
A Low-Cost Hybrid Vision System for Intelligent Cruise

Control Applications

by

Mark Christian Spaeth

B.S. Electrical Engineering and Computer Science
The Ohio State University (1997)

B.S. Mathematics
The Ohio State University (1996)

Submitted to the Department of Electrical Engineering and Computer Science
in partial ful�llment of the requirements for the degree of

Master of Science in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 1999

c Massachusetts Institute of Technology 1999. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May, 1999

Certi�ed by. .
Dr. Hae-Seung Lee

Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by .
Arthur C. Smith

Chairman, Department Committee on Graduate Students

A Low-Cost Hybrid Vision System for Intelligent Cruise Control

Applications

by

Mark Christian Spaeth

Submitted to the Department of Electrical Engineering and Computer Science
on May, 1999, in partial ful�llment of the

requirements for the degree of
Master of Science in Computer Science and Engineering

Abstract

In recent years, automobiles have become increasingly computerized and varying degrees
of intelligent control has been integrated into automotive systems. A natural extension
of this trend is full intelligent and autonomous control of vehicle by onboard computer
systems. This thesis presents the design, development, and construction of a low-cost, low-
power vision system suitable for on-board automated vehicle systems such as intelligent
cruise control. The apparatus leverages vision algorithms, simpli�ed by a prescribed camera
geometry, to compute depth maps in real-time, given the input from three imagers mounted
on the vehicle. The early vision algorithms are implemented using Dr. David Martin's
ADAP mixed signal array processor. The back-end algorithms are implemented in software
on PC for simplicity, but could easily be implemented in hardware in a later design. The
�nal apparatus was able to compute depth maps at a rate of 24 frames per second, limited
only by the interrupt latency of the PC executing the algorithms.

Thesis Supervisor: Dr. Hae-Seung Lee
Title: Professor of Electrical Engineering and Computer Science

Thesis Supervisor: Dr. Ichiro Masaki
Title: Visiting Researcher

2

Acknowledgments

I'd like to start by acknowledging my co-advisors Professor Hae-Seung Lee and Dr. Ichiro
Masaki for inviting me to come to MIT for my graduate work. Both have aided my work
immeasurably with their deep understanding of the �eld, keen insights into troubleshooting,
and patience when I was hacking Linux kernel drivers, and none of us knew what I was
doing.

Furthermore, I'd like to acknowledge the other teachers who have guided me no my way.
We learn important things from everyone in our lives, so while my Ohio State professors
and high school teachers may have had the most explicit impact on my technical education,
friends, family, and acquaintances are no less important. Special thanks go, of course, to my
family for their support and encouragement, and letting me get away with all I've gotten
away with.

Though, I'm sure none of them will ever read this document, I'd like to acknowledge
those people who have been my inspiration in pursuing electrical engineering, such as Steve
Wozniak, Nolan Bushnell, Owen Rubin, and Eugene Jarvis. Kudos if you know who these
people are, but I'm sure you've encountered their work.

Lastly, I'd like to thank the MIT MTL community in general, and my oÆcemates in
speci�c for allowing me to pursue my hobbies in the hallways of Building 39. Sure, it's
messy, noisy, time consuming, and space consuming, but I think it makes MTL a better
place. Have you played Atari today?

3

Contents

1 Introduction 10

1.1 Thesis Background . 10
1.2 Thesis Motivation . 11
1.3 Thesis Organization . 12

2 System Design 13

2.1 Imager Selection . 14
2.1.1 CCD Imagers . 14
2.1.2 CMOS Imagers . 15
2.1.3 PhotoBit PB159-DM . 15

2.2 Vision Processing . 16
2.2.1 Early Vision Processing { Software 16
2.2.2 Early Vision Processing { ADAP . 17
2.2.3 Back-End Processing . 19

2.3 System Controller . 19

3 Stereo Vision Algorithm 20

3.1 Distance Calculations For Arbitrary Geometries 20
3.2 Correlation Search . 21

3.2.1 Arbitrary Camera Geometries . 21
3.2.2 Constrained Camera Geometry . 22

3.3 Distance From Disparity . 22
3.4 Edge Detection . 24
3.5 Trinocular Stereo Analysis . 25
3.6 Sub-Pixel Edge Resolution . 26

4 Hardware Implementation 28

4.1 Imager Board . 28
4.1.1 PB159 Interface . 28
4.1.2 Pixel Data Bu�ering . 29
4.1.3 Imager PCB I/O . 29

4.2 ADAP Early Vision Board . 30
4.2.1 ADAP Interface . 30
4.2.2 Data Conversion . 31
4.2.3 ADAP Con�gurations . 31

4.3 PLD / Controller Board . 35
4.3.1 PLD Board I/O Ports . 35

4

4.3.2 Clock Generation . 35
4.3.3 Data Extraction . 36
4.3.4 ADAP Programming . 37
4.3.5 Imager Con�guration . 37

5 Software Integration 38

5.1 Algorithm Simulation . 38
5.1.1 Calibrated Image Generation . 38
5.1.2 Edge Detection . 39
5.1.3 Sub-Pixel Edge Resolution . 40
5.1.4 Distance Map Computation . 40

5.2 Data Acquisition Driver . 41
5.3 Imager Con�guration . 42
5.4 ADAP Programming . 42
5.5 Algorithm Execution . 43

6 Results and Future Work 44

6.1 Algorithm Simulation . 44
6.2 Hardware Evaluation . 45
6.3 Imager PCB . 45

6.3.1 ADAP Early Vision Board . 45
6.3.2 System Evaluation . 46

6.4 Future Work . 46

A Apparatus Setup Instructions 47

A.1 System Setup . 47
A.1.1 Software Early Vision . 47
A.1.2 ADAP Early Vision . 47

A.2 PLD Programming . 48
A.3 Camera Programming . 49
A.4 ADAP Programming . 50
A.5 Running XDepth . 50

B ADAP Simulation Routines 51

B.1 Edge Detection : img2edg.c . 51
B.2 Sub-pixel Edge Resolution : edg2spr.c . 55
B.3 Depth Map Computation : spr2map.c . 57

C PCMCIA Data Acquisition Driver Details 63

C.1 DAQ Card Hardware . 63
C.2 DAQ Driver Structure . 64
C.3 DAQ driver IOCTL interface . 64
C.4 Interrupt Handler . 66

D ADAP And Camera Programming Software 69

D.1 progcam.c . 69
D.2 progadap.c . 72

E XDepth Software 76

5

F Schematics 80

F.1 ADAP Early Vision Board . 80
F.2 Imager Board . 84
F.3 PLD Board . 86

6

List of Figures

2-1 A simple machine vision system . 13
2-2 Vision processing system implementation 14
2-3 A CCD imager array . 14
2-4 A CMOS imager array . 15
2-5 A calibrated test image . 17
2-6 ADAP cell interconnections . 17
2-7 ADAP arithmetic unit . 18

3-1 Distance calculation for arbitrary camera geometries 21
3-2 Epipolar constraint for arbitrary camera geometries 21
3-3 Epipolar constraint for a perpendicular geometry 22
3-4 Distance from disparity . 23
3-5 Depth ambiguity due to horizontal edges . 24
3-6 Sobel edge detection �lter example . 24
3-7 Stereo correspondence problem and resolution 26
3-8 Sub-pixel resolution method . 27

4-1 SRAM Write timing . 29
4-2 ADAP bias generation . 30
4-3 ADAP clocking . 31
4-4 DAC interface circuitry . 32
4-5 ADAP edge detection program . 33
4-6 ADAP sub-pixel edge resolution program 34
4-7 Discrete non-overlapping clock generator . 36
4-8 PLD clock generator . 36

5-1 Software - hardware equivalence . 39
5-2 A rendered image triple . 39
5-3 Edge detection operator comparison . 40
5-4 Sub-pixel resolved edge map . 40
5-5 Calculated depth map . 41
5-6 Imager con�guration owchart . 42
5-7 ADAP programming owchart . 43
5-8 Frame acquisition owchart . 43

F-1 ADAP board I/O ports . 80
F-2 ADAP board ADAP and interface circuitry 81
F-3 ADAP board power and bias circuitry . 82
F-4 ADAP board analog constants . 83

7

F-5 Imgaer board bias, power, and I/O ports . 84
F-6 Imager board imager, address, and SRAM circuitry 85
F-7 PLD board PLD interface . 86
F-8 PLD board power and I/O ports . 87
F-9 PLD internal circuitry . 88
F-10 PLD clock generator circuitry . 89

8

List of Tables

2.1 Available ADAP switch matrix connections 19

4.1 PB159 bias voltages . 28
4.2 ADAP bias voltages . 30
4.3 ADAP analog constants . 32
4.4 PLD board I/O ports . 35

C.1 PCM55DIO memory map . 63
C.2 DAQ driver data structure . 64
C.3 DAQ driver IOCTLs . 65

9

Chapter 1

Introduction

In the past several years, there has been increasing research interest in intelligent vehicle
systems. Looking towards the goal of autonomous vehicles, integrated sensor and con-
trol systems are needed for tasks such as lane following, obstacle detection and avoidance,
and adaptive cruise control. While simple systems using radar for obstacle detection have
appeared in high-end late-model vehicles, to date cost e�ective sensor systems have not
reached commercial fruition.

This thesis describes a prototype for a vision-based system which computes depth maps
in real-time for adaptive cruise control. In order to achieve a high frame rate and low power
operation, the system employs Dr. David Martin's ADAP mixed signal array processor to
perform the early vision processing. The late processing is performed on laptop computer,
but the algorithms implemented are simple enough to facilitate a VLSI/ASIC realization.
All of the integrated circuits used are o�-the-shelf components to ensure a cost-e�ective
solution, and are implemented in compatible technologies, so that multiple subsystems may
be implemented on a single die in the future to lower the total cost of the integrated system.

1.1 Thesis Background

For the ultimate goal of intelligent and autonomous vehicles, knowledge of scene ahead is
essential to the vehicle control algorithms. The most popular approaches for the acquisition
of this data are scanning radar and vision systems.

Radar systems scan the space in front of the vehicle for reections. The position of
obstacles is determined by the angle of the transmitter and the delay between the transmis-
sion and receipt of the signal. Some inaccuracies are inherent in the system, as granularity
in the delay time corresponds to uncertainty in the computed distance. For a single radar-
equipped autonomous vehicle in a simple environment, such a system is quite e�ective, but
interference from multiple radar sources and indirect reection paths in complex environ-
ments complicate the interpretation of the radar range data and limit the ultimate utility
of radar systems. Additionally, since on standard roads lane lines are not discernible from
the road surface using radar, lane following cannot be implemented.

Vision systems use one or more cameras to image the space in front of the vehicle. Us-
ing various machine vision algorithms, data such as object positions and relative velocities
can be extracted from sequences or sets of images. Standard visible-light vision systems
have may have trouble distinguishing features in low-light or adverse atmospheric condi-
tions, but since human eyesight su�ers under the same conditions, the user is more apt to

10

understand when the system might fail. In order to extract three-dimensional information
such as depth, closing speed, or focus of expansion from sets of images, it is necessary to
correlate features between the input images. For generalized camera geometries, the req-
uisite coordinate transformations are quite computationally expensive, but by constraining
the camera geometry, the algorithms may be greatly simpli�ed and easily implemented in
real-time software or in digital circuitry. Finally, since vision systems are inherently passive,
there is no problem with interference from nearby sensors.

1.2 Thesis Motivation

Existing vision systems normally use an NTSC video camera and a frame bu�er to capture
images, and a complex digital signal processing (DSP) system to process sequences of images
and extract information about the scene. While this approach is e�ective in a research
environment, the cost, power consumption, and size of the requisite DSP preclude its use
in on-board or embedded commercial applications.

Conventionally, integrated circuit imager chips were constructed using CCD technologies
which had an inherent pixel serial output. This serial data format requires that the images
be bu�ered in RAM before most algorithms can execute. Recent advances in VLSI tech-
nology have produced imagers fabricated in standard CMOS processes with random access
pixel addressing, allowing algorithms to directly access data. Additionally, since the imager
is implemented a standard CMOS process, the early vision processing can be implemented
on the same die, reducing the system chip count and easing interfacing concerns.

In order to simplify the algorithms to extract information from the scene multiple cam-
eras may be employed. Using standard machine vision algorithms, features may be corre-
lated between images generated simultaneously from cameras at di�erent positions in space.
By placing the cameras in speci�c geometries, the computational complexity of the corre-
lation routines may be simpli�ed to a one dimensional search. For adaptive cruise control,
the desired information is the distance to objects in the frame. This data may be derived
by correlating edge positions between multiple images and using the disparities between
the edge positions to compute the distance to the edge. To decrease the granularity of the
distance measurements it is necessary to increase the resolution with which edge positions
are discerned. Thus, a horizontal edge detection operator is followed by a sub-pixel edge
resolution operator which locates edges at up to 1

9
pixel accuracy 1.

This thesis will demonstrate a prototype of the system described above using existing
components. Images will be acquired using a Photobit PB159-DM monochrome CMOS
camera. The early vision processing algorithms described later will be implemented both
in software and using Dr. David Martin's ADAP mixed signal array processor. The ADAP
is a multiple instruction multiple data array processor, allowing arithmetic operations to
be pipelined to increase the computational throughput. The ADAP employs mixed signal
processing to e�ect power savings over pure digital hardware for multiplication and division
operations. To avoid fabricating a custom digital processor for the back end data processing,
the feature correlation routines will be implemented in software on a PC. The complete
system computes depth maps in real time at approximately 24 frames per second using 64
by 64 pixel images. The speed of this prototype system is constrained by the interfaces
between the disparate o�-the-shelf components, so a future fully integrated implementation

1Due to limitations it the implementation, only 1

4
pixel accuracy is achieved

11

should operate at much higher frame rates.

1.3 Thesis Organization

This chapter has introduced the motivation behind this thesis. Chapter 2 discusses the
basic design of the system and motivates the selection of the components used in the imple-
mentation. Chapter 3 develops the machine vision algorithms used in this work, starting
with basic vision theory. Chapter 4 describes the actual implementation of the hardware
system. Chapter 5 details the integration of the hardware apparatus and the signi�cant
software component. Chapter 6 discusses the simulation and testing of the system and the
associated results.

Appendix A describes how to set up, program, and operate the system. Appendix B
contains source code for img2edge, edg2spr, and spr2map which were used to simulate the
operation of the ADAP for algorithm testing. Appendix C describes the Linux kernel driver
for the PCMCIA data acquisition card and how to interface to it. Appendix D contains the
source code for the progadap and progcam, the ADAP and Camera programming routines.
Appendix E contains the source for xdepth which computes the distance maps given the
hardware generated sub-pixel resolved edge data. Appendix F includes schematics and
layouts for the various PCBs used in the �nal implementation, including the schematic for
the controller implemented in an Altera PLD.

12

Chapter 2

System Design

For a complete vision processing systems, the main components are an imager, image pro-
cessors, and an output device. The block diagram for a simple vision system is shown in
Figure 2-1.

Imager ADC
Digital

Processing

Analog
Processing

Processed
Data

Figure 2-1: A simple machine vision system

Integrated circuit imager structures natively output analog data as a voltage, current, or
charge packet. This value is normally passed through an analog-to-digital converter (ADC)
to minimize the impact of noise when the data is passed o�-chip to a processing unit.
Alternatively, processing may be integrated onto the same chip as the imager, eliminating
the need for the ADC. Traditionally, only dedicated special purpose chips have integrated
the imager and processors on the same chip [1, 2]. This architecture allows the processor to
access image data directly, avoiding interface circuitry that lowers the system bandwidth.

For a more generalized image processing system, it would be best to integrate a pro-
grammable processor onto the imager die. The fabrication of custom integrated circuits was
beyond the scope of this work, so the design uses existing components that are designed in
compatible processes. A simple block diagram for the system implemented for this thesis is
given in Figure 2-2.

In order to simplify the design of the system, a laptop PC was chosen as the system
and data output device. Through a data acquisition card and the parallel port, software
the PC communicates with a digital controller board which generates the clocking and
control signals necessary to con�gure and run the camera ICs and the early vision processing
boards. The raw camera pixel data from the cameras may be routed to either the early vision
processing PCB or back to the laptop, depend on how the algorithms are implemented. This
chapter motivates the selection of the components used for the camera, digital controller,
and early vision subsystems.

13

Vision
Early

Board

Camera
Board

PLD
Board

Parallel
Port

Card
DAQ

Control

Pixel Data

Control

Pixel Data

Control

Software

Processed Data

Processed Data

Laptop
PC

Figure 2-2: Vision processing system implementation

2.1 Imager Selection

While many commercial imagers are are implemented using charge-coupled devices (CCDs),
recent research has resulted in imagers utilizing standard CMOS processing.

2.1.1 CCD Imagers

The enabling principle behind CCD imagers is the ability to transfer charge completely
and eÆciently between adjacent MOS capacitors by applying overlapping clocks to their
gates [3]. A CCD imager array is shown in Figure 2-3. Photogates integrate charge at each
pixel. The charge is transferred into vertical CCD shift registers through a transmission
gate, and is shifted down into a horizontal CCD register to the output. At the CCD
output, the charge packets are converted to a voltage or current quantity for output or
further processing.

Shift
Vertical

Register

Horizontal Shift Register

Pixel
O

O

1

2

Figure 2-3: A CCD imager array

The CCD array imager has been dominant for many years due to their low read noise,
small pixel size, high pixel �ll factor, and extremely low �xed pattern noise. Due to the
shift-register structure inherent in the design of a CCD array, the output is normally pixel-

14

serial, so bu�er memory is needed to use a CCD imager with a processing algorithm which
requires non-serial access to pixel data. While CCD signal processing circuits have been
demonstrated [4], CMOS circuits are generally more exible. CMOS circuits may be im-
plemented along with CCDs, but the structures used to generated the CCDs require spe-
cial semiconductor processing, making them more expensive than corresponding standard
CMOS circuits.

2.1.2 CMOS Imagers

A typical CMOS imager array is shown in Figure 2-4. CMOS imagers use either a photogate
or photodiode pixel structure, but the readout circuitry is similar to a ROM. When the row
select line is enabled, the pixel charge is shared onto the column line capacitance, converting
the charge from the pixel into a voltage on the column line. The column output logic then
senses the line voltage, ampli�es it, and transforms it into a voltage or current for output.

Column Decode Logic

Row
Select

Pixel

Figure 2-4: A CMOS imager array

MOS imagers normally have higher read nose due to the pass transistor and long column
lines, but since they can be built in standard CMOS processes, the logic and interconnect
portions of the pixels scale well with improved technologies. Additionally, both analog and
digital processing circuitry can be inexpensively integrated onto the same die as the imager.
Finally, adding an input column decoder, and adding an additional series transistor in each
cell allows random access addressing of the pixels, allowing for more complex processing
schemes without the need to bu�er the image data.

2.1.3 PhotoBit PB159-DM

For this design, the PhotoBit PB159-DM monochrome CMOS imager was chosen. The
complete speci�cations for this chip including the interface timing requirements can be ob-
tained from the PhotoBit website at http://www.photobit.com. The imager is capable
of output 30 frames per second at 512 x 384 resolution, while drawing less than 200mW

15

of power from a single 5V supply [5]. During the design phase of this research, the Photo-
Bit part was the only widely available general-purpose commercial part1, but it has many
features that are desirable for this application.

The PB159 has a rolling electronic shutter, which allows the pixel exposure to be syn-
chronized to read-out circuitry, such that no additional exposure time is needed between
frames. On-chip automatic exposure control, and programmable shutter widths allow the
imager to perform well under all lighting conditions. The sensor is packaged in a 44-pin
PLCC and requires only one supply, one clock, and six bias voltages, so it is simple to
physically lay out on a printed circuit board.

Since the image processing cannot be integrated onto the sensor, the system has to
accommodate the native imager output format. The PB159 has an on-chip ADC, to produce
an 8-bit digital output. While the array itself is random access, the surrounding read
circuitry outputs the pixel data serially. The output window is programmable, and the
imager provides frame valid, line valid, and pixel valid signals to synchronize the external
interface circuitry to the imager. Unfortunately, since the imager outputs pixels at a �xed
14.3MHz, so the data must be bu�ered before processing.

2.2 Vision Processing

The vision processing task can be broadly split into two parts: early vision processing and
late processing. Early vision refers to front-end algorithms that process raw data using
simple equations, while late processing involves more intelligence and decision-making.

Early vision algorithms are most eÆciently implemented in dedicated custom circuitry,
but programmable processors provide more exibility and allow di�erent algorithms to be
tested on a the same hardware. For this thesis, the early vision algorithms are implemented
in software on the PC for evaluation, but are implemented on a power eÆcient programmable
mixed-signal array processor in the completed apparatus. For simplicity late processing is
combined with the data output routines in software on the host PC.

2.2.1 Early Vision Processing { Software

The early vision algorithms were �rst written in C code on a PC for testing and evaluation.
The evaluations were performed using synthesized calibrated images such as the road scene
in Figure 2-5. Since the precise spatial positions of the rendered objects in the images are
known, the output of the early vision routines can be compared with expected results. The
rendered images were preferred over real images, as it is much simpler to create images with
blur, noise, and imager misalignments than through rendering than by traditional photo-
graphic means. The software implementations of the algorithms were also incorporated into
the �nal xdepth software, and tested using live images from the PhotoBit imagers using a
digital controller board that bypassed the hardware early vision system.

1Other CMOS imagers, primarily aimed at markets, were available from other manufacturers, but they

output standard video formats such as NTSC and CCIR, so much additional circuitry would have been

necessary to extract the raw pixel values.

16

Figure 2-5: A calibrated test image

2.2.2 Early Vision Processing { ADAP

For the hardware implementation of the early vision algorithms, Dr. David Martin's ADAP
programmable mixed-signal array processor was used [6]. The ADAP processor consists
of a 5 by 5 array of locally interconnected functional cell. The ADAP is classi�ed as a
multiple-instruction multiple-data (MIMD) processor, as each cell operates independently
on di�erent data. The array was fabricated in a 0:8�m triple metal CMOS process, occupies
3mm2 of silicon, and consumes 53mW of power when operating at 3.63 MIPS.

Cell Architecture

As shown in Figure 2-6, each cell consists of an arithmetic unit, analog storage unit, switch
matrix, and control unit. The ADAP uses a unique architecture, where the signal lines into
the array and between array cells carry signals encoded as analog voltage which represents
an 8-bit digital value.

Switch
Fabric

Arithmetic
Unit

Analog
Storage

Unit

Control
Unit

X

Op

W

A1 A2 Sin

Sout

E

AI N

S

AOutDOut

Program Data

X

Figure 2-6: ADAP cell interconnections

17

Arithmetic Unit

The analog data format is very eÆcient, as it saves the extraneous interconnect needed to
carry parallel digital signals or the additional clocking and registers needed to shift serial
data. More importantly, analog signaling e�ects substantial power savings in the arithmetic
unit. Digital circuitry can perform additions and subtractions eÆciently, but the algorithmic
computations required for multiplication and division require additional clock cycles. To
achieve a desired data throughput, the system clock frequency must be raised. The ADAP
utilizes the arithmetic unit diagrammed in Figure 2-7. Analog additions and subtractions
can be eÆciently performed using switched-capacitor circuits in the input sample-hold. The
multiplication and division operations are performed by manipulating the reference voltages
used in the analog to digital converter (ADC) and digital to analog converter (DAC). The
ADC and DAC are implemented using cyclic topologies to minimize the silicon area for for
given speed and power requirements. The Dout output from the shift register gives a serial
digital output for the cells along the top of the array. These bit streams are the only viable
array outputs, as it would be ineÆcient and impractical to have the analog drivers within
the cells be capable of driving output pad capacitances at high speeds.

S/H
In

Cyclic
ADC

Shift
Register

Cyclic
DAC

Vref1 Vref2

V1

V2

Dout

S/H
Out

Vout

Figure 2-7: ADAP arithmetic unit

Storage Unit

The analog storage unit in each cell uses a sample-hold circuit to bu�er data for one instruc-
tion cycle. Any arithmetic equation can be implemented using the ADAP, but the eÆciency
is very dependent on how the array is programmed. These bu�ers are paramount for eÆ-
ciently implementing complex functions, as they allow the operation to be fully pipelined,
so that new output values can be computed every clock cycle, with a �nite latency.

Cell Interconnection

Data is transferred between cells via abutting signal lines (i.e. S in one cell and N in the
cell immediately below it in the array). Data is sent into the array through the signal
lines connected to the array cells at the extrema of the chip. Within the cell, the various
cell input and output lines may be connected each other and with the structures within
the cell though the switch matrix according to the rules in Table 2.1. After eliminating
the redundant switches, 31 unique switches, implemented as NMOS pass transistors, are
needed to construct the matrix.

18

Table 2.1: Available ADAP switch matrix connections

Signal N S E W X AOut SOut AI

N - X X X - X X -

S X - X X - X X -

E X X - X - X X -

W X X X - - X X -

SIn X X X X - X - -

A1 X X X X X - X X

A2 X X X X - - X -

Control Register

The control register is simply a 35-bit long shift register. The array is programmed by
shifting bits into this register. The four outputs from the shift register are used to choose
the operation performed by the arithmetic unit, and the other 31 are connected to the gates
of the transistors in the switch matrix. The output of one control register is connected to
the input of the register in the cell to its right, so a total of 165 bits are required to program
each row of the array.

2.2.3 Back-End Processing

For this application, the output of the vision algorithm is a depth map image of the scene
in front of the vehicle. On an integrated system, this image might be projected as part of
a heads-up display, but this system uses a laptop PC to display the data. The back-end
vision processing is incorporated into the PC display software for simplicity and to ease the
design of the hardware system.

2.3 System Controller

Both the photobit imager and the ADAP arrays need precise clocking for programming
and proper operation. While the PC is certainly powerful enough to generate these sig-
nals, it is more eÆcient to implement the clock generation in hardware. Due to the large
number of clock signals and other interface logic needed to tie the imagers, ADAP ar-
rays, and the PC together, programmable logic is used. The controller board utilizes an
Altera EPM7128SQC100-10 programmable logic device. This device comes in a compact
PQFP package, and is in-system programmable, allowing the clocking sequences to be easily
changed and debugged for testing.

19

Chapter 3

Stereo Vision Algorithm

The hardware apparatus described in this thesis is suitable for many di�erent vision pro-
cessing tasks, but the intended application is intelligent cruise control. For this task, the
key information that must be extracted from the image data is the distance to objects in the
scene. Coupled with a lane tracking algorithm, this range information allows a controller to
accurately discern the distance to objects directly in the intended path of the automobile,
and an engine controller can modulate the vehicle's speed to keep this distance constant.

This chapter describes the basic algorithm used to extract the range data and the
formulae which support the algorithm. Additionally, methods of increasing the robustness
and resolution of the main algorithm will be discussed. For simplicity, these analyses assume
that the camera optics may be reasonably modeled by a pinhole.

The complexity of the algorithms is constrained by the desire to produce a compact,
low-power system. The use of the ADAP mixed-signal array processor, as motivated in
the previous chapter, requires that the early-vision algorithms be implementable using only
elementary arithmetic operations [6]. The integer arithmetic operations used in these al-
gorithms also facilitates a low-power digital or an eÆcient software implementation. The
back-end processing is not as constrained as it is performed in software, but is designed to
be suÆciently simple to allow for a straightforward VLSI implementation.

3.1 Distance Calculations For Arbitrary Geometries

Given two cameras mounted with known geometries, and the position of a correlated feature
in each image, the algorithm to discern the distance to the object from either camera is
relatively simple. In Figure 3-1, suppose point a in image A is correlated with point b in
image B. Projecting the points in the image planes through lens centers of the respective
cameras produce the rays shown as dashed lines. The position of the feature in space is
determined to be the point where the two projection rays intersect. Once this point is
determined the distance from each camera's lens center to the object may be calculated.

Analytically, the coordinates of the feature in the image plane and the lens center of
the camera are �rst transformed into an absolute coordinate space. These points are then
used to parameterize the rays. Applying a least-squares minimization to the rays gives the
position of the object in absolute coordinates. These procedures, while trivial to implement
in software, are too computationally complex to execute for every feature correlation in the
images when real-time performance is required.

20

Image A Image B

a

b

Lens Center

Figure 3-1: Distance calculation for arbitrary camera geometries

3.2 Correlation Search

The algorithm described above assumed that the image correlations were given, but in
practice they may be derived. Given unlimited computing power, techniques such as motion
estimation may be applied to the pair of images to produce accurate correlations. For a
low-power system, a more computationally conservative solution is required.

3.2.1 Arbitrary Camera Geometries

Image A Image B

a

b

Figure 3-2: Epipolar constraint for arbitrary camera geometries

Consider Figure 3-2. Given feature a in image A, the algorithm must determine which
features in image (B) are possible correlations. The locus of points in space that are imaged
at a is given by the ray projected from a through the lens center of the camera. If this ray
is projected into image B, the resulting line in the image plane, called the epipolar line,
demonstrates which features in B may correspond with a. Thus the two-dimensional search

21

for possible correlations is reduced to one-dimension.
Analytically, the epipolar line may be calculated by intersecting the plane determined

by a and the lens centers of the two cameras with the image plane of B. While the epipolar
lines may be pre-calculated for a given camera geometry to reduce the run-time compu-
tational load of the system, the memory required to store this data would increase power
consumption. A camera geometry which produces epipolar lines in the image B that are
trivially related to the position of the feature in image A would be better.

3.2.2 Constrained Camera Geometry

Taking hints from nature in general, and the human vision system in particular, leads to
a particularly convenient camera geometry. When the cameras are placed long a common
horizontal baseline with aligned optical axes, the epipolar lines associated with any given
point in image A are horizontal, as demonstrated in Figure 3-3.

a

Image A Image B

Figure 3-3: Epipolar constraint for a perpendicular geometry

A cursory analysis of this geometry reveals that the vertical location of the epipolar line
in the second image is equal to the vertical location of the feature in the �rst image from
which the line was derived. Conversely if a point is chosen on the epipolar line and used to
derive a new epipolar line in image A, the derived epipolar locus will be a horizontal line
passing through a. Thus, this geometry eliminates the computational complexity inherent in
searching epipolar lines for correspondences in two ways: �rst, there is no need to compute
coordinates of points on the epipolar line, since the entire line may be searched by �xing
the vertical coordinate and incrementing the horizontal; second, since the epipolar lines are
coincident for all features on a given horizontal line, it is possible to correlate entire lines
together rather than correlating points individually.

3.3 Distance From Disparity

Now that a camera geometry which alleviates the complexity of correspondence searches
has been determined, the algorithm to compute depths must be addressed. Since the
optical axes of the cameras are aligned, the global coordinate system may aligned with

22

both cameras simultaneously, reducing the requisite coordinate transformation to a one-
dimensional translation. This observation coupled with the epipolar constraint allows the
distance to be calculated using triangle equations, as shown in Figure 3-41

f Z

D

b

b

dA

B-d

Figure 3-4: Distance from disparity

Analyzing similar triangles produces the following equations:

dA

f
=
b+D

Z
(3.1)

�
dB

f
=
b�D

Z
(3.2)

In these equations, the known quantities are b, the distance each camera is horizontally
displaced from the coordinate origin; f , the distance between the lens center and image
plane for each camera; and dA and dB , the horizontal displacements of the features from
the centers of projection for the respective images. Z, the distance from the lens centers to
the object in space, and D, the horizontal displacement of the object from, the coordinate
axis. Simply adding the above equations removes D from the equations, providing a simple
analytic solution for the distance Z in terms of the disparity dA � dB and the camera
geometry parameters:

dA � dB

f
=

2 � b

Z
(3.3)

Z =
2 � f � b

dA � dB
(3.4)

1If the features in question are displaced vertically from the centerline of the image, an additional secant

term must be applied to both f and Z, but since this term falls out in the analysis, it is omitted here.

23

3.4 Edge Detection

To this point, the features that are extracted from the image data and correlated have
not been identi�ed. Machine vision and image processing theory o�er suggestions such as
motion estimation, block pattern matching, image segmentation, and various forms of edge
detection [7, 8], but given the computational requirements of the various algorithms, only
certain edge detectors are suitable for implementation in an ADAP array.

For the purposes of computing horizontal axis disparities, a one-dimensional edge detec-
tor is preferable, as only vertical edges are useful to the algorithm. The feature correlation
algorithm would be confused by predominantly horizontal edges, as show in Figure 3-5.
Consider the dark line in space. If the entire dark line in each image is detected and cor-
related against the other line, then the entire shaded region will be erroneous returned as
possible object locations in the depth map. A vertical edge detector would only �nd the
endpoints of this line and reduce the ambiguity.

Figure 3-5: Depth ambiguity due to horizontal edges

Gradient based and Laplacian edge detectors [8] involve convolving a small mask with
a portion of the image and thresholding the output to determine edge locations. For this
application, the pixel data is streamed into the ADAP, so the edge detector only has a small
number of adjacent pixel values available to it, so only a horizontal mask may be applied to
the image. Additionally, absolute value and threshold operations cannot be implemented
in the array, diminishing the utility of such techniques.

K-2 K-1 O

K+1 K+2

OO

O O O

Numerator Mask

Denomniator Mask

Figure 3-6: Sobel edge detection �lter example

The edge detector implemented for this project is an example of a Sobel �lter [9]. To

24

compute the positive edge strength at a pixel location, the �lters shown in Figure 3-6 are
applied to the surrounding pixels. The four �lter constants may be adjusted to adjust for
di�erent contrast levels in the input images. The outputs of the two �lters are then divided
to determine the positive edge strength:

Ex;+ =
K
�2 � Px�2 +K

�1 � Px�1

K+1 � Px+1 +K+2 � Px+2
(3.5)

By reversing the �lters, and inverting the division, a negative edge map may be computed
similarly:

Ex;� =
K
�2 � Px+2 +K

�1 � Px+1

K+1 � Px�1 +K+2 � Px�2
(3.6)

For both positive and negative edge equations, a pixel sequence with no gradient will
produce a small constant value, while a strong edge will produce a large value. A gradient in
the opposite direction yields a small fraction. For computing distance maps, both positive
and negative edges should be considered to increase the number of points at which depths
may be resolved. Adding the two previous equations yields a composite edge detector:

Ex =
K
�2 � Px�2 +K

�1 � Px�1

K+1 � Px+1 +K+2 � Px+2
+
K
�2 � Px+2 +K

�1 � Px+1

K+1 � Px�1 +K+2 � Px�2
(3.7)

It should be noted that using the composite edge strength equation reduces the dynamic
range of the edge measurement, as the noise-oor derived from constant pixel values doubles
due to the addition, while the peak values remain the same.

3.5 Trinocular Stereo Analysis

As alluded to in the previous section, there is an ambiguity in the determination of the
spatial location of features using the simple stereo correspondence algorithm. With as
few as two features in an image, there may be multiple solutions to the binocular stereo
correspondence problem, as exempli�ed in Figure 3-7.

If only the left and right images, labeled L and R respectively, are used, there are
multiple solutions to the binocular correspondence problem. Projecting the image features
back through the lens centers and intersecting the rays yields correspondences at points P1,
P2, P3, and P4. Choosing either P1 and P2, or P3 and P4 leads to a minimal solution to
the correspondence problem, but since there is no way to discern which is correct, all four
entries must be added to the distance map. The addition of a third center image can resolve
this problem. Projecting the feature points in the center image back reveals that the actual
features appear at P1 and P2 [10].

In practice, however it is needlessly computationally expensive to project the features
from the center image. Citing triangle equations again, it is clear that if a true correspon-
dence exists between feature r, and feature l, there must exist a feature in image C at point
c, located at half of the disparity between r and l. If a feature is found at this point, the
correspondence is deemed true and an entry is computed for the depth map.

25

L

C

R

P1

P2

P4P3

r

l

c

Figure 3-7: Stereo correspondence problem and resolution

3.6 Sub-Pixel Edge Resolution

One problem with the distance-from-disparity method is that the granularity of distances
that may be discerned is closely related to the granularity at which the disparities can
be measured. The algorithm as given calculates edge positions to single pixel accuracy,
so the disparity measurement has a granularity of one pixel. To compute distances more
accurately, one may either use a higher resolution imager to decrease the pixel size or
implement an algorithm to compute edge positions to sub-pixel accuracy. Since increasing
the imager resolution increases the output pixel data rate and required computational power
quadratically, this option is not feasible.

There are a number of ways to extract sub-pixel resolved data, many of which can be
performed using only the arithmetic operations available on the ADAP [11]. The most
straight-forward sub-pixel algorithm was implemented in this system. This algorithm mod-
els the output of the edge detector with a parabola, as shown in �gure 3-8, choosing the
peak of the parabola as the sub-pixel edge position.

Given the equation for a generic parabola E(x) = a �x2+ b �x+ c, and three edge values
e(x), e(x+1), and e(x+2), it is simple to solve for the �tting parameters a, b, and c. From
the modeling equation:

E(0) = a � (0)2 + b � (0) + c = c = e(x) (3.8)

E(1) = a � (1)2 + b � (1) + c = a+ b+ c = e(x+ 1) (3.9)

E(2) = a � (2)2 + b � (2) + c = 4 � a+ 2 � b+ c = e(x+ 2) (3.10)

Solving for a and b:

26

a =
1

4
(e(x)� 2 � e(x+ 1) + e(x+ 2)) (3.11)

b =
1

2
(�3 � e(x) + 4 � e(x+ 1)� e(x+ 2)) (3.12)

Di�erentiating the parabola equation, to �nd the extrema:

xext = �
b

2 � a
=
�:75 � e(x) + e(x+ 1)� :25 � e(x+ 2)

�:50 � e(x) + e(x+ 1)� :50 � e(x+ 2)
(3.13)

Once xext is calculated, the edge position is discerned to a fraction of a pixel, and the
disparities can be calculated with equal accuracy. xext is referenced to the current pixel
position, so if xext � 0 or xext > 2 the value does not lie within the two-pixel range of
consideration and is discarded. If the parabola to which the edge points are �t is concave
down, the denominator term will be negative. Since the ADAP cannot represent negative
values, it is clipped to zero, and the result of the division will clip at its maximum, so the
result will automatically be discarded.

X X+1 X+2

Xext

Figure 3-8: Sub-pixel resolution method

27

Chapter 4

Hardware Implementation

The complete hardware apparatus for the vision processing system requires a total of seven
interconnected printed circuit boards, three of which are unique. The three imagers required
by the algorithm are mounted on separate boards, each with its own support circuitry. Each
imager has its own dedicated ADAP early vision board to perform the edge detection and
sub-pixel edge resolution functions. The sub-pixel resolved data is sent to the common
controller board, which interfaces to the PC. This chapter describes in detail the design of
the three PCBs used in the system. The schematic for the each of the boards is given in
the Appendix.

4.1 Imager Board

4.1.1 PB159 Interface

Due to the simple interface to the PB159DM chip, the imager PCB is the smallest and
simplest PCB in the system. The PB159 is powered from a single 5V supply, that is
generated on the PCB from the unregulated +12V supplied by the PLD board. The on-
chip ADC and DAC circuitry requires several biases as listen in Table 4.1. These biases
need not be exact, as they are only referenced by a set of column-parallel ADCs in, so they
are created using simple resistor dividers with bypass capacitors [5].

Table 4.1: PB159 bias voltages

Name Voltage Purpose

VCL 2.50 V ADC clamp bias

VLnDAC 1.16 V DAC driver bias

VBiasN 1.16 V ADC comparator bias

VLn 3.20 V Column load bias

VLp 1.16 V ADC source follower bias

VRef2 1.02 V Noise correction DAC bias

The Reset signal for the imager is generated by low-pass �ltering the supply. The PB159
also requires a single 14.318MHz clock used as the pixel exposure time and data output
reference. The imager is programmed using a synchronous bidirectional serial interface, but
the programming interface circuitry is incorporated onto the controller board.

28

4.1.2 Pixel Data Bu�ering

The PB159 outputs pixel data at a �xed 14.318MHz, but requires blanking periods between
lines to allow the ADCs to settle, and between frames to recalibrate the converters and reset
the pixels. These blanking signals are output to allow external devices to sync to the imager
outputs. The early vision circuitry is not capable of processing data at this speed so the
data must be bu�ered and sent to the processor at a lesser rate.

The data bu�er was implemented using a dual ported SRAM. The vision algorithm
expects 64 x 64 pixel frames, so a 4k SRAM is required. The PixClk, LV alid, and FV alid
signals are used to generate the addressing and control signals for the SRAM. The write
cycle used for the SRAM is shown in Figure 4-1. The timing of the write cycle is controlled
by PixClk, which is connected to the R=W pin of the SRAM. The data output of the
PB159 changes on the rising edge of PixClk after a small propagation delay, so data is
written on the falling edge of PixClk when the data is valid. Since the RAM should only
be written when the line and frame are valid, LV alid is wired to the SRAM CE chip enable
pin.

PixClk

PixClk

Data

AddressA

D

CE

R/W

Write Occurs

LValid

Figure 4-1: SRAM Write timing

The 12-bit address is decomposed into 6-bit row address and a 6 bit column address,
each generated with a pair of 74164 counters. The column address is reset by the LV alid
line valid signal from the PB159 and is clocked by PixClk. The row address is reset by the
FV alid signal in is clocked by LV alid signal. The write timing is a bit tenuous since the
R=W line falls as the address lines are still settling, so the previously written value could
be corrupted, but this condition could be easily alleviated by delaying the PixClk that
controls the write.

4.1.3 Imager PCB I/O

The imager PCB has a 20-pin IDC header for input and a 10-pin IDC header for output. The
input connector carries the unregulated +12V to power the board, along with the addressing
and control signals to read the pixel data out of the second port of the SRAM and the serial
clock and data lines used to con�gure the imager. The output connector carries the 8-bit
pixel data to the processing board. The read cycle uses the address changes to control the
read, with the CE and OE always enabled.

The circuitry that controls the read address and the imager programming signals is
implemented on the controller board and is discussed in a later section.

29

4.2 ADAP Early Vision Board

4.2.1 ADAP Interface

The ADAP is a research part rather than a commercial part, so the required bias and clock
circuitry is more complex. The ADAP pinout is split roughly in half, with digital pins
on one side and analog pins on the other. It requires 5V analog and digital supplies and
has separate analog and digital grounds 1. The analog and digital supplies are generated
separately from the externally supplied unregulated 12V. The analog circuitry in the ADAP
arithmetic unit requires several biases as listed in Table 4.2.

Table 4.2: ADAP bias voltages

Name Voltage Purpose

V+ 0.945 V ALU op-amp reference

VG 1.435 V ALU zero voltage

VRef 2.459 V ALU half-scale

VRef2 3.483 V ALU full scale

VJ 2.459 V ADC comparator reset voltage

V- 2.060 V Interface DAC low reference

These biases are generated using low-noise op-amps in the unity-gain bu�er con�guration
as shown in Figure 4-2. To minimize noise, tantalum and ceramic bypass capacitors are
placed at the op-amp supply, non-inverting input, and output. Often a simple �lter network
is placed in the feedback path to prevent oscillation, but lab tests showed the op-amps to
be unity gain stable up to 100Mhz, so the �lter was omitted for simplicity. This voltage
reference is also used to generate the analog constants required by the ADAP programs and
in the external DAC circuitry.

+

-

AVdd

Gnd

Figure 4-2: ADAP bias generation

The ADAP also requires a complex clocking as shown in Figure 4-3. The ADAP operates
on a 10-phase instruction cycle. �1 and �2 are a set of two-phase non-overlapping clocks.
V F and V L identify the �rst and last two phases in an instruction cycle respectively, and

1The supplies and grounds could be connected externally, but are separated to minimize digital noise

coupling in the analog circuitry

30

may only change when both �1 and �2 are low. These clocking signals are generated by
the controller board, and the circuitry used to generate them is discussed later.

D0 D1 D2 D3 D4 D5 D6 D7

VF

VL

O1

O2

outD

SRClk

DALE

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

Phase 0 Phase 1 Phase 2 Phase 3 Phase 4 Phase 5 Phase 6 Phase 7 Phase 8 Phase 9

Figure 4-3: ADAP clocking

4.2.2 Data Conversion

The ADAP array expects analog inputs between V G and V Ref2, but the output from the
imagers is in 8-bit parallel format. Similarly, the ADAP output is in an 8-bit serial format.
For these digital signals to be used as ADAP inputs, they must �rst be converted to the
ADAP analog format.

To perform this conversion, the data is latched and is passed through an interpolating
8 bit DAC, as shown in Figure 4-4. To operate with 8-bit linearity, the DAC requires
a swing near 3V, which is greater than the V G to V Ref2 swing on the ADAP input,
so the DAC is operated between a V

�

reference and AVdd, and passes through a stage
of variable attenuation to achieve the appropriate levels. The potentiometer should be
adjusted such that a 5V input yields an output at V ref2, and the V� reference should be
set to approximately V

�

= V G �
AV dd
V Ref2

� 2:060V . To reduce noise, the non-inverting input
and output of the output bu�er are bypassed with small ceramic capacitors.

The DAC has a internal latch that is controlled by the DALE signal shown in Figure 4-
3. When DALE is low, the transparently latch is enabled. To ensure proper timing and
protect the DAC from glitches, the pixel data and ADAP outputs are latched beforehand.
The ADAP data output is de-serialized using a serial-in parallel-out shift register that is
clocked by SRClk The pixel data is repetitively and redundantly latched by SRClk.

4.2.3 ADAP Con�gurations

The ADAP programs to execute the edge detection and sub-pixel edge resolutions equations
are shown in Figures 4-5 and 4-6 respectively. The physical locations of the interconnections
in the diagrams indicate which wiring resources are used. The box in the upper right corner
of each cell represents the analog storage unit, and the box in the upper left is the arithmetic

31

+

-

+

-

V-

AVdd

Gnd

DAC

Figure 4-4: DAC interface circuitry

unit, with the operation noted. These equations require several analog constants which are
generated in the same manner as the ADAP reference voltages. Table 4.3 lists the required
analog constants.

Table 4.3: ADAP analog constants

Constant Value Purpose

9 1.497 V Division 'K' constant

51 (.20) 1.843 V Edge detection constant

153 (.60) 2.659 V Edge detection constant

64 (.25) 1.947 V SPER constant

128 (.50) VRef SPER constant

192 (.75) 2.971 V SPER constant

32

M
A2A1

*
MO MI

M
AO

A2A1
+

MO MI
M

AO

A2A1
/

AO

A2A1
+

MO MI
M

AO

A2A1
*

MO MI
M

AO

A2A1
*

MO MI
M

MO MI
M

AO

A2A1
*

AO

A2A1
*

AO

A2A1
+

MO MI
M

MO MI
M

AO

A2A1
+

MO

AO

AO

A2A1
/

AO

A2A1
+

MI

.2 .6

Pix

Edge (Digital)

Figure 4-5: ADAP edge detection program

33

MO
M

MO MI
M

MO MI
M

MO MI
M

AO

A2A1
*

AO

A2A1
+

AO

A2A1
*

AO

A2A1
-

AO

A2A1
-

AO

A2A1
/

AO

A2A1
*

AO

A2A1
+

AO

A2A1
*

A2A1
+

MIMO
M

MI

Edge

.25

.750

SPR (Digital)

.5

Figure 4-6: ADAP sub-pixel edge resolution program

34

4.3 PLD / Controller Board

The PLD controller board handles all of the clock generation and interfacing required to
run the vision system. For the complete system, the pixel data from the imager board
goes directly to the associated ADAP board, and the controller board sends the sub-pixel
resolved edge data back to the PC. A test board which sends the raw pixel data directly to
the PC was also fabricated. There is a signi�cant amount of commonality between circuits
programmed on the two PLDs, but the di�erences will be noted.

4.3.1 PLD Board I/O Ports

Both versions of the PLD board are dominated by interconnect and I/O ports. Table 4.4
lists all the connectors with their locations and purposes. The three 26-pin IDC headers
appear at the left side only on the ADAP version of the board, and the three 10-pin IDC
headers appear only on the non-ADAP version. The two switches at the bottom of the
board are for power and program / run mode select.

Table 4.4: PLD board I/O ports

Type Location Purpose

DB37F Right Side Data acquisition card

IDC10 Top Right Altera ISP programming adapter

IDC26 Top Center PC parallel port

IDC20 Left (3) Camera board control

IDC26 Left (3) ADAP board control and data

IDC10 Left (3) Pixel data

2-pin Bottom Power (+12V unregulated)

4.3.2 Clock Generation

The primary function unit on the controller board is the PLD itself. At the heart of the
PLD is the clock generator circuitry for the ADAP. In both versions of the PLD, the ADAP
clocking (previously shown in Figure 4-3) is used as the time basis for all functions. In a
discrete implementation, the non-overlapping �1 and �2 clocks would be created from a
master clock with circuitry similar to Figure 4-7. In this circuit, the length of the non-
overlap period is controlled by the number of inverters in the delay chain, and can be
increased by adding capacitance to the intermediate nodes.

Inside a PLD, however, this circuit cannot be used. Most PLD compilers will optimize
out the delay chain, and node capacitances cannot be added. To resolve this problem, a
higher multiple of the desired master clock is input and the delay is created digitally using
counters. The circuit shown in Figure 4-8 uses a 32x master clock and creates a non-overlap
between of 1

16
of the clock period for �1 and �2. VF and VL are properly aligned between

� phases.
The master clock counts up a 4-bit binary counter. The outputs of this counter are

AND-ed together to generate the clock for a 4-bit BCD counter used to count the ten clock
phases. Due to the AND, BCD counter is incremented when the count on the binary counter
becomes 1111b. NOR-ing the high three bits of the BCD counter asserts V F on counts

35

Φ

Φ

1

2

Figure 4-7: Discrete non-overlapping clock generator

Qa
Qb
Qc
Qd

bin

Φ1

Φ2

Qa
Qb
Qc
Qd

bcd V

VF

L

Figure 4-8: PLD clock generator

0000b and 0001b, and the high bit asserts V L directly on counts 1000b and 1001b. �1 and
�2 are generated by AND-ing the low bit of the BCD counter with the NAND of the high
three bits of the binary counter. This operations ensures that the � signals are asserted
on counts 0000b through 1101b of the binary clock, yielding a 1

16
period of non-overlap

centered around the VF and VL transitions.
The ADAP board also requires the SRClk and DALE signals. The SRClk signal needs

to clock the shift register once in each of the �rst eight clock cycles. To achieve this, the
high bit of the binary counter is AND-ed with the a delayed and inverted version of the
high bit from the BCD-counter. Due to the single master clock period timing advance of
the BCD counter with respect to the binary counter, the BCD output must be delayed to
prevent a glitch at very end of clock phase 9. The DALE signal needs to be asserted for a
short period after the bit-shift has been completed. This is achieved by AND-ing the high
and low bits of the BCD counter together, to assert the signal throughout clock phase 9.

4.3.3 Data Extraction

For proper data extraction, the controller board must signal the PC to read data when the
data is valid. The PLD board connects the negative edge triggered interrupt line of the
data acquisition card to VL, so that the read is triggered by the falling edge of VL. On
the ADAP version of the PLD, the serial data is assembled in a shift register on-chip using
the same SRClk that is sent to the ADAP board. The output of this shift register is then
latched in a register using DALE. In the non-ADAP version, the data is sent to the PLD
board earlier in the instruction cycle, so it can be latched on the rising edge of VL.

To facilitate the transfer of data, the PLD board must also provide address signals to the
imager board. For this purpose, a 12-bit counter is incorporated into the PLD. The enable

36

signal on the counter is cnotrolled as to prevent the counter from rolling over. The counter
is clocked by VF , so that new pixel data is delivered at the start of the instruction cycle and
is reset and triggered by the NewFrame input on the PLD. Thus, the PC software asserts
NewFrame at the beginning of the read sequence, reads and processes the data from the
vision system, then retriggers when it is ready for more data.

4.3.4 ADAP Programming

The 24 digital I/O lines on the data acquisition card are normally used to read the three
bytes of data back from the PLD board, but to program the ADAPs, 16 bits are used as
outputs. When the mode switch on the PLD board is switched to program mode, the output
latches in the PLD are tri-stated to allow the associated pins to be used as inputs. Since
the timing is more critical than speed during programming, the master clock in the PLD
is routed through an divide-by-16 counter to slow down all the clocks. The shift registers
that hold the program information on the ADAP are controlled by �2, so that signal must
be used as the time reference for programming. When the PLD board is put into program
mode, the PLD connects �2 to the data acquisition card interrupt line.

Six data bits on channels A and B of the data acquisition card are used to transmit
the ADAP program data to the PLD board. On each channel, the low �ve bits contain
the serial bit-streams corresponding to the �ve rows in the ADAP array, and the sixth bit
carries the program load signal. The twelve bits of data are latched into a register on the
PLD and sent to the ADAP board on the rising edge of �2. The program data is latched
into the ADAP on the subsequent rising edge of �2 and is held on the falling edge. The
program load signal is asserted throughout the programming sequence and is de-asserted
one cycle after the last bits of data are sent to ensure proper data alignment within the
ADAP registers.

4.3.5 Imager Con�guration

The PhotoBit imager is con�gured using a two wire synchronous bi-directional serial inter-
face similar to the I2C standard. The SClk carries a reference clock, while SData carries
the data. To program the imager, a bit-stream is sent consisting of a start bit, followed by
a byte containing the chip address on the I2C bus, the register address to read or write, the
data itself, and �nally a stop bit. A start bit consists of a high to low transition on SData
while SClk is high, while the stop bit is a low to high transition on SData with SClk High.
All data bits must change only while SClk is low and are sampled on the rising edge.

To meet the timing requirements of the timing protocol, the controller must be able
to latch and write bits during both the high and low periods of SClk. In program mode,
interrupts are triggered and data is written out on the falling edge of �2. �2 is then used
to clock a D ip-op to generate the SClk signal. To normalize the timing, the data signal
is latched on the PLD before being sent to the imagers. Referring back to Figure 4-3, the
latch signal is generated by OR-ing the high bit of the binary counter with the low bit of the
BCD counter. This produces a positive edge roughly halfway between the �2 write signal
and the rising edge of SCLK when the bit must be valid.

37

Chapter 5

Software Integration

To this point, a hardware apparatus that generates sub-pixel resolved edge maps from a
scene has been described. To complete the vision system PC software to acquired the edge
maps and compute and output the distance maps is required. As programmable components
were used in the design of the system, software to con�gure the imagers and ADAP arrays
is also needed. The aforementioned programs interface to the hardware system through the
data acquisition card and parallel port. Due to the high data throughput required by the
system, custom low-level kernel drivers were implemented to facilitate this interface. This
chapter describes much of the software created for the design, simulation, test, and �nal
implementation of the vision system. The source code for many of the programs described
here is given in the appendix.

5.1 Algorithm Simulation

As described in Chapter 2, the complete vision system uses software the correlated the sub-
pixel resolved edges and compute the distance maps. During the design phase, a framework
within which various algorithms could be evaluated was needed. The natural approach to
this problem was to simulate the entire vision processing system in software, and migrate
portions into hardware as the design progressed. Figure 5-1 shows the correlation between
hardware elements and PC software. The ADAP board was designed such that the output
from the either the �rst or second array could be sent back to the PLD board, allowing
either edge data or sub-pixel resolved edge data to be sent back to the PC. A separate PLD
board was constructed to interface the imagers directly to the PC, bypassing the ADAP
early vision processing.

5.1.1 Calibrated Image Generation

During the development of the algorithms the PhotoBit imagers were not yet commercially
available, so an alternative source of images was sought. While single scanned images
could be used to test the edge detection algorithms, the lack of precise object positioning
information limits their usefulness in testing sub-pixel edge resolution. To test the feature
correlation and distance map computation routines well, sets of correlated tri-nocular stereo
image triples are needed to test robustness against variances in imager positioning, noise,
and small di�erences in lens geometries.

To alleviate the arduous task of creating so many test images in the traditional manner,
simple rendering routines were implemented. The rendering routines take polygonal models

38

img2edg.c edg2spr.c spr2map.cgenimgs.c Software Approach

Hardware ApproachImager
ADAP
Edge

ADAP
SPER

Figure 5-1: Software - hardware equivalence

and places them in arbitrary positions and orientations in space. Using a simple shading
model that takes into account ambient illumination and reected global illumination, the
polygons are back-projected using simple perspective equations to generate simulated im-
ages. genimgs.c takes as its input a control �le which denotes which model �les should
be loaded and positions the models in space. Given the coordinates of the lens center, the
center of interest, and various other imager parameters, the scene may be rendered and
stored. By moving the camera along a baseline, tri-nocular stereo triples are generated, as
shown in Figure 5-2. By modifying the imaging parameters, the algorithms may be tested
against many possible non-ideal imaging e�ects.

Figure 5-2: A rendered image triple

To test for this vision application, rough road scenes were generated. In order to test
the sub-pixel algorithm, the original scenes were rendered at several times the required
image resolution and dithered to emulate anti-aliasing. In addition to simulating non-ideal
camera geometries, separate programs were written to blur the images and add speckle and
Gaussian noise, to better simulate real images.

5.1.2 Edge Detection

While it is simple to code a given edge detection algorithm, special care must be taken to
ensure that the code reliably simulates the operation of the algorithm when implemented
in an ADAP array. While the analog inputs to the array may attain any analog value, the
outputs of the ADAP arithmetic units are 8-bit quantized voltages between the arithmetic
zero reference and the VG and the maximum value Vref2. To simulate this, internal voltages
are represented as unsigned characters. When addition and subtraction operations are
executed in the front-end sample and hold, the output may exceed the input range of the

39

ADC, but the ADC e�ectively thresholds over-range values. In multiplication and division
operations, the reference voltage on the DAC is changed, but it never exceeds Vref2, so the
maximum output is similarly constrained.

The outputs of the positive, negative, and composite edge equations are shown in Fig-
ure 5-3. While the positive and negative edge detection operators alone are inherently
smaller and execute with smaller latency, they produce and incomplete picture of the scene.
The bi-directional edge operator combines the positive and negative edges into a single
image. This operator loses some of its dynamic range due to the addition, but it produces
more intelligible edge maps.

Positive Composite Negative

Figure 5-3: Edge detection operator comparison

5.1.3 Sub-Pixel Edge Resolution

The implementation of the sub-pixel algorithm in software faces the same constraints as
the edge detectors. The valid outputs from the sub-pixel operation range from 1 to 2 �K,
where K is the ADAP division scaling parameter, as explained in the algorithms chapter.
When values outside this range are thresholded in software on the PC, a crisp edge map
such as Figure 5-4 is generated. Normally, the values of the valid pixels range from 1 to
18, but the contrast is increased in Figure 5-4 to make the varying edge positions better
apparent.

Figure 5-4: Sub-pixel resolved edge map

5.1.4 Distance Map Computation

The feature correlation and distance map computation algorithms are combined in spr2map.c.
The program reads in three gray-scale images, encoded into the red, green, and blue por-

40

tions of a portable pixmap (ppm) �le. Each feature in each row of the right is tested for
correspondence with each feature in the corresponding row of the left image, by checking
the midpoint in the center image for a feature with a given threshold. If the correlation
is valid the distance is calculated from the disparity, coded as a color level and stored in
the distance map. A sample distance map, corresponding to the edge maps in Figure 5-3 is
shown in Figure 5-5. In the �gure, more distant points are drawn in lighter shades of grey.

Figure 5-5: Calculated depth map

5.2 Data Acquisition Driver

There are two general paradigms for communication with an external peripheral on a PC:
polled I/O and interrupt driven I/O. In polled I/O, the system continuously reads a port
and waits for the external hardware to signal that the data is valid. With interrupt driven
I/O, the external device triggers a hardware interrupt which forces the operating system to
execute special interrupt handling code to read the data. In applications where the data
rate is relatively slow, and no processing of the data occurs during acquisition, polled I/O
is acceptable. The speci�cations for this system require 15 frames

sec
throughput using 64 x 64

pixel images, yielding an average sampling rate of 61.44 ksamples
sec

. At this speed, interrupt
driven I/O is the only viable option.

While polling can be achieved in user code, interrupt driven routines must be incorpo-
rated into the Unix kernel. The kernel driver written for this thesis provides complete access
to the three 8-bit I/O ports on the data acquisition card 1. User-level programs interface
to the driver through IOCTL operations on the device �le. This interface allows user code
to con�gure, read from and write to the I/O ports without root privileges.

The application speci�c functionality is implemented in the interrupt handler. For
generic applications, the internal data structures associated with the driver de�ne input and
output bu�ers that act as the sink and source for data read and written in the interrupt
routines. The driver may be con�gured to read from or write to any of the I/O ports
during each interrupt event. More complex IOCTL calls allow the user to set the size
of both bu�ers, de�ned the contents of the output bu�er, and read the contents of the
input bu�er. To meet the interfacing requirements of the external hardware system more
complex functionality was implemented to support the con�guration of the imagers, the
programming of the ADAP arrays, and the frame-level acquisition of data.

1A more complete description of the data acquisition hardware is given in the appendix.

41

5.3 Imager Con�guration

The hardware interface used to con�gure PhotoBit imager was described in the previous
chapter. progcam is the program that interfaces with the kernel driver and gives it the data
to transmitted to the imagers. progcam starts by reading the list of bytes to be transmitted
from a �le into an array and stores it in the driver's output bu�er. After checking that
the controller board is in program mode, the software con�gures the interrupt handler to
con�gure the camera and enables interrupts. Once all the driver disables interrupts and
signals progcam to exit.

The bulk of the programming routine is implemented within the interrupt handler. �2

from the controller board is used to generate interrupts, and SCLK is read through one of
the parallel port status bits. SDIN and SDEN , the serial data input and serial data clock
enable signals, are output through the parallel port data bits. When con�guring the imager,
the interrupt handler follows the rough state machine shown in Figure 5-6.

Byte=0
Bit=7

Transmit
Data Bit

Bit--
Read

ACK Bit

Bit=7 Byte++ Transmit
Stop Bit

Transmit
Start Bit

>0

=0

<Max =Max

Figure 5-6: Imager con�guration owchart

Before the data is sent the SDEN and SDIN are asserted for 32 interrupts, enabling the
serial clock so that the imagers may sync to it and prepare for the start bit. To send the
start bit, the interrupt handler waits for an interrupt when SClk is asserted and sets SDIN

to 0. For each byte in the bu�er, the bits are transmitted MSB �rst, with SDIN changing
only on interrupts when SClk is negated. After each byte, the code waits 1 SCLK period for
the imager to acknowledge the byte. After the �nal byte is sent, a stop bit is transmitted by
asserting SDIN while SClk is negated, followed by a 32 interrupt wait period, after which
SClk is disabled.

5.4 ADAP Programming

The hardware interface that supports ADAP programming was also described in the previ-
ous chapter. progadap is the program that interfaces with the kernel driver and con�gures
it to properly program the ADAP arrays. progadap allows the user to specify program
�les with which to program either or both of the ADAP arrays on the early vision board.
The program reads in the program �les, �lls the data acquisition driver's output bu�ers,
changes two of the data ports from input to output mode, con�gures the interrupt han-
dler to program the ADAPs, and �nally enables interrupts to initiate the programming
procedure.

42

�2 generates the interrupts for ADAP programming. For each interrupt a new byte
is written to two of the ports on the data acquisition card, representing the �ve rows of
program data, and the program signal itself. A total of 175 bytes are needed to program
each ADAP, so 350 bytes are stored in the output bu�er. After the �nal bytes are sent, the
code assert the program signals for an additional cycle to allow the data to be latched into
the ADAPs. The interrupt routine follows the state machine shown in Figure 5-7.

Byte+=2
Transmit
Data Bits

Wait 1
CycleByte=0

<350

Figure 5-7: ADAP programming owchart

5.5 Algorithm Execution

Once the imagers are con�gured and the ADAP arrays are programmed, the system is
ready to acquire data and compute depth maps. xdepth combines the image processing
routines described above with a front end to read the data, and a back end graphical output
routine. For testing, two versions of xdepth were implemented. The �rst version consists
of three autonomous processes, one that reads in the sub-pixel resolved edge data from
the external hardware, one that performs the correlation and depth map calculations, and
one that outputs a color coded depth map to an X-Windows display. The second version
incorporates the edge detection and sub-pixel edge resolution code as additional processes
and expects raw pixel data from the external hardware.

The interrupt routine for acquiring pixel or edge data is triggered by the falling edge
of VL. To acquire frame data, the three ports of the data acquisition card need to be
con �gured as inputs. The acquisition procedure is diagrammed in Figure 5-8. Initially,
NewFrame is asserted to reset the address counter on the PLD board. Next, a speci�ed
number of interrupts are ignored to account for the calculation latency of the system. Once
the data coming from the ADAPs corresponds to valid pixel data, the interrupt routine
reads the frame data and stores it in the input bu�er. When all 4096 valid samples have
been acquired, interrupts are disabled, and the user code is signaled that it may read the
data from the bu�er.

Byte++

Assert
NewFrame

Byte=0
Lat=0

Lat++

<Max

Read
Data

=Max

<Max

=Max Transfer
Buffer

Figure 5-8: Frame acquisition owchart

43

Chapter 6

Results and Future Work

The algorithms and hardware apparatus were tested throughout the development of the
system. This chapter presents and analyzes the results from the software simulations and
hardware tests.

6.1 Algorithm Simulation

The vision algorithms implemented in this thesis were thoroughly simulated using the cus-
tom img2edg, edg2spr, and spr2map software and images from the genimgs rendering
software and scanned photographs.

Initial tests concerned the robustness of the algorithms to variations in camera geome-
tries. In spr2map, the thres parameter, which determines how far a feature in the center
image may be from the midpoint of the disparities in the right and left images and still be
deemed a valid correspondence, is paramount in determining the sensitivity to geometric
variances. If the thres parameter is chosen too low, the small camera movements render
the majority of the true correspondences invalid. If thres is chosen too high, problems
with spatial aliasing between distant objects arise. A moderate thres value of 0.5 pixels,
worked well in simulation. For objects at reasonable distance, accurate distance maps were
discernible with rotations up to 2o about any axis, and with translations of up to 5% of
the baseline distance. The algorithms seemed most sensitive to rotations along the baseline
axis, as this produced the greatest change in the images.

The algorithms were tested with blurred and noisy images to further evaluate the ro-
bustness. Blur was simulated by convolving the input images with a small square mask.
The edge detection and sub-pixel resolutions algorithms had no diÆculty dealing with im-
ages blurred with a 5x5 mask. Adding Gaussian and speckle noise to the images did not
signi�cantly corrupt the results, due to the robustness of the tri-nocular stereo algorithm.
Gaussian noise did not signi�cantly a�ect the edge detection, and thus could not corrupt
the output. While speckle noise is capable of producing false edges, the false edges produce
false depth points only if they can be correlated with features in the other images.

Using both real and rendered images, the accuracy of the algorithms was evaluated. For
most automotive vision applications, relative accuracy is the most important parameter,
but given proper calibration, absolute accuracy was also achieved. With both scanned and
rendered images, distances were calculated with errors less than 1-2% of the true distance.
More importantly, the computed distances were linear and monotone with true distance.

44

6.2 Hardware Evaluation

While the timing on the hardware components could be checked using bench equipment,
the overall functionality of the system could not be evaluated until the system, the driver
software, and the user-level programs were complete. The functionality of the PLD board
was necessary for the testing of the other boards. Once the PLD was properly programmed
the output timing and programming signals were veri�ed using a logic analyzer.

6.3 Imager PCB

The imager PCB worked properly on �rst power-up. Using a logic analyzer, the outputs
of the FV alid, LV alid, and PixClk were recorded to ensure proper timing. While it was
possible to read the output using the version of the PLD board designed to accommodate
software early vision, the data was meaningless when the camera was not recon�gured, as
the addressing scheme continuously overwrite the data in the SRAM.

progcam was initially evaluated by observing the parallel port signals, but the con-
�guration was unsuccessful although the outputs seemed correct. In the initial design of
the PLD board, the SClk lines for the three imagers were driven by a single pin on the
PLD, but the loading proved to be excessive so the signal was bu�ered before being sent.
Similarly, the SData lines could not be driven by the parallel port pin directly, so they were
latched on the PLD board. Once these changers were made, the imagers could be properly
programmed.

After con�guring the imagers to output centered 64 x 64 frames, and verifying the
con�guration with the logic analyzer, the software early vision hardware could be fully
tested. The hardware was able to output images at approximately 24frames

sec
, exceeding

the 20frames
sec

target. The frame rate was limited only by latency of the data acquisition
interface, not by the hardware or software. Tests indicated that the interrupt latency of
the PC and DAQ card would not guarantee correct sampling only for signals generating
interrupts faster than approximately 100 kHz. This limited the maximum attainable frame
rate to 24:414frames

sec
.

6.3.1 ADAP Early Vision Board

Unfortunately, similar success were not achieved with the ADAP boards. The timing signals
for the ADAP board were veri�ed using a logic analyzer. The biases for the arrays were
all generated on the early vision board, so the relevant voltages were easily observed and
adjusted. Using simple programs that con�gured the switch matrices within the ADAP
cells to connect various chip inputs, the proper functionality of the progadap software was
established.

When the arithmetic units not the ADAP were tested, problems arose. Connecting one
ALU input VG, and the other to a constant input, performing an addition operation, and
reading the digital output bits e�ectively turns the ADAP cell into a simple ADC. In this
con�guration, the ADC reached slightly above half-scale when a full scale input was applied.
When the input signals were routed through more than a single switch, further degradation
of the ADC swing was observed. Further tests showed a DC current between the two inputs
to the arithmetic unit. Since the ADAP is implemented using switched-capacitor circuitry,
only a minute DC input current is expected. The observed current between the nodes
was roughly proportional to the voltage di�erence between the nodes, and was orders of

45

magnitude higher than the expected switched-capacitor charge, implying a parasitic short
between the ALU inputs. The excessive input currents explained the degradation in the
swing of the ADC, and voltage was being dropped across the switches in the switch matrix.

The failures were fairly consistent across the set of ADAP chips tested. Given the age
of the chips 1, degradation due to poor passivation or static discharge in some of the chips
was not unexpected. Due the problems with the ADAP, only the software early vision
implementation of the system could be evaluated.

6.3.2 System Evaluation

Since the hardware early vision system was inoperable, the software version of the test
system was used in the �nal evaluation. With the early vision algorithms implemented as
part of xdepth, the performance of the system was equal the performance of the software
acting on scanned photographs as described above. On the Pentium 233 laptop PC, The
early vision algorithms consumed very little processor time, and the three processing rou-
tines were able to operate in the background without decreasing the data sampling rate.
The 20frames

sec
goal was easily exceeded by the completed system.

6.4 Future Work

The natural extension of this work is consolidate the design into a much smaller chipset.
The imager and the processor should be implemented on a single chip with all the biasing
done internally. This would allow the output ADC to be removed from the imager, and the
input DAC to be elminated from the ADAP. By increasing the size of the array, the two
algorithms could be implemented together, eliminating the intermediate DAC. Additionally,
the clock generators could be implemented on each array to save the distribution of multiple
signals between boards. Since CMOS technology and scaling have changed in the years since
the ADAP was designed, the e�eciency of using analog rather than very low power digital
circuitry would need to be reevaluated. The edge correlation and distance map computation
could be implemented on an ASIC, but a separate display subsystem would be required if
the PC is eliminated from the system.

1The ADAP chips were fabricated in 1995 and originally tested in 1996, over three years before they were

used in this work.

46

Appendix A

Apparatus Setup Instructions

The hardware used in the test system is comprised of several volatile components that must
be reprogrammed after each power cycle to ensure proper operation. All of the components
are in-system programmable, so the system need not be disassembled. The Altera PLD is
an EEPROM-based part, so it does not lose its program, but since the other components
need the PLD to be programmed correctly before they can be programmed, it is safest to
reprogram it before testing. The ADAP processors and cameras both store their programs
in registers, so it is essential that they be reprogrammed at power-up.

A.1 System Setup

Before the system is used, all of the boards must be properly connected. The setup is
di�erent depending on whether the ADAP boards are used for the early vision processing,
so the two cases are treated separately.

A.1.1 Software Early Vision

� Connect the output of the DC transformer to the two pin port on the PLD board.

� Plug one of the two connector ribbon cables into each of the camera PCBs.

� Plug the other end of the camera cables into the PLD controller board. The cable
from the left camera should be plugged into the headers closest to the edge, followed
by the center and right cameras.

� Plug the large AMP cable into the DB37 connector on the PLD board and into the
PCMCIA data acquisition card in the laptop.

� Plug the DB25-IDC26 cable into the IDC26 header at the top of the PLD board.

� Plug the IDC10 connector from the ByteBlaster programming adapter into the IDC10
header at the top left of the PLD board.

A.1.2 ADAP Early Vision

� Set the jumpers on the three ADAP boards. For the algorithms as de�ned, the header
directly to the left of each ADAP should be fully jumpered, the header to the right of

47

the lower ADAP should be jumpered to 2, and the header to the right of the upper
ADAP should be jumpered to 0.

� Screw the three ADAP boards and the PLD together.

� Connect the output of the DC transformer to either of the two pin ports on the bottom
ADAP board, and daisy chain the rest of the boards together using the two pin power
plugs.

� Using the short IDC26-IDC26 cables, connect each ADAP board to the PLD board.
The top board should connect to the header closest to the edge of the PLD board.

� Plug one of the two connector ribbon cables into each of the camera PCBs.

� Plug the other ends of the camera cables into the 10 pin header on the ADAP and the
20 pin header on the PLD board. The left camera should connect to the top ADAP
board and the connector nearest the edge of the PLD board.

� Plug the large AMP cable into the DB37 connector on the PLD board and into the
PCMCIA data acquisition card in the laptop.

� Plug the DB25-IDC26 cable into the IDC26 header at the top of the PLD board.

� Plug the IDC10 connector from the ByteBlaster programming adapter into the IDC10
header at the top left of the PLD board.

A.2 PLD Programming

The Altera EPM7128S part may be programmed through a standard 10-pin JTAG interface,
which is incorporated into the design of the PLD controller board. The JTAG interface is
interfaced to either the serial or parallel port on a PC with adapters supplied by Altera [12,
13]. The device actual programming routines are available as part of the Altera Max+plus
II software.

The two versions of the controller board for the di�erent test setup con�gurations require
di�erent PLD programs:

� Ensure that the PCMCIA ethernet card is inserted and properly connected to an
ethernet port.

� Boot the laptop into Windows 95 by rebooting and entering win95 at the LILO
prompt.

� Log into the Windows NT domain MTL as mspaeth.

� Launch the Altera MAX+plus II software by double clicking the icon on the desktop.

� Plug the Altera ByteBlaster programming adapter into the printer port on the laptop.

� Power on the PLD board.

48

� From the menu, choose File ! Open to load the appropriate project �le. All of the
libraries associated with this thesis are located on the NT system eurpoa, and may
be accessed via nneurpoanmspaethnalteranadapnlib or through the SMB mounted
Y:n drive. For the setup using PC software for the early vision routines, the project
�le is adapctl3.gdf. For the setup using the ADAPs, the project �le is adapctl2.gdf.

� From the menu choose File ! Project ! Set Project to Current File.

� From the menu choose File ! Project ! Save and Compile to make sure everything
is up to date.

� From the menu choose Max+plus II ! Programmer.

� Click on OK to program the device.

The device should program and verify properly. If errors occur, make sure the cables are
�rmly connected and that the PLD board is properly powered. An alternative programming
interface using the JAM in-system programming protocol was also tested and ported to
Linux, but it proved to be cumbersome and unreliable under any operating system.

A.3 Camera Programming

The camera PCBs were designed to bu�er 4096 pixel values addressed in a 64 pixel by 64
pixel array. For proper system operation, each camera must be programmed to output a 64
x 64 window centered within the image frame. The details of the programmable registers
on the PB159 are given in [5], and the details of the programming code are discussed in a
later appendix.

As the programming and test routines are run from Linux, the following procedure must
be followed to prepare for any of the later routines:

� Ensure that that PCMCIA data acquisition card is inserted.

� Boot the computer into Linux by rebooting and entering work at the LILO prompt.

� Log into XWindows as mspaeth.

� Open an xterm window by clicking on the xterm icon in the button bar.

� Plug the DB25-IDC26 cable into the parallel port on the laptop.

� Type =sbin=lsmod and ensure that the pcmd24 cs driver is loaded.

� Type source~=.login to make sure the path is correct.

To program the camera:

� Turn on the PLD board. The PLD should have been programmed earlier.

� Put the PLD board into program mode using the switch at the lower left. In program
mode the red Prog LED should be lit.

� Type cd~=classwork/research/pb159.

49

� Type progcam pb159.prog.

� Switch the PLD board back into run mode.

The camera boards are powered by the PLD board, so if the PLD board is turned o�
the camera chips will need to be reprogrammed.

A.4 ADAP Programming

The ADAP arrays come up in a random state at power on, so they must be programmed be-
fore they will perform any useful operations. An ADAP program begins as text �le de�ning
the array size, and listing the switches that are turned on in each cell. The .prg program
�les may be converted to x�g �gures to graphically view the switch interconnections using
the program adap2�g. The .prg �les are converted to .bin binary �les for use by the
programming algorithm by adap2prg. These two programs can operate on the �le formats
developed for this project, or the �le formats used by Dr. David Martin for his thesis [6].

To program the ADAP arrays:

� Check that the PLD controller board is turned on.

� Turn on the three ADAP boards.

� Switch the PLD board into program mode.

� Type cd~=classwork/research/adap.

� Type progadap -a edg 11.bin -b spr 11.bin.

� Switch the PLD board back into run mode.

A.5 Running XDepth

Once the cameras have been con�gured and the ADAPs have been programmed (if nec-
essary), the system is ready to run xdepth. If the system is being tested with the
ADAP boards to perform the early vision, xdepth adap should be executed, otherwise
xdepth soft should be run. In either case, the program will spawn an x-window to display
the results of the algorithm. In the display, the distances are indicated by colors with red
being near, fading to green and blue for far objects. The black background indicates that
no object was detected for that point.

The xdepth software is not a fully implemented X application, so if the window will not
auto-refresh if it is covered by another. If this occurs, simply terminate and restart the
program.

50

Appendix B

ADAP Simulation Routines

The following C code simulates the operation of the ADAP processors executing the pro-
grams necessary to perform the edge detection and sub-pixel edge resolution routines. Ini-
tially, these programs were used to test the robustness of the trinocular stereo routines
against inaccuracies in camera placement and alignment, additive and salt-and-pepper noise
in the images, and loss of image focus. The input images for these tests were generated
digitally using road scenes modeled with polygons, but the source for this software is beyond
the scope of this thesis.

The image manipulation routines were designed to operate on a stream of images in
PGM (portable grey map) format. To reduce the total number of �les processed, the three
grey images comprising a trinocular stereo image triple were encoded in the red, green,
and blue components of a PNM (portable any map) �le, and each color component was
processed separately.

In order to properly simulate the unique characteristics of ADAP arithmetic special care
must be taken. While the output of each ALU is in analog format, it must be treated as a
digital value since it is generated by a DAC. Since addition and subtraction operations are
done in the analog domain before the A-D conversion, neither values below 0dig nor above
255dig can be output, since they would merely saturate the ADC. Multiplications consist of
scaling one input by fraction of 256 represented by the other input, so the product is always
less than either input. For division, the result is scaled by a discrete integer to regain some
of the dynamic range lost by the ADAPs inability to represent fractional quantities.

B.1 Edge Detection : img2edg.c

This program simulates the following equations, for positive edge maps, negative edge maps,
and composite edge maps respectively:

Ex = 9 �
:60 � px+2 + :60 � px+1
:12 � px�1 + :12 � px�2

(B.1)

Ex = 9 �
:60 � px�2 + :60 � px�1
:12 � px+1 + :12 � px+2

(B.2)

Ex = 9 �

�
:60 � px+2 + :60 � px+1
:12 � px�1 + :12 � px�2

+
:60 � px�2 + :60 � px�1
:12 � px+1 + :12 � px+2

�
(B.3)

51

// img2edg.c

// Detects positive, negative, or composite edge maps

// Mark Spaeth, October 1997

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <string.h>

#define RIGHT 1

#define LEFT 2

static char *usage="\

Usage : %s [-n<# frames>] [-i<inputbase>] [-o<outputbase>] [-r / -l / -b]\n\n\

Finds edge maps in a pnm style bitmap files\n\

Default behavior is a filter from stdin to stdout\n\n";

void main(int argc, char *argv[]) {

char *arg,*inpbase,*outbase;

char *inpname,*outname;

char c, edge=3;

FILE *inpfile, *outfile;

int inpbaselen,outbaselen;

int nframes,xsize,ysize;

int i,frame,x,y,pval;

int mode,err,pscale;

long pcnt;

int pvals[5][3];

double pnumerl,pdenoml,pnumerr,pdenomr,pout;

nframes=1000000;

frame=0;

inpfile=stdin;

outfile=stdout;

inpbase=NULL;

outbase=NULL;

for (i=1;i<argc;i++) {

arg=argv[i];

if (*arg!='-') {

fprintf(stderr,"Invalid argument: %s\n\n",arg);

fprintf(stderr,usage,argv[0]);

exit(1);

}

switch (*(++arg)) {

case 'b':

edge=LEFT|RIGHT; // Composite edge maps

break;

case 'h':

fprintf(stderr,usage,argv[0]);

exit(1);

break;

case 'i':

if (strlen(++arg)>0) {

inpbase=(arg);

} else {

fprintf(stderr,"Error: null input filename\n\n");

exit(1);

}

break;

case 'l':

edge=LEFT; // Positive edge maps

break;

case 'n':

nframes=atoi(++arg);

break;

case 'o':

if (strlen(++arg)>0) {

52

outbase=(arg);

} else {

fprintf(stderr,"Error: null output filename\n\n");

exit(1);

}

break;

case 'r':

edge=RIGHT; // Negative edge maps

break;

default:

fprintf(stderr,"Invalid argument: -%s\n\n",arg);

fprintf(stderr,usage,argv[0]);

exit(1);

break;

}

}

if (inpbase!=NULL) {

inpbaselen=strlen(inpbase);

inpname=(char *)malloc((strlen(inpbase)+11)*sizeof(char));

strcpy(inpname,inpbase);

strcat(inpname,"000000.img");

} else {

inpfile=stdin;

}

if (outbase!=NULL) {

outbaselen=strlen(outbase);

outname=(char *)malloc((strlen(outbase)+11)*sizeof(char));

strcpy(outname,outbase);

strcat(outname,"000000.edg");

} else {

outfile=stdout;

}

frame=0;

while(1) {

if (inpbase!=NULL) {

for(i=6;i>0;i--)

inpname[inpbaselen+6-i]='0'+(char)((frame % (int)pow(10,i))/(int)pow(10,i-1));

if ((inpfile=fopen(inpname,"r"))==NULL) {

fprintf(stderr,"Input file not found: %s\n",inpname);

break;

} else {

fprintf(stderr,"Converting file: %s\n",inpname);

}

}

if(fscanf(inpfile,"P%i\n",&mode)!=1) {

if ((inpbase!=NULL)||(mode<1)||(mode>6))

fprintf(stderr,"Invalid ppm header\n");

break;

}

while (((c=fgetc(inpfile))=='#')&&(c!=EOF))

while (((c=fgetc(inpfile))!='\n')&&(c!=EOF));

if (c==EOF) {

fprintf(stderr,"Unexpected EOF\n");

break;

} else {

ungetc(c,inpfile);

}

if (fscanf(inpfile,"%i %i\n",&xsize,&ysize)!=2) {

fprintf(stderr,"Error reading image size\n");

break;

}

if (xsize<5) {

fprintf(stderr,"Image width too small\n");

break;

}

if (mode%3!=1) {

if (fscanf(inpfile,"%i\n",&pscale)!=1) {

fprintf(stderr,"Error reading pixel scale\n");

53

break;

}

} else {

pscale=1;

}

if (outbase!=NULL) {

for(i=6;i>0;i--)

outname[outbaselen+6-i]='0'+(char)((frame % (int)pow(10,i))/(int)pow(10,i-1));

outfile=fopen(outname,"w");

}

fprintf(outfile,"P%i\n",5+(mode%3==0));

fprintf(outfile,"%i %i\n",xsize-4,ysize);

fprintf(outfile,"255\n");

pcnt=0;

err=0;

for (y=0;y<ysize&&!err;y++) {

for (x=0;x<xsize&&!err;x++) {

for (i=0;i<1+2*((mode%3==0))&&!err;i++) {

if (mode<4) {

if ((err=(fscanf(inpfile,"%d ",&pval)!=1))) continue;

} else {

if ((err=((pval=fgetc(inpfile))==EOF))) continue;

}

pvals[pcnt%5][i]=(unsigned char)((pval*255)/pscale);

if (x>=4) {

switch (edge) {

case LEFT:

pnumerl=.6*(pvals[(pcnt+5)%5][i]+pvals[(pcnt+4)%5][i]);

pnumerl=(pnumerl>255)?255:pnumerl;

pdenoml=(2304/(.12*(pvals[(pcnt+2)%5][i]+pvals[(pcnt+1)%5][i])));

pdenoml=(pdenoml>255)?255:pdenoml;

pout=(pnumerl*pdenoml)/256;

break;

case RIGHT:

pnumerr=.6*(pvals[(pcnt+1)%5][i]+pvals[(pcnt+2)%5][i]);

pnumerr=(pnumerr>255)?255:pnumerr;

pdenomr=(2304/(.12*(pvals[(pcnt+4)%5][i]+pvals[(pcnt+5)%5][i])));

pdenomr=(pdenomr>255)?255:pdenomr;

pout=(pnumerr*pdenomr)/256;

break;

default:

pnumerl=.6*(pvals[(pcnt+5)%5][i]+pvals[(pcnt+4)%5][i]);

pnumerl=(pnumerl>255)?255:pnumerl;

pdenoml=(2304/(.12*(pvals[(pcnt+2)%5][i]+pvals[(pcnt+1)%5][i])));

pdenoml=(pdenoml>255)?255:pdenoml;

pnumerr=.6*(pvals[(pcnt+1)%5][i]+pvals[(pcnt+2)%5][i]);

pnumerr=(pnumerr>255)?255:pnumerr;

pdenomr=(2304/(.12*(pvals[(pcnt+4)%5][i]+pvals[(pcnt+5)%5][i])));

pdenomr=(pdenomr>255)?255:pdenomr;

pout=(pnumerl*pdenoml+pnumerr*pdenomr)/256;

break;

}

pout=(pout>255)?255:pout;

fprintf(outfile,"%c",(unsigned char)(pout));

}

}

pcnt++;

}

}

if (err) {

fprintf(stderr,"Unexpected EOF reading data\n");

break;

}

if (inpbase!=NULL) fclose(inpfile);

if (outbase!=NULL) fclose(outfile);

if ((++frame)>=nframes) break;

}

fprintf(stderr,"%i frames processed.\n\n",frame);

54

if (inpbase!=NULL) free(inpname);

if (outbase!=NULL) free(outname);

}

B.2 Sub-pixel Edge Resolution : edg2spr.c

This code simulates the following equation:

� =
�:75 � ex�1 + ex � :25 � ex+1
�:50 � ex�1 + ex � :50 � ex+1

(B.4)

// edg2spr.c

// Resolves edges to sub-pixel resolution

// Mark Spaeth, October 1997

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <string.h>

static char *usage="\

Usage : %s [-n<# frames>] [-i<inputbase>] [-o<outputbase>]\n\n\

Finds edge edges to subpixel resolution in a pnm style edge files\n\

Default behavior is a filter from stdin to stdout\n\n";

void main(int argc, char *argv[]) {

char *arg,*inpbase,*outbase;

char *inpname,*outname;

char c;

FILE *inpfile, *outfile;

int inpbaselen,outbaselen;

int nframes,xsize,ysize;

int i,frame,x,y,pval;

int mode,err,pscale;

long pcnt;

int pvals[3][3];

double pnumer,pdenom,pout;

nframes=1000000;

frame=0;

inpfile=stdin;

outfile=stdout;

inpbase=NULL;

outbase=NULL;

for (i=1;i<argc;i++) {

arg=argv[i];

if (*arg!='-') {

fprintf(stderr,"Invalid argument: %s\n\n",arg);

fprintf(stderr,usage,argv[0]);

exit(1);

}

switch (*(++arg)) {

case 'h':

fprintf(stderr,usage,argv[0]);

exit(1);

break;

case 'i':

if (strlen(++arg)>0) {

inpbase=(arg);

} else {

fprintf(stderr,"Error: null input filename\n\n");

exit(1);

}

55

break;

case 'n':

nframes=atoi(++arg);

break;

case 'o':

if (strlen(++arg)>0) {

outbase=(arg);

} else {

fprintf(stderr,"Error: null output filename\n\n");

exit(1);

}

break;

default:

fprintf(stderr,"Invalid argument: -%s\n\n",arg);

fprintf(stderr,usage,argv[0]);

exit(1);

break;

}

}

if (inpbase!=NULL) {

inpbaselen=strlen(inpbase);

inpname=(char *)malloc((strlen(inpbase)+11)*sizeof(char));

strcpy(inpname,inpbase);

strcat(inpname,"000000.edg");

} else {

inpfile=stdin;

}

if (outbase!=NULL) {

outbaselen=strlen(outbase);

outname=(char *)malloc((strlen(outbase)+11)*sizeof(char));

strcpy(outname,outbase);

strcat(outname,"000000.spr");

} else {

outfile=stdout;

}

frame=0;

while(1) {

if (inpbase!=NULL) {

for(i=6;i>0;i--)

inpname[inpbaselen+6-i]='0'+(char)((frame % (int)pow(10,i))/(int)pow(10,i-1));

if ((inpfile=fopen(inpname,"r"))==NULL) {

fprintf(stderr,"Input file not found: %s\n",inpname);

break;

} else {

fprintf(stderr,"Converting file: %s\n",inpname);

}

}

if(fscanf(inpfile,"P%i\n",&mode)!=1) {

if ((inpbase!=NULL)||(mode<1)||(mode>6))

fprintf(stderr,"Invalid ppm header\n");

break;

}

while (((c=fgetc(inpfile))=='#')&&(c!=EOF))

while (((c=fgetc(inpfile))!='\n')&&(c!=EOF));

if (c==EOF) {

fprintf(stderr,"Unexpected EOF\n");

break;

} else {

ungetc(c,inpfile);

}

if (fscanf(inpfile,"%i %i\n",&xsize,&ysize)!=2) {

fprintf(stderr,"Error reading image size\n");

break;

}

if (xsize<3) {

fprintf(stderr,"Image width too small\n");

break;

}

56

if (mode%3!=1) {

if (fscanf(inpfile,"%i\n",&pscale)!=1) {

fprintf(stderr,"Error reading pixel scale\n");

break;

}

} else {

pscale=1;

}

if (outbase!=NULL) {

for(i=6;i>0;i--)

outname[outbaselen+6-i]='0'+(char)((frame % (int)pow(10,i))/(int)pow(10,i-1));

outfile=fopen(outname,"w");

}

fprintf(outfile,"P%i\n",5+(mode%3==0));

fprintf(outfile,"%i %i\n",xsize-2,ysize);

fprintf(outfile,"255\n");

pcnt=0;

err=0;

for (y=0;y<ysize&&!err;y++) {

for (x=0;x<xsize&&!err;x++) {

for (i=0;i<1+2*((mode%3==0))&&!err;i++) {

if (mode<4) {

if ((err=(fscanf(inpfile,"%d ",&pval)!=1))) continue;

} else {

if ((err=((pval=fgetc(inpfile))==EOF))) continue;

}

pvals[pcnt%3][i]=(unsigned char)((pval*255)/pscale);

if (x>=2) {

pnumer=pvals[(pcnt-1)%3][i]-(.75*pvals[(pcnt+1)%3][i]+.25*pvals[(pcnt)%3][i]);

pdenom=pvals[(pcnt-1)%3][i]-(.5*pvals[(pcnt+1)%3][i]+.5*pvals[(pcnt)%3][i]);

pout=(pdenom>4)&&(pnumer>=0) ? (127*pnumer/pdenom) : 255;

pout=(pout>255)?255:pout;

fprintf(outfile,"%c",(unsigned char)rint(pout));

}

}

pcnt++;

}

}

if (err) {

fprintf(stderr,"Unexpected EOF reading data\n");

break;

}

if (inpbase!=NULL) fclose(inpfile);

if (outbase!=NULL) fclose(outfile);

if ((++frame)>=nframes) break;

}

fprintf(stderr,"%i frames processed.\n\n",frame);

if (inpbase!=NULL) free(inpname);

if (outbase!=NULL) free(outname);

}

B.3 Depth Map Computation : spr2map.c

This code performs correlates sub-pixel resolved edge map �les output from edg2spr.c and
outputs a color coded depth map. Various camera geometry parameters may be input on
the command line to control the depth range of the output depth map.

// spr2map.c

// Converts .spr files into depthmaps

// Mark Spaeth, October 1998

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

57

#include <string.h>

typedef struct nodetag node;

typedef struct nodetag {

double xval;

node *next;

} nodetag;

void freenodelist(node *);

static char *usage="\

Usage : %s [-n<# frames>] [-i<inputbase>] [-o<outputbase>]\n\

[-b<baselinelength>] [-m<maxdist>] [-r<resolution]\n\

[-c<convolution>] [-t<threshold>] [-f<focal length>]\n\n\

Finds distance maps to subpixel resolution in a pnm style spr files\n\

Default behavior is a filter from stdin to stdout\n\n";

void main(int argc, char *argv[]) {

char *arg,*inpbase,*outbase;

char *inpname,*outname;

FILE *inpfile, *outfile;

double coffset, maxdist, res, thres, focal;

int conv;

int *distmap, distmaplen;

node **edglocs[3];

node *ntmp[3];

int inpbaselen,outbaselen;

int nframes,xsize,ysize;

int i,j,frame,x,y,pval;

int mode,err,pscale;

long pcnt;

char c,match;

double sloc;

int loc;

nframes=1000000;

inpbase=NULL;

outbase=NULL;

distmap=NULL;

for (i=0;i<3;i++)

edglocs[i]=NULL;

coffset=2;

maxdist=50;

res=.1;

conv=11;

thres=2.0;

focal=351.677;

frame=0;

inpfile=stdin;

outfile=stdout;

for (i=1;i<argc;i++) {

arg=argv[i];

if (*arg!='-') {

fprintf(stderr,"Invalid argument: %s\n\n",arg);

fprintf(stderr,usage,argv[0]);

exit(1);

}

switch (*(++arg)) {

case 'b':

if ((sscanf((arg+1),"%lf",&coffset))!=1) {

fprintf(stderr,"Invalid argument: %s\n\n",arg);

fprintf(stderr,usage,argv[0]);

exit(1);

}

if (coffset<=0) {

fprintf(stderr,"Camera baseline offset must be positive\n\n");

exit(1);

58

}

break;

case 'c':

if ((sscanf((arg+1),"%d",&conv))!=1) {

fprintf(stderr,"Invalid argument: %s\n\n",arg);

fprintf(stderr,usage,argv[0]);

exit(1);

}

if (conv<=0) {

fprintf(stderr,"Distance convolution must be positive\n\n");

exit(1);

}

break;

case 'f':

if ((sscanf((arg+1),"%lf",&focal))!=1) {

fprintf(stderr,"Invalid argument: %s\n\n",arg);

fprintf(stderr,usage,argv[0]);

exit(1);

}

if (thres<=0) {

fprintf(stderr,"Focal length must be positive\n\n");

exit(1);

}

break;

case 'h':

fprintf(stderr,usage,argv[0]);

exit(1);

break;

case 'i':

if (strlen(++arg)>0) {

inpbase=(arg);

} else {

fprintf(stderr,"Error: null input filename\n\n");

exit(1);

}

break;

case 'm':

if ((sscanf((arg+1),"%lf",&maxdist))!=1) {

fprintf(stderr,"Invalid argument: %s\n\n",arg);

fprintf(stderr,usage,argv[0]);

exit(1);

}

if (maxdist<=0) {

fprintf(stderr,"Maximum resolved distance must be positive\n\n");

exit(1);

}

break;

case 'n':

nframes=atoi(++arg);

break;

case 'o':

if (strlen(++arg)>0) {

outbase=(arg);

} else {

fprintf(stderr,"Error: null output filename\n\n");

exit(1);

}

break;

case 'r':

if ((sscanf((arg+1),"%lf",&res))!=1) {

fprintf(stderr,"Invalid argument: %s\n\n",arg);

fprintf(stderr,usage,argv[0]);

exit(1);

}

if (res<=0) {

fprintf(stderr,"Distance resolution must be positive\n\n");

exit(1);

}

59

break;

case 't':

if ((sscanf((arg+1),"%lf",&thres))!=1) {

fprintf(stderr,"Invalid argument: %s\n\n",arg);

fprintf(stderr,usage,argv[0]);

exit(1);

}

if (thres<=0) {

fprintf(stderr,"Match threshold must be positive\n\n");

exit(1);

}

break;

default:

fprintf(stderr,"Invalid argument: -%s\n\n",arg);

fprintf(stderr,usage,argv[0]);

exit(1);

break;

}

}

distmaplen=ceil(maxdist/res);

distmap=(int *)malloc(distmaplen*sizeof(int));

if (inpbase!=NULL) {

inpbaselen=strlen(inpbase);

inpname=(char *)malloc((strlen(inpbase)+11)*sizeof(char));

strcpy(inpname,inpbase);

strcat(inpname,"000000.spr");

} else {

inpfile=stdin;

}

if (outbase!=NULL) {

outbaselen=strlen(outbase);

outname=(char *)malloc((strlen(outbase)+11)*sizeof(char));

strcpy(outname,outbase);

strcat(outname,"000000.map");

} else {

outfile=stdout;

}

frame=0;

while(1) {

if (inpbase!=NULL) {

for(i=6;i>0;i--)

inpname[inpbaselen+6-i]='0'+(char)((frame % (int)pow(10,i))/(int)pow(10,i-1));

if ((inpfile=fopen(inpname,"r"))==NULL) {

fprintf(stderr,"Input file not found: %s\n",inpname);

break;

} else {

fprintf(stderr,"Converting file: %s\n",inpname);

}

}

if(fscanf(inpfile,"P%i\n",&mode)!=1) {

if ((inpbase!=NULL)||((mode!=3)&&(mode!=6)))

fprintf(stderr,"Invalid ppm header\n");

err++;

break;

}

while (((c=fgetc(inpfile))=='#')&&(c!=EOF))

while (((c=fgetc(inpfile))!='\n')&&(c!=EOF));

if (c==EOF) {

fprintf(stderr,"Unexpected EOF\n");

err++;

break;

} else {

ungetc(c,inpfile);

}

if (fscanf(inpfile,"%i %i\n",&xsize,&ysize)!=2) {

60

fprintf(stderr,"Error reading image size\n");

err++;

break;

}

if (xsize<3) {

fprintf(stderr,"Image width too small\n");

err++;

break;

}

if (fscanf(inpfile,"%i\n",&pscale)!=1) {

fprintf(stderr,"Error reading pixel scale\n");

err++;

break;

}

for (i=0;i<3;i++) {

edglocs[i]=(node **)malloc(ysize*sizeof(node *));

for (j=0;j<ysize;j++) {

edglocs[i][j]=(node *)malloc(sizeof(node));

edglocs[i][j]->next=NULL;

edglocs[i][j]->xval=-2;

}

}

pcnt=0;

err=0;

for (y=0;y<ysize&&!err;y++) {

for(i=0;i<3;i++)

ntmp[i]=edglocs[i][y];

for (x=0;x<xsize&&!err;x++) {

for (i=0;i<3&&!err;i++) {

if (mode==3) {

if ((err=(fscanf(inpfile,"%d ",&pval)!=1))) continue;

} else {

if ((err=((pval=fgetc(inpfile))==EOF))) continue;

}

if (pval!=255) {

sloc=x-2.+((double)pval/127.);

if (abs(sloc-ntmp[i]->xval)>1) {

ntmp[i]->next=(node *)malloc(sizeof(node));

ntmp[i]=ntmp[i]->next;

ntmp[i]->next=NULL;

ntmp[i]->xval=sloc;

} else {

ntmp[i]->xval=.5*(sloc+ntmp[i]->xval);

}

}

}

pcnt++;

}

}

if (err) {

fprintf(stderr,"Unexpected EOF reading data\n");

break;

} else {

for (i=0;i<distmaplen;i++)

distmap[i]=0;

for (y=0;y<ysize;y++) {

ntmp[0]=edglocs[0][y];

while (ntmp[0]->next!=NULL) {

ntmp[2]=edglocs[2][y];

while (ntmp[2]->next!=NULL) {

if ((ntmp[2]->next->xval)<(ntmp[0]->next->xval)) {

sloc=.5*(ntmp[2]->next->xval+ntmp[0]->next->xval);

61

ntmp[1]=edglocs[1][y];

match=0;

while (ntmp[1]->next!=NULL) {

match+=(abs(ntmp[1]->next->xval-sloc)<=thres);

ntmp[1]=ntmp[1]->next;

}

if (match) {

loc=floor(focal*coffset/(res*(ntmp[0]->next->xval-ntmp[2]->next->xval)));

loc=loc-floor(conv/2);

for (i=0;i<conv;i++)

if ((loc+i)<distmaplen) distmap[loc+i]++;

}

}

ntmp[2]=ntmp[2]->next;

}

ntmp[0]=ntmp[0]->next;

}

}

if (outbase!=NULL) {

for(i=6;i>0;i--)

outname[outbaselen+6-i]='0'+(char)((frame % (int)pow(10,i))/(int)pow(10,i-1));

outfile=fopen(outname,"w");

}

fprintf(outfile,"%lf\n",res);

for (i=0;i<distmaplen;i++)

fprintf(outfile,"%d\n",distmap[i]);

}

if (inpbase!=NULL) fclose(inpfile);

if (outbase!=NULL) fclose(outfile);

for (i=0;i<3;i++)

if (edglocs[i]!=NULL) {

for (y=0;y<ysize;y++)

freenodelist(edglocs[i][y]);

free(edglocs[i]);

edglocs[i]=NULL;

}

if ((++frame)>=nframes) break;

}

fprintf(stderr,"%i frames processed.\n\n",frame);

if (inpbase!=NULL) free(inpname);

if (outbase!=NULL) free(outname);

if (distmap!=NULL) free(distmap);

}

void freenodelist(node *l) {

node *t;

while (l->next!=NULL) {

t=l->next;

l->next=t->next;

free(t);

}

free(l);

}

62

Appendix C

PCMCIA Data Acquisition Driver

Details

C.1 DAQ Card Hardware

The data acquision card used in this thesis is the ADAC PCM55DIO, which interfaces
with the laptop though a type-II PCMCIA socket. The interface hardware within the
card consits of an 82C55 digital I/O controller and an Intel 82C54 programmable interval
timer. The 82C55 provides three 8-bit digital I/O ports, which are available at the external
connector no the card. The 82C54 includes three 16 bit counters, which may be con�gured
to operate in several di�erent modes using interal and external clocks, external clock gating,
and cascading. One interrupt is assigned to the card by the PC, and interrupts may be
generated by the 82C55, 82C54, or triggered externally.

The memory map of the PCM55DIO is shown in Table C.1. When con�gured as inputs,
writing to the i82C55 ports does nothing. When con�gured as outputs, reading the ports
returns the last byte written. The counters were not needed for the vision system, so support
was them was not included in the driver.

Table C.1: PCM55DIO memory map

Address Read Write

Base + 0x00 Port A input Port A output

Base + 0x01 Port B input Port B output

Base + 0x02 Port C input Port C output

Base + 0x03 - Set 82C55 control register

Base + 0x04 Read counter A Set counter A

Base + 0x05 Read counter B Set counter B

Base + 0x06 Read counter C Set counter C

Base + 0x07 - Set 82C54 control register

Base + 0x07 Read back Set interrupt and clock sources

The driver uses the three ports of the 8255 for reading back data from the controller
board. While programming the ADAPs, ports A and B are written to send data to the
contoller board. Whien con�guring the imagers, the parallel port data bits are written to
send the bitstream, and the parallel port status bits are read to discern the proper timing.

63

C.2 DAQ Driver Structure

The driver needs to be interrupt driven to achieve the desired data throughput. While it is
possible to implement a polling I/O interface in user-level code, interrupt driven routines
require kernel privileges. The internal kernel data structure is enumerated in Table C.2.
Many of the the high-level interrupt driven functions of the driver need to access parallel port
hardware in addition to the data acquisition hardware, so several of the driver parameters
must be con�gured at run time, rather than autodetected when the driver is loaded.

Table C.2: DAQ driver data structure

typedef struct pcmd24_info_t {

dev_node_t node;

ioaddr_t port; // DAQ card base address

ioaddr_t shipport; // Parallel port base address

unsigned char latency; // Calculation latency

unsigned char latcnt;

unsigned char waitcnt;

unsigned char flag; // Interrupt state machine state

unsigned char *inbuf; // Input data buffer

int inbuflen; // Input buffer length

int inbufpos; // Input buffer pointer

unsigned char *outbuf; // Output data buffer

int outbuflen; // Output buffer length

int outbufpos; // Output buffer pointer

unsigned char intop; // Interrupt operation

unsigned char i8255ctl; // 82C55 control register

unsigned char intctl; // DAQ interrupt control register

unsigned char irqstat; // DAQ interrupt number

unsigned char block;

} pcmd24_info_t;

The port and irqstat parameters are autodetected by the driver when it is loaded.
shipport is the address of the parallel port used for programming the ADAP chips and
con�guring the imagers. latency de�nes the calculation latency of the ADAP arrays,
and how many data samples should be ignored after asserting NewFrame. inbuen and
outbuen are the lengths of the input and output data bu�ers respectively, and inbuf

and outbut are the data bu�ers themselves. intop is a set of ags that describes what
operations should be performed during each interrupt cycle.

C.3 DAQ driver IOCTL interface

All of the functions of the data acquisition driver are controlled through IOCTLs on the
device special �le. The complete list of IOCTL de�nitions is found in the pcmd24.h �le
along with the ag de�nitions for the bitmapped �elds. Some of the more important IOCTLs
are described in Table C.3. All IOCTL constants are prepended with \PCMD24 IOCTL ".

64

Table C.3: DAQ driver IOCTLs

IOCTL Argument Return Description

DISABLIRQ - - Disables interrupts

ENABLEIRQ - - Enables interrupts

RESETRUN - - Reset bu�ers and enables interrupts

IRQSTAT - char Returns the interrupt number and status

PORTBASE - int Returns the card base address

IRQSRC char - Sets the interrupt source

SETINTOP char - Sets the interrupt operation

GETINTOP - char Returns the interrupt operation

INBUFLEN int - Sets the input bu�er size

INBUFCNT - int Returns the input bu�er pointer

CLRINBUF - - Resets the input bu�er

GETINBUF char * - Reads the input bu�er

OUTBUFLEN int - Sets the output bu�er size

OUTBUFCNT - int Returns the output bu�er pointer

CLROUTBUF - - Resets the output bu�er

SETOUTBUF char * - Writes the output bu�er

LATENT char - Sets the calculation latency

LATCNT - char Reads the current latency count

RESETLAT - - Resets the latency count

SET8255 char - Sets 8255 control register

GET8255 - char Reads 8255 control register

SETIN char - Sets selected 8255 ports to inputs (bitmapped)

SETIN* - - Sets selected 8255port to input

SETOUT char - Sets selected 8255 ports to outputs (bitmapped)

SETOUT* - - Sets selected 8255 port to output

READPORT char char Reads the selected I/O port address

READ char 3*char Reads the selected 8255 ports (bitmapped)

READ* - char Reads the selected 8255 port

WRITE 4*char - Writes to the selected 8255 ports (bitmapped)

WRITE* char - WRites to the selected 8255 port

SHIPPORT - char

ADAPPORT - char Set the parallel port base address

PARPORT - char

SHIPFLAG char -

ADAPFLAG char - Reads the driver state machine ags

FLAG char -

65

C.4 Interrupt Handler

For this application, the important and timing critical driver functions are implemented in
the interrupt handler. That section of the driver code is copied here for reference.

static void pcmd24_interrupt(int irq, void *unused, struct pt_regs *regs) {

char reg,i,bit;

int len;

if (pcmd24->intop == INT_PROGCAM) {

if (pcmd24->flag & SHIP_WAIT) {

outb(SDEN|SDIN,pcmd24->shipport|SHIP_DAT);

pcmd24->waitcnt++;

if (pcmd24->waitcnt == SHIP_WAITLEN) {

pcmd24->waitcnt = 0;

pcmd24->flag &= ~SHIP_WAIT;

if (pcmd24->outbufpos>=pcmd24->outbuflen) {

pcmd24->flag |= SHIP_DONE;

outb(0,pcmd24->shipport|SHIP_DAT);

pcmd24->irqstat&=0x7f;

disable_irq(pcmd24->irqstat);

}

}

return;

}

if (pcmd24->flag & SHIP_START) {

if (inb(pcmd24->shipport|SHIP_CTL)&SCLK) {

outb(SDEN,pcmd24->shipport|SHIP_DAT);

pcmd24->flag &= ~SHIP_START;

pcmd24->flag |= SHIP_SEND;

} else

outb(SDEN|SDIN,pcmd24->shipport|SHIP_DAT);

return;

}

if (pcmd24->flag & SHIP_ACK) {

if (!(inb(pcmd24->shipport|SHIP_CTL)&SCLK)) {

outb(SDEN,pcmd24->shipport|SHIP_DAT);

pcmd24->flag &= ~SHIP_ACK;

}

return;

}

if (pcmd24->flag & SHIP_STOP) {

if (inb(pcmd24->shipport|SHIP_CTL)&SCLK) {

if (pcmd24->waitcnt) {

outb(SDEN|SDIN,pcmd24->shipport|SHIP_DAT);

pcmd24->flag &= ~SHIP_STOP;

pcmd24->flag |= SHIP_WAIT;

pcmd24->waitcnt=0;

} else

pcmd24->waitcnt++;

} else

outb(SDEN,pcmd24->shipport|SHIP_CTL);

return;

}

if (pcmd24->flag & SHIP_SEND) {

if (!(inb(pcmd24->shipport|SHIP_CTL)&SCLK)) {

bit=((pcmd24->outbuf[pcmd24->outbufpos]>>(7-pcmd24->waitcnt))&0x01)<<7;

outb(SDEN|bit,pcmd24->shipport|SHIP_DAT);

pcmd24->waitcnt++;

if (pcmd24->waitcnt>7) {

pcmd24->flag |= SHIP_ACK;

pcmd24->waitcnt=0;

pcmd24->outbufpos++;

if (pcmd24->outbufpos >= pcmd24->outbuflen) {

pcmd24->flag &= ~SHIP_SEND;

pcmd24->flag |= SHIP_STOP;

}

66

}

}

return;

}

}

if (pcmd24->intop == INT_PROGADAP) {

if (pcmd24->flag & ADAP_START) {

outb(pcmd24->outbuf[0],pcmd24->port|I8255PA);

outb(pcmd24->outbuf[1],pcmd24->port|I8255PB);

pcmd24->flag |= ADAP_WAIT;

return;

}

if (pcmd24->flag & ADAP_WAIT) {

pcmd24->waitcnt++;

if (pcmd24->waitcnt == ADAP_WAITLEN) {

pcmd24->waitcnt = 0;

pcmd24->flag &= ~ADAP_WAIT;

if (pcmd24->outbufpos>=pcmd24->outbuflen) {

pcmd24->flag = ADAP_DONE;

outb(0x00,pcmd24->port|I8255PA);

outb(0x00,pcmd24->port|I8255PB);

pcmd24->irqstat&=0x7f;

disable_irq(pcmd24->irqstat);

}

}

return;

}

if (pcmd24->flag & ADAP_SEND) {

outb(pcmd24->outbuf[pcmd24->outbufpos++],pcmd24->port|I8255PA);

outb(pcmd24->outbuf[pcmd24->outbufpos++],pcmd24->port|I8255PB);

if (pcmd24->outbufpos>=pcmd24->outbuflen) {

pcmd24->flag = ADAP_STOP;

}

return;

}

if (pcmd24->flag & ADAP_STOP) {

outb(0x00,pcmd24->port|I8255PA);

outb(0x00,pcmd24->port|I8255PB);

pcmd24->flag = ADAP_WAIT;

return;

}

}

if (pcmd24->intop == INT_GETFRAME) {

if (pcmd24->flag & ADAP_START) {

outb(NEWF,pcmd24->shipport|SHIP_DAT);

pcmd24->flag &= ~ADAP_START;

return;

}

if (pcmd24->latcnt) {

if (pcmd24->latcnt == pcmd24->latency)

outb(0,pcmd24->shipport|SHIP_DAT);

pcmd24->latcnt--;

return;

}

len=pcmd24->inbuflen/3;

pcmd24->inbuf[pcmd24->inbufpos]=inb(pcmd24->port|I8255PA);

pcmd24->inbuf[pcmd24->inbufpos+len]=inb(pcmd24->port|I8255PB);

pcmd24->inbuf[pcmd24->inbufpos+len*2]=inb(pcmd24->port|I8255PC);

pcmd24->inbufpos++;

if (pcmd24->inbufpos>len) {

pcmd24->flag |= ADAP_DONE;

pcmd24->irqstat&=0x7f;

disable_irq(pcmd24->irqstat);

}

return;

}

67

if (pcmd24->latcnt) {

pcmd24->latcnt--;

return;

}

if ((pcmd24->intop&INT_READMASK)&&(pcmd24->inbuf!=NULL)) {

if (pcmd24->intop&INT_READA) {

reg=inb(pcmd24->port|I8255PA);

if (pcmd24->inbufpos<pcmd24->inbuflen)

pcmd24->inbuf[pcmd24->inbufpos++]=reg;

}

if (pcmd24->intop&INT_READB) {

reg=inb(pcmd24->port|I8255PB);

if (pcmd24->inbufpos<pcmd24->inbuflen)

pcmd24->inbuf[pcmd24->inbufpos++]=reg;

}

if (pcmd24->intop&INT_READC) {

reg=inb(pcmd24->port|I8255PC);

if (pcmd24->inbufpos<pcmd24->inbuflen)

pcmd24->inbuf[pcmd24->inbufpos++]=reg;

}

}

if ((pcmd24->intop&INT_WRITEMASK)&&(pcmd24->outbuf!=NULL))

for (i=0;i<3;i++)

if (pcmd24->intop&(1<<(4+i)))

if (pcmd24->outbufpos<pcmd24->outbuflen)

outb(pcmd24->outbuf[pcmd24->outbufpos++],pcmd24->port|i);

}

68

Appendix D

ADAP And Camera Programming

Software

The source code listed here uses the facilities of the data acquisition card drivers to program
the PhotoBit Imagers and ADAP processors.

D.1 progcam.c

The Photobit imager has programmable registers internally that control the behavior of the
imager. At power up, the imager outputs 8 bit image data at a rate of 30 512 x 384 frames
per second. The default resolution is higher than necessary to calculate depth maps and
provides more data than the ADAP chips can process in the given amount of time. For
proper execution, the PB159 is programmed to output a 64 x 64 pixel window at the center
of the image. Other features such as exposure time and shutter control are not modi�ed.

The imager is programmed through a routine called SHIP. The imager has a serial clock
input and a bidirectional data port. The data is latched on the rising edge of the clock,
and should be held stable while the clock is high. The imager is programmed by sending
sending a serial bit stream over the data line. Programming is initiated by sending a start
signal, followed by an chip address byte, a register address byte, and the data to be written
to that address. After each byte is sent, the imager acknowledges by pulling the data pin
low for a clock cycle [5].

To ensure precise timing, an interrupt-driven routine is used. Data is sent to the con-
troller board on the falling rising edge of the ADAP PHI2 signal, which is also used as
the timing reference for the serial clock. The following code reads a program data �le and
performs the necessary programming algorithm.

// progcam.c

// Programs the PhotoBit PB159DM imagers thruogh the digital controller board

// Mark Spaeth, February 1999

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <unistd.h>

#include <asm/io.h>

#include "../pcmd24_cs/pcmd24.h"

#include <fcntl.h>

static char *usage="\

69

Usage: %s <pb159 program> [lpt port]\n\n\

Configures a pb159 image through the ADAP controller board\n\n";

int readline(FILE *, char *, int *);

void main(int argc, char *argv[]) {

int pcmdev;

short port=0x378;

char *prog, *inpline, done;

FILE *file;

int line,ret,len;

int i,j,k,c;

done=0;

line=0;

len=0;

prog=(char *)malloc(sizeof(char));

inpline=(char *)malloc(256*sizeof(char));

printf("%x\n",inpline);

if (argc==1) {

fprintf(stderr,usage,argv[0]);

exit(1);

}

if ((file=fopen(argv[1],"r"))==NULL) {

fprintf(stderr,"File not found: %s\n\n",argv[1]);

fprintf(stderr,usage,argv[0]);

exit(1);

}

if (argc>2) {

if ((sscanf(argv[1],"%x",&port)!=1)||port<0x100) {

fprintf(stderr,"Invalid LPT port address\n\n");

fprintf(stderr,usage,argv[0]);

exit(1);

}

}

fprintf(stderr,"Using LPT port at 0x%3x\n",port);

if ((pcmdev=open("/dev/dio0",O_RDONLY))==-1) {

fprintf(stderr,"Unable to open DIO device\n");

exit(1);

}

fprintf(stderr,"Using DIO port at 0x%3x\n",ioctl(pcmdev,PCMD24_IOCTL_PORTBASE,NULL));

if ((ret=ioctl(pcmdev,PCMD24_IOCTL_DISABLIRQ,NULL))<0)

fprintf(stderr,"DisableIRQ failed\n");

if ((ret=ioctl(pcmdev,PCMD24_IOCTL_READPORT,port+1))<0)

fprintf(stderr,"ReadPort failed\n");

if (ret&PROG) {

fprintf(stderr,"Error: Controller board is not in program mode\n");

exit(1);

}

if ((ret=ioctl(pcmdev,PCMD24_IOCTL_IRQSRC,INT_EXT))<0)

fprintf(stderr,"IRQSrc failed\n");

if ((ret=ioctl(pcmdev,PCMD24_IOCTL_LATENT,0))<0)

fprintf(stderr,"Latent failed\n");

if ((ret=ioctl(pcmdev,PCMD24_IOCTL_SHIPPORT,port))<0)

fprintf(stderr,"SHIPPort failed\n");

if ((ret=ioctl(pcmdev,PCMD24_IOCTL_SETINTOP,INT_PROGCAM))<0)

fprintf(stderr,"SetIntOp failed\n");

while (!done) {

if (readline(file,inpline,&line)==-1)

exit(1);

if (!strncmp(inpline,"START",5))

continue;

70

if (!strncmp(inpline,"STOP",4))

continue;

if (!strncmp(inpline,"WAIT",4))

continue;

if (!strncmp(inpline,"END",3)) {

done=1;

continue;

}

if (sscanf(inpline,"0x%x",&c)==1) {

prog=(char *)realloc(prog,(len+1)*sizeof(char));

prog[len++]=c;

continue;

}

fprintf(stderr,"Error: Unrecognized command at line %d: %s\n",line,inpline);

exit(1);

}

if ((ret=ioctl(pcmdev,PCMD24_IOCTL_OUTBUFLEN,len))<0)

fprintf(stderr,"OutBufLen failed\n");

if ((ret=ioctl(pcmdev,PCMD24_IOCTL_SETOUTBUF,prog))<0)

fprintf(stderr,"SetOutBuf failed\n");

printf("Programming the PB-159DM...\n");

if ((ret=ioctl(pcmdev,PCMD24_IOCTL_RESETRUN,NULL))<0)

fprintf(stderr,"ResetRun failed\n");

while (!(ioctl(pcmdev,PCMD24_IOCTL_SHIPFLAG,NULL)&SHIP_DONE))

usleep(1000);

printf("Programming complete...\n");

if ((ret=ioctl(pcmdev,PCMD24_IOCTL_DISABLIRQ,NULL))<0)

fprintf(stderr,"DisableIRQ failed\n");

free(prog);

free(inpline);

fclose(file);

close(pcmdev);

}

int readline(FILE *inpfile, char *line, int *lineno) {

char *tmp, *inpline;

inpline=(char *)malloc(256*sizeof(char));

do {

if (fgets(inpline,256,inpfile)==NULL) {

fprintf(stderr,"Unexpected EOF in data file\n");

return -1;

}

(*lineno)++;

tmp=inpline;

while((*tmp==' ')||(*tmp=='\t')) tmp++;

if ((*tmp=='#')||(*tmp=='\n')||(*tmp=='\0')) {

strcpy(line,"");

} else {

strcpy(line,tmp);

}

} while (!strlen(line));

free(inpline);

return 0;

}

71

D.2 progadap.c

As previously described, each ADAP array cell contains a 35-bit shift register which controls
the operation of the ALU and the interconnections in the switch matrix. The output of
each cell's shift register is connected to the input of the register in the cell immediately
east, so a programming signal consists of �ve parallel 175-bit sequences sent into the �ve
data in ports on the ADAP. To program the ADAP, the LOAD signal is raised and the
data is sent in, as clocked by the PHI2 signal. Special care must be taken to lower the
LOAD signal at the correct time or the data will be misaligned in the shift registers, and
the program will be wrong [6].

Like the camera programming code, an interrupt driven routine is used here to ensure
precise timing. This program supports programming the the two ADAP chips on each
board independently or together. The following code reads in program �les for either or
both ADAP chips and programs them.

// progadap.c

// Programs the ADAP arrays using the digital controller board

// Mark Spaeth, March 1999

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include "../pcmd24_cs/pcmd24.h"

#include <errno.h>

#include <fcntl.h>

#define NBITS 35

int readline(FILE *, char *, int *);

static char *usage="

Usage : %s [-lpt <port>] [-a <prog>] [-b <prog>]

Programs the 2 ADAPs on the early vision board\n\n";

void main(int argc, char *argv[]) {

int pcmdev;

int port=0x378, lpt=1;

char *inpnamea=NULL, *inpnameb=NULL;

FILE *inpfilea, *inpfileb;

char *arg, *tmp, *prog;

int dataa=0,datab=0;

int line,h,w,ret;

int i,j,k,l;

if (argc==1) {

fprintf(stderr,usage,argv[0]);

exit(1);

}

for (i=1;i<argc;i++) {

arg=argv[i];

if (*arg!='-') {

fprintf(stderr,"Error: Invalid argument -- %s\n\n",arg);

fprintf(stderr,usage,argv[0]);

exit(1);

}

arg++;

if (!strcmp(arg,"lpt")) {

if (++i<argc) {

arg=argv[i];

if (sscanf(arg,"%d",&lpt)==1) {

switch (lpt) {

case 1:

72

port=0x378;

break;

case 2:

port=0x278;

break;

case 3:

port=0x3BC;

break;

default:

fprintf(stderr,"Error: Invalid LPT port identifier\n");

fprintf(stderr,usage,argv[0]);

exit(1);

break;

}

} else {

fprintf(stderr,"Error: Unable to read LPT port identifier\n");

fprintf(stderr,usage,argv[0]);

exit(1);

}

} else {

fprintf(stderr,"Error: Missing LPT port identifier\n");

fprintf(stderr,usage,argv[0]);

exit(1);

}

} else if (!strcmp(arg,"a")) {

if (++i<argc) {

inpnamea=argv[i];

} else {

fprintf(stderr,"Error: Missing file name\n");

fprintf(stderr,usage,argv[0]);

exit(1);

}

} else if (!strcmp(arg,"b")) {

if (++i<argc) {

inpnameb=argv[i];

} else {

fprintf(stderr,"Error: Missing file name\n");

fprintf(stderr,usage,argv[0]);

exit(1);

}

} else {

fprintf(stderr,"Error: Unrecognized argument : -%s\n",arg);

fprintf(stderr,usage,argv[0]);

exit(1);

}

}

if ((inpnamea==NULL)&&(inpnameb==NULL)) {

fprintf(stderr,"Error: No input program files specified\n");

fprintf(stderr,usage,argv[0]);

exit(1);

}

fprintf(stderr,"Using LPT port at 0x%3x\n",port);

if ((pcmdev=open("/dev/dio0",O_RDONLY))==-1) {

fprintf(stderr,"Unable to open DIO device\n");

exit(1);

}

fprintf(stderr,"Using DIO port at 0x%3x\n",ioctl(pcmdev,PCMD24_IOCTL_PORTBASE,NULL));

ioctl(pcmdev,PCMD24_IOCTL_DISABLIRQ,NULL);

if ((ret=ioctl(pcmdev,PCMD24_IOCTL_READPORT,port+1))<0)

fprintf(stderr,"ReadPort failed\n");

if (ret&PROG) {

fprintf(stderr,"Error: Controller board is not in program mode\n");

exit(1);

}

73

if ((ret=ioctl(pcmdev,PCMD24_IOCTL_IRQSRC,INT_EXT))<0)

fprintf(stderr,"IRQSrc failed\n");

if ((ret=ioctl(pcmdev,PCMD24_IOCTL_LATENT,0))<0)

fprintf(stderr,"Latent failed\n");

if ((ret=ioctl(pcmdev,PCMD24_IOCTL_SHIPPORT,port))<0)

fprintf(stderr,"SHIPPort failed\n");

if ((ret=ioctl(pcmdev,PCMD24_IOCTL_SETOUTA,NULL))<0)

fprintf(stderr,"SetOutA failed\n");

if ((ret=ioctl(pcmdev,PCMD24_IOCTL_WRITEA,0))<0)

fprintf(stderr,"WriteA failed\n");

if ((ret=ioctl(pcmdev,PCMD24_IOCTL_SETOUTB,NULL))<0)

fprintf(stderr,"SetOutB failed\n");

if ((ret=ioctl(pcmdev,PCMD24_IOCTL_WRITEB,0))<0)

fprintf(stderr,"WriteB failed\n");

if ((ret=ioctl(pcmdev,PCMD24_IOCTL_SETINC,NULL))<0)

fprintf(stderr,"SetInC failed\n");

if ((ret=ioctl(pcmdev,PCMD24_IOCTL_SETINTOP,INT_PROGADAP))<0)

fprintf(stderr,"SetIntOp failed\n");

tmp=(char *)malloc(128*sizeof(char));

if (inpnamea!=NULL) {

if ((inpfilea=fopen(inpnamea,"r"))!=NULL) {

line=0;

if (readline(inpfilea,tmp,&line)==EOF) exit(1);

if (sscanf(tmp,"array %d %d\n",&w,&h)!=2) {

fprintf(stderr,"Error: Missing array declaration in file %s\n",inpnamea);

exit(1);

}

if ((w!=5)||(h!=5)) {

fprintf(stderr,"Error: Array size not 5x5 in file %s\n",inpnamea);

exit(1);

}

} else {

fprintf(stderr,"Unable to open file %s\n",inpnamea);

exit(1);

}

}

if (inpnameb!=NULL) {

if ((inpfileb=fopen(inpnameb,"r"))!=NULL) {

line=0;

if (readline(inpfileb,tmp,&line)==EOF) exit(1);

if (sscanf(tmp,"array %d %d\n",&w,&h)!=2) {

fprintf(stderr,"Error: Missing array declaration in file %s\n",inpnameb);

exit(1);

}

if ((w!=5)||(h!=5)) {

fprintf(stderr,"Error: Array size not 5x5 in file %s\n",inpnameb);

exit(1);

}

} else {

fprintf(stderr,"Unable to open file %s\n",inpnameb);

exit(1);

}

}

free(tmp);

prog=(char *)malloc((2*5*NBITS)*sizeof(char));

if ((ret=ioctl(pcmdev,PCMD24_IOCTL_WRITEA,inpnamea==NULL ? 0x00 : 0x20))<0)

fprintf(stderr,"WriteA failed\n");

if ((ret=ioctl(pcmdev,PCMD24_IOCTL_WRITEB,inpnameb==NULL ? 0x00 : 0x20))<0)

fprintf(stderr,"WriteB failed\n");

k=0;

dataa=0;

datab=0;

for(i=0;i<5;i++) {

for(j=0;j<NBITS;j++) {

74

if (inpnamea!=NULL) {

if (fscanf(inpfilea,"%d",&dataa)!=1) {

fprintf(stderr,"Error: Can't read bit data from file %s %d %d\n",inpnamea,i,j);

exit(1);

}

dataa&=0x1f;

dataa|=0x20;

}

if (inpnameb!=NULL) {

if (fscanf(inpfileb,"%d",&datab)!=1) {

fprintf(stderr,"Error: Can't read bit data from file %s %d %d\n",inpnameb,i,j);

exit(1);

}

datab&=0x1f;

datab|=0x20;

}

prog[k++]=dataa;

prog[k++]=datab;

}

}

if (inpnamea!=NULL) fclose(inpfilea);

if (inpnameb!=NULL) fclose(inpfileb);

if ((ret=ioctl(pcmdev,PCMD24_IOCTL_OUTBUFLEN,2*5*NBITS))<0)

fprintf(stderr,"OutBufLen failed\n");

if ((ret=ioctl(pcmdev,PCMD24_IOCTL_SETOUTBUF,prog))<0)

fprintf(stderr,"SetOutBuf failed\n");

printf("Programming the ADAP chips...\n");

if ((ret=ioctl(pcmdev,PCMD24_IOCTL_RESETRUN,NULL))<0)

fprintf(stderr,"ResetRun failed\n");

while (!(ioctl(pcmdev,PCMD24_IOCTL_ADAPFLAG,NULL)&ADAP_DONE))

usleep(1000);

printf("Programming complete...\n");

ioctl(pcmdev,PCMD24_IOCTL_DISABLIRQ,NULL);

free(prog);

close(pcmdev);

}

int readline(FILE *inpfile, char *line, int *lineno) {

char *tmp, *inpline;

inpline=(char *)malloc(256*sizeof(char));

do {

if (fgets(inpline,256,inpfile)==NULL) {

fprintf(stderr,"Unexpected EOF in data file\n");

return EOF;

}

(*lineno)++;

tmp=inpline;

while((*tmp==' ')||(*tmp=='\t')) tmp++;

if ((*tmp=='#')||(*tmp=='\n')||(*tmp=='\0')) {

strcpy(line,"");

} else {

strcpy(line,tmp);

}

} while (!strlen(line));

free(inpline);

return 0;

}

75

Appendix E

XDepth Software

#include "xdepth.h"

int main (int argc, char * argv) {

/* IPC data */

char *shmptr;

int shmsize;

/* Device data */

int pcmdev;

short lptport=0x378;

/* Configuration parms */

char latency;

/* Globals */

char *tmp, *arg;

char v=0;

int ret, argn;

/* Signals */

struct sigaction sigact;

sigact.sa_handler=inthandler;

sigemptyset(&sigact.sa_mask);

sigact.sa_flags=0;

sigaction(SIGINT, &sigact, 0);

v=0;

shmid=0;

quit=NULL;

imgh=64;

imgw=64;

xscale=4;

nbins=128;

sprscale=9;

pidread=getpid();

pidedge=0;

pidspr=0;

pidcorr=0;

pidplot=0;

latency=22;

argn=1;

while(argn<argc) {

arg=argv[argn];

if ((*arg)!='-')

die("Invalid argument format");

switch (*(++arg)) {

76

case 'v':

v=1;

break;

case 'l':

if (++argn<argc)

latency=atoi(argv[argn]);

else

die("Invalid argument format");

break;

case 'x':

if (++argn<argc)

xscale=atoi(argv[argn]);

else

die("Invalid argument format");

break;

default:

die("Unrecognized argument");

}

argn++;

}

if ((pcmdev=open("/dev/dio0",O_RDONLY))==-1)

die("Unable to open DIO device");

ioctl(pcmdev,PCMD24_IOCTL_DISABLIRQ,NULL);

shmsize=(7*imgh*imgw*sizeof(char))+4; // (2*imgw*sizeof(char));

if (shmsize>0x20000)

die("Shared memory region is too large");

if ((shmid=shmget(IPC_PRIVATE, shmsize, SHM_R|SHM_W))<0)

die("shmget failed");

if ((shmptr=shmat(shmid,0,0))==(char *)-1)

die("shmat failed (read)");

if (v) printf("Shm range: %x %x\n",shmptr,shmptr+shmsize-1);

if (v) printf("Defining arrays\n");

img[0]=tmp=(char *)shmptr;

img[1]=tmp=(char *)(tmp+(imgh*imgw*sizeof(char)));

img[2]=tmp=(char *)(tmp+(imgh*imgw*sizeof(char)));

spr[0]=tmp=(char *)(tmp+(imgh*imgw*sizeof(char)));

spr[1]=tmp=(char *)(tmp+(imgh*imgw*sizeof(char)));

spr[2]=tmp=(char *)(tmp+(imgh*imgw*sizeof(char)));

dep =tmp=(char *)(tmp+(imgh*imgw*sizeof(char)));

tailr =tmp=(char *)(tmp+(imgh*imgw*sizeof(char)));

taile =tmp=(char *)(tmp+sizeof(char));

tails =tmp=(char *)(tmp+sizeof(char));

quit =tmp=(char *)(tmp+sizeof(char));

if (v) printf("Setting parms\n");

(*tailr)=0;

(*taile)=0;

(*tails)=0;

(*quit)=0;

if (v) fprintf(stdout,"Forking output\n");

if ((pidplot=fork())<0)

die("fork error (output)");

if (pidplot==0) {

dox();

if (shmctl(shmid,IPC_RMID,0)<0)

die("shmctl error (output)");

return 0;

}

77

if (v) fprintf(stdout,"Forking edge\n");

if ((pidedge=fork())<0)

die("fork error (edge)");

if (pidedge==0) {

spredge();

if (shmctl(shmid,IPC_RMID,0)<0)

die("shmctl error (edge)");

return 0;

}

if (v) fprintf(stdout,"Forking corr\n");

if ((pidcorr=fork())<0)

die("fork error (corr)");

if (pidcorr==0) {

correlate();

if (shmctl(shmid,IPC_RMID,0)<0)

die("shmctl error (corr)");

return 0;

}

if (v) fprintf(stdout,"Using LPT port at 0x%x\n",lptport);

if (v) fprintf(stdout,"Using DIO port at 0x%x\n",ioctl(pcmdev,PCMD24_IOCTL_PORTBASE,NULL));

if (v) fprintf(stdout,"DIO using interrupt %d\n",ioctl(pcmdev,PCMD24_IOCTL_IRQSTAT));

if ((ret=ioctl(pcmdev,PCMD24_IOCTL_READPORT,lptport|1))<0)

die("ReadPort failed");

if (~ret&PROG) {

shmctl(shmid,IPC_RMID,0);

die("Controller board is not in run mode");

} else

if (v) fprintf(stdout,"Controller board is in run mode\n");

if (v) fprintf(stdout,"IRQSrc\n");

if ((ret=ioctl(pcmdev,PCMD24_IOCTL_IRQSRC,INT_EXT))<0)

die("IRQSrc failed");

if (v) fprintf(stdout,"Latent\n");

if ((ret=ioctl(pcmdev,PCMD24_IOCTL_LATENT,latency))<0)

die("Latent failed");

if (v) fprintf(stdout,"InBufLen\n");

if ((ret=ioctl(pcmdev,PCMD24_IOCTL_INBUFLEN,3*imgh*imgw))<0)

die("InBufLen failed");

if (v) fprintf(stdout,"SetIn\n");

if ((ret=ioctl(pcmdev,PCMD24_IOCTL_SETIN,PORTA|PORTB|PORTC))<0)

die("SetIn failed");

if (v) fprintf(stdout,"ParPort\n");

if ((ret=ioctl(pcmdev,PCMD24_IOCTL_PARPORT,lptport))<0)

die("ParPort failed");

if (v) fprintf(stdout,"SetIntOp\n");

if ((ret=ioctl(pcmdev,PCMD24_IOCTL_SETINTOP,INT_GETFRAME))<0) {

fprintf(stderr,"%d\n",ret);

die("SetIntOp failed");

}

while (!(*quit)) {

78

if (v) fprintf(stdout,"ResetRun\n");

if ((ret=ioctl(pcmdev,PCMD24_IOCTL_RESETRUN,NULL))<0)

die("ResetRun failed");

if (v) fprintf(stdout,"WaitDone\n");

while (!(ioctl(pcmdev,PCMD24_IOCTL_FLAG,NULL)&ADAP_DONE)&&!(*quit))

usleep(1000);

if (v) fprintf(stdout,"WaitFrame\n");

while ((*tailr)&&!(*quit))

usleep(1000);

if (v) fprintf(stdout,"GetInBuf\n");

if ((ret=ioctl(pcmdev,PCMD24_IOCTL_GETINBUF,shmptr))<0)

die("GetInBuf failed");

(*tailr)+=imgh;

}

if ((ret=ioctl(pcmdev,PCMD24_IOCTL_DISABLIRQ,NULL))<0)

if (v) fprintf(stderr,"Error: DisablIRQ failed");

close(pcmdev);

if (shmctl(shmid,IPC_RMID,0)<0)

die("shmctl error (main)");

return 0;

}

/***/

void die(char *msg) {

fprintf(stderr,"Error: %s\n",msg);

if (quit!=NULL) (*quit)=1;

exit(1);

}

/***/

void inthandler(int sig) {

shmctl(shmid,IPC_RMID,0);

die("Caught SIGINT\n");

}

79

Appendix F

Schematics

F.1 ADAP Early Vision Board

Figure F-1: ADAP board I/O ports

80

Figure F-2: ADAP board ADAP and interface circuitry

81

Figure F-3: ADAP board power and bias circuitry

82

Figure F-4: ADAP board analog constants

83

F.2 Imager Board

Figure F-5: Imgaer board bias, power, and I/O ports

84

Figure F-6: Imager board imager, address, and SRAM circuitry

85

F.3 PLD Board

Figure F-7: PLD board PLD interface

86

Figure F-8: PLD board power and I/O ports

87

adapctl2@
11

S
P

R
A

IN
P

U
T

adapctl2@
91

N
E

W
F

R
A

M
E

IN
P

U
T

adapctl2@
10

S
P

R
B

IN
P

U
T

adapctl2@
9

S
P

R
C

IN
P

U
T

adapctl2@
66

P
R

O
G

IN
P

U
T

adapctl2@
89

S
Y

S
C

LK
IN

P
U

T

N
O

T

NOT

N
O

T

adapctl2@
37

P
O

R
T

C
5

B
ID

IR

adapctl2@
34

P
O

R
T

C
4

B
ID

IR

adapctl2@
39

P
O

R
T

C
6

B
ID

IR

adapctl2@
43

P
O

R
T

C
7

B
ID

IR

adapctl2@
59

P
O

R
T

C
1

B
ID

IR
adapctl2@

58
P

O
R

T
C

0
B

ID
IR

adapctl2@
60

P
O

R
T

C
2

B
ID

IR

adapctl2@
32

P
O

R
T

C
3

B
ID

IR

adapctl2@
52

P
O

R
T

B
4

B
ID

IR

adapctl2@
55

P
O

R
T

B
5

B
ID

IR

adapctl2@
56

P
O

R
T

B
6

B
ID

IR

adapctl2@
57

P
O

R
T

B
7

B
ID

IR

adapctl2@
48

P
O

R
T

B
0

B
ID

IR

adapctl2@
49

P
O

R
T

B
1

B
ID

IR

adapctl2@
50

P
O

R
T

B
2

B
ID

IR

adapctl2@
51

P
O

R
T

B
3

B
ID

IR

adapctl2@
42

P
O

R
T

A
4

B
ID

IR

adapctl2@
44

P
O

R
T

A
5

B
ID

IR

adapctl2@
46

P
O

R
T

A
6

B
ID

IR

adapctl2@
47

P
O

R
T

A
7

B
ID

IR

adapctl2@
31

P
O

R
T

A
0

B
ID

IR

adapctl2@
33

P
O

R
T

A
1

B
ID

IR

adapctl2@
35

P
O

R
T

A
2

B
ID

IR

adapctl2@
38

P
O

R
T

A
3

B
ID

IR

2D3D4D5D6DC
LR

N
C

LK

1Q2Q3Q4Q5Q6Q

1D
74174

R
E

G
IS

T
E

R

2D3D4D5D6DC
LR

N
C

LK

1Q2Q3Q4Q5Q6Q

1D
74174

R
E

G
IS

T
E

R

adapctl2@
14

A
V

4
O

U
T

P
U

T

adapctl2@
12

A
V

5
O

U
T

P
U

T

adapctl2@
24

A
V

0
O

U
T

P
U

T

adapctl2@
23

A
V

1
O

U
T

P
U

T

adapctl2@
26

A
V

2
O

U
T

P
U

T

adapctl2@
25

A
V

3
O

U
T

P
U

T

adapctl2@
22

A
H

4
O

U
T

P
U

T

adapctl2@
21

A
H

5
O

U
T

P
U

T

adapctl2@
16

A
H

0
O

U
T

P
U

T

adapctl2@
15

A
H

1
O

U
T

P
U

T

adapctl2@
18

A
H

3
O

U
T

P
U

T

adapctl2@
19

A
H

2
O

U
T

P
U

T

adapctl2@
99

A
1D

in4
O

U
T

P
U

T

adapctl2@
1

A
1P

rog
O

U
T

P
U

T

adapctl2@
83

A
1D

in0
O

U
T

P
U

T

adapctl2@
86

A
1D

in1
O

U
T

P
U

T

adapctl2@
94

A
1D

in2
O

U
T

P
U

T

adapctl2@
96

A
1D

in3
O

U
T

P
U

T

adapctl2@
100

A
0D

in4
O

U
T

P
U

T

adapctl2@
2

A
0P

rog
O

U
T

P
U

T

adapctl2@
87

A
0D

in1
O

U
T

P
U

T
adapctl2@

85
A

0D
in0

O
U

T
P

U
T

adapctl2@
95

A
0D

in2
O

U
T

P
U

T

adapctl2@
98

A
0D

in3
O

U
T

P
U

T

adapctl2@
8

S
R

C
LK

O
U

T
P

U
T

adapctl2@
7

D
A

LE
O

U
T

P
U

T

adapctl2@
80

S
C

LK
O

U
T

P
U

T
adapctl2@

79
S

LA
T

O
U

T
P

U
T

adapctl2@
82

V
L

O
U

T
P

U
T

adapctl2@
81

V
F

O
U

T
P

U
T

adapctl2@
4

P
hi1

O
U

T
P

U
T

adapctl2@
3

P
hi2

O
U

T
P

U
T

adapctl2@
54

IN
T

O
U

T
P

U
T

Y
ABS

21m
ux

M
U

LT
IP

LE
X

E
R

Y
ABS

21m
ux

M
U

LT
IP

LE
X

E
R

V
C

C

AND6

A
N

D
2

NAND6

O
R

2

D
1

D
2

D
3

D
4

D
5

D
6

D
7

D
8

O
E

N
C

LK

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

Q
8

74374

O
C

T
A

L D
-F

F

D
1

D
2

D
3

D
4

D
5

D
6

D
7

D
8

O
E

N
C

LK

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

Q
8

74374

O
C

T
A

L D
-F

F

D
1

D
2

D
3

D
4

D
5

D
6

D
7

D
8

O
E

N
C

LK

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

Q
8

74374

O
C

T
A

L D
-F

F

V
F

V
L

V
F

S
C

LK

Figure F-9: PLD internal circuitry

88

s

D

DFF

CLRN

Q
PRN

D

DFF

CLRN

Q
PRN

NAND3

NOT

NOT

NOT

AND2

AND2

AND2

SYSCLK INPUT

DALEOUTPUT

SCLKOUTPUT

SLATOUTPUT

SRCLKOUTPUT

PHI2OUTPUT

PHI1OUTPUT

VFOUTPUT

VLOUTPUT
AND4

NAND2

NOR3

OR2

Figure F-10: PLD clock generator circuitry

89

Bibliography

[1] C. L. Keast. An Integrated Image Acquisition, Smoothing, and Segmentation Focal

Plane Processing. Phd thesis, Massachusetts Institute of Technology, Deartment of
Electrical Engineering and Computer Science, February 1992.

[2] D. L. Standley. An object position and orientation ic with embedded imager. IEEE

Journal of Solid-State Circuits, pages 1853{1859, February 1992.

[3] Steven J. Decker. A Wide Dynamic Range CMOS Imager With Parallel On-Chip

Analog-to-Digital Conversion. Phd thesis, Massachusetts Institute of Technology,
Deartment of Electrical Engineering and Computer Science, September 1997.

[4] S. A. Paul and H.-S. Lee. A 9-b charge-to-digital converter for integrated image sensors.
IEEE Journal of Solid-State Circuits, pages 1931{1938, December 1996.

[5] PhotoBit Corporation. Pb159dx product speci�cations. http://www.photobit.com,
August 1998.

[6] David A. Martin. ADAP: A Mixed-Signal Array Processor With Early Vision Appli-

cations. Phd thesis, Massachusetts Institute of Technology, Deartment of Electrical
Engineering and Computer Science, August 1996.

[7] Berthold K. P. Horn. Robot Vision. MIT Press, Cambridge, Massachusetts, 1986.

[8] Jae S. Lim. Two-Dimensional Signal and Image Processing. Prentice Hall, Upper
Saddle River, New Jersey, 1990.

[9] J. C. Russ. The Image Processing Handbook. CRC Press, Boca Raton, Florida, 1995.

[10] Ichiro Masaki et al. New architecture paradigms for analog vlsi chips. Vision Chips {

Implementing Vision Algorithms With Analog VLSI Circuits, pages 353{375, 1995.

[11] D. Naidu and R. Fisher. A comparison of algorithms for sub-pixel peak detection.
Technical Report Tech Report 553, University of Edinburgh Department of Arti�cial
Intelligence, 1991.

[12] Altera Corporation. Max 7000 programmable logic device family data sheet.
http://www.altera.com, February 1998.

[13] Altera Corporation. Byteblaster parallel port download cable. http://www.altera.com,
August 1996.

[14] American Data Acquisition Corporation. Adac pcm55dio manual, 1997.

90

[15] Intel Corporation. 82c54 chmos progammable interval timer data sheet.
http://www.intel.com, October 1994.

[16] Intel Corporation. 82c55a chmos progammable peripheral interface data sheet.
http://www.intel.com, October 1995.

[17] Allesandro Rubini. Linux Device Drivers. O'Reilly and Associates, Inc, Sebastopol,
CA, 1998.

[18] Neil Matthew and Richard Stones. Beginning Linux Programming. WROX Press,
Chicago, IL, 1996.

91

