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Abstract 

Navigation is important in a variety of aerospace applications, and commonly uses a blend of 
GPS and inertial sensors.  In this thesis, a navigation system is designed, developed, and tested.  
Several alternatives are discussed, but the ultimate design is a loosely-coupled Extended Kalman 
Filter using rigid body dynamics as the process with a small angle linearization of quaternions.  
Simulations are run using real flight data.  A bench top hardware prototype is tested.  Results 
show good performance and give a variety of insights into the design of navigation systems.  
Special attention is given to convergence and the validity of linearization. 
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1. Introduction 
The problem of navigation is a fundamental engineering challenge.  The objective is to 
estimate the position and attitude of a moving vehicle using the available measurements.  
This is primarily a task in discriminating between information and noise in a dynamic 
system. 

The field of navigation is both mature and evolving.  Successful space programs, including 
the Apollo missions to the moon, are the result of major innovations in this area.  Today, 
modern navigation systems have been applied to a broad range of vehicles for strategic and 
recreational purposes.  Still, this technology must continue to progress in order to meet the 
demands of future scientific, military, and commercial applications.     

At MIT Lincoln Laboratory, there are several current programs that motivate research in this 
area.  Airborne sensors, such as laser radar, require a high degree of navigation accuracy for 
the interpretation and processing of their images.  Other applications include laser 
communications and aerospace guidance systems.  All of these projects have the common 
requirement of precision pointing and positioning. 

In the design of this particular navigation system, there are several goals and areas of focus.  
The first is to understand and improve the treatment of attitude, which is increasingly 
important in modern applications.  Large angle motion requires nonlinear representation, 
such as Euler angles or quaternions.  Attitude also experiences varying degrees of 
observability in a GPS-aided inertial system.  For these reasons, the representation of attitude 
warrants special attention so that accuracy can be improved and the causes of error can be 
determined. 

The second task is to develop tighter integration between the navigation system and the 
onboard controller.  It is typical for the navigation system to be a distinct entity that functions 
autonomously to provide a navigation solution for the controller.  However, the controller 
contains actuator commands and other information about the vehicle dynamics.  The 
proposal here is to use these control signals in the navigation solution.  This has potential 
benefits for improving the dynamic response.   

The third goal is to achieve increased flexibility.  Off-the-shelf navigation systems are 
usually closed boxes with proprietary algorithms, which makes them difficult to integrate and 
tune.  This project creates source code that can be modified to meet a great variety of 
applications.  It can also serve as a tool for analyzing and comparing off-the-shelf systems.   

Underlying these efforts, a number of existing techniques are explored and evaluated.  The 
Kalman filter is used as the predominant method of estimation, because it is well suited and 
time-tested for this particular problem.  While several assumptions must be satisfied 
concerning linearity and white noise, the result is on firm theoretical ground and potentially 
outperforms most practical alternatives. 

The scope of this project is limited to the integration of an Inertial Measurement Unit (IMU) 
with a Global Position System (GPS) receiver.  These are the current leading technologies 
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and the most frequently used.  However, the results here can be extended to include 
additional sensors.  In fact, discussion in this report motivates the use of additional 
measurements. 

 
1.1 Summary of Procedure 

This project addresses navigation systems from three distinct vantage points: theory, 
simulation, and hardware.  Each provides its own benefits and limitations.  The combination 
of the three produces a strong, balanced analysis.  The thesis is organized as follows:  

The theoretical derivation is presented in Section 2.  This begins with background on 
navigation and establishes the fundamental navigation equations.  Subsequently, the Kalman 
filter is discussed and derived.  The derivation is specific to the form used in this project, and 
explores several relevant details.  The topics of linearization, data forgetting, and 
convergence are discussed.  Finally, the application of the Kalman filter to navigation is 
presented.  This details the decisions of modeling and design, and the calculation of the state 
matrices and propagation equations.  The observability of the system is analyzed.  

Simulation of the navigation system is conducted in order to characterize behavior.  A variety 
of studies and results are presented in Section 3.  Performance is evaluated using flight 
datasets from an aircraft and a booster rocket.  Analysis is also performed using simulated 
data, and a large range of operating conditions and parameters is explored.  Accuracy is 
accessed using several different methods including the filter covariance, comparison to a 
reference solution, and comparison to the inertial solution.  Filter health and stability are 
explored. 

 

 
Figure 1-1:  Benchtop Testing Environment 

 
Figure 1-2:  Hardware Components 
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A hardware prototype is constructed in order to evaluate this design on an embedded real-
time system.  The benchtop setup is shown in Figure 1-1 and the components are shown in 
Figure 1-2.  The filter algorithm is ported onto a high-performance Digital Signal Processor 
made by Texas Instruments (SMJ320C6701).  Computational efficiency is investigated and 
dramatically improved in order to achieve an acceptable sample rate.  This activity is 
presented in Section 4. 

The collective results of these activities are discussed in Section 5.  Results from theory, 
simulation, and hardware are combined to evaluate the design decisions of the filter.  
Opinions are presented regarding the success and shortcomings of these techniques.   

Recommendations for immediate and future work are given in Section 6.  This begins with a 
summary of the current capabilities and suggestions for their utilization.  Then several 
methods of improvement are discussed for both short-term and long-term development.  
These recommendations serve as a guide for future research in this area.  

Finally, Section 7 gives a brief conclusion. 

 
1.2 Summary of Key Results 

This section describes some of the key results of this thesis.   

The Extended Kalman Filter (EKF), which uses a linearization about the estimated state, has 
been chosen for this application.  This approach is justified theoretically, and the results of 
simulation and hardware confirm that convergence and stability are achieved.  The EKF is 
well suited to this application and provides an accurate solution.  Exponential data forgetting 
improves filter response in many anomalous conditions. 

The attitude representation for this filter uses a combination of quaternions and small angle 
errors.  The theoretical derivation shows that small angles can provide a concise linearization 
for the Kalman filter, while the quaternions give singularity-free attitude propagation.  This 
leads to the minimal three attitude variables in the Kalman filter.  With careful 
implementation, the use of small angles does not reduce the accuracy of the Kalman filter.  
This is because the EKF already requires linearization and the small angles errors are 
immediately offloaded to the quaternions. 

Rigid body dynamics are used as the process model.  With this architecture, force and torque 
are inputs to the model.  The model states include position, orientation, and their derivatives.  
Newton’s laws of motion for rigid bodies are used to propagate the state.   

This technique can improve accuracy in cases where the dynamics are predictable.  Direct 
force and torque control inputs are provided so that known values can be given to the filter.  
Unknown force and torque disturbances are estimated by the filter.  First order noise 
processes are used to represent the time correlation in the disturbance noise.    
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Unfortunately, this approach greatly complicates the system model and produces a significant 
computational burden for real-time hardware implementation.  For applications with 
unpredictable dynamics, it is preferable to use an inertial navigation solution as the process 
for the Kalman filter. 

Conditions for the convergence of the state estimate are established using observability 
analysis.  Several interesting results are derived theoretically and confirmed in simulation.  
They can be summarized as follows: 

 Body rotation rate, position, velocity, and force and torque disturbances are all 
observable using IMU and GPS measurements. 

 Attitude rotation is observable about the direction of applied force and becomes 
completely observable when the force is varied with respect to an inertial coordinate 
frame.  This applied force does not include gravity and is in the same direction as the 
measured acceleration. 

 IMU biases in the gyroscopes and accelerometers are completely observable when the 
force is varied with respect to the body coordinate frame.  This may be done under 
constant force by rotating the vehicle or the IMU. 

 Gyroscope bias observability is improved with knowledge that the vehicle is Earth 
stationary or by the precession of a rotating rigid body.    

 A gravity model bias can be distinguished from an accelerometer bias if there is 
sufficient body rotation. 

Covariance analysis provides the expected filter accuracy using the noise values of the actual 
process and measurements.  In this method, the error covariance matrix of the Kalman filter 
is propagated numerically.  Accuracy is dependent on the flight path complexity, in 
agreement with the observability results outlined above.  The sensitivity of the estimate 
accuracy to measurement noise and other parameters is established.  This provides 
conclusive predictions that are useful for sensor selection and system design.    

The navigation algorithm has been successfully implemented on real-time embedded 
hardware.  However, difficulties were encountered during this process and several 
implementation issues have been uncovered.   

Great improvements in computation and memory efficiency were required for 
implementation.  They were achieved using a variety of techniques for an ultimate sample 
rate of 100 Hz.  However, several sacrifices were made that ultimately caused a decrease in 
accuracy and robustness.  Specific improvements to the algorithm and model are 
recommended for future hardware implementation. 

We now begin the theoretical derivation of this thesis. 
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2. Theoretical Derivation 
The theory presented in this section contains two primary topics: navigation, and the Kalman 
filter.  These topics are treated separately, in Sections 2.1 and 2.2 respectively, and then 
considered jointly in Section 2.3. 

The discussion of navigation in Sections 2.1 establishes the background theory.  Coordinate 
systems for representing position and attitude are established and equations for vehicle 
dynamics are developed.  Modeling of the Earth’s shape, rotation, and gravitational field is 
discussed.  Techniques for initial alignment and for computing a pure inertial solution are 
given. 

A full derivation of the Kalman filter is given Section 2.2, with special attention to the details 
relevant to this application.  This includes the topics of data forgetting and application to 
nonlinear systems.  A continuous-time process with discrete-time measurements is used.  
Methods of analysis and implementation are also presented. 

Section 2.3 describes the application of the Kalman filter to the navigation problem.  
Modeling and the selection of state variables are discussed.  Jacobians are calculated in 
closed form and the system is linearized.  The observability of the system is analyzed 
theoretically.   

2.1 Navigation 

This discussion begins with the underlying theory of navigation.  The material in this section 
summarizes the geometry and physics that pertain to an airborne or terrestrial vehicle in 
motion.  These equations are central to the function and analysis of this navigation system.   

2.1.1 Coordinate Systems 

A series of coordinate systems can be developed to represent vehicle motion.  This 
development is intended for navigation with respect to the Earth, and as a result a model of 
the Earth will be required.  Cartesian frames will be of primary importance, but spherical and 
elliptical coordinates will be useful for representing points on the Earth. 

Earth Centered Inertial (ECI) 

An inertial coordinate system is required to describe the dynamics of motion, and ECI serves 
this purpose.  The ECI frame has its origin at the center of the Earth, but does not rotate with 
the Earth.  The combined effect of ignoring both the Sun’s gravity and the Earth’s orbital 
motion is negligible.  Written as a position vector   

 [ ]T
zyxeci pppp  = , (2-1) 

 13



the direction of pz is upward through the North Pole.  The directions of px and py lie within 
the Earth’s equatorial plane, forming a right handed frame.  The direction of px is most 
conveniently defined with respect to a longitude on the Earth at a particular time.  For 
example, we could use the launch site longitude at launch time or the Greenwich meridian 
during the vernal equinox.  

Earth Centered Fixed (ECF) 

ECF are Cartesian coordinates that rotate with the Earth.  As such, they are no longer inertial, 
but are useful for defining motion relative to the Earth.  The relation between ECF and ECI 
can be expressed using a rotation matrix Re: 

 ecieecf pRp = ,  (2-2) 

given by  

 , (2-3) 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−=

100
0cossin
0sincos

ee

ee

eR θθ
θθ

where θe  is the Earth angle.  The Earth angle propagates at Earth rate [14]  

 rad/sec 107.2921150 -5×=eω , (2-4) 

in the direction of right-handed rotation about the positive z-axis in both ECI and ECF.  Earth 
north nutation is ignored in most applications.  An initial condition for θe can determine the 
relative alignment of the ECI and ECF frames.  

Geodetic and Geocentric 
 

λc λ 

z 

x 
λs 

L 

rs 

h 

 
Figure 2-1:  Geodetic and Geocentric Coordinates [20] 
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The shape of the Earth is well approximated by an ellipsoid, which is the foundation of 
geodetic coordinates.  However, simpler mathematical expressions result from a spherical 
model, which is used by geocentric coordinates.  Both coordinates are shown in Figure 2-1.  
The position vector p, in either ECI or ECF, can be represented by its geocentric latitude λc  
and radius r, or by its geodetic latitude λ and altitude h (from the ellipsoid).  The geodetic 
ellipsoid is usually defined by the World Geodetic Survey [14], and has major 
axis meters along the equator and minor axis (1-µ)r0.6378137=r

563298.257223/1=
e e at the poles, with the 

flattening factor µ .   

The conversion from Cartesian to geocentric coordinates is a spherical transform: 
 

 
222

zyx pppr ++=  (2-5) 

 ( )22
22

1 ,atan2tan yxz
yx

z
c ppp

pp
p

+=⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+
= −λ  (2-6) 

 ( xy
x

y pp
p
p

L ,atan2tan 1 =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= − ) , (2-7) 

where the four quadrant arctangent is used to eliminate singularities.  The longitude L will be 
inertial (celestial) if ECI position is used, and fixed to the Earth if ECF position is used. 

The inverse transform is 
 
 )sin()cos( cx Lrp λ=  (2-8) 
 )sin()sin( cy Lrp λ=  (2-9) 
 )cos( cz rp λ=  (2-10) 
 
The conversion between geocentric and geodetic coordinates is somewhat more involved.  
Geodetic and geocentric longitude are identical.  Returning to Figure 2-1, the projection of p 
onto this ellipsoid has geocentric coordinates λs and rs, where the subscript stands for “sea-
level”.  These quantities can be related to the geodetic coordinates using trigonometry and 
the equation of the ellipsoid: 
 
 ( ) ( )λλµλµλ cos ,sin)1(2atantan)1(tan 221 −=−= −

s  (2-11) 

 ( ) s

e
s

rr
λµ 22 sin1)1(1 −−+

=
−

.  (2-12) 
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Using vector addition of the sea-level radius and altitude, the result is 

 )cos(222 λλ −++= sss hrhrr  (2-13)

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
+

= −

λλ
λλλ

coscos
sinsintan 1

hr
hr

ss

ss
c . (2-14) 

 
The inverse transform requires solving a quartic, but can be expressed in closed form [18, 
19].  This result is somewhat cumbersome and a preferable alternative is the iterative solution    
 
 ( )kkkk rrhh −−=+ ˆˆˆ

1  (2-15) 

 ( )ckckkk λλλλ −−=+
ˆˆˆ

1 . (2-16) 
 
Here  and  are the estimated geodetic altitude and latitude, respectively, at sample k, 
and and are the geocentric estimates calculated using (2-13) and (2-14).  The geocentric 
estimation errors are used to drive the geodetic estimate.  It can be shown that convergence is 
exact for stationary vehicles and reasonably accurate when the iterations are fast compared to 
vehicle motion.  This approach is successful because the Earth is almost spherical.  

kĥ kλ̂

kr̂ ckλ̂

North East Down (NED) 

NED is a local level Cartesian frame defined by Geodetic coordinates.  North is the direction 
of increasing latitude, east is the direction of increasing longitude, and down is the direction 
of decreasing altitude.  The NED origin is typically unimportant, but can be defined as the 
projection of the vehicle position onto the ellipsoid.  As such, the NED origin is dependent 
on the current position, so NED position is not meaningful.  However, the NED frame 
provides an intuitive description of velocity and attitude. 

The combination of gravity and centrifugal force that an object feels when stationary on the 
Earth’s surface is very closely aligned to the NED z-axis (down).  This is just a consequence 
of the Earth’s surface being in equilibrium.  If the gravity direction were not downwards, the 
mass at the Earth’s surface would slowly redistribute. 

East North Up (ENU) is a similar alternative.  However, NED has preferred properties 
related to attitude representation, which are discussed later.  

Body 

The body frame has axes fixed to the vehicle with origin at the vehicle center of mass.  As 
such, the body frame rotates with the vehicle and is meaningful for describing the vehicle 
inertia and the locations of thrusters, sensors, and other components.  The orientation of the 
body frame represents the vehicle orientation. 
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The typical choice of axes for aerospace applications is x forward (axial), y starboard, and z 
down.  Body coordinates are frequently used to describe body rotation, with the names roll, 
pitch, and yaw given to rotations about the body x, y, and z axes, respectively.   

Body coordinates are aligned with NED if an aircraft is level and facing north.  Here pitch 
and yaw match the common definitions of elevation and azimuth.     

2.1.2 Attitude Representation 

Attitude representation describes the orientation of one Cartesian frame with respect to a 
second reference frame.  In this application, attitude represents the orientation of the vehicle 
body frame, which can be referenced to the ECI, ECF, or NED frame.  However, this 
discussion also provides methods for converting between any two coordinate systems, such 
as from ECI to NED.  Much of the discussion will use the terms body and reference frame, 
but can be applied to any set of frames. 

We will explore four alternative methods:  Euler angles, rotation vectors, quaternions, and 
small angles.  For each of these, the Direction Cosine Matrix (DCM), denoted B, can be 
calculated.  This matrix gives the rotation from the reference frame to the body frame, so that 
we can write 

 Bxxb = , (2-17) 

where x is a 3 dimensional vector in the reference frame and xb is a 3 dimensional vector in 
the body frame.  As a rotation matrix, B is orthogonal so that TBB =−1  and therefore 

 . (2-18) b
T xBx =

The translation between coordinate systems can be treated separately, but is typically less 
important for this application.  This is because the origin is irrelevant when discussing 
velocity or orientation, and most of our position representations share a common origin at the 
center of the Earth.  

It will also be required to derive an equation for attitude propagation under vehicle rotation.  
The rate of rotation of the body frame is usually represented, and measured, in body 
coordinates.  A general relation is developed below, which will later be applied specifically 
to each attitude representation. 

Consider a vector xb that is fixed in body coordinates.  The inertial derivative, meaning the 
rate of change with respect to the reference frame but expressed in body frame coordinates, is 
given by  

 bb
inertial

b xx
dt
dx

×+=⎟
⎠
⎞

⎜
⎝
⎛ ω& . (2-19) 
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This is the sum of motion relative to the body frame, which is zero, and motion caused by 
body frame rotation.  Transforming this result back to the reference frame gives 

 ( ) [ ] b
T

b
T xBxBx ×=×= ωω& , (2-20) 

where the vector cross product can be written in matrix form using 

 . (2-21) [ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−
=×

0
0

0

12

13

23

ωω
ωω

ωω
ω

This matrix expansion of the vector cross product is convenient throughout the analysis.  
Another more direct differentiation is  

 ( ) b
T

b
T

b
T

b
T xBxBxBxB

dt
dx &&&& =+== . (2-22) 

Equating (2-20) and (2-22) yields 

 [ ] b
T

b
T xBxB ×= ω& . (2-23) 

For this to hold for all xb, we must have 

 [ ]×= ωTT BB& , (2-24) 

Since the cross product is skew-symmetric, this is equivalent to 

 [ ]BB ×−= ω& . (2-25)
  

Using (2-25), orientation can be propagated using the entire 3 by 3 B matrix, although this is 
highly redundant because 9 terms are being used to represent 3 degrees of freedom.  Still, this 
result will be useful for developing propagation equations for specific attitude 
representations. 

Euler Angles 

A logical approach is to represent orientation as a sequence of large-angle, single-axis, body 
rotations.  Define an Euler vector as [ ]T ψθϕγ = , containing roll, pitch, and yaw, 
respectively, as shown in Figure 2-2.  These rotations are right-handed about the body x, y, 
and z axes, respectively, which is why –θ  is shown in the figure.   
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 X  
Figure 2-2:  Euler Angle Representation 

Because large rotations do not commute, a convention for the order of rotation is required.  
The most common order is yaw, pitch, roll.  Note that the new body axes are used for each 
successive rotation.  The DCM can be expressed as the product of three rotation matrices:       

  (2-26) ( )
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
=

100
0cossin
0sincos

cos0sin
010

sin0cos

cossin0
sincos0

001
ψψ
ψψ

θθ

θθ

ϕϕ
ϕϕγB

Performing the matrix multiplication yields [20, p. 37] 

 . (2-27) ( )
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−+
+−

−
=

θϕψϕψθϕψϕψθϕ
θϕψϕψθϕψϕψθϕ

θψθψθ
γ

coscoscossinsinsincossinsincossincos
cossincoscossinsinsinsincoscossinsin

sinsincoscoscos
B

Inspection of this matrix reveals a method for extracting the Euler angles from the 
components Bij of the DCM.  Consider using the simple terms on the top row and right 
column: 

 ( ) ( )33233323
1 ,atan2/tan BBBB == −ϕ  (2-28) 

  (2-29) 13
1sin B−−=θ

 ( ) ( )11121112
1 ,atan2/tan BBBB == −ψ . (2-30) 

These equations can also serve as the conversion to Euler angles if the DCM was calculated 
using other means, as are discussed later.  All that is required is the DCM is, in fact, a 
rotation matrix.    
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Now we calculate the Euler update under body rotation using the relation 

 ( ) [ ] ( )γωγ BB ×−=& . (2-31) 

The right side can be evaluated using our earlier expression for B(γ ).  The multiplication is 
somewhat involved, but only the following entries will be required 

 ( ) ( )ψϕψθϕωψϕψθϕω sinsincossincossincoscossinsin 2311 +−−=B&  (2-32) 
 ( ) ( )ψϕψθϕωψϕψθϕω cossinsinsincoscoscossinsinsin 2312 +−−=B&  (2-33) 
  (2-34) θϕωθϕω coscoscossin 2313 −=B&

  (2-35) θϕωθω coscossin 1323 +=B&

  (2-36) θϕωθω cossinsin 1233 −=B&

The Euler extraction equations (2-28 to 2-30) can also be differentiated: 

 
3323

2
33

33232333

33

231tan
BBB

BBBB
B
B

dt
d

+
−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −

&&
&ϕ  (2-37) 

 ( )
2

13

13
13

1

1
sin

B

B
B

dt
d

−

−
=−= −

&
&θ  (2-38) 

 
1112

2
11

11121211

11

121tan
BBB

BBBB
B
B

dt
d

+
−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −

&&
&ψ  (2-39) 

Substitution of (2-32) through (2-36) into (2-37), (2-38), and (2-39) leads to substantial 
reduction and can be expressed in matrix form 

 . (2-40) ω
θϕθϕ

ϕϕ
ϕθϕθ

γ
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−=

seccossecsin0
sincos0

costansintan1
&

This update is in agreement with spatial intuition.  Rotation in ω1 only effects roll, because 
roll is the third rotation in the Euler angles.  The direction of pitch is a combination of ω2 and 
ω3, depending on the roll angle.  Yaw has a similar dependency but the sine and cosine are 
reversed, so that the effect of roll is offset by 90°.  Also, the term secθ  causes yaw motion to 
diminish at large pitch angles.  This is analogous to the meridians of the Earth becoming 
close together near the poles.  The additional terms linking ω2 and ω3 to roll are the result of 
roll-yaw coupling as the vehicle moves around the pole and are equivalent to θψ sin& .   

Note that the roll and yaw updates are discontinuous when .  This singularity makes 
Euler angles unsuitable for propagation in this vicinity.  However, they are perhaps the most 
intuitive description of attitude, and remain useful for input and output.  Alternatives are 
explored below. 

o90±=θ
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Rotation Vectors 

It is a somewhat surprising fact, attributed to Euler, that any orientation can be expressed as a 
single rotation about a particular axis.  A geometric method for constructing this axis, and 
thereby proving this theorem, is given in [23].  This rotation can be described using a 
3-dimensional rotation vector 

 [ ]T 
321 ρρρρ = , (2-41) 

where the magnitude |ρ| is the angle of rotation and the vector direction is the axis of rotation.  
This technique is explored in detail in [8, pp. 347-361], although the definition of ρ has the 
sign reversed.   

The DCM can be calculated from the matrix differential equation (2-25) 

 [ ]BB ×−= ω& . (2-42) 

Consider a motion of gradual increase in rotation 

 tt oρρ =)( , (2-43) 

so that ot ρρ =)(  at t = 1.  Since the rotation vector remains constant in both frames, the body 
rates are constant and are given by  

 odt
d ρρω == . (2-44) 

Therefore, the differential equation of (2-42) becomes 

 [ ]BB o ×−= ρ&  (2-45) 

which has a solution using the exponential of the cross product matrix: 

 [ ]( )tCtB o  exp)( ×−= ρ . (2-46) 

The initial condition of  leads to IB =)0( IC = , and the value at t = 1 is then 

 [ ]×−== ooBB ρρ exp)()1( . (2-47) 

In general, for any ρ, the DCM matrix is given by the matrix exponential 

 [ ]×−= ρρ exp)(B . (2-48) 
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For direct evaluation, this expression can be rewritten using the infinite series expansion of 
the exponential, sine, and cosine [8, p. 348]: 

 [ ×−+
−

+= ρ
ρ

ρ
ρρ

ρρ
ρ

ρρ
sincos1

cos)( T
TIB ] (2-49) 

Note that for small rotations this expression approaches  

 [ ]×−≈ ρρ IB )( . (2-50) 

Extraction equations can also be formulated.  The propagation equations in terms of ρ are 
very cumbersome, although they appear to be singularity free.  The decision here is to avoid 
this representation.  The complexity in the underlying equations is unsuitable for 
programming and complicates implementation.   

Quaternions 

The complexities of the rotation vector representation can be avaoided by adding a fourth 
parameter.  This can be done using the magnitude ρ  and unit vector ρρ / .  However, the 
ultimate result is simplified using the following substitutions [20, p. 41]: 

 ( )2/cos0 ρ=q  (2-51) 
 ( ) ( )2/sin/11 ρρρ=q  (2-52) 

 ( ) ( )2/sin/22 ρρρ=q  (2-53) 

 ( ) ( )2/sin/33 ρρρ=q , (2-54) 
 
which are known as the quaternion parameters.  Note that 
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This illustrates that the four quaternions are not independent state variables, and also suggests 
a geometric analogy of a four dimensional sphere.   
 
Calculation of the DCM using quaternions is conducted in full in [23] and summarized in 
[20, p. 41].  The result is now free of trigonometric functions, but still nonlinear  
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Conversion from quaternions to Euler angles is accomplished by forming B(q), and then 
using the Euler extraction formula.  It only necessary to calculate the top row and right 
column of B(q). 
 
The quaternions can be extracted from the DCM, but the sign of the solution is not unique.  
The elements on the main diagonal can be added and subtracted to form the following 
equations: 

  (2-57) 332211
2
0 14 BBBq +++=

  (2-58) 332211
2
1 14 BBBq −−+=

  (2-59) 332211
2
2 14 BBBq −+−=

  (2-60) 332211
2
3 14 BBBq +−−=

 
The off-diagonal elements provide information on the signs:  

 3223104 BBqq −=  (2-61) 
 1331204 BBqq −=  (2-62) 
 2112304 BBqq −=  (2-63) 
 2112214 BBqq −=  (2-64) 
 3223324 BBqq −=  (2-65) 
  3113314 BBqq −= . (2-66) 
 
Still, the first sign must be chosen arbitrarily.  If the DCM was constructed from another 
attitude representation, extraction of the quaternions provides a conversion.  For conversion 
from Euler angles to quaternions, this extraction can be simplified to the following 
equations [20, p. 41]: 
 
 ( ) ( ) ( ) ( ) ( ) ( )( )2/sin2/sin2/sin2/cos2/cos2/cos0 ψθϕψθϕ +±=q  (2-67) 
 ( ) ( ) ( ) ( ) ( ) ( )( )2/sin2/sin2/cos2/cos2/cos2/sin1 ψθϕψθϕ −±=q  (2-68) 
 ( ) ( ) ( ) ( ) ( ) ( )( )2/sin2/cos2/sin2/cos2/sin2/cos2 ψθϕψθϕ +±=q  (2-69) 
 ( ) ( ) ( ) ( ) ( ) ( )( )2/cos2/sin2/sin2/sin2/cos2/cos3 ψθϕψθϕ −±=q , (2-70) 

where the same sign must be chosen for all four equations.  This can be derived using the 
quaternion extraction equations and Euler DCM definition, but is most easily verified in 
reverse using trigonometric half-angle identities. 

The propagation equation can be derived in a fashion similar to Euler propagation, using 

 [ ] )()( qBqB ×−= ω& . (2-71) 
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The right side can be directly evaluated and compared to the derivative of the quaternion 
extraction equations.  This result is bilinear in the state variables q and ω :   

 ωω )(
2
1

012

103

230

321

qf

qqq
qqq
qqq

qqq

q q=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−−

−−
−=& . (2-72) 

The magnitude constraint is consistent with this propagation.  However, under imperfect 
numerical computation, it is usually important to renormalize the quaternions periodically. 

The simplicity of the quaternion propagation equations and the absence of singularities make 
quaternions the preferred method of attitude representation.  However, the use of four 
parameters, a non-minimal representation, is in fact a grave problem for observers and the 
Kalman filter.  The four quaternions are not independent state variables and should not be 
treated as such.  The normality constraint must be imposed in some fashion or the four 
parameter dynamics will be unobservable and incorrect.   

Small Angle Rotations 

Small angles provide a linear representation of small changes in orientation which are order-
independent.  They can be suitable for representing the attitude error, or similar small 
quantities.  The small rotation is approximated using a 3-dimensional vector of small angles 
α in the direction of body rotations:  

 tωδδα = . (2-73) 

Under the assumption of small angles, the DCM given for Euler angles (2-27) reduces to 

 . (2-74) [ ×−=
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]

The inverse is approximately 

  (2-75) [)(1 ×+=−=≈− ααααα IRRR T

Note that small angle rotations commute. 

 24



2.1.3 Gravity Model 

The acceleration of Earth’s gravity has been precisely modeled by several studies including 
the World Geodetic Survey of 1984 [14].  A spherical approximation is given by Newton’s 
Law of Gravitation: 

 3p
pGMg e−= , (2-76) 

where G = 6.67259 × 10-11 m3/kg-s2 is a gravitational constant, and Me = 5.98 × 1024 kg is the 
mass of the Earth.  For linearization, the Jacobian will be needed, which can be expressed as 
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The Jacobian is a matrix of partial derivatives.  In this 3 by 3 matrix, each row corresponds to 
a component of g while each column corresponds to a component of p.  An elliptical model 
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, (2-78) 

provides greater accuracy, where Ghc is now the harmonic gravitational constant and λc is the 
geocentric latitude.  A Jacobian for this model can also be calculated but it is usually 
acceptable to use the spherical Jacobian. 

2.1.4 Rigid Body Dynamics 
 
The physics of vehicle motion will be represented using rigid body dynamics.  Aerodynamics 
forces can be represented using the force and torque input to this model.  Additional 
modeling of vibration modes is not pursued here. 

Rotation 

Rotation is best analyzed in the body coordinate frame.  Differentiating the angular 
momentum in a rotating frame gives 

 ( ) ( ωωωω JJJ
dt
dT ×+== & ) , (2-79) 

where J is the inertia matrix.  This leads to 

 ( )( ) τωωω +×−= − JJ 1&  (2-80) 
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where is the specific torque.  Note that multiplication of J by a scalar has no effect 
on (2-80), except in the computation of specific torque.   

TJ 1−=τ

Attitude is computed using one of the update laws given earlier, such as quaternions. 

Translation 
 
In ECI, translational dynamics follow directly from Newton’s Law of Motion  
 
 vp =&  (2-81) 
 ) , (2-82) ()( pgfqBv T +=&
 
where f  is the force given in body coordinates and must therefore be transformed using the 
inverse DCM.  While it is possible to formulate these equations in other coordinate systems, 
such as ECF or geodetic, ECI has been chosen because of the simplicity of these equations.  
However, initialization and measurements that are relative to the Earth will now require more 
elaborate expressions. 

2.1.5 Measurements 
 
This section describes the primary measurements used in navigation.  This includes an 
Inertial Measurement Unit (IMU) and the Global Positioning System (GPS).  Addition 
measurements may also be available.  

Inertial Measurement Unit (IMU) 
 
This application uses a “strapdown” IMU, where the gyroscopes and accelerometers are 
fixed to the body frame.  The gyroscope measurement vector ωm represents the body rate 
ω in all 3 axes.  The accelerometer measurement vector am represents the difference between 
vehicle acceleration and the acceleration of gravity, and is also expressed in body 
coordinates. 
 
A pure inertial solution can be calculated directly from the IMU measurements.  Substituting 
these measurements into the equations of motion, we have 
 
 mq qfq ω)(=&  (2-83) 
 vp =&  (2-84) 
 ) , (2-85) ()( pgaqBv m

T +=&
 
which can be integrated in real time.  Note that  ω& is never calculated and is available only 
through differentiation.  This solution will drift because errors accumulate in the integrators.  
The position/gravity relation is actually slightly unstable.   An error in position will cause a 
gravity estimation error, which will misinterpret future accelerometer readings.  As a result, 
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position estimation is poor from an INS.  With high quality gyros, the pure inertial solution 
can provide accurate heading information for several hours.   

Global Positioning System (GPS) 
 
GPS provides an absolute position measurement using the constellation of GPS satellites.  
Each satellite monitors its own position and time using transmissions from ground stations 
located throughout the world.  Each satellite then broadcasts its position psat and the time of 
transmission tsat.  The GPS receiver, aboard the vehicle, forms an equation based on the 
distance of transmission: 
 

 ( ) ( ) ( )sat
T

satsat ppppttc −−=− , (2-86) 
 

where c is the speed of light.  Additional satellites provide additional equations, and a full 
solution for t and p is available with four satellites.   
    
A commercial GPS receiver will typically contain its own Kalman filter that computes 
position and velocity at periodic intervals.  However, some receivers also output the raw 
measurements.  

Additional Measurements 
 
Additional navigation aids are available, but are not used in this application.  A star tracker 
can provide a direct measure of attitude, and is an expensive solution to the attitude drift 
problem.  A magnetic compass can also provide drift-free heading information but is of low 
quality and requires an Earth magnetic model. 
 
The filter that is developed in this application will also use several “pseudo-measurements”.  
These are measurements that do not originate from actual sensors, but are the result of 
additional knowledge of the system dynamics.  For example, knowledge that the vehicle is 
fixed to Earth or in exoatmospheric freefall can be interpreted as a measurement, and can 
effectively be used to calibrate the GPS and IMU sensors.   
 

2.1.6 Initial Alignment 

Although an initial condition can be specified, it is desirable and robust to perform 
initialization based on the first measurements.  This technique is very successful when the 
vehicle is fixed to the Earth at initialization.  Under this condition, position can be initialized 
directly from the GPS and velocity can be computed using v pe ×= ω , where both position 
and velocity are expressed in ECI.   

Attitude alignment is a more delicate process, but can be performed satisfactorily over large 
initial angular errors.  Two dimensions of attitude alignment can be performed by aligning 

 27



the gravity vector, which is measured by the accelerometers.  The remaining dimension, 
which is rotation about the local vertical, can be aligned using a measurement of the Earth’s 
rotation rate.  Such alignment usually requires extensive filtering of the gyroscopes, and may 
not be possible with low quality instrumentation.  (A compass can also provide this 
measurement, but is not pursued here.) 

When fixed to Earth, the accelerometer measurement is a combination of gravity and 
centrifugal acceleration: 

 ( )( ))( pgpBa eem −××= ωω  (2-87) 

For the purposed of initial alignment, we do not model the measurement error.  If the 
accelerometers are noisy, they should be filtered.  An accelerometer bias will affect this 
initial alignment, but will be treated later in the Kalman filter.  The expected measurement is 

 ( )( ) ( )( ))(ˆ)ˆ(ˆˆˆ pgpBpgpBa eeeem −××≈−××= ωωωω , (2-88) 

where we assume that there is little error in the position (from GPS alignment) or in the 
gravity model.  In this regard, any error in the acceleration direction is caused by an incorrect 
attitude estimate.  We seek a corrective rate, to be included in the attitude update equation.  
For quaternions, this would be: 

 ( )cq qfq ωω += )(& . (2-89) 

A corrective rotation vector that brings to  can be calculated.  First, the angle between 
vectors can be determined from the vector dot product 
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Second, the direction of rotation can be represented as a unit vector, using the vector cross 
product:  
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A gain can be applied to this error and used as the correction rate 
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Note that the magnitude of the gravity vector is irrelevant for this alignment. 
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A similar correction rate can be calculated using the rate measurement.  An identical process 
for aligning the Earth rate vector could be formulated, but this would overconstrain the 
system, providing 4 directions of correction for 3 degrees of freedom.  It is preferable to limit 
the rate alignment to the one remaining dimension.  We could instead limit the gravity 
measurement to one dimension, but this is usually less accurate.  While gyroscopes can be 
very precise, the Earth rate is very small. 

The direction of measured acceleration is very close to the local vertical.  Therefore, rate 
measurements will be used to estimate the rotation error about the local vertical.  This 
requires transformation into the NED coordinate system. 

The transformation from ECI to NED orientation is done by rotating in longitude and then 
latitude: 

  (2-93) 
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The result would actually be in ENU coordinates, so an axis swap is required.  Matrix 
multiplication produces 
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The Earth rate vector in ECI [14], 
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If we assume that the body frame is misaligned by an angle ψned of pure NED yaw, the value 
measured by the gyroscopes will be: 
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Given this measurement, the error can be calculated from the first two terms:  
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The four quadrant arctangent should be used to accommodate large errors.  Alternatively, the 
arctangent can be linearized if small errors are expected.  The measured rate should be 
heavily filtered before the arctangent. 

We now add a scalar gain and convert from NED to body coordinates,   

 nednedc Bk ψω ψ−= , (2-99) 

and we have an additional rate correction for the quaternion update.  The DCM Bned is the 
rotation from NED to body coordinates.  It can be expressed in terms of the B, the ECI DCM, 
using 

 ),( LTBB nedned λ= . (2-100) 

Inverting produces 

 ) . (2-101) ,( LBTB T
nedned λ=

Note that this technique will fail for initialization near the poles, where the Earth rate and 
gravity vectors are coincident. 

The equations of navigation will be central to the design of this navigation system.  However, 
we also need to develop formal treatment for estimation under uncertainty.  For this purpose, 
we will now shift discussion to the Kalman Filter. 
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2.2 The Kalman Filter 

The Kalman filter is widely used in navigation and has proven to be successful in these 
applications.  It presents a systematic approach for estimation in the presence of uncertainty.  
It is directly applicable to Linear Time-Varying (LTV) systems and can be extended to 
lightly nonlinear systems.  The filter itself is linear, allowing for reasonable computation and 
implementation requirements.  Under certain assumptions, the Kalman filter provides the 
optimal estimate for a given noise environment, which makes it superior to many types of 
estimators. 

It is important to discuss these assumptions because they characterize the filter’s strengths 
and limitations.  Though in practical implementation the Kalman filter is rarely actually 
optimal, the filter performs very well in many situations.  In system modeling and design, we 
will strive to best meet these assumptions, and will take caution if they are violated. 

The first assumption is that the system in linear.  This includes LTV systems, which makes 
the Kalman filter more powerful than most linear observers.  As we will explore later, this 
also allows for approximate treatment of weakly nonlinear systems, in that such systems can 
usually be approximated by LTV systems. 

The second assumption is that the system uncertainty is white noise, meaning that the noise 
statistics are independent of previous noise values.  This assumption would be restrictive, but 
techniques exist for removing noise correlation by augmenting the deterministic system 
model. 

Under the previous two assumptions, the Kalman filter provides the estimate with the 
minimum unconditioned error variance of all linear estimators.  This is acceptable for most 
applications, because nonlinear estimators maybe difficult to formulate or computationally 
intensive.  Note that we are discussing the linearity of the estimator and are still assuming an 
LTV system. 

With an additional assumption that the noise is Gaussian, the Kalman filter becomes the 
optimal estimator by most reasonable criteria.  In this case, the Kalman estimate is equivalent 
to the conditional expectation of the state x given all previous measurements z, 

{ })(  )()(ˆ tztxEtx = , and the conditional variance is minimized.  Mathematically, the 
Gaussian assumption allows for direct expression of the system probability distribution 
function, which facilitates the proof and leads to a linear form [3, pp. 228-232].  

The Gaussian assumption is not met in general, but many types of noise are approximately 
Gaussian.  The Central Limit Theorem states that the probability distribution for the sum of 
many independent random variables approaches a Gaussian distribution.  Also, the actual 
higher order noise statistics are rarely known, so the Gaussian assumption may be the best 
choice.  For LTV systems, the success of this assumption seriously limits the benefit of 
pursuing nonlinear estimators.  For our derivation, we will not depend on this assumption, 
but the performance of the Kalman filter under Gaussian noise is an important strength.        

 31



An additional tacit assumption is that the LTV model is an accurate representation of the 
system, both in terms of parameter values and in the underlying model structure.  This will be 
of particular concern when we linearize a nonlinear system for use with the Kalman filter.  It 
is inevitable that modeling errors exist at some scale, and the effect of such errors will be 
analyzed.  

Alternatives to the Kalman Filter 

The most notable shortcoming of the Kalman filter is that it is derived for LTV systems.  
Although the filter can be extended to accommodate nonlinear systems, there is no guarantee 
of optimality or even stability.  While performance has been successful in many nonlinear 
applications, convergence analysis is exceedingly difficult. 

However, any weaknesses in the Kalman filter should be viewed in comparison with the 
alternatives.  Linearization is a crucial technique for many forms of engineering analysis.  
Full treatment of nonlinear systems is difficult and there are only a few successful 
approaches. 

This first alternative is a nonlinear observer.  One example can be found in [22].  Of course 
the Kalman filter is an observer, but it does not guarantee convergence when applied to 
nonlinear systems.  Instead, we could pursue a nonlinear observer of a simpler form with the 
goal of proving global exponential stability.  However, the simplification of the gain law 
inevitably discards the linear optimal techniques of the Kalman filter.  This exchange 
sacrifices many of the benefits in noise discrimination and observation of LTV systems. 

The second alternative is a nonlinear optimal filter, but this proves to be impossible from a 
practical standpoint.  The optimal nonlinear estimate can be formulated in terms of the 
probability density functions of the state and measurement [7, 10].  However, the entire state 
probability density function must be propagated with time.  The covariance estimate of the 
Kalman filter is replaced by a continuum of probability estimates.  The resulting differential 
equation, with nonlinear state dynamics, is an intractable mathematical problem.  Even a 
numerical solution requires a prohibitively large number of variables to approximate the 
probability density function. 

A third alternative is an adaptive filter.  This refers to a broad class of systems that use 
adaptive modeling techniques to intelligently estimate the state and noise dynamics.  Many 
can be described as extensions to the Kalman filter.  The Sage-Husa filter [16], allows for 
unknown noise, and estimates the noise statistics along with the state.  Others methods use 
online tuning of the Kalman Filter, such as [17].  Some of the noise models described in 
Sections 2.2.5.2 and 2.3.1.3 can be adapted in real time.  While these techniques are arguably 
more sophisticated than the Kalman filter and may provide increased performance, they do 
not directly address the nonlinear stability problem. 

A second variety of adaptive techniques exist that attempt to estimate the entire process 
model.  Here the entire system is parameterized, using poles and zeros, wavelets, neural 
networks, or other model sets.  The physics of the process is not necessarily considered.  This 
presents a fatal weakness, because the physics of navigation is highly known and provides 
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significantly more information than the sensors alone.  However, these techniques can be 
very useful for characterizing the unknown parts of the dynamics, such as the disturbance 
model.        

2.2.1 Continuous-Discrete Formulation 

The Kalman filter derived here is a hybrid between the continuous-time and discrete-time 
formulations.  With this technique, the system state and covariance are propagated 
continuously between measurements, but are updated extemporaneously when each 
measurement arrives. 

Most physical phenomena are inherently continuous-time, such as rigid body dynamics and 
the force of gravity.  Even the IMU bias dynamics, which have an effect only at the discrete 
times of measurement, are samples of an underlying continuous physical process, such as the 
thermal behavior of the sensor.  Discrete equivalents are approximate and can be 
cumbersome to calculate in real time for an LTV system.  The continuous Kalman filter uses 
the continuous equations directly, and can be implemented using a numerical differential 
equation solver.  This solver must operate at discrete time steps, but can provide an accurate 
solution to the continuous differential equations.     

Measurements, however, occur at discrete times, either because a continuous-time sensor is 
sampled or because the sensor itself is discrete-time.  While a sample-and-hold architecture 
can be used to provide a continuous-time measurement for use in the continuous-time 
Kalman filter, this is no longer optimal because it gives weight to the measurement for an 
extended time period.  Technically, the measurement is valid only at the instant of 
measurement.  It is therefore preferable to process measurements directly in discrete time. 

This hybrid filter conveniently allows for multirate and sporadic measurements.  
Measurement updates can be performed with whatever measurements are available, or 
omitted entirely.  This provides natural handling of measurement dropouts and produces a 
state estimate that is available between measurements.   
 

2.2.1.1 Problem Statement and Assumptions 

The system is modeled as a continuous LTV system 

 )()()()()()( twtFtutxtAtx ++=&  (2-102) 

where the continuous state x is driven by a known control input u and unknown process noise 
w, and A(t) and F(t) are matrices that may be time-varying.  Measurements z are taken at 
discrete times tk and contain unknown discrete-time measurement noise n: 

 )()()()()()()( kkkkkkk tntLtutDtxtHtz ++= . (2-103) 
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The arguments t and tk will usually be omitted for clarity, but the explicit dependence on time 
should be noted.  We will also sometimes write z[k] or n[k] for discrete-time quantities, 
where tk = kT and T is the sample time. 

For this derivation, we assume zero mean noise: 

  0}{ =wE  (2-104) 
 0}{ =nE . (2-105) 

We also assume that the process and measurement noise are white (time-uncorrelated):  

 )()}()({ τδτ cQtwtwE =−  (2-106) 
 ][]}[][{ mRmknknE δ=− , (2-107) 

where )(τδc  is the continuous Dirac delta function (unit impulse) and ][mδ is the discrete 
unit impulse.  The variables τ  and m are arbitrary offsets.  A technique for removing time 
correlation by augmenting the system model is presented in Section 2.2.5.2.  With this 
method, it is usually possible to satisfy this assumption. 

Finally, for ease in derivation, we assume that the process and measurement are uncorrelated:  
  

 0]}[)({ =kntwE    kt,∀ . (2-108) 

Correlation between the process and measurement noise can be included in the derivation, 
but is not needed for this application.  

We seek the “best” state estimate .  We will discuss optimality with various cost functions, 
and ultimately restrict the result to linear estimators.   

x̂

 

2.2.1.2 Minimum Conditional Error Variance 

The strongest condition for optimality is to minimize the variance of the estimation error 
conditional on the available measurements.  This derivation, taken from [7, p. 104], shows 
that the resulting estimate is the conditional expectation. 

The conditional probability of the state x given z, can be represented by the probability 
density function   

 ( ) ( )
( )zp

zxpzxp ∩
=  (2-109) 

where p here is not to be confused with the position vector p used in other sections.  This is 
the ratio of the joint probability of x and z to the probability of z.   
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The conditional expectation is then defined as the probability weighted average of x over the 
entire state space region Rn: 

 { } ( )∫=
nR

dxzxxpzxE . (2-110) 

The estimation error 

 xxe −= ˆ , (2-111) 

can be used to define a weighted square error loss function 

 , (2-112) Weeev T=)(

where W is a constant symmetric positive definite matrix.  Note that this loss function has a 
global minimum at the origin and derivative 

 ( xxWWe
de
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−== ˆ22 ) . (2-113) 

The conditional total cost is then given by weighting this loss function by the conditional 
probability density function and integrating over Rn: 

 ( )∫=
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dxzxpevV )( . (2-114) 

The minimum occurs when 
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which requires that 

 ( ) ( ) 0ˆ =−∫
nR

dxzxpxx . (2-116) 

The estimate  can come out of the integral and the equation can be rewritten as x̂

 ( ) ( )∫∫ =
nn RR

dxzxxpdxzxpx̂ . (2-117) 

Since for any probability density function 

 ( )∫ =
nR

dxzxp 1, (2-118) 
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this expression simplifies to  

 ( ) { }zxEdxzxxpx
nR

== ∫ˆ ,  (2-119) 

which gives the promised result that the optimal estimate is the conditional expectation.  
Surprisingly, this result is independent of the weighting matrix W.  This result can be 
expanded to include a wide variety of loss functions, under certain assumptions regarding the 
probability density function [11].  The optimality of filters based on this result is therefore 
very general and broad. 

Direct evaluation of (2-119) may be possible using Bayes Theorem 

 ( ) ( ) ( )
( )zp

xpxzp
zxp = . (2-120) 

The difficulty is that p(x) and p(x|z) must be propagated through the state dynamics.  This is 
unfeasible for most probability distributions and for nonlinear systems.  However, the case of 
Gaussian noise can be solved because an LTV system preserves Gaussian statistics.  The 
result is linear in form and is identical to the Kalman filter.  This derivation of the Kalman 
filter is explored in [3] and, of course, by Kalman himself in [11]. 

2.2.1.3 Minimum Unconditional Error Variance 

An alternative choice of the cost function is the unconditional expectation of the weighted 
square error: 

 { }WeeEdxxWepeV T

R

T

n

== ∫ )( . (2-121) 

Note that the unconditional probability p(x) now replaces p(x|z).  In this fashion, the actual 
measurements have been removed from the cost function, but they are still used by the 
estimator to best minimize this new cost.  With no weighting, W=I, this cost is the 
unconditional variance of the error.  The weighting matrix W is included for completeness, 
but is once again found to have no effect.   

In general, cost minimization occurs when 

    { } { } 0ˆ22
ˆ

=−== xxWEWeE
xd

dV , (2-122) 

which occurs when 

 { } { }xExE =ˆ , (2-123) 
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showing that the optimal estimate is unbiased.  We will proceed to develop a recursive 
formula for the optimal estimator.  This derivation was greatly influenced by [5] and [13] for 
continuous systems and [3] for discrete systems.  The result here is specific for continuous-
discrete systems and adds the effect of the weighting matrix W.   

In order to estimate the state, the filter will also estimate the error covariance 

 { }TeeEP = . (2-124) 

Note that this is a covariance matrix only when the error is zero mean, which occurs because 
of (2-123).   

Initialization 

Since optimality requires an unbiased estimate, recursion must begin at 

 { } ooo xtxEx == )(ˆ . (2-125) 

The corresponding initial covariance is 

 ( )( ){ } ( )( ){ }
ox

T
oooo

T
ooooo PxxxxExxxxEP =−−=−−= ˆˆ , (2-126) 

which is the covariance of the initial state xo. 

Propagation between Measurements 

In the absence of measurements, the unbiased estimate is simply the expected propagation:   

 . (2-127) { } { } uxtAtwtFuxtAExEx +=++== ˆ)()()()(ˆ &&

The error covariance propagation can be calculated: 

 { } { TTTT eeeeEee
dt
dEeeE

dt
dP &&& +=

⎭
⎬
⎫

⎩
⎨
⎧== }. (2-128) 

Using the estimated and actual state dynamics, the error dynamics are given by 

 , (2-129) )()()()()()(ˆ)(ˆ twtFetAtwtFuxtAuxtAxxe −=−−−+=−= &&&

which leads to 

 { } { }TTTTTTTT FewAeeFweAeeEeeeeE −+−=+ && , (2-130) 

 37



where { } PeeE T = , but { }TFweE  requires further attention.  From (2-129), the error solution 
can be expressed as a convolution with the error state transition matrix: 

 . (2-131) ( ) ( )∫Φ−=
t

t
e

o

dwFte ττττ )(,

In this discussion, the variable τ is a dummy integration variable, and does not refer to a 
torque input.  Using this expression yields 

 , (2-132) ( ) ( ) ( ) ( )∫∫ Φ−=Φ−=
t

t

T
e

TT
t

t

T
e

TTT

oo

dtFwtwtFdtFwtwtFFwe ττττττττ ,)()()(,)()()(

where the functions of the variable t can be brought inside the integral of variable τ.  Taking 
the expectation and using the noise characteristics of w produces 

 , (2-133) { } ( ) ( ) ( )∫ Φ−−=
t
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T
e

T
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dtFtQtFFweE ττττδ ,)(

causing the integrand to be nonzero only at t = τ, where ( ) IttT
e =Φ , .  Careful consideration 

of the limit shows that exactly half of the Dirac pulse is within the integral bounds 
[13, p. 164], yielding 

 { } ( )tQFtFFweE TT )(
2
1

−= . (2-134) 

This is symmetric, so { } { }TTT FweEFewE = .  Substituting these results back into (2-130) 
yields 

 , (2-135) TT FQFPAAPP ++=&

which gives the continuous error covariance propagation in the absence of measurements.  

Measurement Update  

We now consider the update that occurs when a measurement arrives.  Since this update 
takes place instantaneously, the subscripts ‘-’ and ‘+’ will be used to distinguish values 
before (a priori) and after (a posteriori) the measurement update, respectively.  This gives the 
definitions of , e−x̂ x̂

)(ˆ tx )(ˆ tx
-, and P-, and , e+ +, and P+.  We will also sometimes explicitly include 

time by writing expression such as and .   − +

In order to proceed, we now limit ourselves to linear estimators.  In doing so, we are finding 
the optimal linear minimum variance estimate. 
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The most general form of a linear estimator would be a linear combination of the all 
information: 

 uKzKxKx 321 ˆˆ ++= −+ . (2-136) 

The optimal estimate must be unbiased.  Substituting for z and taking the expectation yields 

 { } ( ){ uKLnDuHxKxKExE 321 ˆˆ }++++= −+ . (2-137) 

Since the a priori estimate was unbiased, { } { }xExE =−ˆ .  Using also { } 0=nE  and { } uuE = , 
this reduces to 

 { } ( ) { } ( )uKDKxEHKKxE 3221ˆ +++=+ . (2-138) 

For independence to the control input, we must have 

 032 =+ KDK . (2-139) 

For an unbiased a posteriori estimate, we require  

 IHKK =+ 21 . (2-140) 

If we define , then (2-139) and (2-140) become 2KK = KHIK −=1  and .  The 
resulting expression is that of a linear observer: 

KDK −=3

 ( ) ( ) ( )zzKxDuxHzKxKDuKzxKHIx ˆˆˆˆˆˆ −+=−−+=−+−= −−−−+ , (2-141) 

which forms a correction based on the measurement error.  

The optimal gain K that minimizes V can now be found by evaluating the following 
derivative expression:    
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⎧== Wee
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dV TT . (2-142) 

This equation describes the derivative of a scalar with respect to every element in a matrix.  
This derivative can be organized in a matrix of the same size as K with components  
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Several matrix derivative formulae follow from this definition.  First, the derivative of a 
matrix norm can be expressed by the components 

 jijiji
ij
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ijij

T babKa
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dKba
dK

dKba
dK
d

===⎟
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⎜
⎝
⎛ , (2-144) 

because each derivative has only one nonzero term.  This can be written compactly as the 
outer product 

 TT abKba
dK
d

= . (2-145) 

Transposing K will transpose the derivative: 
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==⎟
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⎝
⎛= . (2-146) 

Finally, the derivative of the following weighted quadratic in K can be differentiated one K at 
a time using the previous results: 

 ( ) ( ) ( ),TTTTTT abbaWKbWKaaWKbWKbKa
dK
d

+=+=  (2-147) 

for symmetric W.  If a = b, this reduces to 

 TTT WKaaWKaKa
dK
d 2= . (2-148) 

We can now proceed to build an expression for V and evaluate the derivative.  Using the 
observer form given by (2-141), the a posteriori error can be related to the a priori error 

 ( ) ( ) )()(ˆ)()()()()()()(ˆ)(ˆ)( txtxtHtntLtxtHtKtxtxtxte −−++=−= −−++  (2-149) 

or 

 ( ) )()()( tKLnetHtKIe +−= −+ . (2-150) 

Taking the weighted inner product, and combining scalars with their transposes, yields 

 ( )( ) ( )( )KLneKHIWKLneKHIWee TT +−+−= −−++  
   ( ) ( ) ( ) WKLnKHIeeKHIWKHIe TTTT −+−−= −−−  

 ( ) WKLnKLneKHIWKLn TTTTTT +−+ −  
   WKLneWKHeKHeWKHeeee TTTTTT

−−−−−−− ++−= 22  
 . (2-151) WKLnKLnWKHeKLn TTTTTT +− −2
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The derivative can now be taken using the previous formulae, with terms such as e-, We-, He-, 
and Ln forming the a and b vectors:  

 ( TTTTTTT LneHeKHeHeeWWee
dK
d

−−−−−++ ++−= 2  

 ( ) )TTTTTT LKLnnHLneLnHeK ++− −− . (2-152) 

We will prepare to take the expectation by noting that 

 { } −−− = PeeE T  (2-153) 
 { } RnnE T = . (2-154) 

Also, the a priori error e- is not influenced by the the current noise n = n(tk), so we have 

 { } { } 0== −−
TT neEneE . (2-155) 

Proceeding with the expectation yields  

 ( 02 =++−=
⎭
⎬
⎫

⎩
⎨
⎧= −−

TTTT KLRLHKHPHPWee
dK
dE

dK
dV )  (2-156) 

The weighting matrix drops out, and the optimal gain K is governed by 

 ( ) TTT HPLRLHHPK −− =+ . (2-157) 

By the definition of covariance, the matrices P and R are both symmetric positive definite 
and inversion is therefore possible: 

 ( ) 1−

−− += TTT LRLHHPHPK . (2-158) 

This matrix inversion is computationally intensive, and an alternative technique is presented 
in Section 2.2.5.3.  

With this optimal gain, an update law for P is required.  This can be found using (2-150): 

 { } ( )( ) ( )( ){ }TT KLneKHIKLneKHIEeeEP +−+−== −−+++ . (2-159) 

Multiplying and taking the expectation produces 

 ( ) ( ) TTT KKLRLKHIPKHIP +−−= −+ . (2-160) 

This is known as Joseph’s Stabilized Form [8, p. 233] and has desirable numerical properties 
because of its symmetry.   
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Equation (2-160) can be simplified by multiplying out first term:  

 , (2-161) TTTTTT KKLRLKKHHKHPKHPPP ++−−= −−−+

and substituting the optimal gain relation of (2-148): 

  ( ) ( ) −−−−+ −=+++−−= PKHIKKLRLKKHHKLRLHHPKKHPPP TTTTTTT . (2-162) 

Summary 

The filter requires the initialization , Pox̂ o and specification of the noise covariances Q and R, 
which may be time-varying.  Then the state estimate and covariance are propagated 
continuously between measurements using 

  (2-163) uxAx += ˆ&̂

  (2-164) TT FQFPAAPP ++=&

and updated discontinuously at measurements using 

 ( ) 1−

−− += TTT LRLHHPHPK  (2-165) 
 ( )−−+ −+= xHzKxx ˆˆˆ  (2-166) 
 ( −+ )−= PKHIP . (2-167) 

2.2.2 Nonlinear Extension 

Consider the continuous nonlinear system with discrete measurements given by 

 ( )ttwtutxftx ),(),(),()( =&  (2-168) 
 ( )kkkkk ttntutxhtz ),(),(),()( =  (2-169) 

A general optimal estimator for this system is a difficult mathematical problem.  The primary 
obstacle is the propagation of the error statistics which now involve the full probability 
density functions.  The estimation error is no longer defined by its covariance, because even 
simple noise inputs are complicated by the nonlinear dynamics.   

The alternative approach is to linearize the dynamics, and then apply the Kalman filter.  This 
linearization can be done with respect to a predefined trajectory, or with respect to the 
estimated trajectory.  This first method is suitable for repeated motion, such as manufacturing 
tools, where the trajectory is well known in advance.  For navigation, the flight path is 
usually not well known, so we use the latter approach, which is commonly known in the 
literature as the Extended Kalman Filter (EKF). 

The EKF raises issues of stability.  The feedback of the estimate into the linearization creates 
a new nonlinearity which can have adverse effects.  The EKF will be successful if the model 
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is sufficiently smooth in the region of operation to be well approximated by linear functions.  
The topics of convergence and stability will be addressed in Section 2.2.4.4. 
 

2.2.2.1 Linearization 

The standard approach to the Extended Kalman Filter is to replace all matrices in the Kalman 
Filter with their corresponding Jacobians.  For example:   

 
txx

ftA
,ˆ

)(
∂
∂

≈   (2-170) 

and similarly for the matrices F, H, D, and L.  Each partial derivative is evaluated at the 
estimated state.  This approximation is justified from a Taylor series expansion.  However, 
we will take a more deliberate approach, and in the process uncover some techniques that 
will simplify computation and make the result more linear.  

We begin by dividing the state into a nonlinear estimate and a small linear estimation error: 

 )()(ˆ)( txtxtx δ+= .  (2-171) 

The linear state will be estimated by the Kalman filter, while the nonlinear state will be 
propagated independently.  A logical choice for the nonlinear propagation is the differential 
equation 

 ) ,  (2-172) ,0,,ˆ(ˆ twuxfx ==&

with discontinuous updates when measurements arrive 

 ixx += −+ ˆˆ . (2-173) 

The term i in this Extended Kalman Filter is analogous to the innovations process of the 
Kalman filter.  The innovations process represents the updates to the state estimate, and 
should be zero mean white noise under optimal filter operation [5, pp. 425-427].  In the EKF, 
i is a variable of our choice, and we will use it to offload the linear error state onto the full 
nonlinear state estimate. 

The previous choices for nonlinear propagation leave the following dynamics of the 
estimation error: 

  (2-174) ),0,,ˆ(),,,(ˆ twuxftwuxfxxx =−=−= &&&δ
 ( ) ( ) ixxxxxxx −=−−−+= −−+−+ ˆˆˆˆˆ δδδ  (2-175) 
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If we now assume that xδ  and w are small, a linear Taylor series expansion gives 

 w
w
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x
fx
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≈
== ,0,,ˆ,0,,ˆ

δδ& . (2-176) 

We can now begin to build a Kalman filter to estimate the estimation error x̂δ  using 

 
twuxx

ftA
,0,,ˆ

)(
=∂

∂
=    (2-177) 

 
twuxw

ftF
,0,,ˆ

)(
=∂

∂
=   (2-178) 

 .  (2-179) 0=u

Here u is the control input for the Kalman filter, while the control input for the nonlinear 
propagation can still be nonzero.  Additional linearization is required for the measurement, 
which can be expressed using the estimation error   

 ( ) ( )kkkkkk tnuxxhttntutxhtz ,,,ˆ),(),(),()( δ+== . (2-180) 

We now divide our measurement into nonlinear and small error components 

 )()(ˆ)( kkk tztztz δ+=  (2-181) 

where the predicted measurement 

 ( )kk tnuxhtz ,0,,ˆ)(ˆ ==  (2-182) 

leaves a small error 

 ( ) ( )kkkkk tnuxhtnuxxhtztztz ,0,,ˆ,,,ˆ)(ˆ)()( =−+=−= δδ . (2-183) 

This result can be linearized, assuming small xδ and n: 
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This now gives the linear measurement and measurement noise matrices for our Kalman 
filter:  

 
tnuxx
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∂
=  (2-185) 
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∂
= . (2-186) 
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2.2.2.2 Measurement Pre-Compensation 

The technique presented here provides a treatment for nonlinear measurements that is 
superior in many situations.  The strategy is to remove the nonlinearity before the 
measurement is given to the Kalman filter.  In effect, the nonlinearity of a measurement or 
group of measurements is inverted to produce a linear measurement.  In many cases, the 
result is a more accurate linearization for the Kalman filter and a simpler expression for the 
measurement Jacobian. 

For example, consider the following nonlinear measurement:     

 ( )3nxz += . (2-187) 

The nonlinear function can be inverted, and a new measure defined: 

 nxzz +==′ 3  (2-188) 

Subtracting the predicted measurement produces a small measurement error 

 nxxzz +=−′= δδ ˆ   (2-189) 

which is linear in the error state and noise.  In this example, a direct linearization would have 
produced 

 ( )nxxz += δδ 2ˆ3 . (2-190) 

This example was particularly simple because the noise was inside the nonlinear function and 
there was only one state involved.  In general, measurement pre-compensation will still 
require linearization and the inverse nonlinearity must be computed at the estimated state.   

This technique can be formalized and the measurement Jacobian can be modified to include 
the effect of pre-compensation.  Although the notion of inverting a nonlinearity is fairly 
common, this derivation is original.  For the specific equations of this application, this 
technique leads to simplified equations and more accurate linearization.   

Consider the case where a block of measurements zb depends primarily on a corresponding 
block of states : bx

 ( ) ( )tnuxxxxhtnuxxhz bbbbbbbbbbb ,,,ˆ;ˆ,,,; ~~~ δδ ++== , (2-191) 

where are the additional states of secondary dependence.  For example, a gyroscope 
measures body rates primarily, but is affected by biases and scale factors which can be 
included as other state variables.  It is frequently possible that this portion of the 
measurement function can be inverted and the block states  recovered using 

bx~

bx

 ( )tnuxzhx bbbbb ,,,; ~
1−=  (2-192)   
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Now define a new measurement that is compensated by the estimated state 

 . (2-193) ( )( tnuxtnuxxhhz bbbbbbbb ,0,,ˆ; ,,,; ~~
1 ==′ − )

This can be rewritten using the estimation errors 

 . (2-194) ( )( )tnuxtnuxxxxhhz bbbbbbbbbb ,0,,ˆ; ,,,ˆ;ˆ ~~~
1 =++=′ − δδ

Assuming once again that xδ  and  are small, the linear Taylor series approximation can be 
used, first on the inner function:  
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and then again on the inverse function: 
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where the inverse function is evaluated at the expected measurement 

 ( )tnuxxhz bbbbb ,0,,ˆ;ˆˆ ~ == . (2-197) 

The small measurement for this block can then be defined as 
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These components can then be placed into the Kalman filter.  The corresponding rows of the 
H matrix are 
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and the noise portion of L for these block measurements is 
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The advantage of measurement pre-compensation is that the nonlinearity is removed as much 
as possible.  Note that the partial derivatives of both h and h-1 appear in the Jacobians.  This 
is because the inverse is evaluated at the estimated state.   
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2.2.2.3 Offloading the Estimation Error 

For the previous assumptions to hold, a small estimation error must be maintained.  Various 
techniques are available for offloading the estimation error.  The most convenient is to 
initialize and maintain zero error: 

 0)(ˆ =txδ    t∀ . (2-201) 

As the Kalman filter minimizes the variance 

 { } ( ) ( ){ }xxxxEeeE TT δδδδ −−= ˆˆ , (2-202) 

and is unbiased, this will maintain the smallest xδ  possible.  The continuous-time error 
propagation is now trivial: 

 . (2-203) 0ˆˆ =+= uxAx δδ&

The measurement update is 

 ( ) zKixxHzKixx δδδδδδ +−=−+−= −−−+ ˆˆˆˆ , (2-204) 

and, to maintain 0ˆ =+xδ , we must choose 

 zKi δ= . (2-205) 

In other words, we pass the innovation directly from the Kalman filter to the nonlinear 
estimate.  Note that the error state matrices are still required to propagate the covariance and 
calculate the Kalman gain: 

   (2-206) TT FQFPAAPP ++=&

 ( ) 1−

−− += RHHPHPK TT   (2-207) 
 ( −+ )−= PKHIP .  (2-208) 

This choice of maintaining zero error simplifies the Jacobians.  Any approximation for small 
quantities, such as small angles or dropping higher order terms, becomes exact when the 
error state is zero.  As a result, these approximations can be used freely without degrading the 
estimation accuracy.  

2.2.3 Data Forgetting 

As the optimal solution, the Kalman filter necessarily uses all past data that is available.  This 
apparent strength for measurement fusion becomes a weakness in the presence of modeling 
inaccuracies.  As time progresses, the estimated covariance may diminish, reducing the 
Kalman gain, while the actual error may increase.  The result is a sluggish filter that 
stubbornly clings to its incorrect estimate. 
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There are several solutions to this problem, presented in [7, pp.279-288] and [13, pp. 218-
222].  Most techniques sacrifice optimality in exchange for practical performance.  The most 
common solution is to insert fictitious process noise to increase the steady-state value of the 
covariance matrix.  While these techniques can be successful, they are ad hoc, and can be 
difficult to implement in a large system. 

The method of data forgetting, presented by [1], provides a simple approach that is on firm 
theoretical ground.  This approach represents the weighting of information inversely to its 
age.  In this fashion, the estimate becomes the best fit of the recent data.  Optimality is still 
present in the context of this time weighting.  This approach increases the stability of the 
filter. 

In practice, data forgetting presents a single tuning parameter that can be used to adjust filter 
responsiveness.  The following discussion will show that data forgetting can be implemented 
using a very simple modification to the Kalman covariance propagation.  Forgetting can be 
removed entirely by setting the forgetting rate to zero.  In this regard, there is little reason not 
to include data forgetting in this or any Kalman filter.  

The method for imposing data forgetting is most intuitive when viewed in the context of a 
dual problem for the Kalman filter.  The Kalman filter can be shown to also minimize the 
following cost function [1]: 
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t

T
t

t
x

T
xooo

T
oo xHztRxHzdnQnxxPxxV

o

ˆ)(ˆ
2
1)(

2
1ˆˆ

2
1 111 ττ )  (2-209) 

The first term represents the cost of an initial condition error.  The second term integrates the 
cost of process noise.  The third term sums the cost of measurement error.  In this context, 
scalar exponential time weighting can be added to this cost function as follows    
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   (2-210) 

Without loss of generality, we can assume that to = 0, so that the first term is unchanged.  
This new cost function can be brought to the original form using the substitutions 

 )  (2-211) ()( 121 tQetQ t −− = λ
λ

 , (2-212) )()( 121 tRetR t −− = λ
λ

or, alternatively 

 )  (2-213) ()( 2 tQetQ tλ
λ

−=

  . (2-214) )()( 2 tRetR tλ
λ

−=
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In other words, the optimal solution to the problem with data weighting is identical to the 
ordinary Kalman filter with modified noise covariance.  In particular, both the process noise 
and measurement noise are reduced exponentially over time.  This maintains the balance 
between measurement and process information, but gives new information more credibility. 

The modified covariance can be substituted into the Kalman filter equations to provide a 
modified formula for filter propagation and measurement updates.  However, this result is 
not suitable for computation, because the noise covariance becomes very small as time 
increases. 

Consider instead the compensated covariance 

 ) . (2-215) ()( 2 tPetP tλ
λ =

Then 

 ( )TTttt FFQPAAPPePePeP λ
λλλ

λ λλ +++=+= 22 222 && . (2-216) 

The λ’s can be split and, since , this equation can be written as: QQe t =λ
λ2

 ( ) ( ) TT FQFIAPPIAP ++++= λλ λλλ
&  (2-217) 

The gain can be written in terms of this compensated covariance by substituting  
into 

λ
λ PeP t2−=

 ( ) 1−

−− += TTT LLRHHPHPK λ , (2-218) 

which is conveniently unchanged: 

 ( ) ( ) 11222 −

−−
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−

− +=+= TTTTtTtTt LRLHHPHPRLLeHPHeHPeK λλ
λ

λ
λ

λ
λ . (2-219) 

The measurement covariance update 

 ( ) −+ −= PKHIP , (2-220) 

is also unchanged: 

 ( ) −+ −= λλ PKHIP . (2-221) 

In summary, the concept of data forgetting can be employed to the Kalman filter by simply 
substituting 

 IAA λλ +=  (2-222) 
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in the covariance propagation equation.  This causes the estimated covariance to grow more 
rapidly, reaching larger steady state values.  This, in turn, creates larger gains and a faster 
filter response.   

Note that the modified covariance Pλ is no longer an estimate of the error covariance.  It has 
been increase exponentially to produce the effect of forgetting.  However, this is the 
covariance that is used to calculate the gain in the Kalman filter.  As such, this modified 
covariance must remain in a region where the model is accurate.  When covariance studies 
are performed using data forgetting, the result will be assessed in this context.   

2.2.4 Convergence 
 
The topic of convergence can be approached from several viewpoints.  The most common 
techniques are observability and covariance analysis.  Further nonlinear discussion of the 
extended Kalman filter is also appropriate. 

2.2.4.1 Observability 

As the optimal linear observer, the Kalman filter will converge for a linear plant if there 
exists any linear observer that converges.  Otherwise, the Kalman filter would not be optimal.  
A linear observer will converge if the system is observable.  It is therefore appropriate to 
explore the meaning of observability in the context of the continuous-discrete Kalman filter.   

Note that observability is predominantly a deterministic concept.  It reveals what states can 
be estimated if there is sufficient measurement quality.  Covariance analysis, discussed in 
Section 2.2.4.2 and conducted using simulations in Section 3.3, reveals how accurate the 
estimate can be.  Strictly speaking, a system is either observable or it is not, but we will 
sometimes talk about increasing observability in the context of covariance and measurement 
quality.  It is instructive in the observability analysis to consider the effect of ignoring small 
terms, because they may too small to measure. 

A deterministic system is observable if the entire state x can be reconstructed from a finite set 
of measurements [5, p. 207].  We shall focus on the case where the state can be reconstructed 
using a linear technique, in the interest of showing that the Kalman filter will converge. 

The topic of observability has been studied thoroughly by many authors.  Observability 
conditions for LTI systems are derived in many texts including [5].  The observability of an 
LTV system is more elusive and can be difficult to determine.  The discussion here has been 
derived independently and contains two distinguishing characteristics.  First, it focuses on the 
subtleties of a continuous system with discrete measurements.  Second, the relation between 
the LTI observability test and LTV observability is explored, for the purpose of providing a 
practical method of assessing the observability of an LTV system.     
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LTI Systems 

Given the LTI continuous system with discrete measurements 

 Axx =&   (2-223) 
 kk Hxz =   (2-224) 

the solution can be expressed as 

 . (2-225) o
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The measurements at intervals T are related to the initial state as follows: 
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Note that equations beyond n - 1 are not linearly independent so they provide no new 
information.  If this matrix M is of rank n, than n independent rows of M and z can be found 
and solved using  

 , (2-227) nno zMx 1−=

and the state at any time can then be calculated using (2-225), hence the system is 
observable.  However, it is rather difficult to check the rank of M directly in this form, so we 
will pursue an alternate expression.  The power series expansion 
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can be rewritten as 
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where each ck is a constant that can be determined.  This follows from the fact that An can be 
written in terms of lower powers of A [5, p. 487].  An actual expression for ck will not be 
needed.   
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Using (2-229), we can write M as 
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If the n block rows of M are independent, we can use row reduction to derive a simpler 
matrix of equal rank.  The powers of A can be isolated, by first proceeding downwards to 
remove the low powers and then upwards to remove the high powers:     

 . (2-231) 
( ) ( )( )

( )( )

( )

( )( )⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−

→

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−

+++
→

−
−

−
−

−
−

1
1

1

1
1

1
1

2
21

)1()1(

...

n
n

n
n

n
n

TnAcH

ATcH
H

TnAcH

ATcATcATcH
H

M
MM

The rows can then be rescaled, yielding 

  (2-232) 
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However, for this row reduction to be possible, the original block rows  
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must be linearly independent.  This can be interpreted in the context of sampling.  If certain 
dynamics of A are periodic at exactly the measurement frequency, they will be hidden from 
the output.  While aliasing (which is acceptable) would be quite common, an exact frequency 
match is unlikely in practical applications.  This analysis gives the guidance that the 
sampling frequency should be chosen to avoid equality with any known system vibration 
frequencies. 

For measurements at aperiodic times, the same results can be achieved, although there are 
new possibilities for dynamics hidden from the output.   
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LTV Systems 

For a Linear Time-Varying system 

 xtAx )(=&   (2-233) 
 )( kkk txHz =   (2-234) 

we can write similar measurement equations  
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Note that each measurement now has its own H matrix and that the matrix exponential 
was replaced with state transition matrix Ate ),( 1 ottΦ .  We are no longer limited to n-1 

equations. 

Once again, if we can find n independent rows, we can invert and solve for the initial state 
and thereby know the state for all time: 

 oo xtttx ),()( Φ=  (2-236) 

We would like to simplify the expression for M as we did for the time-invariant case.  
However, the LTV observability problem is much more difficult because the state transition 
matrix is difficult to evaluate.   

It is natural to try to relate the LTV observability to the LTI observability.  We will proceed 
to explore the relationship between LTV observability matrix M and the instantaneous LTI 
observability test matrix MLTI (t).   

Let us first consider the following system as an example: 
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The time-invariant observability test matrix is always rank 1: 
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Since , the first few rows of the time-varying observability are IeAt ==Φ
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This is rank 2, provided that the measurements do not occur at periods of π, so the LTV 
system is observable.  It is common, as in this example, for the instantaneous LTI 
observability test matrix MLTI (t) to underestimate the observability of an LTV system.  

This can be formalized by viewing the LTV system as a series of piecewise LTI systems.  
Consider a system that is LTI for a short window of time during which r measurements arrive 
at period T.  As the LTI time window can be made arbitrarily small, this is not a restrictive 
assumption.  Then for the samples k < r, the state can be expressed using the state transition 
matrix:     

 oooo xtttkTtxtkTtkTtx ),(),(),()( Φ+Φ=+Φ=+ , (2-241) 

which has been separated into the LTV and LTI transitions.  Using the LTI approximation, 
we have   
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Since H(t) is approximately constant during this time period, the measurement is 
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A portion of the observability matrix can be formed using these r measurements of the LTI 
time window: 
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The LTV state transition matrix is full rank because 

 ) . (2-245) ,(),( 11
1 tttt oo Φ=Φ−

 54



The LTI portion of (2-244) contains the first r rows that were used in LTI observability 
analysis.  If nr ≥

)

n

, than this rank can be checked using the instantaneous LTI observability 
test matrix: 
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In other words, if n measurements arrive during the LTI time window, than the LTI 
observability test matrix can be used to predict the LTV observability.  This will 
underestimate observability because it only considers the measurements from one time 
window. 

The full LTV observability matrix can be assembled using sets of measurements from 
successive time windows: 
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The resulting test matrix can be written as 
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Alternatively, the first transition can be removed 

 . (2-251) 
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This expression provides a method to test the observability of an LTV system using the LTI 
observability test matrix at different time intervals.  It is valid only for r ≥ , when the LTI 
approximate is valid for n measurements.  This expression is most useful during special cases 
when the state transition matrix can be easily calculated.    

In the event that the LTI approximation is only valid for short time periods, resulting in r < n, 
the row reduction leading to MLTI as given by (2-231) will not be possible and (2-251) cannot 
be used.  This is because there are fewer rows than there are powers of A.   
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To the extent that 
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the first r rows of MLTI (t) can be used in (2-251).  This approximation uses the first r terms of 
the power series expansion and is valid when the sample rate is fast compared to the 
dynamics.  If this is not the case, then matrix exponential in (2-244) must be evaluated from 
the full series. 

For systems with rapid time variance, it may be preferable to compute the state transition 
matrix and evaluate (2-235) directly.  This can be done by calculating   
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using numerical integration and the series expansion of the exponential. 

Nonlinear Systems 

In the case of a nonlinear system of the form 

 ),( txfx =&   (2-254) 
 ),( txhz kk = ,  (2-255) 

there is no simple method to check observability, although the notion still has meaning.  If 
the system is well approximated by a linear system that is observable, then an approximate 
solution can be estimated.  The process of linearization typically removes information, so 
there are many cases where an observable nonlinear system has an unobservable 
linearization.  Consider the measurement , which provides no information when 
linearized about x = 0.  It also may be possible for the opposite to be true if limit cycles 
appear at the sampling frequency. 

3xz =

In the context of the Extended Kalman Filter, observability of the linearized system is 
required.  This is because the filter uses a linearization, and is therefore blind to nonlinear 
effects.  For this reason, a nonlinear observability test is not required. 

Stochastic Stability 

Rigorous stability analysis for the continuous Kalman filter has been performed in [12] and 
[2].  Conditions can be established that guarantee the exact convergence of the estimate in the 
presence of noise.  These results are readily applicable to the continuous-discrete filter. 
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As in the deterministic observer, observability is required so that errors can be detected.  
Additionally, it is required that the filter equations remain finite.  This requires bounded state 
matrices and process and measurement noise.  In the continuous Kalman filter, it is also 
required that the measurement noise is nonzero so that the Kalman gain remains finite. 

The third requirement is that the state is controllable through the process noise.  In other 
words, the process noise must be able to influence all of the state variables.  This requirement 
prevents the covariance from becoming too small.  Controllability can be tested using 
methods similar to testing observability. 

Under these conditions, the Kalman filter is asymptotically stable.  With the stronger 
conditions of uniform observability and uniform controllability, the Kalman filter is 
exponentially stable.  Tests for uniform observability and controllability are beyond the 
scope of this thesis. 

Detectability 

It is noted in [2] that the Kalman filter will perform successfully in the presence of 
unobservable states if these states are all stable.  Formally, this requirement is termed 
detectability.  With this condition, the unobservable modes will decay, and a linear observer 
converges correctly. 

This subtlety can provide two benefits.  First, states that may be observable can be included 
in the filter, so long as they are stable.  For example, states that are only observable during 
certain time periods or conditions can still be used.  This approach can lead to the higher 
performance.   

Second, unobservable states can be distinguished by their probabilities, since the Kalman 
filter is still choosing the optimal estimate.  Unobservable states may be necessary for noise 
modeling.  This can allow the error covariance to propagate correctly even though these 
states cannot be estimated precisely.  However, unobservable states should usually be 
avoided because additional states are a large computational burden and the exact probabilities 
are usually unknown. 

Unstable or marginally stable unobservable modes will cause great problems in a Kalman 
filter.  Such modes will cause the covariance matrix to grow without bounds, leading to 
numerical problems.  Also, poorly observable states with huge variance can still “draw the 
blame” for measurement errors and compromise the estimates of other states. 
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2.2.4.2 Covariance Analysis 

The Kalman filter provides its own method for studying and monitoring filter convergence in 
the full stochastic sense: the covariance matrix.  The diagonal elements, or the principal 
values, give a measure of the estimation confidence.  Convergence of the Kalman filter 
requires that the covariance matrix is bounded.  The actual values of the covariance matrix 
give the predicted accuracy of the filter. 

The covariance matrix can be propagated offline to predict performance.  It can also be 
monitored in real time during the actual application.  In contrast to observability, covariance 
analysis is simpler to conduct and also produces a characterization of accuracy.   

An important point is that covariance analysis assumes that the model is correct.  The fact 
that the filter thinks it has converged does not guarantee convergence.  It can actually be a 
practical problem if the covariance becomes too small, because the filter will then ignore 
future measurements and become unresponsive.   
 

2.2.4.3 The Effect of Modeling Errors 

The effect of modeling errors is presented in [7, pp. 250-254] and [13, pp. 205-218] for 
continuous-time and discrete-time Kalman filters.  The development here extends those 
results to apply to the mixed continuous-discrete Kalman filter. 

Suppose that the true system dynamics are given by the time-varying matrices A, F, H, D, 
and L, as defined earlier (2-102, 2-103), but that the Kalman filter uses a model with Â ˆ, , F
Ĥ ˆ ˆ ˆ, , and .  Define the modeling errors by the differences  and so forth.  We 
wish to express the propagation of the actual estimate error in terms of these modeling 
differences. 

D L AAA −=δ

The filter propagation is now 

  (2-256) uxAx += ˆˆ&̂

with error dynamics 
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This can be written using an augmentation of the state vector, with the actual dynamics in the 
second row: 
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The covariance propagation expression (2-135) still holds for these augmented matrices: 
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Measurement updates can be treated similarly.  The observer update is now 

 ( )−−−+ −++= xHLnHxKxx ˆˆˆˆ  (2-263) 

which gives the error update 

 ( ) KLnHxKeHKIe ++−= −+ δˆ . (2-264) 

This again can be written using the augmented state (the second equation is trivial): 
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Multiplying by the transpose and taking the expectation yields 
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since the measurement noise n is independent of e- and x-.  The gain K in these equations is 
generated using the incorrect model with the Kalman Filter equations given earlier: 

   (2-267) TT FQFAPPAP ˆˆˆˆ ++=&

 ( ) 1ˆˆˆˆˆ −

−− += TTT LRLHPHHPK   (2-268) 
 ( ) −+ −= PHKIP ˆ   (2-269) 

Note that Aδ  and Hδ appear directly in the equations for  while modeling errors is F, D, 
and L, as well as the noise characteristics Q and R, led to a suboptimal Kalman gain K.  

'P
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With these results, we have equations for propagating 'P  between and during measurements.  
While the entire 'P 'P matrix must be propagated, the upper left partition of  is of interest.  
This is the actual estimation error covariance using the incorrect model, and should be 
compared to the Kalman Filter’s covariance matrix P.   

The above procedure is primarily useful in numerical simulation.  Calculation of the 'P  
matrix at different levels of model accuracy will illustrate the modeling sensitivity.  This 
procedure can show the statistical effect of a modeling error on estimation performance.  It 
can also be used to establish conditions for the stability of 'P , which governs the actual 
convergence of the Kalman Filter.   

2.2.4.4 Nonlinear Convergence 

Convergence of the Extended Kalman Filter is a difficult issue that is frequently avoided.  
Because the Kalman filter is only optimal for LTV systems, no general statement about 
stability can be made.   

Since the EKF uses a linearization of the state equations about the estimated state, there is a 
potential for large modeling errors.  If there is an estimation error, the linearization will be 
taken about the wrong point.  Additionally, the process of linearizing produces errors which 
may be large in certain systems. 

The first case of incorrect linearization can be treated using the previous analysis of modeling 
errors.  Here the real system can still be well represented by a linear system, and matrices 
such as Aδ  can be defined.  The relationship between the nonlinear state estimation errors 
and the errors in the state matrices must be analyzed.  In principle, a bounding region of 
convergence can be found, perhaps through the use of numerical simulation.   

In the second case, the true system cannot be represented by a linear system.  As a result, the 
linear modeling error analysis is not applicable.  For these systems, the use of an Extended 
Kalman Filter is questionable and performance issues are likely. 

2.2.4.5 Convergence with Data Forgetting 

Stability of the Kalman filter with data forgetting is discussed in [1].  It is found that data 
forgetting increases the stability of the filter uniformly by the forgetting factor λ.  This means 
that an asymptotically stable Kalman filter will become exponential stable at rate λ, and a 
Kalman filter that is already exponential stable will converge faster by rate λ.   

The argument can be presented as follows.  The Kalman filter with data forgetting has the 
identical gain as the ordinary Kalman filter with 

 IAA λλ += . (2-270) 
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If this gain were used to estimate a system that naturally contained Aλ, the continuous-time 
error dynamics using (2-129) would be 

 FweAe −= λλλ& . (2-271) 

Using (2-270), the error dynamics using forgetting on the actual system A are then 

 ( ) FweIAFwAee −−=−= λλ& . (2-272) 

If the Kalman filter for the Aλ system converges, then this error e is bounded by exponential 
convergence at rate λ.  Once again, this is because the discrete-time measurement updates 
have the same gain in both filters.  The matrices A and Aλ will provide the same conditions of 
observability, finiteness, and controllability that were needed to establish the convergence of 
this error.   

Note that data forgetting added stability to the error while adding instability to the state 
dynamics.  The covariance is artificially increased and gains are augmented.  This brings a 
subtle caveat with dectectable systems.  It is possible for stable modes to become unstable 
when data forgetting is employed.  Since the preceding argument required the convergence 
under Aλ, it is required that unobservable modes decay faster than the forgetting rate. 
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2.2.5 Implementation Techniques 

Several additional topics are important for the implementation of the Kalman filter.  These 
next sections address common practical issues from a theoretical point of view.   

2.2.5.1 Multirate Measurements and Dropouts 

It is common that measurements arrive at different rates, or that sensors experience dropout 
periods.  In these circumstances, partial measurement updates are required.  Such processing 
is directly possible with two alternative techniques. 

The most straightforward method is to zero the rows of the measurement matrix H that 
correspond to the absent measurements.  In this fashion, all other measurement can still be 
processed normally and the filter framework is unchanged. 

A second technique is to completely remove the corresponding rows of H and compress the 
measurement vector z.  This has the potential of reducing the computational load, especially 
in the matrix inversion (2-158).  This technique may be preferable if it can be guaranteed that 
certain measurements never arrive at the same time.  For example, there will always be some 
GPS satellites that are behind the Earth.  However, this second technique quickly introduces 
new programming difficulties and may require dynamic memory allocation. 

In the simulation and hardware implementation for this thesis, the first method is used to 
handle measurement dropouts.         

2.2.5.2 Modeling of Colored Noise 

w(t) 

 
Figure 2-3:  Model of Colored Noise 

Although the Kalman filter requires the assumption that noise is white (time-uncorrelated), a 
straight forward procedure exists for accommodating colored noise.  As shown in Figure 2-3, 
colored noise, denoted c(t), can be represented as the output of a linear system that is driven 
by white noise w(t).  The linear transfer function G(s) must be added to the process dynamics 
using additional state variables. 

The transfer function G(s) can be determined using a variety of methods.  In some cases, the 
structure may be known from the physics of the noise process.  More often, the noise 
characteristics are known only from experimental data.  In this case, the autocorrelation and 
power spectral density of the noise can be estimated from the data.  Several techniques exist 
for fitting a transfer function to such data.  Most require selecting a model set, such as an all-

G(s) c(t) 
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pole filter, and then finding a Least Squares solution.  It is usually easier to fit a discrete-time 
transfer function and then convert the result to a continuous-time equivalent.   

It is convenient to use a first order continuous-time model of the form 

 )()()( twtrctc +−=& . (2-273) 

Note that this filter has a gain of r.  The variance of the colored noise can be expressed using 
the continuous covariance update of the Kalman filter 

 . (2-274) TT FQFPAAPP ++=&

For a simple scalar equation, with A = -r and F = 1, this reduces to 

 , (2-275) 222 2 wcc r σσσ +−=&

and has a steady state value of 
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This result is counterintuitive because the filter did not have unity gain.  If the gain is 
removed from the filter, (2-274) can be evaluated with F = r and the result becomes 

.  While this result is useful conceptually, (2-276) is more convenient.     2/wc r 22 σσ =

The autocorrelation of the colored noise, defined by { })()( TtctcE −  for , can be 
calculated using the convolution solution 
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The distinct integration variables τ1 and τ2 have been used so that the product can be written 
as a double integral: 
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Note that for white noise 

 , (2-280) { } )()()( 21
2

21 ττδσττ −= cwwwE

where )(tcδ  is the Dirac delta function.  Therefore, taking the expectation and combining the 
exponentials produces 
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Because of the sifting property of the Dirac delta function, the inner integral is nonzero only 
when τ1 = τ2 and we have 
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This can be evaluated without difficulty, and the solution is 
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The second term inside the parentheses represents the transient, and vanishes in steady state.  
The autocorrelation function is then dependent on T alone, so this is a Wide Sense Stationary 
process.  For T  = 0, this result matches the expression for steady state variance given by 
(2-276).  As T increases, the autocorrelation approaches zero exponentially. 
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Figure 2-4:  Colored Noise with Varying 
Filter Rate 
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Figure 2-5:  Colored Noise with Equal Variance 
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It is instructive to look at the time behavior of this colored noise.  Figure 2-4 shows colored 
noise at varying filter rates with constant white noise variance.  This was generated using a 
discrete approximation at 100 Hz with a pseudorandom number generator.  A slower rate 
corresponds to a larger time constant, which smoothes the noise but also increasing the gain.  
It is more instructive to hold the variance of the colored noise constant, by changing the 
white noise variance and filter rate in proportion.  The result is plotted in Figure 2-5.  Small 
filter rates produce highly correlated noise that appears smoother and varies more slowly. 

2.2.5.3 Numerical Techniques 

Several computational techniques are relevant for the practical implementation of the 
Kalman filter.  These methods can improve performance under imperfect arithmetic and real-
time processing. 

A host of techniques are available for improving the numerical robustness of the solution.  It 
is critical that the covariance matrix remains symmetric positive definite.  Otherwise, it is not 
a meaningful covariance and the gains and estimate updates will be erroneous.  The matrix 
inversion in the measurement update can also fail. 

Maintaining covariance symmetry is a simple matter.  The solution can be “symmetricized” 
periodically using 

 ( )TPPP −−+ +=
2
1 . (2-284) 

Another approach is to implement the filter using entirely symmetric equations.  The 
continuous propagation is already symmetric, and the measurement update can be 
implemented using Joeseph’s Stabilized form (2-160). 

Maintaining positive symmetric definiteness is more difficult.  Several algorithms factor the 
covariance into a form that enforces this, such as the square root Cholesky 
decomposition [21, p. 15]: 

 ( )( )TT DLDLLDLP == , (2-285) 

Here D is a diagonal matrix that has positive entries when P is symmetric positive definite 
and L is another matrix.  The Kalman filter can then be written in terms of these factors.  A 
discussion of these algorithms, along with charts of their memory and computation 
implications, can be found in [8, p. 244].  These algorithms generally require more 
computation because the factored equations are more complicated. 

The matrix inversion in the measurement update produces a large computational burden for 
large systems.  This inversion can be eliminated by processing the measurements one at a 
time [8, pp. 232-233].  The technique requires the measurement covariance LRLT to be 
diagonal, which we will name Rdiag.   
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The one-at-a-time update routine loops through all measurements, with the update for the ith 
measurement zi given by: 
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−  (2-286) 

 ( )xHzKxx ii −+= −+  (2-287) 
 −−+ −= PKHPP i , (2-288) 
 
where Hi is the ith row of H and Rii is the element in the ith row and ith column of Rdiag.  Note 
that the state and covariance update must happen in each iteration, so that the updated 
covariance is used in successive gain calculations.  
 
If the measurement covariance is not diagonal, it can always be decoupled using a change of 
measurement variables.  For example, the GPS noise may have principal directions in the 
NED coordinate from, instead of ECF.  An alternative is to process measurements “3 at a 
time”, or “n at a time” if blocks of size n are coupled. 
 
Simulation in software does not require most of these techniques.  In my simulations, I have 
used double precision, floating-point arithmetic because there was an abundance of memory.  
However, making P symmetric periodically is highly beneficial for alleviating numerical 
instabilities. 
 
Real-time hardware implementation is more demanding.  Processing speed is critical, and can 
be greatly improved using one-at-a-time measurement processing as well as several 
additional programming techniques that are discussed in Section 4.3.  I did not employ 
square root filtering in the real-time implementation, but this could be beneficial because 
single precision arithmetic is used on the processor.  

2.2.5.4 Filter Health Monitoring  

In a high-order Kalman filter, it is important to have a simple indicator of filter performance.  
This can be used in real time to detect anomalous conditions, or during simulations to detect 
modeling errors. 

A measure of filter health can be derived from the information matrix   

 ( ) 1−

− += TT LRLHHPY , (2-289) 

which appears in the Kalman gain equation.  The size of Y can be characterized by the 
maximum singular value.  When Y is small, the state is well known and the new 
measurements provide little information.  When Y is large, the state is poorly known and the 
new measurements provide a lot of information.  The Kalman gain is then proportional to the 
information matrix Y. 
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Comparison of the information matrix to the measurement error z~  gives the likelihood that 
this measurement would have occurred.  For example, a large measurement error is unlikely 
when the information matrix is small.  For a Gaussian distribution, this likelihood function 
can be calculated from the probability distribution function, producing 

 ⎟
⎠
⎞

⎜
⎝
⎛−= zYzzl T ~~

2
1exp)~( . (2-290) 

The result is simplified by using the negative log likelihood, and normalizing by the number 
of measurements m: 

 
m

zYz T ~~
2 =χ . (2-291) 

This is a Chi-squared statistic, which increases when the measurements do not fit the model.  
This statistic is tabulated in [8, p. 247].  For example, a chi-squared value of 5 has a 2% 
chance of being a valid occurrence.   

In healthy filter operation, the chi-squared value should be small.  A measurement glitch will 
produce a spike in the chi-squared value.  A divergent filter will have a chi-squared statistic 
that increases with time. 

With the previous discussions on navigation and the Kalman filter, we are now ready to 
design this navigation system.  
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2.3 Application of the Kalman Filter to Navigation 

The selection of states and measurements for the Kalman filter is a central issue in designing 
a navigation system.  While most navigation systems use a Kalman filter in some form, there 
is great flexibility in format.  Ultimately, the system performance is greatly impacted by 
these choices.  There are a variety of common architectures and choices of state variables [3, 
4, 6, 8, 9, 15, 17], many of which have influenced my design. 

There are several fundamental decisions in the architecture that arise in the design of most 
navigation systems.  The first is the treatment of angles and the selection of an attitude 
representation.  The second is the choice of the process dynamics, including the modeling of 
bias and error states.  Finally, there is some flexibility in the choice of measurements, 
especially when considering that additional system knowledge can be treated as a 
measurement.     

Attitude Representation 

An innovative feature of this filter is the combination of quaternions and small angles.  This 
format utilizes the quaternions for singularity-free large angle motion while using small 
angles for a linear representation of orientation error.  In effect, the four quaternion 
parameters are linearized using three small angles.  These small angles are a minimal 
representation of attitude which is more suitable for the Kalman filter.  In addition, small 
angle rotations are commutative and can be represented using a vector cross product, so the 
filter equations become reasonably simple.    

The use of quaternions directly in the Kalman filter is fairly common [6], and can be 
successful if the quaternion normality constraint is enforced.  To be optimal, special attention 
must be given to the process noise to ensure that the uncertainty in the quaternion estimate 
always runs along the quaternion surface.  This can be strengthened by treating the normality 
constraint as an additional measurement.  Still, this approach remains undesirable because it 
adds one extra state variable [8, p. 258].  This creates excess computation, at best, and can 
lead to observability problems.         

It should be stressed that the use of small angles in this filter is no more of an approximation 
than the linearization required to implement any Extended Kalman Filter.  The inaccuracy of 
attitude linearization is present regardless of whether small angles are used.  Consider instead 
using Euler angles for representation of the orientation error.  With the immediate error state 
offloading scheme that was discussed in Section 2.2.2.3, the estimated orientation error will 
always be zero.  As a result, the Euler error state should be linearized about the point of zero 
rotation.  Evidently, small angles are this linearization.  A similar argument applies to 
rotation vectors.  The technique of using small angles directly as the state variables provides 
a linearization equivalent to the full nonlinear angle treatment, but with greatly simplified 
equations.    
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Rigid Body Dynamics as the Process 

In this filter, I have incorporated rigid body motion as the process.  In this fashion, force and 
torque are treated as inputs, and the laws of physics are enforced.  These inputs are divided 
into a known part and a random part, as shown in Figure 2-6.  The known part passes directly 
into the filter using the deterministic control input (u).  The random part is modeled using 
additional state variables and is estimated by the filter. 

 
Figure 2-6:  Filter Implementation of Rigid Body Dynamics 

The popular alternative is to use inertial navigation as the process.  In that architecture, the 
IMU measurements are is treated as process inputs instead of measurements.  This approach 
is detailed in the Appendix.  The GPS becomes the sole measurement, and the number of 
filter measurements and states is reduced. 

The use of rigid body dynamics has the potential for increasing response and accuracy in 
applications where the force and torque are accurately known.  The prime example is 
exoatmospheric flight where the dynamics are extremely predictable.  Applications using 
stabilized platforms or active vibration suppression systems also fit well into this architecture 
because there is knowledge and measurement of the actuation efforts. 

In situations where force and torque are unpredictable, the disturbances are estimated by the 
filter.  Rigid body dynamics can still be beneficial if the force and torque can be modeled 
adequately.  However, this adds complexity and several state variables, and may be inferior 
in certain applications.  

With these process dynamics, the filter may be able to survive an IMU measurement dropout.  
This would be a difficult situation for any filter, but the propagation of the state using the 
physics of motion is the most logical solution.   

A first order disturbance model has been chosen for general purpose operation.  Here, the 
force and torque disturbances are modeled using exponential correlated noise.  As described 
in Section 2.2.5.2, there is one rate parameter describing the correlation of each dimension of 
the disturbance. 
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Loosely-Coupled Architecture 

The difference between a tightly-coupled and loosely-coupled implementation is shown in 
Figure 2-7.  In a tightly-coupled architecture, the GPS pseudoranges ρ are the raw 
measurements, and GPS error states are estimated along with the navigation states in a single 
Kalman filter shown at the top of the figure.  In a loosely-coupled architecture, the GPS 
position pgps and velocity vgps, which are calculated values, are treated as the raw 
measurements and are passed to the navigation Kalman filter shown at the bottom of the 
figure.  The GPS solution and compensation occurs in a separate algorithm, which may be 
implemented using another Kalman filter.  
  

Tightly-Coupled GPS 

 
Figure 2-7:  Tightly-Coupled and Loosely-Coupled Architectures 

The tightly-coupled architecture is superior from a theoretical point of view.  An analysis of a 
decentralized Kalman filter, in which multiple Kalman filters operate on different parts of the 
state vector, is conducted in [3, pp. 371-377].  The primary result is that decentralized 
Kalman filters are suboptimal unless full state covariance information is maintained by all 
filters.  That, of course, defeats the purpose of decentralizing. 

The loosely-coupled architecture has several practical advantages, which have ultimately led 
to its selection here.  The first is that it has a smaller state vector.  Tight-coupling requires at 
least one state and one measurement for the pseudorange of each GPS satellite, which can 
dramatically increase the computational burden.  The resulting filter may be unfeasible for 
real hardware, or may require a slow sample rate that could repeal the benefits of theoretical 
optimality. 

Additionally, and most important in a practical sense, the GPS position and velocity solution 
is an output common to all GPS receivers.  In using the loosely-coupled architecture, the user 
is free to choose from all available commercial and military receivers and can benefit from 
proprietary algorithms and implementation hardware in these devices.  A variety of GPS 
augmentation services, including Differential GPS, can be readily integrated to improve the 
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solution quality.  The sum of these advantages may produce more accuracy than processing 
the raw pseudorange measurements. 

Finally, some elements of the GPS solution are not suitable for a Kalman filter.  For example, 
ambiguity resolution for phase range measurement requires an algebraic solution.  In 
situations where the dynamics are trivial, a Least Squares solution is usually preferred.  It 
may also be inappropriate to model the pseudorange errors of each satellite as independent 
variables.  For these reasons, it is unrealistic to process all GPS information using a Kalman 
filter. 

With the loosely-coupled implementation, there are two methods of sharing information that 
can increase performance and limit the suboptimality of decentralized filtering.  First, the 
accuracy of the GPS solution should be given to the navigation Kalman filter as a 
measurement covariance.  This accuracy can be computed from the GPS Dilution of 
Precision (DOP), which is output by the receiver and usually has different values in the 
horizontal and vertical directions.  If Differential GPS or another aid is available, the 
measurement covariance should be updated to reflect this increase in accuracy. 

Second, the vehicle velocity and acceleration should be passed into the GPS receiver, so that 
it may compensate for fast vehicle dynamics.  Unfortunately, most GPS receivers do not 
accommodate this.  If available, this could drastically reduce the delay in the GPS solution 
and provide GPS measurements that are truly uncorrelated from process dynamics.  

Choice of Measurements 

The IMU and GPS are the primary measurement sensors and should naturally be selected as 
measurements in the Kalman filter.  This includes body rates and accelerations from the 
IMU, and the position and velocity solution from the GPS. 

There is additional data that can be interpreted as a filter measurement.  First, when the 
vehicle is Earth stationary (fixed to ground) the rotation rate and velocity are determined.  
This knowledge can be treated as measurements in the Kalman filter.  This effectively allows 
the filter to perform gyrocompassing and calibrate the IMU any time the vehicle is stationary. 

This measurement brings several operating modes into a single Kalman filter.  It is common 
for navigation systems to stop the Kalman filter during gyrocompassing and for Earth 
stationary operation.  For example, the position estimate can be held constant when the 
vehicle is fixed to Earth.  However, stopping and restarting the Kalman filter can produce 
transients in the estimate with varying accuracy.  It is preferable to use a single Kalman filter 
for initial alignment, fixed-to-Earth operation, and normal flight.  It should be noted that a 
separate initial alignment procedure is always needed when there are large initial errors. 

A second measurement can be derived from knowledge of the force disturbance.  This could 
be a real measurement in some systems.  It can also be knowledge that the vehicle is in 
exoatmospheric freefall.  This measurement is designed to improve the observability problem 
that is encountered during freefall (Section 2.3.3).  
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Measurement Error Modeling 

Since the Kalman filter assumes white noise, it is often necessary to add states to model time-
correlated errors in the measurements.  This can be done with arbitrary accuracy using the 
techniques of Section 2.2.5.2.  High-order noise models, however, can greatly increase the 
computation time.  Ultimately, we are unconcerned with the accuracy of the noise estimate, 
provided that the Kalman filter produces accurate estimates of the navigation states. 

For the IMU, gyroscope and accelerometer errors arise from a variety of sources.  For the 
most part, these errors can be sufficiently modeled using a bias and a scale factor.  Additional 
effects exist [8], such as the gyroscope error that arises from structural deflection during 
periods of acceleration. 

In this filter implementation, IMU errors are modeled with biases alone.  In this fashion, bias 
states are used to estimate the error caused by both biases and scale factors.  The benefit of 
using scale factors is not realized until the trajectory contains a rich variety of dynamics.  The 
cost of IMU scale factors is an additional 6-18 states, depending on whether cross coupling 
states are included.  When modeling using bias states alone, the noise characteristic of the 
bias must include the effect of a scaling error. 

The GPS position solution contains many sources of error, ranging from inaccuracies in 
system clocks to atmospheric disturbances that alter the transmission time.  These 
inaccuracies would be modeled in a tightly-coupled architecture.  For our loosely-coupled 
architecture, the modeling of a GPS measurement bias was considered.  However, there is no 
information to observe this bias; an error in GPS position is virtual undetectable without a 
redundant position measurement.  For this reason, the GPS noise was assumed to be white. 

The fixed-to-Earth measurement requires a noise model, because the vehicle will not be 
perfectly stationary.  In effect, the vibration of the vehicle becomes the measurement noise.  
In this filter, the vibration is assumed to be white.  However, this is not accurate when 
considering structural resonances, such as a rocket on the launch rail.  Higher performance 
could possibly be achieved by using higher-order noise modeling. 

Summary of Filter Architecture 

The choice of states is shown in the Table 2-1.  Because of the use of quaternions and small 
angles, the full nonlinear state vector has one more element that the linear state vector.  The 
state vector includes attitude (quaternions and small angles), body rates, torque disturbance, 
position, velocity, force disturbance, and biases for the gyroscopes, accelerometers, and 
gravity model. 

Measurements are shown in Table 2-2.  Measurements include the gyroscopes, 
accelerometers, rate and velocity when Earth stationary, torque and force disturbance, and 
GPS position and velocity. 

Control inputs are shown in Table 2-3.  As discussed, the torque and force are inputs to the 
model.  The specific values (per unit mass) have been used so that inertia properties are not 
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needed here.  An additional known parameter is the angle of the Earth, which is treated as a 
control input.  
 
Table 2-1:  Filter States 

Full 
Index 

Error 
Index 

Size Symbol Description Units

1:4  4 q Quaternions - 
 1:3 3 α Small angle misalignment rad 
5:7 4:6 3 ω Body rates rad/s 
8:10 7:9 3 τd Specific torque disturbance rad/s2

11:13 10:12 3 p ECI position m 
14:16 13:15 3 v ECI velocity m/s 
17:19 16:18 3 fd Specific force disturbance m/s2

20:22 19:21 3 bω Gyro bias rad/s 
23:25 22:24 3 ba Accelerometer bias m/s2

26:28 25:27 3 bg Gravity model bias m/s2

29:31 28:30 3 bt GPS time delays s 
 
Table 2-2:  Filter Measurements 

Index Size Symbol Description Units
1:3 3 ωm Gyro rates rad/s 
4:6 3 am Accelerometers m/s2

7:9 3 ωfix Rates when fixed to Earth rad/s 
10:12 3 vfix Velocity when fixed to Earth (ECF) m/s 
13:15 3 τm Torque disturbance (0 in freefall) rad/s 
16:18 3 fm Force disturbance (0 in freefall) m/s2

19:21 3 pgps GPS position (ECF) m 
22:24 3 vgps GPS velocity (ECF) m/s 
 
 
Table 2-3:  Filter Control Input 

Index Size Symbol Description Units
1:3 3 τ Specific torque rad/s2

4:6 3  f Specific force m/s2

7 1 θe Angle from ECI to ECF rad 
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2.3.1 Linearization 

We now proceed to derive the specific equations for this Kalman filter, using our choice of 
state variables and measurements.  Nonlinear equations have been derived in the navigation 
theory of Section 2.1.  These equations must now be linearized for an Extended Kalman 
Filter using the procedures described in Section 2.2.2.  This is done be analyzing the 
dynamics of the estimation error, which is linear for small error.  A linear relation between 
the measurement error and the state error is also established.  The final results are 
summarized in Section 2.3.2.      

2.3.1.1 Dynamics 
 
Analysis begins with linearization of the dynamics.  The full equations of navigation are 
converted into a linear state model. 

Attitude Representation 
 

bx

 
Figure 2-8:  Small Angle Orientation Error 

Special care is taken in the treatment of angles.  In particular, we wish to represent the error 
in the four quaternion parameters using three small angles.  This is possible because the 
quaternions are non-minimal. 

Similar to the error states discussed earlier, let α be the small angle rotation from the 
estimated orientation q  to the actual orientation q.  The relation between a body vector xˆ b at 
estimated and actual orientation is shown in Figure 2-8. 

Accordingly, the relation between the estimated and actual DCM is given by 

 )ˆ()( qBRqB α= , (2-292) 

where Rα is the small angle rotation matrix defined by (2-74).  In other words, transformation 
into the actual body coordinates can be performed using a rotation of  followed by a 
rotation of . 

)ˆ(qB
Rα

The quaternions may be propagated using the state estimates:  

 . (2-293) ω̂)ˆ(ˆ qfq q=&

bx̂α  
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Careful consideration will reveal the resulting dynamics of α.  From the definition, the 
derivative of α is related to ω.  In a manner of thinking, ωα ≈& .  Since we are actually using 
α to represent angular error, the rate in this expression must be replaced by a rate difference:  

 ωωα ′−= ˆ& . (2-294) 

For comparison, both rates must be expressed in the same frame.  The first rate, ω, is the 
actual body rate expressed in the actual body frame.  The second rate, ω′ˆ , is the estimate 
body rate expressed in the actual body frame.  This is related to the estimated body rate in the 
estimate body frame by the small rotation 

 ωω α ˆˆ R=′ . (2-295) 

Collecting the previous equations, we have     

 ωωα α ˆR−=& . (2-296) 

Reduction using the error state  δω yields 

 ωαδωωαδωωα ˆˆ)(ˆ ×+=×−−+= I& . (2-297) 

Reversing the cross product gives 

 δωαωα +×−= ˆ& , (2-298) 

which is linear and suitable for the Kalman filter.  Note that we can determine α from q  and 
q by calculating 

ˆ

 , (2-299) TqBqBR )ˆ()(=α

and then extracting α from the skew-symmetric part.  The Kalman measurement update can 
be modified so that corrections in α are passed directly to the quaternions.  Consider the 
quaternion propagation over a short period of time 

 . (2-300) tqftq q δωδ ˆ)ˆ(ˆ =&

Since δαδω ≈tˆ , the quaternion correction is related to the small angle correction by 

 δαδ )ˆ(ˆ qfq q= . (2-301) 

This can be written in the form of the Kalman measurement update: 

 αiqfqq q )ˆ(ˆˆ −−+ += , (2-302) 
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where iα is the α portion of the innovations vector.  In other words, this portion of the 
innovations must be separated and processed differently from the other state variables.  This 
allows the three dimensional small angle misalignment to be offloaded to the four 
dimensional quaternions. 

Rotational Dynamics 

We now linearize the rotational dynamics 

 ( )( ) ττωωω ++×−= −
dJJ 1& , (2-303) 

where the specific torque input has been divided into a known part τ  and a disturbance τd.  
We wish to find the propagation of the rate error δω .  Using the estimate propagation   

 ( )( ) ττωωω ++×−= −
dJJ ˆˆˆˆ 1& , (2-304) 

the error dynamics are 

 ( )( ) dJJJ δτωωδωωδωωωωωδ +×−+×+−=−= − )ˆ(ˆ)ˆ()ˆ(ˆ 1&&& . (2-305) 

The cross product can be distributed and the small term  δωδω J× can be ignored, producing 

 . (2-306) ( ) dJJJ δτδωωωωδ +×−×≈ − ])ˆ[(]ˆ[1&

Translational Dynamics 

The position equation  is already linear, sovp =& vp δδ =& .  The velocity equation 

 ( ) gd
T bpgffqBv −++= )()(&  (2-307) 

requires more attention.  We wish to find the propagation of the velocity error vδ  in terms of 
the other state estimation errors.  Using the estimate propagation 

 ( ) gd
T bpgffqBv ˆ)ˆ(ˆ)ˆ(ˆ −++=& , (2-308) 

the error dynamics are 

 
 [ ]( )( ) ( ) gdgdd bpgffqBbpgfffIqBv )ˆ()ˆ()()ˆ( +−+−−+++×+= δαδ & TT ˆˆˆ , (2-309) 

which reduces to 

 . (2-310) [ ] gd
T

dd
T bpgpgfqBfffqBv δδδαδ −−++++×= )ˆ()()ˆ()ˆ()ˆ(&
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The difference in gravity can be approximated using the gravity gradient: 

 p
p
gpgpg

p

δ
ˆ

)ˆ()(
∂
∂

≈− , (2-311) 

which will be noted Gp.  The cross product can be reversed and small terms dropped, yielding 

  . (2-312) gpd
T

d
T bpGfqBffqBv δδδαδ −++×+−≈ )ˆ(])ˆ)[(ˆ(&

2.3.1.2 Measurements 

We now proceed to model and linearize the measurements.  Each measurement will be pre-
compensated using the state estimate, as described in Section 2.2.2.2.  This leads to an 
expression that relates the state estimation error to the measurement error.  For small error, 
this relation is linear and provides the measurement matrix H for the Kalman filter.  

Gyroscopes 

Gyroscopes that are mounted to the vehicle provide a direct measurement of body rate.  A 
simple sensor model includes a bias and noise term:     

 ωωωω nbm ++= . (2-313) 

This measurement can be corrected using the state estimate, leading to the small 
measurement 

 . (2-314) ωωω δδωωωδω nbbmm ++=−−= ˆˆ

Accelerometers 

The accelerometer measurement can be written as  

 ( ) aagm nbbpgvqBa +++−= )()( & , (2-315) 

which is the difference between inertial and gravitational acceleration in body coordinates, 
with biases and additive noise.  We can eliminate v  from this equation by substituting the 
process equation   

&

 ( ) gd
T bpgffqBv −++= )()(& . (2-316) 

The result simplifies to 

 aadm nbffa +++= . (2-317) 
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Compensating gives the small measurement 

  (2-318) aaddamm nbfffbaa ++≈−−−= δδδ ˆˆ

Fixed-to-Earth 

When the vehicle is fixed to Earth, the motion matches that of the Earth’s surface.  We can 
define a measurement that is the difference between the actual body rate and the body rate 
that the Earth would impose: 

 0)( =+−= fixefix nqB ωωωω . (2-319) 

A noise term is included to model vehicle vibrations.  This can be expanded using the error 
states 

 [ ]( ) fixefixefix nqBInqBR ωωα ωαωωωω +×−−=+−= )ˆ()ˆ( . (2-320) 

Substituting the estimated measurement and reversing the cross product produces 

 [ ] fixeefixfix nqBqB ωδωαωωωωδω ++×−=+−= )ˆ()ˆ(ˆ . (2-321) 

When fixed to Earth, the ECF velocity is zero, that is 

 0=++×−= vfixeeefix nvRpRv ω  (2-322) 

Again, a noise term is included to model vibrations.  Expression in terms of the error states 
leads to 

 fixeeeeeefixfix nvRpRvRpRvv ++×−=−×+= δδωωδ ˆˆ  (2-323) 

Disturbance (Freefall) 

If the disturbances are somehow known or measured, we have 

 dm ττ =  (2-324) 
 dm ff =  (2-325) 

This is linear, and the small measurements are simply 

 ddmm δτττδτ =−= ˆ  (2-326) 

   (2-327) ddmm ffff δδ =−= ˆ

In freefall, we have 0== mm fτ , assuming that the control input is zero. 
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GPS 

A GPS receiver typically outputs position and velocity in the ECF frame.  Similar to vfix, 
these ECF quantities can be expressed in terms of the ECI states: 

 pgpsegps npRp +=  (2-328) 
 vgpseeegps npRvRv +×−= ω . (2-329) 

These measurements can then be compensated to produce small measurement errors: 

 pgpseegpsgps npRpRpp +=−= δδ ˆ  (2-330) 
 vgpseeeeeegpsgps nvRpRvRpRvv ++×−=−×+= δδωωδ ˆˆ  (2-331) 

2.3.1.3 Noise Modeling 

Since the Kalman filter requires white noise, the time-correlation in disturbances and biases 
must be modeled using additional state variables.   

Torque and Force Disturbances 

The torque and force disturbances are modeled using a first order linear filter with white 
input: 

 ττττ wr dd +−=&  (2-332) 

  . (2-333) fdfd wfrf +−=&

This produces an exponential autocorrelation function as described in Section 2.2.5.2, with a 
steady state autocorrelation function of 

 { } rTw e
r

TtctcE 2
2

2
)()( −=−

σ . (2-334) 

The variance is given by evaluating (2-334) at T = 0, which produces 

 
r
w

2

2
2 σ

σ =  (2-335) 

Additional white noise in the torque disturbance can be included using the body rate process 
noise wω.  This does not work for the force disturbance because any force noise is measured 
directly by the IMU.  

 79



Bias Dynamics 

The biases are similar to the disturbance dynamics.  The white component of their noise 
appears as the measurement noise.  The bias states represent the colored part, and have the 
following first order dynamics: 

  (2-336) ωωωω bwbrb +−=&

  (2-337) bgaaa wbrb +−=&

 . (2-338) bgggg wbrb +−=&

The steady state autocorrelation function is once again 

 { } rTw e
r

TtctcE 2
2

2
)()( −=−

σ . (2-339) 

However, the gravity model accuracy degrades with distance instead of time.  Since 

 ecf
ecf

gecf

ecf

gg v
p
b

dt
dp

p
b

dt
db

∂
∂

=
∂
∂

= ,  (2-340) 

The variance for the noise to the gravity bias can be calculated using 
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EwwE . (2-341) 

This can be simplified by assuming symmetry in the gravity model error or by using only 
velocity magnitude.  Alternatively, it can be expanded and calculated in full using the state 
estimate. 

Note that this technique does not attempt to remember the gravity model bias as a function of 
position.  For circular flight paths, the vehicle may return to a position where the bias is well 
known.  Unfortunately, the EKF does not provide a mechanism to incorporate this.  Instead, 
motion is any direction is taken to increase the uncertainty in the gravity model bias estimate.    
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2.3.2 Summary of Equations 
 
From the previous selection of states and linearization, the equations for the Kalman filter 
and for the full nonlinear state estimator can be summarized as follows. 
 
 
Nonlinear Dynamics 
 
The fundamental navigation states are modeled using the following nonlinear differential 
equations: 
 
 ω)(qfq q=&  (2-342) 

 ( ) ττωωω ++×−= −
dII )(1&  (2-343) 

  (2-344) vp =&
 ( ) gd

T bpgffqBv −++= )()(&  (2-345) 
 
All additional states, including disturbances and biases, are modeled as simple decays: 
 
 iii xrx −=& . (2-346) 

Linearized Small Error Dynamics 

The nonlinear propagation produces small state error dynamics that can be approximated 
using the linear system  
 
 xtuxAx δδ ),,ˆ(≈& . (2-347) 
 
The linearized equations for the core navigation states are 
 
 [ ] δωαωα +×−= ˆ&   (2-348) 
  (2-349) ( ) dJJJ δτδωωωωδ +×−×= − ])ˆ[(]ˆ[1&

 vp δδ =&  (2-350) 
 , (2-351) gpd

T
d

T bpGfqBffqBv ∂−++×+= δδαδ )ˆ(])ˆ[()ˆ(&

 
and the remaining disturbances and biases follow 
 
 iii xrx δδ −=&  (2-352) 
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These equations can be assembled into the following A matrix: 

   (2-353) 
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All terms in this matrix are 3 by 3, including the identity matrix I and zero matrix 0.  The 
additional terms are 

 ( )])ˆ[(]ˆ[1 ×−×= − ωωωω JJJA  (2-354) 

 ( )[ ]×+−= d
T

v ffBA ˆˆ
α . (2-355) 

 
 
Measurement Compensation and Linearization 
 
Measurements are compensated as follows, producing small error measurements: 
 
  (2-356) ωωδω ω ˆˆ −−= bmm

  (2-357) damm ffbaa ˆˆ −−−=δ
 ωωδω ˆ)ˆ( −= efix qB  (2-358) 
 vRpRv eeefix ˆˆ −×= ωδ  (2-359) 
 dmm τττδτ ˆ−−=  (2-360) 

  (2-361) dmm ffff ˆ−−=δ
 pRpp egpsgps ˆ−=δ  (2-362) 
 vRpRvv eeegpsgps ˆˆ −×+= ωδ . (2-363) 
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The small measurements can then be approximated by the linear form xHz δδ = , to be used in 
the Kalman filter. The resulting matrix expression for H is 

 . (2-364) 
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2.3.3 Navigation Observability 
 
The linearized dynamics, which are used by the Kalman filter, form an LTV system that can 
be analyzed for observability.  While at this point we have already selected the state 
variables, this can provide insight into filter convergence and highlight areas of weak 
measurement.  These results will also aid in the interpretation of covariance analysis that is 
conducted in Section 3.3 of this report. 
 
Full LTV observability analysis through computation of the state transition matrix is 
difficult.  Instead, we begin with the LTI observability test matrix, which is straightforward 
to calculate but will usually underestimate observability.  States that are unobservable by this 
method will then be viewed from an LTV sense.  The LTV analysis is not completely 
rigorous, but the results are verified in covariance analysis and full simulation. 

This method requires the assumption that the LTV system is LTI over short periods of time, 
as was discussed in Section 2.2.4.1.  This assumption is met if the LTI approximation is valid 
for a time period spanning n measurements, where n is the number of state variables.  This 
requirement can be reduced when the sampling frequency is fast compared to the system 
dynamics.  Any restrictions in this assumption could probably be overcome by performing 
the complete LTV observability analysis.       
 
As defined in Section 2.2.4.1, the LTI observability test matrix is given by 
 

 . (2-365) 
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We will start with only the core measurements: gyroscopes mδω , accelerometers maδ , and 
GPS position gpspδ .  These are the linearized small measurement errors that are given to the 
Kalman filter.  The effect of additional measurements will be added later, and provides some 
additional observability.   
 
The LTI observability test matrix calculation can be conducted using the 3 by 3 blocks that 
were used to express the A and H matrices.  The first 12 block rows have been calculated 
below:  
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  (2-366) 
 
where 

 IrAM dτωω −=1  (2-367) 
 . (2-368) IrArAM dd

22
2 τωωτωω +−=

Each block column corresponds to a 3 dimensional state variable vector, such as α or ω.  The 
observability of an individual state can be accessed in two steps.  First, the block column 
must be linearly independent from the other block columns.  Second, the block column itself 
must have three independent columns.  The number of independent columns in a matrix is 
equal to its rank.  The matrices I, Re, and BT are invertible, so they have 3 independent 
columns.   

We will start by finding the observability without the bias states, which is done by ignoring 
the rightmost three block columns.  Analysis can proceed row by row in blocks, with care not 
to reuse rows in the argument for linear independence.   

The first three rows correspond to the raw measurements.  Row 1 (ωm) makes column 2 
independent (ignoring bias columns), so ω is observable through the gyroscopes.  Row 2 (am) 
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makes column 6 independent, so fd is observable through the accelerometers.  Row 3 (pgps) 
makes column 4 independent, so p is observable through the GPS position.  Note that Re and 
I are invertible, so these matrices in turn have independent columns, and therefore each 
element of ω, fd, and p is observable. 

The next three rows correspond to the measurements passed once through the system.  In row 
4, td (column 3) becomes observable as derivative of body rates.  Row 5 yields nothing here 
but will be revisited later.  Row 6 observes v (column 5) as the derivate of position. 

Continuing, the next three rows correspond to a second propagation of measurements 
through the system.  Row 7 and 8 yield nothing here.  Row 9 produces a term for attitude 
error α (column 1): 

 ( )[ ]×+−= d
T

eve ffqBRAR ˆ)ˆ(α  (2-369) 

As rotation matrices,  and  are invertible.  However, the remaining cross-product 
matrix is singular, since (as with any vector) 

eR TqB )ˆ(

 ( ) ( ) 0ˆˆ =+×+ dd ffff . (2-370) 

In other words, attitude cannot be resolved about the direction of external force.  This would 
correspond to compass heading for a vehicle at rest on the Earth, because the vehicle is being 
supported vertically by the ground.  If the vehicle is in freefall, the force is zero and this term 
has rank 0, so no attitude can be observed.  Otherwise, there are typically two dimensions of 
attitude observability.  The additional term in row 12 contains the same null space. 

The observability of attitude is increased by time variation of the force .  We can 
proceed to show what type of force variation is needed for observability of the LTV system.    
The dynamics of α are simplified when viewed in inertial coordinates:       

dff ˆ+

 ( ) [ ] [ ]( ) δωδωαωαωααα TTTTTT BBBBBB
dt
d

≈+×−+×=+= ˆ&& . (2-371) 

The small term αδω ×  was ignored.  This leads to the solution 
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As a result, the α portion of the state transition matrix is given by  

 ( ) T
oo BBtt =Φ ,

αα
. (2-374) 

An inertially constant force fI (in ECI) will produce a body force given by 

 . (2-375) Id Bfff =+ ˆ

Recall from the LTV observability analysis that the LTV observability matrix will contain 
rows given by .  With the inertial force definition, the attitude term of (2-369) 
becomes 

),()( tttM Φ oLTI

 ( ) ( )[ ] T
oI

T
eove BBBfBRttAR ×−=Φ ˆ,

ααα  (2-376) 

in the LTV observability matrix.  The null space of this term is , since Io fB

 ( )[ ]( ) ( )[ ] 0=×=× IIIo
T
oI BfBffBBBBf . (2-377) 

This null space changes only due to fI, and is unaffected by B.  As a result, pure body rotation 
does not produce attitude observability.  Variation in the inertial direction of force is 
required.   

The observability of biases is a second matter.  These states are stable, because of their 
proportional decay, so the system is detectable regardless of their observability.  Still, they 
can be observed in many cases. 

We must revisit row 1, because the gyro bias (column 7) makes the body rates (column 2) no 
longer unique.  These two states can be discriminated using row 12, with the same limitations 
as the observation of attitude.  Note that the biases dynamics are a simple exponential decay.  
As a result, the LTV observability analysis shows that any change in Avα will produce full 
bias observability.  This includes rotating the vehicle.   

There may also be information in row 7 with the term 

 ( )])ˆ[(]ˆ[1 ×−×= − ωωωω JJJA . (2-378) 

This term is rank 0 under 3-axis mass symmetry (J = I) or when 0ˆ =ω .  It is rank 2 when 
rotating about a principal axis of inertia.  Otherwise, the precession of the rotating body can 
be used to fully differentiate between real rotation and biased measurement.     

For analysis of biases, we must also revisit row 2 because the force disturbance (column 6) 
and accelerometer bias (column 8) are not independent in this row.  They can be 
discriminated by their decay rates in row 5 or row 8, but this may be unreliable if both 
exhibit slow dynamics.  There is one dimension available in row 9, because only two 
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dimensions of attitude were observed.  Row 9 is also the only means of observing the gravity 
bias (column 9). 

The dynamics of theses biases are also simple decays, which simplify LTV observability 
analysis.  The accelerometer bias ba rotates with the vehicle while the gravity model bias bg 
is inertially fixed.  As a result, ba can be observed when there is sufficient variation in the 
vehicle orientation , while b)ˆ(qBT

g requires variation in the inertial direction of force.   

The ambiguity between attitude errors and biases is depicted in Figure 2-9.  This effect is 
present even if bias states are omitted from the model.  Attitude accuracy is improved by 
proper bias compensation.    
 

ba or bgα 
f + fd

 
Figure 2-9:  Equivalence of a Bias and a Small Angle Error 

 
Rows beyond what was calculated in (2-366) do not provide any significant additional 
information.  The left three columns are isolated by the nature of the A matrix.  The other 
columns contain small terms, such as the gravity gradient Gp and the decay rates. 
 
We can consider the effect of additional measurements.  An ECF velocity measurement, such 
as vfix or vgps, does not increase in observability.  The small Earth rate term ×eω  will appear 
in various columns, including the attitude column, but this is redundant to the velocity 
information that is already provided from the position measurement.  Still, these 
measurements can increase the filter response and accuracy when available. 
 
The measurement ωfix greatly improves observability.  The first two rows that this 
measurement adds to the observability test matrix are  
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The first row here gives provides bias free measurement of body rates, which leads to 
continuous observability of the gyroscope biases.  In addition, the  terms in both rows 
produce more observability of attitude by aligning the Earth rate vector.  These terms are of 
rank 2, and are very small, but may be visible with high quality gyroscopes.   

×eBωˆ

 
Higher order compensation of the IMU, such as scaling error states, will not be observable in 
the LTI sense because their effect is the same as that of biases.  However, under rich motion 
where the force and body rates vary greatly, it may be possible to observe these states in the 
LTV system. 
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The measurement of force disturbance provides full observability of the accelerometer bias.  
The measurement of torque disturbance does not add observability, but can increase 
performance when the measurement of the disturbance is of higher quality than the 
gyroscopes.  These disturbance measurements can reduce IMU drift during freefall, when 
observability is poor. 
 
In summary, this observability analysis has reached several important conclusions.  Body 
rates, position, velocity, and force and torque disturbances are always observable.  Attitude 
and gravity modeling errors are observable if the inertial direction of force is varied 
sufficiently.  IMU biases are observable if the IMU is rotated.  Additional gyroscope 
observability comes from the fixed-to-Earth measurements and from the dynamics of 
rotation.   

2.3.4 Additional Considerations 

Some additional techniques are important for the implementation of the Kalman Filter in 
navigation.  The topics discussed below are not pursued fully in this project, but present 
interesting and relevant material.  

Offset GPS Antenna 

The GPS antenna is usually located on the extremity of the vehicle and can therefore be a 
large distance away from the center of mass.  This can be incorporated into the filter 
measurement equations so that the solution is exact.   

Consider an antenna at offset l, which is a constant vector in body coordinates.  The position 
and velocity of the antenna in ECI coordinates are given by 

  (2-380) lBpp T
l +=

 ( )lBvv T
l ×+= ω . (2-381) 

The GPS solution is a measure of antenna position and velocity in ECF coordinates: 

 ( )lBpRpRp T
elegps +==  (2-382) 

 ( )( ) ( )lBpRlBvRpRvRv T
ee

T
eleelegps +×−×+=×−= ωωω . (2-383) 

The noise terms have been ignored in this analysis, but are present throughout.  This can be 
rearranged as 

  (2-384) lBRpRp T
eegps +=

 ( ) lBRlBRpRvRv T
ee

T
eeeegps ×−×+×−= ωωω . (2-385) 
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We will now express these measurements in terms of the error states.  Since 

 ( )×+== αα IBRBB TTTT ˆˆ  (2-386) 

we can write the following: 

 ( ) ( )αα ×−=×+= lBlBlIBlB TTTT ˆˆˆ  (2-387) 

and 

 ( ) ( ) ( )( ) ( )( ) ( )( ) αδωωδωωδωωαω ××+−×+=×+×+=× lBlBlIBlB TTTT ˆˆˆˆˆˆ  (2-388) 

The small measurements are then 

 [ ] pRlBRlBRpRpp e
T

e
T

eegpsgps δαδ +×−=−−= ˆˆˆ  (2-389) 

and 

  ( )( ) ( )lBpRlBvRvv T
ee

T
egpsgps

ˆˆˆ +×+×+−= ωωδ  

 [ ] [ ] ( )[ ]( ) [ ] [ ] vRpRlBRlBRlBR eee
T

e
T

e
T

ee δδωδωαωω +×−×−××−××= ˆˆˆˆ . (2-390) 

This gives the new formula for measurement compensation and the H matrix in the filter.  
The observability of the system may have improved because of the new α  term in 
δp

[ ]Tˆ α×lBRe

gps.  This arises because an attitude error will now cause a position error.  Looking back at 
the observability test matrix (2-366), these two errors are indistinguishable when attitude is 
constant.  However, changes in attitude will aid attitude alignment, because of the change in 
antenna position.  This is only effective when the antenna offset is large compared to the 
GPS accuracy.   

Note also that changes in l will also provide attitude observability.  This would be the case if 
the GPS receiver switched between multiple antennas at different locations.  Multiple GPS 
receivers would also produce this effect.  This would only be effective on structures that are 
large compared to the GPS accuracy.  

The GPS velocity equations also contain α.  In theory, this information is redundant to the 
GPS position information.  The term ( )[ ]Tˆ αω ×× lBRe ˆ  shows that GPS velocity will also be 
affected by an attitude error.  

Offset Accelerometers 

There may also be an offset between the IMU and the center of mass.  This has no effect on 
the gyroscopes, but will add centripetal acceleration to accelerometer measurement.  For an 
accelerometer mounted at a constant offset l, the measured acceleration is 
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 ( )llbffa adm ××+×+++= ωωω& . (2-391) 

This can be expanded in terms of the error states.  We can begin with 

 ( ) ( ) ( )( )( )δωωδωωδτττωωττω +×+−++=×−+= −− ˆˆˆ)( 11 JJIJ ddd& . (2-392) 

For small errors, this reduces to 

 ( ) [ ] [ ]( )δωωωωωδτττω ×−×−×−++≈ −− ˆˆ)ˆ(ˆˆ 11 JJJJJdd& , (2-393) 

which produces 

( ) ( ) [ ] [ ]( )δωωωωωδτττωω ×−××−××+×−+×−≈×−=× −− ˆˆ)ˆ(ˆˆ 11 JJJlJJlllll dd&& .  
  (2-394) 
The centripetal term can be expanded as well: 

 ( ) ( ) ( )( ) ( ) ( ) ( )lllll ××+××+××≈×+×+=×× ωδωδωωωωδωωδωωωω ˆˆˆˆˆˆ . (2-395) 

The cross products can be reversed and grouped to produce the following: 

 ( ) ( ) [ ][ ] ( )[ ]( )δωωωωωωω ××+××−××≈×× llll ˆˆˆˆ . (2-396) 

These results suggest the measurement compensation 

 ( ) ( ) ( )lJJllbffaa dadmm ××−××−+×+−−−= − ωωωωττδ ˆˆ)ˆ(ˆˆ 1  (2-397)  

which produces the small measurement  

 [ ] [ ]( ) [ ][ ] ( )[ ]( ) addm bflllJJJla δδδτδωωωωωδ ++×−××−××−×−××= − ˆˆˆˆ1 . (2-398) 

This will increase the observability of body rates and gyroscope biases in a rotating vehicle.  

This completes the theoretical discussion.  We now proceed to investigate the filter 
performance in simulation.  
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3. Simulation 
Numerical simulation has been conducted on a PC using software models of the filter and 
dynamics.  This is a valuable tool for characterizing filter performance.  It provides a large 
variety of test scenarios and methods of analysis.  The filter robustness can be quantified and 
areas of weakness can be exposed.  Simulation is the most comprehensive test of filter 
function. 

The benefits of simulation can be categorized into several areas.  First, it provides a way to 
verify that filter equations are derived and programmed correctly.  Second, it confirms and 
extends the theoretical analysis.  For example, the observability predictions are 
complemented by the simulation of the covariance.  Finally, simulation provides a method of 
testing the filter performance under different operating conditions.  Simulations have been 
conducted using both real and flight data, which provides both realistic and extreme testing 
environments.   

This simulation discussion is divided into several areas.  Section 3.1 gives an overview of the 
Simulation setup and process, describing the tools and datasets that are used.  Section 3.2 
describes the Simulink model that is used for simulation.  This provides a summary of the 
software implementation of the filter algorithm. 

Section 3.3 presents the results from covariance analysis, in which the filter covariance is 
propagated numerically using different trajectories, providing a theoretical estimate of filter 
accuracy.  This tool extends the observability analysis by quantifying the effect of noise 
parameters and flight path richness.  It also predicts the filter sensitivity to the noise of each 
sensor and to other parameters.  This produces useful guidelines for system design and sensor 
selection.  

Section 3.4 presents the result from full simulation, in which the filter operates on simulated 
data.  This shows that actual filter convergence matches the covariance analysis.  Section 3.5 
incorporates real flight data into the simulation.  In these studies, the filter is tested in a 
realistic operating environment.  Finally, section 3.6 focuses on the performance of the 
nonlinear initializer, which uses gyrocompassing to bring the state estimate within the 
capture range of the Extended Kalman Filter.      
 
 
3.1 Overview 
 
This simulation provides a software implementation of the filter and the ability to test its 
performance.  This requires routines to input the measurements and truth data.  It also 
requires routines to analyze and plot the results.  
 
Simulation is conducted in the MATLAB/Simulink environment, which are products of The 
MathWorks.  This software provides a full set of mathematical and data analysis tools, 
including several differential equation solvers.  It utilizes a graphical block diagram 
representation, which is very flexible and easy to document.  This software is used both to 
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implement the filter itself and for auxiliary data processing.  Simulation parameters, such as 
the noise covariances, are loaded from a script.   
 

   Measurements Filter 

 
Figure 3-1:  Simulation Block Diagram 

 
The simulation itself consists of several components, as shown in Figure 3-1.  Data flow 
begins with the measurements block, which contains the data from the IMU and GPS 
receiver as well as status lines indicating the arrival of new measurements.  This data can be 
generated from four different sources:   
 
 1.  Simulated measurements for an Earth stationary vehicle 
 2.  Simulated measurements for a rigid body in motion 
 3.  Recorded flight data from a small aircraft    
 4.  Recorded flight data from a booster rocket 

The flight data is available from current projects at MIT Lincoln Laboratory.  The aircraft 
dataset contains measurements from a small airplane during takeoff, maneuvering, and 
landing.   The booster rocket dataset contains measurement from a short range launch vehicle 
built by Orbital Systems Corporation.   

The measurement data is processed by the filter, which is the Extended Kalman Filter 
described in detail in the Section 2.3.  This block contains subsystems for propagating the 
full nonlinear state, linearizing about the estimated state, and applying the Kalman filter 
update.  It also includes provisions for initialization and for calculating additional navigation 
outputs, such as geodetic coordinates.  This block is described in more detail in Section 3.2. 

The truth data is used as a reference to assess filter performance.  The truth data is generated 
differently depending on the measurement set.  For simulated measurements (sets 1 and 2 
above), the truth data is arbitrary and is actually used to generate the measurements.  The 
truth data for an Earth stationary vehicle is calculated using the Earth’s rate of rotation.  For 
simulated rigid body motion, the force and torque are input to a dynamic model which 
calculates the truth data.  For real flight data, the truth data is taken from another navigation 
system, either onboard or post-processed.   

In comparison, the simulated measurements have the advantage that the truth data is 
precisely known and controlled.  It is possible to exhaustively test the effect of all 
parameters.  However, this simulated data uses many of the same models as the filter, so it is 

Plots  
and 

Analysis 
Truth  
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possible for modeling errors to go undetected.  The real flight data contains the actual noise 
and dynamics, so it will uncover modeling errors.  However, many parameters cannot be 
manipulated when using these datasets. 

Output from the filter and truth model are analyzed and plotted in the final block.  Most data 
is also logged to a MATLAB workspace where it can be archived and processed later using 
scripts.  This allows multiple simulations to be compared. 

The simulation produces several results of interest, but the attitude and position accuracy are 
of primary importance.  This accuracy can be assessed using several different methods.  The 
most direct measure is to compare the filter output to the truth data.  However this assumes 
that the truth data is, in fact, correct.  For the recorded flight data, the “truth” data does 
contain glitches and accuracy limitations. 

A second reference is the pure inertial solution which can be calculated directly from the 
IMU.  This solution is numerically robust and accurately represents the high frequency 
dynamics.  However, this solution is prone to drift over long periods of time.  The pure 
inertial solution is therefore best used as a short-term reference.  The filter estimate should 
mimic the inertial solution, but may be offset. 

Additional evaluation comes from the Kalman filter itself.  The covariance gives indication 
of the degree of observability of the system and should converge to acceptable values.  The 
variance can also be compared with the actual estimation error.  The chi-squared statistic 
provides a measure of filter health.  In effect, it gives the improbability of each measurement.  
Its value should remain reasonable, and will spike when a measurement does not fit the 
model. 
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3.2 Filter Implementation 
 
 

 
Figure 3-2:  Top Level Filter Architecture 

The specific filter implementation is summarized here.  This describes the flow of 
information between filter components and outlines where specific calculations take place.  It 
is representative of the actual Simulink model. 

The top level filter architecture is shown is Figure 3-2 and consists of three main 
components.  The Initialization block performs startup initialization and is responsible for 
calculating the initial state vector xo.  This block can provide an instant initialization, where 
initial values are simply converted to the coordinate system of the state vector.  Alternatively, 
this block can use the measurement vector z to estimate the initial state.  If the vehicle is 
Earth stationary, this will use the nonlinear gyrocompassing routine that was described in 
Section 2.1.6.  As a byproduct, this block also outputs a pure inertial solution. 

The Extended Kalman Filter performs the state estimate.  Its inputs are the control input u, 
measurements z, and the initial state xo.  It does not begin execution until the Initialization 
block has determined the initial state.  The Extended Kalman Filter outputs the state estimate 

 in addition to the measurement error x̂ z~ , the estimated covariance P, and the chi-squared 
statistic .  The details of this block will be described shortly. 2χ

The Post Filter block calculates additional navigation outputs that are not part of the state 
vector.  This includes the conversion to NED and geodetic coordinates.  Euler angles are also 
computed in this block.  This technique is an alternative to using these quantities as state 
variables.  The goal here is to make the Extended Kalman Filter as simple as possible.   

The details of the Extend Kalman Filter itself are shown in Figure 3-3.  These four blocks 
perform the state estimation and linearization and the calculation of the Kalman gain and 
covariance. 
 

 
Post 
Filter 

 
Extended 
Kalman 
Filter 

Initialization 

z 

u 

xo 

x̂

P z~ 2χ

NED 

Geodetic 

Euler 
Angles 

Pure INS

 94



 
Figure 3-3:  Data flow in the Extended Kalman Filter 

The Nonlinear State Update block is responsible for propagating and updating the estimate of 
the full state vector.  This requires integrating the full nonlinear state equations, using the 
initial condition xo and control input u.  It also requires processing the innovations i, which 
the Kalman filter generates with each measurement. 

The Jacobians block linearizes the system and produces the instantaneous state matrices.  
This is primarily A and H, but can also include F and L.  These matrices are calculated using 
the closed-form solution for the Jacobian that was presented in Section 2.3.2.  In this fashion, 
the differentiation has been performed analytically and the Jacobians are expressed as a 
function of the current state estimate . x̂

z
The Measurement Compensation block uses the state estimate  and control input u to 
compensate the nonlinear measurement z.  This produces a small measurement error 

x̂
δ , 

where xHz δδ =

z

.  This allows for a simpler and more accurate linearization of the 
measurements.  This again uses the equations given in Section 2.3.2.   

The Kalman Update block is responsible for implementing the Kalman filter, as described in 
Section 2.2.  This includes the propagation of the covariance and the calculation of the 
Kalman gain.  The linearized state matrices are input.  The measurement error δ  is also 
input to calculate the innovations i.  This filter also requires noise parameters, including the 
covariance of the initial estimate, the process noise, and the measurement noise.  This block 
uses the continuous-discrete formulation with a constant forgetting factor. 

Further details of the system are straightforward matters of programming the equations 
presenting in the Theoretical Derivation of this report (Section 2).  Some care must be taken 
to organize the order of execution so that linearization and measurement updates use the most 
recent state estimate.    

 
Kalman
Update 

Nonlinear 
State 

Update 

z 

u 

xo 

x̂  Jacobians 

 P z~
2χ  

Measurement
Compensation

A, H i i 

δ z 
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3.3 Covariance Analysis 
 
The Kalman Filter propagates the covariance of the estimation error for the purposes of 
calculating the optimal gain.  Conveniently, this covariance gives a theoretical prediction of 
filter accuracy.  Covariance analysis can also be used to determine the sensitivity of the filter 
to different noise parameters.  This is important for sensor design and cost tradeoffs, and 
helps build an understanding of the system observability. 
 
Since covariance analysis is based on the theoretical system model, modeling errors will 
affect the true accuracy.  The analysis of modeling errors that was conducted in Section 
2.2.4.3 showed that the true accuracy will be worse than the estimated accuracy because the 
modeling errors present an additional source of error.  In most regards, the predictions of 
covariance analysis represent the best that the filter can be expected to perform.  To further 
improve performance, the system and sensor noise characteristics must be improved.  If 
performance is significantly worse than covariance predictions, there is probably an error in 
the model or filter implementation.      
 
For this study, the filter is simulated and the covariance is recorded.  To speed up simulation, 
the state estimate and measurement errors do not need to be calculated.  The covariance will 
typically reach a steady state, although there is a dependency on the flight path.  This analysis 
is conducted using three different flight paths.  A large number of parameters are varied 
through the study, with special focus on sensor noises.   
 
Table 3-1:  Nominal Simulation Values 

Parameter Value 
Gyro Accuracy 1.64 ×10-2 deg/s
Accelerometer Accuracy 0.0305 m/s2

GPS Position Accuracy 1 m 
GPS Velocity Accuracy 0.1 m/s 
GPS Rate 1 Hz 
Force Disturbance 1 m/s2

Torque Disturbance 1 rad/s2

Other Process Noise 0 
Latitude* 45° 
Forgetting Rate 0 
Inertia (normalized) 1 kg-m2

Initial Attitude Standard Deviation 3.16 deg 
Initial Position Standard Deviation 1 m 
Duration 15 min 

* Flight data uses the actual latitude as nominal 
 
The nominal simulation, which uses noise and parameters as expected in the actual hardware, 
is used as a baseline for comparison.  The nominal parameters are shown in Table 3-1.  Force 
and torque disturbances have been chosen to be sufficiently unpredictable so that 
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measurement error dominates the accuracy.  The remaining process noise terms, such as 
in , were set to zero. vp =&
 
Simulations have been run both with and without biases in order to study their effect.  When 
biases are used, the nominal values are as given by Table 3-2.    
 
Table 3-2:  Nominal Bias Values 

Parameter Value 
Gyroscope bias 2.78 ×10-4  deg/s 
Accelerometer bias 3 ×10-4 g 
Bias time constant 20 min 

 
The following sections present covariance analysis using the Earth stationary, aircraft, and 
booster rocket trajectories.  For each trajectory, a number of sensitivities are explored.  First, 
the sensitivity to IMU and GPS noise is studied.  Then biases are added and the effect of 
varying bias levels is explored.  For the Earth stationary trajectory, the fixed-to-Earth 
measurement and the effect of latitude are characterized.  For all trajectories, the effects of 
the GPS rate and the forgetting rate are also studied.  
 

3.3.1 Earth Stationary 
 
The first flight path is Earth stationary, representing a vehicle that is nearly motionless on the 
Earth’s surface.  This flight path provides a near worst case, in which the navigation solution 
does not benefit from vehicle motion.  (The case of a vehicle that is stationary in inertial 
coordinates is worse, but is somewhat unlikely.)  Most simulations use only GPS and IMU 
measurements, but the effect of the fixed-to-Earth measurement is also explored. 
 
Each simulation produces a time plot of the covariance of the attitude and position estimation 
errors.  For analysis, it is convenient to resolve these 3 by 3 covariance matrices into their 
principal values and to express the result as a standard deviation.  The nominal simulation is 
shown in Figure 3-4.  It can be seen that accuracy improves asymptotically as time 
progresses and approaches a steady state value.   
 
The position accuracy dynamics are relatively fast because position is measured directly by 
the GPS.  The attitude plot shows both a fast and slow response.  The direction of the slow 
response corresponds to rotation about the local vertical, commonly known as heading (NED 
yaw).  This plot suggests that heading accuracy continues to decrease after the 15 minute 
simulation, but 15 minutes was chosen as a reasonable time for comparison.  
 
The substantial difference between heading accuracy and other attitude accuracy is the result 
of the sensor architecture.  This behavior is in agreement with the observability analysis in 
Section 2.3.3 and the discussion of initial alignment in Section 2.1.6.  Strong attitude 
alignment is possible by aligning the force vector, which, in this case, is the reaction to the 
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gravitational force.  As the Earth rotates, the direction of this force slowly changes, which 
allows for weak heading alignment. 
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Figure 3-4:  Time Plot of Nominal Attitude and Position Accuracy (principal standard deviations) 

Throughout the analysis, attitude exhibits this characteristic of having one dimension of 
poorer accuracy.  It is frequently aligned with heading, because the force vector tends to be in 
the vertical direction.  For most of the analysis, we will plot this worst dimension separately 
from the other dimensions.   

A set of simulations have been constructed to explore the effects of varying parameters.  The 
final accuracy after 15 minutes is used for comparison between simulations.  The accuracy 
results are then sorted by the varied parameter. 

Figure 3-5, shows the first of these simulations.  In this case, the effect of varying the 
measurement noise of the IMU and GPS is studied.  The figure is divided into three panes 
which show the accuracy in the worst attitude direction (left plot), other attitude directions 
(middle plot), and position (right plot).  This plot format is used throughout the covariance 
analysis. 

For each plot, the accuracy is plotted against the relative noise on a logarithmic, where 100 
represents the nominal noise value given by Table 3-1.  These plots are interpreted by 
looking at the slope of each curve.  Each line represents the effect of varying a different 
parameter.  A steep curve means that accuracy is sensitive to that parameter, and the 
predicted accuracy values can be read from the vertical axis. 

Beginning at the left, the worst attitude is most sensitive to the gyroscope accuracy.  It is also 
sensitive to accelerometer accuracy.  These dependencies exist because the IMU is used to 
align the attitude.  This direction requires detection of Earth rate, so the gyroscope noise is 
critical.  The sensitivity to GPS position and velocity is very small.   
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Figure 3-5:  Accuracy under Varying Noise in the Gyroscopes (ω), Accelerometers (a), GPS Position (p), 
and GPS Velocity (v) 

The other attitude directions (middle plot) have equal dependence on gyroscopes and 
accelerometers.  These attitude dimensions can be oriented using gravity vector alignment.   

Position accuracy (right plot) depends on the accuracy of the GPS position and velocity.  The 
accelerometer noise has a small effect on accuracy.  

The difficulties of heading alignment can be dramatically reduced if it is known that the 
vehicle is stationary with respect to the Earth.  This is treated by the filter as an additional 
measurement of body rate and velocity.  The accuracy of this measurement is the amount of 
vehicle motion or vibration that is present when this measurement is used.  Nominal values 
for this accuracy are shown in Table 3-3.  
 
Table 3-3:  Nominal Values for Fixed-to-Earth Measurement 

Parameter Value 
Rate noise 0.01 deg/s 
Velocity noise 1 mm/s 

 

Figure 3-6 shows the effect of varying the amount of motion relative to these values.  At 
these levels, the fixed-to-Earth measurement greatly improves accuracy.  It is therefore 
highly recommended that this feature be used when the vehicle is Earth stationary.  For 
comparison, the original result, where the vehicle was stationary but the fixed-to-Earth 
measurement was not used, is plotted as the point labeled “not fixed”.   

The increase in attitude accuracy is the result of an improved measurement of body rates, as 
is evident from the steep slopes in the accuracy plot.  When the vehicle is Earth stationary, 
the body rotation rate is equal to the rate of Earth rotation, which is precisely known.  There 
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remains some uncertainty, because the vehicle may not be absolution stationary, but this 
uncertainty can be less than the gyroscope noise.   
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Figure 3-6:  Accuracy using Fixed-to-Earth Measurement 

Position accuracy is also greatly improved.  Without the fixed-to-Earth measurement, 
position accuracy stems from the accuracy of the GPS and the accelerometers.  With this 
measurement, the velocity is precisely known.  As a result, the noise in the accelerometers is 
no longer harmful to the position estimate.  The position accuracy curves are flat for these 
noise values because the fixed-to-Earth velocity measurement is much better than the 
accelerometers.  However, the fixed velocity curve will eventually slop upward if the vehicle 
vibrations increase to levels comparable to the accelerometer noise. 

A study of the effect of biases in the gyroscopes and accelerometers has also been conducted, 
using the nominal bias parameters listed in Table 3-2.  The effect of biases when using the 
fixed-to-Earth measurement is shown in Figure 3-7.  In this case, the gyroscope bias is fully 
observable, and only the accelerometer bias has an effect on attitude accuracy.  The position 
accuracy is not affected, because the GPS measurements remain unbiased. 
 
The effect of biases when the fixed-to-Earth measurement is not used is shown in Figure 3-8.  
In this case, the attitude performance is significantly worse.  The heading error is now 
dependent primarily on the magnitude of the gyroscope bias.  This is because both the 
heading error and the gyroscope heading bias must now be observed through Earth rotation. 
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Figure 3-7:  Accuracy with Biases using the Fixed-to-Earth Measurement 
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Figure 3-8:  Accuracy with Biases without using the Fixed-to-Earth Measurement 

 
The effect of the latitude variations is shown in Figure 3-9.  Locations near the Earth’s poles 
suffer because the Earth rotation vector is aligned with the gravity vector, so the applied 
force remains constant as the Earth rotates.  Note that the initial accuracy for these 
simulations was 3.16°, so there is no alignment improvement at the pole.  
 
The effect of increasing the GPS rate is shown in Figure 3-10.  Attitude accuracy is not 
significantly affected, but positioning accuracy increased.  This is the result of averaging 
more data points.  With N samples, the standard deviation reduces by N .  However, this 
result relies on the assumption that the GPS noise is independent of previous values.  

 101



0 20 40 60 80 100
0.5

1

1.5

2

2.5

3

3.5

Latitude (deg)

A
tti

tu
de

 (d
eg

)

 
Figure 3-9:  Effect of Latitude on Attitude Accuracy 
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Figure 3-10:  Effect the GPS Rate 
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Figure 3-11:  Effect of the Forgetting Rate 

 
Finally, the effect of data forgetting is shown in Figure 3-11.  A faster forgetting rate 
produces larger covariance, because less data is used in the solution.  This result is 
misleading though, because the covariance has been modified to produce forgetting.  The 
benefit of data forgetting is robustness, since poor measurements and filter glitches are more 
quickly ignored.  In fact, a large variance will lead to higher gains in the Kalman filter which 
will cause faster convergence in the actual error.  Primarily, we must ensure that the 
covariance remains reasonable for our model.  The worst attitude covariance at large 
forgetting rates begins to stretch the small angle assumption.    
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3.3.2 Aircraft Flight Path 
 
Simulations were repeated using the aircraft flight data, which contains measurements from 
sensors aboard a small airplane.  The results demonstrate that flight path complexity can 
greatly increase the attitude accuracy.  More details of this flight path are shown later in the 
full simulations of Section 3.5.1. 
 
The time plot of accuracy for the nominal simulation is shown in Figure 3-12.  The attitude 
accuracy has improved significantly, as a result of the richness of the flight path.  Takeoff, 
landing, and aircraft maneuvers all generate large variation in the direction of applied force.  
Heading accuracy was poor prior to takeoff.   
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Figure 3-12:  Time plot of Nominal Attitude and Position Accuracy 

 
The sensitivity to individual parameters can be studied again using this flight path.  Figure 
3-13 shows the effect of varying the measurement noise of the IMU and GPS.  Attitude 
accuracy is very good and all three dimensions show similar accuracy, due to the substantial 
variation in the direction of force.  Attitude accuracy depends equally on the gyroscopes and 
accelerometers.  Gyroscope measurement of Earth rate is extremely difficult in a moving 
vehicle, but accurate gyroscopes still help to connect regions with different force directions. 
 
The position accuracy is the same as for Earth stationary operation.   

The effect of biases in the IMU is shown in Figure 3-14.  Bias compensation is very 
successful and the estimate is almost as good as the estimate without biases.  This is because 
the biases are highly observable under this flight path.   
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Figure 3-13:  Accuracy under Varying Noise in the Gyroscopes (ω), Accelerometers (a), GPS Position (p), 
and GPS Velocity (v) 
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Figure 3-14:  Accuracy under Varying Gyroscope Bias (ω) and Accelerometer Bias (a) 

 
The effect of the GPS Rate is shown in Figure 3-15.  There is slight improvement at faster 
GPS rates.  Remember that this is only true when the GPS errors of successive measurements 
are independent.   

The effect of data forgetting is shown in Figure 3-16.  In this flight path, forgetting at faster 
rates is quite acceptable.  It may be advantageous to use a higher forgetting rate to provide 
robustness to anomalous conditions.   
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Figure 3-15:  Effect of the GPS Rate 

0 0.005 0.01 0.015 0.02
0

0.05

0.1

W
or

st
 A

tti
tu

de
 (d

eg
)

0 0.005 0.01 0.015 0.02
0.02

0.04

0.06

0.08

O
th

er
 A

tti
tu

de
 (d

eg
)

0 0.005 0.01 0.015 0.02
0.3

0.32

0.34

0.36

Forgetting Rate (1/s)

Po
si

tio
n 

(m
)

 
Figure 3-16:  Effect of Data Forgetting 

 

3.3.3 Booster Flight Path 

The booster flight data represents rocket-powered flight.  This dataset contains three distinct 
operating modes.  The data begins before liftoff, when the rocket is Earth stationary.  This is 
followed by the boost phase, which contains extremely large accelerations and disturbances.  
Force here is predominantly in the axial direction, but the rocket trajectory curves slowly.  
Following the boost phase is a period of exoatmospheric maneuvering, which contains very 
little measured acceleration because the vehicle is in freefall.  With the high speeds of a 
rocket, this flight path covers very large distances.  More details of this flight path are shown 
in the full simulations of Section 3.5.2. 
 
The simulation time plots of attitude and position accuracy are shown in Figure 3-17.  A 
large improvement in the worst-direction attitude accuracy occurs at liftoff (t = 0) and during 
the boost phase where the force is large.  The fact that attitude accuracy began improving 
before liftoff is the result of estimated ground vibrations, and will be discussed with full 
simulation in Section 3.4.3.  In the final portion of this data, corresponding to 
exoatmospheric flight, the attitude accuracy degrades slightly because the measured 
acceleration is small.  (This effect is barely visible on these plots, but is readily apparent at 
smaller scales.)     
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Figure 3-17:  Time Plot of Nominal Attitude and Position Accuracy 

 
Accuracy values under varying noise conditions are plotted in Figure 3-18.  Accuracy is very 
similar to the accuracy using the aircraft trajectory, although slightly poorer in the worst 
attitude direction.  This corresponds to axial rotation (roll), because the boost acceleration is 
almost entirely in the axial direction.  Note that attitude accuracy shows almost no sensitivity 
to GPS accuracy.  This is because distances and velocities are very large in this trajectory, so 
small amounts of GPS noise are irrelevant for attitude alignment.  
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Figure 3-18:  Accuracy under Varying Noise in the Gyroscopes (ω), Accelerometers (a), GPS Position (p), 
and GPS velocity (v) 
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The effect of biases is shown in Figure 3-19.  Once again, the trajectory is rich enough to 
observe these biases, and they do not seriously affect accuracy.  The booster trajectory shows 
more sensitivity to gyroscope biases and less sensitivity to accelerometer biases, in 
comparison with the aircraft trajectory.    
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Figure 3-19:  Accuracy under Varying Gyroscope Bias (ω) and Accelerometer Bias (a) 
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Figure 3-20:  Effect of GPS Rate 
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Figure 3-21:  Effect of Data Forgetting 
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Figure 3-20 shows the effect of the GPS rate, which does not affect attitude accuracy in the 
booster trajectory.  This again is a reflection of the reduced sensitivity to GPS accuracy 
because large distances are traveled.   

The effect of the forgetting rate is shown in Figure 3-21.  Attitude covariance under 
forgetting is an order of magnitude larger than the covariance using the aircraft trajectory.  
The booster trajectory richness is due to the gradual arc in the flight path, which is only 
visible over long periods of time.  Also, the booster trajectory richness is concentrated in the 
boost phase of flight. 

3.4 Simulated Data 

The full performance of the filter has also been characterized in simulation.  The following 
analysis expands on the previous covariance analysis by introducing simulated 
measurements.  These measurements are created from a known truth model, but are 
corrupted by noise using pseudorandom number generators.  The state estimate is calculated 
and the filter performance is studied under highly-controlled noise conditions. 

The primary output of these simulations is a time plot of the estimation error.  For 
comparison, the estimated standard deviation of the filter error is also plotted.  This is the 
same as the covariance analysis conducted previously and represents an expected 
convergence curve.  The actual error is a random variable, but should have statistics that 
match the estimated standard deviation.  

A variety of studies have been performed in this context.  Section 3.4.1 studies normal filter 
operation.  In these conditions, the filter is given the correct noise parameters.  As a result, 
the initial errors and measurement noise are consistent with the noise model of the filter.  The 
process noise for disturbances and bias dynamics is also consistent.  A rich trajectory is used, 
so that there is ample information to determine all state estimates.   

Section 3.4.2 studies filter robustness to anomalous conditions, where the filter model is no 
longer consistent with the measurement data.  Here, the filter uses underestimated values for 
initial errors, measurement noise, and process noise.  Measurement glitches are also studied.  
Note that overestimated noise does not present a problem in filter operation.  It does cause 
suboptimality, however, because the filter discredits valid information.  

Section 3.4.3 studies behavior under other flight paths, including the Earth stationary, 
aircraft, and booster rocket trajectory.  The latter two datasets are derived from the flight 
data, but have been modified to provide an exact truth model and adjustable noise 
parameters.  In effect, a simulated dataset was created with a trajectory that closely matches 
the flight data.  These simulations provide analysis of observability and accuracy in realistic 
flight environments. 

Finally, section 3.4.4 analyzes the effect of removing bias states from the filter.  This is 
motivated because these additional states add computation.  If they do not produce improved 
accuracy, they should be removed.   
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3.4.1 Nominal Operation with Initial Errors 
 
The first test of filter performance is under normal operating conditions.  These simulations 
use a correct noise model so that the actual noise values match the filter’s covariance 
parameters for measurement, process, and initial state.  The state estimate is initialized with 
an error of one standard deviation in each element of the state vector. 
 
For these simulations, a rich trajectory is used, shown in Figure 3-22.  This trajectory 
contains gradual sinusoidal variations in attitude and rapid variations in the body force.  The 
torque that is used to produce this attitude variation is also plotted.  A full truth data set, 
including position, velocity, and body rates, is created from this force and torque.  The force 
and torque of this trajectory are given to the filter as a control input, but the filter is required 
to estimate additional force and torque disturbances.  This trajectory is not intended to 
represent realistic motion, but provides good characterization of the filter behavior in 
situations with rich information.  The effect of other trajectories is pursued later in 
Section 3.4.3. 
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Figure 3-22:  Trajectory for Normal Operation Simulations 

 
The initial errors, which matched the initial state standard deviations, are listed in Table 3-4.  
These values have been chosen to be reasonable and consistent with the hardware.  However, 
the actual biases are very small, and produce simulations that are successful but 
uninformative.  The biases are dominated by the white measurement noise, and the effect of 
biases is obscured.  For the purposes of illustration, most studies increase the biases by a 
factor of 100.  This makes proper bias compensation critical for filter performance.  In most 
cases, constant biases are used in simulation. 
 
The attitude response is shown in Figure 3-23.  Convergence is good in all three dimensions, 
due to the rich trajectory.  Error remains in good proportion with the estimated standard 
deviation.  Progress in the estimate occurs most noticeably during the 1 Hz GPS updates.  
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Body rate response is shown in Figure 3-24.  Note that the time scale is extremely 
compacted.  Because body rates are measured accurately by the gyroscopes, the rate error is 
nearly eliminated after the first IMU measurement. Torque disturbance convergence, shown 
in Figure 3-25, requires two measurements to observe, as the derivative of body rate.  There 
is again good agreement between the estimated standard deviation and the actual error. 
 
 
Table 3-4:  Initial Errors for Nominal 
Simulation 

State Initial Error 
Attitude 3.16° 
Body Rate 1°/s 
Torque Disturbance 1 rad/s2

Position 10 m 
Velocity 10 m 
Force Disturbance 10 m/s2

Gyroscope Bias* 2.78 × 10-2 deg/s
Accelerometer Bias* 3 × 10-2 g 
Gravity Model Bias* 1 × 10-4 m/s2

* 100 times actual value 

Table 3-5:  Measurement Noise for Nominal 
Simulations 

Measurement Noise Standard 
Deviation 

Gyroscopes 0.016 deg/s 
Accelerometers 0.30 m/s2

GPS Position 1 m 
GPS Velocity 0.1 m/s 

 

Table 3-6:  Distubance Time Constants 

Noise Time Constant
Torque Disturbance 1 s 
Force Disturbance 1 s 

 
 
 

0 10 20 30 40 50 60
-5

0

5

α
 x

 (d
eg

)

Error
Stdev

0 10 20 30 40 50 60
-2

0

2

4

α
 y

 (d
eg

)

0 10 20 30 40 50 60
-2

0

2

4

α
 z

 (d
eg

)

Time (s)

 
Figure 3-23:  Attitude Error Response 
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Figure 3-24:  Body Rate Response 
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The position response is shown in Figure 3-26, and shows rapid improvement with the first 
GPS measurement.  The initial increase in error is the result of the velocity error, which is 
shown in Figure 3-27.  The force disturbance response is shown in Figure 3-28.  One 
accelerometer measurement is required to measure this disturbance. 
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Figure 3-25:  Torque Disturbance Response  
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Figure 3-26:  Position Response
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Figure 3-27:  Velocity Response 
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Figure 3-28:  Force Disturbance Response
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Figure 3-29:  Gyroscope Bias Response 

0 10 20 30 40 50 60
-0.5

0

0.5

1

ba
 x

 (m
/s

2 ) Error
Stdev

0 10 20 30 40 50 60
-0.5

0

0.5

ba
 y

 (m
/s

2 )
0 10 20 30 40 50 60

-0.5

0

0.5

ba
 z

 (m
/s

2 )
Time (s)  

Figure 3-30:  Accelerometer Bias Response
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Figure 3-31:  Gravity Model Bias Response 
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Figure 3-32:  Chi-Squared Statistic

 
 
 
The response for biases is shown in Figure 3-29 for gyroscopes, Figure 3-30 for 
accelerometers, and Figure 3-31 for the gravity model.  These biases converge more slowly, 
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and depend on the richness of the trajectory.  It can be seen by the estimate standard 
deviations that certain periods of time offer information towards these state estimates, while 
others do not.  Ultimately, the convergence of these states is not required because the 
estimate of position and attitude is of greater importance.  However, convergence of the bias 
states will produce proper bias compensation and increase overall accuracy.  It all cases, the 
estimates of bias state must remain small and bounded. 
 
Finally, the chi-squared statistic is plotted in Figure 3-32.  The value remains small, 
signifying that the measurement errors are in agreement with the estimated covariance.  The 
mean appears to remain constant, which is a sign of healthy filter operation. 
 

3.4.2 Unexpected Noise and Disturbance 

These simulations explore abnormal conditions where the filter model is not in full 
agreement with the measurement data.  These are situations that exceed filter design 
specifications.  By studying these conditions, we wish to characterize filter robustness in this 
regard. 

These anomalies fall into several categories.  The first set is underestimated noise, where the 
filter uses noise covariances that are too small.  This includes the covariance of the initial 
state, the measurement noise, and the process noise.  The second set of anomalies is 
measurement glitches.  In these simulations, bad measurements are intentionally inserted into 
the data.  This can be either an isolated glitch or a step in the measured value.  

Throughout this section, the benefit of data forgetting is explored.  In many situations, data 
forgetting will improve filter recovery by eventually discarding the anomalous information.   

 
Underestimated Initial Errors 

We begin with the case of underestimated initial errors.  The actual initial errors are 
maintained at the same levels as in the nominal simulations, but the initial covariance is 
reduced.  This leads to an initial error that is much larger than the estimated standard 
deviation.  As a result, the Kalman filter calculates gains that are too small and the response 
can be slow. 

The case where the initial attitude error is underestimated by a factor of 10 is shown in 
Figure 3-33.  The result shows somewhat erratic behavior, with eventual approximate 
convergence.  Note the steady state error in the z direction.  The estimates of other variables 
are generally good, although irregularities in the bias estimates result from attempting to 
accommodate the data. 

This behavior can be dramatically improved using data forgetting.  Figure 3-34 repeats the 
simulation with a forgetting time constant (1/rate) of 30 seconds.  This fast forgetting rate 
causes the estimated standard deviation to grow with time, which keeps gains artificially high 
and leads to proper convergence.  From another viewpoint, this technique forgets the initial 
condition. 
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Figure 3-33:  10x Underestimated Attitude Error 
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Figure 3-34:  Benefit of Forgetting  
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Figure 3-35:  Attitude Error caused by 
Underestimated Position Error 
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Figure 3-36:  10x Underestimated Position Error
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The effect of underestimating the initial position is less serious, because position is directly 
measurable.  An error does result in both attitude (Figure 3-35) and position (Figure 3-36), 
but these errors diminish with time.   

The chi-squared statistic is a good tool for diagnosing this type of problem.  The result for the 
previous simulation of underestimate position is shown in Figure 3-37.  The first several GPS 
measurements create large spikes because they do not match the estimated state.  As the state 
estimate improves, the GPS measurement error becomes smaller and the chi-squared statistic 
decreases. 
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Figure 3-37:  Chi-Squared Statistic for Underestimated Initial Position Error 
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Underestimated Measurement Noise 
 
Simulations were conducted using underestimated noise, meaning that the filter was given a 
measurement noise covariance that was smaller than the actual measurement noise.  Noise 
levels were maintained at their nominal levels while the filter parameters were reduced.  The 
filter is reasonably robust in this respect. 
   
For example, Figure 3-38 shows a plot of attitude error when all measurement noises are 
underestimated by a factor of 10.  This results in more noise in the estimate.  By 
underestimating the measurement noise, gains are two high, and the measurement noise is 
not successfully filtered.  Convergence does occur, although the result is less accurate.   
 
The excess measurement noise is quite obvious in the chi-squared statistic, shown in Figure 
3-39.  The large spikes correspond to the arrival of GPS measurements.    
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Figure 3-38:  Attitude Accuracy with 
Underestimated Measurement Noise 
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Figure 3-39:  Chi-Squared Statistic for 
Underestimated Measurement Noise

 
Underestimated Process Noise 

The filter is also reasonably robust to underestimated process noise.  In these simulations, the 
filter process noise covariance is smaller than the actual process noise.  The force and torque 
disturbances have the largest noise covariance and therefore have the greatest affect. 

Most simulations show good results.  Attitude accuracy is noticeably compromised at 100 
times the process noise, as shown in Figure 3-40.  This result is important, because it is 
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difficult to know the actual values for process noise, especially for force and torque 
disturbances. 

The chi-squared statistic is plotted in Figure 3-41.  The value is larger that the nominal 
simulation (Figure 3-32), but the average does not appear to grow over time. 
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Figure 3-40:  Attitude Response with 
Underestimated Process Noise (100x) 
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Figure 3-41:  Chi-Squared Statistic with 
Underestimate Process Noise (100x)

 
Unmodeled Measurement Glitches 
 
These simulations study the effect of a measurement glitch.  This is an abrupt measurement 
error that is well beyond the noise model.  Two types of glitches are studied: a point glitch, 
where there is only one bad measurement, and a step glitch, where a sensor unexplainably 
shifts its measurement value.   
 
The effect of a single point GPS position glitch is shown in Figure 3-42.  A measurement 
error of 10x was applied at t = 10. The result is a jump in the position estimate at that time, 
but recovery does occur.  The attitude estimate, shown in Figure 3-43 is unaffected.   
 
The chi-squared statistic is a excellent indicator of measurement glitches, as shown in Figure 
3-44.  Poor measurements of this type can be discarded on the basis of their chi-squared 
value.    
 
The effect of a momentary gyroscope glitch is shown in Figure 3-45.  Recovery occurs rather 
quickly.   
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Figure 3-42:  Position Estimate with GPS 
Position Glitch at t = 10s 
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Figure 3-43:  Attitude Estimate with GPS 
Position Glitch at t = 10s 
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Figure 3-44:  Chi-Squared Statistic with 
GPS Position Glitch at t = 10s 
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Figure 3-45:  Body Rate Estimate during 
Gyroscope Glitch (100x)

 

 118



A step glitch produces a different type of problem.  Here, the measurement error persists, and 
the filter cannot ignore the new value.  For example, a GPS solution may be altered when a 
new satellite comes into view and becomes part of the solution. 
 
The effect of a persistent GPS Position error is shown below.  The transition occurs at t = 10, 
and remains in error by 10 standard deviations.  The position estimate, shown in Figure 3-47, 
gradually approaches the new value.  This error has a small effect on the attitude estimate, 
shown in Figure 3-46.  The chi-squared statistic, shown in Figure 3-48, gradually decreases 
as the filter converges on estimates that agree with the new measurements.   
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Figure 3-46:  Attitude Error with GPS 
Position Step Glitch 
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Figure 3-47:  Position Error with GPS 
Position Step Glitch 
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Figure 3-48:  Chi-Squared Statistic with GPS Position Step Glitch 
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Data forgetting shows mixed results with these disturbances.  For the most part, forgetting 
provides faster recovery because the glitch is more quickly ignored.  However, this fast 
response also creates a greater effect at the time of the glitch.  Since forgetting prefers recent 
data, this technique is beneficial when the glitch is old but harmful when the glitch is recent.  

3.4.3 Additional Trajectories 
 
The previous studies used a trajectory that was rich with information.  This trajectory was 
somewhat contrived and not necessarily realistic.  This section analyzes the effect of less rich 
trajectories with a particular interest in the estimate convergence. 
 
 
Earth Stationary 
 
As mentioned, the Earth stationary trajectory provides poor observability of attitude because 
the gravity vector can only be used to align in two dimensions.  The remaining dimension 
must be aligned using Earth rate, which is very small compared to the gyroscope 
measurement accuracy. 
 
The resulting attitude accuracy is shown in Figure 3-49.  It is apparent that attitude does not 
converge in two dimensions.  The steady error in αx is the result of an unobserved 
accelerometer bias, and this behavior is unavoidable and entirely correct.  However, the error 
in αz persists while the estimated standard deviation converges.  This situation is usually 
indicative of an error in filter construction or operation.   
 
In this particular case, this error is caused by a fundamental problem of the Extended Kalman 
Filter.  The convergence of the covariance is driven by the richness of the trajectory.  More 
precisely, it is driven the richness of the estimated trajectory.  For example, the observability 
of attitude was dependent on the time variation of .  It is possible for noise in the state 
estimate to create this variation.  This causes the filter covariance to converge too quickly, 
producing small Kalman gains, while the actual error has not converged at all.   

f̂

 
This problem is only significant in situations of poor observability.  A linearized Kalman 
filter, where the state estimate is not used as the point of linearization, has the advantage in 
this respect.  This problem can be remedied approximately by using data forgetting or by 
adding artificial process noise to prevent the filter covariance from converging below the true 
value.  The Earth stationary covariance analysis of Section 3.3.1 used a noise free trajectory, 
so the results represent performance without this problem.  These results predicted attitude 
convergence in 10 to 20 minutes.  The starting portions of the aircraft and booster trajectory 
in covariance analysis inadvertently contained some of this effect.   
 
Earth stationary performance did show good estimation of gyroscope biases.  Figure 3-50 
shows that the bias estimate converges after 5 to 10 IMU measurements.  The fixed-to-Earth 
measurement, at nominal accuracy, was used for these results. 
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Figure 3-49:  Attitude Error when Fixed to 
Ground 
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Figure 3-50:  Bias Accuracy when Fixed-
to-Earth

 
Modeled Aircraft Trajectory 
 
The modeled aircraft trajectory is a simulated dataset that is designed to match the flight 
aircraft trajectory.  It has been created using the rigid body dynamics model with force and 
torque values calculated from the flight measurements.  This allows for a simulation with a 
known truth model and full control over noise parameters, while maintaining conditions that 
are very similar to the flight environment. 
 
Bias values remain at 100x for this simulation.  While this ultimately causes poorer accuracy, 
it shows that performance with large biases is successful in this flight environment.  
Predictions of filter accuracy in flight can be taken from the covariance analysis, which 
thoroughly explores variations in most parameters. 
 
The attitude accuracy of this simulation is shown in Figure 3-51.  Convergence is much 
better than the Earth stationary simulation, and comparable to the simulated rich trajectory.  
Note that attitude convergence is slow before takeoff (t = 1150).  Alignment about the x and y 
body axes requires an estimation of the accelerometer biases.  Alignment about the z axis 
before takeoff depends on Earth rate.  When flight motion begins, the observability is sharply 
improved and convergence occurs more rapidly.   
 
Note that z alignment continues to wander during flight in periods between maneuvers.  This 
is in part because of the 100x gyroscope biases.  However, this shows that simple flight paths 
will reduce accuracy.   
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Figure 3-51:  Attitude Accuracy using 
Modeled Aircraft Trajectory 
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Figure 3-52:  Position Accuracy using 
Modeled Aircraft Trajectory

 
Position accuracy is shown in Figure 3-52.  While the estimate appears noisy on this time 
scale, the error values are within the standard deviation most of the time.  This suggests 
statistical agreement between the error and filter covariance. 
 
 
Modeled Booster Trajectory 
 
The modeled booster trajectory is a creation similar to the modeled aircraft trajectory, but is 
based on the flight booster data.  Once again, the rigid body dynamics model is used to 
generate a simulation with known truth and adjustable noise parameters.  Biases remain at 
100x. 
 
The attitude performance is shown in Figure 3-53, and shows good convergence after liftoff 
(t = 0).  Force is predominately in the axial direction before launch and during flight, so 
alignment about the x axis is the most difficult.  Position accuracy is shown in Figure 3-54 
and is in agreement with the estimated standard deviation. 
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Figure 3-53:  Attitude Accuracy using 
Modeled Booster Trajectory 
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Figure 3-54:  Position Accuracy Using 
Modeled Booster Trajectory 

3.4.4 Omitting Bias States 
 
It is useful to study the effect of removing the bias states from the model.  In the following 
simulations, biases are still present in the simulated gyroscope and accelerometer 
measurements and in the gravity model.  However, the Kalman filter does not have bias 
states to represent these quantities.  As a result, the noise model is incorrect. 

Two levels of biases are studied.  First, the previous nominal values are used.  These values 
are 100 times the actual hardware values, and have a significant effect on filter performance.  
Using the larger biases is instructive for studying the effect of unmodeled biases.  
Afterwards, the simulations are rerun using the actual values, which have substantially less 
impact.  

A distinctive characteristic of these simulations is shown in Figure 3-55.  While the estimated 
standard deviation converges, the estimated state has divergent tendencies.  In this case, the 
accelerometer measurements and gravity model are biased, so the position estimate diverges 
between GPS measurements.  The GPS corrections attempt to restore the position estimate, 
but the gain is too small. 
 
The result is much worse for attitude estimation, as shown in Figure 3-56.  Drift here comes 
predominantly from the gyroscope bias.  Since attitude suffers from poor observability, there 
is little to correct the attitude error.   
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Figure 3-55:  Position Response with 
Unmodeled Biases 
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Figure 3-56:  Attitude Response with 
Unmodeled Biases 
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Figure 3-57:  Chi-Squared Statistic with 
Large (100x) Unmodeled Biases 
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Figure 3-58:  Chi-Squared Statistic for 
Small (1x) Unmodeled Biases 

 
The Chi-Squared statistic is a good tool for diagnosing this type of problem.  As shown in 
Figure 3-57, the measurements do not agree with the model.  The covariance converges but 
the biases persist, leading to increasingly inconsistent measurements.  
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Simulations also show that data forgetting can not solve this type of modeling error.  This is 
because the modeling error has an affect on data for all time.  The plots are very similar and 
show a slight increase in the estimated standard deviation.  This causes increased gains, 
which can actually worsen the problem. 

Using the actual bias levels, one hundredth the nominal values, there is little performance 
degradation.  The chi-squared statistic, shown in Figure 3-58, suggests that the biased 
measurements still fit this simplified model.  The state error response is indistinguishable 
from the response of the full model.   

It should be concluded that unmodeled states may or may not be significant.  Since states 
variables bear a large computational penalty, it may be wise to use the smallest model that 
produces a good chi-squared plot. 

An alternative technique is to compensate the biases independently from the Kalman filter.  
This may be successful is reducing the effective bias to values that can be ignored by the 
Kalman filter.  

3.4.5 Measurement Dropouts 

Another test of filter robustness is the response to measurement dropouts.  These simulations 
explore dropouts in the IMU, GPS, and in both simultaneously.  For each, there is a time 
window during which the measurements are not received.  The filter continues to update the 
state and to process any other measurements that are available. 

For these studies, the modeled aircraft trajectory is used, because it provides a realistic flight 
environment with a known truth model.  The measurement dropout begins at time t = 1200, 
which is about 50 seconds after takeoff when the aircraft is maneuvering moderately.  
Dropouts last from 10 to 60 seconds.  Biases remain at 100x for these simulations. 

The response to a 60 second GPS dropout is studied first.  The attitude accuracy is plotted in 
Figure 3-59 and the position accuracy is plotted in Figure 3-60.  The position error and its 
estimated standard deviation both increase abruptly during this time period because the 
accelerometers are the only source of position information.  In effect, the Kalman Filter 
captures the drift of the inertial solution.  This is highly beneficial, because it leads to a fast 
recovery when the GPS is restored. 

The attitude error is largely unaffected.  The attitude error and standard deviation are 
increased because there are no GPS corrections for the attitude.  This also makes the attitude 
estimate more smooth.  The decrease in the standard deviation of αy is the result of vehicle 
rotation. 

The effect of a 60 second IMU dropout is more severe.  The attitude is plotted in Figure 3-61.  
The attitude performance is very poor during the dropout, showing errors of 30° to 50°.  The 
standard deviation is seen to rise greatly because attitude is very difficult to observe without 
gyroscopes.  When the IMU measurement is restored, performance returns to normal.  This is 
quite remarkable considering the small angle approximation.  
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Figure 3-59:  Attitude Accuracy during GPS 
Dropout 
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Figure 3-60:  Position Accuracy during GPS 
Dropout
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Figure 3-61:  Attitude Accuracy during IMU 
Dropout 
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Figure 3-62:  Position Accuracy during 
IMU Dropout 

The position accuracy for the IMU dropout is plotted in Figure 3-62.  The position estimate is 
maintained adequately throughout the dropout.  The position uncertainty now grows rapidly 
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between GPS measurements, causing the messy plot, because the acceleration is not 
measured.  After the dropout, behavior returns to normal.   

Finally, the effect of a simultaneous GPS and IMU dropout is studied.  The length of the 
dropout has been reduced to 10 seconds because the filter can not handle the longer dropout.  
The attitude is shown Figure 3-63.  The estimated standard deviation grows rapidly and the 
error drifts where it may.  However, a full recovery is achieved once again when the 
measurements return. 

The position accuracy is plotted in Figure 3-64.  This shows a similar increase in error and 
standard deviation.  With no measurements of position, velocity, or acceleration, the filter 
can only use its knowledge of the force dynamics.  In this model, force decays towards zero 
when unobserved.  It may have been beneficial to instead have force approaching the 
reaction to gravity. 
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Figure 3-63:  Attitude Accuracy during IMU 
and GPS dropout 
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Figure 3-64: Position Accuracy during 
IMU and GPS dropout 

These simulations showed reasonable performance in unreasonable circumstances.  
Performance could probably be improved by adjusting noise parameters and decay rates.  In 
the absence of measurement information, the system model accuracy is more critical. 

It is tempting to suggest that the Kalman filter should be shut down during measurement 
dropouts.  For example, the navigation system could revert to an inertial solution during a 
GPS dropout.  However, the Kalman filter still provides the optimal estimate during the 
dropout, and can provide several benefits.  Returning to the plots in Figure 3-59 and Figure 
3-60, the Kalman filter maintains the attitude error through the dropout.  The position drifted 
300 meters in 60 seconds, but this is small considering that the IMU was biased by 0.29 m/s2.  
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Finally, the Kalman filter calculates the proper increase in covariance for when the 
measurement is restored.    

Despite these benefits, it is only a matter of time before the covariance grows to be too large 
for numerical computation.  This can corrupt the estimates of observable states and 
ultimately lead to a numerical failure.  This can be addressed using several techniques. 

To the extent that the increase in covariance is real, the uncertainty in the estimate is 
becoming too large for the linearization of the Extended Kalman Filter to be valid.  In this 
case, the computation must be handed over to another algorithm with nonlinear capability.  
This could be the same algorithm that was used in the initialization routine.  When this 
routine finishes, possibly after the dropout, the EKF should be restarted with an initial state 
covariance representative of the nonlinear algorithm’s accuracy.  In this architecture, the 
EKF is protected by a nonlinear algorithm so that the linearization is always valid and the 
covariance remains bounded. 

It is also possible that the increase in covariance is the result of fictitious noise or data 
forgetting, which may have been employed originally to make the filter more responsive.  
During the dropout, all data should be remembered, and noise parameters should be returned 
to their actual values. 

Beyond this, it is possible to manipulate the Kalman Filter more intrusively.  Unobservable 
state variables can be frozen by zeroing their process noise and the corresponding rows and 
columns of the covariance matrix.  Limits on the covariance can be imposed, but care should 
be taken that the covariance matrix remains symmetric positive definite.  While these 
techniques can provide benefits, they are ad hoc and are conceptually flawed.  If the model is 
correct and the covariance is large, then there is no accurate solution.  Furthermore, the most 
accurate solution, in terms of minimum error variance, is given by the unaltered Kalman 
filter.  
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3.5 Flight Data Simulation 

Real flight data is available from several programs at MIT Lincoln Laboratory.  Simulation 
using this data provides a test of filter performance in a real flight environment.  Although 
simulated data is more flexible, flight data contains the actual sensor noise and disturbances.    

Datasets have been recorded from sensors aboard an aircraft and a booster rocket.  This data 
is then loaded from file and replayed for simulation.  This provides a substitute for flying the 
actual filter. 

The difficulty with this data is that the actual state is not known exactly.  Both datasets 
contain a reference solution from another navigation system.  However, the accuracy of these 
solutions could not be precisely established and errors in these solutions were visible. 

Without a reliable truth solution, assessment of accuracy becomes a more subjective matter.  
The inertial solution can be used as a short-term reference, but will have noticeable drift by 
the end of flight.  Testing that the filter remains healthy and converges is also an important 
part of this simulation.     

In general, the modeled data simulations provides a better estimation of filter accuracy.  The 
simulations here show that the filter functions reliably in the flight environment.  They also 
show the validity of various modeling assumptions used in the previous simulations.   
 

3.5.1 Aircraft 

The aircraft dataset was measured aboard a small airplane during a short flight.  The data 
includes takeoff and landing as well as some airborne maneuvers and ground taxiing.  Data 
was recorded from a Litton LN200 IMU and a NavCom SF-2050M GPS receiver.  Both the 
raw GPS measurements and the position and velocity solutions were available.  For the 
purpose of computing a Differential GPS solution, a second set of GPS data was recorded 
from a stationary GPS receiver located at a nearby ground station.  For this simulation, only 
the GPS position and velocity and the IMU measurements are used by the filter. 

This dataset also contains a reference solution.  This solution has been generated using a 
software package called GrafNav, by Waypoint Consulting, that post-processes the 
measurements.  This package uses a forward-backward smoothing algorithm and makes full 
use of both GPS receivers.  Unfortunately, this solution proved to be unreliable.  As will be 
analyzed shortly, there were several obvious glitches in the solution.  As a result, this “high-
quality” solution can only be used as an approximate reference. 

The filter estimates of attitude and position are shown in Figure 3-65 and Figure 3-66, 
respectively.  Attitude has been displayed in NED Euler angles and position has been 
converted to geodetic coordinates.  These results are in reasonable agreement with the 
reference and inertial solution.  The flight maneuvers are readily apparent in this data.  
Takeoff and landing occur at t = 1150 and t = 2800, respectively.  Several large turns in yaw 
are also present. 
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Figure 3-65:  Aircraft Attitude 
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Figure 3-66:  Aircraft Position 

 
The filter estimates of torque and force disturbances are shown in Figure 3-67.  Disturbances 
are largest during takeoff and landing.  The z component of the force bias opposes gravity 
throughout the flight.  Additional forces are seen during maneuvers. 

Biases have also been estimated and are plotted in Figure 3-68.  Although there is no way of 
knowing the actual bias values, these estimates seem reasonable.  There is some divergence 
in the accelerometer and gravity model biases, but the bias decay rates will eventually keep 
these estimates bounded.  These bias estimates may have been influences by the presence of 
other types of errors, such as IMU scaling errors or GPS delays. 

The attitude error is plotted in Figure 3-69.  This error is often larger than the estimated 
standard deviation, especially in αy and near the end of simulation.  This error is the 
difference between my filter estimate and the reference solution.  As a result, errors can be 
caused by either solution.  There is reason to believe that much of this error was created by 
errors in the reference solution.  The abrupt spikes in the error are present in the reference 
solution.  Also, the reference solution contained other noticeable glitches which will by 
analyzed shortly. 

The position error is shown in Figure 3-70.  This error is in good proportion to the estimated 
standard deviation. 

The chi-squared statistic is shown in Figure 3-71.  The value remains small, but shows 
groups of irregular measurements.  Many of these irregularities occur during maneuvers, 
when the aircraft forces and torques are the largest. 
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Figure 3-67:  Estimate of Torque and Force 
Disturbances 
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Figure 3-68:  Bias Estimate in Gyroscopes, 
Accelerometers, and Gravity Model 
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Figure 3-69:  Attitude Estimate Error 
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Figure 3-70:  Position Estimate Error 
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Figure 3-71:  Chi-Squared Statistic 
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Figure 3-72:  Glitch in Reference Solution

 
Figure 3-72 shows what is undeniably a glitch in the reference solution.  On this plot are the 
estimates of the Kalman filter (KF), the inertial solution (INS), and the reference solution 
(ref).  The Kalman filter and inertial solutions follow each other precisely, despite an offset 
in roll.  The reference solution, however, deviates greatly in the time 1307 to 1308.  The 
reference solution does not recover from this glitch, leaving almost 1º of unexplained yaw 
rotation.   

This LN200 IMU has a drift of 1º per hour, specified at 1 standard deviation, so it is 
statistically impossible that the INS solution had this much error.  In addition, direct analysis 
of the measured body rates did not show this motion.  It is therefore concluded that this 
reference solution is not accurate.  The causes of this error in the provided reference solution 
are outside the scope of this thesis and have not been investigated further.     
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3.5.2 Booster Rocket 

The booster rocket flight data provides measurements from the harsh environment of a 
launch vehicle.  As mentioned previously, this data contains a period before launch, during 
boost phase, and after boost phase.  These present drastically different operating conditions. 

This dataset includes only the raw measurements from the IMU, which was a Litton LN200.  
It contains a reference solution that was computed by an onboard Litton LN100, which is a 
full GPS-aided navigation system.  The GPS position and velocity solutions were not 
available, so these measurements were simulated.  These simulated measurements were 
generated by adding noise to the position and velocity of the reference solution.   

The quality of the reference solution is reasonably good, but there is difficulty aligning the 
solution times to the measurement times.  While both the IMU measurements and the 
reference solution contain time markers, there is evidently some confusion in the time offset 
between these two data sources.  For this reason, the reference data source is once again 
approximate. 

The estimated attitude is shown in Figure 3-73 and the estimated position is shown in Figure 
3-74.  These show the gradual arc of the booster trajectory.  The booster force profile, which 
contained two stages, is evident in the estimate of force disturbance, shown in Figure 3-75.  
Following the booster phase, force drops to near zero.  Returning to Figure 3-73, several 
attitude maneuvers are then performed. 

Bias estimates are shown in Figure 3-76.  It is not clear that biases actual converge, but they 
do seem to remain bounded.  This may be because there is primarily axial acceleration.  Also, 
the great variation in force magnitude would augment the effect of scaling errors, which were 
omitted from the filter model. 
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Figure 3-73:  Booster Attitude 
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Figure 3-74:  Booster Position 
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Figure 3-75:  Estimated Force and Torque 
Disturbance 
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Figure 3-76:  Bias Estimates 
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Figure 3-77:  Attitude Estimation Error 
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Figure 3-78:  GPS Position Error

 

The attitude estimation error is plotted in Figure 3-77.  Several spikes are present in the 
estimated attitude standard deviation, and sometimes in the attitude error itself.  These 
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correspond to dropouts in the dataset.  The actual IMU measurements did not dropout, but 
the telemetry used to transmit this data back to Earth experienced brief losses in 
transmission.   As a result, this filter is confronted with short IMU dropouts. 

The position error is plotted in Figure 3-78, in the form of the GPS measurement error.  This 
error is significantly worse than the GPS accuracy, but this can be attributed to several 
factors.  Recall that the GPS measurement that is used in this simulation is actually 
manufactured from the reference solution.  The reference solution is imprecisely time 
alignment, and is calculated at discrete time intervals.  During periods of high velocity, this 
inaccuracy in time causes large inaccuracies in position.  During periods of high acceleration, 
there may have been additional lags in the onboard GPS solution. 

The chi-squared statistic is shown in Figure 3-79.  The spikes correspond to drastic changes 
in the force, such as liftoff.  Ideally, these spikes can be reduced by improving the system 
model.  However, it is difficult to accommodate the great variation in noise characteristics 
that this trajectory presents.  Experiments have been conducted using scheduling and 
adaptive estimation of the noise characteristics.  While these techniques are generally 
successful, more development effort is required.     
 

-50 0 50 100 150 200
0

50

100

150

200

250

300

350

Time (s)

C
hi

 S
qu

ar
ed

 
Figure 3-79:  Chi-Squared Statistic 
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Figure 3-80:  Solution Comparison during 
Launch 

 
 
3.6 Initialization 
 
The initializer provides nonlinear convergence to bring a large initial error into the capture 
range of the Kalman Filter.  This is accomplished by processing the first group of 
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measurements using a different algorithm.  This algorithm is less accurate than the Kalman 
filter, but has guaranteed stability for large errors. 
 
For most states, this initialization is trivial and can be performed by averaging the first few 
measurements with the proper coordinate conversions.  For example, the initial position can 
be calculated from the GPS measurements.  Attitude, however, requires a special alignment 
routine.  When the vehicle is fixed-to-Earth, the gyrocompassing routine is employed. 
 
The performance of the gyrocompassing routine has been simulated using the fixed-to-Earth 
model, and is shown in Figure 3-81.  This implementation uses a 1 second time constant for 
gravity vector alignment, and a 30 second time constant for Earth rate alignment.  The body 
rate measurements are filtered using a discrete filter with an equivalent time constant of 10 
seconds.  The Earth rate alignment is delayed by 30 seconds so that this filter converges 
before the earth rate corrections are applied.   

It can be seen that the gravity alignment procedure is very fast and accurate.  The Earth rate 
alignment requires a longer time, and is greatly influenced by the gyroscope noise.  In tuning 
the time constants, there is a tradeoff between accuracy and response time.  Simulation shows 
a subsequent successful handoff to the Kalman filter. 
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Figure 3-81:  Initialization using Gyrocompassing 

 
 
This completes the simulations analysis.  We now proceed to study the hardware 
implementation. 
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4. Hardware 
A hardware prototype has been created in order to test this filter in a real-time environment 
on embedded hardware.  This explores the feasibility of this algorithm in the presence of real 
computational constraints.  Ultimately, it has exposed several practical issues that are 
important in the design of this system. 

Section 4.1 begins with a description of the hardware components.  This includes the 
processor, IMU, and GPS receiver.  Pictures of the major components are presented. 

Section 4.2 describes the general process for implementing the software on the hardware.  
This begins by describing a technique for automatic code generation, so that the simulation 
models are ported into C code.  However, this technique produces inefficient code and 
methods of improving the computational efficiency are required.  These efforts and the 
resulting algorithms are detailed in Section 4.3. 

Section 4.4 presents the results of hardware testing.  Full flight testing of the hardware was 
not included in this project, due to resource and time constraints.  Instead, the previous flight 
data simulations serve to validate this design in the flight environment.  Hardware testing is 
designed to establish that the hardware performs similarly to the simulation. 

As a result, hardware testing is limited to benchtop testing.  The GPS antenna is fixed in 
position, while the IMU can be moved and rotated.  This provides full testing of the Earth 
stationary trajectory and moderate testing of attitude performance.  Further testing in real 
flight environments is recommended.  
 
 
4.1 Description of Hardware Components 
 
This hardware implementation uses high performance components for computation and 
measurement.  These components have been chosen because of their history and future use 
on programs at MIT Lincoln Laboratory.  The use of familiar components greatly accelerated 
the process of implementation.  These components have been available as spares and 
development units from past programs. 
 
The central processing is performed by a Texas Instruments SMJ320C6701 Digital Signal 
Processor (DSP).  This processor contains dedicated hardware for floating point arithmetic, 
which has been configured for 32-bit computation.  It also features a Very Long Instruction 
Word architecture with multiple data paths and functional units, so that up to 8 instructions 
can be performed in parallel during a single clock cycle.  This component features a variety 
of on-chip peripherals including timers, serial ports, program and data memory, and an 
external memory interface.  This particular processor operates at a speed of 132 MHz and 
provides 64 KB program cache and 64 KB internal data memory.     
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Figure 4-1:  Processor Board 

 

 
Figure 4-2:  Card Cage for Processor Board and Power Electronics 

This DSP is featured on a processor board that was developed at MIT Lincoln Laboratory by 
Deborah Blanchard for high performance embedded control and imaging applications.  
Figure 4-1 shows a picture of the primary side of this circuit board.  The processor board 
contains components for digital IO, a 2 channel UART, and additional memory.  The 
memory includes 2 MB FLASH for nonvolatile storage, 8 MB Dynamic RAM, and 1 MB 
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Static RAM.  Peripheral addressing and certain other functions are performed by an 
ALTERA Field Programmable Gate Array (FPGA).  The processor board is housed in a card 
cage, shown in Figure 4-2, which contains additional electronics for power distribution and 
data recording.  

The IMU for this project is a Litton LN200, shown in Figure 4-3, featuring three fiber optic 
gyroscopes and three proof mass accelerometers.  This unit is a high-performance, 
navigation-quality IMU.  Specifications were provided with the nominal simulations 
parameters in Table 3-5.  Data messages are sent to the DSP using a high speed serial data 
link that is processed by the FPGA. 
 
The GPS receiver is an Ashtech G10 HDMA (High Dynamics and Missile Applications) 
receiver, shown in Figure 4-4.  This unit makes full use of the military GPS frequency and 
encoding.  It provides output of the position and velocity solution at 10 Hz in a serial data 
message format. 
 

 
Figure 4-3:  LN200 IMU 

 
 

 
Figure 4-4:  Ashtech G10 HDMA GPS Receiver 
and Chassis 

 
 
4.2 Software Implementation 

Implementation on the hardware requires porting the algorithm to DSP-specific instructions.  
This is done using the process shown in Figure 4-5.  The Simulink model is first converted to 
C code and then the C code is compiled to produce the executable for the DSP.  

The conversion from Simulink to C code is done automatically using a product by The 
MathWorks called Real-Time Workshop (RTW).  With this method, there is no potential for 
error in recoding the algorithm.  Effectively, the same filter block that is tested in simulation 
is converted directly to C code. 
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Figure 4-5:  Software Implementation Process 

Real-Time Workshop creates two top-level C functions for initializing and updating the 
model.  The update function is called once per integration step, in real time.  Data structures 
for the model inputs and outputs are also created so that information can be passed to and 
from the model. 

The wrapper C code contains the basic framework for real-time operation.  This includes the 
top level routine and timing, as well as the low level functions for hardware interfacing.  It is 
written as a single thread with interrupts for the clock and the receipt of messages.  The 
wrapper code was initially developed by Leonas Bernotas for other applications at MIT 
Lincoln Laboratory and was adapted for this application. 

The wrapper code is compiled using Code Composer Studio (CCS).  This product is provided 
by Texas Instruments as part of the development tools.  It is an optimizing C compiler for 
this specific DSP target.  Small pieces of assembly code are required to implement interrupts 
and boot operation.  The memory configuration and control of specific storage locations is 
managed using additional commands to the linker.   
 
 
4.3 Efficiency Techniques 

The automated process for software implementation produces code that is inefficient.  For 
this particular application, the computation requirements are significant and the inefficient 
code is unacceptable.  This problem has been remedied using a variety of software 
techniques. 

The process began by optimizing the memory map so that critical data was stored in fast 
memory.  This is described in Section 4.3.1.  This improved execution speed, but also 
motivated a reduction in memory usage. 

Further improvements were made by optimizing the computational techniques.  Data storage 
and matrix operations were streamlined using custom algorithms.  The process of automatic 
code generation was preserved in anticipation of future development of the Simulink model.  
Computational complexity was also reduced by simplifying the system model.  Reductions in 
the number of states and measurements were made.     
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These methods ultimately led to the successful implementation of the filter on hardware at an 
execution rate of 100 Hz, which matched the IMU message rate.  However, several sacrifices 
were made that ultimately led to degradation in performance. 

     
4.3.1 Memory Map 

The filter algorithm requires the storage of large data variables, such as the covariance matrix 
of the estimation error.  Significant increases in execution speed were obtained by optimizing 
the location of data storage. 

The memory locations that are available for data storage are summarized in Table 4-1.  The 
speed of the memory varies inversely to the size of the memory.  Speed can be increased by 
placing critical components in fast memory, but also by reducing memory requirements so 
that the fastest memory can be used.   
 
Table 4-1:  Data Memory Comparison 

Memory Location Size* Speed 
Internal Memory on chip 64 KB Fast 
SBSRAM on board 896 KB Medium
DRAM on board 8 MB Slow 
* program storage has been excluded 

Ultimately, it was desired to place all model data in the Internal Memory.  This memory is 
extremely fast, because it is on chip with a direct connection to the CPU.  However, this 
memory is limited to 64 KB, which was too small for the automatically generated code.  This 
motivated a reduction in memory usage for the filter algorithm, which was accomplished 
using several computational techniques that are described in the following sections. 
 

4.3.2 Custom Matrix Operation Routines 

The Kalman filter contains several matrix operations for covariance propagation and gain 
calculations.  This computation dominates the CPU usage for a filter of this size.  Large 
increases in the execution rate were accomplished by increasing the efficiency of this 
computation.   

The inefficiency of the RTW code stems from several sources.  Intermediate results are 
stored and copied frequently, including large matrices.  Also, the symmetry of certain 
matrices is ignored because generic algorithms for matrix multiplication are used. 

It was undesirable to modify the RTW code directly because this would break the automatic 
link between Simulink models and C code.  This would make future updates more difficult, 
and lead to differences between simulation and hardware implementation.  Instead, algorithm 
modifications were made using a Simulink S-function.  An S-function is a special block that 
calls C code from the Simulink model.   
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Using an S-function, I rewrote the entire Kalman Update block in C.  In this code, I 
incorporated several techniques for reducing the memory and computation requirements.  I 
developed these techniques without reference, although matrix processing is a common topic 
that has undoubtedly been explored by others.    
 
 
Matrix Indexing and Storage 

The revised Kalman Update block achieves efficiency using several techniques.  The first 
technique, described in this section, is an efficient method of data storage for symmetric and 
diagonal matrices.   

All matrices are ultimately stored as one-dimensional data arrays.  Simulink and RTW store 
matrices in their entirety, requiring n2 elements for an n by n matrix.  Indexing is arranged in 
“column-major” order, as shown at the left of Figure 4-6. 
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Figure 4-6:  Indexing for Non-symmetric, Symmetric, and Diagonal Matrices 

Zero-based matrix indexing can be done using the following formula: 

 [ ]imjajiA += *),( , (4-1) 

where m is the number of rows in A (for square matrices m = n) and a is the one dimensional 
array for data storage.  Further as shown in Figure 4-6, this technique can be improved for 
symmetric matrices by omitting storage of the upper triangle.  This reduces the number of 
elements to n(n + 1)/2.  Matrix indexing in this symmetric form can be done using the 
following formula: 

 jifor      
2

)1(*),( ≥⎥⎦
⎤

⎢⎣
⎡ +

+
−= ijjnjpjiP . (4-2) 

If j > i, they should be swapped before this formula is applied.  Note that j( j+1) is always 
even, so the index is always an integer.  This formula was derived using the sum of an 
arithmetic series for columns before j.   

Similarly, diagonal matrices can be stored and indexed by their diagonal: 

 ][),( idiiD = . (4-3) 
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Matrix Transpose through Indexing 

A second significant inefficiency is the implementation of the matrix transpose.  With RTW, 
the data in a matrix is physically moved each time the matrix is transposed.  For symmetric 
matrices, the transpose operation is entirely unnecessary.  For non-symmetric matrices, the 
transpose can be accomplished by reversing the indices instead: 

 ) , (4-4) ,(),( ijAjiAT =

leaving the memory array unchanged.  This eliminates both the work of transposing and the 
memory required to store the transpose. 

One Pass Multiplication 

A final inefficiency was the need to store intermediate results of a large matrix formula.  
Consider the covariance propagation equation: 

 ( ) ( ) QIAPPIAP T ++++= λλλ
& . (4-5) 

The RTW implementation requires several separate matrix multiplications and additions, 
with the storage of the intermediate results for each step.  Instead, I programmed this entire 
equation in one pass using the following formula for each element: 

 . (4-6) ( )∑
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The matrix multiplications AP and PAT are performed together in the sum, using swapped 
indices for AT.  The intermediate results are all scalars, so the input and output are the only 
data arrays that need storage.  Similar efficiency is available for the discrete measurement 
update. 
 

4.3.3 Processing Measurement One at a Time 

One-at-a-time measurement processing has also been employed.  The algorithm for this 
technique was described in Section 2.2.5.3.  This method eliminates the matrix inversion in 
the Kalman gain calculation.  This algorithm is natural to program in C inside the S-function 
for the Kalman Filter. 

A result of this algorithm is that the execution time of a measurement update is proportional 
to the number of measurements in the update.  This allows for faster updates in between GPS 
measurements.  The timing algorithm was modified to allow sharing of time between cycles, 
so that GPS updates could borrow a few milliseconds from the other updates. 
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A consequence of one-at-a-time measurement processing is that the measurement noise 
covariance must be diagonal.  This limits the noise modeling of the GPS, which usually has 
poorer accuracy in the vertical direction.   

It is likely that one-at-a-time measurement processing degraded numerical performance.  The 
parasitic effects of rounding would be greater in a large set of serial scalar operations than in 
a single set of matrix operations.   

4.3.4 Reduction of Model Complexity 

In addition to the previous techniques for computational efficiency, it has been necessary to 
reduce model complexity.  Some of these changes degrade filter performance.  This should 
serve as motivation for further increasing the hardware and software performance so that 
these sacrifices can be avoided. 

All bias states have been removed from the filter for hardware implementation.  This 
includes a total of 9 states for biases in the gyroscopes, accelerometers, and gravity model.  
This provides a huge reduction in matrix memory and multiplication operations.  As studied 
in Section 3.4.4, the filter can continue to perform well when the omitted biases are small. 

The freefall measurement has also been removed.  This measurement is not useful for a 
benchtop test. 

Finally, the differential equation solver has been reduced to a linear solver.  Here, the Euler 
approximation 

 
T

Ttxtxtx )()()( −−
≈&  (4-7) 

is used to convert the continuous differential equations to a discrete system.  The execution 
time of the solution is approximately proportional to the order of the solver, so this provided 
a substantial improvement in computation speed.  However, the linear solver is prone to 
numerical instabilities during rapid changes in the solution, as discussed in the General 
Observations portion of Section 4.4.     

4.4 Results 

The hardware has been assembled and programmed and the performance has been assessed.  
For this benchtop prototype, it was not possible to test all filter functions, but several metrics 
of performance have been established.   

The general setup is shown in Figure 4-7.  Throughout these tests, the GPS antenna (not 
shown) is mounted in a fixed position.  The IMU is free to move because it is attached using 
a flexible cable.  A precision right angle block is used to provide several reference surfaces.   
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Figure 4-7:  Hardware Setup with Right Angle Block 

The test procedures and results are described in the following sections.  They include a test of 
attitude accuracy, a limited test of positioning, and a test of the nonlinear initialization 
routine.  The results show reasonable performance, although several issues are noted. 

General Observations 

The most noticeable weakness is in the robustness of the computation.  Under various 
circumstances, the filter covariance can become indefinite.  This produces negative variance 
and ultimately leads to a numerical failure.  Following this, the hardware must be restarted 
and reinitialized to continue operation.   

These problems do not occur in simulation and are the result of differences in the hardware 
implementation of the algorithm.  Several of the implementation techniques, designed to 
improve execution speed, have compromised the filter performance.   

The most significant factor is the use of the linear ODE solver.  This is especially noticeable 
at filter startup, when large convergence of the covariance occurs in the first iteration.  It is 
also prevalent in the attitude covariance propagation during fast rotations.  Recall that the 
attitude accuracy tends to exhibit poor accuracy in one direction, which is usually heading.  
In body coordinates, this direction of worst accuracy changes when the body rotates.  For this 
reason, certain axes of attitude covariance converge quickly during body rotations.       

Additional numerical problems have been created by the use of one-at-a-time measurement 
processing.  Because measurements are processed in series, rounding errors are compounded.  
However, this effect is small and generally acceptable.  

These effects have made filter tuning substantially difficult.  Many parameter sets that 
performed satisfactorily in simulation were numerical unstable on the hardware.  As a result, 
suboptimal filter noise parameters were chosen.  The initial covariance was reduced in order 
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to eliminate large corrections from the first iteration.  Similarly, measurement noise 
covariance was increased above the actual sensor characteristics so that measurement 
corrections were less abrupt.  Process noise was also increased so that estimate uncertainty 
remained larger.  However, the use of large process noise for the force and torque 
disturbance could also produce numerical failures.   

These tuning methods compromise filter accuracy but produce stability.  They are quick fixes 
to a more complicated problem.  Several techniques are available for eliminating these 
hardware numerical problems.  These solutions are presented in the recommendations of 
Section 6.   

Attitude with Right Angle Block 

This test measures attitude accuracy by moving the IMU through a set of motions.  The IMU 
is moved by hand, so there is no precise control, but a precision right angle block is used to 
provide several reference surfaces.  The pure INS solution is also computed as a reference.  
The sequence of motions is described in Table 4-2.  Time periods are given when the base of 
the IMU is flush with the various surfaces of the reference block.  This constrains motion to 
body roll.  The first cube face is revisited to provide a measure of repeatability. 
 
 
Table 4-2:  Test Motion Sequence 

Event Time (s) Description 
1 11-16 Stationary on face 1
2 24-29 Stationary on face 2
3 34-43 Stationary on face 3
4 49-56 Stationary on face 1
5 56-64 Pure roll on face 1 

 
Table 4-3:  Angle between Body x Axis 

Events KF INS 
1 2 90.034 90.0230 
1 3 90.028 90.030 
1 4* 0.0455 0.0452 
2 3 90.009 90.031 
2 4 90.009 89.997 
3 4 89.999 89.993 

* Note: Event 4 was the return to face 1 
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Figure 4-8:  Attitude Comparison 

The attitude solution during this motion has been converted to NED Euler angles and is 
plotted in Figure 4-8.  For comparison, both the Kalman filter (KF) and INS solution are 
shown, although there is very little discrepancy between these two estimates.  The noticeable 
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disagreement in roll and yaw during Event 2 is due to the pitch angle near 90º.  Roll and yaw 
are ambiguous at this orientation. 

The angles between the body x axis at different reference orientations have been calculated in 
Table 4-3.  The values show a maximum disagreement between the filter and reference cube 
of 0.0455º, which occurred between successive visits to block face 1.  Note that small dust 
particles on the block surface may have produced this result, so it is possible that the 
underlying accuracy is better.  The maximum disagreement between the Filter and INS 
solution is 0.022º.   
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Figure 4-9:  Error between Filter and INS 
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Figure 4-10:  Chi-Squared Statistic 

The error between the Kalman filter and INS is plotted in Figure 4-9.  The error is small 
when the IMU is stationary but large errors develop during IMU motion.  This is undesirable 
and results from a lag in the Kalman filter solution.   

This behavior can be understood using the chi-squared statistic, shown in Figure 4-10.  
During each period of rotation, the chi-squared value spikes just before the periods of attitude 
error.  These spikes arise because the torque disturbance, which is produced by manually 
rotating the IMU, is larger than the disturbance noise model.  As a result, the filter is forced 
to compromise between the gyroscope measurement and the disturbance model.  The result is 
a delayed response. 

In theory, this type of error can be eliminated by modifying the torque disturbance process 
model.  Both the process noise and the decay rate should be increased.  This would allow the 
filter to give full credibility to the gyroscope measurement under abrupt motion.  
Unfortunately, the numerical instabilities of the hardware implementation prevented proper 
tuning.  This behavior is the direct result of the suboptimal tuning.
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Inertial Positioning During GPS Dropout 

Positioning is difficult to test in the benchtop test environment because the GPS antenna is 
mounted at a fixed location.  However, small motion of the IMU is possible.  IMU motion 
without GPS motion is an unrealistic situation for the filter.  For this reason, inertial 
positioning is tested during a GPS dropout. 

This test was conducted as follows.  First, the GPS signal measurements were removed to 
simulate a dropout.  Then the IMU was moved vertically in a square wave motion of 
approximately 0.5 meters.  Afterwards, the GPS measurement was restored. 

The result is plotted in Figure 4-11.  The step motions in attitude are readily apparent.  Note 
that the altitude estimate begins to drift downwards during the dropout, but is corrected 
immediately when the GPS solution returns.  This is caused by the integration of noise in the 
accelerometers and is the natural drift of any INS solution. 
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Figure 4-11:  Inertial Positioning 

A similar IMU motion was also applied before the GPS dropout.  In this case, the filter 
estimate relies heavily on the GPS values.  Slight ripples are present because of the measured 
IMU acceleration, but the altitude estimate remains almost constant.    

Large Error Initialization 

The performance of the initializer has also been evaluated.  For this test, the IMU is 
positioned in an arbitrary orientation and the navigation system is initialized to the Euler 
Angles (0, 0, 0).  The Earth stationary measurement is enabled, so that the initializer uses the 
gyrocompassing routine. 
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The attitude response is shown in Figure 4-12.  The initialization error for this test is very 
large.  The gravity alignment quickly orients the roll and pitch axes.  Note the over-the-pole 
motion in pitch, because this was the most direct path for correction.  The Earth rate 
alignment begins at t = 20 seconds, and slowly corrects the yaw alignment.  The actual 
orientation is not precisely known, but this solution appears to be correct.  The yaw 
orientation continues to wander over several degrees because of the sensitivity to gyroscope 
noise.  The resulting solution is sufficiently accurate for the Extended Kalman Filter to 
converge and a successful handoff was demonstrated.   
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Figure 4-12:  Large Angle Initialization (NED) 

 

This concludes the hardware section of this thesis.  We now proceed to discussion. 
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5. Discussion 
There were important points and results throughout this design and analysis.  In this section, 
the central issues are revisited and discussed.  Opinions are presents on the various decisions 
of this design. 

The use of the Kalman Filter has proven to be successful for this navigation system.  The 
framework of system and noise modeling is useful for addressing and managing the problem.  
The number of tuning parameters in the filter is slightly large for a system of this order, but 
this allows a high degree of adjustment.   

The concept of data forgetting is very useful because it provides a single parameter for tuning 
filter response.  This allows most noise parameters to be set to their actual value without 
further adjustment.  Many of the covariances can be estimated directly using statistical 
methods from the available measurement data.  Data forgetting can be implemented using a 
simple modification to the covariance propagation.  It can be highly beneficial when 
modeling errors or measurement glitches are present.  

The Extended Kalman Filter (EKF), using the estimated state as the point of linearization, is 
an invaluable tool for nonlinear systems.  Although this raises some stability concerns, the 
resulting filter for this navigation system behaves well in this respect.  Performance in this 
application is good, and very nearly optimal. 

The strategy throughout this project has been to make the system as linear as possible for the 
EKF.  This began with the selection of state variables, including small angle attitude errors 
and ECI position and velocity.  Measurements were pre-compensated so that measurement 
nonlinearity could be reduced.  The calculation of additional navigation outputs, such as 
geodetic coordinates, was done separately from the EKF.  This approach is highly 
recommended, and may have contributed to the stability of the EKF.   

One real problem with the EKF was noticed during fixed to ground operation: richness in the 
estimated trajectory is interpreted as richness in the actual trajectory.  This problem is 
apparent only in states that are difficult to observe, such as heading alignment.  The result is 
that the covariance matrix and the Kalman gain become too small.  Data forgetting or 
increased process noise can provide an approximate remedy.  The crux of the problem, 
however, is that the point of linearization is influenced by noise.   

A peculiarity of the Kalman filter which compounds this effect is that the covariance estimate 
is open-loop.  Using the initial condition and the system model, the covariance is propagated 
blindly through time independent of the actual filter error.  The measurement update reduces 
the covariance according to the information content of the measurement, but does not use the 
measurement itself.  The actual measurement value is used only for the update of the state 
estimate. 

Over periods of time, the estimated covariance can deviate from the actual covariance and 
the resulting Kalman gain will become suboptimal.  There is nothing to restore the 
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covariance to its correct value.  Data forgetting improves this problem because it reduces the 
length of time over which accurate covariance propagation is required.  Adaptive tuning 
techniques, such as [17], may provide improvement in this area.  

The computation requirements of this filter are high, especially for hardware implementation.  
In retrospect, the selection of state variables should carefully compare the computational cost 
of each state to its benefit in the accuracy and stability of the estimate.  Choices for a reduced 
set of state variables are provided in the recommendations of Section 6.    

The selection of states for this filter demonstrates some useful techniques.  My method of 
using small angles that are offloaded to quaternions is completely successful and provides the 
advantages of increased observability and linearity, while using only three attitude state 
variables.  Another significant advantage is that the small angles are intuitive, and the 
dynamics of the covariance and estimation error are easy to interpret using these variables.  
Arguments were made that there is no loss in accuracy by using small angles, since the EKF 
already requires linearization and the error states are offloaded immediately.  Simulations 
show successful convergence from errors larger than 10 degrees. 

The selection of rigid body dynamics as the process is useful because it allows knowledge of 
the force and torque characteristics to be directly incorporated.  The precession of a rotating 
rigid body adds slightly to the observability.  Tolerance to an IMU dropout has been 
demonstrated.  This architecture also allows for an independent measurement of the force and 
torque, which is useful for a vehicle in freefall.   

However, these benefits come at the cost of as many as nine state variables (ω, τd, and fd) in 
comparison to an IMU-based process model.  In applications where the force and torque are 
difficult to predict, there is limited value in attempting to model the force and torque 
disturbances.  In hardware implementation, the additional states are a significant 
computational burden.  Numerical problems may also arise because the force and torque 
disturbances have much larger process noise covariance than the other filter states.  For these 
reasons, the use of rigid body dynamics should probably be reserved for exoatmospheric 
applications.   

The use of a loosely-coupled architecture, where GPS position and velocity solutions are 
treated as measurements, has also proven to be successful.  Although a direct comparison to a 
tight-coupled system was not performed, several comments can be made.  The hardware 
computation limits at this time prohibit real-time implementation of a tightly-coupled system, 
which would add at least one state and one measurement for each GPS satellite used in the 
solution.  Although there are some theoretical advantages, the actual advantages may be 
small when considering the available GPS products.  It is also unlikely to improve attitude 
accuracy, because covariance analysis showed that attitude is insensitive to GPS accuracy.  
However, a tightly-coupled system will eliminate delays in the GPS solution, which may be 
critical for certain applications. 

It was found that observation of attitude depends largely on flight path richness.  This is 
because rotation about the direction of applied force can not be observed at any particular 
instant.  Full observability is achieved by variation in the inertial direction of the force.   For 
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the aircraft and booster flight paths, attitude is observable in all directions because the force 
varies sufficiently over time.  For Earth stationary operation, the filter can continue to operate 
but accuracy becomes poor in the direction of heading.  This can be dramatically improved 
using the “fixed-to-Earth” measurement. 

From the covariance analysis, the attitude error is most sensitive to the accuracy of the 
gyroscopes and the accelerometers.  Gyroscopes are required to propagate the attitude, while 
accelerometers are used to align the acceleration vector.  The GPS accuracy is almost 
irrelevant here, because large distances are inevitably traveled in inertial coordinates.  As a 
result, campaigns to increase attitude accuracy should focus on improving the IMU. 

Bias states can improve filter accuracy, provided that they are observable.  Gyroscope biases 
are observable when attitude is observable and also when the fixed-to-Earth measurement is 
used.  Accelerometer biases are observable in the direction of force.  Vehicle (or IMU) 
rotation can also provide full observability of the accelerometer and gyroscope biases. 

The gravity model bias should be omitted because it is barely observable and can be obviated 
by using a higher order gravity model.  This will result in a net savings in computation time 
and an increase in robustness.  There is no need to estimate a variable that can be calculated.  
For the gravity Jacobian, a spherical model is probably acceptable.  

The hardware results show that this algorithm can be implemented successfully in a real-time 
embedded system.  However, it has also revealed that the filter is very challenging 
computationally.  Several techniques have been developed for reducing the computational 
burden.  Still, there is continued motivation for increasing the efficiency of the software and 
hardware.  Robustness must also be improved. 

These and other recommendations for future improvements are the subject of the next section 
of this report.     

6. Recommendations 
This project has produced several concrete results and tools, but has also suggested some 
future improvements.  In this section, we distinguish between capabilities that are currently 
available, capabilities that are almost available, and capabilities that should be considered for 
long-term future development.  This provides guidelines for further activities and continued 
research related to this project. 

6.1 Immediate Capabilities 

This project provides several capabilities that can be used immediately, without further 
development effort.  These are reviewed here so that they can be utilized. 

First, the covariance analysis can provide guidance in the selection of sensors for a 
navigation system.  These results provide a direct relation between the accuracy of the 
measurement and the accuracy of the state estimate.  These results can be used in general, or 
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additional simulations can be run using the noise characteristics and trajectory of a specific 
application.  In this fashion, the accuracy of a navigation system can be fully accessed before 
anything is purchased or built. 

Second, the full Simulink implementation can be used for the post-processing of flight data.  
This will require tuning to the specific sensors and disturbance characteristics, but will 
produce a high quality navigation solution.  Indeed, this solution arguably out-performed the 
commercial solution in the aircraft data set.  My navigation solution can be used to processes 
onboard imaging data or to assess the quality of another navigation solution. 

Finally, the software and hardware components of this project can be used as a starting point 
for future development of navigation systems.  Although improvements are warranted, and 
discussed below, this project provides a large resource toward similar efforts. 
 
 
6.2 Direct Improvements 

There are several additional capabilities that can be achieved with minimal further effort in 
algorithm design.  Pursuing these will greatly extend the filter performance. 

Hardware Execution Speed 

Hardware implementation was difficult because of the complexity of this algorithm.  
Improvements were made to allow for successful real-time performance, but several 
sacrifices resulted.  An increase in the speed of the hardware would eliminate these sacrifices 
and could allow other improvements in the filter performance. 

Figure 6-1 shows the dimensions of performance.  All of these axes can be increased with 
minimal modifications to the algorithm but they require additional computation time.  
Improvement in execution speed can therefore provide direct benefits in these areas. 

 
Figure 6-1:  Dimensions of Performance 

These dimensions include the number of states and measurements of the filter.  For this 
hardware implementation, it was necessary to remove the bias states and the freefall 

states 

measurements 

solver order 

precision 

sample rate 
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measurement.  Pursuit of a tightly-coupled solution would require additional states and 
variables.  These new variables would increase the size of all matrices, impacting memory 
and multiplication operations. 

Increasing the solver order can dramatically improve the numerical robustness of the filter.  
The use of a linear solver was by far the gravest sacrifice that was made when porting to 
hardware.  Execution time is approximately proportional to solver order, although the 
measurement updates occur at a constant frequency.  In a similar fashion, the accuracy can be 
improved by increasing the sample rate. 

The use of double precision floating point computation could be considered, although this 
may not be a wise use of resources compared to the other axes of performance.  Still, the 
current single-point precision is producing a reduction in numerical robustness.    

Modeling Improvements 

This project has explored a large set of state variables.  In response to the results of 
simulations and observability analysis, the choice of state variables should be revisited.  
Hardware implementation motivates a reduction in state variables.  Certain applications may 
also benefit from a custom choice of state variables. 

The modeling of biases should be revisited.  The gravity model bias should certainly be 
eliminated in exchange for a higher-order gravity model.  Gyroscope and accelerometer 
biases should be included if resources permit, because they are usually observable and will 
improve attitude accuracy.  Scale factors will provide improvements for applications with 
large ranges in IMU measurement values, but will require 6 to 18 additional state variables, 
depending on the inclusion of cross-correlation terms. 

For applications that experience unpredictable disturbances, the IMU measurements should 
become the process model and replace rigid body dynamics.  This will remove 9 state 
variables and eliminate the need for disturbance modeling.  It also eliminates the nonlinearity 
of the body rate equation.  Some reformulation of the filter equations is necessary, but this is 
primarily a simplification of the filter.  This derivation is included in the Appendix. 

Finally, all applications will benefit if the attitude error α is defined in ECI coordinates.  
With this modification, the small rotation is performed before the body rotation:   

 αRqBqB )ˆ()( = . (6-1) 

The benefit is a more linear propagation equation: 

 . (6-2) δωα TqB )ˆ(=&

In particular, this choice of variables has eliminates the term αω ×ˆ  that appeared when α 
was defined in body coordinates.  ECI attitude error remains constant when the vehicle 
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rotates.  As a result, the propagation of α  in ECI coordinates is more robust at high rotation 
rates.   

The measurement update for the quaternions must also be modified slightly to include the 
transformation into body coordinates: 

 αiqBqfqq q )ˆ()ˆ(ˆˆ −−+ += . (6-3) 

All expressions involving α  in the state and measurement Jacobians must be reformulated 
using (6-1).  The IMU process model that is presented in the Appendix includes this 
modification. 

Flight Robustness 

The robustness of the filter for flight applications can be improved using several system-level 
techniques.  This is required before flight operation is attempted and will increase filter 
accuracy in many situations. 

The first technique is measurement rejection based on the chi-squared statistic.  This can be 
used to eliminate isolated measurement glitches and prevent the filter from making large 
corrections.  This technique is common practice in most commercial navigation systems.   

Second, the INS solution, which is very robust, should be available as a backup solution.  
The INS solution could benefit from periodic corrections from the Kalman filter.  These 
corrections must be applied only when the Kalman filter is providing a good estimate, which 
is measured by the covariance and chi-squared statistic.  Corrections could include attitude 
and position updates, as well as bias information.  This would provide the ability to restart 
the Kalman filter in the event that divergence occurs. 

Finally, the nonlinear initializer for the Kalman filter should be expanded into a full 
nonlinear estimator and used whenever the error covariance is large.  This would include 
initialization, but also periods of poor observability such as sensor dropouts.  In this fashion, 
the Kalman filter would be completely protected from nonlinear effects.  The nonlinear 
estimator would only require coarse accuracy within the capture range of the Kalman filter, 
and could ignore biases and small effects.  The optimal linear solution of the Kalman filter 
would provide higher accuracy when the state errors are small.  The main task required for 
this improvement is the development of an attitude alignment procedure that does not require 
the vehicle to be Earth stationary.  This should be achievable by fitting the INS solution to 
the GPS data.  
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6.3 Future Objectives 

Additional improvements have been identified that require future research.  These topics 
have been motivated by this project, but were not pursued in this thesis. 

Square-Root Filtering 

Difficulties in the hardware implementation arose because the covariance matrix could 
become indefinite under imperfect arithmetic and low order ODE solvers.  The use of the 
square-root filtering algorithm would greatly improve numerical performance by enforcing 
the positive definiteness of the covariance matrix. 

This routine was described in Section 2.2.5.3.  It can directly replace the current Kalman 
filter block in the Simulink model.  It is expected that computation time will increase but 
accuracy and robustness will improve.  The most significant benefits will be in the hardware 
performance.  

 
Tightly-Coupled Architecture 

Although many arguments were presented against it, and the current hardware prohibits it, 
the tightly coupled filter architecture has merit and can lead to improved accuracy.  The 
greatest reason for using it is the elimination of delays and dynamics in the GPS solution.  A 
“head to head” simulation comparison of the tightly-coupled and loosely-coupled 
architectures would provide interesting results, regardless of the victor.    

Implementation of a tightly-coupled navigation system in the simulation environment will 
require several tasks.  The first is rudimentary processing of the GPS messages to obtain 
pseudorange and satellite position from the raw messages.  The accuracy of this pseudorange 
measurement can be improved using more advanced techniques, such as phase measurement 
and dual frequency comparison.  Differential GPS and additional augmentation systems must 
be incorporated at the pseudorange level, before the GPS position solution is calculated.  The 
pseudorange measurements should then replace the GPS position and velocity measurements 
in the navigation filter.  The Doppler measurement can be used as a measurement of the 
derivative of pseudorange.  

Implementation on hardware will require significant improvements in computational speed or 
algorithm efficiency.  Simulation will reveal if it is worthwhile to purse these efforts. 

   
Forward-Backward Smoothing 

For post-processing applications, the filter accuracy can be improved by incorporating data 
smoothing.  In these methods, the optimal estimate is calculated using the entire 
measurement set, including future measurements.  A popular approach is known as Forward-
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Backward smoothing and is described in [3, pp. 322-331].  This technique involves building 
two Kalman filters, running one forward in time and one backward in time.  The optimal 
(minimum variance) combination of these two estimates is the variance weighted average: 
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The estimate with the smaller variance is given more weight.  This provides a new estimate 
with variance 
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which is smaller than the variances each individual estimate.  Implementing this technique 
requires modified equations for the backward filter, but can use the same Jacobians and 
system model.  Computation time will nearly double, because the covariance propagation and 
Kalman update dominate, but the required implementation effort is minimal. 

This technique is certainly useless for real-time operation, so hardware implementation is not 
an issue.  

 
Additional Measurements 

Problems in state observability can usually be resolved by taking measurements from 
additional sensors.  This also can improve accuracy for states that are already observable.  
There are several leading candidates for this pursuit. 

Of the critical navigation states, attitude exhibited the worst observability, especially in the 
direction of heading.  Heading accuracy can be measured using a magnetic compass.  This 
will require a magnetic Earth model and a corresponding error model.  Although a compass 
measurement is not precise, it can provide benefit because it does not usually drift over time. 

A more accurate and expensive attitude measurement is a star tracker, which measures full 
attitude by sighting a celestial object or manmade beacon.  This sensor typically requires a 
motion controlled telescope and camera with the ability to track a light source. 

Another alternative is a phased array receiver which measures attitude by the phase 
differences in the received signals.  This can be performed using the signals from a land 
based transmitter or from the GPS satellites.  As with all phase measurements, there is 
ambiguity between successive wave periods which must be resolved.  

 
Mixed Continuous and Discrete States 

While continuous differential equations were ideal for representing the dynamics of motion, 
they were awkward and inefficient for representing sensor noise.  The biases themselves are 
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apparent only at the discrete times of measurement, so it would be more natural to model 
them as discrete time states.  This would also permit the direct use of a number of powerful 
discrete system modeling tools. 

A suggestion is to develop the minimum variance filter for a system that has both discrete 
and continuous states.  The measurement update could remain unchanged, but the covariance 
propagation would need to be modified.  The result would allow for the modeling of 
continuous and discrete states where they are most appropriate.  This would ultimately lead 
to fewer continuous states, which would probably reduce computation time.  

This completes the recommendations for this project.     

7. Conclusion 
This thesis presented the theory, simulation, and hardware prototype for a navigation system.  
IMU and GPS measurements were fit to rigid body dynamics using an Extended Kalman 
Filter.   

The theoretical derivation presented the details for constructing this filter.  Special attention 
was given to the assumptions and optimality conditions of the Kalman Filter.  Observability 
of the system was studied in detail and statements concerning stability and convergence were 
made. 

Simulation provided characterization of the filter performance.  Covariance analysis 
determined the accuracy of the filter and sensitivity to different parameters.  Full simulation 
revealed filter behavior in both normal and abnormal operating conditions.  Flight 
simulations validated the filter using real flight data. 

Hardware implementation demonstrated that this algorithm could be run in real time.  The 
computational burden was significant, but improvements in algorithm efficiency and 
computation speed were achieved using several methods.  However, the robustness and 
accuracy of the hardware prototype were ultimately compromised. 

This project achieved successful performance in both simulation and hardware.  It provides a 
source of information and insight for the design of navigation systems.  This thesis stands as 
a foundation for future development in this research area at MIT Lincoln Laboratory. 
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Appendix – IMU Process Model 
A process model based on the IMU measurements is defined here and the resulting 
linearization for the EKF is derived.  This reduces the number of filter states and 
measurements, and is more appropriate for systems with unpredictable dynamics.  This 
analysis is brief, but it uses the same techniques that were used in Section 2.3.1 for the 
linearization of rigid body dynamics.   

The IMU measurement model 

 ωωωω nbm ++=  (A-1) 
 ( ) aam nbpgvqBa ++−= )()( &  (A-2) 

can be inverted to obtain the following process model: 

 ωωωω wbm −−=  (A-3) 
 ( ) a

T
am

T wqBpgbaqBv )()()( −+−=& . (A-4) 

The IMU measurements are now treated as known control inputs instead of measurements.  
A zero order hold must be applied so that the measurement is available in continuous time.  
Note that the discrete measurement noise n has become the continuous process noise w, so 
the value must be adjusted according to the sample time.  Specifically 

  TQR = , (A-5) 

where T is the sample time, Q is the discrete-time covariance matrix: 

 { } QnnE T = , (A-6) 

and R is the continuous-time covariance matrix: 

 { } )(tRwwE T δ= . (A-7) 

This result can be derived by equating the effects of continuous-time and discrete-time noise 
over one sample period. 

Nonlinear Dynamics 

The propagation for the fundamental navigation states becomes 

 ( )ωωω wbqfq mq −−= )(&  (A-8) 
  (A-9) vp =&

 ( ) a
TT

am
T wqBpgqBbaqBv )()()()( −+−=&  (A-10) 
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Note that ω is not propagated in this process model.  Bias states remain modeled as simple 
decays with . iii xrx −=&

Linearized Small Error Dynamics 
 
The linearization about the estimated state is now 
 
  (A-11) ωωδα wqBbqB TT )ˆ()ˆ( −−=&
 vp δδ =&  (A-12) 
 , (A-13) a

T
a

T
pma

T wqBbqBpGabqBv )()ˆ(])ˆ[()ˆ( −−−×−= δδαδ &

The attitude error α has been redefined in ECI coordinates, which eliminates ωm from the 
error propagation.  Bias state errors propagate according to iii xrx δδ −=& .  The resulting linear 
matrix expression FwxAx += δδ&  is 
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where .  The rotation ])ˆ[(ˆ ×−= ma
T

v abBA α
TB̂−  in F is unimportant if the IMU noise is 

uncoupled and identical in all axes, i.e. { } InnE σ=T 2 , because then 

 ( )( ){ } 22 ˆˆˆˆ σσ ==−− BBnBnBE TTTT . (A-15) 

Measurement Compensation and Linearization 

The number of measurements is reduced because the IMU is no longer treated as a 
measurement.  In addition, the freefall measurement is only applicable to the translational 
equations.  The remaining measurements can be compensates as follows, producing small 
error measurements: 

 ( ) ewm
T

fix bqB ωωδω −−−= )ˆ(  (A-16) 
 vRpRv eeefix ˆˆ −×= ωδ  (A-17) 

  (A-18) amfree baa ˆ−−=δ
 pRpp egpsgps ˆ−=δ  (A-19) 
 vRpRvv eeegpsgps ˆˆ −×+= ωδ , (A-20) 
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The resulting linear measurement equation nxHz += δδ  is 

 . (A-21) 
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The noise terms nvfix, npgps, and nvgps are the respective measurement noises.  However, the 
other measurements contain a combination of noise sources.  The measurement ωfix contains 
noise from the gyroscopes and from vehicle vibrations.  Similarly, the measurement afree 
contains noise from the accelerometers and from disturbance forces.  Assuming 
independence, the covariance of the sum is equal to the sum of the covariances for these two 
noise sources. 

Error Offloading 

All error states should be immediately offloaded to the nonlinear state estimate.  With α in 
ECI coordinates, the attitude update is now 

 αiqBqfqq q )ˆ()ˆ(ˆˆ −−+ += . (A-22) 

Observability 

The observability results are very similar to the rigid body model in most respects.  The 
definition of the attitude error α  in ECI coordinates simplifies analysis.    

Attitude alignment is weak about the axis of measured acceleration, which is equivalent to 
the direction of applied force.  Attitude becomes fully observable when the direction of 
measured acceleration is varied with respect to inertial coordinates.   

Gyroscope biases are observable when attitude is fully observable or when the fixed-to-Earth 
measurement is used.  Accelerometer biases are observable in the direction of measured 
acceleration.  Both of these biases become fully observable when the vehicle rotates. 

The notable difference is that rigid body dynamics no longer contribute to the observability.  
This includes the dynamic properties of the force and torque disturbances as well as the 
precession of a rotating vehicle.  However, when these effects are unpredictable, there is very 
little information lost by using the IMU process model.    
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