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Abstract

In this thesis we analyze Portfolio Optimization risk-reward theory, a generalization of the
mean-variance theory, in the cases where the risk measures are quantile-based (such as the
Value at Risk (V aR) and the shortfall). We show, using multicriteria theory arguments,
that if the measure of risk is convex and the measure of reward concave with respect to the
allocation vector, then the expected utility function is only a special case of the risk-reward
framework.

We introduce the concept of pseudo-coherency of risk measures, and analyze the mathe-
matics of the Static Portfolio Optimization when the risk and reward measures of a portfolio
satisfy the concepts of homogeneity and pseudo-coherency. We also implement and analyze
a sub-optimal dynamic strategy using the concept of consistency which we introduce here,
and achieve a better mean-V aR than with a traditional static strategy.

We derive a formula to calculate the gradient of quantiles of linear combinations of
random variables with respect to an allocation vector, and we propose the use of a non-
parametric statistical technique (local polynomial regression - LPR) for the estimation of
the gradient. This gradient has interesting financial applications where quantile-based risk
measures like the V aR and the shortfall are used: it can be used to calculate a portfolio
sensitivity or to numerically optimize a portfolio. In this analysis we compare our results
with those produced by current methods.

Using our newly developed numerical techniques, we create a series of examples showing
the properties of efficient portfolios for pseudo-coherent risk measures. Based on these ex-
amples, we point out the danger for an investor of selecting the wrong risk measure and we
show the weaknesses of the Expected Utility Theory.
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Chapter 1

Introduction

Financial portfolio optimization is a mature field which grew out of the Markowitz’s mean-

variance theory, and the theory of expected utility. Both theories rely on the numerical

representation of the preference relation investors have for assets with random outcomes. It

is also assumed that investors are averse to the variability of random outcomes (or risk).

Once a numerical representation of the investors’ behavior is obtained, it is possible, in

practice, to use different optimization methods to compute the optimal allocation of assets

for a particular investor.

When Markowitz developed his original theory, he did not use the variance as the only

measure of risk; he proposed the semivariance as one of the other measures. However, for

both theoretical and computational reasons, the use of the variance is the most accepted since

it allows, not only a very detailed theoretical analysis of the properties of optimal portfolios

(such as the efficient frontier), but also the use of the quadratic optimization methods.

The Mean-variance theory has some limitations, when the random outcome of assets

follows a non-normal distribution. Although in those cases the expected utility function could

be used to optimize portfolios, practitioners have had the tendency to keep the concepts of

“reward” and “risk” of a portfolio separated, assigning a numerical quantity to each concept.

In particular, financial practitioners have developed new risk measures which are quantile-

based, such as Value-At-Risk (V aR) and the shortfall.

This triggered our decision to analyze, for some of those new risk measures, the risk-

13



reward theory of portfolio optimization, which is in fact the generalization of the mean-

variance theory. As with the mean-variance theory, there are efficient portfolios and efficient

frontiers, but their characteristics depend on the definition of risk being used. We examine

in detail the mathematics of efficient portfolios and efficient frontiers for risk measures which

are homogeneous functions of portfolio weights (such as the V aR and the shortfall).

Once we have established a framework to compare random assets, we extended the static

case to the dynamic one, by simply stipulating that the optimal dynamic trading strategy

has the best risk-reward measures. Most of the analysis of dynamic strategies relies on the

use of utility functions and their maximizations; in contrast, we analyze a simple example

in which both risk and reward are optimized.

1.1 Contributions of the thesis

• We introduce the analysis of the risk-reward theory from the multicriteria optimization

theory, claiming that the risk-reward theory applies to a broader set of case than the

expected utility theory.

• We analyze the properties of optimal portfolios for pseudo-coherent risk measures (i.e.,

risk measures which are homogeneous functions of portfolio weights and have a risk-

free condition); in particular we analyze the efficient frontier for cases when a risk-free

asset is present, and when shortsales are allowed.

• We derive a formula for the gradient of a quantile with respect to the linear weights of

random assets.

• We propose the use of the local polynomial regression (lpr) for the estimation of the

gradient of a quantile, and illustrate this technique on applications which compute the

gradient of quantile-based measures of risk.

• We implement and compare gradient and non-gradient based optimization methods

for quantile-based risk measures.
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• We implement and analyze a simple example of dynamic optimization using the risk-

reward theory.

1.2 Outline.

The thesis is composed of 7 chapters, including this introduction, and three appendices. In

Chapter 2 the notation for the single period asset allocation case is introduced, and some

assets that challenge the classical mean-variance theory are reviewed. The need for a more

general asset allocation theory is highlighted by those assets.

In Chapter 3 we review definitions of classic and modern risk-reward measures of financial

portfolios (such as coherent and pseudo-coherent risk measures, standard deviation, V aR,

shortfall). Using the modern risk measures, we generalize the classic mean-variance theory,

and call it the risk-reward theory. The use of different risk measures solves the problem

of non-normality of assets from Chapter 2. However, since the expected utility theory is

entrenched in the field of Economics, we propose an alternative method to study the rela-

tionship between the expected utility theory and the risk-reward methodology, based on the

multicriteria optimization theory. Once the risk-reward theory is established, we use it to

analyze the properties of optimal portfolios for the special case where the risk measures are

pseudo-coherent. In Chapter 3 we also include several examples of optimal portfolios and

efficient frontiers.

The risk gradient is fully explored in Chapter 4, since it is a very useful analysis tool

for trades. We derive a new formula for the gradient of a quantile of linear combinations

of random variables; this formula has direct application to the gradient of quantile-based

risk measures. In practice, the gradients have to be efficiently estimated, and we review and

propose an estimation method for the gradient formula which uses local linear regression.

While in Chapter 3 we analyze the theory behind the risk-reward portfolio optimization

theory, in Chapter 5 we overview the optimization of functions involving quantiles, which

can be directly used for the portfolio optimization using quantile-based risk measures. While

non-gradient based methods for the optimization of portfolios are already available (and

we review some of them), we propose the use of a gradient-based nonlinear method for the

15



optimization of general quantile-based risk measures (including the shortfall); we do so using

the estimation techniques developed in Chapter 4.

Chapter 6 goes beyond all the previous chapters which are dedicated to the single pe-

riod case, and studies the dynamic case of portfolio optimization, introducing the notation

commonly used to describe multiperiod asset allocation. That chapter also reviews some of

the previous attempts to solve the dynamic case, such as expected utility maximization in

the dynamic case, continuous-time analysis, and the dynamic option replication. We set the

theoretical foundations of dynamic asset allocation in the risk-reward framework; we analyze

and implement a simple example which optimizes the V aR and the expected return in the

dynamic case.

Finally, Chapter 7 contains our conclusions and suggestions of future research to be done

in this field.

The content of the appendices is the following:

Appendix A. Here we include the mathematical notation used in the thesis, definitions

of quantiles (important to define quantile based risk measures), as well as a brief overview of

the nonlinear optimization method used in the portfolio optimization algorithm. A section

on local linear regression is included for completeness.

Appendix B. We review the preference relation of the financial assets theory, the mul-

ticriteria optimization theory in the risk-reward framework analysis, and different theories

allowing the ranking of assets with random outcomes (the mean-variance, the utility theory,

and the stochastic dominance).

Appendix C. The characteristics of the data used for several examples and experiments

in this thesis are detailed here.
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Chapter 2

Finance background

In this chapter we briefly review all the finance nomenclature and definitions required for

the static portfolio optimization, following closely classic books such as [35, 32] and [14].

In section 2.1 the basic static asset allocation problem is posed, and the notation is

defined. The characteristics of the allocation problem depend upon the underlying assets

available, and section 2.2 reviews the probability distributions associated with financial in-

struments, in particular with non-normal distributions (section 2.2.1 and 2.2.2). The finan-

cial literature that contradicts the normality assumption for random outcomes of financial

portfolios is a strong argument against the use of the mean-variance framework, and is the

reason why new measures of risk have been introduced.

2.1 Asset allocation in the static case

The objective of the static portfolio optimization theory (also known as the single period

optimization) consists in the selection of an optimal allocation of an investor’s wealth in dif-

ferent investment alternatives, such that the investor obtains the “best” possible outcome at

the end of one investment period. In general, techniques heavily depend upon the preferences

of each individual investor.

The basic asset allocation problem for a single period can be defined as follows: Let

us assume there are two trading periods during which the investor is allowed to perform
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transactions; the initial trading period 0 and the final trading period T . Let W0 be the

initial amount of wealth available to invest across m random assets, and if it is available,

one risk-free asset. Each one of the assets has an initial price P0,i (for the asset i at period

0), and a final price P̃T,i (for the same asset i at the end of period T ). The prices P̃T,i are

non-negative random variables whose values become known to the investors at period T .

The risk-free asset will have an initial price Pf and a certain final price bfPf , where bf will

be a constant known as the simple gross risk-free return; while the constant rf = bf − 1 will

be known as the simple risk-free return. The random vector b̃ = [̃b1, b̃2, . . . , b̃m]′ is composed

of the simple gross returns b̃i = P̃T,i/P0,i and has a multivariate joint distribution F . The

simple return r̃i is defined as b̃i− 1, and the simple return vector is r̃ = [r̃1, r̃2, . . . , r̃m]′. The

analysis is almost identical; in the static case simple returns are usually used, while in the

dynamic case it is easier to analyze final payoffs, by using gross returns. The possible values

the random variables P̃T,i, b̃ and r̃ may have, are denoted as PT,i, b and r respectively; and

are known at the end of the trading period. An investor is assumed to be non-satiable, i.e., to

always prefer more money than less; in the expected utility case this implies monotonically

increasing utility functions.

Investments can be characterized by an m × 1 vector x of commitments to the various

random assets; xi is the commitment to asset i and is proportional to the amount invested

in the ith asset; x is also be known as the allocation vector or decision vector, or vector

of portfolio weights. The m × 1 vector y is the percentage allocation vector where each yi

represents the percentage of the initial wealth W0 invested in the i-th asset; the percentage

vector is related to the vector of commitments as x = W0y. If there is no risk-free asset

available, the vector x can be constrained to be an element of the setX = {x|x′1 = W0}, also

known as the budget constraint. Other constraints can be added, such as the no shortselling

restriction x > 0; if xi < 0, then the asset i has been sold short; similar constraints can

be set for the percentage vector. In the case when there is a risk free asset available, the

budget constraint can be enforced implicitly by investing the allocation vector x in the m

risky assets, and W0 − x′1 in the risk-free asset.

When no risk-free asset is available, the final wealth W̃ (x) as a function of the decision
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vector is

W̃ (x) = x′b̃ = x′(1 + r̃) = W0y
′b̃, (2.1)

assuming the budget constraint previously mentioned is enforced. The quantity x′r̃ =

W̃ (x) − W0 is known as the net worth [6]. If a risk-free asset is available, then the final

wealth can be expressed as

W̃ (x) = x′b̃ + (W0 − x′1)bf = W0(x
′b̃ + bf − x′1bf ), (2.2)

where the net worth is now defined as x′r̃ + (W0 − x′1)rf . At period 0, the final wealth W̃

defined in equation (2.2) is a function of the random variable b̃, and has a set of possible

outcomes; W denotes a possible value that W̃ can take, which is known at the end of the

trading period. The financial assets are assumed to give no dividends. Asset prices are

always assumed positive. This is assured if we also assume limited liability; i.e., an asset

has limited liability if there is no possibility that it require any additional payments after its

purchase. An arbitrage portfolio xa is defined as a decision vector summing to zero; x′a1 = 0.

An arbitrage opportunity arises if there is an arbitrage portfolio xa such that x′ab ≥ 0 for all

possible realizations b of b̃, and E[x′ab̃] > 0. An arbitrage opportunity is a riskless way of

making money; if such a situation were to exist, the underlying economic model would not

be in equilibrium [50].

It is useful at this point to also define the compound return r̃cT,i = ln(P̃T,i/P0,i). Some-

times it is assumed that the compound returns r̃cT follow a multivariate normal distribution,

and the prices follow a Geometric Brownian Motion. In that case, simple returns follow a

log-normal distribution. Also, for very small trading periods the approximation

ln(PT,i/P0,i) ' (PT,i − P0,i)/P0,i

can be made, which means that in some cases simple returns can be approximated as random

variables with a normal multivariate joint distribution; it must be remembered that normal

returns contradict the limited liability assumption. Also, the natural logarithm function

cannot be applied to the case where the final price of an asset is 0 (a common case for some
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financial assets such as options); hence, we stick to price ratios or simple returns in our

analysis.

Optimal Asset Allocation

Once the preference relation of an investor is established, it is possible in some cases to deter-

mine either the optimal asset allocation that will satisfy an investor, or at least an efficient

portfolio. All of Chapter 5 is be devoted to different portfolio optimization techniques.

The goal of an optimal asset allocation is to select the optimal vector x∗ that gives the

“best” final wealth W̃ with distribution function FW̃ (·). Approaches to solving this problem

depend on definitions of preference relations which allow us to rank the possible final wealths;

in appendix B.1 we review some common representations of preference relations.

2.2 Probability distributions of financial returns

In practice, the total amount of financial assets an investor can select is extraordinarily large.

For that reason, the m assets usually selected are only a small subset of the available universe

of financial assets. The returns of the m assets selected will be assumed to have a joint

multivariate distribution F . Different assets selected will have different joint distributions.

We will assume that there are no arbitrage opportunities with them assets selected; i.e., there

is no xa such that x′ab ≥ 0 for all possible outcomes b of the random variable b̃ at the end of

the trading period, and E[x′ab̃] > 0. If the multivariate distribution F would allow arbitrage

opportunities, one could increase wealth without making an initial investment, which goes

against current economic theories. To rule out arbitrage opportunities, the concept of risk

neutral probability measures is used (see [50]). A very important result establishes that

there are no arbitrage opportunities, if and only if, a risk neutral probability measure Q on

Ω exists (a finite sample space with K <∞ elements, each element being a possible state of

the world). This result should be remembered to select synthetic distributions and examples

to test portfolio optimization methods, as well as risk measures.

Because wealth W̃ is the result of a linear combination of the m random variables (the

random vector b̃), the unidimensional distribution function FW̃ will depend on both the
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linear weights of the portfolio (x), and on the distribution function of the m assets (F ).

The class of distribution functions for the final wealth that can be generated from a linear

combination of assets with random returns is:

F = {FW̃ |W̃ = x′b̃,x ∈ X , b̃ ∼ F}. (2.3)

The characteristics of the set will therefore change depending on the kind of financial assets

being used. For example, if the returns of the financial assets follow a Gaussian multivariate

distribution, the return of the wealth will also be Gaussian.

2.2.1 Non-normality of financial assets

The normality assumption for the continuously compounded return is widely used to model

the dynamics of common stock prices (as described in appendix C.1). When the inter-

trading period observed is small, the normality assumption is a good approximation even if

the simple return is log-normally distributed.

Previous research has shows that U.S common stock returns are distributed with more

returns in the extreme tails [2, 24]. The distribution of Japanese security returns and other

assets such as precious metals also exhibit significant kurtosis [1, 4]. It has been pointed out

[56, 57] that investors’ preferences for higher moments are important for portfolio selection,

and that skewness and kurtosis cannot be diversified by increasing the size of portfolio [5].

Research exploring the deviations from the normality assumption abound, such as [3, 16, 23].

The classical linear market model consistent with the Capital Asset Pricing Model (CAPM)

is:

r̃j = αj + βj r̃k + εj j = 1, · · · ,m

where the random variable r̃j represents the return of the jth asset, r̃k is the market return,

βj = Cov(r̃j , r̃k)/var(r̃k), is the systematic variance of asset j, and εj is a zero mean random

error. The CAPM holds if the market is efficient, stable, and if all investors have concave

utility functions (such as quadratic utility functions). Some researchers [26] have proposed
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a higher moment market model, such as the cubic market model:

r̃j = αj + βj r̃k − γj r̃
2
k + δj r̃

3
k + εj j = 1, · · · ,m (2.4)

where γj = Cov(r̃j , r̃
2
k)/E[(r̃k − E[r̃k])

3] is the systematic skewness of asset j, and δj =

Cov(r̃j , r̃
3
k)/E[(r̃k − E[r̃k])

4] is the systematic kurtosis of asset j. The higher moments in-

troduce nonlinearities in the dependence of the individual return of asset j with respect to

the market return r̃k. This result indicates that the relation between the return of a stock

relative to the market will not be linear as the classical CAPM model suggests, but that

the sensitivity of the return of a single stock depends on the level of the market return.

Assuming that the market is in equilibrium and that all investors have concave utility

functions, [35], it can be shown that the market portfolio is an efficient portfolio, and this is

how the CAPM theory is derived. However, in a general risk-reward framework (which will

be introduced in the following chapter) we will not be able to assume that utility functions

are concave. Because some quantile-based measures of risk (such as V aR) are non-convex,

the uniqueness of the optimal solution will depend on the the joint distribution of returns

of the underlying assets. The only general restriction for the distribution of returns is the

no-arbitrage condition; hence, when investors behave in a risk-reward framework, the CAPM

formula will be a special case of the no-arbitrage theory.

2.2.2 Non-normality introduced by options

For some financial assets, such as common stock, the normality assumption is considered as

a very good approximation [58]. However, financial assets such as options (see appendix C.2

for the definition) can introduce nonlinearities and asymmetries to the portfolios [12, 45, 33]),

(see appendix C.3 for a brief description of some strategies). The use of options in portfolios

was precisely what led practitioners [38] to define new measures of risk able to determine

the exposure to downside losses.

Example 2.2.1 In figure 2-1 we can notice the significant asymmetry of the distributions

of portfolios which include options. The data was generated using 10000 samples, for three
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different option-based strategies (“write-call” and “long-put” at 50 %, as well as a “write-call”

at 100 %; in appendix C.4.2 we explain the exact procedure used to generate the returns). In

future chapters we will refer to these data returns as the “Option-based strategies data”. This

data was generated to emphasize the non-normality of some financial assets. The Long Put

(L.P.) strategy at 50 % is an asymmetric distribution with heavy left tail (greater downside

risk). The Write Call (W.C.). strategy at 100 % has a very heavy left tail, as can be seen in

the histogram and the empirical cumulative distribution function. The W.C. strategy at 50

% is also asymmetric and multimodal. Because of the non-normality, symmetric measures

of risk as the standard deviation cannot be applied; they do not distinguish between heavy

left tails and heavy right tails.

In figure 2-2 we can see the distribution function of two options (one put and one call, the

“Put-Call” data, explained in appendix C.4.4), and its underlying asset (a common stock

with Gaussian continuous returns). These data are used to show some of the weaknesses

of the V aR risk measure. Both the Put and the Call have a very asymmetric distribution

function. The options are evaluated using the Black and Scholes equation which assumes

there are no-arbitrage opportunities. The joint distribution function F linking the put, call

and underlying asset cannot be modeled using normality assumptions.
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Figure 2-1: Examples of non-normal (asymmetric) distributions. Option-based strategies
data.

EDF: empirical cumulative distribution function.
W.C.: “write-call” strategy. L.P.: “long-put” strategy.
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Figure 2-2: Far out of the money options. Put-Call data.

cdf: cumulative distribution function.

The top figure is the cdf of a normal return. In the bottom figure we see examples of non-
normal distributions of the financial options returns. The options only have “right” tails, as
can be seen from the cumulative distribution functions.
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Chapter 3

Risk-reward framework

The portfolio optimization problem is a very subjective matter; it depends greatly on the

ordering of the probability distributions of the returns of the assets considered. The basic

problem of comparing different financial assets with random returns has been very widely

researched using the expected utility theory, the stochastic dominance, and the multicriteria

methodology (reviewed in appendix B). So far, the multicriteria methodology has been

limited to the mean-variance case; in this chapter we extend it to the risk-reward cases.

In section 3.1 we briefly compare the different preference relations defined in the financial

literature.

While the expected utility theory assigns a scalar number to the random wealth, the

risk-reward methodology assigns a performance vector of size 2 to each random wealth. For

that reason, we use concepts available in the multicriteria optimization theory to analyze the

generalized risk-reward framework; this analysis yields similar results as a previous research

which links the risk-reward and the expected utility theories, but can be generalized to

include almost any kind of risk and reward measures. The preference relations obtained using

a risk-reward framework will be introduced in section 3.2. The reward and risk definitions

for a financial asset are presented in sections 3.2.1 and 3.2.2; the Value-at-Risk (V aR), a

very important measure recently defined is reviewed in detail in section 3.2.2.

The relationship of the risk-reward framework and the expected utility theory is analyzed

using a multicriteria point of view in section 3.3. In section 3.3.1 we introduce a new
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interpretation of the quadratic and the semivariance utility functions, from a risk-reward

point of view which uses the concept of the value function. The same concept is used to give

a new interpretation of the relationship between the quantile-based measures of risk (such

as the V aR and the shortfall) and the utility theory (section 3.3.2). We intend to show that

the utility theory can be treated as a special case of the risk-reward framework.

The risk-reward framework allows us to compare different assets or combinations of as-

sets so that we can select the one our preference relation considers the “best”. When there

are m different financial assets available, we will be able to alter the “performance” (the

combination of the risk-reward measures) of an investor’s portfolio, by changing the linear

weights. The advantage of the risk-reward framework is that classic methods such as the

mean-variance and the utility theory optimization are special cases of the general risk-reward

framework; in section 3.4 the basic optimization cases are posed from the risk-reward per-

spective; in section 3.4.1 we pose and solve the special case a risk-free asset is available, and

the risk measure is pseudo-coherent (see section 3.2.2). For the latter, we derive an elegant

solution (section 3.5). The case where no risk-free asset is available is analyzed in section

3.4.2, and the effect of noise in the optimization is reviewed in section 3.6.

The basic optimization problem, in the risk-reward framework, serves as basis for the

computation of the efficient frontier (section 3.5); the pseudo-coherent risk offers again some

elegant solutions.

3.1 Preference relations for risk averse investors

We still have not defined any particular function h(W̃ ), or a value function v(W̃ ); this is

a task more suited to Economists. Most agree that investors can be characterized by their

nonsatiability, (i.e., investors always prefer more money to less, see section 2.1), and their

risk behavior; investors can be risk-averse, risk-neutral or even risk-seekers [32, 35]. Risk is

not universally defined, and each investor may approach decision-making under uncertainty

with different risk definitions. However, certain restrictions on the available set of financial

instruments used lead to the same behavior no matter which risk definition we use; for

example, if assets follow a multivariate normal distribution, the mean-variance methodology
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suffices to describe the investors’ behavior.

In particular, some methods used to establish a preference relation are:

The expected utility theory: By far the most accepted, it assumes the investor’s

preference relation is complete, so that it can be expressed via a scalar value function

v(W̃ ) = E{U(W̃ )} where U(·) is the utility function. The concept of expected utility

dominance can also be defined for a broad class of utility functions. This is equivalent to

establishing an infinite vector p in which each element is an expected utility member of the

broad class. The risk and return behaviors are implicitly encoded depending on the utility

function used.

The stochastic Dominance: Using the concept of efficiency in an infinite performance

space, finds preference relations between classes of utility functions. Because it uses the

complete cumulative distribution function (CDF) of random variables to define preferences,

it can also be seen as a generalization of the risk-reward framework.

The risk-reward: Given certain explicit definitions of risk and reward behavior, the two

dimensional efficient frontier is computed so that each investor can chose her own E-point.

The mean-variance is the most famous approach here, although the mean-semivariance and

the safety-first techniques also belong to this category. If the risk is convex, and the re-

ward concave over the decision vector x, there is a value function representation for the

performance space.

The value function: It assumes scalar function v(W̃ ) exist. Some research has been

done using value functions that represent the risk-reward approach with additive models.

However, some multiplicative models also exist.

Moments of distribution: The several moments of a distribution (such as skewness and

kurtosis) to give a preference relation of some financial assets has been proposed in [35, 26].

In that case, the performance space will have a dimension greater than 2.

28



In some cases, particularly when the financial assets have a joint multivariate elliptical

distribution, theoretical links between the different approaches have been established.

3.2 Risk-reward criteria

Because of the arbitrary nature of utility functions, there have been attempts to depart

from the utility framework altogether and to use criteria based on more objective concepts.

The risk-reward criteria represent the preference relation of an investor using the Pareto

preference. A two dimensional vector

h(W̃ )′ = [reward(W̃ ),−risk(W̃ )]

(or h(x)), called performance vectors and composed of reward and risk measures of the

random return W̃ , can be used to compare and rank random returns, and an efficient frontier

can be computed using theorems B.1.1 to B.1.3. The negative sign assigned to the risk value

is due to the fact that most investors want to minimize risk. The use of a performance

vector of size two, in which each component is specifically designed to measure the risk-

reward performance of a portfolio, was first proposed by Markowitz [44]. The use of a

risk-reward performance vector was proposed by Encarnación, [39], who uses a lexicographic

rule to rank the returns. Other risk-reward frameworks [21] were introduced, such as the

multiplicative risk-reward models,

v(W̃ ) = risk(W̃ )reward(W̃ ),

or even some more general forms,

v(W̃ ) = g(risk(W̃ ), reward(W̃ )),

where v(·) and g(·, ·) are scalar functions.

We will focus on the Pareto optimal dimensional parameter space. As usual, the most

difficult task is to select the adequate risk and reward measures of a portfolio, to approximate
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the investors’ behavior accurately.

Most of the risk-reward research was done analyzing returns instead of absolute wealth,

but assuming simple returns are used, then the linear relation W̃ = W0(1 + r̃T ) applies.

3.2.1 Reward measures

We loosely define reward as a function of the desirability of a financial asset described by a

random variable (Ã, for example); reward(Ã) > reward(B̃) implies that Ã is preferred to

B̃ if the investor is indifferent to risk.

Some common measures of reward include the mean, or expected wealth, E [̃W ]. However,

using our definition, an expected utility function can be used as a reward measure, e.g., the

linear utility function which computes the mean, or the log-normal utility function. We can

also use quantiles (as the median, or others) to measure the reward of a financial asset, which

would be a non-parametric function of return. This is a new concept, and can be related

to the notion of stochastic dominance. Quantiles, (including the median) are homogeneous

measures of reward, which theoretically may offer some advantages. However, in practice,

the use of the median increases the unreliability of optimization algorithms.

3.2.2 Risk measures

A risk function will be a scalar function risk(W̃ ) associated with the random outcome of a

financial asset (W̃ ). Risk will be assumed to be an undesirable characteristic of the random

outcome W̃ , related to the possibility of losing wealth. The characteristics of a risk function

have been proposed in [6], defining the coherent risk measures. We can assume that we have

two different wealth random outcomes, Ã and B̃, which are the random outcomes of two

portfolios, xA and xB, such that A = x′A1 and B = x′B1. A coherent risk measure has the

following properties,

i. Sub-additivity: risk(Ã+ B̃) ≤ risk(Ã) + risk(B̃).

ii. Homogeneity: risk(γÃ) = γrisk(Ã), for any γ > 0.
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iii. Risk-free condition: risk(Ã+γbf ) = risk(Ã)+γcf , for any real γ; cf will be a risk-free

constant that will depend on the definition of risk(·).

Coherency can also be written in terms of the portfolios xA and xB, if desired.

The sub-additivity and the homogeneity imply the convexity of the coherent risk measure.

A risk measure is pseudo-coherent (denoted by ρ) if it has the homogeneity and the risk-

free condition properties, but not the sub-additivity property; the V aR is one example of

a pseudo-coherent risk measure. Pseudo-coherency could also be a characteristic of reward

measures; pseudo-coherent measures of reward are denoted as % (e.g., the mean and the

median of the wealth will be pseudo-coherent).

In appendix B.3.1 a risk averse individual is defined within the expected utility theory.

In the risk-reward framework, we will define risk aversion as follows:

Given two assets with random payoffs Ã and B̃, where reward(Ã) = reward(B̃), a risk

averse person will select Ã if risk(Ã) ≤ risk(B̃). We will prefer definitions of risk which are

also compatible with the expected utility theory. Some well known risk measures are the

following:

The standard deviation

One of the oldest risk functions, it assumes the risk is proportional to the standard deviation

of a random variable W̃ :

risk(W̃ ) = σW̃ =

√
E
{
(W̃ − E{W̃})2

}
(3.1)

The standard deviation is a coherent risk measure with cf constant equal to 0.

Lower partial moments

Other attempts to define risk include Harlow’s research [30]. In his work he introduces lower

partial moments (LPMs) in order to use only the left-hand tail of the return distribution. He

defines an LPM for the probability distribution of a portfolio outcome W̃ (x) with a target

rate τ as:

risk(W̃ ) = LPMn = E[(τ − W̃ )nus(τ − W̃ )], (3.2)
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(where us is the unit step function, definition A.1.2). Harlow uses n = 2 and τ = 0 (also

known as semivariance); he also recommends the use of n = 1, but is opposed to the use of

n = 0 since it does not measure the dispersion of a loss once it falls below the target rate.

The case when n = 0 is a type of the safety-first criteria.

In the case where the assets follow a normal joint distribution, the optimization result

should give the same reward as the mean-variance optimal portfolio. However when finan-

cial assets do not follow a joint normal distribution (and have asymmetric distributions)

asymmetric functions of risk like LPMs yield different optimal portfolios, which give a bet-

ter protection against the risk defined by semivariance. When n = 1 or 2, the function

(τ −W )nus(τ −W ) is convex, and assuming that its expectation is finite, the risk measure

LPM will be a convex risk measure (although in general it is not homogeneous, and has no

risk-free condition property). The definition of LPM can be modified such that homogeneity

is obtained.

The Value at risk (V aR)

Among all the possible definitions of disaster, one of the most often used by practitioners

is the so called Value-at-Risk [38, 58]. The definition of V aR for a portfolio is the financial

loss, relative to the mean,

V aRmean = V aRα = E[W̃ ]− qα. (3.3)

where qα is the quantile function (Pr[W̃ ≤ qα] = α, see the definition A.2.1).

Sometimes the V aR is defined as the absolute financial loss, that is, relative to zero or

without reference to the expected value,

V aRabsolute = V aRa,α = −qα. (3.4)

We have developed functions of risk derived from the V aR, but that also measure the

dispersion of returns given that we fall below the V aR.

The V aR is homogeneous, and has a risk-free constant cf equal to 0 for the mean-centered
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V aR, and cf = −bf for the absolute V aR. However, it is not convex in general.

The shortfall

Another important objective function is

eα(W̃ ) = qα −E{W̃ |W̃ ≤ qα}. (3.5)

The function eα(x) measures the expected loss below the disaster level qα; and thus measures

the risk beyond Qp.

The function

šα(W ) = s(qα) =
∫ qα

−∞
FW̃ (w)dw = αeα(W̃ )

appears in the definition of the second order stochastic dominance described in section B.2.

However, the second order stochastic dominance also requires that the inequality s(y) =∫ y
−∞(FÃ(t) − FB̃(t))dt ≤ 0 is valid for all y ∈ <; if the shortfall is optimized, the stochastic

dominance is not necessary obtained.

The shortfall can be related to the concept of stochastic dominance:

s̃α(W̃ ) = αeα(W̃ )− Iref(qα) (3.6)

where Iref(qα) ≡
∫ qα
−∞ FW̃ref

(t)dt. In this case, W̃ref is a reference random wealth with a

distribution function FW̃ref
(·), related to benchmarking, as will be explained in section 3.4

(see [36]). The shortfall is a coherent risk measure, assuming there are finitely many states

of the nature (as described in [6]).

Absolute shortfall

Similarly to the V aR, we can also define the absolute shortfall risk as follows:

ea,α(W̃ ) = −E{W̃ |W̃ ≤ qα}. (3.7)

The shortfall is homogeneous with a risk-free factor cf = 0; the absolute shortfall is also
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homogeneous but with a risk-free factor cf = −bf .

Example 3.2.1 Non-convexity of the VaR. An example of the non-convexity of the V aR is

shown in figure 3-1(a). Assume it is possible to have the portfolio y′c = [0,−1] which repre-

sents selling one normalized call, and y′p = [−1, 0] which represents selling one normalized

put. We can form a portfolio of only two assets, two far out-of-the-money options, a put and

call, with a linear combination of yc and yp, so that ylc(λ) = λyc + (1− λ)yp. As a function

of λ, we plotted the absolute V aR0.05 of the portfolio ylc(λ), which is the non-convex graph

depicted in 3-1(a).

In this example, the underlying asset was assumed to have a continuously compounded

return of 15%, and a volatility of 20%. The risk-free asset return is 5%, the time to expiration

of the options is 1/2 year, and an absolute V aR0.05 was computed; the options are described

in more detail in appendix C.4.4. Setting the initial price of the underlying asset as 1, we

generated 1000 samples of prices for the expiration date, using a log-normal distribution

(as in equation (C.3)) for the underlying asset. From the price distribution, we computed

what would be the final price distributions for the two out-of-the-money options (using the

definitions in appendix C.2). We obtained 1000 samples of the joint price distributions.

For each portfolio, we used the technique described in section A.2.4 to compute a quantile

estimator at 5% (which is the negative of the V aR0.05).

Although the absolute V aR0.05 is non-convex, the set of financial assets was limited to

the two options (no investment possible in the underlying assets), and the portfolios did not

comply with the budget constraint y′1 = 1; the example assumed that pure shortselling

portfolios as yc was allowed.

In figure 3-1(b) we show the equivalent absolute shortfall risk measure (using the estima-

tor described in equation (A.15)) for the same linear combination of portfolios as in 3-1(a).

For this example, the absolute shortfall is clearly convex.
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Figure 3-1: Non-convexity of VaR. (a) Absolute VaR. (b) Absolute shortfall.
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3.3 Relationship between the risk-reward and the util-

ity theories

Given the elegance of utility theory, many researchers have searched for equivalences between

the risk-reward approach and the utility approach. From theorem B.1.5, if the reward

measure and the risk measure are both functions of x and are also concave over a convex

set X , then the efficient frontier will also be convex, and can be calculated by selecting an

“appropriate” vector λ′ = [λ1, λ2]
′. In this case, the risk-reward approach will have a scalar

value function, formed by the weighting function

v(x) = λ1reward(x)− λ2risk(x). (3.8)

If that is the case, this weighting function is concave, and shares many of the nice properties

of the utility theory (uniqueness of optimal solutions, market equilibrium, [32, 35]), although

it is more general. From the definition of the asset allocation problem, we can see that the

set X is indeed convex. The risk and reward functions that are concave over X are:

i. The mean.

ii. The concave utility functions.

iii. The negative of the variance.

iv. The negative of LPMn of order 1 and 2.

v. The shortfall.

Selecting an appropriate vector λ, combinations of i - iv can be represented via expected

utility functions (as shown in the next sections). Still, it is assumed that each investor will

have a different λ that better fits her risk appetite.

For particular classes of the joint distribution F , the other risk functions can also be con-

cave, and the corresponding risk-reward preference will have a value function representation.

The quantile function is not concave for arbitrary distributions, as found by [6]; identification
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of the class of distributions that allow its convexity is an interesting problem which needs to

be solved. The shortfall is convex assuming there are finitely many states of the nature [6].

If the performance set P is not concave, then the Pareto relation cannot be expressed as a

sum (and even worse, there is no value function that can represent the preference relation,

see appendix B).

3.3.1 The mean-variance and the mean-LPM vs. the utility the-

ory

The mean-variance framework uses, as the name indicates, a reward(x) = x′E[b̃] and a

risk(x) = E[(x′b̃− x′E[b̃])2]; the weighting function (3.8) can be expressed in terms of the

quadratic utility function:

E[U(W̃ (x))] = E[λ1x
′b̃− λ2(x

′b̃− x′E[b̃])2].

The value function required will be the expected value of this quadratic equation, E[U(·)].

If the rates of return are multivariate elliptic (i.e. an affine transformation of a spherically

symmetric distribution, which means it includes the multivariate normal joint distribution),

a Taylor series expansion of an arbitrary expected utility function E[U(W̃ )] is:

E[U(W̃ )] = U(E[W̃ ]) +
1

2!
u′′(E[W̃ ])σ2(W̃ ) + E[H.O.M.],

where E[H.O.M.] is a term than includes moments of order higher than 2.

Hence, in the mean-variance framework, optimal portfolios will be confined to lay along

the “efficient frontier” in a mean-variance space. However, optimal portfolios for arbitrary

distributions and preferences cannot be represented within the efficient frontier.

Lower Partial Moments

Lower partial moments can use the expected mean as a reward measure;

reward(x) = x′E[b̃]

37



(or another concave utility function), and the LPMn as a risk measure:

risk(x) = E[(τ − x′b̃)nus(τ − x′b̃)].

The weighting function (3.8) adapted to the lower partial moments case can be expressed

using the following utility function

E[U(W̃ (x))] = E[λ1x
′b̃− λ2(τ − x′b̃)nus(τ − x′b̃)]. (3.9)

The value function required will be the expected value of this piecewise utility function

E[U(·)], which will be concave if n = 1 or 2, but not if n = 0.

This utility has both advantages and disadvantages: although it seems to better describe

the investors’ behavior, the wealth elasticity (see appendix B.3.1) is negative for possible

outcomes x′b ≤ τ of the random variable x′b̃, and zero for x′b > τ . In the dynamic case,

this means that the investor is non-consistent, or that her investing behavior changes based

on the quantity of wealth she has. The dynamic behavior is further described in section

6.4.1.

3.3.2 The shortfall and the V aR vs. the utility theory

Everyone wants to find out if risk functions represented by quantile functions have an ex-

pected utility function. In cases where the quantile functions are concave with respect to

x ∈ X (even if they are not concave for the x ∈ <m), theorems B.1.3 and B.1.5 apply.

Therefore, there will be an additive value function formed by the weighted sum of the risk

and reward measures. The weighting functions of the shortfall can be represented as

v(x) = λ1reward(x)− λ2eα(x
′b̃),

and the V aR can be represented as

v(x) = λ1reward(x)− λ2V aRα(x)
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Table 3.1: The Allais paradox in risk-reward scenario

Lottery mean q0.01 V aR0.01

p1 1 1 0
p2 1.39 0 1.39
p3 0.5 0 0.5
p4 0.11 0 0.11

for appropriate nonnegative λ1, λ2; at least one of them is nonzero. There will be an expected

utility representation of those weighting functions as long as the quantile or shortfall functions

can be represented as a function of moments. For some special distribution functions such

as elliptic distributions, there is a formula that involves the first two moments; arbitrary

distributions might use more moments. Risk functions based on quantiles might be more

suited to deal with arbitrary distributions, than methods using more than two moments. For

arbitrary distributions, the exact value function can only be approximated with an expected

utility function in certain ranges; in some cases the semivariance utility function seems to

work quite well.

3.3.3 The Allais paradox in the risk-reward framework

We want to use the Allais paradox to show that in some cases the expected utility represen-

tation of a preference relation may not exist, whereas risk-reward representation might.

The Allais paradox (described in appendix B.3.2) can be used in the risk-reward frame-

work, specifically in a mean-V aR(0.01%) (absolute) context, as shown in table 3.1.

Choosing p1 over p2 and p3 over p4 is consistent with the Pareto optimal preference

relationship that uses a mean-quantile performance vector; p3 is certainly better than p4,

and p1 is indifferent to p2, which is not a contradiction. The V aR and the shortfall risk

measures are unable to rank the assets. However, if the mean-quantile had an expected utility

representation, it would not be able to rank p3 over p4; hence the risk-reward methodology

might not always have an expected utility representation.
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3.4 The risk-reward approach to portfolio optimiza-

tion

Once we know which preference relation to use, the numerical optimization method is one

of the following two cases:

i. The maximization of a scalar value function v(W̃ (x)), constraining the decision vec-

tor x to the set X , which includes the budget constraint defined in section 2.1 and

other requirements (as non-negativity of the weights, for example). The expected util-

ity approach corresponds to this case; in the expected utility framework, the value

function corresponds to the expectation of a utility function v(W̃ ) = E[U(W̃ )]. The

optimization problem is:

max v(W̃ (x)) s.t. x ∈ X . (3.10)

ii. the maximization of an arbitrary component of the performance vector, hi(W̃ (x)),

constraining both the decision vector to be an element of the set ∈ X , and the remaining

components of the performance vector to predefined values; hk(W̃ (x)) ≥ ρk, k 6= i,

k = 1, . . ., Q}. In the two dimensional risk-reward case, h(x) = [reward(x),−risk(x)]′;

hence, we will have either (for a predefined risk level Lp):

max reward(x) s.t. x ∈ X , risk(x) ≤ Lp, (3.11)

or, for a predefined reward level Rp;

min risk(x) s.t. x ∈ X , reward(x) ≥ Rp, (3.12)

Efficient frontier methods like the mean variance are computed following this procedure,

although the special nature of the mean-variance problem allows the computation of

only two optimal portfolios. The remaining ones can be obtained as linear combinations

of two optimal portfolios, a phenomenon known as the two-mutual fund separation,
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[35, 32]. Homogeneous and convex risk measures also offer the mutual fund separation

[60]. Depending on the chosen particular combination of risk and reward measures,

it might be easier to find the solution constraining one particular component of the

performance vector (e.g., for the mean-variance case the reward is constrained). This

method results in a set of efficient portfolios, since it satisfies the theorem B.1.1 as well

as the definition of the e-portfolio.

The budget constraint is represented as X = {x|x′1 = 1}, although additional constraints

such the as the non-negativity of the decision vector (x > 0) can be added. The optimization

of a value function is considerably simpler, and has already been very well studied. However,

investors tend to select optimal portfolios computed using optimization problems of the

second category.

Usually the computation of the complete frontier is perceived as a “naive” method; the

Academic literature presents several alternatives which compute directly an optimal decision

vector (goal optimization, penalty functions, etc). Unfortunately, since the selection of

the optimal depends heavily on the investors’ behavior, it is not possible to select those

alternatives. Mutual Fund separation theorems might be useful in some cases; but if the

non-negativity constraint is enforced, they are useless [32].

Nonlinear programming methods are used to solve both cases. Gradient-based optimiza-

tion algorithms require the computation of the gradient of the performance vector ∇xh(x);

therefore either an explicit form of the gradient or an estimate must be available. In other

cases, finite difference approximations of the gradient are sufficient for the algorithm to con-

verge to an optimal solution. For some particular cases the optimization only requires a

quadratic programming algorithm (i.e. mean-variance), or involves the maximization of a

concave function (i.e. expected utility of risk averse individuals). There are a couple of

interesting applications that can be derived from the static optimization problem, and which

are already in practice.

Index tracking Also known as benchmarking [36]; let’s assume we have a reference port-

folio with a random outcome W̃ref and a CDF Fref . If we define the index tracking error
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˜err(x) as

˜err(x) = W̃ (x)− W̃ref , (3.13)

then we can define the index tracking problem as

min risk( ˜err(x)) s.t. reward( ˜err(x)) = 0,x ∈ X . (3.14)

The function ẽ(x) is known as the residual error.

Similarly, the index enhancing problem becomes:

max reward( ˜err(x)) s.t. risk( ˜err(x)) = 0,x ∈ X . (3.15)

However, this instance may turn out to be infeasible, depending on the chosen W̃ref .

3.4.1 Optimization with risk-free asset

What follows is a new derivation of the properties of optimal portfolios when m risky assets

and one risk-free asset are available, and shortsales of the asset are allowed.

Let us assume we use a pseudo-coherent risk measure (which we denote as ρ) with a risk-

free constant cf , and as reward measure we select the mean return of the portfolio. Then,

the optimization can be analyzed as:

W̃ (x) = x′b̃ + (W0 − x′1)bf , (3.16)

(similar to equation (2.1) from section 2.1). Note that the decision vector x represents the

vector of cash commitments. If we decide to optimize the problem following the format of

equation (3.12), constraining the expected return of the optimal portfolio to be equal to a

predefined wealth level Wp, (where the gross return is bp = Wp/W0), we have to solve the

following problem:

min ρ(W̃ (x)) s.t. E[W̃ (x)] = Wp.
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Equation (3.12) holds for an inequality constraint; however, for the analysis, we assume that

we should enforce an equality constraint to compute the optimal solution. This assumes

that the risk and reward measures are selected such that there must be a tradeoff, otherwise

it would be possible to define some risk and reward measures that lead to non diversified

portfolios. The Lagrangian is

L(x, λ) = ρ(x′b̃ + (W0 − x′1)bf )− λ(x′E[b̃] + (W0 − x′1)bf −Wp);

using the risk-free condition (assuming for simplicity that cf = 0), the Lagrangian can also

be expressed as

L(x, λ) = ρ(x)− λ(x′E[b̃] + (W0 − x′1)bf −Wp).

For optimality, the gradient of the Lagrangian should satisfy the Kuhn-Tucker condition:

∇xL(x∗, λ∗) = ∇xρ(x
∗)− λ∗(E[b̃]− bf1) = 0, (3.17)

where x∗ and λ∗ are respectively the optimal decision vector and the Lagrange multiplier.

Pre-multiplying equation (3.17) by x∗′, using the homogeneity properties of the coherent

risk and the return constraint E[W (x)] = Wp expressed as x′E[b̃]− x′1bf = Wp−W0bf , and

solving for the Lagrange multiplier λ∗, we obtain:

λ∗ =
ρ(x∗)

Wp −W0bf
. (3.18)

Substituting the optimal Lagrange multiplier λ∗ in equation (3.17), we obtain

E[b̃]− bf1 =
∇xρ(x

∗)

ρ(x∗)
(Wp −W0bf ). (3.19)

If we define the generalized β̆j(x) as1

β̆j(x) =

∂ρ(x)
∂xj

ρ(x)
for j = 1, . . . ,m (3.20)

1In the case when the risk-free constant cf 6= 0 (e.g., for the absolute V aR and the shortfall risk measures),
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(which for elliptic distributions turns out to be similar to the classic mean-variance definition

of β, see section 2.2.1), then

E [̃bj ]− bf = β̆j(x
∗)(Wp −W0bf);

if we set W0 = 1 and use simple returns, for the jth asset the equation (3.19) becomes:

E[r̃j ]− rf = β̆j(x
∗)(rp − rf), (where rp = Wp/W0 − 1),

which is easily recognized as the prototype of the CAPM, and has been widely studied for

distributions represented with a finite number of moments (for example, up to 4 moments

were analyzed by [26]). Of course, to derive a CAPM model from this formula we would have

to make further assumptions about the investors’ behavior, which is not a straightforward

procedure for arbitrary distributions and non-convex risk measures. It is probable that the

distributions restricted by the no-arbitrage condition yield a unique solution.

Optimization with pseudo-coherent risk measures. This same procedure could be

applied to derive similar formulas when we have pseudo-coherent reward measures, i.e.,

reward(x) = %(x), where % represents pseudo-coherent reward measures, such as the median.

If the constraint %(x) = Wp holds, and the pseudo-coherent reward measure has a risk-free

constant df , the condition for optimality is:

∇x%(x)− df1 =
∇xρ(x

∗)− cf1

ρ(x∗)− cf1′x∗
(Wp −W0df). (3.21)

The median is a good example of a pseudo-coherent risk measure, with df = bf . However,

a practical and reliable method of optimization for the median as reward measure is not

available at the moment.

the full formula for the generalized β̆j is:

β̆j(x) =

∂ρ(x)
∂xj

− cf

ρ(x)− cf1′x
, for j = 1, . . . ,m.
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3.4.2 Optimization without risk-free asset

If no risk-free asset is available, then the wealth equation becomes

W̃ (x) = x′b. (3.22)

and we now have to enforce explicitly the budget constraint x′1 = W0 in the optimization

problem:

min ρ(W (x)) s.t. x′E[b̃] = Wp, x′1 = W0.

We are assuming the optimization must be equally constrained. The Lagrangian is

L(x, λ) = ρ(x)− λ1(x
′E[b̃]−Wp)− λ2(x

′1−W0),

where λ′ = [λ1, λ2]. For optimality, the gradient of the Lagrangian should satisfy the Kuhn-

Tucker condition:

∇xL(x∗, λ∗) = ∇xρ(x
∗)− λ∗1E[b̃]− λ∗21 = 0,

where x∗ and the vector λ∗ are respectively the optimal decision vector and the Lagrange

multiplier vector. Pre-multiplying equation (3.17) by x∗′, using the return constraint, and

the homogeneity properties of the coherent risk, we obtain the equation:

ρ(x∗)− λ∗1Wp − λ
∗
2 = 0.

Without further assumptions, it is not possible to advance much beyond this result; if we

assume the returns have a joint elliptic distribution, we recover the same results already

obtained for the mean-variance case.

3.4.3 Numerical algorithm

For the implementation of a numerical algorithm, we assume that n samples of the random

vector b̃, b1, b2, · · · , bn are available. The samples could either result from a Monte-Carlo
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simulation, or from historical data; but they must be independent and identically distributed

(i.i.d.) samples. In Chapter 5 we describe several algorithms that could be used to opti-

mize portfolios with quantile-based risk measures. For the following examples we used the

gradient-based algorithm described in section 5.3.

Example 3.4.1 In the first example, depicted in figure 3-2, we assumed that three finan-

cial stocks with returns following a joint Gaussian multivariate distribution (described in

appendix C.4.1) were available. With a set of samples, we computed the optimal weights

as a function of the desired expected annual return using four different methods: the mean-

variance, the mean-semivariance, the mean-shortfall and the mean-V aR. The optimization

was done with no risk-free asset, but shortsales were allowed. The figure 3-2 only shows the

weights of the optimal portfolios for the first two assets.

Since the joint multivariate distribution is Gaussian, the mean-variance numerical method

yield the most accurate optimal weights; hence, deviations from the mean-variance optimal

portfolio correspond to errors introduced by the algorithms used to compute the other mean-

risk optimal portfolios. In this example, the mean-semivariance weights completely coincide

with those of the mean-variance method. From figure 3-2, we can appreciate the large magni-

tude of errors introduced by the mean-V aR method when compared with other optimization

methods. The mean-shortfall behaves relatively better than the mean-V aR method. Here,

our optimization numerical algorithm is another source of errors. However, even if the op-

timal weights do not correspond exactly to the mean-variance optimal weights, when the

comparison is made in the performance space (see example 3.5.1), the mean-V aR and the

mean-shortfall methods perform similarly to the mean-variance optimal portfolios.

Example 3.4.2 For the second example, depicted in figure 3-3, we use financial assets with

a significant asymmetric distribution function, the “Option-based strategies data”, described

in appendix C.4.2 and shown in figure 2-1. We only show the optimal weights for two of the

assets. The “write-call” strategy at 50% is designed to have a heavy left tail (downside),

while the “long-put” strategy at 50% has a lighter left tail. Intuitively, the “write-call”

strategy seems riskier than the “long-put”; hence, we would expect optimal portfolios to

46



12 13 14 15 16 17 18
0.2

0.4

0.6

0.8

1

1.2
(a) Allocation for asset 1

annual return (%)

al
lo

ca
tio

n

12 13 14 15 16 17 18
−1

−0.5

0

0.5

1

annual return (%)

(b) Allocation for asset 2

al
lo

ca
tio

n

Figure 3-2: Weights of an optimal portfolio. Gaussian data. (no risk-free asset, shortsales
allowed)

(solid) mean-variance, (dotted) mean-semivariance,
(dash-dot) mean-shortfall 5%, (dashed) mean-V aR0.05

The dotted line coincides with the solid line. Deviations from the solid line represent errors
introduced by the numerical.
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allocate a greater percentage to the “long-put” strategy, and at the same time avoid the

“write-call” strategy.

In this example, if we focus on the optimal weights for a certain return (no risk-free asset,

and shortsales allowed), we clearly see that the optimal mean-variance gives a different

optimal weight than the other methods, the mean-semivariance, the mean-V aR and the

mean-shortfall. We will see in section 3.5 that when we compare the efficient frontiers

of the different methods, each method yields the “optimal” portfolio according to its own

performance measure.

It is very difficult to select the “best” method, since each one will be the “optimal”

according to its own definition; still, in this example some interesting features of the optimal

weight deserve further analysis. The mean-variance and the mean-semivariance methods

increase the amount of asset 1 (figure 3-3) as the desired expected return is increased, while

the mean-V aR and the mean-shortfall methods decrease the allocation of this asset as a

function of the desired expected return. At this point the definition of risk is crucial; if the

“write-call” strategy is more risky (i.e., the probability of having a loss is higher), then a

risk averse investor would choose to have less of this asset.

In the case of the “long-put” strategy, although all methods increase the optimal weight

as the desired expected return increases, the slope is much steeper for the mean-V aR and

the mean-shortfall methods, which reflects again how each risk definition generates different

attitudes towards risk. At a simple return of 6%, the optimal weights of the “long-put”

strategy produced by the mean-V aR and the mean-shortfall methods are significantly larger

than those of the mean-variance and the mean-semivariance methods, which indicates that

the V aR and the shortfall risk measures consider asset 2 less risky.

This is one example in which the mean-V aR and the mean-shortfall methods yield “bet-

ter” optimal portfolios, since they select optimal weights which better fit a risk-averse in-

vestor’s behavior.
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Figure 3-3: Weights of an optimal portfolio. Option-based strategies data. (no risk-free
asset, shortsales allowed)

(solid) mean-variance, (dotted) mean-semivariance,
(dash-dot) mean-shortfall 5%, (dashed) mean-V aR0.05

asset 1: “write-call” strategy at 50 %. asset 2: “long-put” strategy at 50 %.

Different algorithms give completely different “optimal” weights when the distributions are
asymmetric. The mean-shortfall and the mean-V aR coincide almost everywhere, except in
a point where the mean-shortfall method fails to converge to a solution.
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3.5 Risk-reward efficient frontiers

In the previous sections we described our attempts to identify the optimal portfolio. The

efficient frontier technique is based on the premise that an investor selects only efficient

portfolios, but that each investor may select a different portfolio. Hence, what the best

mathematical programming methods can do is to identify the efficient frontier, and let the

investor chose he desired performance vector.

The efficient frontier analysis has been widely developed for the mean-variance case [43,

44, 46, 35, 41, 27, 15, 32, 13], the mean-LPMN (or semivariance) [42, 30, 45], and the safety-

first [18, 52]. We take ideas from the efficient frontier analyses in the mean-variance case,

and extend it to the risk-reward scenario.

When the risk measure is convex and the reward measure is concave, the efficient frontier

is convex. It is possible to develop mathematical programming algorithms to find the risk-

reward efficient frontier, using the mean-variance framework.

Example 3.5.1 Convex efficient frontiers (i). In figure 3-4 we see the familiar mean-

variance efficient frontier, as well as three other efficient frontiers: the mean-semivariance,

the mean-shortfall and the mean-V aR. The optimization is done with no risk-free asset, and

allowing shortsales. With Gaussian case, regardless of the optimization method used, the

frontiers are convex, and almost identical. Example 3.4.1 gives the weights of the efficient

portfolios (figure 3-2, note that some numerical errors were introduced due to sampling) and

we notice that in the performance space (figure 3-4) the graphs look almost identical. Still,

in the mean-V aR space the efficient frontier is very noisy (due to numerical errors), and even

looks as if it were not convex.

Example 3.5.2 Convex efficient frontiers (ii). Even when the financial assets have asym-

metric returns, the efficient frontier can be convex, as figure 3-5 shows.

Here, shortsales are allowed, but no risk-free asset is available. The data being used comes

from the “Option-based strategies data”. This example clearly shows how if we compute the

optimal weights using one mean-risk method, they can become inefficient when represented

in a different mean-risk space. In figure 3-5(b), the mean-semivariance optimal weights
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Figure 3-4: Efficient frontiers. Gaussian data. (no risk-free asset, shortsales allowed)

(solid) mean-variance, (dotted) mean-semivariance,
(dash-dot) mean-shortfall 5%, (dashed) mean-V aR0.05

Examples of convex efficient frontiers. The frontiers coincide due to the use of simulated
Gaussian data.
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plotted in a mean-V aR space trace a curve with a greater V aR risk. Obviously, in the mean

V aR space, the mean-V aR optimal weights outperform all other methods. The mean-V aR

efficient frontier is not smooth, and appears to be non-convex, due to numerical errors. The

same analysis could be done for the other graphs. In cases where only the performance

measures are available, it is difficult to establish which method is superior.

In the cases where the efficient frontiers are convex it is possible to use a weighting

function as the value function representing the preference relation.

It must be noted that the financial data used here is simulated with the Black and Scholes

formula, which assumes there are no arbitrage opportunities.

Example 3.5.3 Non-convex efficient frontiers. We emphasize the fact that convex perfor-

mance measures produce convex efficient frontiers. When the risk measure is not convex, the

efficient frontier is not always convex. In the second example (figure 3-6) we use financial

assets that with a significant asymmetric distribution function (“Put-Call data”, described

in appendix C.4.4); shortsales are allowed, and no risk-free asset is available. In figure 3-

6(b), we see that the optimal frontier generated by V aR0.05 is not convex. Not only it is

not-convex, but the risk for V aR0.05 seems to decrease as the expected return increases! This

case outlines the danger of blindly following any particular risk measure.

3.5.1 Pseudo-coherent risk with risk-free asset

The pseudo-coherent risk case with a risk-free constant cf and no shortsales allowed is fully

analyzed in this section, using the results previously. Assuming that holding all the initial

wealth W0 on the risk-free asset (xf = 0) is an efficient portfolio, and that an efficient

decision vector x∗ with expected return rp is available, a linear combination of them,

(1− γ)xf + γx∗,

can be substituted in equation (3.16), and results in the random final wealth variable

W̃ (γ,x) = γx∗′b̃ + (W0 − γx
∗′1)bf .
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Figure 3-5: Efficient frontiers. Option-based strategies data. (no risk-free asset, shortsales
allowed)

(solid) mean-variance, (dotted) mean-semivariance,
(dash-dot) mean-shortfall 5%, (dashed) mean-V aR0.05

Example of convex efficient frontiers. Plotting the performance measures of the mean-
variance optimal weights in a mean-shortfall space shows that they do not belong to the
efficient frontier.
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Figure 3-6: Efficient frontiers. Put-Call data (no risk-free asset, shortsales allowed).

(solid) mean-variance, (dotted) mean-semivariance,
(dash-dot) mean-shortfall 5%, (dashed) mean-V aR0.05

(b) is an example of a non-convex efficient frontier; notice the mean-V aR efficient frontier.
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If we substitute γx∗ in the equation (3.19), using the properties of homogeneous functions

(see A.1.3) and the risk-free asset property of risk functions, we can derive

∇xρ(γx
∗)− cf1

ρ(γx∗)− cfγ1′x∗
(E[W̃ (γx∗)]− bf ) =

∇xρ(x
∗)− cf1

ρ(x∗)− cf1′x
(E[W̃ (x∗)]− bf ).

We can see that the linear combination of the risk-free asset portfolio with any efficient

portfolio satisfies the optimality condition derived in the previous section, which means

that homogeneous risk measures have a mutual fund separation. With a risk-free asset, the

efficient frontier is also restricted to a certain curve; taking any component of equation (3.19)

we can write the risk ρ(x∗) as a function of the desired level of wealth, Wp:

ρ(x∗) =

 ∂ρ(x∗)
∂xj
− cf

E [̃bj ]− bf

 (Wp −W0bf ) + cf1
′x∗. (3.23)

In the specific cases where cf is equal to 0, the efficient frontier is a line (e.g., for the

standard deviation, the V aRα and the shortfall), and the optimal assets have the mutual

fund separation.

3.5.2 Examples of efficient frontiers

Example 3.5.4 Linear efficient frontiers. Following the procedures already explained for

the previous examples, we generate figures 3-7 and 3-8 (with the “Option-based strategies

data” and the “Put-Call data” respectively, allowing shortsales, and introducing the risk-free

asset). In these figures we clearly see that the efficient frontiers are linear for pseudo-coherent

risk measures with a risk-free constant (the standard deviation, the V aR and the shortfall).

Of particular importance is the fact that the efficient frontier is a line even in the case of

the “Put-Call data” and the mean-V aR optimization method (figure 3-8). This case is very

important, since it shows that when there is a risk-free asset, the risk measure does not need

to be convex with respect to x for the efficient frontier to be a line.

Example 3.5.5 Mutual Fund separation. Examples of mutual fund separation are shown

in figures 3-9 and 3-10 where we plotted the graphs of the optimal weights with respect to
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Figure 3-7: Efficient frontiers. Option-based strategies data (with risk-free asset, shortsales
allowed).

(solid) mean-variance, (dotted) mean-semivariance,
(dash-dot) mean-shortfall 5%, (dashed) mean-V aR0.05

Example of a linear efficient frontier when a risk-free asset is included. The data used is not
Gaussian.
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Figure 3-8: Efficient frontiers. Put-Call data. (with risk-free asset, shortsales allowed).

(solid) mean-variance, (dotted) mean-semivariance,
(dash-dot) mean-shortfall 5%, (dashed) mean-V aR0.05

Example of linear efficient frontiers when a risk-free asset is included, even when the risk
measure (V aR) is not convex.
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different desired returns; shortsales are allowed, and a risk-free asset is available. Figure 3-10

clearly shows the mutual fund separation, even in the case of the mean-V aR optimization

with the “Put-Call” data. This is important, since we already know that the “Put-Call” data

usually magnify the shortcomings of the mean-V aR method. Figure 3-9 shows the mutual

fund separation for the mean-variance, mean-semivariance and mean-shortfall methods when

non-Gaussian data generated by the “Option-based strategies data” is used. The mean-V aR

data is not a line, but the deviations are due to as errors introduced by the numerical algo-

rithm. In any case, this example shows how the mean-V aR method can be very sensitive to

sampling errors, while the mean-shortfall method is more robust. The mutual fund separa-

tion is a very important tool, since it allows the computation of two optimal portfolios which

can be linearly combined to produce all other possible optimal portfolios. With mean-V aR

optimal portfolios, the mutual fund separation also suggests an alternative way to produce

a better estimate of the optimal portfolio; we can generate optimal portfolios at different

desired level of returns, and then do a linear regression to compute a better estimate of the

optimal portfolio at the desired level of return.

Example 3.5.6 No risk-free asset. In the previous example we confirmed that if a risk-free

asset is available, the mutual fund separation exists. However, when the no risk-free asset

is available, and the risk measures are not convex (as V aR), the mutual fund separation

may not hold. In figure 3-11 we present one example: the optimal weights do not follow

a line for all possible desired expected returns. In 3-11(a) and (b) we see that the mean-

variance weights are always linear (as expected from the mean-variance theory), but the

optimal weights for the mean-semivariance, the mean-shortfall and the mean-V aR are not

linear, even if shortsales are allowed. This example uses the “Put-Call” data to show one

case where the mutual fund separation does not exist.

Experiment 3.5.1 Real data. We use real stock return data to determine the optimal port-

folio for the case where shortsales are allowed, and no risk-free asset is available (see appendix

C.4.3 for details). Results are shown in figures 3-12 and 3-13. Figure 3-12 shows the efficient

frontier, and as in the case of the Gaussian data, the performance of the optimal portfolios
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Figure 3-9: Weights of an optimal portfolio. Option-based strategies data (with risk-free
asset, shortsales allowed).

(solid) mean-variance, (dotted) mean-semivariance,
(dash-dot) mean-shortfall 5%, (dashed) mean-V aR0.05

asset 1: “write-call” at 50 %. asset 2: “long-put” at 50 %.

Example of the mutual fund separation. The optimal weights can be obtained as linear
combinations of two efficient portfolios. The deviations from the line are due to numerical
errors.
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Figure 3-10: Weights of an optimal portfolio. Put-Call data. (with risk-free asset, shortsales
allowed).

(solid) mean-variance, (dotted) mean-semivariance,
(dash-dot) mean-shortfall 5%, (dashed) mean-V aR0.05

asset 2: Put. asset 3: Call.

The mutual fund separation (when a risk-free asset is included) exists even if the risk measure
is not convex.
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Figure 3-11: Weights of an optimal portfolio. Put-Call data. (no risk-free asset, shortsales
allowed)

(solid) mean-variance, (dotted) mean-semivariance,
(dash-dot) mean-shortfall 5%, (dashed) mean-V aR0.05

asset 2: Put. asset 3: Call.

Example where there is no mutual fund separation as no risk-free asset is available; only the
mean-variance optimal weights generate the mutual fund separation.
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obtained by the four methods is quite similar. In 3-13, the optimal weights are plotted

for only two of the stocks, Anheuser-Busch and Caterpillar. The mutual fund separation

is apparent for the mean-variance and the mean-semivariance methods; the mean-shortfall

and the mean-V aR deviate from the linearity, particularly the latter, which appears to be

very noisy. Again, the mean-shortfall method appears to be superior than the mean-V aR

method. In this case, as practitioners often assume for real stocks, the mean-variance method

is preferred, given that quadratic optimization algorithms are very efficient.

Example 3.5.7 No shortsales allowed, no risk-free asset. The mutual fund separation does

not hold when no shortsales are allowed (as mentioned by [32]). Figure 3-14, shows the

optimal weights for this particular case. It is clear that the plotted optimal weights follow

a non-linear curve and we see that even the mean-variance optimal weights are not linear.

The additional constraints make the analysis of the behavior of optimal portfolios difficult,

but correspond to practical conditions required by some investors.

3.6 Numerical optimization with noise

In practical cases, it is usual to estimate the gradient an to have an uncontrollable error v.

In the following case, we solve the following minimization problem:

min ρ(x) + v′x s.t. E[W̃ (x)] = Wp.

(as explained in section A.3.2). Equation (3.19) becomes

E[b̃]− bf1 =
∇xρ(x

∗) + v − cf1

ρ(x∗) + v′x− cf1′x∗
(bp − bf ).

where bp = Wp/W0, while equation (3.23), the efficient frontier, becomes

ρ(x∗) =

 ∂ρ(x∗)
∂xj
− cf + vi

E [̃bj ]− bf

 (Wp −W0bf ) + cf1
′x∗ − v′x∗.
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Figure 3-12: Efficient frontiers. Stock data. (no risk-free asset, shortsales allowed)

(solid) mean-variance, (dotted) mean-semivariance,
(dash-dot) mean-shortfall 5%, (dashed) mean-V aR0.05

Example where the efficient frontiers are built using historical stock data. The result is very
similar to the Gaussian case.
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Figure 3-13: Weights of optimal portfolios. Stock data. (no risk-free asset, shortsales al-
lowed)

(solid) mean-variance, (dotted) mean-semivariance,
(dash-dot) mean-shortfall 5%, (dashed) mean-V aR0.05

asset 1: Anheuser-Busch stock returns. asset 2: Caterpillar stock returns.

Example where the mutual fund separation is built using historical stock data. The deviation
from a line is probably due to numerical errors, as in the Gaussian case.
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Figure 3-14: Weights of optimal portfolios. Option-based strategies data (no shortsales).

(solid) mean-variance, (dotted) mean-semivariance,
(dash-dot) mean-shortfall 5%, (dashed) mean-V aR0.05

asset 2: “long-put” at 50 %. asset 3: “write-call” at 100 %.

Example of violation of the mutual fund separation theorem, in which the weights are not
allowed to be negative.

65



If we assume the risk measure ρ(x) is convex, we can generate efficient portfolios by solving

the unconstrained problem

min ρ(x)− λ(x′E[b̃] +−x′1bf ),

which becomes

min ρ(x)− λ
(
x′E[b̃]− x′1bf −

1

λ
x′v

)
.

Noise in the optimization has some significant impact when λ is small. However, in the

risk-free case, the impact is less pronounced as the solution is xf = 0 (i.e., all the initial

wealth is invested in the risk-free asset, see section 3.5.1) as λ approaches 0.
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Chapter 4

Risk Gradient: definitions,

properties and estimation

In this chapter we fully analyze the characteristics of the gradients of quantiles from their

derivation to their estimation, and address their application to risk measures based on quan-

tiles. In section 4.1 we review the use of the gradient of the risk as an analysis tool, and

justify the use of an α-level specific analysis relying on empirical evidence of higher order

models of the CAPM.

In section 4.2 we derive a general formula for the gradient of quantile functions when

the random variable is the result of a linear combination of a random vector. This is a new

result and will be very helpful for the analysis and optimization of portfolios (described in

Chapter 5).

In many practical problems the distribution of the random vector is unknown, or very

difficult to parameterize; thus we will use a set of n i.i.d. data samples, either from past

observations or from Monte Carlos simulations. In section 4.3 we review different estimation

techniques of the gradient of a quantile, such as the parametric method and the finite dif-

ference method (section 4.3), and also analyze the characteristics of the estimation errors.

The error induced by the gradient estimators is particularly significant because during the

numerical optimization the bias introduced by the estimator will also lead to errors in the

optimization problem solution.
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We will propose and analyze a technique based on local polynomial regression which

estimates the gradient of a quantile function based on the formula developed in 4.2. An

alternative representation (F-transformations) that is computationally more attractive is

discussed in section 4.4.1. In section 4.4.2 we interpret the output of the local polynomial

regression, and analyze the error introduced when the technique is applied to a gradient

estimation; some practical considerations are also reviewed. An alternative interpretation

of the F-transformation is analyzed in section 4.4.3. The different methods to estimate the

gradient are analyzed from a complexity point of view in section 4.4.4. Finally, an estimator

of the gradient of the empirical shortfall is introduced in section 4.4.5.

4.1 The risk gradient

The gradient of a risk(x) measure with respect to the portfolio x is denoted as ∇xrisk(x).

For example, for the V aRα we have the closed form solution:

∇xV aR(x) = E[b̃]−E{b̃|x′b̃ = qα(x)}. (4.1)

The previous equation was derived from equation (3.3), the definition of the V aR, and

equation (4.7), the gradient of a quantile function, a formula to be derived in section 4.2.

The risk gradient with respect to x has been proposed as a tool for practitioners [28].

Using ∇xrisk(x), it is possible to obtain an approximation of the risk(x + a), or the risk of

a new portfolio x perturbed by a small portfolio a of total initial wealth A0. Assuming that

A0 << W0, the following holds:

risk(x + a)− risk(x) ≈ a′∇xrisk(x); (4.2)

a′∇xrisk(x) returns the variation in risk. Each component of ∇xrisk can be thought of

as a decomposition of the risk. The basic idea is to understand the effect of a trade a on

the overall risk of the portfolio. Using this technique, traders can analyze the effect of a

single trade on a portfolio. ∇xrisk is also an important component of the generalized β
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that we defined in equation (3.20), and can be used extensively to analyze the sensitivities

of portfolios not only to trades, but also to the asset prices.

Example 4.1.1 Gradient of V aR. For the case when the Gaussian data described in C.4.1 is

used with the normalized portfolio x = [0.0667, 0.6000, 0.3333]′ and α = 0.05, the parametric

gradient using equation ((A.9)) is:

∇V aR(α,x) =


0.0026

0.0143

0.0124

 .

A practitioner would consider the first asset as the least risky for the portfolio, while the

second asset appears as the most risky (as defined by the V aR). Hence, the practitioner

could decide a certain trading strategy based on this observation, e.g., increasing the amount

invested in the first asset and decreasing the amount of the second asset.

Risk decomposition The homogeneity of risk measures allows the decomposition of risk

component-wise, since for a homogeneous measure of risk ρ(x):

ρ(x) =
m∑
j=1

xj
∂

∂xj
ρ(x), (4.3)

so that the contribution of the asset j to the portfolio’s risk ρ(x) is xj
∂
∂xj
ρ(x).

Generalized β̆. The generalized β̆j(x) defined in equation (3.20) can be obtained for

homogeneous measures of risk such as the standard deviation, the V aR and the shortfall. In

the case of the last two, the formula becomes a function of the level α, e.g., for the V aR we

have

β̆jα(x) =

∂V aRα(x)
∂xj

V aRα(x)
for j = 1, . . . ,m, (4.4)

and for the shortfall:

β̆jα(x) =

∂eα(x)
∂xj

eα(x)
for j = 1, . . . ,m. (4.5)
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Generalized β̆ and higher moments CAPM models. From a practical point of view,

it indeed makes sense to consider risk-level-specific β̆α, i.e., to allow β to vary at different risk

levels α. Such risk-level-specific β is the quantitative tool to measure the empiric phenomena

that the market components (or portfolio stocks) become more dependent on the market as

it gets more volatile, and less dependent as it stabilizes.

This interpretation agrees with the research on non-normality of financial assets (section

2.2.1), which is reflected in the cubic market model (equation (2.4)). The higher moment

market model can be used to estimate the effect of a realized movement in the market rk on

the return of a particular stock, by disregarding the noise variable εj ;

r̂j = αj + βjrk − γjr
2
k + δjr

3
k j = 1, · · · ,m (4.6)

Although β has been traditionally defined in terms of covariances and variances, it is inter-

esting to note that a generalized β̆j can also be defined in terms of the derivative of ∂r̂j
∂rk

. For

the case of the higher moment market model, the generalized β̆j would be

β̆j(rk) = βj − 2γjrk + 3δjr
2
k.

Since each possible outcome rk can be associated with a probability α such that Pr[r̃k ≤

rk] = α, at each level α it is possible to compute β̆jα by finding the rk corresponding to α

(using the quantile function). For higher moment models, it is evident that the value of β̆jα

will be a function of α, unlike the classical CAPM model in which β̆j = βj for all levels of

rk.

This phenomena cannot be captured by either normal or elliptically symmetric distribu-

tions, which keep βjα constant over α.

4.2 The gradient of quantile functions

In appendix A.2.2 is derived a closed form formula (A.8) for the gradient of a quantile

function. Still, it is still possible to derive a non-parametric expression for the gradient of
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the quantile.

Theorem 4.2.1 Assuming Pr(x′b̃ ≤ t|b̃j = bj) is differentiable with respect to xj, for j = 1,

. . . , m, and the conditions of theorem A.1.1 are enforced (see remark (i) at the end of the

proof), the following expression for the gradient of qα(x) is true:

∇x qα(x) = E(b̃|x′b̃ = qα(x)). (4.7)

Proof. Differentiating the identity

Pr(x′b̃ ≤ qα(x)) = α

with respect to one component of x, e.g. x1, we get, denoting fx′b̃(·) the density of x′b̃,

[ ∂

∂x1

Pr(x′b̃ ≤ t)
]
t=qα(x)

+ fx′b̃(qα(x))
∂qα(x)

∂x1

= 0. (4.8)

Now, conditioning on b1, we can write

Pr(x′b̃ ≤ t) = Eb1 Pr(x′b̃ ≤ t|b1),

and, if Pr(x′b ≤ t|b̃1 = b1) is differentiable with respect to x1, then differentiation and

expectation can be interchanged, by theorem A.1.1:

∂

∂x1
Pr(x′b̃ ≤ t) =

∂

∂x1
Eb1 Pr(x′b̃ ≤ t|b1) = Eb1

∂

∂x1
Pr(x′b̃ ≤ t|b1).

The last derivative should be computed as follows

∂

∂x1
Pr(x′b̃ ≤ t|b̃1 = b1) = lim

∆x1→0

Pr(x′b̃ ≤ t−∆x1b1|b̃1 = b1)− Pr(x′b̃ ≤ t|b̃1 = b1)

∆x1

= fx′b̃(t|b1)(−b1),
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so that

∂

∂x1
Pr(x′b̃ ≤ t) = Eb̃1 [fx′b̃|b̃1

(t|b̃1)(−b̃1)] = −
∫
b1fx′b̃|b̃1

(t|b1)fb̃1(b1)db1

= −
∫
b1fx′b̃,b̃1

(t, b1)db1.

Plugging this result in (4.8), we get

∂qα(x)

∂x1

= E(b̃1|x
′b̃ = qα(x)),

and repeating the argument for each component of x we get (4.7). 2

Remark (i) The theorem A.1.1 assumes

∂

∂x1
Pr(x′b̃ ≤ t|b̃1 = b1)

is continuous for x1 in a closed interval; this is not be valid for discrete distributions, since

they can introduce discontinuities. However, as long as the derivative is continuous within

the interval of interest, the theorem will be valid.

Remark (ii) The same expression could be obtained as a special case of a theorem formulated

by Pflug [49], although he introduces special constraints to generalize his theorem.

Remark (iii): The gradient of the shortfall can be derived from the gradient of the quantile:

∇xeα(x) = E{b̃|x′b̃ = qα(x)} −
1

α

∫ α

0
E{b̃|x′b̃ = q(ω,x)}dω.

4.3 Estimation of gradients

We know that the estimator q̂α,n is only asymptotically unbiased. We can model qα as the

sum of the estimator plus a random error η; qα = q̂α,n+ η,. The error η = η(n, α,x) depends

on the number of samples, the value α and the vector x, as described in equation (A.13),

and only asymptotically unbiased when the estimator has zero mean.
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Parametric formulas In the particular case when it is known that the distribution of b̃

has an elliptic form, all we need is to estimate the matrix V and the mean vector µ respec-

tively as V̂n and µ̂n, using the n samples available. The estimators found are substituted

for the real (unknown) values in the formulas described in A.2.2. The use of finite samples

introduce an error, but as n grows by the Law of Large Numbers the gradient estimator

converges to the theoretical gradient [49].

Finite differences

The case of finite differences for unbiased estimates of a function is discussed thoroughly

in [49]. However, the discussion assumes unbiased estimates of the function are available,

although in the case of quantiles we can only assume that the estimates will be asymptotically

unbiased. In that case, we will have to assume thatn is sufficiently large to generate estimates

with a negligible bias, so that the error η is almost zero mean.

The finite difference approximation for the i-th component of the gradient vector is

(assuming α is constant)

Dfd,i(x, c, n) =
1

2c
(q̂α,n(x + cei)− q̂α,n(x− cei)).

The bias error is

bfd,i(x, c, n) =
qα(x + cei)− qα(x− cei)

2c
−
∂qα(x)

∂xi
,

and will be small if c is small. The zero mean random error is

wfd,i(x, c, n) =
ηi,1 − ηi,2

2c

(recall that η is a function of x and n); the zero mean error has an unbounded variance if c

tends to zero and ηi,1 is independent from ηi,2. The vector Dfd(x, c, n)′ = [Dfd,1(x, c, n), · · · ,

Dfd,m(x, c, n)] denotes the finite difference gradient estimator, which is a biased estimator;

∇xqα(x) = Dfd(x, c, n) + vfd(x, c, n).
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The vector error vfd(x, c, n) is formed by the bias

bfd(x, c, n))′ = [bfd,1(x, c, n), · · · , bfd,m(x, c, n)],

and the zero mean errors η′j = [η1,j , · · · , ηm,j ] for j = 1, 2:

vfd(x, c, n) = bfd(x, c, n) +
η(x, n)1 − η(x, n)2

2c
. (4.9)

Asymptotically, as n goes to infinity and c goes to 0, the vector error will tend to zero.

However, in small samples the error v is quite large. A confidence interval for the size of the

errors ηj for j = 1, 2 can be obtained by using the equation (A.14). A good choice of the

parameter c is essential: a large value of c increases the bias, but a small value increases the

variance of the zero mean error.

4.4 Estimation of gradients using local polynomial

regression

In section 4.2 we derived a theoretical formula of the gradient. In practice, there are situations

when a set of independent samples from a multivariate distribution (i.e., historical data, or

Monte-Carlo simulation) is available; we assume they are n i.i.d. samples of the random

vector b̃. As described in A.2.4, we can obtain M-order statistics bi:n, i = 1, · · · , n associated

in a particular linear transformation W̃ (x). For the rest of this section we assume that we

are given a fixed vector x.

The estimation of equation (4.7) is similar to the estimation of a regression function for

W ≡ W̃ (x), which is explained in more detail in appendix A.4.1. We use the techniques

described there to find an estimator ∇̂xqα(x) of ∇xqα(x); because it is a function of the

bandwidth parameter h, we denote the estimator as Dlpr(x, h).

Consider now one component of the gradient vector. We can express the partial of qα(x)
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with respect to one component xi of x as

∂qα(x)

∂xi
= E{b̃i|x

′b̃ = qα(x)},

where b̃i denotes the i-th component of the vector b̃. We can interpret the regression function

for one component, mW (W̃ (x) = qα(x)) = E(b̃i|b̃(x) = qα(x)) as if the data were being

generated from the model

b̃i = mW (W̃ (x)) + σW (W̃ (x))ω,

where E(ω) = 0, σW (ω) = 1, and b̃ and ω are independent. Because mW (W̃ (x) = qα), the

value of the regression function evaluated at qα, is equal to ∂qα(x)/∂dxi, we can use the local

polynomial regression to estimate the gradient.

With finite samples, we can compute an estimate of mW (W̃ (x)) by pairing each vector

bi:n with a scalar x′bi:n. If we use the estimator q̂α,n, we introduce an additional error to the

estimation of the gradient; we are estimating m̂W (W̃ (x) = qα+η) instead of m̂W (W̃ (x) = qα),

Defining the matrices X1 and X2 as

X1 =


1 x′b1:n − q̂α,n

...

1 x′bn:n − q̂α,n

 ,X2 =


1 x′b1:n − q̂α,n (x′b1:n − q̂α,n)2

...

1 x′bn:n − q̂α,n (x′bn:n − q̂α,n)2

 ,

or if necessary, matrices X3 or larger, following the notation in the appendix section A.4.1;

also

Wh = diag

(
1

h
K

(
x′bj:n − q̂α,n

h

)
, j = 1, · · · , n

)
,

where h is known as the bandwidth of the kernel, and

Y =


b′1:n

...

b′n:n

 ,Yj =


bj,1:n

...

bj,n:n

 , j = 1, · · · ,m, (4.10)
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where bj,i:n is the j-th component of the M-order statistic vector bi:n. In some cases there is

no need to do a local polynomial regression; for instance, the linear CAPM model (section

2.2.1) suggests that a global linear regression is sufficient.

Experiments (see section 4.4.6) indicate that this method of estimation tends to be the

most accurate. However, it is necessary to compute the matrices Xi and Wh every time

x changes. This can be a drawback for some applications that require the computation

of the gradient a large number of times, as in portfolio optimization, In the next section

we introduce a slightly different way of posing the estimation, which does not require the

updating of the matrices Xi and Wh (unless h changes).

4.4.1 The F-transformation

Another estimation technique of the conditional expectation can be derived from

E{b̃|x′b̃ = qα(x)} = E{b̃|F (qα(x)) = α}.

Expressing the partial of qα(x) with respect to one component xi of x as a conditional

expectation (from the equation (4.7));

∂qα(x)

∂xi
= E{b̃i|F (qα(x)) = α}.

Defining z ≡ F (qα(x)), we will have a different implicit model for E(b̃i|z = α); the new

model is

y = mF (z) + σF (z)ω

Similarly to the previous section, mF (α) corresponds to ∂qα(x)/∂dxi. The price pay for

using this model is the use of a more complex modeling function mF (·).

With finite samples we can compute an estimate of mF (z) by pairing each vector bi:n

with a scalar zi. F can be empirically estimated as Fn using equation (A.12); since we are

already using order statistics each vector bi:n is paired with the scalar zi = i/n.
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We can construct the matrices Xj, j = 1, 2 (or larger)

X1 =


1 z1 − α

...

1 zn − α

 ,X2 =


1 z1 − α (z1 − α)2

...

1 zn − α (zn − α)2

 ,

(the matrix Y is the same as in (4.10), and

Wh = diag
(

1

h
K
(
zj − α

h

)
, j = 1, · · · , n

)
,

Although the underlying regression model seems more complex, and is not linear, in practice

it is easier to implement since we are not required to estimate qα, and since the matrices Xi

and Wh are independent from the data. Still, we need to find an adequate h.

4.4.2 Local polynomial regression

The following procedure applies regardless of the underlying model used. Once the matrices

Xi and Wh are available, the weighted least squares problem (A.33) for the j-th column of

the gradient can be written as

min
βj

(Yj −Xβj)
′Wh(Yj −Xβj),

with βj = [βj,0, · · ·, βj,p]′, Yj is the j-th column of the matrix Y, and X could be any of the

two matrices X1 or X2. The solution vector is provided by the ordinary least squares theory

and is given by

β̂j = (X′WhX)−1X′WhYj.

The estimator of the partial derivative for the j-th component of the gradient is

∂qα(x)

∂xj
≈ β̂j,0, (4.11)

where h sets the bandwidth of the local regression.
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We denote the estimated gradient in local polynomial regression as the vector

Dlpr(x, h, n)′ = [β̂1,0, · · · , β̂m,0].

Depending on the kernel, the bandwidth decides how many order statistics to use. Pro-

cedures to estimate the bandwidth are detailed in appendix A.4.6.

Each component of the gradient should be estimated using the corresponding optimal

bandwidth if we were to rigorously estimate the gradient.

Error vector for finite samples The gradient estimator using local polynomial regression

is also a biased estimator of the real gradient:

∇xqα(x) = Dlpr(x, h, n) + vlpr(x, h, n).

The error vector vlpr(x, h, n) behaves very differently from the error vector vfd(x, c, n); the

bias blpr(x, h, n) due to modeling error increases as h increases, but the zero mean error

vector wlpr(x, h, n) decreases. For finite samples, the choice is between a biased estimator

or a zero mean noisy estimator. As n increases, by the law of large numbers, the gradient

estimator improves.

Practical considerations In practice (e.g. for nonlinear optimization), it may be neces-

sary to compute the estimator in the fastest way possible. It might be useful to compute all

the components of the gradient at once, with a crude pilot bandwidth h which is the same

for all the components:

β̂ = (X′1WhX1)
−1X′1WhY, (4.12)

with the matrix β̂ = [β̂0, · · ·, β̂p]′, and the estimator

∇̂xqα(x) = β̂0. (4.13)

In the appendix section A.4 the complete description of the local polynomial regression is

described, as developed in [25].
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4.4.3 Alternative interpretation of the F-transformation

For the local linear regression in the case of the F-transformation we have an alternative

interpretation. To simplify the notation, let us define for a given fixed x the function

G(α) ≡ E{b̃ | F (qα(x)) = α};

a Taylor’s expansion of first order G(α+ ε) around α yields

G(α+ ε) ≈ G(α) + ε
dG(ω)

dω
|ω=α .

This approximation is true for small values of ε; the accuracy as a function of ε depends

on the characteristics of the function G(α). We want to estimate G(α) using an estimator

Ĝ(α). A very crude estimator to use is the M-order statistic:

Ĝ(α) = bk:n.

The vector bk:n is a sample of the conditional distribution fb̃|W̃ (x)
(b̃|q̂α,n) where q̂α,n =

qα + η). Hence this estimator has a bias vector γ which satisfies x′γ = η;

G(α) = Ĝ(α) + γ + κ,

where x′κ is a zero mean error with a variance of the distribution fb̃|W̃ (x)(b̃|q̂α,n). However,

due to the Taylor’s expansion, estimators for G(α) that use values of G(ω) for ω close to α

are of the form

G(α) ≈ G(α+ ε)− ε
dG(ω)

dω
|ω=α;

knowing εdG(ω)
dω
|ω=α we can compensate for the bias introduced by η. Furthermore, we can

use other samples close to α, e.g. bw:n for w = k± l, for a small integer l, and average them

to get a better estimator Ĝα.

That is precisely what we are doing while fitting linearly an F-model. A one sample

estimator will correspond to a local fit with a very small bandwidth, such that only one M-
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order statistic is used, and as we increase the bandwidth the number of M-order statistics

is increased, hopefully reducing the bias and variance of the estimator Ĝ(α).

4.4.4 Algorithm operation counts

Let us assume the following case: we are given n vectors of size m (which we assume are

i.i.d), and the vector x. We can form the matrix Y as in (4.10). To compute a gradient from

“scratch”, we require for the following three cases:

Parametric case:

i. O(m2n) operations to compute the covariance matrix Σ.

ii. O(m2) operations to compute x′Σx.

Some implementations [28] assume that those values are already computed elsewhere, and

therefore the implementation issues are negligible.

Finite difference

i. O(m2n) operations to compute 2m “perturbed” vectors xp.

ii. O(m logn) operations to estimate the quantile of all perturbed vectors.

Forward differences can be used to reduce the number of operations needed, although that

will increase the error of the gradient.

Local polynomial regression

For a given initial bandwidth g:

i. n “kernel operations” to compute the matrix Wg. However, the kernel operations

might be expensive to compute; we denote as c the fraction of elements of Wg which

are of significant order.

ii. O(nm) arithmetic operations to compute Yx and O(n logn) sort it.
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iii. O(mc+ c2) operations to compute the local polynomial regression.

To find the optimal bandwidth, we require to

i. do all the previous computations Q times, the number of bandwidths (h) in the grid;

(see A.4.6).

The interesting aspect for the local polynomial regression is that is it not of orderO(m2), so

its computation will not grow quadratically as the m grows. However, it requires the compu-

tation of an optimal bandwidth; we see that it is necessary to perform all the computations

Q times, one for each different bandwidth tested. As h increases, the number of samples to

be used (c) increases and O(mc + c2) becomes very expensive to compute. Under certain

practical circumstances a crude bandwidth might be sufficient (e.g. the rule of thumb). Also,

if c is significantly smaller than n, it might be very fast to compute.

The use of F-based models also offers many advantages in the practical implementation

of local polynomial regressions: because all the data points z are located on a grid, the

number of kernel operations can be computed and stored in memory [25].

4.4.5 Gradient Estimator for the empirical shortfall

Instead of estimating directly the shortfall, we need to estimate the gradient of the empirical

shortfall:

∇̂xen(α) =
1

α

k−1∑
i=1

(
∇̂qα(x)− ∇̂qi/n(x)

)
,

where k = αn, and each quantile gradient estimators can be obtained from the local poly-

nomial regression technique, or we can use finite differences to estimate the gradient of the

empirical shortfall (using formulas similar to the ones employed in section 4.3).

4.4.6 Experiments

For illustration purposes, we developed three examples that exemplify the computation of

the gradient of a quantile. In the first two examples we use multivariate random variables
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Table 4.1: Results for the multivariate Gaussian case.

Portfolio: x = [0.0667, 0.6000, 0.3333]′; Gaussian kernel.
Methods: par. = parametric, LPR = local polynomial regression (LPRF with F

transformation), f.d. = finite differences. h = bandwidth for l.p.r., c = perturbation for f.d.
ROT = rule of thumb, RSC = RSC squares criterion. a. = asset.

a. method: par. LPRF,ROT LPRF,RSC LPRROT LPRRSC f.d. f.d.

h,c 0.07207 0.02184 0.002559 0.01743 0.001 0.1
(1) bias (%) 0.2135 8.997 5.302 1.328 2.366 11.74 9.283

σ (%) 22 38.04 54.29 48.96 25.92 192.8 90.52

h,c 0.05585 0.0625 0.004061 0.0625 0.001 0.1
(2) bias (%) -0.07373 6.461 6.872 0.402 1.202 0.4432 -1.14

σ (%) 6.266 9.233 9.245 9.943 8.911 25.87 15.37

h,c 0.1291 0.04989 0.00482 0.0625 0.001 0.1
(3) bias (%) 0.03035 8.564 8.211 2.76 1.338 2.618 5.323

σ (%) 7.703 11.85 12.74 12.44 9.508 50.31 23.96

where a parametric form is known, while in the third example we use investment assets

with nonlinear payoffs, which yield joint returns where it is difficult to identify a predefined

parametric form.

For these examples, we generated 200 sets of 200 samples of the random vectors.

Experiment 4.4.1 Elliptic Multivariate Returns. For the case when the t and the Gaussian

data (described in C.4.1) are used with the normalized portfolio x = [0.0667, 0.6000, 0.3333]′

and α = 0.05, the parametric gradient that follows using equation (A.9) is:

∇V aR(α,x) =


0.0026

0.0143

0.0124

 .

Multivariate t distributions can exhibit “fat” tails, which some researchers have proposed

as an alternate model for return distributions. The parametric gradient for the portfolio
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x = [0.0667, 0.6000, 0.3333]′ is:

∇V aR(α,x) =


0.0025

0.0117

0.0105

 .

The results of different gradient estimators are listed in the table 4.1 for the multivariate

Gaussian case and in the table 4.2 for the non-normal case. The finite difference method

performs very poorly, compared with any other method based on the variance around the

mean value: gradient estimators are very noisy. The parametric method is (obviously) the

best, although a gradient estimator using LPRRSC with a bandwidth selected using the RSC

bandwidth selector (see section A.4.5) performs very well too. Unfortunately, computing the

RSC bandwidth selector is quite expensive, compared with other LPR computations.

We notice that the estimation error for the first component of the gradient, when x1 =

.0667 is the largest. This indicates that when there are many assets and each of their weights

are small, the performance of the estimators will be poor, a consequence of the “curse of

dimensionality”. In figure 4-1 there are histograms and e.d.f.’s for the daily returns of the

portfolio, for both the Gaussian and the t cases. In the t case, it is interesting to notice

the “fat” tails; the probability of having “extreme” samples is higher than in the Gaussian

case, and the shape of the histogram of a Monte-Carlo simulation depends on the number

of samples used. As the size of samples is increased the tails of the empirical distribution

become “fatter”.

Experiment 4.4.2 Non-parametric Returns. See the section C.4.2 for the procedure used

to obtain the data. For a normalized portfolio of x = [1/3, 1/3, 1/3]′ and a quantile value

α = 0.05, the results are in the table 4.3. The bias is not directly measurable, so we do

not present it. Still, all the components (in this case only 3) have approximately the same

order; only the variance is smaller for the F modeling with the RSC bandwidth selection.

The quantile at 5% is -0.0294.
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Table 4.2: Results for the multivariate t case.

Portfolio: x = [0.0667, 0.6000, 0.3333]′; Gaussian kernel.
Methods: par. = parametric, LPR = local polynomial regression (LPRF with F

transformation), f.d. = finite differences. h = bandwidth for l.p.r., c = perturbation for f.d.
ROT = rule of thumb, RSC = residual squares bandwidth selector.

asset method: par. LPRF,ROT LPRF,RSC LPRROT LPRRSC f.d. f.d.
h, c 0.0061 0.04 0.069 0.022 0.001 0.10

(1) bias (%) 0.83 27.81 8.32 4.24 4.69 3.35 7.0015
σ(%) 66.55 73.93 82.96 58.91 40.11 291.05 151.21

h, c 0.0066 0.015 0.11 0.063 0.001 0.10
(2) bias (%) -5.40 26.68 24.95 3.16 3.30 3.64 2.19

σ(%) 17.45 22.39 21.03 15.18 14.58 43.96 26.54

h, c 0.0039 0.04 0.16 0.063 0.0010 0.10
(3) bias (%) -3.87 20.13 22.63 3.27 2.63 2.52 3.94

σ(%) 26.60 27.14 28.26 28.03 17.83 89.04 42.45

Table 4.3: Results for the Non parametric case.

Portfolio: x = [1/3, 1/3, 1/3]′; Gaussian kernel.
Methods: par. = parametric, LPR = local polynomial regression (LPRF with F

transformation), f.d. = finite differences. h = bandwidth for l.p.r., c = perturbation for f.d.
ROT = rule of thumb, RSC = RSC bandwidth selector.

method: LPRF,ROT LPRF,RSC LPRROT LPRRSC f.d. f.d.

cp. 1 0.079 0.075 0.073 0.074 0.07 0.073
cp. 2 0.107 0.107 0.105 0.105 0.105 0.105
cp. 3. 0.069 0.068 0.06 0.0598 0.062 0.059

(1) h, c 0.038 0.015 0.075 0.022 0.001 0.10
σ 0.88 1.012 0.94 1.06 2.76 1.56

(2) h, c 0.034 0.02 0.077 0.063 0.001 0.10
σ 0.72 0.73 0.73 0.83 2.41 1.56

(3) h, c 0.027 0.015 0.094 0.063 0.001 0.10
σ 1.32 1.34 1.55 1.72 4.37 2.41
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Figure 4-1: Parametric portfolio returns
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Chapter 5

Optimization with quantile-based

functions

In optimization problems, whether the goal is practical or theoretical, it is important to

analyze cases where the optimized function is convex. Section 5.1 reviews the optimization

of problems involving quantile-based functions, including the case where parametric formulas

of these functions are available. In very specific cases, the optimization of quantile based

functions can be done with non-gradient based algorithms. The Linear Programming (LP)

and the Mixed Integer Programming (MIP) approaches are reviewed in section 5.2, including

combinatorial problems such as the Brute force method (section 5.2.1), the MIP approach

(section 5.2.1), and the greedy method (section 5.2.3).

Based on the gradient estimators derived in chapter 4, we propose a new alternative for

the practical optimization of quantile based functions, which uses gradient-based methods

(section 5.3), and analyzes the effect of the estimation error on the optimization. For com-

pleteness, we review other gradient-based methods, such as a recursive approach (discussed

in section 5.3.1); we also review methods that can handle biased or unbiased gradient esti-

mators (sections 5.3.2 and 5.3.2 respectively). We offer a brief comparison of the different

methods in section 5.4.

In section 5.5 we present the outcome of applying the gradient-based method to the

specific case of portfolio optimization. In this section we also analyze the behavior of the
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optimal portfolios with respect to the α parameter.

Concavity

Concavity, or in some cases, pseudo-concavity (see [60]), is a very important issue to consider

in optimization problems. Since quantiles appear in at least two important risk measures

used in finance, it is of interest for Economists to understand in which cases quantile functions

will be concave, both to ensure that numerical methods do not converge to local minima,

and to establish the economic properties of the market.

We have seen in section 3.2.2 that some quantile-based functions could be non-concave

for linear combinations of random variables with some particular distribution function. In

other cases the quantile function is concave with respect to the weights, such as when the

distribution function is elliptical (see the appendix section A.2.2). It would be very useful

to characterize the distribution functions that imply a concave (or at least pseudo-concave)

quantile function.

5.1 General quantile-based optimization

In this section we introduce the optimization of a quantile of a linear combination of random

variables. We used this concept extensively in the previous chapters, but it is worth to

mention that this technique could have other applications in which quantile constraints

would be imposed.

For the linear case W̃ (x) = x′b̃, we propose some optimization methods involving linear

combinations of quantile functions:

Q(x) =
k∑
i=1

λiq(αi,x) +H(x), (5.1)

where Q is the weighted sum of k quantiles for different values of αi and positive weights

λi, i = 1, · · · , k an arbitrary concave function H(x). We introduce the function Q, since

it can represent different quantile-based risk measures (such as the V aR and the empirical

shortfall, see section A.2.4).
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If each one of the quantiles q(αi, ·) is concave, [54] then the function Q(x) will also be

concave. The gradient of Q is

∇xQ(x) =
k∑
i=1

λi∇xq(αi,x) +∇xH(x). (5.2)

We analyze two cases:

i. The optimization of Q(x) over a convex set C (or in particular, over a polyhedron P

defined by a finite number of equalities and inequalities; the latter will be a problem

similar to the classical one described in the appendix, equation (A.20)):

maxQ(x) s.t. x ∈ C.

ii. The optimization of a convex function G(x) over a convex set C intersected with the

convex set Q(x) ≥ L, where L is a predefined constant;

minG(x) s.t. x ∈ C,x ∈ {Q(x) ≤ L}.

The appendix A.3.1 gives a characterization of stochastic optimization problems. Stochas-

tic optimization problems have to be approximated. In this section we review different

approximation techniques that involve quantile-based functions.

Parametric approach If the distribution function is known to be of a certain parametric

form, we only need to compute the parameters of f(b̃) from the matrix Y. For example,

for elliptic distributions we will be able to use the equation (A.8), and plug in the estimated

parameters. The optimization (either maximizing Q(x), or with Q(x) as a constraint) can

then be performed with any constrained nonlinear deterministic method.

Where one of the constraints of the polyhedron P is x′E[b̃] = bp, and we want to to

optimize only the quantile of α (see A.8),

max
x∈P

x′E[b̃]− pα
√

x′Vx ⇒ min
x∈P

x′Vx, (5.3)
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the optimization problem can be related to a constrained quadratic optimization, which can

be easily optimized, due to its special characteristics.

5.2 Non-gradient-based optimization methods

There are several ways to solve the linear case where W̃ (x) = x′b̃ and E[W̃ (x)] is to be

maximized using both quantile constraints and constraining the vector x to belong to the

polyhedron P; the first two methods described next give a global solution, although they

run in exponential time. The last two algorithms run in polynomial time, but they are only

approximations, and will only give a sub-optimal result.

5.2.1 The Brute force method

1 When a predefined value Qp is given, the problem constraint qα(x) = Qp can be approxi-

mated by letting q̂α,n(x) = Qp. We know that q̂α,n(x) is the k-th order statistic x′bk:n (for

k = αn). In other words, given n samples of the optimal vector x∗, k−1 samples will be less

than a predefined value Qp. Finding the optimal portfolio can be posed as a combinatorial

problem which solves
(
n
k−1

)
LP subproblems. A LP subproblem will be

WA = maxE[W̃ (x)]

s.t. YAx ≥ Qp1,

x ∈ P,

(5.4)

where the set A can be defined by its complement: A′ is a subset with k − 1 samples from

the set of n samples; 1 is a vector composed of ones, and

YA = (b′i), ∀i ∈ A. (5.5)

The optimal vector value x∗ is the vector which maximizes WA for all
(
n
k−1

)
subsets A. The

solution of this problem can only be obtained for small sizes of n and k. Since this method

1From personal communication with David Gay.
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is assured to return the global maxima, we use it as a benchmark to compare the solutions

returned by the other methods. Unfortunately, this is also a combinatorial method, worse

than an exponential method.

5.2.2 Mixed integer programming

The previous problem can also be posed as a MIP problem (see [40, 31]); the naive imple-

mentation would be

maxE[W̃ (x)]

s.t. YUx + c · p ≥ Qp · 1,

x ∈ P,

p′1 = k − 1,

pi = {0 or 1} for

i = 1, · · · , n,

(5.6)

where U is the complete set of samples. The selection of c must be done such that the

solution of (5.6) is equal to that of (5.4). In the special case where the constraints xi ≥ 0 for

i = 1, · · ·, m and x′1 are enforced, the MIP problem can be simplified. In that case, then

c = bmin + Qp + δ, where bmin is the minimum value of all the components from YU , and

δ is a positive value. Here, the number of binary variables can be reduced, including only

the cases when x′Bi can be less than Qp. The cases where the maximum value bmax,i of a

sample bi are less than Qp can be eliminated, since we know that those samples should not

belong to the set; the binary variable corresponding to those samples is fixed to be pi = 1.

When negative values of the components x are allowed, c must be chosen in such a way

that the MIP still represents the combinatorial problem.

The algorithm runs in exponential time, and although it is a better method than the

brute force method, it is computationally very intense when the number of samples is large.

5.2.3 The Greedy linear programming

A greedy heuristic is a very fast method to obtain and approximate results: let Bk be a

sequence of sets; each set Bk includes samples on which we enforce the bound. We want to
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enforce the bound on at least k∗ = αn samples. Let’s define the LP subproblem based on

Bk as

WBk = maxE[W̃ (x)]

s.t. YBkx ≥ Qp1,

x ∈ P,

(5.7)

where YBk is defined as in (5.5).

i. Start with B0 = all the available samples, and while B0 is too large, solve the problem

(5.7) and remove from B0 the sample with the most negative dual value, (B1 = B0−

the sample with the most negative dual value).

ii. if k ≤ k∗ − 1, solve the subproblem 5.7 for Bk and make Bk+1 = Bk− the sample with

the most negative dual value, iterate (ii) as needed.

For example, when α = 0.01 and 200 daily returns are used, the algorithm requires 1 solve;

if we increase the number of daily returns to 300 daily returns, then 2 solves are required.

Because it solves a finite number of LP programs at each iteration, it runs in polynomial

time.

Combinations Combinations of the former methods could be developed; but the existence

of a gradient estimator allows us to derive a very fast method which is explained next.

In practice, the MIP problem is only able to handle very few samples (e.g., 300 samples)

to give an “optimal” portfolio. Due to the limited size of the samples used, the order statistic

obtained introduces a significant error with respect to the true quantile (see section A.2.4).

For that reason, MIP techniques are not very useful to optimize portfolios in practice.

5.3 Gradient-Based Optimization methods

We could pose the problem

maximize Q(x) subject to x ∈ P (5.8)
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which is similar to the stochastic problem (A.16). In the non-recursive approach, all the

n samples are used to get estimators of Q(x) and ∇xQ(x). Because no new samples are

introduced, the estimator ∇̂xQ(x) will add a constant error v which is the sum of the

gradient estimator bias plus the zero mean random error due to finite sampling.

If the non-recursive method converges to a point x∗, as explained in section A.3.2, the

point x∗ will be a solution of the problem

maxQ(x) + v′x s.t. x ∈ P.

It is very important that the error v be kept as small as possible. The analysis of the effect

of the bias error on the optimization problem should be done by taking advantage of the

particular characteristics of each problem, as in section 3.6.

Finite differences estimation error. The error vector vfd due to finite differences is:

vfd(x, c, n) = bfd(x, c, n) +
η(x, n)1 − η(x, n)2

2c
.

as derived in (4.9). The finite differences method introduces 2m error terms η for each

perturbed vector x+ c · ej used to compute an approximation of the partial derivative. If

c is increased to reduce the error due to the zero mean errors ηj , then the error due to the

bias increases. For relatively small finite samples, the stochastic counterpart that uses finite

differences does not generally converge.

Local polynomial regression estimation error. The error vlpr

vlpr(x, h, n) = blpr(x, h, n) + wlpr(x, h, n)

due to modeling increases as h increases, but the zero mean error vector wlpr(x, h, n) de-

creases. Whenever h is selected to make the zero mean error negligible, a fast deterministic
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algorithm can be selected to obtain the solution of the constrained problem

maximize Q(x) + b′lprx subject to x ∈ P

(denoting blpr = blpr(x, h, n)). Therefore, the solution of a stochastic counterpart that

uses the estimated gradient can only be an approximation. The bias and variance can be

estimated in practice using formulas (A.50) and (A.51).

Examples of optimization problems Other possible representations of problems that

arise in practice are

maximize E[U(W̃ (x))] subject to qα(x) ≥ Qp,x ∈ P,

or : maximize q0.5(x) subject to qα(x) ≥ Qp,x ∈ P.

They can also be approximated in practice using the gradient estimators; but their validity

depends heavily on whether or not the quantile functions used are “well-behaved”, e.g.

concave or not. The bias introduced by the new optimization problem should always be

taken into account; e.g. for the former optimization problem:

maximize E[U(W̃ (x))] subject to qα(x) + x′blpr ≥ Qp,x ∈ P.

The optimization can be done if the error is known to be small.

In practice, when we implemented the median optimizer using a gradient based algorithm,

the convergence behavior turned out to depend heavily on the distribution of the random

vector b̃; in the case of multi-modal data (which arises in optioned strategies), convergence

to an optimal was not always ensured.
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5.3.1 The recursive approach

So far we have assumed that n samples are available. The finite number of samples can be

generated from a Monte-Carlo simulation, or can be n historical i.i.d. samples. The latter

is more difficult to ascertain, since stochastic processes can often be non-stationary and the

samples might not be i.i.d.

With the Monte-Carlo simulations, we do not have a priori limitations on the size of

the sample. Monte-Carlo simulations may be required whenever the stochastic factors of

a system are known. However, there might be a nonlinear transformation which makes

difficult the derivation of parametric equations for the quantiles. In those cases, recursive

approaches are useful to obtain approximate solutions. Recursive approaches are not very

practical to implement, but it is interesting from a theoretical point of view since it assure

the a.s. convergence of the algorithm, as long as Q(x) has local optima.

5.3.2 Optimization with biased gradient estimators

Because in the estimation of Q(x) as Q̂n(x), we can use asymptotic zero mean estimators (the

order statistics), we can use the Kiefer-Wolfowitz optimization procedure which uses finite

differences (although the convergence will be even slower, since we are using asymptotic zero

mean estimators; described in A.3.2) to obtain a stochastic approximation of the optimal

vector x∗. The technique has assured convergence in the asymptotic case, but in practice

we terminate the algorithm when some a priori conditions are fulfilled; for that reason, in

practice only up to n samples are used to compute an approximate optimal vector x∗. An

important point is that the recursive method requires i.i.d. samples of the quantiles: a

quantile estimator requires at least k/α samples. Therefore, if we are limited to n samples,

k/α different samples are used in the recursive case, and up to nα/k optimization iterations

can be done.

The speed of convergence is also detailed in section A.3.2; however, the number of itera-

tions can be reduced if the estimated gradient has a smaller variance and bias than the finite

difference estimator, as in the case when we estimate the gradient with a local polynomial

regression.
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If nα/k is not an integer, or it is greater than 1, then we can bootstrap n∗ subsamples

of size n∗ = kα to generate a series of quantile estimators. However, we must take into

consideration that the quantile to be optimized belongs to the discrete distribution of the

boot-strapped samples, not the original distribution; this optimization might turn into a

non-convex problem.

5.3.3 Optimization with unbiased gradient estimators

The local polynomial regression offers an (almost) unbiased estimator. We can select the

unbiased estimator using the M-order statistic b̃k:n as estimator of the gradient. It is not a

pure unbiased estimator, because it is not an unbiased estimator of the function fb̃|W̃ (x)(b|qα)

but rather of fb̃|W̃ (x)
(b|q̂α,n). The previous functions will be almost equivalent (unless there

are discontinuities in the functions), and it is possible to use the Robbins-Monro optimization

approach, which needs unbiased estimators of the gradient (as described in section A.3.2).

5.4 Comparison of methods

In experiments with the same conditions:

• maximization of expected return W̃ = x′b̃,

• constraining 1− αn samples above a predefined level Qp (q̂α,n = Qp).

• no shortsales allowed (x ≥ 0).

The Brute-force method, the MIP and the gradient based method using local polynomial

regression (LPR) consistently give almost the same solution. The Greedy method almost

always gives the same solution as the brute force, with some exceptions when it only gives

approximated solutions.

The main drawback of the brute-force method is the computational effort required to use

it. The MIP method is faster, but it is limited to cases when the shortsales are bounded to a

predefined value (such that the relaxation variable introduced does or does not select certain

samples). Still, both methods are impractical for large numbers of n (larger than 200). The
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Greedy method is quite fast and acts in polynomial time, although the answer given is not

always the optimal. Gradient based methods with finite difference gradients, interestingly,

sporadically converge to the optimal solution if n is small (e.g., less than 200).

There are several alternative to improve the precision of the optimal weights (if the mean

and the V aR obtained are not within acceptable tolerance levels). For instance, once the

gradient based method with LPR has converged, then new samples can be used to improve

the optimal value (in a recursive fashion). Also, the smoothness of the efficient frontier

offers a way to improve the optimal weights, by using the optimal solutions with nearby

performance measures as initial values for an iterative algorithm.

5.5 Mean-V aR and shortfall portfolio optimization

We use mainly the non-recursive stochastic optimization described in section A.3.1, which

uses a non-differentiable Penalty-Based algorithm with a non-parametric gradient estima-

tor. This method gives practically equivalent results to those generate by the MIP-based

algorithm of section 5.2.2. The optimal value can be refined by the addition of samples.

The mean-variance and the mean-semivariance have already been very well researched.

For the V aRα and the shortfall, given that they depend on the level α required, it is inter-

esting to analyze how in practice variations in α affect the optimal portfolio weights. We

analyze four relevant cases:

i. Gaussian data.

ii. Real stock data.

iii. Option-based strategies data.

iv. Put-Call data.

Experiment 5.5.1 Gaussian data. As a control case, we want to see how our optimization

method behaves with synthetic Gaussian data. We use the simulated returns of three assets,

as described in appendix C.4.1. In theory, given the quadratic nature of the optimization

problem, We compute the optimal portfolio for the case where no shortsales are allowed, and
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no risk-free asset is available. The desired expected return is the average of the returns of the

three assets. In the case of the mean-V aR and the mean-shortfall, an additional variable α is

needed; in figure 5-1 we plot the variations of the optimal allocations for the Gaussian case,

with respect to the variable α. In this case the optimal portfolio should be independent of α,

but the noise of the gradient estimator in the experiments influenced the optimal weight for

the cases of the mean-V aR and the mean-shortfall. As a consequence, the noise introduced

by the gradient estimators has to be considered carefully in the following experiments that

test the variation of the optimal weights with respect to α.

Experiment 5.5.2 Stock data. Given all the available financial literature on the non-

normality of returns in real financial data, (reviewed in section 2.2.1), we decide to study

the effects of variations in α when computing optimal portfolios with real historical data.

For the experiment we use the daily returns of four stocks, as described in the appendix

section C.4.3. In figure 5-2 we plot the variations of the optimal weights for two of the

assets, (Anheuser-Busch and Caterpillar) with respect to α.

For this experiment, although the optimal weights obtained with the mean-V aR and the

mean-shortfall algorithms differ from those obtained with the mean-variance and the mean-

semivariance methods, the deviations seem to be due to the noise of the gradient estimation,

(as in the previous examples).

Experiment 5.5.3 Option-based strategy data. Figure 5-3 represents the variations of the

optimal portfolio with respect to α, when option-based strategies data is used. In the exper-

iment we use three option-based strategies, described in appendix C.4.2. The optimizations

in this example allows shortsales.

For quantile-based risk measures, as the V aRα and the shortfall, the slope of the optimal

portfolio seems to be smooth (rather than noisy as in previous cases), which may indicate

that the optimal weight is in fact a function of the level α. This leads to and interesting

conclusion about the economic investors’ behavior; investors could have a different optimal

portfolio depending on how they chose the parameter α, even for the same desired expected

return. In this example, as α increases, an investor using quantile risk measures such as
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Figure 5-1: Weight variation with respect to α. Gaussian data.

(solid) mean-variance, (dotted) mean-semivariance,
(dash-dot) mean-shortfall 5%, (dashed) mean-V aR0.05

With Gaussian data, there should be no variations of the optimal weight with respect to α.
The deviations of the mean-V aR and the mean-shortfall with respect to the mean-variance
optimal weights are due to numerical errors.
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Figure 5-2: Weight variation with respect to α. Stock data.

(solid) mean-variance, (dotted) mean-semivariance,
(dash-dot) mean-shortfall 5%, (dashed) mean-V aR0.05

asset 1: Anheuser-Busch stock. asset 2: Caterpillar.

The variations of optimal weights with respect to α are due to numerical errors.
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the V aR and the shortfall allocates more weight to the “write-call” strategy, and less to the

“long-put” strategy. Intuitively, this behavior indicates that as α increases, the mean-V aR

method will favor “riskier” assets. In this case, two risk-averse investors having different α

levels could have different optimal portfolios. This could be true for assets with asymmetric

returns, and may explain why some investors with the same apparent risk-averseness have

different portfolios. However, we should note that our algorithm is less reliable when α is

smaller, due to noise introduced by a reduced sample size. Hence, one should be careful

when making conclusion about investors’ behavior.

Experiment 5.5.4 We use the “Put-Call”data described in appendix C.4.4 to show the

drastic change in optimal portfolios resulting from variations in α. We optimize portfolios

(allowing shortsales) using α ranging from 0.01 to 0.05. The options are designed so that

the V aR0.05 risk measure (for α = 0.05) cannot measure the risk (or loss of money). The

results are shown in table 5.1. When the risk measure has an α of 0.05, the V aR0.05 (-0.16)

appears even to outperform the risk-free asset. However, when the risk of the same portfolio

is measured using an α of 0.01, the V aR0.01 is incredible large (5.3663). This experiment

amplifies the problem of using the “wrong” risk measure; even if the risk measure seems to

be correct, it is very sensitive to changes in α.

It is also interesting to compare the risk and reward measures of the mean-variance opti-

mal portfolio with those of to the other optimal portfolios; the mean-variance has the highest

median, while the optimal portfolio with the V aR0.01 loses money most of the time. The

mean-V aR0.01 optimal portfolio behaves very similarly to the sub-optimal trading strategy

of the experiment 6.5.1, which again reinforces the idea of using reward measures other than

the mean.

Experiment 5.5.5 Put-Call data. The put-call data (figure 5-4) is a case where the varia-

tion in α changes the optimal portfolio drastically. As for the experiment 5.5.4, this example

is generated to “deceive” the risk when the confidence level is 0.95; the optimal weights for

the V aRα risk measure when α is greater than 0.05 does not really reflect the risk of losing

money. The optimization is done assuming that shortsales are allowed. The radical change
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Figure 5-3: Weight variation with respect to α. Option-based strategies data

(solid) mean-variance, (dotted) mean-semivariance,
(dash-dot) mean-shortfall 5%, (dashed) mean-V aR0.05

asset 1: “write-call” at 50 %. asset 2: “long-put” at 50 %.

The variation of optimal weights with respect to α appears to be significant; assets 1 is
riskier than asset 2.
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Table 5.1: Results for the Optimization.

Optimization Method: µ vs. risk
risk: σ V aR0.05 V aR0.01

Stock 2.2843 0.0001 -0.0000
call -0.0073 0.0000 0.0926
put 0.0060 -0.3126 -0.0000

Risk free -1.2830 1.3125 0.9074
1 + µ 1.1558 1.1558 1.1558

1+median 1.1476 1.3159 0.9097
σ 0.3143 1.0014 1.5081

V aR0.05 0.5125 -0.1600 0.2462
V aR0.01 0.7128 5.3663 0.2462

of weights when the V aR is used can be appreciated here. This experiment is designed in

such a way that arguments about the numerical reliability of the optimization algorithm

cannot be used. It should also be noted that the mean-shortfall algorithm does not change

as a function of α, which can be considered as an advantage of the shortfall over to the V aR.

The weights of the mean-semivariance algorithm do not coincide those of the mean-variance

algorithm, which indicates that a more risk-averse portfolio can be obtained using the mean-

semivariance method (or the mean-shortfall method, which in this example gives optimal

weights close to those of the mean-semivariance method).

The mean-semivariance and the mean-shortfall optimal portfolio which indicates that a

more conservative optimal portfolio can be obtained by using the mean-semivariance algo-

rithm, or using the mean-shortfall algorithm (whose optimal weights are very similar to the

mean-semivariance ones).
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Figure 5-4: Weight variation with respect to α. Put-Call data.

(solid) mean-variance, (dotted) mean-semivariance,
(dash-dot) mean-shortfall 5%, (dashed) mean-V aR0.05

asset 1: Put. asset 2: Call

Example when there is a noticeable change of optimal weight as a function of α. The optimal
weight using the mean-V aR optimization exhibits a drastic “drop” at 5 %.
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Chapter 6

Dynamic optimization

In this chapter we analyze a simplified discrete time portfolio strategy which yields an efficient

final return, in the risk-reward sense. The main goal is to understand what are the effects

of dynamic trading considering that an investor prefers investments which belong to the

risk-reward efficient frontier.

The dynamic case of portfolio optimization is reviewed in section 6.1, which introduces

the notation commonly used to describe multiperiod asset allocations, and reviews some of

the previous attempts to solve the dynamic case (such as the expected utility maximization in

the dynamic case, the continuous-time analysis, and the dynamic option replication, sections

6.2, 6.2 and 6.2 respectively). The notation follows closely the following books: [50, 46] and

[14].

We introduce the concept of consistency of a trading strategy (section 6.4.1), and define

the concept of risk-reward optimal trading strategies in the portfolio optimization framework

(section 6.3). We focus on the absolute V aRα measure (which uses the quantile function as

a risk measure), and in section 6.4 we develop one possible way to analyze the simplified

problem in which the trading strategy is discrete in time and wealth is allocated between one

risk-free asset and one risky asset. The analysis, similar to dynamic programming, starts

with one period and generalizes to the case with T periods. A sub-optimal solution for an

α-consistent trading strategy (a trading strategy, constrained to be consistent, and to satisfy

the quantile constraint) is presented in section 6.5.
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6.1 Multiperiod asset allocation

The multiperiod portfolio optimization problem can be seen as an extension of the static case,

however, we take advantage of the possibility to re-balance the portfolio at every intermediate

trading period. Some of the single period techniques (such as the mean-variance) cannot

be readily generalized to the case where an investment takes place over several periods of

time (known also as trading periods). There are several approaches available for multiperiod

strategies: the optimization of expected utilities, the dynamic replication of options, as well

as our own portfolio optimization with quantile constraints. In this section we analyze a

simple case that takes advantage of inter-period trading.

Let us assume that there are T + 1 trading periods, i = 0, 1, . . . , T , and there are m

assets where an investor can allocate her wealth W̃i at the i-th period, i = 1, 2, · · · , T ; W0 is

a known value. The price of the j-th asset, for j = 1, 2, · · · ,m, follows the stochastic process

{P̃}j = {P̃i,j; i = 1, 2, · · · , T} where P̃i,j is a random variable that represents the price of

the j-th asset at time i; P0,j represents the initial known price of the j-th asset. At times

i = 1, 2, · · · , T , the random vector b̃i is composed of the simple gross return of m assets;

b̃′i = [̃bi,1, b̃i,2, · · · , b̃i,m], where b̃1,j = P̃1,j/P0,j and b̃i,j = P̃i,j/P̃i−1,j for i = 2, 3, · · · , T and

j = 1, 2, · · · ,m. The random vector b̃i has a multivariate cumulative distribution F (which

is a simplifying assumption; in practice b̃i could be non-stationary).

A trading strategy {y} is the vector of stochastic processes {y} = {yi; i = 0, 1, · · · , T−1},

where y′i = [yi,1, yi,2, . . . , yi,m]. Note that yT is not specified; this is because yi,j should be

interpreted as the percentage of units that the investor owns (i.e. carries forward) of the

j-th asset from time i to time i + 1. A trading strategy is modeled as a stochastic process

because trading strategies are rules (i.e., functions) that specify the investor’s position in

each security at each point in time, for each possible wealth available. We assume that

investors neither make additions to nor withdrawals from their invested wealth, generating

what is known as a self-financing trading strategy. In this case, the wealth is constrained to

evolve according to the following dynamic equation over time:

W̃1 = W0y
′
0(W0)b̃1,
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W̃i+1 = W̃iy
′
i(W̃i)b̃i+1, i = 1, 2 · · · , T. (6.1)

The wealth (for a self-financing strategy) can be characterized by the stochastic process

{W̃} = {W̃i; i = 1, 2, · · · , T}. Again, we use self-financing strategies in order to simplify the

analysis of dynamic strategies, since a certain amount of wealth could be “consumed” at the

i-th period. We assume that at the trading period i the outcome of the wealth W̃i is known

(which is denoted as Wi), but the future value of the wealth (i.e., W̃i+1) is still a random

variable. For some trading strategies, each allocation vector yi at the period i could be a

vector function of the wealth at the i-th period, yi = y(Wi) (i.e., a rule that specifies the

investor’s position in each security as a function of the wealth at period i).

An admissible self-financing trading strategy is a trading policy in which the values of yi

are constrained to belong to a predefined set,

Y = {y′i1 = 1; ∀i = 0, 1, . . . , T − 1}, (6.2)

and where the wealth {W̃} follows the dynamics of equation (6.1), therefore being self-

financed. Other constraints (such as no short-selling) can also be included in the set Y . If

techniques such as dynamic programming are used, it is important to stress the assumption

of independence of the random vectors b̃i across time.

As in single period optimization, it is necessary to define a preference relation among

different trading strategies. The preference relation can be based on the final expected

wealth utility, or, as in the static case, on the performance vector combining the risk and

reward of the final wealth. The goal of a multiperiod portfolio optimization is to find an

optimal trading strategy {y∗} with respect to the criteria selected (usually the maximization

of a certain utility function). The optimal trading strategy is composed of the optimal

allocation rules at each trading period, {y∗} = {y∗i (Wi); i = 0, 1, · · · , T − 1}.
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6.2 The expected utility in a multiperiod case

In the expected utility framework, for tractability reasons, most researchers assume the

existence of time additive utility functions, or functions Ui such that

U(W0,W1, . . . ,WT ) =
T∑
i=0

Ui(Wi). (6.3)

Defining

J0
{y}(W0) ≡ E

{
T∑
i=0

Ui(W̃i)

}
, (6.4)

the formulation of the problem can be posed as the maximization of

max
{y}∈Y

J0
{y}(W0). (6.5)

Given this utility function, it is natural to consider the problem at any time j of maximizing

the “remaining utility,” given current wealth Wj . Consider the subproblem in which we are

at the period j with a wealth Wj and we wish to maximize the “cost-to-go” J j{y}(Wj) from

time j to time T

J j{y}(Wj) = E


T∑
i=j

Ui(W̃i)

 . (6.6)

Bellman’s approach is to find the optimal sub-trading strategy of this subproblem ({y∗i ; i =

j, j+1, · · · , T−1}), and assume that the total optimal trading strategy will contain it. Then,

to obtain the total optimal trading strategy, the dynamic programming algorithm states that

it is necessary to start with the last period and proceed backward in time.

At the heart of the dynamic programming algorithm, lies the Markovian property which

implies that the conditional probability distributions Pr{Wj+1|Wj} depend only on the trad-

ing strategy {y}; that is one of the reasons why the random vectors b̃i should be independent

in time, otherwise the analysis would become very complex.

One particular approach which uses expected utilities, assumes the investor maximizes

the expected utility of his final wealth, such that the total utility on time is a function of

only the utility at the final period: U(W0,W1, . . . ,WT ) = UT (WT ). In this case, it has been
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shown that if

1

RA

= −
U ′(WT )

U ′′(WT )
= a+ bWT , ∀WT , (6.7)

then there is a closed form solution (where RA is the measure of risk aversion defined in

section B.3.1).

Myopic and partially myopic trading strategies

If A = 0 in equation (6.7), (i.e. for utility functions of the form ln(W ) and (1/(b −

1))(bW )1−1/b for b 6= 0 or b 6= 1.), when the investor has the opportunity to reinvest se-

quentially her wealth, she will use a trading strategy similar to that of the single period

case. At each stage j she will behave as if she were faced with a single period investment

characterized by the objective function E{UT (W̃j+1)}. This trading strategy is called a

myopic trading strategy.

When A 6= 0, assuming a risk-free asset with a rate of return rf,i at the i-th period is

available, then the optimal trading strategy at the period j is the same as the investor would

chose if faced with a single period problem whereby he would maximize over yj,

E{U((1 + rf,T−1) . . . (1 +Rf,j+1)W̃j+1)}.

In other words, the investor maximizes the expected utility of wealth if a portfolio yj is used

in the j period and the resulting wealth Wj+1 is subsequently invested exclusively in the

risk-free asset during the remaining periods j + 1, . . . , T − 1. This type of trading strategy

is called a partially myopic trading strategy. As the horizon keeps expanding, the trading

strategy on the initial stages approaches a myopic trading strategy.

Continuous time finance

The special case when there is a a very high frequency of trading, e.g., that an investor is

trying to maximize her expected utility at some point in the distant future, or it is allowed to

make many trades in a short period of time, can be approached from a continuous time point
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of view. Merton in [46] describes in a very detailed manner most of the portfolio optimization

techniques in continuous time. Using a martingale representation approach, Cox and Huang

derived an alternative method for solving optimal consumption-portfolio problems. The

derivation of their techniques includes the restrictions that consumption and wealth must be

nonnegative. A fixed trading strategy that is globally optimal or “asymptotically optimal”

for some utility functions is known as a growth optimal portfolio. For deeper coverage of

these topics, see [46, 20, 32, 35].

Relation to mean-variance In an economy where all asset prices are log-normally dis-

tributed and there is one risk-free asset, Merton [46] shows that the proportions of each asset

in a portfolio are derived by finding the locus of points in the instantaneous mean-standard

deviation space of composite returns which minimize the variance for a given mean (i.e. the

efficient risky-asset frontier).

Risk sensitive control

Another interesting case is when

E

{
β exp

(
α

(
T∑
i=0

Ui(W̃i)

))}
,

where α and β are given scalars. This type of cost functional can be called a risk sensitive

cost functional since it corresponds to an exponential utility function expressing the risk

aversion or risk preference (depending on the sign of β) of the decision maker.

Other risk sensitive cost functionals include (as used in [51])

limT→∞ inf 1
γ
T−1 lnE{W̃T}γ, γ < 1, γ 6= 0 .

Letting γ → 0, this cost functional at the limit will tend to maximize the portfolio’s long-

run expected growth rate. Letting θ = −γ/2, after some algebra and doing a Taylor series

109



expansion about θ = 0, [51] the following expected utility is used;

Jθ ≡ E{ln W̃T} −
θ

4
var{ln W̃T}+O(θ2).

The variance term will be a penalty that depends on the term θ, called a risk aversion

parameter.

Dynamic option replication

Another interesting use of trading strategies is the dynamic option replication. Under certain

conditions an option’s payoff can be exactly replicated by a particular dynamic investment

strategy involving only the underlying stock and risk-free debt. This particular strategy

may be constructed to be self-financing, i.e., requiring no cash infusions except at the start

and allowing no cash withdrawals until the option expires; since the strategy replicates

the option’s payoff at expiration, the initial cost of this self-financing investment strategy

must be identical to the option’s price, otherwise an arbitrage opportunity will arise. The

pricing formula of an option can only be expressed implicitly as the solution of a parabolic

partial differential equation (PDE). However, a new kind of self-financing portfolios which

can replicate option’s payoff has been proposed recently. Using DP, the optimal trading

strategy of

min
{y}

E{(W̃T − F (P̃T , zT )2}.

will replicate a self financing portfolio, such that the final payoff F (P̃T , zT ) is achieved as

close as possible (using a quadratic function for tractability). P̃T will be the final price of

the risky asset, while zT is a state vector. The main argument regarding the use of discrete

strategies versus discretized continuous ones, is that in reality the trading can only be made

at discrete intervals of time, hence the analysis of real-life problems should also be addressed

in a discrete time scenario.
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6.3 Risk-reward optimal trading strategies

As we reported in the previous sections, the dynamic strategies analyzed in the literature will

optimize a dynamic trading strategy over a certain period of time, so that the final expected

utility is maximized. From the risk-reward perspective, that method does not take explicitly

the risk into account. In this section we set the foundations of trading strategy optimization

within a risk-reward scenario, for the particular cases of the V aR and the expected return

maximizations. However, the use of multiple criteria, as well as other trading strategy

restrictions (such as consistency) will complicate the solution of the dynamic problem.

All the previous multiperiod alternatives assume the existence of a utility function which

can be maximized. Little work has been done on Pareto’s optimal trading strategies, even if

this problem can be expressed as a fixed end stochastic control problem. In optimal control

problems, state variables evolve with time and form paths; the payoff depends on which

path is used. In the static case the distribution function of the final wealth is a function

of the portfolio weights; in the dynamic case, it is a function of the whole trading strategy

(see section 6.1 for a review of the notation used). Thus, the multicriteria, multiperiod

portfolio optimization control consists in finding the efficient trading strategies {y∗} = {y∗i ;

i = 0, 1, · · · , T −1} which make the performance vector h∗(W̃T ) an E-point. In a risk-reward

framework, the performance vector h will be composed of the risk(W̃T ) and reward(W̃T ).

Using theorem B.1.5, we could find an efficient trading strategy by maximizing one compo-

nent of the vector h(W̃T (·)) while keeping the others constrained (although this method is

considered “naive”).

Assuming we have a two dimensional performance vector, (e.g., risk-reward) we would

like to find efficient trading strategies that are solution of the problem:

max reward(W̃T ) (6.8)

such that risk(W̃T ) ≤ Lp

W0 : given, {y} ∈ Y

where WT is the final wealth based on a self-financing strategy which generated a wealth
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process {W} that evolves according to equation (6.1), Lp is a predefined “risk” value and Y

is a set of restriction for the strategy (see section 6.1). The solution of the following problem

is also an efficient trading strategy:

min risk(W̃T ) (6.9)

such that reward(W̃T ) ≥ Rp

W0 : given, {y} ∈ Y ,

and where Rp is a predefined “reward” value. Methods to obtain efficient trading strategies

for the particular case of the mean-V aRα are analyzed in the following sections. As far as the

dynamic case is concerned, we must be very careful about the trading strategies producing

the “best” performance vector. There could be trading strategies denoted as gambling where

the proportion of wealth invested in the risky assets is increased as the wealth decreases. To

avoid gambling, we prefer trading strategies which are always consistent, (a concept that is

explained in the next section). If gambling arises, it is necessary to enforce consistency.

6.4 Trading strategies with one risky asset

To further simplify the analysis of the trading strategies, we will consider two assets only:

one of them risky with a random simple gross return b̃i = 1 + r̃i, the other risk-free; i.e., the

return is non random and has a simple gross return of gi = 1 + ri,f . Defining the variable

ui (interpreted as the total amount of wealth invested in the risky asset), a trading strategy

will be of the form {u} = {ui; i = 0, 1 · · · , T − 1}. An admissible trading strategy belongs to

the set U

U = {ui ∈ <, i = 0, . . . , T − 1},

(although we can impose a restriction in short-selling and budget constraints as well). The

wealth evolution (6.10) for a self-financing strategy {u} is defined as

W̃1 = W0g1 + u0(b̃1 − g1),
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W̃i+1 = W̃igi+1 + ui(b̃i+1 − gi+1) i = 1, 2, · · · , T. (6.10)

The wealth dynamics are completely dependent on the chosen trading strategy {u}.

6.4.1 The consistency concept

Before explaining the concept of consistency, we need to understand a problem that arises

when dynamic programming techniques with semivariance utility functions (equation (3.9))

are used. Due to the piecewise nature of the utility function, if the wealth falls below a certain

level (i.e., the wealth moves from the linear part of the utility function to the quadratic),

the optimal strategy requires the investor to “gamble” to recover her losses, i.e., so as to

increase the amount invested in the risky assets. Similar problems happen with dynamic

option replication strategies, as explained in section 6.2.

We will now need to introduce the concept of consistency. Our goal is to obtain portfolio

strategies which improve the performance measure without having to resort to gambling

trading strategies. To do so, we borrow the wealth elasticity concept (section B.3.1). from

the expected utility theory.

For a trading strategy with only one risky asset, the trading strategy {u} is consistent

if, for i = 0, 1, · · · , T − 1, the derivative

dui(Wi)

dWi

always keeps the same sign (is either non-positive or non-negative). The interpretation of this

constraint is simple: because ui is the “investing rule” assigned to the i-th period, function of

the available wealth Wi at period i-th, we do not allow rules that change the behavior of an

investor based on the level of wealth. The investors’ behavior can be categorized depending

on their wealth elasticity. In section B.3.1 we described how the wealth elasticity ν > 0 can be

interpreted in the expected utility theory as elastic, in which the fraction of wealth invested

in the risky asset (i.e., ui) is directly proportional to Wi. For reasons explained above, if

the wealth decreases, gambling strategies are not allowed (i.e., be inversely proportional to

Wi). Hence, the derivative dui(Wi)
dWi

should always be non-negative, so whenever the wealth
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decreases, the amount invested in the risky asset does not increase.

In economic terms, we define a consistent investor as one whose wealth elasticity ν remains

unchanged whether his demand for the risky asset is elastic, unitary elastic to inelastic, as

function of Wi. A consistent trading strategy is defined as a trading strategy in which the

wealth elasticity as function of the wealth at period i (ν(Wi)) is either ν(Wi) >= 1 or ν(Wi) <

1, for all i = 0, . . . , T − 1. This means that if an investor is non-increasing risk averse, she

will always decrease the amount invested in the risky asset as her wealth decreases, but there

will not be a case when she suddenly decides to increase the dollar amount invested in the

risky asset as her wealth decreases. This concept is very useful in the multiperiod case.

In the expected utility case, if we want to avoid non-consistent strategies, we have to

impose non-consistency to functions where dRA(W )/dW ≤ 0 ∀W . An example of a non-

consistent utility function is the semivariance utility function. Because the semivariance

is inelastic when W ≤ τ , the trading strategy tends to increase the proportion of wealth

invested in the risky asset as the wealth decreases; which can be interpreted as a “gambling”

trading strategy that a risk averse investor is not interested in pursuing.

6.4.2 Quantile constraints

Like the static period optimization, our goal is to develop a methodology that will allow us

to find preferred trading strategies in the Pareto sense. The basic idea of the multiperiod

optimization with quantile constraints relies on the use of a self-financing strategy (see 6.2)

with a finite horizon. A trading strategy which maximizes the expected return while keeping

a quantile constrained to a fixed value, is equivalent to finding the optimal mean-V aRα

trading strategy. The investor is assumed to invest her initial wealth W0, reinvest it at

some intermediate trading periods i, and decide about optimality of the strategy based on

the predefined probability α the final wealth W̃T falls below a disaster level L. Upholding

the quantile constraint of portfolio optimization, we do not require the maximization of a

complex utility function: to maximize the expected wealth E[W̃T ] or the E[ln W̃T ] at period

T suffices. But our goal also requires the trading strategy to be consistent; we denote

a trading strategy {u∗} as an efficient trading strategy from the set of consistent trading
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strategies.

Our goal is to find an efficient trading strategy from the set of consistent trading strategy

{u} that solves the following problem at time 0:

max reward(W̃T ) (6.11)

such that qα(W̃T ) ≥ L {u} ∈ U

where L is a predefined risk level. Unfortunately, the constraint qα(W̃T ) is non-separable

(i.e., the problem cannot be separated into an independent subproblem for each time period,

see [11]), which makes the solution of this problem non-trivial.

We divide the problem in two parts:

• first, we identify the set of consistent trading strategies that satisfy the quantile con-

straint qα(W̃T ),

• and then we find the efficient trading strategy. (The one that maximizes the reward,

since the trading strategy satisfies the quantile constraint).

A consistent trading strategy which satisfies the constraint qα(W̃T ) ≥ L is denoted an α-

consistent trading strategy . The set of α-consistent trading strategies is denoted as Uα,

where

Uα(L) = {ui ∈ <, i = 0, . . . , T − 1, qα(W̃T ) ≥ L}.

Due to the quantile constraint, we cannot use the classical dynamic programming tech-

niques. However, we use a similar approach: first we solve the case for the last period, and

then we propagate our results backwards in time.

6.4.3 With a single period

The main purpose of the disaster level constraint consists in quantifying a preference relation

which defines an investor’s characteristics. However, we need to make additional assumptions

about the investors’ behavior, to help us differentiate among possible options whenever the

disaster level constraint does not distinguish alternatives:
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i. The risky asset has a probability distribution such that gi > qα. If not, then the risky

asset would be always preferred to the risk-free asset when the disaster level qα is used

to select investments; ui = 1. (i.e., no arbitrage opportunities, otherwise, the outcome

of the risky asset is greater than the risk-free return). This case would appear if α is

not correctly chosen and the absolute risk measure is unable to quantify the risk of an

asset (see example 5.5.4).

ii. E [̃bi] > gi. If this situation is violated, the risk-free asset has a better expected return

than the risky one, and the investor will always choose the risk-free asset, ui = 0.

iii. If WT−1 < L/gT ≡ LT−1, and all the previous assumptions are true, then we will

assume the investor is consistent (i.e., once the future value of her current wealth is

below the disaster level, the investor will decide to reinvest exclusively in the risk-

free asset; uT−1 = 0, see B.3). Therefore, the trading strategy will not be allowed to

“recover the losses” by gambling. Using the risk aversion concept, a consistent investor

will be one that keeps the same risk aversion regardless the amount of wealth.

The single period case with one risky asset has a sub-trading strategy of {u} = {uT−1}.

We need to find the set of {u} ∈ Uα(L), hence we need to enforce the disaster constraint:

Pr
[
WT−1gT + uT−1(b̃T − gT ) ≤ L

]
= α. (6.12)

Equation (6.12) admits two solutions for uT−1: (i) for uT−1 > 0 and (ii) for uT−1 < 0. We

assume that solution (i) will always be preferred (otherwise E[W̃T ] will be negative), hence

the α-consistent solution is:

u∗T−1 =
WT−1gT − L

gT − qα
, (6.13)

which is valid as long as WT−1 ≥ L/gT . There is no feasible solution when WT−1 < L/gT .

For the solution to be consistent for all possible non-negative values of WT−1, the derivative
du∗T−1(WT−1)

dWT−1
should not become negative. A solution that reflects this condition is

ǔT−1(WT−1, α) = max

(
WT−1 − L/gT

1− qα/gT
, 0

)
, (6.14)
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where ũT−1(WT−1, α) will be the investment value that will allow consistent strategies. If

WT−1 < L/gT , a trading strategy cannot be α-consistent in a single period, but (6.14) will

allow us to derive the set of α-consistent trading strategies for two or more periods.

6.4.4 With two periods

The new sub-trading strategy is {u} = {uT−2, uT−1}, and the final wealth W̃T will be a

function of uT−1, uT−2, α, WT−2 and the random returns:

W̃T = W̃T−1gT + uT−1(b̃T − gT ), (6.15)

W̃T−1 = WT−2gT−1 + uT−2(b̃T−1 − gT−1). (6.16)

To find the α-consistent trading strategy, using (6.14) (which is a piecewise function), we

must use the total probability property:

Pr[W̃T ≤ L] = Pr{W̃T ≤ L|W̃T−1 ≤ LT−1}Pr[W̃T−1 ≤ LT−1]+

Pr{W̃T ≤ L|W̃T−1 > LT−1}Pr[W̃T−1 > LT−1],
(6.17)

where LT−1 ≡ L/gT (the present value of the disaster level at the period T−1). Substituting

(6.14) in (6.15), we can have different outcomes:

i. when WT−1, the outcome of W̃T−1 is WT−1 < LT−1, the amount to be invested in the

risky asset is uT−1 = 0 (by 6.4.3). The final wealth is totally invested in the risk-free

asset, W̃T = WT−1gT , and W̃T falls below the disaster level with probability 1:

Pr{W̃T ≤ L|W̃T−1 ≤ LT−1} = 1. (6.18)

ii. when WT−1 ≥ LT−1 the formula (6.13) applies. It is true that a u∗T−1(WT−1, βT−1) can

be chosen to fix Pr{W̃T ≤ L|W̃T−1 > LT−1} = βT−1.

We define the following probabilities and conditional probabilities appearing in (6.17) as:

γT−1 ≡ Pr[W̃T−1 ≤ LT−1], (6.19)
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βT ≡ Pr{W̃T ≤ L|W̃T−1 > LT−1}. (6.20)

If definitions (6.19), (6.20), and equation (6.18) are substituted in equation (6.17), solving

for γT−1 we have:

γT−1 =
α− βT
1− βT

, βT ∈ [0, α]. (6.21)

Solving equation (6.19) for uT−2 and assuming the investor is consistent in both periods we

can propose the following consistent uT−2

ǔT−2(WT−2, γT−2) = max

WT−2 −
L

gT gT−1

1−
qγT−2

gT−1

, 0

 . (6.22)

The solution of equation (6.20) is

uT−1(WT−1, βT ) =
WT−1 − L/gT
1− qβT /gT

,

hence, the sub-trading strategy u is also α-consistent as long as WT−2 ≥ L/(gTgT−1).

6.4.5 With T periods

For T periods, to enforce Pr[W̃T ≤ L] = α we need to expand the total probability T − 1

times. Defining the variable Lj (which is useful for the expansion of the total probability

formula) for the T periods, i = 1, . . ., T

Lj ≡

 L
(∏T

k=j+1 gk
)−1

, j = 0, 1, . . . , T − 1,

L, j = T.
(6.23)

We have, for each period, the following probability formula:

Pr[W̃i+1 ≤ Li+1] = Pr{W̃i+1 ≤ Li+1|W̃i ≤ Li}Pr[W̃i ≤ Li]+

Pr{W̃i+1 ≤ Li+1|W̃i > Li}Pr[W̃i > Li+1].
(6.24)
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Again, we define the following probabilities and conditional probabilities (6.24):

γi ≡ Pr[W̃i ≤ Li], (6.25)

βi+1 ≡ Pr{W̃i+1 ≤ Li+1|W̃i > Li}. (6.26)

To satisfy the consistency requirement, we chose trading strategies that make true the fol-

lowing statement: Pr{W̃i+1 ≤ Li+1|W̃i ≤ Li} = 1, which, in turn, also makes true the

following:

γi = γi+1−βi+1

1−βi+1
, βi+1 ∈ [0, γi+1], (6.27)

γT = α. (6.28)

To enforce consistency, at every period i = 1, 2, . . . , T −1 we solve equation (6.26), with

solution:

ǔi(Wi, βi+1) =
Wi − Li

1− qβi+1/gi+1
. (6.29)

For the initial period, i = 0 we use the following investment rule

ǔ0(W0, γ1) = max

(
W0 − L0

1− qγ1/g1

, 0

)
, (6.30)

where γ1 is defined by equation (6.28). The whole trading strategy is α-consistent, as long

as W0 > L0 (otherwise, it is only consistent).

We now have a set of α-consistent trading strategies {u}, as we wanted at the beginning

of this section. However, now we have T − 1 variables that form a new trading strategy:

{β} = {βi; i = 2, 3, · · · , T}. These are the new control variables, while the γi, ui and W̃i are

the new state variables. Maximizing the reward of the final wealth W̃T derived from this set

of α-consistent strategies comes as the next step.
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6.5 Mean maximization

The problem (6.12) now can be posed as the maximization

max reward(W̃T ) (6.31)

subject to

W0, α, L, γT = α : given,

{β} ∈ {βi ∈ [0, γi], i = 2, . . . , T}, (6.32)

where the state variable γi evolves according to

γi = (γi+1 − βi+1)/(1− βi+1), i = 1, . . . , T − 1,

the trading strategy {u} evolves as

ui(Wi, βi+1) = (Wi − Li)/(1− qβi+1/gi+1), i = 1, . . . , T − 1,

u0(W0, γ1) = (W0 − L0)/(1− qγ1/g1),

and the wealth evolves as

Wi+1 = Wigi+1 + ui(b̃i+1 − gi+1) i = 0, 1, . . . , T − 1.

The optimal control problem is to find the trading strategy {β} = {βi; i = 2, 3, · · · , T}, that

maximizes the value of W̃T . Unfortunately, this is not a simple optimal control problem,

particularly because the set of admissible trading strategies depends on the state variables

γi

Sub-optimal trading strategy Instead of solving explicitly (6.31), we propose and an-

alyze an admissible sub-optimal trading strategy. We make all βi equal to a scalar value

β; hence, the α that corresponds to this trading strategy can be derived from the recursive
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formulas:

γ1 = β,

γi = γi−1(1− β) + β, i = 2, . . . , T − 1,

α = γT−1(1− β) + β.

The main attraction of this method is its simplicity. Experimentally, it can be seen that it

usually over-performs a static trading strategy, i.e., one which only changes the composition

of the investment once in an investment horizon, as will be shown in the next experiment.

Experiment 6.5.1 Dynamic trading strategy. The previous suboptimal technique was

tested on a synthetic example. Using dynamics of the stock price (see appendix C.1), we

assumed that exists a financial asset of initial price S0 = 1, with instantaneous expected

return µ = 0.15 and instantaneous variance σ = 0.3. The time horizon for the portfolio

optimization was 1 day (or 1/250 business years), the optimization parameters are α = 0.05,

L = 0.9 and the initial wealth is W0 = 1. We used cash as the risk-free asset, assuming a

gross simple return of 1.

The suboptimal trading strategy was generated for 3 different scenarios:

i. a optimal trading strategy for a single trade period.

ii. a optimal trading strategy, assuming that the horizon could be divided in 5 trades per

horizon.

iii. a optimal trading strategy, assuming that the horizon could be divided in 10 trades

per horizon.

The results can be seen in figure 5-1; both the cumulative distribution functions and the

histograms are plotted. Since the quantile was constrained to the same value, we can compare

the trading strategies using the expected return that each trading strategy generates. It can

be seen that, apparently, trading strategies that allow several trading periods during the

same time horizon have a better expected return. In the example, for for 1 trade per period

the mean is 1.0008, for 5 trades per period the mean is 1.0011, while for 10 trades per
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period the mean is 1.0077. However, analyzing the distribution functions, we can notice that

increasing the number of trades per period favors “lottery” payoffs. Although the expected

return is higher as the number of trades is increased, the median return decreases; for 1

trade per period the median is 0.9978, for 5 trades per period the median is 0.96298 while

for 10 trades is 0.94334. For the single period case, the distribution is log-normal, but as the

trading periods are increased to 5 and 10, the “weight” of the final distribution shifts from

the left tail to the right.

In the example, the dynamic strategy optimizes the performance measures defined by us

(the mean and the quantile) while keeping a consistent trading strategy that almost vanished

the downside exposure. However, in this case, the reward measure used (the mean) does not

really describe the real preference of an investor.
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Figure 6-1: Mean-V aR0.05 dynamic case.

x-axis: gross return. CDF: cumulative distribution function. t.p.p.: trades per period.
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Chapter 7

Summary and conclusions

The expected utility is a special case of the risk-value theory. Although the ex-

pected utility theory has been the solid foundation of Economic theories, practitioners tend

to be “loss-averse” rather than utility maximizers; the Allais paradox is the most basic ex-

ample which contradicts the utility theory. Risk-reward theory was considered at first as

a special case of the utility theory. In this thesis we showed that the risk-reward theory

applies to a wider set of cases including those explained by the expected utility theory. In

the particular cases where the risk and value measures are respectively convex and concave,

it is possible to assign an ordinal value function that ranks financial assets with random

returns. The value function can coincide with the expected utility function, but not with

quantile-based risk measures, where it is sometimes possible to find a value function even

though no utility function exists.

When value functions exist, Economic theories hold. It is only the very special case

where the risk is not convex or the reward is not concave, that there will be no value

functions. Theoretically, this would present some interesting contradictions to the current

Economic theories. Concepts such as the no-arbitrage condition should be used in the future

to restrict the risk and reward measures (e.g., to be at least pseudo-convex and pseudo-

concave respectively, see [60]).

The mean and pseudo-coherent risk optimization methods have interesting the-

oretical properties. We analyzed the mathematics of optimal portfolios and efficient
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frontiers for pseudo-coherent risk measures, even if they are not concave Pseudo-coherent

measures of risk (as the V aR and the shortfall) have a CAPM-like formula for optimal

portfolios, which can be used to further analyze the returns of some financial assets. It is

interesting to note that other asymmetric risk measures as the semivariance and the LPM

do not share this property, which may explain why they are seldom used in practice. If a

risk-free asset is available for investment, then, even if the risk measure is not concave, the

efficient frontier will be linear, and there will be mutual fund separation; that might not be

the case if no risk-free asset is available.

The gradient of quantile-based risk measures can be estimated and applied to

static portfolio optimizations. The gradients of risk measures play a very important

role; they can be used to compute a “generalized” β that could be used by practitioners

for many financial applications, for example to identify the risk of a particular trade or to

optimize portfolios. An important contribution of this thesis is the derivation of an analyt-

ical formula for the quantile functions gradient. This gradient is used to derive analytical

formulas for gradients of quantile-based risk measures. Then, the use of the local polyno-

mial regression allows us to estimate efficiently these gradients. Depending on the applica-

tion one can either chose the most precise (but computationally expensive), or the fastest

(F-transformation, less precise) method; both methods outperformed the finite differences

method in our experiments.

Although some non-gradient based algorithms for the optimization of the V aR exist,

they tend to be very slow when the number of samples is increased (which is necessary to

calculate the quantile with more precision). Gradient-based algorithms perform better, but

the nature of the quantile estimator make finite difference methods very unreliable. So far,

the best optimization algorithm we used is the gradient-based optimization algorithm which

uses local polynomial regression for the estimation of the gradient.

Comparing results between the shortfall and the V aR, we have noticed that the depen-

dence of the optimized portfolio with respect to the α parameter can be drastic in a few

extreme cases (particularly with the “Put-Call” data and the V aR measure). In our experi-

ments, the efficient frontiers of the V aR, as well as the efficient portfolios did not change as
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smoothly as they should have, due to the sampling noise. Still, the shortfall shares many of

the interesting properties of the V aR, and in experiments it tends to be more robust to noise

and to extreme cases such as the “Put-Call” data. For that reason we believe the shortfall

is a better measure of risk.

Risk-reward optimization can be performed in the multiperiod case. We intro-

duced an additional characteristic of the risk-aversion concept, which we called consistency.

We assumed risk-averse investors would avoid changing their behavior after a loss, and would

not start gambling their remaining wealth. The expected utility theory does not prevent gam-

bling; i.e., if we try to maximize the semivariance utility function in the multiperiod case, we

will have a “non-consistent” optimal policy, due to the piecewise nature of the risk-measure.

We show in our thesis that the risk-reward concept can be extended to the multiperiod case,

deriving a sub-optimal trading strategy for the case of the mean-absolute V aR optimiza-

tion. Although the trading strategy indeed improves the performance vector, the resulting

probability distribution function of the final wealth might “mislead” the investors: although

it is true that the investment becomes less and less risky (in an absolute V aR sense) as

the number of trading periods increase, the investment does not become more “valuable”:

most of the time the investor will lose money. That points out the inefficacy of the mean as

reward measure. Other measures of reward (preferably coherent or pseudo-coherent, as the

median) could be defined in the future, but such that efficient computational algorithms can

be derived for them.

7.1 Limitations

The local polynomial regression requires the computation of an adequate bandwidth, and it

will introduce a bias, albeit small. Numerical optimization methods require the computation

of the gradient at each iteration; since the computation of the optimal bandwidth for each

gradient estimator can be very computationally expensive, the optimization might not be

adapted to practical purposes. Sub-optimal bandwidths can be used to save computational

time, but unfortunately, the optimal solution will be affected by the estimator bias.
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In practice, the optimization algorithm becomes very inefficient when the number of assets

is increased. This suggests the need to first come up with an adequate selection of financial

assets through either a manual classification of assets or through a heuristic algorithm.

We must remember that the algorithm assumes that N sample data points are available,

and that they are i.i.d.; hence the optimization will be as good as the available data is.

Historical data provides a challenge, as it is scarce, and financial processes are thought to

be non-stationary.

In mathematical Finance it is easy to forget the interaction with the real life investor.

Many assumptions are made to simplify the mathematics, even if they cannot be made in

real life. For that reason, we must remember that practitioners may not always behave

according to what is mathematically simpler. Although the risk-reward theory apparently

models investors’ behavior in a more realistic way (using two measures to form a performance

vector), the measures used so far might in some cases mislead the investor, e.g.;

• the mean can be very high, but only due to the very “fat” tail in the right side of the

distribution,

• the V aR0.05 may not measure correctly the possible amount of losses, when compared

with the V aR0.01 measure (high sensitivity of the risk measure with respect to the α

parameter).

7.2 Future research

• A very interesting topic that still needs to be developed consists in the characterization

of probability distribution classes that make quantile-based risk measures concave or

pseudo-concave. Most of the previous analysis tends to assume that the risk measure

is concave, to simplify the theoretical analysis. In the V aR case, the analysis should

be reversed: the classes of distributions that give a concave V aR measure must be

characterized, first taking into consideration that arbitrage opportunities do not exist

in financial applications.

• Many financial instruments are known to have non-normal distributions. Using the
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techniques developed in this thesis, a complete analysis of the characteristics of optimal

portfolios including those financial instruments should be quite interesting.

• The optimization algorithm developed for the static case appeared to be quite reliable

when the number of assets is limited (less that 20). In practice, portfolios may hold

hundreds of assets; it is imperative to further optimize the programming code and

analyze ways to solve large-scale problems.

• We used well-known measures of risk and reward. Our analysis of the dynamic strategy

points out that better measures of reward should be used to accurately reflect the

preference of an investor. From a theoretical point of view, coherent measures of

reward (or even pseudo-coherent, as the median) are very attractive and will inherit

the CAPM-like equation for the optimal portfolio. However, for new reward measures

efficient ways of computing the optimal solution should be found.

128



Appendix A

Background

A.1 Miscellaneous functions and definitions

Definition A.1.1 (Generalized inverse) Suppose h is a non-decreasing function on <.

The generalized inverse of h is defined as

h−1(t) = inf{x|h(x) ≥ t, x ∈ <}.

By convention, the infimum of an empty set is ∞.

Remark: If h is right-continuous, then h is increasing if and only if h−1 is continuous.

Definition A.1.2 (Unit step function) The unit step function is the formal integral of

the Dirac delta function and is given by

us(x) =

 1, x > 0,

0, x < 0,
(A.1)

Definition A.1.3 (Homogeneous functions) A first-order homogeneous function will be

a function that satisfies, for any real α > 0, the property h(αx) = αh(x).

Remark: It can easily be shown that homogeneous functions of first-order will also satisfy

the following properties:
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• x′∇h(αx) = h(x).

• ∇h(x) = ∇h(αx).

• ∇2h(x)x = 0.

Definition A.1.4 Let H(x) be a real valued function on Rm. H is called differentiable at

the point x, if there is a vector x ∈ <m with the property that for the Euclidean norm ‖ · ‖

|H(x)−H(y)− z′(x− y)|

‖x− y‖
→ 0 as y→ x. (A.2)

The row vector z appearing in (A.2) is called the gradient of H at x and is denoted by

∇xH(x) =

[
∂H(x)

∂x1

, · · · ,
∂H(x)

∂xm

]′
.

If there is no danger of confusion the symbol ∇H(x) will also be used.

Remark: The partial derivatives of a functionH(x) can be approximated by using a Forward

Difference Formula,
∂H(x)

∂xi
≈

1

c
(H(x + c · ei)−H(x)),

where c is a small positive scalar, and ei is the i-th unit vector. A more accurate approx-

imation (although computationally more intense) will use the Central Difference Formula:

∂H(x)

∂xi
≈

1

2c
(H(x +Hei)−H(x− c · ei)).

An error ε due to finite precision arithmetic results in error of ε/c for the forward difference

formula, or 2ε/c for the central difference formula.

If we write H(x1, · · · , xn) in place of H(x), the notation DjH is often used to denote the

derivative of H with respect to xj , keeping the other variables fixed. DjH is called a partial

derivative.

Theorem A.1.1 (Differentiation of integrals.) Suppose ψ is a function of two vari-

ables; it will be convenient to use the notation ψt(x) = ψ(x, t). Thus ψt is, for each t,

a function of one variable. Suppose
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i. ψ(x, t) is defined for a ≤ x ≤ b, x ≤ t ≤ d;

ii. α is an increasing function on [a, b];

iii. ψt ∈ <(α) for every t ∈ [c, d];

iv. c < s < d, and to every ε > 0 corresponds a δ > 0 such that

|(D2ψ)(x, t)− (D2ψ)(x, s)| < ε

for all x ∈ [a, b] and for all t ∈ (s− δ, s+ δ).

Define

f(t) =
∫ b

a
ψ(x, t)dα(x) (x ≤ t ≤ d). (A.3)

then (D2ψ)s ∈ <(α), f ′(s) exists, and

f ′(s) =
∫ b

a
(D2ψ)(x, s)dα(x). (A.4)

Note that (iii) simply asserts the existence of integrals (A.3) for all t ∈ [c, d]. Note also that

(iv) certainly holds whenever D2ψ is continuous on the rectangle on which ψ is defined.

Proof. See Rudin [55].

Definition A.1.5 Let (Xn) be a sequence of random variables defined on some probability

space (Ω,A, P ).

• (Xn) converges in probability (notation: Xn
IP
→ X), if P (‖Xn −X‖ > ε) → 0 for all

ε > 0.

• (Xn) converges almost surely (notation: Xn→ X a.s.), if P (Xn → X) = 1.

Theorem A.1.2 Strong Law of Large numbers. Let (ξi) be a sequence of independent

identically distributed random variables with E(‖ξ1‖) <∞. Then

1

n

n∑
i=1

ξi → E(ξ1) a.s.
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This theorem may also be stated as follows: let ρ̂n be the empirical measure

ρ̂n =
1

n

n∑
i=1

δ(i)

and suppose that H(ξ) is integrable. Then

1

n

n∑
i=1

H(ξi) =
∫
H(u)dρ̂n(u)→

∫
H(u)dρ(u) = E(H(ξ1))

Proof. See Etemadi [22].

Definition A.1.6 A subset C of <m is said to be convex if (1 − λ)a + λb ∈ C whenever

a ∈ C, b ∈ C and 0 < λ < 1.

Definition A.1.7 Let g be a function from C to (−∞,+∞], where C ⊂ <m is a convex

set. Then g is convex on C if and only if

g((1− λ)a + λb) ≤ (1− λ)g(a) + λg(b), 0 < λ < 1,

for every a and b in C. g will be concave if its negative is convex.

A.2 Quantile functions

Two important measures of risk, the V aR (defined in section 3.2.2) and the shortfall (defined

in section A.2.3), use the quantile function as a key element. For that reason, in section

A.2 we will review the general properties of quantile functions as described in the modern

literature, in particular for linear combinations of random variables (section A.2.1), elliptic

distributions (section A.2.2), and other quantile based functions, such as the shortfall (section

A.2.3). In section A.2.4 we review current techniques to estimate quantiles, quantiles of linear

combination of random vectors (section A.2.4), and the shortfall (section A.2.4). Part of this

chapter has been adapted from [48, 8, 53, 17, 37].

Definition A.2.1 Quantile function: Suppose F is the cumulative distribution function

of a real valued random variable W ∈ <. Given a threshold probability α ∈ (0, 1), the
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α-quantile (or population quantile) qα of F is defined as:

qα ≡ F−1(α) = inf{w ∈ < : F (w) ≥ α}. (A.5)

When we want to explicitly express the quantile as a function of α, we will use the notation

qα ≡ q(α) to denote the α-quantile.

A function q(α) will be monotonically non-decreasing, given that all cumulative distribu-

tions functions are non-decreasing. If the cumulative distribution is strictly increasing, then

q(α) will be continuous.

A.2.1 Quantile of a linear function of random vectors

Let b̃ be a m-dimensional random vector with cdf F , and let x be a deterministic vector

x ∈ <m. We can define the linear combination W̃ (x) = x′b̃. The α-quantile of the linear

combination will be denoted as qα(x), or q(α,x), and comes directly from the definition

A.2.1 (see [48, 8, 53, 17]).

The quantile function will be homogeneous of order 1 (see definition A.1.3), a property

that can be derived from the definition of quantile (see A.5):

qα(tx) = tqα(x) ∀t > 0. (A.6)

It is also easy to show (by differentiating the previous equation with respect to t, and re-

arranging) that the following property of homogeneous functions will be true:

qα(x) = x′∇xqα(x). (A.7)

A.2.2 Quantile of an elliptic distribution

Definition A.2.2 The m× 1 random vector b̃ is said to have an elliptical distribution with
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parameters µ (m× 1) and V (m×m) if its density function is of the form

b̃ ∼ Em(µ,V) ≡ cm|V|
−1/2h

(
(b̃− µ)′V−1(b̃− µ)

)
,

for some function h, where V is positive definite [37].

The normalizing constant cm could be absorbed into the function h. If b̃ has an m-

dimensional elliptical distribution we will write that b̃ is Em(µ,V). In the special case

when the random vector b̃ has an elliptic distribution of the form Em(0, Im), where Im is

the m×m identity matrix, b̃ will have a spherical distribution. Also, if D has an m-variate

spherical distribution with a density function and the random vector b̃ = CD + µ, where C

is a nonsingular m×m matrix, then b̃ has an elliptic distribution Em(µ,V) with V =CC′.

The characteristic function φ(t) = E[exp(it′b̃)] has the form φ(t) = exp(itµ)ψ(t′Vt) for

some function ψ. Provided they exist, E[b̃] = µ and Cov(b̃) =γV for some constant γ. In

terms of the characteristic function this constant is γ =−2ψ′(0).

If W̃ (x) = x′b̃, the random variable W̃ is a linear combination of the elliptic distribution,

and will have a symmetric univariate distribution that can be standardized. Lets define the

standard variable pα(x) = (qα(x)−E[W̃ ])/vW , where E[W̃ ] = x′µ and vW =
√

x′Vx. Then,

qα(x) = x′µ− pα
√

x′Vx. (A.8)

Because V is a positive semidefinite matrix, then qα(x) is concave The formula for ∇xqα(x)

is

∇xqα(x) = µ− pα
Vx
√

x′Vx
. (A.9)

Two very important examples of elliptic distributions are the Multivariate Gaussian and

t distributions, which are described below.
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Multivariate Gaussian Distributions

For the Multivariate Gaussian distributions, the linear combination W̃ (x) has a univariate

distribution

W̃ (x) ∼ N(x′µ,
√

x′Vx),

and the matrix V is also the covariance matrix

V = Σ ≡ E[(b̃− µ)(b̃− µ)′].

In the case of the Gaussian distribution, the parameter pα will be called zα.

Multivariate t distributions

The spherical multivariate t distribution (of order d) is

f(y) =
Γ
(

1
2
(d+m)

)
Γ
(

1
2
d
)

(dπ)m/2
1(

1 + 1
d
y′y

)(d+m)/2
,

wherem is the size of the vector y. If y = V1/2(b̃−µ), the previous equation can be converted

to a multivariate elliptic distribution. The relationship between V and Σ is V = Σ(d−2)/d,

for d ≥ 3. The univariate distribution of a linear combination of b̃, W̃ (x) is a univariate t

distribution of order d. The parameter pα for the particular case of elliptic distributions will

be called tα,d.

A.2.3 Shortfall

Definition A.2.3 (Shortfall function) Let W̃ be a random variable; then

e(α) = E{qα − W̃ |W̃ < qα} (A.10)

is called the shortfall function of W̃ .
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As for the quantile function, the previous definition can easily be extended to handle random

variables generated by the linear combination of the components of a random vector W̃ =

x′b̃, then:

eα(x) = E{qα(x)− W̃ (x)|W̃ (x) < qα(x)}. (A.11)

From the definition eα(x) can be represented in the following format:

eα(x) =
1

α

∫ qα(x)

−∞
FW (w)dw = qα(x)−

1

α

∫ α

0
qω(x)dω.

From the last representation of the shortfall function, we can see that the shortfall is also

a homogeneous function of order 1.

A.2.4 Estimation of an α-quantile

To estimate qα (see [8]), lets suppose we have available a set Yn with n i.i.d. samples

from a real valued distribution F ; Yn = {Y1, · · · , Yn}. An estimator will use the empirical

distribution function:

Fn(y) =
1

n

n∑
t=1

1{y>Yi}. (A.12)

We may estimate qα = F−1(α) as q̂α,n ≡ F−1
n (α). The properties of this estimator can be

expressed in terms of ordered set of i.i.d samples, or the order statistics:

Y1:n = min(Yn) ≤ Y2:n ≤ · · · ≤ Yn:n = max(Yn).

Then, for k = 1,· · · ,n

q̂α,n = Yk:n,
k−1
n
< α ≤ k

n
,

where q̂α,n is known as the estimator of qα or as the sample quantile.

In the continuous case, if the population quantile qα has a cumulative distribution F

with density f such that f(qα) 6= 0, k = nα + 1 + o(n1/2), and 0 < α < 1, then the

distribution of the sample quantile when n → ∞ is asymptotically normal (see [17]). For

certain distributions, the estimator q̂α,n is an unbiased estimator, with zero mean error η;
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although that might not be true for arbitrary distributions, in the asymptotic case it can be

considered that qα = q̂α,n + η where the error η behaves as

η ∼ N

(
qα,

α(1− α)

nf2(qα)

)
if n→∞. (A.13)

Using the i.i.d. assumption, in the continuous case it is possible to obtain, for r < s,

distribution free confidence intervals:

Pr[Yr:n ≤ qα ≤ Ys:n] =
s−1∑
i=1

(
n

i

)
αi(1− α)n−i ≡ π(r, s, n, α). (A.14)

The previous equation can be used to derive confidence intervals when n is not too large. In

the discrete case, however,

Pr[Yr:n ≤ qα ≤ Ys:n] ≥ π(r, s, n, α).

For some discrete random variables, it could happen that there is no error when estimating

the quantile.

Example A.2.1 Confidence interval. In figure A-1 we plotted the empirical distribution

function of the random return of the equally weighted portfolio x = [1, 1, 1]′/3 on the option-

based data of example 2.2.1. The dashed lines represent the 95 % confidence interval that

the quantile will be within that region. For example, there is a 95 % probability that the

5%-quantile belongs to the interval [−0.04801,−0.013306].

Estimator of α-quantiles for linear combinations of a random vector

Denote by b1, · · · , bn a random sample of an m-dimensional random vector b̃, and by

x an m-dimensional deterministic vector. Applying the linear transformation Wi = x′bi,

i = 1, · · ·, n to the data, we will be able to assign a marginal ordering (M-ordering) to

the m dimensional random sample. To do so, we compute the order statistics of the linear
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Figure A-1: Non-normal portfolio returns.
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transformation Wi ≡ x′bi following the procedure defined in the section A.2.4)

W1:n ≤W2:n ≤ · · · ≤Wn:n.

Each i-th order statistic Wi:n will have associated with a sample random vector which we

will call bi:n,x or bi:n, if x is constant in a section.

The vector bi:n is known in the literature as the M-order statistic (see [7, 53]).

Empirical shortfall

Suppose that W1, · · · , Wn are i.i.d. with d.f. F , let Fn denote the empirical cumulative

distribution function and ∆n(α) = {i : i = 1, · · · , n;Wi < q̂α}. The empirical shortfall

function is

ên(α) =
1

α

∫ q̂α,n

−∞
Fn(w)dw =

1

card∆n(α)

∑
i∈∆n(α)

(q̂α,n −Wi), (A.15)

with the convention that 0/0 = 0.

A.3 Constrained optimization

For a comprehensive review of this topic, see [49, 11, 9]. The general form of an optimization

problem is

minimize H(x) subject to x ∈ S (A.16)

The value that minimizes the problem (A.16) will exist if S is nonempty. Every point x∗

∈ arg min{H(x) : x ∈ S} is called a minimizer of H.

Optimization over convex sets One of the classical nonlinear programming problems

is the constrained problem over a convex set. In the particular case when the convex can be

defined with r equalities and t inequalities the optimization problem can be posed as:

minimize H(x) (A.17)

subject to g(x) = 0, (A.18)
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d(x) ≤ 0, (A.19)

x ∈ <m, (A.20)

where the vector g(x)′ = [g1(x), . . . , gr(x)], represents the r equality constraints, and the

vector d(x)′ = [d1(x), . . . , dt(x)] represents the t inequality constraints. The scalar functions

H(x), gi(x) and di(x) are usually assumed to be continuously differentiable. A large arsenal

of techniques has been developed to solve this instance of the problem (A.16). To simplify

the analysis, we can discard the inequality constraint (for the complete analysis refer to [11])

and propose the optimization problem

minimize H(x) subject to g(x) = 0.

The first order necessity constraints of an optimal solution, also known as Kuhn-Tucker

condition, are

∇xL(x∗, λ∗) = ∇xH(x∗) +∇xg(x∗)′λ∗ = 0, (A.21)

∇λL(x∗, λ∗) = g(x∗) = 0. (A.22)

Where L is the Lagrangian function

L(x, λ) = H(x) + λ′g(x).

Penalty-based constrained optimization

There are several methods available to solve this problem. One of the approaches is based

on elimination of constraints through the use of penalty functions P (x). For example, the

quadratic penalty function method consists of sequential unconstrained minimization of the

form:

min
x∈<m

H(x) +
1

2
ck‖g(x)‖2,

where {ck} is a positive scalar sequence with ck < ck+1 for all k and ck → ∞; the penalty

function P (x) is 1
2
ck‖g(x)‖2. However, this method has many disadvantages such as slow
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convergence and ill-conditioning for large values of ck. Since each iteration is an uncon-

strained minimization, for analysis purposes it can be used to understand how convergence

is affected when the function H(x) and its gradient are replaced by noisy estimators.

Non-differentiable penalty function

The non-differentiable exact penalty function is one of the favorites techniques used for

the optimization of constrained problems. It can be shown that the (non-differentiable)

unconstrained problem has the same local minimum x∗ as in the constrained case,

min
x∈<m

H(x) + cP (x),

where c > 0 and P is the non-differentiable penalty function defined by

P (x) = max
i=1,...,r

|gi(x)|,

c >
m∑
i=1

|λ∗i |.

This method also is applied when there are inequalities, and is already implemented in several

optimization packages such as Matlab [29]. It has been proven to be very efficient, and its

also very fast, since it is a quasi-Newton method. A detailed analysis of this method can be

found in [11, 29]. Differentiable exact penalty functions could also be used in the case when

the Hessian of the function H is available.

Another simple penalty function could be P (x, λ) = ‖∇xL(x, λ)‖2 + ‖g(x)‖2, but it has

some drawbacks since it does not discriminate between local minima and maxima.

A.3.1 Stochastic optimization

Stochastic optimization problems are characterized by the fact that not all decision-relevant

data are exactly known at the time when the decision has to be made. Mathematically,

uncertainty is described by random variables, which appear in the optimization model (A.16).

The random variables appearing in the cost function may or may not depend on the decision
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x.

It is typical for a stochastic optimization problem that the objective function H(x) is not

explicitly known. A stochastic optimization problem has to be approximated. The typical

way of approximation is by simulation: the uncertain random quantities in the original

problem (A.16) are either replaced by artificially generated random variables or bootstrapped

from a set of historical samples, and the optimization is based on them. Since the generated

quantities are random, the approximate problems are random optimization problems.

The approximation of a stochastic optimization problem is based on the validity of law

of large numbers. For example, we could optimize the expectation of a random process

assuming that for each decision value x we may generate stochastic sequences ξ1, ξ2, · · · , ξn

such that the empirical measure

ρ̂n =
1

n

n∑
i=1

δ(ξ − ξi), converges weakly to ρx. (A.23)

here δ(u− u0) denoted the point mass (Dirac mass) at the point u0.

The non-recursive method

Also called the “stochastic counterpart”, or “sample path optimization”. We generate a

sequence ξ1, ξ2, · · · , ξn of random variables such that the empirical measure defined in

(A.23) converges weakly to ρ. If the function H in (A.16) represents the expectation of a

random process, then inserting the empirical measure ρ̂ instead of ρ in problem (A.16) we

get the approximate problem (A.24):

minimize Hn(x) subject to x ∈ S. (A.24)

The solution of (A.24) is used as an approximative solution of the original problem (A.16).

This solution is not restricted to empirical expectations of random processes; we will apply

this method to the maximization of quantiles in section 5.
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The recursive method

As a basis, one may take any algorithm for deterministic optimization which requires either

the function values H(x) or the gradients ∇H(x). Whenever the algorithm makes a function

call to H one replaces this unknown value by an estimate

Ĥ(x) := G(x, ξ), where ξ ∼ ρ.

If the algorithm needs gradients∇H(x), one uses stochastic gradients, i.e. unbiased estimates

∇̂H(x) of ∇H(x). Sometimes we may not find an unbiased estimate and we must accept

approximative gradients (stochastic quasi-gradients), i.e. estimates of ∇H(x) with a small

bias.

The recursive methods produces one random sequence of approximative solutions (xk),

where xk+1 depends on xk and on k∗ random observations:

xk+1 = Tk(xk, ξ
(k)
1 , · · · , ξ(k)

k∗ ).

For some algorithms, k∗ = 1 is sufficient or k∗ depends only on the dimensions of x; in other

cases k∗ tend to infinity with k. Convergence results may be established for k → ∞. The

weakest form of such a result stated that the distance between xk and arg minH tends to

zero in probability.

Optimization stochastic counterparts

We get the stochastic counterpart of a deterministic algorithm, if we replace every call to

the function value H(x) by an unbiased estimate Ĥ(x),

the gradient value ∇H(x) by an unbiased estimate ∇̂H(x),

the Hessian value ∇2H(x) by an unbiased estimate ∇̂2H(x).

The condition of unbiasedness can be weakened by a condition about convergence of the

bias to zero. A stochastic algorithm must have a structure such that the stochastic error
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terms cancel themselves out in the long run by virtue of the law of large numbers (LLN).

However, in any case one may enforce the effect of the LLN by taking repeated observations

at each search point.

A.3.2 Gradient methods with errors

This appendix deals with algorithms for the optimization of simulated systems. In particular

we study stochastic variants of the gradient algorithm

xn+1 = xk − ak∇H(xk), (A.25)

which is useful to solve the problem

minH(x) s.t. x ∈ <m,

where H is bounded from below.

The stochastic version of (A.25) is needed in the case where the objective function H(x)

or its gradient ∇̂H(x) = ∇H(x) can be observed only by computer simulation. Suppose

for each x ∈ <m one may get an estimate ∇̂H(x) of ∇H(x) which contains a deterministic

error b(x) and a zero-mean random error w(x)

∇̂H(x) = ∇H(x) + b(x) + w(x),

The systematic error b(x) contains the bias of ∇̂H(x) in situations where an unbiased

estimate of ∇H(x) is impossible.

The stochastic generalization of the gradient method is based on the recursion

xn+1 = xk − ak(∇H(xk) + bk + wk), (A.26)

where bk = b(xk) and wk = w(xk). The uncontrollable error is vk = bk+ wk. We will let

yk = ∇̂H(Xk).

For simplicity, we can focus on the steepest descent method with errors, for unconstrained
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problems. Several cases can arise:

i. The error is small relative to the gradient, that is ‖vk‖ < ‖∇H(xk)‖, ∀n. Then

convergence is assured, since yk will always make an angle less than 90 degrees with

respect to ∇H(xk).

ii. {vk} is bounded, that is ‖vk‖ ≤ ε, ∀n, where ε is some scalar. Then, the method oper-

ates like a descent method within the region {x|‖∇H(x)‖ > ε}. In the complementary

region, where ‖∇H(x)‖ ≤ ε the behavior of the method will depend on the nature

of the error. For example, if the errors vk are constant, say vk ≡ v, then since yk

= ∇H(xk) + v, the method will essentially be trying to minimize H(x) + v′x and will

typically converge to a point x̄ with ∇H(x̄) = −v. If the errors vk vary substantially,

the method will tend to oscillate within the region where ‖∇H(x)‖ ≤ ε. The precise

behavior will also depend on whether a constant or diminishing step-size is used.

iii. {vk} is proportional to the step-size, that is ‖vk‖ ≤ kak,∀n, where k is some scalar. If

the step-size is constant, we come under case (ii), while if the step-size is diminishing,

the behavior described in case (ii) applies, but with ε→ 0, so the method will tend to

converge to a stationary point of H.

iv. {vk} are independent zero mean random vectors with finite variance. The steepest

descent method will converge because the effects of the error term are ”averaged out”.

With a diminishing step-size, the occasional use of a bad direction yk cannot deteriorate

the cost enough for the method to oscillate.

Cases (i) and (ii) are typical of non-recursive algorithms. In the beginning of the algo-

rithm the noise due to the finite sample does not affect the convergence of the algorithm,

as in case (i.), but it will converge as if the algorithm were trying to optimize the function

H(x) + v′x (case ii.). In the vicinity of a fixed point x∗ the finite sample error v behaves as

a constant error; in non-recursive algorithms only approximated solutions exist.

Recursive algorithms will profit from the behavior described in cases (iii) and (iv), as

explained in the next section.
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Convergence and asymptotic distribution

In this section we will introduce one theorem that establishes convergence in stochastic

optimization using a martingale approach. The theorem will be stated for the slightly more

general situation of constrained optimization. Suppose that the set of constraints C is a

closed convex set. Pflug [49] uses the projection operator πC in the projected stochastic

gradient algorithm

xk+1 = πC(xk − akyk), (A.27)

and proves convergence using martingale methods.

Theorem A.3.1 Consider the recursion equation (A.27) where

yk = ∇H(xk) + bk + wk.

Let Hk be an increasing sequence of σ-algebras such that Xk and bk are Hk-measurable and

E{wk|Hk} = 0. If

i. there is a x∗ ∈ <m such that inf{∇H(x)′(x− x∗)| ε ≤ ‖x‖ ≤ ε−1} > 0 for all ε > 0,

ii. ‖∇H(x)‖ ≤ K1‖x− x∗‖+K2,

iii.
∑
ak‖bk‖ <∞ a.s.,

iv.
∑
a2
kE{‖wk‖2|Hk}) <∞ a.s.,

v. ak ≥ 0, ak → 0,
∑
ak =∞,

∑
k a

2
k <∞,

then xk converges to x∗ almost surely.

Proof. See Pflug ([49]).

The Kiefer-Wolfowitz procedure

This procedure applies in situation when there are unbiased estimates Ĥ(x) of H(x) (in

the univariate case) available, but not such estimates of ∇H(x). Using the central finite
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difference estimate for the univariate case:

D(x, c) ≡
Ĥ(x+ c)− Ĥ(x− c)

2c
= ∇H(x) + b(x) + w(x),

The systematic error of D(x, c) is

b(x, c) =
H(x+ c)−H(x− c)

2c
−∇H(x), (A.28)

which is small if c is small. The zero-mean random error

w(x, c) =
Ĥ(x+ c)−H(x+ c)− Ĥ(x− c) +H(x− c)

2c
, (A.29)

has unbounded variance if c tends to zero and Ĥ(x+ c) is independent from Ĥ(x− c). The

right choice for c as a sequence of constants tending to zero (but not too fast) is crucial for

the KW-procedure. Coupling Ĥ(x + c) and Ĥ(x − c) is another method of controlling the

variance.

In the multivariate case, suppose that for each parameter point x one may observe a

random variable Ĥ(x) with expectation H(x). The Kiefer-Wolfowitz (KW)-procedure uses

divided differences to estimate the gradient of H. Let (ei)i=1,···,m be the unit vectors in <m.

The KW procedure is

xk+1 = xk − ak
m∑
i=1

(
Ĥ(xk + ckei)− Ĥ(xk − ckei, ck)

2ck

)
ei. (A.30)

The a.s. convergence if this procedure is a consequence of theorem A.3.1. The speed of

convergence is given in the following remark. It is assumed that all error variables are

independent (the complete derivation can be found in [49]).

Remark A.3.1 Specializing ak and ck to ak = a/kα and ck = c/kγ, where α ≤ 1, α+γ > 1,

2α− 2γ > 1, after some calculation the following result results:

E{‖xk − x∗‖2} =

 O(kγ), γ < α/3,

O(k2γ−α), γ ≥ α/3.
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The best choice for α and γ is α = 1 and γ = 1/3 which results in

E{‖xk − x∗‖2} = O(k−1/3).

As can be seen, the convergence rate is quite poor. In practical cases this method should

only be used when there is no other alternative.

The Robbins-Monro procedure

The Robbins-Monro procedure requires the existence of unbiased estimates of the gradi-

ent ∇H of H. It is assumed that for each x there is a random variable Y(x) such that

E[Y(x)] =∇H(x) and consider the recursion

xk+1 = xk − akY(xk). (A.31)

Remark: Suppose that

i. There are constants C0, C1, such that

C0‖x− x∗‖2 ≤ ∇H(x)′(x− x∗) ≤ k1‖x− x∗‖2,

ii. ‖∇H(x)‖ ≤ K1‖x‖ + K2, which implies that ‖∇H(x)‖2 ≤ K3‖x‖2 + K4, where

K3 =2K2
1 and K4 =2K2

2 ,

iii. V ar(Y(xj)) ≤ σ2
j ,

iv.
∑
k ak →∞,

∑
k a

2
k <∞.

The method will converge, since it is a special case of the theorem A.3.1. Now specialize ak

to ak = a/kα, and assumelets that supj σ
2
j < ∞. If 1/2 < α < 1, then

E{‖xk − x∗‖2} = O(n−α).

If α = 1, then

E{‖xk − x∗‖2} = O(n−1),
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provided that 2aV0 > 1. Consequently, the best choice is α = 1.

The convergence rate of the Robbins-Monro procedure is better than the KW proce-

dure. Clever implementations (as the “two pass” method described in [9]) can reduce the

convergence rate in the order of a Stochastic Newton method.

Stopping times

The convergence result tells us that we will get to the desired point, if we let the procedure

run for sufficiently long time. Such a statement is evidently unsatisfactory for practical

purposes. In practice, what is done usually is to stop the algorithm once the accuracy of

the solution (denoted as the fraction ‖xk+1−xk‖/‖xk+1‖) reaches a pre-established accuracy

level (e.g. 10−4).

A.4 Local polynomial regression

A.4.1 Introduction

The sections that concern local polynomial regression are adapted from Fan and Gijbels,

[25]; the presentation given here is simply an overview to introduce the concepts used in the

estimation of gradient of quantile functions.

Consider the bivariate data (X1, Y1), . . ., (Xn, Yn), which can be thought as a realization

from a population (X, Y ). Of interest is often to estimate the regression function m(x0)

= E(Y |X = x0) and its derivatives m′(x0), m
′′(x0), . . . , m

(p)(x0). To help us understand

the estimation methodology, we can regard the data as being generated from the model

Y = m(X) + σ(X)ω,

where E(ω) = 0, σ(ω) = 1, and X and ω are independent. We always denote the conditional

variance of Y given X =x0 by σ2(x0) and the marginal density of X, i.e., the design density,

by f(·).

Supposed that the (p+1)th-derivative ofm(x) at the point x0 exists. We then approximate
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the unknown regression function m(x) locally by a polynomial of order p. A Taylor series

expansion gives, for x in a neighborhood of x0,

m(x) ≈ m(x0) +m′(x0)(x− x0) +
m′′(x0)

2!
(x− x0)

2 + · · ·+
m(p)(x0)

p!
(x− x0)

p. (A.32)

This polynomial is fitted locally by weighted least squares regression problem: minimize

n∑
i=1

Yi −
p∑
j=0

βj(Xi − x0)
j


2

Kh(Xi − x0), (A.33)

where h is a bandwidth controlling the size of the local neighborhood, and Kh(·) = K(·/h)/h

with K a kernel function assigning weights to each datum point.

Denote by β̂j, j = 0, . . ., p, the solution to the least squares problem (A.33). It is clear

from the Taylor’s expansion in (A.32) that m̂ν(x0) = ν!β̂ν is an estimator for m(ν)(·), ν = 0,

. . ., p. To estimate the entire function m(ν)(·) we solve the above weighted least squares

problem for all points x0 in the domain of interest.

It is more convenient to work with matrix notations. Denote by X the design matrix of

problem (A.33):

X =


1 (X1 − x0) · · · (X1 − x0)

p

...
...

...

1 (Xn − x0) · · · (Xn − x0)
p


and put

y =


Y1

...

Yn

 , β̂ =


β̂0

...

β̂p

 ,

Further, let W be the n× n diagonal matrix of weights:

W = diag {Kh (Xi − x0) , i = 1, . . . , n} ,
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the weighted least squares problem (A.33) can be written as

min
β

(y −Xβ)′W(y−Xβ), (A.34)

with β = [β0, . . ., βp]
′. The solution vector is provided by ordinary least squares theory and

is given by

β̂ = (X′WX)−1X′Wy. (A.35)

There are several important issues which have to be discussed. First of all is the choice

of the bandwidth parameter h, which plays a crucial role. Too large a bandwidth un-

derparametrizes the regression function, causing a large modeling bias, while too small a

bandwidth over-parameterizes the unknown function and result in noisy estimates. Another

issue in local polynomial fitting is the choice of the order of the local polynomial. Fan and

Gijbels recommend using the lowest odd order, i.e. p =ν + 1, or ocassionally p =ν + 3.

Another question concerns the choice of the kernel function K. Fan and Gijbels show that

for all choices of p and ν the optimal weight function is K(z) = 3
4
(1−z2)+, the Epanechnikov

kernel.

Also, according to research by Fan and Gijbels, other kernel estimators suffer from some

drawbacks; e.g. undesirable form of the bias, or pay a price in variance for random design

models. Particularly, there is absence of boundary effects for local polynomial regression:

the bias at the boundary stays automatically of the same order as in the interior, without

use of specific boundary kernels.

A.4.2 Bias and variance

The conditional bias and variance of the estimator β̂ given a finite set of i.i.d samples can

be derived from its definition in (A.35):

E(β̂|XX) = (X′WX)−1X′Wm = β + (X′WX)−1,X′Wr, (A.36)

V ar(β̂|XX) = (X′WX)−1(X′ΣX)−1(X′WX)−1, (A.37)
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where m = [m(X1),· · ·,m(Xn)]
′, r = m−Xβ, the vector of residuals of the local polynomial

approximation, Σ = diag {K2
h(Xi − x0)σ

2(Xi)} and XX = (X1, · · · , Xn).

These exact bias and variance expressions are not directly accessible, since they depend

on unknown quantities: the residual r and the diagonal matrix Σ, although asymptotic

expansions can be found. The following notation will be used: the moments of K and K2

are denoted respectively by

µj =
∫
ujK(u)du and νj =

∫
ujK2(u)du.

Some matrices and vectors of moments are appearing in the asymptotic expressions:

S = (µj+l)0≤j,l≤p, cp = [µp+1, · · · , µ2p+1]
′,

S̃ = (µj+l+1)0≤j,l≤p, c̃p = [µp+2, · · · , µ2p+2]
′,

S∗ = (νj+l)0≤j,l≤p.

Further, we consider the unit vector eν+1 = [0, · · · , 0, 1, 0, · · · , 0]′, with 1 in the (ν+1)th-

position. Theoretical results explain why what most of the time the use of p − ν odd is

preferred in practice; the theoretical expression for the bias has a simpler structure.

A.4.3 Equivalent kernels

From the notation

Sn,j =
n∑
i=1

Kh(Xi − x0)(Xi − x0)
j (A.38)

lets define Sn ≡ X′WX, the (p + 1) × (p + 1) matrix (Sn,j+l)0≤j,l≤p. The estimator β̂ν can

be written as

β̂ν = e′ν+1β̂ = e′ν+1S
−1
n X′Wy

=
n∑
i=1

W n
ν

(
Xi − x0

h

)
Yi, (A.39)
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Table A.1: The equivalent kernel functions K∗p,ν .

ν p Equivalent Kernel Function K∗ν,p(t)
0 1 K(t)
0 3 (µ4 − µ2

2)(µ4 − µ2t2)K(t)

where W n
ν (t) = e′ν+1S

−1
n [1, th, · · · , (th)p]′K(t)/h. The weights satisfy the following discrete

moment conditions:

n∑
i=1

(Xi − x0)
qW n

ν

(
Xi − x0

h

)
= δν,q, 0 ≤ ν, q ≤ p. (A.40)

A direct consequence of this relation is that finite sample bias when estimating polynomials

up to order p is zero (while for other methods the zero bias only hold true asymptotically).

An expression for the equivalent kernel is

K∗ν (t) = e′ν+1S
−1[1, t, · · · , tp]′K(t) =

( p∑
l=0

Sνltl
)
K(t) (A.41)

which satisfies the following moment conditions

∫
uqK∗ν (u)du = δν,q, 0 ≤ ν, q ≤ p, (A.42)

which are asymptotic version of the discrete moments condition presented in (A.40). Thus,

this weighting scheme does not only correct bias up to a polynomial of order p, but also

adapts automatically to all design densities.

The conditional bias and variance of the estimators m̂ν(x0) can be expressed in terms of

the equivalent kernel K∗ν , leading to the asymptotic expressions

Bias{m̂ν(x0)|XX} =
(∫

tp+1K∗ν(t)dt
)

ν!

(p+ 1)!
m(p+1)(x0)h

p+1−ν +

oP
(
hp+1−ν

)
(A.43)
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Table A.2: The constants Cν,p(K).

ν p Gaussian Uniform Epanechnikov Biweight Triweight
0 1 0.776 1.351 1.719 2.036 2.312
0 3 1.161 2.813 3.243 3.633 3.987

and its asymptotic variance equals

V ar{m̂ν(x0)|XX} =
∫
K∗2ν(t)dt

ν!2σ2(x0)

f(x0)nh1+sν
+ oP

(
1

nh1+2ν

)
. (A.44)

A.4.4 Ideal bandwidth choice

A theoretical optimal local bandwidth for estimating m(ν)(x0) is obtained by minimizing the

conditional Mean Squared Error (MSE) given by

(Bias{m̂ν(x0)|XX})
2 + V ar{m̂ν(x0)|XX}.

Fan and Gijbels derive an asymptotically optimal bandwidth given by

hopt = Cν,p(K)

( ∫
σ2(x)w(x)/f(x)dx∫
(m(p+1)(x))2w(x)dx

)1/(2p+3)

n−1/(2p+3), (A.45)

where n is the number of data points, w(·) > 0 is some weighting function; it is understood

that the integrals are finite and that the denominator does not vanish; and

Cp,ν(K) =

(
(p+ 1)!2(2ν + 1)

∫
K∗ν(t)dt

2(p+ 1− ν) (
∫
tp+1K∗ν(t)dt)

2

)1/(2p+3)

. (A.46)

The latter constants are easy to calculate, and some are tabulated in the table A.2.

Commonly used kernels:

Gaussian : K(z) =
1
√

2π
exp(−z2/2), (A.47)

Epanechnikov : K(z) =
3

4
(1− z2)+, (A.48)
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Uniform : K(z) = 1[−0.5,+0.5](z), (A.49)

A.4.5 Estimated bias and variance

The bias can be estimated by

S−1
n


β̂p+1Sn,p+1 + · · · β̂p+aSn,p+a

...

β̂p+1Sn,2p+1 + · · · β̂p+aSn,2p+a

 , (A.50)

where β̂p+1, · · · , β̂p+a are the estimated regression coefficients obtained by fitting a polynomial

of degree p+ a locally. For this (p+ a)th-order fit, one needs a pilot bandwidth h∗.

An estimator for the conditional variance is provided by

(X′WX)−1(X′W2X)(X′WX)−1σ̂2(x0). (A.51)

where the quantity σ̂2(x0) is an estimator of the unknown quantity σ2(x0);

σ̂2(x0) =

∑n
i=1(Yi − Ŷi)

2Kh∗(Xi − x0)

tr (W∗ −W∗X∗(X∗′WX∗)−1X∗′W∗)
(A.52)

which results from the (p+ a)th-order polynomial fit using the pilot bandwidth h∗. Here X∗

and W∗, similar to X and W, denote respectively the design matrix and the weight matrix

for this local (p+ a)th-order polynomial fit.

With the estimated conditional bias and variance, given in (A.50) and (A.51), we obtain

the following estimator for the Mean Squared Error of β̂ν = m̂(x0)/ν!

ˆMSEp,ν(x0;h) = β̂2
p,ν(x0) + V̂p,ν(x0), (A.53)

where b̂p,ν(x0) denotes the (ν + 1)th element of the estimated bias vector in (A.50). Further,

the (ν + 1)th diagonal element of the matrix in (A.51) is denoted by V̂p,ν(x0).
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Table A.3: Adjusting constants for the Epanechnikov and Gaussian kernel.

Epanechnikov Kernel

p 1 2 3 4
p− ν

1 .8941 .7643 .7776 .7827
3 .8718 .8324

Gaussian Kernel

p 1 2 3 4
p− ν

1 1.00 .8403 .8205 .8085
3 .9554 .8975

RSC constant bandwidth selector The residual squares criterion is defined as

RSC(x0;h) = σ̂2(x0)(1 + (p+ 1)V ) (A.54)

where σ̂2(·) is the normalized weighted residual sum of squares after fitting locally a pth order

polynomial, and V is the first diagonal element of the matrix

(X′WX)−1(X′W2X)(X′WX)−1.

By finding h∗, the minimizer of the integrated version of the residual squares criterion

IRSC(h) =
∫

[a,b]
RSC(y;h)dy,

we can obtain the RSC constant bandwidth selector as

ĥRSCν,p = adjν,ph
∗. (A.55)
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A.4.6 Pilot bandwidth selection

A rule of thumb is very suitable to get a quick idea about how large the amount of smoothing

should be. It is somewhat crude, but possess simplicity and requires very little programming

effort that other methods are hard to compete with. A simple way to do so is by fitting a

polynomial of order p+ 3 globally to m(x), leading to the parametric fit

m̌(x) = α̌0 + · · ·+ α̌p+2x
p+3. (A.56)

the standardized residual sum of squares from this parametric fit is denoted by σ̌2. Taking

w(x) =f(x)W0(x) for some specific function w0, (e.g. the indicator function w0(x) = 1[a,b]),

a simple bandwidth selector is:

ȟROT = Cp,ν(K)

(
σ̌2
∫
w0(x)dx∑n

i=1 (m̌(p+1)(Xi))
2
w0(Xi)

)1/(2p+3)

. (A.57)

This simple bandwidth selector ȟROT is derived under certain conditions. However, even

in situations where these conditions are not strictly fulfilled this bandwidth selector can be

applied in order to get an initial idea of the amount of smoothing to be used. In practice,

the indicator function over an interval has been used as the weighting function w0(·).

Another simple estimator can be found using an improved Akaike information criterion

[34]. Denoting ŷ = H y, with H = X(X′WhX)−1X′Wh,

AICC = log(σ̂2) + 1 +
2(tr(H) + 1)

n− tr(H)− 2
. (A.58)

The vector ŷ represents the estimate of y obtained using the fitted polynomial model. Given

an initial pilot estimate h∗, we can find the optimal bandwidth that minimizes the previous

equation.

Another option to find the pilot would be to minimize over a grid the following statistic

[19]:

S = σ̂2
j (g) (1 + 18Q∗11(g)) .
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Appendix B

Asset ranking theories

In this appendix we briefly review all the finance nomenclature and definitions required in

the previous chapters, following closely classic books such as [35, 32] for static portfolio

optimization, and [59] for the multicriteria introduction.

Section B.1 reviews the basic theory of preference relations, which is used in Chapter 3 for

the comparison of our generalization of the risk-reward theory against the expected utility

theory. In the same section, the multicriteria optimization theory is reviewed, a concept

used to define efficient portfolios, efficient frontiers and their characteristics in a generalized

risk-reward context (sections B.1.2).

The characteristics of the performance space will be a function of the decision variable

chosen (the linear weights) (section B.1.3), which will affect the convexity of the efficient

frontier. The multicriteria point of view is used in Chapters 3 to analyze and compare

the risk-reward framework against existing methods, such as stochastic dominance (section

B.2) and utility theory, (reviewed in sections B.3, as well as B.3.1 and B.3.2). The con-

cepts reviewed in section B.3 are used in previous chapters, as we compare the risk-reward

framework against established methods of decision under uncertainty, particularly against

expected utility theory.
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B.1 Preference relations

Let us assume for now that an investor is asked to choose between two possible investment

opportunities with uncertain outcomes Ã and B̃, i.e., Ã and B̃ are random variables with

respective (cumulative) probability distribution functions FA(a) = Pr[Ã ≤ a] and FB(b) =

Pr[B̃ ≤ b] which belong to a certain class F of distributions, not necessarily the class defined

in (2.3). If an investor is asked to select only one of the two assets, one and only one of the

following can occur:

i. the investor is convinced that Ã is better than (or is preferred to) B̃, denoted by Ã �

B̃ (or FÃ � FB̃, the distribution FÃ is preferred to the distribution FB̃);

ii. the investor is convinced that Ã is worse (or less preferred) than B̃, denoted by Ã ≺

B̃ (or FÃ ≺ FB̃); or

iii. the investor is indefinite or indifferent between Ã and B̃, thus the preference relation

can be defined as Ã ∼ B̃ (or FÃ ∼ FB̃).

Each of the previous statements involves a comparison or relation between a pair of outcomes.

The symbols “≺”, “�” and “∼” are operators defining the comparisons and relations. For

each one of the operators we can define a preference; e.g., the preference relation associated

with the operator ≺ is {≺} (see [59, 35] for a complete coverage of this topic).

It is possible to define the relation {�}, where the comparison Ã � B̃ is read “Ã is

weakly preferred to B̃”.

Some characteristics of preference relations that very important; depending on some of

these characteristics, we will see, in the next section that it may be possible to assign a

multi-objective value function (value function) to the relation. A value function is a function

which assigns a scalar to each possible distribution function so that a complete and transitive

ordering of all the distributions can be achieved by ordering the assigned scalar. If the value

function exists, the optimization problem becomes a unidimensional problem. The utility

theory is a specific case of a value function.

Some assumptions that preference relations (e.g. {�}) might satisfy are:
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i. completeness. For every pair of random variables Ã, B̃ with respective cumulative

distributions functions FÃ, FB̃ ∈ F , either Ã � B̃ or B̃ � Ã.

ii. reflexivity. For every random variable Ã, with FA ∈ F , Ã � Ã.

iii. transitivity. If Ã � B̃ and B̃ � C̃, then Ã � C.

B.1.1 Performance space

From now on we will assume each investor can at least be represented by a transitive and

reflexive preference relation {�} (although economists would prefer the relation to also be

complete, to allow the use of the expected utility theory [35]). If it is possible to express

this preference relation numerically, then it may be possible to use the arsenal of techniques

developed by researchers in Operations Research to find the optimal portfolio. Although

preference relations can be expressed in terms of risk and reward, Economists prefer to use

the expected utility function theory to for its many very useful properties that make it

possible to analyze the behaviors of many investors.

Depending on the characteristics of the preference relation, there are several ways to

express it numerically. However, it should be noted that few researchers agree on the basic

numerical representation of preference (Economics is still a social science); hence, even if a

numerical method can be efficiently developed to optimize a certain numerical expression,

there is no guarantee that the global optimum will be found.

Value Function: A lot of research has been done assuming the preference relation {�} is

also complete. In this particular case, we will be able to assign a scalar value function v(FW̃ ) :

FW → <1 to each distribution function FW̃ , (or to simplify notation, v(W̃ ) = v(FW̃ )), so that

v(Ã) ≥ v(B̃) implies that Ã � B̃. Therefore, the decision problem is reduced to evaluating

the value function v(·). Unfortunately, in practice, such a value function proves difficult

to obtain, and also assumes that the relation is complete. Several textbooks give detailed

explanations of how to find the value function if those conditions are true.

An alternative to the value function approach, consists in assigning a vector of size Q

to the distribution function, i.e., h(FW̃ ) : FW̃ → <
Q (or, to simplify the notation, h(W̃ )
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= h(FW̃ ), h(W̃ ) = [h1(W̃ ), h2(W̃ ), . . ., hQ(W̃ )]′), and then using the concept of Pareto

preference to establish a preference relation among the two vectors h(Ã) and h(B̃). A

Pareto preference is defined as follows:

Pareto Preference : For each component hi(·), let greater values be more preferred, and

assume no other information on the preference is available or established. The Pareto

preference is defined by Ã � B̃ if and only if h(Ã) ≥ h(B̃), i.e., component-wise hi(Ã)

≥ hi(B̃), i = 1,. . .,Q and h(Ã) 6= h(B̃). A Pareto preference is not complete, and lacks

a representation with value functions, unless very specific conditions hold (which will

be introduced in a future section B.1.2).

If we assume that we will be able to assign a finite number of parameters to each distri-

bution function, the preference relation will be incomplete whenever two different members

of the class share the same parameters. We can see that the value function approach reduces

to the expected utility theory when Q = 1.

The Risk-Reward theory, as proposed by Markowitz, will assign two scalars to each

distribution, (Q = 2), and compare the distributions using them. The utility theory can be

regarded as a special case of this framework, in which one of the scalars is the utility of a

distribution, and the other is always set to a fixed value. Of course, more than 2 scalars can

be used, and economists have proposed the use of higher moments than 2, [56, 57]. However,

practitioners so far have shown a tendency to work within the realms of the risk-reward

framework, given that they prefer to have an objective representation of the risk of certain

outcomes.

Lets define the performance vector p = h(W̃ ) which belongs to the performance space P

≡ {p|p = h(W̃ ), FW̃ ∈ F}. In some cases, the representation of the investors’ preference

relation can be more accurate using the performance space rather than the expected utility

theory.

B.1.2 Efficient frontiers

The efficient frontier is a concept widely used in Finance, and in this section we review the

basic definitions, as well as some theorems which will be useful to determine algorithms for
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the computations of efficient portfolios and efficient frontiers.

A vector p∗ will be an efficient vector (E-vector), if there is no p ∈ P such that p 6= p∗

and p ≥ p∗. Depending on P, there could be one, multiple, infinite E-vectors, or none. The

set of all the E-vectors will be called the efficient frontier. The necessary and/or sufficient

conditions for a vector p to be an E-vector are the following:

Theorem B.1.1 p∗ is an E-vector if and only if for any i ∈ {1, 2,. . .,Q}, p∗ uniquely

maximizes pi for all p ∈ Pi(p∗) = {p|pk ≥ p∗k, k 6= i, k = 1, . . ., Q}. That is, p∗i (·) > pi for

all p ∈ Pi(p∗), p 6= p∗.

Theorem B.1.2 if p∗ ∈ P maximizes λ′p, for some λ ∈ {d ∈ <Q|d > 0}, over P, then p∗

is an E-vector.

Theorem B.1.3 if p∗ ∈ P uniquely maximizes λ′p, for some λ ∈ {d ∈ <Q|d ≥ 0}, over

P, then p∗ is an E-vector.

Theorem B.1.4 if P is Λ
<
=-convex, then a necessary condition for p∗ to be an E-vector is

that p∗ maximizes λ′p over P for some λ ∈ {d ∈ <Q| d ≥ 0}. P is Λ
<
=-convex if P + Λ

<
=

is a convex set, where Λ
<
= = {d ∈ <Q|d<

=0}.

Proofs: The proofs for these theorems can be found in [59].

Remark: The theorems B.1.1 and B.1.4 state sufficient and necessary conditions, while

B.1.2 and B.1.3 only state sufficient conditions. Theorems B.1.1, B.1.2 and B.1.3 are valid

for any set P, including non-convex and discrete sets, sets of any shape, although B.1.2 and

B.1.3 do not assure the existence of a vector λ for each E-vector (e.g. if the set P is not

convex). If the functions hi(·) are not convex, the maximizing a linear combination of the

measures will not return the complete efficient frontier.

These theorems will be very important for chapter 3, where we will analyze the charac-

teristics of the efficient frontier for pseudo-coherent measures of risk. When the performance

space is limited to be two-dimensional (risk-reward), the theorems will imply that the compu-

tation of the efficient frontier can be obtained by either maximizing the reward while letting
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the risk be constant, or minimizing the risk and letting the reward be constant. However,

if both the reward and risk measures are convex, the efficient frontier can be obtained by

maximizing a linear combination of the measures. This could have interesting implications

in portfolio optimization, since it might imply mutual fund separation; i.e., that all efficient

portfolios can be obtained as the linear combination of a finite set of efficient portfolios.

B.1.3 Performance space and decision variables.

For asset allocation problems, the class of distribution functions is limited by the equation

(2.3) which will depend on the decision vector x and the joint distribution function of the m

financial assets. The characteristics of the performance set P (as defined in section B.1.1)

will depend on the joint distribution of financial assets considered:

P = {p|p = h(W̃ (x))|W̃ (x) = W0x
′b̃, b̃ ∼ F}.

The vector function h(W̃ (x)) will assign a vector of parameters to each distribution function.

As explained in the previous chapter, for the risk-reward framework that vector is composed

of the risk and reward measures. Since the distribution functions belong to the class F and

can be paired with the vector x, we can also use the notation h(x). When we are assigning

a finite vector to each random variable, points belonging to the performance set P may not

have a one to one correspondence to all possible distribution functions (unless the class is

restricted). This is a point of consideration: even if the performance set P is convex, and

would allow the representation of preference relations with a scalar value function (such as

an expected utility function, see section B.1.1), the Pareto preference will not be able to

order distributions which share the same performance vector p; for example, if the set of

possible distributions has to be represented with more than two moments, a mean-variance

performance vector will not distinguish the portfolios which have the same expected return

and variance. [26]

The following theorem is valid for any convex set X . Let F = {F (x)|x ∈ X}; then P =

{h(x)|x ∈ X};
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Theorem B.1.5 If each hi(x), i = 1, . . ., Q is concave on a convex set X , then P =

{h(x)|x ∈ X} is Λ
<
=-convex, i.e., if P + Λ

<
= is a convex set, where Λ

<
= = {d ∈ <Q|d<

=0}.

The proof can be found in [59]. The implication of the last theorem is quite interesting; in

some circumstances, given the appropriate vector λ, the preference relation can be repre-

sented by the scalar v(W̃ ) = λ′h(W̃ ); or as a weighted sum of components. If that is the

case, the function v(W̃ ) can be regarded as some sort of value function; and will be denoted

a weighting function. We will refer to the relationship of the weighting functions in the

expected utility theory, mean-variance and mean-semivariance in section 3.3.

At this point, assuming we find a vector function p = h(W̃ ) that properly characterizes

and investor’s preference relation, we can say that an investor will always select an investment

W̃ (x∗) that makes p∗ = h(W̃ (x∗)) an E-point. In that case, a decision vector x∗ in the

decision space X is an efficient portfolio (E-portfolio) if and only if p∗ = h(W (x∗)) is an

E-point in the performance space P (see section B.1.1).

B.2 Stochastic dominance

In many cases, we only have limited information about the behavior of the investor; for

example we only know that she is risk averse and non-satiable. Still, it is possible to determine

some conditions in which unambiguously one risky asset will be preferred over another, even

if it is not possible to establish a complete order among risky assets.

We will say that an asset with risky payoff Ã dominates an asset with risky payoff B̃

in the sense of First Degree Stochastic Dominance, if all individuals having continuous and

increasing wealth utility functions (non-satiable investors) prefer Ã to B̃ or are indifferent

between Ã and B̃. The following statements are equivalent:

i. Ã
FSD
� B̃,

ii. FÃ(y) ≤ FB̃(y), ∀y ∈ <.

If we only know that the investor is risk averse, i.e., that they have concave utility

functions, then we will say that the risky payoff Ã dominates B̃ in the sense of Second
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Table B.1: Common utility functions

U(W ) name:
ln(W ) Lognormal utility,

W − b
2
W 2, b > 0 Quadratic utility

1
B−1

W 1− 1
B ,W > 0, B > 0 Power utility.

Degree Stochastic Dominance, if all risk averse individuals having utility functions whose

first derivatives are continuous except on a countable subset of [1, 2] prefer Ã to B̃. Then

the following statements will be equivalent:

i. Ã
SSD
� B̃,

ii. s(y) =
∫ y
−∞(FÃ(t)− FB̃(t))dt ≤ 0, ∀y ∈ <.

Henceforth, whenever one of the above two conditions is satisfied, we say that payoff B̃

is more risky that Ã. As a remark, it should be noticed that Ã will be preferred if E[Ã] >

E[B̃] (since the linear function is also a valid utility function).

From the previous statements, we can see that the stochastic dominance corresponds to

a Pareto preference relation, but which has a performance vector of infinite size.

B.3 The expected utility theory

The most accepted framework used to establish preference relations is based on the concept

of expected utility. This concept is mathematically quite attractive, although sometimes

it is difficult to assign simple utility functions to investors. When the number of possible

values of W̃ is very large, it is convenient to define a function U (a utility function) that

allows comparisons between the investment alternatives, so that the preference relation can

be represented as an expected utility; the value function is equivalent to v(W̃ ) = E{U(W̃ )}.

However, the expected utility representation will not be able to handle all possible preference

relations (see section B.3.2, and [32, 10] for some examples). Different functions U(W ) can

be selected [32, 60]; as the ones found in table B.1.
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B.3.1 Risk aversion for expected utility

In the utility function framework, an individual is said to be risk-averse if he is unwilling

to accept, or is indifferent to, any random return with expected payoff of zero. Consider

the gamble that has positive return h1, with probability p and a negative return, h2, with

probability (1− p). An expected payoff of zero implies ph1 + (1− p)h2 = 0. In the expected

utility framework, it can be demonstrated that risk aversion implies concavity of the utility

function U . Hence, risk-averse investors who maximize their utility function maximize will

only have one optimal portfolio.

The measure of absolute risk aversion is defined as RA(·) = −U ′′(·)/U ′(·). A utility

function is said to display increasing absolute risk aversion if dRA(W )/dW < 0. In particular,

we are interested in the non-increasing risk aversion concept. When only two assets are

available, one of them risk-free and the other risky, and the investor has to decide what

portion of his initial capital (W0) to invest in the risky asset (u, leaving W0 − u to be

invested in the riskless asset), an investor is said to be non-increasing risk averse when:

dRA(W )

dW
≤ 0⇒ ν =

du

dW0

≥ 0 (B.1)

where W is the realization of W̃ at the end of the next period, and ν is known as the wealth

elasticity. This condition assumes that an investor is going to increase the dollar amount

invested in the risky asset as her initial wealth increases (an increasingly risk averse person

will decrease the dollar amount invested in the stock as her wealth increases).

The wealth elasticity ν for the demand of the risky asset, can be expressed in terms of η;

The demand for the risky asset can be elastic, if ν > 0; inelastic if ν < 0 or unitary elastic, if

ν = 0. If an investor has an elastic ν, then the fraction of wealth invested in the risky asset

will increase as her initial wealth increases, and conversely, the fraction of wealth invested

in the risk-free asset increases as her initial wealth decreases.
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B.3.2 The Allais paradox

We introduce the Allais paradox mainly because it contradicts the utility theory, while in

section 3.3.2 we will show that it does not contradict the more general risk-reward theory.

Let us consider the following four lotteries:

(p1) Lottery p1 guarantees 1 million for the gambler.

(p2) Lottery p2 gives 5 million with 0.1 probability, 1 million with 0.89 probability, and 0

with 0.01 probability.

(p3) Lottery p3 gives 5 million with 0.1 probability, and 0 with 0.9 probability.

(p4) Lottery p4 gives 1 million with 0.11 probability, and 0 with 0.89 probability.

Most individuals choose lottery p1 over p2, and p3 over p4. This behavior is inconsistent

with the expected utility theory, as described in [32].
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Appendix C

Data

C.1 Dynamics of stock prices

The instantaneous return of the common stock can be described by the stochastic differential

equation
dS

S
= µdt+ σdz, (C.1)

where S is the instantaneous price of the stock, µ is the instantaneous expected return of

the common stock (the compounded return), σ2 is the instantaneous variance of the return,

and dz is a standard Gauss-Wiener return (see [46, 33]). The discrete time version of the

model is
∆S

S
= µ∆t+ σε

√
∆t.

The variable ∆S is the change in the stock price in a small interval of time ∆t; and ε is a

random sample from a standardized normal distribution. The previous equation shows that

∆S/S is normally distributed with mean µ∆t and standard deviation σ
√

∆t. In other words

∆S

S
∼ N[µ∆t, σ

√
∆t].

The model of the stock price behavior implies that

lnST ∼ N

[
lnS +

(
µ−

σ2

2

)
(T − t), σ

√
T − t

]
, (C.2)
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where ST is the stock price at the future time T ; S is the stock price at the current time, t;

and N(m, s) denotes a normal distribution with mean m and standard deviation s.

The distribution of the rate of return Equation (C.2) implies that

ln
ST

S
∼ N

[(
µ−

σ2

2

)
(T − t), σ

√
T − t

]
, (C.3)

thus the continuously compounded rate of return is normally distributed with mean µ−σ2/2

and standard deviation σ/
√
T − t. The simple rate of return will be log-normally distributed.

C.2 Options

Definition C.2.1 A call option is a financial contract that gives the holder the right to buy

the underlying asset by a certain date for a certain price. A put option gives the holder

the right to sell the underlying asset by a certain date for a certain price. The price in the

contract is known as the exercise price or strike price; the date in the contract is known as

the expiration date, exercise date or maturity. European options can only be exercised on

the expiration date itself.

If K is the strike price and ST is the final price of the underlying asset, the payoff from

holding a European call option is max(ST −K, 0). The payoff to the holder of a European

put option is max(K − ST , 0).

The Black-Scholes pricing formula

Denoting the current stock price as S, the time to expiration as T − t, the volatility of the

stock price as σ2, the continuously compounded risk-free interest rate as rf , and assuming

that the stock price follows a geometric Brownian motion as described in (C.1), the value of

a European call is

c = SN(d1)−Ke
−rf (T−t)N(d2), (C.4)
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where

d1 =
ln(S/K) + (rf + σ2/2)(T − t)

σ
√
T − t

,

d2 = d1 − σ
√
T − t,

and N(x) is the cumulative distribution function for a standardized normal variable.

The value of a European put can be computed from the put-call parity

p = c+Ke−rf (T−t) − S,

which yields

p = Ke−rf (T−t)N(d2)− SN(−d1)

C.3 Option-based portfolio strategies

We present two common option-based strategies, which were analyzed in [12].

C.3.1 Writing covered call options

The strategy (MSG1, or W.C.) consists of the following:

i. Buy 1 stock at time t; the current price of the stock is S; the price of the stock in the

future will be ST ; BT = ST/S.

ii. Sell (write) γ call options per stock purchased, 0 ≤ γ ≤ 1; the time to maturity

τ = T − t; the strike price is equal to the current price of the stock, K = S, and the

current price of the call is c.

The simple return of the portfolio at time T will be:

Rwc =
BT + γmin(K/S −BT , 0)

(1− γc)
− 1.
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C.3.2 Buying covered put options

The strategy (MSG1, or L.P.) consists of the following:

i. Buy 1 stock at time t; the current price of the stock is S; the price of the stock in the

future will be ST ; BT = ST/S.

ii. Buy (long) γ put options per stock purchased, 0 ≤ γ ≤ 1; the time to maturity

τ = T − t; the strike price is equal to the current price of the stock, K = S, and the

current price of the call is p.

The simple return of the portfolio will be:

Rlp =
BT + γmax(K/S −BT , 0)

(1 + γp)
− 1.

C.4 Simulated and historical data

C.4.1 Elliptic returns

The characteristics of the data are the following: (taken from [47])

The yearly expected return of each one of the 3 assets is

E[R] = [10.54, 13.67, 17.73]′%,

(where R = BT − 1) and the standard deviation is

σ = [11.26, 17.87, 19.33]′%.

The correlation matrix is

Φ =


1 0.237 0.211

0.237 1 0.454

0.211 0.454 1

 .

We can generate either Gaussian random variables with those characteristics, or a Mul-

tivariate t joint distribution with 3 degrees of freedom, as defined in section A.2.2. In the
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Table C.1: Option-based strategies data.

Optioned portfolio Coverage Asset number
Write-Call, 50% 1
Long-Put, 50% 2
Write-Call, 100% 3

latter case, the covariance matrix Σ is the same one and the corresponding V matrix is

computed as V = Σ/3.

C.4.2 Option-based strategies

Non-parametric returns were generated by following three different option-based strategies

(as described in section C.3 [12]; other references for option-based strategies can be found in

[45, 33]):

i. A “write-call” (W.C.) strategy covering 50% of the underlying asset.

ii. A “long-put” (L.P.) strategy covering 50% of the underlying asset.

iii. A “write-call” strategy covering 100% of the underlying asset.

the histograms and empirical distributions for Monte Carlo simulations with 10000 samples

are depicted in figure 2-1. The returns are very asymmetric, and it should be noted that

the L.P. histogram is also multi-modal. In that case, which in practice is possible, no

parametric methods are available. For this example we generated 200 sets of 200 Monte-

Carlo simulations, and the returns simulate returns in a 6 months period.

The characteristics of the underlying data are the following: The semiannual expected

return of each one of the 3 assets is

E[R] = [5.9843, 7.8722, 3.4079]′%,

and the standard deviation is (semiannual)

σ = [4.3258, 8.5034, 3.4771]′%.
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Table C.2: Stock Data

Dates: January 4, 1982 to March 20, 1997
NYSE Symbol Asset number

BUD (Anheuser-Busch) 1
CAT (Caterpillar) 2

EK (Eastman-Kodak) 3
PEP (PepsiCo.) 4

The correlation matrix is

Φ =


1.0000 0.8221 0.5519

0.8221 1.0000 0.4512

0.5519 0.4512 1.0000

 .

Those numbers correspond to the correlations and expected returns computed from the real

stock data (section C.4.3).

C.4.3 Historical stock returns

The returns of four stocks were used to perform experiments on real data (which can be found

in table C.2). The returns of the stocks were weekly continuously compounded returns.

C.4.4 Put-call returns

We created an example based on the out of the money options (a put and a call), proposed

in [6] which are used to show the non-convexity of the V aRα. In our synthetic example we

used a common stock with an annualized continuous return rstock = 0.15 and an annualized

volatility σstock = 0.2. The stock is assumed to follow a log-normal diffusion process, and

the initial price is normalized to 1. Two far-out-of-the-money options are assumed to be

available: one European put with exercise price of Kput = 0.08445 and one European call

with exercise price Kcall = 1.3337; the exercises prices were chosen such that the option will

be exercised only 5% of the time. The continuous annualized risk-free return is rf = 0.05,

and time to maturity it τ = 0.5 years. The price of the options were computed using the
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classic Black-Scholes valuation formula, resulting in a call price of c = 0.002, and a put price

of p = 0.005. 1 The empirical cdf of the synthetic common stock and the European options

can be seen in figure 2-2.

1In real life, however, the returns of the underlying asset can be skewed, and the Black-Scholes formula
will misprice the far out-of-the-money options.
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