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ABSTRACT 
 
 
This M.Eng. Thesis presents a design and implementation of a full-featured configurable 
Digital Signal Processor (DSP) simulator/debugger. The user will be able to set 
configurations in order to model a specific architecture design. The simulator will have a 
command interpreter to listen to and process commands given by the user. When supplied 
with an assembly program, the simulator will allow the user to step through the execution 
of the program cycle by cycle, as well as calculate statistics like instruction, resource, and 
cache profiling. Some of the main features of the simulator are a multiply-accumulate 
unit, memory with direct and indirect offset addressing, and loop instructions. 
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Chapter 1 
 

Introduction 
 

 A Digital Signal Processor (DSP) is a specialized computer processor used to 

process audio, video, and other analog signals which have been converted to digital form. 

The main difference between a DSP and a general-purpose processor is that a DSP is 

usually dedicated for specific kinds of applications. A DSP has features designed to 

support high-performance, repetitive, numerically intensive tasks [1]. For example, in 

cellular phone chipset solutions, a DSP is used for computationally intensive applications 

such as voice encoding/decoding, MP3 music file playback, MIDI synthesis, and 2D/3D 

graphics functions [2]. The performance acceleration of DSP processors is achieved by 

features that include: 

 

• Capability for single-cycle multiply-accumulate; some high-performance DSPs 

often have two multipliers that allow two multiply-accumulate operations on the 

same instruction cycle 

• Complex addressing modes, for example, pre- and post-modification of address 

pointers, circular addressing, and bit-reversed addressing 

• Specialized program flow control. DSP processors often provide a loop 

instruction that reduces the loop overhead by not spending any instruction cycles 

on updating and testing the loop counter or on jumping back to the top of the 

loop. Additionally, tight loops allow a single instruction to be repeated without 

any extra loop overhead 

• Irregular instruction sets, so several operations can be encoded in a single 

instruction. Instead of restricting each instruction to a single operation as in 

general-purpose processors, DSPs may encode two additions, two multiplications, 

and several data moves into a single instruction [1]. 
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The need for more specially tailored DSP processors has been brought about by the 

growth of computationally intensive applications, especially in mobile devices, which 

need to have low power consumption, but maintain high performance. As DSP 

architecture designs become more specific and more complex, the associated costs with 

fabricating new prototypes will start to mount. However, with a software-based 

simulator/debugger, architecture designers will be able to test out their designs and 

execute sample programs without spending the money to fabricate a new prototype. 

This thesis presents the design and implementation of WSIM, a configurable text-

based DSP simulator/debugger for the purposes of prototyping a DSP architecture. It 

allows the user to model a specific DSP architecture by easily configuring factors like 

instruction set, memory, and pipeline setup. After configuration, the simulator reads a 

DSP assembly program and produces a cycle-accurate simulation of the program’s 

execution, while providing profiling information, including instruction execution counts, 

hardware resource usage counts, and cache performance. 

The organization of this thesis is as follows. Chapter 2 describes some of the tools 

and technologies used in implementing WSIM. Chapter 3 discusses the interface to the 

simulator, in terms of the inputs and outputs. Chapter 4 outlines the overview of the 

system’s design. Chapter 5 explains the user interface and serves as a user’s guide. 

Chapter 6 talks about the major blocks of the system architecture. Chapter 7 explores the 

implementation details of the advanced features. Chapter 8 illustrates some test cases and 

examples used to examine the functionality of the simulator/debugger. Chapter 9 briefly 

summarizes related work in the field. Chapter 10 looks at possible future work to be done 

and concludes the thesis. The Appendix contains some sample source code for the 

simulator/debugger. 
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Chapter 2 
 

Tools Background 
 

SystemC, Tcl, and C++ are the main tools/languages used in the implementation 

of WSIM. This section briefly provides some background information on SystemC and 

Tcl. 

 

SystemC 
 

SystemC is an extension of the C++ programming language that enables modeling 

of hardware descriptions. It adds concepts to C++ such as concurrent process execution, 

timed events and data types. The class library is not a modification of C++, but a library 

of functions, data types and other language constructs that are legal C++ code [3]. 

Overall, SystemC really simplifies the process of modeling a DSP architecture. 

 

Tcl 
 

Tcl, or “tool command language,” is a simple scripting language for controlling 

and extending applications [4]. The major benefit of Tcl that we take advantage of is that 

it is embeddable. It has an interpreter that is a library of C procedures, so it can easily be 

incorporated into applications. We may easily add or remove commands as we please 

from the interpreter to suit our needs. 
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Chapter 3 
 

System Interface 
 

At the highest level, WSIM is a black box that takes as input a DSP assembly 

source file and configuration information about the target processor and produces 

profiling information to the user, as shown in Figure 1. The next few sections will 

describe each of these pieces. 

 

WSIM

Configuration
Information

Assembly
Source

Program File

Profiling
Information

 
Figure 1: WSIM Interface Overview 

 

Configuration Information 
 

In order for WSIM to simulate the behavior and functionality of a particular DSP 

architecture design, we need to input the features and details of the design. These features 

include the register set, memory configuration, instruction set, and pipeline stages of the 

target processor. We will first introduce each of these features, and then show the details 

of the generic DSP we have chosen to model. 

For the register set, the simulator needs to know the number of registers, the size 

of the registers, as well as whether the registers can be accessed partially. Partial access 
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means that if only part of the register is needed, only part of the register is read from or 

written to. For example, Figure 2 shows a register file with four 32-bit registers R0-R4. 

However, if only the high 16 bits of a register are needed, we could use R0h, or if only 

the low 16 bits are needed, we could use R0l. In the design that we modeled, we decided 

to use eight 16-bit registers R0-R7, and four 32-bit long registers L0-L3, which can also 

be accessed partially with Lxh and Lxl. In addition, we have added four 16-bit address 

registers A0-A3 and four 16-bit address modifier registers AM0-AM3 to allow for 

advanced memory access methods which will be discussed later. To enable direct 

memory access (DMA), we also add four DMA pointers. 

  

R0l (16)R0 (32) R0h (16)

R2l (16)R2 (32) R2h (16)

R3l (16)R3 (32) R3h (16)

R1l (16)R1 (32) R1h (16)

Register File

 
Figure 2: Sample register file with four 32-bit registers 

 

 

In terms of memory configuration, we need to specify the number of memory 

segments used, the size and bit width of each segment, and whether each segment is 

random-access memory (RAM) or read-only memory (ROM). In our model, we just have 

one continuous segment of data memory. The segment is 64 KB of RAM with each 

address location storing 32 bits. In other processors, there may be up to three or more 

separate memory blocks, each with different parameters. Our instruction memory is not 

modeled like the data memory. Since no specific instruction encoding is used, we just 

have a simple array of Instruction data structures that store the assembly program. 
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The instruction set of a DSP can vary widely depending on the purpose of the 

specific DSP and the engineering tradeoffs in the design of the architecture. Instructions 

can usually be grouped into four broad types: computation, program flow, data move, and 

miscellaneous. Computation instructions include arithmetic logic unit (ALU) instructions 

such as add, subtract, and shift, multiply accumulate (MAC) instructions such as multiply 

and multiply-add/subtract combinations, as well as more specialized instructions like 

rounding, normalization, or filtering. Program flow instructions include jumps, branches, 

loops, function calls, interrupts, returns, and conditionals. Data move instructions involve 

loading from and storing to memory, and include register loads, immediate loads, direct 

loads/stores, and indirect loads/stores. Miscellaneous instructions can include null 

operation (NOP), stack instructions like pop or push, save and restore for context 

switches, and anything else the designer chooses. The instruction types we have chosen 

for our generic DSP are listed in Figure 3. Each instruction and its implementation will be 

explained in more detail later. 

 

Instruction Description 
ADD R0 R1 R2 R0 = R1 + R2 
ADDC R0 R1 immediate R0 = R1 + immediate 
SUB R0 R1 R2 R0 = R1 – R2 
SUBC R0 R1 immediate R0 = R1 - immediate 
LDC16 R0 immediate R0 = immediate (16 bits) 
LDC32 L0 immediate L0 = immediate (32 bits) 
LSH R0 R1 R2 R0 = R1 << R2 (logical shift) 
LSHC R0 R1 immediate R0 = R1 << immediate (logical shift) 
ASH R0 R1 R2 R0 = R1 << R2 (arithmetic shift) 
ASHC R0 R1 immediate R0 = R1 << immediate (arithmetic shift) 
NOP Null operation 
MUL R0 R1 R2 R0 = R1 * R2 
MULA R0 R1 R2 R3 R0 = R1 + R2 * R3 
MULS R0 R1 R2 R3 R0 = R1 – R2 * R3 
JMP label Jump to label 
MOV R0 R1 R0 = R1 
BEQ label Branch to label if ALU result == 0 (flags) 
BNE label Branch to label if ALU result != 0 (flags) 
BLT label Branch to label if ALU result < 0 (flags) 
BLE label Branch to label if ALU result <= 0 (flags) 
BGT label Branch to label if ALU result > 0 (flags) 
BGE label Branch to label if ALU result >= 0 (flags) 
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LDD R0 mem(address) Load direct 
R0 = mem(address) 

STD mem(address) R0 Store direct 
mem(address) = R0 

LDI R0 A0 AM0 Load indirect and modify 
R0 = mem(A0); A0 = A0 + AM0 

STI A0 AM0 R0 Store indirect and modify 
mem(A0) = R0; A0 = A0 + AM0 

LDIO R0 A0 immediate Load indirect with offset 
R0 = mem(A0 + immediate) 

STIO A0 immediate R0 Store indirect with offset 
mem(0 + immediate) = R0 

LDII R0 A0 Load indirect and increment 
R0 = mem(A0); A0 = A0 + 1 

STII A0 R0 Store indirect and increment 
mem(A0) = R0; A0 = A0 + 1 

LDID R0 A0 Load indirect and decrement 
R0 = mem(A0); A0 = A0 - 1 

STID A0 R0 Store indirect and decrement 
mem(A0) = R0; A0 = A0 - 1 

LDA DMA0 address Load DMA address 
DMA0 = address 

CALL function Call function 
RTF Return from function 
RTI Return from interrupt 
WAIT Wait for one cycle 
LOOPU label Loop until label 
LDLC R0 Load loop counter 

LC = R0 
LDLCC immediate Load loop counter  

LC = imm 
TLOOP Tight loop 

 

Figure 3: Instruction set modeled in WSIM 
 

 

Pipelining is an implementation technique that increases the instruction 

throughput of the processor. By dividing the pipeline into multiple stages, each stage can 

complete a part of a different instruction in parallel. Since multiple instructions are 

overlapped in execution, more instructions can exit the pipeline in the same amount of 

time. DSP pipelines can range anywhere from one stage to possibly seven or more stages. 

In our DSP model, we have chosen to work with a 3-stage pipeline. Figure 4 shows the 
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three stages: fetch, decode, and execute. In the fetch stage, the processor computes the 

address of the next instruction and then proceeds to retrieve the next instruction from 

memory. In the decode stage, the processor figures out what the instruction does and 

what resources it will need. In the execute stage, the instruction is finally performed.  

 

ExecuteFetch Decode

Fetch Decode

Execute

Execute

Instruction 2

Instruction 3

Decode

Instruction 1

Fetch

n n+1 n+2 n+3 n+4

 
Figure 4: Three-stage pipeline 

 

 

We have now been introduced to the four main parts of the configuration 

information needed to specify the target processor – register set, memory layout, 

instruction set, and pipeline stages – and have seen the details of the generic target 

processor we have modeled. Currently, these details have been hard-coded into the 

system, but are still relatively easy to modify. However, any changes to the processor 

design will require a recompilation of the code. One possible area of future work, which 

will be discussed in more detail later, is to allow a configuration file to specify the 

specifics of the processor at run-time. This work would involve designing a specification 

language, a parser for the configuration file, as well as a clean interface to the rest of the 

system. 

 

DSP Assembly Source File 
 
 Another input to WSIM is a DSP assembly source file. At run-time, a source file 

may be loaded into the system for simulating and/or debugging. Source files consist of 

assembly instructions, program labels, user comments, and memory variables. The 

assembly instructions are chosen from the defined instruction set such as in Figure 3. 

Each instruction is listed on its own line and does not need any special characters to 
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delimit it. Program labels are used to reference certain address locations the program can 

jump to. For instance, in order to call a function, the function label would need to precede 

the first instruction of the function. User comments are lines that begin with the string 

“##”. Comments are used only for the programmer’s benefit and are ignored by the 

simulator. Memory variables may be declared as single variables or arrays. An example 

of the declaration syntax is shown here: 

 
 #VAR aval=0x3535 22 

 #VAR bval[3]={0x01,0x02,0x03} 25 

 

The first line sets the variable ‘aval’ to point to location 22 (or 0x16) in memory with 

initial value 0x3535. The second line sets the variable ‘bval’ to point to 3 consecutive 

locations starting with location 25 (or 0x19), with initial values of 0x01, 0x02, and 0x03. 

When declaring memory variables, the initial values are optional. 

 A couple examples of DSP test programs are included in Chapter 8. In future 

work, an improvement could be made in instruction formats. Instead of just using 

mnemonic instructions, a more complicated syntax may be developed.  For example, 

assembly code resembling the C programming language can be much more readable to 

the user or programmer. As will be discussed later, this feature will require a more 

complex program parser. 

  

Profiling Information 
 
 When testing a DSP architecture design, the engineer would like to know where 

the bottlenecks are and where the design could be made more efficient. The profiling 

information produced by WSIM could directly aid in this pursuit. The three classes of 

profiling we implement are instruction profiling, resource profiling, and cache profiling. 

In instruction profiling, the simulator simply keeps track of how many times each 

instruction is executed. Resource profiling remembers how many times each resource, 

which could be a register or memory location, is read from or written to. Resource 

profiling statistics are kept for the last cycle, a specified period, and for the entire 
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execution of the program. The user may specify a period to start any time and may clear 

the statistics at any time. Based on these profiling results, the DSP designer can decide 

where to optimize the design. Chapter 9 also includes some example printouts of 

profiling statistics. 
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Chapter 4 
 

System Overview 
 

Now that we have seen the inputs and outputs of WSIM as a high level, we will 

examine the framework of the system. WSIM is a text-based application that has a real-

time command interpreter. The implementation uses SystemC for the architectural 

design, Tcl for the command interpreter, and C/C++ for the instruction parser and other 

functionality. We will next introduce the main blocks in our SystemC architecture and 

see how the command interpreter fits into the simulator. 

 

Decoder

ALU

Memory Registers

Parser

MAC Flags
 

Figure 5: System overview

 

SystemC Processor Architecture 
 

As shown in Figure 5, the main architectural blocks of the system are the parser, 

decoder, register file, memory, arithmetic logic unit (ALU), and multiply-accumulate unit 

(MAC). The flags module is a minor block that is just an addition to the ALU. The parser 
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reads and parses an assembly program and stores the instructions in an instruction array. 

The decoder takes this instruction array and, upon command, executes each instruction 

one-by-one. For each instruction, the decoder must decide which registers or memory 

addresses, if any, must be read, as well as which functions, if any, the ALU or MAC must 

perform. The register file or memory then sends the corresponding data to the ALU or 

MAC, which in turn executes the specified operation and passes the result back to the 

register file or memory structure for write-back purposes. With the exception of the 

parser, each of these blocks is its own SystemC module. Since the parser is so tightly 

coupled with the decoder, we have just included the parser in the decode module. 

 

Tcl Command Interpreter 
 

Though the architecture of the processor is modeled with SystemC, the main 

driver of the simulator is the Tcl command interpreter. The user must issue commands to 

the interpreter, which will in turn run the parser, send instructions through the pipeline, or 

get profiling statistics. Upon startup, the system will begin execution in function sc_main. 

Function sc_main proceeds to instantiate each of the SystemC modules and connect them 

with signals. Then, the initialization sequence sets up all the hardware resources and 

internal data structures, as well as the Tcl interpreter. At this point, the system enters the 

command parser’s infinite loop, which repeatedly issues a command prompt and 

processes commands. Pseudo code of this loop is shown below: 

 
while(1) { 

 Print command prompt 

 Get command 

 Evaluate command 

} 

 

We take advantage of the configurability of the Tcl interpreter by adding our own custom 

commands and getting rid of the commands we do not want. The next chapter, chapter 5, 
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will describe each of the commands we implemented and serve as a user guide by 

showing how to use each of the commands. 
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Chapter 5 
 

Tcl Interpreter Commands 
 

 In the last chapter, we explained that WSIM uses the Tcl command interpreter to 

drive the system. Figure 6 shows a table of all the commands we have implemented. This 

chapter will serve to explain each of these commands in more detail. 

 
 

Command Description 
accounting clear Clear used/assigned resources statistics 
breakpoint Set or delete a breakpoint 
cache Instruction or memory cache operation 
continue Run simulation until breakpoint 
dma Direct memory access 
dump Memory dump 
getval Get resource value 
help Print help 
instructions Print all instructions 
interrupt Set external interrupt 
list List program file 
load Load program file 
lsr List, Step, Register 
profile Instruction profile statistics 
register Print registers 
reset Reset simulator 
run Run until breakpoint 
setval Set resource value 
stack Print PC and loop stack data 
statistics Display resource usage statistics 
step Simulate one or more cycles 

 
Figure 6: Table of interpreter commands 

 

Clear Resource Statistics 
Usage:  

accounting clear 
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Resets the resource usage statistics for the period.  It does not affect the cycle 

statistics or the total statistics. Cycle statistics only account for the last cycle executed. 

Total statistics are kept for the entire duration of the program. Period statistics can be 

reset by the user anytime, so the user may look at resource usage results from any point in 

the program to another. 

 

Breakpoints 
Usage:  

b/breakpoint (<line_num>/label <label>) 

   b/breakpoint del/delete (<line_num>/label <label>/all) 

  b/breakpoint list 

 

The breakpoint command is used to set, delete, or list breakpoints. The first 

version of the command sets a breakpoint at either a specific line number or at a given 

program label. The second version deletes the breakpoint at a given line number or 

program label, if one exists. The third version of the command just prints a list of all the 

existing breakpoints. 

 

Caching 
Usage:  

[cache] is either ‘cache’ or ‘cachemem’  

     [cache] (on/off/lru/reset_stats/stats/tags) 

     [cache] delay <cycles> 

    [cache] log (stdout/<filename>) 

     [cache] size <total_cache_size> <block_size> 

     [cache] type (direct_mapped/fully_assoc/2_way/4_way) 

     [cache] algo (lru/random/lrr) 

     [cache] wbdelay <cycles> 
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The cache command and cachemem command are used to set up and simulate 

the instruction cache and data memory cache, respectively. The first version of the 

command allows the user to turn the cache on or off, show the statistics, reset the 

statistics, show the tags in the current cache, or show the least recently used array. The 

second version sets the cache controller delay on a cache miss. The third version allows 

the user to specify whether the cache notifications should be written to standard output or 

a file. The fourth version, which must be called before the cache is turned on, is used to 

set the total size of the cache and the size of each block. The fifth version lets the user 

specify the type of cache: direct_mapped (default), fully associative, 2-way set-

associative, or 4-way set-associative. The sixth version of the command specifies which 

replacement strategy to use for the associative caches: least recently used, least recently 

replaced, or random. The final version of the command tells the simulator how long the 

write back delay should be. 

 

Continue 
Usage:  

c/continue 

 

Continues execution until a breakpoint is hit or the end of the program is reached. 

 

Direct Memory Access 
Usage:  

dma <channel> (read/write) <filename> [<start> [<period>]]  

 

Schedules a future DMA read or write request on one of four channels. The 

argument <start> specifies the cycle number the request should occur on. The argument 

<period> specifies that a DMA request should occur periodically every <period> cycles 

after <start>. If <start> is not given, the DMA request should occur on the ensuing cycle. 

If <period> is not given, the DMA request is a one-time event. A read request reads from 
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the specified file and writes to the memory location pointed to by the specific channel’s 

DMA pointer. A write request reads from that memory location and writes to the file. 

 

Memory Dump 
Usage:  

dump [(<var>/mem) [<begin> [<end>]] [r <radix>]] 

 

Dumps the contents of memory to the screen. If a variable name is given, the 

dump begins at the address of the variable. Otherwise, the dump starts at the address 

<begin> and goes until the address <end>. The default for <begin> is 0 and the default 

for <end> is <begin> + 128. The argument <radix> specifies whether the data should be 

displayed in decimal, hexadecimal (default), octal, or binary. If the command is called 

without any arguments, the next 128 values are displayed. 

 

Get Resource Value 
Usage:  

getval (<resource>/cycle/FPC/DPC/EPC) 

  

Returns the value of the specified resource or one of the special variables: cycle 

number, fetch program counter, decode program counter, or execute program counter. 

 

Print Help 
Usage:  

h 

help [<command>] 

 

The command h displays a shortened version of help. The command help 

displays the detailed version of help. If <command> is specified, command-specific help 

is displayed. 
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Print Instructions 
Usage:  

instructions 

 

Displays a list of every instruction in the instruction set. 

 

External Interrupts 
Usage:  

interrupt (<addr>/<label>) [<start> [<period>]] 

 

This command allows the user to simulate an external interrupt request. The 

interrupt handler can be specified either by its address or by its label. The <start> 

argument is the cycle number the interrupt is to occur on and <period>, if given, is the 

number of cycles until the interrupt request should occur again. If <period> is not given, 

the interrupt is a one-time event. If <start> is not given, the interrupt should occur on the 

following cycle. 

 

List Program 
Usage:  

l/list 

 

Prints the program source text from four lines before the earliest program counter 

to four lines after the latest program counter. 

 

Load Program 
Usage:  

load <filename> 

 

Loads a program file for simulation. 
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List, Step, Register 
Usage:  

lsr 

 

This command is a combination of three other commands: list, step, and register. 

First, the program source file is displayed. Second, the system simulates one instruction 

cycle. Third, all of the registers are displayed. 

 

Instruction Profiling 
Usage:  

p/profile [clear]  

 

The profile command either prints out instruction profiling statistics or clears 

the statistics. 

  

Print Registers 
Usage:  

r/register 

 

Displays the values of all the registers in WSIM. 

 

Reset Simulator 
Usage:  

reset 

 

Resets all the hardware resources in WSIM. 

 

Program Run 
Usage:  
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run  

 

Starts execution of the program until either a breakpoint is hit or the end of the 

program is reached. 

  

Set Resource Value 
Usage:  

setval (<resource>/cycle) <val> 

 

Set the value of <resource> or the cycle count to <val>. 

 

Print Stack 
Usage:  

stack 

 

Displays the program counter stack, loop counter stack, loop start stack, and loop 

end stack. 

 

Resource Statistics 
Usage:  

stats/statistics [all/reg/mem/<resource...>] 

 

Displays statistics of all resources, just the registers, just the memory, or just one 

specific resource. 

 

Program Step 
Usage:  

s/step [<cycles>] 
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Simulates the execution of the program file for <cycles> number of cycles, or one 

cycle if <cycles> is not specified. 
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Chapter 6 
 

SystemC Architecture Modules 
 

From Figure 5 above, we have seen how the SystemC modules fit together to 

form the framework of the processor. In this chapter, we look at each of the modules 

separately and in more detail. 

 

Instruction Parser 
 

When the command interpreter receives a load program command, the 

instruction parser is called to read in the assembly program file. As mentioned before, 

everything in the program file should fall under one of four categories: instruction, label, 

comment, and memory variable. The parser reads in the file, one string at a time, 

delimited by white space, and decides which of the four categories that string falls under. 

If the processed string is ‘#VAR’, it must be the beginning of a memory variable 

declaration. The parser then checks whether the variable is a single variable or an array, 

and whether an initial value is present. If an initial value is present, the value is written 

into the location in memory specified by the address. Then a new MemVar object is 

created and added to the global array of MemVar objects. Finally, the parser moves on to 

the first string of the next line. 

If the first string of a line begins with the character sequence ‘##’, it must be a 

comment line. The parser then reads in the rest of the line and discards it, moving on to 

the first string of the next line. 

If the first string of a line ends with the colon character ‘:’, that line is a program 

label. After checking for duplicate labels, a new Label object is created and added to the 

global array of labels. The parser then proceeds to the next line. 

If a string does not fall under any of the first three categories, it must either be an 

instruction or an error by the assembly programmer. The string is checked against the list 

of instructions in the instruction set, and if a match is not found, an error statement is 
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printed to the screen and the string is skipped. The parser would then go on to the next 

string, either on the same line, if it exists, or on the following line. If the first string does 

match with an instruction, a new Instruction object is created and added to the global 

array of instructions. The parser next scans the following strings to get the arguments of 

the instruction. Each Instruction object has a corresponding array for arguments. Since 

different instructions have different numbers of required arguments, we need to fill up the 

empty argument slots with the empty string “”. In addition, when all the instructions have 

been read, we need to fill the empty instruction slots with “fake” instructions. These fake 

instructions and empty arguments just serve as placeholders and help avoid null pointer 

exceptions later in the pipeline. 

 

Internal / External System Clock 
 

There are actually two different clocks in WSIM: an external DSP instruction 

clock and an internal SystemC clock. The external instruction clock is the slower clock 

such that one instruction cycle is the same as NUM_CYCLES number of internal 

SystemC cycles, where NUM_CYCLES is defined in the header file global.h. When a 

step or run command is received by the interpreter, the interpreter calls the 

clk_step function in main.cpp. The clk_step function is basically a wrapper that 

simulates one external DSP instruction cycle by triggering the internal SystemC clock to 

run for NUM_CYCLES number of cycles. The SystemC clock is connected to each of 

the SystemC modules and triggers each of them to run for one cycle. Thus, for each 

processor instruction cycle we want to elapse, we need to simulate NUM_CYCLES 

number of SystemC cycles. This design was actually more complicated than it needed to 

be and is another candidate for possible future work. The simpler design would be to just 

have one SystemC cycle be equivalent to one processor instruction cycle. This idea will 

be discussed further in the chapter on future work. 
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Decoder 
 

The decode module has a thread called generate that is sensitive to the 

SystemC clock signal. The generate thread is an infinite loop such that one processor 

instruction cycle, or NUM_CYCLES SystemC clock cycles, will result in a complete 

iteration of this loop. This behavior is accomplished by inserting NUM_CYCLES 

number of wait instructions in the loop. When triggered by the SystemC clock signal, 

the thread runs until it reaches a wait instruction and suspends. On the next clock cycle, 

the module resumes from right after the wait and keeps running until the next wait 

instruction. Thus, after NUM_CYCLES number of SystemC clock cycles, the point of 

execution will be at the same exact point in the loop. All of the SystemC modules are 

modeled in the same way. 

 At the simplest level, the execution loop in the generate thread carries out 

several tasks. First, it gets the program counter (PC) from the PC register. The PC is the 

address of the next instruction to be executed. Second, it looks up the instruction located 

at the address pointed to by the PC. Then, based on the specific instruction, the thread 

figures out what signals it needs to send to the MAC, ALU, register, and memory 

modules. Specifically, the ALU and MAC need to know what function to carry out and 

which inputs to accept, and which module to send the result to. The register and memory 

modules need to know which registers and memory locations to read from or write to. 

The final task the decode thread needs to complete is to increment the PC. These tasks 

comprise the most basic tasks necessary to simulate a simple processor. All the additional 

features we have implemented have added many more modifications to the decode 

module and will be described in detail in the chapter on features implementation. 

 To decide which signals to send to the other modules, we have implemented a 

long, straightforward if-else if structure with each specific instruction getting a 

block, much like a switch-case construct. Here is an example of the structure: 

   
 if (instruction == “ADD”) { 

 ... 

 } else if (instruction == “SUB”) { 

 ... 
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 } else if (instruction == “MUL”) { 

 ... 

 

One more area of improvement in future work that will be discussed later is to get rid of 

this structure completely. If we want to be able to configure the instruction set of the 

target processor at runtime, we will not be able to use a structure like this. In the 

configuration file, we would have to convey which signals to send for each instruction 

type. 

 

Register File 
 

The register file has three read ports and one write port. The only job of this 

module is to output the contents of a register when needed and to write to registers when 

requested. The register file module has a thread called update that is sensitive to the 

SystemC clock signal. The update thread is an infinite loop like the generate 

method in the decode module. The loop just waits for the read signal, which specifies 

which register is to be read from, and the write enable signal, which specifies which 

register is to be written to. Additionally, there is a modification that will be described 

later to allow for read/write access to either the high bits or the low bits of a register. 

 

Memory 
 

The memory module is almost identical to the register file module, except that it 

only has one read port and one write port. It waits for signals from the decode module to 

decide which address location needs to be read from or written to, as well as whether the 

data comes from the ALU or MAC units. 
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Arithmetic Logic Unit 
 

The ALU module waits for signals from the decode module and then determines 

which inputs to select, which function to perform, and where to send the output. A block 

diagram of the ALU is shown in Figure 7.  

 

Reg A

Reg B Mem

ALU Function

Input Select

Imm

Output

Z Flag
N Flag

 
Figure 7: Block diagram of ALU 

 

 

After the inputs are received, the module must sign extend the inputs because we 

are assuming that all data is signed. Since our inputs may be of varying bit lengths, such 

as 16, 32, or 64 bits, we just sign extend everything to a standard of 64 bits, and then 

perform all calculations as if all the inputs are 64 bits in length. After we perform the 

calculations, we mask the result to the correct length of the output, and send the result to 

the proper module. Depending on the result, we also send signals to the flag module to 

show if the result was zero or not, and if the result was negative or not. These flags are 

used in conditional branch instructions. The source code for the ALU SystemC module is 

included in the Appendix. 
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Multiply Accumulate 
 

The MAC module is very similar to the ALU module. It reads in three inputs, sign 

extends them to 64 bits, and performs an operation on them. The result is masked down 

to 32 bits and is sent to the register module and memory module. There are no flags 

associated with the MAC. A block diagram of the MAC module is shown below in 

Figure 8.  

 

Reg A Reg B Reg C

MAC Function

Output
 

Figure 8: Block diagram of MAC 
 

 

 Since MAC instructions only accept inputs from registers, we do not need a 

multiplexer and an input select signal like in the ALU module. 

 

Flags 
 

The flags module is similar to the register module, but it only has to store two 

values, the zero flag and the negative flag. The zero flag being true indicates that the last 

result computed by the ALU was zero. The negative flag being true indicates that the last 

result computed by the ALU was negative. A combination of these two flags tells 

whether the last ALU result was positive, zero, or negative. These flags are used in 

conditional instructions such as BEQ, BLT, and BGE. BEQ, which stands for “branch 

equal,” instructs the processor to jump if the last ALU result was equal to 0. BLT, which 
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stands for “branch less than,” instructs the processor to jump if the last ALU result was 

less than zero. Finally, BGE, which stands for “branch greater than or equal to,” instructs 

the processor to branch if the last ALU result was greater than or equal to zero. 
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Chapter 7 

 
Features Implementation 

 
In this section, we introduce all of the advanced features of the simulator and 

describe how each is implemented. 

 

Resource Value Representation and Resource Profiling 
 

Hardware resources such as registers, memory, and ALU flags are represented by 

a struct data type called RES_Value. Each resource has a read value and a write 

value. This dual nature was designed to support parallel instructions, a popular feature of 

DSP architectures that may be added in the future. For example, consider the following 

parallel instruction: 

 
R0 = R1, R2 = R0 + 1 

 

If each resource only had one value instead of a read value and a write value, the result of 

the instructions would be different based on the order of execution of the two 

instructions. Since a parallel behavior is desired, the first instruction assigns R1 (read) to 

R0 (write) and the second instruction adds 1 to the value of R0 (read) before assigning 

the result to R2 (write). At the end of every cycle, the write value of each resource is 

copied to the read value. 

 The RES_Value data type also includes two separate pointers to two other 

RES_Value data types, named AllResourcesNext and AllRegistersNext. 

This way, one resource is linked to the next resource, in effect creating a linked list of all 

the resources in the system. This method makes it much easier to go through and perform 

an operation on all the resources. The head of the list is pointed to by the global variable 

AllResourcesList. The second list, pointed to by AllRegistersList, only 

includes the registers. Since every single memory location is represented as a resource 

and is included in the list AllResourcesList, the list AllRegistersList allows 
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a more efficient search for a specific register because every single location of memory 

does not need to be traversed. 

 The remaining fields in the resource value data type are all used to support 

resource profiling. Two bool data types, CycleUsedFlag and 

CycleAssignedFlag, are used to indicate whether the resource was used or assigned 

to in the last instruction cycle. Four more long data types, PeriodUsedCount, 

PeriodAssignedCount, TotalUsedCount, and TotalAssignedCount, 

count the number of times the resource was used in the current period, assigned to in the 

current period, used in the entire program, and assigned to in the entire program, 

respectively. Two more pointers to RES_Value data types, CycleAssignedNext 

and CycleUsedNext, help connect a linked list of all the resources that were assigned 

to or used in the past cycle. Thus, the simulator only needs to traverse these reduced lists 

when updating the read and write fields of all the resources that were written to in each 

cycle. 

 

Instruction Execution Profiling 
 

Instruction profiling is implemented by adding a count variable in the 

Instruction class. Then, in the main loop of the decode module, we increment the 

variable for the instruction in the Execute stage of the pipeline. 

 

Breakpoints 
 

Breakpoints are used to help debug a program. The user may set a breakpoint on a 

specific instruction, either by giving the line number of the instruction or the name of the 

label directly preceding the instruction, if one exists. Like instruction profiling counts, 

breakpoint information is kept in the Instruction class. Each Instruction object 

has a flag that says whether a breakpoint exists at that instruction. 

During each cycle of program execution, the simulator must check to see if a 

breakpoint has been reached. This check is performed in the main loop of the decode 
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module. Before an instruction is simulated in the execution stage of the pipeline, the 

simulator makes sure there is no breakpoint set at that instruction. If a breakpoint does 

exist, the simulator ceases execution of the instruction and returns control to the 

command interpreter. The user must then command the simulator to start running again 

before that instruction gets executed. 

 

Continuous Simulation 
 

Usually, the user uses the step command or lsr command to step through one 

instruction at a time. If the user just wants to simulate the program indefinitely until a 

breakpoint is hit, the run or continue command will suffice. This behavior is 

implemented by using a global flag variable SimContinuous and letting the program 

keep running until the flag’s value is set to false. The while loop is added in the 

clk_step function in main.cpp, around the for loop that triggers the SystemC clock. 

This portion of the code is shown here: 

 

while(SimContinuous) { 

for (int i=0; i<NUM_CYCLES; i++) { 

  clk.write(1); 

  sc_cycle(10 NS); 

  clk.write(0); 

  sc_cycle(10 NS); 

} 

 } 

 

The SimContinuous flag is set to false in the main loop in the decode module 

whenever a breakpoint is hit or when the final instruction has been executed. Otherwise, 

this loop will keep running. 
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Pipelining 
 

As mentioned earlier, we have modeled a three-stage pipelined processor with a 

fetch stage, a decode stage, and an execute stage. To simulate this behavior, we first need 

three program counters, one for each stage: FPC, DPC, EPC. Since we also need to 

execute some tasks on the decode stage, we will need a separate if-else if structure 

to match instructions in the decode stage, very similar to the existing if-else if 

structure for instructions in the execute stage. This structure is added in the same place in 

decode.cpp.  

In a pipelined architecture, certain instructions, such as jumps or branches, will 

require instructions already in the pipeline to be cancelled or flushed. An example is 

shown in Figure 9. 

 

ExecuteFetch Decode

Fetch Decode

Execute

Execute

ADD R0 R0 R1

label: SUB R0 R0 R1

Decode

JUMP label

Fetch

n n+1 n+2 n+3 n+4

address available

cancel current instruction

fetch new instruction

 
Figure 9: Pipeline Flow for Jump Instruction 

 

 

In this example, the address of the location to jump to is not known until the 

beginning of cycle n+2. However, the instruction following the jump is already in the 

pipeline. Thus, we need a mechanism of flushing the instruction in the decode stage this 

cycle as well as the instruction in the execute stage in cycle n+3. Then, the processor is 

able to fetch the instruction from the new location. 

We implement the flushing mechanism by using a global variable Flushed that 

keeps track of which stages need to be flushed. The first bit in Flushed represents the 

execute stage, while the second bit represents the Decode stage. The fetch stage will not 

ever need to be flushed. If we want to flush the instruction in the decode stage, we OR the 
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variable with the number 2: Flushed = Flushed | 2. If we want to flush the instruction in 

the execute stage, we OR the variable with the number 1: Flushed = Flushed | 1. At the 

end of every cycle, the bits of the variable are shifted one bit to the right: Flushed = 

Flushed >> 1. Now we just have to examine the variable before we execute the decode 

and execute stages in the decode module. Here is the pseudo code that makes it work: 

 
if (Flushed & 0x2) 

 replace decode instruction with NOP 

if (Flushed & 0x1) 

 replace execute instruction with NOP 

... 

Flushed = Flushed >> 1 

 

With a pipelined processor, there must also be some restrictions on the order of 

instructions. For example, there must be a NOP between an ALU instruction and a 

conditional branch instruction or a call instruction. Figure 10 shows what would happen 

if there was no NOP between the ALU and a BEQ instruction. 

 

ExecuteFetch Decode

Fetch Decode
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SUB R0 R0 R1

Decode

ADD R0 R0 R1

Fetch

n n+1 n+2 n+3 n+4

ALU flag available

ALU flag needed

fetch which instruction?

 
Figure 10: No NOP between ADD and BEQ 

 

 

 The ALU flags are not set until after the execute stage of the ADD instruction. 

However, the BEQ instruction needs the flags before the decode stage so the processor 

knows which instruction to fetch next. There will be a conflict if the NOP is not inserted. 

Figure 11 shows what would happen with the NOP. 
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Figure 11: NOP inserted between ADD and BEQ 

 

 

 Since the NOP is added, the BEQ instruction does not need the value of the ALU 

flags until one cycle later, exactly when the flags will be available. Restrictions like these 

must be checked for in the program file parser or else unpredictable program behavior 

may occur. With the addition of parallel instructions and longer pipelines, the number of 

conflicting instructions will keep rising.  

 

Function Calls 
 

Like JUMP and BRANCH instructions, a CALL instruction just tells the 

processor to start executing at another location, specified by a label. However, unlike 

JUMP and BRANCH instructions, a function call saves the address of the instruction 

immediately following the call and is able to return to that instruction when the function 

concludes. The RTF instruction, or return from function, is used to end the function and 

return. 

If the program has a recursive function or a series of nested function calls, the 

processor would need to save multiple addresses at once, and also remember the order of 

the function calls. To apply this functionality, we chose to implement a program counter 

(PC) stack. Whenever a function call occurs, the address of the return instruction is 

pushed on to the stack. When a function returns, the address is popped off the stack. The 

depth of the stack is defined by a global variable called PC_STACK_SIZE in the file 

global.h and is currently set to 16.  
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We also need to save the state of the ALU flags on calls and restore the flags on 

returns. Since we only use 16-bit addresses and can store 32 bits at each location in the 

stack, we can let the 17th and 18th bits represent the Z flag and the N flag respectively.   

 

Loop Instructions 
 

Loop instructions are a way to support zero-overhead program loops. After the 

loop counter LC is loaded, the loop until instruction (LOOPU) specifies a label indicating 

the last instruction in the loop. For example, consider this two-instruction loop: 

 

A: LDLCC 10 

B: LOOPU done 

C: ADDC R0 R0 1 

D: done: ADDC R1 R1 1 

 

The order of instructions executed would be A, B, C, D, C, D, C … Each 

additional iteration requires two instruction cycles. Now let us look at the same two-

instruction loop without using the loop instructions: 

 

 A: start: ADDC R0 R0 1 

 B: ADDC R1 R1 1 

 C: JUMP start 

 D: NOP 

 

The order of execution would be A, B, C, D, A, B, C, D … Thus, every iteration 

requires four instruction cycles. The NOP serves as a placeholder because whatever 

instruction that follows the JUMP instruction will be cancelled. 

To implement the loop instructions, the processor records and saves the loop start 

and loop end address when the LOOPU instruction is called. During each instruction 

cycle, the decode module must check to see if the loop end address is the same as the 

fetch program counter address. If the addresses are the same, and the loop counter is 
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greater than one, the next instruction in the fetch stage becomes the one at the loop start 

address and the loop counter is decremented. 

Since nested loops are possible, we need to use stacks like with the program 

counter. We implement three stacks: the loop counter stack, the loop start stack, and the 

loop end stack. When the LOOPU is executed, the loop counter, loop start, and loop end 

values are all pushed on to their respective stacks. When we exit a loop, or when the loop 

end is reached and the loop counter is not greater than one, we pop the values off all three 

stacks. The depth of the stacks is defined by a global variable called 

LOOP_STACK_SIZE in the file global.h and is currently set to 16. 

An additional instruction, TLOOP, allows for one-instruction loops with zero-

overhead. The only difference is that the loop start address and loop end address are 

identical. 

 

External Interrupts 
 

As mentioned earlier, the user may schedule either one-time or periodic external 

interrupts to occur in the future. We represent the interrupt requests with a linked list of 

Interrupt objects called AllScheduledInterrupts. Each Interrupt object 

stores the cycle number of its next scheduled request, the periodicity, the address of the 

interrupt handler, and a pointer to the next Interrupt object in the linked list. A 

scheduling algorithm is used to sort the linked list in order of time until the next interrupt. 

When the user schedules the interrupt, the Interrupt object is inserted into the correct 

spot in the list. When an interrupt occurs, the object is taken out from the front of the list. 

Then, if the interrupt is periodic, the next request time is calculated and the object is 

inserted back into the list at the proper location. If the interrupt is one-time, the object is 

discarded. 

 At the beginning of each instruction cycle, the decode module checks the first 

element of the interrupt linked list to see if an interrupt is happening that cycle. If so, the 

PC and ALU flags are saved on the PC stack, much like a function call. The simulator 

then jumps to the interrupt handler and must cancel and flush the proper instructions. For 

example, if the instruction in the execute stage is a program flow instruction such as 
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JUMP or BRANCH, all three stages are flushed. Otherwise, the instruction in the execute 

stage is allowed to execute and the instructions in the fetch and decode stage are flushed. 

When the interrupt handler completes, it calls the RTI function, which pops the PC stack 

and returns to the correct instruction.  

 

Direct Memory Access 
 

DMA requests are very similar to interrupt requests. The user specifies when the 

request should occur, whether the request is one-time or periodic, whether the request is a 

read or write, and the channel number to use. Like interrupt requests, all of this 

information is stored in DMA objects, which are linked together in a list in order of time 

until execution. The same scheduling algorithm is also used. As with interrupts, DMA 

requests are checked at the beginning of each instruction cycle. However, unlike 

interrupts, when a DMA request occurs, the pipeline performs a vertical stall, instead of 

flushing or canceling instructions. A vertical stall means that all instructions stay in the 

same pipeline cycle and are suspended until the DMA is complete. An example timing 

diagram is shown in Figure 12. 

 

. . .

. . .

ExecuteFetch Decode

Fetch Decode

Execute

Execute

DecodeFetch

n n+1 n+2 n+3   . . .

DMA Access

Fetch Decode Execute  
Figure 12: Timing diagram of DMA access 

 

 

During the DMA access, data is either read from a file and written to memory, or 

read from memory and written to the file. Depending on the specified channel (0-3), the 
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respective DMA pointer (DMA0-DMA3) is used to point to the read/write location in 

memory. 

 

Cache Simulation 
 

The user may simulate instruction or memory cache by specifying several 

parameters: total cache size, block size, type of cache, replacement strategy, and length of 

write back delay. When the cache is turned on, the decode module must call the function 

SimICache at the beginning of every instruction cycle. This function checks for a cache 

hit or miss, and updates the statistics accordingly. The straightforward representation of 

the cache just uses several multi-dimensional arrays to keep track of tags, least recently 

used queues, and least recently replaced queues. The results of the cache simulation have 

no effect on the rest of the simulator. 
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Chapter 8 
 

Testing 
 

The simulator was tested with several DSP assembly programs. Most of the tests 

were very basic and just tested the functionality of specific instructions. However, a 

couple of the tests were a little more interesting. The list of tests is shown in the 

following table. 

 

Test code name   Purpose 

ash Tests ASH instruction 

ashc Tests ASHC instruction 

beq Tests BEQ instruction 

bge Tests BGE instruction 

bgt Tests BGT instruction 

ble Tests BLE instruction 

blt Tests BLT instruction 

bne Tests BNE instruction 

ldst Tests memory variables and all memory access methods 

lsh Tests LSH instruction 

lshc Tests LSHC instruction 

mul Tests MUL instruction 

mula Tests MULA instruction 

mulb Tests MULB instruction 

prime Writes increasing prime numbers to memory 

sum100 Sums integers from 1 to 100 

 
Figure 13: Table of test programs 
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Here is the code for the sum100 test: 

 
LDC16  R0 0 
LDC16  R1 0 
 
Jump: 
ADDC R0 R0 1 
ADD  R1 R0 R1 
SUBC R2 R0 100 
NOP 
BNE  Jump 
 
LDC16  R3 0xABCD 
LDC16  R4 0xABCD 
LDC16  R5 0xABCD 
LDC16  R6 0xABCD 
LDC16  R7 0xABCD 

 

This program just demonstrates the functionality of some simple ALU 

instructions and a BNE instruction. Each time through the loop, R0 is incremented by 

one, and added to the running sum in R1. The SUBC instruction helps to check for when 

R0 reaches 100. 

The prime program, which is somewhat more interesting, is shown here: 

 
##R3 is the value to be tested 
LDC16 R3 1 
##A0 is the address register 
LDC16 A0 0 
 
##Manually store the number 2 
LDC16 R6 2 
STII A0 R6 
 
start: 
ADDC R3 R3 2 
##R4 cycles through all odd numbers to find a factor 
LDC16 R4 1 
 
inside: 
ADDC R4 R4 2 
SUB R5 R3 R4 
NOP 
BEQ write 
 
MOV R0 R3 
MOV R1 R4 
CALL mod 
SUBC R2 R2 0 
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NOP 
BEQ start 
NOP 
JMP inside 
 
write: 
STII A0 R3 
JMP start 
 
mod: 
##Returns R0 (mod R1) in R2 
SUB R0 R0 R1 
NOP 
BGE mod 
ADD R2 R0 R1 
RTF 

 

This program writes increasing prime numbers to memory. It demonstrates the 

use of function calls, jumps, branches, and memory accesses. R3, which holds the value 

being prime-tested in each iteration, is incremented by 2 every time a prime is found or 

disproved. The loop beginning at the label inside checks whether each odd number 

from 3 up to the number tested to see whether it is a factor. The function mod is called to 

return the value R0 (mod R1) in the register R2. If the result is 0, then R1 is a factor of 

R0. This program does not have a stopping point, so it will continue to find prime 

numbers until the user chooses to stop the simulation. Below is a memory dump after 

10,000 instruction cycles have been executed: 

 
MEM(0x0000):     2     3     5     7    11    13    17    19   

MEM(0x0008):    23    29    31    37    41    43    47    53   

MEM(0x0010):    59    61    67  ????  ????  ????  ????  ????   

MEM(0x0018):  ????  ???? ?????  ????  ????  ????  ????  ????   
 

A program listing and display of registers is shown below, also after 10,000 cycles: 

 
File listing: 
            16: NOP   
            17: JMP   inside 
        write: 
            18: STII  A0 R3 
            19: JMP   start 
        mod: 
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E===>       20: SUB   R0 R0 R1 
 D-->       21: NOP   
  F->       22: BGE   mod 
            23: ADD   R2 R0 R1 
            24: RTF   
            25: BAD   
            26: BAD   
 
WSIM Core Registers: 
R0    + 0x0010 + 
R1    + 0x000b + 
R2    + 0x0008 + 
R3    + 0x0047 + 
R4    + 0x000b + 
R5    + 0x003c   
R6    + 0x0002 + 
R7      0x????   
L0      0x????????   
L1      0x????????   
L2      0x????????   
L3      0x????????   
A0    + 0x0013 + 
A1      0x????   
A2      0x????   
A3      0x????   
AM0     0x????   
AM1     0x????   
AM2     0x????   
AM3     0x????   
CYCLE * 0x2710 * 
DMA0    0x????   
DMA1    0x????   
DMA2    0x????   
DMA3    0x????   
Z          + 0 * 
N          + 0 * 

 

 The “*” and “+” characters to the right of the register values indicate that the 

register was read from in the last cycle or in the current period, respectively. The “*” and 

“+” characters to the left of the values indicate that the register was written to in the last 

cycle or in the current period, respectively.  

 Here is a print out of the instruction execution profiling at the same point in the 

program: 

 
Address  Inst Count  Instruction 
-------  ----------  ----------- 
 00000            3  LDC16   R3    1      
 00001            1  LDC16   A0    0      
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 00002            1  LDC16   R6    2      
 00003            1  STII    A0    R6     
 00004           35  ADDC    R3    R3    2      
 00005           35  LDC16   R4    1      
 00006          301  ADDC    R4    R4    2      
 00007          301  SUB     R5    R3    R4     
 00008          301  NOP      
 00009          301  BEQ     write  
 0000a          301  MOV     R0    R3     
 0000b          283  MOV     R1    R4     
 0000c          283  CALL    mod    
 0000d          565  SUBC    R2    R2    0      
 0000e          282  NOP      
 0000f          282  BEQ     start  
 00010          282  NOP      
 00011          266  JMP     inside  
 00012          284  STII    A0    R3     
 00013           18  JMP     start  
 00014         1341  SUB     R0    R0    R1     
 00015         1323  NOP      
 00016         1323  BGE     mod    
 00017         1323  ADD     R2    R0    R1     
 00018          282  RTF      
 00019          282  BAD      

 

Here is a printout of the resource profiling statistics: 

 
Resource      Assigned    Used     Total Assigned Total Used   
--------     ---------- ---------- -------------- ---------- 
R0                 1606       1605           1606       1605 
R1                  283       1605            283       1605 
R2                  564        282            564        282 
R3                   36        637             36        637 
R4                  336        885            336        885 
R5                  301          0            301          0 
R6                    1          1              1          1 
Z                  3693      10000           3693      10000 
N                  3693      10000           3693      10000 
A0                   20         19             20         19 
FPC               10000      10000          10000      10000 
DPC               10000      10000          10000      10000 
EPC               10000      10000          10000      10000 
CYCLE             10000      10000          10000      10000 
PC0                 283        564            283        564 
PC_STACK_PTR        565        847            565        847 
LCPTR                 0      10000              0      10000 
LAPTR                 0      10000              0      10000 
MEM(0)                1          0              1          0 
MEM(1)                1          0              1          0 
MEM(2)                1          0              1          0 
MEM(3)                1          0              1          0 
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MEM(4)                1          0              1          0 
MEM(5)                1          0              1          0 
MEM(6)                1          0              1          0 
MEM(7)                1          0              1          0 
MEM(8)                1          0              1          0 
MEM(9)                1          0              1          0 
MEM(10)               1          0              1          0 
MEM(11)               1          0              1          0 
MEM(12)               1          0              1          0 
MEM(13)               1          0              1          0 
MEM(14)               1          0              1          0 
MEM(15)               1          0              1          0 
MEM(16)               1          0              1          0 
MEM(17)               1          0              1          0 
MEM(18)               1          0              1          0 
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Chapter 9 

 
Related Work 

 
MIT’s course called Computation Structures provides two simulators as teaching 

tools, JSim and BSim. JSim is a digital circuit construction and analysis tool. It allows the 

user to build from transistors and gates up to a full RISC processor. It has a simple editor 

but does not have the functionality to parse an assembly program and execute it. It also 

does not provide the advanced functionality needed to simulate a DSP processor. 

 

BSim is more similar to this project. It is a simulator for the Beta processor, 

which is the RISC processor studied in the course. It shows the execution state of the 

processor when running supplied assembly code. Both of these applications are written in 

Java, whereas this project is to be implemented in C/C++. The other major difference is 

that BSim is geared towards a RISC processor, not a DSP processor. Therefore it does 

not support some advanced capabilities like MACs, loops, and complex addressing 

techniques. However, both of these tools provide good models of simulation tools. 
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Chapter 10 
 

Future Work 
 

 Although WSIM is capable of simulating a simple DSP architecture, many 

improvements can be made. First, instead of configuring the processor or hardware 

description in the source code and having to recompile, a configuration file model can be 

created. This work involves designing a unique format and language for the file itself, 

writing a parser for the configuration file, and interfacing the results of the parser to the 

rest of the simulator. 

 Instead of only accepting mnemonic assembly source code, a more complicated 

parser can be written to accept more user-friendly code. The code could look more like a 

higher level-language like C or Java. For example, instead of the instruction ADDC R0 

R1 R2, we could just write R0 = R1 + R2. Many DSP processors already accept this type 

of source code, so this idea would expand the scope to more users. 

 Many processors today allow for parallel instructions. Supporting this feature 

would also allow WSIM to model a wider scope of existing DSP architectures. Although 

the implementation of parallel instructions should not be too difficult, there are many 

sticky points because certain instructions have restrictions as to which instructions they 

may be in parallel with. This problem is caused by a bottleneck of limited hardware 

resources. 

 As mentioned earlier, several more ideas for future work include synchronizing 

the DSP instruction cycle clock and the internal SystemC clock, automating the signals 

generated by instructions in the decode module, and adding some more advanced 

processor features like external device ports, a set of kernel registers, direct memory 

exchange (DME), and more memory modules. 
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Appendix 
 

Sample Source Code 
 
//alu.h 
#ifndef ALU_H 
#define ALU_H 
 
struct alu : sc_module { 
    sc_in<SC_LongLong> in1;     //input 1 - reg1 
    sc_in<SC_LongLong> in2a;    //input 2a - reg2 
    sc_in<SC_LongLong> in2b;    //input 2b - imm 
    sc_in<SC_LongLong> in2c;    //input 2c - mem 
    sc_in<long> in2_sel;        //0 for 2a,1 for 2b,2 for 2c 
    sc_in<long> in1width;       //input 1 width  
    sc_in<long> in2awidth;      //input 2a width 
    sc_in<long> in2bwidth;      //input 2b width 
    sc_in<long> in2cwidth;      //input 2c width 
    sc_in<AluOp> fn;            //alu function 
    sc_out<SC_LongLong> out;    //output 
    sc_out<long> reg_outwidth;  //reg output width 
    sc_out<long> mem_outwidth;  //mem output width 
    sc_in<RegMemWE> regs_mem_we;//write to reg or mem 
    sc_out<bool> z_flag;        //zero 
    sc_out<bool> n_flag;        //negative 
    sc_in<bool>    clk;         //clock 
 

void exec();                //method implementing  
  //functionality 

 
    //Constructor 
    SC_CTOR( alu ) { 
        SC_THREAD( exec );   //Declare exec as SC_THREAD and   
                //dont_initialize(); 
        sensitive_pos << clk;  //make it sensitive to  

 //positive clock edge 
    } 
 
}; 
 
#endif 
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//alu.cpp 
#include "math.h" 
#include "systemc.h" 
#include "types.h" 
#include "alu.h" 
 
//Definition of exec method 
void alu::exec() 
{ 
  signed long long a, b;           // Inputs 
  long a_width, b_width, r_width;  // Input widths 
  static signed long long result;  // ALU result output 
  unsigned long long atmp;         // Unsigned version of a 
  long sel;                        // Input 2 select 
                                   // 0(reg), 1(imm), 2(mem) 
  AluOp op;                        // Operation to execute 
  SC_LongLong temp;     // Signal to send long long variable 
 
  while(1) 
    { 
      // Manually synchronize with rest of system 
      wait(); 
      wait(); 
 
      sel = in2_sel.read(); // Input2 select from decode 
      op = fn.read();       // Operation (from decode) 
      a = in1.read().Num;   // Input1 (from reg) 
      a_width = in1width.read(); // Input1 width 
 
      // Signal from decode that tells to write back to regs 

 // or mem 
      // Get the width. If not regs or mem, assume 64 bits 
      if(regs_mem_we.read() == REGALUWE) 
        { 
          r_width = reg_outwidth.read(); 
        } 
      else if(regs_mem_we.read() == MEMALUWE) 
        { 
          r_width = mem_outwidth.read(); 
        } 
      else 
        { 
          r_width = 64; 
        } 
 
      // Read input2 (2=mem, 1=imm, 0=reg) and get width 
      if(sel == 2) 
        { 
          b = in2c.read().Num; 
          b_width = in2cwidth.read(); 
        } 
      else if(sel == 1) 
        { 
          b = in2b.read().Num; 
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          b_width = in2bwidth.read(); 
        } 
      else 
        { 
          b = in2a.read().Num; 
          b_width = in2awidth.read(); 
        } 
 
      // Sign extend a and b if negative 
      if(a_width != 64 && a >> (a_width - 1)) 
        { 
          a = a | ((long long)-1 << a_width); 
        } 
 
      if(b_width != 64 && b >> (b_width - 1)) 
        { 
          b = b | ((long long)-1 << b_width); 
        } 
 
      // Perform operation 
      switch(op) 
        { 
        case ADD:       //add 
          result = a+b; 
          break; 
        case SUB:       //sub 
          result = a-b; 
          break; 
        case A:         //a 
          result = a; 
          break; 
        case B:         //b 
          result = b; 
          break; 
        case ASH:       //arithmetic shift 
          if(b >= 0) 
            { 
              result = a<<b; 
            } 
          else 
            { 
              result = a>>-b; 
            } 
          break; 
        case LSH:       //logical shift 
          // For logical shift, make A unsigned, mask the 

// digits past a_width, and do shift 
          atmp = (unsigned) a; 
          atmp=atmp&((unsigned long long)pow(2,a_width)-1); 
          if(b >= 0) 
            result = atmp<<b; 
          else 
            result = atmp>>-b; 
          break; 
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        default: 
          break; 
        } 
 
      // Mask result to correct width 
      result=result&((unsigned long long)pow(2, r_width)-1); 
 
      // Send result to regs and mem 
      temp.Num = result; 
      out.write(temp); 
 
      // Write flags 
      if(result == 0) 
        z_flag.write(1); 
      else 
        z_flag.write(0); 
 
      // Negative flag 
      if(result & (0x1 << (r_width-1))) 
        n_flag.write(1); 
      else 
        n_flag.write(0); 
 
      // Sync 
      wait(); 
      wait(); 
      wait(); 
    }  
} // end of exec method 
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