
 1

A PCI Express to PCIX Bridge
Optimized for Performance and Area

by

Margaret J. Chong

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degrees of

Bachelor of Science in Electrical Engineering and Computer Science

and Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology

March 17, 2004

Copyright 2003 Margaret J. Chong. All rights reserved.

The author hereby grants to M.I.T. permission to reproduce and
distribute publicly paper and electronic copies of this thesis

and to grant others the right to do so.

Author__
Department of Electrical Engineering and Computer Science, May 2003

Certified by__

Peter J. Jenkins, VI-A Company Thesis Supervisor

Certified by__

Jeffrey LaFramboise, VI-A Company Thesis Supervisor

Certified by__

Christopher J. Terman, M.I.T. Thesis Supervisor

Accepted by___

Arthur C. Smith, Chairman, Department Committee on Graduate Theses

 2

A PCI Express to PCIX Bridge
Optimized for Performance and Area

by

Margaret Chong

Submitted to the
Massachusetts Institute of Technology

Department of Electrical Engineering and Computer Science

March 18, 2004

In Partial Fulfillment of the Requirements for the Degree of
Bachelor of Science in Computer Science and Electrical Engineering

and Master of Engineering in Electrical Engineering and Computer Science

ABSTRACT

This thesis project involves the architecture, implementation, and verification of a high
bandwidth, low cost ASIC digital logic core that is compliant with the PCI Express to
PCIX Bridge Specification. The core supports PCI Express and PCIX transactions, x16
PCI Express link widths, 32 and 64-bit PCIX link widths, all PCI Express and PCIX
packet sizes, transaction ordering and queuing, relaxed ordering, flow control, and buffer
management. Performance and area are optimized at the architectural and logic levels.
The core is approximately 27K gate count, runs at a maximum of 250 MHz, and is
synthesized to a current standard technology. This thesis explores PCI Express, PCIX,
and PCI technologies, architectural design, development of Verilog and Vera models,
thorough module-level verification, the development of a PCI Express/PCIX system
verification environment, synthesis, static timing analysis, and performance and area
evaluations. The work has been completed in IBM Microelectronics in Burlington,
Vermont as part of the MIT VI-A Program.

VI-A Company Thesis Supervisors: Peter Jenkins and Jeffrey LaFramboise
MIT Thesis Supervisor: Christopher Terman

 3

Acknowledgements

This project would not have been possible without the guidance of my mentor Peter
Jenkins, whose knowledge of hardware design, and IBM methodology and tools is
unparalleled within IBM ASICs.

To my friend and advisor Jeff Laframboise, thank you for your sense of humor and zest
for teaching. When I leave Vermont, I will miss you most of all.

There are so many people I would like to thank for making this thesis a success, but
unfortunately I am running out of ways to word them. Thank you to Ben Drerup – an
IBM expert on I/O bus protocols and a really great guy! Thank you to my manager Dave
Sobczak for trusting me to a challenging project and giving me the opportunity to
establish myself in the world of hardware design. Thank you to my thesis advisor Chris
Terman for inspiring me to pursue architecture and circuit design when I was a
sophomore taking 6.004. Also, many thanks go to verification gurus Frank Kampf and
Bruce Ditmyer, my Vermont Dad Bob Fiorenza, and all the other individuals at IBM who
have supported me during my time spent in Burlington.

Finally, I would like to thank Joseph Wong for his understanding and support throughout
all five years at MIT. Your silly and sometimes very odd sense of humor never fails to lift
my spirits, and your positive outlook on life is something we should all aspire to.

 4

Table of Contents

1. Introduction ………………………………………………………………………………… 7
2. Background ……………………………………………………………………………….... 8

2.1 PCI
2.2 PCIX
2.3 PCI Express

3. Project Requirements …………………………………………………..…………… 15
3.1 IBM Soft Core Requirements
3.2 PCI Express Bridge Requirements
3.3 PCI Express to PCIX Bridge Features

4. Architecture and Implementation …………………………………………..… 20
4.1 High Level Overview
4.2 PCIEXRX - PCI Express TLP Receiver
4.3 BUF - Buffers
4.4 ARB - Arbiter
4.5 MWRITE - Master Write
4.6 MREAD - Master Read
4.7 DECODER – PCIX External Decoder
4.8 SWRITE - Slave Write
4.9 SREAD - Slave Read
4.10 SDWORD – Slave Dword
4.11 PCIEXTX - PCI Express TLP Transmitter

5. Verification ….…………………………………………………………………………….. 62
 5.1 Verification Basics

5.2 Module Tests
5.3 Bridge Architecture Tests
5.4 System Level Verification

6. Synthesis ….……………………………………………………………………………….. 75
6.1 Specifications
6.2 Tools
6.3 Techniques to Avoid Synthesis Headaches

7. Static Timing Analysis ……………………..……………………………………..… 78
7.1 Background
7.2 Assertions
7.3 Modifications

8. Performance …………………………………………………………….…………….…. 83
9. Future Work …………………………………………………………….………….….…. 84

9.1 Functionality
9.2 Optimizations

10. References ……………………………………………………………….…….……….. 89

 5

List of Figures and Tables

Figure 2.1.1 A Typical PCI/PCIX System …………………………………………… 8
Figure 2.1.2 PCI Correspondence Example ……………………………………… 10
Figure 2.2 PCIX Correspondence Example …………………………………... 12
Figure 2.3.1 PCI Express Link ……………………………………………….…….… 13
Figure 2.3.2 Typical PCI Express System ………………………………………… 14
Table 2.3 A Comparison of PCI Express and PCIX …..…………………… 14
Figure 3.3 PCI Express and PCIX Transactions ………….……….………… 18
Figure 4.1 High Level Overview of Bridge Architecture ……………..…… 20
Table 4.1 Description of Bridge Architecture ………………………..……… 21
Figure 4.2 PCIEXRX Timing Diagram …………………………………………… 25
Figure 4.2.1.1 PCI Express Headers ………………………………….……………… 26
Table 4.2.1.1.1 PCI Express Headers ………………………………….……………… 27
Table 4.2.1.1.2 PCI Express Transaction Type ……………………..……………… 28
Figure 4.2.1.1.1 PCIX Header ………………….……………………………..……..…… 28
Table 4.2.1.1.1 PCIX Header …………………………….………………….…………… 28
Table 4.2.1.1.2 Translating Commands from PCI Express to PCIX ….……… 29
Figure 4.2.1.1.2 PCIX Attribute ……………………………………………………..……. 30
Figure 4.2.1.1.3 PCIX ADDR field for Split Completions ……………………….… 31
Table 4.2.3 PCIEXRX Selection of Buffers ……………………………………… 32
Figure 4.3 BUF Architecture ……………………………………………..………… 34
Figure 4.3.1 Header Buffer Implementation ……………………….…………… 35
Figure 4.3.2 Data Buffer Implementation ……………………………..………… 36
Figure 4.3.3.1 BUFFERSTATUS Implementation ………………………….……… 37
Table 4.3.3 Posted Buffer Status Signals …………………………………..…… 37
Figure 4.3.3.2 Handshake Implementation ………………………………………… 38
Figure 4.3.3.3 Handshake Timing Diagram ………………………………………… 38
Figure 4.3.3.4 Cycle Handshake Implementation ………………………..……… 39
Table 4.4 PCI Express, PCI, and PCIX Ordering Rules ……………..…… 40
Table 4.4.1 Simplified PCI Express, PCI, PCIX Ordering Rules …….…… 42
Figure 4.4.2 ARB Timing Diagram ……………………………………..…………… 43
Figure 4.5 MWRITE Timing Diagram …………………………………………… 44
Figure 4.6 MREAD Timing Diagram ……………………………………………… 47
Figure 4.7 DECODER Timing Diagram ……………………….………………… 49
Figure 4.8 SWRITE Timing Diagram ………………………….………………… 51
Table 4.8.3 Hard-wired PCI Express Fields in Upstream Translation …. 53
Figure 4.9 SREAD Timing Diagram ………………………………..……………. 54
Figure 4.10 SDWORD Timing Diagram …………………………….……….…… 56
Figure 4.11 PCIEXTX Timing Diagram …………………………………………… 59
Figure 4.11.2 Data Format for a 3DW PCI Express Header ………………… 60
Figure 5 Verification Development Timeline ……………………….……… 62
Table 5.2 Module-level Tests ………………………………………….…………. 65
Table 5.3 Bridge Architecture Tests ………………………………….………… 68

 6

Figure 5.4 The Complete System Level Verification Environment ….… 69
Figure 5.4.1 Stage One ………………………………………………………………… 70
Figure 5.4.2 Stage Two …………………………………….………………………..… 71
Figure 5.4.3 Stage Three …………………………………….………………………… 72
Figure 5.4.4 Stage Four ……………………………………………….…………….… 73
Table 5.4.5 System Level Tests ……………………………….….……………... 74
Figure 6.2.1 Architecture Represented by the RTL ………….………………. 76
Figure 6.2.2 Synthesis Result ………………………………………..………………. 76
Table 8 Performance and Area Measurements of the Bridge ……… 85
Table 9.1.1 Assumptions Made to Simplify the Bridge ……………..……… 85

 7

1 Introduction

The conventional PCI technology bandwidth of 133 MBps has become a performance

bottleneck due to significant improvements in processors and host systems. Multiple bus

technologies have emerged to alleviate this bottleneck, including PCIX and PCI Express.

The PCIX parallel bus architecture was developed to increase the maximum theoretical

bandwidth of up to 1 GBps by increasing timing constraints to support clock speeds of up

to 133 MHz (from 66 MHz max freq for PCI). The concept of a Split transaction was

also added to bring the realized performance closer to the theoretical BW.

The PCI Express protocol has also been developed as the next generation after PCIX,

further increasing the maximum theoretical bandwidth to 8 GBps for a x16 (16 byte) link.

Unlike the PCI and PCIX multi-drop bus architectures, PCI Express is a serial point-to-

point interconnect. An advantage of PCI Express is that it has more bandwidth per pin,

which results in lower cost and higher peak bandwidth.

Both PCI Express and PCIX are being widely adopted in industry, therefore it is desirable

to bridge between the two protocols and allow both to coexist in the same system. This

thesis outlines the development of a PCI Express to PCIX Bridge ASIC digital logic core

optimized for performance and area.

 8

2 Background

2.1 PCI

2.1.1 Overview of a Typical PCI System

Figure 2.1.1 shows a typical PCI system consisting of a Processor, a North Bridge, a PCI

bus, a South Bridge, and various other components. The North Bridge interfaces the

Processor to the graphics (AGP) bus, system memory, and the PCI bus. The PCI bus is

also connected to the South Bridge and various high performance IO devices such as an

Ethernet card. The South Bridge interfaces the PCI Bus to the ISA bus that connects to

lower performance IO devices.

Figure 2.1.1 – A Typical PCI/PCIX System1

1 Source: PCI Express System Architecture, Mindshare, Inc.

 9

PCI supports twelve commands that allow the processor and various devices to

communicate. Transactions include variations of memory, IO, and configuration reads

and writes. Since PCI is a multi-drop bus (meaning that many devices might be

connected to the bus at a time), all devices must win ownership of the bus from the North

Bridge Arbiter before initiating a transaction.

2.1.2 PCI Correspondence Example

This section explores what happens when the processor issues an IO read to the Ethernet

device. First, the processor issues an IO read cycle to the North Bridge. As illustrated in

Figure 2.1.2, the North Bridge will then arbitrate to get control of the bus, and then issue

an IO read on the PCI bus. The Ethernet device will claim the transaction, and if the data

is ready and available the Ethernet device will drive the requested IO data on the bus.

If the data is not ready, however, the Ethernet device might respond with a Retry, turning

the IO read into a Delayed Transaction and forcing the North Bridge to retry the IO read

a few cycles later. The North Bridge unfortunately does not know when to retry, so the

system may encounter situations where the North Bridge takes up valuable bus time

unsuccessfully retrying the IO read while other PCI devices need the bus.

 10

Figure 2.1.2 – PCI Correspondence Example

 11

2.2 PCIX

PCIX builds on the PCI architecture by adding features to improve performance and bus

efficiency. A significant difference between PCI and PCIX is that PCI Delayed

transactions are replaced by PCIX Split transactions. In the PCI example discussed in

Section 2.1.2, the North Bridge ties up the bus by repeatedly retrying the delayed IO read.

If we take the same example from Section 2.1.2 but replace PCI with PCIX, as illustrated

in Figure 2.2, the Ethernet device will memorize the transaction and signal a Split –

telling the North Bridge not to retry the IO Read. When the data is ready, the Ethernet

device will send the North Bridge a Split Completion containing the data. The addition of

the PCIX Split Completion frees up the bus for other transactions, making PCIX more

efficient than PCI.

PCIX utilizes clock speeds that range from 66 MHz to133 MHz, thus improving the data

rate and performance over PCI. As the clock rate increases, it becomes more difficult to

meet timing constraints with multiple devices connected to the bus. PCIX supports eight

to ten devices at 66 MHz, and three to four devices at 133 MHz. For performance

reasons, clock frequencies were increased to 266 or 533 MHz in PCIX 2.0 – Double Data

Rate, sacrificing the multi-drop nature of the bus for a point-to-point connection that uses

bridges to connect multiple devices. Unfortunately, PCIX bridges are not ideal for a

point-to-point connection because of large pin count and area. Therefore a new bus

technology emerged – PCI Express.

 12

Figure 2.2 – PCIX Correspondence Example

North Bridge issues
an IO Read

North Bridge

South Bridge Ethernet

PCIX Bus

Arb

The North Bridge
arbitrates for control of
the bus

North Bridge

South Bridge Ethernet

PCIX Bus

Arb

North Bridge gets
control of the bus

North Bridge

South Bridge Ethernet

PCIX Bus

Arb

Ethernet card claims the transaction and
sends the requested data

North Bridge

South Bridge Ethernet

PCIX Bus

Arb

Ethernet card claims and memorizes the
transaction and issues a Split, turning the IO
Read into a “Split Transaction.”

North Bridge

South Bridge Ethernet

PCIX Bus

Arb

End

Start

When the requested data is available, the
Ethernet card sends a Split Completion

North Bridge

South Bridge Ethernet

PCIX Bus

Arb

North Bridge issues
an IO Read

North Bridge

South Bridge Ethernet

PCIX Bus

Arb

North Bridge issues
an IO Read

North Bridge

South Bridge Ethernet

PCIX Bus

Arb

The North Bridge
arbitrates for control of
the bus

North Bridge

South Bridge Ethernet

PCIX Bus

Arb
The North Bridge
arbitrates for control of
the bus

North Bridge

South Bridge Ethernet

PCIX Bus

Arb

North Bridge gets
control of the bus

North Bridge

South Bridge Ethernet

PCIX Bus

Arb

North Bridge gets
control of the bus

North Bridge

South Bridge Ethernet

PCIX Bus

Arb

Ethernet card claims the transaction and
sends the requested data

North Bridge

South Bridge Ethernet

PCIX Bus

Arb

Ethernet card claims the transaction and
sends the requested data

North Bridge

South Bridge Ethernet

PCIX Bus

ArbNorth Bridge

South Bridge Ethernet

PCIX Bus

Arb

Ethernet card claims and memorizes the
transaction and issues a Split, turning the IO
Read into a “Split Transaction.”

North Bridge

South Bridge Ethernet

PCIX Bus

Arb

Ethernet card claims and memorizes the
transaction and issues a Split, turning the IO
Read into a “Split Transaction.”

North Bridge

South Bridge Ethernet

PCIX Bus

Arb

End

Start

When the requested data is available, the
Ethernet card sends a Split Completion

North Bridge

South Bridge Ethernet

PCIX Bus

Arb

When the requested data is available, the
Ethernet card sends a Split Completion

North Bridge

South Bridge Ethernet

PCIX Bus

Arb

 13

2.3 PCI Express

PCI Express is a point-to-point link with a transmitter and receiver on both sides of the

link. A PCI Express device can transmit and receive packets simultaneously. The link can

be 1, 2, 4, 8, 12, 16, or 32 lanes wide in both directions with symmetric connections

between the transmitting and receiving sides. PCI Express transactions include Memory,

IO, and Configuration reads and writes, Completions, and various Message requests.

Figure 2.3.1 – PCI Express Link

A typical PCI Express system is shown in Figure 2.3.2. The bridge implemented in this

thesis will operate in systems where the PCI Express link is upstream (closer to the CPU)

as the primary interface, and the PCIX bus is downstream (farther away from the CPU) as

the secondary interface. The root complex is the root of the PCI Express hierarchy. It

allows connection of PCI Express devices, PCI Express Switches that route a PCI

Express link to multiple PCI Express links, and PCI Express to PCI/PCIX Bridges.

A comparison of the two bus technologies used in this thesis, namely PCI Express and

PCIX, is located in Table 2.3.

PCI Express
Device

PCI Express
Device

packet

packet
PCI Express

Device
PCI Express

Device

packet

packet

 14

Figure 2.3.2 – Typical PCI Express System

 PCI Express (x16) PCIX 133 MHz (64-bit bus)
Error Detection Baseline and Advanced Error

Reporting Capability, Link Layer
LCRC, Transaction Layer ECRC,

Poison bit in TLP

SERR# - System Error
PERR# - Parity Error

Encoding 8b/10b encoding
ECCC attached to packet

1 parity bit for every 32 data bits

Signaling Rate, Clock
Frequency

2.5 GHz
(x1, x2, x4, x8, x12, x16, x32)

133 MHz
32 bit and 64 bit lanes

pins 64 pins (x16 64-bit bus) 90 pins (64-bit bus)
Peak Theoretical BW 8 GB/sec (x16 64-bit bus) 1 GB/sec
Performance Per Pin 125 MB/sec 11 MB/sec
Average Bandwidth ~ 40-60% peak theoretical

3.2 – 4.8 GB/sec
~ 50-70% peak theoretical

0.5 – 0.7 GB/sec
Arbitration Mechanism Virtual Channels Arbitration, Port

Arbitration, Quality of Service
Must arbitrate for sole use of the bus

Max. Physical Length ~ 10 yards ~ 1 foot
Transaction
Acknowledgements
and Flow Control

Non-posted – acknowledgement
Posted – no acknowledgement

Flow Control for non-posted, posted,
and completion transactions

Master and target assert ready signals,
then transmit entire transaction

No Flow Control

Block Transactions Present Present
Split Transactions Present Present
Protocol for snoopy
caches

No Snoop bit can eliminate snooping
and improve performance during

accesses to non-cacheable memory,
Relaxed Ordering enable bit

No Snoop bit can eliminate snooping
and improve performance during

accesses to non-cacheable memory,
Relaxed Ordering enable bit

Table 2.3 - A Comparison of PCI Express and PCIX[9], [16]

CPU

Root
Complex

MemoryGFX

PCI Express
To PCIX
Bridge

Switch

Legacy
Endpoint

PCI Express
Endpoint

PCI Express
Endpoint

PCI Express

PCI Express

PCI
Express

PCI
Express

PCI
Express

CPU

Root
Complex

MemoryGFX

PCI Express
To PCIX
Bridge

Switch

Legacy
Endpoint

PCI Express
Endpoint

PCI Express
Endpoint

PCI Express

PCI Express

PCI
Express

PCI
Express

PCI
Express

 15

3 Project Requirements

3.1 IBM Soft Core Requirements

The design of the PCI Express to PCIX Bridge had to meet all IBM Methodology

requirements for Soft Cores. All RTL code must be synthesize-able by standard EDA

tools in order to be mapped to elements in the IBM ASIC Library. The elements in the

standard libraries are static CMOS, which constrained this thesis from exploring various

other technologies that cater to high performance such as Domino Logic.

Methodology requirements also constrained the physical aspects of the core to use the

vendor's standard values, including wire load models, capacitance values, maximum and

minimum delay between latches, maximum and minimum delay between the PCI Express

Bridge to vendor ASIC PCI Express and PCIX cores, and the technology standard

voltage and temperature ranges. Please see Section 7 – Static Timing Analysis for more

detail.

 16

3.2 PCI Express Bridge Requirements

The following contains the highlights of relevant key requirements compiled from

Section 1.3.1 of the PCI Express Bridge Specification. Please see Section 9.1 Future

Work: Functionality for a list of PCI Express to PCIX Bridge capabilities that should be

explored in the future.

3.2.1 Supported Requirements

 The bridge includes one PCI Express primary interface and one or more PCIX

secondary interfaces

 The bridge is compliant with the electrical specifications described in PCI Express

Base 1.0a and PCIX 1.0a for its respective interfaces.

 Memory mapped I/O address space for transaction forwarding

 64-bit addressing on both primary and secondary interfaces. The bridge must prevent

address aliasing by fully decoding the address fields.

 The bridge must complete all DWORD and burst memory read transactions that

originate from the secondary interface as Split Transactions if the transaction crosses

the bridge and the originating interface is in a PCIX mode.

 Transactions that originate from PCI Express and address locations internal to the

bridge have the same requirements as described for PCI Express Endpoints.

 17

 PCI Express to PCI/PCIX bridges must not propagate exclusive accesses from the

secondary interface to the primary and are never allowed to initiate an exclusive

access of their own

 The PCI Express interface must comply with the definition of the flow control

mechanism described in PCI Express Base 1.0a.

3.2.1 Unsupported Requirements

Configuration requirements from Section 1.3.1 of the PCI Express Bridge Specification

are not supported because a Bridge configuration space is not included in this thesis.

 The bridge includes configuration registers accessible through the PCI-compatible

configuration mechanism.

 As with PCI bridges and PCIX bridges, PCI Express to PCI/PCIX bridges us a Type

01h Configuration Space header.

 18

3.3 PCI Express to PCIX Bridge Features

 The PCI Express to PCIX Bridge supports the following PCI Express and PCIX

transactions in both upstream and downstream directions: Memory Writes, Memory

Reads, I/O Writes, I/O Reads, Type 1 Configuration Writes, Type 1 Configuration

Reads, Completions with Data, Completions without Data, and Split Transactions.

Figure 3.3 – PCI Express and PCIX Transactions

 The PCI Express to PCIX Bridge is compliant with the following specifications: PCI

Express to PCI/PCI-X Bridge 1.0, PCI Express Base 1.0a, PCI-X 1.0a, PCI 2.3.

 Supports x16 link widths providing 2.5 Gbps data rate per lane per direction

 Supports the following Transaction Layer Packet (TLP) sizes:

o Max payload size of 4KB or less for posted transactions and completions

o Max read request size of 4KB or less for non-posted requests

Unsupported

Message Request
Config Read Type 0
Config Write Type 0
Message Request with Data

Special Cycle

Supported

Memory Read Request
Memory Write Request
I/O Read Request
I/O Write Request
Completion with Data
Completion without Data
Config Read Type 1
Config Write Type 1

Memory Read
Memory Read DWORD
Memory Read Block
Memory Write
Memory Write Block
Split Completion
Dual Address Cycle

D
o
w
n
s
t
r
e
a
m

U
p
s
t
r
e
a
m

PCI Express

PCIX

PCI Express to
PCIX Bridge

Root
Complex

Memory

CPU

PCIX Endpoints

Unsupported

Message Request
Config Read Type 0
Config Write Type 0
Message Request with Data

Special Cycle

Supported

Memory Read Request
Memory Write Request
I/O Read Request
I/O Write Request
Completion with Data
Completion without Data
Config Read Type 1
Config Write Type 1

Memory Read
Memory Read DWORD
Memory Read Block
Memory Write
Memory Write Block
Split Completion
Dual Address Cycle

D
o
w
n
s
t
r
e
a
m

U
p
s
t
r
e
a
m

Supported

Memory Read Request
Memory Write Request
I/O Read Request
I/O Write Request
Completion with Data
Completion without Data
Config Read Type 1
Config Write Type 1

Memory Read
Memory Read DWORD
Memory Read Block
Memory Write
Memory Write Block
Split Completion
Dual Address Cycle

D
o
w
n
s
t
r
e
a
m

U
p
s
t
r
e
a
m

PCI Express

PCIX

PCI Express to
PCIX Bridge

Root
Complex

Memory

CPU

PCIX Endpoints

PCI Express

PCIX

PCI Express to
PCIX Bridge

Root
Complex

Memory

CPU

PCIX Endpoints

 19

 Supports Virtual Channel 0 (VC0)

 Supports PCI Express Transaction Layer functions including:

o Transaction Layer Packet Interface transmit and receive

o Transaction ordering and queuing

o PCIX and PCI Express relaxed ordering model

o PCI Express Flow Control and Buffer Management

 Provides internal buffering for up to three outstanding downstream transactions: one

non-posted transaction, one posted transaction, and one completion

 Provides internal buffering for up to three outstanding upstream transactions: one

non-posted transaction, one posted transaction, and one completion

 Supports one PCI Express primary interface and one PCIX secondary interface

 Memory mapped I/O address space for transaction forwarding

 64-bit addressing on both primary and secondary interfaces

 20

4 Architecture and Implementation
4.1 High Level Overview

TL RX PCI Express Transaction Layer Packet Interface Receive Interface
TL FC PCI Express Transaction Layer Packet Interface Flow Control Interface
PCIEXRX PCI Express Transaction Layer Packet Receiver
DOWNBUF Downstream Buffers
DOWNARB Downstream Arbiter
MWRITE PCIX Write Master
MREAD PCIX Read Master
WS PCIX Write Transmitter Interface
RS PCIX Read Transmitter Interface
SWRITE PCIX Write Slave
SREAD PCIX Read Slave
SDWORD PCIX Dword Slave
WF PCIX Write Receiver Interface
RF PCIX Read Receiver Interface
ED PCIX External Decoder Interface
DECODER PCIX Address and Command Decoder
UPBUF Upstream Buffers
UPARB Upstream Arbiter
PCIEXTX PCI Express Transaction Layer Packet Transmitter
TL TX PCI Express Transaction Layer Packet Interface Transmit Interface
TL ARB PCI Express Transaction Layer Packet Interface Arbitration Interface

Figure 4.1 – High Level Overview of Bridge Architecture

PCI
Express
Cores

PCIEXRX

PCIX
Core

P Header

MWRITE

MREAD

SWRITE

SREAD

250 MHz 133 MHz

ARB
(UPARB)

ARB
(DOWNARB)

P Data

Cpl Header

Cpl Data

NP Header

NP Data

P Header

P Data

Cpl Header

Cpl Data

NP Header

NP Data

PCIEXTX

BUF (DOWNBUF)

BUF (UPBUF)

TL
RX
FC

TL
TX

ARB

WS

RS

WF

RF

DECODER ED

MASTER

SLAVE

SPSDWORD

PCI
Express
Cores

PCIEXRX

PCIX
Core

P Header

MWRITE

MREAD

SWRITE

SREAD

250 MHz 133 MHz

ARB
(UPARB)

ARB
(DOWNARB)

P Data

Cpl Header

Cpl Data

NP Header

NP Data

P Header

P Data

Cpl Header

Cpl Data

NP Header

NP Data

PCIEXTX

BUF (DOWNBUF)

BUF (UPBUF)

TL
RX
FC

TL
TX

ARB

WS

RS

WF

RF

DECODER ED

MASTER

SLAVE

SPSDWORD

 21

 Module Description

PCIEXRX Receive PCI Express Transaction Layer Packets
(1) Receive PCI Express Header and Data from PCI Express Transaction

Layer Packet Interface
(2) Translate PCI Express Header into PCIX Control Signals
(3) Store PCIX control signals and data in a downstream buffer
(4) Initialize and update Flow Control Credits

BUF
(DOWNBUF)

Downstream Buffers include:
Three header buffers of equal size (128 bits)
Three data buffers:
 One 4KB data buffer for posted data
 One 4KB data buffer for completions
 One 1DW (4byte) buffer for non-posted data

ARB
(DOWNARB)

(1) Decide which transaction to send next according to ordering rules
(2) Select type (P-posted, CPL-completion, NP-nonposted) to transmit

MASTER
(MWRITE)

Master a PCIX write
(1) Initiate a PCIX Write
(2) Push data straight from DOWNBUF to PCIX Interface
(3) Indicate if transaction was successful or needs to be retried D

ow
n

st
re

am
 –

 P
C

I
Ex

pr
es

s
to

 P
C

IX

MASTER
(MREAD)

Master a PCIX read
(1) Initiate a PCIX Read
(2) Assume that the PCIX target will always split the transaction
(3) Indicate if transaction was successful or needs to be retried

DECODER When the Bridge receives a PCIX transaction:
(1) Determine if the Bridge should claim the transaction
(2) Determine which port should handle the transaction. (WF/RF/SP)

SLAVE
(SWRITE)

Receive PCIX writes from the PCIX Interface WF interface
(1) Receive a PCIX write from the PCIX Interface
(2) Translate PCIX control signals into a PCI Express Header
(3) Store PCI Express Header and Data in an upstream buffer

SLAVE
(SREAD)

Receive PCIX reads from the PCIX RF interface
(1) Receive a PCIX read from PCIX Interface
(2) Translate PCIX control signals into a PCI Express Header
(3) Split the transaction
(4) Store PCI Express Header and Data in an upstream buffer

SLAVE
(SDWORD)

Receive PCIX DWORD transactions from the PCIX SP interface
(1) Receive a PCIX read or write from PCIX Interface
(2) Translate PCIX control signals into a PCI Express Header
(3) If the transaction is non-posted, then split the transaction
(4) Store PCI Express Header and Data in an upstream buffer

BUF
(UPBUF)

Identical to BUF (DOWNBUF) described above

ARB
(UPARB)

Identical to ARB (DOWNARB) described above U
ps

tr
ea

m
 –

 P
C

IX
 t

o
P

C
I

Ex
pr

es
s

PCIEXTX Transmit PCI Express Transaction Layer Packets
(1) Obtain an arbitration grant from the PCI Express Transaction Layer

Packet Interface
(2) Transmit the PCI Express Header and Data
(3) Indicate when a transaction has submitted successfully

Table 4.1 - Description of the Bridge Architecture

 22

4.1.1 Downstream Transaction

The following steps illustrate what happens when the Bridge handles a downstream

transaction, traveling from PCI Express to PCIX.

1) Transaction Layer Packet Interface sends the Bridge a PCI Express Transaction Layer

Packet containing a PCI Express Header (all transactions), and a data payload (writes

and completions)

2) PCIEXRX translates the Transaction Layer Packet header into PCIX control signals

3) PCIEXRX sends the PCIX control signals and data to DOWNBUF, where the

transaction is stored in the appropriate downstream buffer. Memory writes are stored

in the posted buffer. Completions are stored in the completion buffer. IO reads and

writes, Configuration reads and writes, and Memory reads are stored in the non-

posted buffer.

4) DOWNBUF tells DOWNARB that there is a pending transaction and indicates if it is

a posted transaction, a non-posted transaction, or a completion.

5) When the PCIX side is idle, DOWNARB tells DOWNBUF to transmit the transaction

6) DOWNBUF sends the PCIX control signals and data to the MASTER

7) If the transaction is a Completion or a Memory/IO/Configuration write, then

MWRITE will initiate a PCIX write on the WS interface. If the transaction is a

Memory/IO/Configuration read, then MREAD will initiate a PCIX read on the RS

interface.

8) WS/RS ends the transaction

 23

9) MWRITE/MREAD tells DOWNARB and DOWNBUF that the transaction has

completed

11a) If the transaction was successful, DOWNBUF frees the buffer and PCIEXRX

updates the flow control credits

11b) If the transaction was unsuccessful, the buffer is not freed. Go to Step 5.

4.1.2 Upstream Transaction

The following steps illustrate what happens when the Bridge handles an upstream

transaction, traveling from PCIX to PCI Express.

1) ED port asks DECODER whether or not it should claim the PCIX transaction

2) DECODER instructs the ED to claim the transaction on either the WF, the RF, or the

SP port

3) WF/RF/SP sends the PCIX transaction to the SLAVE. Memory writes and

Completions are handled by the SWRITE module. Memory reads are handled by the

SREAD module. IO reads and writes are handled by the SDWORD module.

4) SWRITE/SREAD/SDWORD translates the PCIX transaction into a PCI Express

Transaction Layer Packet and sends it to UPBUF where it is stored in the appropriate

buffer. Memory writes are stored in the posted buffer. Completions are stored in the

completion buffer. IO reads and writes and Memory reads are stored in the non-

posted buffer.

 24

5) UPBUF tells UPARB that there is a pending transaction and indicates if it is a posted

transaction, a non-posted transaction, or a completion

6) When the PCI Express side is idle, UPARB tells UPBUF to transmit the transaction

7) UPBUF starts to send the PCI Express Header to PCIEXTX

8) PCIEXTX obtains a grant from the ARB port

9) PCIEXTX transmits the PCI Express Transaction Layer Packet on the TX port

10) PCIEXTX tells UPARB and UPBUF that the transaction has completed

11) UPBUF tells SLAVE that the buffer has been freed

 25

4.2 PCIEXRX

The PCIEXRX module receives PCI Express Transaction Layer Packets, translates the

Transaction Layer Packet header into PCIX control signals, and sends the PCIX control

signals and data payload to the DOWNBUF module. PCIEXRX also initiates flow

control credits after a system reset and updates flow control credits whenever a buffer is

freed.

The timing diagram located in Figure 4.2 illustrates the behavior of PCIEXRX interfaces

when receiving a PCI Express posted transaction with a 4DW data payload.

 Figure 4.2 – PCIEXRX Timing Diagram

PCLK250

TL_PCIEXRX_VC_TYPE[2:0]

TL_PCIEXRX_HEADER_PUT

TL_PCIEXRX_HEADER[127:0]

TL_PCIEXRX_PUT

TL_PCIEXRX_DATA[127:0]

TL_PCIEXRX_END

PCIEXRX_DOWNBUF_POSTED

PCIXEXRX_DOWNBUF_HEADER_PUT

PCIEXRX_DOWNBUF_HEADER

PCIEXRX_DOWNBUF_DATA_PUT

PCIEXRX_DOWNBUF_DATA[127:0]

DOWNBUF_PCIEXRX_POSTED_FREED

PCIXEXRX_TL_P0_CHANGED

PCIEXRX_TL_P0_CREDITS

Posted

data0 data1 data2 data3

data0 data3

Header

1 Header Credit, Infinite Data Credits

Header

data1 data2

4.2.1

4.2.3

4.2.2

4.2.3

4.2.4

PCLK250

TL_PCIEXRX_VC_TYPE[2:0]

TL_PCIEXRX_HEADER_PUT

TL_PCIEXRX_HEADER[127:0]

TL_PCIEXRX_PUT

TL_PCIEXRX_DATA[127:0]

TL_PCIEXRX_END

PCIEXRX_DOWNBUF_POSTED

PCIXEXRX_DOWNBUF_HEADER_PUT

PCIEXRX_DOWNBUF_HEADER

PCIEXRX_DOWNBUF_DATA_PUT

PCIEXRX_DOWNBUF_DATA[127:0]

DOWNBUF_PCIEXRX_POSTED_FREED

PCIXEXRX_TL_P0_CHANGED

PCIEXRX_TL_P0_CREDITS

Posted

data0 data1 data2 data3

data0 data3

Header

1 Header Credit, Infinite Data Credits

Header

data1 data2

4.2.1

4.2.3

4.2.2

4.2.3

4.2.4

 26

4.2.1 Header

When TL_PCIEXRX_HEADER_PUT is high, PCIEXRX will (1) translate the PCI Express

header into a PCIX header containing PCIX control signals, and (2) write that PCIX

header to a buffer by asserting PCIEXRX_DOWNBUF_HEADER_PUT.

4.2.1.1 PCI Express Header

As illustrated in Figure 4.2.1.1, there are four general categories of PCI Express

Transaction Layer Packet Headers: 4DW Memory, 3DW Memory and IO Headers, Type

1 Configuration Headers, and Completion Headers. The Header fields are explained in

Table 4.2.1.1.1.

Figure 4.2.1.1 – PCI Express Headers

R Fmt Type R

7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0

TC R TD EP Attr R Length
Requester ID Tag Last DW BE First DW BE

Address[63:32]
Address[31:0]

R Fmt Type R

7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0

TC R TD EP Attr R Length
Requester ID Tag Last DW BE First DW BE

Address[31:0]

R Fmt Type R

7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0

TC R TD EP Attr R Length
Requester ID Tag Last DW BE First DW BE

Bus No. Device No. Function No. R Ext Reg No. Register No. R

R Fmt Type R

7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0

TC R TD EP Attr R Length
Completer ID Cpl Status Byte Count
Requester ID R Lower Address

M
Tag

Memory (64 bit Address)

Memory (32 bit Address)
IO

Configuration

Completion

Byte 0 … Byte 3
Byte 4 … Byte 7
Byte 8 … Byte 11
Byte 12 … Byte 15

Byte 0 … Byte 3
Byte 4 … Byte 7
Byte 8 … Byte 11

Byte 0 … Byte 3
Byte 4 … Byte 7
Byte 8 … Byte 11

Byte 0 … Byte 3
Byte 4 … Byte 7
Byte 8 … Byte 11

R Fmt Type R

7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0

TC R TD EP Attr R Length
Requester ID Tag Last DW BE First DW BE

Address[63:32]
Address[31:0]

R Fmt Type R

7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0

TC R TD EP Attr R Length
Requester ID Tag Last DW BE First DW BE

Address[31:0]

R Fmt Type R

7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0

TC R TD EP Attr R Length
Requester ID Tag Last DW BE First DW BE

Bus No. Device No. Function No. R Ext Reg No. Register No. R

R Fmt Type R

7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0

TC R TD EP Attr R Length
Completer ID Cpl Status Byte Count
Requester ID R Lower Address

M
Tag

Memory (64 bit Address)

Memory (32 bit Address)
IO

Configuration

Completion

Byte 0 … Byte 3
Byte 4 … Byte 7
Byte 8 … Byte 11
Byte 12 … Byte 15

Byte 0 … Byte 3
Byte 4 … Byte 7
Byte 8 … Byte 11

Byte 0 … Byte 3
Byte 4 … Byte 7
Byte 8 … Byte 11

Byte 0 … Byte 3
Byte 4 … Byte 7
Byte 8 … Byte 11

R Fmt Type R

7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0

TC R TD EP Attr R Length
Requester ID Tag Last DW BE First DW BE

Address[63:32]
Address[31:0]

R Fmt Type R

7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0

TC R TD EP Attr R Length
Requester ID Tag Last DW BE First DW BE

Address[31:0]

R Fmt Type R

7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0

TC R TD EP Attr R Length
Requester ID Tag Last DW BE First DW BE

Bus No. Device No. Function No. R Ext Reg No. Register No. R

R Fmt Type R

7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0

TC R TD EP Attr R Length
Completer ID Cpl Status Byte Count
Requester ID R Lower Address

M
Tag

Memory (64 bit Address)

Memory (32 bit Address)
IO

Configuration

Completion

R Fmt Type R

7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0

TC R TD EP Attr R Length
Requester ID Tag Last DW BE First DW BE

Address[63:32]
Address[31:0]

R Fmt Type R

7 | 6 | 5 | 4 | 3 | 2 | 1 | 07 | 6 | 5 | 4 | 3 | 2 | 1 | 0 7 | 6 | 5 | 4 | 3 | 2 | 1 | 07 | 6 | 5 | 4 | 3 | 2 | 1 | 0 7 | 6 | 5 | 4 | 3 | 2 | 1 | 07 | 6 | 5 | 4 | 3 | 2 | 1 | 0 7 | 6 | 5 | 4 | 3 | 2 | 1 | 07 | 6 | 5 | 4 | 3 | 2 | 1 | 0

TC R TD EP Attr R Length
Requester ID Tag Last DW BE First DW BE

Address[63:32]
Address[31:0]

R Fmt Type R

7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0

TC R TD EP Attr R Length
Requester ID Tag Last DW BE First DW BE

Address[31:0]

R Fmt Type R

7 | 6 | 5 | 4 | 3 | 2 | 1 | 07 | 6 | 5 | 4 | 3 | 2 | 1 | 0 7 | 6 | 5 | 4 | 3 | 2 | 1 | 07 | 6 | 5 | 4 | 3 | 2 | 1 | 0 7 | 6 | 5 | 4 | 3 | 2 | 1 | 07 | 6 | 5 | 4 | 3 | 2 | 1 | 0 7 | 6 | 5 | 4 | 3 | 2 | 1 | 07 | 6 | 5 | 4 | 3 | 2 | 1 | 0

TC R TD EP Attr R Length
Requester ID Tag Last DW BE First DW BE

Address[31:0]

R Fmt Type R

7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0

TC R TD EP Attr R Length
Requester ID Tag Last DW BE First DW BE

Bus No. Device No. Function No. R Ext Reg No. Register No. R

R Fmt Type R

7 | 6 | 5 | 4 | 3 | 2 | 1 | 07 | 6 | 5 | 4 | 3 | 2 | 1 | 0 7 | 6 | 5 | 4 | 3 | 2 | 1 | 07 | 6 | 5 | 4 | 3 | 2 | 1 | 0 7 | 6 | 5 | 4 | 3 | 2 | 1 | 07 | 6 | 5 | 4 | 3 | 2 | 1 | 0 7 | 6 | 5 | 4 | 3 | 2 | 1 | 07 | 6 | 5 | 4 | 3 | 2 | 1 | 0

TC R TD EP Attr R Length
Requester ID Tag Last DW BE First DW BE

Bus No. Device No. Function No. R Ext Reg No. Register No. R

R Fmt Type R

7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0

TC R TD EP Attr R Length
Completer ID Cpl Status Byte Count
Requester ID R Lower Address

M
Tag

R Fmt Type R

7 | 6 | 5 | 4 | 3 | 2 | 1 | 07 | 6 | 5 | 4 | 3 | 2 | 1 | 0 7 | 6 | 5 | 4 | 3 | 2 | 1 | 07 | 6 | 5 | 4 | 3 | 2 | 1 | 0 7 | 6 | 5 | 4 | 3 | 2 | 1 | 07 | 6 | 5 | 4 | 3 | 2 | 1 | 0 7 | 6 | 5 | 4 | 3 | 2 | 1 | 07 | 6 | 5 | 4 | 3 | 2 | 1 | 0

TC R TD EP Attr R Length
Completer ID Cpl Status Byte Count
Requester ID R Lower Address

M
Tag

Memory (64 bit Address)

Memory (32 bit Address)
IO

Configuration

Completion

Byte 0 … Byte 3
Byte 4 … Byte 7
Byte 8 … Byte 11
Byte 12 … Byte 15

Byte 0 … Byte 3
Byte 4 … Byte 7
Byte 8 … Byte 11

Byte 0 … Byte 3
Byte 4 … Byte 7
Byte 8 … Byte 11

Byte 0 … Byte 3
Byte 4 … Byte 7
Byte 8 … Byte 11

 27

Header Field # bits Description

Address 32/64 32-bit or 64-bit Address
Attr2 2 Attribute[1:0] = {High bit = Relaxed Ordering, Low bit = No Snoop}

Attribute[1] = 1, PCIX Relaxed Ordering Model
Attribute[1] = 0, PCI Strongly Ordered Model
Attribute[0] = 1, No snoop required (cache coherency not required)
Attribute[0] = 0, Snoop required (cache coherency required)

Bus No. 8 Bus Number
Byte Count4 11 Byte Count
Completer ID 16 {Bus Number, Device Number, Function Number} of the Completer
Cpl Status3 3 Completion Status Code

 000b = Successful Completion
 001b = Unsupported Request
 010b = Configuration Request Retry Status
 100b = Completer Abort
 Others = Reserved

Device No. 4 Device Number
EP 1 1 if the Transaction Layer Packet data is poisoned and invalid
Ext. Reg. No. 4 External Register Number
First DW BE 4 First DW Byte Enable
Fmt 2 Format

 00b = 3DW header, no data
 01b = 4DW header, no data
 10b = 3DW header, with data
 11b = 4DW header, with data

Function No. 4 Function Number
Last DW BE 4 Last DW Byte Enable
Length 10 Transfer Length in DW

 0000000001b = 1 DW
 …
 1111111111b = 1023 DW
 0000000000b = 1024 DW

Lower Address 7 In memory read completions, the Lower Address field contains the
byte address for the first enabled byte of data returned with the
completion. The field is cleared for all other types of completions.

M4 1 Byte Count Modified – Set for the first completion in a multiple
completion sequence when the Byte Count field has been modified
and contains the count for this completion only, not the total
remaining

R N/A Reserved
Register No. 6 Register Number
Requester ID 16 {Bus Number, Device Number, Function Number} of the Requester
Tag 8 Used by a requester to uniquely identify its outstanding transactions
TC5 3 Traffic Class to indicate Quality of Service
TD6 1 1 if there is a digest field included in the Transaction Layer Packet
Type 5 When combined with Fmt, indicates the transaction type

Table 4.2.1.1.1 – PCI Express Headers

2 This thesis assumes that the system is Strongly Ordered and Cache Coherent, Attr[1:0] = 0b
3 This thesis assumes that Completions are always successful
4 This thesis assumes that a Completion will contain all data, M=0b and Byte Count = 0b
5 This thesis assumes that Traffic Class is always a default 0b
6 This thesis assumes that there is no digest and TD = 0b

 28

TLP Fmt[1:0] Type[4:0] Description
MRd 00

01
00000 Memory Read

MWr 10
11

00000 Memory Write

IORd 00 00010 IO Read
IOWr 10 00010 IO Write
CfgRd1 00 00101 Type 1 Configuration Read
CfgWr1 10 00101 Type 1 Configuration Write
CfgRd0 00 00100 Type 0 Configuration Read
CfgWr0 10 00100 Type 0 Configuration Write
Cpl 00 01010 Completion
CplD 10 01010 Completion with Data
Msg 01 10rrr Message Request, No Data
MsgD 11 10rrr Message Request, With Data

Table 4.2.1.1.2 – PCI Express Transaction Type

4.2.1.1 PCIX Header

The PCIEXRX module translates a PCI Express Transaction Layer Packet Header into a

PCIX Header pictured in Figure 4.2.1.1. There is no concept of a “Header” in the PCIX

architecture. In this thesis, “PCIX Header,” refers to a collection of PCIX control signals

described in Table 4.2.1.1.1.

Figure 4.2.1.1.1 – PCIX Header

Field # of bits Description
Read or Write 1 0 for a Read, 1 for a Write/Completion
Burst or Dword 1 0 for Burst, 1 for Dword
CMD 4 PCIX CMD field
ATTRIBUTE 36 PCIX Attribute field
Split 1 1 for a Completion only
LastBE 4 Byte Enable for the last DW of data
FirstBE 4 Byte Enable for the first DW of data
ADDR 64 Address

Table 4.2.1.1.1 – PCIX Header

Read or Write Burst or Dword CMD ATTRIBUTE Split LastBE FirstBE ADDR
114 113 112 109 108 73 72 71 68 67 64 63 0

Read or Write Burst or Dword CMD ATTRIBUTE Split LastBE FirstBE ADDR
114 113 112 109 108 73 72 71 68 67 64 63 0

 29

The Read or Write field is determined by the PCI Express Transaction Layer Packet

Header Fmt and Type fields – MRd, IORd, and CfgRd1 are classified as “Reads,” while

MWr, IOWr, CfgWr1, Cpl, and CplD are classified as “Writes.”

The PCI Express Transaction Layer Packet Header Length field determines the Burst or

Dword field. Dword transactions have a 1 DW Length, otherwise the transaction is

classified as a Burst transaction (more than one DW).

The PCI Express Transaction Layer Packet Header Fmt and Type fields determine the

CMD field. The translation is summarized in Table 4.2.1.1.2.

PCI Express Command PCI Express
Fmt, Type

PCIX
CMD

PCIX Command

Memory Read Request 00 00000
01 00000

0110 Memory Read DWORD
Memory Read Block

Memory Write Request 10 00000
11 00000

0111 Memory Write
Memory Write Block

IO Read Request 00 00010 0010 IO Read
IO Write Request 10 00010 0011 IO Write
Completion 00 01010 1100 Split Completion
Completion with Data 10 01010 1100 Split Completion
Type 1 Configuration Read 00 00101 1010 Configuration Read
Type 1 Configuration Write 10 00101 1011 Configuration Write

Table 4.2.1.1.2 – Translating Commands from PCI Express to PCIX

As illustrated in Figure 4.2.1.1.2, the PCIX ATTRIBUTE field can be formatted in four

different ways: Burst transaction, DWORD transaction, Configuration transaction, and

Completion transaction. The Byte Enables are taken straight from the PCI Express First

DW BE field. The No Snoop (NS) and Relaxed (RO) Ordering bits are taken from the

PCI Express Attr field. The Tag field is mapped straight from the PCI Express Tag field.

 30

The Requester Bus Number, Device Number, and Function Number are either mapped

straight from the PCI Express Header or set to the appropriate values from the Bridge’s

Configuration space. The Upper and Lower Byte Counts are calculated by shifting the

PCI Express Header Length field left by two bits and then altering the value depending

on the first and last DW byte enables. The M field, Completer Bus Number, Device

Number, and Function Numbers are mapped straight from the PCI Express Header.

Figure 4.2.1.1.2 – PCIX Attribute

The Split field of the PCIX Header is set only if the PCI Express Transaction Layer

Packet Header Fmt and Type fields indicate that the transaction is a Cpl or a CplD. This

field differentiates a Split Completion from a PCIX Write.

The LastBE and FirstBE fields are the negative enabled version of the PCI Express

Transaction Layer Packet Header Last DW BE and First DW BE fields respectively.

Byte Enables R Tag Requester
Bus No.

Requester
Device No.

Requester
Function No.

Secondary
Bus No.

35 32 31 30 29 28 24 23 16 15 11 10 8 7 0

Configuration R R

Byte Enables R Tag Requester
Bus No.

Requester
Device No.

Requester
Function No. Reserved

35 32 31 30 29 28 24 23 16 15 11 10 8 7 0

DWORD N
S

R
O

Upper
Byte Count R Tag Requester

Bus No.
Requester
Device No.

Requester
Function No.

Lower
Byte Count

35 32 31 30 29 28 24 23 16 15 11 10 8 7 0

Burst N
S

R
O

Upper
Byte Count M R Completer

Bus No.
Completer
Device No.

Completer
Function No.

Lower
Byte Count

35 32 31 30 29 28 24 23 16 15 11 10 8 7 0

Completion
S
C
E

S
C
M

Byte Enables R Tag Requester
Bus No.

Requester
Device No.

Requester
Function No.

Secondary
Bus No.

35 32 31 30 29 28 24 23 16 15 11 10 8 7 0

Configuration R R

Byte Enables R Tag Requester
Bus No.

Requester
Device No.

Requester
Function No. Reserved

35 32 31 30 29 28 24 23 16 15 11 10 8 7 0

DWORD N
S

R
O

Upper
Byte Count R Tag Requester

Bus No.
Requester
Device No.

Requester
Function No.

Lower
Byte Count

35 32 31 30 29 28 24 23 16 15 11 10 8 7 0

Burst N
S

R
O

Upper
Byte Count M R Completer

Bus No.
Completer
Device No.

Completer
Function No.

Lower
Byte Count

35 32 31 30 29 28 24 23 16 15 11 10 8 7 0

Completion
S
C
E

S
C
M

 31

The PCIX ADDR field contains a 64-bit version of the PCI Express Transaction Layer

Packet Header Address field for Memory, IO, and Configuration transactions. However,

the PCIX ADDR field takes on a different form for Split Completions, as pictured in

Figure 4.2.1.1.3. All PCIX ADDR fields are mapped straight from the PCI Express

Transaction Layer Packet Header: Relaxed Ordering bit (RO), Requester Bus Number,

Requester Device Number, Requester Function Number, and the Lower Address.

Figure 4.2.1.1.3 – PCIX ADDR field for Split Completions

4.2.2 Receiving the PCI Express Data Payload

When TL_PCIEXRX_PUT is high, PCIEXRX will map the data from TL_PCIEXRX_DATA to

PCIEXRX_DOWNBUF_DATA and write the data to a buffer by asserting

PCIEXRX_DOWNBUF_DATA_PUT.

4.2.3 Select the buffer for packet storage

In the PCI Express transaction being received in Figure 4.2, TL_PCIEXRX_VC_TYPE

indicates that it is a posted transaction, therefore PCIEXRX will write the translated

PCIX control signals and data to the posted buffer by asserting

PCIEXRX_DOWNBUF_POSTED until the Transaction Layer Packet Interface signifies the

end of the Transaction Layer Packet by asserting TL_PCIEXRX_END for one cycle.

R Tag Requester
Bus No.

Requester
Device No.

Requester
Function No.

Lower
Address[6:0]R R

O RR Tag Requester
Bus No.

Requester
Device No.

Requester
Function No.

Lower
Address[6:0]R R

O R

 32

Handling completions and non-posted transactions is nearly identical to handling posted

transactions.

TL_PCIEXRX_VC_TYPE[2:0] Selected Buffer
001 Posted
010 Non-posted
100 Completion

Table 4.2.3 – PCIEXRX Selection of Buffer

4.2.4 Initialize and Update Flow Control Credits

PCI Express includes the concept of flow control to ensure that PCI Express Receivers

will always have buffer space to store incoming transactions. Most of the flow control

functionality is implemented in the Transaction Layer Packet Interface. The details

concerning the flow control implementation of the Transaction Layer Packet Interface

will not be presented in this thesis. The flow control logic in the PCIEXRX module

performs two functions: (1) initialize the flow control credits after system reset, and (2)

update the flow control credits every time a buffer is freed.

When the system has just been reset, the PCI Express Transaction Layer Packet Interface

is initialized with the number of Header and Data flow control Credits that the Bridge can

support for non-posted, posted, and completion packets. There is one flow control header

credit value and one flow control data credit value for each transaction type – posted,

non-posted, and completion. Since the Bridge only has one buffer for each type, all three

flow control header credits are equal to one. The Bridge supports the maximum data

payloads for each type – 1024 DW for posted and completion transactions, and 1 DW for

 33

non-posted transactions. One data flow control credit is equivalent to 4 DW, or 16 Bytes.

Since it is a performance advantage to advertise as many flow control credits as possible,

the Bridge advertises infinite data flow control credits for posted, completion, and non-

posted transactions

The PCI Express Transaction Layer Packet Interface indicates that the PCIEXRX module

needs to initialize flow control credits by asserting TL_AL_NEED_CREDITS_VC0 for

one cycle. The PCIEXRX module will immediately assert PCIEXRX_TL_*_CHANGED for

one cycle with the appropriate flow control values on PCIEXRX_TL_*_CREDITS.

In addition to initializing the flow control credits, the PCIEXRX Flow Control logic must

also update the flow control credits whenever buffer space is freed. In the example

presented in the timing diagram in Figure 4.2, a downstream posted transaction has been

successfully transmitted on the PCIX side of the Bridge.

DOWNBUF_PCIEXRX_POSTED_FREED is asserted for one cycle to indicate that a posted

buffer has been freed, triggering PCIEXRX to update the posted PCI Express flow

control credits by asserting PCIEXRX_TL_P0_CHANGED for one cycle with on header flow

control credit, and infinite data flow control credits on PCIEXRX_TL_P0_CREDITS.

4.3 BUF

The BUF module provides the clock boundary between the PCI Express 250 MHz clock

and the PCIX 133 MHz clock, as well as the interface between the Bridge logic and

 34

physical memory. Incorporating a buffer interface rather than forcing other modules to

directly access physical memory allows for a simpler interface to the buffers and provides

flexibility in the choice of memory. Adding new buffers, changing buffer sizes, or

changing the implementation from an SRAM to a register file will not affect the BUF

interface.

The BUF module pictured in Figure 4.3 contains three submodules: HEADERBUFFERS,

DATABUFFERS, and BUFFERSTATUS. HEADERBUFFERS contains all three header

buffers – one posted, one completion, and one non-posted. DATABUFFERS contains all

three data buffers – one posted, one non-posted, and one completion. BUFFERSTATUS

keeps track of which buffers are full and which are empty.

Figure 4.3 – BUF Architecture

4.3.1 HEADERBUFFERS

There are three identical header buffers, one for each type – posted, completion, and non-

posted. All header buffers are 16 bytes wide and are implemented with latches because,

Posted

Non-posted

Completion

HEADER
BUFFERS

Posted
4096 bytes

Non-Posted
4 bytes

Completion
4096 bytes

DATA
BUFFERS

BUF

Posted

Non-posted

Completion

BUFFER
STATUS

BUF CONTROL LOGIC

Posted

Non-posted

Completion

HEADER
BUFFERS

Posted

Non-posted

Completion

HEADER
BUFFERS

Posted
4096 bytes

Non-Posted
4 bytes

Completion
4096 bytes

DATA
BUFFERS

Posted
4096 bytes

Non-Posted
4 bytes

Completion
4096 bytes

DATA
BUFFERS

BUF

Posted

Non-posted

Completion

BUFFER
STATUS

Posted

Non-posted

Completion

BUFFER
STATUS

BUF CONTROL LOGIC

 35

in this particular case, a latch implementation is more efficient in size and speed when

compared to an SRAM. Data is written into a header buffer synchronously and read

asynchronously, as illustrated in Figure 4.3.1.

After a buffer is written to, it is guaranteed that the corresponding read enable (RE) will

not assert until at least two cycles after the data is written and the write enable (WE) has

fallen.

Figure 4.3.1 – Header Buffer Implementation

4.3.2 DATABUFFERS

As illustrated in Figure 4.3.2, there are three data buffers, one for each type – posted,

completion, and non-posted. For simplicity, the size of the data buffers reflects the

maximum data payload size for the corresponding transaction type. The posted data

DATAIN[127:0]
DATAOUT[127:0]

POSTEDDATA[127:0]

COMPLETIONDATA[127:0]

NONPOSTEDDATA[127:0]

POSTEDWE

COMPLETIONWE

NONPOSTEDWE

0
1

0
1

0
1

POSTEDRE
COMPLETIONRE
NONPOSTEDRE

Logic

DATAIN[127:0]
DATAOUT[127:0]

POSTEDDATA[127:0]

COMPLETIONDATA[127:0]

NONPOSTEDDATA[127:0]

POSTEDWE

COMPLETIONWE

NONPOSTEDWE

0
1

0
1

0
1

POSTEDRE
COMPLETIONRE
NONPOSTEDRE

Logic

 36

buffer is 4 KB (256 rows that are 16 bytes wide), the completion data buffer is 4 KB (256

rows that are 16 bytes wide), and the non-posted data buffer is 4 bytes. The posted and

completion data buffers are large and most efficiently implemented with two-port

SRAMs. One port of the SRAM is used as the write port and writes the data on DATAIN

to address WRITEADDR when the WE write enable is asserted on a WRITECLK clock edge.

The other port of the SRAM is used as the read port and reads the data at address

READADDR. The non-posted data buffer is 4 bytes so it is implemented with latches. The

final DATAOUT will contain the data from whichever buffer is read-enabled.

Figure 4.3.2 – Data Buffer Implementation

4.3.3 BUFFERSTATUS

The BUFFERSTATUS module indicates whether a buffer is (1) full and there is a

transaction pending, or (2) has been freed and the buffer is empty with no transaction

pending. There is one set of status signals for each of the three buffers. As displayed in

SRAM

WRITECLK
POSTEDWE

WRITEADDR
DATAIN

READCLK
READADDR
POSTEDDATA[127:0]

SRAM

WRITECLK
COMPLETIONWE

WRITEADDR
DATAIN

READCLK
READADDR
COMPLETIONDATA [127:0]

NONPOSTEDDATA [127:0]

NONPOSTEDWE

0
1DATAIN

POSTEDRE
COMPLETIONRE
NONPOSTEDRE

Logic

DATAOUT127:0]

SRAM

WRITECLK
POSTEDWE

WRITEADDR
DATAIN

READCLK
READADDR
POSTEDDATA[127:0]

SRAM

WRITECLK
COMPLETIONWE

WRITEADDR
DATAIN

READCLK
READADDR
COMPLETIONDATA [127:0]

NONPOSTEDDATA [127:0]

NONPOSTEDWE

0
1DATAIN

POSTEDRE
COMPLETIONRE
NONPOSTEDRE

Logic

DATAOUT127:0]

 37

Figure 4.3.3.1, transactions flow from the ACLK clock domain to the BCLK clock

domain. The buffer status signals pass through the clock boundary using a

HANDSHAKE or a CYCLEHANDSHAKE module. Refer to Table 4.3.3 for a

description of the posted buffer status signals, which are similar to the completion and

non-posted buffer status signals.

Figure 4.3.3.1 – BUFFERSTATUS Implementation

Status Signal Description
A_PSTORED, B_PSTORED Asserted for one cycle after a posted transaction has been

completely stored in the posted buffer
A_PFREED, B_PSENT Asserted for one cycle after a posted transaction has been

transmitted
A_PFULL Asserted when the posted buffer is full
B_PPENDING Asserted when there is a pending posted transaction

Table 4.3.3 – Posted Buffer Status Signals

NONPOSTED

ARESET BRESET

Cycle
Handshake

Cycle
Handshake

B_PSTORED

A_PFULL 1
0

A_PSTORED

B_PPENDING

B_PSENT

BRESET

B_PSENT

B_PSTORED

ARESET

A_PSTORED

A_PFREED

A_PFREED

Logic

1
0

Logic

POSTED

COMPLETION

Handshake

ACLK BCLK

NONPOSTED

ARESET BRESET

Cycle
Handshake

Cycle
Handshake

B_PSTORED

A_PFULL 1
0
1
0

A_PSTORED

B_PPENDING

B_PSENT

BRESET

B_PSENT

B_PSTORED

ARESET

A_PSTORED

A_PFREED

A_PFREED

Logic

1
0
1
0

Logic

POSTED

COMPLETION

Handshake

ACLK BCLK

 38

The HANDSHAKE module illustrated in Figure 4.3.3.2 transfers data from the TX clock

boundary to the RX clock boundary. When TXDATA is first asserted, DATA will stay

asserted until the data has crossed the clock boundary, signified by RXDATA being high.

Signals that cross the clock boundary are latched twice at the destination to exponentially

reduce a chance of metastability. The timing of the signals in the Handshake

Implementation can be found in Figure 4.3.3.3.

Figure 4.3.3.2 – Handshake Implementation

Figure 4.3.3.3 – Handshake Timing Diagram

The CYCLEHANDSHAKE module illustrated in Figure 4.3.3.4 transfers data from the

TX clock boundary to the RX clock boundary and turns the data into a pulsed RXDATA

that is asserted for one RXCLK cycle.

TXDATA RXDATA

RXCLKTXCLK

DATATXDATA RXDATA

RXCLKTXCLK

TXDATA RXDATA

RXCLKTXCLK

TXDATA RXDATA

RXCLKTXCLK

DATA

TXCLK

TXDATA

DATA

RXCLK

RXDATA

TXCLK

TXDATA

DATA

RXCLK

RXDATA

 39

Figure 4.3.3.4 – Cycle Handshake Implementation

4.3.4 BUF Control Logic

The BUF Control Logic takes in signals from the BUF interface and creates control

signals for BUFFERSTATUS, HEADERBUFFERS, and DATABUFFERS.

Implementing the control logic in the BUF module affords flexibility in that the BUF

interface remains the same regardless of whether or not there are changes in the BUF

module implementation. For example, in the future the Bridge might need more buffer

space to be expanded to support more transactions.

The BUF control logic sets and updates the Write Address, Read Address, Write Enables,

and Read Enables for HEADERBUFFERS and DATABUFFERS every time a new

transaction and/or 16 bytes of data is written or read. The control logic also prefetches

data from the SRAMs due to certain timing constraints when accessing the SRAMs.

TXDATA

RXCLKTXCLK

CYCLERXDATADATA

Pulse Logic

TXDATA

RXCLKTXCLK

CYCLERXDATADATA

Pulse Logic

 40

4.4 ARB

The ARB Arbiter module tells the BUF module which transaction to transmit next

according to the PCI / PCIX / PCI Express Ordering Rules presented in Table 4.4. The

columns represent the first transaction received and the rows represent the second

transaction received.

Table 4.4 – PCI Express, PCI, PCIX Ordering Rules

The table entries in Table 4.4 indicate whether or not the second transaction (row) should

be able to pass the first transaction (column). A “Yes” entry means that the second

transaction must be allowed to pass the first in order to avoid deadlock, a “No” means

that the second transaction must never pass the first transaction in order to support the

 41

producer-consumer strong ordering model, and a “Y/N” indicates that it doesn’t matter

whether or not the second transaction passes the first. The following is an explanation of

select entries from Table 4.4:

Row A, Column 2

(a) A Memory Write or Message Request with the Relaxed Ordering Attribute bit clear

must not pass any other Memory Write or Message Request

(b) If the Relaxed Ordering Attribute bit is set there are no ordering requirements.

Row A, Columns 5 and 6

(a) In the upstream direction, it does not matter whether or not Memory Writes and

Message Requests can pass Completions.

(b) In the downstream direction, Memory Writes and Message Requests must pass

Completions to avoid deadlock.

Row D, Column 2

(a) If the Relaxed Ordering Attribute bit is clear, a Read Completion cannot pass a

Memory Write or Message Request.

(b) If the Relaxed Ordering Attribute bit is set, a Read completion can pass a Memory

Write or Message Request.

Row D, Column 5

(a) Read Completions associated with different Read Requests have no ordering

requirements.

(b) Read Completions for one request (same Transaction ID) must return in address

order.

 42

4.4.1 Ordering Rules

The original PCI / PCIX / PCI Express Ordering Rules table is pictured in Table 4.4. To

reduce the design complexity of the Arbiter, the PCI Express and PCIX Ordering Rules

have been simplified in this thesis. The simplified Ordering Rules are presented in Table

4.4.1 and show what is implemented in the PCI Express to PCIX Bridge.

Row Pass Column? Posted Completion Non-Posted

Posted No Yes Yes

Completion No No Yes

Non-Posted No No No

Table 4.4.1 – Simplified PCI Express, PCI, PCIX Ordering Rules

PCI Express Flow Control requires that the Bridge differentiate between posted

transactions, completions, and non-posted transactions. If there are multiple pending

downstream transactions, posted transactions will have the highest priority, followed by

completions, and finally by non-posted requests.

Consider the following downstream path scenario: (1) PCI Express Completion C is

received, (2) PCIX Master Write attempts to submit C but the target issues a retry.

Simultaneously, PCI Express Posted Transaction P is received. (3) Now there are two

pending transactions P and C. According to the Ordering Rules, P must pass C in order

to prevent deadlock. Therefore, the Arbiter will assert P as the next transaction.

 43

4.4.2 Functionality

Figure 4.4.2 – ARB Timing Diagram

In the example diagrammed in Figure 4.4.2, there are three pending transactions,

indicated by the assertion of POSTED_PENDING, COMPLETION_PENDING, and

NONPOSTED_PENDING. The ARB modules signals the highest priority transaction, the

posted transaction, should be transmitted next by asserting TRANSMIT_POSTED until a

successful transmission is indicated by the assertion of TRANSACTION_COMPLETE.

4.5 MWRITE

The MWRITE module masters a write on PCIX by driving PCIX control signals to start a

write, sending the data and data-get signals to/from the PCIX Interface and DOWNBUF

module, and informing DOWNBUF and DOWNARB if the transaction was successful or

needs to be retried. In Figure 4.5, MWRITE is mastering a burst write.

CLK

POSTED_PENDING

COMPLETION_PENDING

NONPOSTED_PENDING

TRANSMIT_POSTED

TRANSMIT_COMPLETION

TRANSMIT_NONPOSTED

TRANSACTION_COMPLETE

CLK

POSTED_PENDING

COMPLETION_PENDING

NONPOSTED_PENDING

TRANSMIT_POSTED

TRANSMIT_COMPLETION

TRANSMIT_NONPOSTED

TRANSACTION_COMPLETE

 44

 Figure 4.5 – MWRITE Timing Diagram

4.5.1 Initiation of a PCIX Master Write

If DOWNBUF_MASTER_PUT is asserted and DOWNBUF_MASTER_READORWRITE

indicates that the transaction is a write, MWRITE will initiate a PCIX write by asserting

either MWRITE_WS_BURST_START or MWRITE_WS_DWORD_START based on the value

of DOWNBUF_MASTER_BURSTORDWORD. In Figure 4.5, MWRITE is initiating a burst

transaction. MWRITE_WS_BURST_START is high and will remain high until the PCIX

Write Server (WS) ends the transaction by asserting WS_MWRITE_ENDING_SESSION.

MWRITE will also ensure that all PCIX control signals are valid while

MWRITE_WS_BURST_START or MWRITE_WS_DWORD_START is asserted. If the

PCLK133

MASTER_DOWNBUF_SUCCESS

DOWNBUF_MASTER_PUT

DOWNBUF_MASTER_control_signals

DOWNBUF_MASTER_DATA[127:0]

MASTER_DOWNBUF_DATA_GET

MWRITE_WS_BURST_START

MWRITE_WS_BURST_SPLIT

MWRITE_WS_BURST_USE_BE

MWRITE_WS_ADDRESS[63:0]

MWRITE_WS_ATTRIBUTE[35:0]

MWRITE_WS_BURST_USE_CMD

MWRITE_WS_DATA_COUNT[7:0]

MWRITE_WS_BE_OUT

MWRITE_WS_DATA_OUT[63:0]

WS_MWRITE_GET_DATA_PCIX

WS_MWRITE_ENDING_SESSION

FF FE 01

1st DW BE F Last DW BE

D0 D1 Dn

D0 D1 Dn

00

ADDRESS

ATTRIBUTE

…

…

…

4.5.1

4.5.2

4.5.2

4.5.3

PCLK133

MASTER_DOWNBUF_SUCCESS

DOWNBUF_MASTER_PUT

DOWNBUF_MASTER_control_signals

DOWNBUF_MASTER_DATA[127:0]

MASTER_DOWNBUF_DATA_GET

MWRITE_WS_BURST_START

MWRITE_WS_BURST_SPLIT

MWRITE_WS_BURST_USE_BE

MWRITE_WS_ADDRESS[63:0]

MWRITE_WS_ATTRIBUTE[35:0]

MWRITE_WS_BURST_USE_CMD

MWRITE_WS_DATA_COUNT[7:0]

MWRITE_WS_BE_OUT

MWRITE_WS_DATA_OUT[63:0]

WS_MWRITE_GET_DATA_PCIX

WS_MWRITE_ENDING_SESSION

FF FE 01

1st DW BE F Last DW BE

D0 D1 Dn

D0 D1 Dn

00

ADDRESS

ATTRIBUTE

…

…

…

4.5.1

4.5.2

4.5.2

4.5.3

 45

transaction is a Split Completion, MWRITE will differentiate it from a write by asserting

MWRITE_WS_BURST_SPLIT with either MWRITE_WS_BURST_START or

MWRITE_WS_DWORD_START.

4.5.2 Transmit Data

In Figure 4.5, MWRITE_WS_DATA_OUT will be valid while MWRITE_WS_BURST_START

or MWRITE_WS_DWORD_START is asserted. MWRITE_WS_DATA_OUT will initially

contain the first Qword (8 bytes) of data. If WS_MWRITE_GET_DATA_PCIX is high on the

rising edge of the PCLK133 clock, then MWRITE_WS_DATA_OUT will immediately be

updated to the next Qword and MWRITE_WS_DATA_COUNT will be updated to reflect the

number of Qwords left to transmit.

If MWRITE is mastering a burst transaction, it will also transmit the corresponding byte

enables for the first and last four bytes. Byte enables for the intermediate Dwords in-

between will always be enabled. If MWRITE is mastering a Dword transaction, however,

the byte enable will be embedded in the PCIX Attribute MWRITE_WS_ATTRIBUTE.

4.5.3 End Transmission

The PCIX Write Server (WS) ends transmission by asserting

WS_MWRITE_ENDING_SESSION for one cycle, causing MWRITE to deassert

MWRITE_WS_BURST_START or MWRITE_WS_DWORD_START. MWRITE will

 46

immediately inform DOWNARB that the transaction has finished by asserting

MWRITE_DOWNARB_SUCCESS or MWRITE_DOWNARB_RETRY for one cycle.

If WS_MWRITE_RETRY is asserted with WS_MWRITE_ENDING_SESSION, MWRITE tells

DOWNBUF that the transaction needs to be retried by asserting

MWRITE_DOWNBUF_RETRY for one cycle. However, if WS_MWRITE_RETRY not

asserted with WS_MWRITE_ENDING_SESSION, MWRITE tells DOWNBUF that the

transaction was successful by asserting MWRITE_DOWNBUF_SUCCESS for one cycle.

4.6 MREAD

The MREAD module initiates a PCIX read and informs the DOWNBUF and

DOWNARB modules whether the transaction was successful or needs to be retried.

MREAD assumes that it will never receive PCIX immediate read data because the PCIX

target will always split the transaction. In Figure 4.6, MREAD is mastering a burst read.

 47

Figure 4.6 – MREAD Timing Diagram

4.6.1 Initiation of a PCIX Master Read

If DOWNBUF_MASTER_PUT is asserted and DOWNBUF_MASTER_READORWRITE

indicates that the transaction is a read, MREAD will initiate a read by asserting either

MREAD_RS_BURST_START or MREAD_RS_DWORD_START based on the value of

DOWNBUF_MASTER_BURSTORDWORD. In Figure 4.6, MREAD is initiating a burst

transaction, therefore MREAD_RS_BURST_START will remain high until the PCIX Read

Server (RS) ends the transaction by asserting RS_MREAD_ENDING_SESSION. MREAD

will ensure that the PCIX control signals are valid while MREAD_RS_BURST_START or

MREAD_RS_DWORD_START is asserted.

PCLK133

MREAD_DOWNARB_SUCCESS

DOWNBUF_MASTER_PUT

DOWNBUF_MASTER_BURSTORDWORD

DOWNBUF_MASTER_ADDR[63:0]

DOWNBUF_MASTER_PCIXATTRIBUTE[35:0]

DOWNBUF_MASTER_CMD[3:0]

MREAD_RS_BURST_START

MREAD_RS_ADDRESSS[63:0]

MREAD_RS_ATTRIBUTE[35:0]

MREAD_RS_CMD[3:0]

MREAD_RS_DATA_COUNT[7:0]

MREAD_RS_BURST_USE_CMD

RS_MREAD_ST_PCIX_SPLIT

RS_MREAD_ENDING_SESSION

ATTRIBUTE

CMD

ADDRESS

ADDRESS

ATTRIBUTE

CMD

FFh

4.6.1

4.6.2

PCLK133

MREAD_DOWNARB_SUCCESS

DOWNBUF_MASTER_PUT

DOWNBUF_MASTER_BURSTORDWORD

DOWNBUF_MASTER_ADDR[63:0]

DOWNBUF_MASTER_PCIXATTRIBUTE[35:0]

DOWNBUF_MASTER_CMD[3:0]

MREAD_RS_BURST_START

MREAD_RS_ADDRESSS[63:0]

MREAD_RS_ATTRIBUTE[35:0]

MREAD_RS_CMD[3:0]

MREAD_RS_DATA_COUNT[7:0]

MREAD_RS_BURST_USE_CMD

RS_MREAD_ST_PCIX_SPLIT

RS_MREAD_ENDING_SESSION

ATTRIBUTE

CMD

ADDRESS

ADDRESS

ATTRIBUTE

CMD

FFh

4.6.1

4.6.2

 48

4.6.2 End Transmission

The PCIX Read Server ends the transaction by asserting RS_MWRITE_ENDING_SESSION

for one cycle, causing MREAD to deassert MREAD_RS_BURST_START or

MREAD_RS_DWORD_START and tell DOWNARB that the transaction has finished by

asserting MREAD_DOWNARB_DONE for one cycle.

If RS_MREAD_RETRY is asserted with RS_MREAD_ENDING_SESSION, MREAD tells

DOWNBUF that the transaction needs to be retried by asserting

MREAD_DOWNBUF_RETRY for one cycle. However, if RS_MREAD_RETRY is not asserted

with RS_MREAD_ENDING_SESSION, MREAD tells DOWNBUF that the transaction was

successful by asserting MREAD_DOWNBUF_SUCCESS for one cycle.

 49

4.7 DECODER

Every time there is a new transaction on the PCIX bus, the DECODER module examines

the CMD and ADDR to determine if the Bridge should claim the transaction, and which

PCIX port should handle the transaction.

Figure 4.7 – Decoder Timing Diagram

4.7.1 Hit or miss

ED_DECODER_FRAME_LEDGE asserts for one cycle to indicate that the PCIX Interface

has received a new PCIX transaction. The DECODER claims the transaction by asserting

DECODER_ED_HIT if (1) PS_ED_CMD is an I/O transaction and ED_DECODER_ADDR is

PCLK133

ED_ DECODER_FRAME_LEDGE

ED_ DECODER_CMD[3:0]

ED_ DECODER_ADDR[63:0]

DECODER_ED_HIT

DECODER_ED_WF_SEL

DECODER_ED_RF_SEL

DECODER_ED_SP_SEL

DECODER_ED_MEM_CYC

DECODER_ED_IO_CYC

DECODER_ED_RD_CYC

DECODER_ED_WR_CYC

DECODER_ED_WF_PMRS_SPLIT

CMD

ADDR

4.7.14.7.2

PCLK133

ED_ DECODER_FRAME_LEDGE

ED_ DECODER_CMD[3:0]

ED_ DECODER_ADDR[63:0]

DECODER_ED_HIT

DECODER_ED_WF_SEL

DECODER_ED_RF_SEL

DECODER_ED_SP_SEL

DECODER_ED_MEM_CYC

DECODER_ED_IO_CYC

DECODER_ED_RD_CYC

DECODER_ED_WR_CYC

DECODER_ED_WF_PMRS_SPLIT

CMD

ADDR

4.7.14.7.2

 50

outside of the IO address space designated by IOSTART and IOEND, or (2)

ED_DECODER_CMD is a memory transaction and ED_DECODER_ADDR is outside of the

Memory address space designated by MEMSTART and MEMEND. Configuration

transactions are not considered because they do not travel upstream.

Registers in the Bridge’s Configuration space usually define the I/O address space and

Memory address space. Configuration space is not supported in this thesis, therefore the

address windows for the I/O and Memory Address spaces are hard-wired with IOSTART,

IOEND, MEMSTART, and MEMEND. IOSTART indicates the lower bound address of the

Bridge’s I/O address space whereas IOEND indicates the upper bound address.

MEMSTART indicates the lower bound address of the Bridge’s Memory address space

whereas MEMEND indicates the upper bound address.

4.7.2 Select Port and Transaction Type

The DECODER has three ports to choose from based on the value of ED_DECODER_CMD

– the Slave Read (RF), the Slave Write (WF), and the Synchronous Port (SP). On a

transaction hit, the DECODER will select a port by asserting DECODER_ED_WF_SEL,

DECODER_ED_RF_SEL, or DECODER_ED_SP_SEL.

Based on the value of ED_DECODER_CMD, the DECODER differentiates a memory from

an I/O transaction, and a read from a write by asserting DECODER_ED_MEM_CYC or

 51

DECODER_ED_IO_CYC, and DECODER_ED_RD_CYC or DECODER_ED_WR_CYC. The

Bridge splits all non-posted transactions by asserting DECODER_ED_WF_PMRS_SPLIT.

4.8 SWRITE

The SWRITE module receives and translates PCIX writes into a PCIX Express

Transaction Layer Packet, and sends the Transaction Layer Packet to the UPBUF

upstream buffers. In Figure 4.8, SWRITE receives a PCIX write with 8 DWs of data.

Figure 4.8 – SWRITE Timing Diagram

4.8.1 Reception of a PCIX transaction

PCLK133

UPBUF_SLAVE_POSTED_FREE

WF_SWRITE_TRANS_PENDING

SWRITE_WF_READY

SWRITE_WF_RETRY

WF_SWRITE_CMD_OUT[3:0]

WF_SWRITE_ADD_OUT[63:0]

SWRITE_UPBUF_POSTED

SWRITE_UPBUF_HEADER_PUT

WF_SWRITE_PUT_DATA

SWRITE_UPBUF_DATA_PUT

WF_SWRITE_DATA_OUT[63:0]

SWRITE_UPBUF_DATA[63:0]

CMD

ADDR

D0 D1 D2 D3

D0 D1 D2 D3

4.8.1

4.8.2

4.8.3

4.8.4

4.8.5

PCLK133

UPBUF_SLAVE_POSTED_FREE

WF_SWRITE_TRANS_PENDING

SWRITE_WF_READY

SWRITE_WF_RETRY

WF_SWRITE_CMD_OUT[3:0]

WF_SWRITE_ADD_OUT[63:0]

SWRITE_UPBUF_POSTED

SWRITE_UPBUF_HEADER_PUT

WF_SWRITE_PUT_DATA

SWRITE_UPBUF_DATA_PUT

WF_SWRITE_DATA_OUT[63:0]

SWRITE_UPBUF_DATA[63:0]

CMD

ADDR

D0 D1 D2 D3

D0 D1 D2 D3

4.8.1

4.8.2

4.8.3

4.8.4

4.8.5

 52

Figure 4.8 displays the reception of a pending posted transaction, indicated by the

assertion of WF_SWRITE_TRANS_PENDING. Since UPBUF_SLAVE_POSTED_FREE is high

to indicate that the posted buffer is free, SWRITE will accept the transaction by asserting

SWRITE_WF_READY. However, if the buffer is not free, SWRITE will tell the PCIX

Interface to retry the transaction by asserting SWRITE_WF_RETRY.

4.8.2 Buffer Selection

SWRITE will tell UPBUF which buffer to store the transaction in by asserting

SWRITE_UPBUF_POSTED, SWRITE_UPBUF_COMPLETION, or

SWRITE_UPBUF_NONPOSTED. Once asserted, these signals will remain high until

WF_SWRITE_TRANS_PENDING is deasserted.

4.8.3 PCIX / PCI Express Header

When SWRITE accepts the PCIX transaction, it will form a PCI Express header from the

PCIX Command, Address, Byte Enables, and Attribute taken from

WF_SWRITE_CMD_OUT, WF_SWRITE_ADD_OUT, WF_SWRITE_BE_N_OUT, and

PS_ATTRIBUTE_STATE. SWRITE will then drive the PCI Express header on

SWRITE_UPBUF_HEADER and assert SWRITE_UPBUF_HEADER_PUT for one cycle.

 53

The PCIX to PCI Express translation is a backwards translation of the PCI Express to

PCIX translation outlined in Section 4.2.1. Some PCI Express Header fields do not exist

in PCIX, however, and are hard-wired to the values specified in Table 4.8.3.

Table 4.8.3 – Hard-wired PCI Express Fields in Upstream Translation

4.8.4 PCIX / PCI Express Data

SWRITE maps WF_SWRITE_PUT_DATA to SWRITE_UPBUF_DATA_PUT, and

WF_SWRITE_DATA_OUT to SWRITE_UPBUF_DATA. A new QWORD is sent on

SWRITE_UPBUF_DATA_OUT with every assertion of SWRITE_UPBUF_DATA_PUT.

4.8.5 End of Reception

Transmission ends when WF_SWRITE_TRANS_PENDING deasserts, causing SWRITE to

deassert SWRITE_WF_READY. In the example in Figure 4.8, SWRITE will stop writing to

the buffer by deasserting SWRITE_UPBUF_POSTED, and signify that the posted buffer is

no longer empty by deasserting UPBUF_SLAVE_POSTED_FREE.

Traffic Class (TC) Hardwired to 0
Digest (TD) Hardwired to 0
Poisoned (EP) Hardwired to 0
Completion Status Code (Cpl Status) Hardwired to 0
Byte Count Modified (M) Hardwired to 0

 54

4.9 SREAD

The SREAD module receives and translates PCIX reads into a PCIX Express Transaction

Layer Packet, and sends the Transaction Layer Packet to the UPBUF upstream buffers.

 Figure 4.9 – SREAD Timing Diagram

4.9.1 Reception of a PCIX transaction

In Figure 4.9, RF_SREAD_TRANS_PENDING is asserted to indicate a pending read. Since

UPBUF_SLAVE_NONPOSTED_FREE is high to indicate that the non-posted buffer is free,

SREAD will translate and store the Transaction Layer Packet header and split the

transaction by asserting SREAD_RF_SPLIT. However, if the buffer is not free, SREAD

will tell the PCIX Interface to retry the transaction by asserting SREAD_RF_RETRY.

4.9.2 Buffer Selection

PCLK133

UPBUF_SLAVE_NONPOSTED_FREE

RF_SREAD_TRANS_PENDING

SREAD_RF_SPLIT

SREAD_RF_RETRY

RF_SREAD_CMD_OUT[3:0]

RF_SREAD_ADD_OUT[63:0]

SREAD_UPBUF_NONPOSTED

SREAD_UPBUF_HEADER_PUT

4.9.1

4.9.2

4.9.3

4.9.4

CMD

ADDR

PCLK133

UPBUF_SLAVE_NONPOSTED_FREE

RF_SREAD_TRANS_PENDING

SREAD_RF_SPLIT

SREAD_RF_RETRY

RF_SREAD_CMD_OUT[3:0]

RF_SREAD_ADD_OUT[63:0]

SREAD_UPBUF_NONPOSTED

SREAD_UPBUF_HEADER_PUT

4.9.1

4.9.2

4.9.3

4.9.4

CMD

ADDR

 55

SREAD must tell UPBUF which buffer to store the transaction by asserting

SREAD_UPBUF_POSTED, SREAD_UPBUF_NONPOSTED, or SREAD_UPBUF_COMPLETION

until RF_SREAD_TRANS_PENDING falls.

4.9.3 PCIX / PCI Express Header

When SREAD accepts a PCIX transaction, it will form a PCI Express header from

RF_SREAD_CMD_OUT and RF_SREAD_ADD_OUT. SREAD will then drive the PCI

Express header on SREAD_UPBUF_HEADER and assert SREAD_UPBUF_HEADER_PUT for

one cycle.

4.9.4 End of Reception

Transmission ends when RF_SREAD_TRANS_PENDING deasserts, causing SREAD to

deassert SREAD_RF_SPLIT. In the example in Figure 4.9, SREAD will stop writing to the

buffer by deasserting SREAD_UPBUF_NONPOSTED, and signify that the non-posted buffer

is no longer empty by deasserting UPBUF_SLAVE_NONPOSTED_FREE.

 56

4.10 SDWORD

The SDWORD module receives and translates PCIX DWORD transactions into a PCIX

Express Transaction Layer Packet, and sends the Transaction Layer Packet to the UPBUF

upstream buffers.

Figure 4.10 – SDWORD Timing Diagram

4.10.1 Reception of a Transaction

Receiving a Write - In Figure 4.10, SP_SDWORD_WR_TRANS_INIT is asserted to signal a

new transaction. Since UPBUF_SLAVE_NONPOSTED_FREE is high to indicate that the

non-posted buffer is free, SDWORD will store the transaction header in the non-posted

PCLK133

UPBUF_SLAVE_NONPOSTED_FREE

SP_SDWORD_RD_TRANS_INIT

SP_SDWORD_WR_TRANS_INIT

SDWORD_SP_READY

SDWORD_SP_RETRY

SDWORD_SP_SPLIT

SP_SDWORD_CMD

SP_SDWORD_ADDR

SDWORD_UPBUF_NONPOSTED

SDWORD_UPBUF_HEADER_PUT

SP_SDWORD_PUT_DATA

SDWORD_UPBUF_DATA_PUT

SP_SDWORD_DATA_OUT

SDWORD_UPBUF_DATA

D0

D0

ADDR

CMD

4.10.1

4.10.2

4.10.3

4.10.4

PCLK133

UPBUF_SLAVE_NONPOSTED_FREE

SP_SDWORD_RD_TRANS_INIT

SP_SDWORD_WR_TRANS_INIT

SDWORD_SP_READY

SDWORD_SP_RETRY

SDWORD_SP_SPLIT

SP_SDWORD_CMD

SP_SDWORD_ADDR

SDWORD_UPBUF_NONPOSTED

SDWORD_UPBUF_HEADER_PUT

SP_SDWORD_PUT_DATA

SDWORD_UPBUF_DATA_PUT

SP_SDWORD_DATA_OUT

SDWORD_UPBUF_DATA

D0

D0

ADDR

CMD

4.10.1

4.10.2

4.10.3

4.10.4

 57

buffer by asserting SDWORD_UPBUF_NONPOSTED and split the transaction by asserting

SDWORD_SP_SPLIT with SDWORD_SP_READY. However, if the non-posted buffer is not

free, SDWORD will tell the PCIX Interface to retry the transaction by asserting

SDWORD_SP_RETRY.

Receiving a Read – Only PCIX IO writes and reads are received by the SDWORD

module. Therefore, receiving a read is almost identical to receiving a write except that

SP_SDWORD_RD_TRANS_INIT is used in place of SP_SDWORD_WR_TRANS_INIT.

4.10.2 PCIX / PCI Express Header

SDWORD will form a PCI Express header from SP_SDWORD_CMD_OUT and

SP_SDWORD_ADDR. SDWORD will then drive the PCI Express header on

SDWORD_UPBUF_HEADER and assert SDWORD_UPBUF_HEADER_PUT for one cycle.

4.10.3 PCIX / PCI Express Data

When receiving a DWORD write, SDWORD maps SP_SDWORD_PUT_DATA to

SDWORD_UPBUF_DATA_PUT, and SP_SDWORD_DATA_OUT to SDWORD_UPBUF_DATA.

4.10.4 End of Reception

 58

Transmission ends when SP_SDWORD_WR_TRANS_INIT or

SP_SDWORD_RD_TRANS_INIT is deasserted, causing SDWORD to deassert

SDWORD_SP_READ and SDWORD_SP_SPLIT. In the example in Figure 4.10, SDWORD

will stop writing to the buffer by deasserting SREAD_UPBUF_NONPOSTED, and signify

that the non-posted buffer is no longer empty by deasserting

UPBUF_SLAVE_NONPOSTED_FREE.

 59

4.11 PCIEXTX

The PCIEXTX module transmits PCI Express Transaction Layer Packet s by obtaining a

grant from the Transaction Layer Packet Interface, transferring data, and telling UPBUF

and UPARB when the transaction is finished. In Figure 4.11, PCIEXTX is transmitting a

posted transaction with a 4DW data payload.

 Figure 4.11 – PCIEXTX Timing Diagram

4.13.1 PCI Express Transaction Layer Packet Interface Grant

PCLK250

UPBUF_PCIEXTX_POSTED

PCIEXTX_TL_ARB_ENABLE

UPBUF_PCIEXTX_HEADER[127:0]

PCIEXTX_TL_PD0_LEN[8:0]

PCIEXTX_TL_P0_VAL

TL_PCIEXTX_GRANT[0]

PCIEXTX_TL_DATAVALID

UPBUF_PCIEXTX_DATA[127:0]

PCIEXTX_TL_DATA[127:0]

TL_PCIEXTX_GET

PCIEXTX_UPBUF_GET

PCIEXTX_TL_END

PCIEXTX_UPBUF_SUCCESS

DATA DATA

D2 D3D1D0

HEADER / DATA DATA

HEADER

LEN

4.11.1

4.11.2

4.11.2 4.11.3

PCLK250

UPBUF_PCIEXTX_POSTED

PCIEXTX_TL_ARB_ENABLE

UPBUF_PCIEXTX_HEADER[127:0]

PCIEXTX_TL_PD0_LEN[8:0]

PCIEXTX_TL_P0_VAL

TL_PCIEXTX_GRANT[0]

PCIEXTX_TL_DATAVALID

UPBUF_PCIEXTX_DATA[127:0]

PCIEXTX_TL_DATA[127:0]

TL_PCIEXTX_GET

PCIEXTX_UPBUF_GET

PCIEXTX_TL_END

PCIEXTX_UPBUF_SUCCESS

DATA DATA

D2 D3D1D0

HEADER / DATA DATA

HEADER

LEN

4.11.1

4.11.2

4.11.2 4.11.3

 60

If UPBUF_PCIEXTX_POSTED and TL_PCIEXTX_TX_READY are both high, PCIEXTX will

ask the Transaction Layer Packet Interface to send a posted transaction by asserting

PCIEXTX_TL_ARB_ENABLE and PCIEXTX_TL_P0_VAL, and driving the length of the

packet in multiples of 16 on PCIEXTX_TL_PD0_LEN. PCIEXTX obtains the grant when

TL_PCIEXTX_GRANT[0] is asserted for one cycle, and responds by deasserting

PCIEXTX_TL_ARB_ENABLE and PCIEXTX_TL_P0_VAL.

4.11.2 Transmitting PCI Express Header and Data

PCIEXTX_TL_DATAVALID must stay asserted while PCIEXTX is transmitting. The PCI

Express header and data are both transferred on PCIEX_TL_DATA. If the header is 4 DW

long, then PCIEXTX_TL_DATAVALID will be asserted with the header on PCIEX_TL_DATA.

However, if the header is 3 DW long, then PCIEXTX_TL_DATAVALID will be asserted

with the header and the first 4 bytes of data.

Figure 4.13.2 – Data format for a 3DW PCI Express Header

 61

If TL_PCIEXTX_GET is asserted, PCIEXTX provides the subsequent 16 bytes of data.

TL_PCIEXTX_GET is mapped straight to PCIEXTX_UPBUF_GET.

4.11.3 Ending the Transaction

PCIEXTX asserts PCIEXTX_TL_END coincident with the final 16 bytes of data. On the

cycle after TL_PCIEXTX_GET is asserted, PCIEXTX will deassert

PCIEXTX_TL_DATAVALID and PCIEXTX_TL_END. The PCIEXTX will then inform

UPBUF that the transmission was successful by asserting PCIEXTX_UPBUF_SUCCESS for

one cycle.

 62

5 Verification

The verification portion of this thesis posed quite a challenge. The Bridge

implementation ended up with 1150 input ports and 1061 output ports due to the

interfaces of the vendor’s PCI Express and PCIX Interfaces. With only one person to

create a verification environment from scratch, a hierarchical approach was taken to find

errors early since bugs are difficult to find and fix at the system level. Figure 5 outlines

the continuous verification efforts taken in this thesis.

 Figure 5 – Verification Development Timeline

Define
High Level

Architecture

Define
Module

Interfaces

Implement
Modules in
Verilog HDL

Attach
Modules
Together

Final Bridge
Implementation

System Level
Verification

Synthesis
and

Timing

Each module in the Bridge architecture has a simple, defined function.
Minimize the dependencies between modules. Hide a module’s
complexity by making the Rep Invariant invisible to the upper level
hierarchy.

Define the interfaces for all modules before writing any code. Minimize
signals in the interfaces to reduce the number of black box tests
needed.

After coding each module, create a module testbench to verify
functionality. Both black box and glass box testing should be done at
this stage.

As modules are incrementally attached together, create a few black box
tests to ensure that the modules function correctly together.

Run a selection of black box tests through the bridge.

Attach IBM ASIC PCIX and PCI Express cores. Create a System Level
Verification environment to emulate a PCI Express/PCIX System.

When making structural changes for timing purposes, run the Bridge
through the System Level Verification Environment to ensure that the
Bridge still functions correctly.

Define
High Level

Architecture

Define
Module

Interfaces

Implement
Modules in
Verilog HDL

Attach
Modules
Together

Final Bridge
Implementation

System Level
Verification

Synthesis
and

Timing

Each module in the Bridge architecture has a simple, defined function.
Minimize the dependencies between modules. Hide a module’s
complexity by making the Rep Invariant invisible to the upper level
hierarchy.

Define the interfaces for all modules before writing any code. Minimize
signals in the interfaces to reduce the number of black box tests
needed.

After coding each module, create a module testbench to verify
functionality. Both black box and glass box testing should be done at
this stage.

As modules are incrementally attached together, create a few black box
tests to ensure that the modules function correctly together.

Run a selection of black box tests through the bridge.

Attach IBM ASIC PCIX and PCI Express cores. Create a System Level
Verification environment to emulate a PCI Express/PCIX System.

When making structural changes for timing purposes, run the Bridge
through the System Level Verification Environment to ensure that the
Bridge still functions correctly.

 63

5.1 Verification Basics

5.1.1 Types of Tests

Both black box and glass box testing was used in this thesis. A black box test monitors

the IOs of the DUT (Device Under Test). For a given set of inputs, a black box test will

ensure that the correct output is driven by the DUT. Black box tests were used throughout

the thesis.

A glass box test monitors the internal signals as well as the IOs. Glass box tests are more

thorough and more time-consuming to write and simulate than black box tests. Therefore,

automated glass box tests were only used to verify individual modules. The final Bridge

was too complex to automate monitoring the Bridge’s many internal signals.

5.1.2 Test Selection - Equivalence Classes and Boundary Cases

Careful consideration must be taken when selecting tests. It is impossible to test every

possible thing that can happen, even at the module level. Verification engineers typically

have limited time and resources to verify a design, therefore it is desirable to select tests

that will maximize the chance of finding a bug.

Similar tests can be grouped into equivalence classes. When testing a device, one

typically runs a few tests from each equivalence class. Consider a scenario where the

 64

DUT (Device Under Test) is a module that determines whether or not a triangle is

equilateral by taking in three integer measurements of the angles, and output a true or a

false. Some equivalence classes for testing such a module might include Equilateral, Not

Equilateral, Not a Triangle, etc. Once the equivalence classes have been identified, our

next step is to determine which test(s) should represent an equivalence class.

Tests that contain the boundary cases of an equivalence class are the most likely to find a

bug. Referring back to the triangle example, some boundary cases for the Not Equilateral

equivalence class might include a triangle that is almost equilateral (i.e. 60o, 59 o, 61 o),

and a triangle with angles that border around the valid ranges of inputs and outputs (i.e.

178 o, 1 o, 1 o).

 65

5.2 Module Tests

Glass box and black box module level tests are implemented with Verilog drivers and

examined through waveform simulation. The correct functionality of the module is

documented in the test file.

Table 5.2 - Module-level Tests

Module Equivalence Class Tests
Memory Read 32-bit Address

64-bit Address
0 DW requested (min size)
1 DW requested (min boundary)
4 DW requested (PCI Express Transaction Layer Packet
Interface boundary)
5 DW requested (PCI Express Transaction Layer Packet
Interface boundary)
1024 DW requested (max size)

Memory Write 32-bit Address
64-bit Address
0 DW written (min size)
1 DW written (min boundary)
4 DW written (PCI Express Transaction Layer Packet
Interface boundary)
5 DW written (PCI Express Transaction Layer Packet
Interface boundary)
1024 DW written (max size)

Configuration Read Configuration Type 1 Read
Configuration Write Configuration Type 1 Write
IO Read IO Read – 1 DW requested
IO Write IO Write – 1 DW written
Completion with Data 1 DW sent (min size)

4 DW sent (PCI Express Transaction Layer Packet
Interface boundary)
5 DW sent (PCI Express Transaction Layer Packet
Interface boundary)

Completion without Data Completion without Data

PCIEXRX

Flow Control Posted Buffer freed
Non-posted Buffer freed
Completion Buffer freed

BUF Write to and Read from
Header Buffer

Non-posted – 3 DW Header
Non-posted – 4 DW Header

 66

 Write to and Read from
Data Buffer

Posted – 1 DW Data (min size)
Posted – 3 DW Data (PCIX Interface boundary)
Posted – 4 DW Data (PCI Express Transaction Layer
Packet Interface boundary)
Posted – 5 DW Data (PCI Express Transaction Layer
Packet Interface boundary)
Completion - 1024 DW data (max data allowed)

Single Pending
Transactions

Posted
Completion
Non-posted

ARB

Multiple Pending
Transactions

2 pending transactions
3 pending transactions
3 pending transactions + new ones coming in as old
ones are being transmitted

Successful Burst Write 64-bit Address
32-bit Address
2 DW Data (PCIX Interface boundary)
4DW Data (PCIX Interface boundary)
512 DW Data (PCIX Interface boundary)
> 512 DW Data (PCIX Interface boundary)

Successful Dword Write Dword Write
Successful Split
Completion

Split Completion with 512 DW of Data

MWRITE

Retry PCIX issues a retry
Successful Burst Read 64-bit Address

32-bit Address
Successful Dword Read 32-bit DW Read

MREAD

Retry Retry
Target != Bridge Memory Address Space

IO Address Space
Split Completion

Target = Bridge and there
is a free buffer

Memory Read or Write
IO Read or Write
Split Completion

DECODER

Target = Bridge and there
is no free buffer

Memory Read or Write
IO Read or Write
Split Completion

SWRITE Memory Write 2 DW Data (PCIX Interface boundary)
4DW Data (PCIX Interface boundary)
512 DW Data (PCIX Interface boundary)
> 512 DW Data (PCIX Interface boundary)

 Split Completion 2 DW Data (PCIX Interface boundary)
4DW Data (PCIX Interface boundary)

SREAD Memory Read Memory Read
SDWORD IO IO Read

IO Write

 67

Posted 3DW Header
4DW Header
0 DW Data (min size)
1 DW Data (PCI Express Transaction Layer Packet
Interface boundary)
2 DW Data (PCI Express Transaction Layer Packet
Interface boundary)
1024 DW data (max size)

Non-Posted 4DW header
3DW header
0 DW data
1 DW data

Completion with Data 1 DW data (PCI Express Transaction Layer Packet
Interface boundary)
2 DW data (PCI Express Transaction Layer Packet
Interface boundary)

PCIEXTX

Completion without Data 0 DW data

 68

5.3 Bridge Architecture Tests

After all the modules in the architecture were implemented and tested at the module

level, modules were incrementally combined and black box tested. The final result was

two separate blocks, a downstream block translating from PCI Express to PCIX, and an

upstream block translating from PCIX to PCI Express. Black box Bridge Architecture

tests are written as Verilog drivers. The correct functionality of the Downstream and

Upstream modules is documented in the test files.

Module Equivalence Class Tests
Memory Read 32-bit Address

64-bit Address
Memory Write 32-bit Address

64-bit Address
4 DW data
5 DW data

Configuration Read Configuration Type 1 Read
Configuration Write Configuration Type 1 Write
IO Read IO Read
IO Write IO Write

DOWNSTREAM

Completion 0 DW data
1024 DW data

Memory Read 32-bit Address
Memory Write 1 DW data

2 DW data
12 DW data

UPSTREAM

Completion 1 DW data
2 DW data
12 DW data

Table 5.3 - Bridge Architecture Tests

 69

5.4 System Level Verification

After the Bridge Architecture had been verified, a verification environment was created

to test the Bridge at the system level. The complete verification environment, pictured in

Figure 5.4, emulates how the bridge will be utilized in a PCI Express / PCIX System.

 Figure 5.4 – The Complete System Level Verification Environment

On the PCI Express (upstream) side of the Bridge, the environment contains a Verilog

driver that drives and checks the PCI Express Transaction Layer interface of the Root

Complex PCI Express Stack. The Root Complex PCI Express Stack is connected to the

Bridge PCI Express Stack through a PCI Express Link. The Bridge PCI Express Stack

also interfaces to the Bridge through the Transaction Layer interfaces.

On the PCIX (downstream) side of the bridge, the environment contains a PCIX core that

interfaces the Bridge to the PCI/PCIX bus. There are two PCIX IO slots on the PCIX bus

represented by the Master, Slave 1, and Slave 2 models. A Vera module tells the Master

to initiate transactions and monitors the state of both Slaves.

PCIEXB

(Bridge)
PCIX
Core

PC
IX

 B
us

PC
I E

xp
re

ss
 L

in
k

Ve
ril

og

Ve
ra

Bridge

PCI Express Stack

Root Complex
PCI Express Stack

Downstream

Upstream

Master

Slave 1

Slave 2

Behavioral
Models

Arbiter

Protocol
Checker

PCIEXB

(Bridge)
PCIX
Core

PC
IX

 B
us

PC
I E

xp
re

ss
 L

in
k

Ve
ril

og

Ve
ra

Bridge

PCI Express Stack

Root Complex
PCI Express Stack

Downstream

Upstream

Master

Slave 1

Slave 2

Behavioral
Models

Arbiter

Protocol
Checker

Master

Slave 1

Slave 2

Behavioral
Models

Arbiter

Protocol
Checker

 70

Building the System Level Verification Environment took approximately five weeks. It

was built incrementally in four stages: (1) PCIX core, (2) PCIX Models and Vera

Environment, (3) PCI Express Core Stack, and (4) PCI Express Verilog Driver and

Monitor.

5.4.1 The PCIX Core

Piecing the PCIX core together and combining it with the Bridge was the first stage in

creating the System Level Verification Environment. The PCIX core consists of three

components: (1) the PCIX_O containing the logic to interface to the PCIX bus, (2) the tri

containing many tri-state buffers that interface to the bi-directional PCIX bus signals, and

(3) the pull-ups containing a few weak pull-ups that drive the bus high when no device is

active on the bus.

Figure 5.4.1 – Stage One of the System Level Verification Environment Development

PCIEXB

PCIX Core

PC
IX

 B
us

PCIX_O

tri

pullups

PCIEXB

PCIX Core

PC
IX

 B
us

PCIX_O

tri

pullups

 71

After connecting the Bridge to the PCIX core, a piece of Verilog was developed to drive

downstream transactions through the Bridge, through the PCIX core, and onto the PCIX

bus where correct behavior of the PCIX bus was verified using a protocol checker.

5.4.2 The PCIX Models and Vera Environment

Stage 2 involved building and attaching a PCIX Vera environment to the PCIX bus. The

existence of massive and unfamiliar files in the PCIX verification environment increased

the difficulty of Stage Two.

 Figure 5.4.2 – Stage Two of the System Level Verification Environment Development

There are three behavior models on the PCIX bus – a Master and two Slaves. These three

models are controlled and monitored by a piece of Vera code. The Vera can tell the

Master to initiate transactions of various types and sizes. The Vera can also configure,

set, and monitor the address spaces of both slaves to ensure that writes are successfully

PCIEXB PCIX
Core

PC
IX

 B
us

Ve
ra

Master

Slave 1

Slave 2

Behavioral
Models

Arbiter

Protocol
Checker

PCIEXB PCIX
Core

PC
IX

 B
us

Ve
ra

Master

Slave 1

Slave 2

Behavioral
Models

Arbiter

Protocol
Checker

Master

Slave 1

Slave 2

Behavioral
Models

Arbiter

Protocol
Checker

 72

received. When Slave 1 or Slave 2 receives a read, they automatically issue the Split

Completion without consulting the Vera. An independent Behavioral Protocol Checker

and PCIX Arbiter ensure that the PCIX bus protocol is correctly driven on the bus by

only one device at a time.

5.4.3 Building the PCI Express Stack

 Figure 5.4.3 – Stage Three of the System Level Verification Environment Development

A custom PCI Express Stack was not available that met the needs for this verification

environment. Therefore multiple PCI Express cores were assembled into a PCI Express

Stack from scratch. The RTL directories for each component needed for the PCI Express

Stack was obtained. Almost all the IOs of the components matched up directly.

Unfortunately, this stage required extra time and work due to the few IOs that did not

match up, the ongoing development of the PCI Express cores, and unfamiliarity with the

internal interfaces.

Two copies of the PCI Express Stack are used in the verification environment. One Stack

is located upstream to the PCI Express link and is configured as a Root Complex. The

PCIEXB PCIX
Core

PC
IX

 B
us

PC
I E

xp
re

ss
 L

in
k

Ve
ra

Bridge
PCI Express Stack

Root Complex
PCI Express Stack

Master

Slave 1

Slave 2

Behavioral
Models

Arbiter

Protocol
Checker

PCIEXB PCIX
Core

PC
IX

 B
us

PC
I E

xp
re

ss
 L

in
k

Ve
ra

Bridge
PCI Express Stack

Root Complex
PCI Express Stack

Master

Slave 1

Slave 2

Behavioral
Models

Arbiter

Protocol
Checker

Master

Slave 1

Slave 2

Behavioral
Models

Arbiter

Protocol
Checker

 73

other stack is located downstream of the PCI Express link and configured as a bridge

port.

5.4.4 The PCI Express Verilog Driver and Monitor

 Figure 5.4.4 – Stage Four of the System Level Verification Environment Development

Creating a piece of code to interface to the Root Complex PCI Express Stack was the

final step taken in the development of the verification environment. The original plan was

to incorporate existing Vera from an existing PCI Express Verification Environment. Due

to time constraints and differences between the PCI Express and PCIX Vera

environments, the idea of combining the two environments was determined to be too

risky. Instead, a piece of Verilog code was developed to stimulate and observe the Root

Complex PCI Express Stack.

To minimize the complications caused by the multiple clock domains, verification was

limited to one active transaction at a time. Therefore, the PCI Express Verilog driver

waits until it has successfully received all planned upstream transactions before it sends

any downstream transactions.

PCIEXB

(Bridge)
PCIX
Core

PC
IX

 B
us

PC
I E

xp
re

ss
 L

in
k

Ve
ril

og

Ve
ra

Bridge

PCI Express Stack

Root Complex
PCI Express Stack

Downstream

Upstream

Master

Slave 1

Slave 2

Behavioral
Models

Arbiter

Protocol
Checker

PCIEXB

(Bridge)
PCIX
Core

PC
IX

 B
us

PC
I E

xp
re

ss
 L

in
k

Ve
ril

og

Ve
ra

Bridge

PCI Express Stack

Root Complex
PCI Express Stack

Downstream

Upstream

Master

Slave 1

Slave 2

Behavioral
Models

Arbiter

Protocol
Checker

Master

Slave 1

Slave 2

Behavioral
Models

Arbiter

Protocol
Checker

 74

5.4.5 System Level Tests

The PCIX Vera and PCI Express Verilog modules initiate the transactions listed in Table

5.4.5. The list is in order of execution.

Transaction Indication that Transaction is successful

(1) Upstream Memory Write Received by the RC PCI Express Stack
Transaction Layer Packet Interface

(2) Upstream Memory Read Received by the RC PCI Express Stack
Transaction Layer Packet Interface

(3) Downstream Completion Monitor the PCIX bus with a waveform viewer
(4) Downstream Memory Write Check the Memory space of PCIX Slave 1
(5) Downstream Memory Read An (6) Upstream Completion is received by the

RC PCI Express Stack Transaction Layer Packet
Interface

(6) Upstream Completion Received by the RC PCI Express Stack
Transaction Layer Packet Interface

(7) Downstream IO Write Check the IO space of PCIX Slave 1
(8) Downstream Configuration Write Monitor the PCIX bus with a waveform viewer

Table 5.4.5 – System Level Tests

 75

6 Synthesis

6.1 Specifications

A Design Compiler was used to synthesize the PCIEXB Verilog code into a gate-level

netlist targeting a current IBM ASIC technology. The Bridge was synthesized with

voltages and temperatures specified by IBM Methodology.

Synthesizing the Bridge involved making TCL scripts that were read by the Design

Compiler. The scripts set up the wire load model, ideal networks on the two clocks, a

maximum fanout of 20, and timing constraints on the IOs. The scripts also analyzed,

formatted, compiled, uniquified, and flattened all of the Bridge RTL from the lowest

level module and moving up in hierarchy. The scripts instruct the Design Compiler to

optimize for area and then issue a timing report. The timing report presents the results of

static timing analysis by the Design Compiler and indicates the success or failure of

synthesis against the given timing assertions. A Verilog netlist representation of the

Bridge is the final result of the synthesis.

6.2 Tools

Some difficulty was encountered when using the Design Compiler. Figure 6.2.1 shows

the hardware that was represented by the RTL. A signal is outputted from the BUF

module and inputted to both the MWRITE and the MREAD. The MWRITE and the

 76

MREAD rename the signal and send it their corresponding PCIX port. In essence, wire a

connection.

Figure 6.2.1 – Architecture Represented by the RTL

Due to a bug in the tool, the netlist that resulted from synthesis had a combinational

feedback loop as pictured in Figure 6.2.2. This appeared to be due to incrementally

mapping and compiling the modules in order of hierarchy. Unfortunately, this defect in

the tool forced a change in the synthesis TCL script to flatten the entire hierarchy and

synthesize the entire Bridge in a single compile. The optimized area reported in Section 8

of this thesis could have been further optimized if it were not for this bug in the tool.

Figure 6.2.2 –Synthesis Result

MWRITE

MREAD

BUF

To PCIX WS port

To PCIX RS port

MWRITE

MREAD

BUF

To PCIX WS port

To PCIX RS port

MWRITE

MREAD

BUF

To PCIX WS port

To PCIX RS port

MWRITE

MREAD

BUF

To PCIX WS port

To PCIX RS port

 77

6.3 Techniques to Avoid Synthesis Headaches

Many inexperienced engineers often run into problems with synthesis during their first

design project. Knowing this is the case, efforts were made to fix these mistakes early on

in the development process.

Synthesis Headache Prevention Tip #1 – Coding Style

Coding style was kept simple and consistent. All modules were organized, formatted, and

documented in the same fashion. Combinational logic was coded in assign statements

rather than in an always block for multiple reasons. First of all, it prevented any inferred

latches in my code. Second of all, using assign statements is less verbose than an always

block and results in code that is easier to read and is therefore easier to debug. Verilog

always blocks were only used to instantiate latches.

Synthesis Headache Prevention Tip #2 – Synthesize Early and Often

Synthesis was utilized after completing the first module – PCIEXRX. This fixed any

undesirable coding habits that would result in un-synthesize-able code and prevented the

same mistakes from being made on the rest of the modules.

 78

7 Static Timing Analysis

7.1 Background

Section 7.1 of this thesis is an excerpt from Section 8.1 of Hardware Implementation of a

Low-Power Two-Dimensional Discrete Cosine Transform by Rajul Shah.

Static timing analysis, performed by the IBM static timing tool, ensured that the designed

hardware functioned properly with the timing and electrical constraints of the system.

Four different path types were analyzed by the timing tool: primary inputs to primary

outputs, primary inputs to a register, register to register, and register to primary outputs.

For each of these path types, the tool checked that data arrived at its destination in time

(setup time) and that it stayed steady for the required time (hold time). This was

determined by slack measurements, or relations between the Required Arrival Times

(RAT) and the Actual Arrival Time (AT). Both the RAT and AT values differ for early

mode and late mode tests. Negative slacks indicated static timing failures, while positive

slacks indicated the hardware would function properly for that path. Of course the results

of these tests were dependent on the assertions provided.

The setup tests were checked in late mode or long path analysis. The slack, in late mode

analysis, is calculated as RAT-AT. In this mode, the latest arrival times are propagated to

find the longest path delays. If this slowest path is too long, then the AT will be larger

than the required time of arrival. In this case, data may not reach its destination in time,

thereby inhibiting the hardware from running at the specified clock frequency.

 79

Early mode, or short, fast path analysis, identified hold time violations. Slack times, in

early mode analysis, were equal to AT-RAT. The AT was calculated by propagating the

earliest cumulative arrival times for a path. In a fast path, the new signal may arrive too

quickly, or before the RAT. The RAT for the early mode case is earliest time that a signal

can change after the clock edge. These problematic paths create negative slack time and

could cause incorrect hardware operation. In these cases, a race condition could occur,

where data would be stored from the next clock cycle rather than from the current clock

cycle.

The static timing tool also conducted electrical violation tests. For each element

instantiated from the standard library, the tool compared its minimum and maximum

specified load capacitances with its load capacitance in the design. The tool did the same

comparisons for minimum and maximum slew values as well.

7.2 Assertions

A TCL script was created containing all timing assertions and constraints to be applied to

the Bridge. The values were dependent on the timing constraints of the PCI Express

Cores provided by Peter Jenkins and Scott Vento, as well as the PCIX core in PCIX only

mode provided by Louis Stermole. These requirements are made to reduce timing

violations in a System On Chip environment.

 80

The clock jitter was set to a conservative default value of 0.4 ns. There are two clocks in

the Bridge: PCLK250 running at 250 MHz to correspond to the PCI Express Transaction

Layer Packet Interface, and PCLK133 running at speeds of up to 133 MHz to correspond

to the PCIX clock frequency capabilities. The clock transitions were set to 0.3 ns. Any

signals that cross the clock boundary were specified as false paths since the timing paths

on those signals will change with the variance of the two clocks.

The delay for all Bridge inputs was specified in the TCL script to indicate how long it

will take for that input to be valid after that domain’s rising clock edge. For the PCLK250

inputs from the PCI Express interface, input delays ranged between 0.6ns to 2.0ns and

input transitions were set to 0.7 ns. For the PCLK133 inputs from the PCIX interface,

input delays ranged between 0.75ns to 6.70 ns and input transitions were set to 0.1 ns.

The maximum delay for all outputs was also specified in the TCL script. The PCIEXB

must meet these timing requirements to ensure that customer hardware will be able to

meet their timing requirements. For the PCLK250 outputs to the PCI Express interface,

maximums output delays ranged from 0.6ns to 2ns. For the PCLK133 outputs to the

PCIX interface, maximum output delays ranged from 2ns to 5 ns. For the outputs to the

SRAM, maximum output delays ranged from 1ns to 2ns.

The maximum capacitances for all inputs were set to a default value of 0.2 pF. The load

capacitances on the outputs were set to a default value of 0.3 pF. The maximums fanout

was set to a default value of 20. Defining the maximum capacitive load values allows the

 81

IBM timing tool to ensure that the PCI Express and PCIX cores can drive the Bridge

inputs, and that the Bridge could drive the gates of the PCI Express and PCIX cores.

7.3 Modifications

Seven modifications were made to the RTL in order to meet static timing. The

modifications made were caused by timing failures that can be classified into three

categories: (1) a combinational path where the input delay inherently violated the

maximum delay constrained on the output, (2) slow combinational logic, and (3) too

much load on a wire.

Four modifications to the RTL resulted from category (1) situations where the input delay

of a combinational path inherently violated the maximum delay allowed on the output.

For example, one of the initial timing violations occurred on a path from a signal driven

from the PCIX core (WF_SWRITE_TRANS_PENDING) to the Write Enable port of the

SRAM (SWRITE_UPBUF_POSTED). The WF_SWRITE_TRANS_PENDING had a 3.7 ns

delay whereas the maximum setup allowed for SWRITE_UPBUF_POSTED was 1 ns.

Adding latches allowed the path to pass timing with a cost in area and latency.

Unfortunately, not every category (1) timing violation was correctable by adding latches.

The TL_PCIEXTX_GET (2ns delay) to READADDR (maximum 1 ns setup) path required the

BUF module to perform an extra stage in the pre-fetch of the SRAM data, causing many

changes in the BUF module RTL. When TL_PCIEXTX_GET is high on a PCLK250 clock

 82

cycle, the subsequent 16 bytes of data must be driven at the next PCLK250 cycle to meet

the specification of the PCI Express Transaction Layer Packet Interface. Every time the

Bridge sees that TL_PCIEXTX_GET is high, it must increment the READADDR to get the

subsequent 16 bytes of data. TL_PCIEXTX_GET had to be latched in order to meet timing

in the TL_PCIEXTX_GET (2ns delay) to READADDR (maximum 1 ns delay) path. This

meant that the READADDR would be incremented one cycle after the Transaction Layer

Packet Interface asserts the TL_PCIEXTX_GET, and that the subsequent 16 bytes of data

would come after two PCLK250 cycles.

There were two category (2) timing violations where the combinational logic was too

slow. These problems were caused by muxes with complex logic on the selectors and

solved by either making the muxes smaller by eliminating redundancies, or by replacing

the muxes with faster combinational logic.

There was one category (3) timing violation where the signal drove so many devices that

the buffering added in synthesis caused the path to violate timing. The

SWRITE_UPBUF_DATA_PUT signal is driven by a single latch and inputted to 64

muxes and other combinational logic. Dividing the load by three and using two additional

latches to help drive the load solved the problem. This reduced the latency from buffering

and allowed timing to be met.

 83

8 Performance

The PCI Express to PCIX Bridge outlined in this thesis is optimized for area and

performance. Most efforts were devoted to designing for simplicity in verification, small

physical area, and minimal latency for a store and forward architecture. Possible methods

to further optimize for performance are outlined in Section 9 of this thesis.

The final performance measurements are summarized in Table 8. This Bridge cannot be

compared to other products because currently there are no PCI Express to PCI/PCIX

bridges on the market. Latency is measured from the cycle after the last data of the

transaction is received to the cycle when the transaction is first transmitted. The

downstream latency is measured from when TL_PCIEXRX_HEADER_PUT falls to when

MWRITE_WS_*_START is asserted. The upstream latency is measured from when

WF_SWRITE_TRANS_PENDING falls to when PCIEXTX_TL_ARB_ENABLE is asserted.

Input Ports 1150
Output Ports 1061
Gates 6127
Nets 7693
Connections 15118
Latch Area 13956 gate count
Combinational Area 13478 gate count
Total Area 27434 gate count
Latency7
 Upstream
 Downstream

2 PCLK250 cycles + TH
1 PCLK133 cycles + TH

Table 8 – Performance and Area Measurements of the Bridge

7 TH approximately equals 20ns – 24ns in simulation with a 4 ns PCLK250 clock cycle and a 10 ns
PCLK133 clock cycle

 84

9 Future Work

The sheer size of the functionality described in the PCI Express Bridge Specification was

too much to handle for one person in a nine-month time frame. Some functionality still

needs to be implemented in order to be able to sell this product in industry. The

verification is quite thorough and complete on the module level. However, there is some

room for improvement in terms of system level verification. Additional tests can be

added, especially stress tests. In addition to functionality and verification, more

optimizations for performance and power efficiency are suggested.

9.1 Functionality

9.1.1 Key Requirements

The Bridge implemented in this thesis can be expanded to also support PCI as its

secondary interface. Additionally, it would be desirable to add Configuration Space to the

Bridge so that the Bridge can be configured during system setup.

As seen in Table 9.1.1, certain assumptions were made to simplify the Bridge

implementation in areas of special case handling that is specific to PCI Express and

PCIX. A marketable PCI Express to PCIX Bridge would need to handle these cases.

 85

Scenario Appropriate Action Assumption
The three MSBs of the PCI
Express Tag are non-zero

Bridge Takes Ownership of the
transaction

The three MSBs of the PCI
Express Tags are always zero

Discontinuous byte enable(s) Bridge turns the transaction
into two separate transactions
with contiguous byte enables,
and takes ownership of both
transactions

The byte enables are never
discontinuous

A PCIX Memory Read is
completed with multiple PCI
Express CplD packets.

Bridge incrementally saves
data in a buffer until the entire
Completion is received, then
transmits the corresponding
PCIX Split Transaction.

PCIX Memory Reads is
completed with one PCI
Express CplD packet.

Maximum data payload size or
read request size for PCIX
target is smaller than the
Transaction Layer Packet
received.

Bridge turns the transaction
into multiple transactions that
fit the PCIX Target’s max
sizes. If the transaction is non-
posted, the Bridge must also
take ownership of each new
transaction.

Assume all PCIX Targets allow
4 KB for data payloads and 4
KB for read requests, thus
eliminating the need to turn
the transaction into multiple
transactions.

Address and length
combination may not cross a
4KB boundary

Turn the transaction into two
transactions that are
separated by the 4KB
boundary

Address and length
combinations do not cross a
4KB boundary

PCIX data is ready upon
request

Ensure that there is upstream
buffer space for the data
before mastering a
downstream read. Store
Immediate Read Data in the
upstream buffer.

Assume PCIX targets will split
the read

Table 9.1.1 – Assumptions Made to Simplify the Bridge

9.1.2 Optional Capabilities

Listed below are certain capabilities are not required by the PCI Express Bridge

Specification, but are desirable to customers.

 PCI Express 32-bit ECRC generation and checking
 Advanced Error Reporting
 Hot Plug Support for the PCI Express primary interface
 Prefetchable memory address range
 VGA Addressing
 PCI Express Message Requests with and without Data Payload
 Expansion ROM
 PCIX Mode or Mode 2 support
 PCIX Device ID Messages

 86

9.2 Optimizations

There are some optimizations that can be done to improve the performance and power

efficiency of the PCI Express to PCIX Bridge implemented in this thesis. Two future

performance optimizations are explored in this section: cut-through and multiple

transactions. Clock gating can also be used to reduce power but is not explored in this

thesis because performance and cost is by far the most important factors to PCI Express

customers.

9.2.1 Cut-Through to Replace Store and Forward

Cut-through is a technique that is often used in bridges to improve the latency of a single

transaction.

The Bridge is currently Store and Forward, meaning that when it receives a transaction

on side A, it stores the entire transaction before it forwards the transaction to side B.

Store and Forward is simple, therefore requiring less logic and taking up less area. If the

transactions that typically going through the PCI Express Bridge have little or no data,

then Store and Forward is acceptable in performance.

The worst-case transaction has a maximum size data payload of 1024 DW. This

transaction in the downstream direction has a 256 PCLK250 cycle wait for the entire

 87

transaction to be stored in the BUF buffers before it can be forwarded, and another 512

PCLK133 cycles to retrieve the transaction from the BUF. This transaction in the

upstream direction has a 512 PCLK133 cycle wait for the entire transaction to be stored,

and another 256 PCLK250 cycles to retrieve the transaction.

Adding cut-through to this Bridge would greatly improve the worst-case latency. For

example, if transaction T is coming in on side A, and that transaction has the highest

priority out of all pending transactions, and side B is currently idle, transaction T can cut

through from side A to side B and begin transmission on side B before the entire

transaction is stored. Cut-through reduces the worst-case downstream transaction latency

to 256 PCLK250 cycles and 256 PCLK133 cycles, and the worst-case upstream

transaction latency to 512 PCLK133 cycles.

There are two ways to implement cut-through in this Bridge. The first option is a

simultaneous write and read from a buffer. This option works well in cases where side A

and B run at separate clock frequencies. The second option, proposed in Tsang-Ling

Sheu’s ATM LAN interconnections with a cut-through nonblocking switch, bypasses the

buffers with a dedicated cut-through link. This option, however, does not work well for

bridges with asynchronous boundaries.

9.2.2 Multiple Transactions

 88

The Bridge would probably fare better in performance if it handled multiple transactions

of a single type. In this thesis, the decision was made to handle only one transaction of

each type at a time for two reasons: (1) it requires less area, (2) the lack of a customer

market requirement regarding the number of transactions supported by the Bridge.

Therefore, Bridge architecture was designed to easily facilitate a change to multiple

transactions. The following discussion explains how multiple transactions can improve

performance and explains how easy it would be to change the Bridge to support multiple

transactions.

Currently, the upstream and downstream paths of the Bridge only have one buffer of each

transaction type: one posted buffer, one completion buffer, and one non-posted buffer.

The Bridge performs well under conditions where there are not a lot of transactions of the

same type constantly going through. However, in a scenario where the root complex tries

to transmit four consecutive posted transactions T1, T2, T3, and T4, the root complex

must wait until T1 is forwarded before it can transmit T2. If the Bridge had four posted

buffers rather than one, then the root complex would be able to transmit T1, T2, T3, and

T4 without delay.

The Bridge architecture was designed in anticipation of expanding the Bridge to support

multiple transactions. The BUF module would be the only module to change, all other

modules are untouched. The change would involve adding more physical memory and

adding a queue for each transaction type. All BUF interfaces remain unchanged and no

changes in flow control logic are necessary.

 89

10 References

[1] PCI Express to PCI/PCI-X Bridge Specification Revision 1.0, PCI-SIG, February
2003.

[2] PCI Express Base Specification Revision 1.0a, PCI-SIG, p. 1-118, April 2003.

[3] PCI-X Protocol Addendum to the PCI Local Bus Specification Revision 2.0, PCI-
SIG, July 2002.

[4] PCI Local Bus Specification Revision 2.3, PCI-SIG, March 2002.

[5] T. Shanley, D. Anderson, PCI System Architecture, Mindshare Inc, Addison-Wesley,
1999.

[6] J. Ajanovic, C. Jackson, “Scalable System Expansion with PCI Express Bridge
Architecture,” Intel Developer Forum, February 2003.

[7] Tsang-Ling Sheu, “ATM LAN interconnections with a cut-through nonblocking
switch,” IEEE Fourteenth Annual International Phoenix Conference, March 1995, p. 578-
584.

[8] IBM Microelectronics, ASIC Databook, International Business Machines
Corporation.

[9] PCI Express System Architecture, Mindshare, Inc. 2003.

[10] IBM Microelectronics, PCI Express x16 Data Link and Logical Physical,
International Business Machines Corporation.

[11] IBM Microelectronics, PCI Express x16 Transaction Layer, International Business
Machines Corporation.

[12] PCI/PCIX Model User’s Manual (PI 2.3, PCI-X 1.0, PCI-X 2.0), August 2003.

[13] IBM Microelectronics, PCI/PCI-X Bus Interface 32/64 Bits, Revision 2.

[14] Rajul Shah, “Hardware Implementation of a Low-Power Two-Dimensional Discrete
Cosine Transform,” Section 8.1 Static Timing Analysis – Background, May 2002.

[15] Kaner, Falk, Nguyen, Testing Computer Software, John Wiley & Sons, Inc, New
York. 1999. pp. 1-141.

[16] Drerup, Ben, IBM Austin.

