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Abstract

Navigation is important in a variety of aerospace applications, and commonly uses a blend of
GPS and inertial sensors. In this thesis, a navigation system is designed, developed, and tested.
Several alternatives are discussed, but the ultimate design is a loosely-coupled Extended Kalman
Filter using rigid body dynamics as the process with a small angle linearization of quaternions.
Simulations are run using real flight data. A bench top hardware prototype is tested. Results
show good performance and give a variety of insights into the design of navigation systems.
Special attention is given to convergence and the validity of linearization.
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1. Introduction

The problem of navigation is a fundamental engineering challenge. The objective is to
estimate the position and attitude of a moving vehicle using the available measurements.
This is primarily a task in discriminating between information and noise in a dynamic
system.

The field of navigation is both mature and evolving. Successful space programs, including
the Apollo missions to the moon, are the result of major innovations in this area. Today,
modern navigation systems have been applied to a broad range of vehicles for strategic and
recreational purposes. Still, this technology must continue to progress in order to meet the
demands of future scientific, military, and commercial applications.

At MIT Lincoln Laboratory, there are several current programs that motivate research in this
area. Airborne sensors, such as laser radar, require a high degree of navigation accuracy for
the interpretation and processing of their images. Other applications include laser
communications and aerospace guidance systems. All of these projects have the common
requirement of precision pointing and positioning.

In the design of this particular navigation system, there are several goals and areas of focus.
The first is to understand and improve the treatment of attitude, which is increasingly
important in modern applications. Large angle motion requires nonlinear representation,
such as Euler angles or quaternions. Attitude also experiences varying degrees of
observability in a GPS-aided inertial system. For these reasons, the representation of attitude
warrants special attention so that accuracy can be improved and the causes of error can be
determined.

The second task is to develop tighter integration between the navigation system and the
onboard controller. It is typical for the navigation system to be a distinct entity that functions
autonomously to provide a navigation solution for the controller. However, the controller
contains actuator commands and other information about the vehicle dynamics. The
proposal here is to use these control signals in the navigation solution. This has potential
benefits for improving the dynamic response.

The third goal is to achieve increased flexibility. Off-the-shelf navigation systems are
usually closed boxes with proprietary algorithms, which makes them difficult to integrate and
tune. This project creates source code that can be modified to meet a great variety of
applications. It can also serve as a tool for analyzing and comparing off-the-shelf systems.

Underlying these efforts, a number of existing techniques are explored and evaluated. The
Kalman filter is used as the predominant method of estimation, because it is well suited and
time-tested for this particular problem. While several assumptions must be satisfied
concerning linearity and white noise, the result is on firm theoretical ground and potentially
outperforms most practical alternatives.

The scope of this project is limited to the integration of an Inertial Measurement Unit (IMU)
with a Global Position System (GPS) receiver. These are the current leading technologies



and the most frequently used. However, the results here can be extended to include
additional sensors. In fact, discussion in this report motivates the use of additional
measurements.

1.1 Summary of Procedure

This project addresses navigation systems from three distinct vantage points: theory,
simulation, and hardware. Each provides its own benefits and limitations. The combination
of the three produces a strong, balanced analysis. The thesis is organized as follows:

The theoretical derivation is presented in Section 2. This begins with background on
navigation and establishes the fundamental navigation equations. Subsequently, the Kalman
filter is discussed and derived. The derivation is specific to the form used in this project, and
explores several relevant details. The topics of linearization, data forgetting, and
convergence are discussed. Finally, the application of the Kalman filter to navigation is
presented. This details the decisions of modeling and design, and the calculation of the state
matrices and propagation equations. The observability of the system is analyzed.

Simulation of the navigation system is conducted in order to characterize behavior. A variety
of studies and results are presented in Section 3. Performance is evaluated using flight
datasets from an aircraft and a booster rocket. Analysis is also performed using simulated
data, and a large range of operating conditions and parameters is explored. Accuracy is
accessed using several different methods including the filter covariance, comparison to a
reference solution, and comparison to the inertial solution. Filter health and stability are
explored.
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Figure 1-1: Benchtop Testing Environment

Figure 1-2: Hardware Components
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A hardware prototype is constructed in order to evaluate this design on an embedded real-
time system. The benchtop setup is shown in Figure 1-1 and the components are shown in
Figure 1-2. The filter algorithm is ported onto a high-performance Digital Signal Processor
made by Texas Instruments (SMJ320C6701). Computational efficiency is investigated and
dramatically improved in order to achieve an acceptable sample rate. This activity is
presented in Section 4.

The collective results of these activities are discussed in Section 5. Results from theory,
simulation, and hardware are combined to evaluate the design decisions of the filter.
Opinions are presented regarding the success and shortcomings of these techniques.

Recommendations for immediate and future work are given in Section 6. This begins with a
summary of the current capabilities and suggestions for their utilization. Then several
methods of improvement are discussed for both short-term and long-term development.
These recommendations serve as a guide for future research in this area.

Finally, Section 7 gives a brief conclusion.

1.2 Summary of Key Results
This section describes some of the key results of this thesis.

The Extended Kalman Filter (EKF), which uses a linearization about the estimated state, has
been chosen for this application. This approach is justified theoretically, and the results of
simulation and hardware confirm that convergence and stability are achieved. The EKF is
well suited to this application and provides an accurate solution. Exponential data forgetting
improves filter response in many anomalous conditions.

The attitude representation for this filter uses a combination of quaternions and small angle
errors. The theoretical derivation shows that small angles can provide a concise linearization
for the Kalman filter, while the quaternions give singularity-free attitude propagation. This
leads to the minimal three attitude variables in the Kalman filter. With careful
implementation, the use of small angles does not reduce the accuracy of the Kalman filter.
This is because the EKF already requires linearization and the small angles errors are
immediately offloaded to the quaternions.

Rigid body dynamics are used as the process model. With this architecture, force and torque
are inputs to the model. The model states include position, orientation, and their derivatives.
Newton’s laws of motion for rigid bodies are used to propagate the state.

This technique can improve accuracy in cases where the dynamics are predictable. Direct
force and torque control inputs are provided so that known values can be given to the filter.
Unknown force and torque disturbances are estimated by the filter. First order noise
processes are used to represent the time correlation in the disturbance noise.
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Unfortunately, this approach greatly complicates the system model and produces a significant
computational burden for real-time hardware implementation. For applications with
unpredictable dynamics, it is preferable to use an inertial navigation solution as the process
for the Kalman filter.

Conditions for the convergence of the state estimate are established using observability
analysis. Several interesting results are derived theoretically and confirmed in simulation.
They can be summarized as follows:

= Body rotation rate, position, velocity, and force and torque disturbances are all
observable using IMU and GPS measurements.

= Attitude rotation is observable about the direction of applied force and becomes
completely observable when the force is varied with respect to an inertial coordinate
frame. This applied force does not include gravity and is in the same direction as the
measured acceleration.

= |MU biases in the gyroscopes and accelerometers are completely observable when the
force is varied with respect to the body coordinate frame. This may be done under
constant force by rotating the vehicle or the IMU.

= Gyroscope bias observability is improved with knowledge that the vehicle is Earth
stationary or by the precession of a rotating rigid body.

= A gravity model bias can be distinguished from an accelerometer bias if there is
sufficient body rotation.

Covariance analysis provides the expected filter accuracy using the noise values of the actual
process and measurements. In this method, the error covariance matrix of the Kalman filter
is propagated numerically. Accuracy is dependent on the flight path complexity, in
agreement with the observability results outlined above. The sensitivity of the estimate
accuracy to measurement noise and other parameters is established. This provides
conclusive predictions that are useful for sensor selection and system design.

The navigation algorithm has been successfully implemented on real-time embedded
hardware. However, difficulties were encountered during this process and several
implementation issues have been uncovered.

Great improvements in computation and memory efficiency were required for
implementation. They were achieved using a variety of techniques for an ultimate sample
rate of 100 Hz. However, several sacrifices were made that ultimately caused a decrease in
accuracy and robustness. Specific improvements to the algorithm and model are
recommended for future hardware implementation.

We now begin the theoretical derivation of this thesis.
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2. Theoretical Derivation

The theory presented in this section contains two primary topics: navigation, and the Kalman
filter. These topics are treated separately, in Sections 2.1 and 2.2 respectively, and then
considered jointly in Section 2.3.

The discussion of navigation in Sections 2.1 establishes the background theory. Coordinate
systems for representing position and attitude are established and equations for vehicle
dynamics are developed. Modeling of the Earth’s shape, rotation, and gravitational field is
discussed. Techniques for initial alignment and for computing a pure inertial solution are
given.

A full derivation of the Kalman filter is given Section 2.2, with special attention to the details
relevant to this application. This includes the topics of data forgetting and application to
nonlinear systems. A continuous-time process with discrete-time measurements is used.
Methods of analysis and implementation are also presented.

Section 2.3 describes the application of the Kalman filter to the navigation problem.
Modeling and the selection of state variables are discussed. Jacobians are calculated in
closed form and the system is linearized. The observability of the system is analyzed
theoretically.

2.1 Navigation

This discussion begins with the underlying theory of navigation. The material in this section
summarizes the geometry and physics that pertain to an airborne or terrestrial vehicle in
motion. These equations are central to the function and analysis of this navigation system.

2.1.1 Coordinate Systems

A series of coordinate systems can be developed to represent vehicle motion. This
development is intended for navigation with respect to the Earth, and as a result a model of
the Earth will be required. Cartesian frames will be of primary importance, but spherical and
elliptical coordinates will be useful for representing points on the Earth.

Earth Centered Inertial (ECI)

An inertial coordinate system is required to describe the dynamics of motion, and ECI serves
this purpose. The ECI frame has its origin at the center of the Earth, but does not rotate with
the Earth. The combined effect of ignoring both the Sun’s gravity and the Earth’s orbital
motion is negligible. Written as a position vector

peci = [px py pz ]T J (2'1)
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the direction of p, is upward through the North Pole. The directions of py and py lie within
the Earth’s equatorial plane, forming a right handed frame. The direction of py is most
conveniently defined with respect to a longitude on the Earth at a particular time. For
example, we could use the launch site longitude at launch time or the Greenwich meridian
during the vernal equinox.

Earth Centered Fixed (ECF)

ECF are Cartesian coordinates that rotate with the Earth. As such, they are no longer inertial,
but are useful for defining motion relative to the Earth. The relation between ECF and ECI
can be expressed using a rotation matrix Re:

Pect = Re Peci » (2'2)
given by
cosd, sing, O
R, =|—-sing, cosd, 0], (2-3)
0 0 1

where & is the Earth angle. The Earth angle propagates at Earth rate [14]

|, = 7.2921150x10°° rad/sec, (2-4)

in the direction of right-handed rotation about the positive z-axis in both ECI and ECF. Earth
north nutation is ignored in most applications. An initial condition for . can determine the
relative alignment of the ECI and ECF frames.

Geodetic and Geocentric

Figure 2-1: Geodetic and Geocentric Coordinates [20]
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The shape of the Earth is well approximated by an ellipsoid, which is the foundation of
geodetic coordinates. However, simpler mathematical expressions result from a spherical
model, which is used by geocentric coordinates. Both coordinates are shown in Figure 2-1.
The position vector p, in either ECI or ECF, can be represented by its geocentric latitude A.
and radius r, or by its geodetic latitude A and altitude h (from the ellipsoid). The geodetic
ellipsoid is usually defined by the World Geodetic Survey [14], and has major

axisr, = 6378137.0 meters along the equator and minor axis (1-)r. at the poles, with the

flattening factor 1 =1/298.257223563 .

The conversion from Cartesian to geocentric coordinates is a spherical transform:

r= \/pxz +p, +p,” (2-5)
A, = tanl[ﬁ} = atanz(pz,,/ p2 + p§) (2-6)
X y

L= tan‘l(&j = atan2(py, px), (2-7)

X

where the four quadrant arctangent is used to eliminate singularities. The longitude L will be
inertial (celestial) if ECI position is used, and fixed to the Earth if ECF position is used.

The inverse transform is

p, =rcos(L)sin(4,) (2-8)
p, =rsin(L)sin(4,) (2-9)
p, =rcos(4,) (2-10)

The conversion between geocentric and geodetic coordinates is somewhat more involved.
Geodetic and geocentric longitude are identical. Returning to Figure 2-1, the projection of p
onto this ellipsoid has geocentric coordinates As and rs, where the subscript stands for “sea-
level”. These quantities can be related to the geodetic coordinates using trigonometry and
the equation of the ellipsoid:

A = tan‘l((l— )% tan /1): atan 2((1— 11)?sin A, cos /1) (2-11)
r,

2-12
\/1+ ((1 1) )sm (12
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Using vector addition of the sea-level radius and altitude, the result is

r= \/rsz +h? +2rhcos(A, — A) (2-13)
4 —tan r,sin A, +hsinA (2-14)
‘ r,cos A +hcosAd )

The inverse transform requires solving a quartic, but can be expressed in closed form [18,
19]. This result is somewhat cumbersome and a preferable alternative is the iterative solution

ﬁk+1 = ﬁk - (fk - rk) (2'15)

N ~

Jes = A~ = 24): (2-16)

Here ﬁk and /fk are the estimated geodetic altitude and latitude, respectively, at sample k,

andr,and ﬂfck are the geocentric estimates calculated using (2-13) and (2-14). The geocentric

estimation errors are used to drive the geodetic estimate. It can be shown that convergence is
exact for stationary vehicles and reasonably accurate when the iterations are fast compared to
vehicle motion. This approach is successful because the Earth is almost spherical.

North East Down (NED)

NED is a local level Cartesian frame defined by Geodetic coordinates. North is the direction
of increasing latitude, east is the direction of increasing longitude, and down is the direction
of decreasing altitude. The NED origin is typically unimportant, but can be defined as the
projection of the vehicle position onto the ellipsoid. As such, the NED origin is dependent
on the current position, so NED position is not meaningful. However, the NED frame
provides an intuitive description of velocity and attitude.

The combination of gravity and centrifugal force that an object feels when stationary on the
Earth’s surface is very closely aligned to the NED z-axis (down). This is just a consequence
of the Earth’s surface being in equilibrium. If the gravity direction were not downwards, the
mass at the Earth’s surface would slowly redistribute.

East North Up (ENU) is a similar alternative. However, NED has preferred properties
related to attitude representation, which are discussed later.

Body

The body frame has axes fixed to the vehicle with origin at the vehicle center of mass. As
such, the body frame rotates with the vehicle and is meaningful for describing the vehicle
inertia and the locations of thrusters, sensors, and other components. The orientation of the
body frame represents the vehicle orientation.
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The typical choice of axes for aerospace applications is x forward (axial), y starboard, and z
down. Body coordinates are frequently used to describe body rotation, with the names roll,
pitch, and yaw given to rotations about the body X, y, and z axes, respectively.

Body coordinates are aligned with NED if an aircraft is level and facing north. Here pitch
and yaw match the common definitions of elevation and azimuth.

2.1.2 Attitude Representation

Attitude representation describes the orientation of one Cartesian frame with respect to a
second reference frame. In this application, attitude represents the orientation of the vehicle
body frame, which can be referenced to the ECI, ECF, or NED frame. However, this
discussion also provides methods for converting between any two coordinate systems, such
as from ECI to NED. Much of the discussion will use the terms body and reference frame,
but can be applied to any set of frames.

We will explore four alternative methods: Euler angles, rotation vectors, quaternions, and
small angles. For each of these, the Direction Cosine Matrix (DCM), denoted B, can be
calculated. This matrix gives the rotation from the reference frame to the body frame, so that
we can write

X, = BX, (2-17)

where x is a 3 dimensional vector in the reference frame and x;, is a 3 dimensional vector in
the body frame. As a rotation matrix, B is orthogonal so that B™ = B" and therefore

X=B"xX,. (2-18)

The translation between coordinate systems can be treated separately, but is typically less
important for this application. This is because the origin is irrelevant when discussing
velocity or orientation, and most of our position representations share a common origin at the
center of the Earth.

It will also be required to derive an equation for attitude propagation under vehicle rotation.
The rate of rotation of the body frame is usually represented, and measured, in body
coordinates. A general relation is developed below, which will later be applied specifically
to each attitude representation.

Consider a vector x;, that is fixed in body coordinates. The inertial derivative, meaning the
rate of change with respect to the reference frame but expressed in body frame coordinates, is
given by

dx .
(d_tbjinertial B Xb e Xb . (2-19)
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This is the sum of motion relative to the body frame, which is zero, and motion caused by
body frame rotation. Transforming this result back to the reference frame gives

x=B"(@xx,)=B"[ox]x,, (2-20)

where the vector cross product can be written in matrix form using

0 -0 o
[ox]=| o, 0 -a. (2-21)
-0, o 0

This matrix expansion of the vector cross product is convenient throughout the analysis.
Another more direct differentiation is

X :%(BTX,)): B'x, +B"% =B'x,. (2-22)

Equating (2-20) and (2-22) yields
B'x, = B [@x]x, . (2-23)
For this to hold for all x,, we must have
B = B"[wx], (2-24)
Since the cross product is skew-symmetric, this is equivalent to

B=—wx]B. (2-25)

Using (2-25), orientation can be propagated using the entire 3 by 3 B matrix, although this is
highly redundant because 9 terms are being used to represent 3 degrees of freedom. Still, this
result will be useful for developing propagation equations for specific attitude
representations.

Euler Angles

A logical approach is to represent orientation as a sequence of large-angle, single-axis, body
rotations. Define an Euler vectoras y =[p @ w]", containing roll, pitch, and yaw,

respectively, as shown in Figure 2-2. These rotations are right-handed about the body x, v,
and z axes, respectively, which is why —@ is shown in the figure.
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X
Figure 2-2: Euler Angle Representation

Because large rotations do not commute, a convention for the order of rotation is required.
The most common order is yaw, pitch, roll. Note that the new body axes are used for each
successive rotation. The DCM can be expressed as the product of three rotation matrices:

1 0 0 (cos@ O -—sin@| cosy siny O
B(y)=|0 cosgp sing|| 0 1 0 |-sing cosy O (2-26)
0 —sing cosep|sind 0 coséd 0 0 1

Performing the matrix multiplication yields [20, p. 37]

cosécosy cos@siny —-sind
B(y)=|singsin@cosy —cospsiny  singsingsiny +cospcosy  sinpcosé |. (2-27)
cosgsindcosy +singsiny  cosesindsiny —sin@cosy  C0S@Cosd

Inspection of this matrix reveals a method for extracting the Euler angles from the
components Bj; of the DCM. Consider using the simple terms on the top row and right
column:

¢ =tan"*(B,, / B,,) = atan2(B,;, By, ) (2-28)
0 =-sin" By, (2-29)
w =tan(B, /B, )= atan2(B,,,B,, ). (2-30)

These equations can also serve as the conversion to Euler angles if the DCM was calculated
using other means, as are discussed later. All that is required is the DCM is, in fact, a
rotation matrix.
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Now we calculate the Euler update under body rotation using the relation

B(y)=—{wx]B(r). (2-31)

The right side can be evaluated using our earlier expression for B(y). The multiplication is
somewhat involved, but only the following entries will be required

B,, = w,(sin@sin @cosy —cospsiny )— w,(cospsindcosy +singsiny)  (2-32)
B,, = w,(sinpsin @siny —cospcosy )— w,(cospsin@siny +singpcosy)  (2-33)

B = w,singpcosé — w, cospcosd (2-34)
B,, = @, Sin @ + w, cOs pCosH (2-35)
B, = ®,5in 0 — @, sinpcosd (2-36)

The Euler extraction equations (2-28 to 2-30) can also be differentiated:

¢ — itanl(%j — BS3 2823 — BZ3 B33 (2_37)
dt 833 B33 + BZ3 B33
. -B
6=—(-sin? By )=——2 (2-38)
1-B;
W‘ — Etanl{ij — Bll?lZ — Blz Bll (2_39)
dt Bll Bll + BlZ Bll

Substitution of (2-32) through (2-36) into (2-37), (2-38), and (2-39) leads to substantial
reduction and can be expressed in matrix form

1 tandsing tanédcose
y=|0 Cos @ -sing |o. (2-40)
0 singsecd cospsecd

This update is in agreement with spatial intuition. Rotation in @y only effects roll, because
roll is the third rotation in the Euler angles. The direction of pitch is a combination of @, and
@z, depending on the roll angle. Yaw has a similar dependency but the sine and cosine are
reversed, so that the effect of roll is offset by 90°. Also, the term secé causes yaw motion to
diminish at large pitch angles. This is analogous to the meridians of the Earth becoming
close together near the poles. The additional terms linking @, and w; to roll are the result of
roll-yaw coupling as the vehicle moves around the pole and are equivalent to ysiné .

Note that the roll and yaw updates are discontinuous when @ =+90°. This singularity makes
Euler angles unsuitable for propagation in this vicinity. However, they are perhaps the most
intuitive description of attitude, and remain useful for input and output. Alternatives are
explored below.

20



Rotation Vectors

It is a somewhat surprising fact, attributed to Euler, that any orientation can be expressed as a
single rotation about a particular axis. A geometric method for constructing this axis, and
thereby proving this theorem, is given in [23]. This rotation can be described using a
3-dimensional rotation vector

P= [pl P pz]T , (2-41)
where the magnitude |o] is the angle of rotation and the vector direction is the axis of rotation.

This technique is explored in detail in [8, pp. 347-361], although the definition of p has the
sign reversed.

The DCM can be calculated from the matrix differential equation (2-25)
B=—{wx]B. (2-42)
Consider a motion of gradual increase in rotation
p(t) = pot, (2-43)

so that p(t) = p, att = 1. Since the rotation vector remains constant in both frames, the body
rates are constant and are given by

do
_O_ ., 2.44
=" =Po (2-44)

Therefore, the differential equation of (2-42) becomes
B=-p, x|B (2-45)
which has a solution using the exponential of the cross product matrix:
B(t) = Cexp(-[p, x]t). (2-46)
The initial condition of B(0) =1 leadsto C =1, and the value att = 1 is then
B() = B(p,) = exp[- p, x]. (2-47)
In general, for any p, the DCM matrix is given by the matrix exponential

B(p) = exp[- px]. (2-48)
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For direct evaluation, this expression can be rewritten using the infinite series expansion of
the exponential, sine, and cosine [8, p. 348]:

B(p) = COS| p|| + —S|'D| pp' S||n|f| x] (2-49)

Note that for small rotations this expression approaches
B(p) ~ | —[px]. (2-50)

Extraction equations can also be formulated. The propagation equations in terms of p are
very cumbersome, although they appear to be singularity free. The decision here is to avoid
this representation. The complexity in the underlying equations is unsuitable for
programming and complicates implementation.

Quaternions

The complexities of the rotation vector representation can be avaoided by adding a fourth
parameter. This can be done using the magnitude|p| and unit vector p/|p|. However, the

ultimate result is simplified using the following substitutions [20, p. 41]:

Q. = cos(p/2) (2-51)
Q= (p1 /|p|)sin(p/2) (2-52)
6, = (0. /lp]lsin(o/2) (2-53)
A = s/ p|)sin(o12), (2-54)

which are known as the quaternion parameters. Note that

qQ+0.+q;+qf = cosz[§j+[%]sm (’20) =1. (2-55)
Yo,

This illustrates that the four quaternions are not independent state variables, and also suggests
a geometric analogy of a four dimensional sphere.

Calculation of the DCM using quaternions is conducted in full in [23] and summarized in
[20, p. 41]. The result is now free of trigonometric functions, but still nonlinear

Qo +0f =Gy —0;  2(0,0, + %)  2(0,05 — 90l,)

B(a)=| 2(q,0,—0e0:) G5 —0f +0; —0G5  2(0,05 + 0lh) |- (2-56)
2(0,05 + Go%,)  2(0,05 — 0%) O — G — 05 + 0
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Conversion from quaternions to Euler angles is accomplished by forming B(q), and then
using the Euler extraction formula. It only necessary to calculate the top row and right
column of B(q).

The quaternions can be extracted from the DCM, but the sign of the solution is not unique.
The elements on the main diagonal can be added and subtracted to form the following
equations:

4q; =1+ B,, + B,, + By, (2-57)
4q12 =1+B,, - B, —By (2-58)
4q22 =1-B,+B, -By (2-59)
4q§ =1-B,; - B, + By (2-60)

The off-diagonal elements provide information on the signs:

40,0, = B3 — By, (2-61)
40,0, = B3, - By, (2-62)
40,05 = By, — By, (2-63)
40,0, =By, =B, (2-64)
40,0, = B,; — By, (2-65)
40,05 = Bj; — By (2-66)

Still, the first sign must be chosen arbitrarily. 1f the DCM was constructed from another
attitude representation, extraction of the quaternions provides a conversion. For conversion
from Euler angles to quaternions, this extraction can be simplified to the following
equations [20, p. 41]:

(co ((p/2)cos(6/2)cos(1///2)+sm((p/2)5|n(9/2)sin(1///2)

) (2-67)
) 2)  (2-68)
(cos(p/2)sin(@/2)cos(y / ) s 2)) (2-69)
+(cos(p/2)cos(8/2)sin(y /2)— S|n((p/2)sm(9/2)cos(y/ 2)), (2-70)
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where the same sign must be chosen for all four equations. This can be derived using the
quaternion extraction equations and Euler DCM definition, but is most easily verified in
reverse using trigonometric half-angle identities.

The propagation equation can be derived in a fashion similar to Euler propagation, using

B(q) = -[wx]B(q). (2-71)
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The right side can be directly evaluated and compared to the derivative of the quaternion
extraction equations. This result is bilinear in the state variables g and w:

O, g, s
. 1 - qo q3 - qz
g=—= w="T1(qw. (2-72)
2| - Q3 - qo ql ‘
9, -0 —-0Q

The magnitude constraint is consistent with this propagation. However, under imperfect
numerical computation, it is usually important to renormalize the quaternions periodically.

The simplicity of the quaternion propagation equations and the absence of singularities make
quaternions the preferred method of attitude representation. However, the use of four
parameters, a non-minimal representation, is in fact a grave problem for observers and the
Kalman filter. The four quaternions are not independent state variables and should not be
treated as such. The normality constraint must be imposed in some fashion or the four
parameter dynamics will be unobservable and incorrect.

Small Angle Rotations

Small angles provide a linear representation of small changes in orientation which are order-
independent. They can be suitable for representing the attitude error, or similar small
quantities. The small rotation is approximated using a 3-dimensional vector of small angles
« in the direction of body rotations:

oa=ad. (2-73)

Under the assumption of small angles, the DCM given for Euler angles (2-27) reduces to

1 o, -a,
R(x)=|-a, 1 ¢ |=1-[ax]. (2-74)
a, -o 1
The inverse is approximately
R'~R! =R (-a)=1+[ax] (2-75)

Note that small angle rotations commute.
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2.1.3 Gravity Model

The acceleration of Earth’s gravity has been precisely modeled by several studies including
the World Geodetic Survey of 1984 [14]. A spherical approximation is given by Newton’s
Law of Gravitation:

g=-GM, > (2-76)
[P

where G = 6.67259 x 10™ m®kg-s? is a gravitational constant, and M. = 5.98 x 10* kg is the
mass of the Earth. For linearization, the Jacobian will be needed, which can be expressed as

og GM pp’
B el 3 . (2-77)
|’ [ IDIZJ

The Jacobian is a matrix of partial derivatives. In this 3 by 3 matrix, each row corresponds to
a component of g while each column corresponds to a component of p. An elliptical model

, (1-5sin® A,
g=—GMeﬁ—G ' _|1-5sin2 4
p

(2-78)

(o 1

hc 2
[l 3-5sin? 4,

provides greater accuracy, where Gy, is now the harmonic gravitational constant and A is the
geocentric latitude. A Jacobian for this model can also be calculated but it is usually
acceptable to use the spherical Jacobian.

2.1.4 Rigid Body Dynamics

The physics of vehicle motion will be represented using rigid body dynamics. Aerodynamics
forces can be represented using the force and torque input to this model. Additional
modeling of vibration modes is not pursued here.

Rotation

Rotation is best analyzed in the body coordinate frame. Differentiating the angular
momentum in a rotating frame gives

T - S(00)= Jo+ ox(30), (2-79)

where J is the inertia matrix. This leads to

i=-3ox(Jo))+r (2-80)
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where 7 = J'T is the specific torque. Note that multiplication of J by a scalar has no effect
on (2-80), except in the computation of specific torque.

Attitude is computed using one of the update laws given earlier, such as quaternions.

Translation
In ECI, translational dynamics follow directly from Newton’s Law of Motion

p=v (2-81)
v=B"(a)f +g(p), (2-82)

where f is the force given in body coordinates and must therefore be transformed using the
inverse DCM. While it is possible to formulate these equations in other coordinate systems,
such as ECF or geodetic, ECI has been chosen because of the simplicity of these equations.
However, initialization and measurements that are relative to the Earth will now require more
elaborate expressions.

2.1.5 Measurements
This section describes the primary measurements used in navigation. This includes an

Inertial Measurement Unit (IMU) and the Global Positioning System (GPS). Addition
measurements may also be available.

Inertial Measurement Unit (IMU)

This application uses a “strapdown” IMU, where the gyroscopes and accelerometers are
fixed to the body frame. The gyroscope measurement vector an represents the body rate
in all 3 axes. The accelerometer measurement vector a,, represents the difference between
vehicle acceleration and the acceleration of gravity, and is also expressed in body
coordinates.

A pure inertial solution can be calculated directly from the IMU measurements. Substituting
these measurements into the equations of motion, we have

4= f (Do, (2-83)
p=v (2-84)
v=B'"(q)a, +9(p), (2-85)

which can be integrated in real time. Note that o is never calculated and is available only
through differentiation. This solution will drift because errors accumulate in the integrators.
The position/gravity relation is actually slightly unstable. An error in position will cause a
gravity estimation error, which will misinterpret future accelerometer readings. As a result,
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position estimation is poor from an INS. With high quality gyros, the pure inertial solution
can provide accurate heading information for several hours.

Global Positioning System (GPS)

GPS provides an absolute position measurement using the constellation of GPS satellites.
Each satellite monitors its own position and time using transmissions from ground stations
located throughout the world. Each satellite then broadcasts its position ps;: and the time of
transmission ts,. The GPS receiver, aboard the vehicle, forms an equation based on the
distance of transmission:

C(t - tsat ) = \/( p - psat )T (p - psat) ' (2'86)

where c is the speed of light. Additional satellites provide additional equations, and a full
solution for t and p is available with four satellites.

A commercial GPS receiver will typically contain its own Kalman filter that computes

position and velocity at periodic intervals. However, some receivers also output the raw
measurements.

Additional Measurements

Additional navigation aids are available, but are not used in this application. A star tracker
can provide a direct measure of attitude, and is an expensive solution to the attitude drift
problem. A magnetic compass can also provide drift-free heading information but is of low
quality and requires an Earth magnetic model.

The filter that is developed in this application will also use several “pseudo-measurements”.
These are measurements that do not originate from actual sensors, but are the result of
additional knowledge of the system dynamics. For example, knowledge that the vehicle is
fixed to Earth or in exoatmospheric freefall can be interpreted as a measurement, and can
effectively be used to calibrate the GPS and IMU sensors.

2.1.6 Initial Alignment

Although an initial condition can be specified, it is desirable and robust to perform
initialization based on the first measurements. This technique is very successful when the
vehicle is fixed to the Earth at initialization. Under this condition, position can be initialized
directly from the GPS and velocity can be computed usingv = @, x p, where both position

and velocity are expressed in ECI.

Attitude alignment is a more delicate process, but can be performed satisfactorily over large
initial angular errors. Two dimensions of attitude alignment can be performed by aligning
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the gravity vector, which is measured by the accelerometers. The remaining dimension,
which is rotation about the local vertical, can be aligned using a measurement of the Earth’s
rotation rate. Such alignment usually requires extensive filtering of the gyroscopes, and may
not be possible with low quality instrumentation. (A compass can also provide this
measurement, but is not pursued here.)

When fixed to Earth, the accelerometer measurement is a combination of gravity and
centrifugal acceleration:

a, = B(w, x (o, x p)-9(p)) (2-87)

For the purposed of initial alignment, we do not model the measurement error. If the
accelerometers are noisy, they should be filtered. An accelerometer bias will affect this
initial alignment, but will be treated later in the Kalman filter. The expected measurement is

é\'m = é(a)e X (a)e X ﬁ)_ g(ﬁ)) ~ é(a)e X (a)e X p)_ g(p))1 (2'88)

where we assume that there is little error in the position (from GPS alignment) or in the
gravity model. In this regard, any error in the acceleration direction is caused by an incorrect
attitude estimate. We seek a corrective rate, to be included in the attitude update equation.
For gquaternions, this would be:

4= f,(@)(0+a,). (2-89)

A corrective rotation vector that brings &, to a,, can be calculated. First, the angle between
vectors can be determined from the vector dot product

s
|<9c|:cos‘l[ Sy J (2-90)

1)

Second, the direction of rotation can be represented as a unit vector, using the vector cross
product:

G _ M (2-91)
o] \la,xa,
A gain can be applied to this error and used as the correction rate
0 a'a a_xa
o=k, gc_c:kacos-l[ ol j{ ., ] 2%
Tl (v o) ey

Note that the magnitude of the gravity vector is irrelevant for this alignment.
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A similar correction rate can be calculated using the rate measurement. An identical process
for aligning the Earth rate vector could be formulated, but this would overconstrain the
system, providing 4 directions of correction for 3 degrees of freedom. It is preferable to limit
the rate alignment to the one remaining dimension. We could instead limit the gravity
measurement to one dimension, but this is usually less accurate. While gyroscopes can be
very precise, the Earth rate is very small.

The direction of measured acceleration is very close to the local vertical. Therefore, rate
measurements will be used to estimate the rotation error about the local vertical. This
requires transformation into the NED coordinate system.

The transformation from ECI to NED orientation is done by rotating in longitude and then
latitude:

0 0 1| cosA 0O sinA|cosL —-sinL O
T..(4,L)=/0 -1 0 0 1 0 sinL cosL O (2-93)
1 0 Of-sinA 0 cosA 0 0 1

The result would actually be in ENU coordinates, so an axis swap is required. Matrix
multiplication produces

—sinAcosL sinAsinL cosA
T (A, L)= -—sinL —cosL 0 | (2-94)
—cosAcosL cosAsinL -sinA

The Earth rate vector in ECI [14],

w,=0 0 7.2921150x10°) rad/sec, (2-95)
transforms to
cosA
Dhneg = Tned W, = 0 |a)e| : (2'96)
—sinA

If we assume that the body frame is misaligned by an angle yreq Of pure NED yaw, the value
measured by the gyroscopes will be:

COSYW ey —SINW,y O COSY/ g COSA
O =| SN,y COSWpq O [Teq@, =| SiNY 4 COSA | (2-97)
0 0 1 —-sinA
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Given this measurement, the error can be calculated from the first two terms:

Wy = tan-l(‘;m—(é))j. (2-98)

The four quadrant arctangent should be used to accommaodate large errors. Alternatively, the
arctangent can be linearized if small errors are expected. The measured rate should be
heavily filtered before the arctangent.

We now add a scalar gain and convert from NED to body coordinates,

o, = _kz// Bned W hed 1 (2'99)

and we have an additional rate correction for the quaternion update. The DCM Byq IS the
rotation from NED to body coordinates. It can be expressed in terms of the B, the ECI DCM,
using

B=B T (4L). (2-100)

ned
Inverting produces

B,y =BT ,(4,L). (2-101)

ned

Note that this technique will fail for initialization near the poles, where the Earth rate and
gravity vectors are coincident.

The equations of navigation will be central to the design of this navigation system. However,
we also need to develop formal treatment for estimation under uncertainty. For this purpose,
we will now shift discussion to the Kalman Filter.
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2.2 The Kalman Filter

The Kalman filter is widely used in navigation and has proven to be successful in these
applications. It presents a systematic approach for estimation in the presence of uncertainty.
It is directly applicable to Linear Time-Varying (LTV) systems and can be extended to
lightly nonlinear systems. The filter itself is linear, allowing for reasonable computation and
implementation requirements. Under certain assumptions, the Kalman filter provides the
optimal estimate for a given noise environment, which makes it superior to many types of
estimators.

It is important to discuss these assumptions because they characterize the filter’s strengths
and limitations. Though in practical implementation the Kalman filter is rarely actually
optimal, the filter performs very well in many situations. In system modeling and design, we
will strive to best meet these assumptions, and will take caution if they are violated.

The first assumption is that the system in linear. This includes LTV systems, which makes
the Kalman filter more powerful than most linear observers. As we will explore later, this
also allows for approximate treatment of weakly nonlinear systems, in that such systems can
usually be approximated by LTV systems.

The second assumption is that the system uncertainty is white noise, meaning that the noise
statistics are independent of previous noise values. This assumption would be restrictive, but
techniques exist for removing noise correlation by augmenting the deterministic system
model.

Under the previous two assumptions, the Kalman filter provides the estimate with the
minimum unconditioned error variance of all linear estimators. This is acceptable for most
applications, because nonlinear estimators maybe difficult to formulate or computationally
intensive. Note that we are discussing the linearity of the estimator and are still assuming an
LTV system.

With an additional assumption that the noise is Gaussian, the Kalman filter becomes the
optimal estimator by most reasonable criteria. In this case, the Kalman estimate is equivalent
to the conditional expectation of the state x given all previous measurements z,

X(t) = E{x(t) | z(t)}, and the conditional variance is minimized. Mathematically, the

Gaussian assumption allows for direct expression of the system probability distribution
function, which facilitates the proof and leads to a linear form [3, pp. 228-232].

The Gaussian assumption is not met in general, but many types of noise are approximately
Gaussian. The Central Limit Theorem states that the probability distribution for the sum of
many independent random variables approaches a Gaussian distribution. Also, the actual
higher order noise statistics are rarely known, so the Gaussian assumption may be the best
choice. For LTV systems, the success of this assumption seriously limits the benefit of
pursuing nonlinear estimators. For our derivation, we will not depend on this assumption,
but the performance of the Kalman filter under Gaussian noise is an important strength.
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An additional tacit assumption is that the LTV model is an accurate representation of the
system, both in terms of parameter values and in the underlying model structure. This will be
of particular concern when we linearize a nonlinear system for use with the Kalman filter. It
is inevitable that modeling errors exist at some scale, and the effect of such errors will be
analyzed.

Alternatives to the Kalman Filter

The most notable shortcoming of the Kalman filter is that it is derived for LTV systems.
Although the filter can be extended to accommodate nonlinear systems, there is no guarantee
of optimality or even stability. While performance has been successful in many nonlinear
applications, convergence analysis is exceedingly difficult.

However, any weaknesses in the Kalman filter should be viewed in comparison with the
alternatives. Linearization is a crucial technique for many forms of engineering analysis.
Full treatment of nonlinear systems is difficult and there are only a few successful
approaches.

This first alternative is a nonlinear observer. One example can be found in [22]. Of course
the Kalman filter is an observer, but it does not guarantee convergence when applied to
nonlinear systems. Instead, we could pursue a nonlinear observer of a simpler form with the
goal of proving global exponential stability. However, the simplification of the gain law
inevitably discards the linear optimal techniques of the Kalman filter. This exchange
sacrifices many of the benefits in noise discrimination and observation of LTV systems.

The second alternative is a nonlinear optimal filter, but this proves to be impossible from a
practical standpoint. The optimal nonlinear estimate can be formulated in terms of the
probability density functions of the state and measurement [7, 10]. However, the entire state
probability density function must be propagated with time. The covariance estimate of the
Kalman filter is replaced by a continuum of probability estimates. The resulting differential
equation, with nonlinear state dynamics, is an intractable mathematical problem. Even a
numerical solution requires a prohibitively large number of variables to approximate the
probability density function.

A third alternative is an adaptive filter. This refers to a broad class of systems that use
adaptive modeling techniques to intelligently estimate the state and noise dynamics. Many
can be described as extensions to the Kalman filter. The Sage-Husa filter [16], allows for
unknown noise, and estimates the noise statistics along with the state. Others methods use
online tuning of the Kalman Filter, such as [17]. Some of the noise models described in
Sections 2.2.5.2 and 2.3.1.3 can be adapted in real time. While these techniques are arguably
more sophisticated than the Kalman filter and may provide increased performance, they do
not directly address the nonlinear stability problem.

A second variety of adaptive techniques exist that attempt to estimate the entire process
model. Here the entire system is parameterized, using poles and zeros, wavelets, neural
networks, or other model sets. The physics of the process is not necessarily considered. This
presents a fatal weakness, because the physics of navigation is highly known and provides
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significantly more information than the sensors alone. However, these techniques can be
very useful for characterizing the unknown parts of the dynamics, such as the disturbance
model.

2.2.1 Continuous-Discrete Formulation

The Kalman filter derived here is a hybrid between the continuous-time and discrete-time
formulations. With this technique, the system state and covariance are propagated
continuously between measurements, but are updated extemporaneously when each
measurement arrives.

Most physical phenomena are inherently continuous-time, such as rigid body dynamics and
the force of gravity. Even the IMU bias dynamics, which have an effect only at the discrete
times of measurement, are samples of an underlying continuous physical process, such as the
thermal behavior of the sensor. Discrete equivalents are approximate and can be
cumbersome to calculate in real time for an LTV system. The continuous Kalman filter uses
the continuous equations directly, and can be implemented using a numerical differential
equation solver. This solver must operate at discrete time steps, but can provide an accurate
solution to the continuous differential equations.

Measurements, however, occur at discrete times, either because a continuous-time sensor is
sampled or because the sensor itself is discrete-time. While a sample-and-hold architecture
can be used to provide a continuous-time measurement for use in the continuous-time
Kalman filter, this is no longer optimal because it gives weight to the measurement for an
extended time period. Technically, the measurement is valid only at the instant of
measurement. It is therefore preferable to process measurements directly in discrete time.

This hybrid filter conveniently allows for multirate and sporadic measurements.
Measurement updates can be performed with whatever measurements are available, or
omitted entirely. This provides natural handling of measurement dropouts and produces a
state estimate that is available between measurements.

2.2.1.1 Problem Statement and Assumptions
The system is modeled as a continuous LTV system

X(t) = A()x(t) + u(t) + F(t)w(t) (2-102)
where the continuous state x is driven by a known control input u and unknown process noise
w, and A(t) and F(t) are matrices that may be time-varying. Measurements z are taken at

discrete times t, and contain unknown discrete-time measurement noise n:

2(t,) = H(t)x(t) + D(t)u(t) + LEIn(E) - (2-103)
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The arguments t and t, will usually be omitted for clarity, but the explicit dependence on time
should be noted. We will also sometimes write z[k] or n[k] for discrete-time quantities,
where tx = kT and T is the sample time.

For this derivation, we assume zero mean noise:

E{w}=0 (2-104)
E{n}=0. (2-105)

We also assume that the process and measurement noise are white (time-uncorrelated):

E{w(t)w(t —7)}=QJ,(7) (2-106)
E{n[kIn[k — m]} = RS[m], (2-107)

where J,(z) is the continuous Dirac delta function (unit impulse) and o[m] s the discrete

unit impulse. The variables 7 and m are arbitrary offsets. A technique for removing time
correlation by augmenting the system model is presented in Section 2.2.5.2. With this
method, it is usually possible to satisfy this assumption.

Finally, for ease in derivation, we assume that the process and measurement are uncorrelated:

E{w®)n[k]}=0 Vtk. (2-108)

Correlation between the process and measurement noise can be included in the derivation,
but is not needed for this application.

We seek the “best” state estimate X. We will discuss optimality with various cost functions,
and ultimately restrict the result to linear estimators.

2.2.1.2 Minimum Conditional Error Variance

The strongest condition for optimality is to minimize the variance of the estimation error
conditional on the available measurements. This derivation, taken from [7, p. 104], shows
that the resulting estimate is the conditional expectation.

The conditional probability of the state x given z, can be represented by the probability
density function

p(Xz)= plxnz) (2-109)

p(z)

where p here is not to be confused with the position vector p used in other sections. This is
the ratio of the joint probability of x and z to the probability of z.
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The conditional expectation is then defined as the probability weighted average of x over the
entire state space region R":

E{x|z}: jxp(x|z)dx . (2-110)

The estimation error
e=%-x, (2-111)
can be used to define a weighted square error loss function
v(e) =e'We, (2-112)

where W is a constant symmetric positive definite matrix. Note that this loss function has a
global minimum at the origin and derivative

% _ 2We = 2W (R — ). (2-113)

The conditional total cost is then given by weighting this loss function by the conditional
probability density function and integrating over R":

V= Iv(e) p(x|z)dx. (2-114)
e
The minimum occurs when
dv dv de
&% Jdeox (x(z)dx = 2w F;[ep(x|z)dx =0, (2-115)
which requires that
j()“( - x)p(x|z)dx =0. (2-116)

R"

The estimate X can come out of the integral and the equation can be rewritten as
RI p(xz)dx = pr(x|z)dx. (2-117)
R" R"
Since for any probability density function

J pxz)x=1, (2-118)

R"
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this expression simplifies to

X = jxp(x|z)dx = E{x|z}, (2-119)

which gives the promised result that the optimal estimate is the conditional expectation.
Surprisingly, this result is independent of the weighting matrix W. This result can be
expanded to include a wide variety of loss functions, under certain assumptions regarding the
probability density function [11]. The optimality of filters based on this result is therefore
very general and broad.

Direct evaluation of (2-119) may be possible using Bayes Theorem

p(xz)= plex)plx) . (2-120)

p(z)

The difficulty is that p(x) and p(x|z) must be propagated through the state dynamics. This is
unfeasible for most probability distributions and for nonlinear systems. However, the case of
Gaussian noise can be solved because an LTV system preserves Gaussian statistics. The
result is linear in form and is identical to the Kalman filter. This derivation of the Kalman
filter is explored in [3] and, of course, by Kalman himself in [11].

2.2.1.3 Minimum Unconditional Error VVariance

An alternative choice of the cost function is the unconditional expectation of the weighted
square error:

V= IeTWep(x)dx = E{eTWe}. (2-121)

Note that the unconditional probability p(x) now replaces p(x|z). In this fashion, the actual
measurements have been removed from the cost function, but they are still used by the
estimator to best minimize this new cost. With no weighting, W=I, this cost is the
unconditional variance of the error. The weighting matrix W is included for completeness,
but is once again found to have no effect.

In general, cost minimization occurs when

(:j\; = E{2We}=2WE{X - x} =0, (2-122)

which occurs when

E{%}=E{x}, (2-123)
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showing that the optimal estimate is unbiased. We will proceed to develop a recursive
formula for the optimal estimator. This derivation was greatly influenced by [5] and [13] for
continuous systems and [3] for discrete systems. The result here is specific for continuous-
discrete systems and adds the effect of the weighting matrix W.
In order to estimate the state, the filter will also estimate the error covariance
P=Efee'}. (2-124)

Note that this is a covariance matrix only when the error is zero mean, which occurs because
of (2-123).
Initialization
Since optimality requires an unbiased estimate, recursion must begin at

R, = E{x(t,)}=X,. (2-125)
The corresponding initial covariance is

P, = E{R, =%, X, =%, ) J= E{X, =%, X%, =%, ) }=P, , (2-126)

which is the covariance of the initial state X,.

Propagation between Measurements

In the absence of measurements, the unbiased estimate is simply the expected propagation:
X = E{x}=E{A{t)x+u+ Ft)w(t)} = At)R+u. (2-127)

The error covariance propagation can be calculated:
;_ d T d 3T 3T
P:—E{ee }=E —ee =E{ee +eé } (2-128)
dt dt
Using the estimated and actual state dynamics, the error dynamics are given by
6=X—X= A)X+u—A(t)x—u—F(t)w(t) = A(t)e — F(t)w(t), (2-129)

which leads to

E{éeT +ee’ }: E{AeeT —Fwe" +ee’ AT —ew'F’ } (2-130)
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where E{eeT }z P, but E{FweT} requires further attention. From (2-129), the error solution
can be expressed as a convolution with the error state transition matrix:

e= —j@e(t,f)F(T)W(T)dT. (2-131)

tO

In this discussion, the variable zis a dummy integration variable, and does not refer to a
torque input. Using this expression yields

Fwe' =-F (t)W(t)j‘WT (o)FT(z)D] (t,z)d7 = —j FOwE)W' (2)FT ()] (t,z)dz, (2-132)

where the functions of the variable t can be brought inside the integral of variable z. Taking
the expectation and using the noise characteristics of w produces

E{Fwe’ = —j F()QS,(t—7)F ()] (t,7)dr, (2-133)

causing the integrand to be nonzero only at t = 7, where ®] (t,t): I . Careful consideration
of the limit shows that exactly half of the Dirac pulse is within the integral bounds

[13, p. 164], yielding
E{Fwe’ = —%F(t)QFT(t). (2-134)

This is symmetric, so E{ewT F' }: E{FweT } Substituting these results back into (2-130)
yields

P=AP+PA" + FQFT, (2-135)

which gives the continuous error covariance propagation in the absence of measurements.

Measurement Update

We now consider the update that occurs when a measurement arrives. Since this update
takes place instantaneously, the subscripts ‘-’ and ‘+” will be used to distinguish values
before (a priori) and after (a posteriori) the measurement update, respectively. This gives the
definitions of X_, e, and P., and X, , e, and P.. We will also sometimes explicitly include

time by writing expression such asX(t_) and X(t, ) .

In order to proceed, we now limit ourselves to linear estimators. In doing so, we are finding
the optimal linear minimum variance estimate.
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The most general form of a linear estimator would be a linear combination of the all
information:

A

X, =KX +K,z+K,u. (2-136)
The optimal estimate must be unbiased. Substituting for z and taking the expectation yields
E{%, }=E{K& +K,(Hx+Du+Ln)+K,u}. (2-137)

Since the a priori estimate was unbiased, E{X_}= E{x}. Usingalso E{n}=0 and E{u}=u,
this reduces to

E{&, }=(K,+ K,H)E{x}+(K,D+K,)u. (2-138)
For independence to the control input, we must have
K,D+K,=0. (2-139)
For an unbiased a posteriori estimate, we require
K,+K,H=1. (2-140)

If we define K =K, , then (2-139) and (2-140) become K, =1 -KH and K, =-KD. The
resulting expression is that of a linear observer:

X, =(1-KH)X +Kz-KDu=X% +K(z-HX -Du)=% +K(z-2), (2-141)
which forms a correction based on the measurement error.

The optimal gain K that minimizes V can now be found by evaluating the following
derivative expression:

v _d E{eTWe}= E{ieTWe} -0. (2-142)
dKk  dK dK

This equation describes the derivative of a scalar with respect to every element in a matrix.
This derivative can be organized in a matrix of the same size as K with components

() o .
dK ), dK,
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Several matrix derivative formulae follow from this definition. First, the derivative of a
matrix norm can be expressed by the components

(iaTij -9 arko=-9 aKk,b, =ap,, (2-144)
dK i dK dK.

1 ]

because each derivative has only one nonzero term. This can be written compactly as the
outer product

4 aTKb=ab'. (2-145)
dK

Transposing K will transpose the derivative:

]
9 kb= (LTaTKTbj ~(ab") =ba'. (2-146)
dK dK

Finally, the derivative of the following weighted quadratic in K can be differentiated one K at
a time using the previous results:

diKaTKTWKb = (WKb)a" + (WKa)o" =WK (ba" +ab" ), (2-147)

for symmetric W. If a = b, this reduces to

diKaT K'WKa = 2WKaa' . (2-148)

We can now proceed to build an expression for V and evaluate the derivative. Using the
observer form given by (2-141), the a posteriori error can be related to the a priori error
e(t,) = X(t,) — x(t) = X(t) + K®)(H @©)x(t) + LEN(t) - HOR(E)) - x(t) (2-149)
or
e, =(I —K{®H ) +KLn(t). (2-150)

Taking the weighted inner product, and combining scalars with their transposes, yields

e'We, =((I -KH)e_ +KLn)"W((1 —KH )e_+KLn)
=e' (I -KH)W(l —KH)e_+¢€’ (I - KH )'WKLn
+n"L'K™W(1 —=KH )e_+n"L"K'WKLn
=e'e —2e'WKHe_+e’HTK'WKHe_ + 2e"WKLn
—2n"U"K'WKHe_ +n"L"KWKLn. (2-151)
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The derivative can now be taken using the previous formulae, with terms such as e., We_, He.,
and Ln forming the a and b vectors:

4 gr
dK

We, =2W(-e e"H" +KHe e'H™ +e n'L’
~K(He n"L" +Lne"HT )+ KLnn"L"). (2-152)
We will prepare to take the expectation by noting that

Elee |=P (2-153)
E{nn’ |=R. (2-154)

Also, the a priori error e. is not influenced by the the current noise n = n(ty), so we have
Efen’|=Efe’ }=0. (2-155)

Proceeding with the expectation yields
—=E{ieTe}=2\N(— PH™ +KHP HT + KLRL")=0 (2-156)

The weighting matrix drops out, and the optimal gain K is governed by
K(HPHT +LRL")=PHT. (2-157)

By the definition of covariance, the matrices P and R are both symmetric positive definite
and inversion is therefore possible:

K=PHT(HPHT +LRL")". (2-158)

This matrix inversion is computationally intensive, and an alternative technique is presented
in Section 2.2.5.3.

With this optimal gain, an update law for P is required. This can be found using (2-150):
P =Efe.elJ=E{(1—KH)e_ +KLn)(1 - KH)e +KLn) |, (2-159)

Multiplying and taking the expectation produces
P=(I-KH)P.(I -KH)" + KLRL'K". (2-160)

This is known as Joseph’s Stabilized Form [8, p. 233] and has desirable numerical properties
because of its symmetry.
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Equation (2-160) can be simplified by multiplying out first term:
P =P -KHP -PH'K" + KHH'K" + KLRL'KT, (2-161)
and substituting the optimal gain relation of (2-148):

P.=P —KHP —K(HPHT + LR )K" + KHHTK" + KLRL'K" =(1 —KH )P (2-162)

Summary

The filter requires the initialization X, P, and specification of the noise covariances Q and R,

which may be time-varying. Then the state estimate and covariance are propagated
continuously between measurements using

X=A%+U (2-163)
P=AP+PA" + FQF' (2-164)

and updated discontinuously at measurements using

K=PHT(HPHT +LRL" )" (2-165)
X, =% +K(z-H& ) (2-166)
P =(I-KH)P. (2-167)

2.2.2 Nonlinear Extension
Consider the continuous nonlinear system with discrete measurements given by

X(t) = f(x(t),u(t), w(t),t) (2-168)
Z(tk) = h(x(tk)!u(tk)!n(tk)!tk) (2'169)

A general optimal estimator for this system is a difficult mathematical problem. The primary
obstacle is the propagation of the error statistics which now involve the full probability
density functions. The estimation error is no longer defined by its covariance, because even
simple noise inputs are complicated by the nonlinear dynamics.

The alternative approach is to linearize the dynamics, and then apply the Kalman filter. This
linearization can be done with respect to a predefined trajectory, or with respect to the
estimated trajectory. This first method is suitable for repeated motion, such as manufacturing
tools, where the trajectory is well known in advance. For navigation, the flight path is
usually not well known, so we use the latter approach, which is commonly known in the
literature as the Extended Kalman Filter (EKF).

The EKF raises issues of stability. The feedback of the estimate into the linearization creates
a new nonlinearity which can have adverse effects. The EKF will be successful if the model

42



is sufficiently smooth in the region of operation to be well approximated by linear functions.
The topics of convergence and stability will be addressed in Section 2.2.4.4.

2.2.2.1 Linearization

The standard approach to the Extended Kalman Filter is to replace all matrices in the Kalman
Filter with their corresponding Jacobians. For example:

At) ~ % (2-170)

Lt

and similarly for the matrices F, H, D, and L. Each partial derivative is evaluated at the
estimated state. This approximation is justified from a Taylor series expansion. However,
we will take a more deliberate approach, and in the process uncover some techniques that
will simplify computation and make the result more linear.

We begin by dividing the state into a nonlinear estimate and a small linear estimation error:
X(t) = X(t) + X(t) . (2-171)

The linear state will be estimated by the Kalman filter, while the nonlinear state will be
propagated independently. A logical choice for the nonlinear propagation is the differential
equation

x=f(Xuw=0,t), (2-172)
with discontinuous updates when measurements arrive

R =R +i. (2-173)

+

The term i in this Extended Kalman Filter is analogous to the innovations process of the
Kalman filter. The innovations process represents the updates to the state estimate, and
should be zero mean white noise under optimal filter operation [5, pp. 425-427]. In the EKF,
i is a variable of our choice, and we will use it to offload the linear error state onto the full
nonlinear state estimate.

The previous choices for nonlinear propagation leave the following dynamics of the
estimation error:

HK=x—%X=f(xuwt)—f(Xuw=01t) (2-174)
K, =& +(x=K%)-(x-%)=&_ —i (2-175)
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If we now assume that ox and w are small, a linear Taylor series expansion gives

X~ of OX + ﬂ
L,u,w=0,t aW

ox
We can now begin to build a Kalman filter to estimate the estimation error &% using

JW . (2-176)
X,u,w=0,t

Aty = (2-177)
aX %,u,w=0,t

Fi=2" (2-178)
X,Uu,w=0,t

u=0. (2-179)

Here u is the control input for the Kalman filter, while the control input for the nonlinear
propagation can still be nonzero. Additional linearization is required for the measurement,
which can be expressed using the estimation error
2(t,) = h(x(t),u(t,),n(t,).t, )= h(X + &,u,n,t, ). (2-180)
We now divide our measurement into nonlinear and small error components
z(t,) = 2(t, ) +oz(t,) (2-181)
where the predicted measurement
2(t)=h(X,u,n=0,) (2-182)
leaves a small error

a(t) = z(t) - 2(t,) = h(X + ,u,n,t, )= h(X,u,n=0,t, ). (2-183)

This result can be linearized, assuming small sk and n:

52{8** }sﬂ(@
X,u,n=0,t 6”

OX
This now gives the linear measurement and measurement noise matrices for our Kalman
filter:

jn (2-184)
%,u,n=0,t

oh

H(t) == (2-185)
aX %,u,n=0,t

L= (2-186)
an X,u,n=0,t
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2.2.2.2 Measurement Pre-Compensation

The technique presented here provides a treatment for nonlinear measurements that is
superior in many situations. The strategy is to remove the nonlinearity before the
measurement is given to the Kalman filter. In effect, the nonlinearity of a measurement or
group of measurements is inverted to produce a linear measurement. In many cases, the
result is a more accurate linearization for the Kalman filter and a simpler expression for the
measurement Jacobian.

For example, consider the following nonlinear measurement:

z=(x+n). (2-187)
The nonlinear function can be inverted, and a new measure defined:

2'=3z=x+n (2-188)
Subtracting the predicted measurement produces a small measurement error

oZ=7-X=&+n (2-189)

which is linear in the error state and noise. In this example, a direct linearization would have
produced

& =3%° (X +n). (2-190)

This example was particularly simple because the noise was inside the nonlinear function and
there was only one state involved. In general, measurement pre-compensation will still
require linearization and the inverse nonlinearity must be computed at the estimated state.

This technique can be formalized and the measurement Jacobian can be modified to include
the effect of pre-compensation. Although the notion of inverting a nonlinearity is fairly
common, this derivation is original. For the specific equations of this application, this
technique leads to simplified equations and more accurate linearization.

Consider the case where a block of measurements z, depends primarily on a corresponding
block of states x, :

z, =N, (%, X, U, 0y, t) = hy (R, + X, R, + X, U, 0, 1), (2-191)
where x_, are the additional states of secondary dependence. For example, a gyroscope
measures body rates primarily, but is affected by biases and scale factors which can be

included as other state variables. It is frequently possible that this portion of the
measurement function can be inverted and the block states X, recovered using

X, = hy*(z,: %2, U, N, 1) (2-192)
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Now define a new measurement that is compensated by the estimated state
z; =ht(hy(%,;%_,,U,n,,t); %X, ,u,n, =0,t). (2-193)
This can be rewritten using the estimation errors
z, =h(hy (X, + %X, +X_,,u,n,,t);%,,,u,n, =0,t). (2-194)

Assuming once again thatox and n, are small, the linear Taylor series approximation can be
used, first on the inner function:

z; ~h™ h(ib;XNb,u,nb:O,t)+a—h s+ Ny;X,,u,n=0t|, (2-195)
X X% U Ny =0,t anb Ro+%p,U,N,=0,t
and then again on the inverse function:
-1 -1
= X, + oh h X+ on oh n,, (2-196)
azb 2 ,%2p,U,Np =0,t Ry Xop,u,np =0t azb 3,8 ,U,Ny =0,t My R R_p U, Np =0,t

where the inverse function is evaluated at the expected measurement
7, =h(%,;%,.u,n, =0,t). (2-197)
The small measurement for this block can then be defined as

oh™
0z,

. . oh?

_ on
0z,

X+ 8_h

Rp»Rp,U,n=0,t

n,. (2-198)

Rp »Rp,U,Nt

2y, %_p,u,np =0,t 7,,%p,u,np =0,t

These components can then be placed into the Kalman filter. The corresponding rows of the
H matrix are

-1
H, (t) = ch o (2-199)
azb 2,8 U,N, =0 t Ry %p,u,n=0,t
and the noise portion of L for these block measurements is
-1
L ()= ch on (2-200)
azb 2.8 ,U,N, =0 t Ry % ,u,n=0,t

The advantage of measurement pre-compensation is that the nonlinearity is removed as much
as possible. Note that the partial derivatives of both h and h™ appear in the Jacobians. This
is because the inverse is evaluated at the estimated state.
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2.2.2.3 Offloading the Estimation Error
For the previous assumptions to hold, a small estimation error must be maintained. Various
techniques are available for offloading the estimation error. The most convenient is to
initialize and maintain zero error:

XK(t)=0 Vt. (2-201)
As the Kalman filter minimizes the variance

Efe"e}= E{oR— o) (k- &)}, (2-202)

and is unbiased, this will maintain the smallest 5 possible. The continuous-time error
propagation is now trivial:

HK=AK+u=0. (2-203)
The measurement update is
K, =K —i+K(@Z-HX )=&K —i+Ka, (2-204)
and, to maintain &%, =0, we must choose
i=Kaz. (2-205)
In other words, we pass the innovation directly from the Kalman filter to the nonlinear

estimate. Note that the error state matrices are still required to propagate the covariance and
calculate the Kalman gain:

P=AP+PA" + FQF' (2-206)
K=PHT(HPH +RJ" (2-207)
P=(1-KH)P. (2-208)

This choice of maintaining zero error simplifies the Jacobians. Any approximation for small
quantities, such as small angles or dropping higher order terms, becomes exact when the
error state is zero. As a result, these approximations can be used freely without degrading the
estimation accuracy.

2.2.3 Data Forgetting

As the optimal solution, the Kalman filter necessarily uses all past data that is available. This
apparent strength for measurement fusion becomes a weakness in the presence of modeling
inaccuracies. As time progresses, the estimated covariance may diminish, reducing the
Kalman gain, while the actual error may increase. The result is a sluggish filter that
stubbornly clings to its incorrect estimate.
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There are several solutions to this problem, presented in [7, pp.279-288] and [13, pp. 218-
222]. Most techniques sacrifice optimality in exchange for practical performance. The most
common solution is to insert fictitious process noise to increase the steady-state value of the
covariance matrix. While these techniques can be successful, they are ad hoc, and can be
difficult to implement in a large system.

The method of data forgetting, presented by [1], provides a simple approach that is on firm
theoretical ground. This approach represents the weighting of information inversely to its
age. In this fashion, the estimate becomes the best fit of the recent data. Optimality is still
present in the context of this time weighting. This approach increases the stability of the
filter.

In practice, data forgetting presents a single tuning parameter that can be used to adjust filter
responsiveness. The following discussion will show that data forgetting can be implemented
using a very simple modification to the Kalman covariance propagation. Forgetting can be
removed entirely by setting the forgetting rate to zero. In this regard, there is little reason not
to include data forgetting in this or any Kalman filter.

The method for imposing data forgetting is most intuitive when viewed in the context of a
dual problem for the Kalman filter. The Kalman filter can be shown to also minimize the
following cost function [1]:

% =%(xo ~%,) P(x, - io)+%jnIQ‘l(r)nxdr+%Z(z —HX)' R™(t)(z - HX) (2-209)

t

The first term represents the cost of an initial condition error. The second term integrates the
cost of process noise. The third term sums the cost of measurement error. In this context,
scalar exponential time weighting can be added to this cost function as follows

t
V= %e“t“ (x, = %,) P(x, — >20)+%J‘e”nIQ‘l(r)nxdr+%Ze2“(z —HX)" R™(t)(z - HX)
t

tO

(2-210)

Without loss of generality, we can assume that t, = 0, so that the first term is unchanged.
This new cost function can be brought to the original form using the substitutions

L) =eQ7 (1) (2-211)
R (1) =e*"R7(t), (2-212)
or, alternatively
Q, () =e™"Q(t) (2-213)
R, (t) =e?*R(t). (2-214)
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In other words, the optimal solution to the problem with data weighting is identical to the
ordinary Kalman filter with modified noise covariance. In particular, both the process noise
and measurement noise are reduced exponentially over time. This maintains the balance
between measurement and process information, but gives new information more credibility.

The modified covariance can be substituted into the Kalman filter equations to provide a
modified formula for filter propagation and measurement updates. However, this result is
not suitable for computation, because the noise covariance becomes very small as time
increases.

Consider instead the compensated covariance
P,(t) =e*"P(t). (2-215)
Then
P, = 24e**P +e?*P = e (24P + AP+ PA” + FQ,F"). (2-216)
The A’s can be split and, since e*”Q, = Q, this equation can be written as:
P,=(A+A1)P, +P,(A+ Al) +FQF’ (2-217)

The gain can be written in terms of this compensated covariance by substituting P =e?*P,
into

K=PHT(HPHT +LR,L")", (2-218)
which is conveniently unchanged:
K=e?"P, H"(He?*P, HT + Le R | " =P, HT(HP,_ H" + LRL" . (2-219)
The measurement covariance update
P.=(I-KH)P, (2-220)
is also unchanged:
P.=(I-KH)P, . (2-221)

In summary, the concept of data forgetting can be employed to the Kalman filter by simply
substituting

A, = A+l (2-222)
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in the covariance propagation equation. This causes the estimated covariance to grow more
rapidly, reaching larger steady state values. This, in turn, creates larger gains and a faster
filter response.

Note that the modified covariance P is no longer an estimate of the error covariance. It has
been increase exponentially to produce the effect of forgetting. However, this is the
covariance that is used to calculate the gain in the Kalman filter. As such, this modified
covariance must remain in a region where the model is accurate. When covariance studies
are performed using data forgetting, the result will be assessed in this context.

2.2.4 Convergence

The topic of convergence can be approached from several viewpoints. The most common
techniques are observability and covariance analysis. Further nonlinear discussion of the
extended Kalman filter is also appropriate.

2.2.4.1 Observability

As the optimal linear observer, the Kalman filter will converge for a linear plant if there
exists any linear observer that converges. Otherwise, the Kalman filter would not be optimal.
A linear observer will converge if the system is observable. It is therefore appropriate to
explore the meaning of observability in the context of the continuous-discrete Kalman filter.

Note that observability is predominantly a deterministic concept. It reveals what states can
be estimated if there is sufficient measurement quality. Covariance analysis, discussed in
Section 2.2.4.2 and conducted using simulations in Section 3.3, reveals how accurate the
estimate can be. Strictly speaking, a system is either observable or it is not, but we will
sometimes talk about increasing observability in the context of covariance and measurement
quality. It is instructive in the observability analysis to consider the effect of ignoring small
terms, because they may too small to measure.

A deterministic system is observable if the entire state x can be reconstructed from a finite set
of measurements [5, p. 207]. We shall focus on the case where the state can be reconstructed
using a linear technique, in the interest of showing that the Kalman filter will converge.

The topic of observability has been studied thoroughly by many authors. Observability
conditions for LTI systems are derived in many texts including [5]. The observability of an
LTV system is more elusive and can be difficult to determine. The discussion here has been
derived independently and contains two distinguishing characteristics. First, it focuses on the
subtleties of a continuous system with discrete measurements. Second, the relation between
the LTI observability test and LTV observability is explored, for the purpose of providing a
practical method of assessing the observability of an LTV system.
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LTI Systems

Given the LTI continuous system with discrete measurements

X = AX (2-223)
z, = Hx, (2-224)

the solution can be expressed as
x=eMx,. (2-225)

z, X, H
z He?'

2= B |on] = X, = Mx, (2-226)
Z, 4 Xn1 He(n_l)AT

Note that equations beyond n - 1 are not linearly independent so they provide no new
information. If this matrix M is of rank n, than n independent rows of M and z can be found
and solved using

x, =Mz, (2-227)
and the state at any time can then be calculated using (2-225), hence the system is

observable. However, it is rather difficult to check the rank of M directly in this form, so we
will pursue an alternate expression. The power series expansion

= (At)
Mt = kz_;( k!) (2-228)
can be rewritten as
n-1
e* => "¢ (At) (2-229)
k=0

where each c is a constant that can be determined. This follows from the fact that A" can be
written in terms of lower powers of A [5, p. 487]. An actual expression for ¢, will not be
needed.
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Using (2-229), we can write M as

H

H(col + AT + ¢, (AT P + ... ¢, ,(AT)")

M = (2-230)

H(c,l + G, AN —1)T +c,(AM =T +...+ ¢, , (A -DT )
If the n block rows of M are independent, we can use row reduction to derive a simpler

matrix of equal rank. The powers of A can be isolated, by first proceeding downwards to
remove the low powers and then upwards to remove the high powers:

H H
_ H(G,AT +¢,(AT ey (AT Y R H(GAT) 0-231)
H (cnl(A(ﬁ —pT)Y) H (cnl(A(ﬁ —nT)Y)
The rows can then be rescaled, yielding
H
M = H:A (2-232)

However, for this row reduction to be possible, the original block rows

H |
HeAT AT
. or
He(M-DAT p(n-DAT

must be linearly independent. This can be interpreted in the context of sampling. If certain
dynamics of A are periodic at exactly the measurement frequency, they will be hidden from
the output. While aliasing (which is acceptable) would be quite common, an exact frequency
match is unlikely in practical applications. This analysis gives the guidance that the
sampling frequency should be chosen to avoid equality with any known system vibration
frequencies.

For measurements at aperiodic times, the same results can be achieved, although there are
new possibilities for dynamics hidden from the output.
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LTV Systems

For a Linear Time-Varying system

X = A(t)x (2-233)
z, =H, x(t,) (2-234)

we can write similar measurement equations

HO

Zl qu)(tl’to) X

2| 5= ~ Mx (2-235)

(0] o

z Hoo®(too’t0)

o0

Note that each measurement now has its own H matrix and that the matrix exponential
e* was replaced with state transition matrix ®(t,,t,). We are no longer limited to n-1
equations.

Once again, if we can find n independent rows, we can invert and solve for the initial state
and thereby know the state for all time:

X(t) = DLt )X (2-236)

We would like to simplify the expression for M as we did for the time-invariant case.
However, the LTV observability problem is much more difficult because the state transition
matrix is difficult to evaluate.

It is natural to try to relate the LTV observability to the LTI observability. We will proceed
to explore the relationship between LTV observability matrix M and the instantaneous LTI
observability test matrix My, (t).

Let us first consider the following system as an example:

00
A{o o} (2-237)
H=[1 sint]. (2-238)

The time-invariant observability test matrix is always rank 1:

M (t) = E} Sig t] (2-239)
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Since ® =e™ =1, the first few rows of the time-varying observability are

1 sint,
M=|1 sint, |. (2-240)
1 sint,

This is rank 2, provided that the measurements do not occur at periods of 7, so the LTV
system is observable. Itis common, as in this example, for the instantaneous LTI
observability test matrix Mt (t) to underestimate the observability of an LTV system.

This can be formalized by viewing the LTV system as a series of piecewise LTI systems.
Consider a system that is LTI for a short window of time during which r measurements arrive
at period T. As the LTI time window can be made arbitrarily small, this is not a restrictive
assumption. Then for the samples k < r, the state can be expressed using the state transition
matrix:

X(t+KT) = d(t + KT, t,)x, = O(t + KT, 1)d(t,t, )X, , (2-241)

which has been separated into the LTV and LTI transitions. Using the LTI approximation,
we have

X(t+KT) = e T d(t,t,)x, (2-242)
Since H(t) is approximately constant during this time period, the measurement is
z, = 2(t+KT) = H(t)e"O d(t,t,)x, (2-243)

A portion of the observability matrix can be formed using these r measurements of the LTI
time window:

z H(t)

0

z H. (t)eA®7
Y= 1(): )CD(t,to)xo. (2-244)

Z, H., (t)e"®

The LTV state transition matrix is full rank because

O, 1) =D(t,,t,). (2-245)
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The LTI portion of (2-244) contains the first r rows that were used in LTI observability
analysis. If r > n, than this rank can be checked using the instantaneous LTI observability
test matrix:

H (t)

H,(t)e""")

rank =rank(M -, (t)). (2-246)

H (t)e A(t)rT

In other words, if n measurements arrive during the LTI time window, than the LTI
observability test matrix can be used to predict the LTV observability. This will
underestimate observability because it only considers the measurements from one time
window.

The full LTV observability matrix can be assembled using sets of measurements from
successive time windows:

z(t, + KT) = H(t)e"® " d(t,,t,)x, (2-247)
2(t, +KT) = H(t,)e T d(t,,t, )X, (2-248)
Z(t, +KT) = H(t,)e" W d(t,,t,)x, (2-249)

The resulting test matrix can be written as

M LTI (tl)(D(tl’to)
M LTI (tZ)(D(tZ ’to)

= . (2-250)
T Mg () 0(t )
Alternatively, the first transition can be removed
M LTI (tl)
M, . ®(t,,t
M v = LTI ( 2 1) . (2_251)

M 5 Ot 1)

This expression provides a method to test the observability of an LTV system using the LTI
observability test matrix at different time intervals. It is valid only for r > n, when the LTI
approximate is valid for n measurements. This expression is most useful during special cases
when the state transition matrix can be easily calculated.

In the event that the LTI approximation is only valid for short time periods, resulting in r <n,
the row reduction leading to M,y as given by (2-231) will not be possible and (2-251) cannot
be used. This is because there are fewer rows than there are powers of A.
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To the extent that
eMr) — 2 (2-252)

the first r rows of Mt (t) can be used in (2-251). This approximation uses the first r terms of
the power series expansion and is valid when the sample rate is fast compared to the
dynamics. If this is not the case, then matrix exponential in (2-244) must be evaluated from
the full series.

For systems with rapid time variance, it may be preferable to compute the state transition
matrix and evaluate (2-235) directly. This can be done by calculating

t
d(tt,) = exp( j A(r)de , (2-253)
t0
using numerical integration and the series expansion of the exponential.

Nonlinear Systems

In the case of a nonlinear system of the form

x = f(xt) (2-254)
z, =h(x,,t), (2-255)

there is no simple method to check observability, although the notion still has meaning. If
the system is well approximated by a linear system that is observable, then an approximate
solution can be estimated. The process of linearization typically removes information, so
there are many cases where an observable nonlinear system has an unobservable
linearization. Consider the measurement z = x*, which provides no information when
linearized about x = 0. It also may be possible for the opposite to be true if limit cycles
appear at the sampling frequency.

In the context of the Extended Kalman Filter, observability of the linearized system is
required. This is because the filter uses a linearization, and is therefore blind to nonlinear
effects. For this reason, a nonlinear observability test is not required.

Stochastic Stability

Rigorous stability analysis for the continuous Kalman filter has been performed in [12] and
[2]. Conditions can be established that guarantee the exact convergence of the estimate in the
presence of noise. These results are readily applicable to the continuous-discrete filter.
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As in the deterministic observer, observability is required so that errors can be detected.
Additionally, it is required that the filter equations remain finite. This requires bounded state
matrices and process and measurement noise. In the continuous Kalman filter, it is also
required that the measurement noise is nonzero so that the Kalman gain remains finite.

The third requirement is that the state is controllable through the process noise. In other
words, the process noise must be able to influence all of the state variables. This requirement
prevents the covariance from becoming too small. Controllability can be tested using
methods similar to testing observability.

Under these conditions, the Kalman filter is asymptotically stable. With the stronger
conditions of uniform observability and uniform controllability, the Kalman filter is
exponentially stable. Tests for uniform observability and controllability are beyond the
scope of this thesis.

Detectability

It is noted in [2] that the Kalman filter will perform successfully in the presence of
unobservable states if these states are all stable. Formally, this requirement is termed
detectability. With this condition, the unobservable modes will decay, and a linear observer
converges correctly.

This subtlety can provide two benefits. First, states that may be observable can be included
in the filter, so long as they are stable. For example, states that are only observable during
certain time periods or conditions can still be used. This approach can lead to the higher
performance.

Second, unobservable states can be distinguished by their probabilities, since the Kalman
filter is still choosing the optimal estimate. Unobservable states may be necessary for noise
modeling. This can allow the error covariance to propagate correctly even though these
states cannot be estimated precisely. However, unobservable states should usually be
avoided because additional states are a large computational burden and the exact probabilities
are usually unknown.

Unstable or marginally stable unobservable modes will cause great problems in a Kalman
filter. Such modes will cause the covariance matrix to grow without bounds, leading to
numerical problems. Also, poorly observable states with huge variance can still “draw the
blame” for measurement errors and compromise the estimates of other states.
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2.2.4.2 Covariance Analysis

The Kalman filter provides its own method for studying and monitoring filter convergence in
the full stochastic sense: the covariance matrix. The diagonal elements, or the principal
values, give a measure of the estimation confidence. Convergence of the Kalman filter
requires that the covariance matrix is bounded. The actual values of the covariance matrix
give the predicted accuracy of the filter.

The covariance matrix can be propagated offline to predict performance. It can also be
monitored in real time during the actual application. In contrast to observability, covariance
analysis is simpler to conduct and also produces a characterization of accuracy.

An important point is that covariance analysis assumes that the model is correct. The fact
that the filter thinks it has converged does not guarantee convergence. It can actually be a
practical problem if the covariance becomes too small, because the filter will then ignore
future measurements and become unresponsive.

2.2.4.3 The Effect of Modeling Errors

The effect of modeling errors is presented in [7, pp. 250-254] and [13, pp. 205-218] for
continuous-time and discrete-time Kalman filters. The development here extends those
results to apply to the mixed continuous-discrete Kalman filter.

Suppose that the true system dynamics are given by the time-varying matrices A, F, H, D,
and L, as defined earlier (2-102, 2-103), but that the Kalman filter uses a model with A, F,
H, D, and L. Define the modeling errors by the differences 6A= A— A and so forth. We

wish to express the propagation of the actual estimate error in terms of these modeling
differences.
The filter propagation is now
%=AR+u (2-256)
with error dynamics
6=X—X=AR+U—-AX—U—Fw= Ae—AX - Fw. (2-257)

This can be written using an augmentation of the state vector, with the actual dynamics in the
second row:
e |A —oale) [-F
( ] _ {A ﬂ( j{ }w. (2-258)
X 0 A |\x F
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The covariance propagation expression (2-135) still holds for these augmented matrices:

P'= AP+P'AT+F'QFT, (2-259)
where
p| A A (2-260)
0 A
F
F'= [_ F} (2-261)
T T
p= E[eeT eXT] (2-262)
Xe XX

Measurement updates can be treated similarly. The observer update is now
% =R +K(Hx +Ln-Hg ) (2-263)
which gives the error update
e, =(1-KF k. +KaHx+KLn. (2-264)

This again can be written using the augmented state (the second equation is trivial):
e —KH e KL
(ﬂ{' KH K‘SH}L j{ }n. (2-265)
X, 0 | X_ 0
Multiplying by the transpose and taking the expectation yields
T A A i U
_ — KL |_| KL
L |_[1-KH KaH p | -KH KoH N R . (2-266)
X, X} 0 | 0 | 0 0

since the measurement noise n is independent of e. and x.. The gain K in these equations is
generated using the incorrect model with the Kalman Filter equations given earlier:
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P=AP+PA" +FQF’ (2-267)
K=PH(HPHT +(RCJ’ (2-268)
P =(1-KA)p (2-269)

Note that 6A and oH appear directly in the equations for P' while modeling errors is F, D,
and L, as well as the noise characteristics Q and R, led to a suboptimal Kalman gain K.
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With these results, we have equations for propagating P' between and during measurements.
While the entire P' matrix must be propagated, the upper left partition of P' is of interest.
This is the actual estimation error covariance using the incorrect model, and should be
compared to the Kalman Filter’s covariance matrix P.

The above procedure is primarily useful in numerical simulation. Calculation of the P’
matrix at different levels of model accuracy will illustrate the modeling sensitivity. This
procedure can show the statistical effect of a modeling error on estimation performance. It
can also be used to establish conditions for the stability of P', which governs the actual
convergence of the Kalman Filter.

2.2.4.4 Nonlinear Convergence

Convergence of the Extended Kalman Filter is a difficult issue that is frequently avoided.
Because the Kalman filter is only optimal for LTV systems, no general statement about
stability can be made.

Since the EKF uses a linearization of the state equations about the estimated state, there is a
potential for large modeling errors. If there is an estimation error, the linearization will be
taken about the wrong point. Additionally, the process of linearizing produces errors which
may be large in certain systems.

The first case of incorrect linearization can be treated using the previous analysis of modeling
errors. Here the real system can still be well represented by a linear system, and matrices
such as 0A can be defined. The relationship between the nonlinear state estimation errors
and the errors in the state matrices must be analyzed. In principle, a bounding region of
convergence can be found, perhaps through the use of numerical simulation.

In the second case, the true system cannot be represented by a linear system. As a result, the
linear modeling error analysis is not applicable. For these systems, the use of an Extended
Kalman Filter is questionable and performance issues are likely.

2.2.4.5 Convergence with Data Forgetting

Stability of the Kalman filter with data forgetting is discussed in [1]. It is found that data
forgetting increases the stability of the filter uniformly by the forgetting factor 4. This means
that an asymptotically stable Kalman filter will become exponential stable at rate 4, and a
Kalman filter that is already exponential stable will converge faster by rate A.

The argument can be presented as follows. The Kalman filter with data forgetting has the
identical gain as the ordinary Kalman filter with

A=A+l (2-270)
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If this gain were used to estimate a system that naturally contained A, the continuous-time
error dynamics using (2-129) would be

é, =Ae, —Fw. (2-271)
Using (2-270), the error dynamics using forgetting on the actual system A are then
é=Ae—Fw=(A, -l )e-Fw. (2-272)

If the Kalman filter for the A, system converges, then this error e is bounded by exponential
convergence at rate 4. Once again, this is because the discrete-time measurement updates
have the same gain in both filters. The matrices A and A, will provide the same conditions of
observability, finiteness, and controllability that were needed to establish the convergence of
this error.

Note that data forgetting added stability to the error while adding instability to the state
dynamics. The covariance is artificially increased and gains are augmented. This brings a
subtle caveat with dectectable systems. It is possible for stable modes to become unstable
when data forgetting is employed. Since the preceding argument required the convergence
under A, it is required that unobservable modes decay faster than the forgetting rate.
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2.2.5 Implementation Techniques

Several additional topics are important for the implementation of the Kalman filter. These
next sections address common practical issues from a theoretical point of view.

2.2.5.1 Multirate Measurements and Dropouts

It is common that measurements arrive at different rates, or that sensors experience dropout
periods. In these circumstances, partial measurement updates are required. Such processing
is directly possible with two alternative techniques.

The most straightforward method is to zero the rows of the measurement matrix H that
correspond to the absent measurements. In this fashion, all other measurement can still be
processed normally and the filter framework is unchanged.

A second technique is to completely remove the corresponding rows of H and compress the
measurement vector z. This has the potential of reducing the computational load, especially
in the matrix inversion (2-158). This technique may be preferable if it can be guaranteed that
certain measurements never arrive at the same time. For example, there will always be some
GPS satellites that are behind the Earth. However, this second technique quickly introduces
new programming difficulties and may require dynamic memory allocation.

In the simulation and hardware implementation for this thesis, the first method is used to
handle measurement dropouts.

2.2.5.2 Modeling of Colored Noise

W) L e |

Figure 2-3: Model of Colored Noise

Although the Kalman filter requires the assumption that noise is white (time-uncorrelated), a
straight forward procedure exists for accommodating colored noise. As shown in Figure 2-3,
colored noise, denoted c(t), can be represented as the output of a linear system that is driven
by white noise w(t). The linear transfer function G(s) must be added to the process dynamics
using additional state variables.

The transfer function G(s) can be determined using a variety of methods. In some cases, the
structure may be known from the physics of the noise process. More often, the noise
characteristics are known only from experimental data. In this case, the autocorrelation and
power spectral density of the noise can be estimated from the data. Several techniques exist
for fitting a transfer function to such data. Most require selecting a model set, such as an all-
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pole filter, and then finding a Least Squares solution. It is usually easier to fit a discrete-time
transfer function and then convert the result to a continuous-time equivalent.

It is convenient to use a first order continuous-time model of the form
¢(t) = —rc(t) + w(t). (2-273)

Note that this filter has a gain of r. The variance of the colored noise can be expressed using
the continuous covariance update of the Kalman filter

P=AP+PA" + FQF'. (2-274)

For a simple scalar equation, with A = -r and F = 1, this reduces to

6l =-2rc’+o’, (2-275)
and has a steady state value of
2 o
o, =—2. (2-276)
2r

This result is counterintuitive because the filter did not have unity gain. If the gain is
removed from the filter, (2-274) can be evaluated with F = r and the result becomes

o’ =ro2 2. While this result is useful conceptually, (2-276) is more convenient.

The autocorrelation of the colored noise, defined by E{c(t)c(t —T)} for T >0, can be
calculated using the convolution solution

c(t) = je-“‘-”w(r)df . (2-277)

0

It follows that

t t-T
c(t)e(t-T) = j e "w(z)dz, j e "w(z,)dz, | (2-278)
t, to

The distinct integration variables z; and 7, have been used so that the product can be written
as a double integral:

t-T t

ctet-T)= [ [e ™ w(z,)e " w(r,)drdr, . (2-279)

tU tU
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Note that for white noise
Efw(n)w(r,)}=0u6,(r, - 1,), (2-280)
where J,(t) is the Dirac delta function. Therefore, taking the expectation and combining the
exponentials produces
t-T t

E{ct)ct-T)}= | |[e"™® ™ 526(r, - 7,)dr,d7, . (2-281)

to t

Because of the sifting property of the Dirac delta function, the inner integral is nonzero only
when 7, = 7, and we have

t-T
Efc)et-T)}= [e ¥ oldr,. (2-282)
t

0

This can be evaluated without difficulty, and the solution is

2

Elc)c(t-T)}= %(e-ZrT _e ), (2-283)

The second term inside the parentheses represents the transient, and vanishes in steady state.
The autocorrelation function is then dependent on T alone, so this is a Wide Sense Stationary
process. For T =0, this result matches the expression for steady state variance given by
(2-276). As T increases, the autocorrelation approaches zero exponentially.
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It is instructive to look at the time behavior of this colored noise. Figure 2-4 shows colored
noise at varying filter rates with constant white noise variance. This was generated using a
discrete approximation at 100 Hz with a pseudorandom number generator. A slower rate
corresponds to a larger time constant, which smoothes the noise but also increasing the gain.
It is more instructive to hold the variance of the colored noise constant, by changing the
white noise variance and filter rate in proportion. The result is plotted in Figure 2-5. Small
filter rates produce highly correlated noise that appears smoother and varies more slowly.

2.2.5.3 Numerical Techniques

Several computational techniques are relevant for the practical implementation of the
Kalman filter. These methods can improve performance under imperfect arithmetic and real-
time processing.

A host of techniques are available for improving the numerical robustness of the solution. It
is critical that the covariance matrix remains symmetric positive definite. Otherwise, it is not
a meaningful covariance and the gains and estimate updates will be erroneous. The matrix
inversion in the measurement update can also fail.

Maintaining covariance symmetry is a simple matter. The solution can be “symmetricized”
periodically using

P - %(P +P7). (2-284)

Another approach is to implement the filter using entirely symmetric equations. The
continuous propagation is already symmetric, and the measurement update can be
implemented using Joeseph’s Stabilized form (2-160).

Maintaining positive symmetric definiteness is more difficult. Several algorithms factor the
covariance into a form that enforces this, such as the square root Cholesky
decomposition [21, p. 15]:

P=LDL" =(LVDJL/D] (2-285)

Here D is a diagonal matrix that has positive entries when P is symmetric positive definite
and L is another matrix. The Kalman filter can then be written in terms of these factors. A
discussion of these algorithms, along with charts of their memory and computation
implications, can be found in [8, p. 244]. These algorithms generally require more
computation because the factored equations are more complicated.

The matrix inversion in the measurement update produces a large computational burden for
large systems. This inversion can be eliminated by processing the measurements one at a
time [8, pp. 232-233]. The technique requires the measurement covariance LRL" to be
diagonal, which we will name Rgiag.
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The one-at-a-time update routine loops through all measurements, with the update for the i
measurement z; given by:

PH/
= 2-286
HPH+R, (2-286)
X, =X_+K(z,—H,x) (2-287)
P.=P —KH,P, (2-288)

where H; is the i" row of H and R;; is the element in the i row and i" column of Rgiag. Note
that the state and covariance update must happen in each iteration, so that the updated
covariance is used in successive gain calculations.

If the measurement covariance is not diagonal, it can always be decoupled using a change of
measurement variables. For example, the GPS noise may have principal directions in the
NED coordinate from, instead of ECF. An alternative is to process measurements “3 at a
time”, or “n at a time” if blocks of size n are coupled.

Simulation in software does not require most of these techniques. In my simulations, | have
used double precision, floating-point arithmetic because there was an abundance of memory.
However, making P symmetric periodically is highly beneficial for alleviating numerical
instabilities.

Real-time hardware implementation is more demanding. Processing speed is critical, and can
be greatly improved using one-at-a-time measurement processing as well as several
additional programming techniques that are discussed in Section 4.3. | did not employ
square root filtering in the real-time implementation, but this could be beneficial because
single precision arithmetic is used on the processor.

2.2.5.4 Filter Health Monitoring

In a high-order Kalman filter, it is important to have a simple indicator of filter performance.
This can be used in real time to detect anomalous conditions, or during simulations to detect
modeling errors.

A measure of filter health can be derived from the information matrix
Y=(HPHT +LRL")", (2-289)

which appears in the Kalman gain equation. The size of Y can be characterized by the
maximum singular value. When Y is small, the state is well known and the new
measurements provide little information. When Y is large, the state is poorly known and the
new measurements provide a lot of information. The Kalman gain is then proportional to the
information matrix Y.
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Comparison of the information matrix to the measurement error Z gives the likelihood that
this measurement would have occurred. For example, a large measurement error is unlikely
when the information matrix is small. For a Gaussian distribution, this likelihood function
can be calculated from the probability distribution function, producing

I(Z) = exp(—%fﬁj | (2-290)
The result is simplified by using the negative log likelihood, and normalizing by the number
of measurements m:

=T
. rf . (2-291)

This is a Chi-squared statistic, which increases when the measurements do not fit the model.
This statistic is tabulated in [8, p. 247]. For example, a chi-squared value of 5 has a 2%
chance of being a valid occurrence.

In healthy filter operation, the chi-squared value should be small. A measurement glitch will
produce a spike in the chi-squared value. A divergent filter will have a chi-squared statistic
that increases with time.

With the previous discussions on navigation and the Kalman filter, we are now ready to
design this navigation system.
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2.3 Application of the Kalman Filter to Navigation

The selection of states and measurements for the Kalman filter is a central issue in designing
a navigation system. While most navigation systems use a Kalman filter in some form, there
is great flexibility in format. Ultimately, the system performance is greatly impacted by
these choices. There are a variety of common architectures and choices of state variables [3,
4,6, 8,9, 15, 17], many of which have influenced my design.

There are several fundamental decisions in the architecture that arise in the design of most
navigation systems. The first is the treatment of angles and the selection of an attitude
representation. The second is the choice of the process dynamics, including the modeling of
bias and error states. Finally, there is some flexibility in the choice of measurements,
especially when considering that additional system knowledge can be treated as a
measurement.

Attitude Representation

An innovative feature of this filter is the combination of quaternions and small angles. This
format utilizes the quaternions for singularity-free large angle motion while using small
angles for a linear representation of orientation error. In effect, the four quaternion
parameters are linearized using three small angles. These small angles are a minimal
representation of attitude which is more suitable for the Kalman filter. In addition, small
angle rotations are commutative and can be represented using a vector cross product, so the
filter equations become reasonably simple.

The use of quaternions directly in the Kalman filter is fairly common [6], and can be
successful if the quaternion normality constraint is enforced. To be optimal, special attention
must be given to the process noise to ensure that the uncertainty in the quaternion estimate
always runs along the quaternion surface. This can be strengthened by treating the normality
constraint as an additional measurement. Still, this approach remains undesirable because it
adds one extra state variable [8, p. 258]. This creates excess computation, at best, and can
lead to observability problems.

It should be stressed that the use of small angles in this filter is no more of an approximation
than the linearization required to implement any Extended Kalman Filter. The inaccuracy of
attitude linearization is present regardless of whether small angles are used. Consider instead
using Euler angles for representation of the orientation error. With the immediate error state
offloading scheme that was discussed in Section 2.2.2.3, the estimated orientation error will
always be zero. As a result, the Euler error state should be linearized about the point of zero
rotation. Evidently, small angles are this linearization. A similar argument applies to
rotation vectors. The technique of using small angles directly as the state variables provides
a linearization equivalent to the full nonlinear angle treatment, but with greatly simplified
equations.
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Rigid Body Dynamics as the Process

In this filter, I have incorporated rigid body motion as the process. In this fashion, force and
torque are treated as inputs, and the laws of physics are enforced. These inputs are divided
into a known part and a random part, as shown in Figure 2-6. The known part passes directly
into the filter using the deterministic control input (u). The random part is modeled using
additional state variables and is estimated by the filter.

T
| O
& Rigid Body [P,
Dynamics Vv

f —>
fq
Figure 2-6: Filter Implementation of Rigid Body Dynamics

The popular alternative is to use inertial navigation as the process. In that architecture, the
IMU measurements are is treated as process inputs instead of measurements. This approach
is detailed in the Appendix. The GPS becomes the sole measurement, and the number of
filter measurements and states is reduced.

The use of rigid body dynamics has the potential for increasing response and accuracy in
applications where the force and torque are accurately known. The prime example is
exoatmospheric flight where the dynamics are extremely predictable. Applications using
stabilized platforms or active vibration suppression systems also fit well into this architecture
because there is knowledge and measurement of the actuation efforts.

In situations where force and torque are unpredictable, the disturbances are estimated by the
filter. Rigid body dynamics can still be beneficial if the force and torque can be modeled
adequately. However, this adds complexity and several state variables, and may be inferior
in certain applications.

With these process dynamics, the filter may be able to survive an IMU measurement dropout.
This would be a difficult situation for any filter, but the propagation of the state using the
physics of motion is the most logical solution.

A first order disturbance model has been chosen for general purpose operation. Here, the
force and torque disturbances are modeled using exponential correlated noise. As described
in Section 2.2.5.2, there is one rate parameter describing the correlation of each dimension of
the disturbance.
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Loosely-Coupled Architecture

The difference between a tightly-coupled and loosely-coupled implementation is shown in
Figure 2-7. In atightly-coupled architecture, the GPS pseudoranges p are the raw
measurements, and GPS error states are estimated along with the navigation states in a single
Kalman filter shown at the top of the figure. In a loosely-coupled architecture, the GPS
position pgps and velocity vgps, Which are calculated values, are treated as the raw
measurements and are passed to the navigation Kalman filter shown at the bottom of the
figure. The GPS solution and compensation occurs in a separate algorithm, which may be
implemented using another Kalman filter.

Tightly-Coupled -
Navigation - x
Solution

GPS signal _ GPS )
"| Receiver

A 4

A A
O dm

On | am
v v il

GPS Pope . Loosely-Coupled
Solution Navigation
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JX,

Figure 2-7: Tightly-Coupled and Loosely-Coupled Architectures

The tightly-coupled architecture is superior from a theoretical point of view. An analysis of a
decentralized Kalman filter, in which multiple Kalman filters operate on different parts of the
state vector, is conducted in [3, pp. 371-377]. The primary result is that decentralized
Kalman filters are suboptimal unless full state covariance information is maintained by all
filters. That, of course, defeats the purpose of decentralizing.

The loosely-coupled architecture has several practical advantages, which have ultimately led
to its selection here. The first is that it has a smaller state vector. Tight-coupling requires at
least one state and one measurement for the pseudorange of each GPS satellite, which can
dramatically increase the computational burden. The resulting filter may be unfeasible for
real hardware, or may require a slow sample rate that could repeal the benefits of theoretical
optimality.

Additionally, and most important in a practical sense, the GPS position and velocity solution
is an output common to all GPS receivers. In using the loosely-coupled architecture, the user
is free to choose from all available commercial and military receivers and can benefit from
proprietary algorithms and implementation hardware in these devices. A variety of GPS
augmentation services, including Differential GPS, can be readily integrated to improve the
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solution quality. The sum of these advantages may produce more accuracy than processing
the raw pseudorange measurements.

Finally, some elements of the GPS solution are not suitable for a Kalman filter. For example,
ambiguity resolution for phase range measurement requires an algebraic solution. In
situations where the dynamics are trivial, a Least Squares solution is usually preferred. It
may also be inappropriate to model the pseudorange errors of each satellite as independent
variables. For these reasons, it is unrealistic to process all GPS information using a Kalman
filter.

With the loosely-coupled implementation, there are two methods of sharing information that
can increase performance and limit the suboptimality of decentralized filtering. First, the
accuracy of the GPS solution should be given to the navigation Kalman filter as a
measurement covariance. This accuracy can be computed from the GPS Dilution of
Precision (DOP), which is output by the receiver and usually has different values in the
horizontal and vertical directions. If Differential GPS or another aid is available, the
measurement covariance should be updated to reflect this increase in accuracy.

Second, the vehicle velocity and acceleration should be passed into the GPS receiver, so that
it may compensate for fast vehicle dynamics. Unfortunately, most GPS receivers do not
accommodate this. If available, this could drastically reduce the delay in the GPS solution
and provide GPS measurements that are truly uncorrelated from process dynamics.

Choice of Measurements

The IMU and GPS are the primary measurement sensors and should naturally be selected as
measurements in the Kalman filter. This includes body rates and accelerations from the
IMU, and the position and velocity solution from the GPS.

There is additional data that can be interpreted as a filter measurement. First, when the
vehicle is Earth stationary (fixed to ground) the rotation rate and velocity are determined.
This knowledge can be treated as measurements in the Kalman filter. This effectively allows
the filter to perform gyrocompassing and calibrate the IMU any time the vehicle is stationary.

This measurement brings several operating modes into a single Kalman filter. It is common
for navigation systems to stop the Kalman filter during gyrocompassing and for Earth
stationary operation. For example, the position estimate can be held constant when the
vehicle is fixed to Earth. However, stopping and restarting the Kalman filter can produce
transients in the estimate with varying accuracy. It is preferable to use a single Kalman filter
for initial alignment, fixed-to-Earth operation, and normal flight. It should be noted that a
separate initial alignment procedure is always needed when there are large initial errors.

A second measurement can be derived from knowledge of the force disturbance. This could
be a real measurement in some systems. It can also be knowledge that the vehicle is in
exoatmospheric freefall. This measurement is designed to improve the observability problem
that is encountered during freefall (Section 2.3.3).
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Measurement Error Modeling

Since the Kalman filter assumes white noise, it is often necessary to add states to model time-
correlated errors in the measurements. This can be done with arbitrary accuracy using the
techniques of Section 2.2.5.2. High-order noise models, however, can greatly increase the
computation time. Ultimately, we are unconcerned with the accuracy of the noise estimate,
provided that the Kalman filter produces accurate estimates of the navigation states.

For the IMU, gyroscope and accelerometer errors arise from a variety of sources. For the
most part, these errors can be sufficiently modeled using a bias and a scale factor. Additional
effects exist [8], such as the gyroscope error that arises from structural deflection during
periods of acceleration.

In this filter implementation, IMU errors are modeled with biases alone. In this fashion, bias
states are used to estimate the error caused by both biases and scale factors. The benefit of
using scale factors is not realized until the trajectory contains a rich variety of dynamics. The
cost of IMU scale factors is an additional 6-18 states, depending on whether cross coupling
states are included. When modeling using bias states alone, the noise characteristic of the
bias must include the effect of a scaling error.

The GPS position solution contains many sources of error, ranging from inaccuracies in
system clocks to atmospheric disturbances that alter the transmission time. These
inaccuracies would be modeled in a tightly-coupled architecture. For our loosely-coupled
architecture, the modeling of a GPS measurement bias was considered. However, there is no
information to observe this bias; an error in GPS position is virtual undetectable without a
redundant position measurement. For this reason, the GPS noise was assumed to be white.

The fixed-to-Earth measurement requires a noise model, because the vehicle will not be
perfectly stationary. In effect, the vibration of the vehicle becomes the measurement noise.
In this filter, the vibration is assumed to be white. However, this is not accurate when
considering structural resonances, such as a rocket on the launch rail. Higher performance
could possibly be achieved by using higher-order noise modeling.

Summary of Filter Architecture

The choice of states is shown in the Table 2-1. Because of the use of quaternions and small
angles, the full nonlinear state vector has one more element that the linear state vector. The
state vector includes attitude (quaternions and small angles), body rates, torque disturbance,
position, velocity, force disturbance, and biases for the gyroscopes, accelerometers, and
gravity model.

Measurements are shown in Table 2-2. Measurements include the gyroscopes,
accelerometers, rate and velocity when Earth stationary, torque and force disturbance, and
GPS position and velocity.

Control inputs are shown in Table 2-3. As discussed, the torque and force are inputs to the
model. The specific values (per unit mass) have been used so that inertia properties are not
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needed here. An additional known parameter is the angle of the Earth, which is treated as a
control input.

Table 2-1: Filter States

Full | Error | Size | Symbol | Description Units
Index | Index
1:4 4 q Quaternions -

1:3 3 a Small angle misalignment | rad
5:7 4:6 3 @ Body rates rad/s
8:10 |79 3 7 Specific torque disturbance | rad/s®
11:13 | 10:12 | 3 p ECI position m
14:16 | 13:15 | 3 Vv ECI velocity m/s
17:19 | 16:18 | 3 fy Specific force disturbance | m/s’
20:22 | 19:21 |3 b, Gyro bias rad/s
23:25 | 22:24 | 3 ba Accelerometer bias m/s’
26:28 | 25:27 |3 by Gravity model bias m/s®
29:31 | 28:30 | 3 by GPS time delays S
Table 2-2: Filter Measurements
Index | Size | Symbol | Description Units
1:3 3 o Gyro rates rad/s
4:6 3 am Accelerometers m/s”
7:9 3 Wi Rates when fixed to Earth rad/s
10:12 | 3 Viix Velocity when fixed to Earth (ECF) | m/s
13:15 | 3 Tn Torque disturbance (0 in freefall) rad/s
16:18 | 3 fn Force disturbance (0 in freefall) m/s’
19:21 | 3 Pgps GPS position (ECF) m
22:24 | 3 Vaps GPS velocity (ECF) m/s
Table 2-3: Filter Control Input
Index | Size | Symbol | Description uUnits
1:3 3 T Specific torque rad/s’®
46 |3 f Specific force m/s’
7 1 [Zx Angle from ECI to ECF | rad
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2.3.1 Linearization

We now proceed to derive the specific equations for this Kalman filter, using our choice of
state variables and measurements. Nonlinear equations have been derived in the navigation
theory of Section 2.1. These equations must now be linearized for an Extended Kalman
Filter using the procedures described in Section 2.2.2. This is done be analyzing the
dynamics of the estimation error, which is linear for small error. A linear relation between
the measurement error and the state error is also established. The final results are
summarized in Section 2.3.2.

2.3.1.1 Dynamics

Analysis begins with linearization of the dynamics. The full equations of navigation are
converted into a linear state model.

Attitude Representation
@ > X,

Figure 2-8: Small Angle Orientation Error

Special care is taken in the treatment of angles. In particular, we wish to represent the error
in the four quaternion parameters using three small angles. This is possible because the
quaternions are non-minimal.

Similar to the error states discussed earlier, let « be the small angle rotation from the
estimated orientation § to the actual orientation . The relation between a body vector x, at

estimated and actual orientation is shown in Figure 2-8.
Accordingly, the relation between the estimated and actual DCM is given by

B(q)=R,B(9), (2-292)

where R,, is the small angle rotation matrix defined by (2-74). In other words, transformation
into the actual body coordinates can be performed using a rotation of B(g) followed by a

rotation of R .
The quaternions may be propagated using the state estimates:

d=f,(@)a. (2-293)
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Careful consideration will reveal the resulting dynamics of a. From the definition, the
derivative of « is related to w. In a manner of thinking, ¢ ~ @ . Since we are actually using
o to represent angular error, the rate in this expression must be replaced by a rate difference:

d=w—a. (2-294)

For comparison, both rates must be expressed in the same frame. The first rate, @, is the
actual body rate expressed in the actual body frame. The second rate, @', is the estimate
body rate expressed in the actual body frame. This is related to the estimated body rate in the
estimate body frame by the small rotation

-~

& =R &. (2-295)
Collecting the previous equations, we have
d=w-R,0. (2-296)
Reduction using the error state ow yields
a=w+oé0—(l —ax)d=0w+axa. (2-297)
Reversing the cross product gives
a=—-xa+ow, (2-298)

which is linear and suitable for the Kalman filter. Note that we can determine « from ¢ and
q by calculating

R, =B(a)B(d)", (2-299)
and then extracting « from the skew-symmetric part. The Kalman measurement update can
be modified so that corrections in « are passed directly to the quaternions. Consider the
quaternion propagation over a short period of time

Gat = f,(G)ddt. (2-300)
Since @& ~ Sa, the quaternion correction is related to the small angle correction by

A = f,(Q)oc . (2-301)

This can be written in the form of the Kalman measurement update:

G. =4+ f, (@i, (2-302)
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where i, is the « portion of the innovations vector. In other words, this portion of the
innovations must be separated and processed differently from the other state variables. This
allows the three dimensional small angle misalignment to be offloaded to the four
dimensional quaternions.

Rotational Dynamics

We now linearize the rotational dynamics
=3 ox(Jo)+z,+7, (2-303)

where the specific torque input has been divided into a known part 7 and a disturbance z.
We wish to find the propagation of the rate error dw. Using the estimate propagation

o=-3ox(d)+7,+7, (2-304)
the error dynamics are
Sor=0—a=-3"((&+5w)x(I(@+ dw))— dx (IP))+ 5z, . (2-305)
The cross product can be distributed and the small term 6w x Jow can be ignored, producing

s ~ I ([@x] ~[(I@)x])dw + 57, . (2-306)

Translational Dynamics

The position equation p = v is already linear, so% = ov. The velocity equation

v=B"(q)(f + f,)+a(p)-b, (2-307)

requires more attention. We wish to find the propagation of the velocity error v in terms of
the other state estimation errors. Using the estimate propagation

§=B"@)(f + f,J+ 9(p)-b,. (2-308)

the error dynamics are

& =BT (@1 +ax]\f + f, + &, )+ g(p)~b, ~BT@(f + f, )~ 9(p) +b,. (2-309)
which reduces to

& =BT (§)arx](f + f, + &) + BT (6, +9(p) - g(p) - b, . (2-310)
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The difference in gravity can be approximated using the gravity gradient:

g(p)—g(ﬁ)zg—g P, (2-311)
Pls

which will be noted G,. The cross product can be reversed and small terms dropped, yielding

& ~ BT (G)[(f + f,)xle + BT (§)&F, + G, — b, . (2-312)

2.3.1.2 Measurements

We now proceed to model and linearize the measurements. Each measurement will be pre-
compensated using the state estimate, as described in Section 2.2.2.2. This leads to an
expression that relates the state estimation error to the measurement error. For small error,
this relation is linear and provides the measurement matrix H for the Kalman filter.

Gyroscopes

Gyroscopes that are mounted to the vehicle provide a direct measurement of body rate. A
simple sensor model includes a bias and noise term:

o,=0+b,+n,. (2-313)

This measurement can be corrected using the state estimate, leading to the small
measurement

S, =w, b, —d=05w+d,+n,. (2-314)

Accelerometers

The accelerometer measurement can be written as
a, =B(q)(V—g(p) +b,)+b, +n,, (2-315)
which is the difference between inertial and gravitational acceleration in body coordinates,
with biases and additive noise. We can eliminate v from this equation by substituting the
process equation
v=B"(a)(f + f,)+9(p)—b,. (2-316)
The result simplifies to

a,=f+f,+b,+n,. (2-317)
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Compensating gives the small measurement

Sa, =a,—b,—f—f, ~&, +b,+n, (2-318)

Fixed-to-Earth

When the vehicle is fixed to Earth, the motion matches that of the Earth’s surface. We can
define a measurement that is the difference between the actual body rate and the body rate
that the Earth would impose:

oq =0—B(Q)o, +n 4, =0. (2-319)

wfix

A noise term is included to model vehicle vibrations. This can be expanded using the error
states

gy =0—R,B(G)@, +n4 =0—(1 —[ax])B@)a, +n, - (2-320)
Substituting the estimated measurement and reversing the cross product produces
Swg, = w4 — @+ B(G)w, = —[B(G)w, xJa + do+ 1,4, . (2-321)
When fixed to Earth, the ECF velocity is zero, that is
Vi =—@, xR, p+RV+n, =0 (2-322)

Again, a noise term is included to model vibrations. Expression in terms of the error states
leads to

Ny, =V + @, xR, P—RV =—m, xR,dp + R,V +ny, (2-323)
Disturbance (Freefall)
If the disturbances are somehow known or measured, we have
T, =1, (2-324)
f,=f, (2-325)
This is linear, and the small measurements are simply
or, =1, — T, =0T, (2-326)
S =f —f, =4, (2-327)

In freefall, we have 7, = f,, =0, assuming that the control input is zero.
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PS

A GPS receiver typically outputs position and velocity in the ECF frame. Similar to vsiy,
these ECF quantities can be expressed in terms of the ECI states:

Pyps = Re P+ Ny (2-328)
Vs =RV—@, xR, p+n (2-329)

vgps *

These measurements can then be compensated to produce small measurement errors:

5pgps = pgps - Reﬁ = Reé‘p + npgps (2'330)
N gy = Vps + @, X R, p-RV=-w, xRMP+RN+n (2-331)

vgps

2.3.1.3 Noise Modeling

Since the Kalman filter requires white noise, the time-correlation in disturbances and biases
must be modeled using additional state variables.

Torque and Force Disturbances

The torque and force disturbances are modeled using a first order linear filter with white
input:
T, =—l7y +W, (2-332)
fo=—r f, +w,. (2-333)

This produces an exponential autocorrelation function as described in Section 2.2.5.2, with a
steady state autocorrelation function of

2

Elc(t)ct—-T)) = %e*” . (2-334)

The variance is given by evaluating (2-334) at T = 0, which produces

2
o’ = % (2-335)

Additional white noise in the torque disturbance can be included using the body rate process
noise w,. This does not work for the force disturbance because any force noise is measured
directly by the IMU.
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Bias Dynamics

The biases are similar to the disturbance dynamics. The white component of their noise
appears as the measurement noise. The bias states represent the colored part, and have the
following first order dynamics:

b, =-rb, +w, (2-336)
b, =-1,b, +w, (2-337)
by =—T,b, +W,. (2-338)

The steady state autocorrelation function is once again
0_2
E{c(t)c(t-T)}= 2—ere-2rT . (2-339)

However, the gravity model accuracy degrades with distance instead of time. Since

db, _ b, dp.; _ b, N (2-340)
dt  Opy dt  Opy

The variance for the noise to the gravity bias can be calculated using

T
ob ob
E {ng Wl-la-g }= E{ivecf V:,:cf (ﬁ] } . (2'341)

This can be simplified by assuming symmetry in the gravity model error or by using only
velocity magnitude. Alternatively, it can be expanded and calculated in full using the state
estimate.

Note that this technique does not attempt to remember the gravity model bias as a function of
position. For circular flight paths, the vehicle may return to a position where the bias is well
known. Unfortunately, the EKF does not provide a mechanism to incorporate this. Instead,
motion is any direction is taken to increase the uncertainty in the gravity model bias estimate.
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2.3.2 Summary of Equations

From the previous selection of states and linearization, the equations for the Kalman filter
and for the full nonlinear state estimator can be summarized as follows.

Nonlinear Dynamics

The fundamental navigation states are modeled using the following nonlinear differential
equations:

q=f, (9o (2-342)
o=—1ox(o)+7,+7 (2-343)
p=v (2-344)
v=B(a) (f +fy)+9(p) b, (2-345)

All additional states, including disturbances and biases, are modeled as simple decays:

X =—IX. (2-346)

Linearized Small Error Dynamics

The nonlinear propagation produces small state error dynamics that can be approximated
using the linear system

K~ A(X,u,t)X. (2-347)

The linearized equations for the core navigation states are

& =[-ox|a + 60 (2-348)
di> =3 ([ox]3 ~[(I@)<])d@ + 57, (2-349)
M= (2-350)
& =B(@)"[(f + f,)x]a +B(§)" &, + G, —ab, , (2-351)

and the remaining disturbances and biases follow

X, ==X, (2-352)
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These equations can be assembled into the following A matrix:

a) [[Fox] 1 0 0 0 0 0 0 | «
56> o A, | 0 0 0 0 0 0 | o
5z, 0 0 -r,l 0 0 0 0 0 0 |or,
&K 0 o 0 0 1 0 0 0 0 | &
& |~ A, 0O 0 G, 0 B 0 0 -1 | & | (2-353)
&, 0 0 0 0 0 -r,l 0 0 0 | &,
», 0 0 o 00 0 -r,d O 0 |,
&, 0 0 0O 0 0 O 0 -r,0 0 |,
3, o 0 0 0 0 O© 0 0 —ry,l | o,

All terms in this matrix are 3 by 3, including the identity matrix | and zero matrix 0. The
additional terms are

A, =3 [ox]13 -[(Id)x]) (2-354)

waw

A, =-BT[f+ 7, )| (2-355)

Measurement Compensation and Linearization

Measurements are compensated as follows, producing small error measurements:

Sw, =w —b, —d (2-356)
Sa_=a —b —f-f, (2-357)
dwy, =B(§)o, - (2-358)
Ny =0, xR,p—RYV (2-359)
0Ty =Ty =T — T4 (2-360)
& =f —f—f, (2-361)
Myps = Pgps — R P (2-362)
Nyps = Vgps + @, X R, p-RV. (2-363)
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The small measurements can then be approximated by the linear form oz = Hox , to be used in
the Kalman filter. The resulting matrix expression for H is

_ |
sa, 0 ) 0 0 01 00
ow
5, 0 00 0 01 010
A o7,
oy | |[FBax] 1 0 0 0 000 0f
N, 0 00 —w,xR, R, 0 0 0 0
= & (2-364)
5z, 0 0 I 0 0000 0f
5 0 00 0 O'OOOgod
Mgy 0 00 R 0 ooooéb‘”
Ny ) | O 0 0 -, xR, Reoooo_go"‘

«

2.3.3 Navigation Observability

The linearized dynamics, which are used by the Kalman filter, form an LTV system that can
be analyzed for observability. While at this point we have already selected the state
variables, this can provide insight into filter convergence and highlight areas of weak
measurement. These results will also aid in the interpretation of covariance analysis that is
conducted in Section 3.3 of this report.

Full LTV observability analysis through computation of the state transition matrix is
difficult. Instead, we begin with the LTI observability test matrix, which is straightforward
to calculate but will usually underestimate observability. States that are unobservable by this
method will then be viewed from an LTV sense. The LTV analysis is not completely
rigorous, but the results are verified in covariance analysis and full simulation.

This method requires the assumption that the LTV system is LTI over short periods of time,
as was discussed in Section 2.2.4.1. This assumption is met if the LTI approximation is valid
for a time period spanning n measurements, where n is the number of state variables. This
requirement can be reduced when the sampling frequency is fast compared to the system
dynamics. Any restrictions in this assumption could probably be overcome by performing
the complete LTV observability analysis.

As defined in Section 2.2.4.1, the LTI observability test matrix is given by
H
HA
Mam=| . | (2-365)

HAn—l
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We will start with only the core measurements: gyroscopes dw,, , accelerometers Ja,,, and
GPS position dp,. These are the linearized small measurement errors that are given to the

Kalman filter. The effect of additional measurements will be added later, and provides some
additional observability.

The LTI observability test matrix calculation can be conducted using the 3 by 3 blocks that
were used to express the A and H matrices. The first 12 block rows have been calculated
below:

0 | 0 0 0 0 | 0 0
0 0 0 0 0 | 0 | 0
0 0 0 R, 0 0 0 0 0
0 A, 0 0 0 r,1 0 0
H 0 0 0 0 0 —ryl 0 -r,0 O
HA 0 0 0 0 R, 0 0 0 0
HA? | 0 A2 M, 0 0 0 r2 | 0 0
HA® 0 0 0 0 0 rzl 0 r2 0
R.A, 0 0 RG, O R.B" (§) 0 0 -R,
0 AN M, 0 0 0 e 0 0
0 0 0 0 0 r3l 0 re 0
— X Rep\/a Rep\/a 0 0 Rer — Iy ReBT (d) 0 0 rbg Re_
(2-366)
where
M,=A_ —r,l (2-367)
M,=A2 —r, A +r2l. (2-368)

Each block column corresponds to a 3 dimensional state variable vector, such as e or w. The
observability of an individual state can be accessed in two steps. First, the block column
must be linearly independent from the other block columns. Second, the block column itself
must have three independent columns. The number of independent columns in a matrix is
equal to its rank. The matrices I, Re, and B are invertible, so they have 3 independent
columns.

We will start by finding the observability without the bias states, which is done by ignoring
the rightmost three block columns. Analysis can proceed row by row in blocks, with care not
to reuse rows in the argument for linear independence.

The first three rows correspond to the raw measurements. Row 1 (@) makes column 2
independent (ignoring bias columns), so w is observable through the gyroscopes. Row 2 (am)
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makes column 6 independent, so fy is observable through the accelerometers. Row 3 (pgps)
makes column 4 independent, so p is observable through the GPS position. Note that R, and
| are invertible, so these matrices in turn have independent columns, and therefore each
element of w, fg, and p is observable.

The next three rows correspond to the measurements passed once through the system. In row
4, tq (column 3) becomes observable as derivative of body rates. Row 5 yields nothing here
but will be revisited later. Row 6 observes v (column 5) as the derivate of position.

Continuing, the next three rows correspond to a second propagation of measurements
through the system. Row 7 and 8 yield nothing here. Row 9 produces a term for attitude

error o (column 1):
R.A, =—RB@[(f + f, )x] (2-369)

As rotation matrices, R, and B(G)" are invertible. However, the remaining cross-product
matrix is singular, since (as with any vector)

(f+f, Jx(f+f,)=0. (2-370)

In other words, attitude cannot be resolved about the direction of external force. This would

correspond to compass heading for a vehicle at rest on the Earth, because the vehicle is being
supported vertically by the ground. If the vehicle is in freefall, the force is zero and this term
has rank 0, so no attitude can be observed. Otherwise, there are typically two dimensions of

attitude observability. The additional term in row 12 contains the same null space.

The observability of attitude is increased by time variation of the force f + fd . We can

proceed to show what type of force variation is needed for observability of the LTV system.
The dynamics of « are simplified when viewed in inertial coordinates:

%(B%): B'a+B ¢ =B [ox|a+B" (-[@ox|a +d0)~BTdw.  (2-371)

The small term dw x o was ignored. This leads to the solution

t
B'ar =B a, + [ BT sult, (2-372)
t

0

and

t
o =BB]a, + B[ B bt . (2-373)
t

0
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As aresult, the « portion of the state transition matrix is given by
® (tt,)=BB]. (2-374)

An inertially constant force f; (in ECI) will produce a body force given by

A

f+ f, =Bf,. (2-375)

Recall from the LTV observability analysis that the LTV observability matrix will contain
rows given by M 4, (t)@(t,t,). With the inertial force definition, the attitude term of (2-369)

becomes

R.A,® (tt,)=-R,B[(Bf, )x]BB] (2-376)
in the LTV observability matrix. The null space of this term is B, f,, since

((Bf,)x]BBT )B, f, =[(Bf, )x]Bf, = 0. (2-377)

This null space changes only due to f;, and is unaffected by B. As a result, pure body rotation
does not produce attitude observability. Variation in the inertial direction of force is
required.

The observability of biases is a second matter. These states are stable, because of their
proportional decay, so the system is detectable regardless of their observability. Still, they
can be observed in many cases.

We must revisit row 1, because the gyro bias (column 7) makes the body rates (column 2) no
longer unique. These two states can be discriminated using row 12, with the same limitations
as the observation of attitude. Note that the biases dynamics are a simple exponential decay.
As a result, the LTV observability analysis shows that any change in A, will produce full
bias observability. This includes rotating the vehicle.

There may also be information in row 7 with the term

A,, =37 ([&x]3 -[(J)K]). (2-378)
This term is rank 0 under 3-axis mass symmetry (J = 1) or when @=0. Itis rank 2 when
rotating about a principal axis of inertia. Otherwise, the precession of the rotating body can
be used to fully differentiate between real rotation and biased measurement.

For analysis of biases, we must also revisit row 2 because the force disturbance (column 6)
and accelerometer bias (column 8) are not independent in this row. They can be
discriminated by their decay rates in row 5 or row 8, but this may be unreliable if both
exhibit slow dynamics. There is one dimension available in row 9, because only two
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dimensions of attitude were observed. Row 9 is also the only means of observing the gravity
bias (column 9).

The dynamics of theses biases are also simple decays, which simplify LTV observability
analysis. The accelerometer bias b, rotates with the vehicle while the gravity model bias by
is inertially fixed. As a result, b, can be observed when there is sufficient variation in the

vehicle orientation BT (G) , while by requires variation in the inertial direction of force.
The ambiguity between attitude errors and biases is depicted in Figure 2-9. This effect is

present even if bias states are omitted from the model. Attitude accuracy is improved by
proper bias compensation.

“:T ba OF by

f+fy

Figure 2-9: Equivalence of a Bias and a Small Angle Error

Rows beyond what was calculated in (2-366) do not provide any significant additional
information. The left three columns are isolated by the nature of the A matrix. The other
columns contain small terms, such as the gravity gradient G, and the decay rates.

We can consider the effect of additional measurements. An ECF velocity measurement, such
as Viix Or Vgps, does not increase in observability. The small Earth rate term o, x will appear

in various columns, including the attitude column, but this is redundant to the velocity
information that is already provided from the position measurement. Still, these
measurements can increase the filter response and accuracy when available.

The measurement axix greatly improves observability. The first two rows that this
measurement adds to the observability test matrix are

H A
w | [ Bo, xA] o 000000 a0
HyAl | -Blo, x[ox] [— Ba, x]+ A, 000O0O0DO

The first row here gives provides bias free measurement of body rates, which leads to
continuous observability of the gyroscope biases. In addition, the Ba, x terms in both rows

produce more observability of attitude by aligning the Earth rate vector. These terms are of
rank 2, and are very small, but may be visible with high quality gyroscopes.

Higher order compensation of the IMU, such as scaling error states, will not be observable in
the LTI sense because their effect is the same as that of biases. However, under rich motion
where the force and body rates vary greatly, it may be possible to observe these states in the
LTV system.
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The measurement of force disturbance provides full observability of the accelerometer bias.
The measurement of torque disturbance does not add observability, but can increase
performance when the measurement of the disturbance is of higher quality than the
gyroscopes. These disturbance measurements can reduce IMU drift during freefall, when
observability is poor.

In summary, this observability analysis has reached several important conclusions. Body
rates, position, velocity, and force and torque disturbances are always observable. Attitude
and gravity modeling errors are observable if the inertial direction of force is varied
sufficiently. IMU biases are observable if the IMU is rotated. Additional gyroscope
observability comes from the fixed-to-Earth measurements and from the dynamics of
rotation.

2.3.4 Additional Considerations
Some additional techniques are important for the implementation of the Kalman Filter in

navigation. The topics discussed below are not pursued fully in this project, but present
interesting and relevant material.

Offset GPS Antenna

The GPS antenna is usually located on the extremity of the vehicle and can therefore be a
large distance away from the center of mass. This can be incorporated into the filter
measurement equations so that the solution is exact.

Consider an antenna at offset I, which is a constant vector in body coordinates. The position
and velocity of the antenna in ECI coordinates are given by

p=p+B'l (2-380)
v, =v+BT(wxl). (2-381)

The GPS solution is a measure of antenna position and velocity in ECF coordinates:

Pgps = Ry = R.(p+Bl) (2-382)
Vs = RV, — @, xR, = R.(v+B"(wx1))—a, xR, (p+B). (2-383)

The noise terms have been ignored in this analysis, but are present throughout. This can be
rearranged as

Pgps = ReP+R,BI (2-384)
Vgps:Rev—a)exRep+ReBT(a)><l)—a)e><ReBTI . (2-385)
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We will now express these measurements in terms of the error states. Since
B"=B'Rl =B"(I +&x) (2-386)
we can write the following:
B'I=B"(I +ax)=B"I-B"(Ixa) (2-387)
and
B"(wx1)=B"(I + ax)(&+6w)x1)=B"((&+ dw)x1)- B (0 + sw)x1)xa  (2-388)
The small measurements are then
Myps = Py — ReP—R.BI =—R,B[I x|z + R,p (2-389)
and
Mgy = Vo — Re(v+ éT(a}xI))+ w, Re(p+ éTI)
= ([, xR BT[1x] - R.B"[(@x1)x]l - R,B" I xloew— [0, xJR, b+ RV (2-390)

This gives the new formula for measurement compensation and the H matrix in the filter.
The observability of the system may have improved because of the new « term R B' [I x]a in

Mgps. This arises because an attitude error will now cause a position error. Looking back at
the observability test matrix (2-366), these two errors are indistinguishable when attitude is
constant. However, changes in attitude will aid attitude alignment, because of the change in
antenna position. This is only effective when the antenna offset is large compared to the
GPS accuracy.

Note also that changes in | will also provide attitude observability. This would be the case if
the GPS receiver switched between multiple antennas at different locations. Multiple GPS
receivers would also produce this effect. This would only be effective on structures that are
large compared to the GPS accuracy.

The GPS velocity equations also contain «. In theory, this information is redundant to the
GPS position information. The term R.B"[(@x 1)x]a shows that GPS velocity will also be
affected by an attitude error.

Offset Accelerometers

There may also be an offset between the IMU and the center of mass. This has no effect on
the gyroscopes, but will add centripetal acceleration to accelerometer measurement. For an
accelerometer mounted at a constant offset |, the measured acceleration is
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a,=f+f, +b, +oxl+ox(@xl). (2-391)
This can be expanded in terms of the error states. We can begin with
d=t+17, -3 Hox(0))=1+7,+5r, -~ I (@ +6w)x(I(d+dw))). (2-392)
For small errors, this reduces to
ort+7,+67, -3 Hox(d))- I [ox]) -[Idx])sw, (2-393)
which produces
x| =—Ixd~-x(r+7,)-1x6r, +I1x I Hox (J))-1x I [@ox]J -[Jox])d.
(2-394)
The centripetal term can be expanded as well:
ox(wx1)=(d+ d0)x (@ + do)x1)~ dx(dx1)+ dx (Sox)+dwx(dx1). (2-395)
The cross products can be reversed and grouped to produce the following:
ox(ox1)=ax(@x1)-([@x]I x]+[(@x1)x])dw . (2-396)
These results suggest the measurement compensation
Sa,=a,—f—f,—b, +I1x(c+7,)-1xIHox(ID))-dx(dx]) (2-397)
which produces the small measurement
&, = (1x 3 ([ox) -Pax])-[ax]Ix]-[(@x1)x]o—1x 5z, + K, +db,.  (2-398)

This will increase the observability of body rates and gyroscope biases in a rotating vehicle.

This completes the theoretical discussion. We now proceed to investigate the filter
performance in simulation.
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3. Simulation

Numerical simulation has been conducted on a PC using software models of the filter and
dynamics. This is a valuable tool for characterizing filter performance. It provides a large
variety of test scenarios and methods of analysis. The filter robustness can be quantified and
areas of weakness can be exposed. Simulation is the most comprehensive test of filter
function.

The benefits of simulation can be categorized into several areas. First, it provides a way to
verify that filter equations are derived and programmed correctly. Second, it confirms and
extends the theoretical analysis. For example, the observability predictions are
complemented by the simulation of the covariance. Finally, simulation provides a method of
testing the filter performance under different operating conditions. Simulations have been
conducted using both real and flight data, which provides both realistic and extreme testing
environments.

This simulation discussion is divided into several areas. Section 3.1 gives an overview of the
Simulation setup and process, describing the tools and datasets that are used. Section 3.2
describes the Simulink model that is used for simulation. This provides a summary of the
software implementation of the filter algorithm.

Section 3.3 presents the results from covariance analysis, in which the filter covariance is
propagated numerically using different trajectories, providing a theoretical estimate of filter
accuracy. This tool extends the observability analysis by quantifying the effect of noise
parameters and flight path richness. It also predicts the filter sensitivity to the noise of each
sensor and to other parameters. This produces useful guidelines for system design and sensor
selection.

Section 3.4 presents the result from full simulation, in which the filter operates on simulated
data. This shows that actual filter convergence matches the covariance analysis. Section 3.5
incorporates real flight data into the simulation. In these studies, the filter is tested in a
realistic operating environment. Finally, section 3.6 focuses on the performance of the
nonlinear initializer, which uses gyrocompassing to bring the state estimate within the
capture range of the Extended Kalman Filter.

3.1 Overview

This simulation provides a software implementation of the filter and the ability to test its
performance. This requires routines to input the measurements and truth data. It also
requires routines to analyze and plot the results.

Simulation is conducted in the MATLAB/Simulink environment, which are products of The
MathWorks. This software provides a full set of mathematical and data analysis tools,
including several differential equation solvers. It utilizes a graphical block diagram
representation, which is very flexible and easy to document. This software is used both to
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implement the filter itself and for auxiliary data processing. Simulation parameters, such as
the noise covariances, are loaded from a script.

Measurements Filter Plots
yy and
| Analysis
Truth

Figure 3-1: Simulation Block Diagram

The simulation itself consists of several components, as shown in Figure 3-1. Data flow
begins with the measurements block, which contains the data from the IMU and GPS
receiver as well as status lines indicating the arrival of new measurements. This data can be
generated from four different sources:

1. Simulated measurements for an Earth stationary vehicle
2. Simulated measurements for a rigid body in motion

3. Recorded flight data from a small aircraft

4. Recorded flight data from a booster rocket

The flight data is available from current projects at MIT Lincoln Laboratory. The aircraft
dataset contains measurements from a small airplane during takeoff, maneuvering, and
landing. The booster rocket dataset contains measurement from a short range launch vehicle
built by Orbital Systems Corporation.

The measurement data is processed by the filter, which is the Extended Kalman Filter
described in detail in the Section 2.3. This block contains subsystems for propagating the
full nonlinear state, linearizing about the estimated state, and applying the Kalman filter
update. It also includes provisions for initialization and for calculating additional navigation
outputs, such as geodetic coordinates. This block is described in more detail in Section 3.2.

The truth data is used as a reference to assess filter performance. The truth data is generated
differently depending on the measurement set. For simulated measurements (sets 1 and 2
above), the truth data is arbitrary and is actually used to generate the measurements. The
truth data for an Earth stationary vehicle is calculated using the Earth’s rate of rotation. For
simulated rigid body motion, the force and torque are input to a dynamic model which
calculates the truth data. For real flight data, the truth data is taken from another navigation
system, either onboard or post-processed.

In comparison, the simulated measurements have the advantage that the truth data is
precisely known and controlled. It is possible to exhaustively test the effect of all
parameters. However, this simulated data uses many of the same models as the filter, so it is
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possible for modeling errors to go undetected. The real flight data contains the actual noise
and dynamics, so it will uncover modeling errors. However, many parameters cannot be
manipulated when using these datasets.

Output from the filter and truth model are analyzed and plotted in the final block. Most data
is also logged to a MATLAB workspace where it can be archived and processed later using
scripts. This allows multiple simulations to be compared.

The simulation produces several results of interest, but the attitude and position accuracy are
of primary importance. This accuracy can be assessed using several different methods. The
most direct measure is to compare the filter output to the truth data. However this assumes
that the truth data is, in fact, correct. For the recorded flight data, the “truth” data does
contain glitches and accuracy limitations.

A second reference is the pure inertial solution which can be calculated directly from the
IMU. This solution is numerically robust and accurately represents the high frequency
dynamics. However, this solution is prone to drift over long periods of time. The pure
inertial solution is therefore best used as a short-term reference. The filter estimate should
mimic the inertial solution, but may be offset.

Additional evaluation comes from the Kalman filter itself. The covariance gives indication
of the degree of observability of the system and should converge to acceptable values. The
variance can also be compared with the actual estimation error. The chi-squared statistic
provides a measure of filter health. In effect, it gives the improbability of each measurement.
Its value should remain reasonable, and will spike when a measurement does not fit the
model.
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3.2 Filter Implementation

Euler
u Angles
Extended ¢ Post
Z Kalman Filter 2
Filter
\ 4 Xo
e . ) Geodetic
Initialization — >
Z P Zz

l Pure INS

Figure 3-2: Top Level Filter Architecture

The specific filter implementation is summarized here. This describes the flow of
information between filter components and outlines where specific calculations take place. It
is representative of the actual Simulink model.

The top level filter architecture is shown is Figure 3-2 and consists of three main
components. The Initialization block performs startup initialization and is responsible for
calculating the initial state vector x,. This block can provide an instant initialization, where
initial values are simply converted to the coordinate system of the state vector. Alternatively,
this block can use the measurement vector z to estimate the initial state. If the vehicle is
Earth stationary, this will use the nonlinear gyrocompassing routine that was described in
Section 2.1.6. As a byproduct, this block also outputs a pure inertial solution.

The Extended Kalman Filter performs the state estimate. Its inputs are the control input u,
measurements z, and the initial state X,. It does not begin execution until the Initialization
block has determined the initial state. The Extended Kalman Filter outputs the state estimate
X in addition to the measurement error Z , the estimated covariance P, and the chi-squared

statistic y°. The details of this block will be described shortly.

The Post Filter block calculates additional navigation outputs that are not part of the state
vector. This includes the conversion to NED and geodetic coordinates. Euler angles are also
computed in this block. This technique is an alternative to using these quantities as state
variables. The goal here is to make the Extended Kalman Filter as simple as possible.

The details of the Extend Kalman Filter itself are shown in Figure 3-3. These four blocks
perform the state estimation and linearization and the calculation of the Kalman gain and
covariance.
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Figure 3-3: Data flow in the Extended Kalman Filter

y

The Nonlinear State Update block is responsible for propagating and updating the estimate of
the full state vector. This requires integrating the full nonlinear state equations, using the
initial condition x, and control input u. It also requires processing the innovations i, which
the Kalman filter generates with each measurement.

The Jacobians block linearizes the system and produces the instantaneous state matrices.
This is primarily A and H, but can also include F and L. These matrices are calculated using
the closed-form solution for the Jacobian that was presented in Section 2.3.2. In this fashion,
the differentiation has been performed analytically and the Jacobians are expressed as a
function of the current state estimate X .

The Measurement Compensation block uses the state estimate X and control input u to
compensate the nonlinear measurement z. This produces a small measurement error oz ,
where oz = Hox. This allows for a simpler and more accurate linearization of the
measurements. This again uses the equations given in Section 2.3.2.

The Kalman Update block is responsible for implementing the Kalman filter, as described in
Section 2.2. This includes the propagation of the covariance and the calculation of the
Kalman gain. The linearized state matrices are input. The measurement error oz is also
input to calculate the innovations i. This filter also requires noise parameters, including the
covariance of the initial estimate, the process noise, and the measurement noise. This block
uses the continuous-discrete formulation with a constant forgetting factor.

Further details of the system are straightforward matters of programming the equations
presenting in the Theoretical Derivation of this report (Section 2). Some care must be taken
to organize the order of execution so that linearization and measurement updates use the most
recent state estimate.
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3.3 Covariance Analysis

The Kalman Filter propagates the covariance of the estimation error for the purposes of
calculating the optimal gain. Conveniently, this covariance gives a theoretical prediction of
filter accuracy. Covariance analysis can also be used to determine the sensitivity of the filter
to different noise parameters. This is important for sensor design and cost tradeoffs, and
helps build an understanding of the system observability.

Since covariance analysis is based on the theoretical system model, modeling errors will
affect the true accuracy. The analysis of modeling errors that was conducted in Section
2.2.4.3 showed that the true accuracy will be worse than the estimated accuracy because the
modeling errors present an additional source of error. In most regards, the predictions of
covariance analysis represent the best that the filter can be expected to perform. To further
improve performance, the system and sensor noise characteristics must be improved. If
performance is significantly worse than covariance predictions, there is probably an error in
the model or filter implementation.

For this study, the filter is simulated and the covariance is recorded. To speed up simulation,
the state estimate and measurement errors do not need to be calculated. The covariance will
typically reach a steady state, although there is a dependency on the flight path. This analysis
is conducted using three different flight paths. A large number of parameters are varied
through the study, with special focus on sensor noises.

Table 3-1: Nominal Simulation Values

Parameter Value
Gyro Accuracy 1.64 x107% deg/s
Accelerometer Accuracy 0.0305 m/s*
GPS Position Accuracy 1m

GPS Velocity Accuracy 0.1 m/s
GPS Rate 1Hz

Force Disturbance 1 m/s°
Torque Disturbance 1 rad/s’
Other Process Noise 0

Latitude* 45°
Forgetting Rate 0

Inertia (normalized) 1 kg-m’
Initial Attitude Standard Deviation | 3.16 deg
Initial Position Standard Deviation | 1m
Duration 15 min

* Flight data uses the actual latitude as nominal
The nominal simulation, which uses noise and parameters as expected in the actual hardware,

is used as a baseline for comparison. The nominal parameters are shown in Table 3-1. Force
and torque disturbances have been chosen to be sufficiently unpredictable so that
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measurement error dominates the accuracy. The remaining process noise terms, such as
in p=v, were set to zero.

Simulations have been run both with and without biases in order to study their effect. When
biases are used, the nominal values are as given by Table 3-2.

Table 3-2: Nominal Bias Values

Parameter Value
Gyroscope bias 2.78 x10™ degl/s
Accelerometer bias | 3 x10” g

Bias time constant | 20 min

The following sections present covariance analysis using the Earth stationary, aircraft, and
booster rocket trajectories. For each trajectory, a number of sensitivities are explored. First,
the sensitivity to IMU and GPS noise is studied. Then biases are added and the effect of
varying bias levels is explored. For the Earth stationary trajectory, the fixed-to-Earth
measurement and the effect of latitude are characterized. For all trajectories, the effects of
the GPS rate and the forgetting rate are also studied.

3.3.1 Earth Stationary

The first flight path is Earth stationary, representing a vehicle that is nearly motionless on the
Earth’s surface. This flight path provides a near worst case, in which the navigation solution
does not benefit from vehicle motion. (The case of a vehicle that is stationary in inertial
coordinates is worse, but is somewhat unlikely.) Most simulations use only GPS and IMU
measurements, but the effect of the fixed-to-Earth measurement is also explored.

Each simulation produces a time plot of the covariance of the attitude and position estimation
errors. For analysis, it is convenient to resolve these 3 by 3 covariance matrices into their
principal values and to express the result as a standard deviation. The nominal simulation is
shown in Figure 3-4. It can be seen that accuracy improves asymptotically as time
progresses and approaches a steady state value.

The position accuracy dynamics are relatively fast because position is measured directly by
the GPS. The attitude plot shows both a fast and slow response. The direction of the slow
response corresponds to rotation about the local vertical, commonly known as heading (NED
yaw). This plot suggests that heading accuracy continues to decrease after the 15 minute
simulation, but 15 minutes was chosen as a reasonable time for comparison.

The substantial difference between heading accuracy and other attitude accuracy is the result
of the sensor architecture. This behavior is in agreement with the observability analysis in
Section 2.3.3 and the discussion of initial alignment in Section 2.1.6. Strong attitude
alignment is possible by aligning the force vector, which, in this case, is the reaction to the
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gravitational force. As the Earth rotates, the direction of this force slowly changes, which
allows for weak heading alignment.
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Figure 3-4: Time Plot of Nominal Attitude and Position Accuracy (principal standard deviations)

Throughout the analysis, attitude exhibits this characteristic of having one dimension of
poorer accuracy. It is frequently aligned with heading, because the force vector tends to be in
the vertical direction. For most of the analysis, we will plot this worst dimension separately
from the other dimensions.

A set of simulations have been constructed to explore the effects of varying parameters. The
final accuracy after 15 minutes is used for comparison between simulations. The accuracy
results are then sorted by the varied parameter.

Figure 3-5, shows the first of these simulations. In this case, the effect of varying the
measurement noise of the IMU and GPS is studied. The figure is divided into three panes
which show the accuracy in the worst attitude direction (left plot), other attitude directions
(middle plot), and position (right plot). This plot format is used throughout the covariance
analysis.

For each plot, the accuracy is plotted against the relative noise on a logarithmic, where 10°
represents the nominal noise value given by Table 3-1. These plots are interpreted by
looking at the slope of each curve. Each line represents the effect of varying a different
parameter. A steep curve means that accuracy is sensitive to that parameter, and the
predicted accuracy values can be read from the vertical axis.

Beginning at the left, the worst attitude is most sensitive to the gyroscope accuracy. It is also
sensitive to accelerometer accuracy. These dependencies exist because the IMU is used to
align the attitude. This direction requires detection of Earth rate, so the gyroscope noise is
critical. The sensitivity to GPS position and velocity is very small.
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Figure 3-5: Accuracy under Varying Noise in the Gyroscopes (w), Accelerometers (a), GPS Position (p),
and GPS Velocity (v)

The other attitude directions (middle plot) have equal dependence on gyroscopes and
accelerometers. These attitude dimensions can be oriented using gravity vector alignment.

Position accuracy (right plot) depends on the accuracy of the GPS position and velocity. The
accelerometer noise has a small effect on accuracy.

The difficulties of heading alignment can be dramatically reduced if it is known that the
vehicle is stationary with respect to the Earth. This is treated by the filter as an additional
measurement of body rate and velocity. The accuracy of this measurement is the amount of
vehicle motion or vibration that is present when this measurement is used. Nominal values
for this accuracy are shown in Table 3-3.

Table 3-3: Nominal Values for Fixed-to-Earth Measurement

Parameter Value
Rate noise 0.01 deg/s
Velocity noise | 1 mm/s

Figure 3-6 shows the effect of varying the amount of motion relative to these values. At
these levels, the fixed-to-Earth measurement greatly improves accuracy. It is therefore
highly recommended that this feature be used when the vehicle is Earth stationary. For
comparison, the original result, where the vehicle was stationary but the fixed-to-Earth
measurement was not used, is plotted as the point labeled “not fixed”.

The increase in attitude accuracy is the result of an improved measurement of body rates, as
is evident from the steep slopes in the accuracy plot. When the vehicle is Earth stationary,
the body rotation rate is equal to the rate of Earth rotation, which is precisely known. There
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remains some uncertainty, because the vehicle may not be absolution stationary, but this
uncertainty can be less than the gyroscope noise.
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Figure 3-6: Accuracy using Fixed-to-Earth Measurement

Position accuracy is also greatly improved. Without the fixed-to-Earth measurement,
position accuracy stems from the accuracy of the GPS and the accelerometers. With this
measurement, the velocity is precisely known. As a result, the noise in the accelerometers is
no longer harmful to the position estimate. The position accuracy curves are flat for these
noise values because the fixed-to-Earth velocity measurement is much better than the
accelerometers. However, the fixed velocity curve will eventually slop upward if the vehicle
vibrations increase to levels comparable to the accelerometer noise.

A study of the effect of biases in the gyroscopes and accelerometers has also been conducted,
using the nominal bias parameters listed in Table 3-2. The effect of biases when using the
fixed-to-Earth measurement is shown in Figure 3-7. In this case, the gyroscope bias is fully
observable, and only the accelerometer bias has an effect on attitude accuracy. The position
accuracy is not affected, because the GPS measurements remain unbiased.

The effect of biases when the fixed-to-Earth measurement is not used is shown in Figure 3-8.
In this case, the attitude performance is significantly worse. The heading error is now
dependent primarily on the magnitude of the gyroscope bias. This is because both the
heading error and the gyroscope heading bias must now be observed through Earth rotation.
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Figure 3-7: Accuracy with Biases using the Fixed-to-Earth Measurement

HHHH»H\\\HHHHHHHHHHHHHHHHHHHHHH w
Tl N e Y
\\\\\\\\\\\\\\\ LNl _J___Qa
/ o)
Clo
HHHHHHHHHHHHHHHHHHHHHHHHJHHHHW m
axbe 3 L]
> + o
< N [aN] (o] [{e} < AN
N N o — — — —
o o [90] o o o o
@ @ o ® @ ® ®
o o o o o o
(w) uonisod
—
*- o
[ [ e —— [ R —— [ E— —
AN S I D MU i U I N I
P S o _l__J_>x__A_Lo_ |
(@]
c o
+- o
[ — [ e —— e b SV S —
glis |
o
[o0] o < N — [ee] [{e] < N o -
— — — — o (=] o o (=)
o o o o o o o o
(6ap) epnimy
—
« . o
mmmmmmmmmmmmmmmmmmmmmmmmmmmmmm —
“““ IN Tl e
\\\\\\\\\\\\\\\\\\\\\\\\\ __0 |
(o]
/ c OO
HHHHHHHHHHHHH{WHHHHHHHHHHHHH{HH —
\\\\\\\\\\\\\ & | _ & _Jd_-_-__4
© m/ -
a g »- o
< n ™ 0 ~N n —
™ —

Bias (relative) Bias (relative)

Bias (relative)

Figure 3-8: Accuracy with Biases without using the Fixed-to-Earth Measurement

The effect of the latitude variations is shown in Figure 3-9. Locations near the Earth’s poles
suffer because the Earth rotation vector is aligned with the gravity vector, so the applied
force remains constant as the Earth rotates. Note that the initial accuracy for these
simulations was 3.16°, so there is no alignment improvement at the pole.

The effect of increasing the GPS rate is shown in Figure 3-10. Attitude accuracy is not

significantly affected, but positioning accuracy increased. This is the result of averaging

more data points. With N samples, the standard deviation reduces by VN . However, this

result relies on the assumption that the GPS noise is independent of previous values.

101



35

N
&)

/
/

Attitude (deg)
N

15 /
1 L—
—
0.5
0 20 40 60 80 100

Latitude (deg)

Figure 3-9: Effect of Latitude on Attitude Accuracy
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Figure 3-10: Effect the GPS Rate Figure 3-11: Effect of the Forgetting Rate

Finally, the effect of data forgetting is shown in Figure 3-11. A faster forgetting rate
produces larger covariance, because less data is used in the solution. This result is
misleading though, because the covariance has been modified to produce forgetting. The
benefit of data forgetting is robustness, since poor measurements and filter glitches are more
quickly ignored. In fact, a large variance will lead to higher gains in the Kalman filter which
will cause faster convergence in the actual error. Primarily, we must ensure that the
covariance remains reasonable for our model. The worst attitude covariance at large
forgetting rates begins to stretch the small angle assumption.
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3.3.2 Aircraft Flight Path

Simulations were repeated using the aircraft flight data, which contains measurements from
sensors aboard a small airplane. The results demonstrate that flight path complexity can
greatly increase the attitude accuracy. More details of this flight path are shown later in the
full simulations of Section 3.5.1.

The time plot of accuracy for the nominal simulation is shown in Figure 3-12. The attitude
accuracy has improved significantly, as a result of the richness of the flight path. Takeoff,
landing, and aircraft maneuvers all generate large variation in the direction of applied force.
Heading accuracy was poor prior to takeoff.
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Figure 3-12: Time plot of Nominal Attitude and Position Accuracy

The sensitivity to individual parameters can be studied again using this flight path. Figure
3-13 shows the effect of varying the measurement noise of the IMU and GPS. Attitude
accuracy is very good and all three dimensions show similar accuracy, due to the substantial
variation in the direction of force. Attitude accuracy depends equally on the gyroscopes and
accelerometers. Gyroscope measurement of Earth rate is extremely difficult in a moving
vehicle, but accurate gyroscopes still help to connect regions with different force directions.

The position accuracy is the same as for Earth stationary operation.

The effect of biases in the IMU is shown in Figure 3-14. Bias compensation is very
successful and the estimate is almost as good as the estimate without biases. This is because
the biases are highly observable under this flight path.
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Noise (relative)
GPS rates. Remember that this is only true when the GPS errors of successive measurements

are independent.
rates is quite acceptable. It may be advantageous to use a higher forgetting rate to provide

The effect of data forgetting is shown in Figure 3-16. In this flight path, forgetting at faster
robustness to anomalous conditions.

The effect of the GPS Rate is shown in Figure 3-15. There is slight improvement at faster

Figure 3-14: Accuracy under Varying Gyroscope Bias (w) and Accelerometer Bias (a)
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Figure 3-15: Effect of the GPS Rate Figure 3-16: Effect of Data Forgetting

3.3.3 Booster Flight Path

The booster flight data represents rocket-powered flight. This dataset contains three distinct
operating modes. The data begins before liftoff, when the rocket is Earth stationary. This is
followed by the boost phase, which contains extremely large accelerations and disturbances.
Force here is predominantly in the axial direction, but the rocket trajectory curves slowly.
Following the boost phase is a period of exoatmospheric maneuvering, which contains very
little measured acceleration because the vehicle is in freefall. With the high speeds of a
rocket, this flight path covers very large distances. More details of this flight path are shown
in the full simulations of Section 3.5.2.

The simulation time plots of attitude and position accuracy are shown in Figure 3-17. A
large improvement in the worst-direction attitude accuracy occurs at liftoff (t = 0) and during
the boost phase where the force is large. The fact that attitude accuracy began improving
before liftoff is the result of estimated ground vibrations, and will be discussed with full
simulation in Section 3.4.3. In the final portion of this data, corresponding to
exoatmospheric flight, the attitude accuracy degrades slightly because the measured
acceleration is small. (This effect is barely visible on these plots, but is readily apparent at
smaller scales.)
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Figure 3-17: Time Plot of Nominal Attitude and Position Accuracy

Accuracy values under varying noise conditions are plotted in Figure 3-18. Accuracy is very
similar to the accuracy using the aircraft trajectory, although slightly poorer in the worst

attitude direction. This corresponds to axial rotation (roll), because the boost acceleration is

almost entirely in the axial direction. Note that attitude accuracy shows almost no sensitivity
to GPS accuracy. This is because distances and velocities are very large in this trajectory, so

small amounts of GPS noise are irrelevant for attitude alignment.
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Figure 3-18: Accuracy under Varying Noise in the Gyroscopes (@), Accelerometers (a), GPS Position (p),

and GPS velocity (v)
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observe these biases, and they do not seriously affect accuracy. The booster trajectory shows

more sensitivity to gyroscope biases and less sensitivity to accelerometer biases, in

The effect of biases is shown in Figure 3-19. Once again, the trajectory is rich enough to
comparison with the aircraft trajectory.
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Figure 3-20 shows the effect of the GPS rate, which does not affect attitude accuracy in the
booster trajectory. This again is a reflection of the reduced sensitivity to GPS accuracy
because large distances are traveled.

The effect of the forgetting rate is shown in Figure 3-21. Attitude covariance under
forgetting is an order of magnitude larger than the covariance using the aircraft trajectory.
The booster trajectory richness is due to the gradual arc in the flight path, which is only
visible over long periods of time. Also, the booster trajectory richness is concentrated in the
boost phase of flight.

3.4 Simulated Data

The full performance of the filter has also been characterized in simulation. The following
analysis expands on the previous covariance analysis by introducing simulated
measurements. These measurements are created from a known truth model, but are
corrupted by noise using pseudorandom number generators. The state estimate is calculated
and the filter performance is studied under highly-controlled noise conditions.

The primary output of these simulations is a time plot of the estimation error. For
comparison, the estimated standard deviation of the filter error is also plotted. This is the
same as the covariance analysis conducted previously and represents an expected
convergence curve. The actual error is a random variable, but should have statistics that
match the estimated standard deviation.

A variety of studies have been performed in this context. Section 3.4.1 studies normal filter
operation. In these conditions, the filter is given the correct noise parameters. As a result,
the initial errors and measurement noise are consistent with the noise model of the filter. The
process noise for disturbances and bias dynamics is also consistent. A rich trajectory is used,
so that there is ample information to determine all state estimates.

Section 3.4.2 studies filter robustness to anomalous conditions, where the filter model is no
longer consistent with the measurement data. Here, the filter uses underestimated values for
initial errors, measurement noise, and process noise. Measurement glitches are also studied.
Note that overestimated noise does not present a problem in filter operation. It does cause
suboptimality, however, because the filter discredits valid information.

Section 3.4.3 studies behavior under other flight paths, including the Earth stationary,
aircraft, and booster rocket trajectory. The latter two datasets are derived from the flight
data, but have been modified to provide an exact truth model and adjustable noise
parameters. In effect, a simulated dataset was created with a trajectory that closely matches
the flight data. These simulations provide analysis of observability and accuracy in realistic
flight environments.

Finally, section 3.4.4 analyzes the effect of removing bias states from the filter. This is
motivated because these additional states add computation. If they do not produce improved
accuracy, they should be removed.
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3.4.1 Nominal Operation with Initial Errors

The first test of filter performance is under normal operating conditions. These simulations
use a correct noise model so that the actual noise values match the filter’s covariance
parameters for measurement, process, and initial state. The state estimate is initialized with
an error of one standard deviation in each element of the state vector.

For these simulations, a rich trajectory is used, shown in Figure 3-22. This trajectory
contains gradual sinusoidal variations in attitude and rapid variations in the body force. The
torque that is used to produce this attitude variation is also plotted. A full truth data set,
including position, velocity, and body rates, is created from this force and torque. The force
and torque of this trajectory are given to the filter as a control input, but the filter is required
to estimate additional force and torque disturbances. This trajectory is not intended to
represent realistic motion, but provides good characterization of the filter behavior in
situations with rich information. The effect of other trajectories is pursued later in

Section 3.4.3.
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Figure 3-22: Trajectory for Normal Operation Simulations

The initial errors, which matched the initial state standard deviations, are listed in Table 3-4.
These values have been chosen to be reasonable and consistent with the hardware. However,
the actual biases are very small, and produce simulations that are successful but
uninformative. The biases are dominated by the white measurement noise, and the effect of
biases is obscured. For the purposes of illustration, most studies increase the biases by a
factor of 100. This makes proper bias compensation critical for filter performance. In most
cases, constant biases are used in simulation.

The attitude response is shown in Figure 3-23. Convergence is good in all three dimensions,

due to the rich trajectory. Error remains in good proportion with the estimated standard
deviation. Progress in the estimate occurs most noticeably during the 1 Hz GPS updates.
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Body rate response is shown in Figure 3-24. Note that the time scale is extremely
compacted. Because body rates are measured accurately by the gyroscopes, the rate error is
nearly eliminated after the first IMU measurement. Torque disturbance convergence, shown
in Figure 3-25, requires two measurements to observe, as the derivative of body rate. There
is again good agreement between the estimated standard deviation and the actual error.

Table 3-4: Initial Errors for Nominal
Simulation

State Initial Error
Attitude 3.16°
Body Rate 1°/s
Torque Disturbance | 1 rad/s®
Position 10 m
Velocity 10 m
Force Disturbance 10 m/s®
Gyroscope Bias* 2.78 x 107 deg/s
Accelerometer Bias* | 3 x 107 g
Gravity Model Bias* | 1 x 10 m/s*
* 100 times actual value
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Figure 3-23: Attitude Error Response
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Table 3-5: Measurement Noise for Nominal

Simulations
Measurement | Noise Standard
Deviation
Gyroscopes 0.016 deg/s
Accelerometers | 0.30 m/s®
GPS Position 1m
GPS Velocity | 0.1 m/s

Table 3-6: Distubance Time Constants

Noise Time Constant
Torque Disturbance | 1s
Force Disturbance | 1s
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Figure 3-24: Body Rate Response



The position response is shown in Figure 3-26, and shows rapid improvement with the first
GPS measurement. The initial increase in error is the result of the velocity error, which is
shown in Figure 3-27. The force disturbance response is shown in Figure 3-28. One
accelerometer measurement is required to measure this disturbance.
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The response for biases is shown in Figure 3-29 for gyroscopes, Figure 3-30 for
accelerometers, and Figure 3-31 for the gravity model. These biases converge more slowly,
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and depend on the richness of the trajectory. It can be seen by the estimate standard
deviations that certain periods of time offer information towards these state estimates, while
others do not. Ultimately, the convergence of these states is not required because the
estimate of position and attitude is of greater importance. However, convergence of the bias
states will produce proper bias compensation and increase overall accuracy. It all cases, the
estimates of bias state must remain small and bounded.

Finally, the chi-squared statistic is plotted in Figure 3-32. The value remains small,
signifying that the measurement errors are in agreement with the estimated covariance. The
mean appears to remain constant, which is a sign of healthy filter operation.

3.4.2 Unexpected Noise and Disturbance

These simulations explore abnormal conditions where the filter model is not in full
agreement with the measurement data. These are situations that exceed filter design
specifications. By studying these conditions, we wish to characterize filter robustness in this
regard.

These anomalies fall into several categories. The first set is underestimated noise, where the
filter uses noise covariances that are too small. This includes the covariance of the initial
state, the measurement noise, and the process noise. The second set of anomalies is
measurement glitches. In these simulations, bad measurements are intentionally inserted into
the data. This can be either an isolated glitch or a step in the measured value.

Throughout this section, the benefit of data forgetting is explored. In many situations, data
forgetting will improve filter recovery by eventually discarding the anomalous information.

Underestimated Initial Errors

We begin with the case of underestimated initial errors. The actual initial errors are
maintained at the same levels as in the nominal simulations, but the initial covariance is
reduced. This leads to an initial error that is much larger than the estimated standard
deviation. As a result, the Kalman filter calculates gains that are too small and the response
can be slow.

The case where the initial attitude error is underestimated by a factor of 10 is shown in
Figure 3-33. The result shows somewhat erratic behavior, with eventual approximate
convergence. Note the steady state error in the z direction. The estimates of other variables
are generally good, although irregularities in the bias estimates result from attempting to
accommodate the data.

This behavior can be dramatically improved using data forgetting. Figure 3-34 repeats the
simulation with a forgetting time constant (1/rate) of 30 seconds. This fast forgetting rate
causes the estimated standard deviation to grow with time, which keeps gains artificially high
and leads to proper convergence. From another viewpoint, this technique forgets the initial
condition.
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The effect of underestimating the initial position is less serious, because position is directly
measurable. An error does result in both attitude (Figure 3-35) and position (Figure 3-36),
but these errors diminish with time.

The chi-squared statistic is a good tool for diagnosing this type of problem. The result for the
previous simulation of underestimate position is shown in Figure 3-37. The first several GPS
measurements create large spikes because they do not match the estimated state. As the state
estimate improves, the GPS measurement error becomes smaller and the chi-squared statistic
decreases.
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Figure 3-37: Chi-Squared Statistic for Underestimated Initial Position Error
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Underestimated Measurement Noise

Simulations were conducted using underestimated noise, meaning that the filter was given a

measurement noise covariance that was smaller than the actual measurement noise. Noise

levels were maintained at their nominal levels while the filter parameters were reduced. The

filter is reasonably robust in this respect.

For example, Figure 3-38 shows a plot of attitude error when all measurement noises are

underestimated by a factor of 10. This results in more noise in the estimate. By

underestimating the measurement noise, gains are two high, and the measurement noise is

not successfully filtered. Convergence does occur, although the result is less accurate.

The excess measurement noise is quite obvious in the chi-squared statistic, shown in Figure

3-39. The large spikes correspond to the arrival of GPS measurements.
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Figure 3-38: Attitude Accuracy with
Underestimated Measurement Noise

Underestimated Process Noise

The filter is also reasonably robust to underestimated process noise. In these simulations, the
filter process noise covariance is smaller than the actual process noise. The force and torque
disturbances have the largest noise covariance and therefore have the greatest affect.

Figure 3-39: Chi-Squared Statistic for
Underestimated Measurement Noise

Most simulations show good results. Attitude accuracy is noticeably compromised at 100

times the process noise, as shown in Figure 3-40. This result is important, because it is
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difficult to know the actual values for process noise, especially for force and torque
disturbances.

The chi-squared statistic is plotted in Figure 3-41. The value is larger that the nominal
simulation (Figure 3-32), but the average does not appear to grow over time.
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Unmodeled Measurement Glitches

These simulations study the effect of a measurement glitch. This is an abrupt measurement
error that is well beyond the noise model. Two types of glitches are studied: a point glitch,
where there is only one bad measurement, and a step glitch, where a sensor unexplainably
shifts its measurement value.

The effect of a single point GPS position glitch is shown in Figure 3-42. A measurement
error of 10x was applied at t = 10. The result is a jump in the position estimate at that time,
but recovery does occur. The attitude estimate, shown in Figure 3-43 is unaffected.

The chi-squared statistic is a excellent indicator of measurement glitches, as shown in Figure
3-44. Poor measurements of this type can be discarded on the basis of their chi-squared
value.

The effect of a momentary gyroscope glitch is shown in Figure 3-45. Recovery occurs rather
quickly.
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A step glitch produces a different type of problem. Here, the measurement error persists, and
the filter cannot ignore the new value. For example, a GPS solution may be altered when a
new satellite comes into view and becomes part of the solution.

The effect of a persistent GPS Position error is shown below. The transition occurs at t = 10,
and remains in error by 10 standard deviations. The position estimate, shown in Figure 3-47,
gradually approaches the new value. This error has a small effect on the attitude estimate,
shown in Figure 3-46. The chi-squared statistic, shown in Figure 3-48, gradually decreases
as the filter converges on estimates that agree with the new measurements.
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Data forgetting shows mixed results with these disturbances. For the most part, forgetting
provides faster recovery because the glitch is more quickly ignored. However, this fast
response also creates a greater effect at the time of the glitch. Since forgetting prefers recent
data, this technique is beneficial when the glitch is old but harmful when the glitch is recent.

3.4.3 Additional Trajectories
The previous studies used a trajectory that was rich with information. This trajectory was

somewhat contrived and not necessarily realistic. This section analyzes the effect of less rich
trajectories with a particular interest in the estimate convergence.

Earth Stationary

As mentioned, the Earth stationary trajectory provides poor observability of attitude because
the gravity vector can only be used to align in two dimensions. The remaining dimension
must be aligned using Earth rate, which is very small compared to the gyroscope
measurement accuracy.

The resulting attitude accuracy is shown in Figure 3-49. It is apparent that attitude does not
converge in two dimensions. The steady error in oy is the result of an unobserved
accelerometer bias, and this behavior is unavoidable and entirely correct. However, the error
in o, persists while the estimated standard deviation converges. This situation is usually
indicative of an error in filter construction or operation.

In this particular case, this error is caused by a fundamental problem of the Extended Kalman
Filter. The convergence of the covariance is driven by the richness of the trajectory. More
precisely, it is driven the richness of the estimated trajectory. For example, the observability

of attitude was dependent on the time variation of f.ltis possible for noise in the state

estimate to create this variation. This causes the filter covariance to converge too quickly,
producing small Kalman gains, while the actual error has not converged at all.

This problem is only significant in situations of poor observability. A linearized Kalman
filter, where the state estimate is not used as the point of linearization, has the advantage in
this respect. This problem can be remedied approximately by using data forgetting or by
adding artificial process noise to prevent the filter covariance from converging below the true
value. The Earth stationary covariance analysis of Section 3.3.1 used a noise free trajectory,
so the results represent performance without this problem. These results predicted attitude
convergence in 10 to 20 minutes. The starting portions of the aircraft and booster trajectory
in covariance analysis inadvertently contained some of this effect.

Earth stationary performance did show good estimation of gyroscope biases. Figure 3-50

shows that the bias estimate converges after 5 to 10 IMU measurements. The fixed-to-Earth
measurement, at nominal accuracy, was used for these results.
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Modeled Aircraft Trajectory

The modeled aircraft trajectory is a simulated dataset that is designed to match the flight
aircraft trajectory. It has been created using the rigid body dynamics model with force and
torque values calculated from the flight measurements. This allows for a simulation with a
known truth model and full control over noise parameters, while maintaining conditions that
are very similar to the flight environment.

Bias values remain at 100x for this simulation. While this ultimately causes poorer accuracy,
it shows that performance with large biases is successful in this flight environment.
Predictions of filter accuracy in flight can be taken from the covariance analysis, which
thoroughly explores variations in most parameters.

The attitude accuracy of this simulation is shown in Figure 3-51. Convergence is much
better than the Earth stationary simulation, and comparable to the simulated rich trajectory.
Note that attitude convergence is slow before takeoff (t = 1150). Alignment about the x and y
body axes requires an estimation of the accelerometer biases. Alignment about the z axis
before takeoff depends on Earth rate. When flight motion begins, the observability is sharply
improved and convergence occurs more rapidly.

Note that z alignment continues to wander during flight in periods between maneuvers. This

is in part because of the 100x gyroscope biases. However, this shows that simple flight paths
will reduce accuracy.

121



4 2
— Error — Error
= Stdev Stdev
o> 2 H 1 M
S _
ho2 £ 'n."l.llj I.M,.l M‘“‘l ‘I j_.l,l
X 0 I r o ) h’]ﬂ H% PHA* ‘rHMP‘F
3
2 1
1000 1200 1400 1600 1800 2000 1000 1200 1400 1600 1800 2000
4 2
§2 = A ul uljlt-hll. 11"
= Eo
>
2 O —Wupd
2 -2
1000 1200 1400 1600 1800 2000 1000 1200 1400 1600 1800 2000
5 2
? -
To A g pe—— E dhb L MR L L A
3
1000 1200 1400 1600 1800 2000 1600 1200 1400 1600 1800 2000
Time (s) Time (s)
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Position accuracy is shown in Figure 3-52. While the estimate appears noisy on this time
scale, the error values are within the standard deviation most of the time. This suggests
statistical agreement between the error and filter covariance.

Modeled Booster Trajectory

The modeled booster trajectory is a creation similar to the modeled aircraft trajectory, but is
based on the flight booster data. Once again, the rigid body dynamics model is used to
generate a simulation with known truth and adjustable noise parameters. Biases remain at
100x.

The attitude performance is shown in Figure 3-53, and shows good convergence after liftoff
(t=0). Force is predominately in the axial direction before launch and during flight, so
alignment about the x axis is the most difficult. Position accuracy is shown in Figure 3-54
and is in agreement with the estimated standard deviation.
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3.4.4 Omitting Bias States

It is useful to study the effect of removing the bias states from the model. In the following
simulations, biases are still present in the simulated gyroscope and accelerometer
measurements and in the gravity model. However, the Kalman filter does not have bias
states to represent these quantities. As a result, the noise model is incorrect.

Two levels of biases are studied. First, the previous nominal values are used. These values
are 100 times the actual hardware values, and have a significant effect on filter performance.
Using the larger biases is instructive for studying the effect of unmodeled biases.
Afterwards, the simulations are rerun using the actual values, which have substantially less
impact.

A distinctive characteristic of these simulations is shown in Figure 3-55. While the estimated
standard deviation converges, the estimated state has divergent tendencies. In this case, the
accelerometer measurements and gravity model are biased, so the position estimate diverges
between GPS measurements. The GPS corrections attempt to restore the position estimate,
but the gain is too small.

The result is much worse for attitude estimation, as shown in Figure 3-56. Drift here comes

predominantly from the gyroscope bias. Since attitude suffers from poor observability, there
is little to correct the attitude error.
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The Chi-Squared statistic is a good tool for diagnosing this type of problem. As shown in
Figure 3-57, the measurements do not agree with the model. The covariance converges but
the biases persist, leading to increasingly inconsistent measurements.
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Simulations also show that data forgetting can not solve this type of modeling error. This is
because the modeling error has an affect on data for all time. The plots are very similar and
show a slight increase in the estimated standard deviation. This causes increased gains,
which can actually worsen the problem.

Using the actual bias levels, one hundredth the nominal values, there is little performance
degradation. The chi-squared statistic, shown in Figure 3-58, suggests that the biased
measurements still fit this simplified model. The state error response is indistinguishable
from the response of the full model.

It should be concluded that unmodeled states may or may not be significant. Since states
variables bear a large computational penalty, it may be wise to use the smallest model that
produces a good chi-squared plot.

An alternative technique is to compensate the biases independently from the Kalman filter.
This may be successful is reducing the effective bias to values that can be ignored by the
Kalman filter.

3.4.5 Measurement Dropouts

Another test of filter robustness is the response to measurement dropouts. These simulations
explore dropouts in the IMU, GPS, and in both simultaneously. For each, there is a time
window during which the measurements are not received. The filter continues to update the
state and to process any other measurements that are available.

For these studies, the modeled aircraft trajectory is used, because it provides a realistic flight
environment with a known truth model. The measurement dropout begins at time t = 1200,
which is about 50 seconds after takeoff when the aircraft is maneuvering moderately.
Dropouts last from 10 to 60 seconds. Biases remain at 100x for these simulations.

The response to a 60 second GPS dropout is studied first. The attitude accuracy is plotted in
Figure 3-59 and the position accuracy is plotted in Figure 3-60. The position error and its
estimated standard deviation both increase abruptly during this time period because the
accelerometers are the only source of position information. In effect, the Kalman Filter
captures the drift of the inertial solution. This is highly beneficial, because it leads to a fast
recovery when the GPS is restored.

The attitude error is largely unaffected. The attitude error and standard deviation are
increased because there are no GPS corrections for the attitude. This also makes the attitude
estimate more smooth. The decrease in the standard deviation of ¢ is the result of vehicle
rotation.

The effect of a 60 second IMU dropout is more severe. The attitude is plotted in Figure 3-61.
The attitude performance is very poor during the dropout, showing errors of 30° to 50°. The
standard deviation is seen to rise greatly because attitude is very difficult to observe without
gyroscopes. When the IMU measurement is restored, performance returns to normal. This is
quite remarkable considering the small angle approximation.
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The position accuracy for the IMU dropout is plotted in Figure 3-62. The position estimate is
maintained adequately throughout the dropout. The position uncertainty now grows rapidly
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between GPS measurements, causing the messy plot, because the acceleration is not
measured. After the dropout, behavior returns to normal.

Finally, the effect of a simultaneous GPS and IMU dropout is studied. The length of the
dropout has been reduced to 10 seconds because the filter can not handle the longer dropout.
The attitude is shown Figure 3-63. The estimated standard deviation grows rapidly and the
error drifts where it may. However, a full recovery is achieved once again when the
measurements return.

The position accuracy is plotted in Figure 3-64. This shows a similar increase in error and
standard deviation. With no measurements of position, velocity, or acceleration, the filter
can only use its knowledge of the force dynamics. In this model, force decays towards zero
when unobserved. It may have been beneficial to instead have force approaching the
reaction to gravity.
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These simulations showed reasonable performance in unreasonable circumstances.
Performance could probably be improved by adjusting noise parameters and decay rates. In
the absence of measurement information, the system model accuracy is more critical.

It is tempting to suggest that the Kalman filter should be shut down during measurement
dropouts. For example, the navigation system could revert to an inertial solution during a
GPS dropout. However, the Kalman filter still provides the optimal estimate during the
dropout, and can provide several benefits. Returning to the plots in Figure 3-59 and Figure
3-60, the Kalman filter maintains the attitude error through the dropout. The position drifted
300 meters in 60 seconds, but this is small considering that the IMU was biased by 0.29 m/s>.
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Finally, the Kalman filter calculates the proper increase in covariance for when the
measurement is restored.

Despite these benefits, it is only a matter of time before the covariance grows to be too large
for numerical computation. This can corrupt the estimates of observable states and
ultimately lead to a numerical failure. This can be addressed using several techniques.

To the extent that the increase in covariance is real, the uncertainty in the estimate is
becoming too large for the linearization of the Extended Kalman Filter to be valid. In this
case, the computation must be handed over to another algorithm with nonlinear capability.
This could be the same algorithm that was used in the initialization routine. When this
routine finishes, possibly after the dropout, the EKF should be restarted with an initial state
covariance representative of the nonlinear algorithm’s accuracy. In this architecture, the
EKF is protected by a nonlinear algorithm so that the linearization is always valid and the
covariance remains bounded.

It is also possible that the increase in covariance is the result of fictitious noise or data
forgetting, which may have been employed originally to make the filter more responsive.
During the dropout, all data should be remembered, and noise parameters should be returned
to their actual values.

Beyond this, it is possible to manipulate the Kalman Filter more intrusively. Unobservable
state variables can be frozen by zeroing their process noise and the corresponding rows and
columns of the covariance matrix. Limits on the covariance can be imposed, but care should
be taken that the covariance matrix remains symmetric positive definite. While these
techniques can provide benefits, they are ad hoc and are conceptually flawed. If the model is
correct and the covariance is large, then there is no accurate solution. Furthermore, the most
accurate solution, in terms of minimum error variance, is given by the unaltered Kalman
filter.
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3.5 Flight Data Simulation

Real flight data is available from several programs at MIT Lincoln Laboratory. Simulation
using this data provides a test of filter performance in a real flight environment. Although
simulated data is more flexible, flight data contains the actual sensor noise and disturbances.

Datasets have been recorded from sensors aboard an aircraft and a booster rocket. This data
is then loaded from file and replayed for simulation. This provides a substitute for flying the
actual filter.

The difficulty with this data is that the actual state is not known exactly. Both datasets
contain a reference solution from another navigation system. However, the accuracy of these
solutions could not be precisely established and errors in these solutions were visible.

Without a reliable truth solution, assessment of accuracy becomes a more subjective matter.
The inertial solution can be used as a short-term reference, but will have noticeable drift by
the end of flight. Testing that the filter remains healthy and converges is also an important

part of this simulation.

In general, the modeled data simulations provides a better estimation of filter accuracy. The
simulations here show that the filter functions reliably in the flight environment. They also
show the validity of various modeling assumptions used in the previous simulations.

3.5.1 Aircraft

The aircraft dataset was measured aboard a small airplane during a short flight. The data
includes takeoff and landing as well as some airborne maneuvers and ground taxiing. Data
was recorded from a Litton LN200 IMU and a NavCom SF-2050M GPS receiver. Both the
raw GPS measurements and the position and velocity solutions were available. For the
purpose of computing a Differential GPS solution, a second set of GPS data was recorded
from a stationary GPS receiver located at a nearby ground station. For this simulation, only
the GPS position and velocity and the IMU measurements are used by the filter.

This dataset also contains a reference solution. This solution has been generated using a
software package called GrafNav, by Waypoint Consulting, that post-processes the
measurements. This package uses a forward-backward smoothing algorithm and makes full
use of both GPS receivers. Unfortunately, this solution proved to be unreliable. As will be
analyzed shortly, there were several obvious glitches in the solution. As a result, this “high-
quality” solution can only be used as an approximate reference.

The filter estimates of attitude and position are shown in Figure 3-65 and Figure 3-66,
respectively. Attitude has been displayed in NED Euler angles and position has been
converted to geodetic coordinates. These results are in reasonable agreement with the
reference and inertial solution. The flight maneuvers are readily apparent in this data.
Takeoff and landing occur at t = 1150 and t = 2800, respectively. Several large turns in yaw
are also present.
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The filter estimates of torque and force disturbances are shown in Figure 3-67. Disturbances
are largest during takeoff and landing. The z component of the force bias opposes gravity
throughout the flight. Additional forces are seen during maneuvers.

Biases have also been estimated and are plotted in Figure 3-68. Although there is no way of
knowing the actual bias values, these estimates seem reasonable. There is some divergence

in the accelerometer and gravity model biases, but the bias decay rates will eventually keep

these estimates bounded. These bias estimates may have been influences by the presence of
other types of errors, such as IMU scaling errors or GPS delays.

The attitude error is plotted in Figure 3-69. This error is often larger than the estimated
standard deviation, especially in ¢y and near the end of simulation. This error is the
difference between my filter estimate and the reference solution. As a result, errors can be
caused by either solution. There is reason to believe that much of this error was created by
errors in the reference solution. The abrupt spikes in the error are present in the reference
solution. Also, the reference solution contained other noticeable glitches which will by
analyzed shortly.

The position error is shown in Figure 3-70. This error is in good proportion to the estimated
standard deviation.

The chi-squared statistic is shown in Figure 3-71. The value remains small, but shows
groups of irregular measurements. Many of these irregularities occur during maneuvers,
when the aircraft forces and torques are the largest.
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Figure 3-72: Glitch in Reference Solution

Figure 3-72 shows what is undeniably a glitch in the reference solution. On this plot are the
estimates of the Kalman filter (KF), the inertial solution (INS), and the reference solution
(ref). The Kalman filter and inertial solutions follow each other precisely, despite an offset
in roll. The reference solution, however, deviates greatly in the time 1307 to 1308. The
reference solution does not recover from this glitch, leaving almost 1° of unexplained yaw
rotation.

This LN200 IMU has a drift of 1° per hour, specified at 1 standard deviation, so it is
statistically impossible that the INS solution had this much error. In addition, direct analysis
of the measured body rates did not show this motion. It is therefore concluded that this
reference solution is not accurate. The causes of this error in the provided reference solution
are outside the scope of this thesis and have not been investigated further.
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3.5.2 Booster Rocket

The booster rocket flight data provides measurements from the harsh environment of a
launch vehicle. As mentioned previously, this data contains a period before launch, during
boost phase, and after boost phase. These present drastically different operating conditions.

This dataset includes only the raw measurements from the IMU, which was a Litton LN200.
It contains a reference solution that was computed by an onboard Litton LN100, which is a
full GPS-aided navigation system. The GPS position and velocity solutions were not
available, so these measurements were simulated. These simulated measurements were
generated by adding noise to the position and velocity of the reference solution.

The quality of the reference solution is reasonably good, but there is difficulty aligning the
solution times to the measurement times. While both the IMU measurements and the
reference solution contain time markers, there is evidently some confusion in the time offset
between these two data sources. For this reason, the reference data source is once again
approximate.

The estimated attitude is shown in Figure 3-73 and the estimated position is shown in Figure
3-74. These show the gradual arc of the booster trajectory. The booster force profile, which
contained two stages, is evident in the estimate of force disturbance, shown in Figure 3-75.
Following the booster phase, force drops to near zero. Returning to Figure 3-73, several
attitude maneuvers are then performed.

Bias estimates are shown in Figure 3-76. It is not clear that biases actual converge, but they
do seem to remain bounded. This may be because there is primarily axial acceleration. Also,
the great variation in force magnitude would augment the effect of scaling errors, which were
omitted from the filter model.
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The attitude estimation error is plotted in Figure 3-77. Several spikes are present in the
estimated attitude standard deviation, and sometimes in the attitude error itself. These
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correspond to dropouts in the dataset. The actual IMU measurements did not dropout, but
the telemetry used to transmit this data back to Earth experienced brief losses in
transmission. As a result, this filter is confronted with short IMU dropouts.

The position error is plotted in Figure 3-78, in the form of the GPS measurement error. This
error is significantly worse than the GPS accuracy, but this can be attributed to several
factors. Recall that the GPS measurement that is used in this simulation is actually
manufactured from the reference solution. The reference solution is imprecisely time
alignment, and is calculated at discrete time intervals. During periods of high velocity, this
inaccuracy in time causes large inaccuracies in position. During periods of high acceleration,
there may have been additional lags in the onboard GPS solution.

The chi-squared statistic is shown in Figure 3-79. The spikes correspond to drastic changes
in the force, such as liftoff. ldeally, these spikes can be reduced by improving the system
model. However, it is difficult to accommodate the great variation in noise characteristics
that this trajectory presents. Experiments have been conducted using scheduling and
adaptive estimation of the noise characteristics. While these techniques are generally
successful, more development effort is required.
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3.6 Initialization

The initializer provides nonlinear convergence to bring a large initial error into the capture
range of the Kalman Filter. This is accomplished by processing the first group of
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measurements using a different algorithm. This algorithm is less accurate than the Kalman
filter, but has guaranteed stability for large errors.

For most states, this initialization is trivial and can be performed by averaging the first few
measurements with the proper coordinate conversions. For example, the initial position can
be calculated from the GPS measurements. Attitude, however, requires a special alignment
routine. When the vehicle is fixed-to-Earth, the gyrocompassing routine is employed.

The performance of the gyrocompassing routine has been simulated using the fixed-to-Earth
model, and is shown in Figure 3-81. This implementation uses a 1 second time constant for
gravity vector alignment, and a 30 second time constant for Earth rate alignment. The body
rate measurements are filtered using a discrete filter with an equivalent time constant of 10
seconds. The Earth rate alignment is delayed by 30 seconds so that this filter converges
before the earth rate corrections are applied.

It can be seen that the gravity alignment procedure is very fast and accurate. The Earth rate
alignment requires a longer time, and is greatly influenced by the gyroscope noise. In tuning
the time constants, there is a tradeoff between accuracy and response time. Simulation shows
a subsequent successful handoff to the Kalman filter.
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Figure 3-81: Initialization using Gyrocompassing

This completes the simulations analysis. We now proceed to study the hardware
implementation.
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4. Hardware

A hardware prototype has been created in order to test this filter in a real-time environment
on embedded hardware. This explores the feasibility of this algorithm in the presence of real
computational constraints. Ultimately, it has exposed several practical issues that are
important in the design of this system.

Section 4.1 begins with a description of the hardware components. This includes the
processor, IMU, and GPS receiver. Pictures of the major components are presented.

Section 4.2 describes the general process for implementing the software on the hardware.
This begins by describing a technique for automatic code generation, so that the simulation
models are ported into C code. However, this technique produces inefficient code and
methods of improving the computational efficiency are required. These efforts and the
resulting algorithms are detailed in Section 4.3.

Section 4.4 presents the results of hardware testing. Full flight testing of the hardware was
not included in this project, due to resource and time constraints. Instead, the previous flight
data simulations serve to validate this design in the flight environment. Hardware testing is
designed to establish that the hardware performs similarly to the simulation.

As a result, hardware testing is limited to benchtop testing. The GPS antenna is fixed in
position, while the IMU can be moved and rotated. This provides full testing of the Earth
stationary trajectory and moderate testing of attitude performance. Further testing in real
flight environments is recommended.

4.1 Description of Hardware Components

This hardware implementation uses high performance components for computation and
measurement. These components have been chosen because of their history and future use
on programs at MIT Lincoln Laboratory. The use of familiar components greatly accelerated
the process of implementation. These components have been available as spares and
development units from past programs.

The central processing is performed by a Texas Instruments SMJ320C6701 Digital Signal
Processor (DSP). This processor contains dedicated hardware for floating point arithmetic,
which has been configured for 32-bit computation. It also features a Very Long Instruction
Word architecture with multiple data paths and functional units, so that up to 8 instructions
can be performed in parallel during a single clock cycle. This component features a variety
of on-chip peripherals including timers, serial ports, program and data memory, and an
external memory interface. This particular processor operates at a speed of 132 MHz and
provides 64 KB program cache and 64 KB internal data memory.
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M

Figure 4-2: Card Cage for Processor Board and Power Electronics

This DSP is featured on a processor board that was developed at MIT Lincoln Laboratory by
Deborah Blanchard for high performance embedded control and imaging applications.
Figure 4-1 shows a picture of the primary side of this circuit board. The processor board
contains components for digital 10, a 2 channel UART, and additional memory. The
memory includes 2 MB FLASH for nonvolatile storage, 8 MB Dynamic RAM, and 1 MB
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Static RAM. Peripheral addressing and certain other functions are performed by an
ALTERA Field Programmable Gate Array (FPGA). The processor board is housed in a card
cage, shown in Figure 4-2, which contains additional electronics for power distribution and
data recording.

The IMU for this project is a Litton LN200, shown in Figure 4-3, featuring three fiber optic
gyroscopes and three proof mass accelerometers. This unit is a high-performance,
navigation-quality IMU. Specifications were provided with the nominal simulations
parameters in Table 3-5. Data messages are sent to the DSP using a high speed serial data
link that is processed by the FPGA.

The GPS receiver is an Ashtech G10 HDMA (High Dynamics and Missile Applications)
receiver, shown in Figure 4-4. This unit makes full use of the military GPS frequency and
encoding. It provides output of the position and velocity solution at 10 Hz in a serial data
message format.

Figure 4-4: Ashtech G10 HDMA GPS Receiver
and Chassis

Figure 4-3: LN200 IMU

4.2 Software Implementation

Implementation on the hardware requires porting the algorithm to DSP-specific instructions.
This is done using the process shown in Figure 4-5. The Simulink model is first converted to
C code and then the C code is compiled to produce the executable for the DSP.

The conversion from Simulink to C code is done automatically using a product by The
MathWorks called Real-Time Workshop (RTW). With this method, there is no potential for
error in recoding the algorithm. Effectively, the same filter block that is tested in simulation
is converted directly to C code.
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Figure 4-5: Software Implementation Process

Real-Time Workshop creates two top-level C functions for initializing and updating the
model. The update function is called once per integration step, in real time. Data structures
for the model inputs and outputs are also created so that information can be passed to and
from the model.

The wrapper C code contains the basic framework for real-time operation. This includes the
top level routine and timing, as well as the low level functions for hardware interfacing. It is
written as a single thread with interrupts for the clock and the receipt of messages. The
wrapper code was initially developed by Leonas Bernotas for other applications at MIT
Lincoln Laboratory and was adapted for this application.

The wrapper code is compiled using Code Composer Studio (CCS). This product is provided
by Texas Instruments as part of the development tools. It is an optimizing C compiler for
this specific DSP target. Small pieces of assembly code are required to implement interrupts
and boot operation. The memory configuration and control of specific storage locations is
managed using additional commands to the linker.

4.3 Efficiency Techniques

The automated process for software implementation produces code that is inefficient. For
this particular application, the computation requirements are significant and the inefficient
code is unacceptable. This problem has been remedied using a variety of software
techniques.

The process began by optimizing the memory map so that critical data was stored in fast
memory. This is described in Section 4.3.1. This improved execution speed, but also
motivated a reduction in memory usage.

Further improvements were made by optimizing the computational techniques. Data storage
and matrix operations were streamlined using custom algorithms. The process of automatic
code generation was preserved in anticipation of future development of the Simulink model.
Computational complexity was also reduced by simplifying the system model. Reductions in
the number of states and measurements were made.
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These methods ultimately led to the successful implementation of the filter on hardware at an
execution rate of 100 Hz, which matched the IMU message rate. However, several sacrifices
were made that ultimately led to degradation in performance.

4.3.1 Memory Map

The filter algorithm requires the storage of large data variables, such as the covariance matrix
of the estimation error. Significant increases in execution speed were obtained by optimizing
the location of data storage.

The memory locations that are available for data storage are summarized in Table 4-1. The
speed of the memory varies inversely to the size of the memory. Speed can be increased by
placing critical components in fast memory, but also by reducing memory requirements so
that the fastest memory can be used.

Table 4-1: Data Memory Comparison

Memory Location | Size* | Speed
Internal Memory | on chip | 64 KB | Fast
SBSRAM on board | 896 KB | Medium
DRAM on board | 8 MB | Slow

* program storage has been excluded

Ultimately, it was desired to place all model data in the Internal Memory. This memory is
extremely fast, because it is on chip with a direct connection to the CPU. However, this
memory is limited to 64 KB, which was too small for the automatically generated code. This
motivated a reduction in memory usage for the filter algorithm, which was accomplished
using several computational techniques that are described in the following sections.

4.3.2 Custom Matrix Operation Routines

The Kalman filter contains several matrix operations for covariance propagation and gain
calculations. This computation dominates the CPU usage for a filter of this size. Large
increases in the execution rate were accomplished by increasing the efficiency of this
computation.

The inefficiency of the RTW code stems from several sources. Intermediate results are
stored and copied frequently, including large matrices. Also, the symmetry of certain
matrices is ignored because generic algorithms for matrix multiplication are used.

It was undesirable to modify the RTW code directly because this would break the automatic
link between Simulink models and C code. This would make future updates more difficult,
and lead to differences between simulation and hardware implementation. Instead, algorithm
modifications were made using a Simulink S-function. An S-function is a special block that
calls C code from the Simulink model.

141



Using an S-function, | rewrote the entire Kalman Update block in C. In this code, |
incorporated several techniques for reducing the memory and computation requirements. |
developed these techniques without reference, although matrix processing is a common topic
that has undoubtedly been explored by others.

Matrix Indexing and Storage

The revised Kalman Update block achieves efficiency using several techniques. The first
technique, described in this section, is an efficient method of data storage for symmetric and
diagonal matrices.

All matrices are ultimately stored as one-dimensional data arrays. Simulink and RTW store
matrices in their entirety, requiring n> elements for an n by n matrix. Indexing is arranged in
“column-major” order, as shown at the left of Figure 4-6.

0 4 12 0o - - - 0o - - -
1 5 9 13 1 4 - - -1 - -
2 6 10 14 2 5 7 - - - 2 -
3 7 11 15 3 6 8 9 - - -3

Figure 4-6: Indexing for Non-symmetric, Symmetric, and Diagonal Matrices

Zero-based matrix indexing can be done using the following formula:
A, ) =alj*m+i], (4-1)

where m is the number of rows in A (for square matrices m = n) and a is the one dimensional
array for data storage. Further as shown in Figure 4-6, this technique can be improved for
symmetric matrices by omitting storage of the upper triangle. This reduces the number of
elements to n(n + 1)/2. Matrix indexing in this symmetric form can be done using the
following formula:

P(i,j)=p{j*n—¥+i} fori>j. (4-2)

If j > i, they should be swapped before this formula is applied. Note that j( j+1) is always
even, so the index is always an integer. This formula was derived using the sum of an
arithmetic series for columns before j.

Similarly, diagonal matrices can be stored and indexed by their diagonal:

D(i,i) = d[i]. (4-3)
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Matrix Transpose through Indexing

A second significant inefficiency is the implementation of the matrix transpose. With RTW,
the data in a matrix is physically moved each time the matrix is transposed. For symmetric
matrices, the transpose operation is entirely unnecessary. For non-symmetric matrices, the
transpose can be accomplished by reversing the indices instead:

AT(i, J) = A(JL1), (4-4)

leaving the memory array unchanged. This eliminates both the work of transposing and the
memory required to store the transpose.

One Pass Multiplication

A final inefficiency was the need to store intermediate results of a large matrix formula.
Consider the covariance propagation equation:

P,=(A+A)P+P(A+Al) +Q. (4-5)

The RTW implementation requires several separate matrix multiplications and additions,
with the storage of the intermediate results for each step. Instead, | programmed this entire
equation in one pass using the following formula for each element:

P.(i, i) = 22P(i, j) + Q(i, i) + ZH:(A(L K)P(k, J) + P(i, k)A(j, k). (4-6)

The matrix multiplications AP and PA" are performed together in the sum, using swapped

indices for A™. The intermediate results are all scalars, so the input and output are the only
data arrays that need storage. Similar efficiency is available for the discrete measurement

update.

4.3.3 Processing Measurement One at a Time

One-at-a-time measurement processing has also been employed. The algorithm for this
technique was described in Section 2.2.5.3. This method eliminates the matrix inversion in
the Kalman gain calculation. This algorithm is natural to program in C inside the S-function
for the Kalman Filter.

A result of this algorithm is that the execution time of a measurement update is proportional
to the number of measurements in the update. This allows for faster updates in between GPS
measurements. The timing algorithm was modified to allow sharing of time between cycles,
so that GPS updates could borrow a few milliseconds from the other updates.
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A consequence of one-at-a-time measurement processing is that the measurement noise
covariance must be diagonal. This limits the noise modeling of the GPS, which usually has
poorer accuracy in the vertical direction.

It is likely that one-at-a-time measurement processing degraded numerical performance. The
parasitic effects of rounding would be greater in a large set of serial scalar operations than in
a single set of matrix operations.

4.3.4 Reduction of Model Complexity

In addition to the previous techniques for computational efficiency, it has been necessary to
reduce model complexity. Some of these changes degrade filter performance. This should
serve as motivation for further increasing the hardware and software performance so that
these sacrifices can be avoided.

All bias states have been removed from the filter for hardware implementation. This
includes a total of 9 states for biases in the gyroscopes, accelerometers, and gravity model.
This provides a huge reduction in matrix memory and multiplication operations. As studied
in Section 3.4.4, the filter can continue to perform well when the omitted biases are small.

The freefall measurement has also been removed. This measurement is not useful for a
benchtop test.

Finally, the differential equation solver has been reduced to a linear solver. Here, the Euler
approximation

N X(t)—x(t-T)

X(t) T (4-7)

is used to convert the continuous differential equations to a discrete system. The execution
time of the solution is approximately proportional to the order of the solver, so this provided
a substantial improvement in computation speed. However, the linear solver is prone to

numerical instabilities during rapid changes in the solution, as discussed in the General
Observations portion of Section 4.4.

4.4 Results
The hardware has been assembled and programmed and the performance has been assessed.
For this benchtop prototype, it was not possible to test all filter functions, but several metrics

of performance have been established.

The general setup is shown in Figure 4-7. Throughout these tests, the GPS antenna (not
shown) is mounted in a fixed position. The IMU is free to move because it is attached using
a flexible cable. A precision right angle block is used to provide several reference surfaces.
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Figure 4-7: Hardware Setup with Right Angle Block

The test procedures and results are described in the following sections. They include a test of
attitude accuracy, a limited test of positioning, and a test of the nonlinear initialization
routine. The results show reasonable performance, although several issues are noted.

General Observations

The most noticeable weakness is in the robustness of the computation. Under various
circumstances, the filter covariance can become indefinite. This produces negative variance
and ultimately leads to a numerical failure. Following this, the hardware must be restarted
and reinitialized to continue operation.

These problems do not occur in simulation and are the result of differences in the hardware
implementation of the algorithm. Several of the implementation techniques, designed to
improve execution speed, have compromised the filter performance.

The most significant factor is the use of the linear ODE solver. This is especially noticeable
at filter startup, when large convergence of the covariance occurs in the first iteration. It is
also prevalent in the attitude covariance propagation during fast rotations. Recall that the
attitude accuracy tends to exhibit poor accuracy in one direction, which is usually heading.

In body coordinates, this direction of worst accuracy changes when the body rotates. For this
reason, certain axes of attitude covariance converge quickly during body rotations.

Additional numerical problems have been created by the use of one-at-a-time measurement
processing. Because measurements are processed in series, rounding errors are compounded.
However, this effect is small and generally acceptable.

These effects have made filter tuning substantially difficult. Many parameter sets that
performed satisfactorily in simulation were numerical unstable on the hardware. As a result,
suboptimal filter noise parameters were chosen. The initial covariance was reduced in order
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to eliminate large corrections from the first iteration. Similarly, measurement noise
covariance was increased above the actual sensor characteristics so that measurement
corrections were less abrupt. Process noise was also increased so that estimate uncertainty
remained larger. However, the use of large process noise for the force and torque
disturbance could also produce numerical failures.

These tuning methods compromise filter accuracy but produce stability. They are quick fixes
to a more complicated problem. Several techniques are available for eliminating these
hardware numerical problems. These solutions are presented in the recommendations of
Section 6.

Attitude with Right Angle Block

This test measures attitude accuracy by moving the IMU through a set of motions. The IMU
is moved by hand, so there is no precise control, but a precision right angle block is used to
provide several reference surfaces. The pure INS solution is also computed as a reference.
The sequence of motions is described in Table 4-2. Time periods are given when the base of
the IMU is flush with the various surfaces of the reference block. This constrains motion to
body roll. The first cube face is revisited to provide a measure of repeatability.

Table 4-2: Test Motion Sequence 100 | ‘

o

Event | Time (s) | Description
1 11-16 | Stationary on face 1

-100 ] H

Roll (deg)

2 24-29 | Stationary on face 2 i INS
3 34-43 | Stationary on face 3 200, 2‘0 JO 0 5 6o 7‘0 w0
4 49-56 | Stationary on face 1 100
5 56-64 | Pure roll on face 1 N / |
g 50
Table 4-3: Angle between Body x Axis g o=
Events KF I NS _500 10 20 30 40 50 60 70 80
112 ]90.034]90.0230 200 ]
113 ]90.028 | 90.030 A
1 | 4* | 0.0455 | 0.0452 g . —
2 |3 |90.009 | 90.031 2
2 |4 [90.009 | 89.997 i |
314 89.999 | 89.993 20010 20 30 40 50 60 70 80

Time (s)

* Note: Event 4 was the return to face 1
Figure 4-8: Attitude Comparison

The attitude solution during this motion has been converted to NED Euler angles and is
plotted in Figure 4-8. For comparison, both the Kalman filter (KF) and INS solution are
shown, although there is very little discrepancy between these two estimates. The noticeable
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disagreement in roll and yaw during Event 2 is due to the pitch angle near 90°. Roll and yaw
are ambiguous at this orientation.

The angles between the body x axis at different reference orientations have been calculated in
Table 4-3. The values show a maximum disagreement between the filter and reference cube
of 0.0455°, which occurred between successive visits to block face 1. Note that small dust
particles on the block surface may have produced this result, so it is possible that the
underlying accuracy is better. The maximum disagreement between the Filter and INS
solution is 0.022°.
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Figure 4-9: Error between Filter and INS Figure 4-10: Chi-Squared Statistic

The error between the Kalman filter and INS is plotted in Figure 4-9. The error is small
when the IMU is stationary but large errors develop during IMU motion. This is undesirable
and results from a lag in the Kalman filter solution.

This behavior can be understood using the chi-squared statistic, shown in Figure 4-10.
During each period of rotation, the chi-squared value spikes just before the periods of attitude
error. These spikes arise because the torque disturbance, which is produced by manually
rotating the IMU, is larger than the disturbance noise model. As a result, the filter is forced
to compromise between the gyroscope measurement and the disturbance model. The result is
a delayed response.

In theory, this type of error can be eliminated by modifying the torque disturbance process
model. Both the process noise and the decay rate should be increased. This would allow the
filter to give full credibility to the gyroscope measurement under abrupt motion.
Unfortunately, the numerical instabilities of the hardware implementation prevented proper
tuning. This behavior is the direct result of the suboptimal tuning.
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Inertial Positioning During GPS Dropout

Positioning is difficult to test in the benchtop test environment because the GPS antenna is
mounted at a fixed location. However, small motion of the IMU is possible. IMU motion
without GPS motion is an unrealistic situation for the filter. For this reason, inertial
positioning is tested during a GPS dropout.

This test was conducted as follows. First, the GPS signal measurements were removed to
simulate a dropout. Then the IMU was moved vertically in a square wave motion of
approximately 0.5 meters. Afterwards, the GPS measurement was restored.

The result is plotted in Figure 4-11. The step motions in attitude are readily apparent. Note
that the altitude estimate begins to drift downwards during the dropout, but is corrected
immediately when the GPS solution returns. This is caused by the integration of noise in the
accelerometers and is the natural drift of any INS solution.

40.8
GPS Drgpout
40.6

IN
Qe
~

N
o
N

5
4
J

Altitude (m)

39.8

39.6 \

394
0 20 40 60 80 100
Time (s)

Figure 4-11: Inertial Positioning

A similar IMU motion was also applied before the GPS dropout. In this case, the filter
estimate relies heavily on the GPS values. Slight ripples are present because of the measured
IMU acceleration, but the altitude estimate remains almost constant.

Large Error Initialization

The performance of the initializer has also been evaluated. For this test, the IMU is
positioned in an arbitrary orientation and the navigation system is initialized to the Euler
Angles (0, 0, 0). The Earth stationary measurement is enabled, so that the initializer uses the
gyrocompassing routine.
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The attitude response is shown in Figure 4-12. The initialization error for this test is very
large. The gravity alignment quickly orients the roll and pitch axes. Note the over-the-pole
motion in pitch, because this was the most direct path for correction. The Earth rate
alignment begins at t = 20 seconds, and slowly corrects the yaw alignment. The actual
orientation is not precisely known, but this solution appears to be correct. The yaw
orientation continues to wander over several degrees because of the sensitivity to gyroscope
noise. The resulting solution is sufficiently accurate for the Extended Kalman Filter to
converge and a successful handoff was demonstrated.
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Figure 4-12: Large Angle Initialization (NED)

This concludes the hardware section of this thesis. We now proceed to discussion.
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5. Discussion

There were important points and results throughout this design and analysis. In this section,
the central issues are revisited and discussed. Opinions are presents on the various decisions
of this design.

The use of the Kalman Filter has proven to be successful for this navigation system. The
framework of system and noise modeling is useful for addressing and managing the problem.
The number of tuning parameters in the filter is slightly large for a system of this order, but
this allows a high degree of adjustment.

The concept of data forgetting is very useful because it provides a single parameter for tuning
filter response. This allows most noise parameters to be set to their actual value without
further adjustment. Many of the covariances can be estimated directly using statistical
methods from the available measurement data. Data forgetting can be implemented using a
simple modification to the covariance propagation. It can be highly beneficial when
modeling errors or measurement glitches are present.

The Extended Kalman Filter (EKF), using the estimated state as the point of linearization, is
an invaluable tool for nonlinear systems. Although this raises some stability concerns, the
resulting filter for this navigation system behaves well in this respect. Performance in this
application is good, and very nearly optimal.

The strategy throughout this project has been to make the system as linear as possible for the
EKF. This began with the selection of state variables, including small angle attitude errors
and ECI position and velocity. Measurements were pre-compensated so that measurement
nonlinearity could be reduced. The calculation of additional navigation outputs, such as
geodetic coordinates, was done separately from the EKF. This approach is highly
recommended, and may have contributed to the stability of the EKF.

One real problem with the EKF was noticed during fixed to ground operation: richness in the
estimated trajectory is interpreted as richness in the actual trajectory. This problem is
apparent only in states that are difficult to observe, such as heading alignment. The result is
that the covariance matrix and the Kalman gain become too small. Data forgetting or
increased process noise can provide an approximate remedy. The crux of the problem,
however, is that the point of linearization is influenced by noise.

A peculiarity of the Kalman filter which compounds this effect is that the covariance estimate
is open-loop. Using the initial condition and the system model, the covariance is propagated
blindly through time independent of the actual filter error. The measurement update reduces
the covariance according to the information content of the measurement, but does not use the
measurement itself. The actual measurement value is used only for the update of the state
estimate.

Over periods of time, the estimated covariance can deviate from the actual covariance and
the resulting Kalman gain will become suboptimal. There is nothing to restore the
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covariance to its correct value. Data forgetting improves this problem because it reduces the
length of time over which accurate covariance propagation is required. Adaptive tuning
techniques, such as [17], may provide improvement in this area.

The computation requirements of this filter are high, especially for hardware implementation.
In retrospect, the selection of state variables should carefully compare the computational cost
of each state to its benefit in the accuracy and stability of the estimate. Choices for a reduced
set of state variables are provided in the recommendations of Section 6.

The selection of states for this filter demonstrates some useful techniques. My method of
using small angles that are offloaded to quaternions is completely successful and provides the
advantages of increased observability and linearity, while using only three attitude state
variables. Another significant advantage is that the small angles are intuitive, and the
dynamics of the covariance and estimation error are easy to interpret using these variables.
Arguments were made that there is no loss in accuracy by using small angles, since the EKF
already requires linearization and the error states are offloaded immediately. Simulations
show successful convergence from errors larger than 10 degrees.

The selection of rigid body dynamics as the process is useful because it allows knowledge of
the force and torque characteristics to be directly incorporated. The precession of a rotating
rigid body adds slightly to the observability. Tolerance to an IMU dropout has been
demonstrated. This architecture also allows for an independent measurement of the force and
torque, which is useful for a vehicle in freefall.

However, these benefits come at the cost of as many as nine state variables (@, g, and fg) in
comparison to an IMU-based process model. In applications where the force and torque are
difficult to predict, there is limited value in attempting to model the force and torque
disturbances. In hardware implementation, the additional states are a significant
computational burden. Numerical problems may also arise because the force and torque
disturbances have much larger process noise covariance than the other filter states. For these
reasons, the use of rigid body dynamics should probably be reserved for exoatmospheric
applications.

The use of a loosely-coupled architecture, where GPS position and velocity solutions are
treated as measurements, has also proven to be successful. Although a direct comparison to a
tight-coupled system was not performed, several comments can be made. The hardware
computation limits at this time prohibit real-time implementation of a tightly-coupled system,
which would add at least one state and one measurement for each GPS satellite used in the
solution. Although there are some theoretical advantages, the actual advantages may be
small when considering the available GPS products. It is also unlikely to improve attitude
accuracy, because covariance analysis showed that attitude is insensitive to GPS accuracy.
However, a tightly-coupled system will eliminate delays in the GPS solution, which may be
critical for certain applications.

It was found that observation of attitude depends largely on flight path richness. This is
because rotation about the direction of applied force can not be observed at any particular
instant. Full observability is achieved by variation in the inertial direction of the force. For

151



the aircraft and booster flight paths, attitude is observable in all directions because the force
varies sufficiently over time. For Earth stationary operation, the filter can continue to operate
but accuracy becomes poor in the direction of heading. This can be dramatically improved
using the “fixed-to-Earth” measurement.

From the covariance analysis, the attitude error is most sensitive to the accuracy of the
gyroscopes and the accelerometers. Gyroscopes are required to propagate the attitude, while
accelerometers are used to align the acceleration vector. The GPS accuracy is almost
irrelevant here, because large distances are inevitably traveled in inertial coordinates. As a
result, campaigns to increase attitude accuracy should focus on improving the IMU.

Bias states can improve filter accuracy, provided that they are observable. Gyroscope biases
are observable when attitude is observable and also when the fixed-to-Earth measurement is
used. Accelerometer biases are observable in the direction of force. Vehicle (or IMU)
rotation can also provide full observability of the accelerometer and gyroscope biases.

The gravity model bias should be omitted because it is barely observable and can be obviated
by using a higher order gravity model. This will result in a net savings in computation time
and an increase in robustness. There is no need to estimate a variable that can be calculated.
For the gravity Jacobian, a spherical model is probably acceptable.

The hardware results show that this algorithm can be implemented successfully in a real-time
embedded system. However, it has also revealed that the filter is very challenging
computationally. Several techniques have been developed for reducing the computational
burden. Still, there is continued motivation for increasing the efficiency of the software and
hardware. Robustness must also be improved.

These and other recommendations for future improvements are the subject of the next section
of this report.

6. Recommendations

This project has produced several concrete results and tools, but has also suggested some
future improvements. In this section, we distinguish between capabilities that are currently
available, capabilities that are almost available, and capabilities that should be considered for
long-term future development. This provides guidelines for further activities and continued
research related to this project.

6.1 Immediate Capabilities

This project provides several capabilities that can be used immediately, without further
development effort. These are reviewed here so that they can be utilized.

First, the covariance analysis can provide guidance in the selection of sensors for a

navigation system. These results provide a direct relation between the accuracy of the
measurement and the accuracy of the state estimate. These results can be used in general, or
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additional simulations can be run using the noise characteristics and trajectory of a specific
application. In this fashion, the accuracy of a navigation system can be fully accessed before
anything is purchased or built.

Second, the full Simulink implementation can be used for the post-processing of flight data.
This will require tuning to the specific sensors and disturbance characteristics, but will
produce a high quality navigation solution. Indeed, this solution arguably out-performed the
commercial solution in the aircraft data set. My navigation solution can be used to processes
onboard imaging data or to assess the quality of another navigation solution.

Finally, the software and hardware components of this project can be used as a starting point
for future development of navigation systems. Although improvements are warranted, and
discussed below, this project provides a large resource toward similar efforts.

6.2 Direct Improvements

There are several additional capabilities that can be achieved with minimal further effort in
algorithm design. Pursuing these will greatly extend the filter performance.

Hardware Execution Speed

Hardware implementation was difficult because of the complexity of this algorithm.
Improvements were made to allow for successful real-time performance, but several
sacrifices resulted. An increase in the speed of the hardware would eliminate these sacrifices
and could allow other improvements in the filter performance.

Figure 6-1 shows the dimensions of performance. All of these axes can be increased with
minimal modifications to the algorithm but they require additional computation time.
Improvement in execution speed can therefore provide direct benefits in these areas.

solver order
sample rate

states

v

. measurements
precision

Figure 6-1: Dimensions of Performance

These dimensions include the number of states and measurements of the filter. For this
hardware implementation, it was necessary to remove the bias states and the freefall
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measurement. Pursuit of a tightly-coupled solution would require additional states and
variables. These new variables would increase the size of all matrices, impacting memory
and multiplication operations.

Increasing the solver order can dramatically improve the numerical robustness of the filter.
The use of a linear solver was by far the gravest sacrifice that was made when porting to
hardware. Execution time is approximately proportional to solver order, although the
measurement updates occur at a constant frequency. In a similar fashion, the accuracy can be
improved by increasing the sample rate.

The use of double precision floating point computation could be considered, although this
may not be a wise use of resources compared to the other axes of performance. Still, the
current single-point precision is producing a reduction in numerical robustness.

Modeling Improvements

This project has explored a large set of state variables. In response to the results of
simulations and observability analysis, the choice of state variables should be revisited.
Hardware implementation motivates a reduction in state variables. Certain applications may
also benefit from a custom choice of state variables.

The modeling of biases should be revisited. The gravity model bias should certainly be
eliminated in exchange for a higher-order gravity model. Gyroscope and accelerometer
biases should be included if resources permit, because they are usually observable and will
improve attitude accuracy. Scale factors will provide improvements for applications with
large ranges in IMU measurement values, but will require 6 to 18 additional state variables,
depending on the inclusion of cross-correlation terms.

For applications that experience unpredictable disturbances, the IMU measurements should
become the process model and replace rigid body dynamics. This will remove 9 state
variables and eliminate the need for disturbance modeling. It also eliminates the nonlinearity
of the body rate equation. Some reformulation of the filter equations is necessary, but this is
primarily a simplification of the filter. This derivation is included in the Appendix.

Finally, all applications will benefit if the attitude error « is defined in ECI coordinates.
With this modification, the small rotation is performed before the body rotation:

B(q)=B(4)R, . (6-1)
The benefit is a more linear propagation equation:
a=B(§) dw. (6-2)

In particular, this choice of variables has eliminates the term @ x « that appeared when «
was defined in body coordinates. ECI attitude error remains constant when the vehicle
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rotates. As a result, the propagation of « in ECI coordinates is more robust at high rotation
rates.

The measurement update for the quaternions must also be modified slightly to include the
transformation into body coordinates:

4. =4+ f,(a.)B(9)i, - (6-3)
All expressions involving « in the state and measurement Jacobians must be reformulated

using (6-1). The IMU process model that is presented in the Appendix includes this
modification.

Flight Robustness

The robustness of the filter for flight applications can be improved using several system-level
techniques. This is required before flight operation is attempted and will increase filter
accuracy in many situations.

The first technique is measurement rejection based on the chi-squared statistic. This can be
used to eliminate isolated measurement glitches and prevent the filter from making large
corrections. This technique is common practice in most commercial navigation systems.

Second, the INS solution, which is very robust, should be available as a backup solution.
The INS solution could benefit from periodic corrections from the Kalman filter. These
corrections must be applied only when the Kalman filter is providing a good estimate, which
is measured by the covariance and chi-squared statistic. Corrections could include attitude
and position updates, as well as bias information. This would provide the ability to restart
the Kalman filter in the event that divergence occurs.

Finally, the nonlinear initializer for the Kalman filter should be expanded into a full
nonlinear estimator and used whenever the error covariance is large. This would include
initialization, but also periods of poor observability such as sensor dropouts. In this fashion,
the Kalman filter would be completely protected from nonlinear effects. The nonlinear
estimator would only require coarse accuracy within the capture range of the Kalman filter,
and could ignore biases and small effects. The optimal linear solution of the Kalman filter
would provide higher accuracy when the state errors are small. The main task required for
this improvement is the development of an attitude alignment procedure that does not require
the vehicle to be Earth stationary. This should be achievable by fitting the INS solution to
the GPS data.
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6.3 Future Objectives

Additional improvements have been identified that require future research. These topics
have been motivated by this project, but were not pursued in this thesis.

Square-Root Filtering

Difficulties in the hardware implementation arose because the covariance matrix could
become indefinite under imperfect arithmetic and low order ODE solvers. The use of the
square-root filtering algorithm would greatly improve numerical performance by enforcing
the positive definiteness of the covariance matrix.

This routine was described in Section 2.2.5.3. It can directly replace the current Kalman
filter block in the Simulink model. It is expected that computation time will increase but
accuracy and robustness will improve. The most significant benefits will be in the hardware
performance.

Tightly-Coupled Architecture

Although many arguments were presented against it, and the current hardware prohibits it,
the tightly coupled filter architecture has merit and can lead to improved accuracy. The
greatest reason for using it is the elimination of delays and dynamics in the GPS solution. A
“head to head” simulation comparison of the tightly-coupled and loosely-coupled
architectures would provide interesting results, regardless of the victor.

Implementation of a tightly-coupled navigation system in the simulation environment will
require several tasks. The first is rudimentary processing of the GPS messages to obtain
pseudorange and satellite position from the raw messages. The accuracy of this pseudorange
measurement can be improved using more advanced techniques, such as phase measurement
and dual frequency comparison. Differential GPS and additional augmentation systems must
be incorporated at the pseudorange level, before the GPS position solution is calculated. The
pseudorange measurements should then replace the GPS position and velocity measurements
in the navigation filter. The Doppler measurement can be used as a measurement of the
derivative of pseudorange.

Implementation on hardware will require significant improvements in computational speed or
algorithm efficiency. Simulation will reveal if it is worthwhile to purse these efforts.

Forward-Backward Smoothing

For post-processing applications, the filter accuracy can be improved by incorporating data
smoothing. In these methods, the optimal estimate is calculated using the entire
measurement set, including future measurements. A popular approach is known as Forward-
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Backward smoothing and is described in [3, pp. 322-331]. This technique involves building
two Kalman filters, running one forward in time and one backward in time. The optimal
(minimum variance) combination of these two estimates is the variance weighted average:

2 2
~ O A O. ~
X= 2 : 2X1+ 2 - 2X2' (6'4)
O'1 -i-O'2 O'l-l-O'2

The estimate with the smaller variance is given more weight. This provides a new estimate
with variance

2_2
ot =12 (6-5)

2 2
o, +0,

which is smaller than the variances each individual estimate. Implementing this technique
requires modified equations for the backward filter, but can use the same Jacobians and
system model. Computation time will nearly double, because the covariance propagation and
Kalman update dominate, but the required implementation effort is minimal.

This technique is certainly useless for real-time operation, so hardware implementation is not
an issue.

Additional Measurements

Problems in state observability can usually be resolved by taking measurements from
additional sensors. This also can improve accuracy for states that are already observable.
There are several leading candidates for this pursuit.

Of the critical navigation states, attitude exhibited the worst observability, especially in the
direction of heading. Heading accuracy can be measured using a magnetic compass. This
will require a magnetic Earth model and a corresponding error model. Although a compass
measurement is not precise, it can provide benefit because it does not usually drift over time.

A more accurate and expensive attitude measurement is a star tracker, which measures full
attitude by sighting a celestial object or manmade beacon. This sensor typically requires a
motion controlled telescope and camera with the ability to track a light source.

Another alternative is a phased array receiver which measures attitude by the phase
differences in the received signals. This can be performed using the signals from a land
based transmitter or from the GPS satellites. As with all phase measurements, there is
ambiguity between successive wave periods which must be resolved.

Mixed Continuous and Discrete States

While continuous differential equations were ideal for representing the dynamics of motion,
they were awkward and inefficient for representing sensor noise. The biases themselves are
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apparent only at the discrete times of measurement, so it would be more natural to model
them as discrete time states. This would also permit the direct use of a number of powerful
discrete system modeling tools.

A suggestion is to develop the minimum variance filter for a system that has both discrete
and continuous states. The measurement update could remain unchanged, but the covariance
propagation would need to be modified. The result would allow for the modeling of
continuous and discrete states where they are most appropriate. This would ultimately lead
to fewer continuous states, which would probably reduce computation time.

This completes the recommendations for this project.

7. Conclusion

This thesis presented the theory, simulation, and hardware prototype for a navigation system.
IMU and GPS measurements were fit to rigid body dynamics using an Extended Kalman
Filter.

The theoretical derivation presented the details for constructing this filter. Special attention
was given to the assumptions and optimality conditions of the Kalman Filter. Observability
of the system was studied in detail and statements concerning stability and convergence were
made.

Simulation provided characterization of the filter performance. Covariance analysis
determined the accuracy of the filter and sensitivity to different parameters. Full simulation
revealed filter behavior in both normal and abnormal operating conditions. Flight
simulations validated the filter using real flight data.

Hardware implementation demonstrated that this algorithm could be run in real time. The
computational burden was significant, but improvements in algorithm efficiency and
computation speed were achieved using several methods. However, the robustness and
accuracy of the hardware prototype were ultimately compromised.

This project achieved successful performance in both simulation and hardware. It provides a
source of information and insight for the design of navigation systems. This thesis stands as
a foundation for future development in this research area at MIT Lincoln Laboratory.
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Appendix — IMU Process Model

A process model based on the IMU measurements is defined here and the resulting
linearization for the EKF is derived. This reduces the number of filter states and
measurements, and is more appropriate for systems with unpredictable dynamics. This
analysis is brief, but it uses the same techniques that were used in Section 2.3.1 for the
linearization of rigid body dynamics.

The IMU measurement model

o, =0+b, +n, (A-1)
a, = B(q)(v - g(p))+ ba + na (A-Z)

can be inverted to obtain the following process model:

a) = a)m - ba) - W(U (A-s)
v=B(a)" (a, —b,)+g(p)-B(@)" w,. (A-4)
The IMU measurements are now treated as known control inputs instead of measurements.
A zero order hold must be applied so that the measurement is available in continuous time.
Note that the discrete measurement noise n has become the continuous process noise w, so
the value must be adjusted according to the sample time. Specifically
R=TQ, (A-5)
where T is the sample time, Q is the discrete-time covariance matrix:
E{n"}=Q, (A-6)
and R is the continuous-time covariance matrix:

Efww" }=R5(t). (A-7)

This result can be derived by equating the effects of continuous-time and discrete-time noise
over one sample period.

Nonlinear Dynamics

The propagation for the fundamental navigation states becomes

g=f, (@), -b,-w,) (A-8)
p=v (A-9)
v=B(q)" (a, —b,)B(@)" +9(p)-B(a)" w, (A-10)
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Note that w is not propagated in this process model. Bias states remain modeled as simple
decays with X, =—rx. .

Linearized Small Error Dynamics

The linearization about the estimated state is now

——B(§)" b, - B(G)"w, (A-11)
&N (A-12)
B(G)"[(b, —a,)x]a —G,o —B(§)" b, —B(q)"w,,  (A-13)

a
s
&

The attitude error « has been redefined in ECI coordinates, which eliminates o, from the
error propagation. Bias state errors propagate according to &, = —r,0x;. The resulting linear

matrix expression ok = Aox + Fw is

a 0 0 0 -B" 0 [a) [-B" 0

s 0 0 I 0 0 | o o 0 |

N |~|A, G, 0 O BT | & |+ 0 -—BT an’ (A-14)
M, 0O 0 0 -r, 1 0 |, 0 0o | °

&, 0O 0 0 0 el \&0,) | 0 0

where A, = BT [(Ba —a,,)x]. The rotation — B™ inFis unimportant if the IMU noise is

uncoupled and identical in all axes, i.e. E{in" }= o1, because then
E{(— Bn)-B"n| }: o?BTB = o2 (A-15)

Measurement Compensation and Linearization

The number of measurements is reduced because the IMU is no longer treated as a
measurement. In addition, the freefall measurement is only applicable to the translational
equations. The remaining measurements can be compensates as follows, producing small
error measurements:

Sy, =—B(G) (a)m - bw)_ W, (A-16)
8, =, xR PR (A-17)
By =~ — b, (A-18)
MDgps = Pgps — R P (A-19)
Ny = Vs + @, xR, P~ RV, (A-20)
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The resulting linear measurement equation 6z = HoX +n is

0wy _é(ﬁw — a)m) 0 0 -B 0 I« Nix TN,

N g 0 ~w,xR, R, 0 0] Nyt

R, | = 0 0 0 0 1| & [+|Nge+n, [. (A-20)
D s 0 R, 0 0 0 |db, N pgos

Ngs ) |0 ~w,xR, R, 0 0 |, Mugps

The noise terms Ny, Npgps, N Nygps are the respective measurement noises. However, the
other measurements contain a combination of noise sources. The measurement axx contains
noise from the gyroscopes and from vehicle vibrations. Similarly, the measurement ae.
contains noise from the accelerometers and from disturbance forces. Assuming
independence, the covariance of the sum is equal to the sum of the covariances for these two
noise sources.

Error Offloading

All error states should be immediately offloaded to the nonlinear state estimate. With «in
ECI coordinates, the attitude update is now

q. =d_+ f,(q.)B(A)i, - (A-22)

Observability

The observability results are very similar to the rigid body model in most respects. The
definition of the attitude error « in ECI coordinates simplifies analysis.

Attitude alignment is weak about the axis of measured acceleration, which is equivalent to
the direction of applied force. Attitude becomes fully observable when the direction of
measured acceleration is varied with respect to inertial coordinates.

Gyroscope biases are observable when attitude is fully observable or when the fixed-to-Earth
measurement is used. Accelerometer biases are observable in the direction of measured
acceleration. Both of these biases become fully observable when the vehicle rotates.

The notable difference is that rigid body dynamics no longer contribute to the observability.
This includes the dynamic properties of the force and torque disturbances as well as the
precession of a rotating vehicle. However, when these effects are unpredictable, there is very
little information lost by using the IMU process model.
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