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ABSTRACT 

This thesis project involves the architecture, implementation, and verification of a high 
bandwidth, low cost ASIC digital logic core that is compliant with the PCI Express to 
PCIX Bridge Specification. The core supports PCI Express and PCIX transactions, x16 
PCI Express link widths, 32 and 64-bit PCIX link widths, all PCI Express and PCIX 
packet sizes, transaction ordering and queuing, relaxed ordering, flow control, and buffer 
management. Performance and area are optimized at the architectural and logic levels. 
The core is approximately 27K gate count, runs at a maximum of 250 MHz, and is 
synthesized to a current standard technology. This thesis explores PCI Express, PCIX, 
and PCI technologies, architectural design, development of Verilog and Vera models, 
thorough module-level verification, the development of a PCI Express/PCIX system 
verification environment, synthesis, static timing analysis, and performance and area 
evaluations. The work has been completed in IBM Microelectronics in Burlington, 
Vermont as part of the MIT VI-A Program. 
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1  Introduction 
 
 
The conventional PCI technology bandwidth of 133 MBps has become a performance 

bottleneck due to significant improvements in processors and host systems. Multiple bus 

technologies have emerged to alleviate this bottleneck, including PCIX and PCI Express. 

 

The PCIX parallel bus architecture was developed to increase the maximum theoretical 

bandwidth of up to 1 GBps by increasing timing constraints to support clock speeds of up 

to 133 MHz (from 66 MHz max freq for PCI).  The concept of a Split transaction was 

also added to bring the realized performance closer to the theoretical BW. 

 

The PCI Express protocol has also been developed as the next generation after PCIX, 

further increasing the maximum theoretical bandwidth to 8 GBps for a x16 (16 byte) link. 

Unlike the PCI and PCIX multi-drop bus architectures, PCI Express is a serial point-to-

point interconnect. An advantage of PCI Express is that it has more bandwidth per pin, 

which results in lower cost and higher peak bandwidth. 

 

Both PCI Express and PCIX are being widely adopted in industry, therefore it is desirable 

to bridge between the two protocols and allow both to coexist in the same system. This 

thesis outlines the development of a PCI Express to PCIX Bridge ASIC digital logic core 

optimized for performance and area. 
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2  Background 

2.1  PCI 

2.1.1 Overview of a Typical PCI System 

Figure 2.1.1 shows a typical PCI system consisting of a Processor, a North Bridge, a PCI 

bus, a South Bridge, and various other components. The North Bridge interfaces the 

Processor to the graphics (AGP) bus, system memory, and the PCI bus. The PCI bus is 

also connected to the South Bridge and various high performance IO devices such as an 

Ethernet card. The South Bridge interfaces the PCI Bus to the ISA bus that connects to 

lower performance IO devices. 

 

Figure 2.1.1 – A Typical PCI/PCIX System1 

                                                 
1 Source: PCI Express System Architecture, Mindshare, Inc. 
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PCI supports twelve commands that allow the processor and various devices to 

communicate. Transactions include variations of memory, IO, and configuration reads 

and writes. Since PCI is a multi-drop bus (meaning that many devices might be 

connected to the bus at a time), all devices must win ownership of the bus from the North 

Bridge Arbiter before initiating a transaction. 

 

2.1.2 PCI Correspondence Example 

 

This section explores what happens when the processor issues an IO read to the Ethernet 

device. First, the processor issues an IO read cycle to the North Bridge. As illustrated in 

Figure 2.1.2, the North Bridge will then arbitrate to get control of the bus, and then issue 

an IO read on the PCI bus. The Ethernet device will claim the transaction, and if the data 

is ready and available the Ethernet device will drive the requested IO data on the bus. 

 

If the data is not ready, however, the Ethernet device might respond with a Retry, turning 

the IO read into a Delayed Transaction and forcing the North Bridge to retry the IO read 

a few cycles later. The North Bridge unfortunately does not know when to retry, so the 

system may encounter situations where the North Bridge takes up valuable bus time 

unsuccessfully retrying the IO read while other PCI devices need the bus. 
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Figure 2.1.2 – PCI Correspondence Example 
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2.2  PCIX 

 

PCIX builds on the PCI architecture by adding features to improve performance and bus 

efficiency. A significant difference between PCI and PCIX is that PCI Delayed 

transactions are replaced by PCIX Split transactions. In the PCI example discussed in 

Section 2.1.2, the North Bridge ties up the bus by repeatedly retrying the delayed IO read. 

If we take the same example from Section 2.1.2 but replace PCI with PCIX, as illustrated 

in Figure 2.2, the Ethernet device will memorize the transaction and signal a Split – 

telling the North Bridge not to retry the IO Read. When the data is ready, the Ethernet 

device will send the North Bridge a Split Completion containing the data. The addition of 

the PCIX Split Completion frees up the bus for other transactions, making PCIX more 

efficient than PCI. 

 

PCIX utilizes clock speeds that range from 66 MHz to133 MHz, thus improving the data 

rate and performance over PCI. As the clock rate increases, it becomes more difficult to 

meet timing constraints with multiple devices connected to the bus. PCIX supports eight 

to ten devices at 66 MHz, and three to four devices at 133 MHz. For performance 

reasons, clock frequencies were increased to 266 or 533 MHz in PCIX 2.0 – Double Data 

Rate, sacrificing the multi-drop nature of the bus for a point-to-point connection that uses 

bridges to connect multiple devices. Unfortunately, PCIX bridges are not ideal for a 

point-to-point connection because of large pin count and area. Therefore a new bus 

technology emerged – PCI Express. 
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Figure 2.2 – PCIX Correspondence Example 
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2.3  PCI Express 

 

PCI Express is a point-to-point link with a transmitter and receiver on both sides of the 

link. A PCI Express device can transmit and receive packets simultaneously. The link can 

be 1, 2, 4, 8, 12, 16, or 32 lanes wide in both directions with symmetric connections 

between the transmitting and receiving sides.  PCI Express transactions include Memory, 

IO, and Configuration reads and writes, Completions, and various Message requests. 

 
Figure 2.3.1 – PCI Express Link 

 

A typical PCI Express system is shown in Figure 2.3.2. The bridge implemented in this 

thesis will operate in systems where the PCI Express link is upstream (closer to the CPU) 

as the primary interface, and the PCIX bus is downstream (farther away from the CPU) as 

the secondary interface. The root complex is the root of the PCI Express hierarchy. It 

allows connection of PCI Express devices, PCI Express Switches that route a PCI 

Express link to multiple PCI Express links, and PCI Express to PCI/PCIX Bridges. 

 

A comparison of the two bus technologies used in this thesis, namely PCI Express and 

PCIX, is located in Table 2.3. 

PCI Express
Device

PCI Express
Device

packet

packet
PCI Express

Device
PCI Express

Device

packet

packet
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Figure 2.3.2 – Typical PCI Express System 

 
 PCI Express (x16) PCIX 133 MHz (64-bit bus) 
Error Detection Baseline and Advanced Error 

Reporting Capability, Link Layer 
LCRC, Transaction Layer ECRC, 

Poison bit in TLP 

SERR# - System Error 
PERR# - Parity Error 

 

Encoding 8b/10b encoding 
ECCC attached to packet 

1 parity bit for every 32 data bits 

Signaling Rate, Clock 
Frequency 

2.5 GHz  
(x1, x2, x4, x8, x12, x16, x32) 

133 MHz  
32 bit and 64 bit lanes 

# pins 64 pins (x16 64-bit bus) 90 pins (64-bit bus) 
Peak Theoretical BW  8 GB/sec (x16 64-bit bus ) 1 GB/sec 
Performance Per Pin 125 MB/sec 11 MB/sec 
Average Bandwidth ~ 40-60% peak theoretical 

3.2 – 4.8 GB/sec 
~ 50-70% peak theoretical 

0.5 – 0.7 GB/sec 
Arbitration Mechanism Virtual Channels Arbitration, Port 

Arbitration, Quality of Service 
Must arbitrate for sole use of the bus 

Max. Physical Length ~ 10 yards ~ 1 foot 
Transaction 
Acknowledgements 
and Flow Control 

Non-posted – acknowledgement 
Posted – no acknowledgement 

Flow Control for non-posted, posted, 
and completion transactions 

Master and target assert ready signals, 
then transmit entire transaction 

 
No Flow Control 

Block Transactions Present Present 
Split Transactions Present Present 
Protocol for snoopy 
caches 

No Snoop bit can eliminate snooping 
and improve performance during 

accesses to non-cacheable memory, 
Relaxed Ordering enable bit 

No Snoop bit can eliminate snooping 
and improve performance during 

accesses to non-cacheable memory, 
Relaxed Ordering enable bit 

Table 2.3 - A Comparison of PCI Express and PCIX[9], [16] 
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3  Project Requirements 

 

3.1  IBM Soft Core Requirements 

 

The design of the PCI Express to PCIX Bridge had to meet all IBM Methodology 

requirements for Soft Cores. All RTL code must be synthesize-able by standard EDA 

tools in order to be mapped to elements in the IBM ASIC Library. The elements in the 

standard libraries are static CMOS, which constrained this thesis from exploring various 

other technologies that cater to high performance such as Domino Logic. 

 

Methodology requirements also constrained the physical aspects of the core to use the 

vendor's standard values, including wire load models, capacitance values, maximum and 

minimum delay between latches, maximum and minimum delay between the PCI Express 

Bridge to vendor ASIC PCI Express and PCIX cores, and the technology standard 

voltage and temperature ranges. Please see Section 7 – Static Timing Analysis for more 

detail. 
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3.2  PCI Express Bridge Requirements 

 

The following contains the highlights of relevant key requirements compiled from 

Section 1.3.1 of the PCI Express Bridge Specification. Please see Section 9.1 Future 

Work: Functionality for a list of PCI Express to PCIX Bridge capabilities that should be 

explored in the future. 

 

3.2.1 Supported Requirements 

 

 The bridge includes one PCI Express primary interface and one or more PCIX 

secondary interfaces 

 The bridge is compliant with the electrical specifications described in PCI Express 

Base 1.0a and PCIX 1.0a for its respective interfaces. 

 Memory mapped I/O address space for transaction forwarding 

 64-bit addressing on both primary and secondary interfaces. The bridge must prevent 

address aliasing by fully decoding the address fields. 

 The bridge must complete all DWORD and burst memory read transactions that 

originate from the secondary interface as Split Transactions if the transaction crosses 

the bridge and the originating interface is in a PCIX mode. 

 Transactions that originate from PCI Express and address locations internal to the 

bridge have the same requirements as described for PCI Express Endpoints. 
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 PCI Express to PCI/PCIX bridges must not propagate exclusive accesses from the 

secondary interface to the primary and are never allowed to initiate an exclusive 

access of their own 

 The PCI Express interface must comply with the definition of the flow control 

mechanism described in PCI Express Base 1.0a. 

 

3.2.1 Unsupported Requirements 

 

Configuration requirements from Section 1.3.1 of the PCI Express Bridge Specification 

are not supported because a Bridge configuration space is not included in this thesis. 

 The bridge includes configuration registers accessible through the PCI-compatible 

configuration mechanism. 

 As with PCI bridges and PCIX bridges, PCI Express to PCI/PCIX bridges us a Type 

01h Configuration Space header. 
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3.3  PCI Express to PCIX Bridge Features 

 
 The PCI Express to PCIX Bridge supports the following PCI Express and PCIX 

transactions in both upstream and downstream directions:  Memory Writes, Memory 

Reads, I/O Writes, I/O Reads, Type 1 Configuration Writes, Type 1 Configuration 

Reads, Completions with Data, Completions without Data, and Split Transactions. 

Figure 3.3 – PCI Express and PCIX Transactions 

 

 The PCI Express to PCIX Bridge is compliant with the following specifications: PCI 

Express to PCI/PCI-X Bridge 1.0, PCI Express Base 1.0a, PCI-X 1.0a, PCI 2.3. 

 Supports x16 link widths providing 2.5 Gbps data rate per lane per direction 

 Supports the following Transaction Layer Packet (TLP) sizes: 

o Max payload size of 4KB or less for posted transactions and completions 

o Max read request size of 4KB or less for non-posted requests 
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 Supports Virtual Channel 0 (VC0) 

 Supports PCI Express Transaction Layer functions including: 

o Transaction Layer Packet Interface transmit and receive 

o Transaction ordering and queuing 

o PCIX and PCI Express relaxed ordering model 

o PCI Express Flow Control and Buffer Management 

 Provides internal buffering for up to three outstanding downstream transactions: one 

non-posted transaction, one posted transaction, and one completion 

 Provides internal buffering for up to three outstanding upstream transactions: one 

non-posted transaction, one posted transaction, and one completion 

 Supports one PCI Express primary interface and one PCIX secondary interface 

 Memory mapped I/O address space for transaction forwarding 

 64-bit addressing on both primary and secondary interfaces 
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4  Architecture and Implementation 
4.1  High Level Overview 

 
TL RX  PCI Express Transaction Layer Packet Interface Receive Interface 
TL FC  PCI Express Transaction Layer Packet Interface Flow Control Interface 
PCIEXRX PCI Express Transaction Layer Packet Receiver 
DOWNBUF Downstream Buffers 
DOWNARB Downstream Arbiter 
MWRITE PCIX Write Master 
MREAD PCIX Read Master 
WS PCIX Write Transmitter Interface 
RS PCIX Read Transmitter Interface 
SWRITE PCIX Write Slave 
SREAD PCIX Read Slave 
SDWORD PCIX Dword Slave 
WF PCIX Write Receiver Interface 
RF PCIX Read Receiver Interface 
ED PCIX External Decoder Interface 
DECODER PCIX Address and Command Decoder 
UPBUF Upstream Buffers 
UPARB Upstream Arbiter 
PCIEXTX PCI Express Transaction Layer Packet Transmitter 
TL TX  PCI Express Transaction Layer Packet Interface Transmit Interface 
TL ARB  PCI Express Transaction Layer Packet Interface Arbitration Interface 

Figure 4.1 – High Level Overview of Bridge Architecture 
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 Module Description 

PCIEXRX Receive PCI Express Transaction Layer Packets 
(1) Receive PCI Express Header and Data from PCI Express Transaction 

Layer Packet Interface 
(2) Translate PCI Express Header into PCIX Control Signals 
(3) Store PCIX control signals and data in a downstream buffer 
(4) Initialize and update Flow Control Credits 

BUF 
(DOWNBUF) 

Downstream Buffers include: 
Three header buffers of equal size (128 bits) 
Three data buffers: 
      One 4KB data buffer for posted data  
      One 4KB data buffer for completions 
      One 1DW (4byte) buffer for non-posted data 

ARB 
(DOWNARB) 

(1) Decide which transaction to send next according to ordering rules 
(2) Select type (P-posted, CPL-completion, NP-nonposted) to transmit 

MASTER 
(MWRITE) 

Master a PCIX write 
(1) Initiate a PCIX Write 
(2) Push data straight from DOWNBUF to PCIX Interface 
(3) Indicate if transaction was successful or needs to be retried D

ow
n

st
re

am
 –

 P
C

I 
Ex

pr
es

s 
to

 P
C

IX
 

MASTER 
(MREAD) 

Master a PCIX read 
(1) Initiate a PCIX Read 
(2) Assume that the PCIX target will always split the transaction 
(3) Indicate if transaction was successful or needs to be retried  

DECODER When the Bridge receives a PCIX transaction: 
(1) Determine if the Bridge should claim the transaction 
(2) Determine which port should handle the transaction. (WF/RF/SP) 

SLAVE 
(SWRITE) 

Receive PCIX writes from the PCIX Interface WF interface 
(1) Receive a PCIX write from the PCIX Interface 
(2) Translate PCIX control signals into a PCI Express Header 
(3) Store PCI Express Header and Data in an upstream buffer 

SLAVE 
(SREAD) 

Receive PCIX reads from the PCIX RF interface 
(1) Receive a PCIX read from PCIX Interface 
(2) Translate PCIX control signals into a PCI Express Header 
(3) Split the transaction 
(4) Store PCI Express Header and Data in an upstream buffer 

SLAVE 
(SDWORD) 

Receive PCIX DWORD transactions from the PCIX SP interface 
(1) Receive a PCIX read or write from PCIX Interface 
(2) Translate PCIX control signals into a PCI Express Header 
(3) If the transaction is non-posted, then split the transaction 
(4) Store PCI Express Header and Data in an upstream buffer 

BUF 
(UPBUF) 

Identical to BUF (DOWNBUF) described above 

ARB 
(UPARB) 

Identical to ARB (DOWNARB) described above U
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PCIEXTX Transmit PCI Express Transaction Layer Packets 
(1) Obtain an arbitration grant from the PCI Express Transaction Layer 

Packet Interface 
(2) Transmit the PCI Express Header and Data 
(3) Indicate when a transaction has submitted successfully 

 

Table 4.1 - Description of the Bridge Architecture  
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4.1.1 Downstream Transaction 

 

The following steps illustrate what happens when the Bridge handles a downstream 

transaction, traveling from PCI Express to PCIX. 

 

1) Transaction Layer Packet Interface sends the Bridge a PCI Express Transaction Layer 

Packet containing a PCI Express Header (all transactions), and a data payload (writes 

and completions) 

2) PCIEXRX translates the Transaction Layer Packet header into PCIX control signals 

3) PCIEXRX sends the PCIX control signals and data to DOWNBUF, where the 

transaction is stored in the appropriate downstream buffer. Memory writes are stored 

in the posted buffer. Completions are stored in the completion buffer. IO reads and 

writes, Configuration reads and writes, and Memory reads are stored in the non-

posted buffer. 

4) DOWNBUF tells DOWNARB that there is a pending transaction and indicates if it is 

a posted transaction, a non-posted transaction, or a completion. 

5) When the PCIX side is idle, DOWNARB tells DOWNBUF to transmit the transaction 

6) DOWNBUF sends the PCIX control signals and data to the MASTER 

7) If the transaction is a Completion or a Memory/IO/Configuration write, then 

MWRITE will initiate a PCIX write on the WS interface. If the transaction is a 

Memory/IO/Configuration read, then MREAD will initiate a PCIX read on the RS 

interface. 

8) WS/RS ends the transaction 
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9) MWRITE/MREAD tells DOWNARB and DOWNBUF that the transaction has 

completed 

11a) If the transaction was successful, DOWNBUF frees the buffer and PCIEXRX 

updates the flow control credits 

11b) If the transaction was unsuccessful, the buffer is not freed. Go to Step 5. 

 

4.1.2 Upstream Transaction 

 

The following steps illustrate what happens when the Bridge handles an upstream 

transaction, traveling from PCIX to PCI Express. 

 

1) ED port asks DECODER whether or not it should claim the PCIX transaction 

2) DECODER instructs the ED to claim the transaction on either the WF, the RF, or the 

SP port 

3) WF/RF/SP sends the PCIX transaction to the SLAVE. Memory writes and 

Completions are handled by the SWRITE module. Memory reads are handled by the 

SREAD module. IO reads and writes are handled by the SDWORD module. 

4) SWRITE/SREAD/SDWORD translates the PCIX transaction into a PCI Express 

Transaction Layer Packet and sends it to UPBUF where it is stored in the appropriate 

buffer. Memory writes are stored in the posted buffer. Completions are stored in the 

completion buffer. IO reads and writes and Memory reads are stored in the non-

posted buffer. 
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5) UPBUF tells UPARB that there is a pending transaction and indicates if it is a posted 

transaction, a non-posted transaction, or a completion 

6) When the PCI Express side is idle, UPARB tells UPBUF to transmit the transaction 

7) UPBUF starts to send the PCI Express Header to PCIEXTX 

8) PCIEXTX obtains a grant from the ARB port 

9) PCIEXTX transmits the PCI Express Transaction Layer Packet on the TX port 

10) PCIEXTX tells UPARB and UPBUF that the transaction has completed 

11) UPBUF tells SLAVE that the buffer has been freed 
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4.2  PCIEXRX 

 

The PCIEXRX module receives PCI Express Transaction Layer Packets, translates the 

Transaction Layer Packet header into PCIX control signals, and sends the PCIX control 

signals and data payload to the DOWNBUF module. PCIEXRX also initiates flow 

control credits after a system reset and updates flow control credits whenever a buffer is 

freed. 

 

The timing diagram located in Figure 4.2 illustrates the behavior of PCIEXRX interfaces 

when receiving a PCI Express posted transaction with a 4DW data payload.  

 Figure 4.2 – PCIEXRX Timing Diagram 
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4.2.1 Header 

 

When TL_PCIEXRX_HEADER_PUT is high, PCIEXRX will (1) translate the PCI Express 

header into a PCIX header containing PCIX control signals, and (2) write that PCIX 

header to a buffer by asserting PCIEXRX_DOWNBUF_HEADER_PUT. 

 

4.2.1.1 PCI Express Header 

 

As illustrated in Figure 4.2.1.1, there are four general categories of PCI Express 

Transaction Layer Packet Headers: 4DW Memory, 3DW Memory and IO Headers, Type 

1 Configuration Headers, and Completion Headers. The Header fields are explained in 

Table 4.2.1.1.1. 

 

Figure 4.2.1.1 – PCI Express Headers 

R Fmt Type R

7  |  6  |  5  |  4  |  3  |  2  |  1  |  0 7  |  6  |  5  |  4  |  3  |  2  |  1  |  0 7  |  6  |  5  |  4  |  3  |  2  |  1  |  0 7  |  6  |  5  |  4  |  3  |  2  |  1  |  0

TC R TD EP Attr R Length
Requester ID Tag Last DW BE First DW BE

Address[63:32]
Address[31:0]

R Fmt Type R

7  |  6  |  5  |  4  |  3  |  2  |  1  |  0 7  |  6  |  5  |  4  |  3  |  2  |  1  |  0 7  |  6  |  5  |  4  |  3  |  2  |  1  |  0 7  |  6  |  5  |  4  |  3  |  2  |  1  |  0

TC R TD EP Attr R Length
Requester ID Tag Last DW BE First DW BE

Address[31:0]

R Fmt Type R

7  |  6  |  5  |  4  |  3  |  2  |  1  |  0 7  |  6  |  5  |  4  |  3  |  2  |  1  |  0 7  |  6  |  5  |  4  |  3  |  2  |  1  |  0 7  |  6  |  5  |  4  |  3  |  2  |  1  |  0

TC R TD EP Attr R Length
Requester ID Tag Last DW BE First DW BE

Bus No. Device No. Function No. R Ext Reg No. Register No. R

R Fmt Type R

7  |  6  |  5  |  4  |  3  |  2  |  1  |  0 7  |  6  |  5  |  4  |  3  |  2  |  1  |  0 7  |  6  |  5  |  4  |  3  |  2  |  1  |  0 7  |  6  |  5  |  4  |  3  |  2  |  1  |  0

TC R TD EP Attr R Length
Completer ID Cpl Status Byte Count
Requester ID R Lower Address

M
Tag

Memory (64 bit Address)

Memory (32 bit Address)
IO

Configuration

Completion

Byte 0   … Byte 3
Byte 4   … Byte 7
Byte 8 … Byte 11
Byte 12 … Byte 15

Byte 0   … Byte 3
Byte 4   … Byte 7
Byte 8 … Byte 11

Byte 0   … Byte 3
Byte 4   … Byte 7
Byte 8 … Byte 11

Byte 0   … Byte 3
Byte 4   … Byte 7
Byte 8 … Byte 11

R Fmt Type R

7  |  6  |  5  |  4  |  3  |  2  |  1  |  0 7  |  6  |  5  |  4  |  3  |  2  |  1  |  0 7  |  6  |  5  |  4  |  3  |  2  |  1  |  0 7  |  6  |  5  |  4  |  3  |  2  |  1  |  0

TC R TD EP Attr R Length
Requester ID Tag Last DW BE First DW BE

Address[63:32]
Address[31:0]

R Fmt Type R

7  |  6  |  5  |  4  |  3  |  2  |  1  |  0 7  |  6  |  5  |  4  |  3  |  2  |  1  |  0 7  |  6  |  5  |  4  |  3  |  2  |  1  |  0 7  |  6  |  5  |  4  |  3  |  2  |  1  |  0

TC R TD EP Attr R Length
Requester ID Tag Last DW BE First DW BE

Address[31:0]

R Fmt Type R

7  |  6  |  5  |  4  |  3  |  2  |  1  |  0 7  |  6  |  5  |  4  |  3  |  2  |  1  |  0 7  |  6  |  5  |  4  |  3  |  2  |  1  |  0 7  |  6  |  5  |  4  |  3  |  2  |  1  |  0

TC R TD EP Attr R Length
Requester ID Tag Last DW BE First DW BE

Bus No. Device No. Function No. R Ext Reg No. Register No. R

R Fmt Type R

7  |  6  |  5  |  4  |  3  |  2  |  1  |  0 7  |  6  |  5  |  4  |  3  |  2  |  1  |  0 7  |  6  |  5  |  4  |  3  |  2  |  1  |  0 7  |  6  |  5  |  4  |  3  |  2  |  1  |  0

TC R TD EP Attr R Length
Completer ID Cpl Status Byte Count
Requester ID R Lower Address

M
Tag

Memory (64 bit Address)

Memory (32 bit Address)
IO

Configuration

Completion

Byte 0   … Byte 3
Byte 4   … Byte 7
Byte 8 … Byte 11
Byte 12 … Byte 15

Byte 0   … Byte 3
Byte 4   … Byte 7
Byte 8 … Byte 11

Byte 0   … Byte 3
Byte 4   … Byte 7
Byte 8 … Byte 11

Byte 0   … Byte 3
Byte 4   … Byte 7
Byte 8 … Byte 11

R Fmt Type R

7  |  6  |  5  |  4  |  3  |  2  |  1  |  0 7  |  6  |  5  |  4  |  3  |  2  |  1  |  0 7  |  6  |  5  |  4  |  3  |  2  |  1  |  0 7  |  6  |  5  |  4  |  3  |  2  |  1  |  0

TC R TD EP Attr R Length
Requester ID Tag Last DW BE First DW BE

Address[63:32]
Address[31:0]

R Fmt Type R

7  |  6  |  5  |  4  |  3  |  2  |  1  |  0 7  |  6  |  5  |  4  |  3  |  2  |  1  |  0 7  |  6  |  5  |  4  |  3  |  2  |  1  |  0 7  |  6  |  5  |  4  |  3  |  2  |  1  |  0

TC R TD EP Attr R Length
Requester ID Tag Last DW BE First DW BE

Address[31:0]

R Fmt Type R

7  |  6  |  5  |  4  |  3  |  2  |  1  |  0 7  |  6  |  5  |  4  |  3  |  2  |  1  |  0 7  |  6  |  5  |  4  |  3  |  2  |  1  |  0 7  |  6  |  5  |  4  |  3  |  2  |  1  |  0

TC R TD EP Attr R Length
Requester ID Tag Last DW BE First DW BE

Bus No. Device No. Function No. R Ext Reg No. Register No. R

R Fmt Type R

7  |  6  |  5  |  4  |  3  |  2  |  1  |  0 7  |  6  |  5  |  4  |  3  |  2  |  1  |  0 7  |  6  |  5  |  4  |  3  |  2  |  1  |  0 7  |  6  |  5  |  4  |  3  |  2  |  1  |  0

TC R TD EP Attr R Length
Completer ID Cpl Status Byte Count
Requester ID R Lower Address

M
Tag

Memory (64 bit Address)

Memory (32 bit Address)
IO

Configuration

Completion

R Fmt Type R

7  |  6  |  5  |  4  |  3  |  2  |  1  |  0 7  |  6  |  5  |  4  |  3  |  2  |  1  |  0 7  |  6  |  5  |  4  |  3  |  2  |  1  |  0 7  |  6  |  5  |  4  |  3  |  2  |  1  |  0

TC R TD EP Attr R Length
Requester ID Tag Last DW BE First DW BE

Address[63:32]
Address[31:0]

R Fmt Type R

7  |  6  |  5  |  4  |  3  |  2  |  1  |  07  |  6  |  5  |  4  |  3  |  2  |  1  |  0 7  |  6  |  5  |  4  |  3  |  2  |  1  |  07  |  6  |  5  |  4  |  3  |  2  |  1  |  0 7  |  6  |  5  |  4  |  3  |  2  |  1  |  07  |  6  |  5  |  4  |  3  |  2  |  1  |  0 7  |  6  |  5  |  4  |  3  |  2  |  1  |  07  |  6  |  5  |  4  |  3  |  2  |  1  |  0

TC R TD EP Attr R Length
Requester ID Tag Last DW BE First DW BE

Address[63:32]
Address[31:0]

R Fmt Type R

7  |  6  |  5  |  4  |  3  |  2  |  1  |  0 7  |  6  |  5  |  4  |  3  |  2  |  1  |  0 7  |  6  |  5  |  4  |  3  |  2  |  1  |  0 7  |  6  |  5  |  4  |  3  |  2  |  1  |  0

TC R TD EP Attr R Length
Requester ID Tag Last DW BE First DW BE

Address[31:0]

R Fmt Type R

7  |  6  |  5  |  4  |  3  |  2  |  1  |  07  |  6  |  5  |  4  |  3  |  2  |  1  |  0 7  |  6  |  5  |  4  |  3  |  2  |  1  |  07  |  6  |  5  |  4  |  3  |  2  |  1  |  0 7  |  6  |  5  |  4  |  3  |  2  |  1  |  07  |  6  |  5  |  4  |  3  |  2  |  1  |  0 7  |  6  |  5  |  4  |  3  |  2  |  1  |  07  |  6  |  5  |  4  |  3  |  2  |  1  |  0

TC R TD EP Attr R Length
Requester ID Tag Last DW BE First DW BE

Address[31:0]

R Fmt Type R

7  |  6  |  5  |  4  |  3  |  2  |  1  |  0 7  |  6  |  5  |  4  |  3  |  2  |  1  |  0 7  |  6  |  5  |  4  |  3  |  2  |  1  |  0 7  |  6  |  5  |  4  |  3  |  2  |  1  |  0

TC R TD EP Attr R Length
Requester ID Tag Last DW BE First DW BE

Bus No. Device No. Function No. R Ext Reg No. Register No. R

R Fmt Type R

7  |  6  |  5  |  4  |  3  |  2  |  1  |  07  |  6  |  5  |  4  |  3  |  2  |  1  |  0 7  |  6  |  5  |  4  |  3  |  2  |  1  |  07  |  6  |  5  |  4  |  3  |  2  |  1  |  0 7  |  6  |  5  |  4  |  3  |  2  |  1  |  07  |  6  |  5  |  4  |  3  |  2  |  1  |  0 7  |  6  |  5  |  4  |  3  |  2  |  1  |  07  |  6  |  5  |  4  |  3  |  2  |  1  |  0

TC R TD EP Attr R Length
Requester ID Tag Last DW BE First DW BE

Bus No. Device No. Function No. R Ext Reg No. Register No. R

R Fmt Type R

7  |  6  |  5  |  4  |  3  |  2  |  1  |  0 7  |  6  |  5  |  4  |  3  |  2  |  1  |  0 7  |  6  |  5  |  4  |  3  |  2  |  1  |  0 7  |  6  |  5  |  4  |  3  |  2  |  1  |  0

TC R TD EP Attr R Length
Completer ID Cpl Status Byte Count
Requester ID R Lower Address

M
Tag

R Fmt Type R

7  |  6  |  5  |  4  |  3  |  2  |  1  |  07  |  6  |  5  |  4  |  3  |  2  |  1  |  0 7  |  6  |  5  |  4  |  3  |  2  |  1  |  07  |  6  |  5  |  4  |  3  |  2  |  1  |  0 7  |  6  |  5  |  4  |  3  |  2  |  1  |  07  |  6  |  5  |  4  |  3  |  2  |  1  |  0 7  |  6  |  5  |  4  |  3  |  2  |  1  |  07  |  6  |  5  |  4  |  3  |  2  |  1  |  0

TC R TD EP Attr R Length
Completer ID Cpl Status Byte Count
Requester ID R Lower Address

M
Tag

Memory (64 bit Address)

Memory (32 bit Address)
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Completion

Byte 0   … Byte 3
Byte 4   … Byte 7
Byte 8 … Byte 11
Byte 12 … Byte 15

Byte 0   … Byte 3
Byte 4   … Byte 7
Byte 8 … Byte 11

Byte 0   … Byte 3
Byte 4   … Byte 7
Byte 8 … Byte 11

Byte 0   … Byte 3
Byte 4   … Byte 7
Byte 8 … Byte 11
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Header Field # bits Description 

Address 32/64 32-bit or 64-bit Address 
Attr2 2 Attribute[1:0] = {High bit = Relaxed Ordering, Low bit = No Snoop} 

Attribute[1] = 1, PCIX Relaxed Ordering Model 
Attribute[1] = 0, PCI Strongly Ordered Model 
Attribute[0] = 1, No snoop required (cache coherency not required) 
Attribute[0] = 0, Snoop required (cache coherency required) 

Bus No. 8 Bus Number 
Byte Count4 11 Byte Count 
Completer ID 16 {Bus Number, Device Number, Function Number} of the Completer 
Cpl Status3 3 Completion Status Code 

        000b    = Successful Completion 
        001b    = Unsupported Request 
        010b    = Configuration Request Retry Status 
        100b    = Completer Abort 
        Others = Reserved 

Device No. 4 Device Number 
EP 1 1 if the Transaction Layer Packet data is poisoned and invalid 
Ext. Reg. No. 4 External Register Number 
First DW BE 4 First DW Byte Enable 
Fmt 2 Format 

        00b = 3DW header, no data 
        01b = 4DW header, no data 
        10b = 3DW header, with data 
        11b = 4DW header, with data 

Function No. 4 Function Number 
Last DW BE 4 Last DW Byte Enable 
Length 10 Transfer Length in DW 

        0000000001b = 1 DW 
                   … 
        1111111111b = 1023 DW 
        0000000000b = 1024 DW 

Lower Address 7 In memory read completions, the Lower Address field contains the 
byte address for the first enabled byte of data returned with the 
completion. The field is cleared for all other types of completions. 

M4 1 Byte Count Modified – Set for the first completion in a multiple 
completion sequence when the Byte Count field has been modified 
and contains the count for this completion only, not the total 
remaining 

R N/A Reserved 
Register No. 6 Register Number 
Requester ID 16 {Bus Number, Device Number, Function Number} of the Requester 
Tag 8 Used by a requester to uniquely identify its outstanding transactions 
TC5 3 Traffic Class to indicate Quality of Service 
TD6 1 1 if there is a digest field included in the Transaction Layer Packet 
Type 5 When combined with Fmt, indicates the transaction type 

Table 4.2.1.1.1 – PCI Express Headers 

                                                 
2 This thesis assumes that the system is Strongly Ordered and Cache Coherent, Attr[1:0] = 0b 
3 This thesis assumes that Completions are always successful 
4 This thesis assumes that a Completion will contain all data, M=0b and Byte Count = 0b 
5 This thesis assumes that Traffic Class is always a default 0b 
6 This thesis assumes that there is no digest and TD = 0b 
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TLP Fmt[1:0] Type[4:0] Description 
MRd 00 

01 
00000 Memory Read 

MWr 10 
11 

00000 Memory Write 

IORd 00 00010 IO Read 
IOWr 10 00010 IO Write 
CfgRd1 00 00101 Type 1 Configuration Read 
CfgWr1 10 00101 Type 1 Configuration Write 
CfgRd0 00 00100 Type 0 Configuration Read 
CfgWr0 10 00100 Type 0 Configuration Write 
Cpl 00 01010 Completion 
CplD 10 01010 Completion with Data 
Msg 01 10rrr Message Request, No Data 
MsgD 11 10rrr Message Request, With Data 

Table 4.2.1.1.2 – PCI Express Transaction Type 

 

4.2.1.1 PCIX Header 

 

The PCIEXRX module translates a PCI Express Transaction Layer Packet Header into a 

PCIX Header pictured in Figure 4.2.1.1. There is no concept of a “Header” in the PCIX 

architecture. In this thesis, “PCIX Header,” refers to a collection of PCIX control signals 

described in Table 4.2.1.1.1.  

 

Figure 4.2.1.1.1 – PCIX Header 
 
 

Field # of bits Description 
Read or Write 1 0 for a Read, 1 for a Write/Completion 
Burst or Dword 1 0 for Burst, 1 for Dword 
CMD 4 PCIX CMD field 
ATTRIBUTE 36 PCIX Attribute field 
Split 1 1 for a Completion only 
LastBE 4 Byte Enable for the last DW of data 
FirstBE 4 Byte Enable for the first DW of data 
ADDR 64 Address 

Table 4.2.1.1.1 – PCIX Header 
 

Read or Write Burst or Dword CMD ATTRIBUTE Split LastBE FirstBE ADDR
114   113           112   109  108                   73  72   71       68  67       64  63                              0

Read or Write Burst or Dword CMD ATTRIBUTE Split LastBE FirstBE ADDR
114   113           112   109  108                   73  72   71       68  67       64  63                              0
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The Read or Write field is determined by the PCI Express Transaction Layer Packet 

Header Fmt and Type fields – MRd, IORd, and CfgRd1 are classified as “Reads,” while 

MWr, IOWr, CfgWr1, Cpl, and CplD are classified as “Writes.” 

 

The PCI Express Transaction Layer Packet Header Length field determines the Burst or 

Dword field. Dword transactions have a 1 DW Length, otherwise the transaction is 

classified as a Burst transaction (more than one DW). 

 

The PCI Express Transaction Layer Packet Header Fmt and Type fields determine the 

CMD field. The translation is summarized in Table 4.2.1.1.2. 

 

PCI Express Command PCI Express 
Fmt, Type 

PCIX 
CMD 

PCIX Command 

Memory Read Request 00    00000 
01    00000 

0110 Memory Read DWORD 
Memory Read Block 

Memory Write Request 10    00000 
11    00000 

0111 Memory Write 
Memory Write Block 

IO Read Request 00    00010 0010 IO Read 
IO Write Request 10    00010 0011 IO Write 
Completion 00    01010 1100 Split Completion 
Completion with Data 10    01010 1100 Split Completion 
Type 1 Configuration Read 00    00101 1010 Configuration Read 
Type 1 Configuration Write 10    00101 1011 Configuration Write 

Table 4.2.1.1.2 – Translating Commands from PCI Express to PCIX 

 

As illustrated in Figure 4.2.1.1.2, the PCIX ATTRIBUTE field can be formatted in four 

different ways: Burst transaction, DWORD transaction, Configuration transaction, and 

Completion transaction. The Byte Enables are taken straight from the PCI Express First 

DW BE field. The No Snoop (NS) and Relaxed (RO) Ordering bits are taken from the 

PCI Express Attr field. The Tag field is mapped straight from the PCI Express Tag field. 
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The Requester Bus Number, Device Number, and Function Number are either mapped 

straight from the PCI Express Header or set to the appropriate values from the Bridge’s 

Configuration space. The Upper and Lower Byte Counts are calculated by shifting the 

PCI Express Header Length field left by two bits and then altering the value depending 

on the first and last DW byte enables. The M field, Completer Bus Number, Device 

Number, and Function Numbers are mapped straight from the PCI Express Header. 

 

Figure 4.2.1.1.2 – PCIX Attribute 

 

The Split field of the PCIX Header is set only if the PCI Express Transaction Layer 

Packet Header Fmt and Type fields indicate that the transaction is a Cpl or a CplD. This 

field differentiates a Split Completion from a PCIX Write. 

 

The LastBE and FirstBE fields are the negative enabled version of the PCI Express 

Transaction Layer Packet Header Last DW BE and First DW BE fields respectively.  

 

Byte Enables R Tag Requester
Bus No.

Requester
Device No.

Requester
Function No.

Secondary
Bus No.

35                    32 31  30 29  28      24  23              16  15                  11  10                       8   7  0

Configuration R R

Byte Enables R Tag Requester
Bus No.

Requester
Device No.

Requester
Function No. Reserved

35                    32 31  30 29  28      24  23              16  15                  11  10                       8   7  0
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The PCIX ADDR field contains a 64-bit version of the PCI Express Transaction Layer 

Packet Header Address field for Memory, IO, and Configuration transactions. However, 

the PCIX ADDR field takes on a different form for Split Completions, as pictured in 

Figure 4.2.1.1.3. All PCIX ADDR fields are mapped straight from the PCI Express 

Transaction Layer Packet Header: Relaxed Ordering bit (RO), Requester Bus Number, 

Requester Device Number, Requester Function Number, and the Lower Address. 

Figure 4.2.1.1.3 – PCIX ADDR field for Split Completions 
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Handling completions and non-posted transactions is nearly identical to handling posted 

transactions. 

 

TL_PCIEXRX_VC_TYPE[2:0] Selected Buffer 
001 Posted 
010 Non-posted 
100 Completion 

Table 4.2.3 – PCIEXRX Selection of Buffer 

 

4.2.4 Initialize and Update Flow Control Credits 

 

PCI Express includes the concept of flow control to ensure that PCI Express Receivers 

will always have buffer space to store incoming transactions. Most of the flow control 

functionality is implemented in the Transaction Layer Packet Interface. The details 

concerning the flow control implementation of the Transaction Layer Packet Interface 

will not be presented in this thesis. The flow control logic in the PCIEXRX module 

performs two functions: (1) initialize the flow control credits after system reset, and (2) 

update the flow control credits every time a buffer is freed. 

 

When the system has just been reset, the PCI Express Transaction Layer Packet Interface 

is initialized with the number of Header and Data flow control Credits that the Bridge can 

support for non-posted, posted, and completion packets. There is one flow control header 

credit value and one flow control data credit value for each transaction type – posted, 

non-posted, and completion. Since the Bridge only has one buffer for each type, all three 

flow control header credits are equal to one. The Bridge supports the maximum data 

payloads for each type – 1024 DW for posted and completion transactions, and 1 DW for 
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non-posted transactions. One data flow control credit is equivalent to 4 DW, or 16 Bytes. 

Since it is a performance advantage to advertise as many flow control credits as possible, 

the Bridge advertises infinite data flow control credits for posted, completion, and non-

posted transactions 

 

The PCI Express Transaction Layer Packet Interface indicates that the PCIEXRX module 

needs to initialize flow control credits by asserting TL_AL_NEED_CREDITS_VC0 for 

one cycle. The PCIEXRX module will immediately assert PCIEXRX_TL_*_CHANGED for 

one cycle with the appropriate flow control values on PCIEXRX_TL_*_CREDITS. 

 

In addition to initializing the flow control credits, the PCIEXRX Flow Control logic must 

also update the flow control credits whenever buffer space is freed. In the example 

presented in the timing diagram in Figure 4.2, a downstream posted transaction has been 

successfully transmitted on the PCIX side of the Bridge. 

DOWNBUF_PCIEXRX_POSTED_FREED is asserted for one cycle to indicate that a posted 

buffer has been freed, triggering PCIEXRX to update the posted PCI Express flow 

control credits by asserting PCIEXRX_TL_P0_CHANGED for one cycle with on header flow 

control credit, and infinite data flow control credits on PCIEXRX_TL_P0_CREDITS. 

 

4.3  BUF 

 

The BUF module provides the clock boundary between the PCI Express 250 MHz clock 

and the PCIX 133 MHz clock, as well as the interface between the Bridge logic and 
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physical memory. Incorporating a buffer interface rather than forcing other modules to 

directly access physical memory allows for a simpler interface to the buffers and provides 

flexibility in the choice of memory. Adding new buffers, changing buffer sizes, or 

changing the implementation from an SRAM to a register file will not affect the BUF 

interface. 

 

The BUF module pictured in Figure 4.3 contains three submodules: HEADERBUFFERS, 

DATABUFFERS, and BUFFERSTATUS. HEADERBUFFERS contains all three header 

buffers – one posted, one completion, and one non-posted. DATABUFFERS contains all 

three data buffers – one posted, one non-posted, and one completion. BUFFERSTATUS 

keeps track of which buffers are full and which are empty. 

Figure 4.3 – BUF Architecture 
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in this particular case, a latch implementation is more efficient in size and speed when 

compared to an SRAM. Data is written into a header buffer synchronously and read 

asynchronously, as illustrated in Figure 4.3.1. 

 

After a buffer is written to, it is guaranteed that the corresponding read enable (RE) will 

not assert until at least two cycles after the data is written and the write enable (WE) has 

fallen.  

Figure 4.3.1 – Header Buffer Implementation 
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buffer is 4 KB (256 rows that are 16 bytes wide), the completion data buffer is 4 KB (256 

rows that are 16 bytes wide), and the non-posted data buffer is 4 bytes. The posted and 

completion data buffers are large and most efficiently implemented with two-port 

SRAMs. One port of the SRAM is used as the write port and writes the data on DATAIN 

to address WRITEADDR when the WE write enable is asserted on a WRITECLK clock edge. 

The other port of the SRAM is used as the read port and reads the data at address 

READADDR. The non-posted data buffer is 4 bytes so it is implemented with latches. The 

final DATAOUT will contain the data from whichever buffer is read-enabled. 

Figure 4.3.2 – Data Buffer Implementation 
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Figure 4.3.3.1, transactions flow from the ACLK clock domain to the BCLK clock 

domain. The buffer status signals pass through the clock boundary using a 

HANDSHAKE or a CYCLEHANDSHAKE module. Refer to Table 4.3.3 for a 

description of the posted buffer status signals, which are similar to the completion and 

non-posted buffer status signals. 

Figure 4.3.3.1 – BUFFERSTATUS Implementation 
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The HANDSHAKE module illustrated in Figure 4.3.3.2 transfers data from the TX clock 

boundary to the RX clock boundary. When TXDATA is first asserted, DATA will stay 

asserted until the data has crossed the clock boundary, signified by RXDATA being high. 

Signals that cross the clock boundary are latched twice at the destination to exponentially 

reduce a chance of metastability. The timing of the signals in the Handshake 

Implementation can be found in Figure 4.3.3.3. 

Figure 4.3.3.2 – Handshake Implementation 

Figure 4.3.3.3 – Handshake Timing Diagram 
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Figure 4.3.3.4 – Cycle Handshake Implementation 
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4.4  ARB 

 

The ARB Arbiter module tells the BUF module which transaction to transmit next 

according to the PCI / PCIX / PCI Express Ordering Rules presented in Table 4.4. The 

columns represent the first transaction received and the rows represent the second 

transaction received. 

 

 

Table 4.4 – PCI Express, PCI, PCIX Ordering Rules 

 

The table entries in Table 4.4 indicate whether or not the second transaction (row) should 

be able to pass the first transaction (column). A “Yes” entry means that the second 

transaction must be allowed to pass the first in order to avoid deadlock, a “No” means 

that the second transaction must never pass the first transaction in order to support the 
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producer-consumer strong ordering model, and a “Y/N” indicates that it doesn’t matter 

whether or not the second transaction passes the first. The following is an explanation of 

select entries from Table 4.4: 

 

Row A, Column 2 

(a) A Memory Write or Message Request with the Relaxed Ordering Attribute bit clear 

must not pass any other Memory Write or Message Request 

(b) If the Relaxed Ordering Attribute bit is set there are no ordering requirements. 

Row A, Columns 5 and 6 

(a) In the upstream direction, it does not matter whether or not Memory Writes and 

Message Requests can pass Completions. 

(b) In the downstream direction, Memory Writes and Message Requests must pass 

Completions to avoid deadlock. 

Row D, Column 2 

(a) If the Relaxed Ordering Attribute bit is clear, a Read Completion cannot pass a 

Memory Write or Message Request. 

(b) If the Relaxed Ordering Attribute bit is set, a Read completion can pass a Memory 

Write or Message Request. 

Row D, Column 5 

(a) Read Completions associated with different Read Requests have no ordering 

requirements. 

(b) Read Completions for one request (same Transaction ID) must return in address 

order. 
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4.4.1  Ordering Rules 

 

The original PCI / PCIX / PCI Express Ordering Rules table is pictured in Table 4.4. To 

reduce the design complexity of the Arbiter, the PCI Express and PCIX Ordering Rules 

have been simplified in this thesis. The simplified Ordering Rules are presented in Table 

4.4.1 and show what is implemented in the PCI Express to PCIX Bridge. 

 

Row Pass Column? Posted Completion Non-Posted 

Posted No Yes Yes 

Completion No No Yes 

Non-Posted No No No 

Table 4.4.1 – Simplified PCI Express, PCI, PCIX Ordering Rules 

 

PCI Express Flow Control requires that the Bridge differentiate between posted 

transactions, completions, and non-posted transactions. If there are multiple pending 

downstream transactions, posted transactions will have the highest priority, followed by 

completions, and finally by non-posted requests. 

 

Consider the following downstream path scenario: (1) PCI Express Completion C is 

received, (2) PCIX Master Write attempts to submit C but the target issues a retry. 

Simultaneously, PCI Express Posted Transaction P is received. (3) Now there are two 

pending transactions P and C. According to the Ordering Rules, P must pass C in order 

to prevent deadlock. Therefore, the Arbiter will assert P as the next transaction. 
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4.4.2 Functionality 

Figure 4.4.2 – ARB Timing Diagram 
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 Figure 4.5 – MWRITE Timing Diagram 
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transaction is a Split Completion, MWRITE will differentiate it from a write by asserting 

MWRITE_WS_BURST_SPLIT with either MWRITE_WS_BURST_START or 

MWRITE_WS_DWORD_START. 

 

4.5.2 Transmit Data 

 

In Figure 4.5, MWRITE_WS_DATA_OUT will be valid while MWRITE_WS_BURST_START 

or MWRITE_WS_DWORD_START is asserted. MWRITE_WS_DATA_OUT will initially 

contain the first Qword (8 bytes) of data. If WS_MWRITE_GET_DATA_PCIX is high on the 

rising edge of the PCLK133 clock, then MWRITE_WS_DATA_OUT will immediately be 

updated to the next Qword and MWRITE_WS_DATA_COUNT will be updated to reflect the 

number of Qwords left to transmit. 

 

If MWRITE is mastering a burst transaction, it will also transmit the corresponding byte 

enables for the first and last four bytes. Byte enables for the intermediate Dwords in-

between will always be enabled. If MWRITE is mastering a Dword transaction, however, 

the byte enable will be embedded in the PCIX Attribute MWRITE_WS_ATTRIBUTE. 

 

4.5.3 End Transmission 

 

The PCIX Write Server (WS) ends transmission by asserting 

WS_MWRITE_ENDING_SESSION for one cycle, causing MWRITE to deassert 

MWRITE_WS_BURST_START or MWRITE_WS_DWORD_START. MWRITE will 
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immediately inform DOWNARB that the transaction has finished by asserting 

MWRITE_DOWNARB_SUCCESS or MWRITE_DOWNARB_RETRY for one cycle. 

 

If WS_MWRITE_RETRY is asserted with WS_MWRITE_ENDING_SESSION, MWRITE tells 

DOWNBUF that the transaction needs to be retried by asserting 

MWRITE_DOWNBUF_RETRY for one cycle. However, if WS_MWRITE_RETRY not 

asserted with WS_MWRITE_ENDING_SESSION, MWRITE tells DOWNBUF that the 

transaction was successful by asserting MWRITE_DOWNBUF_SUCCESS for one cycle. 

 

4.6  MREAD 

 

The MREAD module initiates a PCIX read and informs the DOWNBUF and 

DOWNARB modules whether the transaction was successful or needs to be retried. 

MREAD assumes that it will never receive PCIX immediate read data because the PCIX 

target will always split the transaction. In Figure 4.6, MREAD is mastering a burst read. 
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Figure 4.6 – MREAD Timing Diagram 
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4.6.2 End Transmission 

 

The PCIX Read Server ends the transaction by asserting RS_MWRITE_ENDING_SESSION 

for one cycle, causing MREAD to deassert MREAD_RS_BURST_START or 

MREAD_RS_DWORD_START and tell DOWNARB that the transaction has finished by 

asserting MREAD_DOWNARB_DONE for one cycle. 

 

If RS_MREAD_RETRY is asserted with RS_MREAD_ENDING_SESSION, MREAD tells 

DOWNBUF that the transaction needs to be retried by asserting 

MREAD_DOWNBUF_RETRY for one cycle. However, if RS_MREAD_RETRY is not asserted 

with RS_MREAD_ENDING_SESSION, MREAD tells DOWNBUF that the transaction was 

successful by asserting MREAD_DOWNBUF_SUCCESS for one cycle. 
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4.7  DECODER 

 

Every time there is a new transaction on the PCIX bus, the DECODER module examines 

the CMD and ADDR to determine if the Bridge should claim the transaction, and which 

PCIX port should handle the transaction. 

Figure 4.7 – Decoder Timing Diagram 
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outside of the IO address space designated by IOSTART and IOEND, or (2) 

ED_DECODER_CMD is a memory transaction and ED_DECODER_ADDR is outside of the 

Memory address space designated by MEMSTART and MEMEND. Configuration 

transactions are not considered because they do not travel upstream. 

 

Registers in the Bridge’s Configuration space usually define the I/O address space and 

Memory address space. Configuration space is not supported in this thesis, therefore the 

address windows for the I/O and Memory Address spaces are hard-wired with IOSTART, 

IOEND, MEMSTART, and MEMEND. IOSTART indicates the lower bound address of the 

Bridge’s I/O address space whereas IOEND indicates the upper bound address. 

MEMSTART indicates the lower bound address of the Bridge’s Memory address space 

whereas MEMEND indicates the upper bound address. 

 

  

4.7.2 Select Port and Transaction Type 

 

The DECODER has three ports to choose from based on the value of ED_DECODER_CMD 

– the Slave Read (RF), the Slave Write (WF), and the Synchronous Port (SP). On a 

transaction hit, the DECODER will select a port by asserting DECODER_ED_WF_SEL, 

DECODER_ED_RF_SEL, or DECODER_ED_SP_SEL. 

 

Based on the value of ED_DECODER_CMD, the DECODER differentiates a memory from 

an I/O transaction, and a read from a write by asserting DECODER_ED_MEM_CYC or 



 51

DECODER_ED_IO_CYC, and DECODER_ED_RD_CYC or DECODER_ED_WR_CYC. The 

Bridge splits all non-posted transactions by asserting DECODER_ED_WF_PMRS_SPLIT. 

 

4.8  SWRITE 

 

The SWRITE module receives and translates PCIX writes into a PCIX Express 

Transaction Layer Packet, and sends the Transaction Layer Packet to the UPBUF 

upstream buffers. In Figure 4.8, SWRITE receives a PCIX write with 8 DWs of data. 

Figure 4.8 – SWRITE Timing Diagram 
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Figure 4.8 displays the reception of a pending posted transaction, indicated by the 

assertion of WF_SWRITE_TRANS_PENDING. Since UPBUF_SLAVE_POSTED_FREE is high 

to indicate that the posted buffer is free, SWRITE will accept the transaction by asserting 

SWRITE_WF_READY. However, if the buffer is not free, SWRITE will tell the PCIX 

Interface to retry the transaction by asserting SWRITE_WF_RETRY.  

 

4.8.2 Buffer Selection 

 

SWRITE will tell UPBUF which buffer to store the transaction in by asserting 

SWRITE_UPBUF_POSTED, SWRITE_UPBUF_COMPLETION, or 

SWRITE_UPBUF_NONPOSTED. Once asserted, these signals will remain high until 

WF_SWRITE_TRANS_PENDING is deasserted. 

 

4.8.3 PCIX / PCI Express Header 

 

When SWRITE accepts the PCIX transaction, it will form a PCI Express header from the 

PCIX Command, Address, Byte Enables, and Attribute taken from 

WF_SWRITE_CMD_OUT, WF_SWRITE_ADD_OUT, WF_SWRITE_BE_N_OUT, and 

PS_ATTRIBUTE_STATE. SWRITE will then drive the PCI Express header on 

SWRITE_UPBUF_HEADER and assert SWRITE_UPBUF_HEADER_PUT for one cycle. 
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The PCIX to PCI Express translation is a backwards translation of the PCI Express to 

PCIX translation outlined in Section 4.2.1. Some PCI Express Header fields do not exist 

in PCIX, however, and are hard-wired to the values specified in Table 4.8.3. 

 

 

 
Table 4.8.3 – Hard-wired PCI Express Fields in Upstream Translation 

 

4.8.4 PCIX / PCI Express Data 

 

SWRITE maps WF_SWRITE_PUT_DATA to SWRITE_UPBUF_DATA_PUT, and 

WF_SWRITE_DATA_OUT to SWRITE_UPBUF_DATA. A new QWORD is sent on 

SWRITE_UPBUF_DATA_OUT with every assertion of SWRITE_UPBUF_DATA_PUT. 

 

4.8.5 End of Reception 

 

Transmission ends when WF_SWRITE_TRANS_PENDING deasserts, causing SWRITE to 

deassert SWRITE_WF_READY. In the example in Figure 4.8, SWRITE will stop writing to 

the buffer by deasserting SWRITE_UPBUF_POSTED, and signify that the posted buffer is 

no longer empty by deasserting UPBUF_SLAVE_POSTED_FREE. 

 

Traffic Class (TC) Hardwired to 0 
Digest (TD) Hardwired to 0 
Poisoned (EP) Hardwired to 0 
Completion Status Code (Cpl Status) Hardwired to 0 
Byte Count Modified (M) Hardwired to 0 
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4.9  SREAD 

The SREAD module receives and translates PCIX reads into a PCIX Express Transaction 

Layer Packet, and sends the Transaction Layer Packet to the UPBUF upstream buffers. 

 Figure 4.9 – SREAD Timing Diagram 
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SREAD must tell UPBUF which buffer to store the transaction by asserting 

SREAD_UPBUF_POSTED, SREAD_UPBUF_NONPOSTED, or SREAD_UPBUF_COMPLETION 

until RF_SREAD_TRANS_PENDING falls. 

 

4.9.3 PCIX / PCI Express Header 

 

When SREAD accepts a PCIX transaction, it will form a PCI Express header from 

RF_SREAD_CMD_OUT and RF_SREAD_ADD_OUT. SREAD will then drive the PCI 

Express header on SREAD_UPBUF_HEADER and assert SREAD_UPBUF_HEADER_PUT for 

one cycle. 

 
4.9.4 End of Reception 

 

Transmission ends when RF_SREAD_TRANS_PENDING deasserts, causing SREAD to 

deassert SREAD_RF_SPLIT. In the example in Figure 4.9, SREAD will stop writing to the 

buffer by deasserting SREAD_UPBUF_NONPOSTED, and signify that the non-posted buffer 

is no longer empty by deasserting UPBUF_SLAVE_NONPOSTED_FREE. 
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4.10 SDWORD 

 

The SDWORD module receives and translates PCIX DWORD transactions into a PCIX 

Express Transaction Layer Packet, and sends the Transaction Layer Packet to the UPBUF 

upstream buffers. 

Figure 4.10 – SDWORD Timing Diagram 
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buffer by asserting SDWORD_UPBUF_NONPOSTED and split the transaction by asserting 

SDWORD_SP_SPLIT with SDWORD_SP_READY. However, if the non-posted buffer is not 

free, SDWORD will tell the PCIX Interface to retry the transaction by asserting 

SDWORD_SP_RETRY. 

 

Receiving a Read – Only PCIX IO writes and reads are received by the SDWORD 

module. Therefore, receiving a read is almost identical to receiving a write except that 

SP_SDWORD_RD_TRANS_INIT is used in place of SP_SDWORD_WR_TRANS_INIT. 

 

4.10.2 PCIX / PCI Express Header 

 

SDWORD will form a PCI Express header from SP_SDWORD_CMD_OUT and 

SP_SDWORD_ADDR. SDWORD will then drive the PCI Express header on 

SDWORD_UPBUF_HEADER and assert SDWORD_UPBUF_HEADER_PUT for one cycle. 

 

4.10.3 PCIX / PCI Express Data 

 

When receiving a DWORD write, SDWORD maps SP_SDWORD_PUT_DATA to 

SDWORD_UPBUF_DATA_PUT, and SP_SDWORD_DATA_OUT to SDWORD_UPBUF_DATA.  

 

4.10.4 End of Reception 
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Transmission ends when SP_SDWORD_WR_TRANS_INIT or 

SP_SDWORD_RD_TRANS_INIT is deasserted, causing SDWORD to deassert 

SDWORD_SP_READ and SDWORD_SP_SPLIT. In the example in Figure 4.10, SDWORD 

will stop writing to the buffer by deasserting SREAD_UPBUF_NONPOSTED, and signify 

that the non-posted buffer is no longer empty by deasserting 

UPBUF_SLAVE_NONPOSTED_FREE. 
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4.11 PCIEXTX 

 

The PCIEXTX module transmits PCI Express Transaction Layer Packet s by obtaining a 

grant from the Transaction Layer Packet Interface, transferring data, and telling UPBUF 

and UPARB when the transaction is finished. In Figure 4.11, PCIEXTX is transmitting a 

posted transaction with a 4DW data payload. 

 Figure 4.11 – PCIEXTX Timing Diagram 
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If UPBUF_PCIEXTX_POSTED and TL_PCIEXTX_TX_READY are both high, PCIEXTX will 

ask the Transaction Layer Packet Interface to send a posted transaction by asserting 

PCIEXTX_TL_ARB_ENABLE and PCIEXTX_TL_P0_VAL, and driving the length of the 

packet in multiples of 16 on PCIEXTX_TL_PD0_LEN. PCIEXTX obtains the grant when 

TL_PCIEXTX_GRANT[0] is asserted for one cycle, and responds by deasserting 

PCIEXTX_TL_ARB_ENABLE and PCIEXTX_TL_P0_VAL. 

 

4.11.2 Transmitting PCI Express Header and Data 

 

PCIEXTX_TL_DATAVALID must stay asserted while PCIEXTX is transmitting. The PCI 

Express header and data are both transferred on PCIEX_TL_DATA. If the header is 4 DW 

long, then PCIEXTX_TL_DATAVALID will be asserted with the header on PCIEX_TL_DATA. 

However, if the header is 3 DW long, then PCIEXTX_TL_DATAVALID will be asserted 

with the header and the first 4 bytes of data.  

 

 

Figure 4.13.2 – Data format for a 3DW PCI Express Header 

 



 61

If TL_PCIEXTX_GET is asserted, PCIEXTX provides the subsequent 16 bytes of data. 

TL_PCIEXTX_GET is mapped straight to PCIEXTX_UPBUF_GET. 

 

4.11.3 Ending the Transaction 

 

PCIEXTX asserts PCIEXTX_TL_END coincident with the final 16 bytes of data. On the 

cycle after TL_PCIEXTX_GET is asserted, PCIEXTX will deassert 

PCIEXTX_TL_DATAVALID and PCIEXTX_TL_END. The PCIEXTX will then inform 

UPBUF that the transmission was successful by asserting PCIEXTX_UPBUF_SUCCESS for 

one cycle. 
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5  Verification 

The verification portion of this thesis posed quite a challenge. The Bridge 

implementation ended up with 1150 input ports and 1061 output ports due to the 

interfaces of the vendor’s PCI Express and PCIX Interfaces. With only one person to 

create a verification environment from scratch, a hierarchical approach was taken to find 

errors early since bugs are difficult to find and fix at the system level. Figure 5 outlines 

the continuous verification efforts taken in this thesis. 

 Figure 5 – Verification Development Timeline 
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5.1 Verification Basics 

 

5.1.1 Types of Tests 

 

Both black box and glass box testing was used in this thesis. A black box test monitors 

the IOs of the DUT (Device Under Test). For a given set of inputs, a black box test will 

ensure that the correct output is driven by the DUT. Black box tests were used throughout 

the thesis. 

 

A glass box test monitors the internal signals as well as the IOs. Glass box tests are more 

thorough and more time-consuming to write and simulate than black box tests. Therefore, 

automated glass box tests were only used to verify individual modules. The final Bridge 

was too complex to automate monitoring the Bridge’s many internal signals.  

 

5.1.2 Test Selection - Equivalence Classes and Boundary Cases 

 

Careful consideration must be taken when selecting tests. It is impossible to test every 

possible thing that can happen, even at the module level. Verification engineers typically 

have limited time and resources to verify a design, therefore it is desirable to select tests 

that will maximize the chance of finding a bug. 

 

Similar tests can be grouped into equivalence classes. When testing a device, one 

typically runs a few tests from each equivalence class. Consider a scenario where the 
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DUT (Device Under Test) is a module that determines whether or not a triangle is 

equilateral by taking in three integer measurements of the angles, and output a true or a 

false. Some equivalence classes for testing such a module might include Equilateral, Not 

Equilateral, Not a Triangle, etc. Once the equivalence classes have been identified, our 

next step is to determine which test(s) should represent an equivalence class. 

 

Tests that contain the boundary cases of an equivalence class are the most likely to find a 

bug. Referring back to the triangle example, some boundary cases for the Not Equilateral 

equivalence class might include a triangle that is almost equilateral (i.e. 60o, 59 o, 61 o), 

and a triangle with angles that border around the valid ranges of inputs and outputs (i.e. 

178 o, 1 o, 1 o). 
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5.2 Module Tests 

 

Glass box and black box module level tests are implemented with Verilog drivers and 

examined through waveform simulation. The correct functionality of the module is 

documented in the test file. 

 
 

Table 5.2 -  Module-level Tests 
 

Module Equivalence Class Tests 
Memory Read 32-bit Address 

64-bit Address 
0 DW requested (min size) 
1 DW requested (min boundary) 
4 DW requested (PCI Express Transaction Layer Packet 
Interface boundary) 
5 DW requested (PCI Express Transaction Layer Packet 
Interface boundary) 
1024 DW requested (max size) 

Memory Write 32-bit Address 
64-bit Address 
0 DW written (min size) 
1 DW written (min boundary) 
4 DW written (PCI Express Transaction Layer Packet 
Interface boundary) 
5 DW written (PCI Express Transaction Layer Packet 
Interface boundary) 
1024 DW written (max size) 

Configuration Read Configuration Type 1 Read 
Configuration Write Configuration Type 1 Write 
IO Read IO Read – 1 DW requested 
IO Write IO Write – 1 DW written 
Completion with Data 1 DW sent (min size) 

4 DW sent (PCI Express Transaction Layer Packet 
Interface boundary) 
5 DW sent (PCI Express Transaction Layer Packet 
Interface boundary) 

Completion without Data Completion without Data 

PCIEXRX 

Flow Control Posted Buffer freed 
Non-posted Buffer freed 
Completion Buffer freed 

BUF Write to and Read from 
Header Buffer 

Non-posted – 3 DW Header 
Non-posted – 4 DW Header 
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 Write to and Read from 
Data Buffer 
 

Posted – 1 DW Data (min size) 
Posted – 3 DW Data (PCIX Interface boundary) 
Posted – 4 DW Data (PCI Express Transaction Layer 
Packet Interface boundary) 
Posted – 5 DW Data (PCI Express Transaction Layer 
Packet Interface boundary) 
Completion - 1024 DW data (max data allowed) 

Single Pending 
Transactions 

Posted 
Completion 
Non-posted 

ARB 

Multiple Pending 
Transactions 

2 pending transactions 
3 pending transactions 
3 pending transactions + new ones coming in as old 
ones are being transmitted 

Successful Burst Write 64-bit Address 
32-bit Address 
2 DW Data (PCIX Interface boundary) 
4DW Data (PCIX Interface boundary) 
512 DW Data (PCIX Interface boundary) 
> 512 DW Data (PCIX Interface boundary) 

Successful Dword Write Dword Write 
Successful Split 
Completion 

Split Completion with 512 DW of Data 

MWRITE 

Retry PCIX issues a retry 
Successful Burst Read 64-bit Address 

32-bit Address 
Successful Dword Read 32-bit DW Read 

MREAD 

Retry Retry 
Target != Bridge Memory Address Space 

IO Address Space 
Split Completion 

Target = Bridge and there 
is a free buffer 

Memory Read or Write 
IO Read or Write 
Split Completion 

DECODER 

Target = Bridge and there 
is no free buffer 

Memory Read or Write 
IO Read or Write 
Split Completion 

SWRITE Memory Write 2 DW Data (PCIX Interface boundary) 
4DW Data (PCIX Interface boundary) 
512 DW Data (PCIX Interface boundary) 
> 512 DW Data (PCIX Interface boundary) 

 Split Completion 2 DW Data (PCIX Interface boundary) 
4DW Data (PCIX Interface boundary) 

SREAD Memory Read Memory Read 
SDWORD IO IO Read 

IO Write 
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Posted 3DW Header 
4DW Header 
0 DW Data (min size) 
1 DW Data (PCI Express Transaction Layer Packet 
Interface boundary) 
2 DW Data (PCI Express Transaction Layer Packet 
Interface boundary) 
1024 DW data (max size) 

Non-Posted 4DW header 
3DW header 
0 DW data 
1 DW data 

Completion with Data 1 DW data (PCI Express Transaction Layer Packet 
Interface boundary) 
2 DW data (PCI Express Transaction Layer Packet 
Interface boundary) 

PCIEXTX 

Completion without Data 0 DW data 
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5.3 Bridge Architecture Tests 
 

After all the modules in the architecture were implemented and tested at the module 

level, modules were incrementally combined and black box tested. The final result was 

two separate blocks, a downstream block translating from PCI Express to PCIX, and an 

upstream block translating from PCIX to PCI Express. Black box Bridge Architecture 

tests are written as Verilog drivers. The correct functionality of the Downstream and 

Upstream modules is documented in the test files. 

 
 

Module Equivalence Class Tests 
Memory Read 32-bit Address 

64-bit Address 
Memory Write 32-bit Address 

64-bit Address 
4 DW data 
5 DW data 

Configuration Read Configuration Type 1 Read 
Configuration Write Configuration Type 1 Write 
IO Read IO Read 
IO Write IO Write 

DOWNSTREAM 

Completion 0 DW data 
1024 DW data 

Memory Read 32-bit Address 
Memory Write 1 DW data 

2 DW data 
12 DW data 

UPSTREAM 

Completion 1 DW data 
2 DW data 
12 DW data 

Table 5.3 - Bridge Architecture Tests 
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5.4 System Level Verification 
 

After the Bridge Architecture had been verified, a verification environment was created 

to test the Bridge at the system level. The complete verification environment, pictured in 

Figure 5.4, emulates how the bridge will be utilized in a PCI Express / PCIX System. 

  Figure 5.4 – The Complete System Level Verification Environment 
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Building the System Level Verification Environment took approximately five weeks. It 

was built incrementally in four stages: (1) PCIX core, (2) PCIX Models and Vera 

Environment, (3) PCI Express Core Stack, and (4) PCI Express Verilog Driver and 

Monitor. 

 

5.4.1 The PCIX Core 

 

Piecing the PCIX core together and combining it with the Bridge was the first stage in 

creating the System Level Verification Environment. The PCIX core consists of three 

components: (1) the PCIX_O containing the logic to interface to the PCIX bus, (2) the tri 

containing many tri-state buffers that interface to the bi-directional PCIX bus signals, and 

(3) the pull-ups containing a few weak pull-ups that drive the bus high when no device is 

active on the bus. 

 

Figure 5.4.1 – Stage One of the System Level Verification Environment Development 
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After connecting the Bridge to the PCIX core, a piece of Verilog was developed to drive 

downstream transactions through the Bridge, through the PCIX core, and onto the PCIX 

bus where correct behavior of the PCIX bus was verified using a protocol checker.  

 

5.4.2 The PCIX Models and Vera Environment 

 

Stage 2 involved building and attaching a PCIX Vera environment to the PCIX bus. The 

existence of massive and unfamiliar files in the PCIX verification environment increased 

the difficulty of Stage Two.  

 

 Figure 5.4.2 – Stage Two of the System Level Verification Environment Development 
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received. When Slave 1 or Slave 2 receives a read, they automatically issue the Split 

Completion without consulting the Vera. An independent Behavioral Protocol Checker 

and PCIX Arbiter ensure that the PCIX bus protocol is correctly driven on the bus by 

only one device at a time. 

 

5.4.3 Building the PCI Express Stack 

 Figure 5.4.3 – Stage Three of the System Level Verification Environment Development 

 

A custom PCI Express Stack was not available that met the needs for this verification 

environment. Therefore multiple PCI Express cores were assembled into a PCI Express 

Stack from scratch. The RTL directories for each component needed for the PCI Express 

Stack was obtained. Almost all the IOs of the components matched up directly. 

Unfortunately, this stage required extra time and work due to the few IOs that did not 

match up, the ongoing development of the PCI Express cores, and unfamiliarity with the 

internal interfaces. 

 

Two copies of the PCI Express Stack are used in the verification environment. One Stack 

is located upstream to the PCI Express link and is configured as a Root Complex. The 
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other stack is located downstream of the PCI Express link and configured as a bridge 

port. 

 

5.4.4 The PCI Express Verilog Driver and Monitor 

 Figure 5.4.4 – Stage Four of the System Level Verification Environment Development 

 

Creating a piece of code to interface to the Root Complex PCI Express Stack was the 

final step taken in the development of the verification environment. The original plan was 

to incorporate existing Vera from an existing PCI Express Verification Environment. Due 

to time constraints and differences between the PCI Express and PCIX Vera 

environments, the idea of combining the two environments was determined to be too 

risky. Instead, a piece of Verilog code was developed to stimulate and observe the Root 

Complex PCI Express Stack. 

 

To minimize the complications caused by the multiple clock domains, verification was 

limited to one active transaction at a time. Therefore, the PCI Express Verilog driver 

waits until it has successfully received all planned upstream transactions before it sends 

any downstream transactions. 
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5.4.5 System Level Tests 

 

The PCIX Vera and PCI Express Verilog modules initiate the transactions listed in Table 

5.4.5. The list is in order of execution.  

 
Transaction Indication that Transaction is successful 

(1) Upstream Memory Write Received by the RC PCI Express Stack 
Transaction Layer Packet Interface 

(2) Upstream Memory Read Received by the RC PCI Express Stack 
Transaction Layer Packet Interface 

(3) Downstream Completion Monitor the PCIX bus with a waveform viewer 
(4) Downstream Memory Write Check the Memory space of PCIX Slave 1 
(5) Downstream Memory Read An (6) Upstream Completion is received by the 

RC PCI Express Stack Transaction Layer Packet 
Interface 

(6) Upstream Completion Received by the RC PCI Express Stack 
Transaction Layer Packet Interface 

(7) Downstream IO Write Check the IO space of PCIX Slave 1 
(8) Downstream Configuration Write Monitor the PCIX bus with a waveform viewer 

Table 5.4.5 – System Level Tests 
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6  Synthesis 

6.1 Specifications 

 

A Design Compiler was used to synthesize the PCIEXB Verilog code into a gate-level 

netlist targeting a current IBM ASIC technology. The Bridge was synthesized with 

voltages and temperatures specified by IBM Methodology. 

 

Synthesizing the Bridge involved making TCL scripts that were read by the Design 

Compiler. The scripts set up the wire load model, ideal networks on the two clocks, a 

maximum fanout of 20, and timing constraints on the IOs. The scripts also analyzed, 

formatted, compiled, uniquified, and flattened all of the Bridge RTL from the lowest 

level module and moving up in hierarchy. The scripts instruct the Design Compiler to 

optimize for area and then issue a timing report. The timing report presents the results of 

static timing analysis by the Design Compiler and indicates the success or failure of 

synthesis against the given timing assertions. A Verilog netlist representation of the 

Bridge is the final result of the synthesis. 

 

6.2 Tools 

Some difficulty was encountered when using the Design Compiler. Figure 6.2.1 shows 

the hardware that was represented by the RTL. A signal is outputted from the BUF 

module and inputted to both the MWRITE and the MREAD. The MWRITE and the 
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MREAD rename the signal and send it their corresponding PCIX port. In essence, wire a 

connection. 

Figure 6.2.1 – Architecture Represented by the RTL 

 

Due to a bug in the tool, the netlist that resulted from synthesis had a combinational 

feedback loop as pictured in Figure 6.2.2. This appeared to be due to incrementally 

mapping and compiling the modules in order of hierarchy. Unfortunately, this defect in 

the tool forced a change in the synthesis TCL script to flatten the entire hierarchy and 

synthesize the entire Bridge in a single compile. The optimized area reported in Section 8 

of this thesis could have been further optimized if it were not for this bug in the tool. 

Figure 6.2.2 –Synthesis Result 
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6.3 Techniques to Avoid Synthesis Headaches 

 

Many inexperienced engineers often run into problems with synthesis during their first 

design project. Knowing this is the case, efforts were made to fix these mistakes early on 

in the development process. 

 

Synthesis Headache Prevention Tip #1 – Coding Style 

Coding style was kept simple and consistent. All modules were organized, formatted, and 

documented in the same fashion. Combinational logic was coded in assign statements 

rather than in an always block for multiple reasons. First of all, it prevented any inferred 

latches in my code. Second of all, using assign statements is less verbose than an always 

block and results in code that is easier to read and is therefore easier to debug. Verilog 

always blocks were only used to instantiate latches. 

 

Synthesis Headache Prevention Tip #2 – Synthesize Early and Often 

Synthesis was utilized after completing the first module – PCIEXRX. This fixed any 

undesirable coding habits that would result in un-synthesize-able code and prevented the 

same mistakes from being made on the rest of the modules. 
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7  Static Timing Analysis 

7.1 Background 

Section 7.1 of this thesis is an excerpt from Section 8.1 of Hardware Implementation of a 

Low-Power Two-Dimensional Discrete Cosine Transform by Rajul Shah. 

 

Static timing analysis, performed by the IBM static timing tool, ensured that the designed 

hardware functioned properly with the timing and electrical constraints of the system. 

Four different path types were analyzed by the timing tool: primary inputs to primary 

outputs, primary inputs to a register, register to register, and register to primary outputs. 

For each of these path types, the tool checked that data arrived at its destination in time 

(setup time) and that it stayed steady for the required time (hold time). This was 

determined by slack measurements, or relations between the Required Arrival Times 

(RAT) and the Actual Arrival Time (AT). Both the RAT and AT values differ for early 

mode and late mode tests. Negative slacks indicated static timing failures, while positive 

slacks indicated the hardware would function properly for that path. Of course the results 

of these tests were dependent on the assertions provided. 

 

The setup tests were checked in late mode or long path analysis. The slack, in late mode 

analysis, is calculated as RAT-AT. In this mode, the latest arrival times are propagated to 

find the longest path delays. If this slowest path is too long, then the AT will be larger 

than the required time of arrival. In this case, data may not reach its destination in time, 

thereby inhibiting the hardware from running at the specified clock frequency. 
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Early mode, or short, fast path analysis, identified hold time violations. Slack times, in 

early mode analysis, were equal to AT-RAT. The AT was calculated by propagating the 

earliest cumulative arrival times for a path. In a fast path, the new signal may arrive too 

quickly, or before the RAT. The RAT for the early mode case is earliest time that a signal 

can change after the clock edge. These problematic paths create negative slack time and 

could cause incorrect hardware operation. In these cases, a race condition could occur, 

where data would be stored from the next clock cycle rather than from the current clock 

cycle. 

 

The static timing tool also conducted electrical violation tests. For each element 

instantiated from the standard library, the tool compared its minimum and maximum 

specified load capacitances with its load capacitance in the design. The tool did the same 

comparisons for minimum and maximum slew values as well. 

 

7.2 Assertions 

 

A TCL script was created containing all timing assertions and constraints to be applied to 

the Bridge. The values were dependent on the timing constraints of the PCI Express 

Cores provided by Peter Jenkins and Scott Vento, as well as the PCIX core in PCIX only 

mode provided by Louis Stermole. These requirements are made to reduce timing 

violations in a System On Chip environment. 
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The clock jitter was set to a conservative default value of 0.4 ns. There are two clocks in 

the Bridge: PCLK250 running at 250 MHz to correspond to the PCI Express Transaction 

Layer Packet Interface, and PCLK133 running at speeds of up to 133 MHz to correspond 

to the PCIX clock frequency capabilities. The clock transitions were set to 0.3 ns. Any 

signals that cross the clock boundary were specified as false paths since the timing paths 

on those signals will change with the variance of the two clocks. 

 

The delay for all Bridge inputs was specified in the TCL script to indicate how long it 

will take for that input to be valid after that domain’s rising clock edge. For the PCLK250 

inputs from the PCI Express interface, input delays ranged between 0.6ns to 2.0ns and 

input transitions were set to 0.7 ns. For the PCLK133 inputs from the PCIX interface, 

input delays ranged between 0.75ns to 6.70 ns and input transitions were set to 0.1 ns. 

 

The maximum delay for all outputs was also specified in the TCL script. The PCIEXB 

must meet these timing requirements to ensure that customer hardware will be able to 

meet their timing requirements. For the PCLK250 outputs to the PCI Express interface, 

maximums output delays ranged from 0.6ns to 2ns. For the PCLK133 outputs to the 

PCIX interface, maximum output delays ranged from 2ns to 5 ns. For the outputs to the 

SRAM, maximum output delays ranged from 1ns to 2ns. 

 

The maximum capacitances for all inputs were set to a default value of 0.2 pF. The load 

capacitances on the outputs were set to a default value of 0.3 pF. The maximums fanout 

was set to a default value of 20. Defining the maximum capacitive load values allows the 



 81

IBM timing tool to ensure that the PCI Express and PCIX cores can drive the Bridge 

inputs, and that the Bridge could drive the gates of the PCI Express and PCIX cores. 

 

7.3 Modifications 

 

Seven modifications were made to the RTL in order to meet static timing. The 

modifications made were caused by timing failures that can be classified into three 

categories: (1) a combinational path where the input delay inherently violated the 

maximum delay constrained on the output, (2) slow combinational logic, and (3) too 

much load on a wire. 

 

Four modifications to the RTL resulted from category (1) situations where the input delay 

of a combinational path inherently violated the maximum delay allowed on the output. 

For example, one of the initial timing violations occurred on a path from a signal driven 

from the PCIX core (WF_SWRITE_TRANS_PENDING) to the Write Enable port of the 

SRAM (SWRITE_UPBUF_POSTED). The WF_SWRITE_TRANS_PENDING had a 3.7 ns 

delay whereas the maximum setup allowed for SWRITE_UPBUF_POSTED was 1 ns. 

Adding latches allowed the path to pass timing with a cost in area and latency. 

 

Unfortunately, not every category (1) timing violation was correctable by adding latches. 

The TL_PCIEXTX_GET (2ns delay) to READADDR (maximum 1 ns setup) path required the 

BUF module to perform an extra stage in the pre-fetch of the SRAM data, causing many 

changes in the BUF module RTL. When TL_PCIEXTX_GET is high on a PCLK250 clock 
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cycle, the subsequent 16 bytes of data must be driven at the next PCLK250 cycle to meet 

the specification of the PCI Express Transaction Layer Packet Interface. Every time the 

Bridge sees that TL_PCIEXTX_GET is high, it must increment the READADDR to get the 

subsequent 16 bytes of data. TL_PCIEXTX_GET had to be latched in order to meet timing 

in the TL_PCIEXTX_GET (2ns delay) to READADDR (maximum 1 ns delay) path. This 

meant that the READADDR would be incremented one cycle after the Transaction Layer 

Packet Interface asserts the TL_PCIEXTX_GET, and that the subsequent 16 bytes of data 

would come after two PCLK250 cycles. 

 

There were two category (2) timing violations where the combinational logic was too 

slow. These problems were caused by muxes with complex logic on the selectors and 

solved by either making the muxes smaller by eliminating redundancies, or by replacing 

the muxes with faster combinational logic. 

 

There was one category (3) timing violation where the signal drove so many devices that 

the buffering added in synthesis caused the path to violate timing. The 

SWRITE_UPBUF_DATA_PUT signal is driven by a single latch and inputted to 64 

muxes and other combinational logic. Dividing the load by three and using two additional 

latches to help drive the load solved the problem. This reduced the latency from buffering 

and allowed timing to be met. 
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8 Performance 

The PCI Express to PCIX Bridge outlined in this thesis is optimized for area and 

performance. Most efforts were devoted to designing for simplicity in verification, small 

physical area, and minimal latency for a store and forward architecture. Possible methods 

to further optimize for performance are outlined in Section 9 of this thesis. 

 

The final performance measurements are summarized in Table 8. This Bridge cannot be 

compared to other products because currently there are no PCI Express to PCI/PCIX 

bridges on the market. Latency is measured from the cycle after the last data of the 

transaction is received to the cycle when the transaction is first transmitted. The 

downstream latency is measured from when TL_PCIEXRX_HEADER_PUT falls to when 

MWRITE_WS_*_START is asserted. The upstream latency is measured from when 

WF_SWRITE_TRANS_PENDING falls to when PCIEXTX_TL_ARB_ENABLE is asserted. 

 

Input Ports 1150 
Output Ports 1061 
Gates 6127 
Nets 7693 
Connections 15118 
Latch Area 13956 gate count 
Combinational Area 13478 gate count 
Total Area 27434 gate count 
Latency7 
     Upstream 
     Downstream 

 
2 PCLK250 cycles + TH 
1 PCLK133 cycles + TH 

Table 8 – Performance and Area Measurements of the Bridge 

                                                 
7 TH approximately equals 20ns – 24ns in simulation with a 4 ns PCLK250 clock cycle and a 10 ns 
PCLK133 clock cycle 
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9 Future Work 

 

The sheer size of the functionality described in the PCI Express Bridge Specification was 

too much to handle for one person in a nine-month time frame. Some functionality still 

needs to be implemented in order to be able to sell this product in industry. The 

verification is quite thorough and complete on the module level. However, there is some 

room for improvement in terms of system level verification. Additional tests can be 

added, especially stress tests. In addition to functionality and verification, more 

optimizations for performance and power efficiency are suggested. 

 

9.1 Functionality 

 

9.1.1 Key Requirements 

 

The Bridge implemented in this thesis can be expanded to also support PCI as its 

secondary interface. Additionally, it would be desirable to add Configuration Space to the 

Bridge so that the Bridge can be configured during system setup. 

 

As seen in Table 9.1.1, certain assumptions were made to simplify the Bridge 

implementation in areas of special case handling that is specific to PCI Express and 

PCIX. A marketable PCI Express to PCIX Bridge would need to handle these cases. 
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Scenario Appropriate Action Assumption 
The three MSBs of the PCI 
Express Tag are non-zero 

Bridge Takes Ownership of the 
transaction 

The three MSBs of the PCI 
Express Tags are always zero 

Discontinuous byte enable(s) Bridge turns the transaction 
into two separate transactions 
with contiguous byte enables, 
and takes ownership of both 
transactions 

The byte enables are never 
discontinuous 

A PCIX Memory Read is 
completed with multiple PCI 
Express CplD packets. 

Bridge incrementally saves 
data in a buffer until the entire 
Completion is received, then 
transmits the corresponding 
PCIX Split Transaction. 

PCIX Memory Reads is 
completed with one PCI 
Express CplD packet. 

Maximum data payload size or 
read request size for PCIX 
target is smaller than the 
Transaction Layer Packet 
received. 

Bridge turns the transaction 
into multiple transactions that 
fit the PCIX Target’s max 
sizes. If the transaction is non-
posted, the Bridge must also 
take ownership of each new 
transaction. 

Assume all PCIX Targets allow 
4 KB for data payloads and 4 
KB for read requests, thus 
eliminating the need to turn 
the transaction into multiple 
transactions. 

Address and length 
combination may not cross a 
4KB boundary 

Turn the transaction into two 
transactions that are 
separated by the 4KB 
boundary 

Address and length 
combinations do not cross a 
4KB boundary 

PCIX data is ready upon 
request 

Ensure that there is upstream 
buffer space for the data 
before mastering a 
downstream read. Store 
Immediate Read Data in the 
upstream buffer. 

Assume PCIX targets will split 
the read 

 
Table 9.1.1 – Assumptions Made to Simplify the Bridge 

 

9.1.2 Optional Capabilities 

Listed below are certain capabilities are not required by the PCI Express Bridge 

Specification, but are desirable to customers. 

 PCI Express 32-bit ECRC generation and checking 
 Advanced Error Reporting 
 Hot Plug Support for the PCI Express primary interface 
 Prefetchable memory address range 
 VGA Addressing 
 PCI Express Message Requests with and without Data Payload 
 Expansion ROM 
 PCIX Mode or Mode 2 support 
 PCIX Device ID Messages 
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9.2 Optimizations 

 

There are some optimizations that can be done to improve the performance and power 

efficiency of the PCI Express to PCIX Bridge implemented in this thesis. Two future 

performance optimizations are explored in this section: cut-through and multiple 

transactions. Clock gating can also be used to reduce power but is not explored in this 

thesis because performance and cost is by far the most important factors to PCI Express 

customers. 

 

9.2.1 Cut-Through to Replace Store and Forward 

 

Cut-through is a technique that is often used in bridges to improve the latency of a single 

transaction.  

 

The Bridge is currently Store and Forward, meaning that when it receives a transaction 

on side A, it stores the entire transaction before it forwards the transaction to side B. 

Store and Forward is simple, therefore requiring less logic and taking up less area. If the 

transactions that typically going through the PCI Express Bridge have little or no data, 

then Store and Forward is acceptable in performance. 

 

The worst-case transaction has a maximum size data payload of 1024 DW. This 

transaction in the downstream direction has a 256 PCLK250 cycle wait for the entire 
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transaction to be stored in the BUF buffers before it can be forwarded, and another 512 

PCLK133 cycles to retrieve the transaction from the BUF. This transaction in the 

upstream direction has a 512 PCLK133 cycle wait for the entire transaction to be stored, 

and another 256 PCLK250 cycles to retrieve the transaction. 

 

Adding cut-through to this Bridge would greatly improve the worst-case latency. For 

example, if transaction T is coming in on side A, and that transaction has the highest 

priority out of all pending transactions, and side B is currently idle, transaction T can cut 

through from side A to side B and begin transmission on side B before the entire 

transaction is stored. Cut-through reduces the worst-case downstream transaction latency 

to 256 PCLK250 cycles and 256 PCLK133 cycles, and the worst-case upstream 

transaction latency to 512 PCLK133 cycles. 

 

There are two ways to implement cut-through in this Bridge. The first option is a 

simultaneous write and read from a buffer. This option works well in cases where side A 

and B run at separate clock frequencies. The second option, proposed in Tsang-Ling 

Sheu’s ATM LAN interconnections with a cut-through nonblocking switch, bypasses the 

buffers with a dedicated cut-through link. This option, however, does not work well for 

bridges with asynchronous boundaries. 

 

9.2.2 Multiple Transactions 
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The Bridge would probably fare better in performance if it handled multiple transactions 

of a single type. In this thesis, the decision was made to handle only one transaction of 

each type at a time for two reasons: (1) it requires less area, (2) the lack of a customer 

market requirement regarding the number of transactions supported by the Bridge. 

Therefore, Bridge architecture was designed to easily facilitate a change to multiple 

transactions. The following discussion explains how multiple transactions can improve 

performance and explains how easy it would be to change the Bridge to support multiple 

transactions. 

 

Currently, the upstream and downstream paths of the Bridge only have one buffer of each 

transaction type: one posted buffer, one completion buffer, and one non-posted buffer. 

The Bridge performs well under conditions where there are not a lot of transactions of the 

same type constantly going through. However, in a scenario where the root complex tries 

to transmit four consecutive posted transactions T1, T2, T3, and T4, the root complex 

must wait until T1 is forwarded before it can transmit T2. If the Bridge had four posted 

buffers rather than one, then the root complex would be able to transmit T1, T2, T3, and 

T4 without delay. 

 

The Bridge architecture was designed in anticipation of expanding the Bridge to support 

multiple transactions. The BUF module would be the only module to change, all other 

modules are untouched. The change would involve adding more physical memory and 

adding a queue for each transaction type. All BUF interfaces remain unchanged and no 

changes in flow control logic are necessary. 
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