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Abstract

This thesis describes the use of opaque microwave bands for global estimation of
precipitation rate. An algorithm was developed for estimating instantaneous precip-
itation rate for the Advanced Microwave Sounding Unit (AMSU) on the NOAA-15,
NOAA-16, and NOAA-17 satellites, and the Advanced Microwave Sounding Unit and
Humidity Sounder for Brazil (AMSU/HSB) aboard the NASA Aqua satellite. The
algorithm relies primarily on channels in the opaque 54-GHz oxygen and 183-GHz
water vapor resonance bands. Many methods for estimating precipitation rate using
surface-sensitive microwave window channels have been developed by others.

The algorithm involves a set of signal processing components whose outputs are
fed into a neural net to produce a rain rate estimate for each 15-km spot. The signal
processing components utilize techniques such as principal component analysis for
characterizing groups of channels, spatial filtering for cloud-clearing brightness tem-
perature images, and data fusion for sharpening images in order to optimize sensing
of small precipitation cells. An effort has been made to make the algorithm as blind
to surface variations as possible.

The algorithm was trained using data over the eastern U.S. from the NEXRAD
ground-based radar network, and was validated through numerical comparisons with
NEXRAD data and visual examination of the morphology of precipitation from over
the eastern U.S. and around the world. It performed reasonably well over the eastern
U.S. and showed potential for detecting and estimating falling snow. However, it
tended to overestimate rain rate in summer Arctic climates.

Adjustments to the algorithm were made by developing a neural-net-based estima-
tor for estimating a multiplicative correction factor based on data from the Advanced
Microwave Sounding Radiometer for the Earth Observing System (AMSR-E) on the
Aqua satellite. The correction improved estimates in the Arctic to more reasonable
levels. The final estimator was a hybrid of the NEXRAD-trained estimator and the
AMSR-E-corrected estimator.

Climatological metrics were computed over one year during which all AMSU-A/B
instruments on NOAA-15, NOAA-16, and NOAA-17 were working. Annual mean
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rain rates appear to agree morphologically with those from the Global Precipitation
Climatology Project. Maps of precipitation frequencies and the diurnal variations of
precipitation rate were produced.

Thesis Supervisor: David H. Staelin
Title: Professor of Electrical Engineering
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And God said, “Let there be light,” and there was light. God saw that the

light was good.

Genesis 1:3-4a1

Who cuts a channel for the torrents of rain,

and a path for the thunderstorm,

to water a land where no man lives,

a desert with no one in it,

to satisfy a desolate wasteland

and make it sprout with grass?

Job 38:25-271

1Scripture taken from the HOLY BIBLE, NEW INTERNATIONAL VERSION. c©1973, 1978,
1984 by International Bible Society. Used by permission of Zondervan. All rights reserved.
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Chapter 1

Introduction

Precipitation is an important part of the global energy cycle since moisture is an

important channel of atmospheric heat transport. When water evaporates, heat is

absorbed from the environment. When water vapor condenses to form water or ice

particles, this latent heat is released, warming the surrounding air. The released heat

can affect the motion of the surrounding air and can result in convective precipitation.

Accurate global estimates of precipitation rate will lead to a better understanding of

atmospheric circulation and to improved climatology, weather forecasting, and climate

change studies [85].

Ground-based methods for measuring precipitation include rain gauges and radars.

However, using such methods for global observation of precipitation is impractical

since they are expensive to install and operate over all land masses and certainly over

ocean. Satellites, on the other hand, are able to make observations all over the world.

1.1 Problem Statement

This thesis is an effort to show that opaque microwave frequency bands are useful

for estimating precipitation. (In this thesis, a microwave frequency band [in the

range of 1 to 300 GHz] is called opaque if channels that measure thermal radiation

in that band are not predominantly sensitive to surface variations. Otherwise, it is

called transparent. A channel measuring within a transparent band is called a window

21



channel.) This will be demonstrated in two ways: the development of an algorithm

for estimating instantaneous precipitation rates, and climatological studies based on

the resulting algorithm.

1.1.1 Precipitation-Rate Retrievals

An algorithm has been developed for data taken by the Advanced Microwave Sounding

Unit (AMSU) aboard the National Oceanographic and Atmospheric Administration

NOAA-15 satellite, a sun-synchronous polar-orbiting satellite. AMSU has channels in

the 54-GHz and 183-GHz opaque bands, and window channels near 23.8, 31.4, 89.0,

and 150.0 GHz [71]. The 54-GHz and 183-GHz opaque bands are due to oxygen and

water vapor resonance lines, respectively [87]. AMSU has also been launched aboard

the NOAA-16 and NOAA-17 satellites, and a nearly identical instrument has been

launched aboard the NASA Aqua satellite [51]. The algorithm has been applied to

data from all of these satellites.

Previous attempts to do satellite-based remote sensing of precipitation have in-

volved exclusively window channels. Some of these attempts have involved instru-

ments such as the Electrically Scanning Microwave Radiometer (ESMR) aboard

the Nimbus-5 satellite [91] and the Scanning Multichannel Microwave Radiometer

(SMMR) aboard the Nimbus-7 satellite [79]. Some recent and ongoing attempts

have involved the Tropical Rainfall Measurement Mission (TRMM) coordinated by

the U.S. National Aeronautics and Space Administration (NASA) and the National

Space Development Agency (NASDA) of Japan [13, 43], the Special Sensor Microwave

Imager (SSM/I) [49, 84], and the Advanced Microwave Sounding Radiometer for the

Earth Observing System (AMSR-E) [92].

An important aspect of the development of the algorithm is the analysis of infor-

mation content in single channels or groups of channels. The physics of the remote

sensing of precipitation is extremely complex and no adequate models exist, so a re-

trieval using direct inversion is very difficult. However, single channels or groups of

channels can yield useful information about properties of precipitating clouds or the

surrounding atmosphere that are important determinants of precipitation.
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Another important aspect of the algorithm involves resolution sharpening through

data fusion. AMSU consists of two modules, AMSU-A and AMSU-B, which provide

data at 50-km and 15-km nominal resolution, respectively. If possible, one would

prefer to do precipitation retrievals at 15-km instead of 50-km resolution because

small convective rain cells might not have significant signatures at 50-km resolution.

AMSU-A results have to be sharpened to 15-km resolution in order for the algorithm

to estimate rain rates at 15-km resolution.

1.1.2 Precipitation Climatology

The precipitation-rate retrieval algorithm is then used to develop a climatological

model for seasonal, diurnal, and spatial variations of rain rate. Previous attempts to

estimate global precipitation typically have involved multiple data sources of varying

types, i.e. radar and rain gauges over land, and satellites over ocean. For example,

Bellerby et al. developed a rain rate estimation method using data from TRMM and

the Geostationary Operational Environmental Satellite (GOES) [7], and Gruber et

al. compare two global precipitation data sets, the Global Precipitation Climatology

Project (GPCP) and the CPC (Climate Prediction Center) Merged Analysis of Pre-

cipitation (CMAP), which were derived by merging satellite and rain gauge data [31].

The climatological results presented in this thesis resulted from only the algorithm

developed for this thesis.

1.2 Thesis Outline

Chapter 2 addresses the physical basis of passive microwave remote sensing of pre-

cipitation. AMSU measures thermal radiation. Its measurements can be described

by the radiative transfer equation and depend on factors such as temperature pro-

file, water vapor profile, surface emissivity, and the electromagnetic properties of any

hydrometeors present in its field of view. The radiative transfer equation and the

complex nature of precipitation rule out the possibility of retrieving precipitation by

direct inversion. However, the opaque microwave bands have properties that allow
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them to reveal useful information about precipitation.

Chapter 3 addresses the signal processing techniques used in this thesis. Although

retrieving precipitation rate by direct inversion is very difficult, one can still process

the data in a way that reveals information about some of the most important factors

that contribute to precipitation. Some of the important signal processing methods

used in the algorithm include principal component analysis, neural nets, and data

fusion.

Chapter 4 addresses the algorithm developed for this thesis. The components of

the algorithm are described. The training, validation, and testing of the neural net

will also be described. Qualitative and quantitative evaluations of the algorithm will

also be presented.

Chapter 5 addresses polar precipitation and snow. During the course of the re-

search described in this thesis, the algorithm demonstrated the ability to detect and

estimate snow. This chapter will discuss why this is possible and how one can detect

polar precipitation and snow in other regions of the world.

Chapter 6 addresses precipitation climatology studies. First, climatology-based

validation and adjustments of the algorithm will be presented. Then, other climato-

logical studies involving rain rate averages, rain frequencies, and diurnal variations

will also be presented.

Chapter 7 provides a summary of this thesis.
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Chapter 2

Physical Basis of Passive

Microwave Remote Sensing of

Precipitation

2.1 Thermal Radiation and Radiative Transfer

Matter radiates thermal energy depending on its physical temperature and character-

istic properties. When a spaceborne radiometer makes an observation for a location

on the earth, the amount of energy it receives depends on contributions from the

various atmospheric and topographical constituents within its field of view (Fig. 2-1).

One useful quantity describing the amount of thermal radiation emitted by a body

is spectral brightness. Spectral brightness is a measure of how much energy a body

radiates at a specified frequency per unit receiving area, per transmitting solid angle,

per unit frequency. The spectral brightness of a blackbody1 (W · ster−1·m−2·Hz−1) is

a function of its physical temperature T (K) and frequency f (Hz) and is given by

the following formula:

1A blackbody is a body that absorbs all of the energy it receives [87]
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Figure 2-1: The major components of the radiative transfer equation (NOTE: θ 6= φ
since the surface of the earth is spherical)

B(f, T ) =
2hf3

c2(ehf/kT − 1)
(2.1)

where h is Planck’s constant (J·s), c is the speed of light (m/s), and k is Boltzmann’s

constant (J/K). For this thesis, f never exceeds 200 GHz, and T never falls below

100 K, so hf/kT < 0.1. Then, the Taylor series expansion for exponential functions

can be used to simplify Eq. 2.1.

ehf/kT − 1 =

1 +
hf

kT
+

1

2!

(
hf

kT

)2

+ · · ·

− 1 (2.2)

≈ hf

kT
(2.3)
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B(f, T ) ≈ 2kT

λ2
(2.4)

where λ is the wavelength (m) associated with the frequency f .

For blackbodies, given an observation of spectral brightness, one can calculate the

physical temperature of a blackbody:

T =
B(f, T )λ2

2k
(2.5)

Unlike blackbodies, grey bodies reflect some of the energy incident upon them, so

the intrinsic spectral brightness of a grey body is not equal to that of a blackbody.

For a grey body,

B(f, T ) = ε
2kT

λ2
(2.6)

where ε is the emissivity of the grey body. This equation can be rewritten as follows:

B(f, T ) =
2k

λ2
εT (2.7)

The quantity εT is called the brightness temperature of an unilluminated grey body,

i.e. the temperature of a blackbody radiating the same brightness. Another useful

property of a grey body is its reflectivity ρ, the fraction of incident energy that is

reflected. A body in thermal equilibrium will emit the same amount of energy that

it absorbs. Therefore, ρ+ ε = 1. For a blackbody, ε = 1, and ρ = 0.

In an atmosphere without hydrometeors, the brightness temperature observed

by an earth-observing spaceborne radiometer can be divided into four components

(Fig. 2-1):
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• Ta, the brightness temperature due to radiation emitted by atmospheric gases

that is not reflected off of the surface

• Tb, the brightness temperature due to radiation emitted by the surface

• Tc, the brightness temperature due to radiation that is emitted by atmospheric

gases that is reflected off the surface

• Td, the brightness temperature due to cosmic background radiation which passes

through the atmosphere twice and is reflected off of the surface

Thermal radiation can be attenuated through absorption or reflected off of the

surface before being received by a radiometer. The observed brightness temperature

is, therefore, a function of several variables such as the atmospheric temperature pro-

file, water vapor profile, the emissivity of the surface (as a function of satellite zenith

angle), and the absorption coefficients of atmospheric gases (as a function of altitude

z). Given the atmospheric absorption coefficients κa(z) (in Np per unit length)2, the

reflectivity of the surface ρ(θ), the altitude of the satellite H, the cosmic background

temperature Tcosmic (in K), and the satellite zenith angle θ, the brightness temper-

ature components can be computed as follows (assuming specular surface reflection

and the absence of hydrometeors):

Ta = sec θ
∫ H

z0

T (z′)κa(z
′)e−τ(z′,H) sec θdz′ (2.8)

Tb = [1− ρ(θ)]T (z0)e
−τ(z0,H) sec θ (2.9)

Tc = ρ(θ) sec θ · e−τ(z0,H) sec θ
∫ ∞

z0

T (z′)κa(z
′)e−τ(z0,z′) sec θdz′ (2.10)

Td = ρ(θ)Tcosmice
−2τ(z0,H) sec θ (2.11)

Then, the brightness temperature TB measured by the radiometer is the sum of

Ta, Tb, Tc, and Td.

2A neper (Np) represents a factor of e. 10 dB = 2.303 Np
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TB = sec θ
∫ H

z0

T (z′)κa(z
′)e−τ(z′,H) sec θdz′

+[1− ρ(θ)]T (z0)e
−τ(z0,H) sec θ

+ρ(θ) sec θ · e−τ(z0,H) sec θ
∫ ∞

z0

T (z′)κa(z
′)e−τ(z0,z′) sec θdz′

+ρ(θ)Tcosmice
−2τ(z0,H) sec θ (2.12)

where z0 is the altitude of the surface and τ(z1, z2) is the integrated atmospheric

absorption of the atmosphere between altitudes z1 and z2.

τ(z1, z2) =
∫ z2

z1

κa(z)dz (2.13)

Eq. 2.12 can be rewritten as follows (assuming that the contribution of thermal

radiation from altitudes above H to Tc is negligible):

TB =
∫ H

z0

T (z′)W (z′)dz′+[1−ρ(θ)]T (z0)e
−τ(z0,H) sec θ+ρ(θ)Tcosmice

−2τ(z0,H) sec θ (2.14)

where

W (z) = sec θ · κa(z)e
−τ(z,H) sec θ + ρ(θ) sec θ · e−τ(z0,H) sec θκa(z)e

−τ(z0,z) sec θ (2.15)

W (z) is called the weighting function.

Eq. 2.12 shows that the relationship between the thermal energy radiated and

the physical temperature of a body is linear, i.e. the brightness temperature can be

expressed as a linear integral of physical temperatures in the field of view, where these

radiated signals are uncorrelated and superimpose [87].
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2.2 Passive Microwave Remote Sensing of the At-

mosphere

The previous section shows that the brightness temperatures seen by a satellite-borne

radiometer depends on many variables in a highly complex and nonlinear fashion, so

retrievals of temperature and water vapor profiles by direct inversion would be very

difficult. However, the physics of the atmosphere still allows one to extract useful

information about the atmosphere from microwave frequency bands.

2.2.1 Temperature and Water Vapor Profiles

Two of the most important determinants of precipitation rate are the temperature

and water vapor profiles. The presence of oxygen and water vapor resonance fre-

quencies in the microwave spectrum and the presence of oxygen and water vapor in

the atmosphere results in frequency bands that are sensitive primarily to a specific

range of altitudes. Fig. 2-2 shows the zenith opacity as a function of frequency for the

range from 10 to 500 GHz for a ground-based zenith-observing radiometer. There are

absorption spikes around oxygen resonance frequencies such as those in the neighbor-

hood of 54, 118.75, and 424.76 GHz and at water vapor resonance frequencies such

as 183.31 GHz. A satellite-borne radiometer observing at these frequencies would

sense only the highest layers of the atmosphere. On the other hand, a satellite-borne

radiometer observing at frequencies away from the spikes would be sensitive to the

surface. By observing at frequency bands that are near the resonance frequencies but

still on the sides of the spikes, one can capture information on conditions at specific

layers of the atmosphere.

The Advanced Microwave Sounding Unit (AMSU) focuses primarily on the 54-

GHz oxygen band and the 183-GHz water vapor band. Fig. 2-3 shows the weighting

functions of the channels on AMSU.

Opaque microwave channels have been used with great success to retrieve atmo-

spheric conditions. Rosenkranz has used AMSU-A and AMSU-B data from NOAA
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Figure 2-2: Zenith opacity for the microwave spectrum

Figure 2-3: Weighting functions of AMSU-A and AMSU-B channels
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satellites to estimate temperature and water vapor profiles [72, 73]. Shi has used

AMSU-A to estimate temperature profiles [75]. Blackwell et al. used the 54-GHz and

118-GHz bands aboard the NPOESS (National Polar-Orbiting Environmental Satel-

lite System) Aircraft Sounder Testbed-Microwave (NAST-M) [9]. Leslie et al. have

since then added the 183-GHz and 425-GHz bands to NAST-M [54, 55, 56].

2.2.2 Clouds and Precipitation

Clouds and precipitation result from humid air that rises, cools, and condenses. Pre-

cipitation typically occurs in two forms: convective and stratiform. Stratiform pre-

cipitation occurs when one air mass slides under or over another as in a cold or warm

front causing the upper air mass to cool and the water vapor within it to condense.

Such precipitation can be spread out. Convective precipitation is initiated by insta-

bilities in the atmosphere caused by cold, dense air being supported by warm, humid,

and less dense air. Such an instability results in the warm, humid air escaping upward

and cooling. Water vapor in this ascending air mass condenses and releases latent

heat. The latent heat warms the surrounding air which pushes the air mass and the

water and ice particles that have formed futher upward. This cycle continues until

the original warm humid air mass has cooled to the temperature of the surrounding

cooler air [37, 85]. The tops of convectives clouds spew forth ice particles and can

reach more than 10 km above sea level [38]. It is possible for convective precipitation

to occur within stratiform precipitation.

Several factors can affect precipitation rate. Higher degrees of instability caused by

large vertical temperature gradients can force ice particles higher in the atmosphere

causing such particles to pick up more moisture and grow. Precipitation amounts

are limited by the water vapor available in the atmosphere, so higher concentrations

of water vapor can result in higher precipitation rates. Warmer surface air also can

contribute to higher precipitation rates because warmer air can hold more water

vapor.
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Remote Sensing Using Opaque Channels

Channels in the 54-GHz and 183-GHz bands can provides important clues about

factors such as cloud-top altitude, temperature profile, water vapor profile, and par-

ticle size distribution. Because each channel is sensitive to a specific layer of the

atmosphere (Fig. 2-3), it is possible to extract information about cloud-top altitude.

Precipitating clouds will exhibit perturbations in channels whose weighting functions

have significant values in the range of altitudes occupied by the cloud. For example,

one would not expect to detect low-lying clouds below 3 km in AMSU-A channel 14

since the weighting function of channel 14 peaks at ∼40 km, far above the tops of

nearly all precipitating clouds.

The 54-GHz and 183-GHz together provide information about particle size dis-

tribution through their sensitivities to different ranges of ice particle diameters. The

scattering of electromagnetic waves by spherical ice particles can be described by Mie

scattering coefficients. For a single spherical particle with radius r, given the power

scattered by the particle Ps and the power density of the incident plane wave Si, the

scattering cross-sectional area Qs of the particle is defined as follows:

Qs =
Ps

Si

(2.16)

Then, the Mie scattering coefficient is defined as as the ratio of Qs of the particle to

the geometric cross-sectional area of the particle:

ξs =
Qs

πr2
(2.17)

where r is the radius of the particle. Fig. 2-4 shows the Mie scattering coefficients

for fresh-water ice spheres at 54 GHz and 183.31 GHz as a function of diameter.

The permittivities of ice were calculated using formulas developed by Hufford [39],

and the Mie scattering coefficients were calculated using an iterative computational

procedure developed by Deirmendjian [22, 87]. At 183.31 GHz, the diameter of a

particle can increase to about 0.7 mm before its diameter can no longer be uniquely

determined by the Mie scattering coefficient curve. At 54 GHz, this limit is about 2.4
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Figure 2-4: Mie scattering coefficients for 54 GHz and 183.31 GHz at a temperature
of −55◦ C

mm. For diameters less than 0.7 mm, ξs for 54 GHz is smaller than that for 183.31

GHz by a factor of at least 100. These differences make it possible to use both bands

together to extract information about particle size distributions. The Mie scattering

coefficients in Fig. 2-4 were calculated for a temperature of −55◦ C (218 K), near

the temperature at an altitude of 10 km for the 1962 U.S. Standard Atmosphere [87].

Corresponding values for −10◦ C (263 K) were also calculated but did not differ from

those for −55◦ C by more than 7.2 percent.

In addition to particle size distribution, the 54-GHz and 183-GHz bands can also

provide information about particle abundance. While the particle size distribution

can be sensed from a comparison of the Mie scattering efficiencies in both bands,

particle abundance can be sensed from absolute scattering over volumes.

Another important variable in precipitation is cloud-top altitude. This is cor-

34



related with particle size density because only higher updraft velocities are able to

support larger particles and reach higher altitudes. The sensitivities of the 54-GHz

and 183-GHz channels to specific layers of the atmosphere suggest that these channels

will be able to provide information about cloud-altitude. Spina et al. used data from

the opaque 118-GHz band to estimate cloud-top altitudes [80].

Gasiewski showed that the 54-GHz and 118-GHz bands together could be used to

estimate cell-top altitude and hydrometeor density (in terms of mass per volume) [25,

26].

Remote Sensing Using Window Channels

Window channels contribute information about precipitation through their sensitivity

to the warm emission signatures of precipitating clouds against a sea background and

their sensitivity to scattering. In addition to opaque channels, AMSU also includes

window channels at 23.8, 31.4, 89.0, and 150 GHz. Weng et al. and Grody et al.

have developed a precipitation-retrieval algorithm for AMSU that relies primarily on

these channels [30, 89]. Some of the recent passive microwave instruments that have

focused on windows channels and have been used to study precipitation include the

following:

• The Special Sensor Microwave Imager (SSM/I) for the Defense Meteorological

Satellite Program (DMSP) [36, 49, 84]

• The Advanced Microwave Sounding Radiometer for the Earth Observing System

(AMSR-E) abord the NASA Aqua satellite [45, 92]

• The Tropical Rainfall Measurement Mission (TRMM) Microwave Imager (TMI)

aboard the TRMM satellite [43, 50]

One weakness of window channels is that they tend to be sensitive to the surface.

Over land, surface signatures can obscure the emission signatures of precipitation.

Also, window-channel-based precipitation-rate retrieval algorithms tend to use one

method over ocean and another over land [49, 92]. The opaque channels aboard
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AMSU enable the development of an algorithm that uses the same method over both

land and sea.

2.3 Description of the Relevant Instruments

2.3.1 AMSU on the NOAA-15, NOAA-16, and NOAA-17

Satellites

The Advanced Microwave Sounding Unit (AMSU) is a radiometer aboard the NOAA-

15, NOAA-16, and NOAA-17 satellites launched in May 1998, September 2000, and

June 2002, respectively. They are each equipped with the instruments AMSU-A and

AMSU-B. AMSU-A has 15 channels: one each at 23.8 GHz, 31.4 GHz, and 89.0 GHz,

and 12 channels in the 54-GHz oxygen absorption band (Table 2.1). AMSU-B has 5

channels at the following frequencies: 89.0 GHz, 150 GHz, 183.31±1 GHz, 183.31±3

GHz, and 183.31±7 GHz (Table 2.2). AMSU-A and AMSU-B measure brightness

temperatures at 50-km and 15-km nominal resolutions at nadir, respectively. AMSU-

A has a 3.33◦-diameter 3-dB beamwidth and observes at 30 angles spaced at 3.33◦

intervals up to 48.33◦ from nadir every 8.00 seconds. AMSU-B has a 1.1◦-diameter

beamwidth and observes at 90 angles spaced at 1.1◦ intervals up to 48.95◦ from

nadir every 2.67 seconds (Fig. 2-6(b)) [35, 61, 71]. AMSU covers a swath width of

∼2200 km. NOAA-15, NOAA-16, and NOAA-17 are sun-synchronous polar orbiting

satellites with equatorial crossing times of about 7 AM/PM, 2 AM/PM, and 10

AM/PM, respectively, so together they observes most locations approximately six

times a day (Fig. 2-5).

The 15-km 89.0-GHz channel on AMSU-B was not used in this research because

this channel is not available on the Humidity Sounder for Brazil (HSB) described in

Sec. 2.3.2.
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Channel Channel Frequencies (MHz) Bandwidth (MHz)
1 23,800±72.5 2×125
2 31,400±50 2×80
3 50,300±50 2×80
4 52,800±105 2×190
5 53,596±115 2×168
6 54,400±105 2×190
7 54,940±105 2×190
8 55,500±87.5 2×155
9 57,290.344±87.5 2×155
10 57,290.344±217 2×77
11 57,290.344±322.2±48 4×35
12 57,290.344±322.2±22 4×15
13 57,290.344±322.2±10 4×8
14 57,290.344±322.2±4.5 4×3
15 89,000±1000 2×1000

Table 2.1: AMSU-A Channels

Channel Center Frequencies (GHz) Bandwidth (GHz)
1 89±0.9 2×1
2 150±0.9 2×1
3 183.31±1 2×0.5
4 183.31±3 2×1
5 183.31±7 2×2

Table 2.2: AMSU-B Channels
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Figure 2-5: Orbital patterns of the NOAA-15, NOAA-16, NOAA-17, and Aqua satel-
lites

2.3.2 AMSU/HSB on the Aqua Satellite

We also use data from the NASA Aqua satellite which was launched in May 2002. It is

equipped with AMSU and which is identical to AMSU-A aboard the NOAA satellites,

and the Humidity Sounder Brazil (HSB) which is identical to AMSU-B but without

the 89.0-GHz channel [51]. The nominal resolutions of AMSU and HSB are 40.5 and

13.5 km, respectively. Aqua has an equatorial crossing time of about 1:30 AM/PM

(Fig. 2-5) [3, 51, 66]. The scan pattern of AMSU/HSB is slightly different from that

of AMSU-A/B on the NOAA satellites in that the path traced by one AMSU swath

is more parallel to that traced by a nearly coincident HSB swath (Fig. 2-6).
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Figure 2-6: Scan patterns of (a) Aqua AMSU/HSB and (b) AMSU-A/B on NOAA-
15, NOAA-16, and NOAA-17. AMSU and AMSU-A spots are labeled with blue +’s
and HSB and AMSU-B spots with red dots
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Chapter 3

Signal Processing and Estimation

Techniques

This chapter describes some of the important signal processing and estimation con-

cepts involved in this thesis. The physics of precipitation is extremely complicated

and nonlinear to the extent that developing an adequate model would be extremely

difficult. However, signal processing techniques can be used to reveal useful informa-

tion about some important degrees of freedom in precipitation. The retrieval method

described in this thesis is based on statistical methods.

3.1 Principal Component Analysis (PCA)

One important concept in this thesis is signal separation. Although precipitation is

very complex, nonstationary, and sporadic, one can process the data in a way that

adequately separates the different degrees of freedom that affect precipitation.

Principal Component Analysis (PCA) is a linear method for reducing the dimen-

sionality of a data set of interrelated variables. PCA transforms the data into a

set of uncorrelated random variables that captures all of the variance of the original

data set and assigns as much variance as possible to the fewest number of variables.

PCA is also known by other names such as singular value decomposition (SVD) and

Karhunen-Loève transform (KLT).
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PCA is useful for data compression. This feature can be critical in problems

related to the compression of satellite data where a large amount of data must be

downloaded from a satellite using a communications link with limited bandwidth and

in situations where computational resources are limited. Blackwell used projected

principal component transform, a variant of PCA, to compress data for use in esti-

mating atmospheric temperature profiles. This reduced the number of inputs and,

as a result, simplified the neural net, created a more stable neural net, and reduced

the training time [8, 10]. Cabrera-Mercader used Noise-Adjusted Principal Compo-

nents (NAPC) to compress simulated NASA Atmospheric Infrared Sounder (AIRS)

data [11].

PCA can also be used to filter out noise in data. Several different versions or

extensions of PCA have been used to eliminate various types of noise. A variant

of PCA has been used to remove signatures of the surface from passive microwave

data for the purpose of detecting and characterizing precipitating clouds [14]. PCA is

also an important part of blind multivariate noise estimation and filtering algorithms

such as Iterative Order and Noise estimation (ION) and an extension of ION that is

capable of estimating mixing matrices [52, 53, 62, 63].

3.1.1 Basic PCA

Here, a definition of basic PCA is presented. For a random vector x of p random

variables, the principal components of x can be defined inductively. The first principal

component is the product αT
1 x where α1 is a unit-length vector that maximizes the

variance of αT
1 x.

α1 = argmax‖α‖=1V ar(α
Tx) (3.1)

where V ar denotes the variance of a random variable. Each of the other principal

components are defined as follows: the nth principal component is the product αT
nx

where αn is a unit-length vector that is orthogonal to α1, ..., αn−1 that maximizes

the variance of αT
nx.
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αn = argmax‖α‖=1,α⊥αi∀i=1,...,n−1V ar(α
Tx) (3.2)

α1, ..., αp are derived in [44]. The nth principal component is the product αT
nx

where αn is the eigenvector associated with the nth highest eigenvalue of the covari-

ance matrix Λx of x.

In this thesis, the definitions of PCA and the term principal component follow the

convention of [44].

3.1.2 Constrained PCA

In addition to basic PCA, the algorithm developed in this thesis uses a variation of

PCA known as constrained PCA. This form of PCA finds principal components that

are constrained to be orthogonal to a given subspace [44]. It can be used to filter out

noise in remote sensing data. Constrained PCA has been used to filter out signatures

of surface variations from microwave remote sensing data [14].

Filtering out unwanted signatures might involve the following steps:

1. Select a set of data that captures a good representation of the type of noise to

be filtered without capturing too much of the variation of the signal of interest

2. Apply basic PCA to the resulting subset of data

3. Examine the resulting principal components for sensitivity to the type of noise

to be filtered out

4. Project the data onto the subspace orthogonal to the noise-sensitive principal

components

5. Apply basic PCA to the data resulting from the projection

The principal components resulting from steps 2 and 5 will be called pre-constraint

principal components and post-constraint principal components, respectively, as in [14].
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Figure 3-1: The structure of a perceptron

3.2 Neural Nets

Neural nets are computational structures that were developed to mimic the way bio-

logical neural nets learn from their environment and are useful for pattern recognition

and classification. Neural nets can be used to learn and compute functions for which

the relationships between inputs and outputs are unknown or computationally com-

plex.

There are a variety of neural nets such as feedforward neural nets (sometimes

called multilayer perceptrons [58]), Kohonen self-organizing feature maps, and Hop-

field nets [34, 58]. The type of neural net used in this thesis is the feedforward neural

net.

3.2.1 Structure of Neural Net

The basic structural element of feedforward neural nets is called a perceptron. It

computes a function of the weighted sum of inputs and a bias as shown in Fig. 3-1.

y = f

(
n∑

i=1

wixi + b

)
(3.3)
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Figure 3-2: A 2-layer feedforward neural net with one output node

where xi is the ith input, wi is the weight associated with the ith input, b is the bias,

f is the transfer function of the perceptron, and y is the output.

Perceptrons can be combined to form a multilayer network as shown in Fig. 3-2.

In Fig. 3-2, xi is the ith input, n is the number of inputs, wij is the weight associated

with the connection from the ith input to the jth node in the hidden layer, bi is the

bias of the ith node, m is the number of nodes in the hidden layer, f is the transfer

function of the perceptrons in the hidden layer, vi is the weight between the ith node

and the output node, c is the bias of the output node, g is the transfer function of

the output node, and y is the output. Then,

y = g

 m∑
j=1

vjf

(
n∑

i=1

wijxi + bj

)
+ c

 (3.4)
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Figure 3-3: Neural net transfer functions

For this thesis, f and g are defined as follows:

f(x) = tanh x =
ex − e−x

ex + e−x
(3.5)

g(x) = x (3.6)

The function tanhx is approximately linear in the range −0.6 ≤ x ≤ 0.6, and

approaches 1 as x goes to ∞ and -1 as x goes to −∞, so it has a nonlinearity that is

not too complex (Fig. 3-3).

This neural net topology is good for situations in which one wants to develop a

simple nonlinear estimator whose output depends approximately monotonically on

each input.
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3.2.2 Training Neural Nets

The neural nets for this thesis were trained using the Levenberg-Marquardt train-

ing algorithm. Marquardt developed an efficient algorithm (called the Marquardt-

Levenberg algorithm in [32]) for nonlinear least-squares parameter estimation [60].

Hagan and Menhaj incorporated this algorithm into a backpropagation training al-

gorithm for feedforward neural nets [32].

The weights of the neural net were initialized using the Nguyen-Widrow method

in order to facilitate convergence of the neural net weights during training [64].

The vectors used to train and evaluate the neural nets were divided into three

disjoint sets:

• The training set, the set used to determine how the weights of the neural net

are to be adjusted during the training

• The validation set, the set used to determine when the training should stop

• The testing set, the set used to evaluate the resulting neural net

These definitions are from [65].

One of the challenges encountered in the course of developing an estimator involved

dealing with an output range that covered several orders of magnitude. Chapter 4

describes how this was accomplished.

3.3 Data Fusion

Data fusion is a very broad area involving the combination of information from differ-

ent sources. A working group set up by the European Association of Remote Sensing

Laboratories and the French Society for Electricity and Electronics has adopted the

following definition of data fusion [88]:

“Data fusion is a formal framework in which are expressed means and

tools for the alliance of data originating from different sources. It aims at
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obtaining information of greater quality; the exact definition of ‘greater

quality’ will depend upon the application.”

Review papers have referred to three levels of data fusion: measurement, fea-

ture, and decision [33, 67, 88]. The measurement level is sometimes called the pixel

level [67]. The algorithm described in Chapter 4 involves the measurement and deci-

sion levels. In this thesis, nontrivial uses of data fusion occur only at the measurement

level.

Some of the applications of image fusion (or data fusion applied to two-dimensional

data) include image sharpening or enhancement [86], feature enhancement, and re-

placement of missing or faulty data [67]. For this research, nonlinear data fusion is

applied to sharpen images. Rosenkranz developed a method for nonlinear geophysical

parameter estimation through multiresolution data fusion [68, 69, 70].
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Chapter 4

The Precipitation Retrieval

Algorithm

This chapter1 describes the structure and components of the precipitation-rate re-

trieval algorithm and a history of the development of the the algorithm.

4.1 Structure of the Algorithm

Chapter 2 showed that estimation by a physics-based direct inversion of the data

would be difficult because of the highly complex and nonlinear dependence of radio-

metric observations on atmospheric parameters and properties of any existing hy-

drometeors. Therefore, a statistics-based method has been employed.

The basic structure of the algorithm includes some signal processing components

and a neural net as shown in Fig. 4-1. The signal processing components process the

data into forms that characterize the most important degrees of freedom related to

precipitation rate such as atmospheric temperature profile, water vapor profile, cloud-

top altitude, particle size distribution, and vertical updraft velocity. The neural net

is trained to learn the nonlinear dependencies of precipitation rate on these variables.

The dependence of precipitation rate on these variables should be monotonic, so the

1Permission has been granted by the IEEE to include material from the following paper: F.W.
Chen and D.H. Staelin, “AIRS/AMSU/HSB Precipitation Estimates,” IEEE Transactions on Geo-
science and Remote Sensing, vol. 41, no. 2, pp. 410-417, Feb. 2003.
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Figure 4-1: Basic structure of the algorithm

neural net does not need to be complicated. A feedforward neural net with one hidden

layer of tangent sigmoid nodes (with transfer function f(x) = tanh x) and one linear

output node should be sufficient (Fig. 3-2) [58].

The most recent version of the precipitation retrieval algorithm is described in

Figs. 4-2 and 4-3. Different stages of the development of the algorithm are presented

in [15, 16, 17, 81, 82].

4.2 Signal Processing Components

This section describes the signal processing components which process AMSU data

into forms that characterize information about the degrees of freedom most relevant

to precipitation rate. An effort has been made to make the inputs to the neural net

as insensitive to surface variations as possible so that the algorithm can be applied

over land and sea.

4.2.1 Limb-and-Surface Corrections

AMSU observes at angles up to 49◦ away from nadir. For angles further away from

nadir, electromagnetic energy originating from a given altitude and atmospheric state

would have to travel longer paths before reaching the radiometer and, therefore,

would be subject to more absorption and scattering effects. This results in scan-angle

dependent effects in brightness temperature images as shown in Fig. 4-4(a). A limb-

and-surface correction method for AMSU-A channels 4-8 brightness temperatures is

needed in order to make precipitation-induced perturbations more apparent and for

extracting information about atmospheric conditions. AMSU-A channels 4 and 5 will
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Figure 4-2: Block diagram of the algorithm, part 1

Figure 4-3: Block diagram of the algorithm, part 2
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AMSU-A Channel Inputs used for limb-and-surface correction
4 AMSU-A channels 4-12, land/sea flag, cosφ
5 AMSU-A channels 5-12, land/sea flag, cosφ
6 AMSU-A channels 6-12, cosφ
7 AMSU-A channels 6-12, cosφ
8 AMSU-A channels 6-12, cosφ

Table 4.1: Data used in limb-and-surface correction of AMSU-A channels

also be corrected for surface variations since they are sensitive to the surface. For these

two channels, brightness temperature for pixels over ocean will be corrected to what

might be observed for the same atmospheric conditions over land. AMSU-A channels

9-14 brightness temperatures are not corrected because they are not significantly

perturbed by clouds and therefore are not used for anything besides limb-correction.

Limb-and-surface correction was done by training a neural net of the type shown in

Fig. 3-2 to estimate nadir-viewing brightness temperatures. For each pixel, the neural

net uses brightness temperatures from several channels at that pixel to estimate the

brightness temperature seen at the pixel closest to nadir at a nearly identical latitude

and at nearly the same time. It is assumed that the temperature field does not

vary significantly over one scan. Limb-and-surface correction was done for AMSU-A

channels 4 to 8. The data used to correct each of those channels are listed in Table 4.1.

No attempt has been made to correct for the scan-angle-dependent asymmetry in the

brightness temperatures. These neural nets were trained using data between 55◦ N

and 55◦ S from seven orbits spaced over one year. Channels 4 and 5 are surface

sensitive, so they were trained to estimate brightness temperatures that would be

seen over land.

Fig. 4-4 shows a sample of (a) uncorrected and (b) limb-and-surface-corrected

54.4-GHz brightness temperatures. The shapes of precipitation systems over Texas

and the Mexico-Guatemala border are more apparent after the limb correction. In

Fig. 4-4(a) the difference between brightness temperatures at nadir and the swath

edge is as high as 18 K. In Fig. 4-4(b), the angle-dependent variation is less than 3

K.
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Figure 4-4: NOAA-15 AMSU-A 54.4-GHz brightness temperatures for a northbound
track on 13 Sept 2000. (a) Uncorrected, and (b) Limb-and-surface corrected
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One limitation of the training is that one cannot really know what the nadir-

viewing brightness temperature is supposed to be when there is precipitation.

4.2.2 Precipitation Detection

The 15-km-resolution precipitation-rate retrieval algorithm, summarized in Figs. 4-2

and 4-3, begins with identification of potentially precipitating pixels. Channels used

for this purpose should be sensitive to precipitation but should not exhibit large angle-

dependent variations and surface variations. Unprocessed brightness temperatures

from AMSU-A channels 4-14 are not used directly because they exhibit excessive

angle-dependent variations or have weighting functions that peak far above the range

of altitudes in which most precipitation exists (Fig. 2-3). AMSU-A channels 1, 2, 3,

and 15, and the AMSU-B 89.0-GHz and 150-GHz channels were not used because

of their sensitivity to surface variations. The AMSU-B channels ordered by opacity

are as follows: 89-GHz (most transparent), 150-GHz, 183 ± 7-GHz, 183 ± 3-GHz,

and 183 ± 1-GHz (most opaque) (Fig. 2-3). The 183 ± 7-GHz channel is the least

opaque channel that is sensitive to precipitation but does not show excessive surface

variations. Fig. 4-5 shows brightness temperatures at 150 GHz and 183 ± 7 GHz

over the southern United States and Mexico. This figure shows the varying degrees

of sensitivity to the surface of the 150-GHz channel. In this channel, the contrast

between land and sea is greatest around the Gulf of California. On the other hand,

the 183±7-GHz channel does not show any surface variations while still being sensitive

to most of the precipitation seen in the 150-GHz channel.

The 183 ± 7-GHz channel is reasonably good for detecting precipitation also be-

cause the angle-dependent variation of precipitation-free brightness temperatures is

small when compared to the variation due to precipitation. All 15-km pixels with

brightness temperatures at 183± 7 GHz that are below a threshold T7 are flagged as

potentially precipitating, where

T7 = 0.667(T53.6 − 248) + 252 + 6 cos θ (4.1)
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and where θ is the satellite zenith angle and T53.6 is the spatially filtered limb-corrected

53.6-GHz brightness temperature obtained by selecting the warmest brightness tem-

perature within a 7× 7 array of AMSU-B pixels. It has been seen that the threshold

T7 can vary with atmospheric temperature. This threshold was determined empiri-

cally. However, the 183 ± 7-GHz channel can become sensitive to surface variations

in very cold, dry atmospheric conditions. Fig. 4-6 shows 183 ± 7-GHz brightness

temperatures in such conditions. The edges of the Great Lakes and Hudson Bay are

evident in this image. When T53.6 is less than 248 K, the 183 ± 3-GHz brightness

temperature is compared to a threshold T3.

T3 = 242.5 + 5 cos θ (4.2)

The thresholds T7 and T3 are slightly colder than a saturated atmosphere would be,

implying the presence of a microwave-absorbing or scattering cloud.

It is possible for the 183 ± 3-GHz and the 183 ± 1-GHz channels to be sensitive

to surface variations. Fig. 4-7 shows 183 ± 1-GHz brightness temperatures images

over the Laptev Sea (Russia) taken ∼23.6 hours apart. Inside the black rectangles is

a feature that does not move over time. If T53.6 is less than 242 K, then the pixel is

assumed not to be precipitating.

Pixels with invalid or missing data from AMSU-A channels 1-12, and 15, and

AMSU-B channels 2 to 5 are treated as potentially precipitating even though no

retrieval will be done over them. Pixels where the altitude is higher than a latitude-

dependent threshold A(Θlat) are also treated as potentially precipitating (Θlat is in

units of degrees and is defined to be positive for the northern hemisphere).

A(Θlat) =


2000 m for ‖Θlat‖ < 60

1500 m for 60 ≤ Θlat < 70

500 m otherwise

(4.3)

These decisions minimize the likelihood that corrupt data will corrupt the compu-

tation of cloud-cleared brightness temperatures over pixels without corrupt data.
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Figure 4-5: NOAA-15 AMSU-B brightness temperatures for northbound tracks on 13
Sept 2000 at (a) 150 GHz, and (b) 183± 7 GHz
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Figure 4-6: NOAA-15 AMSU-B 183± 7-GHz brightness temperatures, 20 Jan 2000,
1339 to 1349 UTC

Cloud-clearing is described in Sec. 4.2.3.

4.2.3 Cloud Clearing by Regional Laplacian Interpolation

This algorithm involves spatial processing of data, so the estimate at a pixel could

depend not only on the information at that pixel but also on that in some surrounding

pixels. This is useful for collecting information about the atmospheric conditions

surrounding precipitating regions, such as temperature profile. Sec. 4.2.4 describes

the use of temperature-profile principal components in the algorithm.

After the precipitation mask has been computed, it is used to filter the brightness

temperature data so that the precipitation-induced signatures do not appear. It has

been observed that in the absence of precipitating clouds and surface features, local
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Figure 4-7: NOAA-15 AMSU-B 183±1-GHz brightness temperatures over a dry hole
on 14 Feb 2002, 0754 UTC (left), and 15 Feb 2002, 0731 UTC (right)

brightness temperature images approximately satisfy Laplace’s equation:

∇2Φ = 0 (4.4)

where Φ is a scalar field (in this case brightness temperatures). This approximation

appears to be reasonably valid for our purposes over distances of several hundred km.

Precipitation-induced signatures from brightness temperature data are filtered out

by forcing data within potentially precipitating regions to satisfy Laplace’s equation

given boundary conditions determined by the precipitation mask. An example of this

is shown in Fig. 4-8. This technique was used in [24].

The Morphology of Precipitation

For each region, before Laplacian interpolation takes place, special processing may

be required depending on the morphology and location of the region. For this thesis,

pixels flagged as potentially precipitating are divided into disjoint, non-adjacent 4-

connected regions2. The types of regions that this cloud clearing procedure could

2A 4-connected region is a set of pixels with an ordering of all pixels (possibly with some repetition)
such that each pair of consecutive pixels are adjacent vertically or horizontally. For an 8-connected
region, consecutive pixels can be vertically, horizontally, or diagonally adjacent.
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Figure 4-8: NOAA-15 AMSU-A 52.8-GHz brightness temperatures for a northbound
track on 13 Sept 2000 (a) before cloud-clearing, and (b) after cloud-clearing using
Laplacian interpolation. AMSU-A pixels within potentially precipitating regions are
marked with x’s.
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Figure 4-9: Types of regions encountered by the cloud clearing method. Boundary
pixels are shaded in red.

encounter can be classified into these four types:

1. Interior regions, regions that do not include points at the edge nor the corners

of the image being processed

2. Edge regions, regions that include points at the edge but not the corner of the

image being processed

3. Vertex regions (or corner regions), regions that include points at any of the

corners of the image but not an entire edge

4. Complete-edge regions, regions that include all of the pixels along one or more

edges

These four types are illustrated in Fig. 4-9. The boundary pixels of each region are

found by dilating by one pixel vertically and horizontally. Boundary pixels are not

part of the flagged regions.

Interior regions do not require any special processing before Laplacian interpola-

tion because their boundary points lie within the image.

Edge regions require extra steps in order to form a closed boundary over which

Laplacian interpolation can be done. The brightness temperatures at pixels along

the edge are linearly interpolated based on the boundary points that are at the edge.

Then a new set of boundary points is formed that includes the first set of boundary

60



pixels and the portions of the edges in the edge region, and Laplacian interpolation is

done over the edge region without the pixels on the edge using this set of boundary

pixels. For example, for the edge region in Fig. 4-9 the cloud-cleared brightness

temperatures for the pixels between pixels A and B are assumed to be the linearly

interpolated brightness temperature based on those at A and B. Then, Laplacian

interpolation is done using the boundary pixels of the edge region along with the

pixels between A and B. Laplacian interpolation is not done over the pixels between

A and B.

For this thesis, Laplacian interpolation was not done on corner regions. The con-

vexity of the corner regions at corner points prevents interpolation of cloud-cleared

brightness temperatures along the portions of the edges that include corner points.

However, cloud-cleared brightness temperatures may be computed for some of the

pixels in a corner region. A method for processing such regions is described in Ap-

pendix A and may be implemented in the future. The amount of precipitation that

falls in corner regions is very small for data sets that are large enough. AMSU-

A/B data sets typically cover one orbit (∼ 770 AMSU-A scans). Aqua AMSU/HSB

granules cover 45 AMSU-A scans, but consecutive granules can be concatenated to

reduced the effect of ignoring precipitation in corner regions.

Complete-edge regions can occur when entire scans of data are invalid or miss-

ing. Laplacian interpolation can sometimes be done over portions of complete-edge

regions. Contiguous sets of rows or contiguous sets of columns that include an edge

are excluded from the interpolation process. In Fig. 4-10, the complete edge region

becomes an edge region, and linear interpolation can be done on the pixels between

pixels C and D before Laplacian interpolation. Some complete-edge regions will be-

come corner regions and therefore will not yield any useful information because the

current version of the algorithm ignores corner regions.

Channel-Specific Interpolation Masks

For AMSU-A channel 4 (52.8 GHz) the mask used to do Laplacian interpolation is

the one resulting from the precipitation detection method. However, for AMSU-A
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Figure 4-10: Salvaging pixels in a complete-edge region. Eliminating the bottom two
rows of the image on the left leaves a portion that can be treated as an edge region.

channels 5-8, the mask used is slightly different. The points selected for Laplacian

interpolation do not include those for which the magnitude of the perturbation in

channel 4 is less than 1 K. At such pixels, the precipitation signature is assumed to

be weak enough that it would not significantly perturb channels 5-8.

4.2.4 Temperature-Profile and Water-Vapor-Profile Princi-

pal Components

One important determinant of precipitation is the temperature profile. Warmer at-

mospheres can hold more water vapor and result in higher vertical updraft velocities.

Therefore, inputs to the neural net in Fig. 4-1 should include some that have informa-

tion about temperature profile. For each of AMSU-A channels 4 to 8, the brightness

temperatures were corrected for limb and surface effects and then processed to elimi-

nate precipitation signatures with the methods described in Secs. 4.2.1 to 4.2.3. The

corrected brightness temperatures from all five of these channels could have been

inputs to the neural net in Fig. 4-1, but it was determined that a more compact rep-

resentation of these channels was sufficient. PCA was applied to these five channels,

and the first three principal components were found to be sufficient for characterizing

the temperature profile. Adding the fourth and fifth principal components did not

significantly improve the training of the neural net.

Another important determinant of precipitation is the water vapor profile. Higher
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concentrations of water vapor can result in higher precipitation rates. The water-

vapor principal components are computed using AMSU-A channels 1, 2, 3, and 15,

and the AMSU-B 150-, 183± 7-, 183± 3-, and 183± 1-GHz channels. Some of these

channels are sensitive to surface variations. Therefore it is necessary to project the

vector of these observations onto a subspace that is not significantly sensitive to sur-

face variations. Constrained PCA, which was described in Sec. 3.1.2, was used to

compute the water-vapor principal components. A set of pixels without precipita-

tion and with different types of surfaces was selected to computed surface-sensitive

eigenvectors using PCA. The surface-sensitive eigenvectors were determined by visual

inspection of the pre-constraint principal components for correlation with surface fea-

tures (e.g. land/sea boundaries). Then, a set of data that also included precipitation

was selected. The observations over this set were projected onto a linear subspace

that was orthogonal to the subspace spanned by the surface-sensitive eigenvectors.

Then, PCA was done on the resulting data set in order to determine the water-vapor

principal components. It was found that two water-vapor principal components were

adequate for characterizing the eight channels.

4.2.5 Image Sharpening

15-km retrievals are useful. Because of the nonlinear relationship between precipi-

tation and atmospheric conditions, data collected at 50-km resolution can miss or

weakly detect smaller rain cells that contribute a significant amount of rainfall.

15-km retrievals require 15-km data. 54-GHz perturbations are calculated at 50-

km. The information contained in such images might not be suitable for doing 15-km

retrievals. A method for producing 15-km images of 54-GHz perturbations is needed.

This step requires some image sharpening.

Within regions flagged as potentially precipitating, strong precipitation is gener-

ally characterized by cold cloud-induced perturbations of the AMSU-A tropospheric

temperature sounding channels in the range 52.5-55.6 GHz. Examples of 183±7-GHz

data and the corresponding 50-km cold perturbations at 52.8 GHz are illustrated in

Fig. 4-11(a) and (c). Physical considerations and aircraft data show that convective
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cells near 54 GHz typically appear slightly off-center and less extended relative to the

183-GHz image [9, 27]. The small interpolation errors in converting 54-GHz pertur-

bations to 15-km contribute to the total errors and discrepancies discussed in Sec. 4.4.

These 50-km-resolution 52.8-GHz perturbations ∆T50;52.8 are then used to infer the

perturbations ∆T15;52.8 (Fig. 4-11(d)) that might have been observed at 52.8 GHz with

15-km resolution had those perturbations been distributed spatially in the same way

as the cold perturbations observed at either 183±7 or 183±3 GHz, the choice between

these two channels being the same as described above. This requires the bilinearly

interpolated 50-km AMSU data to be resampled at the HSB beam positions. 50-km

perturbations in the 54-GHz band ∆T50;54 are sharpened to 15-km resolution ∆T15;54

by computing the value of ∆T15;54 that will make the ratio of the 15-km perturbation

to the 50-km perturbation for the 54-GHz band equal to corresponding ratio for the

183-GHz band.

∆T15;54

∆T50;54

=
∆T15;183

∆T50;183

(4.5)

The perturbation near 183 GHz is defined to be the difference between the observed

radiance and the appropriate threshold given by Eq. 4.1 or 4.2. The perturbation

∆T50;54 near 54 GHz is defined to be the difference between the observed radiance

and the Laplacian-interpolated radiance based on those pixels surrounding the flagged

region [82]. Any warm perturbations in the images of ∆T15;183 and ∆T50;54 are set to

zero. Then, these inferred 15-km perturbations can be computed for five AMSU-A

channels using the following formula

∆T15;54 =
∆T15;183

∆T50;183

∆T50;54 (4.6)

To prevent this computation from becoming unstable, the hyperbolic tangent function

is applied to the ratio of the 183-GHz perturbations.

∆T15;54 = 20 tanh

(
∆T15;183

20∆T50;183

)
∆T50;54 (4.7)

Given the filter used to filter ∆T15;183 to 50-km resolution, the ratio ∆T15;183/∆T50;183
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Figure 4-11: Frontal system on 13 Sept 2000, 0130 UTC. (a) Brightness tempera-
tures (K) near 183 ± 7-GHz. (b) Brightness temperatures (K) near 183 ± 3-GHz.
(c) Brightness temperature perturbations (K) near 52.8 GHz. (d) Inferred 15-km-
resolution brightness temperature perturbations (K) near 52.8 GHz.

should not exceed 7.

Fig. 4-11 shows an example of image sharpening. Fig. 4-11(d) shows ∆T15;52.8

50-km 52.8-GHz perturbations sharpened to 15-km resolution for a frontal system.

Visually, this image appears to be appropriate for use in estimating 15-km precipita-

tion rates.

4.3 Development of the Algorithm

The current AMSU/HSB precipitation retrieval algorithm is based on NOAA-15

AMSU-A/B comparisons with NEXRAD over the eastern United States during 38 or-
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16 Oct 1999, 0030 UTC 30 Apr 2000, 1430 UTC
31 Oct 1999, 0130 UTC 14 May 2000, 0030 UTC
2 Nov 1999, 0045 UTC 19 May 2000, 0015 UTC
4 Dec 1999, 1445 UTC 19 May 2000, 0145 UTC
12 Dec 1999, 0100 UTC 20 May 2000, 0130 UTC
28 Jan 2000, 0200 UTC 25 May 2000, 0115 UTC
31 Jan 2000, 0045 UTC 10 Jun 2000, 0200 UTC
14 Feb 2000, 0045 UTC 16 Jun 2000, 0130 UTC
27 Feb 2000, 0045 UTC 30 Jun 2000, 0115 UTC
11 Mar 2000, 0100 UTC 4 Jul 2000, 0115 UTC
17 Mar 2000, 0015 UTC 15 Jul 2000, 0030 UTC
17 Mar 2000, 0200 UTC 1 Aug 2000, 0045 UTC
19 Mar 2000, 0115 UTC 8 Aug 2000, 0145 UTC
2 Apr 2000, 0100 UTC 18 Aug 2000, 0115 UTC
4 Apr 2000, 0015 UTC 23 Aug 2000, 1315 UTC
8 Apr 2000, 0030 UTC 23 Sep 2000, 1315 UTC
12 Apr 2000, 0045 UTC 5 Oct 2000, 0130 UTC
12 Apr 2000, 0215 UTC 6 Oct 2000, 0100 UTC
20 Apr 2000, 0100 UTC 14 Oct 2000, 0130 UTC

Table 4.2: List of rainy orbits used for training, validation, and testing

bits that exhibited significant precipitation and were distributed throughout the year.

These orbits are listed in Table 4.2. The primary precipitation-rate retrieval products

of AMSU/HSB are 15- and 50-km-resolution contiguous retrievals over the viewing

positions of HSB and AMSU, respectively, within 43◦ of nadir. The two outermost

50-km and six outermost 15-km viewing positions on each side of the swath are omit-

ted due to the potentially excessive limb effects at such angles. After the algorithm

architectures for these two retrieval methods are presented below, the derivation of

the numerical coefficients characterizing the neural network is described.

The neural net in Fig. 4-3 produces 15-km precipitation-rate estimates using the

following inputs:

• Inferred 15-km perturbations at 52.8, 53.6, 54.4, 54.9, and 55.5 GHz (corre-

sponding to AMSU-A channels 4, 5, 6, 7, and 8, respectively)

• 183± 1-, 183± 3-, and 183± 7-GHz 15-km HSB data
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• Three principal components characterizing the original five corrected 50-km

AMSU-A temperature radiances

• Surface-insensitive principal components that characterize the window channels

at 23.8, 31.4, 50, and 89 GHz, plus the four HSB channels.

• sec θ

The relative insensitivity of these inputs to surface emissivity is important to the

success of this technique over land, ice, and snow.

The statistical nature of precipitation must be adequately addressed during the

training of the neural net. In addition to minimizing the RMS error between the

estimated rain rate and the ground truth, one should also make sure that the estimator

provides estimates that closely reflect the type of rain seen by the radiometer. Drizzle

can have precipitation rates as low as 0.25 mm/h while tropical downpours can have

rates as high as 200 mm/h [87]. Precipitation rates can have a lognormal distribution

with a standard deviation that is at least twice the mean [46].

This network was trained to minimize the RMS value of the difference between the

logarithms of the (AMSU + 1-mm/h) and (NEXRAD + 1-mm/h) retrievals; use of

logarithms reduced the emphasis on the heaviest rain rates, which were roughly three

orders of magnitude greater than the lightest rates. Adding 1 mm/h reduced the

emphasis on the lightest rain rates which are more noise-dominated. These intuitive

choices clearly impact the retrieval error distribution, and therefore further study

should enable algorithm improvements. Retrievals with training optimized for low

rain rates did not markedly improve that regime, however.

NEXRAD precipitation retrievals with 2-km resolution were smoothed to approx-

imate Gaussian spatial averages that were centered on and approximated the view-

angle-distorted 15- or 50-km antenna beam patterns. The accuracy of NEXRAD

precipitation observations is known to vary with distance, so only points beyond 30

km but within 110 km of each NEXRAD radar site were included in the data used

to train and test the neural nets.
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Eighty different networks were trained using the Levenberg-Marquardt algorithm,

each with different numbers of nodes and water-vapor principal components (Before

experiments using water-vapor principal components were done, it had been deter-

mined that the leading three temperature-profile principal components were sufficient

for characterizing the atmospheric temperature profile). A network with nearly the

best performance over the testing dataset was chosen; it used two surface-blind water-

vapor principal components, and only slightly better performance was achieved with

five water-vapor principal components with increased surface sensitivity. The final

network had one hidden layer with five nodes that used the tanh sigmoid function.

These neural networks are similar to those described in [82]. The resulting 15-km-

resolution precipitation retrievals are then smoothed to yield 50-km retrievals.

The 15-km retrieval neural network was trained using precipitation data from the

38 orbits listed in Table 4.2. During this period the radio interference to AMSU-B

was negligible relative to other sources of retrieval error. Each 15-km pixel flagged as

potentially precipitating using 183±7- or 183±3-GHz radiances (see Figs. 4-2 and 4-

3) was used either for training, validation, or testing of the neural network. For these

38 orbits over the United States, 15,160 15-km pixels were flagged and considered

suitable for training, validation, and testing. Half were used for training, and one

quarter were used for each of validation and testing, where the validation pixels were

used to determine when the training of the neural network should cease. Based on the

final AMSU and NEXRAD 15-km retrievals, approximately 14 and 38%, respectively,

of the flagged 15-km pixels appear to have been precipitating less than 0.1 mm/h for

the test set.

4.4 Retrieval Performance Evaluation

This section presents three forms of evaluation for this initial precipitation-rate re-

trieval algorithm:

• Representative qualitative comparisons of AMSU and NEXRAD precipitation-

rate images
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• Quantitative comparisons of AMSU and NEXRAD retrievals stratified by NEXRAD

rain rate

• Representative precipitation images at more extreme latitudes beyond the NEXRAD

training zone

4.4.1 Image Comparisons of NEXRAD and AMSU/HSB

Each NEXRAD comparison at 15-km resolution occurred within 8 min of a satellite

overpass; such coincidence is needed to characterize single-pixel retrievals because

convective precipitation evolves rapidly on this spatial scale. Although comparison

with instruments such as TRMM and SSM/I would be useful, their orbits unfortu-

nately overlap those of AMSU within 8 min so infrequently (if ever) that comparisons

over precipitation will be too rare to be useful until several years of data have been

analyzed. This challenge of simultaneity and the sporadic character of rain have re-

stricted most prior instrument comparisons (passive microwave satellites, radar, rain

gauges) to dimensions over 100 km and to periods of an hour to a month [1, 2]. The

uniformity and extent of the NEXRAD network offer a unique degree of simultaneity

on 15- and 50-km scales and even the ability to match the Gaussian shape of the

AMSU antenna beams.

Although these AMSU/HSB-NEXRAD comparisons are encouraging because they

involve single pixels and independent physics and facilities, further extensive analyzes

are required for real validation. For example, comparisons of precipitation averages

and differences over the same time/space units used to validate other precipitation

measurement systems (e.g., SSM/I [20], ATOVS, TRMM, rain gauges) will be needed

to characterize variances and systematic biases based on precipitation rate, type,

location, or season. These biases will include any present in the NEXRAD data used

to train the AMSU/HSB algorithm; once characterized, they can be diminished. Any

excess variance experienced for rain cells too small to be resolved by AMSU/HSB

can also eventually be better characterized, although it is believed to be modest for

cells with microwave signatures larger than 10 km. Smaller isolated cells contribute
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Figure 4-12: Precipitation rates (mm/h) above 0.5 mm/h observed on 13 Sept 2000,
0130 UTC. (a) 15-km-resolution NEXRAD retrievals, (b) 15-km-resolution AMSU
retrievals, (c) 50-km-resolution NEXRAD retrievals, and (d) 50-km-resolution AMSU
retrievals.

little to total rainfall. Sec. 6.1 presents an attempt to improve the estimator through

comparisons with AMSR-E rain rate estimates.

Fig. 4-12(a) and (b) presents 15-km-resolution precipitation retrieval images for

September 13, 2000 obtained from NEXRAD and AMSU, respectively. On this occa-

sion, both sensors yield rain rates over 50 mm/h at similar locations and lower rain

rates down to 0.5 mm/h over comparable areas. The revealed morphology is thus

very similar even though AMSU observes 6 min before NEXRAD, and they sense

altitudes that may be separated by several kilometers; rain falling at a nominal rate

of 10 m/s takes 10 min to fall 6 km.
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Figure 4-13: Comparison of AMSU and NEXRAD estimates of rain rate at 15-km
resolution.

4.4.2 Numerical Comparisons of NEXRAD and AMSU/HSB

Retrievals

Fig. 4-13 shows the scatter between the 15-km AMSU and NEXRAD rain-rate re-

trievals for the test pixels not used for training or validation. Fig. 4-14 shows the

scatter between the 50-km AMSU and NEXRAD rain-rate retrievals over all points

flagged as precipitating.

The relative sensitivity of AMSU and NEXRAD to light and heavy rain can be

seen from Fig. 4-14. In general, these figures suggest that AMSU responds less to the

highest radar rain rates, perhaps because AMSU is less sensitive to the bright-band

or hail anomalies that affect radar. They also suggest the risk of false rain detections

increases for AMSU retrievals below 0.5 mm/h at 50-km resolution, although further
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Figure 4-14: Comparison of AMSU and NEXRAD estimates of rain rate at 50-km
resolution.

study will be required. Greater accuracy at these low rates will require more space-

time averaging and careful calibration. The risk of overestimating rain rate also

appears to be limited. Only 3.3% of the total AMSU-derived rainfall was in areas

where AMSU saw more than 1 mm/h and NEXRAD saw less than 1 mm/h. Only

7.6% of the total NEXRAD-derived rainfall was in areas where NEXRAD saw more

than 1 mm/h and AMSU saw less than 1 mm/h. These percentages can be compared

to the total percentages of AMSU and NEXRAD rain that fell at rates above 1 mm/h,

which are 94 and 97, respectively. It is also interesting to see to what degree each

sensor retrieves rain when the other does not, and how much rain each sensor misses.

For example, of the 73 NEXRAD 15-km rain rate retrievals in Fig. 4-13 above 54

mm/h, none were found by AMSU to be below 3 mm/h, and of the 61 AMSU 15-km

retrievals above 45 mm/h, none were found by NEXRAD to be below 16 mm/h. Also,
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NEXRAD range 15-km resolution 50-km resolution
30-110 km 110-230 km 30-110 km 110-230 km

< 0.5 mm/h 1.0 1.4 0.5 0.5
0.5-1 mm/h 2.0 2.6 0.9 1.1
1-2 mm/h 2.3 2.7 1.1 1.5
2-4 mm/h 2.7 3.9 1.8 2.3
4-8 mm/h 3.5 7.4 3.2 5.2
8-16 mm/h 6.9 8.4 6.6 6.5
16-32 mm/h 19.0 17.2 12.9 14.6
> 32 mm/h 42.9 39.2 22.1 21.7

Table 4.3: RMS AMSU/NEXRAD discrepancies (mm/h) at 15-km and 50-km reso-
lution for pixels in the ranges 30-110 km and 110-230 km of NEXRAD radar sites

of the 69 NEXRAD 50-km rain rate retrievals in Fig. 4-14 above 30 mm/h, none were

found by AMSU to be below 5 mm/h, and of the 102 AMSU 50-km retrievals above

16 mm/h, none were found by NEXRAD to be below 10 mm/h.

Perhaps the most significant AMSU precipitation performance metric is the RMS

difference between the NEXRAD and AMSU rain rate retrievals; these are calculated

for AMSU and HSB pixels that are flagged as potentially precipitating and do not have

corrupted data. The pixels are grouped by retrieved NEXRAD rain rates in octaves.

Only pixels that were from the central 26 AMSU-A scan angles and central 78 AMSU-

B scan angles and were from regions between 30 and 110 km of any NEXRAD radar

site were included in these evaluations; only the outermost two AMSU-A angles on

each side were omitted. These comparisons used all 50-km pixels and only those 15-

km pixels not used for training or validation. The results are listed in Table 4.3. The

smoothing of the 15-km NEXRAD and AMSU results to nominal 50-km resolution

was consistent with an AMSU-A Gaussian beamwidth of 3.33◦.

The RMS agreement between these two very different precipitation-rate sensors

appears surprisingly good, particularly since a single AMSU neural network is used

over all angles, seasons, and latitudes. The 3-GHz radar retrievals respond most

strongly to the largest hydrometeors, especially those below the bright band near the

freezing level, while AMSU interacts with the general population of hydrometeors

in the top few kilometers of the precipitation cell, which may lie several kilometers
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above the freezing level. Much of the agreement between AMSU and NEXRAD rain-

rate retrievals must therefore result from the statistical consistency of the relations

between rain rate and its various electromagnetic signatures. It is difficult to say

how much of the observed discrepancy is due to each sensor or to say how well each

correlates with precipitation reaching the ground.

This study furthermore provided an opportunity for evaluation of radar data.

The RMS discrepancies between AMSU and NEXRAD retrievals were separately

calculated over all points at ranges from 110-230 km from any radar. For NEXRAD

precipitation rates below 16 mm/h, these rms discrepancies were approximately 40%

greater than those computed for test points at 30-110-km range. At rain rates greater

than 16 mm/h, the accuracies beyond 110 km were more comparable (Table 4.3).

The NEXRAD radar beams that are directed at angles farthest from zenith may

miss some low-altitude precipitation for regions further than 110 km away from any

NEXRAD site due to factors such as curvature of the earth’s surface and surface-based

obstructions (e.g. mountains). However, these beams are still able to sense heavy

precipitation at high altitudes over the same regions. Most points in the eastern U.S.

are more than 110 km from any NEXRAD radar site, and radar is even more sparse

in the western half.

4.4.3 Global Retrievals of Rain and Snow

One of the principal Aqua validation activities involves testing and tuning of the

precipitation retrievals for climates not well represented in the NEXRAD training

dataset. Fig. 4-15 illustrates precipitation-rate retrievals at points around the globe

where radar confirmation data is scarce. Fig. 4-15(a) shows precipitation retrievals

in the tropics over a mix of land and sea, while Fig. 4-15(b) shows a more intense

tropical event. Fig. 4-15(c) illustrates strong precipitation near 72◦ to 74◦ N, again

over both land and sea. Finally, Fig. 4-15(d) illustrates the March 5, 2001 New

England snowstorm that deposited roughly a foot of snow within a few hours: an

accumulation somewhat greater than is indicated by the retrieved rain rates of 1.2

mm/h. This applicability of the algorithm to snowfall rate should be expected because
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the observed radio emission originates exclusively at high altitudes. Whether the

hydrometeors are rain or snow upon impact depends only on air temperatures near

the surface, far below those altitudes being probed. For essentially all of the pixels

shown in Fig. 4-15, the adjacent clear air exhibited temperature and humidity profiles

(inferred from AMSU) within the range of the training set. Nonetheless regional biases

are expected and will require evaluation. For example, polar stratiform precipitation

is expected to exhibit relatively weaker radiometric signatures in winter when the

temperature lapse rates are lower, and snow-covered mountains in cold polar air can

produce false detections.

Snow will be further discussed in Chapter 5.

4.5 Post-Development Changes to the Algorithm

Since the development described in this chapter, the following change has been made

to the algorithm: In Sec. 4.2.2, the 183±7-GHz channel is not used to detect precipi-

tation if T53.6 is less than 248 K. This has been changed to 249 K. Other changes have

been made but do not affect the results in this chapter. Such changes have already

been incorporated into the previous sections of this chapter. The results presented in

the remainder of this thesis reflect these changes.
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Figure 4-15: AMSU precipitation-rate retrievals (mm/h) with 15-km resolution. (a)
Philippines, April 16, 2000, (b) Indochina, July 5, 2000, (c) Canada, August 2, 2000,
and (d) New England snowstorm, March 5, 2001. Precipitation rate retrievals exceed
0.5 mm/h in the shaded regions, and contours are drawn for 0.5, 2, 8, 32, and 128
mm/h. The peak retrieved values are 47, 143, 30, and 1.5 mm/h in (a), (b), (c), and
(d), respectively.
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Chapter 5

Snow and Polar Precipitation

This chapter1 discusses the remote sensing of snow and polar precipitation using

AMSU.

During the course of the research presented in this thesis, AMSU demonstrated the

ability to detect not only tropical and mid-latitude rain, but also mid-latitude snow

and polar precipitation (Fig. 4-15(d)). AMSU’s sensitivity to snow is not surprising

because whether precipitation falls as rain or snow depends more on the temperature

near the surface of the earth than on the hydrometeors aloft observed by AMSU,

which indicate precipitation rate [18, 19]. Other studies also have shown that AMSU

is useful for detecting and estimating snow [47, 48, 77, 78]. The algorithm in Chapter 4

is therefore expected to be useful for estimating snowfall rates.

There are several non-definitive ways to detect polar precipitation:

• Morphological evolution over consecutive overpasses

• Motion over consecutive overpasses

• Cold spots in the 54-GHz and 183-GHz bands; spectral characteristics

• Lack of correlation with surface features

1Permission has been granted by the IEEE to include material from the following paper: F.W.
Chen, A.M. Leckman, and D.H. Staelin, “Passive Microwave Signatures of Arctic Snowstorms Ob-
served from Satellites,” Proceedings of the 2003 IEEE International Geoscience and Remote Sensing
Symposium, vol. 5, pp. 3139-3141, July 2003.

77



• Sharp features

The NOAA-15, NOAA-16, NOAA-17, and Aqua satellites each pass over the polar

regions about once every 100 minutes, so certain regions in the Arctic and Antarctic

Circle might be observed up to 15 times a day by a single satellite.

5.1 Examples of Polar Precipitation

5.1.1 Example 1

Fig. 5-1(b) shows an image of brightness temperatures near 183± 7-GHz for a polar

precipitation event around 71◦ N, 60◦ E observed on July 1, 2002. The blue precipi-

tation event (∼ 225 K) is centered on a long east-west ridge of moist air (∼ 260 K).

Such 183±7-GHz images are the primary means for detecting potentially precipitating

locations. In cold dry atmospheres, however, the 183± 7-GHz channel can be sensi-

tive to surface variations. Therefore it is then necessary to check a window-channel

brightness temperature image for correlations with surface features. Fig. 5-1(a) shows

the 150-GHz image and regions of land ice/snow (∼ 230 K), sea or sea ice (∼ 240

K), moist air over land (>∼ 270 K), and moist air over ocean (∼ 260 K). Since this

precipitation event has brightness temperatures below 240 K at 150, 183 ± 7, and

183 ± 3 GHz, this is consistent with the hypothesis that the signature arises from

ice/scattering layers above any significant absorption by water vapor. Thus it is rea-

sonable to conclude that the event around 71◦ N, 60◦ E is polar precipitation and not

a transparent dry pocket of air over a reflective surface.

5.1.2 Example 2

Fig. 5-2(a) shows a 150-GHz image of a polar precipitation event that extends east-

ward from around 74◦ N, 10◦ W to around 74◦ N, 3◦ W, and from there extends

southward to around 69◦ N, 3◦ W. Fig. 5-2(b) shows the corresponding 183± 7-GHz

image. The cold spots appearing in the 183± 7-GHz image are surrounded by water

vapor which appears as warm areas (relative to ocean) in the 150-GHz image. The
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Figure 5-1: NOAA-16 AMSU-B data over the Kara Sea (Northern Russia) on 1 July
2002, 0005 to 0008 UTC, at (a) 150 GHz and (b) 183± 7 GHz.

presence of water vapor suggests that the cold spots are the result of presence of

precipitation.

5.1.3 Example 3

Fig. 5-3 shows precipitation rate estimates for four consecutive observations inside

the Arctic Circle at ∼100-minute intervals on July 20, 2002. The four images in this

figure show the evolution of a precipitation system about 200 km wide and 1000 km

long with features moving as fast as 100 km/h.

Additional evidence that these images reveal precipitation can be seen in radio-

metric data from specific channels. For example, in regions seen as precipitating

in Fig. 5-3, the 52.8-GHz brightness temperature image exhibits perturbations that

cannot be the result of surface features and that suggest convective activity within

the cores of some storms (Fig. 5-4). The blue spots in Fig. 5-4 that are not in areas

seen as precipitating in Fig. 5-3 are the result of high-elevation regions (Eq. 4.3). Fi-

nally, numerical weather predictions of precipitation rate using the MM5 model and

initialized with analysis fields produced by the European Center for Medium-Range

Weather Forecasting (ECMWF) [5] exhibited excellent morphological agreement with
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Figure 5-2: NOAA-15 AMSU-B data over the Greenland Sea on 1 Jan 2002, 0816 to
0819 UTC, at (a) 150 GHz and (b) 183± 7 GHz.

these microwave observations over several hours as the storm evolved (Figs. 5-3(a)

and 5-5). As a result, it can be concluded that the signatures revealed by the ob-

served brightness temperature spectrum are indeed associated with precipitation and

are not, for example, due to patches of dry air that reveal low microwave emissivity

surfaces. This sort of agreement between numerical predictions and AMSU-based

retrievals have been obtained for several polar precipitation examples [5].

5.2 Weaknesses of the Algorithm

The algorithm used in this study was trained using data from the eastern U.S. and

has yet to be calibrated for Arctic climates. As a result, it does not produce accurate

estimates of rain rate in Arctic conditions. In Fig. 5-3(a), the estimated rain rates

from AMSU reached 20 mm/h and much larger than the corresponding rates of ∼ 1

mm/h predicted in Fig. 5-5. Typical Arctic temperature and water vapor profiles are

not able to yield such high rain rates.

Franquet has done comparisons of AMSU-based precipitation-rate estimates using

the algorithm developed for this thesis and estimates from BALTRAD, a ground-

based radar network that provides coverage over areas surrouding the Baltic Sea.
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Figure 5-3: Aqua AMSU/HSB rain rate retrievals for four consecutive overpasses by
Aqua on 20 July 2002 around (a) 1122 UTC, (b) 1300 UTC, (c) 1438 UTC, and (d)
1615 UTC

AMSU-based estimates tended to be greater than BALTRAD estimates by a factor

of ∼5 in the summer while BALTRAD estimates tended to be greater by a factor of

∼3 in the winter [23].

Tuning of the algorithm for other climates is discussed in Chapter 6.1.
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Figure 5-4: Aqua AMSU/HSB precipitation-induced perturbations in the 52.8-GHz
channel for four consecutive overpasses by Aqua on 20 July 2002 around (a) 1122
UTC, (b) 1300 UTC, (c) 1438 UTC, and (d) 1615 UTC. The perturbations seen near
75◦ W are likely to be the result of surface effects
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Figure 5-5: MM5 prediction of rain rate (mm/h), 20 July 2002, 1000-1100 UTC.
The blue curves over ocean are pressure (mbar) contours, and the black curves are
precipitation (mm/h) contours. Precipitation contours are drawn for multiples of 0.1
mm/h. Peak rain rate is ∼1 mm/h. (This image was provided by L. Bai and D.H.
Bromwich)
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Chapter 6

Precipitation Climatology

In this chapter, the precipitation algorithm developed for this thesis is used to produce

climatological results. Such results are useful for getting a sense of the types of

climatological variations that can be observed by the algorithm and for validating the

algorithm.

6.1 Climatology-Based Correction of the Algorithm

The algorithm was trained on NEXRAD data over the eastern U.S. Because of the

geographical limitations of the training data, it will not necessarily be able to produce

good estimates globally. Chapter 5 showed the possibility that the algorithm can yield

impossibly high rain rates for polar climates.

However, the algorithm can be adjusted using rain rates from another instrument.

AMSU/HSB and AMSR-E1 are both aboard the Aqua satellite and they observe

nearly the same regions and at nearly the same times. AMSR-E has a slightly smaller

swath width than AMSU/HSB. Therefore, AMSU/HSB and AMSR-E would be a very

good pair of independent instruments for adjusting the algorithm.

The adjustment involves training a neural net to estimate a multiplicative cor-

rection factor. The correction factor should vary much more slowly than rain rates.

1AMSR-E rain rate retrievals were provided by Remote Sensing Systems, Inc., of Santa Rosa,
CA (http://www.remss.com/). These rain rate retrievals were computed using a method based on
that described in [90].
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Therefore, it is best to train the neural net using inputs that vary slowly. Also, the

AMSU/HSB rain rate cannot be an input to the neural net because the neural net

would be applied to 15-km data while having been trained using data with a coarser

resolution. The neural net cannot be trained to estimate AMSR-E rain rates because

the range of the outputs of the neural net could be limited by the range of AMSR-E

data. The neural net was trained using data averaged over 5◦× 5◦ boxes. The inputs

were latitude and temperature-profile principal components. Metrics describing the

day of year could have been used as inputs but were not because of the seasonal lim-

itations of the training data. Such inputs may help the neural net learn the seasonal

variation of precipitation rate.

The neural net was trained using data from 114 days from 20 August 2002 to 31

January 2003. HSB failed in early February 2003. Only 5◦ × 5◦ boxes for which the

AMSU/HSB rain rate r̂AMSU,5◦ was greater than 0.1 mm/h were used for training.

The training, validation, and testing sets each had 3579 boxes. Let rAMSR−E,5◦ be

the 5◦ × 5◦ AMSR-E rain rates. All of the data were from boxes entirely over ocean

since the provided AMSR-E rain rates did not include any for land. The neural net

was trained to estimate the log10(rAMSR−E,5◦/r̂AMSU,5◦ + 0.1) .

The neural nets trained have the same structure as that shown in Fig. 3-2, with one

hidden layer of nodes with hyperbolic tangent transfer functions followed by a single

output node with a linear transfer function. 72 neural nets were trained. Each neural

net had 1, 2, or 3 hidden nodes, and used 1, 2, or 3 temperature-profile principal

components. The testing set was divided according to AMSR-E rain rate. Categories

were created for the following ranges of AMSR-E rain rates: < 0.5, 0.5-1, 1-2, 2-4,

and 4-8 mm/h. For each neural net RMS errors between adjusted AMSU/HSB rain

rates and AMSR-E rain rates were computed for each category. For each category,

the neural nets were ranked by RMS error (1 for the lowest). Then the neural nets

were ranked according to the average of its ranks for each of the five categories. Then

the neural net with the lowest average ranking and with plausible performance on

NOAA-16 AMSU-A/B data from 1 July 2003 (a data set outside the seasonal range

of the training, validation, and testing sets) was chosen. Fig. 6-1 shows a scatter plot
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of the uncorrected 5◦ × 5◦ AMSU/HSB rain rates vs. 5◦ × 5◦ AMSR-E rain rates for

the testing set. Fig. 6-2 is the same figure except with corrected 5◦× 5◦ AMSU/HSB

rain rates. There is a significant reduction in the number of boxes for which the

AMSU/HSB rain rate is greater than 2 mm/h and the AMSR-E rain rate is less than

1 mm/h.

Another way to validate the estimator is to compute cumulative distribution

curves for the testing set. Of special interest is the quality of the estimates in the

polar regions. One question to be addressed is whether the correction fixed the ten-

dency to overestimate in the polar latitudes as was observed in Chapter 5. Fig. 6-3

shows cumulative distribution curves for 5◦× 5◦ boxes between 50◦ N and 50◦ S, and

Fig. 6-4 shows the corresponding curves for 5◦ × 5◦ boxes between 50◦ N and 70◦ N

and between 50◦ S and 70◦ S. In the midlatitude and tropical regions, the correction

did not significantly alter the cumulative distribution curves. However, in the polar

latitudes, the correction resulted in the estimator underestimating the AMSR-E rain

rates by a factor of about 2.

The AMSR-E-based correction was applied to the NEXRAD testing set of Chap-

ter 4. The correction did not radically degrade the performance of the algorithm

relative to NEXRAD. However, it would still be good to have the final estimator be

able to maintain the quality of the retrievals described in Chapter 4.

One way to achieve the quality of the NEXRAD-trained estimator in the midlati-

tudes and quality of the AMSR-E-adjusted estimates in the high latitudes is to create

a hybrid estimator that relies primarily on the original estimator in the midlatitude

and tropical regions, and relies primarily on the AMSR-E-adjusted estimator in the

high latitude regions (scaled by a factor of 2 to compensate for the overcorrection

shown in Fig. 6-4.

Let r̂AMSU and r̂′AMSU be the NEXRAD-trained and AMSR-E-adjusted estimators

(without the scaling factor of 2), respectively. Let k be the weight (between 0 and 1

inclusive) assigned to the AMSR-E-adjusted precipitation estimate. Then, 1 − k is

the weight assigned to the NEXRAD-trained precipitation estimate.
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Figure 6-1: Scatter plot of 5◦ × 5◦ uncorrected AMSU/HSB rain rates and AMSR-E
rain rates. 5◦× 5◦ boxes for which the AMSU/HSB rain rate was less than 0.1 mm/h
were excluded from the training, validation, and testing sets

Figure 6-2: Scatter plot of 5◦ × 5◦ AMSR-E-adjusted AMSU/HSB rain rates and
AMSR-E rain rates
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Figure 6-3: Cumulative distribution curves of 5◦× 5◦ AMSU/HSB and AMSR-E rain
rates between 50◦ N and 50◦ S

Figure 6-4: Cumulative distribution curves of 5◦× 5◦ AMSU/HSB and AMSR-E rain
rates between 50◦ N and 70◦ N and between 50◦ S and 70◦ S
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Figure 6-5: Latitude-dependent weights for AMSR-E-adjusted precipitation estimates

k =
1

2

[
tanh

(
‖θlat‖ − 47.5

4

)
+ 1

]
(6.1)

r̂ = (1− k)r̂AMSU + 2kr̂′AMSU (6.2)

Fig. 6-5 shows the weight assigned to the AMSR-E-adjusted precipitation estimate.

This function provides a transition region from ∼ 40◦ N to ∼ 55◦ N and from ∼ 40◦

S to ∼ 55◦ S.

Fig. 6-3 shows that the hybrid estimator does not seem to systematically introduce

multiplicative errors in the midlatitude and tropical regions. Fig. 6-4 suggests that

the factor of 2 has adequately compensated for the overcorrection.

Fig. 6-6 shows a scatter plot of NEXRAD-trained AMSU-A/B estimates before

and after corrections vs. NEXRAD estimates for the NEXRAD-based testing set

of Chapter 4, and Fig. 6-7 shows a scatter plot of NEXRAD-trained AMSU/HSB

estimates before and after corrections vs. AMSR-E estimates for the testing set of

this section. Both figures show that the corrections have preserved the quality of the

AMSU/NEXRAD comparison in Chapter 4 and improved the quality of the AMSR-

E-based correction for high-latitude regions.

Figs. 6-8 and 6-9 show sample results of applying the hybrid estimator to NOAA-

16 AMSU-A/B data on 1 July 2003 and 19 Feb 2003, both of which are beyond the

seasonal scope of the training, validation, and testing sets. They show that the hybrid

90



Figure 6-6: Scatter plot of AMSU estimates [(a) NEXRAD-trained and (b) hybrid]
vs. NEXRAD estimates for the NEXRAD-based testing set of Chapter 4

Figure 6-7: Scatter plot of AMSU estimates [(a) NEXRAD-trained and (b) hybrid]
vs. AMSR-E estimates for the AMSR-E-based testing set of Sec. 6.1
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estimator produces plausible results globally.

All rain rates higher than 100 mm/h are set to 100 mm/h.

6.2 Precipitation Means and Frequencies

Two useful metrics are the mean precipitation rate and precipitation frequency. These

quantities are useful for climatological and hydrological purposes. The mean precip-

itation rate can provide an indication of how much latent heat is released into the

atmosphere. Figs. 6-10 and 6-11 show mean rain rates and rain frequencies, respec-

tively, calculated using one year of AMSU-A/B data from NOAA-15, NOAA-16, and

NOAA-17. The hybrid algorithm of Sec. 6.1 was used. Precipitation frequency was

defined to be the ratio of the number of times a pixel showed rain rates of greater

than 0.1 mm/h to the number of times that pixel was observed by any of NOAA-

15, NOAA-16, or NOAA-17. Some of the white areas in Figs. 6-10 and 6-11 are

high-altitude regions over which the algorithm did not estimate precipitation (e.g.

the Himalayas, Greenland, the Andes, and the Rocky Mountains).

Fig. 6-10 appears morphologically consistent with the global annual mean rain

rates produced by the Global Precipitation Climatology Project (GPCP) and the

Climate Prediction Center Merged Analysis of Precipitation (CMAP) both of which

combine satellite-based retrievals and rain gauge measurements [31]. However, the

AMSU-A/B-based 1-year mean rain rates exceed those of GPCP, CMAP, and U.S.

based rain gauges [6] by large factors. For example, the mean annual rain rate over

the southeastern U.S. is around 1 mm/h (or 24 mm/day) for AMSU-A/B while it is

between 3 and 5 mm/day for GPCP, CMAP, and U.S. based rain gauges, a difference

of a factor between 4.8 and 8.

Despite such a large difference, the AMSU-A/B-based rain rates are within the

range of rain rates provided by trusted sources. Specifically, AMSU-A/B-based

rain rates tend to average between those of NEXRAD and AMSR-E. The remain-

der of this section presents a comparison of NEXRAD-trained AMSU-A/B with

NEXRAD and NEXRAD-trained AMSU/HSB and AMSR-E estimates. For the re-
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Figure 6-8: Corrected NOAA-16 AMSU-A/B rain rates for descending segments, 1
July 2003, ∼2 AM local time

Figure 6-9: Corrected NOAA-16 AMSU-A/B rain rates for descending segments, 19
Feb. 2003, ∼2 AM local time
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Figure 6-10: 15-km 1-year mean rain rate (mm/h) (July 2002 to June 2003) estimated
using AMSU-A/B aboard NOAA-15, NOAA-16, and NOAA-17
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Figure 6-11: 15-km 1-year rain frequency (July 2002 to June 2003) estimated using
AMSU-A/B aboard NOAA-15, NOAA-16, and NOAA-17
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NEXRAD Mean (AMSU - NEXRAD) RMS (AMSU - NEXRAD) Mean (AMSU) /

range (mm/h) (mm/h) Mean (NEXRAD)

< 0.5 mm/h 0.6 1.0 10.3
0.5-1 mm/h 0.8 2.0 2.1
1-2 mm/h 0.7 2.3 1.5
2-4 mm/h -0.1 2.7 1.0
4-8 mm/h -1.0 3.5 0.8
8-16 mm/h -3.1 6.9 0.7
16-32 mm/h -4.9 19.0 0.8
> 32 mm/h -25.2 42.9 0.6

Table 6.1: AMSU/NEXRAD comparisons at 15-km resolution for pixels in the range
30-110 km from NEXRAD radar sites. Pixels are categorized by NEXRAD rain rate

mainder of this section, the AMSU-A/B and AMSU/HSB estimates will refer to the

NEXRAD-trained estimates without the corrections developed in Sec. 6.1. Tables 6.1

and 6.2 show means of the biases of AMSU estimates relative to NEXRAD, RMS

AMSU/NEXRAD differences, and the ratio of the mean AMSU rain rate to the mean

NEXRAD rain rate for the testing set of Chapter 4. For Table 6.1, the pixels are cat-

egorized by NEXRAD rain rate. For Table 6.2, the pixels are categorized by AMSU

rain rate. One noticeable feature of Table 6.2 is that on average the AMSU rain rate

is less than the NEXRAD rain rate for the AMSU rain rate categories between 0 and

32 mm/h. Table 6.1 shows that on average the AMSU rain rate is greater than the

NEXRAD rain rate for the NEXRAD rain rate categories above 2 mm/h. Over all

pixels in the testing set, the ratio of the mean of the NEXRAD rain rates to the mean

of the AMSU rain rates is about 1.3. These results show that NEXRAD tends to

yield higher rain rates and that one reason for the large difference between the hybrid

AMSU-A/B estimator and GPCP is that for midlatitude regions the estimator was

trained to a source that yields much higher rain rates than GPCP. NEXRAD tends to

be more sensitive to larger particles while AMSU with channels at higher frequencies

tends to be more sensitive to smaller particles.

AMSR-E tends to see more light rain and less heavy rain that AMSU/HSB. Ta-

bles 6.3 and 6.4 show means of the biases of AMSU/HSB relative to AMSR-E, RMS

AMSU/HSB-AMSR-E differences, and the ratio of the mean AMSU/HSB rain rate
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AMSU Mean (AMSU - NEXRAD) RMS (AMSU - NEXRAD) Mean (AMSU) /

range (mm/h) (mm/h) Mean (NEXRAD)

< 0.5 mm/h -0.1 1.3 0.6
0.5-1 mm/h -0.4 3.5 0.6
1-2 mm/h -0.8 3.5 0.6
2-4 mm/h -1.5 6.2 0.7
4-8 mm/h -2.3 9.4 0.7
8-16 mm/h -5.5 17.9 0.7
16-32 mm/h -10.9 27.7 0.7
> 32 mm/h 1.2 38.7 1.0

Table 6.2: AMSU/NEXRAD comparisons at 15-km resolution for pixels in the range
30-110 km from NEXRAD radar sites. Pixels are categorized by AMSU rain rate

AMSR-E Mean (AMSU/HSB - AMSR-E) RMS (AMSU/HSB - AMSR-E) Mean (AMSU/HSB rain rate) /

range (mm/h) (mm/h) Mean (AMSR-E rain rate)

< 0.5 mm/h 0.3 0.8 2.7
0.5-1 mm/h -0.05 0.9 0.8
1-2 mm/h -0.3 1.3 0.8
2-4 mm/h -0.2 2.0 0.9
4-8 mm/h 0.8 4.4 1.2
8-16 mm/h 5.6 7.1 1.6

Table 6.3: AMSU/HSB vs. AMSR-E comparisons for 5◦ × 5◦ averages over ocean.
Boxes are categorized by AMSR-E rain rate

to the mean AMSR-E rain rate for the testing set of Sec. 6.1. For Table 6.3, the

pixels are categorized by AMSR-E rain rate. For Table 6.4, the pixels are categorized

by AMSU/HSB rain rate. Table 6.3 shows that AMSR-E yields rain rates higher

than AMSU/HSB for the AMSR-E rain rate categories between 0.5 and 4 mm/h,

and Table 6.4 shows that AMSU/HSB yields rain rates that are higher than those

from AMSR-E for the categories in which AMSU/HSB rain rates are higher than 1

mm/h. The AMSR-E estimates tend to be more sensitive to warm rain and stratiform

rain because it depends on emission signatures while the AMSU/HSB algorithm was

trained primarily on data over convective precipitation.

One possibility for future study could involve attempts to reconcile the widely

differing annual mean rain rate estimates. The algorithm developed for AMSU-A/B
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AMSU/HSB Mean (AMSU/HSB - AMSR-E) RMS (AMSU/HSB - AMSR-E) Mean (AMSU/HSB rain rate) /

range (mm/h) (mm/h) Mean (AMSR-E rain rate)

< 0.5 mm/h -0.2 0.5 0.5
0.5-1 mm/h -0.01 0.8 0.9
1-2 mm/h 0.4 1.1 1.2
2-4 mm/h 1.2 1.9 1.6
4-8 mm/h 3.0 3.5 2.0
8-16 mm/h 6.3 7.0 2.3

Table 6.4: AMSU/HSB vs. AMSR-E comparisons for 5◦ × 5◦ averages over ocean.
Boxes are categorized by AMSU/HSB rain rate

and AMSU/HSB does not detect warm rain2 which can result in warm perturba-

tions in the 54-GHz band. One weakness of rain gauges is that the quality of their

measurements can be affected by horizontal wind speed. Also, some of the discrep-

ancy between satellite-based methods and rain gauges might be due to evaporation

of falling hydrometeors.

6.3 Diurnal Cycle

Some of the variation of precipitation is diurnal, particularly in the tropics. Let R(t)

be the precipitation rate as a function of the local solar time t in hours. R(t) is

assumed to have the form of a sinusoid:

R(t) = A cos (ωt− ψ) + c (6.3)

There are three unknowns: the diurnal amplitude A, the phase ψ, and the mean c.

Because t is in terms of hours, ω = 2π/24. A is assumed to be non-negative so that

the solution is unique and the phase is an indication of the time when the average

rain rate is maximum. Eq. 6.3 can be rewritten as follows:

R(t) = a cos (ωt) + b sin (ωt) + c (6.4)

2“Rain formed from a cloud having temperatures at all levels above 0◦ C (32◦ F), and resulting
from the droplet coalescence process” [28]
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where a = A cosψ, and b = A sinψ. With the NOAA-15, NOAA-16, and NOAA-

17 satellites, there are six equatorial crossing times: 2 AM, 7 AM, 10 AM, 2 PM,

7 PM, and 10 PM whose corresponding values of t are 2, 7, 10, 14, 19, and 22,

respectively. It is assumed that any observation done by a satellite in a direction

(i.e. northbound or southbound) will have a time of day equal to the corresponding

equatorial crossing time of that satellite in that direction, e.g. a pixel observed by

NOAA-16 while travelling southward will have a time of day of 2 AM. This assumption

does not take into account the differences in solar time for different scan angles. This

assumption also does not consider differences due to the time a satellite takes to travel

from the North Pole to the South Pole and viceversa.

Diurnal cycles of monthly precipitation averages can be computed using the least-

squares approximation method [83]. Let R be the 6 × 1 matrix of the values of R

at these times, x be a 3× 1 matrix of the values being solved for, and A be a 6× 3

matrix of the terms in R(t) without the coefficients that are being solved for.

R =



R(2)

R(7)

R(10)

R(14)

R(19)

R(22)


(6.5)

x =


a

b

c

 (6.6)
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A =



cos(2 · 2π
24

) sin(2 · 2π
24

) 1

cos(7 · 2π
24

) sin(7 · 2π
24

) 1

cos(10 · 2π
24

) sin(10 · 2π
24

) 1

cos(14 · 2π
24

) sin(14 · 2π
24

) 1

cos(19 · 2π
24

) sin(19 · 2π
24

) 1

cos(22 · 2π
24

) sin(22 · 2π
24

) 1


(6.7)

One would like to be able to solve the following equation if possible.

Ax = R (6.8)

However, since there are more measurements than equations, the best that one can

do is to find the x that minimizes ‖ R − Ax ‖. The least-squares approximation

method will be used to determine x.

x = (ATA)−1ATR (6.9)

Then, A and ψ are determined from a and b.

A =
√
a2 + b2 (6.10)

ψ is selected to satisfy the following conditions:

cosψ =
a

A
(6.11)

sinψ =
b

A
(6.12)

This method is also used in [12] with SSM/I data.

Fig. 6-12 shows the diurnal variations from one year (July 2002 to June 2003) of

AMSU-A/B data from NOAA-15, NOAA-16, and NOAA-17. Large systematic mean-

normalized diurnal amplitudes (> 0.4) tend to occur in desert regions (e.g. North

Africa, Australia) where the mean rain rate is small (< 0.2 mm/h), and the mean-

normalized diurnal amplitudes tend to be smaller in regions where the annual mean
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rain rate is large (> 0.8 mm/h). In regions where the mean is less than 0.02 mm/h,

the phase of the diurnal variations varies very erraticly as might be expected. Overall,

the map shows geophysically plausible variations in mean rain rate, mean-normalized

diurnal amplitude, and the phase of the diurnal variation.

Figs. 6-13, 6-14, 6-15, and 6-16 show diurnal variations in the same way as Fig. 6-

12 but for the summer, fall, winter, and spring, respectively. Together, these figures

show that there are systematic seasonal variations in the diurnal cycle of precipitation

rate. For example, for north Africa, the local solar times of maximum precipitation

rate are around 2200, 1800, 0100, and 2300, for summer, fall, winter, and spring,

respectively.

Similar studies of the diurnal variation of precipitation have also been done by

Dai et al. [21] and Chang et al. [12]. Dai et al. computed diurnal variations of pre-

cipitation rate over the continental U.S. for 2.5◦ longitude by 2◦ latitude boxes using

31 years of hourly precipitation data. There is some agreement in the preferred time

of precipitation between the seasonal diurnal variations of AMSU-A/B precipitation

rate computed for Figs. 6-13 to 6-16 where the diurnal character is strong. The best

agreement occurs during the summer months. Chang et al. computed diurnal vari-

ations of precipitation rate over ocean over a 5◦ × 5◦ global grid using 4 1/2 years

of SSM/I data from two satellites. The SSM/I-based study showed monthly maps

of diurnal variations over ocean that were quite noisy. It is possible that the noise

could have been mitigated and systematic features could have been more evident if

the variations were computed over larger regions and longer time periods.
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Figure 6-12: Diurnal variations of 10◦×10◦ precipitation rate over one year (July 2002
to June 2003) of AMSU-A/B data from NOAA-15, NOAA-16, and NOAA-17. The
length of an arrow is proportional to the mean-normalized diurnal amplitude values
of up to 0.5. The direction of the arrows represent local solar times for maximum
rain rate. The background is an image of the annual mean rain rate.
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Figure 6-13: Diurnal variations of 10◦×10◦ precipitation rate (as in Fig. 6-12) during
summer months (June 2003, July 2002, and August 2002) of AMSU-A/B data from
NOAA-15, NOAA-16, and NOAA-17
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Figure 6-14: Diurnal variations of 10◦×10◦ precipitation rate (as in Fig. 6-12) during
fall (Sept. to Nov. 2002) of AMSU-A/B data from NOAA-15, NOAA-16, and NOAA-
17
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Figure 6-15: Diurnal variations of 10◦×10◦ precipitation rate (as in Fig. 6-12) during
winter (Dec. 2002 to Feb. 2003) of AMSU-A/B data from NOAA-15, NOAA-16, and
NOAA-17

105



Figure 6-16: Diurnal variations of 10◦×10◦ precipitation rate (as in Fig. 6-12) during
spring (March to May 2003) of AMSU-A/B data from NOAA-15, NOAA-16, and
NOAA-17
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Chapter 7

Conclusions

7.1 Summary of the Thesis

This thesis has presented a precipitation-rate estimation algorithm that relies primar-

ily on opaque microwave channels in the 54-GHz oxygen and 183-GHz water vapor

resonance bands. The algorithm uses spatial filtering, PCA, and data fusion. Spa-

tial filtering is employed in order to compute the precipitation-induced perturbations

in AMSU-A channels 4 to 8 (Sec. 4.2.3). PCA is used to create a compact rep-

resentation of sets of channels that provide information about important variables.

Constrained PCA is used to eliminate the signatures of surface variations from water-

vapor principal components. A data fusion method was developed for sharpening

50-km brightness temperature perturbation images from AMSU-A to 15-km resolu-

tion. The algorithm was evaluated quantitatively by comparisons with NEXRAD

data over the eastern U.S. and qualitatively through global precipitation snapshots

and climatology, and then adjustments were made by training a neural net to estimate

multiplicative correction factors based on AMSR-E estimates.

The algorithm has also demonstrated the ability to detect and estimate precipi-

tation rate due to snow. With the AMSR-E-based adjustments, the estimator was

able to produce realistic estimates of precipitation rate in polar climates at latitudes

beyond 50◦ away from the equator.

The algorithm was used to do some precipitation climatology studies. The 15-
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km annual mean rain rate showed morphology that is consistent with what has been

seen in [31]. Differences in quantitative results were also studied. Global annual and

seasonal diurnal variation maps were also produced.

7.1.1 Main Contributions

The results presented in this thesis show that the opaque microwave frequency bands

are useful for precipitation-rate retrievals and could be used in addition to the tradi-

tional window channels aboard scientific and operational instruments such as AMSU,

TMI, SSM/I, AMSR-E, ATMS (the Advanced Technology Microwave Sounder for the

National Polar-Orbiting Environmental Satellite System [NPOESS]), SSMIS (Special

Sensor Microwave Imager/Sounder), and CMIS (the Conical Scanning Microwave

Imager/Sounder for NPOESS). In particular, ATMS will have all of the channels on

AMSU-A/B (except the 89.0-GHz channel on AMSU-A and the 150-GHz channel

on AMSU-B) and channels at 51.76 GHz, 165.5 GHz, 183± 4.5 GHz, and 183± 1.8

GHz [76].

7.1.2 Secondary Contributions

This thesis also has demonstrated the utility of spatial filtering and data fusion for

image sharpening and precipitation estimation, methods that could be incorporated

into future operational algorithms.

While previous algorithms for estimating instantaneous precipitation rate have

treated each pixel independently, spatial filtering permitted the calculation of cloud-

cleared brightness temperatures and precipitation-induced perturbations in the 54-

GHz band (Sec. 4.2.3) which enabled characterization of the temperature profile using

PCA (Sec. 4.2.4). Both precipitation-induced perturbations and temperature profile

provide information that is useful for estimating precipitation [15].

Multiresolution data fusion made it possible to estimate precipitation rate at 15-

km resolution even though some channels provide data only at 50-km resolution. The

method developed for this thesis converted data from some 50-km channels into a form
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that was useful for 15-km estimation. Multiresolution data fusion could prove useful

for precipitation retrievals using ATMS since for each location observed it will measure

brightness temperatures using channels that have different spatial resolutions [76].

7.2 Future Work

This section addresses possible improvements to the algorithm described in Chapter 4

and possible future studies. Improvements that could involve changes in the algorithm

architecture or concepts in data analysis are considered major improvements while

all other improvements are considered minor improvements.

7.2.1 Minor Improvements to the Algorithm

• Expansion and improvement of the training, validation, and testing sets used

to train the neural net. This could involve including more NEXRAD data or

including radar data from instruments outside the U.S. such as BALTEX which

makes observations for Scandinavia. Data from other satellites were not used

to train the neural net because coincident (or nearly-coincident) observations

of AMSU and other satellite-based instruments typically are rare. One excep-

tion to this is the pair Aqua AMSU/HSB and Aqua AMSR-E. AMSR-E data

was used in Chapter 6. High-resolution (e.g. 2-km) numerical weather predic-

tion models could also be used together with a good radiative transfer model.

Comparison with diurnal or seasonal rain gauge data could provide calibration

factors.

• Improving the limb-and-surface correction of the AMSU-A channels. The method

described in Sec. 4.2.1 involved training a neural net to estimate nadir-viewing

brightness temperatures and was purely statistical. Goldberg et al. devel-

oped a statistical method for correcting AMSU-A that considered physical con-

straints [29].
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• Extension of the cloud-clearing procedure. The cloud-clearing procedure in

Sec. 4.2.3 did not provide a way to process corner regions. A method for doing

this has been developed but because of time constraints will not be incorpo-

rated into the algorithm until after the completion of this thesis. This method

is described in Appendix A.

• Use of better signal separation techniques. One possibility is to use indepen-

dent component analysis (ICA). PCA transforms random vectors into uncor-

related random variables using second-order statistics. ICA refers to a class

of methods that attempt to transform random vectors into variables that are

as statistically independent as possible using additional statistics (e.g. kurtosis

and entropy) [40, 41, 42] or different frameworks for characterizing degrees of

statistical independence [4]. It is possible for ICA to separate signals into a

representation that is more useful than PCA for input to the neural network.

7.2.2 Major Improvements to the Algorithm

• Better use of the window channels. In this thesis, the window channels were used

merely as inputs to a principal-component-based transformation while window-

channel-based algorithms intentionally made use of the emission and scattering

signatures in nonlinear ways [89].

• Use of physical models. The complexity of precipitation prevents a complete

characterization by any physical model. However, physical models might still

lead to useful characterizations.

• Use of cloud liquid water profile retrievals and better estimation of warm rain.

Rosenkranz has developed a method for retrieving non-precipitating cloud liquid

water mixing ratio profile using Aqua AMSU/HSB [74]. Such information can

be used to improve precipitation-rate retrievals, particularly for non-glaciated

precipitation or warm rain. The algorithm developed for this thesis was trained

primarily on convective cells that produce ice particles. The algorithm relies in

110



part on cold brightness temperature perturbations in the 54-GHz band. Warm

rain might not appear in the perturbation images. Although detected by the

precipitation detection method in Sec. 4.2.2, warm rain probably will not be ac-

curately estimated. The AMSU-B 150-GHz could prove useful for this purpose.

The more opaque 183± 7-GHz channel was favored for precipitation detection

because the 150-GHz tends to be sensitive to surface variations. A future version

of the algorithm could involve the 150-GHz channel in precipitation detection.

• Improved detection and estimation of stratiform precipitation. The method pre-

sented in this thesis was trained primarily on convective precipitation. More

studies will be needed to determine how to make it more suitable for stratiform

precipitation.

• Regional storm-by-storm retrievals. This thesis demonstrated a method for

estimating instantaneous precipitation rate at each pixel. It might be useful

also to estimate regionally integrated precipitation-rates on a storm-by-storm

basis since geometrical properties and regional statistics can provide useful

information about the intensity of a convective storm. This has been done

in [24, 57, 59, 81].

7.2.3 Future Studies

• Comparison with NEXRAD climatology. NEXRAD provides estimates of pre-

cipitation rate over most of the U.S. approximately every 15 minutes. This

frequency may be useful in for validating precipitation climatology based on

AMSU.

• Snow. Although the algorithm has shown promise for the remote sensing of

snowfall, validation of the estimates still remains to be done.

• Comparison with rain gauges and other sensor systems and numerical weather

prediction models. The final AMSU-A/B estimator of Chapter 6 was found

to yield precipitation-rate estimates that were on average between those of
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NEXRAD and AMSR-E, and therefore substantially above rain gauge aver-

ages. Further comparisons with these and other instruments and model may

help to improve the estimator.

• Post-calibration application to important meteorological questions. After cali-

bration with rain gauges, radars, other satellite-based instruments, the algo-

rithm can be used for hydrological and climatological applications. Climatolog-

ical applications might include a study of the modes of variation of precipita-

tion, e.g. yearly, seasonal, monthly, weekly, diurnal, and semidiurnal. Yearly,

seasonal, and diurnal variations were addressed in Chapter 6. Hydrological ap-

plications might include studies related to agriculture or the contribution of

runoff to rivers.
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Appendix A

Improved Cloud-Clearing at Image

Corners

The cloud-clearing method in Sec. 4.2.3 did not provide a way to process corner

regions because there is no information that would enable one to estimate the cloud-

free brightness temperatures at a cloud-perturbed corner of a brightness temperature

image; this is unlike edge regions for which brightness temperatures along an edge

can be interpolated using the boundary pixels that surround the edge. This could

result in a significant amount of information about precipitation being lost. Region

I in Fig. A-1 is one such example. Using the current version of the cloud-clearing

procedure, all of the pixels in region I will be ignored despite the fact that a simple

interpolation between pixels A and B would be able to salvage an overwhelming

majority of the pixels. This requires a new way of thinking about corner regions.

Previously, for each region the following question was considered: Is there enough

information to do cloud-clearing over all of the pixels? To salvage information in

corner regions, the question will be changed to the following: For what pixels is

there enough information to do cloud-clearing? The second question has already

been incorporated into the cloud-clearing method to an extent. The procedure for

processing complete-edge regions addresses this questions.

Interpolation of data at a point is possible when that point lies inside a polygon

determined by some set of points where the value of the data field has already been
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Figure A-1: Corner region and methods for salvaging pixels.

given. Therefore, the set of points over which cloud-clearing can be done is the set of

points inside or on the smallest convex polygon containing all of the non-precipitating

pixels in the brightness temperature image. In Fig. A-1, this polygon includes the line

segment connecting pixels A and C. After the convex polygon has been determined,

a method for interpolating brightness temperatures along the edges of the polygon

where there is precipitation will be needed.

Sometimes it is not possible to salvage data from any portion of a corner region.

Region II in Fig. A-1 is one such example. Because the border between the corner

region and the non-precipitating region is not convex relative to the corner, it is not

possible to interpolate brightness temperatures at any of the pixels in the corner

region.
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