
WSIM Configurable Digital Signal Processor Simulator/Debugger

by

Wayland Ni

B.S., Computer Science and Engineering (2003)

Massachusetts Institute of Technology

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology

May 20, 2004

Copyright 2004 Wayland Ni. All rights reserved.

The author hereby grants to M.I.T. permission to reproduce and
distribute publicly paper and electronic copies of this thesis

and to grant others the right to do so.

Author__
 Department of Electrical Engineering and Computer Science

May 20, 2004

Certified by__
 Charlie Sakamaki
 VI-A Company Thesis Supervisor

Certified by__

 Chris Terman
 M.I.T. Thesis Supervisor

Accepted by___
 Arthur C. Smith
 Chairman, Department Committee on Graduate Theses

 1

WSIM Configurable Digital Signal
Processor Simulator/Debugger

by
Wayland Ni

Submitted to the

Department of Electrical Engineering and Computer Science

May 20, 2004

In Partial Fulfillment of the Requirements for the Degree of
Master of Engineering in Electrical Engineering and Computer Science

ABSTRACT

This M.Eng. Thesis presents a design and implementation of a full-featured configurable
Digital Signal Processor (DSP) simulator/debugger. The user will be able to set
configurations in order to model a specific architecture design. The simulator will have a
command interpreter to listen to and process commands given by the user. When supplied
with an assembly program, the simulator will allow the user to step through the execution
of the program cycle by cycle, as well as calculate statistics like instruction, resource, and
cache profiling. Some of the main features of the simulator are a multiply-accumulate
unit, memory with direct and indirect offset addressing, and loop instructions.

M.I.T. Thesis Supervisor: Chris Terman
Title: Senior Lecturer, MIT EECS

VI-A Company Thesis Supervisor: Charlie Sakamaki
Title: Senior Staff Engineer/Manager, QUALCOMM Inc.

 2

Acknowledgements

 First, I would like to thank my QUALCOMM supervisor, Charlie Sakamaki, for
his expertise and direction in guiding me throughout the course of the project. I really
enjoyed working with you and the rest of the team members and have learned a
tremendous amount.

 Next, I would like to thank my thesis advisor, Chris Terman, for his patience and
support in putting up with my habit of procrastinating and waiting until the last minute. I
really appreciate everything you’ve done in such a short time span.

 I would also like to thank the MIT EECS VI-A program for making it possible for
me to work on an industrial-based thesis. I especially would like to thank Prof. Markus
Zahn, Kathleen Sullivan, and Lydia Wereminski for doing a great job with the program
and coordinating all the details with the companies.

 In addition, I would like to thank my academic advisor, Prof. Jeffrey Shapiro, and
VI-A Faculty Advisor, Prof. Lizhong Zheng, for checking up on my progress and making
sure my time at QUALCOMM was a success.

Finally, I would like to thank all of my family and friends, for encouraging me
through this long and difficult process. Without all of you, this thesis would not have
been possible. Thank you!

 3

Table of Contents

ABSTRACT.. 2
Acknowledgements... 3
Table of Contents.. 4
Table of Figures .. 6
Chapter 1... 7

Introduction... 7
Chapter 2... 9

Tools Background... 9
Chapter 3... 10

System Interface.. 10
Configuration Information .. 10
DSP Assembly Source File... 14
Profiling Information .. 15

Chapter 4... 17
System Overview.. 17

SystemC Processor Architecture... 17
Tcl Command Interpreter.. 18

Chapter 5... 20
Tcl Interpreter Commands .. 20

Clear Resource Statistics... 20
Breakpoints ... 21
Caching ... 21
Continue.. 22
Direct Memory Access ... 22
Memory Dump.. 23
Get Resource Value .. 23
Print Help.. 23
Print Instructions... 24
External Interrupts .. 24
List Program.. 24
Load Program.. 24
List, Step, Register.. 25
Instruction Profiling .. 25
Print Registers... 25
Reset Simulator... 25
Program Run ... 25
Set Resource Value ... 26
Print Stack... 26
Resource Statistics .. 26
Program Step... 26

Chapter 6... 28
SystemC Architecture Modules .. 28

Instruction Parser .. 28
Internal / External System Clock .. 29
Decoder ... 30

 4

Register File .. 31
Memory... 31
Arithmetic Logic Unit... 32
Multiply Accumulate .. 33
Flags.. 33

Chapter 7... 35
Features Implementation... 35

Resource Value Representation and Resource Profiling .. 35
Instruction Execution Profiling... 36
Breakpoints ... 36
Continuous Simulation.. 37
Pipelining .. 38
Function Calls ... 40
Loop Instructions .. 41
External Interrupts .. 42
Direct Memory Access ... 43
Cache Simulation .. 44

Chapter 8... 45
Testing... 45

Chapter 9... 51
Related Work .. 51

Chapter 10... 52
Future Work .. 52

References... 53
Appendix... 54

 5

Table of Figures

Figure 1: WSIM Interface Overview .. 10
Figure 2: Sample register file with four 32-bit registers... 11
Figure 3: Instruction set modeled in WSIM ... 13
Figure 4: Three-stage pipeline .. 14
Figure 5: System overview ... 17
Figure 6: Table of interpreter commands.. 20
Figure 7: Block diagram of ALU.. 32
Figure 8: Block diagram of MAC... 33
Figure 9: Pipeline Flow for Jump Instruction ... 38
Figure 10: No NOP between ADD and BEQ ... 39
Figure 11: NOP inserted between ADD and BEQ.. 40
Figure 12: Timing diagram of DMA access ... 43
Figure 13: Table of test programs... 45

 6

Chapter 1

Introduction

 A Digital Signal Processor (DSP) is a specialized computer processor used to

process audio, video, and other analog signals which have been converted to digital form.

The main difference between a DSP and a general-purpose processor is that a DSP is

usually dedicated for specific kinds of applications. A DSP has features designed to

support high-performance, repetitive, numerically intensive tasks [1]. For example, in

cellular phone chipset solutions, a DSP is used for computationally intensive applications

such as voice encoding/decoding, MP3 music file playback, MIDI synthesis, and 2D/3D

graphics functions [2]. The performance acceleration of DSP processors is achieved by

features that include:

• Capability for single-cycle multiply-accumulate; some high-performance DSPs

often have two multipliers that allow two multiply-accumulate operations on the

same instruction cycle

• Complex addressing modes, for example, pre- and post-modification of address

pointers, circular addressing, and bit-reversed addressing

• Specialized program flow control. DSP processors often provide a loop

instruction that reduces the loop overhead by not spending any instruction cycles

on updating and testing the loop counter or on jumping back to the top of the

loop. Additionally, tight loops allow a single instruction to be repeated without

any extra loop overhead

• Irregular instruction sets, so several operations can be encoded in a single

instruction. Instead of restricting each instruction to a single operation as in

general-purpose processors, DSPs may encode two additions, two multiplications,

and several data moves into a single instruction [1].

 7

The need for more specially tailored DSP processors has been brought about by the

growth of computationally intensive applications, especially in mobile devices, which

need to have low power consumption, but maintain high performance. As DSP

architecture designs become more specific and more complex, the associated costs with

fabricating new prototypes will start to mount. However, with a software-based

simulator/debugger, architecture designers will be able to test out their designs and

execute sample programs without spending the money to fabricate a new prototype.

This thesis presents the design and implementation of WSIM, a configurable text-

based DSP simulator/debugger for the purposes of prototyping a DSP architecture. It

allows the user to model a specific DSP architecture by easily configuring factors like

instruction set, memory, and pipeline setup. After configuration, the simulator reads a

DSP assembly program and produces a cycle-accurate simulation of the program’s

execution, while providing profiling information, including instruction execution counts,

hardware resource usage counts, and cache performance.

The organization of this thesis is as follows. Chapter 2 describes some of the tools

and technologies used in implementing WSIM. Chapter 3 discusses the interface to the

simulator, in terms of the inputs and outputs. Chapter 4 outlines the overview of the

system’s design. Chapter 5 explains the user interface and serves as a user’s guide.

Chapter 6 talks about the major blocks of the system architecture. Chapter 7 explores the

implementation details of the advanced features. Chapter 8 illustrates some test cases and

examples used to examine the functionality of the simulator/debugger. Chapter 9 briefly

summarizes related work in the field. Chapter 10 looks at possible future work to be done

and concludes the thesis. The Appendix contains some sample source code for the

simulator/debugger.

 8

Chapter 2

Tools Background

SystemC, Tcl, and C++ are the main tools/languages used in the implementation

of WSIM. This section briefly provides some background information on SystemC and

Tcl.

SystemC

SystemC is an extension of the C++ programming language that enables modeling

of hardware descriptions. It adds concepts to C++ such as concurrent process execution,

timed events and data types. The class library is not a modification of C++, but a library

of functions, data types and other language constructs that are legal C++ code [3].

Overall, SystemC really simplifies the process of modeling a DSP architecture.

Tcl

Tcl, or “tool command language,” is a simple scripting language for controlling

and extending applications [4]. The major benefit of Tcl that we take advantage of is that

it is embeddable. It has an interpreter that is a library of C procedures, so it can easily be

incorporated into applications. We may easily add or remove commands as we please

from the interpreter to suit our needs.

 9

Chapter 3

System Interface

At the highest level, WSIM is a black box that takes as input a DSP assembly

source file and configuration information about the target processor and produces

profiling information to the user, as shown in Figure 1. The next few sections will

describe each of these pieces.

WSIM

Configuration
Information

Assembly
Source

Program File

Profiling
Information

Figure 1: WSIM Interface Overview

Configuration Information

In order for WSIM to simulate the behavior and functionality of a particular DSP

architecture design, we need to input the features and details of the design. These features

include the register set, memory configuration, instruction set, and pipeline stages of the

target processor. We will first introduce each of these features, and then show the details

of the generic DSP we have chosen to model.

For the register set, the simulator needs to know the number of registers, the size

of the registers, as well as whether the registers can be accessed partially. Partial access

 10

means that if only part of the register is needed, only part of the register is read from or

written to. For example, Figure 2 shows a register file with four 32-bit registers R0-R4.

However, if only the high 16 bits of a register are needed, we could use R0h, or if only

the low 16 bits are needed, we could use R0l. In the design that we modeled, we decided

to use eight 16-bit registers R0-R7, and four 32-bit long registers L0-L3, which can also

be accessed partially with Lxh and Lxl. In addition, we have added four 16-bit address

registers A0-A3 and four 16-bit address modifier registers AM0-AM3 to allow for

advanced memory access methods which will be discussed later. To enable direct

memory access (DMA), we also add four DMA pointers.

R0l (16)R0 (32) R0h (16)

R2l (16)R2 (32) R2h (16)

R3l (16)R3 (32) R3h (16)

R1l (16)R1 (32) R1h (16)

Register File

Figure 2: Sample register file with four 32-bit registers

In terms of memory configuration, we need to specify the number of memory

segments used, the size and bit width of each segment, and whether each segment is

random-access memory (RAM) or read-only memory (ROM). In our model, we just have

one continuous segment of data memory. The segment is 64 KB of RAM with each

address location storing 32 bits. In other processors, there may be up to three or more

separate memory blocks, each with different parameters. Our instruction memory is not

modeled like the data memory. Since no specific instruction encoding is used, we just

have a simple array of Instruction data structures that store the assembly program.

 11

The instruction set of a DSP can vary widely depending on the purpose of the

specific DSP and the engineering tradeoffs in the design of the architecture. Instructions

can usually be grouped into four broad types: computation, program flow, data move, and

miscellaneous. Computation instructions include arithmetic logic unit (ALU) instructions

such as add, subtract, and shift, multiply accumulate (MAC) instructions such as multiply

and multiply-add/subtract combinations, as well as more specialized instructions like

rounding, normalization, or filtering. Program flow instructions include jumps, branches,

loops, function calls, interrupts, returns, and conditionals. Data move instructions involve

loading from and storing to memory, and include register loads, immediate loads, direct

loads/stores, and indirect loads/stores. Miscellaneous instructions can include null

operation (NOP), stack instructions like pop or push, save and restore for context

switches, and anything else the designer chooses. The instruction types we have chosen

for our generic DSP are listed in Figure 3. Each instruction and its implementation will be

explained in more detail later.

Instruction Description
ADD R0 R1 R2 R0 = R1 + R2
ADDC R0 R1 immediate R0 = R1 + immediate
SUB R0 R1 R2 R0 = R1 – R2
SUBC R0 R1 immediate R0 = R1 - immediate
LDC16 R0 immediate R0 = immediate (16 bits)
LDC32 L0 immediate L0 = immediate (32 bits)
LSH R0 R1 R2 R0 = R1 << R2 (logical shift)
LSHC R0 R1 immediate R0 = R1 << immediate (logical shift)
ASH R0 R1 R2 R0 = R1 << R2 (arithmetic shift)
ASHC R0 R1 immediate R0 = R1 << immediate (arithmetic shift)
NOP Null operation
MUL R0 R1 R2 R0 = R1 * R2
MULA R0 R1 R2 R3 R0 = R1 + R2 * R3
MULS R0 R1 R2 R3 R0 = R1 – R2 * R3
JMP label Jump to label
MOV R0 R1 R0 = R1
BEQ label Branch to label if ALU result == 0 (flags)
BNE label Branch to label if ALU result != 0 (flags)
BLT label Branch to label if ALU result < 0 (flags)
BLE label Branch to label if ALU result <= 0 (flags)
BGT label Branch to label if ALU result > 0 (flags)
BGE label Branch to label if ALU result >= 0 (flags)

 12

LDD R0 mem(address) Load direct
R0 = mem(address)

STD mem(address) R0 Store direct
mem(address) = R0

LDI R0 A0 AM0 Load indirect and modify
R0 = mem(A0); A0 = A0 + AM0

STI A0 AM0 R0 Store indirect and modify
mem(A0) = R0; A0 = A0 + AM0

LDIO R0 A0 immediate Load indirect with offset
R0 = mem(A0 + immediate)

STIO A0 immediate R0 Store indirect with offset
mem(0 + immediate) = R0

LDII R0 A0 Load indirect and increment
R0 = mem(A0); A0 = A0 + 1

STII A0 R0 Store indirect and increment
mem(A0) = R0; A0 = A0 + 1

LDID R0 A0 Load indirect and decrement
R0 = mem(A0); A0 = A0 - 1

STID A0 R0 Store indirect and decrement
mem(A0) = R0; A0 = A0 - 1

LDA DMA0 address Load DMA address
DMA0 = address

CALL function Call function
RTF Return from function
RTI Return from interrupt
WAIT Wait for one cycle
LOOPU label Loop until label
LDLC R0 Load loop counter

LC = R0
LDLCC immediate Load loop counter

LC = imm
TLOOP Tight loop

Figure 3: Instruction set modeled in WSIM

Pipelining is an implementation technique that increases the instruction

throughput of the processor. By dividing the pipeline into multiple stages, each stage can

complete a part of a different instruction in parallel. Since multiple instructions are

overlapped in execution, more instructions can exit the pipeline in the same amount of

time. DSP pipelines can range anywhere from one stage to possibly seven or more stages.

In our DSP model, we have chosen to work with a 3-stage pipeline. Figure 4 shows the

 13

three stages: fetch, decode, and execute. In the fetch stage, the processor computes the

address of the next instruction and then proceeds to retrieve the next instruction from

memory. In the decode stage, the processor figures out what the instruction does and

what resources it will need. In the execute stage, the instruction is finally performed.

ExecuteFetch Decode

Fetch Decode

Execute

Execute

Instruction 2

Instruction 3

Decode

Instruction 1

Fetch

n n+1 n+2 n+3 n+4

Figure 4: Three-stage pipeline

We have now been introduced to the four main parts of the configuration

information needed to specify the target processor – register set, memory layout,

instruction set, and pipeline stages – and have seen the details of the generic target

processor we have modeled. Currently, these details have been hard-coded into the

system, but are still relatively easy to modify. However, any changes to the processor

design will require a recompilation of the code. One possible area of future work, which

will be discussed in more detail later, is to allow a configuration file to specify the

specifics of the processor at run-time. This work would involve designing a specification

language, a parser for the configuration file, as well as a clean interface to the rest of the

system.

DSP Assembly Source File

 Another input to WSIM is a DSP assembly source file. At run-time, a source file

may be loaded into the system for simulating and/or debugging. Source files consist of

assembly instructions, program labels, user comments, and memory variables. The

assembly instructions are chosen from the defined instruction set such as in Figure 3.

Each instruction is listed on its own line and does not need any special characters to

 14

delimit it. Program labels are used to reference certain address locations the program can

jump to. For instance, in order to call a function, the function label would need to precede

the first instruction of the function. User comments are lines that begin with the string

“##”. Comments are used only for the programmer’s benefit and are ignored by the

simulator. Memory variables may be declared as single variables or arrays. An example

of the declaration syntax is shown here:

 #VAR aval=0x3535 22

 #VAR bval[3]={0x01,0x02,0x03} 25

The first line sets the variable ‘aval’ to point to location 22 (or 0x16) in memory with

initial value 0x3535. The second line sets the variable ‘bval’ to point to 3 consecutive

locations starting with location 25 (or 0x19), with initial values of 0x01, 0x02, and 0x03.

When declaring memory variables, the initial values are optional.

 A couple examples of DSP test programs are included in Chapter 8. In future

work, an improvement could be made in instruction formats. Instead of just using

mnemonic instructions, a more complicated syntax may be developed. For example,

assembly code resembling the C programming language can be much more readable to

the user or programmer. As will be discussed later, this feature will require a more

complex program parser.

Profiling Information

 When testing a DSP architecture design, the engineer would like to know where

the bottlenecks are and where the design could be made more efficient. The profiling

information produced by WSIM could directly aid in this pursuit. The three classes of

profiling we implement are instruction profiling, resource profiling, and cache profiling.

In instruction profiling, the simulator simply keeps track of how many times each

instruction is executed. Resource profiling remembers how many times each resource,

which could be a register or memory location, is read from or written to. Resource

profiling statistics are kept for the last cycle, a specified period, and for the entire

 15

execution of the program. The user may specify a period to start any time and may clear

the statistics at any time. Based on these profiling results, the DSP designer can decide

where to optimize the design. Chapter 9 also includes some example printouts of

profiling statistics.

 16

Chapter 4

System Overview

Now that we have seen the inputs and outputs of WSIM as a high level, we will

examine the framework of the system. WSIM is a text-based application that has a real-

time command interpreter. The implementation uses SystemC for the architectural

design, Tcl for the command interpreter, and C/C++ for the instruction parser and other

functionality. We will next introduce the main blocks in our SystemC architecture and

see how the command interpreter fits into the simulator.

Decoder

ALU

Memory Registers

Parser

MAC Flags

Figure 5: System overview

SystemC Processor Architecture

As shown in Figure 5, the main architectural blocks of the system are the parser,

decoder, register file, memory, arithmetic logic unit (ALU), and multiply-accumulate unit

(MAC). The flags module is a minor block that is just an addition to the ALU. The parser

 17

reads and parses an assembly program and stores the instructions in an instruction array.

The decoder takes this instruction array and, upon command, executes each instruction

one-by-one. For each instruction, the decoder must decide which registers or memory

addresses, if any, must be read, as well as which functions, if any, the ALU or MAC must

perform. The register file or memory then sends the corresponding data to the ALU or

MAC, which in turn executes the specified operation and passes the result back to the

register file or memory structure for write-back purposes. With the exception of the

parser, each of these blocks is its own SystemC module. Since the parser is so tightly

coupled with the decoder, we have just included the parser in the decode module.

Tcl Command Interpreter

Though the architecture of the processor is modeled with SystemC, the main

driver of the simulator is the Tcl command interpreter. The user must issue commands to

the interpreter, which will in turn run the parser, send instructions through the pipeline, or

get profiling statistics. Upon startup, the system will begin execution in function sc_main.

Function sc_main proceeds to instantiate each of the SystemC modules and connect them

with signals. Then, the initialization sequence sets up all the hardware resources and

internal data structures, as well as the Tcl interpreter. At this point, the system enters the

command parser’s infinite loop, which repeatedly issues a command prompt and

processes commands. Pseudo code of this loop is shown below:

while(1) {

 Print command prompt

 Get command

 Evaluate command

}

We take advantage of the configurability of the Tcl interpreter by adding our own custom

commands and getting rid of the commands we do not want. The next chapter, chapter 5,

 18

will describe each of the commands we implemented and serve as a user guide by

showing how to use each of the commands.

 19

Chapter 5

Tcl Interpreter Commands

 In the last chapter, we explained that WSIM uses the Tcl command interpreter to

drive the system. Figure 6 shows a table of all the commands we have implemented. This

chapter will serve to explain each of these commands in more detail.

Command Description
accounting clear Clear used/assigned resources statistics
breakpoint Set or delete a breakpoint
cache Instruction or memory cache operation
continue Run simulation until breakpoint
dma Direct memory access
dump Memory dump
getval Get resource value
help Print help
instructions Print all instructions
interrupt Set external interrupt
list List program file
load Load program file
lsr List, Step, Register
profile Instruction profile statistics
register Print registers
reset Reset simulator
run Run until breakpoint
setval Set resource value
stack Print PC and loop stack data
statistics Display resource usage statistics
step Simulate one or more cycles

Figure 6: Table of interpreter commands

Clear Resource Statistics
Usage:

accounting clear

 20

Resets the resource usage statistics for the period. It does not affect the cycle

statistics or the total statistics. Cycle statistics only account for the last cycle executed.

Total statistics are kept for the entire duration of the program. Period statistics can be

reset by the user anytime, so the user may look at resource usage results from any point in

the program to another.

Breakpoints
Usage:

b/breakpoint (<line_num>/label <label>)

 b/breakpoint del/delete (<line_num>/label <label>/all)

 b/breakpoint list

The breakpoint command is used to set, delete, or list breakpoints. The first

version of the command sets a breakpoint at either a specific line number or at a given

program label. The second version deletes the breakpoint at a given line number or

program label, if one exists. The third version of the command just prints a list of all the

existing breakpoints.

Caching
Usage:

[cache] is either ‘cache’ or ‘cachemem’

 [cache] (on/off/lru/reset_stats/stats/tags)

 [cache] delay <cycles>

 [cache] log (stdout/<filename>)

 [cache] size <total_cache_size> <block_size>

 [cache] type (direct_mapped/fully_assoc/2_way/4_way)

 [cache] algo (lru/random/lrr)

 [cache] wbdelay <cycles>

 21

The cache command and cachemem command are used to set up and simulate

the instruction cache and data memory cache, respectively. The first version of the

command allows the user to turn the cache on or off, show the statistics, reset the

statistics, show the tags in the current cache, or show the least recently used array. The

second version sets the cache controller delay on a cache miss. The third version allows

the user to specify whether the cache notifications should be written to standard output or

a file. The fourth version, which must be called before the cache is turned on, is used to

set the total size of the cache and the size of each block. The fifth version lets the user

specify the type of cache: direct_mapped (default), fully associative, 2-way set-

associative, or 4-way set-associative. The sixth version of the command specifies which

replacement strategy to use for the associative caches: least recently used, least recently

replaced, or random. The final version of the command tells the simulator how long the

write back delay should be.

Continue
Usage:

c/continue

Continues execution until a breakpoint is hit or the end of the program is reached.

Direct Memory Access
Usage:

dma <channel> (read/write) <filename> [<start> [<period>]]

Schedules a future DMA read or write request on one of four channels. The

argument <start> specifies the cycle number the request should occur on. The argument

<period> specifies that a DMA request should occur periodically every <period> cycles

after <start>. If <start> is not given, the DMA request should occur on the ensuing cycle.

If <period> is not given, the DMA request is a one-time event. A read request reads from

 22

the specified file and writes to the memory location pointed to by the specific channel’s

DMA pointer. A write request reads from that memory location and writes to the file.

Memory Dump
Usage:

dump [(<var>/mem) [<begin> [<end>]] [r <radix>]]

Dumps the contents of memory to the screen. If a variable name is given, the

dump begins at the address of the variable. Otherwise, the dump starts at the address

<begin> and goes until the address <end>. The default for <begin> is 0 and the default

for <end> is <begin> + 128. The argument <radix> specifies whether the data should be

displayed in decimal, hexadecimal (default), octal, or binary. If the command is called

without any arguments, the next 128 values are displayed.

Get Resource Value
Usage:

getval (<resource>/cycle/FPC/DPC/EPC)

Returns the value of the specified resource or one of the special variables: cycle

number, fetch program counter, decode program counter, or execute program counter.

Print Help
Usage:

h

help [<command>]

The command h displays a shortened version of help. The command help

displays the detailed version of help. If <command> is specified, command-specific help

is displayed.

 23

Print Instructions
Usage:

instructions

Displays a list of every instruction in the instruction set.

External Interrupts
Usage:

interrupt (<addr>/<label>) [<start> [<period>]]

This command allows the user to simulate an external interrupt request. The

interrupt handler can be specified either by its address or by its label. The <start>

argument is the cycle number the interrupt is to occur on and <period>, if given, is the

number of cycles until the interrupt request should occur again. If <period> is not given,

the interrupt is a one-time event. If <start> is not given, the interrupt should occur on the

following cycle.

List Program
Usage:

l/list

Prints the program source text from four lines before the earliest program counter

to four lines after the latest program counter.

Load Program
Usage:

load <filename>

Loads a program file for simulation.

 24

List, Step, Register
Usage:

lsr

This command is a combination of three other commands: list, step, and register.

First, the program source file is displayed. Second, the system simulates one instruction

cycle. Third, all of the registers are displayed.

Instruction Profiling
Usage:

p/profile [clear]

The profile command either prints out instruction profiling statistics or clears

the statistics.

Print Registers
Usage:

r/register

Displays the values of all the registers in WSIM.

Reset Simulator
Usage:

reset

Resets all the hardware resources in WSIM.

Program Run
Usage:

 25

run

Starts execution of the program until either a breakpoint is hit or the end of the

program is reached.

Set Resource Value
Usage:

setval (<resource>/cycle) <val>

Set the value of <resource> or the cycle count to <val>.

Print Stack
Usage:

stack

Displays the program counter stack, loop counter stack, loop start stack, and loop

end stack.

Resource Statistics
Usage:

stats/statistics [all/reg/mem/<resource...>]

Displays statistics of all resources, just the registers, just the memory, or just one

specific resource.

Program Step
Usage:

s/step [<cycles>]

 26

Simulates the execution of the program file for <cycles> number of cycles, or one

cycle if <cycles> is not specified.

 27

Chapter 6

SystemC Architecture Modules

From Figure 5 above, we have seen how the SystemC modules fit together to

form the framework of the processor. In this chapter, we look at each of the modules

separately and in more detail.

Instruction Parser

When the command interpreter receives a load program command, the

instruction parser is called to read in the assembly program file. As mentioned before,

everything in the program file should fall under one of four categories: instruction, label,

comment, and memory variable. The parser reads in the file, one string at a time,

delimited by white space, and decides which of the four categories that string falls under.

If the processed string is ‘#VAR’, it must be the beginning of a memory variable

declaration. The parser then checks whether the variable is a single variable or an array,

and whether an initial value is present. If an initial value is present, the value is written

into the location in memory specified by the address. Then a new MemVar object is

created and added to the global array of MemVar objects. Finally, the parser moves on to

the first string of the next line.

If the first string of a line begins with the character sequence ‘##’, it must be a

comment line. The parser then reads in the rest of the line and discards it, moving on to

the first string of the next line.

If the first string of a line ends with the colon character ‘:’, that line is a program

label. After checking for duplicate labels, a new Label object is created and added to the

global array of labels. The parser then proceeds to the next line.

If a string does not fall under any of the first three categories, it must either be an

instruction or an error by the assembly programmer. The string is checked against the list

of instructions in the instruction set, and if a match is not found, an error statement is

 28

printed to the screen and the string is skipped. The parser would then go on to the next

string, either on the same line, if it exists, or on the following line. If the first string does

match with an instruction, a new Instruction object is created and added to the global

array of instructions. The parser next scans the following strings to get the arguments of

the instruction. Each Instruction object has a corresponding array for arguments. Since

different instructions have different numbers of required arguments, we need to fill up the

empty argument slots with the empty string “”. In addition, when all the instructions have

been read, we need to fill the empty instruction slots with “fake” instructions. These fake

instructions and empty arguments just serve as placeholders and help avoid null pointer

exceptions later in the pipeline.

Internal / External System Clock

There are actually two different clocks in WSIM: an external DSP instruction

clock and an internal SystemC clock. The external instruction clock is the slower clock

such that one instruction cycle is the same as NUM_CYCLES number of internal

SystemC cycles, where NUM_CYCLES is defined in the header file global.h. When a

step or run command is received by the interpreter, the interpreter calls the

clk_step function in main.cpp. The clk_step function is basically a wrapper that

simulates one external DSP instruction cycle by triggering the internal SystemC clock to

run for NUM_CYCLES number of cycles. The SystemC clock is connected to each of

the SystemC modules and triggers each of them to run for one cycle. Thus, for each

processor instruction cycle we want to elapse, we need to simulate NUM_CYCLES

number of SystemC cycles. This design was actually more complicated than it needed to

be and is another candidate for possible future work. The simpler design would be to just

have one SystemC cycle be equivalent to one processor instruction cycle. This idea will

be discussed further in the chapter on future work.

 29

Decoder

The decode module has a thread called generate that is sensitive to the

SystemC clock signal. The generate thread is an infinite loop such that one processor

instruction cycle, or NUM_CYCLES SystemC clock cycles, will result in a complete

iteration of this loop. This behavior is accomplished by inserting NUM_CYCLES

number of wait instructions in the loop. When triggered by the SystemC clock signal,

the thread runs until it reaches a wait instruction and suspends. On the next clock cycle,

the module resumes from right after the wait and keeps running until the next wait

instruction. Thus, after NUM_CYCLES number of SystemC clock cycles, the point of

execution will be at the same exact point in the loop. All of the SystemC modules are

modeled in the same way.

 At the simplest level, the execution loop in the generate thread carries out

several tasks. First, it gets the program counter (PC) from the PC register. The PC is the

address of the next instruction to be executed. Second, it looks up the instruction located

at the address pointed to by the PC. Then, based on the specific instruction, the thread

figures out what signals it needs to send to the MAC, ALU, register, and memory

modules. Specifically, the ALU and MAC need to know what function to carry out and

which inputs to accept, and which module to send the result to. The register and memory

modules need to know which registers and memory locations to read from or write to.

The final task the decode thread needs to complete is to increment the PC. These tasks

comprise the most basic tasks necessary to simulate a simple processor. All the additional

features we have implemented have added many more modifications to the decode

module and will be described in detail in the chapter on features implementation.

 To decide which signals to send to the other modules, we have implemented a

long, straightforward if-else if structure with each specific instruction getting a

block, much like a switch-case construct. Here is an example of the structure:

 if (instruction == “ADD”) {

 ...

 } else if (instruction == “SUB”) {

 ...

 30

 } else if (instruction == “MUL”) {

 ...

One more area of improvement in future work that will be discussed later is to get rid of

this structure completely. If we want to be able to configure the instruction set of the

target processor at runtime, we will not be able to use a structure like this. In the

configuration file, we would have to convey which signals to send for each instruction

type.

Register File

The register file has three read ports and one write port. The only job of this

module is to output the contents of a register when needed and to write to registers when

requested. The register file module has a thread called update that is sensitive to the

SystemC clock signal. The update thread is an infinite loop like the generate

method in the decode module. The loop just waits for the read signal, which specifies

which register is to be read from, and the write enable signal, which specifies which

register is to be written to. Additionally, there is a modification that will be described

later to allow for read/write access to either the high bits or the low bits of a register.

Memory

The memory module is almost identical to the register file module, except that it

only has one read port and one write port. It waits for signals from the decode module to

decide which address location needs to be read from or written to, as well as whether the

data comes from the ALU or MAC units.

 31

Arithmetic Logic Unit

The ALU module waits for signals from the decode module and then determines

which inputs to select, which function to perform, and where to send the output. A block

diagram of the ALU is shown in Figure 7.

Reg A

Reg B Mem

ALU Function

Input Select

Imm

Output

Z Flag
N Flag

Figure 7: Block diagram of ALU

After the inputs are received, the module must sign extend the inputs because we

are assuming that all data is signed. Since our inputs may be of varying bit lengths, such

as 16, 32, or 64 bits, we just sign extend everything to a standard of 64 bits, and then

perform all calculations as if all the inputs are 64 bits in length. After we perform the

calculations, we mask the result to the correct length of the output, and send the result to

the proper module. Depending on the result, we also send signals to the flag module to

show if the result was zero or not, and if the result was negative or not. These flags are

used in conditional branch instructions. The source code for the ALU SystemC module is

included in the Appendix.

 32

Multiply Accumulate

The MAC module is very similar to the ALU module. It reads in three inputs, sign

extends them to 64 bits, and performs an operation on them. The result is masked down

to 32 bits and is sent to the register module and memory module. There are no flags

associated with the MAC. A block diagram of the MAC module is shown below in

Figure 8.

Reg A Reg B Reg C

MAC Function

Output

Figure 8: Block diagram of MAC

 Since MAC instructions only accept inputs from registers, we do not need a

multiplexer and an input select signal like in the ALU module.

Flags

The flags module is similar to the register module, but it only has to store two

values, the zero flag and the negative flag. The zero flag being true indicates that the last

result computed by the ALU was zero. The negative flag being true indicates that the last

result computed by the ALU was negative. A combination of these two flags tells

whether the last ALU result was positive, zero, or negative. These flags are used in

conditional instructions such as BEQ, BLT, and BGE. BEQ, which stands for “branch

equal,” instructs the processor to jump if the last ALU result was equal to 0. BLT, which

 33

stands for “branch less than,” instructs the processor to jump if the last ALU result was

less than zero. Finally, BGE, which stands for “branch greater than or equal to,” instructs

the processor to branch if the last ALU result was greater than or equal to zero.

 34

Chapter 7

Features Implementation

In this section, we introduce all of the advanced features of the simulator and

describe how each is implemented.

Resource Value Representation and Resource Profiling

Hardware resources such as registers, memory, and ALU flags are represented by

a struct data type called RES_Value. Each resource has a read value and a write

value. This dual nature was designed to support parallel instructions, a popular feature of

DSP architectures that may be added in the future. For example, consider the following

parallel instruction:

R0 = R1, R2 = R0 + 1

If each resource only had one value instead of a read value and a write value, the result of

the instructions would be different based on the order of execution of the two

instructions. Since a parallel behavior is desired, the first instruction assigns R1 (read) to

R0 (write) and the second instruction adds 1 to the value of R0 (read) before assigning

the result to R2 (write). At the end of every cycle, the write value of each resource is

copied to the read value.

 The RES_Value data type also includes two separate pointers to two other

RES_Value data types, named AllResourcesNext and AllRegistersNext.

This way, one resource is linked to the next resource, in effect creating a linked list of all

the resources in the system. This method makes it much easier to go through and perform

an operation on all the resources. The head of the list is pointed to by the global variable

AllResourcesList. The second list, pointed to by AllRegistersList, only

includes the registers. Since every single memory location is represented as a resource

and is included in the list AllResourcesList, the list AllRegistersList allows

 35

a more efficient search for a specific register because every single location of memory

does not need to be traversed.

 The remaining fields in the resource value data type are all used to support

resource profiling. Two bool data types, CycleUsedFlag and

CycleAssignedFlag, are used to indicate whether the resource was used or assigned

to in the last instruction cycle. Four more long data types, PeriodUsedCount,

PeriodAssignedCount, TotalUsedCount, and TotalAssignedCount,

count the number of times the resource was used in the current period, assigned to in the

current period, used in the entire program, and assigned to in the entire program,

respectively. Two more pointers to RES_Value data types, CycleAssignedNext

and CycleUsedNext, help connect a linked list of all the resources that were assigned

to or used in the past cycle. Thus, the simulator only needs to traverse these reduced lists

when updating the read and write fields of all the resources that were written to in each

cycle.

Instruction Execution Profiling

Instruction profiling is implemented by adding a count variable in the

Instruction class. Then, in the main loop of the decode module, we increment the

variable for the instruction in the Execute stage of the pipeline.

Breakpoints

Breakpoints are used to help debug a program. The user may set a breakpoint on a

specific instruction, either by giving the line number of the instruction or the name of the

label directly preceding the instruction, if one exists. Like instruction profiling counts,

breakpoint information is kept in the Instruction class. Each Instruction object

has a flag that says whether a breakpoint exists at that instruction.

During each cycle of program execution, the simulator must check to see if a

breakpoint has been reached. This check is performed in the main loop of the decode

 36

module. Before an instruction is simulated in the execution stage of the pipeline, the

simulator makes sure there is no breakpoint set at that instruction. If a breakpoint does

exist, the simulator ceases execution of the instruction and returns control to the

command interpreter. The user must then command the simulator to start running again

before that instruction gets executed.

Continuous Simulation

Usually, the user uses the step command or lsr command to step through one

instruction at a time. If the user just wants to simulate the program indefinitely until a

breakpoint is hit, the run or continue command will suffice. This behavior is

implemented by using a global flag variable SimContinuous and letting the program

keep running until the flag’s value is set to false. The while loop is added in the

clk_step function in main.cpp, around the for loop that triggers the SystemC clock.

This portion of the code is shown here:

while(SimContinuous) {

for (int i=0; i<NUM_CYCLES; i++) {

 clk.write(1);

 sc_cycle(10 NS);

 clk.write(0);

 sc_cycle(10 NS);

}

 }

The SimContinuous flag is set to false in the main loop in the decode module

whenever a breakpoint is hit or when the final instruction has been executed. Otherwise,

this loop will keep running.

 37

Pipelining

As mentioned earlier, we have modeled a three-stage pipelined processor with a

fetch stage, a decode stage, and an execute stage. To simulate this behavior, we first need

three program counters, one for each stage: FPC, DPC, EPC. Since we also need to

execute some tasks on the decode stage, we will need a separate if-else if structure

to match instructions in the decode stage, very similar to the existing if-else if

structure for instructions in the execute stage. This structure is added in the same place in

decode.cpp.

In a pipelined architecture, certain instructions, such as jumps or branches, will

require instructions already in the pipeline to be cancelled or flushed. An example is

shown in Figure 9.

ExecuteFetch Decode

Fetch Decode

Execute

Execute

ADD R0 R0 R1

label: SUB R0 R0 R1

Decode

JUMP label

Fetch

n n+1 n+2 n+3 n+4

address available

cancel current instruction

fetch new instruction

Figure 9: Pipeline Flow for Jump Instruction

In this example, the address of the location to jump to is not known until the

beginning of cycle n+2. However, the instruction following the jump is already in the

pipeline. Thus, we need a mechanism of flushing the instruction in the decode stage this

cycle as well as the instruction in the execute stage in cycle n+3. Then, the processor is

able to fetch the instruction from the new location.

We implement the flushing mechanism by using a global variable Flushed that

keeps track of which stages need to be flushed. The first bit in Flushed represents the

execute stage, while the second bit represents the Decode stage. The fetch stage will not

ever need to be flushed. If we want to flush the instruction in the decode stage, we OR the

 38

variable with the number 2: Flushed = Flushed | 2. If we want to flush the instruction in

the execute stage, we OR the variable with the number 1: Flushed = Flushed | 1. At the

end of every cycle, the bits of the variable are shifted one bit to the right: Flushed =

Flushed >> 1. Now we just have to examine the variable before we execute the decode

and execute stages in the decode module. Here is the pseudo code that makes it work:

if (Flushed & 0x2)

 replace decode instruction with NOP

if (Flushed & 0x1)

 replace execute instruction with NOP

...

Flushed = Flushed >> 1

With a pipelined processor, there must also be some restrictions on the order of

instructions. For example, there must be a NOP between an ALU instruction and a

conditional branch instruction or a call instruction. Figure 10 shows what would happen

if there was no NOP between the ALU and a BEQ instruction.

ExecuteFetch Decode

Fetch Decode

Execute

Execute

BEQ label

SUB R0 R0 R1

Decode

ADD R0 R0 R1

Fetch

n n+1 n+2 n+3 n+4

ALU flag available

ALU flag needed

fetch which instruction?

Figure 10: No NOP between ADD and BEQ

 The ALU flags are not set until after the execute stage of the ADD instruction.

However, the BEQ instruction needs the flags before the decode stage so the processor

knows which instruction to fetch next. There will be a conflict if the NOP is not inserted.

Figure 11 shows what would happen with the NOP.

 39

ExecuteFetch Decode

Fetch Decode

Execute

Execute

NOP

BEQ label

Decode

ADD R0 R0 R1

Fetch

n n+1 n+2 n+3 n+4

ALU flag available

ALU flag needed

Fetch Decode ExecuteSUB R0 R0 R1
new instruction fetched

Figure 11: NOP inserted between ADD and BEQ

 Since the NOP is added, the BEQ instruction does not need the value of the ALU

flags until one cycle later, exactly when the flags will be available. Restrictions like these

must be checked for in the program file parser or else unpredictable program behavior

may occur. With the addition of parallel instructions and longer pipelines, the number of

conflicting instructions will keep rising.

Function Calls

Like JUMP and BRANCH instructions, a CALL instruction just tells the

processor to start executing at another location, specified by a label. However, unlike

JUMP and BRANCH instructions, a function call saves the address of the instruction

immediately following the call and is able to return to that instruction when the function

concludes. The RTF instruction, or return from function, is used to end the function and

return.

If the program has a recursive function or a series of nested function calls, the

processor would need to save multiple addresses at once, and also remember the order of

the function calls. To apply this functionality, we chose to implement a program counter

(PC) stack. Whenever a function call occurs, the address of the return instruction is

pushed on to the stack. When a function returns, the address is popped off the stack. The

depth of the stack is defined by a global variable called PC_STACK_SIZE in the file

global.h and is currently set to 16.

 40

We also need to save the state of the ALU flags on calls and restore the flags on

returns. Since we only use 16-bit addresses and can store 32 bits at each location in the

stack, we can let the 17th and 18th bits represent the Z flag and the N flag respectively.

Loop Instructions

Loop instructions are a way to support zero-overhead program loops. After the

loop counter LC is loaded, the loop until instruction (LOOPU) specifies a label indicating

the last instruction in the loop. For example, consider this two-instruction loop:

A: LDLCC 10

B: LOOPU done

C: ADDC R0 R0 1

D: done: ADDC R1 R1 1

The order of instructions executed would be A, B, C, D, C, D, C … Each

additional iteration requires two instruction cycles. Now let us look at the same two-

instruction loop without using the loop instructions:

 A: start: ADDC R0 R0 1

 B: ADDC R1 R1 1

 C: JUMP start

 D: NOP

The order of execution would be A, B, C, D, A, B, C, D … Thus, every iteration

requires four instruction cycles. The NOP serves as a placeholder because whatever

instruction that follows the JUMP instruction will be cancelled.

To implement the loop instructions, the processor records and saves the loop start

and loop end address when the LOOPU instruction is called. During each instruction

cycle, the decode module must check to see if the loop end address is the same as the

fetch program counter address. If the addresses are the same, and the loop counter is

 41

greater than one, the next instruction in the fetch stage becomes the one at the loop start

address and the loop counter is decremented.

Since nested loops are possible, we need to use stacks like with the program

counter. We implement three stacks: the loop counter stack, the loop start stack, and the

loop end stack. When the LOOPU is executed, the loop counter, loop start, and loop end

values are all pushed on to their respective stacks. When we exit a loop, or when the loop

end is reached and the loop counter is not greater than one, we pop the values off all three

stacks. The depth of the stacks is defined by a global variable called

LOOP_STACK_SIZE in the file global.h and is currently set to 16.

An additional instruction, TLOOP, allows for one-instruction loops with zero-

overhead. The only difference is that the loop start address and loop end address are

identical.

External Interrupts

As mentioned earlier, the user may schedule either one-time or periodic external

interrupts to occur in the future. We represent the interrupt requests with a linked list of

Interrupt objects called AllScheduledInterrupts. Each Interrupt object

stores the cycle number of its next scheduled request, the periodicity, the address of the

interrupt handler, and a pointer to the next Interrupt object in the linked list. A

scheduling algorithm is used to sort the linked list in order of time until the next interrupt.

When the user schedules the interrupt, the Interrupt object is inserted into the correct

spot in the list. When an interrupt occurs, the object is taken out from the front of the list.

Then, if the interrupt is periodic, the next request time is calculated and the object is

inserted back into the list at the proper location. If the interrupt is one-time, the object is

discarded.

 At the beginning of each instruction cycle, the decode module checks the first

element of the interrupt linked list to see if an interrupt is happening that cycle. If so, the

PC and ALU flags are saved on the PC stack, much like a function call. The simulator

then jumps to the interrupt handler and must cancel and flush the proper instructions. For

example, if the instruction in the execute stage is a program flow instruction such as

 42

JUMP or BRANCH, all three stages are flushed. Otherwise, the instruction in the execute

stage is allowed to execute and the instructions in the fetch and decode stage are flushed.

When the interrupt handler completes, it calls the RTI function, which pops the PC stack

and returns to the correct instruction.

Direct Memory Access

DMA requests are very similar to interrupt requests. The user specifies when the

request should occur, whether the request is one-time or periodic, whether the request is a

read or write, and the channel number to use. Like interrupt requests, all of this

information is stored in DMA objects, which are linked together in a list in order of time

until execution. The same scheduling algorithm is also used. As with interrupts, DMA

requests are checked at the beginning of each instruction cycle. However, unlike

interrupts, when a DMA request occurs, the pipeline performs a vertical stall, instead of

flushing or canceling instructions. A vertical stall means that all instructions stay in the

same pipeline cycle and are suspended until the DMA is complete. An example timing

diagram is shown in Figure 12.

. . .

. . .

ExecuteFetch Decode

Fetch Decode

Execute

Execute

DecodeFetch

n n+1 n+2 n+3 . . .

DMA Access

Fetch Decode Execute
Figure 12: Timing diagram of DMA access

During the DMA access, data is either read from a file and written to memory, or

read from memory and written to the file. Depending on the specified channel (0-3), the

 43

respective DMA pointer (DMA0-DMA3) is used to point to the read/write location in

memory.

Cache Simulation

The user may simulate instruction or memory cache by specifying several

parameters: total cache size, block size, type of cache, replacement strategy, and length of

write back delay. When the cache is turned on, the decode module must call the function

SimICache at the beginning of every instruction cycle. This function checks for a cache

hit or miss, and updates the statistics accordingly. The straightforward representation of

the cache just uses several multi-dimensional arrays to keep track of tags, least recently

used queues, and least recently replaced queues. The results of the cache simulation have

no effect on the rest of the simulator.

 44

Chapter 8

Testing

The simulator was tested with several DSP assembly programs. Most of the tests

were very basic and just tested the functionality of specific instructions. However, a

couple of the tests were a little more interesting. The list of tests is shown in the

following table.

Test code name Purpose

ash Tests ASH instruction

ashc Tests ASHC instruction

beq Tests BEQ instruction

bge Tests BGE instruction

bgt Tests BGT instruction

ble Tests BLE instruction

blt Tests BLT instruction

bne Tests BNE instruction

ldst Tests memory variables and all memory access methods

lsh Tests LSH instruction

lshc Tests LSHC instruction

mul Tests MUL instruction

mula Tests MULA instruction

mulb Tests MULB instruction

prime Writes increasing prime numbers to memory

sum100 Sums integers from 1 to 100

Figure 13: Table of test programs

 45

Here is the code for the sum100 test:

LDC16 R0 0
LDC16 R1 0

Jump:
ADDC R0 R0 1
ADD R1 R0 R1
SUBC R2 R0 100
NOP
BNE Jump

LDC16 R3 0xABCD
LDC16 R4 0xABCD
LDC16 R5 0xABCD
LDC16 R6 0xABCD
LDC16 R7 0xABCD

This program just demonstrates the functionality of some simple ALU

instructions and a BNE instruction. Each time through the loop, R0 is incremented by

one, and added to the running sum in R1. The SUBC instruction helps to check for when

R0 reaches 100.

The prime program, which is somewhat more interesting, is shown here:

##R3 is the value to be tested
LDC16 R3 1
##A0 is the address register
LDC16 A0 0

##Manually store the number 2
LDC16 R6 2
STII A0 R6

start:
ADDC R3 R3 2
##R4 cycles through all odd numbers to find a factor
LDC16 R4 1

inside:
ADDC R4 R4 2
SUB R5 R3 R4
NOP
BEQ write

MOV R0 R3
MOV R1 R4
CALL mod
SUBC R2 R2 0

 46

NOP
BEQ start
NOP
JMP inside

write:
STII A0 R3
JMP start

mod:
##Returns R0 (mod R1) in R2
SUB R0 R0 R1
NOP
BGE mod
ADD R2 R0 R1
RTF

This program writes increasing prime numbers to memory. It demonstrates the

use of function calls, jumps, branches, and memory accesses. R3, which holds the value

being prime-tested in each iteration, is incremented by 2 every time a prime is found or

disproved. The loop beginning at the label inside checks whether each odd number

from 3 up to the number tested to see whether it is a factor. The function mod is called to

return the value R0 (mod R1) in the register R2. If the result is 0, then R1 is a factor of

R0. This program does not have a stopping point, so it will continue to find prime

numbers until the user chooses to stop the simulation. Below is a memory dump after

10,000 instruction cycles have been executed:

MEM(0x0000): 2 3 5 7 11 13 17 19

MEM(0x0008): 23 29 31 37 41 43 47 53

MEM(0x0010): 59 61 67 ???? ???? ???? ???? ????

MEM(0x0018): ???? ???? ????? ???? ???? ???? ???? ????

A program listing and display of registers is shown below, also after 10,000 cycles:

File listing:
 16: NOP
 17: JMP inside
 write:
 18: STII A0 R3
 19: JMP start
 mod:

 47

E===> 20: SUB R0 R0 R1
 D--> 21: NOP
 F-> 22: BGE mod
 23: ADD R2 R0 R1
 24: RTF
 25: BAD
 26: BAD

WSIM Core Registers:
R0 + 0x0010 +
R1 + 0x000b +
R2 + 0x0008 +
R3 + 0x0047 +
R4 + 0x000b +
R5 + 0x003c
R6 + 0x0002 +
R7 0x????
L0 0x????????
L1 0x????????
L2 0x????????
L3 0x????????
A0 + 0x0013 +
A1 0x????
A2 0x????
A3 0x????
AM0 0x????
AM1 0x????
AM2 0x????
AM3 0x????
CYCLE * 0x2710 *
DMA0 0x????
DMA1 0x????
DMA2 0x????
DMA3 0x????
Z + 0 *
N + 0 *

 The “*” and “+” characters to the right of the register values indicate that the

register was read from in the last cycle or in the current period, respectively. The “*” and

“+” characters to the left of the values indicate that the register was written to in the last

cycle or in the current period, respectively.

 Here is a print out of the instruction execution profiling at the same point in the

program:

Address Inst Count Instruction
------- ---------- -----------
 00000 3 LDC16 R3 1
 00001 1 LDC16 A0 0

 48

 00002 1 LDC16 R6 2
 00003 1 STII A0 R6
 00004 35 ADDC R3 R3 2
 00005 35 LDC16 R4 1
 00006 301 ADDC R4 R4 2
 00007 301 SUB R5 R3 R4
 00008 301 NOP
 00009 301 BEQ write
 0000a 301 MOV R0 R3
 0000b 283 MOV R1 R4
 0000c 283 CALL mod
 0000d 565 SUBC R2 R2 0
 0000e 282 NOP
 0000f 282 BEQ start
 00010 282 NOP
 00011 266 JMP inside
 00012 284 STII A0 R3
 00013 18 JMP start
 00014 1341 SUB R0 R0 R1
 00015 1323 NOP
 00016 1323 BGE mod
 00017 1323 ADD R2 R0 R1
 00018 282 RTF
 00019 282 BAD

Here is a printout of the resource profiling statistics:

Resource Assigned Used Total Assigned Total Used
-------- ---------- ---------- -------------- ----------
R0 1606 1605 1606 1605
R1 283 1605 283 1605
R2 564 282 564 282
R3 36 637 36 637
R4 336 885 336 885
R5 301 0 301 0
R6 1 1 1 1
Z 3693 10000 3693 10000
N 3693 10000 3693 10000
A0 20 19 20 19
FPC 10000 10000 10000 10000
DPC 10000 10000 10000 10000
EPC 10000 10000 10000 10000
CYCLE 10000 10000 10000 10000
PC0 283 564 283 564
PC_STACK_PTR 565 847 565 847
LCPTR 0 10000 0 10000
LAPTR 0 10000 0 10000
MEM(0) 1 0 1 0
MEM(1) 1 0 1 0
MEM(2) 1 0 1 0
MEM(3) 1 0 1 0

 49

MEM(4) 1 0 1 0
MEM(5) 1 0 1 0
MEM(6) 1 0 1 0
MEM(7) 1 0 1 0
MEM(8) 1 0 1 0
MEM(9) 1 0 1 0
MEM(10) 1 0 1 0
MEM(11) 1 0 1 0
MEM(12) 1 0 1 0
MEM(13) 1 0 1 0
MEM(14) 1 0 1 0
MEM(15) 1 0 1 0
MEM(16) 1 0 1 0
MEM(17) 1 0 1 0
MEM(18) 1 0 1 0

 50

Chapter 9

Related Work

MIT’s course called Computation Structures provides two simulators as teaching

tools, JSim and BSim. JSim is a digital circuit construction and analysis tool. It allows the

user to build from transistors and gates up to a full RISC processor. It has a simple editor

but does not have the functionality to parse an assembly program and execute it. It also

does not provide the advanced functionality needed to simulate a DSP processor.

BSim is more similar to this project. It is a simulator for the Beta processor,

which is the RISC processor studied in the course. It shows the execution state of the

processor when running supplied assembly code. Both of these applications are written in

Java, whereas this project is to be implemented in C/C++. The other major difference is

that BSim is geared towards a RISC processor, not a DSP processor. Therefore it does

not support some advanced capabilities like MACs, loops, and complex addressing

techniques. However, both of these tools provide good models of simulation tools.

 51

Chapter 10

Future Work

 Although WSIM is capable of simulating a simple DSP architecture, many

improvements can be made. First, instead of configuring the processor or hardware

description in the source code and having to recompile, a configuration file model can be

created. This work involves designing a unique format and language for the file itself,

writing a parser for the configuration file, and interfacing the results of the parser to the

rest of the simulator.

 Instead of only accepting mnemonic assembly source code, a more complicated

parser can be written to accept more user-friendly code. The code could look more like a

higher level-language like C or Java. For example, instead of the instruction ADDC R0

R1 R2, we could just write R0 = R1 + R2. Many DSP processors already accept this type

of source code, so this idea would expand the scope to more users.

 Many processors today allow for parallel instructions. Supporting this feature

would also allow WSIM to model a wider scope of existing DSP architectures. Although

the implementation of parallel instructions should not be too difficult, there are many

sticky points because certain instructions have restrictions as to which instructions they

may be in parallel with. This problem is caused by a bottleneck of limited hardware

resources.

 As mentioned earlier, several more ideas for future work include synchronizing

the DSP instruction cycle clock and the internal SystemC clock, automating the signals

generated by instructions in the decode module, and adding some more advanced

processor features like external device ports, a set of kernel registers, direct memory

exchange (DME), and more memory modules.

 52

References

[1] Comp.dsp Usenet news group. http://www.bdti.com/faq/3.htm.

[2] QUALCOMM Incorporated Press Release for MSM6250. 11/12/02.
http://www.qualcomm.com/press/pr/releases2002/press1115.html.

[3] J. Bhasker, ‘A SystemC Primer,’ Star Galaxy Publishing, 2002.

[4] John K. Ousterhout, ‘Tcl and the Tk Toolkit,’ Addison-Wesley, 1994.

[5] Using the GNU Compiler Collection.
http://www.delorie.com/gnu/docs/gcc/gcc_toc.html.

[5] esim: A Structural Design Language for Computer Architecture Education.
http://www.cse.ucsc.edu/~elm/Software/Esim/index.html.

[6] M. Mernik, M. Lenic., E. Avdicausevic, V. Zumer, “Compiler/Interpreter Generator
System LISA,” Proceedings of the 33rd Hawaii International Conference on System
Sciences, Sept. 2000.

[7] MIT Course Website: Computation Structures, http://6004.lcs.mit.edu/, 2003.

 53

http://6004.lcs.mit.edu/

Appendix

Sample Source Code

//alu.h
#ifndef ALU_H
#define ALU_H

struct alu : sc_module {
 sc_in<SC_LongLong> in1; //input 1 - reg1
 sc_in<SC_LongLong> in2a; //input 2a - reg2
 sc_in<SC_LongLong> in2b; //input 2b - imm
 sc_in<SC_LongLong> in2c; //input 2c - mem
 sc_in<long> in2_sel; //0 for 2a,1 for 2b,2 for 2c
 sc_in<long> in1width; //input 1 width
 sc_in<long> in2awidth; //input 2a width
 sc_in<long> in2bwidth; //input 2b width
 sc_in<long> in2cwidth; //input 2c width
 sc_in<AluOp> fn; //alu function
 sc_out<SC_LongLong> out; //output
 sc_out<long> reg_outwidth; //reg output width
 sc_out<long> mem_outwidth; //mem output width
 sc_in<RegMemWE> regs_mem_we;//write to reg or mem
 sc_out<bool> z_flag; //zero
 sc_out<bool> n_flag; //negative
 sc_in<bool> clk; //clock

void exec(); //method implementing
 //functionality

 //Constructor
 SC_CTOR(alu) {
 SC_THREAD(exec); //Declare exec as SC_THREAD and
 //dont_initialize();
 sensitive_pos << clk; //make it sensitive to

 //positive clock edge
 }

};

#endif

 54

//alu.cpp
#include "math.h"
#include "systemc.h"
#include "types.h"
#include "alu.h"

//Definition of exec method
void alu::exec()
{
 signed long long a, b; // Inputs
 long a_width, b_width, r_width; // Input widths
 static signed long long result; // ALU result output
 unsigned long long atmp; // Unsigned version of a
 long sel; // Input 2 select
 // 0(reg), 1(imm), 2(mem)
 AluOp op; // Operation to execute
 SC_LongLong temp; // Signal to send long long variable

 while(1)
 {
 // Manually synchronize with rest of system
 wait();
 wait();

 sel = in2_sel.read(); // Input2 select from decode
 op = fn.read(); // Operation (from decode)
 a = in1.read().Num; // Input1 (from reg)
 a_width = in1width.read(); // Input1 width

 // Signal from decode that tells to write back to regs

 // or mem
 // Get the width. If not regs or mem, assume 64 bits
 if(regs_mem_we.read() == REGALUWE)
 {
 r_width = reg_outwidth.read();
 }
 else if(regs_mem_we.read() == MEMALUWE)
 {
 r_width = mem_outwidth.read();
 }
 else
 {
 r_width = 64;
 }

 // Read input2 (2=mem, 1=imm, 0=reg) and get width
 if(sel == 2)
 {
 b = in2c.read().Num;
 b_width = in2cwidth.read();
 }
 else if(sel == 1)
 {
 b = in2b.read().Num;

 55

 b_width = in2bwidth.read();
 }
 else
 {
 b = in2a.read().Num;
 b_width = in2awidth.read();
 }

 // Sign extend a and b if negative
 if(a_width != 64 && a >> (a_width - 1))
 {
 a = a | ((long long)-1 << a_width);
 }

 if(b_width != 64 && b >> (b_width - 1))
 {
 b = b | ((long long)-1 << b_width);
 }

 // Perform operation
 switch(op)
 {
 case ADD: //add
 result = a+b;
 break;
 case SUB: //sub
 result = a-b;
 break;
 case A: //a
 result = a;
 break;
 case B: //b
 result = b;
 break;
 case ASH: //arithmetic shift
 if(b >= 0)
 {
 result = a<<b;
 }
 else
 {
 result = a>>-b;
 }
 break;
 case LSH: //logical shift
 // For logical shift, make A unsigned, mask the

// digits past a_width, and do shift
 atmp = (unsigned) a;
 atmp=atmp&((unsigned long long)pow(2,a_width)-1);
 if(b >= 0)
 result = atmp<<b;
 else
 result = atmp>>-b;
 break;

 56

 default:
 break;
 }

 // Mask result to correct width
 result=result&((unsigned long long)pow(2, r_width)-1);

 // Send result to regs and mem
 temp.Num = result;
 out.write(temp);

 // Write flags
 if(result == 0)
 z_flag.write(1);
 else
 z_flag.write(0);

 // Negative flag
 if(result & (0x1 << (r_width-1)))
 n_flag.write(1);
 else
 n_flag.write(0);

 // Sync
 wait();
 wait();
 wait();
 }
} // end of exec method

 57

	WSIM Configurable Digital Signal Processor Simulator/Debugge
	WSIM Configurable Digital Signal
	Processor Simulator/Debugger
	ABSTRACT
	Acknowledgements
	Table of Contents
	Table of Figures
	Chapter 1
	Introduction
	Chapter 2
	Tools Background
	Chapter 3
	System Interface
	Configuration Information
	DSP Assembly Source File
	Profiling Information

	Chapter 4
	System Overview
	SystemC Processor Architecture
	Tcl Command Interpreter

	Chapter 5
	Tcl Interpreter Commands
	Clear Resource Statistics
	Breakpoints
	Caching
	Continue
	Direct Memory Access
	Memory Dump
	Get Resource Value
	Print Help
	Print Instructions
	External Interrupts
	List Program
	Load Program
	List, Step, Register
	Instruction Profiling
	Print Registers
	Reset Simulator
	Program Run
	Set Resource Value
	Print Stack
	Resource Statistics
	Program Step

	Chapter 6
	SystemC Architecture Modules
	Instruction Parser
	Internal / External System Clock
	Decoder
	Register File
	Memory
	Arithmetic Logic Unit
	Multiply Accumulate
	Flags

	Chapter 7
	Features Implementation
	Resource Value Representation and Resource Profiling
	Instruction Execution Profiling
	Breakpoints
	Continuous Simulation
	Pipelining
	Function Calls
	Loop Instructions
	External Interrupts
	Direct Memory Access
	Cache Simulation

	Chapter 8
	Testing
	Test code name Purpose

	Chapter 9
	Related Work
	Chapter 10
	Future Work
	References
	Appendix
	Sample Source Code

