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Chapter 1

Introduction

The seminal result by Gupta and Kumar [3] implies that the sum rate of communi-

cation in an ad-hoc wireless network with uniform traffic cannot grow linearly with

the number of nodes in the network. The same result was proved in a more general

communication framework in [4, 5].

Gupta and Kumar also analyzed a strategy of passing the message from source

to destination through a sequence of relay nodes. Each relay node in the sequence

first decodes the message fully and then transmits it to the next relay node in the

sequence (Fig 1-1). This strategy of multi-hop through relay nodes was shown to

be essentially almost optimal. We call such a strategy separation-based, where every

relay node decodes the complete message before transmitting it. Equivalently in a

separation-based strategy, reliable communication is possible to each relay node so

that each relay node can fully decode its received signal. Thus in a separation-based

strategy, the joint problem of communication in the network is separated into two less

complex problems. The first problem is how to create reliable links to the relay nodes

and the second problem is what should be sent over those reliable links. This is the

reason why such a strategy is called separation-based. This definition of separation is

also known as channel-network separation and it should not be confused with other

common connotations of separation, e.g. source-channel separation.

We also know that multiple antennas provide enormous performance gains in
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Figure 1-1: Multi-hop through a sequence of relay nodes

wireless systems. In a point-to-point multi-input multi-output (MIMO1) system with

n transmit and n receive antennas and i.i.d. Rayleigh2 flat fading, if the receiver

knows the channel, then the capacity is approximately n log SNR at high SNR [1, 2].

This result by Telatar and Foschini shows that the capacity of this MIMO channel is

equal to the sum of the capacities of n parallel single antenna channels. Thus we say

that this MIMO channel provides n degrees of freedom to communicate and hence

improves the performance significantly. In general, we say that r degrees of freedom

are achieved if a rate of r log SNR is achieved.

Applying this MIMO idea in a wireless network with fading has the potential to

achieve performance gains. A particular example for this claim using a single source-

destination pair was given in [6]. There both source and destination use half the

relay nodes. These relays are so close to the source or the destination that they act

as multiple antennas of a single user (see Fig. 1-2). Now this network is like a point-

to-point MIMO system and its capacity grows linearly with the number of antennas.

The idea of making the relay nodes act like multiple antennas was also developed in

[11].

We would like to explore this type of MIMO performance gain in more general

wireless networks. Consider a layered relay network having a single source-destination

pair. Let the message be passed from one layer to the next till it reaches the desti-

nation (Fig. 1-3). In this thesis, we will assume that this layering has been already

1We reserve the word “MIMO” for point-to-point channels with multiple transmit and multiple
receive antennas.

2This means that all entries of the channel matrix are i.i.d. and circular symmetric complex
Gaussian. We call such a random matrix as a “random Gaussian matrix”, unless specified otherwise.
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Virtual multi-antennas

DestinationSource

Figure 1-2: Relays acting as multi-antenna

done. We will not be concerned about how to divide a general wireless network into

multiple layers and other such issues. Note that the message is now passed through a

sequence of relay layers, as opposed to a sequence of relay nodes (Fig. 1-1). We will

assume that each layer has n single-antenna relay nodes and the source and destina-

tion have n antennas each. Every hop of the message from one layer to its next layer

looks like a MIMO system.

Figure 1-3: Multi-hop through sequence of relay layers

Nevertheless, as we will see later, this transmission between relay layers differs

significantly from a point-to-point MIMO system because relay nodes in a layer are at

different locations. They cannot coordinate with each other to act like a multiantenna

node. This thesis is an attempt to answer the following questions:

How valuable is this coordination between relay nodes?

What is the performance loss if this coordination is lacking?

The next chapter reviews some basic concepts in information theory, which are

used in later chapters. Some aspects of coordination between relay nodes are discussed

in chapter 3. After describing the exact network model, it discusses the case where

only one layer of relay nodes exists between the source and destination. We propose

3



a strategy which achieves the same rate as the capacity of a point-to-point MIMO

system in the high SNR regime. In other words, in spite of the lack of coordination

between relay nodes, this strategy achieves all the degrees of freedom achievable in a

point-to-point MIMO system.

In chapter 4, we study the general case where the number of relay layers can be

one or more. The strategy for the single layer case fails to achieve all the degrees

of freedom here. A different and surprisingly simple non-separation-based strategy is

able to achieve all the degrees of freedom in this case.

All these results imply that at high SNR, lack of coordination does not reduce

the achievable rate. Nonetheless, the precise meaning of “high SNR” is not made

clear by these results. Chapter 5 addresses this issue. It studies how the achievable

performance is affected if SNR is not high enough. It also sketches the tradeoff of the

achievable rate with an increasing number of relay layers i.e. with increasing network

size.

The results till this point were proved in the ergodic formulation. This formulation

assumes that a transmitted codeword spans a large number of fading blocks i.e. faces

a large number of channel realizations. If it is not possible, we study the outage

formulation in chapter 6. In the outage formulation, we sketch the rate-diversity

tradeoff for this network (like the rate-diversity tradeoff for the point-to-point MIMO

channel found by Zheng and Tse [15]). We also show how this tradeoff gets worse

with increasing network size. In other words, we plot the three dimensional tradeoff

between rate, diversity and network size. It turns out that increasing the network size

is much costlier in the outage formulation than in the ergodic formulation. In other

words, increasing network size is much costlier when the codelength does not span a

large number of fading realizations. Finally in chapter 7, we discuss some extensions

of the derived results. The significance of these results for ad-hoc networks is also

discussed.
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Chapter 2

Background

This chapter reviews some pertinent results in information theory and multiantenna

systems.

2.1 Coding Theorem for Point-to-Point Channels

Consider a discrete time communication channel whose input at any given time i ∈ Z
is a continuous-valued random variable xi and whose output is another continuous-

valued random variable yi. We denote the vector of channel inputs [x1, · · · , xN ]T

by xN ; yN is defined similarly. The channel behavior is completely described by

the conditional probability density function p(yN = ỹN |xN = x̃N) for all sample

values x̃N , ỹN and all N . If the channel is assumed to be memoryless and stationary,

this decomposes into the product form ΠN
i=1 py|x(ỹi|x̃i), where py|x(ỹ|x̃) denotes the

stationary conditional pdf of the channel evaluated at x̃ and ỹ, which are sample

values or realizations of x and y. The channel is completely described by py|x(ỹ|x̃) in

this case. Let the set of all possible ỹ and x̃ be denoted by Ω. For example, Ω can

be the real line or the complex plane.

The mutual information for this channel for a given input pdf px(.) is defined as1

I(y; x) =

∫

Ω

∫

Ω

pyx(ỹ, x̃) log
py|x(ỹ|x̃)

py(ỹ)
dỹ dx̃ (2.1)

1The log function is assumed to have base 2 unless stated otherwise.
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This can be also written in terms of differential entropies. The differential entropies

are defined as follows:

h(y) =

∫

Ω

py(ỹ) log
1

py(ỹ)
dỹ

h(x) =

∫

Ω

px(x̃) log
1

px(x̃)
dx̃

h(y, x) =

∫

Ω

∫

Ω

pyx(ỹ, x̃) log
1

pyx(ỹ, x̃)
dx̃ dỹ

In a similar manner, the conditional differential entropies are defined as

h(y|x) =

∫

Ω

∫

Ω

pyx(ỹ, x̃) log
1

py|x(ỹ|x̃)
dỹ dx̃

=

∫

Ω

px(x̃)

[∫

Ω

py|x(ỹ|x̃) log
1

py|x(ỹ|x̃)
dỹ

]
dx̃

= Ex [h (y|(x = x̃))]

Similarly, h(x|y) is defined. Then, I(x; y) = I(y; x) = h(y)− h(y|x). We now define

the mutual information between two random variables x and y conditioned on a third

random variable z as

I(x; y|z) = h(y|z)− h(y|x, z) = Ez [h(y|(z = z̃))− h(y|(z = z̃), x)] (2.2)

= Ez [I(x; y|(z = z̃))] (2.3)

Note that for a given channel py|x(.|.), the mutual information I(x; y) is fixed for each

input pdf px(.). Now define the channel capacity in bits per channel use as follows

C = max
px(.)

I(y; x) = max
px(.)

[h(y)− h(y|x)] (2.4)

In his monumental work [12], Shannon showed that channel capacity defined as above

is the long term maximum number of bits per channel use that can be transmitted

reliably in the sense that the probability of decoding error can be made arbitrarily

6



small. However the codewords may need to be very long to achieve an arbitrarily

small probability of decoding error. Reliable communication is not possible at any

rate R > C. To be precise, for any R > C, there is some ε(R) > 0 such that the

probability of decoding error cannot be made smaller than ε(R) for any code of any

length of rate R.

We explain the above results with the example of additive white gaussian noise

(AWGN) channel. The destination receives

y = x + w

where x is the channel input and w is Gaussian noise with variance σ2, i.i.d. over

time. The transmitter has an average power constraint E [x2] ≤ P . Thus py|x(y|x) is

given by 1√
2πσ2

exp(−(y−x)2

2σ2 ). We can choose any px(x) satisfying the power constraint

and generate a valid random code. For any input pdf px(x), the conditional entropy

h(y|x) is simply the (differential) entropy of the Gaussian noise given by,

h(y|x) = h(w) =
1

2
log(2πeσ2)

Thus maximizing I(x; y) reduces to maximizing h(y). As the noise w is independent

of the input x, the power in y is

E [
y2

]
= E [

x2
]
+ E [

w2
] ≤ P + σ2

If x is chosen to be a zero mean Gaussian random variable with variance P , then y

is a zero mean Gaussian random variable with variance P + σ2. The Gaussian pdf

maximizes the differential entropy under a power constraint. Hence the maximum

possible h(y) is equal to h(y) = 1
2
log (2πe(P + σ2)). Thus capacity of this AWGN

channel is achieved by the Gaussian input distribution with variance P . It is given

by

CAWGN =
1

2
log(1 + P/σ2) =

1

2
log(1 + SNR)

7



where SNR is defined as the signal to noise power ratio P/σ2. Similarly we can prove

that the capacity of a complex AWGN channel is equal to log(1+SNR) since a complex

AWGN channel is equivalent to two real AWGN channels.

2.2 Multiantenna Systems

2.2.1 Capacity Results

Multiple antennas at source and/or destination can provide significant performance

gains. Consider the following MIMO channel in a fading environment, where the

transmitted vector x ∈ Cm is related to the received vector y ∈ Cn as follows:

y = Hx + w (2.5)

where H, which denotes the fading state is an n × m matrix with i.i.d. complex

Gaussian entries with unit variance. It is independent of the input and the noise

w. Each entry of the additive noise w is a zero mean complex Gaussian random

variable with variance σ2, i.e. its real and imaginary parts are real Gaussian variables

of variance σ2/2 independent of each other. Moreover, we assume that entries of this

vector are independent of each other so that2 E [
ww†] = σ2I. The input has a total

power constraint given by E [
trace(xx†)

] ≤ P .

We assume an i.i.d. block fading model for H. This fading model means that the

channel state H remains constant during a block of Tc symbols and changes to a new

independent realization in the next block. Each such block of length Tc is called the

fading block and Tc is usually called the coherence interval. The receiver is assumed

to know H (i.e. the realization of this random matrix), but the transmitter does not

know the channel. Thus in effect the output of this system at the receiver is (y, H).

2The symbol I is reserved for identity matrices, whose size will be clear by the context.
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The mutual information between the input and output is:

I(x; (y, H)) = I(x; H) + I(x;y|H)

= 0 + I(x;y|H)

= EH

[
I(x;y|(H = H̃))

]
from Eq. 2.2 (2.6)

= EH

[
h(y|(H = H̃))− h(y|(H = H̃),x)

]

= EH

[
h(y|(H = H̃))− h(w)

]

As in the AWGN case, h(w) is independent of the input distribution. It equals

n log(πeσ2) for any H. Hence to maximize the mutual information, we simply maxi-

mize E
[
h(y|H = H̃)

]
= h(y|H).

Now we prove that it is maximized by the complex (jointly) Gaussian distribution

of x satisfying E [
xx†

]
= P

m
I. Let the covariance matrix of the input x be denoted

by Kxx. Then the covariance matrix of the output is given by

E
[
yy†|H = H̃

]
= H̃KxxH̃

† + σ2I

For a given value of the covariance matrix above, the entropy h(y|H = H̃) is maximized

when y is a jointly Gaussian random vector with that covariance matrix. Choosing

x to be a jointly Gaussian will cause y also to be jointly Gaussian (conditioned on

the channel realization). Now remains the search of the optimal Kxx that maximizes

h(y|H). Let the eigenvalue decomposition of Kxx be UDU †. The differential entropy

of a complex Gaussian vector with covariance matrix Q is given by log det(πeQ),

hence

h(y|H) = EH

[
log det(πe(HKxxH

† + σ2I))
]

= EH

[
log det

(
πe · ((HU)D(HU)† + σ2I)

)]

Note that distribution of HU is same as that of H for any unitary matrix U . Hence

9



our search for optimal Kxx can be limited to non-negative diagonal matrices satisfying

the power constraint i.e. whose trace equals P . Given any diagonal input covariance

matrix D1 and a permutation matrix Π, h(y) is unchanged if the input covariance

matrix is changed to ΠD1Π
†. It is because HΠ has the same distribution as that of

H. Now applying the concavity of log det(·) function on the set of positive definite

matrices, we get the optimal Kxx by averaging all the permutations of a diagonal

matrix satisfying the power constraint. Hence the optimal input distribution is jointly

Gaussian with covariance matrix P
m

I.

Intuitively, distributing the power uniformly in all directions is optimal because

the transmitter does not know the channel H, so all the directions are equally good.

Now by Eq. 2.6, we get the following expression for capacity of this MIMO channel

[1]

CMIMO = EH

[
log det

(
I +

P

mσ2
HH†

)]
(2.7)

=
n∑

i=1

EH

[
log

(
1 + SNRλH

i

)]
(2.8)

where λH
i is the ith smallest eigenvalue of HH† and SNR

∆
= P/mσ2 is the ratio of

aggregate power transmitted by the transmit antennas to the aggregate noise power.

Note that many outputs (y, H) and thus many channel realizations are needed for

achieving this capacity reliably. More precisely, for any R < CMIMO and any given

ε > 0, the error probability can be made smaller than ε if the codelength spans a

large enough number of channel realizations.

Compare this with the AWGN case, where one needed to code over many noise

realizations. Essentially, it ensured correct decoding even if the noise in some part of

the codeword is large. Intuitively, a codeword could be decoded correctly by virtue

of its part where the distortion by the channel (noise) is small. In the case of fading

channels, there are two possible causes of distortion by the channel: fading and noise.

By having long enough codelength, the effects of the additive noise are averaged out

as in the case of AWGN channel. Moreover, coding over many fading realizations
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essentially ensures that some part of the codeword sees good channel gains. This

enables correct decoding even if some parts of the codeword see bad channel gains.

This capacity is called the ergodic capacity to emphasize the need to code over many

fading realizations.

The case of SNR À 1, where signal power is much larger than noise power, is

called the high SNR scenario. Consider the case m = n, where the transmitter has

the same number of antennas as the receiver.

CMIMO

log SNR
≥

n∑
i=1

EH

[
log(SNR · λH

i )

log SNR

]

=
n∑

i=1

EH

[
1 +

log λH
i

log SNR

]

= n +
EH

[
log det(HH†)

]

log SNR

Note that det(HH†) equals −∞ when HH† is a singular matrix. However, this is a

zero probability event. It turns out that EH

[
log det(HH†)

]
equals a finite number

[22]. This is easily verified by noting that det(HH†) =
∏

i λi is lower bounded by

λn
min. Given that λmin is exponentially distributed, E [log λmin] is a finite number,

which explains the finiteness of E [
log det(HH†)

]
. Hence the second term in the above

equation becomes negligible when SNR is very large and the above lower bound for

CMIMO equals n when SNR tends to infinity. Similarly, we upper bound CMIMO when

SNR is large.

CMIMO

log SNR
≤

n∑
i=1

EH

[
log(SNR + SNRλH

i )

log SNR

]

=
n∑

i=1

EH

[
1 +

log (1 + λH
i )

log SNR

]

≤ n +
nEH

[
log

(
1 + trace(HH†)

)]

log SNR
as any λi ≤

∑
j

λj = trace(HH†)

≤ n +
n log

(EH

[
1 + trace(HH†)

])

log SNR
( Jensen’s inequality)

= n +
n log(1 + n2)

log SNR
as E [

trace(HH†)
]

equals n2
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The numerator of the second term is a finite number, so the second term becomes

negligible when SNR is very large. Thus the upper bound also equals n when SNR

tends to infinity. Hence the ratio of CMIMO to log SNR is almost n when SNR is

large. Thus the ergodic capacity at high SNR equals n log SNR + ζ(SNR), where

ζ(SNR) ¿ n log SNR. The ¿ sign here denotes that the ratio of the two sides goes to

zero when SNR tends to infinity. We will also use the notation CMIMO ≈ n log SNR,

where the ≈ sign means that the ratio of the sides goes to 1 as SNR goes to infinity.

In words, we will say that the capacity of a MIMO channel is approximately n log SNR

at high SNR.

Notice that the capacity of a scalar fading channel (i.e. single transmit and receive

antenna) is CSISO ≈ log SNR. The same is true for the capacity of a complex AWGN

channel. Thus at high SNR, having n transmit and n receive antennas is equivalent to

having n separate single antenna channels. Thus a MIMO system provides n dimen-

sions in space for communication. Hence in MIMO, n degrees of freedom are said to

be achieved. In general with m transmit and n receive antennas, min(m,n) degrees

of freedom can be achieved. This is because n−min(m,n) (out of n) eigenvalues of

HH† (in Eq. 2.8) are zero when H is a rectangular matrix.

CMIMO ≈ min(m,n) log SNR (2.9)

One should note that a code achieving all the min(m,n) degrees of freedom need not

be a capacity achieving code. For example, consider a scalar AWGN channel with

SNR À 1. Consider a code which uses only half the available power. The maximum

achievable rate of this code is log(1+SNR/2). Due to the 3dB power loss, this code is

clearly not a capacity achieving code. However, it achieves all the degrees of freedom

because log(1 + SNR/2) ≈ log SNR. This example illustrates the coarseness in the

measure of degrees of freedom.

Remark: Fading is caused when the signal from the transmitter reaches to the

receiver via multiple paths. The constructive and destructive interference between

those paths causes the fading. It is worth mentioning that only 1 degree of freedom
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could be achieved if fading was absent. That is the case when only a single line of

sight path exists between each transmitter and receiver antenna. In that case, HH† is

always singular. All but one of its eigenvalues are zero. Somewhat surprisingly, this

means that randomness or fading in the channel can be advantageous as it provides

multiple degrees of freedom.

A capacity achieving code spanning L fading blocks of length Tc each (i.e. code-

length LTc) has 2LTcCMIMO different codewords. For large LTc, this may lead to im-

practically large computational complexity. Even when the computational complexity

is not an issue, coding over large number of fading blocks increases the delay. This is

especially prominent when Tc is large. Thus achieving ergodic capacity is difficult in

practice.

As a small digression, let us see another way to achieve ergodic capacity when

the transmitter has some information about the channel state. Assume that the

transmitter knows the rate to be transmitted in each fading block, which is equal to

C(H) = log(det(I + SNR · HH†)). However it does not know the exact realization of

the channel state H.

The communication is done in following manner. Suppose that the transmitter

has a different code-book for each rate R > 0 and these code-books are known to the

receiver3. At the beginning of every fading block, the transmitter has a codeword

ready for each rate. After knowing C(H), it starts transmitting the codeword of that

rate. At the receiver, the channel state is known. Hence the rate of the transmitted

codeword and its corresponding code-book is also known. The receiver selects one

codeword from this code-book by performing ML decoding on the received signal.

Note that the codelength for each rate need not be limited within a fading block. A

codeword corresponding to a given rate R can be transmitted in multiple pieces, one

piece at each interval when the channel state satisfies C(H) = R.

In this scheme, an average rate of EH [C(H)] = CMIMO is achieved by choosing long

enough codewords and by adjusting the transmission rate in each fading block. Sur-

3This requires an infinite number of such code-books. In practice, we use code-books for a large
number of rates and essentially achieve the same performance as having code-books for all possible
rates.
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prisingly, the capacity when the transmitter has some information about the channel

state (in terms of C(H)) is the same as the capacity when the transmitter has no

information about the channel state.

2.2.2 Outage Formulation

We have seen how achieving ergodic capacity is difficult as the codelength needs to

span many fading blocks to achieve the ergodic capacity. It may cause large delay

and might become infeasible in practice. Hence we need to study the performance of

a code which only spans a finite number of fading blocks. In particular, we analyze

the performance of codes which span only one fading block. These are defined as

“short codes”. As shown later, this analysis easily extends to the analysis of codes

which span L fading blocks.

To analyze the error probability of these short codes, consider the following non-

ergodic channel model for a moment. The channel H is a random Gaussian matrix

but it is fixed for all time once chosen. As before, the receiver knows the realization

of H but the transmitter does not. Any codeword (of arbitrary length) will face only

one channel realization in this model. Conditioned on the channel realization H, the

capacity is

C(H) = log(det(I + SNR · HH†))

Let us see what is the channel capacity under this non-ergodic fading model. In other

words, let us find the maximum rate R for which the error probability can be made

arbitrarily small. For any fixed rate R > 0, consider the set of all channel realizations

which satisfy C(H) <R. An outage event is said to occur when the channel realization

belongs to this set. The probability of this event is called the outage probability at

rate R.

Pout(R) = Pr (C(H) < R) (2.10)

= Pr
(
log

(
det

(
I + SNR · HH†

))
< R

)
(2.11)
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For any R > 0, this probability Pout is a strictly positive number. Recall Shannon’s

coding theorem, which says that the error probability for any code of any length

with rate R greater than the channel capacity C(H) cannot be smaller than some

ε(R, H) > 0. For any code of any length having rate R > 0, we can lower bound the

probability of decoding error as follows:

Pe = Pout · P (error|outage) + P (no outage) · P (decoding error|no outage)

≥ Pout · P (error|outage)

≥ Pout · min
C(H)<R

ε(R, H)

∆
= Pout · εmin

Thus the probability of error cannot be made arbitrarily small for any R > 0 and

hence the capacity of this channel is 0. This lower bound for non-ergodic channel

also gives an lower bound to the error probability of short codes in our block fading

model.

Now we upper bound the error probability of short codes in our block fading model

assuming high SNR. We assume that each codeword is within one fading block and

length of each fading block Tc > 2n−1. An upper bound on the minimum probability

of error is given by the probability of error for a random Gaussian code.

Pe = Pout · P (error|outage) + P (no outage) · P (decoding error|no outage)

≤ Pout · 1 + 1 · P (decoding error|no outage)

≤ (1 + δ′)Pout

Thus Pe is bounded as εminPout ≤ Pe ≤ (1 + δ′)Pout (2.12)

The last step for the upper bound followed from [15]. They showed that if Tc > 2n−1

and the SNR is high enough, P (decoding error|no outage) of a randomly generated

Gaussian code is essentially upper bounded by δ′Pout for some δ′ > 0. From the

lower and upper bounds above, we see that Pout is a good approximation to the error
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probability of short codes up to a fixed multiplicative factor. Moreover, Pout is usually

easier to calculate than the exact error probability.

It is easy to see that the outage probability goes to zero as the SNR goes to infinity.

In this case, using Eq. 2.12 we can say that,

lim
SNR→∞

− log Pe(SNR)

log SNR
= lim

SNR→∞
− log Pout(SNR)

log SNR

The above limit always exists and is defined as the diversity d. Now following the

same notation in [15], we use f(SNR)
.
= g(SNR) as a shorthand for

lim
SNR→∞

log(f(SNR))

log SNR
= lim

SNR→∞
log(g(SNR))

log SNR

Thus in this notation, for short codes Pe(SNR)
.
= Pout(SNR)

.
= SNR−d. The outage

and error probability are not exactly equal to each other, but their SNR exponents

are the same. Thus essentially all of the decoding errors are caused by outage events,

which have a probability on the order of SNR−d.

We saw how at high SNR, the capacity of an n×n MIMO system can be approxi-

mated as n log SNR due to multiple spatial channels. Thus the MIMO system can be

used to provide higher data rate as compared to a single antenna system. In addition

to high rate, the MIMO system available can be used to improve reliability i.e. error

probability or outage probability. Tarokh et al showed that for any fixed rate R > 0,

the error probability Pe of a short code as a function of SNR is given by,

Pe(SNR)
.
= SNR−n2

Comparing this with the error probability for single antenna channel (Pe
.
= SNR−1)

demonstrates the improvement in reliability due to multiple antennas. Thus a MIMO

system can provide a diversity gain of d = n2. One may wonder whether a MIMO

system can simultaneously provide gains in reliability and data rate.

The difficulty in studying this is that for any fixed (and arbitrarily small) ε > 0

error probability, all the n degrees of freedom i.e. the MIMO capacity can be achieved.
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On the other hand, n2 diversity can be achieved for any fixed (and however large)

rate R > 0. Given these two extremes, it is difficult to see how the data rate and

reliability interact with each other.

To get the complete picture of the interaction between reliability and rate, we

should let the rate R grow to infinity with SNR instead of fixing it. How fast the

probability of error decays with SNR when the rate is also growing with SNR? What

is the achievable diversity if a fraction of the capacity is to be achieved i.e. a fraction

of the n available degrees of freedom are to be achieved? Hence let the rate R grow

with SNR as R(SNR) = r log SNR for some fixed number 0 ≤ r ≤ n. This is a fraction

r
n

of the capacity at high SNR. This rate is equivalent to having r separate single

antenna channels, so we say that r degrees of freedom are to be achieved. We can

define the degrees of freedom achieved as

r = lim
SNR→∞

R(SNR)

log SNR
(2.13)

Observe that for a fixed value of R (however large), only 0 degrees of freedom are

achieved because R becomes a negligible fraction of the total capacity for large enough

SNR.

Zheng and Tse [15] found the tradeoff between the error probability and rate for

short codes. In other words, they found the maximum achievable diversity if r degrees

of freedom are to be used. This optimal diversity d∗(r) at r degrees of freedom is

given by the piecewise linear function connecting the points (k, (n−k)2), k = 0, · · ·n.

For example, fig. 2-1 shows this tradeoff when n = 3. In our notation, the optimal

rate-diversity tradeoff means that the achievable error probability of a short code of

rate R ≈ r log SNR is equal to Pe
.
= SNR−d∗(r). Note that for any r < n degrees of

freedom, strictly positive diversity is achieved. Thus although each codeword spans

only a single channel realization, essentially all the n degrees of freedom can still be

achieved.

The rate-diversity tradeoff shows that gains in rate and reliability can be achieved

simultaneously in a MIMO system but there is a certain tradeoff between these two
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Figure 2-1: Optimal rate-diversity tradeoff for n = 3

gains. It also shows that any r < n degrees of freedom (which were achievable in

the ergodic formulation) can be achieved with positive diversity even though the

codewords are limited to one fading block. It means that the error probability can be

driven to zero by pushing the SNR to infinity. It appears as if there is no performance

loss due to constraining the codewords within a single fading block. However, the

caveat is that the error probability cannot be made arbitrarily small for a given SNR

when the codewords span a single fading block. This is in contrast with the ergodic

case.

Now consider the case when the codelength spans L fading blocks. If the coherence

interval Tc satisfies Tc > 2n− 1, the error probability when r degrees of freedom are

achieved is given in [15] as Pe
.
= SNR−Ld∗(r) = (SNR−d∗(r))L. This is because an error

happens essentially when all the L fading blocks are in outage. Thus it is sufficient

to study the rate-diversity tradeoff for short codes (L = 1 case).

To summarize, we discussed the outage formulation and rate-diversity tradeoff in

this section. More importantly, we discussed a type of asymptotic analysis which is

useful later in this thesis.
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Chapter 3

Issue of Coordination

The performance gains achievable in a point-to-point MIMO channel were discussed

in the previous chapter. Can we also achieve these gains in the network scenario?

We explore the problem of a single source communicating to a single destination in a

network over multiple hops, where each hop starts from and/or reaches to a group of

relay nodes. This will shed some light on the effect of lack of coordination between

the relay nodes. We consider the following simplified model to gain some insight into

this general problem.

3.1 Network Model

LL L L1

H k 2  10 HHH

n Nodes (or antennas) in each layer

k+1

ds

L
0L

k 32  

Figure 3-1: Network structure

The network under consideration has a single information source s with n transmit
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antennas and its final destination d also has n receive antennas (see Fig. 3-1). There

are k layers of relay nodes between s and d, with each layer having n relay nodes1.

Each relay node has a single antenna which can transmit and receive simultaneously.

We denote the m’th layer of relay nodes by Lm and let L0 denote the layer of the

transmit-antennas of s. Similarly, let Lk+1 denote the layer of the receive antennas

at d. Each layer can only receive transmissions from its previous layer. Interference

from all other layers is ignored which is in contrast with the existing network models

(e.g. Gupta-Kumar model in [3],[4]). In our model, transmission from every layer to

the next looks very much like a MIMO system, with the only difference being the lack

of coordination between the relay nodes in a layer. As the relay nodes in a layer are

at different locations, they cannot coordinate fully with each other to act like a single

multiantenna node. Thus this oversimplified assumption (of ignoring the interference

from other layers) allows us to study in isolation the value of coordination between

relay nodes. Thus the complete network state is fully characterized by k + 1 channel

matrices denoting the channels between adjacent layers. Let matrix Hm denote the

channel between layer m and m + 1, i.e. Hm(i, j) is the value of the channel gain

between the i’th node (or antenna) in Lm+1 and the j’th relay node (or antenna) in

Lm.

We assume an i.i.d. block fading model for each Hm. The block fading model

means that the channel state remains constant during a block of Tc symbols and

changes to a new independent realization after that. We also assume that the co-

herence interval Tc > 2n − 1, which ensures that the error probability and outage

probability have the same SNR exponent i.e. Pe(SNR)
.
= Pout(SNR) [15]. Each Hm

is assumed to be known at the final destination d. The source need not know the

channel realizations. Each Hm is assumed to be independent of all others. All entries

of each Hm are i.i.d. complex Gaussian variables with variance 1.

In our discrete-time model, xmi, ymi and wmi denote (respectively) the transmitted

signal, the received signal and the noise at the i’th relay node (or antenna) in the

m’th layer. Let xm = [xm1,xm2, ..xmN ]T denote the transmitted vector by the m’th

1We assume that this layering of the network has been already done.
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layer; ym and wm are defined similarly. For 0 ≤ m ≤ k we have,

ym+1 = Hmxm + wm+1 (3.1)

Each wmi is a stationary white complex Gaussian process with variance σ2. Moreover,

each wmi is independent of the input signal and of each other. Each of the relay nodes

or antennas2 has an average power constraint,

E [||xmi||2
] ≤ P 1 ≤ i ≤ n, 0 ≤ m ≤ k (3.2)

The SNR
∆
= P/σ2 is assumed to be very large. This is the ratio of the transmitted

power of an individual relay node (or antenna) to the noise power, as opposed to the

usual definition, which is the ratio of received signal power to noise power.

3.2 Single Layer Case

We saw that although the transmission from one relay layer to the next (in Fig. 1-3

or 3-1) looks like a MIMO system, it has an important difference with respect to

a point-to-point MIMO system. The n transmit antennas can fully coordinate in a

multiantenna transmitter. Similarly, a multiantenna receiver can decode based on the

signals received at all of its n antennas. This is not the case in this wireless network (in

Fig. 1-3 or 3-1) because the n relays in a layer are at different locations. How crucial

is this coordination amongst relays for achieving all the degrees of freedom? We first

review the problems of multiple access and broadcast to shed some light on this issue.

For the multiple access to a multiantenna receiver, the coordination between the

transmit antennas of a MIMO system is removed but the receive antennas can fully

coordinate. On the other hand, for the broadcast from a multiantenna transmitter,

the coordination between the receive antennas of a MIMO system is removed but the

transmit antennas can fully coordinate.

2This simplifying assumption means the total available power at the source node s is nP . The
achievable degrees of freedom are unchanged even if the total power at s is just P because we are
assuming the SNR is very high.
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Figure 3-2: Value of coordination: (a)Broadcast (b)Multi-access

3.2.1 Multiple Access to a Multiantenna Receiver

There are n different transmitter nodes and each has a single antenna with power

P/n. Each node wants to send separate information to a multiantenna destination

node with n antennas (Fig. 3-2(b)). The channel equation here is the same as the

point-to-point MIMO channel,

y = Hx + w.

The only difference here is that the transmit antennas are now connected to separate

nodes. Hence each antenna i chooses its codeword xi(mi) based on the separate

message mi it wants to transmit. These messages are uniformly chosen from 1 ≤
mi ≤ M , where M is the number of possible messages. The messages m1 · · ·mn

chosen and hence the codewords transmitted by different transmitters are independent

of each other. Note the subtle difference from the point-to-point MIMO case, where

the space-time code was constructed by choosing Gaussian symbols independently

for each antenna. In that case, the codewords for all the transmit antennas are

simultaneously decided by the overall message to be transmitted.

VBLAST [10] is a code originally developed for point-to-point MIMO. It decom-

poses the original data into n separate parts and allocates each part to one of the

n antennas. Thus each antenna has a separate message to send. Hence, VBLAST

can also be implemented in multiple access of a multiantenna receiver. It is known

that all the degrees of freedom can be achieved by VBLAST. To see this, consider a

suboptimal version of VBLAST, where the codeword from each antenna is decoded by
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projecting the received vector into a subspace free of interference from other transmit

antennas. Thus the given vector channel of dimension n is converted to n parallel

scalar channels, where the input of the i’th parallel channel is the same as the input

of the i’th antenna

y′i = h′ixi + w′
i 1 ≤ i ≤ n

If the minimum singular value3 of the vector channel H is σmin , none of the n parallel

scalar channels can be weaker than σmin i.e. |h′i| ≥ σmin for 1 ≤ i ≤ n. Hence the sum

rate achieved by VBLAST is

R =
n∑

i=1

E [
log(1 + |h′i|2SNR)

]

≥
n∑

i=1

E [
log(1 + σ2

minSNR)
]

We know that σ2
min is an exponential random variable with unit mean [22] as the

entries of H are i.i.d. complex Gaussian with variance 1. Hence at high SNR, the

RHS above is approximately n log SNR in the sense explained before (after Eq. 2.9).

Hence the LHS is lower bounded by n log SNR and all the degrees of freedom can be

achieved in this multiple access channel by VBLAST.

3.2.2 Broadcast from a Multiantenna Transmitter

Consider n different users, each having a single receive antenna (Fig. 3-2(a)). Each

user wants to receive distinct information from a multiantenna source node with n

antennas and total power P . The channel equation is the same as the point-to-point

MIMO channel. The difference is that, the different n receive antennas are now

connected to separate users. Thus each user has to decode based only on its own

received signals.

3Singular Value Decomposition: Any complex matrix H can be decomposed as H = UΣV ,
where Σ = diag(σn, · · · , σ1) is a diagonal matrices with all non-negative entries. Each σi is called
a singular value of H. U and V are complex unitary matrices. Note that squares of the singular
values of H are the eigenvalues of HH†. A matrix is called singular when (at least) one of its singular
values is zero. Similarly, a matrix is called near-singular when (at least) one of its singular values is
near-zero.
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Assume that the transmitter knows the channel state H. Let signal ui be intended

for user 1 ≤ i ≤ n i.e. u = [u1 · · · un]T is to be sent to the users. The transmitter

transmits x = c H−1u, where c is a fixed number chosen to satisfy the transmit power

constraint. Then the received vector is cu + w, so the signal received by each user i

(i.e. cui +wi) is free of interference. We have converted this vector broadcast channel

into n parallel (complex) AWGN channels, each providing 1 degree of freedom.

Care needs to be taken though: the transmitter should be shut off when H is

near-singular. Otherwise the transmitter will need infinite power for implementing

this channel inversion strategy. To be precise, we will shut off the transmitter when

the smallest eigenvalue of HH† is smaller than some sufficiently small ε > 0. However,

this only happens with probability ε for small values of ε. It is because the smallest

eigenvalue of HH† has an exponential distribution with mean 1 [20]. As all the n

degrees of freedom are achieved when the transmitter is not shut off, n(1− ε) degrees

of freedom are achieved on average at SNR going to infinity. Thus almost all the

n degrees of freedom can be achieved by choosing ε small enough. This strategy of

pre-inverting the channel is essentially sending information to the receivers in non-

interfering beams, hence we call it a “beamforming” strategy4.

3.2.3 Combining Beamforming and VBLAST

We saw that removing coordination at any one side of a MIMO system does not

reduce the total achievable degrees of freedom. For multiple access, VBLAST can

be used. Similarly for broadcast, beamforming can be performed if the transmitter

knows the channel state. Are these the only two network structures where lack of

coordination does not prevent achieving all the degrees of freedom or we can claim

the same for a larger class of networks?

Now we simply combine the two strategies for broadcast and multiple access (Fig.

3-3). The source splits its data into n equal rate sub-streams. These sub-streams

are beamformed to individual relay nodes simultaneously. Then each relay node

decodes the sub-stream beamformed towards it, and retransmits the message to the

4Refer to [7, 8, 9] for a detailed analysis.
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destination through the multiple access channel.

 d
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Figure 3-3: Combining beamforming with VBLAST

As seen before, beamforming ensures that there is no interference between the n

data-streams, so it enables the source to transmit information reliably at a rate of

approximately log SNR to each of the relays. Similarly, as the destination is assumed

to know the channel state, it can reliably decode each of the n data-streams of data

rate log SNR from each relay. Hence we get the following lemma.

Lemma 1 All the n degrees of freedom can be achieved when only one relay layer

exists between the multiantenna source and destination.

Note that multiple antennas at the source and destination made it possible to have

multiple spatial channels between them. Only one such spatial channel is available if

the source and destination have only one antenna on them (as in the Gupta-Kumar

and Xie-Kumar models [3, 6]). This is another significant difference between our

network model and other network models.

Lemma 1 can be easily extended to the network in Fig. 3-4. It has nodes with

Relay layer 3 Relay layer 4Relay layer 2Relay layer 1

Source Destination

Figure 3-4: An extension of the single relay layer network

multiple antennas placed between any two layers of relay nodes. In this network, each
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multiple antenna node decodes the full message and again separates it into n data-

streams which are beamformed to the nodes in the next relay layer. Here in every

stage of the network operation, we have full coordination either at the transmitter

side or at the receiver side due to the multiantenna nodes placed in between any two

relay layers. Thus all the degrees of freedom can be achieved in this network as well.

In this strategy, every multiantenna node needs to know the state of its adjacent

MIMO channels. This is needed for beamforming and VBLAST at each stage. More-

over, wireless networks rarely have these intermediate multiantenna nodes. Hence we

go back to the general case in Fig. 1-3 or 3-1, where these intermediate multiantenna

nodes are absent. The transmission from one relay layer to another does not have

coordination at either end. The transmit and receive antennas of the relay nodes

cannot coordinate to act like multiantenna. Hence the previous scheme of alternate

beamforming and VBLAST cannot work. This is because each relay node in the first

layer does not know the messages received by other nodes in that layer, so the first

relay layer cannot perform beamforming to the next layer. Similarly, each node in

the second relay layer does not know the received signals at other nodes in that layer,

so it cannot decode the full message of rate n log SNR.

If we insist on using a separation-based strategy, where every relay node decodes

the full message before transmitting [3, 6], only one degree of freedom can be obtained.

This is because the single-antenna relay nodes can at most decode reliably at a rate

of log SNR [1]. It becomes interesting to investigate if all the degrees of freedom can

still be achieved using some non-separation-based strategy when more than one relay

layers are present. This would be a significant performance gain over the separation

based strategy. This motivates the next chapter.
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Chapter 4

General Case: Any Number of

Layers

Previous chapter discussed the difficulty in achieving all the degrees of freedom in the

multiple layer relay network under consideration—the lack of coordination between

the relay nodes within a layer. The optimal network operation is unknown for this

network. However, it is clear that no more than n degrees of freedom can be achieved

since the source-destination nodes have only n antennas each. In this section, we

propose a particular network operation (which need not be optimal). We show that

this strategy achieves all possible n degrees of freedom for any fixed number of layers.

4.1 Network Operation

We fix the functions of all the relay nodes and by doing so convert the network to

a point-to-point MIMO channel. Each relay node just re-transmits a scaling of the

received symbol (with the added noise). Although each relay node could perform a

different scaling, for simplicity we assume a fixed scaling
√

n at every relay node, that

is the transmitted signal by node i in layer m is given by xmi = ymi/
√

n. This scaling

of
√

n is to ensure that all relay nodes obey the average power constraint. Thus a

relay does not do any kind of decoding (even partial) and all the decoding is done at

the destination, which employs an optimal decoding rule. This is a highly desirable
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feature since it simplifies the network operation immensely and only the source and

destination perform the computationally intensive tasks.

A code of rate R and length N has 2NR codewords denoted by1 x̃N
0 (i) for 1 ≤

i ≤ 2NR. Note that each codeword x̃N
0 (i) is a n × N matrix. A randomly gen-

erated Gaussian code of length N and rate R is prepared beforehand as explained

later and conveyed to the source and the destination. Once chosen, the same code is

used throughout the communication process. The source selects the codeword x̃N
0 (i),

corresponding to the message i to be transmitted; the 2NR possible messages are as-

sumed to be equiprobable. The destination selects one of the 2NR possible codewords

by performing ML decoding on the received signal.

In this randomly generated Gaussian space-time code, all nN scalar symbols (in

space and time) of any given codeword x̃N
0 (i) are generated i.i.d. according to a com-

plex Gaussian distribution2 of variance ρP for some ρ < 1. The choice of symbols for

any one codeword is independent of the other codewords. Such a randomly generated

code using the capacity achieving distribution has arbitrarily small error probability

for any R less than the capacity, provided the codelength N is large enough [12].

Note that, each source antenna uses only a fraction ρ of its available power P .

Since SNR was defined as P/σ2, the effective SNR is ρ SNR. In spite of the reduction

in effective SNR, the number of degrees of freedom achieved remain unaltered as seen

before in Section 2.2.1. This is because

lim
SNR→∞

log(ρ · SNR)

log SNR
= 1 (4.1)

for any ρ > 0. Thus the number of degrees of freedom measured in log SNR and

log(ρSNR) are the same in the limit of high SNR. The next section shows that the

choice of scaling
√

n ensures that the signal component of the power transmitted by

each relay node is the same as the source antenna power ρP . The remaining power

(1− ρ)P at each relay node is available for the noise component, because both signal

1Recall that we denoted the vector transmitted by layer i by xi. Hence the codewords transmitted
by the source are denoted by x̃N

0 (i), where N denotes the length of the codeword.
2Recall from chapter 2 that this was the capacity achieving distribution for MIMO channel.
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and noise is forwarded to the next layer in our network operation.

4.2 All Relay Nodes Obey Power Constraints

Let the random state H denote the entire network’s channel state (H0,H1 · · · ,Hk),

and let its realization i.e. sample value be denoted by H = (H0, · · · , Hk). Each layer

retransmits (after scaling down by
√

n) the received vector, so the transmitted vector

by the jth layer is

xj =
(Hj−1Hj−2...H0)√

n
j x0 +

(
wj√

n
+

j−1∑
i=1

Hj−1Hj−2 · · ·Hi√
n

j+1−i wi

)
(4.2)

Recall that E
[
x0x

†
0

]
= ρPI. Moreover, the noise at different relay nodes is i.i.d. and

also independent of the signal, so the covariance matrix of the transmitted vector xj

conditioned on the channel realization is given by

Exj

[
xjx

†
j|H = H

]
=

ρP√
n

2j (Hj−1Hj−2 · · ·H0)(Hj−1Hj−2 · · ·H0)
† (4.3)

+
σ2

√
n

2 I +

j−1∑
i=1

σ2

√
n

2(j−i+1)
(Hj−1Hj−2 · · ·Hi)(Hj−1Hj−2 · · ·Hi)

†.

The average power transmitted by layer j is the average of ||xj||2.

E [||xj||2
]

= EH

[
trace

(
Exj

[
xjx

†
j |H = H

])]

= ρPn + σ2 + σ2

j−1∑
1

1 = ρPn + σ2j

The last step follows by using Eq. 4.3 with the following fact (proved in appendix B)

EH

[
trace

(
(Hj−1Hj−2 · · ·H0)(Hj−1Hj−2 · · ·H0)

†)] = nj+1

By symmetry, the transmitted power by any layer has equal contributions from each

node in that layer. Thus the power transmitted by each node in the jth layer is equal
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to ρP + jσ2/n. The noise component in the transmitted power can be ignored when

SNR goes to infinity in the sense that

ρP + jσ2 ≤ ρP + kσ2 < (ρ + δ)P for any δ > 0 and large enough P/σ2.

Thus the power constraint at each relay node is satisfied under the proposed network

operation. Note that ρ can be chosen arbitrarily close to 1, so for simplicity we

henceforth assume ρ = 1 i.e. each source antenna uses the full available power P .

4.3 Achievable Performance

As every layer simply retransmits the received vector after scaling it down by
√

n,

the received vector at the destination is

yk+1 =
(HkHk−1...H0)√

n
k

x0 +

(
wk+1 +

k∑
i=1

HkHk−1 · · ·Hi√
n

k+1−i
wi

)
(4.4)

=
(HkHk−1...H0)√

n
k

x0 + w′
k+1 (4.5)

Thus the proposed network operation makes the network looks like a point-to-

point MIMO system, where the effective channel matrix is the product (or concate-

nation) of k + 1 Gaussian random matrices. The above equations also show that

the effective noise w′
k+1 contains the inherent noise at the layer k + 1 (i.e. receive

antennas) as well as the noise accumulated from all the relay layers. Evidently, there

are two potential roadblocks to achieving all the degrees of freedom. First, all the

degrees of freedom will not be achieved if the accumulated noise over all the relay

layers is too large. Second, all the degrees of freedom will not be achieved if the

effective channel matrix is near-singular.

Conditioned on a channel realization, the effective noise w′
k+1 is a jointly Gaus-

sian vector with correlated components. It is independent of the transmitted signal.

Distribution of this effective Gaussian noise is completely described by its covariance
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matrix. As noise at different relay nodes is i.i.d., the covariance matrix is given by

Ew′k+1

[
w′

k+1w
′†
k+1|H = H

]
= σ2I +

k∑
i=1

σ2

√
n

2(k+1−i)
(HkHk−1 · · ·Hi)(HkHk−1 · · ·Hi)

†

(4.6)
∆
= σ2GHG†

H

Now the capacity of this effective channel in Eq. 4.5 can be written as follows [1],

EH

[
log det

(
I +

SNR

nk
(GH

−1HkHk−1..H1H0)(GH
−1HkHk−1..H1H0)

†
)]

(4.7)

= EH

[∑
i=1:n

log

(
1 +

SNR

nk
µi

)]
(4.8)

where µi represents the ith eigenvalue of (GH
−1HkHk−1..H1H0)(GH

−1HkHk−1..H1H0)
†.

It is the resultant channel matrix from source to destination which ensures i.i.d. white

noise at the receive antennas. This noise whitening at the receiver is done by the

matrix GH
−1 (see Eq. 4.6). As SNR grows large, this capacity expression can be

approximated as n log SNR (shown in appendix B).

Theorem 2 The proposed network operation achieves all the n degrees of freedom.

In other words, it achieves a rate R such that

lim
SNR→∞

R

log SNR
= n (that is R ≈ n log SNR in our notation.)

Thus at high SNR, our non-separation-based strategy achieves a rate that is n times

that of any separation-based strategy. We now explain intuitively why the two road-

blocks to achieving all the degrees of freedom do not matter at high SNR. The effective

noise level at the receiver is essentially k times larger compared to the original noise

level, due to noise accumulation through k relay layers. This reduces the effective

SNR by a factor of k, but it does not reduce the degrees of freedom because k is fixed

and thus limSNR→∞
log(SNR/k)

log SNR
= limSNR→∞

log SNR
log SNR

.

Second, the concatenation of channels
∏

i Hi becomes near-singular with essen-

tially the same probability as that of an individual channel Hi. This is because the
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smallest singular value of
∏

i Hi is at least as large as the product of the smallest

singular values of each Hi ([19]: Thm. H.1).

Simulation: We saw how the proposed network operation achieves the maximum

achievable degrees of freedom in a point-to-point system3. A simple simulation was

done to check this theoretical result. We compared the probability of error between

a separation-based strategy and our non-separation-based strategy for n = 2, k = 4,

and SNR of 40dB. Both strategies had a rate of 2bps/Hz. The separation-based

strategy used only one node in each layer, which decoded the received message and

then retransmitted it to the node in next layer. The proposed non-separation-based

strategy used the Alamouti space-time code [17] (instead of a randomly generated

Gaussian code). The non-separation-based strategy achieved a probability of error

8.28×10−5 as compared to the 6.57×10−4 achieved by the separation-based strategy.

3In fact, all the degrees of freedom can also be achieved when not only the overall average power
is constrained to P , but also the power within each fading block is constrained. This is stops relays
from transmitting very large power (compared to P ) in any fading block. The power constraint in
this case is

E [ ||xmi||2| H
] ≤ P 1 ≤ i ≤ n, 0 ≤ m ≤ k (4.9)

In this case, all the degrees of freedom are achieved essentially because, when the signal is being
forwarded across the layers, its very large amplification is extremely rare. See appendix D for more
details.
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Chapter 5

Tradeoffs: Rate, Network size and

SNR

In the previous chapter, we saw that all the degrees of freedom can be achieved for

any fixed number of layers. Nonetheless, extremely high SNR might be needed to

achieve that depending on the number of relay layers. Note that for any fixed value

of SNR > 0, more and more noise gets accumulated with increasing k. The end-to-end

mutual information will be driven to zero eventually when k goes to infinity. Therefore

the SNR required for achieving all the degrees of freedom keeps getting higher with

increasing network size, i.e. increasing number of layers. Thus the measure of degrees

of freedom is hiding the detrimental effect of increasing network size by assuming

very high SNR. In fact, in the simulation in the previous chapter, the separation-

based strategy outperformed our non-separation-based strategy for lower values of

SNR.

On one hand, no communication is possible when the number of layers i.e. the

network size goes to infinity and the SNR is fixed. On the other hand, all the degrees

of freedom are achievable when the SNR goes to infinity and the network size is fixed.

This raises an interesting question: what happens between these two extremes? That

is the case when both SNR and network size are comparable to each other in some

sense. One also wonders how to compare these two different parameters of SNR
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and network size1. What scaling should be used for the comparison? It is clear that

whether all the degrees of freedom are achieved or not does not depend on the network

size or the SNR by itself. It depends on how these two quantities are relative to each

other. If the SNR is not high enough for the network size, fewer degrees of freedom

will be achieved. In this chapter, we study this interaction between SNR, network

size and achievable rate i.e. degrees of freedom.

5.1 Asymptotic formulation and results

It is natural but difficult to explore the loss in performance due to increasing the

number of layers at any fixed finite SNR. This is because the exact eigenvalue distri-

bution of the effective channel matrix is unknown. Therefore, we explore the ways in

which the number of layers k can grow to infinity when the SNR is going to infinity

so that all the degrees of freedom can be achieved. In other words, we investigate

the set of functions k(SNR) which could denote the number of layers so that all the

degrees of freedom are achievable. This function may go to infinity with SNR going to

infinity. Now taking SNR to infinity enables us to formally find out how fast the SNR

should grow with increasing number of layers to achieve all the degrees of freedom.

The following theorem is proved in the appendix.

Theorem 3 In this network, all the n degrees of freedom can be achieved for any

function k(SNR) for which

lim
SNR→∞

k(SNR)

log SNR
= 0

This confirms Theorem 2, where the number of layers is a fixed number not growing

with SNR.

If the condition in Theorem 3 is not satisfied, the achievable degrees of freedom

are reduced. In other words, if one is not aiming for all the degrees of freedom then

a larger network can be reached. How large the network can be, if one is aiming for

some r < n degrees of freedom, is given by this sufficient condition.

1This is similar to asking “How to compare oranges with mangoes?”
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(n,0)

 ergodicS          (k)

Figure 5-1: Tradeoff between achievable degrees of freedom and network size penalty

Theorem 4 In this network, r degrees of freedom can be achieved for any function

k(SNR) for which

lim
SNR→∞

k(SNR)

log SNR
≤ ϕ(n)(n− r) (5.1)

where ϕ(n) is a fixed positive parameter of the point-to-point MIMO channel defined

as (n log(n)− EHm log det(HmHH
m))−1.

In our notation, this says that the achievable rate R = r log SNR decreases linearly

with increasing number of layers as

R ≈ n log SNR− k/ϕ(n) (5.2)

We define the LHS of Eq. (5.1) as the network’s size penalty Sergodic(k) with respect

to ergodic capacity. Figure 5-1 plots this linear tradeoff between achievable rate in

terms of degrees of freedom and the network size in terms of the size penalty on

ergodic capacity.

Note that theorems 3, 4 are only sufficient conditions. First, there might be other

network strategies (though it seems unlikely), which perform better with increasing

network size than our strategy. Second reason is that we have analyzed a lower bound

to the achievable rate of our strategy. However, we conjecture that these theorems

should also be necessary conditions as the SNR goes to infinity.
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5.2 Illustrative example: n=1 case

Theorems 3 and 4 are proved in the appendix B, but here we consider the toy case of

n = 1 to illustrate the essential reasoning with minimum mathematics (Fig. 5.2). Ob-

viously using the proposed non-separation-based strategy is non-sensical here. Each

relay can simply decode the full message and forward it to the next relay. In an arbi-

trarily large sized network, this separation-based strategy achieves the exact capacity

of this network given by E|h0| [log(1 + |h0|2SNR], where |h0| is a Rayleigh distributed

random variable. Consequently, it also achieves all of the single degree of freedom

available. In fact, this network is often used to highlight the advantage of digital sys-

tems over analog systems-because there is no noise accumulation in digital systems

as opposed to the analog systems.

On the contrary, in the n > 1 case, no separation-based strategy can achieve all

the degrees of freedom due to lack of coordination between the relay nodes. Note

that there is no issue of coordination in the n = 1 case. We can only rely on non-

separation-based strategies for achieving all the degrees of freedom when n > 1. Thus

coordination (or lack of it) is an key issue in the choice between separation-based

strategies and non-separation-based strategies.

h 0 h 1 h k

s d

Figure 5-2: Case of n = 1: hi denotes the channel gain from relay i to relay i + 1.

We first ignore one of the two possible roadblocks for achieving all the degrees

of freedom by our non-separation-based strategy—assume that the concatenation of

channels is never near-singular. Then the only cause of performance loss is the noise

accumulation. This is the case for a cascade of AWGN channels, where each hi is not

a random variable but identically equal to 1. Hence the concatenated channel gain

is 1- never near-singular, so the only roadblock for rate is the noise accumulation.

Due to the noise accumulated through the relay layers, the effective noise variance
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increases to (k +1)σ2. Hence the number of achievable degrees of freedom is given by

r = lim
SNR→∞

log
(
1 + SNR

k+1

)

log SNR

= 1− lim
SNR→∞

log k

log SNR

Hence the size penalty function in the AWGN case is defined as limSNR→∞
log k

log SNR
.

However, there was one more reason for rate loss: concatenation of channels.

Hence consider the fading case, where each hi is a complex Gaussian random variable

with variance 1. Now assume that the effect of noise accumulation can be ignored

and the only cause of performance loss is the concatenation of channels being near-

singular. Then the maximum achievable rate is given by

R = E
[
log

(
1 +

k∏
i=0

|hi|2 SNR

)]

≈ E
[
log

(
k∏

i=0

|hi|2 SNR

)]
(high SNR)

= log SNR + (k + 1)E [
log |h0|2

]

Thus the achievable number of degrees of freedom is given by2

r = lim
SNR→∞

R

log SNR
= 1 + lim

SNR→∞
k

log SNR
· E [

log |h0|2
]

= 1− Sergodic(k)/ϕ(1)

This explains the effect of concatenation of channels. Note that the size penalty

function in the AWGN case (limSNR→∞
log k

log SNR
) is much smaller than that in the fading

case (limSNR→∞ k
log SNR

). In fact, the former is 0 for any finite value of the later. This

indicates that we can ignore the effect of noise accumulation in analyzing the fading

case. More importantly, this shows that the dominant reason for rate loss is the

concatenation of channels, not noise accumulation.

2Note that E [
log |h0|2

]
is a negative number because |h0|2 is an exponential random variable

with mean 1.
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5.3 Some Remarks

Going back to Eq. 5.2, we can say that the SNR requirement for maintaining a

certain data rate R increases geometrically with linearly increasing network size. To

be precise, if the number of layers increases from k1 to k2 then the following rule of

thumb gives the new SNR2 required to maintain the rate:

log(SNR2/SNR1) =
k2 − k1

nϕ(n)

Thus the required SNR gets extremely large with increasing network size. Theorem

4 also tells that our non-separation-based strategy outperforms any separation-based

strategy when the SNR is sufficiently large or network size is sufficiently small. Recall

that a separation-based strategy achieves at most one degree of freedom.

A similar mathematical problem was studied in [13] in the context of a point-to-

point channel. The channel equation was

y = (HkHk−1 · · ·H0)x + w

where each Hi is an independent random Gaussian matrix and w is Gaussian noise

with covariance matrix σ2I. In that paper however, the size n of those random ma-

trices goes to infinity instead of being a fixed finite number. It showed that negligible

degrees of freedom are obtained if k grows without any bound. Now Theorem 4 sug-

gests that even for the finite n case, no degrees of freedom can be achieved when k

grows too fast. That is because the size penalty on ergodic capacity is infinity when

k grows too fast compared to the SNR.
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Chapter 6

Tradeoff between Rate, Diversity

and Network Size

Earlier chapters focused on the ergodic capacity, which averages mutual information

conditioned on the channel state, over all channel states. Achieving the ergodic

capacity is difficult because it requires that the codelength should span a large number

of fading blocks. In practice, we are also interested in the decoding error probability

when the codelength only spans some finite number of fading blocks. As in section

2.2.2, we analyze the particular case when the codelength spans only one fading block

(“short code”). We have seen in section 2.2.2 that this analysis easily extends to the

analysis of codes which span L number of fading blocks. We have also seen that

the error probability of a short code is approximated well by the outage probability.

In other words, the error probability and outage probability have the same SNR

exponent for a short code[15]. Recall the notation f(SNR)
.
= g(SNR) as a shorthand

for

lim
SNR→∞

log(f(SNR))

log SNR
= lim

SNR→∞
log(g(SNR))

log SNR

In this notation, Pe(SNR)
.
= Pout(SNR)

.
= SNR−d for a short code of diversity d.

Nevertheless, analyzing the outage probability is easier than the error probability.

Hence we will study the outage probability for evaluating the diversity d.
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If r degrees of freedom are achieved in our network, recalling Eq. (4.5-4.8) gives

Pout(SNR) = P

(∑
i=1:n

log

(
1 +

SNR

nk
µi

)
< r log SNR

)
(6.1)

where µi represents the ith eigenvalue of (GH
−1HkHk−1..H1H0)(GH

−1HkHk−1..H1H0)
†.

This chapter first considers the case when the network size is fixed. Then for

reasons explained later, it studies the case of increasing network size where the number

of layers could be denoted by k(SNR) which satisfies

lim
SNR→∞

k(SNR) log log SNR

log SNR
< ∞

In both the cases, we show (in appendix D) that the SNR exponent of the outage

probability is unchanged even if all the relays are noise-free. In the case where the

relays are noise-free, the noise at the destination is already i.i.d., so the noise whitening

filter GH
−1 ≡ I. In other words, the SNR exponent of Eq. 6.1 is unchanged if each

µi is replaced by the ith eigenvalue of (HkHk−1..H0)(HkHk−1..H0)
†, denoted by νi.

Hence the diversity achieved at rate r log SNR is also equal to

d(r) = lim
SNR→∞

− log P
(∑

i=1:n log
(
1 + SNR

nk νi

)
< r log SNR

)

log SNR
(6.2)

Thus the effect of noise accumulation across the relay layers can be ignored for

diversity calculations. This is because the accumulated noise essentially reduces the

SNR by a factor of k. However, this does not reduce the achievable degrees of freedom

as the SNR goes to infinity. This implies that the rate-diversity tradeoff is mainly

influenced by concatenation of channels, not noise accumulation. This fact was also

observed regarding ergodic capacity in the previous chapter.

Theorem 5 At high SNR, the rate-diversity tradeoff in our network is unchanged

when all the relay nodes are noise-free.

Therefore, this rate-diversity tradeoff is also congruent to that in the following
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point-to-point concatenated MIMO channel.

y = (HkHk−1 · · ·H0)x + w

where each Hi is independent of others and has i.i.d. complex Gaussian entries of

variance 1/n. The noise w is a Gaussian random vector with covariance matrix σ2I.

This is also the point-to-point channel studied in [13]. Such similarity between these

two problems was also observed for the tradeoff between ergodic capacity and network

size (Theorem 4). Thus whatever is true regarding the tradeoffs in this concatenated

point-to-point channel is also true for our network.

6.1 Fixed Network Size

As the effects of noise accumulation can be ignored, we only need to study the rate

diversity tradeoff of a channel which is a concatenation of k + 1 i.i.d. Gaussian

matrices. First, we state the following property1.

Lemma 6 Let σA
i and σB

i denote the singular values of matrices A and B respectively.

They are arranged in increasing order, for example: σA
1 ≤ σA

2 · · · ≤ σA
n . Then the

singular values of AB are lower bounded as follows

σAB
i ≥ σB

1 σA
i 1 ≤ i ≤ n (6.3)

More generally2, for any 1 ≤ m ≤ n

σAB
i ≥ σB

mσA
i−m+1 m ≤ i ≤ n (6.4)

Now we explain the intuition behind this property. Let UAΣAVA and UBΣBVB

be the singular value decomposition of A and B respectively. Singular values of AB

1A proof is given in the appendix as we could not find this in existing literature.
2Note that Eq. 6.3 is already known [19]. Lemma 6 in this thesis can thus be viewed as its

generalization.
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are same as those of ΣAVAUBΣB, since multiplication by an unitary matrix does not

change the singular values.

One can think of the matrix ΣA as an ellipsoid in a complex n dimensional space,

with its axes collinear to the coordinate axes. Lets denote this ellipsoid by ξΣA
. It

corresponds to a pdf contour surface of an n dimensional Gaussian with independent

components. More specifically, consider a dummy complex Gaussian row vector z

with covariance matrix I. Ellipsoid ξΣA
represents a pdf contour of zΣA such that

the length of each axis of ξΣA
is equal to a singular value σA

i . Multiplying ΣA by the

unitary matrix VAUB corresponds to a rotation of ξΣA
in its n dimensional space. This

rotated ellipsoid ξΣAVAUB
represents the pdf contour of zΣAVAUB. Then multiplying

ΣAVAUB with a diagonal matrix ΣB corresponds to scaling (stretching or shrinking)

the rotated ellipsoid ξΣAVAUB
along each jth coordinate axis by a factor σB

j . The

resultant ellipsoid ξΣAVAUBΣB
corresponds to the pdf contour of zΣAVAUBΣB. The

axis-lengths of this resultant ellipsoid ξΣAVAUBΣB
are equal to the singular values of

ΣAVAUBΣB, which are same as those of AB.

Illustration: We demonstrate this idea with the example of a real two-dimensional

case. Let z be a real two dimensional vector with i.i.d. Gaussian entries of unit vari-

ance. Also let ΣA = diag(2, 1), ΣB = diag(1, 4) and let VAUB be a rotation by

π/4.

VAUB =


 1/

√
2 1/

√
2

−1/
√

2 1/
√

2




Figure 6-1 shows the elliptical pdf contours of z, zΣA, zΣAVAUB and zΣAVAUBΣB.

They are denoted by ξI , ξΣA
, ξΣAVAUB

and ξΣAVAUBΣB
, respectively.

Lemma 6 says that the axis-lengths of ξΣAVAUBΣB
are minimized when the axis of

the rotated ellipsoid ξΣAVAUB
are collinear to the coordinate axes. Since the axes of the

original ellipsoid ξΣA
are along the set of coordinate axes, the optimal rotation VAUB

is simply permuting the axis-lengths of the original ellipsoid ξΣA
, while maintaining

their orientations. In algebraic terminology, the singular values of AB are minimized

when VAUB equals a permutation matrix.
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Figure 6-1: Elliptical pdf contours of two dimensional real Gaussian random vec-
tors: (a) ξI (b) ξΣA

(Stretching) (c) ξΣAVAUB
(Rotation) (d) ξΣAVAUBΣB

(Stretching a
rotation)

For example, consider the case of the smallest singular value σAB
1 of AB. The

length of the smallest axis of the original ellipsoid ξΣA
is σA

1 and the same is true

for the rotated ellipsoid ξΣAVAUB
, because rotation does not change any axis length.

The smallest axis of the resultant ellipsoid ξΣAVAUBΣB
is at least σA

1 σB
1 . It is because

scaling the rotated ellipsoid ξΣAVAUB
along each coordinate axis i by a factor of σB

i

means that any direction is at least scaled by σB
min

∆
= σB

1 . Hence ξΣAVAUB
is scaled by

at least a factor of σB
1 in each direction. Evidently, the minimum of σAB

1 is attained

i.e. the smallest axis-length of resultant ellipsoid ξΣAVAUBΣB
is minimized when the

smallest axis of the rotated ellipsoid is aligned to the coordinate axis which gets

scaled by σB
1 . The above lemma follows from generalizing this visualization. Thus

this lemma is essentially claiming that the axis-lengths of the resultant ellipsoid are

minimized when the scalings on the rotated ellipsoid act directly along its axes.

We can rewrite Lemma 6 as

min σAB
i = min

ΠA(i)+ΠB(i)≥i+1
σA

ΠA(i)σ
B
ΠB(i) (6.5)

where ΠA, ΠB are permutation functions on the set {1, 2 · · ·n}. Any particular choice

of ΠA and ΠB fixes the right hand of the above equation for all i. Hence we have to

search for ΠA and ΠB which jointly minimize all the singular values of AB.
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Now we define αi in terms of the substitution νi
∆
= (SNR

nk )−αi and let snr be defined

as SNR
nk . This snr is equal to the SNR level for the transmission from the last relay

layer to the destination. The scaling by
√

n at each of the k relay layers has reduced

the initial SNR by a factor of nk. Note however that SNR
.
= snr. This implies that

the number of degrees of freedom measured in log SNR and log snr are the same.

Thus although the SNR is reduced across the layers, it does not reduce the degrees

of freedom achieved. We use λj
i to denote the ith smallest eigenvalue of HjH

†
j. We

also define βj
i in terms of the substitution λj

i
∆
= snr−βj

i .

By repeated application of Eq. 6.5 and application of Laplace’s principle we get

P (νi < snr−θi : 1 ≤ i ≤ n) = P (αi > θi : 1 ≤ i ≤ n) (6.6)

.
= max

Π0,Π1···Πk

P

(
k∑

j=0

βj
Πj(i)

> θi : 1 ≤ i ≤ n

)
(6.7)

where each Πj denotes a permutation function. Laplace’s principle [21] is essentially

saying that the predominant way in which (αi > θi : 1 ≤ i ≤ n) happens is when

the ellipsoids of all the channel matrices are aligned to each other according to the

permutations (Π0, Π1 · · ·Πk). That is where the eigenvalues of the concatenated chan-

nel are minimized. Only the alignment according to the optimal set of permutations

dominates this probability. All other reasons for this event are much less probable

than this one dominating cause.

From [15], we know the distribution of eigenvalues of matrix HjH
†
j is given by

p(βj
1, β

j
2 · · · βj

n)
.
=

n∏
i=1

SNR−(2i−1)βj
i

.
=

n∏
i=1

snr−(2i−1)βj
i (6.8)

Recall that every channel Hj is independent of all other channels, so its ith eigenvalue

λj
i is independent of all λj′

i′ for j 6= j′. Hence βj
i = − log λj

i

log snr
is independent of all βj′

i′

when j 6= j′.
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Hence the joint distribution of the set of all βj
i is given by

p(βj
i : 1 ≤ i ≤ n, 0 ≤ j ≤ k)

.
=

k∏
j=0

n∏
i=1

snr−(2i−1)βj
i (6.9)

Now lets go back to the outage probability. We can write (1 + snrνi)
.
= snr(1−αi)

+
,

where (x)(+) denotes max{0, x}. Now the outage probability from Eq. 6.2 is given by

Pout(SNR) = P

(∏
i

(1 +
SNR

nk
νi) ≤ SNRr

)
.
= P

(∏
i

snr(1−αi)
+ ≤ SNRr

)
(6.10)

.
= P

(∏
i

SNR(1−αi)
+ ≤ SNRr

)
(6.11)

= P

(∑
i

(1− αi)
+ ≤ r

)
(6.12)

Applying Laplace’s principle to the above equation along similar lines as in [15],

together with Eq. 6.7 and Eq. 6.8 we get

Pout(SNR)
.
= min

Π0,Π1···Πk

min
β

(
k∏

j=0

n∏
i=1

snr−(2i−1)βj
i

)
(6.13)

where β is the following constraint for outage to occur

n∑
i=1

(
1−

k∑
j=0

βj
Πj(i)

)+

≤ r

Thus we have reduced the diversity calculation the following linear optimization.

Theorem 7 At r degrees of freedom, this network achieves a diversity equal to

d(r) = min
Π0,Π1···Πk

min
β

(
k∑

j=0

n∑
i=1

(2i− 1)βj
i

)
where

β denotes all (βj
i : 1 ≤ i ≤ n, 0 ≤ j ≤ k) satisfying

∑n
i=1

(
1−∑k+1

j=1 βj
Πj(i)

)+

≤ r.
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Example: Consider the case of k = 1 and n = 3, for illustration. For r = 2, the

above minimization is attained at3 β0
1 = β1

1 = 0.5 and every other βj
i being 0. The

permutations are having Π0(1) = Π1(1) = 1. That is the smallest axis of (ellipsoids

of) each matrix should be collinear with each other. This gives d(2) = 1. For r

between 2 and 3, the diversity is the line segment joining d(2) and d(3) = 0. In

general, one only needs to find d(r) for r = 0, 1 · · ·n. Diversity at non-integer r is

obtained by linear interpolation of the diversity at neighboring integers to r.

For r = 1 in our example, the minimum is attained when β0
1 = β1

1 = 1 and all

other βj
i are 0. The permutation should have Π0(1) = 2 = Π1(2) and Π0(2) = 1 =

Π1(1). That is the smallest axis of (ellipsoids of) each matrix is aligned to the second

smallest axis of the other matrix. This gives d(1) = 2. For r = 0, the minimum

is attained when β0
1 = β1

1 = 1 and β0
2 = β1

2 = 0.5. The permutation functions are

Π0(1) = 3 = Π1(3), Π0(2) = 2 = Π1(2) and Π0(3) = 1 = Π1(1). This aligns the

smallest axis of first matrix to largest axis of the other matrix and vice versa. The

second-smallest axes of both matrices are collinear. The diversity attained is d(0) = 5.

In general for k = 1 and any n, at integer r degrees of freedom, the minimum is

attained when the smallest n− r singular values of each of two matrices are aligned

in the reverse order to each other. Meaning, that ith smallest axis of first matrix is

aligned to n− r + i+1th smallest axis of second matrix. The smallest bn−r
2
c singular

values of both matrices are of the order snr−1 i.e. for j = 0, 1

βj
i = 1 for 1 ≤ i ≤ bn− r

2
c

where bxc is the largest integer not greater than x. For odd values of n − r, both

matrices have βj
i = 0.5 for i = bn−r

2
c+ 1. All other βj

i are zero. Nevertheless, keep in

mind that the described optimal solution is not unique. Figure 6-3 plots the tradeoffs

for different values of n when k = 1.

3The optimal Π0, Π1 and βj
i s stated here are not unique as we will see later.
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Figure 6-2: Rate-diversity tradeoff for various n when k = 1

6.1.1 Diversity Calculations and Typical Outage Events

From Theorem 7, how to find the diversity for the general case when k ≥ 1 is not im-

mediately clear. The following story explains an easy method for diversity calculation

at integer r degrees of freedom. Moreover, it also explains the typical (or dominant)

cause of outage events. For non-integer r, linear interpolation of the diversity at

neighboring integers of r gives the diversity.

King A has ranks 1 to n for horses with k + 1 horses of each rank. The

jth horse of rank i is called βj
i . King A has to send n − r horses to

another king. A horse of rank i costs (2i− 1). To minimize the total cost,

king A first sends all his lowest rank (i.e. rank 1) horses. If more horses

are needed, he sends the rank 2 horses and so on. The cost incurred for

sending n− r horses in this way equals the diversity achieved.

Evidently, if k + 1 ≥ n only the lowest rank horses need to be sent. Thus we get

the following corollary.

Corollary 8 This network achieves a diversity of n − r at r degrees of freedom for

any fixed number k of relay layers satisfying k ≥ n− 1.

This is a much worse rate-diversity tradeoff compared to the usual point-to-point

MIMO channel (i.e. the k = 0 case), as seen in Figure 6.1.1. It is expected because
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the king A in the point-to-point channel case has only 1 soldier of each rank. Hence

sending n − r horses is costlier for him compared to a king having k + 1 horses of

each rank. Thus a product of multiple i.i.d. random Gaussian matrices makes it

much easier to have an outage, compared to a single random Gaussian matrix. For

the same reason, for any r, n and k, the point-to-point MIMO channel will always

achieve more (or equal) diversity compared to the concatenated channel.

n

r 

d

n 2

n

Figure 6-3: Rate-diversity tradeoffs when k + 1 ≥ n. Continuous line shows the
tradeoff for our network and dotted line shows the same for point-to-point MIMO
channel.

The above story also gives us some insight into the most dominant i.e. the typical

cause of outage. Giving n − r horses denotes destroying n − r degrees of freedom.

Choosing horse j of rank i denotes λj
i being of the order of SNR−1 (in the

.
= sense).

Thus each horse has the ability to destroy one separate degree of freedom completely.

The cost of horse j of rank i signifies the likelihood of having λj
i

.
= SNR−1. More the

cost (2i−1) of a horse, it is more unlikely to have λj
i

.
= SNR−1. More specifically, this

has a probability of the order of SNR−(2i−1); that is, less likely for higher i. If the total

cost of sending some n − r horses is d1, then the likelihood of loosing n − r degrees

of freedom is of the order of SNR−d1 . The optimal choice of the n − r horses (as

explained in the above story) minimizes d1 and hence corresponds to the dominant

cause of loosing n − r degrees of freedom. Other choices which cost more than the

optimal cost d(r) are much less likely to be the cause of loosing n − r degrees of

freedom.
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In the dominant cause of loosing n−r degrees of freedom, note that two near-zero

eigenvalues λj
i (of the order of SNR−1) cannot be aligned in the same direction. The

product matrix will have an eigenvalue νi
.
= SNR−2 if they are aligned in the same

direction. This is an atypical (rare) way for destroying a degree of freedom which

only requires νi
.
= SNR−1. Thus typically, each near-zero eigenvalue of the order of

SNR−1 destroys exactly one separate degree of freedom. Equivalently, each near-zero

eigenvalue νj
i has acted on a different axis of the resultant ellipsoid of Hk · · ·H0.

Hence typically, there are n − r near-zero eigenvalues λj
i of the order of SNR−1 and

each of them destroys a separate degree of freedom. The optimal choice of choosing

the horses of the lowest possible ranks corresponds to the dominant way in which

n − r eigenvalues out of the set {λj
i} of all the (k + 1)n eigenvalues are of the order

of SNR−1.

6.2 Increasing Network Size

In the last section, we saw that the diversity is given by d(r) = n − r, when k is

large (k ≥ n − 1). How is this affected when k is not a fixed number but grows to

infinity with SNR? Along similar lines as in the previous chapter we ask the following

question. What is the set of functions k(SNR), which could denote the number of

layers so that a diversity d can be achieved with r degrees of freedom? For a reason

which will be clear later, we restrict ourselves to k(SNR) which satisfy,

lim
SNR→∞

k(SNR) log log SNR

log SNR
< ∞ (6.14)

In Eq. 6.8, we had ignored a multiplicative factor of4 (log SNR)nτ , because it did not

matter then in the
.
= sense of equality. It cannot be ignored now when k goes to

infinity with SNR. Considering this factor, the joint distribution of all βj
i in Eq. 6.9

4τ is a constant depending on n.
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is modified to

p(βj
i : 1 ≤ i ≤ n, 0 ≤ j ≤ k)

.
= τ k+1(log SNR)n(k+1)

k∏
j=0

n∏
i=1

SNR−(2i−1)βj
i

.
= τ k+1(log SNR)n(k+1)

k∏
j=0

n∏
i=1

snr−(2i−1)βj
i

.
= (log SNR)n(k+1)

(
k∏

j=0

n∏
i=1

snr−(2i−1)βj
i

)

Second step follows because we still have SNR
.
= snr = SNR/nk as before, since

k/ log SNR → 0 if Eq. 6.14 is satisfied. Last step follows since τ k+1 .
= 1, again

because k/ log SNR → 0.

Now the outage probability in Eq. 6.13 will be multiplied by an extra factor of

(log SNR)n(k+1). Hence the diversity achieved is given by

d(r) = −
(

lim
SNR→∞

log(log SNR)n(k+1)

log SNR

)
+ min

Π0,Π1···Πk

min
β

(
k∑

j=0

n∑
i=1

(2i− 1)βj
i

)

where β means the same as in Theorem 7. Lets denote the term in the first bracket

above by Soutage(k). Thus the diversity achieved is Soutage(k) less compared to the

calculation in Theorem 7. Since for large k, Theorem 7 yields to d = n − r, we get

the following theorem.

Theorem 9 The following diversity can be achieved in this network when r degrees

of freedom are to be achieved:

d(r) = (n− r − Soutage(k))+ (6.15)

where Soutage(k) is equal to limSNR→∞
k(SNR)n log log SNR

log SNR
, which represents the size penalty

function in the outage formulation.

In other words, r degrees of freedom and diversity d can be achieved for those functions

k(SNR), which satisfy Soutage(k) ≤ n − r − d. Note that as expected, Soutage(k) = 0

when k is fixed as in Corollary 8.
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6.2.1 Illustrative example: n=1 case

Once again consider the simple case of n = 1. Let h0, h1 · · ·hk denote the channel

gains as the previous chapter and substitute |hj|2 ∆
= SNR−γj . As the effect of noise

accumulation can be ignored, the outage probability is given by

Pout(SNR)
.
= P

(
log

(
1 +

∏
j

|hj|2 SNR

)
< r log SNR

)

.
= P

((
1−

∑
j

γj

)+

< r

)

=

∫

(1−∑
j γj)+<r

p(γ0, γ1, · · · γk) dγ0dγ1 · · · dγk

However, every |hj|2 is an exponential random variable with mean 1 because every hj

is a circular symmetric complex Gaussian. Hence the distribution of γj = − log |hj |2
log SNR

is

given by

p(γj) = (log SNR) SNR−γj exp(−SNR−γj)

For negative γj, the last factor above decays exponentially fast to zero with increasing

SNR. Hence we may neglect those cases in the integral for outage probability. For γj >

0, it converges to 1 and converges to 1/e for γj = 0. Either way, the exp(−SNR−γj)

is equal to 1 in the
.
= sense.

Now note that the p(γ0, γ1, · · · γk) =
∏

j p(γj), since all channels are independent

of each other. The integral for outage probability now reduces to the following integral

over all nonnegative γj

Pout(SNR)
.
=

∫

(1−∑
j γj)+<r

(log SNR)k+1SNR−
∑

j γj dγ0 · · · dγk

.
= (log SNR)k+1 SNR−(1−r)

Hence we get

d(r) = −
(

lim
SNR→∞

k(SNR) log log SNR

log SNR

)
+ 1− r

This explains the nature of the size penalty function in the outage formulation.
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6.2.2 Some Remarks

Comparing size penalty on ergodic capacity, Sergodic(k), in Eq. (5.1) to Soutage(k)

in Eq. (6.15), we observe that the size penalty in the outage formulation can be

significantly higher than that on the ergodic capacity. For example, if

k(SNR) = k̄
∆
=

log SNR

log log SNR
(6.16)

Soutage(k̄) = n, which implies that at any positive diversity gain, the supported outage

capacity yields 0 degrees of freedom. We can thus view k̄ as an upper limit on the

supportable network size, when coding over a single fading block. This explains why

we started with the assumption in Eq. 6.14.

Note that the ergodic size penalty for k̄ number of layers is Sergodic(k̄) = 0, which

means that the ergodic capacity yields all the n degrees of freedom. However, one

has to code over a large number of blocks to get close to the ergodic capacity. This

behavior is different from the point-to-point case. In a point-to-point MIMO channel,

the outage capacity approaches the ergodic capacity (≈ n log SNR) as the required di-

versity gain approaches 0. In contrast, in a large network system (k comparable to k̄),

the outage capacity, at any positive diversity requirement, is in general much smaller

than the ergodic capacity. Therefore, the network throughput is mostly restricted by

outage events.

Another important observation is that the maximum diversity for a network is

n instead n2 as in the point-to-point case discussed in chapter 2. Reason being, at

r = 0, a typical outage event for the network is that n out of the k + 1 channel

matrices lose 1 degree of freedom each, rather than only one channel matrix losing all

n degrees of freedom5. Losing one degree of freedom by each of those n matrices is

much more common than loosing all n degrees of freedom by a single matrix. In short,

the dependence on many random matrices makes it much easier to loose degrees of

freedom in this network compared to the point-to-point case.

It is also worth noting that the network size in terms of Soutage(k) and diversity

5In terms of the horse story, it means that n horses of the lowest rank are sent out.
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d can be traded off. That means when r degrees of freedom are achieved, either

Soutage(k) equal to n − r can be achieved if no diversity is needed or vice versa. Of

course any diversity and Soutage(k) which add up to n− r can also be achieved.

As an endnote, we can extend all the diversity calculations (for short codes) in this

chapter to the case where the codelength spans L fading blocks. This is along similar

lines as in chapter 2. The error probability in that case is given by Pe
.
= SNR−Ld(r),

where d(r) is the achievable diversity for this network when r degrees of freedom are

achieved. It is because now an error happens essentially when all the L fading blocks

are in outage.
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Chapter 7

Discussion

All the results in this thesis were derived for SNR going to infinity. Nonetheless, we

can also deduce some rules of thumb to be used in practice by substituting actual

values of parameters like SNR and k in the size penalty functions for ergodic or

outage formulation. For example, consider an engineer who wants to achieve the

same diversity and degrees of freedom after the number of layers are increased from

k1 to k2. The new SNR2 to ensure this is obtained by equating the “empirical” value

of the size penalty function, i.e. nk1 log log SNR1

log SNR1
= nk2 log log SNR2

log SNR2
. However, the reader

should keep in mind that all the results we obtained were based on a particular non-

separation-based strategy for our network. There might be other non-separation-based

strategies (though unlikely) that achieve better tradeoffs.

In chapters 5 and 6, the number of layers (k(SNR)) grew to infinity. The total

power of all the nk relays also grew with the network size as nk(SNR)P . In some

situations, this is not possible and the total power has to remain constant irrespective

of the network size. If this total power available to this growing network is constrained

to P , the results in chapters 5 and 6 remain unchanged. Because P
.
= P

nk(SNR)
for the

cases in those chapters. This is when total power is equally divided amongst all the

relays. Essentially, the SNR is so large that dividing it by nk(SNR) does not reduce

the rate significantly.

The main result (Theorem 2) can be trivially extended to a network of j source-

destination pairs, which has all the source-destination pairs separated by the same
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relays-in-layers network. In that case, each source-destination pair can have a rate

of N
j

log SNR, which can be achieved by time-sharing.

Our network model can be also extended to a situation where the source and

destination do not have multiple antennas. In that case, a multiantenna is mimicked

by using multiple time-slots. Each of these time-slots acts like a virtual antenna, and

every technique for multi-antenna systems can be employed on this virtual multi-

antenna system. As long as the time-slots are separated enough to experience differ-

ent fading realizations, they replace the role of independently faded spatial paths in

multiantenna systems.

7.1 Increasing n case

We have assumed the number n of relays per layer to be a fixed number throughout

the thesis. Thus the SNR is much larger than n. However, to get a better idea of this

requirement, we can think of n growing with SNR as n(SNR), using a similar line as

k(SNR) in chapters 5 and 6.

Now consider the case of point-to-point MIMO channel discussed in chapter 2.

We apply a result from [22] about the smallest eigenvalue λH
1 of HH†, where H is a

random matrix with i.i.d. complex Gaussian entries. It says that EH

[
log(λH

1 n)
]

tends

to a constant when n grows to infinity. Applying this to the capacity of this channel

(from Eq. 2.7 and 2.8)

CMIMO =
n∑

i=1

EH

[
log(1 + SNRλH

i )
] ≥ n E [

log(1 + SNRλH
1 )

]

≥ n E [
log(SNRλH

1 )
]

= n E
[
log(

SNR

n
) + log nλH

1

]

≈ n (log SNR− log n + (a constant))

This expression is approximately n log SNR when the following condition is satisfied

lim
SNR→∞

log n(SNR)

log SNR
= 0 (7.1)
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Note that this is only a sufficient condition for achieving all the degrees of freedom. In

fact, it is not even clear if achieving all the degrees of freedom becomes more difficult

with growing matrix size. It might be the case that all the degrees of freedom are

achieved for all functions n(SNR). Thus we obtained a sufficient condition on the

number of antennas with respect to SNR, for achieving all the degrees of freedom in

a point-to-point MIMO system.

This condition is also true for achieving all the degrees of freedom in our network

when number of layers k is fixed. More generally, when k is also growing with SNR,

the following sufficient condition (for achieving all the degrees of freedom) is obtained

along similar lines as in Theorem 3

lim
SNR→∞

k(SNR) log n(SNR)

log SNR
= 0

7.2 Implications to Ad-Hoc Networks

The main result (Theorem 2) can be extended to a multi-access network where n

separate users with 1 antenna each are communicating with a destination having n

antennas. The n users and the destination are separated by k layers of relays. This is

essentially the same as performing VBLAST in our original single source-destination

network. Hence each user can achieve one degree of freedom.

This can be applied to an static ad-hoc network as in [23]. There the entire network

of area A has M single antenna nodes spread randomly with an uniform distribution

over the area. The network was divided into cells of area a(M)A. In other words,

each cell occupied a fraction a(M) of the total network area which depends on the

total number of nodes.

If there exists a constant c1 and an integer M1 such that a(M) ≥ c1 log M/M for

all M ≥ M1, then each cell almost surely has Ma(M)±
√

2Ma(M) log M nodes [23].

In particular, we consider the case when a(M) À log M/M and hence the number of

nodes in each cell is given by1 n ≈ Ma(M).

1Recall our notation of ≈ and À, which means the ratio of the their two sides goes to one and
infinity respectively as M tends to infinity.
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Figure 7-1: Ad-hoc network divided into multiple cells

In that model, transmissions from a cell can only reach the neighboring cells.

In their communication scheme, if any node in a particular cell i is transmitting a

message to cell i′, then all neighboring cells of i′ (other than cell i) remain quiet to

ensure interference-free reception of the message. Each cell transmits at regularly

spaced time-slots leaving other slots to the neighboring cells. However, only one node

in a cell transmits at a time. The message from each source reaches its destination

through the sequence of cells on the line joining the source-destination pair (Fig. 7-2).

This is a separation-based strategy where the message is decoded before transmitting

in the next hop.
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Figure 7-2: Path of a message from its source to destination: The message is hopped
through the cells on the dotted line which joins the source-destination pair.

This framework fits well into our network model by considering that each relay

layer is formed by the nodes in a cell on the line joining the source destination pair.

Now instead of only one node in a cell transmitting at a time, we let all the nodes

in a cell transmit simultaneously. They simply retransmit the received signals from
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the previous cell/layer without decoding. Somewhat optimistically, let us assume that

each cell also has a multiantenna receiver with n antennas. Moreover, we assume that

this multiantenna receiver knows the MIMO channels in the path of the message for

each destination in the cell. After receiving the messages of all the destinations in its

cell, it beamforms those messages to their respective destinations. Incorporating our

non-separation-based strategy will essentially give an n fold increase in the achievable

rate at high SNR. The delay analysis will remain the same as in [23].

The throughput T (M) and delay D(M) for the strategy in [23] is given by

T (M) ≈ c2

M
√

a(M)
and D(M) ≈ c3/

√
a(M)

where c2 and c3 are some constants. At high SNR, incorporating our non-separation-

based strategy gives the following n times improvement for the throughput in the

throughput-delay tradeoff for a(M) À log M/M .

T (M) ≈ c2

√
a(M) and D(M) ≈ c3/

√
a(M) (7.2)

The delay to throughput ratio in the separation-based strategy of [23] is of the order of

M . Equivalently, the delay is essentially M times the throughput. With our strategy

the delay to throughput ratio is order of magnitude better because for our strategy

D(M)/T (M) ≈ c3

c2a(M)
¿ M/ log M ¿ M

In addition to this improved delay-throughput tradeoff, the maximum achievable

throughput here is far greater than the maximum throughput for separation-based

strategies in [23, 3]. The maximum throughput possible there was of the order of

1/
√

M log M . By choosing a fixed value of a(M), our strategy can give an essentially

constant throughput which does not decrease with increasing number of nodes M .

The previous discussion may seem to imply that ad-hoc networks can be made scal-

able i.e. the throughput per node need not decrease with increasing number of nodes.

However, one has to keep in mind that it had many optimistic assumptions such
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as: having (extremely) high SNR, having no interference between non-neighboring

cells and having a multiantenna receiver in each cell with all the required channel

knowledge. Nevertheless, this analysis suggests that in some cases, significant gains

might be obtained in practice by using non-separation-based strategies—particularly

at high SNR.

7.3 Summary

We showed that in the limit of high SNR, all the degrees of freedom can be achieved

whether or not there is of coordination amongst relay nodes; that is, the lack of co-

ordination amongst relay nodes costs nothing asymptotically. We found the tradeoffs

between rate, network size and SNR. We also studied the rate diversity tradeoff for

this network, and how it is affected by increasing network size. Penalty functions for

increasing network size were derived for the ergodic and outage formulations.

This thesis is another example (like [16]), where a very simple network operation

gives asymptotically optimal performance. It also suggests that in practice, exploring

non-separation-based strategies has the potential to provide significant improvements—

specially at high SNR.
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Appendix A

Proof of Lemma 6

Let UAΣAVA and UBΣBVB be the singular value decomposition of A and B,

respectively. Assume these singular values to be arranged in increasing order,

for example σA
1 ≤ σA

1 · · · ≤ σA
n . Now singular values of AB are same as those

of ΣAVAUBΣB, since multiplication by an unitary matrix does not change the

singular values. We use Q for VAUB for simpler expressions. We now write

ΣB ≡ diag(σB
n , σB

n−1, · · · , σB
1 )

= diag(σB
1 , σB

1 , · · · , σB
1 )

+ diag(σB
n − σB

1 , σB
n−1 − σB

1 , · · · σB
2 − σB

1 , 0)

∆
= σB

1 I + ΣB

Then we have ΣAQΣB = σB
1 ΣAQ + ΣAQΣB

∆
= Ω1 + Ω2

Now eigenvalues of (Ω1 + Ω2)(Ω1 + Ω2)
† are at least as large as eigenvalues of

Ω1Ω
†
1. First, because Ω1Ω

†
2+Ω2Ω

†
1 and Ω2Ω

†
2 are positive semi-definite matrices.

Second, because eigenvalues of sum of two positive semi-definite matrices (say

C and D) are at least as large as the eigenvalues of any one of those semi-

definite matrices (C or D). Hence singular values of Ω1 + Ω2 are at least as

large as those of Ω1. However, singular values of Ω1 = σB
1 ΣAQ are same as

those of σB
1 ΣA. Hence we get the following lower bound on singular values of

AB denoted by σAB
i ,

σAB
i ≥ σB

1 σA
i
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Similarly for a more general version of this result, let 1 ≤ m ≤ n

ΣB = diag(σB
m, · · · ,

m’th place

σB
m , 0 · · · 0)

+ diag(σB
n − σB

m, · · · σB
m+1 − σB

m, 0, σB
m−1, · · · , σB

1 )

∆
= σB

mÎm + Σ̂B

Hence ΣAQΣB = σB
mΣAQÎm + ΣAQΣ̂B

∆
= Ω̂1 + Ω̂2

Here Îm is a diagonal matrix whose last m − 1 diagonal entries are zero and

other diagonal entries are 1. Using exactly the same arguments as before, we

see that singular values of AB are at least as large as those of σB
mΣAQÎm.

By Poincare separation theorem ([18]: Sec. 1f.2), we know that jth largest

eigenvalue of ΣAQÎm is at least as large as (j + m − 1)th largest eigenvalue

of ΣA. It is because multiplying by Îm can at most nullify the largest m − 1

singular values of ΣAQ (i.e. of ΣA).

To understand this, one can think of the diagonal matrix ΣA as an ellipsoid in

a complex n dimensional space, with its axis collinear to the coordinate axis.

The length of each axis is equal to a singular value σA
i . Multiplying ΣA by an

unitary matrix corresponds to a rotation of the ellipsoid in its n dimensional

space. Then multiplying ΣAQ with any diagonal matrix D corresponds to

stretching or shrinking this rotated ellipsoid along each jth coordinate axis by

a factor dj, which is the j the diagonal entry of D. The lengths of the axis of

this resultant ellipsoid are equal to the singular values of ΣAQÎm. Evidently,

the worst rotation Q of the original ellipsoid is when the largest m− 1 axis of

the original ellipsoid are shrunk to zero by Îm. Hence the jth largest singular

value of ΣAQÎm is at least equal to the (j + m − 1)th largest singular value

of ΣA.

Note that the jth largest singular value of a matrix is its (n+1−j)th smallest

singular value. Replacing n + 1− j by i gives

σAB
i ≥ σB

mσA
i−m+1 m ≤ i ≤ n ¤
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Appendix B

Proof of Theorems 2, 3 and 4

We saw the achievable rate for our network operation is

R = EH

[
log det

(
I +

SNR√
n

2k
(G−1

H HkHk−1..H1H0)(G
−1
H HkHk−1..H1H0)

†
)]

where H denotes the network’s channel state (H0, · · · ,Hk). Let λl,p,···q
i denote

the ith smallest eigenvalue of (HlHp..Hq)(HlHp..Hq)
†. Note that smallest

singular value of G−1
H is the inverse of the largest singular value GH. Hence

by Theorem 6 we get,

R ≥ EH

[ ∑
i=1:n

log

(
1 +

SNR

nk

λk,..0
i

λG
max

)]

≥ EH


 ∑

i=1:n

log


1 +

SNR

nk
λk,..0

i

(
1 +

∑

j=1:k

λk,k−1..j
max

n(k−j+1)

)−1






because the largest eigenvalue of AA† + BB† is at most the sum of largest

eigenvalues of AA† and BB†. Here λG
max denoted the largest eigenvalue of

GHGH
†. The above lower bound on rate is itself smaller than

≥ EH

[ ∑
i=1:n

(
log

(
1 +

SNR

nk
λk,..0

i

)
− log

(
1 +

∑

j=1:k

λk,k−1..j
max

n(k−j+1)

))]

≥ EH

[ ∑
i=1:n

(
log

(
SNR

nk
λk,..0

i

)
− log

(
1 +

∑

j=1:k

λk,k−1..j
max

n(k−j+1)

))]

≥ n log SNR− (k + 1)
(
log n− EH

[
log det(HmHH

m)
])− nEH

[
log

(
1 +

∑

j=1:k

λk,k−1..j
max

n(k−j+1)

)]

≥ n log SNR− (k + 1)
(
log n− EH

[
log det(HmHH

m)
])− n log

(
1 +

∑

j=1:k

EH

[
λk,k−1..j

max

n(k−j+1)

])
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The second last step is because all His are i.i.d. and determinant (i.e. prod-

uct of eigenvalues) of a product of matrices is same as the product of their

determinants. The last step follows by Jensen’s inequality.

Noticing that sum of eigenvalues i.e. trace of a positive semi-definite matrix

is always larger than its largest eigenvalue we get,

n log

(
1 +

∑

j=1:k

EH

[
λk,k−1..j

max

n(k−j+1)

])
≤ n log

(
1 +

∑

j=1:k

EH

[
trace(Hk,k−1..jH

H
k,k−1..j)

n(k−j+1)

])

= n log

(
1 +

∑

j=1:k

EH

[
trace

(H1,2..jH
H
1,2..j)

nj

])

= n log

(
1 +

∑

j=1:k

n

)

= n log(1 + kn)

An inductive argument is used for proving the second last step above i.e.

EH

[
trace

(
H1,2..jH

H
1,2..j

nj

)]
= n ∀j (3)

For j = 1, since all n2 elements of H1 are i.i.d. complex Gaussian with variance

1, we have EH

[
trace

(
H1H

†
1

n

)]
= n2.1.

Consider two independent n×n matrices A and B with i.i.d. entries of variance

1. We have EAB [‖(AB)(i, j)‖2] = n. Similarly, all entries of A B√
n

will be i.i.d.

of variance 1, i.e. same as the variance of entries of A and B. This is true for

all distributions of entries of A and B, as long as their entries are independent

of each other and have variance 1. Since all Hi’s are independent of each other,

H1H2..Hj is independent of Hj+1. Hence2 EH

[
‖(H1

H2√
n
· · · Hj−1√

n
)
Hj√

n
‖2

F

]
= n2.1.

The desired result follows.

The following lower bound on achievable degrees of freedom is obtained using

2Frobenius norm of a matrix ||A||F is defined as ||A||2F =
∑

i,j |A(i, j)|2
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Eq. 3 and previously obtained lower bound on the rate.

r = lim
SNR→∞

R

log SNR
≥ n− ϕ(n) lim

SNR→∞
k(SNR) + 1

log SNR
− lim

SNR→∞
n log(kn + 1)

log SNR

= n− Sergodic(k)− n lim
SNR→∞

log k(SNR)

log SNR

For any finite value of Sergodic(k), the last term in the above expression equals

zero. Thus we get Theorems 3 and 4. The size penalty Sergodic(k) is zero for

any fixed k, hence all the degrees of freedom can be achieved. Thus Theorem

2 is proved.
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Appendix C

Proof of Theorem 5

Recall that each µi ≤ λk..0
i

λG
max

by Theorem 6. Hence,

Pout(SNR) ≤ P

(∑
i=1:n

log

(
1 +

SNR

nk

λk..0
i

λG
max

)
< r log SNR

)

≤ P

(∑
i=1:n

log

(
1 +

SNR

nk

λk..0
i

λG
max

)
< r log SNR

)

≤ P


∑

i=1:n

log


1 +

SNR

nk
λk..0

i

(
1 +

∑

j=1:k

λk,k−1..j
max

n(k−j+1)

)−1

 < r log SNR




≤ P

(∑
i=1:n

log

(
1 +

SNR

nk
λk..0

i

)
− n log

(
1 +

∑

j=1:k

λk,k−1..j
max

n(k−j+1)

)
< r log SNR

)

Denote the term n log
(
1 +

∑
j=1:k

λk,k−1..j
max

n(k−j+1)

)
by θ. Let δ be an arbitrarily small

positive number.

= P (θ ≥ δ log SNR)P

(∑
i=1:n

log

(
1 +

SNR

nk
λk..0

i

)
− θ < r log SNR | θ ≥ δ log SNR

)

+ P (θ < δ log SNR)P

(∑
i=1:n

log

(
1 +

SNR

nk
λk..0

i

)
− θ < r log SNR | θ < δ log SNR

)

≤ P (θ ≥ δ log SNR)

+P

(∑
i=1:n

log

(
1 +

SNR

nk
λk..0

i

)
< (r + δ) log SNR | θ < δ log SNR

)
(4)

We will now show that the first term above is much smaller than the second

term. In other words, the SNR exponent is (much) more negative for the first

term than the second term in the limit of high SNR.
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P (θ ≥ δ log SNR) = P

(
1 +

∑

j=1:k

λk,k−1..j
max

n(k−j+1)
≥ SNRδ/n

)

≤ P

( ⋃

j=1:k

λk,k−1..j
max

n(k−j+1)
≥ SNRδ/n − 1

k

)

≤ P

( ⋃

j=1:k

λk
max

n

λk−1
max

n
..
λj

max

n
≥ SNRδ/n − 1

k

)

= P

( ⋃

j=1:k

λ1
max

n

λ2
max

n
..
λj

max

n
≥ SNRδ/n − 1

k

)

Since SNR is very large, SNRd/n/2 > 1. Hence we get,

P (θ ≥ δ log SNR) = P

( ⋃

j=1:k

λ1
max

n

λ2
max

n
..
λj

max

n
≥ SNRδ/n

2k

)

≤
∑

j=1:k

P

(
λ1

max

n

λ2
max

n
..
λj

max

n
≥ SNRδ/n

2k

)

Now we substitute SNRδ/n

2k
= L(SNR) for simpler expressions. Now recalling

the fact that geometric mean is at most equal to arithmetic mean,

P (θ ≥ δ log SNR) ≤
∑

j=1:k

P

(
λ1

max + λ2
max + · · ·+ λj

max

jn
≥ L(SNR)1/j

)

≤
∑

j=1:k

P

(
trace(H1H

†
1 + H2H

†
2 + · · ·+ HjH

†
j )

jn
≥ L(SNR)1/j

)
(5)

For fixed number of layers, the sum of j traces above is the sum of squared

norms of jn2 complex Gaussian random variables. Hence the j term in the

above summation is equal to P (χ > jnL(SNR)1/j), where χ is a Chi-squared

random variable with 2jn2 degrees of freedom. We know that tail of a Chi-
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squared distribution are exponential. In other words,

lim
SNR→∞

− log P (χ > jnL(SNR)1/j)

log SNR
= lim

SNR→∞
jnL(SNR)1/j

log SNR
(6)

This limit equals infinity after substituting the value of L(SNR). As all the

terms in the summation in Eq. 5, the SNR exponent of that summation also

is infinite. Thus the SNR exponent of the first term in Eq. 4 is infinite. The

second term must have a finite SNR exponent, otherwise infinite diversity will

be achieved. Now choosing arbitrarily small δ in Eq. 4 proves the theorem for

fixed number of layers.

Now consider the case when number of layers goes to infinity such that

Soutage(k) = limSNR→∞
k(SNR)n log log SNR

log SNR
is finite3. There are two possibilities

in this case. Either the largest term of the summation in Eq. 5 is for some

finite j or it is for4 j = k. If it is for some finite j, the SNR exponent of that

term is given by Eq. 6. To find the SNR exponent for the case j = k, we apply

central limit theorem to the sum of traces. Hence the distribution of χ/
√

k

becomes a Gaussian with mean
√

kn2 and variance equal to the variance of

trace(H1H
†
1), denoted by τ 2. Thus the SNR exponent of the last term of the

summation in Eq. 5 is

lim
SNR→∞

− log P (χ > knL(SNR)1/k)

log SNR

= lim
SNR→∞

− log P
(

χ√
k
−
√

kn2 >
√

knL(SNR)1/k −
√

kn2
)

log SNR

≤ lim
SNR→∞

− log P
(

χ√
k
−
√

kn2 >
√

knL(SNR)1/k
)

log SNR

= lim
SNR→∞

− log Q(
√

knL(SNR)1/k

τ
)

log SNR

= lim
SNR→∞

(
√

knL(SNR)1/k)2

2τ 2 log SNR
(7)

3It turns out from Theorem 9 that no diversity is achieved any way if this limit larger than 1.
4Henceforth we use simply k for k(SNR).
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The last equality follows due to the fact that limx→∞
Q(x)

exp(−x2/2)
= 1. Comparing

Eq. 6 to Eq. 7, tells that the smallest exponent is when the j = k. Take the

ratio of the two SNR exponents to see this,

2τ 2

n

jL(SNR)1/j

kL(SNR)2/k
≥ 2τ 2

n

L(SNR)
1
j
− 2

k

k

≥ 2τ 2

n

L(SNR)
1
k

k

This goes to infinity as SNR goes to infinity5. Thus in the sum in Eq. 5, the

last term is the largest term i.e. the term with the smallest SNR exponent.

Another way to show this is by observing that jL(SNR)1/j is a decreasing

sequence for large enough L(SNR). This can be shown by differentiating it

with respect to j. Using this fact, we get the following upper bound on the

sum in Eq. 5.

P (θ ≥ δ log SNR) ≤ kP

(
trace(H1H

†
1 + H2H

†
2 + · · ·+ HkH

†
k)

kn
≥ L(SNR)1/k

)

Now comparing the SNR exponent of the two sides by using Eq. 7,

lim
SNR→∞

− log P (θ ≥ δ log SNR)

log SNR
≥ lim

SNR→∞
− log k

log SNR
+ lim

SNR→∞
(
√

knL(SNR)1/k)2

2τ 2 log SNR

=
n2

2τ 2
lim

SNR→∞
k(SNR)L(SNR)2/k

log SNR
(As Soutage(k) is finite)

= ∞

Last step follows by substituting the expression for L(SNR) and recalling that

Soutage(k) is finite. Thus Theorem 5 is true even when k goes to infinity such

that Soutage(k) is finite.

5This is because the Soutage(k) to is finite.
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Appendix D

Proof of Footnote 3 in Chapter 4

Let each source antenna transmit power P/C, instead of P . This C denotes

a large but fixed number. Now we use the fact that all diagonal entries of a

positive semi-definite matrix are upper bounded by it largest eigenvalue. Now

recalling Eq. 4.3 with P replaced by P/C. As the maximum eigenvalue of a

sum of positive semi-definite matrices is at most the sum of their maximum

eigenvalues, the power transmitted by any relay node in jth layer is channel

state H is upper bounded by

Exj

[
xjx

†
j|H = H

]
≤ P

Cnj
λj−1,j−2···0

max +
σ2

n
+

j−1∑
i=1

σ2

nj−i+1
λj−1···i

max

≤ P

Cnj

j−1∏

l=0

λl
max +

σ2

n
+

j−1∑
i=1

σ2

nj−i+1

j−1∏

l=i

λl
max

Let Φ be such that Pr(λl
max > Φ) = ε, where ε is arbitrarily small. As discussed

before, the noise component has no contribution to the transmitted power.

Hence the power transmitted by any node in jth layer is lower than P
C

Φj

nj , with

at least a probability of (1−ε)j. Thus if C = Φk

nK , all layers will obey the power

constraint with at least a probability of (1− ε)k. For simplifying the proof, we

make an unrealistic (and pessimistic) assumption that the network is turned

off in a fading block where the power constraint is not satisfied. Then the

network will be on almost always i.e. with probability (1− ε)k. Also note that

this C is a fixed number, so the degrees of freedom achieved are unchanged

when SNR goes to infinity (see Eq. 4.1). This strategy can thus achieve at

least n(1− ε)k degrees of freedom.

Hence by proper choice of ε (and hence C), any r < n degrees of freedom can

be achieved. In practice however, the network need not be turned off when
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the power constraint is not being satisfied. For example, all relays could scale

down the received signal little more before transmission than the usual
√

n

factor. This strategy will achieve any r ≤ n degrees of freedom. Thus having

a power constraint on each fading block does not hamper achieving all the

degrees of freedom.

However, this result is true only if the number of layers is fixed. It is not valid

when it goes to infinity as in chapters 5 and 6. It is because, (1− ε)k goes to

zero as k goes to infinity for any fixed ε or (equivalently) any fixed C.
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