,j  x ? )

[CHc ]i,j Matrix of closed-loop chains (λi,j  x ? )

[CHo ]i,j Matrix of open-loop chains (g i,j  x ? )

[CHk ]i,j Matrix of KC chains (kct i,j  x ? )  
Table 3.14.  Modeler.m Inputs for Configuration Bi,j of an Assembly 

 

Vector or 
Matrix

Description Size

[B ]i,j Nominal Configuration Matrix for configuration B i,j ({6m i,j +6g i,j+ st i,j } x {6m i,j +6g i,j +st i,j })

[U ]i,j Uncertainty Matrix for configuration B i,j ({6m i,j +6g i,j +st i,j } x dt i,j )

[TL ]i,j Twist Loop Matrix for configuration B i,j ({6 λλλλ i,j +6g i,j }  x {ft i,j +st i,j +6g i,j })

[WP ]i,j Wrench Part Matrix for configuration B i,j ({6p i,j -6}  x {ct i,j +st i,j })

g Number of open-loops for configuration B i,j (1  x 1 )

β i,j Stored energy in B i,j (1  x 1 )

[Fn * ]i,j Solved Nominal DOF values for configuration B i,j (ft i,j  x 1 )

[Sn * ]i,j Solved Nominal DOS values for configuration B i,j (st i,j  x 1 )

[KCL ]i,j KC Specifciation Limits for configuration B i,j (kct i,j  x 1 )

[KCn ]i,j Nominal KC Values for configuration B i,j (kct i,j  x 1 )  
Table 3.15.  Modeler.m Outputs for Configuration Bi,j of an Assembly 
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4.  VERIFYING MANUFACTURABILITY 

In Chapter 3, a generalized quantitative model of a mechanical assembly design was 

developed (see Equation 3.42).  In this chapter, it is shown how this model can be used to 

verify, among other things, the manufacturability of an assembly.  This is accomplished 

via five types of analysis, namely: 

•  Motion/Constraint 

•  Sensitivity 

•  Performance 

•  Contribution  

•  Coupling 

 

Each of these will now be discussed in more detail.  The discussion that follows is by no 

means all inclusive and is intended to merely illustrate some of the uses of the assembly 

model developed in Chapter 3.  

 

4.1 Motion/Constraint Analysis 

If an assembly has excess under-constraints, then for Equation 3.42, there may exist more 

than one vector [ψ]i,j ,for every input [∆]i,j, and as such, [B]i,j will not be full rank which 

means it will not be invertible.  If the assembly has excess under-constraints, then there 

may not exist any vector [ψ]i,j, for a given input [∆]i,j, and this will also result in [B]i,j not 

being full rank.  If either or both of these situations exist, then the usefulness of the model 

developed in Chapter 3 is severely limited.  Therefore, there is a need to determine 
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whether excess under-constraints and/or over-constraints exist and eliminate them if 

possible.   

 

Motion analysis and constraint analysis are the names traditionally given to the processes 

of determining whether and assembly has any excess under-constraints and over-

constraints respectively.  There are many examples of such methods including those 

using Screw Theory by [Adams and Whitney], [Baker], [Davies, 1983b, 1983c, and 

2000], [Shukla and Whitney], [Smith], [Waldron] and those using CAD systems by 

[Anantha, Kramer, and Crawford] and [Mullins and Anderson].  Here a modified 

formulation from [Davies, 2000] is used. 

 

[B]i,j is invertible when there are no excess under-constraints or over-constraints and this 

is true, for the model developed in this work, when one of the following equivalent 

expressions is valid:  
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Equation 4.1 
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The “rank” function takes a matrix input and returns the number of independent columns 

in the matrix.  The number of excess under-constraints, fei,j (excluding under-constraints 

eliminated by DOS), and the number of excess over-constraints, cei,j (excluding over-

constraints eliminated by DOS), for an arbitrary configuration, Bi,j, are defined as follows 

(modified from [Davies, 2000]):  
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Equation 4.2 
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Equation 4.3 
 

If the parts can be assumed to be rigid, then there is not need to create [WP]i,j because 

[B]i,j reduces to [TL]i,j (see Equation 3.43).  In this case, fei,j is calculated using r1, the 

number of independent columns in [TL]i,j, as follows (modified from [Davies, 2000]): 
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Equation 4.4 
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It is important to note that both fei,j and cei,j have been defined such that each will always 

be either zero or a positive integer.  Also, they are defined in terms of the rank of two 

matrices, [TL]i,j and [WP]i,j.  This means that the values of fei,j and cei,j are subject to all 

the problems associated with numerical-based methods such as truncation error, precision 

error, and round-off error.  Also, some assemblies that have states that are under-

constrained may have different values of fei,j and cei,j for two different configurations in 

those states [Davies, 1983a].  Figure 4.1 shows a simple rigid 4-bar linkage assembly that 

undergoes a change of constraint-status when the four revolute joints become aligned 

along the X-axis.   
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Figure 4.1.  Example of an Assembly That Undergoes a Change in Constraint-Status 
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Keeping the above mentioned issues in mind, Equation 4.2 and Equation 4.3 can be 

substituted back into Equation 4.1 to yield the following result: 
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Equation 4.5 
 

If Equation 4.5 is true, then [B]i,j is invertible and consequently, the assembly model is 

amendable to analysis.  Equation 4.5 is not true, there are several explanations.  The first 

is that the model was made incorrectly.  In this case the model must be corrected to 

simulate the true behavior of the assembly.  If the model is correct, or after correcting it, 

Equation 4.5 is still not true, then a second explanation is that one or more design 

mistakes were made (unintentional under-constraints or over-constraints remained in the 

design) and these mistakes resulted in an undesirable constraint-status.  If this is the case, 

then the design must be modified to eliminate these mistakes by eliminating the 

unintentional over-constraints and under-constraints.  If no design mistakes were made, 

or after fixing them, Equation 4.5 is still not true, it means that the remaining over-

constraints and under-constraints are intentional and critical to the design.  Nonetheless, 

one would still like to analyze such assemblies and so several strategies are suggested for 

“eliminating” the excess under-constraints and over-constraints.  
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If intentional under-constraints exist, there are two potential remedies.  The first is to 

reduce fei,j by choosing a discrete set of configuration(s) for the under-constrained 

assembly state(s).  For each configuration, one or more DOF should be temporarily 

converted into DOC and the modeling procedure in Chapter 3 repeated.  If done properly, 

the resulting models for all configurations will not have any excess under-constraints.  

Care must be taken to pick the proper DOF for conversion so that the number of under-

constraints is reduced but the number of over-constraints remains unchanged. 

 

Finding a ( fti,jx fei,j ) matrix, [TLr]i,j, also called the reduced twist-loop matrix, is very 

helpful for identifying which mates to remove or which DOF to convert into DOC.  

[TLr]i,j can be obtained from the following equation (adapted from [Davies, 2000]): 

 

[ ] [ ]

i

ji

jiftrji

bj

ai

for

q

where

TLTLr
jiji

,,2,1

,,2,1

6

null

,1

,:1,6:1, ,1,

K

K

=
=

=









=

λ

λ

 

Equation 4.6 
 

The “nullr” function takes a matrix input and returns a matrix whose columns form a 

“rational” basis that spans the null-space of the input matrix.  There exist many methods, 

such as that presented by [Dai and Jones], for finding the null-space of a matrix.  Many 

computer programs, such as Matlab®, also posses such capabilities.  Requiring that 
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[TLr]i,j is a rational basis insures that each of its fei,j column vectors is aligned with one 

of the DOF of the mates in the assembly and that each column in [TLr]i,j represents a set 

of interdependent DOF that together are responsible for one of the excess under-

constraints.  If entry [TLrk,l]i,j is nonzero, then it means that the kth DOF is partly 

responsible for the lth excess under-constraint and by temporarily fixing the kth DOF, the 

lth under-constraint will be temporarily eliminated. 

 

A second option to deal with, but no remove, the intentional under-constraint(s) is to 

convert one or more of the DOF into DOS.  Care must be taken when doing this so that 

the number of excess over-constraints is not increased.  [TLr]i,j can help identify which 

DOF should be converted into DOS. 

 

If excess over-constraints exist, they can be dealt with in one of two ways.  The first is by 

converting one or more of the DOC into DOF or adding additional mates such that the 

excess over-constraints are eliminated but the number of under-constraints remains 

unchanged. 

 

Finding a ( cti,jx cei,j ) matrix, [WPr]i,j, also called the reduced wrench-part matrix, is very 

helpful for identifying which DOF to add.  [WPr]i,j can be obtained from the following 

equation: 
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Equation 4.7 
 

Each of the cei,j columns of [WPr]i,j is aligned with one of the DOC of the mates in the 

assembly and each column in [WPr]i,j represents a set of interdependent DOC that 

together are responsible for one of the excess over-constraints.  If entry [WPrk,l]i,j is 

nonzero, then it means that the kth DOC is partly responsible for the lth intentional over-

constraint and by temporarily converting the kth DOC into a DOF, the lth over-constraint 

will be temporarily eliminated. 

 

A second option to deal with, but not remove, the over-constraints is to convert one or 

more of the DOC into DOS and care should be taken to insure that no excess under-

constraints result.  [WPr]i,j can help identify which DOC should be converted into DOS. 

 

Figure 4.2 shows the constraint analysis results for B1,1 and B2,2 of the fingernail clipper 

assembly.  It can be seen that B1,1  has no excess over-constraints or under-constraints and 

B2,2  has no excess over-constraints but has one excess under-constraint. 
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Figure 4.2.  Constraint Analysis of the Fingernail Clipper 

 

The results in Figure 4.2 reveal that B1,1 is analyzable but B2,2 is not.  Since all the entities 

except the clipper are essentially rigid, and this compliance has already been modeled, it 

does not make sense to add more compliance to try and satisfy Equation 4.5.  Therefore, 

one of the DOF should be converted into a DOC so that the excess under-constraint is 

eliminated.  As a guide, [TLr]2,2 is shown in Figure 4.3 ( [WPr]2,2 is an empty matrix 

since cei,j equals zero). 
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Configuration B1,1 is defined such that the nominal value of F10 is 
-1.57 radians since this is the point at which the cutter  blades are 
closest to touching.  Thus for analysis purposes, F10 can be 
converted into a DOC. 
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Figure 4.3.  Identifying and Eliminating the Under-Constraint in Configuration B2,2 
 

From [TLr]2,2, it is clear that the excess under-constraint is a correlated combination of 

several DOF.  However, looking at the fourth entry in [TLr]2,2, it is seen that the under-

constraint could be eliminated by removing F10, the motion allowed between the fulcrum 

end of the handle and the upper surface of the cutter in the θx direction. Since 

configuration B2,2 is defined such that the nominal value of F10 is -1.57 radians (this is the 

point at which the cutter blades are closest to touching during the opening process), this 

seems like a logical choice.  Thus for analysis purposes, F10 can be converted into a DOC 

with a direction θx and nominal value -1.57.  Making this change yields the constraint 

analysis results shown in Figure 4.4 and it is seen that now that B2,2 is analyzable. 
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Figure 4.4.  Constraint Analysis After Eliminating the Under-Constraint in B2,2  
 

Using Matlab® programming language, an executable called constraintdetector.m was 

created that automatically calculates the number of excess under-constraints (fei,j) and 

excess over-constraints (cei,j) and provides the reduces twist mate ([TLr]i,j)  and reduced 

wrench part ([WPr]i,j) matrices for a single configuration (Bi,j).  Constraintdetector.m 

takes as inputs the vectors and matrices shown in Table 4.1 and provides as outputs, the 

matrices shown in Table 4.2.  A copy of constraintdetector.m is included in Appendix A.  

It can be run on Release 13 of Matlab®. 
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Matrix or 
Variable

Description Size

[TL ]i,j Twist Loop Matrix for B i,j ({6 λλλλ i,j +6g i,j }  x {ft i,j +st i,j +6g i,j })

[WP ]i,j Wrench Part Matrix for B i,j ({6p i,j -6}  x {ct i,j +st i,j })

g # of Open-Loops for B i,j (1  x 1 )

[SK ]i,j Nominal Stiffness Matrix for B i,j (st i,j  x st i,j )  
Table 4.1.  Inputs for Matlab® Executable constraintdetector.m  

 
 

Matrix or 
Variable

Description Size

fe i,j # of Excess Under-Constraints for B i,j (1  x 1 )

ce i,j # of Excess Over-Constraints for B i,j (1  x 1 )

[TLr ]i,j Reduced Twist Loop Matrix for B i,j ( ft i,j  x fe i,j )

[WPr ]i,j Reduced Wrench Part Matrix for B i,j ( ct i,j  x ce i,j )  
Table 4.2.  Outputs for Matlab® Executable constraintdetector.m 

 

4.2 Sensitivity Analysis 

Assuming Equation 4.5 is true, Equation 3.42 can be solved for [Ψ]i,j in terms of [∆]i,j as 

follows (adapted from [Gao, Chase, and Magleby]):   
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Equation 4.8 
 

[Sm]i,j is the mate-sensitivity matrix.  Entry [Smk,l]i,j is the normalized sensitivity of kth 

DOF, DOV, DOC or DOS of the mates (each DOS has two rows in [Smk,l]i,j, one for the 
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motion allowed and one for the force transmitted) to a unit increase in the nominal value 

of the lth dimension. To determine the sensitivity of the KCs, one must express the 

changes in the KCs as linear combinations of the changes in displacement or force 

allowed by the DOF, DOV, DOS, or DOC.  If the existing mates do not suffice, then 

appropriate virtual mates should be added and the DOV of those virtual mates used.  

Using this approach, the changes in the KCs for an arbitrary configuration, Bi,j, can be 

expressed as a (kcti,j x {6mi,j+sti,j+6gi,j}) matrix, [KC]i,j, called the KC combination 

matrix.  Entry [KCk,l]i,j  is “+1” if the difference between the specification limit and the 

nominal value of the kth KC is decreased by an positive change in the lth DOF, DOV, 

DOC, or DOS, is “-1” if the difference between the specification limit and the nominal 

value of the kth KC is increased by an positive change, and is “0” if the nominal value of 

the kth KC is unaffected by a change in the l 
th DOF, DOV, DOC, or DOS.  Now, a (kcti,j x 

dti,j) matrix [KCS]i,j, called the configuration-level KC sensitivity matrix, can be obtained 

for an arbitrary configuration, Bi,j, from the following equation: 
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Equation 4.9 
  
Entry [KCSk,l]i,j is the first-order sensitivity of the kth KC in a configuration to a positive 

increase in the nominal value of the lth dimension in that same configuration.  Figure 4.5  

shows [KC]1,1, [KC]2,2, [KCS]1,1, and [KCS]2,2, for the fingernail clipper example.   
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 KC1, the distance in the z 
direction between the notch in 
the lower cutter and the notch in 
the upper cutter base is sensitive 
to D4 and D5, the thicknesses of 
the lower cutter and the upper 
cutter base 

KC5 and KC6, the alignment in the x direction between the two cutter 
blades is sensitive to linking KC4 which is in turn sensitive D2, the 
alignment of the upper cutter base and lower cutter in the θz direction 

 
Figure 4.5.  The KC Combination and KC Sensitivity Matrices for B1,1 & B2,2 

 

It can be seen that KC1, the distance in the z direction between the notch in the lower 

cutter and the notch in the upper cutter base, is sensitive to D4 and D5, the thicknesses of 

the lower cutter and the upper cutter base.  KC11, the clearance in the z direction between 
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the two cutter blades, is sensitive to D14 and D15, the height of the pin and the length of 

the fulcrum arm of the handle respectively.  KC5 and KC6, the alignment in the x 

direction between the two cutter blades, is sensitive to linking KC4 which is in turn 

sensitive to D2, the alignment of the upper cutter base and lower cutter in the θz direction. 

 

The sensitivities of the KCs of configuration Bi,j, to the dimensions of a configuration Bk,l 

(and k must be less than i  ), where Bi,j and Bl,k are related by kcli,j→k,l  linking KCs, can be 

contained in a (kcti,j x dtk,l)  matrix, [KCS]i,j→k,l , called the configuration linking matrix 

for those two configurations, that is computed as follows: 
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Equation 4.10 
 

The set of matrices obtained by repetitious use of Equation 4.10 can be compiled into a 

single (kcp x dtt) matrix, [KCS], called the performance KC sensitivity matrix.  Entry 

[KCSi,j] is the first-order sensitivity of the ith performance KC of the assembly to a 

positive increase in the value of the jth dimension of the assembly.   

 

There are three possibilities for the units of entry [KCSi,j]. If the ith dimension and the jth 

KC are both linear distances or they are both angles, then [KCSi,j] is unitless.  If the ith 
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dimension is an angle expressed in radians and the jth KC is a linear distance, then 

[KCSi,j] has units of length to the minus one (e.g. 1/mm).  If the ith dimension is a linear 

distance and the jth KC is an angle expressed in radians, then [KCSi,j] has units of length 

(e.g. mm).    

 

Figure 4.6 shows [KCS]2,2→1,1 and [KCS] for the fingernail clipper example obtained 

using Equation 4.10.  KC7 and KC8, the alignment in the y direction (positive and 

negative sense respectively) between the two cutter blades, are sensitive to D6, the 

distance in the y direction between the lower notch in the cutter base and the lower blade 

on the cutter base.  The sign are opposite for the two sensitivities because KC7 has an 

upper specification limit and KC8 has a lower specification limit. 
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KC7 and KC8, the alignment in the y 
direction between the two cutter blades 
are sensitive to D6, the distance in the y 
direction between the lower notch in the 
cutter base and and the lower blade on 
the cutter base.  The sign are opposite 
for the two sensitivities because KC7 has 
an upper specification limit and KC8 has 
a lower specification limit. 

 
Figure 4.6.  The Configuration Linking and Performance KC Sensitivity Matrices 
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4.3 Performance Analysis 

Any dimension, Di, in an assembly has a PDF function fDi(δi) that gives the probability 

density of δi.  Using these PDF functions, the set of all average values for the dimensions 

in an assembly can be contained in a (dtt x 1) vector, [Da].  Entry [Dai] of this vector is 

computed as follows [Drake]: 

 

[ ] ( )

dtti

for

dfDa iiDii i

,,2,1 K=
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∞
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δδδ

 

Equation 4.11 
 

Any two dimensions in an assembly, Di and Dj also have a joint PDF, or JPDF, denoted 

generically as fDi,Dj (δi ,δj).  fDi,Dj (δi ,δj) gives the joint probability density at δi and δj.  

Using these functions, the variances and covariances of the dimensions in an assembly 

can be calculated and placed in a (dtt x dtt) matrix, [Dv], called the dimensional 

covariance matrix.  Entry [Dvi,j] of this matrix is computed as follows [Drake]: 
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Equation 4.12 
 

If i equals j, then [Dvi,j] is the variance of the ith dimension.  If i does not equal j, then 

[Dvi,j] is the covariance between the ith dimension and jth dimension. If all the dimensions 
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are independent from each other, as is assumed in this work, then there are no 

covariances and Equation 4.12 simplifies as follows [Drake]: 
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Equation 4.13 
 

 

Figure 4.7 shows [Da] and [Dv] for the fingernail clipper obtained using Equation 4.11 

and Equation 4.13.  Comparing [Dn] in Figure 3.14 to [Da] in Figure 4.7 reveals that D3, 

D7, and D12, have mean shifts of +0.0004, +.02, and +.003 respectively.  These mean 

shifts indicate that the average KC values will be different than the nominal values and 

this could adversely affect the manufacturability of the assembly.   
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Figure 4.7.  [Da] and [Dv] for the Fingernail Clipper Assembly 
 

The average values of the performance KCs, contained in a vector, [KCa], can be 

obtained exactly by replacing [Dn] with [Da] and repeating the modeling process 

presented in Chapter 3.  Alternatively, using [KCn], [KCS], [Da], and [Dn], the average 

values of the performance KCs can be approximated to first-order as follows: 

 

( )[ ] ( )[ ] ( )[ ] ( )[ ] ( )[ ]( )1111 ××××× −+≈ dttdttdttkcpkcpkcp DnDaKCSKCnKCa
 

Equation 4.14 
 

Figure 4.8 compares [KCa] for the fingernail clipper that was obtained exactly by 

replacing [Dn] with [Da] and repeating the procedure in Chapter 3 with [KCa] that was 

obtained approximately using Equation 4.14.  The maximum error in this case is about 

three percent and that is for KC5 and KC6.  In general, if any of the values in [KCa] are 

outside the specification limits, then this represents a serious problem since on average, 

the design is not delivering one of the KCs.  Comparing [KCa] to [KCL] (obtained from 

Figure 3.36) reveals that for the fingernail clipper, this is not the case.   
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Figure 4.8.  The Approximate and Exact Values for the Average KC  Values 
 

For a single assembly that is fabricated and assembled, the difference between the actual 

values for the dimensions of the parts in that assembly and the nominal set of values for 

those same dimension can be contained in a (dtt x 1) vector, [∆], and actual values for the 

performance KCs can be contained in a (kcp x 1) vector, [KCo].  Entry [∆j ] is the actual 

value minus the nominal value of the jth dimension.  Entry [KCoi] is the actual value of 

the ith performance KC.  One approach to obtain [KCo], is to replace [Dn] with ([Dn]+[∆ 

i]) and reapply the methods presented in Chapter 3 using the new vector of dimensions.  

However, using [KCS], [KCo] can also be approximated as follows: 

 

( )[ ] ( )[ ] ( )[ ] ( )[ ]( ) ( )[ ] ( )[ ]11111 ×××××× ∆−+≈ dttdttkcpkcpkcpkcpkcp KCSKCnKCLsignKCnKCo  

Equation 4.15 
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One way to predict how much variability the KCs might exhibit in an entire population of 

assemblies is to use Monte Carlo simulation to generate a large set of n random vectors 

[∆1], [∆2], …,[∆n],  (they can be generated via computer methods using the PDFs for each 

dimension) and use the modeling process in Chapter 3 after substituting [Dn] with 

([Dn]+ [∆]) for each vector.  Then the resulting KC values, [KCo1], [KCo2], …,[ KCon] 

could plotted on kcp histograms, one for each performance KC.  From these histograms 

could be extracted the Cpk, or process capability index, and reject rate for each KC.  One 

such approach is presented by [Whitney].  While effective, this method can be very 

computationally intensive and doesn’t directly provide any information regarding the 

sensitivities of the KCs to the dimensions.   

 

Another approach is to linearize the behavior of the assembly using Taylor series 

expansion (in this case, [KCS] would be the linearized behavior of the assembly).  Then 

the PDFs and CDFs of the dimensions could be approximated with a set of first moments 

(or means) contained in [∆1], and second moments (or standard deviations in this case) 

[∆2].  Then [∆ ] can be replaced by ([∆1]+ [∆2]) in Equation 3.15.  The resulting [KCo] 

would be what is called a “worst-case” set of offsets of the KCs from their nominal 

values and could be used to estimate the Cpks and reject rates for the KCs (a root-sum-

squares, or RSS, version of this method also exists).  [Parkinson, Sorenson, and 

Pourhoussan] present one such approach.  Such approaches are efficient but produce 
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inaccurate results when the standard deviations are large or the dependence of the KCs on 

the dimensions is highly nonlinear. 

 

In this work a different approach is presented similar to that used in [Parameshaven and 

Kjerengtroen].  To understand this approach, the concept of a “Most Probable Point, or 

MPP, originally developed in the area of structural reliability analysis and presented by 

[Melchers] and others, must be explained.  Each assembly has kcp MPPs, one for each 

performance KC.  The location of the ith MPP is described by a (dtt x 1) vector, [∆*]i, 

which is found by solving the following optimization problem: 
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Equation 4.16 
 

[KCo] can either be obtained using the approximation in shown in Equation 4.15 or it can 

be obtained by replacing [Dn] with ([Dn]+[∆]) and reapplying the methods presented in 

Chapter 3.  Conceptually, [∆*]i describes the set of actual dimension offsets from nominal 

that has both the highest probability density and results in an assembly that is on the 
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failure limit for the ith KC.  For any assembly there exists kcp vectors, [∆*]1, [∆*]2,…, 

[∆*]kcp that describe the locations of the kcp MPPs.   

 

In practice, the optimization problem presented in Equation 4.16 can be difficult to solve.  

However, one approach is presented here using what is called a standard normal space 

transformation.  To overcome the challenge of working with many different distribution 

types, the CDF, FD i(δi), for an arbitrary dimension, Di, can be mapped point by point 

onto the standard normal CDF, Φ(γi), (a standard normal distribution is a normal 

distribution with a mean equal to zero and a standard deviation equal to one),  by using 

the following “Quantile-Quantile” relationship [Rosenblatt]: 
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Equation 4.17 
 

Based on Equation 4.17, and assuming the variables are independent, the following two 

relationships exist between an arbitrary value, ([Dni]+[∆i]), in the original random 

variable space and its corresponding value, [γi], in the standard normal space [Melchers]: 
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Equation 4.18 
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Now [∆ *]1, [∆
 *]2, …,[∆ *]kcp, can be found in a much simpler way by working in the 

standard normal space where all variables have equal weight.  Once in the variables are in 

the standard normal space, the optimization problem presented in Equation 4.16 can be 

reformulated as follows (adapted from [Ditlevsen and Madsen]): 
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Equation 4.19 
 

The following iterative algorithm can be used to solve Equation 4.19 (adapted from 

[Ditlevsen and Madsen]): 
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Equation 4.20 
  

If the iterative algorithm presented in Equation 4.20 is used to solve Equation 4.19, then 

[KCo](n) and [KCS](n) and should be updated and replaced by [KCo](n+1)
 and [KCS](n+1) 

before beginning the next iteration, thus capturing any non-linearities in the dependencies 

of the KCs and their sensitivities on the dimensions.  This is done by replacing [∆j]i
 (n)

 

with [∆j]i 
(n+1)

 and following the steps in Chapter 3 and the beginning of this chapter to 

find [KCo](n+1) and [KCS](n+1) (see Equation 4.9, Equation 4.10, and Equation 4.15).  

[∆j]i
(n+1)

 can be obtained as follows: 
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Equation 4.21 
 

For the ith performance KC, the minimum value of βi Equation 4.19, called βi
*, is the 

distance in the standard normal space from the nominal assembly state to the point on the 

ith failure limit state ([KCoi] = [KCLi]) that has the highest probability density and is a 

measure of the manufacturability of the assembly with respect to the ith KC.  The larger 

βi
* is, the higher the Cpk and the lower the reject rate of the ith KC will be.  [γ*]i is a 

vector with length β*
i that points in the standard normal space to the MPP and its tail is 

located at the origin in the standard normal space.  [γ*]i is the projection of the vector 

with length β*
i onto the axis of the jth dimension in the standard normal space.  Assuming 

the failure limit state ([KCoi] = [KCLi]) is linear (according to the First-Order Reliability 

Method, or “FORM” [Melchers]), the set of Cpks for the performance KCs can be 

contained in a (kcp x 1) vector [Cpk], called the process capability matrix, and the reject 

rates with respect to the performance KCs can contained in a (kcp x 1) vector [Rej], 

called reject rate matrix, where entry [Cpki] and entry [Reji] are obtained respectively 

from the following equations (adapted from [Ditlevsen and Madsen]): 
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Equation 4.22 
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Equation 4.23 
 

The “if” statements are needed in case the average values of any of the KCs are outside 

their corresponding specification limits.  If that is the case, those Cpks are automatically 

zero and the reject rate will now be one minus the result obtained from solving Equation 

4.19.  In general, a manufacturable design is one whose values in [Cpk] are all above a 

target value, generically noted here as KCT (which is often 1.33 in practice).   
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Figure 4.9 shows [Cpk] and [Rej] for the fingernail clipper that was obtained by solving 

Equation 4.19 using the iterative algorithm shown in Equation 4.20 and entering the 

results in Equation 4.22 and Equation 4.23.  KCT is set at 1.33 for the fingernail clipper.  

Relative to this target, it can be seen that only KC6 and KC10 exhibit an acceptable level 

of variability.  The next chapter will present some remedies for improving this situation.  

To facilitate that process, it is helpful to obtain a few more results as shown in the next 

two sections.  
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Figure 4.9.  [Rej], [Cpk], [Kcn] and [KCL] for the Fingernail Clipper Assembly 

 

4.4 Contribution Analysis 

The contribution of the variability of each dimension to the variability of each 

performance KC of an assembly can complied into a matrix, [Co], called the contribution 

matrix, where entry [Co i,j] is computed as follows [Melchers]: 
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Equation 4.24 
 

Entry [Coi,j] is the percentage contribution of variability in the jth dimension in the 

assembly to variability in the ith performance KC.  [Coi,j] does not represent the 

contribution of the jth dimension to the reject rate of the assembly with respect to the ith 

performance KC unless there is no mean shift associated with any of the dimensions. 

(mean shift can have a dramatic effect on the reject rates).  Figure 4.10 shows the 

contribution matrix, [Co], for the fingernail clipper example. 
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Figure 4.10.  The Contribution Matrix for the Fingernail Clipper Assembly 

 

Looking at the contribution results in Figure 4.10, it can be seen that the variability in D1 

(the alignment of the upper cutter base and lower cutter in x direction) is most 

responsible for the variability in KC5 and KC6 (the alignment of the cutter blades in the x 
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direction).  D6 and D10 (the distance in the y direction to the cutter blades from the notch 

in the cutter base) are the biggest contributors to the unacceptable levels of variability in 

KC7 and KC8 (the alignment of the cutter blades in the y direction), D8 and D12 (the 

rotation of the cutter blades in the θz direction) are the biggest contributors to the levels 

of variability in KC9 and KC10 (the alignment of the cutter blades in the θz direction), and 

D7 and D11 (the length of the cutter blades in the z direction), together with D14 and D15  

(the length of the pin and the fulcrum arm of the handle respectively) are the biggest 

contributors to the unacceptable levels of variability in KC11 (the clearance of the cutter 

blades in the z direction). 

 

4.5 Coupling Analysis 

When there are multiple performance KCs, one is often interested to know whether there 

is any correlation between them.  [Arora], [Suh], and [Whitney, Mantripragada, Adams, 

and Cunningham] all present methods for both detecting such correlation and eliminating 

it (or at least minimize its effect).  Such correlation can be contained in two (kcp x kcp)  

matrices called the KC covariance matrix and the KC correlation matrix.  The KC 

covariance matrix, [KCv], can be obtained as follows [Melchers]: 
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Equation 4.25 
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Entry [KCvi,j] is the covariance between the ith and jth KCs and entry [KCvi,i] is the 

variance of the ith KC.  Using [KCv], the KC correlation matrix [KCc], can be also be 

obtained where entry [KCci,j] is computed as follows  [Melchers]: 
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Equation 4.26 
 

If entry [KCci,j] is positive, dimensional errors (such as mean shift) that cause the nominal 

value of the ith KC to approach its specification limit will more than likely cause the 

nominal value of the jth KC to approach its specification limit.  If entry [KCci,j] is 

negative, dimensional errors that cause the nominal value of the ith KC to approach its 

specification limit will more than likely cause the nominal value of the jth KC to move 

away from its specification limit.  If entry [KCci,j] is zero, then the two KCs are 

independent of each other with respect to all the dimensions.   

 

Figure 4.11 shows [KCv] and [KCc] for the fingernail clipper assembly.  In addition to 

the obvious coupling of KCs that are the upper and lower limit of the same one-

dimensional geometric relationship (i.e. KC5 and KC6, KC7 and KC8, and KC9  and KC10), 

KC5 and KC6 are both correlated with KC9 and KC10.  KC7 and KC8 are also both 

correlated with KC11.  
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Figure 4.11.  The KC Covariance and KC Correlation Matrices 

 

To find out which dimensions are causing the correlation, [Co] can be used.  If any 

column of [Co] has more than one nonzero entry, then its means all KCs corresponding to 

the nonzero entries in that column are correlated with each other.  For example, looking 

at Figure 4.10, it can be seen that the positive correlation between KC5 or KC6 (blade 

alignment in the x direction) and KC9 or KC10 (blade alignment in the θz direction) is due 

to D3 (alignment in the θz direction between the upper cutter base and the lower cutter) 

and D12 (alignment in the θz direction of the upper blade on the upper cutter body) 
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4.6 Summary 

In this chapter five types of analysis were discussed.  In may ways Motion/Constraint 

Analysis is the most important because if [B]i,j is not invertible due to excess over-

constraints and under-constraints, none of the other techniques are possible.  Sensitivity, 

Performance, and Contribution Analyses are three methods that work together to help 

assess the manufacturability of the assembly design.  Sensitivity Analysis determines 

how sensitive the KCs are to variability in the dimensions.  Performance Analysis 

assesses the Cpks and reject rates for the assembly with respect to the KCs.  Contribution 

Analysis determines what dimensions are contributing most to the variability in the KCs.  

Finally, Coupling Analysis allows a designer to understand the interrelationships between 

the variability of the KCs. 

 

While some of the equations and procedures for Sensitivity, Performance, Contribution, 

and Coupling Analysis are complex, a major advantage regarding them is that all are 

completely amendable to computer implementation.  Using Matlab® programming 

language an executable, called manufacturability.m, was created that automatically 

carries out these four analysis techniques as shown above for a Type-I assembly6 with a 

single configuration (Motion/Constraint analysis can be carried out using 

constraintdetector.m that was described earlier). Manufacturability.m takes as inputs the 

vectors and matrices shown in Table 4.3 and provides as outputs the matrices shown in 

Table 4.4 (see Table 4.5 for counting variables).    A copy of manufacturability.m is 

                                                 
6 A program for analyzing Type-II assemblies was also created by the author but is not presented in this 
thesis. 
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included in Appendix A.  It can be run on Release 13 of Matlab® and requires both the 

Statistics and Optimization Toolboxes to be installed.  In addition to using standard 

Matlab® functions and some functions from the Optimization and Statistics Toolboxes, 

manufacturability.m calls two other specialized subroutines called mppfinder.m and 

modeler.m that are also included in Appendix A.  

Vector or 
Matrix

Description Size

[Fn ]1,1 Guesses for Nominal DOF Values (ftt x 1 )

[Ful ]1,1 Upper Limits on DOF values (ftt x 1 )

[Fll ]1,1 Lower Limits on DOF values (ftt x 1 )

[Fd ]1,1 Direcions for DOF (ftt x 4 )

[Sn ]1,1 Guesses for Nominal DOS Values (stt x 1 )

[Sul ]1,1 Upper Limits on DOS values (stt x 1 )

[Sll ]1,1 Lower Limits on DOS values (stt x 1 )

[Sd ]1,1 Direcions for DOS (stt x 4 )

[SK ]1,1 Nominal DOS stiffness matrix (stt  x stt )

[Cn ]1,1 Nominal DOC values (ctt  x 1 )

[Cd ]1,1 Direcions for DOC (ctt x 4 )

[Dn ]1,1 Nominal dimension values (dtt  x 1 )

[Dd ]1,1 Direcions for dimensions (dtt x 1 )

[Dt ] distribution types for dimensions (dtt  x 1 ) (Character Strings)

[Dp ] distribution parameters for dimensions (dtt  x 3 )

[KCd ]1,1  KC directions (kcp  x 1 )

[KCl ]  performance KC offsets (kcp  x 1 )

[KCt ]  performance KC types (kcp  x 2 )

[KC ] KC combination matrix (kcp  x {6m 1,1 +stt +6g 1,1 })

[CHd ]1,1 Matrix of dimension chains (dtt  x ? )

[CHm ]1,1 Matrix of DOF, DOS,and DOC chains (6m 1,1  x ? )

[CHc ]1,1 Matrix of closed-loop chains (λ1,1  x ? )

[CHo ]1,1 Matrix of open-loop chains (g 1,1  x ? )

[CHk ]1,1 Matrix of KC chains (kcp  x ? )

KCT Target Cpk (1  x 1 )  
Table 4.3.  Manufacturability.m Inputs for Type-I Single Configuration Assembly  
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Vector or 
Matrix

Description Size

[Da ] Average Dimension Values (dtt  x 1 )
[Dv ] Dimension Covariance Matrix (dtt  x dtt )

[KCS ] Performance KC Senstitivity Matrix (kcp  x dtt )
[Cpk ] Performance KC Cpks (kcp  x 1 )
[Rej ] Performance KC Reject Rates (kcp  x 1 )
[Co ] KC Contribution Matrix (kcp  x dtt )

[KCv ] KC Covariance Matrix (kcp  x kcp )
[KCc ] KC Correlation Matrix (kcp  x kcp )
[KCa ] Average Peformance KC Values (kcp  x 1 )
[KCn ] Nominal Peformance KC Values (kcp  x 1 )
[KCL ] Performance KC Specification Limits (kcp  x 1 )
[KCL ] Performance KC Specification Limits (1  x 1 )  

Table 4.4.  Manufacturability.m Outputs for Type-I Single Configuration Assembly 
 

Variable Description Value
a Total # of assembly states 1
bt Total # of configurations 1

kctt Total # of KC’s kcp
kcl Total # of Linking KC’s 0
kcp Total # of Performance KC’s kct 1,1

dtt Total # of Dimensions dt 1,1

ftt Total # of DOF ft 1,1

ctt Total # of DOC ct 1,1

stt Total # of DOS st 1,1

p 1,1 Total # of Parts p 1,1

m 1,1 Total # of Real Mates m 1,1

λ1,3 Total # of Closed-Loops λ1,1

g 1,4 Total # of Open-Loops g 1,1  
Table 4.5.  Counting Variables for Type-I Single Configuration Assembly 
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5. IMPROVING MANUFACTURABILITY 

If the analysis techniques in Chapter 4 reveal that a design has an unacceptable level of 

manufacturability, there exist several options for remedying the situation.  These 

remedies can be thought of as pertaining to one of the following three categories 

according to [Taguchi, 1993]: 

•  System-Level Strategies 

•  Parameter-Level Strategies 

•  Tolerance-Level Strategies 

 

The discussion that follows concerning these three categories of strategies is not meant to 

be all inclusive but is instead intended to provide a basic framework that illustrates how 

the model developed in Chapter 3 and the results from Chapter 4 can be used to support 

manufacturability improvement efforts. 

 

5.1 System-Level Strategies 

Making changes at the system-level can have far reaching effects on assembly behavior 

and manufacturability.  In fact, many system-level changes require that the KCs be 

redefined entirely.  Generally speaking, the modeling and verification techniques 

presented in this work do not provide much insight into what system-level design 

changes one might make to improve manufacturability.  Nonetheless, due to the 

importance of system-level issues, a brief discussion on this topic is still appropriate.   

Specifically, changes in the following system-level characteristics will be discussed here: 
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•  Part-Status 

•  Loop-Status 

•  Constraint-Status 

•  Type-Status 

 

Consider, for example, if the three-legged table shown in the left side of Figure 5.1 

exhibited too much variability in the levelness of its top with respect to the floor.  Firstly, 

one might consider changing its part-status, or in other words the number of parts of the 

way in which they are interconnected.  One way to accomplish this is by reducing the 

number of parts in each leg from three to one as shown in the top-right of Figure 5.1.  

Secondly, one might consider changing the loop-status, or in other words, the number of 

open-loops and closed-loops and the parts and features they contain.  This could be 

achieved by adopting the design shown in the center-right of Figure 5.1.  Thirdly, one can 

change the constraint-status of an assembly, or in other words, the number and nature of 

over-constraints and under-constraints in the assembly.  This might be accomplished by 

making the legs adjustable as in the bottom-right of Figure 5.1.   
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Part-Status Change 

Loop-Status 
Change 

Constraint-Status 
Change 

Parts-Status: 10 parts 
Loops-Status: 3 open, 0 closed 

Constraint-Status: properly-constrained 
Type-Status: Type-I 

Parts-Status: 10 parts 
Loops-Status: 3 open, 3 closed 

Constraint-Status: properly-constrained 
Type-Status: Type-I 

 

Parts-Status: 10 parts 
Loops-Status: 3 open, 0 closed 

Constraint-Status: under-constrained 
Type-Status: Type-I 

 

Parts-Status: 4 parts 
Loops-Status: 3 open, 0 closed 

Constraint-Status: properly-constrained 
Type-Status: Type-I 

 

 
Figure 5.1.  Examples of System-Level Changes to a Table 

 

One final system-level change discussed here involves a change in the type-status 

[Whitney], or the way in which the parts are assembled.   This could be accomplished in 

the case of the three-legged table by changing the way the legs are assembled as shown in 

Figure 5.2.   
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Figure 5.2.  Example of a Type-Status Change for the Assembly of Table Legs 
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Using the Type-II assembly process shown in the bottom of Figure 5.2 instead of the 

Type-I assembly process shown in the top of Figure 5.2 could be beneficial because the 

length of the leg and variability in its length (in the x direction) is independent of the 

lengths of the brace, foot and post and is only dependent on the fixture.  Thus if a single 

fixture could be fabricated with high accuracy to the desired length, all legs assembled 

using that fixture would also have high accuracy.   

 

For Type-II assemblies, a possible system-level change is to find an assembly sequence, 

s, and a set of nominal dimension values, [Dn], that result in uncorrelated KCs.  Then, 

measurement equipment together with adjustable fixtures can be used to set each KC 

sequentially so that their actual values equal or are very close to the nominal target 

values.  This approach can be expressed loosely as an optimization problem as follows: 
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Equation 5.1   
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The minimum value of β in Equation 5.1, called β*, captures the amount of KC coupling 

and corresponds to the optimal assembly sequence, s*, and the optimal set of average 

dimensions values, [Dn*], that minimize the KC coupling.  Since this methodology 

presents no analytical form for s, no mathematical method for solving Equation 5.1 is 

presented here.  At best, one could use trial-and-error to try and arrive at a better 

assembly sequence with less KC coupling, checking [KCc] after each trial.  Several more 

analytic and complete approaches to enumerating assembly sequences and/or identifying 

the best one(s) are presented by [Baldwin et al], [Klein], and [Milner, Graves, and 

Whitney]. 

 

Careful review of Equation 5.1 reveals that the solution is subject to four constraints.  

The first constraint insures that the nominal values of the alignment KCs remain constant.  

The second constraint insures that the nominal values the clearance KCs remain above 

their respective specification limits.  Together, these two constraints insure that the 

nominal performance of the design does not change during optimization.  The third 

constraint requires that the average dimension values equals the nominal dimension 

values.  This constraint effectively eliminates any mean shift.  The final constraint insures 

that the nominal values of dimensions do not exceed the upper and lower bounds as 

specified in [Dul] and [Dll] respectively (see Figure 3.14 for examples of these bounds in 

the case of the fingernail clipper assembly).  This insures that the packing constraints on 

the design are satisfied.  In an industry setting, these bounds might be set to reflect some 
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sort of size envelope that the assembly has to fit in (e.g. an engine fitting under the hood 

of a car) or represent some limitations in the capabilities of the fabrication or assembly 

processes.  All four constraints discussed here are applied to all the optimization 

techniques presented in this chapter. 

 

In the case of the fingernail clipper, another possibility for a system-level change exists.  

This option involves waiting until the fingernail clipper is completely assembled before 

sharpening the blades simultaneously7.  By doing this, the variability in the cutters as 

dictated by the fabrication and assembly processes does not affect the alignment of the 

blades since they are both sharpened at the same time after final assembly. Figure 5.3 

illustrates how this is done.  The schematic shows how the blades can be designed so that 

the grinding always leaves two sharp matched edges on the blades.  In general, it is not 

always the best choice to conduct post assembly machining operations to insure 

manufacturability.  In the case of the fingernail clipper it appears to be a very attractive 

option given the low achievable Cpks of the KCs.  Most likely, real fingernail clippers 

are made this way because at high production volumes post-assembly grinding is 

probably much more economical than carefully controlling the manufacturing processes.  

 

                                                 
7Dan Whitney is credited for pointing out this additional option to the author. 
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Cutter Misaligned 
Before Grinding 

Material to be 
Removed by 

Grinding (shaded) 

Cutters Aligned 
After Grinding 

Blades 

 
Figure 5.3.  Post-Assembly Machining to Align Clipper Blades 

 

In general, while many options exist for possible changes at the system-level, the model 

presented in this work does not support an analytical comparative search of such options.  

The only way to gain insight using the approach presented is to construct a detailed 

model of the original assembly design and each of the proposed new assembly designs 

that incorporate the potential system-level changes and compare their manufacturability 

using the method presented in Chapter 4. Admittedly, this is a very tedious and 

cumbersome approach as it requires extensive knowledge of the details of the design.  In 

light of this, the author’s suggestion is to apply this methodology only after engineering 

is at least somewhat confident that the optimal system-level design has been identified.  
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5.2 Parameter-Level Strategies 

If making changes at the system-level is not an option or such changes do not improve 

manufacturability, another alternative is to make changes at the parameter-level.  In this 

work, the only changeable parameters are the nominal values of the part dimensions 

contained in [Dn] (while in reality assemblies have other changeable design parameters 

relating to mass, stiffness, and other part properties, adjusting such parameters are not 

discussed in this work).  Related to the dimensions, there are two types of changes that 

can be made:  

•  Eliminating Mean Shifts  

•  Adjusting the Nominal Values 

 

Each of these will now be discussed briefly below. 

 

5.2.1 Eliminating Mean Shift 

Eliminating mean shift is often a simple way to improve the manufacturability of an 

assembly at the parameter level.  This is accomplished by centering the manufacturing 

processes so that the averages or means of their distributions equal the nominal values as 

specified in the assembly design.  Eliminating mean shift can be represented analytically 

as follows: 
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Equation 5.2 
 

Figure 5.4 shows the effect of eliminating the mean shift in the dimensions, D3, D7 and 

D12 on the Cpks and reject rates of the performance KCs for the fingernail clipper.  While 

the Cpks of KC5, KC9, and KC11 went up, the Cpks of KC6, and KC10 went down.  This is 

because these KCs are from the same KC feature pairs and have the same directions as 

KC5 and KC9 except they represent lower specification limits instead of upper 

specification limits.  Thus eliminating means shift will lower the Cpks of these KCs.  

Nonetheless, the Cpks of KC6 and KC10 are still above the target, KCT (which equals 1.33 

in this case). 
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Before Eliminating Mean Shift 

After Eliminating Mean Shift 
 

Figure 5.4.  The Effect of Eliminating Mean Shift on the Cpks and Reject Rates 
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5.2.2 Changing Nominal Dimension Values 

If eliminating mean shift is not sufficient to improve the manufacturability of the design 

or is not possible, one can seek for a new set of nominal dimension values that will result 

in a design with improved manufacturability.  In general, an improvement will be seen 

using this approach if there exists a set of nominal dimensions values (within the 

packaging constraints) that lowers the overall sensitivity of the performance KCs to the 

variability in the dimensions.  In the specific case of clearance KCs, an improvement may 

also be seen if the nominal dimensions can be set such that the nominal values of the 

clearance KCs are increased, even if the sensitivity of those KCs to the variability is 

unchanged.  Increasing the nominal values of clearance KCs will automatically increase 

their Cpks because the distance between the specification limit and the nominal KC value 

has increased [Terry].  In general choosing an optimal set of dimensions is commonly 

called parameter design [Taguchi, 1992] or parameter optimization and two such 

techniques for carrying this out will now be discussed. 

 

[Cpk] contains the measures of variability that one can expect any of the performance 

KCs to exhibit.  If one or more of the values in [Cpk] is lower than the target Cpk, KCT, 

the performance of the entire assembly is in jeopardy.  The lowest value of [Cpk] 

represents the KC that is need of the most improvement.  The following optimization 

problem can be solved in an attempt to improve this minimum value: 
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Equation 5.3 
 

The “min” function takes a vector as input and outputs the lowest value in the vector.  If 

during the optimization search procedure, the KC with the minimum Cpk changes, the 

min function will pick the new lowest Cpk.  This way, the optimization procedure will 

always be working to improve the lowest Cpk, even if that changes throughout the 

optimization search. 

 

The value of β in Equation 5.3 is the minimum Cpk of the performance KCs.  β* is the 

maximum possible minimum Cpk of the performance KCs and this occurs when the 

nominal values have been optimized and set at [Dn*].  Figure 5.5 shows β* and [Dn*] and 

the results of solving the optimization problem in Equation 5.3 for the fingernail clipper 

example.  The main change is seen in D7.  
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After Optimization 

Before Optimization 

 
Figure 5.5.  The Effect Optimizing Dimensions on the Cpks and Reject Rates 

 

A second option is to maximize a weighted sum of the Cpks of all the performance KCs 

(this is similar to the approached presented by [Parkinson] except here it is not required 

that one posses an explicit representation of the objective function).  This approach is 

desirable when there are several KCs that share importance.  By using a weighted sum 

instead of just a single Cpk, it allows one to prioritize the KCs by placing the appropriate 

weight on each.  These weights ideally sum to one and can be contained in a (kcp x 1) 

vector, [Wa] called the dimension weighting matrix.  The weighted Cpk optimization 

problem takes the following form: 

 



 
 
 
 
 

211 

[ ]

[ ] [ ]( )
[ ] [ ] [ ]

[ ] [ ]( ) [ ]
[ ] [ ]
[ ] [ ] [ ]

dttj

kcpi

for

DulDnDll

DnDa

KCtifKCLKCaAbs

KCtifKCnKCa

toSubject

CpkWaMaximize

where

maximizesthatDnFind

lll

ll

kkk

kkk

T

,,2,1

,,2,1

20

1

K

K

=
=

≤≤

=

=≥−

==

=β

β

 

Equation 5.4 
   

The value of β in Equation 5.4 does not have any physical significance unless the weights 

in [Wa] sum to one in which case it is a weighted average of the performance KC Cpks.  

β* for this optimization is the maximum weighted Cpk and corresponds to a set of 

optimal nominal dimensions, [Dn*].  Figure 5.6 shows [Wa], [Dn*], and the results of 

solving the optimization problem in Equation 5.4 for the fingernail clipper example (Each 

different [Wa] will result in a different set of optimal dimensions [Dn*]).  Due to the 

bounds on the dimensions (see Figure 3.14 for the bound vectors) and the fact that this 

optimization started where the previous parameter optimization terminated (see Figure 

5.5), no improvement is seen using this approach.  As such, the Cpks of KC7 and KC8 are 

still below the target and the only remaining option is to make changes at the tolerance-

level.  Such changes are the topic of the next section. 
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After Optimization 

Before Optimization 

 
Figure 5.6.  The Effect of Weighted Optimization on the Cpks and Reject Rates 

 
 
Using Matlab® programming language an executable, called dimoptimizer.m, was created 

that automatically carries out the weighted parameter optimization technique as shown 

above for a Type-I assembly8 with a single configuration.  The executable 

dimoptimizer.m takes as inputs the vectors and matrices shown in Table 5.1 and provides 

as outputs the matrices shown in Table 5.2 (see Table 5.3 for counting variables).  A copy 

of dimoptimizer.m is included in Appendix A.  In addition to requiring both the Statistics 

and Optimization Toolboxes to be installed, it also relies on two specialized functions 

called dimobjective.m and dimconstraint.m that are also included in Appendix A. 

 

                                                 
8 A program for analyzing Type-II assemblies was also created by the author but is not presented in this 
thesis.   
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Vector or 
Matrix

Description Size

[Fn ]1,1 Guesses for Nominal DOF Values (ftt x 1 )

[Ful ]1,1 Upper Limits on DOF values (ftt x 1 )

[Fll ]1,1 Lower Limits on DOF values (ftt x 1 )

[Fd ]1,1 Direcions for DOF (ftt x 4 )

[Sn ]1,1 Guesses for Nominal DOS Values (stt x 1 )

[Sul ]1,1 Upper Limits on DOS values (stt x 1 )

[Sll ]1,1 Lower Limits on DOS values (stt x 1 )

[Sd ]1,1 Direcions for DOS (stt x 4 )

[SK ]1,1 Nominal DOS stiffness matrix (stt  x stt )

[Cn ]1,1 Nominal DOC values (ctt  x 1 )

[Cd ]1,1 Direcions for DOC (ctt x 4 )

[Dn ]1,1 Nominal dimension values (dtt  x 1 )

[Dul ] Nominal dimension values (dtt  x 1 )

[Dll ] Nominal dimension values (dtt  x 1 )
[Dd ]1,1 Direcions for dimensions (dtt x 1 )

[Dt ] distribution types for dimensions (dtt  x 1 ) (Character Strings)

[Dp ] distribution parameters for dimensions (dtt  x 3 )
[KCd ]1,1  KC directions (kcp  x 1 )

[KCl ]  performance KC offsets (kcp  x 1 )

[KCt ]  performance KC types (kcp  x 2 )
[KC ] KC combination matrix (kcp  x {6m 1,1 +stt +6g 1,1 })

[CHd ]1,1 Matrix of dimension chains (dtt  x ? )

[CHm ]1,1 Matrix of DOF, DOS,and DOC chains (6m 1,1  x ? )

[CHc ]1,1 Matrix of closed-loop chains (λ1,1  x ? )

[CHo ]1,1 Matrix of open-loop chains (g 1,1  x ? )

[CHk ]1,1 Matrix of KC chains (kcp  x ? )

[Wa ] KC Cpk Weights (kcp  x 1 )

KCT Target Cpk (1  x 1 )  
Table 5.1.  Dimoptimizer.m Inputs for Type-I Single Configuration Assembly  

 

Vector or 
Value

Description Size

[Dn * ] Optimum Dimension Values (dtt  x 1 )

β *
Maximum Weighted Cpk (1  x 1 )  

Table 5.2.  Dimoptimizer.m Outputs for Type-I Single Configuration Assembly 
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Variable Description Value
a Total # of assembly states 1
bt Total # of configurations 1

kctt Total # of KC’s kcp
kcl Total # of Linking KC’s 0
kcp Total # of Performance KC’s kct 1,1

dtt Total # of Dimensions dt 1,1

ftt Total # of DOF ft 1,1

ctt Total # of DOC ct 1,1

stt Total # of DOS st 1,1

p 1,1 Total # of Parts p 1,1

m 1,1 Total # of Real Mates m 1,1

λ1,3 Total # of Closed-Loops λ1,1

g 1,4 Total # of Open-Loops g 1,1  
Table 5.3.  Counting Variables for Type-I Single Configuration Assembly 

 
 
5.3 Tolerance-Level Strategies 

If a design has low manufacturability, and efforts at the system and parameter level have 

been exhausted, a final option is to increase the capability of the fabrication and assembly 

processes that cause there to be variability in the dimensions.  In the literature this is 

often called tolerance allocation or tolerance design [Hong and Chang].  This is often the 

least desirable and most expensive option because it requires actual equipment and/or 

process changes instead of just design changes. 

 

One method of approaching such problems is to look at [Co], find the dimensions whose 

variability most contributes to the variability of the KCs with the lowest Cpks, weigh this 

information against the cost of improving the capability of the processes that delivers 

each of those dimensions, and allocate resources accordingly.  This can be expressed 

loosely as the following optimization problem: 
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Equation 5.5 
 

In practice it is difficult to obtain accurate cost-performance functions for the various 

fabrication processes and no such functions are presented in analytical form here.  

However, several approaches to the general problem in Equation 5.5 have been presented 

in the literature by [Bjørke], [Chase, Greenwood, Loosli, and Hauglund], [Ngoi and Min], 

and others.   

 

Even if an analytical approach doesn’t exist for solving Equation 5.5, a trail-and-error 

approach can be used that captures the essence of the optimization problem.  In the case 

of the fingernail clipper, this is accomplished by using [Co] as a guide for reducing the 

variability in one or more dimensions so that the Cpks of KC7 and KC8 are improved.  

Figure 5.7 shows how this is done.  Since the variability in D10 contributes about 64% of 

the variability in KC7 and KC8, it seems like the most logical place to start.  As it turns 
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out, reducing the standard deviation of D10 from 0.028 to 0.024 results in a sufficient 

improvement in the Cpks of KC7 and KC8.  With this final change, all the Cpks for the 

fingernail clipper KCs are at acceptable levels.  This means that the manufacturability of 

the design is such that all KCs are delivered and the design is considered a success. 
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Before adjusting capability of process that sets 
D10 so that σ10 is reduced from 0.032 to 0.028 

After improving capability of process that sets D10  
 

Figure 5.7.  The Effect of Reducing Dimensional Variability on Manufacturability 
 



 
 
 
 
 

217 

5.4 Summary 

In this chapter, several techniques for improving the manufacturability of assemblies by 

making changes at the system, parameter, and tolerance levels have been discussed.  

Together, Chapter 3, Chapter 4, and Chapter 5 represent all the theory for the 

methodology presented in this work.  The fingernail clipper, while not part of the theory, 

served as a running example to illustrate how to carry out each phase of the methodology.  

In the next chapter, the methodology is applied to a valvetrain of a gasoline combustion 

engine and the results of this case study are presented.   
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6. TYPE-I CASE STUDY: RFF VALVETRAIN 

With the aid of Matlab® executables modeler.m, constraintdetector.m, and 

manufacturability.m, the methodology presented in Chapter 3 through Chapter 5 was 

applied to a valvetrain of a Ford® V-8 2-Valve gasoline combustion engine.  This chapter 

presents the results of this effort and is divided into background, modeling, verification, 

improvement, and summary sections. 

 

6.1 Background 

A Roller Finger Follower, or RFF, valvetrain (see Figure 6.1) is a set of parts on an 

engine that works together in a coordinated fashion to open and close an intake or 

exhaust valve of a combustion engine that serve respectively to intake the air-fuel 

mixture and expel the combusted gases.  Assembly of an RFF valvetrain does not require 

any locating fixtures and as such it is considered a Type-I assembly.  Further, none of the 

mates are compliant and all the parts can be assumed to be rigid9.  The primary entities in 

a RFF valvetrain are the cylinder head, cam rod, cam lobe, follower, lash adjuster, valve 

seat, valve, valve guide, and sprocket (not shown in Figure 6.1).  Together the cam rod 

and the eight cam lobes are called the camshaft.  The sprocket is mounted to the end of 

the camshaft and has a key that mates with a keyway in the camshaft as shown in Figure 

6.2.  The sprocket is attached to the crankshaft of the engine via a chain and this insures 

that movement of the pistons and the valves are coordinated. 

                                                 
9 The only compliant entity is a spring whose only purpose it to enforce force closure of the mates in the 
RFF valvetrain and as such does it not qualify as a part as that term is defined here.   
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Figure 6.1.  A Roller Finger Follower Valvetrain 
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Figure 6.2.  Sprocket with Key and Camshaft with Keyway 

 

A V-8 2-valve engine has sixteen valvetrains like the one shown in Figure 6.1; four 

exhaust and four intake valvetrains for the four cylinders in the left bank, and four 

exhaust and four intake valvetrains for the four cylinders in the right bank (however each 

engine will only have two camshafts and two sprockets).  The right and left sets of eight 

valvetrains are orthogonal to each other.  The timing of the spark plugs, pistons, and fuel 

injectors are coordinated with the timing of the valvetrains using a set of chain driven 

sprockets (see Figure 6.2) such that the combustion events occur in pairs, with each pair 

including one cylinder (with its spark plug, fuel injector, and intake and exhaust valves) 

from the right bank and one cylinder from the left bank.   
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6.2 Modeling 

While there are many customer expectations that depend on the proper function of the 

valvetrain, this case study only focuses on one: the level of noticeable vibration it causes.  

Due to the nature of V-engines, if the opening and closing of the valves for a cylinder on 

the right are not synchronized with the opening and closing of the valves for the matching 

cylinder on the left, the combustion events will not be balanced and the engine will 

vibrate.  This vibration causes the frame and subsequently the seats of the passengers to 

vibrate as well and is most pronounced when the engine is idling or turning at a low 

speed.  Roughly speaking, the amount of vibration is proportional to the level of 

asynchrony between sprockets of the right and left matching intake valvetrains.  One way 

to measure this mismatch is to compare the absolute rotation angle of the left camshaft 

sprocket to the absolute rotation angle of the right camshaft sprocket when the intake 

valve is at its most open position, called “max-lift”.  This measurement is sometimes 

called the bank-to-bank camshaft timing error.  Analysis has shown that if the absolute 

value of the bank-to-bank camshaft timing error is greater than two degrees, the vibration 

is noticeable by the driver of the vehicle, a condition that is not acceptable10.   

 

Two KCs are needed to represent this vibration-related customer expectation since a 

positive or negative timing error creates unwanted vibration.  Careful analysis revealed 

that the bank-to-bank camshaft timing error was equal to four times the timing error of a 

                                                 
10  Joseph Stout and other employees from Ford Motor Company conducted a detailed analysis of 
valvetrain dynamics to arrive at this conclusion. 
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single camshaft sprocket relative to its corresponding cylinder head11 (a V-engine has two 

cylinder heads).  This 4:1 amplification is a result of the mirror image nature of the 

assembly operations used to assemble the right and left banks of valvetrains and the 2:1 

gearing ratio of the sprockets to the crankshaft.  Taking advantage of this and the fact that 

the assembly does not require any locating fixtures, the assembly model need only consist 

of a single configuration that includes a single valvetrain for an intake value that is set at 

max-lift.  The bank-to-bank camshaft timing KCs can be replaced with two KCs that 

measure the angle of rotation of the sprocket mounted on the camshaft relative to the 

corresponding cylinder head.  Figure 6.3 shows a schematic of a typical RFF valvetrain 

(spring omitted).   The specification limit offsets for these new performance KCs are 

+.00873 and -.00873 radians (+.5 and -.5 degrees) and the target Cpk is 1.33.  A 

simplified annotated liaison diagram showing only the real mates, intra-part relationships 

(unlabeled), parts, features (unlabeled) and the KC feature pair is shown in Figure 6.4. 

                                                 
11 Chris Hocking and other employees from Ford Motor Company are credited for discovering this.  
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Figure 6.3.  Vibration KCs for Valvetrain Shown at Max-Lift 
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Figure 6.4.  Annotated Liaison Diagram for RFF Valvetrain at Max Lift 

 
 
Study of the annotated liaison diagram in Figure 6.4 reveals several things.  First, the cam 

rod and the cam lobe can be considered one part, hereafter called the camshaft, since the 

mate between them is rigid and has no DOF.  Second, the valve guide, valve seat, and 

cylinder head can be considered one part for the same reason, hereafter called the 

cylinder head (see bolded arrows in Figure 6.4 that are encircled with a dotted line).  

Third, the KCs of interest in this situation are unaffected by the keeper1, keeper2, and the 

retainer since those parts form closed-loops that do not share any dimensions or intra-part 

relationships with the closed-loops that contain the KC feature pair (see bolded arrows 

and parts that are encircled with a dotted line).   
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Based on the argument above, the annotated liaison diagram can be greatly simplified as 

shown in Figure 6.5.  This simplified but analytically equivalent valvetrain contains 8 

parts, 22 features, 14 intra-part relationships (containing 25 dimensions), 10 real mates 

(containing 23 DOF, 37 DOC, and 0 DOS), 1 open-loop, 3 closed-loops, and 1 KC 

feature pair (containing 2 KCs).  Table 6.1 contains a description of the features for the 

configuration shown in Figure 6.5.  Using Figure 6.5, dimensioned drawings of the parts 

obtained from Ford® Motor Company, and the Matlab® executable modeler.m discussed 

at the end of Chapter 3, an analytical valvetrain model was created12. 
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Figure 6.5.  Revised Annotated Liaison Diagram for RFF Valvetrain at Max Lift 

 

                                                 
12 For proprietary reasons, the actual values of the dimensions have been omitted from this case study. 
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Feature Description
E1,1,1 Global origin on cylinder head (base feature and 1st feature in KC feature pair)

E1,1,2 valve tip (mates with follower tip)

E1,1,3 center axis of bore for camshaft (mates with camshaft)

E1,1,4 center axis of bore for lash adjuster (mates with lash adjuster outer)

E1,1,5 center axis of camshaft (mates with cylinder head)

E1,1,6 tip of camlobe  (mates with roller)

E1,1,7 center axis of sprocket mounting plate (mates with sprocket back surface)

E1,1,8 center line of keyway (mates with sprocket key)

E1,1,9 center point of follwer pivot (mates with lash adjuster)

E1,1,10 follower tip (mates with valve)

E1,1,11 center axis of roller bearing (mates with roller)

E1,1,12 center axis of roller (mates with follower)

E1,1,13 surface of roller (mates with came lobe tip)

E1,1,14 center axis of lash adjuster inner (mates with lash adjuster outer)

E1,1,15 tip of lash adjuster inner (mates with follower pivot)

E1,1,16 sprocket key  (mates with keyway in camshaft)

E1,1,17 sprocket back plate (mates with mounting plate on camshaft)

E1,1,18 center of timing tooth (2nd feature in KC feature pair)

E1,1,19 center axis of valve guide on cylinder head (mates with valve)

E1,1,20 valve center axis (mates with valve guide on cylinder head)

E1,1,21 axis of lash adjuster outer housing (mates with lash adjuster bore in cylinder head)

E1,1,22 axis of lash adjuster outer (mates with lash adjuster inner)  
Table 6.1.  Description of Features for Valvetrain 

 

6.3 Verification 

6.3.1 Motion/Constraint Analysis 

With the modeling complete, constraintdetector.m (discussed in Chapter 4) was used to 

determine whether any excess under-constraints or over-constraints exist.  A summary of 

the results of this analysis are shown in Figure 6.6.  It can be seen that the assembly has 
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two over-constraints and six under-constraints.  Using [TLr]1,1 and [WPr]1,1 (not shown 

here), the excess under-constraints and over-constraints were identified and they are also 

shown in Figure 6.6. 
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Figure 6.6.  Motion/Constraint Analysis of Valvetrain 

 
 
The two over-constraints are in the θy and θz directions in closed-loop Λ1,1,1 that is 

shared by the camshaft and the sprocket.  These over-constraints can be eliminated by 

changing the mate between the key and the keyway so that it has five DOF instead of 

three.  Due to the clearance between the keyway and the key in the real assembly, this is 

actually the more accurate representation of the mating condition.    

 

Of the six under-constraints, three are simply the rotations in the θz direction allowed by 

the mates between the outer lash adjuster and the cylinder head, the inner and out lash 
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adjusters, and the valve guide and the valve.  While such under-constraints are necessary 

in a real valvetrain so that the parts wear evenly they are not needed in this assembly 

model since to first-order they do not affect the KCs of interest.  For this reason these 

three DOF can be temporarily removed and turned into DOC.  

 

A fourth under-constraint is the motion in the z direction allowed between the valve and 

the valve guide.  Since this configuration is defined to be at max-lift, this value can be 

fixed13.  The last two under-constraints are present in the mate between the camshaft and 

the roller.  By changing the number of DOF of this mate from four to two, these under-

constraints can also be eliminated.  This in effect imposes a no-slip condition on the mate 

between the cam lobe and roller and in this case, such an assumption is reasonable.   

 

Figure 6.7 shows both the annotated liaison diagram for a valvetrain including the 

changes discussed above.  Figure 6.7 also shows the results from the motion/constraint 

analysis.  It can be seen that this new assembly contains no excess over-constraints or 

under-constraints. 

                                                 
13 For proprietary reasons that actual value of this dimension is not shown here. 
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Figure 6.7.  Motion/Constraint Analysis of Revised Valvetrain 

 

6.3.2 Sensitivity Analysis 

Using the new assembly model, the KC sensitivities, KC Cpks, and KC contributions 

were obtained using the Matlab® program manufacturability.m.  Since there are only two 

KCs and the correlation between them is obvious it was not necessary to study the KC 

coupling in this case.  Table 6.2 shows the sensitivity of the KCs the dimensions (placed 

in order of sensitivity magnitude).  It can bee seen that the timing of the camshaft 

sprocket is very sensitive to several dimensions on the cylinder head, namely the 

alignment of the camshaft bore in the cylinder head (D1, D3, D10, and D17) and the 

alignment of the lash adjuster bore in the cylinder head (D5 and D15).  Sprocket timing is 

also sensitive to the straightness of the camshaft, lash adjuster, and valve (D2, D4, D13, 

D18, D6, D16, D23, and D25), the sprocket mounting dimensions (D7, D8, D9, and D10), the 
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roller, cam lobe, and follower tip radii (D12, D14, and D21), the valve guide and roller 

alignment (D11, D19, D22, and D24), and the valve length (D20).  Some of these dimensions 

are shown schematically in Figure 6.8. 

     

#

Sensitivity 
of KC1 

(+θY of 
Sprocket)

Sensitivity 
of KC2  

(+θY of 
Sprocket)

Units Dimension Description

D1 -4.0132 4.0132 (rad/rad) alignment (θz) of camshaft bore in cylinder head
D2 -4.0132 4.0132 (rad/rad) straightness (θz) of camshaft
D3 1.8408 -1.8408 (rad/rad) alignment (θx) of camshaft bore in cylinder head
D4 1.8408 -1.8408 (rad/rad) straightness (θx) of camshaft
D5 -0.6183 0.6183 (rad/rad) alignment (θy) of lash adjuster bore in cylinder head 
D6 -0.6183 0.6183 (rad/rad) straightness (θy) of lash adjuster
D7 -0.0548 0.0548 (rad/mm) alignment (x) of keyway in camshaft
D8 -0.0548 0.0548 (rad/mm) alignment (x) of key in sprocket
D9 0.0547 -0.0547 (rad/mm) alignment (x) of sprocket-mounting shaft in camshaft
D10 0.0235 -0.0235 (rad/mm) alignment (x) of camshaft bore in cylinder head
D11 -0.0235 0.0235 (rad/mm) alignment (x) of roller axis in follower
D12 -0.0235 0.0235 (rad/mm) radius (z) of roller
D13 0.0235 -0.0235 (rad/mm) straightness (x) of camshaft
D14 0.0235 -0.0235 (rad/mm) radius (z) of cam lobe
D15 -0.0221 0.0221 (rad/mm) alignment (x) of lash adjuster bore in cylinder head 
D16 -0.0221 0.0221 (rad/mm) straightness (x) of lash adjuster
D17 0.0108 -0.0108 (rad/mm) alignment (z) of camshaft bore in cylinder head
D18 0.0108 -0.0108 (rad/mm) straightness (z) of camshaft
D19 -0.0108 0.0108 (rad/mm) alignment (z) of roller axis in follower
D20 -0.0095 0.0095 (rad/mm) valve length (z)
D21 -0.0095 0.0095 (rad/mm) radius of follower tip that mates to valve (z)
D22 -0.0094 0.0094 (rad/mm) alignment (x) of valve guide in cylinder head
D23 -0.0094 0.0094 (rad/mm) straightness (x) of valve
D24 0.0012 -0.0012 (rad/rad) alignment (θy) of valve guide in cylinder head
D25 0.0012 -0.0012 (rad/rad) straightness (θy) of valve  

Table 6.2.  Results of Sensitivity Analysis for RFF Valvetrain 
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Figure 6.8.  Schematic of Valvetrain at Max Lift Showing Some Critical Dimensions 
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For comparison, another assembly model was created (using modeler.m) for the same 

valvetrain but in a different configuration; the position right before the valve starts to 

open (see Figure 6.9).  This was done so that is could be compared directly to an Excel®-

based valvetrain sensitivity model of the identical configuration14.  Specifically, the 

sensitivities of the camshaft rotation and lash adjuster height to a select set of dimensions 

obtained using manufacturability.m were compared to the identical sensitivities derived 

from the Excel®-based model.  It can be seen in Table 6.3 that the results from the two 

methods are in very close agreement (less than 1% difference).   

 

Sensitivity of: Units
Excel®-
Based 
Model

Manufacturability.m
Percent 

Difference 
(%)

Camshaft Rotation (θθθθY) to:

valve length (z) (deg/mm) 0.2389 0.2404 0.640

camshaft position (x) (deg/mm) 1.6167 1.6163 0.024

roller postion (x)  (deg/mm) 1.5826 1.5825 0.009

lash adjuster postion (x) (deg/mm) 0.2071 0.2071 0.022

Lash Adjuster Height (Z) to:

valve length (z) (mm/mm) 1.2787 1.2794 0.052

camshaft position (x) (mm/mm) 0.0196 0.0195 0.270

roller postion (x)  (mm/mm) 0.2029 0.2026 0.130

lash adjuster postion (x) (mm/mm) 1.5704 1.5707 0.018  
Table 6.3.  Comparison of Sensitivities from Excel® Model and Manufacturability.m 
 

                                                 
14 This model was also created by the author with help from employees at Ford Motor Company. 
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Figure 6.9.  Valvetrain Configuration Just Before Valve Starts to Open 

 

6.3.3 Performance Analysis 

Using manufacturability.m and the data regarding the variability in the fabrication 

processes15, the Cpks and reject rates of the KCs were obtained for the valvetrain at max-

lift and these are shown in Table 6.4.  Assuming the target Cpk is 1.33, the results in 

                                                 
15 The variability in the fabrication processes for each dimension was estimated by assuming that each was 
normally distributed, mean centered, and had a Cpk of 1.33 with respect to the tolerance band assigned to 
the dimension on the part drawings.  Due to the proprietary nature of these values, they are not shown here. 
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Table 6.4 reveals that the manufacturability of the valvetrain is unacceptably low since 

the Cpks of both KCs are predicted to be 1.01.   

 

KC KC Cpk
Reject Rate 

(%)
KC Cpk

Reject Rate 
(%)

  KC1 (+θY of Sprocket) 1.01 0.128 0.97 0.181

  KC2  (+θY of Sprocket) 1.01 0.128 0.97 0.181

Estimates Using 
Manufactuability.m

Estimates Using Modified 
VSA® Model

 
Table 6.4.  Comparison of Cpk Estimates from VSA® and Manufacturability.m 

 

For comparison, Table 6.4 also includes the results from a Monte Carlo simulation-based 

approach using a model developed with VSA® software [VSA].  Since the version of 

VSA® used was not capable of modeling assemblies with closed-loops, it had to be 

modified16.  As can be seen, the results from manufacturability.m and the VSA®-based 

model are in very close agreement.  The most noticeable difference between the methods 

is not in the results but in the computational efficiency.  Whereas typical models in VSA® 

take several hours to produce results17, manufacturability.m can usually obtain results in 

several minutes18.  

 

                                                 
16 Tim Bohr, an employee of Ford Motor Company, modified the basic VSA-3D software to create this 
model and modify the program so that the closed-loop nature of the valvetrain was captured. 
17Dan Jakobcic, an employee of Ford Motor Company, provided this estimate during a personal 
communication with the author. 
18This runtime estimate is for an assembly with similar complexity to the RFF valvetrain that is run on PC 
computer with an Intel® Pentium® 4 processor. 
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6.3.4 Contribution Analysis 

Using manufacturability.m, Contribution Analysis was conducted for the valvetrain and 

the results are shown in Table 6.5.  The rows in Table 6.5 corresponding to the 

dimensions in the valvetrain are ordered from highest to lowest contribution. 

 

#
Contribution to 

Variability of 
KC1 (%)

Contribution to 
Variability of 

KC2 (%)
Dimension Description

D7 20.92 20.92 alignment (x) of keyway in camshaft
D5 13.09 13.09 alignment (θy) of lash adjuster bore in cylinder head 
D11 12.64 12.64 alignment (x) of roller axis in follower
D8 12.26 12.26 alignment (x) of key in sprocket
D10 6.45 6.45 alignment (x) of camshaft bore in cylinder head
D9 6.43 6.43 alignment (x) of sprocket-mounting shaft in camshaft
D15 5.77 5.77 alignment (x) of lash adjuster bore in cylinder head 
D21 4.86 4.86 radius of follower tip that mates to valve (z)
D1 3.78 3.78 alignment (θz) of camshaft bore in cylinder head
D16 3.49 3.49 straightness (x) of lash adjuster
D24 2.69 2.69 alignment (θy) of valve guide in cylinder head
D19 2.66 2.66 alignment (z) of roller axis in follower
D17 1.36 1.36 alignment (z) of camshaft bore in cylinder head
D22 1.07 1.07 alignment (x) of valve guide in cylinder head
D3 0.80 0.80 alignment (θx) of camshaft bore in cylinder head
D13 0.41 0.41 straightness (x) of camshaft
D6 0.40 0.40 straightness (θy) of lash adjuster
D20 0.35 0.35 valve length (z)
D2 0.23 0.23 straightness (θz) of camshaft
D14 0.11 0.11 radius (z) of cam lobe
D12 0.10 0.10 radius (z) of roller
D18 0.09 0.09 straightness (z) of camshaft
D4 0.05 0.05 straightness (θx) of camshaft
D23 0.00 0.00 straightness (x) of valve
D25 0.00 0.00 straightness (θy) of valve  

Table 6.5.  Contribution Analysis Results Obtained Using Manufacturability.m 
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It can be seen in Table 6.5 that the variability in the key and keyway are most responsible 

for the variability in the sprocket rotation.  The alignment of the bores for the camshaft 

and lash adjuster in the cylinder head are also big contributors.   

 

Table 6.6 shows a comparison between the results obtained using manufacturability.m 

with the results obtained using the modified VSA®-based valvetrain model for a few of 

the top contributors.  The main differences are in the alignment of the roller axis and the 

alignment of the keyway.  Further analysis revealed that in the case of the roller axis 

alignment, the VSA®-based model included a lower variability for that dimension and 

this resulted in a lower contribution.  This assumption was based on actual data received 

from the part supplier that indicated that the roller axis location on the follower was 

aligned more precisely than the drawing-specified tolerance.  In the case of the key 

alignment, the VSA® model treated the clearance between the key and keyway and the 

alignment of the keyway as two separate dimensions whereas the model presented here 

combined them into a single dimension.  This is most likely the reason the prediction 

using manufacturability.m is about twice the prediction using the VSA®-based model. 
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#
Contribution 

Calculated Using 
Manufactuability.m

Contribution 
Calculated Using 
Modified VSA® 

Model

Dimension Description

D7 20.92 25.63 (Includes D9) alignment (x) of keyway in camshaft

D5 13.09 Not Included alignment (θy) of lash adjuster bore in cylinder head 

D11 12.64 5.75 alignment (x) of roller axis in follower

D8 12.26 5.76 alignment (x) of key in sprocket

D10 6.45 6.48 alignment (x) of camshaft bore in cylinder head

D9 6.43 Included in D7 alignment (x) of sprocket-mounting shaft in camshaft

D15 5.77 7.17 alignment (x) of lash adjuster bore in cylinder head  
Table 6.6.  Comparison of Contributions from VSA® and Manufacturability.m 

 

6.4 Improvements 

Since the Cpks of the KCs are below the target of 1.33, it is worthwhile to look at what 

changes might lead to improved values for these Cpks.  At the system-level, there are 

several possibilities.  One option is to change the type of valvetrain.  For example, instead 

of a roller finger follower, or RFF, valvetrain, a direct acting mechanical bucket, or 

DAMB, valvetrain could be used (see Figure 6.10).  DAMB valvetrains do not use a 

follower or lash adjuster but use a flat bucket instead.  Switching to a DAMB valvetrain 

is advantageous because it completely eliminates the contributions of D10, D11, and D12 to 

variability in cam sprocket timing as shown in Figure 6.10.  From Table 6.5, it can be 

seem that these three dimension account for 25% of the cam sprocket timing error!  This 

represents a substantial improvement.  However, since the camshaft in a DAMB 

valvetrain is directly over the valve, each bank usually requires two camshafts for each 

back of pistons.  For this and other reasons, switching from a RFF valvetrain to a DAMB 

valvetrain represents a significant system-level change that is usually not possible unless 

the design is in the early concept phase.   
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Figure 6.10.  One Possible System-Level Change 

 

Another system-level option is to change the assembly process.  For example, the 

sprocket could be mounted onto the camshaft using a precision press fit operation19.  This 

                                                 
19 This is in fact what Ford Motor Company has done to reduce cam sprocket timing variability with some 
of their engines that have RFF valvetrains.  
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would reduce the effect of D7, D8, and D9, which together account for 40% of the 

variability in cam sprocket timing. 

 

At the parameter level, one might decrease some of the clearances between the parts, 

especially between the key in the sprocket and the keyway in the camshaft.  However, 

since there are many other valvetrain-related KCs in addition to the vibration caused by 

timing error, one must insure than any changes in the nominal dimension values do not 

have adverse effects on these other KCs. 

 

At the tolerance level, the most logical place to start is with the dimensions that are the 

highest contributors to the variability in the KCs.  Working with the supplier of the 

sprockets and followers, one could try to reduce the variability of the dimensions in those 

parts.  Since the cylinder head is manufactured in-house, it may also be advantageous to 

see if the variability in the boring operations for the lash adjuster bore and camshaft bore 

can be reduced. 

 

6.5 Summary 

This chapter presented a case study involving the application of the methodology 

presented in this work an RFF valvetrain of an engine.  Using the Matlab® programs 

included in Appendix A, a model was created and used to verify the manufacturability of 

the valvetrain.  Since the predicted Cpks of the KCs were below the target Cpk, the 

results from the verification effort were used to suggest several ways to improve the 
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manufacturability of the design.  On the whole, comparison of the sensitivity, 

performance, and contribution results obtained using the Matlab® programs to results 

from other industry-standard tools showed close agreement.  The main advantage of the 

method presented in this thesis as compared to some other methods is its computational 

efficiency.  Whereas other methods might take hours to produce results, this method can 

produce results in minutes. 

 
 
 

 

 



 
 
 
 
 

241 

7. CONCLUSIONS 

7.1 Summary 

This thesis has presented a unified approach to modeling, verifying, and improving the 

manufacturability of mechanical assemblies.  Chapter 1 introduced the goals of this thesis 

and presented some of the additional assumptions that the methodology is based on.  

Chapter 1 also reviewed the relevant prior research and provided a summary of the 

approach that was used in this work.   

 

Chapter 2 laid out a framework for discussion by defining a set of terminology and how it 

was interpreted in this work.  Chapter 2 also took a closer look at the various 

characteristics of mechanical assemblies that relate to assembly behavior.  Chapter 2 

concluded with a brief discussion of what aspects of assemblies were and were not 

included in the methodology presented.   

 

Chapter 3 discussed in detail the modeling procedure that can be used to create a 

quantitative representation of a mechanical assembly design that accurately models its 

nominal and variable forms.  This procedure is divided into two phases: the Element 

Identification & Location Phase and the Element Quantification & Integration Phase. 

 

Chapter 4 revealed how the model developed in Chapter 3 can be used to verify the 

manufacturability of an assembly.  The verification process is composed of a suite of 
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analysis techniques, namely Motion/Constraint, Sensitivity, Performance, Contribution, 

and Coupling Analyses.   

 

Chapter 5 discussed how the results from Chapter 3 and Chapter 4 can be used to support 

efforts to improve the manufacturability of the design.  These efforts are divided into 

three categories: System-Level, Parameter-Level, and Tolerance-Level Strategies.   

 

Chapter 6 showed how this methodology was applied to the design of a Roller Finger 

Follower, or RFF, Valvetrain on a V-8 Ford® Engine.  The scope was limited by looking 

at a single customer expectation: the level of unwanted vibration caused by the engine.  

This expectation was mapped geometrically to the rotation angle of the cam sprocket, 

since any error that angle causes undesirable and noticeable vibration.  Application of the 

methodology revealed that the combination of high variability in the manufacturing 

processes and high sensitivity of the design to that variability resulted in an assembly 

with low manufacturability.  As validation of the methodology, these results were 

compared to predictions using other industry-standard tools.  Chapter 6 concluded by 

using the assembly model and the results it provided to suggest several ways to improve 

the manufacturability of the valvetrain. 

 

The strengths of the methodology developed in this thesis are several.  First, within the 

assumptions and constraints listed at the beginning of the work, the method is general and 

context-free.  This means that it can be applied equally to something very simple, like a 
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fingernail clipper, or something very complex, like a valvetrain.  Second, all the 

mathematics are amendable to matrix-based computation.  This has made it possible to 

automate much of the methodology using Matlab® (see Appendix A).  Third, by using 

probabilistic techniques such as the MPP concept, the need to use Monte Carlo 

simulation to calculate the sensitivities of the KCs to variability in the dimensions, the 

Cpks of the KCs, and contributions of the variability in the dimensions to the variability 

in the KCs was eliminated.  This greatly reduced the complexity of the computation and 

opened the door for some of the optimization techniques presented in Chapter 5.  Also, 

whereas current industry standard-tool for assessing manufacturability such as VSA® can 

take hours to produce results, this methodology can usually produce results in minutes.    

 

Also brought to the surface were a several weaknesses of the methodology.  First, the 

most obvious weakness is the need to convert all problem parameters into geometric 

equivalents.  Needless to say, this can be very difficult in some cases.  Second, related to 

this limitation is the inability to deal with important part properties such as mass.  While 

stiffness is included, it is only covered in a lumped-parameter sense.  Third, while 

handling dimensional variability in a full distribution sense, the methodology is currently 

limited to the case of independent variables.  This limitation means that there are some 

situations when the methodology is incapable of providing meaningful results.  A fourth 

weakness relates to the evaluative nature of the methodology.  In order to produce results, 

a large amount of information must be known about the design.  Often one would like to 

make judgments much earlier in the process when the final architecture of the design is 
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not finalized or all the properties of the parts and the mates have not been specified.  It is 

also possible that the manufacturing processes are not that well understood making 

geometric characterization difficult.  Adapting this methodology so that the amount of 

detailed input required is reduced would open the door for using this methodology as a 

driver of design and not just as an evaluative tool. 

 

7.2 Suggestions for Future Work 

Based on the finding in the discussion above, much of the future work falls into three 

categories: 

•  Improving Existing Capabilities 

•  Extending Methodology to Support Design  

•  Improving Computer Implementation 

 

Each of these categories will now be discussed. 

 

7.2.1 Improving Existing Capabilities 

The methodology in its current state is limited in the discussion of the nominal design to 

bidirectional mates that are frictionless, and parts that are massless.  However, the 

mathematical underpinnings of the presented modeling techniques allow for the 

expansion of the model to accurately include such effects.  For example [Roth] and 

[Ohwovoriole and Roth] discuss how Screw Theory can be extended to include 

unidirectional mates and friction.  In addition, it may be possible to add another matrix to 
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7.2.2 Extending Methodology to Support Design 

Another area for growth of this methodology is the applicability of it to the different 

phases of the design process.  Currently, this methodology is extremely useful, as has 

been shown, to evaluate and improve a product once all or most of the details of the 

design have been identified.  Ideally, this methodology could also be used earlier in the 

design process when making decisions about system architecture, competing viable 

concepts, or competing KCs.  To make this possible, it would most likely mean that the 

mathematical model would have to be simplified so that the amount of input data 

required is reduced.  While such an effort would invariably lead to a model whose 

outputs were less accurate than the one presented here, it may still provide insight that 

would help engineers make key design decisions early in the design process. 

 

7.2.3 Improving Computer Implementation 

Many of the modeling techniques presented in Chapter 3, Chapter 4, and Chapter 5 would 

be extremely difficult to implement manually.  It is therefore advantageous to automate 

these techniques.  Appendix A shows how many of these techniques can be automated 

using Matlab® software.  Ideally, this methodology would be incorporated into a 3-D 

CAD modeling software such as Pro/Engineer®, Catia®, I-DEAS®, or Solidworks®.  Then 

most of the input data could be taken directly from the CAD model.  In addition, a 

graphical query-based user interface could facilitate the input of the remaining data such 

as KCs, assembly topology, and dimensional variability distributions and parameters. 
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APPENDIX A: SUPPORTING MATLAB® CODE 

This appendix contains source code for the following Matlab® executables: 

•  input_file.m 

•  modeler.m 

o energyloop.m 

o combiner.m 

•  constraintdetector.m 

•  manufacturability.m 

o mppfinder.m 

•  dimoptimizer.m 

o dimobjective.m 

o dimconstraint.m 

 

Matlab® Release 13, including the Statistics and Optimization Toolboxes, is required to 

run these programs.  The files listed above should be placed in a single directory that is 

linked to Matlab® using the “Set Path…” command in the “File” drop down menu.  The 

easiest way to execute the programs is to create a separate input file for each assembly or 

configuration (see input_file.m for an example). After all the matrices have been entered 

into the input file and the file has been saved in the linked directory, the inputs can be 

stored in memory by typing the name of the file on the command like (without the .m 

extension).  The programs can then be executed by typing the name of the program on the 

command line followed by the list of required input matrices in parentheses. 
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input_file.m 

%Filename: input_file.m 
%Capability: A sample input file containing the inputs for the fingernail clipper 
%Author: J. Michael Gray, MIT Graduate Student, Mech. Eng. Dept. 
%Date completed: May 1st, 2004 
%Revisions: 
 
%Dimension-related data: 
%nominal values 
Dn=[0;0;0;1.36;1.36;-40.34;2.81;0;-.185;-40.24;-2.81;0;-35.18;8.41;-2.96];  
%directions 
Dd=[4;5;3;6;6;5;6;3;1;5;6;3;5;6;5];  
%upper bounds 
Dul=[.05;.05;.001;2.5;2.5;-40;3.5;.1;-.1;-40;-2.5;.1;-27;10;-2];  
%lower bounds 
Dll=[-.05;-.05;-.001;.5;.5;-50;2.5;-.1;-.2;-50;-3.5;-.1;-37;6;-4];  
%distribution types 
Dt=strvcat('Normal', 'Uniform', 'Uniform', 'Normal', 'Normal','Normal', 'Uniform');    
Dt=strvcat(Dt,'Normal', 'Normal', 'Normal', 'Uniform', 'Normal', 'Normal', 'Normal', 'Normal');  
 
%distribution parameters 
%These distribution parameters include mean shift 
Dp=[0 .03 NaN; -.028 .028 NaN; -.0015 .0023 NaN;1.36 .01 NaN;1.36 .006 NaN];  
Dp=[-40.34 .020 NaN; Dp;2.75 2.91 NaN ;0 .0035 NaN;-.185 .001 NaN;-40.24 .028 NaN]; 
Dp=[ -2.89 -2.73 NaN; Dp;.003 .0028 NaN;-35.18 .05 NaN;8.41 .04 NaN;-2.96 .04 NaN];  
 
%These distribution parameters do not include mean shift are optimized  
%Dp=[0 .03 NaN; -.028 .028 NaN; -.0019 .0019 NaN;1.36 .01 NaN;1.36 .006 NaN];  
%Dp=[-40.34 .020 NaN;2.42 2.58 NaN ;0 .0035 NaN;-.185 .001 NaN;-40.24 .024 NaN]; 
%Dp=[ -2.89 -2.73 NaN;Dp;0 .0028 NaN;-35.18 .05 NaN;8.41 .04 NaN;-2.96 .04 NaN]; 
 
%dimension chain matrix 
CHd=[-33 -32 -31 -30 -29 -28 zeros(1,11);-33 -32 -31 -30 -29 -28 1 zeros(1,10)];  
CHd=[CHd;-33 -32 -31 -30 -29 -28 1 2 zeros(1,9);zeros(1,17);4 34 35 36 16 17 18 zeros(1,10)]; 
CHd=[CHd;zeros(1,17);6 zeros(1,16);6 7 zeros(1,15)]; 
CHd=[CHd; 4 34 35 36 16 17 18 5 53 54 55 56 57 27 zeros(1,3)]; 
CHd=[CHd; 4 34 35 36 16 17 18 5 53 54 55 56 57 27 9 zeros(1,2)]; 
CHd=[CHd;34 35 36 16 17 18 5 53 54 55 56 57 27 9 10 zeros(1,2)]; 
CHd=[CHd; 34 35 36 16 17 18 5 53 54 55 56 57 27 9 10 11 zeros(1,1)]; 
CHd=[CHd;zeros(1,17);13 40 41 42 43 44 22 zeros(1,10)]; 
CHd=[CHd;13 40 41 42 43 44 22 14 45 46 47 48 49 23 zeros(1,3)];  
 
%DOF-related data: 
%nominal values 
Fn=[0;0;0;2.72;0;0;0;1.4936;0;0;35.514];  
%directions 
Fd=[1 0 0 Inf;0 1 0 Inf;0 0 1 0;0 0 1 Inf;1 0 0 0;0 1 0 0;0 0 1 0;1 0 0 0;0 0 1 0;1 0 0 Inf;0 1 0 Inf];  
 
%upper bounds 
Ful=[5;5;dtr(90);10;dtr(90);dtr(90);dtr(90);dtr(180);dtr(90);10;50];  
%lower bounds 
Fll=[-5;-5;-dtr(90);-10;-dtr(90);-dtr(90);dtr(-90);dtr(-150);-dtr(90);-10;-50];  
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%DOS-related data 
%nominal values 
Sn=[.1078]; 
%directions 
Sd=[1 0 0 0];  
%upper bounds 
Sul=[dtr(90)];  
%lower bounds 
Sll=[-dtr(90)]; 
 
%nominal configuration-level stiffness matrix 
SK=[25000];  
 
%DOC-related data 
%nominal values 
Cn=[zeros(24,1); -pi/2; zeros(5,1)];  
%directions 
Cd=[1 0 0 Inf;0 1 0 Inf;0 0 1 Inf;1 0 0 0;0 1 0 0;0 0 1 0;0 0 1 Inf;1 0 0 0;0 1 0 0;1 0 0 Inf];  
Cd=[Cd;0 1 0 Inf;0 0 1 0;1 0 0 Inf;0 1 0 Inf;0 0 1 Inf;1 0 0 0;0 1 0 0;1 0 0 Inf;0 1 0 Inf]; 
Cd=[Cd;0 0 1 Inf;0 1 0 0;0 0 1 0;0 0 1 Inf;0 1 0 0;1 0 0 0 ;1 0 0 Inf;0 1 0 Inf]; 
Cd=[Cd;0 0 1 Inf;0 1 0 0;0 0 1 0]; 
 
%mate chain matrix 
CHm=[4 zeros(1,19);4 16 zeros(1,18); 4 16 17 zeros(1,17)]; 
CHm=[CHm; 4 16 17 18 34 35 36 5 -21 -20 -19 zeros(1,9)]; 
CHm=[CHm;4 16 17 18 34 35 36 5 -21 -20 zeros(1,10); 4 16 17 18 34 35 36 5 -21 zeros(1,11)]; 
CHm=[CHm;13 40 41 42 43 44 zeros(1,14);13 40 41 42 43 44 22 14 45 46 47 48 49 zeros(1,7)]; 
CHm=[CHm;13 40 41 42 43 44 22 14 45 46 47 48 49 23 15 50 51 52 zeros(1,2)]; 
CHm=[CHm;13 40 41 42 43 44 22 14 45 46 47 48 49 23 15 50 51 52 24 zeros(1,1)]; 
CHm=[CHm;13 40 41 42 43 44 22 14 45 46 47 48 49 23 15 50 51 52 24 25]; 
CHm=[CHm;4 34 35 37 16 17 18 5 53 54 55 56 57 zeros(1,7)]; 
CHm=[CHm;-33 -32 -31 -30 -29 -28 zeros(1,14)]; 
CHm=[CHm;-33 -32 -31 -30 -29 zeros(1,15);-33 -32 -31 -30 zeros(1,16)];       
CHm=[CHm;-33 -32 -31 zeros(1,17);-33 -32 zeros(1,18);-33 zeros(1,19);4 zeros(1,19)]; 
CHm=[CHm;4 34 zeros(1,18)]; 
CHm=[CHm; 4 34 35 zeros(1,17);-33 -32 -31 -30 -29 -28 1 2 3 zeros(1,11)]; 
CHm=[CHm;-33 -32 -31 -30 -29 -28 1 2 3 37 zeros(1,10)]; 
CHm=[CHm; );-33 -32 -31 -30 -29 -28 1 2 37 38 zeros(1,10)]; 
CHm=[CHm;13 zeros(1,19); 13 40 zeros(1,18); 13 40 41 zeros(1,17); 13 40 41 42 zeros(1,16)]; 
CHm=[CHm;13 40 41 42 43 zeros(1,15);  13 40 41 42 43 44 22 14 zeros(1,12)]; 
CHm=[CHm;13 40 41 42 43 44 22 14 45 zeros(1,11)]; 
CHm=[CHm;13 40 41 42 43 44 22 14 45 46 zeros(1,10)]; 
CHm=[CHm;13 40 41 42 43 44 22 14 45 46 47 zeros(1,9)]; 
CHm=[CHm;13 40 41 42 43 44 22 14 45 46 47 48 zeros(1,8)]; 
CHm=[CHm;13 40 41 42 43 44 22 14 45 46 47 48 49 23 15 zeros(1,5)]; 
CHm=[CHm;13 40 41 42 43 44 22 14 45 46 47 48 49 23 15 50 zeros(1,4)]; 
CHm=[CHm;13 40 41 42 43 44 22 14 45 46 47 48 49 23 15 50 51 zeros(1,3)]; 
CHm=[CHm;4 34 35 36 16 17 18 5 zeros(1,12); 4 34 35 36 16 17 18 5 53 zeros(1,11)]; 
CHm=[CHm;4 34 35 36 16 17 18 5 53 54 zeros(1,10)]; 
CHm=[CHm;4 34 35 36 16 17 18 5 53 54 55 zeros(1,9)]; 
CHm=[CHm;4 34 35 36 16 17 18 5 53 54 55 56 zeros(1,8)]; 
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%open-loop chain matrix 
CHo=[4 34 35 36 16 17 18 5 53 54 55 56 57 27 9 10 11 12 -12 -9 -27 -57 -56 -18 -36 -35]; 
CHo=[CHo; 6 7 8 zeros(1,23)]; 
 
%closed-loop chain matrix 
CHc=[28 29 30 31 32 33 4 34 35 36 16 17 18 5 -39 -38 -37 -21 -20 -19 -3 -2 -1 zeros(1,13)]; 
CHca=[13 40 41 42 43 44 22 14 45 46 47 48 49 23 15 50 51 52 24 25 26]; 
CHcb=[-9 -27 -57 -56 -55 -54 -53 -5 -18 -17 -16 -36 -35 -34 -4]; 
CHc=[CHc;Chca Chcb]; 
 
%KC related matrices: 
%KC chain matrix 
CHk=[-8 -7 -6 4 34 35 36 16 17 18 5 53 54 55 56 57 27 9 10 11 12]; 
CHk=[CHk;CHk;CHk;CHk;CHk;CHk;CHk]; 
%directions 
KCd=[4;4;5;5;3;3;6]; 
%specification offsets 
KCl=[.20;-.20;.15;-.15;.02;-.02;0]; 
%KC types 
KCt=[1;1;1;1;1;1;2]; 
 
%Loop mate matrix 
LM=[1 1 1 -1 -1 -1 zeros(1,18);-1 -1 -1 0 0 0 1 1 1 1 1 -1 zeros(1,12)];  
LM=[LM;;1 1 1 zeros(1,8) 1 -ones(1,6) zeros(1,6);zeros(1,18) -ones(1,6)]; 
 
%Loop dimension matrix 
LD=[-1 -1 -1 1 1 zeros(1,10);0 0 0 -1 -1 0 0 0 -1 0 0 0 1 1 1;0 0 0 1 1 0 0 0 1 1 1 1 0 0 0;0 0 0 0 0 
1 1 1 0 0 0 0 0 0 0];  
 
%Part mate matrix 
PM=[-1 -1 -1 -1 -1 -1 0 0 0 -1 -1 -1 zeros(1,19)]; 
PM=[PM;0 0 0 0 0 0 1 1 1 1 1 1 zeros(1,13) -1 -1 -1 -1 -1 -1]; 
PM=[PM;zeros(1,22) 1 1 1 1 1 1 1 1 1;zeros(1,12) 1 1 1 1 1 -1 -1 -1 -1 -1 0 0 0 0 0 0 0 0 0]; 
PM=[PM;zeros(1,17) 1 1 1 1 1 -1 -1 -1 0 0 0 0 0 0]; 
 
%KC permutation matrix 
KC=[zeros(1,12) 0 0 0 1 0 0 0 0 0 -1 0 0;zeros(1,12) 0 0 0 -1 0 0 0 0 0 1 0 0]; 
KC=[KC; zeros(1,12) 0 0 0 0 1 0 0 0 0 0 -1 0]; 
KC=[KC;zeros(1,12) 0 0 0 0 -1 0 0 0 0 0 1 0; zeros(1,12) 0 0 1 0 0 0 0 0 -1 0 0 0]; 
KC=[KC;zeros(1,12) 0 0 -1 0 0 0 0 0 1 0 0 0; zeros(1,12) 0 0 0 0 0 -1 0 0 0 0 0 1]; 
KC=[KC zeros(7,31)]; 
 
%Target Cpk 
KCT=[1.33]; 
%KC Optimization Weighting Factors 
Wa=[1/7;1/7;1/7;1/7;1/7;1/7;1/7]; 
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modeler.m  

%Filename: modeler.m 
%Capability: Creates matrices representing the nominal and varied states of 
%a Type-I assembly with a single configuration.  Also solves for the 
%nominal values of the KCs and their specification limits. 
%Author: J. Michael Gray, MIT Graduate Student, Mech. Eng. Dept. 
%Date completed: May 1st, 2004 
%Revisions: 
function [B,U,TL,WP,g,beta_energy,Fnstar,Snstar,KCn,KCL]=modeler(Dn, Dd, CHd, Fn, Fd, Ful, 
Fll,Sn, Sd, Sul, Sll, SK, Cn, Cd, CHm, CHc, CHo, KCd, KCt, KCl,CHk, LM, PM, LD) 
 
%Getting the sizes of the matrices 
[dn1,dn2]=size(Dn); [dd1,dd2]=size(Dd); [chd1,chd2]=size(CHd); [fn1,fn2]=size(Fn); 
[fd1,fd2]=size(Fd); [ful1,ful2]=size(Ful); [fll1,fll2]=size(Fll); [sn1,sn2]=size(Sn); 
[sd1,sd2]=size(Sd); [sul1,sul2]=size(Sul); [sll1,sll2]=size(Sll); [sk1,sk2]=size(SK); 
[cn1,cn2]=size(Cn); [cd1,cd2]=size(Cd); [chm1,chm2]=size(CHm); [chc1,chc2]=size(CHc); 
[cho1,cho2]=size(CHo); [kcd1,kcd2]=size(KCd); [kct1,kct2]=size(KCt); [kcl1,kcl2]=size(KCl); 
[chk1,chk2]=size(CHk); [lm1,lm2]=size(LM); [pm1,pm2]=size(PM); [ld1,ld2]=size(LD); 
 
%Checking to make sure the matrices are the right size 
if dn1~=dd1 | dn1~=chd1 | dn2~=1 | dd2~=1   
    disp(''); 
    disp('Dimension related inputs Dn, Dd, and/or CHd is/are the wrong size.'); 
    disp('End of program.'); 
    disp(''); 
    return 
end 
if fn1~=fd1 | fn1~=ful1 | fn1~=fll1 | fn2~=1 | fd2~=4 | ful2~=1 | fll2~=1   
    disp(''); 
    disp('DOF related inputs Fn, Fd, Ful, and/or Fll is/are the wrong size.'); 
    disp('End of program.'); 
    disp(''); 
    return 
end 
if sn1~=sd1 | sn1~=sul1 | sn1~=sll1 | sn1~=sk1 | sn1~=sk2 | sn2~=1 | sd2~=4 | sul2~=1 | sll2~=1   
    disp(''); 
    disp('DOS related inputs Sn, Sd, Sul, Sul, and/or SK is/are the wrong size.'); 
    disp('End of program.'); 
    disp(''); 
    return 
end 
if cn1~=cd1 | cn2~=1 | cd2~=4  
    disp(''); 
    disp('DOC related inputs Cn and/or Cd is/are the wrong size.'); 
    disp('End of program.'); 
    disp(''); 
    return 
end 
if kcd1~=chk1 | kcd1~=kct1 | kcd1~=kcl1 | kcd2~=1 | kct2~=1 | kcl2~=1 
    disp(''); 
    disp('KC related inputs KCd, KCt, KC1 and/or CHk is/are the wrong size.'); 
    disp('End of program.'); 
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    disp(''); 
    return 
end 
 
%storing counting variables: dt=dimensions, ft=DOF, st=DOS, ct=DOC, kct=KCs 
dt=dn1; 
ft=fn1; 
st=sn1; 
ct=cn1; 
kct=kcd1; 
 
%More checking to make sure the matrices are the right size 
if chm1~=(ft+st+ct) 
    disp(''); 
    disp('Mate related input CHm has the wrong number of rows.'); 
    disp('End of program.'); 
    disp(''); 
    return 
end 
if st==0 & ct==0 
    p=1; 
    m=1; 
    if lm1~=(chc1+cho1) | lm2~=(ft+st+6*cho1) | pm2~=0 | pm1~=0 
        disp(''); 
        disp('Loop and part related inputs CHc, Cho, LM, and/or PM is/are the wrong size.'); 
        disp('End of program.'); 
        disp(''); 
        return 
    end 
else 
    m=chm1/6; 
    p=pm1+1; 
    if chc1~=(m-pm1) | lm1~=(chc1+cho1) | lm2~=(ft+st+6*cho1) | pm2~=(ct+st) 
        disp(''); 
        disp('Loop and part related inputs CHc, Cho, LM, and/or PM is/are the wrong size.'); 
        disp('End of program.'); 
        disp(''); 
        return 
    end 
end 
 
%storing counting variables: lamba=closed-loops, g=open-loops 
lambda=chc1; 
g=cho1; 
 
%More checking to make sure the matrices are the right size 
if ld1~=(lambda+g)  | ld2~=dt 
    disp(''); 
    disp('Dimension related input LD is the wrong size.'); 
    disp('End of program.'); 
    disp(''); 
    return 
end 
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%Solving for the closed-loops and energy minimization 
if lambda>0 
    FSn=[Fn;Sn]; 
    FSul=[Ful;Sul]; 
    FSll=[Fll;Sll]; 
    FUN=@energyloop; 
    OPTIONS1 = 
Optimset('LargeScale','off','MaxFunEvals',125*dt,'MaxIter',125*dt,'Display','off','TolFun',1e-
9*max(abs(Dn)),'TolCon',1e-9*max(abs(Dn))); 
    
[FSn,FVAL,EXITFLAG]=fmincon(FUN,FSn,[],[],[],[],FSll,FSul,[],OPTIONS1,Dn,Dd,Fd,Sd,SK,Cn,C
d,CHc); 
    if EXITFLAG==0 
        disp(''); 
        disp('Maximum number of iterations reached'); 
        disp(''); 
    end 
    if EXITFLAG<0 
        disp(''); 
        disp('Could not solve for one or more closed loops.'); 
        disp('End of program.'); 
        disp(''); 
        return 
    end 
    %Storing new nominal values for DOF and DOS 
    Fnstar=FSn(1:ft,1); 
    Snstar=FSn((ft+1):(ft+st),1); 
else 
    %Storing new nominal values for DOF and DOS 
    Fnstar=Fn; 
    Snstar=Sn; 
end 
 
%Storing stored energy (beta_energy) 
beta_energy=.5*Snstar'*SK*Snstar; 
 
%Solving for HTMS representation of dimensions, DOF, DOS, and DOC 
HTM=zeros(4*(dt+ft+st+ct),4); 
HTMn=[Dn;Fnstar;Snstar;Cn]; 
HTMd=[Dd zeros(dt,3);Fd;Sd;Cd]; 
for i=1:(dt+ft+st+ct) 
    nominal=HTMn(i,1); 
    if i<=dt 
        direction=HTMd(i,1); 
        if direction==1 
            htm=rotx(nominal); 
        elseif direction==2 
            htm=roty(nominal); 
        elseif direction==3 
            htm=rotz(nominal); 
        elseif direction==4 
            htm=trans(nominal,0,0);     
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        elseif direction==5 
            htm=trans(0,nominal,0);   
        elseif direction==6 
            htm=trans(0,0,nominal);  
        else 
            disp('Dimension direction must be integer between 1 and 6'); 
            return 
        end 
        HTM((4*i-3):4*i,1:4)=htm; 
    elseif i>dt & i<=(dt+ft+st+ct) 
        pitch=HTMd(i,4); 
        xdir=HTMd(i,1); 
        ydir=HTMd(i,2); 
        zdir=HTMd(i,3); 
        if pitch==Inf 
            htm=eye(4); 
            htm(1,4)=xdir*nominal; 
            htm(2,4)=ydir*nominal; 
            htm(3,4)=zdir*nominal; 
        elseif abs(zdir)==1 
            htm=rotz(nominal);    
        elseif (xdir^2+ydir^2+zdir^2)^.5>.99 & (xdir^2+ydir^2+zdir^2)^.5<1.01 
            htm=eye(4); 
            w=(1-zdir^2)^.5; 
            htm(1,1)=xdir^2+(xdir^2*zdir^2+ydir^2)*cos(nominal)/w^2; 
            htm(2,1)=xdir*ydir+zdir*sin(nominal)-xdir*ydir*cos(nominal); 
            htm(3,1)=xdir*zdir*(1-cos(nominal))-ydir*sin(nominal); 
            htm(1,2)=xdir*ydir-zdir*sin(nominal)-xdir*ydir*cos(nominal);   
            htm(2,2)=ydir^2+(ydir^2*zdir^2+xdir^2)*cos(nominal)/w^2; 
            htm(3,2)=ydir*zdir*(1-cos(nominal))+xdir*sin(nominal); 
            htm(1,3)=xdir*zdir*(1-cos(nominal))+ydir*sin(nominal); 
            htm(2,3)=ydir*zdir*(1-cos(nominal))-xdir*sin(nominal); 
            htm(3,3)=zdir^2+cos(nominal)*w^2; 
            htm(1,4)=nominal*pitch*xdir; 
            htm(2,4)=nominal*pitch*ydir; 
            htm(3,4)=nominal*pitch*zdir; 
        else 
            disp('direction vector for DOF,DOS, or DOC must be unit length'); 
            return 
        end 
        HTM((4*i-3):4*i,1:4)=htm; 
    else 
        disp('Error in creating HTM matrices for Dimensions, DOF, DOS, and DOC.'); 
        return 
    end 
end 
 
%Solving for twist representations of DOF & DOS 
TM=zeros(ft+st+6*g,6); 
for i=1:ft 
    f=eye(4); 
    for j=1:chm2 
        if CHm(i,j)==0 



 
 
 
 
 

265 

            break 
        else 
            if sign(CHm(i,j))==-1 
                f=f*inv(HTM((4*abs(CHm(i,j))-3):4*abs(CHm(i,j)),1:4)); 
            else 
                f=f*HTM((4*abs(CHm(i,j))-3):4*abs(CHm(i,j)),1:4); 
            end 
        end 
    end 
    w=Fd(i,1:3)*f(1:3,1:3)'; 
    if Fd(i,4)==Inf 
        TM(i,1:6)=[zeros(1,3) w]; 
    else 
        u=cross(f(1:3,4)',w); 
        v1=u(1,1)+Fd(i,4)*w(1,1); 
        v2=u(1,2)+Fd(i,4)*w(1,2); 
        v3=u(1,3)+Fd(i,4)*w(1,3); 
        TM(i,1:6)=[w v1 v2 v3]; 
    end 
end 
for i=1:st 
    s=eye(4); 
    for j=1:chm2 
        if CHm(i+ft,j)==0 
            break 
        else 
            if sign(CHm(i+ft,j))==-1 
                s=s*inv(HTM((4*abs(CHm(i+ft,j))-3):4*abs(CHm(i+ft,j)),1:4)); 
            else 
                s=s*HTM((4*abs(CHm(i+ft,j))-3):4*abs(CHm(i+ft,j)),1:4); 
            end 
        end 
    end 
    w=Sd(i,1:3)*s(1:3,1:3)'; 
    if Sd(i,4)==Inf 
        TM(i+ft,1:6)=[zeros(1,3) w]; 
    else 
        u=cross(s(1:3,4)',w); 
        v1=u(1,1)+Sd(i,4)*w(1,1); 
        v2=u(1,2)+Sd(i,4)*w(1,2); 
        v3=u(1,3)+Sd(i,4)*w(1,3); 
        TM(i+ft,1:6)=[w v1 v2 v3]; 
    end 
end 
 
%Solving for twist representations of DOV for open-loops 
count=0; 
for i=1:g 
    G=eye(4); 
    for j=1:cho2 
        if CHo(i,j)==0 
            break 
        else 
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            if sign(CHo(i,j))==-1 
                G=G*inv(HTM((4*abs(CHo(i,j))-3):4*abs(CHo(i,j)),1:4)); 
            else 
                G=G*HTM((4*abs(CHo(i,j))-3):4*abs(CHo(i,j)),1:4); 
            end 
        end 
    end 
    Q1=cross(G(1:3,1)',G(1:3,4)'); 
    Q2=cross(G(1:3,2)',G(1:3,4)'); 
    Q3=cross(G(1:3,3)',G(1:3,4)'); 
    V=[G(1:3,1:3)' [Q1;Q2;Q3]';zeros(3,3) G(1:3,1:3)']; 
    TM((i+ft+st+count):(i+ft+st+5+count),1:6)=V; 
    count=count+5; 
end 
 
%Solving for wrench representations of DOC & DOS 
WM=zeros(ct+st,6); 
for i=1:ct 
    c=eye(4); 
    for j=1:chm2 
        if CHm(i+ft+st,j)==0 
            break 
        else 
            if sign(CHm(i+ft+st,j))==-1 
                c=c*inv(HTM((4*abs(CHm(i+ft+st,j))-3):4*abs(CHm(i+ft+st,j)),1:4)); 
            else 
                c=c*HTM((4*abs(CHm(i+ft+st,j))-3):4*abs(CHm(i+ft+st,j)),1:4); 
            end 
        end 
    end 
    v=Cd(i,1:3)*c(1:3,1:3)'; 
    if Cd(i,4)==0 
        WM(i,1:6)=[v zeros(1,3) ]; 
    elseif Cd(i,4)==Inf 
        w=cross(c(1:3,4)',v); 
        WM(i,1:6)=[w v]; 
    else     
        u=cross(c(1:3,4)',v); 
        w1=u(1,1)+v(1,1)/Cd(i,4); 
        w2=u(1,2)+v(1,2)/Cd(i,4); 
        w3=u(1,3)+v(1,3)/Cd(i,4); 
        WM(i,1:6)=[w1 w2 w3 v]; 
    end 
end 
for i=1:st 
    s=eye(4); 
    for j=1:chm2 
        if CHm(i+ft,j)==0 
            break 
        else 
            if sign(CHm(i+ft,j))==-1 
                s=s*inv(HTM((4*abs(CHm(i+ft,j))-3):4*abs(CHm(i+ft,j)),1:4)); 
            else 
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                s=s*HTM((4*abs(CHm(i+ft,j))-3):4*abs(CHm(i+ft,j)),1:4); 
            end 
        end 
    end 
    v=Sd(i,1:3)*s(1:3,1:3)'; 
    if Sd(i,4)==0 
        WM(i+ct,1:6)=[v zeros(1,3) ]; 
    elseif Sd(i,4)==Inf 
        w=cross(s(1:3,4)',v); 
        WM(i+ct,1:6)=[w v]; 
    else     
        u=cross(s(1:3,4)',v); 
        w1=u(1,1)+v(1,1)/Sd(i,4); 
        w2=u(1,2)+v(1,2)/Sd(i,4); 
        w3=u(1,3)+v(1,3)/Sd(i,4); 
        WM(i+ct,1:6)=[w1 w2 w3 v]; 
    end 
end 
 
%Solving for twist representations of Dimensions 
UD=zeros(dt,6); 
for i=1:dt 
    d=eye(4); 
    for j=1:chd2 
        if CHd(i,j)==0 
            break 
        else 
            if sign(CHd(i,j))==-1 
                d=d*inv(HTM((4*abs(CHd(i,j))-3):4*abs(CHd(i,j)),1:4)); 
            else 
                d=d*HTM((4*abs(CHd(i,j))-3):4*abs(CHd(i,j)),1:4); 
            end 
        end 
    end 
    if Dd(i,1)<=3 
        q=cross(d(1:3,4)',d(1:3,Dd(i,1))'); 
        UD(i,1:6)=[d(1:3,Dd(i,1))' q]; 
    else  
        UD(i,1:6)=[zeros(1,3) d(1:3,Dd(i,1)-3)']; 
    end 
end 
 
%Combining all the matrices into nominal and varied model 
TL=combiner(TM,LM); 
WP=combiner(WM,PM); 
B1=[TL zeros(6*(lambda+g),ct+st)]; 
B2=[zeros(st,ft) SK zeros(st,6*g+ct) -eye(st)]; 
B3=[zeros(6*(p-1),ft+st+6*g) WP]; 
 
%nominal model 
B=[B1;B2;B3]; 
UL=combiner(UD,LD); 
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%varied model 
U=[UL;zeros(6*(p-1)+st,dt)]; 
 
%Solving for KC nominal values and specification limits 
KCn=zeros(kct,1); 
KCL=zeros(kct,1); 
for i=1:kct 
    H=eye(4); 
    for j=1:chk2 
        if CHk(i,j)==0 
            break 
        else 
            if sign(CHk(i,j))==-1 
                H=H*inv(HTM((4*abs(CHk(i,j))-3):4*abs(CHk(i,j)),1:4)); 
            else 
                H=H*HTM((4*abs(CHk(i,j))-3):4*abs(CHk(i,j)),1:4); 
            end 
        end 
    end 
    if KCd(i,1)==1 
        KCn(i,1)=atan2(H(3,2),sign(H(1,1))*H(2,2)); 
    elseif KCd(i,1)==2 
        KCn(i,1)=atan2(H(1,3),sign(H(2,2))*H(3,3)); 
    elseif KCd(i,1)==3 
        KCn(i,1)=atan2(H(2,1),sign(H(3,3))*H(1,1)); 
    elseif KCd(i,1)==4 
        KCn(i,1)=H(1,4); 
    elseif KCd(i,1)==5 
        KCn(i,1)=H(2,4); 
    elseif KCd(i,1)==6 
        KCn(i,1)=H(3,4); 
    else 
        disp('KC direction must be integer between 1 and 6'); 
        return 
    end 
    if KCt(i,1)==1 
        KCL(i,1)=KCl(i,1)+KCn(i,1); 
    elseif KCt(i,1)==2 
        KCL(i,1)=KCL(i,1); 
    else 
        disp('KC type must be 1 (alignment) or 2 (clearance)'); 
        return 
    end  
end 
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energyloop.m  

%Filename: energylooop.m 
%Capability: Calculates stored energy plus loop error of a configuration. 
%Author: J. Michael Gray, MIT Graduate Student, Mech. Eng. Dept. 
%Date completed: May 1st, 2004 
%Revisions: 
function energyplusloop=energyloop(FSn,Dn,Dd,Fd,Sd,SK,Cn,Cd,CHc); 
[st,z]=size(Sd); 
[ft,z]=size(Fd); 
if st==0 
    %Stored energy is zero if there is no compliance 
    energy=0; 
else 
    %Solving for stored energy 
    energy=.5*FSn(ft+1:ft+st,1)'*SK*FSn(ft+1:ft+st,1); 
end 
 
%Solving for loop closure constraints 
[ct,z]=size(Cd); 
[dt,z]=size(Dd); 
[lambda,chc2]=size(CHc); 
Loop=zeros(4*lambda,4); 
HTMn=[Dn;FSn;Cn]; 
HTMd=[Dd zeros(dt,3);Fd;Sd;Cd]; 
for i=1:lambda 
    Loop((4*i-3):4*i,1:4)=eye(4); 
    for j=1:chc2 
        if CHc(i,j)==0 
            break 
        else 
            %Finding HTMS for dimension in the loops 
            nominal=HTMn(abs(CHc(i,j)),1); 
            if abs(CHc(i,j))<=dt 
                direction=HTMd(abs(CHc(i,j)),1); 
                if direction==1 
                    htm=rotx(nominal); 
                elseif direction==2 
                    htm=roty(nominal); 
                elseif direction==3 
                    htm=rotz(nominal); 
                elseif direction==4 
                    htm=trans(nominal,0,0);     
                elseif direction==5 
                    htm=trans(0,nominal,0);   
                elseif direction==6 
                    htm=trans(0,0,nominal);  
                else 
                    disp('Dimension direction must be integer between 1 and 6'); 
                    return 
                end 
                if sign(CHc(i,j))==-1 & direction<=3 
                    htm=htm'; 
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                elseif sign(CHc(i,j))==-1 
                    htm(direction-3,4)=-htm(direction-3,4); 
                else 
                end 
                 
            %Finding HTMS for DOF, DOS, and DOC in the loops 
            elseif abs(CHc(i,j))>dt & abs(CHc(i,j))<=(dt+ft+ct+st) 
                pitch=HTMd(abs(CHc(i,j)),4); 
                xdir=HTMd(abs(CHc(i,j)),1); 
                ydir=HTMd(abs(CHc(i,j)),2); 
                zdir=HTMd(abs(CHc(i,j)),3); 
                if pitch==Inf 
                    htm=eye(4); 
                    htm(1,4)=xdir*nominal; 
                    htm(2,4)=ydir*nominal; 
                    htm(3,4)=zdir*nominal; 
                elseif abs(zdir)==1 
                    htm=rotz(nominal);    
                elseif (xdir^2+ydir^2+zdir^2)^.5>.99 & (xdir^2+ydir^2+zdir^2)^.5<1.01 
                    htm=eye(4); 
                    w=(1-zdir^2)^.5; 
                    htm(1,1)=xdir^2+(xdir^2*zdir^2+ydir^2)*cos(nominal)/w^2; 
                    htm(2,1)=xdir*ydir+zdir*sin(nominal)-xdir*ydir*cos(nominal); 
                    htm(3,1)=xdir*zdir*(1-cos(nominal))-ydir*sin(nominal); 
                    htm(1,2)=xdir*ydir-zdir*sin(nominal)-xdir*ydir*cos(nominal);   
                    htm(2,2)=ydir^2+(ydir^2*zdir^2+xdir^2)*cos(nominal)/w^2; 
                    htm(3,2)=ydir*zdir*(1-cos(nominal))+xdir*sin(nominal); 
                    htm(1,3)=xdir*zdir*(1-cos(nominal))+ydir*sin(nominal); 
                    htm(2,3)=ydir*zdir*(1-cos(nominal))-xdir*sin(nominal); 
                    htm(3,3)=zdir^2+cos(nominal)*w^2; 
                    htm(1,4)=nominal*pitch*xdir; 
                    htm(2,4)=nominal*pitch*ydir; 
                    htm(3,4)=nominal*pitch*zdir; 
                else 
                    disp('direction vector for DOF,DOS, or DOC must be unit length'); 
                    return 
                end 
                if sign(CHc(i,j))==-1 
                    htm=inv(htm); 
                end 
            else 
                disp('Dimension direction must be integer between 1 and 6'); 
                return 
            end 
        end 
        Loop((4*i-3):4*i,1:4)=Loop((4*i-3):4*i,1:4)*htm; 
    end 
end 
 
%Calculating the loop closure error 
count=0; 
loop=0; 
for i=1:(4*lambda) 
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    count=count+1; 
    for j=1:4 
        if count>4 
            count=1; 
        else 
        end 
        if count==j 
        else     
            loop=loop+Loop(i,j)^2; 
        end 
    end 
end 
 
%Calculating the combined loop closure/energy min. objective function 
energyplusloop=energy+loop*10^8; 
 

combiner.m  

%Filename: combiner.m 
%Capability: Relates twist or wrenches to each other using loop-mate, 
%part-mate, or loop-dimension matrix. 
%Author: J. Michael Gray, MIT Graduate Student, Mech. Eng. Dept. 
%Date completed: May 1st, 2004 
%Revisions: 
function Network=combiner(Elements,Connections) 
 
%Getting sizes of matrices 
[e1,e2]=size(Elements); 
[c1,c2]=size(Connections); 
Network=zeros(6*c1,e1); 
 
%Combining "Elements" according to topology data in "Connections" 
if e2==6 & c2==e1 
    for i=1:6*c1 
        for j=1:e1 
            Network(i,j)=Elements(j,mod(i-1,6)+1)*Connections(fix((i-1)/6)+1,j); 
        end 
    end 
elseif e1==0 & e2==0 & c1==0 & c2==0 
    %Null matrix returned if there are no elements and connections 
    Network=zeros(0,0); 
else 
    disp('Input matrices are the wrong size.'); 
    return 
end 
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constraintdetector.m  

%Filename: constraintdetector.m 
%Capability: Finds excess over-constraints and under-constraints in an assembly. 
%Author: J. Michael Gray, MIT Graduate Student, Mech. Eng. Dept. 
%Date completed: May 1st, 2004 
%Revisions: 
 
function [fe,ce,TLr,WPr]=constraintdetector(TL,WP,SK,g) 
%Getting the sizes of the matrices and determining counting variables: 
%st=DOS, ct=DOC, p=parts, lambda=closed-loops, g=open-loops, ft=DOF 
[st,st2]=size(SK); 
[tl1,tl2]=size(TL); 
[wp1,wp2]=size(WP); 
ct=wp2-st; 
p=(wp1+6)/6; 
lambda=(tl1-6*g)/6; 
m=lambda+p-1; 
ft=6*m-st-ct; 
 
%r1=rank of twist loop matrix, r2=rank of wrench part matrix 
r1=rank(TL); 
r2=rank(WP); 
 
%ce=excess over-constraints 
ce=6*(lambda+g)-r1; 
if st==0 
    %fe=excess under-constraints if no compliance 
    fe=ft+6*g-r1; 
else 
    %fe=excess under-constraints if compliance 
    fe=6*(p-1)-r2; 
end 
if fe~=0 
    %reduced twist loop matrix that is useful for identifying excess DOF 
    TLr=null(TL(1:6*lambda,1:ft),'r'); 
else 
    %Returns null matrix if no excess under-constraints 
    TLr=[]; 
end 
if ce~=0 
    %reduced wrench part matrix that is useful for identifying excess DOC 
    WPr=null(WP(1:6*(p-1),1:ct),'r'); 
else 
    %Returns null matrix if no excess over-constraints 
    WPr=[]; 
end 
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manufacturability.m  

%Filename: manufacturability.m 
%Capability: Determines the CPk of the KCs, their sensitivities, coupling, 
%and the dimensions that contribute to their variability. 
%Author: J. Michael Gray, MIT Graduate Student, Mech. Eng. Dept. 
%Date completed: May 1st, 2004 
%Revisions: 
function [Da,Dv,KCS,Cpk,Rej,Co,KCv,KCc,KCa,KCn,KCL]=manufacturability(Dn, Dd, Dul, Dll, 
CHd, Dt, Dp, Fn, Fd, Ful, Fll,Sn, Sd, Sul, Sll, SK, Cn, Cd, CHm, CHc, CHo, KCd, KCt, KCl,CHk, 
LM, PM, LD, KC, KCT) 
 
%Getting the sizes of the input matrices and vectors 
[dn1,dn2]=size(Dn); [dd1,dd2]=size(Dd); [dul1,dul2]=size(Dul); [dll1,dll2]=size(Dll); 
[dt1,dt2]=size(Dt); [dp1,dp2]=size(Dp); [chd1,chd2]=size(CHd); [fn1,fn2]=size(Fn); 
[fd1,fd2]=size(Fd); [ful1,ful2]=size(Ful); [fll1,fll2]=size(Fll); [sn1,sn2]=size(Sn); 
[sd1,sd2]=size(Sd); [sul1,sul2]=size(Sul); [sll1,sll2]=size(Sll); [sk1,sk2]=size(SK); 
[cn1,cn2]=size(Cn); [cd1,cd2]=size(Cd); [chm1,chm2]=size(CHm); [chc1,chc2]=size(CHc); 
[cho1,cho2]=size(CHo); [kcd1,kcd2]=size(KCd); [kct1,kct2]=size(KCt); [kcl1,kcl2]=size(KCl); 
[chk1,chk2]=size(CHk); [lm1,lm2]=size(LM); [pm1,pm2]=size(PM); [ld1,ld2]=size(LD); 
[kc1,kc2]=size(KC); [KCT1,KCT2]=size(KCT); 
 
%Checking to make sure the matrices are the right sizes 
if dn1~=dd1 | dn1~=chd1 | dn1~=dul1 | dn1~=dll1 | dn1~=dt1 | dn1~=dp1 | dn2~=1 | dd2~=1 | 
dul2~=1 | dll2~=1 | dp2~=3   
    disp(''); 
    disp('Dimension related inputs Dn, Dd, Dul, Dll, Dt, Dp, and/or CHd is/are the wrong size.'); 
    disp('End of program.'); 
    disp(''); 
    return 
end 
if fn1~=fd1 | fn1~=ful1 | fn1~=fll1 | fn2~=1 | fd2~=4 | ful2~=1 | fll2~=1   
    disp(''); 
    disp('DOF related inputs Fn, Fd, Ful, and/or Fll is/are the wrong size.'); 
    disp('End of program.'); 
    disp(''); 
    return 
end 
if sn1~=sd1 | sn1~=sul1 | sn1~=sll1 | sn1~=sk1 | sn1~=sk2 | sn2~=1 | sd2~=4 | sul2~=1 | sll2~=1   
    disp(''); 
    disp('DOS related inputs Sn, Sd, Sul, Sul, and/or SK is/are the wrong size.'); 
    disp('End of program.'); 
    disp(''); 
    return 
end 
if cn1~=cd1 | cn2~=1 | cd2~=4  
    disp(''); 
    disp('DOC related inputs Cn and/or Cd is/are the wrong size.'); 
    disp('End of program.'); 
    disp(''); 
    return 
end 
if kcd1~=chk1 | kcd1~=kct1 | kcd1~=kcl1 | kcd1~=kc1 | kcd2~=1 | kct2~=1 kcl2~=1 
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    disp(''); 
    disp('KC related inputs KCd, KCl, KC, KCT, KCt, and/or CHk is/are the wrong size.'); 
    disp('End of program.'); 
    disp(''); 
    return 
end 
 
if kc2~=(fn1+2*sn1+6*cho1+cn1) | KCT1~=1 | KCT2~=1 
    disp(''); 
    disp('KC related inputs KCd, KCl, KC, KCT, KCt, and/or CHk is/are the wrong size.'); 
    disp('End of program.'); 
    disp(''); 
    return 
end 
 
%storing counting variables: dt=dimensions, ft=DOF, st=DOS, ct=DOC, kct=KCs 
dt=dn1; 
ft=fn1; 
st=sn1; 
ct=cn1; 
kct=kcd1; 
 
%More checking to make sure the matrices are the right size 
if chm1~=(ft+st+ct) 
    disp(''); 
    disp('Mate related input CHm has the wrong number of rows.'); 
    disp('End of program.'); 
    disp(''); 
    return 
end 
if st==0 & ct==0 
    p=1; 
    m=1; 
    if lm1~=(chc1+cho1) | lm2~=(ft+st+6*cho1) | pm2~=0 | pm1~=0 
        disp(''); 
        disp('loop and part related inputs CHc, Cho, LM, and/or PM is/are the wrong size.'); 
        disp('End of program.'); 
        disp(''); 
        return 
    end 
else 
    m=chm1/6; 
    p=pm1+1; 
    if chc1~=(m-pm1) | lm1~=(chc1+cho1) | lm2~=(ft+st+6*cho1) | pm2~=(ct+st) 
        disp(''); 
        disp('Loop and part related inputs CHc, Cho, LM, and/or PM is/are the wrong size.'); 
        disp('End of program.'); 
        disp(''); 
        return 
    end 
end 
 
%storing counting variables: lamba=closed-loops, g=open-loops 
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lambda=chc1; 
g=cho1; 
 
%More checking to make sure the matrices are the right size 
if ld1~=(lambda+g)  | ld2~=dt 
    disp(''); 
    disp('Dimension related input LD is the wrong size.'); 
    disp('End of program.'); 
    disp(''); 
    return 
end 
 
%Finding the average dimension values (Da) and dimension variances (Dv) 
Da=zeros(dt,1); 
Dv=zeros(dt,dt); 
for i=1:dt 
    Da(i,1)=icdf(strcat(Dt(i,1:dt2)),.5,Dp(i,1),Dp(i,2),Dp(i,3)); 
    Dv(i,i)=var(icdf(strcat(Dt(i,1:dt2)),normcdf(randn(1,100000),0,1),Dp(i,1),Dp(i,2),Dp(i,3))); 
end 
 
%Finding the average KC values (KCa) 
[B,U,TL,WP,g,beta_energy,Fnstar,Snstar,KCn,KCL]=modeler(Dn, Dd, CHd, Fn, Fd, Ful, Fll,Sn, 
Sd, Sul, Sll, SK, Cn, Cd, CHm, CHc, CHo, KCd, KCt, KCl,CHk, LM, PM, LD); 
[B_a,U_a,TL_a,WP_a,g_a,beta_energy_a,Fnstar_a,Snstar_a,KCa,KCL_a]=modeler(Da, Dd, 
CHd, Fn, Fd, Ful, Fll,Sn, Sd, Sul, Sll, SK, Cn, Cd, CHm, CHc, CHo, KCd, KCt, KCl,CHk, LM, PM, 
LD); 
 
%Checking to make sure the assembly is properly constrained (fe=0 ce=0) 
[fe,ce,TLr,WPr]=constraintdetector(TL,WP,SK,g); 
if fe~=0 
    if ce==0 
        disp(''); 
        disp('This assembly cannot be analyzed because it is under-constrained.'); 
        Number_of_Excess_Underconstraints=fe 
        TLr 
        disp('End of program.'); 
        disp(''); 
        return 
    else 
        disp(''); 
        disp('This assembly cannot be analyzed because it is both over-constrained & under-
constrained.'); 
        Number_of_Excess_Underconstraints=fe 
        TLr 
        Number_of_Excess_Overconstraints=fe 
        WPr 
        disp('End of program.'); 
        disp(''); 
        return 
    end       
end 
if ce~=0 
    disp(''); 
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    disp('This assembly cannot be analyzed because it is over-constrained.'); 
    Number_of_Excess_Overconstraints=fe 
    WPr 
    disp('End of program.'); 
    disp(''); 
    return      
end 
 
%Solving for the KC sensitivity matrix at nominal (KCS) 
KCS=KC*(-inv(B)*U); 
 
%Solving for the KC sensitivity matrix at average (KCS) 
KCS_a=KC*(-inv(B_a)*U_a); 
 
%Solving for the KC covariance matrix (KCv) 
KCv=KCS*Dv*KCS'; 
 
%Solving for the KC correlation matrix (KCc) 
KCc=zeros(kct,kct); 
for i=1:kct 
    for j=1:kct 
        KCc(i,j)=KCv(i,j)/(KCv(i,i)^.5*KCv(j,j)^.5); 
    end 
end 
 
%Initializing the Cpk, Reject, and Contribution matrices 
Cpk=zeros(kct,1); 
Rej=zeros(kct,1); 
Co=zeros(kct,dt); 
 
%Solving for the MPP point 
for i=1:kct 
    Dn_m=Da; 
    KCn_m=KCa; 
    Fnstar_m=Fnstar_a; 
    Snstar_m=Snstar_a; 
    KCS_m=KCS_a; 
    for j=1:6 
        if abs(KCn_m(i,1)-KCL(i,1))<.001*abs(KCn(i,1)-KCL(i,1)) 
            break 
        else 
            %Iterative search algorithm looking for the MPP point 
            [gamma,Dn_m]=mppfinder(Dn_m,KCn_m(i,1),KCL(i,1),Dt,Dp,KCS_m(i,1:dt),KCn(i,1)); 
             
            %Solving for the updated KC nominal values  (KCn_m(n+1)) 
            
[B_m,U_m,TL_m,WP_m,g_m,beta_energy_m,Fnstar_m,Snstar_m,KCn_m,KCL_m]=modeler(Dn
_m, Dd, CHd, Fnstar_m, Fd, Ful, Fll,Snstar_m, Sd, Sul, Sll, SK, Cn, Cd, CHm, CHc, CHo, KCd, 
KCt, KCl,CHk, LM, PM, LD); 
             
            %Checking to make sure the assembly is properly constrained (fe=0 ce=0) 
            [fe_m,ce_m,TLr_m,WPr_m]=constraintdetector(TL_m,WP_m,SK,g_m); 
            if fe~=0 
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                if ce==0 
                    disp(''); 
                    disp('This assembly cannot be analyzed because it is under-constrained.'); 
                    Number_of_Excess_Underconstraints=fe 
                    TLr_m 
                    disp('End of program.'); 
                    disp(''); 
                    return 
                else 
                    disp(''); 
                    disp('This assembly cannot be analyzed because it is both over-constrained & under-
constrained.'); 
                    Number_of_Excess_Underconstraints=fe 
                    TLr_m 
                    Number_of_Excess_Overconstraints=fe 
                    WPr_m 
                    disp('End of program.'); 
                    disp(''); 
                    return 
                end       
            end 
            if ce~=0 
                disp(''); 
                disp('This assembly cannot be analyzed because it is over-constrained.'); 
                Number_of_Excess_Overconstraints=fe 
                WPr_m 
                disp('End of program.'); 
                disp(''); 
                return      
            end 
            
            %Solving for the updated KC sensitivity matrix (KCS_m) 
            KCS_m=KC*(-inv(B_m)*U_m); 
        end 
    end 
     
    %Solving for the Contribution, CPk, and Reject Matrices 
    Co(i,1:dt)=(100*(gamma.*gamma)/norm(gamma)^2)'; 
    if (abs(KCa(i,1)-KCn(i,1))+abs(KCa(i,1)-KCL(i,1)))>abs(KCL(i,1)-KCn(i,1)) & abs(KCa(i,1)-
KCn(i,1))>abs(KCa(i,1)-KCL(i,1)) 
        Cpk(i,1)=0; 
        Rej(i,1)=100*(1-normcdf(-norm(gamma),0,1)); 
    else 
        Cpk(i,1)=norm(gamma)/3; 
        Rej(i,1)=100*normcdf(-norm(gamma),0,1); 
    end 
end 
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mppfinder.m 

%Filename: mppfinder.m 
%Capability: Estimates the location of the MPP point  
%Author: J. Michael Gray, MIT Graduate Student, Mech. Eng. Dept. 
%Date completed: May 1st, 2004 
%Revisions: 
function [gamma,Dn_m]=mppfinder(Dn_m,KCn_m,kcl,Dt,Dp,KCS_m,kcn); 
%Getting the sizes of the matrices 
[dt,z]=size(Dn_m); 
[dt1,dt2]=size(Dt); 
 
%Initializing the variables 
gradQ=zeros(dt,1); 
alphan=0; 
alpha=zeros(dt,1); 
u1=zeros(dt,1); 
u2=zeros(dt,1); 
u3=zeros(dt,1); 
gamma=zeros(dt,1); 
 
%Transforming the dimensions into the standard normal space 
for i=1:dt 
    if strcmpi(strcat(Dt(i,1:dt2)),'Normal')==1 | strcmpi(strcat(Dt(i,1:dt2)),'norm')==1 
        cumulative=cdf(strcat(Dt(i,1:dt2)),Dp(i,1)-abs(Dp(i,1)-Dn_m(i,1)),Dp(i,1),Dp(i,2),Dp(i,3)); 
        if cumulative==0 
            cumulative=1e-300; 
        end 
        u1(i,1)=norminv(cumulative)*sign(Dp(i,1)-Dn_m(i,1)); 
    else 
        cumulative=cdf(strcat(Dt(i,1:dt2)),Dn_m(i,1),Dp(i,1),Dp(i,2),Dp(i,3)); 
        if cumulative==0 
            cumulative=1e-300; 
        end 
        if cumulative==1 
            cumulative=0.9999999999999999; 
        end 
        u1(i,1)=norminv(cumulative); 
    end 
    %Finding the gradient of steepest decent towards the MPP 
    gradQ(i,1)=sign(kcl-
kcn)*KCS_m(1,i)*(normpdf(u1(i,1),0,1))/pdf(strcat(Dt(i,1:dt2)),Dn_m(i,1),Dp(i,1),Dp(i,2),Dp(i,3)); 
end 
%Finding the norm of the gradient 
alphan=norm(gradQ); 
 
%Finding the unit vector for the new direction 
alpha(1:dt,1)=-gradQ(1:dt,1)*(1/alphan); 
u2(1:dt,1)=alpha(1:dt,1)*(u1(1:dt,1)'*alpha(1:dt,1)); 
 
%Estimating distance between current point and MPP 
u3(1:dt,1)=alpha(1:dt,1)*((KCn_m-kcl)/alphan); 
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%Estimating the gamma vector that points to the MPP in the std. norm. space 
gamma(1:dt,1)=u2(1:dt,1)+u3(1:dt,1); 
 
%Transforming the dimensions back into their original spaces 
for i=1:dt 
    if strcmpi(strcat(Dt(i,1:dt2)),'Normal')==1 | strcmpi(strcat(Dt(i,1:dt2)),'norm')==1 
        n_cumulative=normcdf(-abs(gamma(i,1))); 
        if n_cumulative==0 
            n_cumulative=1e-300; 
        end 
        Dn_m(i,1)=Dp(i,1)+sign(gamma(i,1))*abs(Dp(i,1)-
icdf(strcat(Dt(i,1:dt2)),n_cumulative,Dp(i,1),Dp(i,2),Dp(i,3))); 
    else 
        n_cumulative=normcdf(gamma(i,1)); 
        if n_cumulative==0 
            n_cumulative=1e-300; 
        end 
        if n_cumulative==1 
            n_cumulative=0.9999999999999999; 
        end 
        Dn_m(i,1)=icdf(strcat(Dt(i,1:dt2)),n_cumulative,Dp(i,1),Dp(i,2),Dp(i,3)); 
    end 
end 
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dimoptimizer.m 

%Filename: dimoptimizer.m 
%Capability: Tries to improve the CPks of the KCs by changing the nominal 
%dimension values. 
%Author: J. Michael Gray, MIT Graduate Student, Mech. Eng. Dept. 
%Date completed: May 1st, 2004 
%Revisions: 
function [Dnstar,weighted_Cpk]=dimoptimizer(Dn, Dd, Dul, Dll, CHd, Dt, Dp, Fn, Fd, Ful, Fll,Sn, 
Sd, Sul, Sll, SK, Cn, Cd, CHm, CHc, CHo, KCd, KCt, KCl,CHk, LM, PM, LD, KC, KCT, Wa) 
 
%Finding Nominal KC values 
[B,U,TL,WP,g,beta_energy,Fnstar,Snstar,KCn_target,KCL]=modeler(Dn, Dd, CHd, Fn, Fd, Ful, 
Fll,Sn, Sd, Sul, Sll, SK, Cn, Cd, CHm, CHc, CHo, KCd, KCt, KCl,CHk, LM, PM, LD); 
 
%Getting the number of dimensions to be optimized 
[dt,z]=size(Dn); 
 
%Starting procedure to find optimal dimensions 
NONLCON=@dimconstraint; 
FUN=@dimobjective; 
OPTIONS1 = 
Optimset('LargeScale','off','MaxFunEvals',20*dt,'MaxIter',20*dt,'Display','off','TolFun',1e-
4*max(abs(Dn)),'TolCon',1e-9*max(abs(Dn))); 
[Dnstar,FVAL,EXITFLAG]=fmincon(FUN,Dn,[],[],[],[],Dll,Dul,NONLCON,OPTIONS1, Dd, Dul, Dll, 
CHd, Dt, Dp, Fn, Fd, Ful, Fll,Sn, Sd, Sul, Sll, SK, Cn, Cd, CHm, CHc, CHo, KCd, KCt, KCl,CHk, 
LM, PM, LD, KC, KCT, Wa,KCn_target); 
 
weighted_Cpk=-FVAL; 
 
%Error messages if fmincon terminated early or used all the iterations 
if EXITFLAG==0 
    disp(''); 
    disp('Maximum number of iterations reached'); 
    disp(''); 
end 
if EXITFLAG<0 
    disp(''); 
    disp('Could not optimize dimensions'); 
    disp('End of program.'); 
    disp(''); 
    return 
end 
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dimobjective.m 

%Filename: dimobjective.m 
%Capability: Finds the weighted Cpk 
%Author: J. Michael Gray, MIT Graduate Student, Mech. Eng. Dept. 
%Date completed: May 1st, 2004 
%Revisions: 
function [objective]=dimobjective(Dn, Dd, Dul, Dll, CHd, Dt, Dp, Fn, Fd, Ful, Fll,Sn, Sd, Sul, Sll, 
SK, Cn, Cd, CHm, CHc, CHo, KCd, KCt, KCl,CHk, LM, PM, LD, KC, KCT, Wa,KCn_target) 
 
%Executes manufacturability.m to find Cpks 
[Da,Dv,KCS,Cpk,Rej,Co,KCv,KCc,KCa,KCn,KCL]=manufacturability(Dn, Dd, Dul, Dll, CHd, Dt, 
Dp, Fn, Fd, Ful, Fll,Sn, Sd, Sul, Sll, SK, Cn, Cd, CHm, CHc, CHo, KCd, KCt, KCl,CHk, LM, PM, 
LD, KC, KCT); 
 
%Weights Cpks according to weights in Wa 
objective=-Wa'*Cpk; 
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dimconstraint.m 

%Filename: dimconstraint.m 
%Capability: Insures that nominal performance stays the same and that 
%packaging constraints are met 
%Author: J. Michael Gray, MIT Graduate Student, Mech. Eng. Dept. 
%Date completed: May 1st, 2004 
%Revisions: 
function [C,Ceq]=dimconstraint(Dn, Dd, Dul, Dll, CHd, Dt, Dp, Fn, Fd, Ful, Fll,Sn, Sd, Sul, Sll, SK, 
Cn, Cd, CHm, CHc, CHo, KCd, KCt, KCl,CHk, LM, PM, LD, KC, KCT, Wa,KCn_target) 
 
%Finding the Nominal KC values 
[B,U,TL,WP,g,beta_energy,Fnstar,Snstar,KCn,KCL]=modeler(Dn, Dd, CHd, Fn, Fd, Ful, Fll,Sn, 
Sd, Sul, Sll, SK, Cn, Cd, CHm, CHc, CHo, KCd, KCt, KCl,CHk, LM, PM, LD); 
 
%finding out how many KCs there are  
[kct,z]=size(KCn); 
 
%Initializing constraint variables 
count=0; 
for i=1:kct 
    if KCt(i,1)==1 
    else 
        count=count+1; 
    end 
end 
if count==0 
    C=0; 
else 
    C=zeros(count,1); 
end 
if count==kct 
    Ceq=0; 
else 
    Ceq=zeros(kct-count,1); 
end 
count=0; 
%Calculating constraints that insure KC nominal values stay the same 
for i=1:kct 
    if KCt(i,1)==1 
        Ceq(i-count,1)=abs(KCn_target(i,1)-KCn(i,1)); 
    else 
        C(count+1,1)=KCn(i,1); 
        count=count+1; 
    end 
end 
 


