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Abstract

Numerical simulations of gas-lubricated journal bearings for microfabricated machines are
performed with specialized tools. To maximize flexibility, an orbit method formulation is
chosen for the primary tool. Its pseudospectral fluid equation solver enables run-time
resolution adjustment while maintaining the efficiency advantage of spectral methods.
A design framework is established for microfabricated bearings, including several new
charts that reflect the unique constraints of MEMS. A duality between applied load and
imbalance level is demonstrated and a method for experimentally determining appropri-
ate loads for unknown imbalance is suggested. A large-amplitude whirling mode is shown
to exist on both sides of the fixed-point threshold speed, in agreement with experimental
observation. A quasi-static method for calculating shock tolerance is suggested and evalu-
ated against unsteady simulations. Simulations of loads applied via noncircumferentially-
uniform pressure at the bearing end are shown to increase the attitude angle and decrease
the allowable nondimensional mass compared to the equivalent gravity-loaded case. Fur-
thermore, the associated axial pressure gradients are shown to produce a hydrostatic stiff-
ness via inertial effects. A nondimensional model is constructed for this stiffness and its
dependence on various parameters is studied. It is shown that the load capacity advantage
reported in the literature for noncircular bearings can be canceled by microfabrication con-
straints. The stability advantage, however, survives. Tapered axial clearance is shown to
have an extremely deleterious effect on performance while bowed clearance proves less
detrimental. Navier-Stokes solutions of infinite-length bearings with unity inertial pa-
rameters are performed using a second specially-built tool. Little change is found in the
steady-state results from inertial and curvature effects in the MIT microengine’s parameter
space.

Thesis Supervisor: Kenneth S. Breuer
Title: Visiting Associate Professor of Aeronautics and Astronautics
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Symbol Description Section

Anc noncircularity amplitude, m 4.1

C clearance: Rb�R, m 1.2.1

Cnc mean clearance of noncircular bearing, m 4.1
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Chapter 1

Introduction

1.1 Microfabricated Machines

MicroElectroMechanical Systems, or MEMS, are a novel class of devices appearing in a
rapidly expanding range of applications. As a group, they are characterized by manufac-
turing techniques closer to those of integrated circuit (IC) chips than those of conventional
machines. Their advantages include the mass-producibility responsible for IC’s ubiquity
as well as low weight, small size, rapid response, and low power consumption.

Recently, a new class of MEMS, power MEMS, has emerged. This term describes heat
engines with power densities comparable to their full-sized counterparts, resulting in cen-
timeter-scale packages with power outputs of 10 to 100 Watts [2]. A number of poten-
tially revolutionary turbomachines in this class are currently under development at MIT.
These machines include gas turbine engines for propulsion or electrical power generation,
electrically-driven compressors for refrigeration or fuel cells, and turbopumps for rocket
motors.

The great promise of power MEMS has an accompanying cost: complexity. In general,
these devices emphasize the “systems” component of the MEMS acronym. As an example,
a 3-D cutaway view of the MIT microengine is shown in Fig. 1.1. In this figure, the rotating
components are shaded and the flow path is indicated with a dashed line. The operation
is as follows: fluid enters the engine at its center, passes through a centrifugal compressor
and moves radially outward. Fuel is added as the flow travels around and then into the
combustor, where it is burned. The resulting hot gases are expanded through the turbine
and exhausted from the center at the chip’s aft surface. Radial rotor motion is controlled
by a journal bearing at the turbine rim and axial motion is controlled by an opposed pair
of thrust bearings located at the rotor center.

Successful operation of this device requires many subsystems to operate efficiently
together, including compression, combustion, electromechanical energy conversion, ex-
pansion, and, the subject of this document: bearings. In addition, construction of this
machine requires six wafers with microfabricated features on both sides, five precision-
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journal bearing

flow path

combustor

thrust bearing

compressorturbine

Figure 1.1: Three-dimensional cutaway drawing of the baseline MIT microengine. The rotating
portion is shaded gray and the flow path is indicated with a dashed line. Figure courtesy of J. Protz.

Figure 1.2: Scanning electron micrograph (SEM) of a cross-sectioned silicon micro-bearing test rig.
Many features of the microengine shown in Fig. 1.1 are visible in this device. Figure courtesy of
C.C. Lin [3].
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aligned (within 1-2�m) bonds between them, and a process complexity comparable to that
of modern CMOS devices [2]. The experimental rig built to test the bearings is, in itself,
a complex device, containing many of the engine’s features, as shown (in cross-section) in
Fig. 1.2.

Bearings represent an important subsystem in power MEMS due to the presence of
high speed rotating machinery. While rotating members have been previously demon-
strated in microdevices [4–6], rim speeds have been limited to a few meters per second.
This limitation stems, in part, from bearing drag associated with controlling axial and
radial rotor movement. In the axial direction, passive magnetic levitation has been imple-
mented [5] as a first step toward solution of this problem. In the radial direction, electro-
static bearings were investigated for the MIT microengine [7] but this topic has received
little external attention. Consequently, lateral loads experienced in MEMS often result in
“dry rubbing”, where the rotating members make direct contact with their adjoining sur-
faces. At the large rim speeds required by high power density micro-turbomachines, such
contact results in unacceptably high drag and short service life.

1.2 Journal Bearings

Gas journal bearings have comparable fabrication simplicity (for a microdevice) to dry-
rubbing bearings but they have much lower drag and little to no running wear. Unfortu-
nately, these attractive attributes are balanced by a penchant for instability that can pro-
duce destructive contact between rotating and stationary components if the geometry and
operating conditions are not carefully controlled.

This stability issue, combined with their relatively low load capacity, has prevented
the widespread application of gas journal bearings. To date, they have appeared primarily
in devices where contamination of the working fluid by lubricants is unacceptable, low
drag is essential, and or long life at high rotation rates are required. Examples of such
applications include navigational gyros [8], cryogenic expansion turbines [9], and air cycle
machines (ACM) [10].

1.2.1 Geometry and Nomenclature

The cross-section of a typical journal bearing is shown in Fig. 1.3. The inner (shaded) and
outer members are referred to as the “journal” and the “bearing”, respectively. Either or
both members may rotate in the general case.

The simplicity of this arrangement is striking; the bearing consists of nested members
connected only by a fluid film. The complete separation of moving solid surfaces is respon-
sible for journal bearings’ low drag and near-zero running wear. Unfortunately, because
the operating characteristics are thus entirely dependent on the fluid dynamics of the film,
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Figure 1.3: Journal bearing cross-section with relevant nomenclature.

there is a very strong sensitivity to the geometry. This consideration complicates fabri-
cation because the geometry must be carefully controlled, often with unusually stringent
tolerances on dimension, roundness, and roughness.

Much of the nomenclature used in this document appears in Fig. 1.3: ! denotes the
rotation rate, W is the applied load, Rb is the bearing radius, R is the journal radius and
their difference is the clearance, C . The attitude angle, � is the angle between the applied
load and a line connecting the journal and bearing centers. The excursion of the journal
center from the bearing center is known as the “eccentricity” and denoted by e. It is most
often normalized by C and expressed as an “eccentricity ratio”, �, so �=0 and �=1 represent
fully-centered and “crashed” journals, respectively. Finally, the journal has mass m and,
though not visible in this cross-sectional view, the bearing has length L and its ends are
either exhausted to ambient conditions or treated with a nonuniform pressure distribution,
to be described in Sec. 5.1.

1.2.2 Operation Description

Due to the complete separation of its solid surfaces, a journal bearing’s drag and load-
carrying characteristics are generated solely by fluid action. In most configurations, the
drag is determined primarily by viscous shear from journal rotation. The load-carrying
capacity, however, may be due to a pressure field generated by relative motion of the
surfaces, an operating mode termed “hydrodynamic” or “self-acting”, or by externally-
supplied pressures, a mode termed “hydrostatic” or “externally-pressurized”. If both of
these effects are significant, the operating mode is termed “hybrid”. The majority of this
document will deal with hydrodynamic bearings, though a hydrostatic mode of particular
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Figure 1.4: Typical pressure distribution of a journal bearing operating in an eccentric position. z
is the axial coordinate and � is the azimuthal coordinate. Fluid motion is left to right, dashed lines
signify sub-ambient pressures, and the applied load acts toward �=�. The attitude angle is 43o so
the minimum channel height occurs at �=1:24�

importance to microfabricated bearings will be discussed in Sec. 5.2.

The load-carrying capacity of a hydrodynamic journal bearing is derived from a vis-
cous pumping action. This action is a result of shear stress at the rotating journal imparting
kinetic energy to the fluid in the gap. When operating in a concentric position, the moving
surface-induced (Couette) flow moves through a uniform passage between journal and
bearing. It will therefore have a linear velocity profile, varying from zero at the bearing
surface to R! at the journal surface. In this situation, the pressure is constant around the
circumference, thus the load capacity is zero. When the journal moves to an eccentric
position, however, the rotational symmetry of the fluid passage is broken as it assumes
a converging-diverging shape. Now, as the journal rotates, the fluid is forced through a
passage of varying height. Consequently, the linear velocity profile, which has the same
endpoints regardless of passage height, no longer satisfies mass conservation. In order
to maintain continuity, a pressure-forced (Poiseuille) mechanism appears which is mani-
fested as a strong negative pressure gradient in the direction of motion near the narrowed
region and positive gradients on either side of this region. The resulting pressure field is
shown in Fig. 1.4, where the azimuthal coordinate has been “unwrapped”. The resultant
rotational asymmetry of the pressure produces a net force that may be used to support a
load.

Because the asymmetric pressure field results from a viscous action, and because gases
have relatively low viscosity, gas-lubricated bearings tend to have lower load capacity than
their oil-filled counterparts and much lower capacity than their rolling-element cousins.
Furthermore, compressibility tends to reduce load capacity as well [11]. As noted previ-
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ously, however, gas journal bearings have a problem more serious than modest load ca-
pacity preventing their widespread application: they have a tendency to become unstable.

Journal bearing instability is caused by misalignment between the applied load and its
corresponding reaction force, measured by the attitude angle, �, shown in Fig. 1.3. This
misalignment is visible in Fig. 1.4 by the appearance of the peak pressure downstream of
the load application point (�= �). In this case, the journal has moved to �=0:24� so the
minimum channel height is located at �=1:24�.

The force misalignment is caused by the pressure distribution’s asymmetry around the
narrowest point in the passage. The distribution shown in Fig. 1.4 is typical: the highest
pressure occurs upstream of the “throat” (to borrow a term from supersonic nozzles) while
the lowest occurs downstream. Motion in a direction tending to narrow the throat will
therefore be answered by a force with components both against the motion as well as
perpendicular to it, with the latter component acting in the direction of rotation. The rate
of change of these forces with displacement are often referred to as “direct stiffness” and
“cross stiffness”, respectively.

Due to the nonzero cross-stiffness, the journal’s reaction vector following a pertur-
bation will not point toward the equilibrium position, producing an orbit instead of a
straight-line oscillation. Due to its self-excited nature, this orbit occurs at a frequency less
than half the rotational frequency. (For a circular bearing, a whirl at exactly half the rota-
tional speed implies that the mean lubricant flow speed equals the rate at which throat is
moving away, thus the load capacity falls to zero because the fluid is no longer, on average,
forced through the throat.) Consequently, this type of motion is sometimes referred to as
“half frequency whirl,” though a more proper term is “fractional frequency whirl,” (FFW)
because it may occur at a frequency much less than half the rotation frequency.

Because a unique journal location is associated with each speed-loading pair for a given
bearing, it may be expected that the disturbed journal would certainly return to its equi-
librium position, despite the circuitous path implied above. This is indeed the case; unless
it has mass.

Finite journal mass implies finite accelerations. Consequently a nonzero centripetal
force must be provided by the fluid film to decrease the orbit radius (stable case), pro-
ducing an inward spiral toward the static point. Smaller centripetal forces result in either
periodic orbits (neutrally stable case) or outward spirals that may end in wall contact (un-
stable case). The nonzero cross-stiffness complicates this process by contributing force
components in the whirling direction. Further complication arises from the fact that time-
dependent terms appear in the fluid equations. For an incompressible fluid, the reaction
felt by the journal is a function not only of its position, but of its velocity. Density varia-
tion adds a dependence on the path taken to a given position known as a “history” effect.
The flowfield can therefore differ significantly from the static prediction for a given journal
position and the journal can depart increasingly from its static position, either entering a
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stable orbit mode or crashing into the bearing.
One well-known means of stabilizing a bearing is to force it to a high eccentricity. Phys-

ically, increasing eccentricity increases the direct stiffness with respect to the cross-stiffness.
This fact is evidenced by a decreasing attitude angle with increasing eccentricity shown,
for example, in [11]. In addition, squeeze-film damping becomes stronger when the sep-
aration between surfaces is reduced [12]. The bearing design must therefore reflect the
proper combination of load and geometry to be stable at a given speed. Changing any one
of these quantities will usually require a change in the others, though it will be shown in
this document that regions of insensitivity to certain parameters can be found.

1.2.3 Nondimensional Parameters

A number of nondimensional parameters are used in the bearing literature to generalize
the data and enable comparison of outwardly disparate bearings. The parameter sets em-
ployed reflect a combination of the particular needs of the authors as well as the prevailing
tradition.

Throughout this research, the evolution of a consistent and meaningful set of parame-
ters and their associated diagrams was a primary goal. Studying the diverse set of param-
eters used in the literature was a first step toward this goal. A broad classification of the
three types of parameters necessary to specify bearing problems was then developed. The
resulting classes will be termed “fluid condition”, “loading condition”, and “geometric
condition”.

Fluid Condition

The parameters in this set emerge naturally upon nondimensionalization of the fluid equa-
tions for lubrication problems. These equations are developed from the Navier-Stokes
equations by first dropping terms of order (C=R)2. This simplification is rarely question-
able because, referring back to the operation description of the previous section, a ge-
ometry with C comparable to R would be an extremely weak viscous pump and would
therefore not be a useful bearing because it could not generate a significant load-carrying
pressure distribution.

Under this simplification, the momentum equations become:
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where � is the density, t is the time, and P is the pressure. In common with most bearing
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analyses, the coordinate axes are oriented such that X measures distance along the circum-
ference, Y measures distance along the axis of rotation, and Z measures radial distance.
Under this coordinate system, U , V , and W are the fluid velocities in the circumferential,
axial, and radial directions, respectively.

The “unwrapping” of the circumferential coordinate such that the fluid passage is ex-
pressed in a Cartesian frame implies another common assumption in bearing analyses:
that the effect of curvature is negligible. This assumption is slightly more restrictive than
the last because the curvature terms are of order C=R (see, for example, the momentum
equations in Nataraj et al. [13], which were developed in cylindrical coordinates). For most
bearings, however, C=R is of order 1/1000, so it is entirely reasonable to neglect curvature.
The effect of this assumption will be discussed in Sec. B.5.

Removing the units via the nondimensionalizations:

t = !� P = Pap � = ~��a

X = R� Y = R� Z = Cz

U = R!u V = R!v W = R!w

the momentum equations become:
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From these equations, it can be seen that two new parameters have emerged: � and �.

The first parameter, �, is called the “inertial parameter” and is given by:

� =
�R!C

�

C

R
= Rec

C

R
(1.7)

where Rec is the Reynolds number based on the clearance and the tangential speed at the
journal surface. The inertial parameter is is thus sometimes called the “modified Reynolds
number.” Because it is a coefficient on all inertial terms in the momentum equations, this
parameter measures the importance of inertial “forces” relative to pressure and viscous
forces. For most bearing systems, � is small because Reynolds numbers are typically of or-
der unity andC=R is of order 1/1000. For this reason, the inertial terms are often neglected
in bearing analyses, eliminating the left-hand side of all three momentum equations. The
effects lost under this assumption will be discussed in Sec. B.1.

The second parameter, �, is called the “bearing number” and is given by:
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� =
6�!

pa

�
R

C

�2
; (1.8)

Also sometimes called the “compressibility number,” � is the sole remaining fluid param-
eter if terms involving � are dropped. Its clear origin has led to a near universal adoption
in the gas bearing literature for nondimensionalizing the journal rotation speed, !.

It is sometimes useful to note that, for an ideal gas, the bearing number may be also be
expressed in variables more familiar to the fluid dynamicist:

� =
6
M2

Rec

R

C
; (1.9)

where 
 is the ratio of specific heats and M is the Mach number based on the tangential
speed at the journal surface (r!).

Under these assumptions, the left-hand side of the momentum equations disappear
and they can be integrated in the cross-channel, or z, direction to yield u, v and w . These
velocities may then be used in the continuity equation and, further assuming isothermal
ideal gas, the following equation results (see, for example, Hamrock [12] Chap. 7):
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where h is the passage height, normalized by the clearance. This expression is a form of
the “Reynolds equation,” which was named to honor Osborne Reynolds who published
it in 1886 [14]. The Reynolds equation is a striking simplification because it represents
all three momentum equations plus continuity and it has only two dependent variables:
the pressure and the channel height. Furthermore, the cross-channel, or z, direction has
vanished. Only two computational dimensions are therefore required to describe flow
in three-dimensional geometries. Finally, the equation only requires one nondimensional
variable, �, to fully specify the fluid-dynamic state of the problem.

Loading Condition

Even for steady flows, Eq. 1.10 still contains two dependent variables once � is fixed: p
and h. Another equation or parameter is therefore necessary. In this work, the parameter
will be referred to as the “loading condition.” For plain bearings, this condition may be
specified in two ways: applied load (which implies a pressure distribution) or running
eccentricity (which implies a height distribution). This choice exists because applied load
and eccentricity have a one-to-one relationship once the bearing number is fixed. (In re-
ality, the attitude angle, �, presents a third option, but it is rarely exercised due to the
difficulty in physical interpretation.) For nonplain bearings, as will be shown in Sec. 4.1.2,
the load-eccentricity relationship may not be one-to-one. In this case, the loading condition
is best specified in terms of applied load only.



30 CHAPTER 1. INTRODUCTION

The applied load, W , is commonly normalized by the ambient pressure acting on the
bearing’s projected area. The resulting term is referred to as the “load parameter”, � :

� =
W

2RLPa
; (1.11)

Owing to its straightforward definition and meaning, � , like �, is employed in the vast
majority of gas bearing publications.

Geometric Condition

Though it is hidden in the nondimensionalization of Eq. 1.10, a geometric condition is nec-
essary for even steady-state problems. Once again, an almost unanimous agreement exists
in the literature on the definition of this parameter. Sometimes referred to as a “slender-
ness ratio” and assigned a symbol, the ratio of a bearing’s length to its diameter is most
often simply referred to as an “L over D” and written as “L=D”.

For moving journal cases, a second geometric condition is required because the inclu-
sion of a time-dependent height implies the addition of Newton’s second law to determine
accelerations from forces:

~F = m
@~V

@t
(1.12)

where ~V is the journal velocity.

Again following the procedure of normalizing the equation to discover the appropriate
nondimensional parameters, Eq. 1.12 becomes:

~� = �M�2
@~v

@�
(1.13)

where ~v is the journal velocity normalized by C!, or the velocity of its center if it were
in a synchronous whirl at � = 1, and t is the time normalized by !. The force has been
normalized by 2RLPa to become a load parameter, as introduced in the previous section.

The new parameter, �M is given by:
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While the variables in Eq. 1.14 are not strictly constant, they change very little along
the operating line in most devices. Thus, �M is largely fixed at manufacture, hence its
classification as a “geometric condition.”

It instructive to note that �M may also be expressed as:
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where the first parenthetical term is a load parameter for the centripetal force necessary to
keep a journal whirling at the rotation speed in an orbit at �=1. The second parenthetical
term is an inverse load parameter for squeeze film force resulting from moving the journal
from zero eccentricity at a linear speed of C! [12]. In addition, bearing load capacity is
proportional to bearing number, so the � term is also an indicator of fluid forces. The
quantity denoted by �M therefore expresses the ratio of the bearing’s mass to the fluid’s
ability to resist its motion. This interpretation highlights a similarity in reasoning between
�M and a parameter recently proposed by Belforte et al. [15], which was the nondimensional

centripetal force divided by the square of the sum of the external and squeeze film forces.

Unlike the previous cases, considerable disagreement exists in the literature as to the
proper nondimensionalization for the Newton’s second law. Parameters used for this pur-
pose include the “speed parameter,” �, in [16], [17]:

� = !

�
mC

W

�1=2

and 
 in [18], [19]:


 =
mC!2

�DLPa

In the current work, both of these parameters were found to be inconvenient, because they
include the bearing rotation speed, which is a variable logically associated with the fluid
condition. Furthermore, the speed parameter includes ! as well as W , which mixes all
three of the conditions used in this document. Interdependent conditions make it difficult
to determine an operating line on stability maps because the coordinates are strongly cou-
pled. One can therefore encounter a “tail chasing” situation where a parameter is changed
to move to the other side of a stability boundary only to discover that the boundary has
moved in the same direction.

Notably, Rentzepis and Sternlicht were the first authors to propose a parameter set in
which ! appeared on only one axis, though it was not nondimensional [20]. This work
was later extended and the parameters nondimensionalized by Pan and Sternlicht [21],
who proposed two parameter sets:
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depending on whether the load was fixed at the rotor weight or variable. In both cases, the
load parameter fixed the loading condition and the above parameters fixed the clearance
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(geometric condition) and the rotor speed (fluid condition).

The identification of a fluid, geometric, and loading condition as a useful parameter
space may be supported by noting that, despite the different appearance of the nondimen-
sional parameter sets used in the current work and in Pan and Sternlicht’s varying load
case, the variables appearing only once in their nondimensional set are !, c, and W . In
the current work, these parameters are !, m, and W . In both cases, the set of independent
variables has a logical representative in each of the fluid, geometric, and loading condi-
tions.

Conversely, when using �, � , �, and L=D, the independent variables are r, �, and m.
Substituting 
 for � changes the set to !, �, and m. In both cases, the parameter set has
duplicate representation in one of the three conditions and no representation in another.
Not coincidentally, both � and 
 have generated criticism in the literature in terms of their
applicability in a design situation [16, 21].

1.3 Design Space

In a microfabrication environment, features are generally cut by line-of-sight etching, built
up by deposition, or formed by a combination of these techniques. These production meth-
ods differ considerably from the casting, forging, and machining operations typically per-
formed on the macro scale so the constraints they transmit to the design are often quite
different and, in many cases, more limiting. At the same time, the system’s intended func-
tion implies constraints for thermodynamic and structural considerations, for example,
that apply to devices of all sizes. As a result, the design of microdevices is, by nature, a
difficult problem. The complexity of power MEMS increases this difficulty considerably.

1.3.1 Fabrication-Related Constraints

Production cost and complexity targets lead to a design requirement of monolithic fabri-
cation at the wafer level. As a result, the journal and bearing are defined simultaneously
by etching the bearing gap between them, instead of creating them independently and
performing a subsequent assembly. This method presents a significant challenge when de-
signing bearings because, as will be shown in later chapters, their performance typically
improves as length increases and clearance decreases while the opposite trend holds for
all presently available etching techniques.

Features become more difficult and slow to form as they become narrower and deeper
due to issues of introducing etch chemicals, removing etch products, and preventing the
widening of the trench due to erosion of its sidewalls while etching its floor. The micro-
fabrication of tall, close-clearance structures is, in fact, a perennial problem for the MEMS
community and the subject of a great deal of development work [22–24].
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While time multiplexed deep etching (TMDE) [25] has precipitated significant strides
in this area, it is still difficult to create bearings that even roughly approximate their macro-
scale counterparts by etching alone. The only viable means proposed so far for alleviating
this problem, besides separate etching and hand assembly, is lengthening the bearing by
bonding multiple, separately-etched wafers together. This solution, however, requires ex-
tremely precise wafer alignment at the bonding step to avoid unacceptable imbalance and
to allow axial movement and tilting of the journal without solid surface contact. In ad-
dition, bonding is a sensitive operation so adding bonding steps typically reduces overall
yield.

In summary, monolithic fabrication technology implies a minimum C=L, leading to a
trade-off between the smallness of C=R and the largeness of L=D, which are both desirable
from bearing standpoint (see, for example, [26]), that is strictly a function of R. The choice
of radius is, in turn, constrained by manufacturing and drag concerns. Manufacturing
concerns impart a desire to keep the die size small to maximize the number of devices per
wafer and to minimize cross-chip variation arising from non-uniformities in the etching
chamber. Drag increases with surface area, which is proportional to R for the journal and
R2 for the rotor face.

In addition to imposing limitations on the achievable performance of a plain bearing,
microfabrication constraints greatly complicate or preclude the application of many of the
suggested improved bearing types, such as herringbone groove, foil, and tilting pad, a
number of which are surveyed by Fuller [27].

Herringbone grooves [28] are difficult to microfabricate because photolithographic tech-
niques generally produce only shapes that are extrusions of the 2-dimensional mask. Ax-
ial grooves are therefore straightforward to create, but tilting these grooves off the normal
axis, as in a herringbone arrangement, is not. Foils and tilting pads, while satisfying the
extruded shape requirement, are excluded by material concerns due to the silicon con-
struction of most microdevices, in addition to a combination of the monolithic fabrication
and minimum etch aspect ratio constraints.

Microfabrication gains an advantage over conventionally-fabricated bearings through
the one-mask-for-several-bearings nature of photolithography. This feature implies that
shapes that fulfill the 2-D extrusion requirement, such as elliptic, Rayleigh step [29], and
wave bearings [30], may be produced without a per-piece increase in cost from shape com-
plexity. This issue will be explored in Sec. 4.1.

1.3.2 Application-Related Constraints

Additional constraints apply to microfabricated turbomachine bearings. These require-
ments apply to turbomachines of any size, though the methods of satisfying them may
differ significantly at the microscale. The most important of these requirements for the
bearings is transonic compressor tip speeds, which stems from a desire to maximize the
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stage pressure ratio [31]. For millimeter-scale rotors, this requirement leads to rotation
rates in millions of RPM.

In addition, mass flow requirements, driving the inlet area and blade height, place
restrictions on the allowableR due to structural considerations. Finally, thermal and stress-
induced rotor expansion can cause the clearance to vary between operating points.

1.3.3 Relation to Conventional Bearings

Due to the above constraints, the design space available for bearings in the MIT micro-
engine project is well outside that of conventional bearings. The most striking departure
is in terms of the bearing length. The baseline L=D of 0.075 is more than a factor of three
smaller than the shortest bearings reported in the literature. It is an order of magnitude
smaller than commonly reported values. Second, due to the scale-independence of the
transonic tip-speed constraint, the rotation rate is two orders of magnitude larger than
commonly reported because the radii are two orders of magnitude smaller. Finally, the
baseline C=R is approximately 0.005, which is a factor of five larger than typically encoun-
tered in the literature. While this ratio is not large enough to call the curvature simpli-
fications into serious question (this issue is discussed in Sec. B.5), it could have serious
implications for the nondimensional parameters outlined in Sec. 1.2.3 due to their strong
C=R dependence. Interestingly, however, due to an interplay between the small mass and
the large rotation rates with C=R, neither �M nor � are especially unusual. The former is of
order 10�1 and the latter is of order unity.

The inertial parameter also represents a serious departure from the conventional design
space. Usually on order 1/1000, � is order unity for the microengine bearings due to the
large Reynolds number and large C=R. Because the smallness of � was invoked when
inertia was neglected during the Reynolds equation development, another means must be
found for investigating its effect. This issue is discussed in Sec. B.1.

Another unusual feature typical of microbearings is their low load parameter due to
weight. This is a consequence of the “cube-square law”, where the surface area is pro-
portional to the length scale squared, while the mass is proportional to the length scale
cubed. Consequently, as devices shrink, their functionality (which generally scales with
area) per unit mass increases. In the bearing case, the effect is a direct reduction of the load
parameter:

� =
W

2RLPa
=
�R2L�Sig

2RLPa
/ R (1.16)

Thus the load parameter can be two orders of magnitude smaller for the microbearing
than for a macro-scale bearing. This difference is increased further by the fact that silicon
has approximately 1/3 the density of steel.

Specifically, for millimeter-scale radii and a silicon density of �Si=2330kg=m3 , devices
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operating at atmospheric pressure will have a load parameter with order of magnitude:

� =
�R�Sig

2Pa
=

(10�3)(103)(101)

(105)
= (10�4) (1.17)

Low weight is one of MEMS’ most attractive features in many applications. For vehi-
cles, this attraction is felt in terms of fuel savings and maneuverability. For instruments,
the attraction is in terms of low inertia, which implies previously unattainable frequency
response (see, for example [32]). Low inertia, as will be shown in Sec. 3.2.5, also implies
a very high tolerance to shock loading, making MEMS very attractive as crash-tolerant
safety devices on aircraft-carried weapons, for example [33].

For a microfabricated bearing, low weight presents a complication because, as noted
earlier, the journal must be forced to an eccentricity to be stable. In macro-devices, the ro-
tor weight is often sufficient for this purpose, hence the widespread appearance of charts
involving the “threshold speed”, which is the maximum stable speed under a fixed load.
In microdevices, as will be shown in Sec. 3.2.1, low weight combined with high eccentric-
ities required for stability usually lowers the threshold speed below their design speed.
Applying load via noncircumferentially-uniform pressure at one of the bearing ends will
be explored as a possible solution to this problem in Sec. 5.1.

An interesting effect of these constraints is they imply a rearrangement of the bearing
design process. A microbearing designer is tasked with determining a loading condition
to enable a bearing of a tightly-constrained geometry to run at a given speed. The typical
macrobearing designer, on the other hand, is tasked with creating a geometry to enable a
bearing to carry a given load at a given speed. The context in which the data are presented
in this document reflect the former case.

The absence of data in the literature at these unusual conditions makes design of mi-
crobearings based on existing work difficult. In fact, extrapolation of reported data to the
needed range often yields unsettling predictions. For example, Reynolds and Gross [26]
calculated a threshold eccentricity ratio as a function of length and clearance from their
experimental data. Their results are presented in Fig. 1.5. Extrapolating these results to
L=D=0:075, C=R=5� 10�3 appears to indicate an impossible threshold eccentricity ratio
of much greater than unity for the baseline microbearing.

1.4 Analysis Methods

Because the existing data did not cover the range of parameters needed for microbearings,
generation of new data was necessary. When choosing a method for this task, its applica-
bility to small L=D, large C=R, and large eccentricities were primary considerations.

A second requirement for an analysis method was flexibility because, due to the diffi-
culty in producing stable bearings in this regime implied by the current literature, a num-
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Figure 1.5: Experimental threshold eccentricity ratio, or minimum � for stability, from Reynolds
and Gross [26] for bearings of varying length and clearance. Extrapolation from this chart to the
microbearing baseline (L=D= 0:075, C=R= 5 � 10�3) appears to predict an impossible threshold
eccentricity of greater than unity.

ber of design options would likely be investigated to improve performance. In addition,
this work was to be undertaken in tandem with an ongoing design effort and experiments
on the micro [3] and macro [34] scale. The ability to model phenomena such as imbalance
and geometric imperfection was therefore desired.

1.4.1 Previous Work

Several analytical solutions have been presented for the steady-state load capacity and at-
titude angle at a given eccentricity and speed [35–37]. Currently, however, these quantities
are most often computed directly from the relevant fluid equations with straightforward
numerical techniques. Raimondi [11] published a series of careful finite-difference solu-
tions in 1961 that is still a common reference for this type of data. Modern computers and
more sophisticated numerical techniques have decreased the time necessary to obtain such
solutions [38], but little controversy exists regarding the resulting data.

Methods for determining journal bearing stability, and their results, are considerably
more diverse. The vast majority of methods, both analytical and numerical, are based on
a linearization to enable an eigenvalue analysis of system stability. The primary distin-
guishing feature between the various methods is their handling of time-dependent terms
in the fluid equations. The two extremes are time-accurate methods, which couple the ro-
tordynamic and fluid equations, and uncoupled, “quasi-static”, methods. Pan and Stern-
licht surveyed most of these methods in their 1964 paper [21], comparing them to each
other and to experimental data. The analytic methods discussed in their work, however,
become questionable at large eccentricities due to application of Ausman’s “linearized
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Figure 1.6: Typical variation of normalized pressure and normalized pressure times height with
eccentricity. Minimum channel height occurs at � = �. Multiplying the pressure by the height
smoothes the distribution considerably, but the curve still becomes sharper as eccentricity increases.

PH” assumption [36]. The only remaining method in [21] valid for finite bearings, that
of Rentzepis and Sternlicht [20], also becomes questionable at high � because it relies on
stiffnesses generated by finite difference differentiation of the load curve, which becomes
extremely nonlinear at high �.

One year after Pan and Sternlicht’s comparison was published, Cheng and Pan [16]
published an extension of Cheng and Trumpler’s infinite-length bearing Galerkin method
solution [39] to finite bearings. This method was unique at the time because it fully-
coupled the rotordynamic and fluid equations and it did not contain explicit linearizing
assumptions about the pressure distribution or eccentricity. It was thus theoretically ca-
pable of calculating the equilibrium position and, by linearizing for small perturbations
about this position, the stability of any plain journal bearing at any eccentricity.

Despite the relative absence of assumptions in Cheng and Pan’s work, implicit limita-
tions are imposed by the low order of their Galerkin approximation. Due to the difficulty
in carrying out the expansion by hand (evidenced by the complexity of Eqs. 10-16 in their
paper), they included only two Fourier modes in the circumferential direction and a single
cosine mode in the axial direction. As shown in Fig. 1.6(a), however, the circumferential
pressure distribution in a journal bearing has increasingly sharp extremes as the eccentric-
ity increases. From a spectral perspective, the decreased minimum radius of curvature in
the distribution implies larger higher order modes and, thus, increased truncation error
for a fixed-order expansion.

In an attempt to extend their useful � range, Cheng and Pan employed pressure times
channel height as their dependent variable because its distribution is typically smoother.
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As shown in Fig. 1.6(b), however, this distribution also begins to show increasing skew and
decreasing radius of curvature as � increases. As a result, Figs. 2 and 3 in their paper show
increasing error in steady-state load capacity with �. Furthermore, it will be demonstrated
in Sec. 2.2.2 of the current document that Cheng and Pan’s stability results become suspect
at roughly �=0:6, for L=D=0:25.

Despite the great promise of their method, there have been few attempts to extend
Cheng and Pan’s work to more modes in the 30 years since its publication. In support of
early MIT microengine designs, Jacobson [40] solved the Reynolds equation with a finite
difference technique and expanded the resulting PH distribution in a Fourier series. In this
manner, he showed that 85% of the spectral power in the axial direction for an L=D=0:075

bearing at � = 0:6 is captured by the first mode, while four modes are required to reach
comparable power in the circumferential direction. He then extended Cheng and Pan’s
work to four modes in the circumferential direction and one in the axial direction using
symbolic mathematics software to execute the expansion.

Recently, Orr [34] showed that brute-force expansion with symbolic mathematics soft-
ware becomes intractable at approximately seven modes in the circumferential direction
with a single mode in the axial direction. He then circumvented this difficulty by using
pattern-recognition techniques to eliminate trigonometric terms that evaluate identically
to zero and extended the method to 24 circumferential modes. In view of the efficiency
issues to be discussed in Sec. 2.2.2 this order of approximation is likely to be accurate for
an extremely wide range of problems, effectively putting the numerical issues of linear
stability analysis to rest for plain, short journal bearings.

Taking a different approach, Pan [19] published an analysis of gas bearing systems
through periodic excitation at a range of frequencies in 1965. The goal of his method is to
decouple the stability analysis from the particulars of the bearing configuration and calcu-
lation method. Pan reached this goal by showing that the forces on a gas bearing under
periodic perturbation can be used to compute effective damping and stiffness coefficients.
The state of neutral stability is then identified as the frequency of perturbation at which
the effective damping coefficient vanishes and the rotor mass has a critical value that is in
resonance with the effective stiffness. Instability is then indicated if the effective damping
coefficient at this point increases with frequency. The calculation therefore requires knowl-
edge of bearing reactions to perturbations for the entire frequency spectrum but it is not
dependent on how those reactions are calculated.

An even more general, and highly intuitive, means of generalizing bearing analysis
was proposed by Castelli and Elrod [41]. Their suggestion, known as an “orbit method,”
was to simply march the fluid and motion equations together in time. The computation
then becomes, in effect, a numerical experiment with a full suite of non-invasive instru-
ments unavailable to the physical experimentalist. Though this technique is the most direct
and, thus, the most computationally-expensive, Castelli and Elrod were able to perform
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such calculations in 1965 for an infinite-length bearing by hand, on a Univac, and later,
on an IBM 7090 . Their work involved a finite-difference discretization and a trapezoidal
integration of the pressures to determine forces on the journal. The system was marched
forward in time using a Crank-Nicolson method.

Due to the expense of their calculation, Castelli and Elrod used it only to spot-check the
stability boundary produced by a semi-numerical method, also presented in [41], by show-
ing cases on either side of the stability boundary behaved as predicted. They also mention
the existence of stable limit cycles and the stabilizing effect of imbalance but note that a
systematic investigation of these phenomena was impractical with the current computers.

Despite the orders-of-magnitude increase in computing power since Castelli and El-
rod’s investigation, there have been few direct simulations of gas bearings, most likely
due to the general dearth of research in this area. Liquid-filled bearings, however, have
been treated with this method [42, 43]. In this case, the time integration is extremely rapid
because the fluid equations may be solved analytically for very short or very long bearings.

1.4.2 Current Analysis Method

A key enabler for investigating the wide variety of effects in the current work is an exten-
sion of Castelli and Elrod’s orbit method concept to finite-length bearings. Furthermore,
the efficiency of the scheme is increased by use of a pseudospectral technique. This tech-
nique allows the numerical resolution to be adjusted at run time to avoid truncation error
at high eccentricity and unneeded computation at low eccentricity.

A second code was also written for this work that solves the full viscous flow equations
instead of the simplified set employed by the methods of the previous section. Full advan-
tage was taken of the journal bearing geometry and boundary conditions to improve the
speed of this tool over that of general-purpose flow solvers. This formulation enables the
investigation of phenomena assumed negligible in standard bearing analyses that may be
appreciable in microbearings.

These codes are both described in detail in Chap. 2.

1.5 Dissertation Objective and Outline

This work is intended to fill a void existing in the gas bearing literature in the very low
L=D regime occupied by most microbearings. Following the type of data presented in
the literature, steady-state operating results as well as fixed-point stability boundaries are
computed. In addition, a framework for design that is appropriate to microbearings is
outlined, including a number of new presentation methods for stability data. Investigation
of the tradeoffs peculiar to microbearings are also presented.

Taking advantage of the orbit method’s flexibility, more complex phenomena are also
treated. Some of these phenomena, such as imbalance, large-amplitude whirl, and shock



40 CHAPTER 1. INTRODUCTION

tolerance have been observed experimentally but no systematic computational investiga-
tion in gas bearings has been previously reported.

In addition, topics particular to microfabricated bearings are discussed. First, noncir-
cular bearing shapes are evaluated in the fixed minimum clearance context of microfabri-
cated bearings. Also, the impact of varying clearance in the axial direction due to etching
concerns is assessed. The implications of loading via application of a noncircumferentially-
uniform pressure at one axial end are also presented. Finally, a model and nondimension-
alization is developed for a hydrostatic mode due to axial flow inertia that emerged during
experiments for the MIT microengine.

Because microturbomachine bearings may violate some of the assumptions commonly
made in lubrication analyses, the importance of several neglected effects is discussed in
the last chapter.



Chapter 2

Numerical Tools

The results presented in this dissertation are derived from two original and distinct codes:
BASICS and SPECTRES. BASICS, for Bearing Analysis Suite for Investigating Common
Simplifications, is a Navier-Stokes solver formulated specifically for efficient treatment of
journal bearing flowfields. Its purpose is to explore the effect of terms neglected in the
lubrication equations when operating outside their conventional envelope. SPECTRES,
for SPECtral Reynolds Equation Solver, is based around a pseudospectral Reynolds equa-
tion solver for fluid effects and time-marching of the motion equations for journal path
determination. Common lubrication assumptions are therefore implicit in SPECTRES’ cal-
culation of hydrodynamic forces, but the journal motion is free of non-physical constraints.
This chapter describes these codes in detail and presents their validation measures.

2.1 BASICS

As shown in Sec. 1.3.3, preliminary calculations for the MIT microturbomachine bearings
indicated that fluid inertia, normally neglected in lubrication analyses, may be significant.
In addition, due to the appreciable Mach numbers at the journal surface, non-isothermal
flow was a distinct possibility, violating another typical assumption of lubrication anal-
yses. BASICS was written to investigate these effects with the understanding that the
computational cost associated with solving more complex fluid equations would preclude
its use as a design tool.

2.1.1 Equations and Nondimensionalizations

BASICS is based on the unsteady, compressible Navier-Stokes equations. In consideration
of the journal bearing geometry, these equations were written in a normalized cylindrical
coordinate system. The calculation is two-dimensional, treating the circumferential and
cross-channel (radial) directions and neglecting the axial direction. This formulation im-
plies negligible side-leakage or, strictly, an infinite-length bearing.

41
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The nondimensionalizations chosen for this work are similar to those used by Nataraj
et al. [13]:
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� = C=R is the clearance ratio. It should be noted that the nondimensional radial coor-
dinate, ~r, is unity at the journal surface and zero at the bearing surface. This introduces
minus signs at a few unusual locations in the fluid equations.

With these nondimensionalizations, the Navier-Stokes equations may be expressed as:

@U

@t
� @F

@~r
+
@G

@�
+H = 0 (2.2)

where

U =
R

r

2
666664

~�

�~� ~vr

~� ~v�

~�~et

3
777775

F =

2
666664

�~� ~vr

~p+ �2~� ~vr
2 � ~�rr

�~� ~vr ~v� � ~�r�

� ~vr(~�~et + p)� � ~vr~�rr � ~v�~�r� + qr

3
777775

G =
�

1� �~r

2
666664

~� ~v�

�~� ~vr ~v� � ~�r�

~p+ ~� ~v�
2 � ~���

~v�(~�~et + p)� � ~vr~�r� � ~v�~��� � �
1��~r

q�

3
777775

H =
�

1� �~r

2
666664

�~� ~vr

�2~� ~vr
2 � ~� ~v�

2 � ~�rr + ~���

2�~� ~vr ~v� � 2~�r�

� ~vr(~�~et + ~p)� � ~vr~�rr � ~v�~�r� + qr

3
777775



2.1. BASICS 43

~�rr = �2�~�

Rec

�
@ ~vr
@r

� 1

3(1� �~r)

�
@(1 � �~r) ~vr

@r
� @ ~v�

@�

��

~�r� = � ~�

Rec

�
@ ~v�
@r

+
�

(1� �~r)

�
~v� � �

@vr

@�

��

~��� =
2~�

Rec

�

1� �~r

�
@ ~v�
@�

+ � ~vr +
1

3

�
@(1� �~r) ~vr

@r
� @ ~v�

@�

��

qr =
~�

RecM2
1
Pr(
 � 1)

@T

@r

q� =
~�

RecM2
1
Pr(
 � 1)

@T

@�

2.1.2 Algorithm

Equation 2.2 is discretized in space with a vertex-based finite volume scheme. Time inte-
gration is performed via an explicit four-step Runge-Kutta scheme. Local time stepping
is implemented to accelerate convergence. The viscous fluxes are calculated on an inter-
meshing grid. They are calculated only on the first Runge-Kutta step and frozen for the
remaining steps to reduce the computational cost.

The physical domain is mapped onto a structured grid of quadrilateral cells with one
of the computational grid directions aligned with the radial direction of physical space.
This alignment reduces the number of metrics and fluxes that must be calculated while
still enabling most shapes of interest to be modeled. A sample of this grid is provided
in Fig. 2.1. Note that the step in � between radial gridlines is constant, but the step in r

between circumferential gridlines is not when the journal is in an eccentric position.

The boundary conditions are relatively straightforward. A periodicity condition is im-
posed between the left and right edges of the computational domain. The journal and
bearing surfaces are treated with a no-slip condition, i.e. rarefaction effects are neglected,
the validity of which is explored in Sec. B.4. Moreover, the journal and bearing surfaces
are held at a constant temperature that may be specified independently for each surface.

During intermediate state vector updates, densities at surfaces are calculated using
the continuity equation with modifications to the fluxes and cell areas for the solid wall.
During final state vector updates, the surface densities are calculated with the continuity
equation but also corrected with a centripetal acceleration-based pressure boundary condi-
tion using the known local flow curvature and speed. This well-known condition is given
by:

@P

@n
= ��V

2

Rs
(2.3)

where V is the flow speed at the surface and n is the surface outward normal direction. Rs
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r
θ

Figure 2.1: Example BASICS grid for an eccentric journal. Note that one set of gridlines is purely
radial and distributed equally in � while the other varies in both � and r when the journal is eccen-
tric.

is the surface’s radius of curvature, taken as positive for concave surfaces.

Because a no-slip condition is assumed at solid surfaces, V is zero at the bearing. Fur-
thermore, because the grid was constructed with lines of constant �, the normal direction
at the bearing surface is always aligned with one of the grid directions. The above bound-
ary condition is thus straightforward to implement: a one-sided difference for the pressure
was written at the surface and set to zero. The resulting equation was then simply solved
for the pressure at the wall.

At the journal surface, the situation is considerably more complicated. First, the veloc-
ity’s magnitude is known to be V = Rj! but its direction is not aligned with the grid if
the journal is eccentric. Second, the convenience of a grid line corresponding to a normal
direction is lost. A coordinate transformation is therefore necessary to calculate surface
normal quantities from gradients taken from nodal data.

The key advantage of the pressure boundary condition is that it does not admit saw-
tooth modes. Its application at the final state vector update therefore obviates the need for
artificial viscosity in the radial direction. In addition, the periodic boundary conditions ap-
plied in the circumferential direction destroy sawtooth modes if an odd number of nodes
are employed. Artificial viscosity is thus unnecessary in BASICS.

Because the bearing is a closed system, an additional constraint was necessary on its
mass content. The mass content must be set to establish a connection with the ambient
density used in the nondimensionalizations of Eqs. 2.1. The subtleties of this issue were
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Figure 2.2: Effect of mass-content rule choice on the computed operating parameters of long bear-
ings.

discussed in a paper by Elrod and Burgdorfer [44] who developed a closed-form solution
for the mass content of a bearing in terms of its eccentricity via a clever manipulation of
the Reynolds equation. Because, BASICS was written to investigate the effect of assump-
tions made in the Reynolds equation, however, using a mass content rule derived from
it was deemed inconsistent. Instead, the simple mass content rule of Harrison [45] was
implemented, whereby the total mass of fluid in the bearing is held at its level if it were
stationary and in communication with ambient conditions. This implies that the bearing
is truly infinite or the ends are perfectly sealed. The ramifications of this arrangement are
discussed by Ausman in the appendix of Elrod and Burgdorfer’s paper. Most notably, the
difference is small except at very large bearing numbers. For reference, load parameter and
attitude angle traces produced from finite difference solutions of the lubrication equations
with either constraint are compared in Fig. 2.2 for the bearing numbers and eccentricities
treated in this document. It is immediately evident that the differences are slight except at
high eccentricities and bearing numbers.

In addition to setting an initial mass content, it was necessary to occasionally correct it
during the course of the calculation. This was necessary because numerical errors can ac-
cumulate due to the closed nature of the flowfield and change the reference condition. The
implementation of the centripetal acceleration boundary condition worsens this problem
because it produces changes in the density independent of the continuity equation. The
correction was accomplished by measuring the total mass content during the final state-
vector update and comparing it to the desired value. The density on the entire grid is then
multiplied by the ratio of the current total mass to the starting value.
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2.1.3 Validation

Two cases were used to validate BASICS: Taylor-Couette flow and journal bearing flow.
Taylor-Couette flow takes place in the annulus of concentric cylinders. Unlike lubri-

cation flow, there is no restriction on the clearance ratio so this test case was selected to
activate at least a few terms involving � in the governing equations. The compressible
Taylor-Couette problem was chosen for generality, though it must be solved numerically.
Analytical solutions have been published only for the incompressible case (see, for exam-
ple, White, Chap. 3 [46]).

The results of a zero eccentricity computation in BASICS are shown in Figure 2.3 for
M =0:5 and Re=100 on a 41�25 grid. These results are compared to finite difference so-
lutions of the compressible Taylor-Couette problem with 250 nodes in the radial direction.
Agreement is excellent for all three clearance ratios presented, � = 1=2; 1=8 and 1=100.
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Figure 2.3: Comparison of BASICS results with finite difference Taylor-Couette flow solutions at
various clearance ratios.

The second test case, journal bearing flow, may be described as Taylor-Couette flow
with an eccentric inner cylinder and with � vanishingly small.

A sample bearing pressure distribution is shown in Fig. 2.4. In the depicted calculation,
�=0.6, �=3.5, M=1.09, Re=577, �=0.005, and �=2.9. The gap is greatly exaggerated for
visibility. The figure is oriented such that the load points vertically downward.

The figure shows a feature typical of journal bearing flows: cross-channel pressure
gradients are insignificant when compared to circumferential gradients. The evolution
toward this condition as the inner and outer cylinder radii approach each other may be
observed by noting the trend of Fig. 2.3(b) as � decreases.

For easy comparison to Reynolds equation solutions, a series of calculations were per-
formed and the resulting load capacity and attitude angle were measured. In these cases,
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Figure 2.4: Pressure distribution for a journal bearing at 60% eccentricity. The journal is rotating
clockwise.

� was held at 1/1000 and Re was held at 100. The bearing number was varied by changing
the Mach number. A finite difference solution of the Reynolds equation for an infinitely-
long bearing with Harrison’s mass content constraint (discussed in the previous section)
provided the comparative data. This comparison is presented in Fig. 2.5. Agreement is
excellent over the entire bearing number range at both high and low eccentricities.
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Figure 2.5: Comparison of BASICS results with finite difference lubrication equation solutions.

2.2 SPECTRES

BASICS was written to investigate issues brought about by the high Mach number and
nonvanishing inertial parameter of the MIT microengine bearing. Once it appeared that
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these issues were not of primary significance, as discussed in App. B, the large number
of remaining unknowns regarding the behavior of microfabricated bearings demanded a
less expensive computational tool. In response, a new tool, SPECTRES, was built with the
Reynolds equation, rather than the Navier-Stokes equations, as its fluid model.

2.2.1 Equations and Nondimensionalizations

The Reynolds equation, as discussed in Sec. 1.2.3, is a very convenient fluid model because
it collapses all the conservation equations of Eq. 2.2 into a single expression. Further-
more, the only dependent variables are height and pressure and its domain is only two-
dimensional for 3-D bearings. This formulation is especially convenient for dynamic bear-
ing computations because the force on the journal, or the integrated pressure, is the output
quantity of interest. These features reduce the computation time considerably, speeding
the calculation and allowing a greater number of effects to be investigated in a given time
period.

For unsteady calculations, Newton’s second law is also included to describe the jour-
nal motion under the influence of the applied forces. To enable imbalance and external
damping to be simulated in SPECTRES, the nondimensional form of Newton’s second law
presented in Sec. 1.2.3 is augmented with additional terms:
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where ~� includes applied loads and pressure forces developed from the fluid. As described
in detail by Castelli and Elrod [41], forces due to tangential viscous stress are a factor C=R
smaller than those due to pressure, so they are neglected to maintain consistency with
similar arguments made elsewhere in SPECTRES’ formulation.

The ��~v term can be used to include the effects of external damping contributions,
such as translational drag in thrust bearings or aerodynamic effects in the compressor or
turbine. The non-dimensional damping coefficient, �, is defined as:
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which is the ratio of the damping force to the drag produced in a gap of height C by a
journal moving with linear speed C!.

The deltau~n term in Eq. 2.4 can be used to include imbalance, where �u is the distance
between the geometric and mass centers normalized by the clearance and ~n is a unit vector
rotating at synchronous speed in the same direction as the journal. If a large number of
balanced cases are to be run in SPECTRES, this term may be eliminated from the motion
equation by setting a preprocessor flag to avoid the costly calculation of sines and cosines
(to establish the direction of ~n) every iteration only to multiply them by a zero imbalance
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distance.

2.2.2 Algorithm

Preliminary investigation for the MIT microengine using Jacobson’s 4x1 mode Galerkin
code [40] indicated that, due to the design constraints outlined in Sec. 1.3, the bearing’s op-
erating eccentricity at low speed would be nearly 98%. Throughout the operating range,
in fact, the required eccentricity was predicted to be above 90%. This finding implied
that further work was required because, as discussed in Sec. 1.4.1, the 4x1 Galerkin code’s
accuracy is called into question at high eccentricity by its small number of modes. Unfor-
tunately, for reasons detailed by Orr [34], extension to a significantly greater number of
modes was not feasible with the techniques in use at the time.

Because fixed-point operation appeared unlikely at this point, it was deemed necessary
to investigate the feasibility of deliberate operation in a whirling mode, at least at low
speed [47]. Furthermore, it was recognized that significant imbalance could be imparted
by the complex manufacturing process, noncircular bearings might be adopted to improve
stability, and circumferentially-nonuniform pressures would almost certainly be used to
provide loading.

With these issues in mind, the requirements for a new design tool were defined. First,
its accuracy must be acceptable at high eccentricity. Second, the accuracy should be easily
adjustable to decrease the computational cost of lower-eccentricity calculations in order
to enable the exploration of a large design space. Third, the tool should be capable of
handling nonlinear orbits, such as whirls and imbalance orbits, preferably without a priori

assumptions about the orbit shape. Finally, the tool should be flexible to enable the rapid
addition of new models as new possibilities are suggested.

Orbit Method

Of all the bearing analysis techniques currently in the literature, only the orbit method
is suitable for analyzing the stability of journals about a static point as well as those in
motion without a priori assumptions about the shape of their motion or its period. First
applied by Castelli and Elrod [41], this method is perhaps the most intuitive of the many
techniques for bearing stability evaluation. It consists of coupling the fluid and motion
equations and marching them together in time. In effect, the computation functions as a
well-controlled experimental rig. The orbit method is thus inherently flexible because no
a priori assumptions about the journal’s steady-state position or its orbit are required. It is
also relatively straightforward to add models of physical phenomena such as imbalance,
external damping, or non-circular geometries. Not surprisingly, this generality is accom-
panied by an increased computational expense. Choosing an efficient solution method is
therefore imperative to creating a practical tool.
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Spectral Methods

Spectral methods are very attractive means for solving the Reynolds equation for self-
acting journal bearings due to their periodic and smooth pressure distributions. These
methods involve computing the transform of a function and performing derivatives in
transform space using well-known coefficient manipulations [48]. Because the transform
represents a global approximating function for the nodal data, spectral methods achieve
greater accuracy than typical finite difference schemes on a given grid because derivatives
involve information from all nodes in the derivative direction. An additional advantage
is gained for journal bearing computations: instead of integration of discrete pressures
to calculate the net fluid force on the journal, spectral methods allow the pressure to be
integrated as a smooth function in transformed space. A computational price is paid for
these advantages, however, in time spent performing the transforms.

In “non-interpolating” methods, such as Galerkin’s method, the expansion coefficients
are chosen by requiring that the residual be orthogonal to the truncated series [48]. While
this results in an efficient estimate in terms of the number of required coefficients, it re-
quires integration over the transform direction.

Cheng and Pan [16] and Orr [34] performed this integral analytically, taking advantage
of trigonometric cancellations. Because they performed the integral by hand, Cheng and
Pan were limited to two modes in the circumferential direction and one mode in the axial
direction. Orr took advantage of pattern-recognition capabilities of MATHEMATICA [49]
to produce 24 modes in the circumferential direction. In either case, it is not possible to
adjust the number of modes at run-time to suit the needs of the problem. In addition,
many of the trigonometric cancellations in the expansion are a result of assuming a circular
bearing, which produces a sinusoidally-varying height. Expansion to noncircular bearings
is therefore nontrivial.

In “interpolating” methods, including the current pseudospectral method, the expan-
sion coefficients are chosen by requiring that the truncated series match the input func-
tion exactly at a set of nodes. The key feature of this formulation is its ability to employ
fast Fourier transforms (FFTs) for determining the expansion coefficients. The number of
modes in each direction can then be easily adjusted at run-time to tailor the truncation
error to the problem and the computational cost of the expansion scales only as order
N log2N , where N is the number of modes. The drawback of this method is the efficiency
of its coefficient choice: the requirement of an exact match at the nodes is not as stringent
as non-interpolating methods’ orthogonality requirement.

Because interpolating methods perform expansions on a grid without regard to the
governing equation, nonlinearities are trivial to treat: derivatives are computed in fre-
quency space from the expansion coefficients, then transformed back to physical space and
simply multiplied together. The resulting method, a combination of global functions and
derivative calculation in frequency space with a grid and governing equation in physical
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space is often referred to as “pseudospectral.”

In view of the requirements placed on SPECTRES from the outset, the pseudospectral
method’s flexibility outweighs its lower mode efficiency. Furthermore, the gap in efficiency
is regained somewhat in terms of the FFT’s rapid coefficient calculation.

The efficiency issue may be demonstrated by comparing SPECTRES and Galerkin re-
sults over a range of grids. For this comparison, the calculation of journal stability about
a static point, such as that performed by Cheng and Pan [16], was chosen because it is
quite sensitive to the correct calculation of the steady eccentricity and attitude angle, as
well as the unsteady stiffness and damping. This comparison is presented in Fig. 2.6 in
terms of the “speed parameter” employed by Cheng and Pan. The 4x1 Galerkin results
were obtained from Jacobson’s extension of their work [40]. The 32x8 SPECTRES result
is grid-converged and will be considered the “correct” answer for the purposes of this
comparison.

It can be observed in Fig. 2.6 that the 4x2 pseudospectral results underpredict the crit-
ical speed parameter at all eccentricities studied. At 8x2, the pseudospectral results com-
pare reasonably with the high-order solution at low eccentricity. More importantly for
the purposes of this comparison, the 8x2 SPECTRES and 2x1 Galerkin results are roughly
equivalent throughout the studied eccentricity range, supporting the above efficiency ar-
guments. This 4:1 mode ratio does not hold for the 4x1 Galerkin, however. This solution
breaks away from the high-order result at high eccentricity while the 16x4 SPECTRES so-
lution retains its agreement.

Another significant observation can be made from Fig. 2.6: the eccentricity at which a
given resolution begins to fail is relatively insensitive to speed. Both the 2x1 Galerkin and
the 8x2 SPECTRES solutions disagree noticeably from the high-order solution for � > 0:6 at
all three bearing numbers. The extension of the Galerkin method to 4x1 modes moves this
boundary to � > 0:7. In this case, the solution becomes indistinguishable from the high-
order solution at � = 10 because the trace “curl up” occurs prior to �= 0:7. This finding
implies that the low-order schemes may be applied with confidence for bearings whose
stability boundaries occur at low eccentricity, defined roughly as � < 0:5. If the result
predicts a high eccentricity, a higher-order scheme should be used to verify the solution.

Equation Selection

Because the greatest computational effort in the pseudospectral method is expended per-
forming the transforms, selecting a Reynolds equation formulation that minimizes their
number is crucial to obtaining an efficient algorithm. Toward this end, following Aus-
man [36], 	 is defined as the pressure, p, times the channel height h. The Reynolds equa-
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Figure 2.6: Comparison Galerkin and SPECTRES stability predictions for an L=D= 0:25 bearing.
The 2x1 Galerkin method produces reasonable results at load eccentricity while the SPECTRES
requires 8x2 modes for comparable accuracy. Furthermore, the breakdown of a given resolution
appears to occur at an eccentricity that is independent of speed.
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tion, presented in Sec. 1.2.3, may then be expressed as:
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This equation differs from that employed by Cheng and Pan only in the absence of
a grid rotation term and the inclusion of axial height variation. It is very convenient for
a spectral method because it is devoid of cross-derivatives and, in total, only four spatial
derivatives of 	 must be computed. Just two forward transforms and four backward trans-
forms are therefore required per timestep. Derivatives of h are performed analytically.

Basis Function Selection

For maximum efficiency in a spectral method, it is also important to choose a transfor-
mation that requires the minimum number of modes to reach the target accuracy. In the
circumferential direction, full Fourier modes are a logical choice due to the periodic bound-
ary conditions and the lack of symmetry about the coordinate axes. These were also chosen
by Cheng and Pan. In the axial direction, a single sine mode is often employed; for this
work, Chebyshev polynomials were chosen.

Using polynomials rather than trigonometric functions in the axial direction is an im-
portant step toward creating a flexible and efficient pseudospectral Reynolds equation
solver for low L=D bearings. Flexibility improvement is gained from the ability to enforce
different boundary conditions at the each end, the application of which will be demon-
strated in Sec. 5.1. Efficiency improvement is related to the fact that an incompressible
short bearing has a parabolic axial pressure distribution [50]. It may therefore be argued
that the pressure distribution remains at least somewhat parabolic for reasonable bearing
numbers. A large number of trigonometric modes are necessary to accurately represent a
parabola due to its inherent non-periodicity: patterning a parabola into a full-wave func-
tion yields discontinuous first derivatives and patterning it into a half-wave function yields
discontinuous second derivatives.

To demonstrate this phenomenon, the coefficient magnitudes as a function of wavenum-
ber k and polynomial order n for sine and Chebyshev expansions, respectively, are shown
in Fig. 2.7 for an axial pressure distribution at the minimum passage height. The depicted
case is an L=D=0.075 bearing at �=1 and �=0.8 but the trend is typical (the same trend is
reported at L=D=0:5 in [51], for example). Because the second derivative appears discon-
tinuous to the sine series, the coefficients decay as O(1=N3). In contrast, the Chebyshev
expansion exhibits “exponential convergence”, where the coefficients shrink faster than
1=N q for any finite q, with N representing the number of terms in the expansion. Noting
that the sum of the absolute values of the neglected coefficients forms the upper bound on
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Figure 2.7: Power spectrum for sine and Chebyshev expansions of the axial pressure distribution
for an L=D=0.075 bearing at �=0.8, �=1.

the truncation error [48], it can be seen that more terms must generally be used in a sine
series to drive the error below a given level.

Time Integration

A third-order Adams-Bashforth scheme was chosen for time integration to prevent phase
errors in the numerical method from affecting the bearing dynamics. This issue was in-
vestigated by Coleman [52]. For most cases, this choice is over-cautious because stability
constraints imposed by the Reynolds equation integration restrict the time step to a small
fraction of the rotational period. Fortunately, due to the small number of nodes, storing
information from step to step brings little increased cost.

Through an empirical investigation, a good estimate of the appropriate timestep for
most of the L=D’s and grids used in this document may be obtained through:

�t = 21:6
�

N4
z

�
L

D

�2
(2.7)

Fixed-Point Stability Determination

For bearings without imbalance, the ability of a journal to return to a fixed operating
point may be determined automatically in SPECTRES. This is accomplished by converg-
ing the steady-state flowfield, increasing the eccentricity and decreasing the attitude angle
by 0:001%, releasing the journal, and observing the eccentricity over time. Example orbits
from stable and unstable cases are shown in Fig. 2.8. In this presentation, the solid line
represents the journal center. The dashed line represents positions where the journal sur-
face would first make wall contact. The initial perturbation is increased by several orders
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(a) Stable (b) Unstable

Figure 2.8: Sample orbits for stable and unstable cases, with “stability” defined in terms of the
journal’s ability to regain fixed point operation following a perturbation. The starting point is
indicated by ’�’ and the dashed line denotes positions involving wall-contact. For visibility, the
initial perturbation is several orders of magnitude larger than those used in SPECTRES.

of magnitude to make the stable case visible.

The magnitudes of the waveform extrema are monitored to judge the orbit either con-
vergent or divergent. If the most recent maximum is larger than its predecessor and the
most recent minimum is smaller than its predecessor, then the case is ruled unstable. Cases
exhibiting the opposite behavior are ruled stable and cases which satisfy neither criteria
are marched forward in time until a decision can be made. As an additional check, the
amplitude of the oscillation, or the maximum minus the minimum, must also increase or
decrease for an orbit to be ruled stable or unstable, respectively.

The choice of eccentricity or attitude angle monitoring may be indicated by a prepro-
cessor switch. In this work, it was found that attitude angle monitoring was generally a
better choice because the eccentricity waveform at high bearing numbers often exhibited
a stable high frequency transient that took many rotations to decay. While this mode was
also visible in the attitude angle, it was generally weaker. This finding supports Jacobson’s
observation [40] that the unstable eigenvalue, when approaching the boundary from be-
low, is associated with the attitude angle. Orr [34] later showed that the high frequency
mode, primarily associated with the eccentricity, can also become unstable at very high
eccentricities. This issue will be discussed in Sec. 3.2.3.

The variable under search is increased or decreased in a bisection method until the
step decreases to the desired uncertainty, expressed in terms of a fraction of the search
variable. Searching may be performed for either critical � , �, �M , or �. Ranges of non-



56 CHAPTER 2. NUMERICAL TOOLS

0 2 4 6 8 10

0.862

0.8625

0.863

0.8635

0.864

0.8645

# rotations

ε

start

Figure 2.9: Eccentricity progression in a fixed point stability search on �.

search parameters may be swept automatically to construct stability boundaries.

A sample eccentricity search is shown in Fig. 2.9. In this case, the initial eccentricity
proves to be unstable, so it is increased by the initial stepsize and the calculation is re-
peated. The second case proves to be stable, so the stepsize is halved and subtracted from
the initial eccentricity and the calculation is repeated. The third case is then unstable, so
the stepsize is again halved and added to the previous eccentricity and the calculation is
repeated. The fourth case is stable. Another halving of the stepsize brings it below the
stopping criterion so the calculation ceases and the fourth case eccentricity, minus the final
stepsize, is reported as the stability boundary.

Side-Pressurization Modeling

Bearing loading through application of a circumferentially-nonuniform pressure at one
end (see Sec. 5.1 for a description and motivation) is modeled through a simple change
of boundary condition. Nodes that fall within the boundaries of a side-pressurization
plenum are set to that plenum’s pressure. To avoid discontinuous first derivatives at the
plena edges, nodes that fall between plena are set according to a half-wave cosine distri-
bution with endpoints at the surrounding plena pressures.

Noncircular Bearing Modeling

To incorporate the effects of noncircular bearings (see Sec. 4.1 for description) with maxi-
mum generality, SPECTRES accepts geometries in the form of equally-spaced points around
the bearing circumference. To speed the calculation, as well as to separate noncircular ge-
ometries from the intrinsic part of the code and maintain a clear definition of the clearance,
input points measure the desired shape’s departure from circularity, rather than its profile.



2.2. SPECTRES 57

With this arrangement, the channel height at an angular location � is given by:

h = 1 + � cos(� � �) + �r(�) (2.8)

�r is the difference between the geometry’s radius at a given point and that of a circle with
the same mean clearance, normalized by the mean clearance.

Because � is the only time-dependent term in Eq. 2.8, this formulation allows the chan-
nel height increments and derivatives associated with noncircularity to be calculated at
startup and used throughout the calculation without regard to journal position.

To calculate the derivatives, and to estimate height changes at the nodes if the input
file contains a different number of points, the data are Fourier expanded. The radius varia-
tion is forced to a zero mean by eliminating the zeroth-order coefficients of the expansion.
Derivatives are then performed in transform space and transformed back, along with the
function �r, to physical space and sent to the SPECTRES kernel.

Axial Height Variation Modeling

The method chosen for axial height variation modeling (see Sec. 4.2 for description) is
similar to that described above for noncircular geometries. In this case, two additional
terms are required in the Reynolds equation to account for nonzero height derivatives in
the axial direction. For the remaining terms, the channel height increment as a function
of axial position is simply added to the h from the cylindrical case wherever it appears
outside a derivative.

As in the noncircular case, introducing axial variation opens a question as to where to
measure the clearance. In order to maintain the interpretation of �=1 as a wall-strike, the
clearance is measured at the axial location with the smallest average height. In this case,
however, a wall-strike takes place at a single axial location rather than along the entire
bearing length.

Two axial height distributions are implemented: linear and hyperbolic. At run time,
SPECTRES prompts for the type of variation to be modeled (linear, hyperbolic, or none)
and the amplitude of the axial clearance variation, normalized by C . The derivatives and
height increments as a function of axial location are then calculated from analytical ex-
pressions for use in the calculation. As with noncircular geometries, this data need only be
calculated once because the circular component absorbs the geometry’s time dependence.

2.2.3 Validation

Because SPECTRES contains a variety of models, many test cases were required to gain
confidence in the code before it was applied to new problems. Where possible, SPECTRES
results were compared against those of other authors. Where such data was not available,
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Figure 2.10: Computed and experimental pressure distributions for a plain journal bearing running
at 15,000 RPM with a 69 N load.

“sanity checks” were performed to ensure the model produced results that were within
bounds established by intuition.

Plain Journal Bearings

Steady State

Validation for the plain bearing case was begun by comparison of a SPECTRES pressure
distribution with an experimental measurement by Dimofte, Addy, and Walker [1]. This
data was obtained (in both SPECTRES and the experiment) by loading the bearing to the
prescribed level at a given speed and allowing it to move to its steady-state position. The
resulting pressure distributions are shown in Fig. 2.10 for a bearing running at 15,000 RPM
loaded with a force of 69 N. Good agreement is obtained, though it appears that SPECTRES
predicts a larger pressure peak and a lower attitude angle. One possible explanation of the
error trend is shaft/bearing misalignment, which is common in bearing experiments and
tends to reduce the pressure extrema. The data are also consistent with a lower bearing
number for a fixed load parameter, or a lower load parameter for a fixed bearing num-
ber, so uncertainty in calculating these parameters from the published information on the
geometry and running condition can also cause error of the type shown in Fig. 2.10.

To verify the proper operation of SPECTRES’ basic Reynolds equation solver over a
range of parameters, a series of steady-state cases were run. In these cases, the journal was
held in place at a given eccentricity and the amplitude and direction of the fluid force was
measured. This exercises all terms in the equation except the axial height derivatives, and,
of course, the time derivatives, both of which will be investigated in subsequent sections.

The comparison data for this study was obtained from work by Raimondi [11] in which
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Figure 2.11: Comparison of steady-state load parameter and attitude angle results for an L=D =

0:5 bearing. SPECTRES was run with half the nodes in each direction used in Raimondi’s finite
difference scheme.

he computed finite difference solutions for journal bearings with various L=D’s. Due to
the care with which Raimondi prepared this data, his has become the de-facto standard for
validation of steady-state results.

The comparison of Raimondi’s data with SPECTRES’ output is presented in Fig. 2.11.
The agreement is excellent for both load parameter and attitude angle over the entire range
of bearing number and eccentricity presented. In addition, in a demonstration of the effi-
ciency of spectral methods, this agreement was obtained with SPECTRES running half as
many nodes in each direction as Raimondi’s finite difference scheme.

Stability

To test the time derivative term in the Reynolds equation, as well as the basic motion
equation, the stability of plain cylindrical journal bearings was computed and compared
to experimental data obtained by Sternlicht and Winn [53]. Their experimental setup con-
sisted of a rotor supported by two journal bearings and driven with an air impulse tur-
bine. This assembly was mounted on a rotating fixture to enable the bearing load to vary
between zero and the shaft weight. Their experiments involved holding the load at a con-
stant value and increasing the speed until an onset of whirl was observed. This speed was
then labeled a “threshold speed” and the operation was repeated for a range of loads and
three different bearings. A comparison of their data to SPECTRES’ results is presented in
Fig. 2.12.

Good agreement between these results is obtained across the two orders of magnitude
in �M and � and one order of magnitude in � . The maximum error in the data presented is
18% and occurs for low �M and high � . In general, the agreement appears to worsen as �M

decreases. One source of this disagreement may be the existence of an orifice in the bearing
surface on the experimental rig, which was used to prevent rubbing during starting and
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Figure 2.12: Comparison of SPECTRES results with experimental data for the whirl threshold speed
of bearings with L=D=1 and three values of �M .

stopping and to control whirl amplitude. For the data presented, the orifice was plugged
and rotated to a position opposite the resting journal location under load. This arrange-
ment should produce the minimum orifice effect, though the authors note sensitivity of the
stability boundary to orifice location even for the plugged case. The sensitivity to orifice
location was also noted to increase with decreasing clearance, though for the open orifice
case. In terms of the nondimensional parameters of Fig. 2.12, decreasing clearance implies
a smaller �M , thus their finding is consistent with the increasing error with decreasing �M

trend observed with SPECTRES’ output because the orifice was not modeled.

Imbalance

To validate the imbalance term in the equation of motion, as well as verify the unsteady
terms in the Reynolds equation for large amplitude motion, a series of calculations with
imbalance were performed and compared to experimental data collected by Sternlicht and
Elwell [54]. In this experiment, a 2” diameter rotor was mounted vertically and run with
varying levels of imbalance imparted via bolt-on weights. The rotor was spun using an
electric motor attached with a flexible quill and the position of the rotor was monitored
with four capacitance probes. Because the static load is negligible, the observed orbits
under imbalance will be centered and their radii will be the maximum eccentricities mea-
sured by the capacitance probes.

The eccentricity data for a number of speed-imbalance combinations are provided in
Fig. 2.13 for L=D=1 and L=D=2 bearings. The raw data show significant disagreement at
higher speeds, with the disagreement increasing for the higher imbalance level and higher
L=D. The trends, however, match very well. Most notably, the SPECTRES traces exhibit
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Figure 2.13: Comparison of SPECTRES results with experimental imbalance response measured by
Sternlicht and Elwell [54].

the change in concavity observed in Ref. 54 when the L=D is doubled.
Centrifugal growth of the rotor presents one possible explanation for the quantitative

disagreement. As shown in Fig. 3 in Ref. 54, a hollow rotor (11/32” wall thickness on a 2”
rotor) was utilized in the experiments. Because the clearance was less than 13�m, it can
decrease significantly at higher speeds due to small radial strains. Such a decrease would
increase the running bearing number, measured eccentricity, and imbalance ratio. These
effects push the data toward better agreement. Unfortunately, decreasing the clearance
will also decrease �M , which pushes the data toward poorer agreement.

To evaluate this possibility, the bearing numbers for the experimental data were recal-
culated from the reported rotation rates assuming that the clearance varied according to
the following relationship [55]:

c = co +
�sR

3

E
!2 (2.9)

co is the reported clearance at zero speed and �s and E are the density and Young’s mod-
ulus of steel and the rotor is assumed to be a hollow cylinder. The actual rotor has a solid
section at its midspan so Eq. 2.9 represents the largest likely clearance shrinkage.

When the imbalance response was recalculated using the above expression, little dif-
ference was visible in the solution. While � and �u increased due to clearance shrinkage,
which reached as high as 18% and 9% at 12,000 RPM, the effect was almost perfectly can-
celed by the decrease in �M , which reached 34% at 12,000RPM. Furthermore, the decrease in
Sternlicht and Elwell’s reported eccentricity after clearance adjustment was not sufficient
to close the gap between traces in Fig. 2.13.

Because the journal motion in this case is circular and concentric with the bearing, the
Reynolds equations may be solved in a rotating coordinate system to find the appropri-
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ate load and attitude angle (rather than solving the Reynolds equations in tandem with
the motion equations with an imbalance forcing term, as is done is SPECTRES). In this
case, the attitude angle refers to the phase difference between the imbalance forcing and
the journal position. Sternlicht and Elwell performed such an analysis and observed error
of the same type shown Fig. 2.13, i.e. a reduced load capacity at a given speed, leading
to higher eccentricity for a given rotating load. Also, as observed with SPECTRES’ re-
sults, their error increases as the speed increases, reaching as high as 35% for L=D = 2 at
12,000 RPM.

Sternlicht and Elwell offer a number of explanations for the disagreement between their
computation and experiment, including non-circularity and taper of the test bearings and
journal and misalignment due to skewing of the shaft centerline during testing. As will be
shown in Sec. 4.2, taper significantly reduces load capacity. This is also true for misalign-
ment, as has been shown by several authors. Both of these explanations are supported by
the fact that the error appears greater for the larger L=D bearing.

In conclusion, the trends computed using SPECTRES agree quite well with Sternlicht
and Elwell’s experimental data, including the concavity change when L=D is increased.
The quantitative difference between the data, while significant, have several physical ex-
planations noted by the authors, who found a similar difference in their own calculations.
This fact, combined with the simple, uncontroversial nature of the imbalance model and
the good agreement between SPECTRES and Sternlicht and Winn’s unsteady data, implies
that SPECTRES’ imbalance formulation is indeed correct.

Noncircular Geometries

Steady State

Steady-state validation for the noncircular bearing was accomplished in a similar manner
to the circular case. Example cases were drawn from recent publications on a bearing with
a sinusoidally-varying clearance known as a “wave bearing” [30] (see Fig. 4.1). First, the
computed pressure distribution was compared to an experimental measurement made by
Dimofte, Addy, and Walker [1] on a bearing whose shape is described by three sinusoidal
cycles. This comparison is shown in Fig. 2.14 for a bearing with a wave amplitude normal-
ized by the mean clearance, anc, of 0.547.

Overall, the data agree quite well. The maximum error between the experimental data
and SPECTRES’ results at the tallest pressure peak is 15%. An even better match is ob-
tained between Dimofte’s computations and SPECTRES’ results, with a maximum error of
only 4% at the primary peak, though the disagreement at the upstream peak increases.

As an additional validation measure, the dependence of load parameter on the wave
shape’s phase for a fixed speed was checked against calculations performed by Dimofte
[30] in Fig. 2.15. In this case, L=D = 1, � = 1, and anc = 0:4. (Note that the wave phase
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Figure 2.14: Computed and experimental pressure distributions for a three-wave bearing with
anc=0:547 running at 15,069 RPM with a 141 N load. A computational result reported in [1] for this
case is also included for reference.

angle in Dimofte’s work is measured in a direction opposite that used in Sec. 4.1.)
In this case, the two computations are virtually indistinguishable. A major reason for

the improved agreement is the decrease in uncertainty about the running conditions for
the published data effected by its provision in nondimensional form.

Stability

Dimofte’s calculations [30] were also employed to evaluate SPECTRES stability predictions
for noncircular bearings. In this case, the quantity reported by Dimofte as the “dimension-
less critical mass”, which is �2 �M , was calculated as a function of wave position angle for
an L=D=1 bearing with wave amplitude 0.2 at �=1.

The resulting comparison is presented in Fig. 2.16. Once again, the agreement is ex-
cellent for all wave position angles. This observation provides further evidence for the
fidelity of SPECTRES’ noncircular formulation, as well as its unsteady model in the con-
text of small amplitude motion.

2.3 Chapter Summary

In this chapter, the two numerical tools developed for this work were described: BASICS,
for Bearing Analysis Suite for Investigating Common Simplifications, and SPECTRES, for
SPECtral Reynolds Equation Solver.

BASICS employs the Navier-Stokes equations for fluid modeling and is intended for
investigation of effects neglected in common lubrication analyses such as inertia and heat
transfer. It is a 2-D formulation, treating the radial and circumferential directions, thus it
models flows in very long bearings. The computation is steady-state and therefore gen-
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Figure 2.15: Comparison between SPECTRES and Dimofte steady-state results for a 40% wave
bearing at �=1 and a range of phase angles.

erates load capacity, attitude angle, and drag data, as well as flowfield features such as
temperature and pressure distributions.

SPECTRES employs the Reynolds equation for fluid modeling and therefore functions
under the lubrication assumptions. It employs a pseudospectral technique for solving the
Reynolds equation and can treat bearings of arbitrary length. The “orbit method” for-
mulation, where the code serves as a numerical experiment by fully coupling the fluid
and motion equations, allows general motions to be investigated without a priori assump-
tions about their shape. The combination of pseudospectral Reynolds equation treatment
and orbit method also makes inclusion of additional models straightforward. Current fea-
tures include imbalance, noncircular geometries, side-pressurization loading, and axially-
varying clearance modeling.

The validation measures used to gain confidence in the proper formulation and con-
struction of both these tools were also presented. In all cases, comparison between the
current results and the experiments or computations of other researchers was within the
uncertainties in the reported data or conditions.
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Chapter 3

Plain Bearings

This chapter details the effect of various design parameters on the performance of plain
journal bearings. In this context, “plain” implies that both the journal and the bearing
are circular, cylindrical, complete, and without additional features such as tilting pads
[56], grooves [28], or foils [10]. The meaning of the term “performance” itself will also be
explored as various metrics are discussed.

3.1 Steady-State Behavior

As outlined in Sec. 2.2, SPECTRES may be run in a “steady mode”, where the journal is
held at a desired position and the pressure field is calculated around it. The load capacity,
attitude angle, and bearing drag may then be easily computed for a given running state.
It must be kept in mind, however, that this state may not be attainable by a particular
bearing because the calculation is done without regard to its dimensionless mass, �M , or
other time-dependent effects such as imbalance. These considerations will be treated in
subsequent sections.

3.1.1 Load Capacity and Running Position

The load parameter and attitude angle from a steady-state calculation are presented in
Fig. 3.1 for an L=D=0:075 bearing. This L=D corresponds to a 4mm diameter rotor etched
from a 300�m wafer. A set of charts for L=D=0:5, which is more typical of a macro-scale
bearing, is also included for comparison.

Comparing Figures 3.1 and 3.2, it is immediately evident that reducing L=D has a dras-
tic effect on the load parameter. For instance, a 6.7x reduction in L=D produces nearly a
two-order-of-magnitude reduction in � at a given eccentricity at low �. Across the entire
depicted speed range, the load parameter at �=0:8 for L=D=0:075 is comparable to that
of �=0:1 for L=D=0:5. A smaller L=D therefore implies a much greater eccentricity if a
given load parameter is required.

67
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Figure 3.1: Steady design charts for a journal bearing with L=D=0:075
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Figure 3.2: Steady design charts for a journal bearing with L=D=0:5
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Figure 3.3: Comparison of computed load parameters with an incompressible short bearing solu-
tion.

In many machines, the bearings are designed to carry a given dimensional load, W .
In this case, the effect of L=D on the required eccentricity is not easily obtained in the
format of the previous figures because � has an L and a D in its denominator. Further
complications arise if changes in the diameter are studied because D also appears in �.

For short bearings, insight into tradeoffs may be gained through examination of the
analytic solution for an incompressible short bearing. Generally considered valid for bear-
ings with L=D � 0:5 running at low speeds and eccentricities, this solution yields an
expression for load capacity given by [12]:

W =
�R!L3

2C2

��

(1� �2)3=2
(3.1)

or, nondimensionally:

� =
�

6

�
L

D

�2 ��

(1� �2)3=2
(3.2)

The results of Eq. 3.2 are compared to the calculated load parameters of the previous
figures in Fig. 3.3. The agreement is remarkable for theL=D=0:075 case. Poorer agreement
is obtained in the L=D=0:5 case because it is on the boundary of the accepted L=D range
for the short bearing approximation. The agreement is sufficient, however, to use the above
expressions to study the trends in load capacity.

Pushing forward with this study, a number of observations are possible. First, the
strong variation of � with L=D is explained by Eq. 3.2, which shows a square dependence.
Second, the dimensional load capacity, W , is insensitive to the diameter if the linear speed
at the bearing’s edge, R!, is held constant. This is a realistic constraint for tradeoffs in
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turbomachines with journal bearings on the compressor rim because, as mentioned pre-
viously, a centrifugal compressor’s pressure ratio increases strongly with tip Mach num-
ber [31]. It is thus desirable to hold the rim speed constant to maintain the power level and
efficiency of the overall engine through the study.

Further inspection of Eq. 3.1 reveals a cubic dependence on the length. Shortening a
bearing therefore dramatically decreases its load capacity at a given speed and eccentricity
under this approximation. In addition, the clearance appears as a squared term in the
denominator of Eq. 3.1. Increased clearances therefore result in significant decreases in
dimensional load capacity. Combined, these observations are particularly troublesome
for microfabricated bearings because etching become more difficult and expensive as the
etch aspect ratio, in this case C=L, decreases. The dimensional load capacity is therefore
proportional to the inverse of C=L, or the expense of the etch, squared.

A bright note on this finding is that the reduced load capacity of the short bearing
is an advantage when it is necessary to load a bearing to a given eccentricity via side-
pressurization. As discussed in Sec. 1.3.3, this is almost always the case for microturbo-
machines due to their low load parameters due to weight and their high speeds. Smaller
load requirements imply smaller pressure differences acting across the rotor’s projected
area. Reduced loading pressures are desirable for self-contained machine because 1) they
are more easily produced in the system and 2) they result in smaller bleed air mass flows.

The departure from linearity of the higher � traces, particularly at the larger L=D, on
the steady-state load parameter charts is also explainable via the incompressible solution.
This departure occurs at lower � as the eccentricity is increased and at lower � and lower
� as L=D is increased. Noting that, as shown by Eq. 3.2 and Fig. 3.3, incompressible solu-
tions predict a linear distribution everywhere, Raimondi [11] points out that the departure
from linearity of the load parameter traces may be used as an indication of the importance
of compressibility. In this context, the above observations make intuitive sense because
compressibility is likely to become more important as the rotation speed or eccentricity
increases. The increase in compressibility effect with length may also be understood phys-
ically in terms of the difficulty a particular fluid element encounters in escaping the bearing
via axial leakage if it encounters compressive stress in the circumferential direction. The
onset of compressibility may also be assessed via the attitude angle traces because the in-
compressible short-bearing analysis predicts a 90� attitude angle for all conditions. Again,
the higher L=D bearing shows an earlier departure from the incompressible solution.

In general, compressibility effects reduce the load capacity at a given eccentricity and
speed, thus the constant-� lines curve downward and become constant in � (see, for exam-
ple, the charts in Raimondi [11]). In Fig. 3.3, however, the �=0:8 and �=0:9 traces for both
L=D break upward from the linear case before curving downward. Thus, for a range of
� that appears to increase with decreasing L=D compressibility effects improve the load
capacity.
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Compressibility effects can therefore lessen the leakage-related load capacity disadvan-
tage of short bearings operating at high bearing number and/or eccentricity through two
mechanisms. First, due to its earlier onset of compressibility, the longer bearing will suffer
greater losses at a given operating point. Second, the increase in load capacity at the onset
of compressibility is likely to be larger and survive over a greater � range for the shorter
bearing. Unfortunately, late onset of compressibility may be problematic for stability be-
cause it can be shown analytically that a truly incompressible gas bearing, if it existed,
would be unconditionally unstable [57].

3.1.2 Drag

Another design chart commonly constructed from steady-state analyses depicts the nondi-
mensional bearing drag. This is an important factor because, for microturbomachines in
particular, bearing power consumption may determine the machine’s viability.

In nondimensional terms, the bearing drag is expressed by the “friction variable,” F ,
defined as:

F =
FvC

2��R2!L
(3.3)

where Fv is the total viscous drag on the journal surface. Physically, this parameter is
simply the ratio of the actual drag to that experienced in the concentric position.

The bearing drag is calculated by integrating the shear stresses over the journal surface.
It may be observed, however, that the solution of the Reynolds equation (see Sec. 2.2.1)
yields only a pressure distribution while shear stress is computed from the tangential flow
speed derivative. To close this gap, it is noted that the Reynolds equations are developed
by solving the momentum equations for what amounts to a combined Couette-Poiseuille
flow after the terms involving C=R are neglected. Recovering flow speed from pressure
in this context, it becomes clear that the drag has two components: a Couette contribution
that is related to surface motion, and a Poiseuille contribution that is related to pressure
gradients.

Through direct integration of the Couette term and integration by parts of the Poiseuille
term in the Reynolds equation (see, for example, [11]), the following expression is obtained:

F =
1p

1� �2
+

3�

��
� sin�: (3.4)

This is a useful result for two reasons: first, the nondimensional bearing drag may be
calculated via a closed-form expression from data already in hand, thus it does not add
significantly to the computational workload; second, the first term in the drag may be
computed without running a steady-state computation at all if the running eccentricity is
known from other sources.

Inspecting the load parameter plots in the previous section, it is clear that � will be
much less than unity for most microbearings. Furthermore, operating points with large



72 CHAPTER 3. PLAIN BEARINGS

10
0

10
1

1

0.8

0.6

0.4

0.2

0

Λ

%
 E

rr
or

 in
 D

ra
g 

S
im

pl
ifi

ca
tio

n

ε = 0.1
ε = 0.5

ε = 0.7

ε = 0.9

10
-1

(a) L=D=0:075

10
-1

10
0

10
1

18

16

14

12

10

8

6

4

2

0

2

Λ

%
 E

rr
or

 in
 D

ra
g 

S
im

pl
ifi

ca
tio

n

ε = 0.3

ε = 0.5

ε = 0.7

ε = 0.9

(b) L=D=0:5

Figure 3.4: Error incurred in neglecting the Poiseuille contribution to bearing drag. The error is less
than 2% for the L=D = 0:075 bearing at all bearing numbers and eccentricities shown. This error
increases by more than an order of magnitude for the L=D=0:5 bearing due to its much larger load
capacity.

load parameters tend to have small attitude angles so the sine function will be small. Com-
bined, these considerations tend to reduce the Poiseuille term’s importance over the entire
operating range. The possibility therefore exists of calculating good drag estimates from
the Couette term alone.

The error incurred in calculating F without the Poiseuille term for both L=D = 0:075

and L=D = 0:5 bearings is shown in Fig. 3.4. From this figure, it can be concluded that,
for most purposes, the drag for the L=D = 0:075 bearing may indeed be estimated from
only the Couette term. This finding is a boon for designers because this term involves only
the eccentricity, greatly simplifying tradeoff studies. For the longer bearing, however, this
simplification must be made with caution because the error grows to nearly 20% at high
eccentricity and low �.

3.2 Unsteady Behavior

In this section, the journal is allowed to move freely under the applied and developed
forces, leading to the introduction of time-dependent effects in the fluid equations. The
most important of these effects is fractional frequency whirl, which is treated in the first
two sections. A second important unsteady phenomenon is imbalance, which is treated
in the second section. The final section provides methods for estimating shock tolerance
from steady-state data, followed by unsteady simulations of impulsive loads to assess the
utility of these estimates and provide insight into the dominant mechanisms.
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3.2.1 Fixed-Point Stability

As described from a physical perspective in Sec. 1.2.2, journal bearings suffer from a phe-
nomenon known as “fractional frequency whirl.” In this section, susceptibility to fractional
frequency whirl will be investigated in the context of “fixed-point stability,” implying that
a bearing ruled “stable” will return to a static point following a disturbance. The distinc-
tion must be made because some bearings will depart from a fixed point when disturbed
but the resulting orbit does not end in wall contact. This phenomenon will be investigated
in the next section.

Many different journal bearing stability maps appear in the literature using vastly dis-
similar parameter spaces. These spaces tend to evolve for convenience, historical, and
application-specific reasons. In this document, an effort is made to use a set of reasonably
independent parameters (see Sec. 1.2.3) to construct maps that enable straightforward ex-
ploration of design tradeoffs. It should be noted, however, that these parameters and their
associated maps tend to reflect the demands of a micromachined bearing design environ-
ment and may therefore not be the most convenient set for every application.

Even if universal agreement existed on a parameter space, choices may still be made
that affect the ease with which the data may be used. Most notably, the gas bearing fixed-
point stability boundary is four-dimensional, with one fluid condition (�), two geometric
conditions (L=D; �M ), and one loading condition (� or �). Expressing a four-dimensional
object on a two-dimensional medium presents a number of difficulties. Various solutions
to this problem will be presented in this section, with a focus on investigating the effect of
various design decisions on the stability of microfabricated bearings.

Minimum Eccentricity Chart

In many bearings, L=D is fixed by external constraints. This ratio is also constant when
determining the running characteristics of existing bearings. In these cases, the stability
boundary is reduced to three dimensions (�; �M , and either � or �). Selecting eccentricity to
fix the loading condition, the resulting 3-D stability surface may be expressed as a contour
plot of minimum eccentricity for a given geometry and fluid condition. Such a plot will
be referred to as a “minimum eccentricity chart.” An example of such a chart is shown in
Fig. 3.5 for an L=D=0:075 bearing.

On the minimum eccentricity chart, the contour intersected by a given � and �M repre-
sents the minimum � that must be maintained for stability. Static points with eccentricities
smaller than this minimum value will expand into a whirl after a slight perturbation while
those with eccentricities greater than this minimum will return to the static point. (It will
be shown in Sec. 3.2.2, however, that large perturbations may still result in a whirl for these
cases.)

As an example of the minimum eccentricity chart’s interpretation for a micro-turbo-
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Figure 3.5: Minimum eccentricity chart for an L=D=0.075 bearing. The contour intersected by a
given � and �M represents the minimum � that must be maintained for stability. A sample operating
line (- - -) for an air-driven microturbine (Fig. 3.6) is included for reference.

machine, an operating line for a silicon turbine driven by compressed air is included in
Fig. 3.5 as a dashed line. For this device, shown in Fig. 3.6, �M is not constant because
centrifugal stresses cause the rotor to expand slightly with speed. This has little impact
on R but it can significantly decrease C . The ambient pressure term in the denominator of
�M also causes it to decrease slightly with speed because, as shown in Fig. 3.6, the bearing

end is located between the stators and the turbine blades. The bearing ambient pressure
therefore increases with rotor speed.

For this device, noting that the constant-� contours have a constant- �M asymptote at
low �, the minimum eccentricity is slightly greater than 90% for all bearing numbers up
to approximately 0.2. After this point, the contours begin to curve upward, crossing the
operating line. The example device’s minimum eccentricity therefore decreases with speed
to less than 85% at its operating point, �=3.

The minimum eccentricity chart format makes it clear that �M variation has a relatively
weak effect on minimum eccentricity. Furthermore, �min is independent of speed near the
chart’s left side and a weak function of speed on its right. As a result, the minimum eccen-
tricity chart of Fig. 3.5 covers three orders of magnitude in �M and 1.5 orders of magnitude
in �, but only 15% in �. Noting Fig. 3.1, the corresponding span in � is about three orders of
magnitude due to the large stiffness at high eccentricity and the wide speed range. Thus,
�min gleaned from the minimum eccentricity chart varies very little with moderate changes
in the geometric parameters, and even relatively large changes in operating speed, whereas
�min varies considerably. Minimum eccentricity is therefore a more convenient parameter
to use as an input to downstream calculations in the early design stages because a good
estimate can be made from loosely-established geometric and operational parameters.
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(a) Rotor (b) Stator

Figure 3.6: Sample microturbine geometry, shown disassembled and without plena. A cross-
section of the assembled device is shown in Fig. 1.2. Airflow is inward through stators to rotor
blades and out at the rotor center. R=2mm;L = 300�m; c = 10�m;m = 8:8mg. Figure courtesy
C.C. Lin.

As noted previously, the microbearing designer is primarily tasked with determination
of a loading condition to enable a bearing of a tightly-constrained geometry to run at a
given speed. Knowledge of the running eccentricity, independent of the required load, is
useful in the early design stages because � determines the closest approach to the wall.
This information may be used to determine a tolerance to surface roughness and rotor
noncircularity. In addition, referring to the results of Sec. 3.1.2, a very good estimate of the
drag for very short bearings may be calculated from eccentricity information alone.

In addition to its utility as a preliminary design tool, the minimum eccentricity chart
may be used to explain the large-scale trends behind several unexplained experimental
observations of previous researchers.

First, the concept of a “threshold speed” is a result of the bearing’s increasing load ca-
pacity with � at a given � (see Fig. 3.1). For a fixed load, a common situation in experiments
due to the convenience of loading by rotor weight, � will therefore decrease with speed. At
some �, the �min contour for the given �M is crossed, at which point the bearing becomes
unstable. This � is then reported as �thresh.

Second, varying the load for each run by tilting their apparatus, Sternlicht and Winn
[53] observed that “the eccentricity ratio at the whirl onset [threshold speed] remained
virtually constant even though the bearing load is varied.” This behavior can also be ex-
plained through use of a minimum eccentricity chart. A chart drawn for Sternlicht and
Winn’s L=D (=1) is shown in Fig. 3.7 with the experimental range of �thresh indicated by
dashed lines for each �M they studied. From this chart, it can be seen that the �min contours
are nearly horizontal for the reported range of �thresh at the two largest �M . The bearing
would thus become unstable at the same eccentricity in all experiments, though increasing
the load would increase �thresh. Furthermore, though the range of �thresh for �M=0:039 is
in the region where the constant-� lines begin to descend, the total span in variation across
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Figure 3.7: Minimum eccentricity chart for Sternlicht and Winn’s experiment at L=D = 1. The �

ranges for each tested �M are denoted by dashed lines.

the range is still less than 5%.

Reynolds and Gross [26] also observed a constant eccentricity at the stability boundary
in their experiments by noting that the threshold speed versus applied load had a linear
relationship. Referring to Fig. 3.2, for example, this finding is indicative of constant eccen-
tricity at a sufficiently low � and � that compressibility has not caused a slope reduction.
Reynolds and Gross then carried the observation one step further and plotted a “threshold
eccentricity ratio” for each of their bearings.

Finally, Sternlicht and Winn’s data also show that decreasing the journal mass raised
the threshold speed for a given load. This phenomenon is also predicted by Fig. 3.7. Re-
ducing the journal mass decreases �M which moves the operating line down the vertical
axis, resulting in a decreased minimum eccentricity at all bearing numbers. A higher �
is therefore reached before the bearing stiffens sufficiently to reduce � below this lowered
�min.

Reynolds and Gross made the opposite observation: they did not observe a change in
threshold speed for their lighter rotor. This finding may also be explained on the minimum
eccentricity chart if their bearing falls in the region where the eccentricity contours “curl”
up or down and approach the vertical. In this region, the minimum eccentricity is very
weakly dependent on �M over a large range. Changes in the rotor mass will therefore have
little effect on �min and, thus, �thresh.

In a design situation, the minimum eccentricity chart can be used for a rapid assess-
ment of the running eccentricity changes brought about by varying the operating point or
geometry for a bearing with a fixed L=D. To investigate L=D effects in the general case,
multiple charts are necessary. For illustration, a chart drawn for L=D = 0:25 is provided in
Fig. 3.8. The operating line for the microturbine is again included, which does not change
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Figure 3.8: Minimum eccentricity chart for an L=D=0:25 bearing with the same sample operating
line (- - -) shown in Fig. 3.5. Increasing L=D causes a shift of the minimum eccentricity surface
toward the upper left-hand corner, resulting in lower �min for a fixed �M .

because, for solid rotors, the rotor mass is proportional to its length and these quantities
appear as a quotient in �M

Comparing these figures, it may be seen that increasing the L=D causes the eccentric-
ity contours to shift toward the upper left-hand (low � - high �M ) corner of the chart. This
means that, for a given �M , increasing L=D strongly decreases the minimum stable eccen-
tricity for bearings in the depicted region. This trend is also visible in Figure 8 in Reynolds
and Gross [26].

An interesting consequence of the curling up of the constant � lines in high-� regions of
Figs.3.5 and Fig. 3.8 is that a bearing in this region is actually somewhat more stable at high
speed than at low speed in the sense that it can run at a lower eccentricity. The difficulty
at high speed therefore lies in providing sufficient load to force the journal to the proper �.
Though the decrease in �min at high speed relaxes the requirement somewhat, the load can
be considerable if the target � is large. The opposite situation occurs where the lines curl
downward, as shown in the Fig. 3.7 and the lowest � trace in Fig. 3.8. In this case, a higher
eccentricity is required as the speed increases.

The curvature change in the constant-� contours on the minimum eccentricity surface
can be visualized by considering the two eccentricity extremes.

At the high end, a bearing at �= 1 is expected to be stable at all speeds for all �M . Its
contour on the minimum eccentricity chart is therefore a single point at �M =1, � = 0.
Just below this eccentricity, the contour is expected to be horizontal at extremely low �

and high �M , but then become vertical at some �. As � decreases, the low speed asymptote
moves to a lower �M and the transition to a vertical line moves to a higher �, thus the
nested, upward-curling shape of the minimum eccentricity chart’s upper portion.
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Figure 3.9: Minimum eccentricity charts with � < 70� point indicated with an asterisk (*). This
point appears to give a good estimate for where the constant-�min contours depart from their low-
� asymptote.

At the low end, a bearing at �=0 is expected to be unstable at all speeds for all nonzero
�M [58]. The � = 0 contour is therefore a single point at �M = 0, � = 0. At a very small

eccentricity, a stability margin opens so the contour is expected to be horizontal at a small
�Mand � and curve downward to unconditional instability around at some �.

Toward explanation of the minimum eccentricity surface’s shape, a comment is noted
in Reynolds and Gross that the linear load-speed relation they used to experimentally dis-
cover the fixed �min region does not hold once compressibility becomes significant. Fur-
thermore, they note that compressibility may be a stabilizing factor because it lowers the
attitude angle. The latter observation indeed appears to be the case because the mini-
mum eccentricity lines for high eccentricity curve upward as � increases. The fact that
this curling, for a given �, occurs at lower eccentricity for the L=D = 0:25 bearing than
for the L=D=0:075 bearing also supports the stabilizing effect of compressibility because
compressibility becomes significant earlier as the bearing length increases.

Toward a prediction method for where this curling up occurs, the minimum eccentric-
ity contours of Fig. 3.5 are compared to the load lines of Fig. 3.1(a). Unfortunately, it can be
seen that the minimum eccentricity contours curl up long before the constant-� load lines
in depart visibly from linearity. Trying another measure of compressibility, the departure
of the attitude angle from the incompressible value of 90�, the comparison is repeated us-
ing the attitude angle of Fig. 3.1(b). In this case, it appears that a good rule of thumb for
when the constant �min lines depart from their low-� asymptote is when the attitude an-
gle drops below 70�. This point is indicated with an asterisk (*) on minimum eccentricity
charts for L=D=0:075 and L=D=0:25 in Fig. 3.9 with good results.
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The mechanism behind the curling down of the low eccentricity contours at L=D =

0:25 and all the plotted contours at L=D = 1 remains unexplained. Because it appears as
speed increases, it is tempting to blame a compressibility effect. One argument against
this conclusion, however, is the fact that the � rule used above to measure compressibility
onset must fail for the curling down of the low eccentricity cases because � at a given �

decreases with �. In other words, compressibility onset, by this measure, occurs later for
smaller eccentricity. The above prediction method applied to the curling down of the �min

contours would therefore predict their crossing, which is not the case.

Loading Schedule

If the loading condition is converted from � to � , a different type of chart may be drawn.
Further changing the presentation, the stability surface is rotated such that � and � are
on the axes and the contours are lines of constant �M . This type of chart will be referred
to as a “loading schedule” because it depicts the required load for stability as a function
of � for a bearing with a given �M . This formulation reflects the microbearing designer’s
task, discussed in Sec. 1.3.3, of determining an appropriate load for a tightly-constrained
geometry (i.e. a more or less fixed �M ). In a macro-scale bearing, where the load is often
fixed by the shaft weight and greater opportunities exist for varying the clearance or the
radius, the axes would be reversed, yielding a threshold speed chart.

A sample loading schedule is presented in Fig. 3.10. This type of chart contains more
information than the minimum eccentricity chart because � contours can be included, en-
abling both the minimum load and eccentricity to be determined for a given �M -L=D-�
point. It is thus a sort of operating map, containing most of the relevant data for a bearing
anywhere in its operating envelope. The data can be completed, in fact, by adding attitude
angle contours. These contours have been removed from the current chart for readability.

Interpreting the loading schedule is straightforward: the �-� point of interest is located
and the bearing is ruled stable if it lies above the proper �M line and unstable otherwise.
The minimum eccentricity chart can be interpreted in this fashion only when the bearing
eccentricity is specified a priori and �M is varied to meet this requirement.

This chart provides another graphical representation of the mechanism behind the
constant-load “threshold speed” reported by many researchers. In this case, the thresh-
old � occurs when the (horizontal) applied load line intersects the bearing’s �M curve. The
experimental observations of Sternlicht and Winn and Reynolds and Gross are also visi-
ble. Behavior consistent with Sternlicht and Winn’s observation of an increased threshold
speed with decreased mass occurs on the left half of the chart where the curves are dis-
tinct and larger �M ’s correspond to larger minimum loads at every speed. The behavior
observed by Reynolds and Gross, where the threshold speed is insensitive to �M , occurs on
the right half of the chart where the �M lines coalesce.

In addition, this chart provides a graphical representation of the insufficient weight
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Figure 3.10: Loading schedule for anL=D=0:075 bearing. A given �-� point is stable if it lies above
the proper �M line and unstable otherwise.

loading issue discussed in Sec. 1.3.3. For example, the microrotor of Fig. 3.6 has a load
parameter due to weight of approximately 7 � 10�4 but an �M of almost 0.5 when Pa is at
atmospheric pressure. Referring to Fig. 3.10, its threshold speed under gravity loading is
off the figure’s low end, at approximately �=0:02. In dimensional terms, this translates to
a threshold speed of less than 5000 RPM, well short of the 2.4 MRPM design speed.

Finally, to demonstrate L=D effects in the load schedule format, a chart is provided
in Fig. 3.11 for an L=D = 0:25 bearing. Noting the upward shift in the constant- �M lines,
it is evident that that higher � is required to maintain stability in the longer bearing. For
example, comparing the �M=1 lines in Figs. 3.10 and 3.11, it can be seen that at �=0:1, the
L=D=0:25 bearing requires �=0:01 while the L=D=0:075 bearing requires half this load.
From the eccentricity contours, however, it can be seen that the associated eccentricities
are lower, in agreement with the previous section. This apparent contradiction is resolved
by recalling the key finding of Sec. 3.1: increasing bearing length increases load capacity
for a given speed and eccentricity.

Worst-Case Eccentricity Chart

Due to etching limitations on etch aspect ratio (C=L), increasing L in a microfabricated
bearing often enlarges C . This leads to a trade-off between L=D and C=R. To study this
trade-off, it would be advantageous to incorporate L=D effects on stability into a single
plot. Unfortunately, simply overlaying minimum eccentricity charts for various L=D’s
results in an impenetrable presentation. The key problem is that such a figure is once
again four-dimensional ( �M;L=D;�; �).

To reduce the number of dimensions, it is noted that the minimum eccentricity con-
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Figure 3.11: Loading schedule for an L=D=0:25 bearing

tours of Figs. 3.5 and 3.8 become horizontal toward the left side of the chart, i.e. the function
�min(�) approaches a constant at low speed. Furthermore, for an upper range of eccentric-
ities, the extent of which increases with decreasing L=D the �min contours curl upward as
� increases. Consequently, in this region, �min decreases as the bearing number increases
for a fixed �M . Thus, the “worst-case” eccentricity may be determined from the low-speed
asymptote. The associated running clearance represents the smallest distance between the
journal and bearing anywhere in the operating envelope. This distance may then be used
to set tolerances to surface roughness and, to some extent, journal noncircularity.

An example of such a “worst-case eccentricity” chart is presented in Fig. 3.12. To use
this chart, �M is calculated for a given bearing and the worst-case eccentricity for the ap-
propriate L=D trace is read from the vertical scale. For reference, several points illustrating
a design tradeoff are included on the chart. In this example, the baseline bearing is from
the microturbine of Fig. 3.6 and the rotor is assumed solid.

Once again, it is apparent that even relatively large changes in �M do not drastically
alter the minimum eccentricity from the baseline case. The worst-case eccentricity chart
clarifies the trend behind this observation: the slope of the stability boundary decreases as
�min approaches unity. Designs that require large �min will therefore be relatively insensi-
tive to changes in �M and L=D. In a design situation, this implies that the gain obtained by
varying first-order terms, such as the bearing pressure or rotor mass, is not likely to justify
even minimal increases in complexity for devices in this region.

Notably, doubling or halving the clearance has little effect on the dimensional distance
between surfaces, d. This observation is explained by noting that larger clearances produce
larger �Ms, which imply greater minimum eccentricities. The reverse is true for smaller
clearances. Bearing stability requirements therefore act to cancel attempts to change the
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running distance via clearance modification alone.

Tradeoffs with a Fixed Etch Aspect Ratio

Further exploiting the low-speed �min(�) asymptote, a tradeoff may be constructed that
is more appropriate for a microfabricated bearing. In this case, the bearing etch aspect
ratio, C=L, is held constant as the tradeoffs are studied. Again assuming the bearing is a
solid disk and fixing the conditions at sea-level pressure and room temperature, only two
variables may be chosen in this case: R and L. An example of a tradeoff between these
parameters for a 1:30 etch aspect ratio are shown in Fig. 3.13.

Two major trends of interest are visible in this figure. To understand these trends, it is
helpful to note that, under the constraints set forth for this series of calculations:

�M / L5

r3
:

First, for fixed diameters, shorter lengths produce smaller eccentricities because �M is
fifth-power dependent on L while L=D is only linearly dependent. As L decreases, the ec-
centricity reduction associated with the decrease in �M outweighs the � increase associated
with the shrinking L=D.

Second, for fixed lengths, smaller diameters produce smaller eccentricities for shorter
bearings while the trend is reversed for longer bearings. This behavior may be explained
by noting from Fig. 3.12 that the �min decrease associated with a given increase in L=D

shrinks as �M increases. Also, the above expression for �M has a cubic dependence on the
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Figure 3.13: Low-Speed eccentricity tradeoff for silicon rotors of various diameters and lengths
assuming an etch aspect ratio (C=L) of 1:30.

radius in the denominator. It is therefore reasonable to expect that, at some length, the
eccentricity benefit brought about by the decreased �M from a given �R will exceed the
detriment associated with the decreased L=D.

Recasting the data of Fig. 3.13 in terms of dimensional minimum distance from the wall,
(Fig. 3.14), significant differences are visible. First, the trend is upward with increasing L

but, in this case, the ordinate represents physical distance from the wall so, contrary to the
eccentricity case, an upward trend is desirable. The increase in physical distance between
the journal and bearing with L therefore outweighs the increase in minimum eccentricity
visible on the previous plot. Second, the difference between the various curves is small
until the D=2mm curve breaks downward at L=500�m. At small lengths, the bearing is
therefore insensitive to changes in diameter. Finally, the overall design trend remains the
same as on the previous chart; a smaller diameter brings larger d at short lengths, but the
trend is reversed as the bearing becomes longer.

Finally, it may be noted that C=R reaches 1/30 for the largest L -D combination in this
series of calculations. The model’s validity may therefore be questioned near the right
side of Figs. 3.13 and 3.14 because, as noted in Sec. 2.2.1, SPECTRES’ formulation assumes
terms of involving C=R are insignificant. Looking back at the order-of-magnitude analysis
of Sec. 1.2.3, however, the first-order C=R terms are multiplied by the Reynolds number.
Noting that the diagrams in this section were drawn at the stability boundary’s low-speed
asymptote, it may be argued that the Reynolds number can be taken as arbitrarily small
in these results. The assumption of negligible inertia is therefore justifiable in this context,
despite the not-so-small C=R.
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Figure 3.14: Low speed running clearance tradeoff for silicon rotors of various diameters and
lengths assuming an etch aspect ratio (C=L) of 1:30.

3.2.2 Whirling Operation

Bearings labeled “unstable” in the previous section depart from their static point to enter
a whirl. No information was given, however, as to whether or not the resultant whirl ends
in wall contact. This issue will be treated in the current section.

It has been shown analytically for liquid-film bearings that a region exists where a
finite-amplitude whirl is stable [59]. This behavior has also been observed experimentally
by Reynolds and Gross [26] and Wilson [60] for gas bearings. In both experiments, the au-
thors applied a constant load and gradually increased the rotation speed until the journal
began to whirl. Labeling this speed the “threshold speed,” Reynolds and Gross were able
to increase the speed and run their bearing in a stable whirling mode. The extent to which
the threshold speed could be exceeded varied with applied load, L=D, and clearance ratio.

To investigate this phenomenon, the experiment of Reynolds and Gross was performed
numerically with SPECTRES. The results of a series of such calculations are shown in
Fig. 3.15 for an L=D=0:075 bearing with �M =0:1 loaded to � = 0:05. At each data point,
the change in speed from the previous data point caused the rotor to oscillate. At low bear-
ing numbers, these oscillations decreased in amplitude as the journal settled into the static
operating point appropriate for the new speed. The resultant collection of fixed-point runs
are denoted by a solid line in Fig. 3.15. The left-hand figure contains the maximum ec-
centricity of the orbit, which is simply the running eccentricity for fixed points, and the
right-hand figure contains the frequency of � oscillation normalized by the rotational fre-
quency.

At �thresh, the oscillations caused by the speed change become neutrally-stable. If the
speed is increased beyond this point, the oscillations begin to grow, corresponding to an
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Figure 3.15: Stable running modes for an L=D=0:075 bearing with �M=0:1 and �=0:05.

increasing-radius spiral orbit. As reported by Reynolds and Gross, however, the growth of
this orbit ceases before wall contact is made. Examples of the resulting periodic whirling
orbits for the case shown in Fig. 3.15 at three bearing numbers are presented in Fig. 3.16.
The maximum and minimum eccentricity of the orbit as a function of � are also presented.
It can be seen that the orbit is asymmetric at first due to the applied load (pointing down-
ward in the figure). As the whirl speed increases, however, the applied load becomes less
significant compared to the centripetal acceleration and the whirl approaches a circle. As
a result, the maximum and minimum eccentricities converge, as shown by Fig. 3.16(b).
It may be noted, however, that a discernible difference remains between �max and �min

due to a slight orbit eccentricity caused by the load. This eccentricity is visible (barely) in
Fig. 3.16(a).

The maximum eccentricity and whirl speed of the steady-state orbits exhibited by the
first example case are presented as dashed (- -) lines in Fig. 3.15. For this bearing, stable
whirls above the threshold speed have very high maximum eccentricities (� > 0:99). Be-
cause eccentricities of this magnitude are unattractive in a real bearing due to film rupture,
load-control, roundness, surface roughness, and drag issues, the threshold speed is effec-
tively an operational stability boundary. It should be noted, however, that external damp-
ing mechanisms, perhaps from electrostatic or viscous sources, can be used to continue the
solution along the fixed point line past �thresh.

Another important observation made by Reynolds and Gross is that, when decreasing
the rotor speed to defeat a whirl, the speed at which fixed-point operation was regained
was always lower that the speed at which it was lost. This effect is also visible in Fig. 3.15:
the whirling solutions (dotted line) extend to speeds where fixed-point solutions also exist.
In this case, the “overlap region” spans more than 40% of the fixed-point operating range.
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Figure 3.16: Whirl mode progression of an L=D=0:075 bearing with �M=0:1 and �=0:05.

In the overlap region, the bearing may operate stably in either mode. Experimentally,
Reynolds and Gross found that the bearing could be switched between modes by jolting
their apparatus.

Crooijimans et al. [61] also investigated this issue for liquid-film bearings by assuming a
periodic solution exists. Using the analytical Ocvirk short bearing solution [62], the motion
equations are discretized in time over an unknown period. The orbit shape and period are
then determined by solving the resulting system of algebraic equations using a multidi-
mensional Newton-Raphson method. An initial solution for starting the Newton-Raphson
is obtained via Hopf bifurcation theory [59]. From this work, the authors concluded that
periodic solutions exist before and after the fixed-point stability threshold, in agreement
with the above observation of stable whirls and an overlap region.

To demonstrate the effect of �M on these phenomena, a second SPECTRES simulation
was performed with an order-of-magnitude reduction in �M . The results of this calculation
are presented in Fig. 3.17. Two changes are immediately evident: reduced overlap range
and reduced whirling mode �max.

For the �M = 0:01 bearing, the overlap region spans less than 16% of the fixed-point
operating range; more than a factor of two smaller than the range exhibited by the larger �M

bearing. This agrees with Reynolds’ and Gross’ experimental observation that “the extent
of the hysteresis region decreased and the resistance to jolts increased with decreasing
clearance ratio.” In fact, when �M is decreased by decreasing the clearance, the overlap
region’s contraction is somewhat understated graphically in the preceding figures due to
the rotation rate multiplier in �’s inverse-square dependence on C .

At �thresh, the whirling mode for the smaller �M involves a maximum eccentricity of
less than 95%, down from more than 99% for the previous case. Because the nondimen-
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Figure 3.17: Stable running modes for an L=D=0:075 bearing with �M=0:01 and �=0:05.

sional parameters involve a number of variables, the orbit size reduction with �M may be
explained from more than one viewpoint.

Viewing �M as a mass variable, this behavior is expected because the more massive
bearing will experience greater centripetal acceleration in the whirling mode, leading to a
larger orbit for a given bearing shape and speed (and hence hydrodynamic load capacity).
It may be suggested, however, that this interpretation is clouded somewhat by the fact
that �thresh is more than 40% larger for the smaller �M case but � is independent of m. This
issue is resolved by noting that centripetal acceleration is dependent on the speed squared.
The speed contribution to the centripetal acceleration therefore increases by almost a factor
of two between Figs. 3.15 and 3.17, but �M was increased by an order of magnitude so the
centripetal acceleration’s overall magnitude decreases by a factor of five.

Viewing �M in terms of the clearance, the smaller orbit for decreasing �M may be un-
derstood in terms of the squeeze-film force’s inverse dependence on clearance cubed [12].
Tightening the clearance therefore strongly increases the squeeze-film effects, reducing the
whirling orbit for a given mass and speed.

In both Fig. 3.15 and Fig. 3.17, the whirl speed approaches !=2 as the eccentricity ap-
proaches unity. To understand this asymptote, it is first noted that a centered circular orbit
at 0:5! can be shown [58] to have zero load capacity and, therefore, unity eccentricity.

For a loaded bearing in a whirl, the orbit is initially eccentric but it expands and the
whirl frequency rises as the rotation rate increases. This progression is visible in Fig. 3.16.
The bearing therefore approaches a zero load capacity condition as its speed increases.
In physical terms, the approach to a centered, circular orbit, regardless of its frequency,
defeats the squeeze-film mechanism that helps keep the journal and bearing apart while
whirling. Furthermore, the load capacity due to viscous pumping disappears for half-



88 CHAPTER 3. PLAIN BEARINGS

0 0.5 1 1.5 2 2.5 3 3.5
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Λ

ε m
ax

FixedPoint
Whirling   

(a) Maximum Eccentricity

0 0.5 1 1.5 2 2.5 3 3.5
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Λ

ω
w

hi
rl 

/ ω

(b) Whirl Frequency

Figure 3.18: Stable running modes for an L=D=0:25 bearing with �M=0:1 and �=0:05.

speed whirl because the converging/diverging section responsible for the load-carrying
pressure distribution moves away from the lubricant at its average flow speed.

To demonstrate the effect of L=D on these phenomena, a third SPECTRES simulation
was performed at L=D=0:25. The results of this calculation are presented in Fig. 3.18.

In this case, the overlap region is very narrow, covering less than 8% of the fixed-point
operating range. Furthermore, the whirl mode maximum eccentricity increases extremely
rapidly with speed. The fixed-point (solid) line therefore provides a very good indication
of the operating range and characteristics for this particular bearing because the whirl
mode starts very near the boundary and wall contact is made soon after.

The very rapid increase in whirl eccentricity for the higher L=D bearing may be related
to the fact that the whirl mode’s lowest frequency is 0:475!. Because the load capacity due
to viscous pumping action diminishes very quickly as a circular orbit at !=2 is approached,
entry of this bearing into a whirl mode causes a very rapid transfer of load capacity to
squeeze film action, which quickly diminishes as the orbit becomes circular.

To generalize the observations made thus far in this section, we first note that overlap
region is larger for bearings with lower response frequencies in the fixed point mode at
�thresh. Due to the large increase in stiffness with eccentricity experienced by a journal
in fixed-point operation (see Fig. 3.1(a)), it is possible to observe oscillations higher in
frequency than !=2 when below �thresh (see, for example, Figs. 3.15 and 3.18). At �thresh,
however, balanced plain bearings have response frequencies below !=2. A sampling of
response frequencies for various values of �M and �thresh are plotted for L=D=0:075 and
0:25 bearings in Fig. 3.19.

Noting from the previous figures that the whirling mode’s frequency is higher than that
of the fixed-point mode, a defined corridor in frequency space can be seen. This corridor is
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Figure 3.19: Response frequency at loss of fixed-point stability.

bounded above by !=2 and below by the fixed-mode’s response frequency at �thresh. If the
fixed-mode frequency is close to !=2, little corridor is available for the whirling solution to
exist so the mode will not be significant. On the contrary, if the fixed-point solution dips
below !=2 long before �thresh, a considerable corridor exists for the whirling solution and
a large overlap region is likely.

Viewing the response frequency curves with respect to the minimum eccentricity charts
(Figs. 3.5 and 3.8) and loading schedules (Figs. 3.10 and 3.11) presented in previous sec-
tions, it can be concluded that the response frequency begins to differ significantly from
!=2 when the minimum eccentricity departs from its low speed asymptote. On the min-
imum eccentricity chart, this is where the constant � lines curve upward. On the load
schedule, it is where the constant �M lines become nonlinear and begin to cross eccentric-
ity contours. Physically, as shown in Sec. 3.2.1, this behavior indicates the emergence of
compressibility effects.

With this framework in place, previous qualitative observations about the overlap re-
gion’s extent can be predicted from the static charts presented in previous sections. First,
larger �M curves depart from linearity at lower � on the loading schedule. The fixed-point
response frequency at �thresh will therefore decrease with increasing �M for fixed � , sup-
porting the increase in overlap region length observed in this section. Second, the increas-
ing departure from linearity, and thus decreasing response frequency, with increasing �

for constant �M supports the result of an increasing overlap region with applied load for a
given bearing reported in Fig. 11 in Reynolds and Gross [26]. Finally, comparing Figs. 3.10
and 3.11, it can be seen that increasing L=D decreases �thresh for fixed load. In addition,
the departure from linearity for a given �M occurs at a larger �. The overlap region will
therefore decrease with increasing L=D for fixed load, as observed above. Furthermore, if
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Figure 3.20: “Small-Whirl” solution for an L=D=0:075 bearing with �M= :1 and �=0:05 at �=3:22.
This solution is extremely sensitive and easily decays into large whirl mode. It is therefore unlikely
to be observed experimentally.

the loading is increased to produce the same �thresh, the larger L=D bearing will still tend
to have a smaller overlap region.

Finally, it should be mentioned that a second whirl mode was observed in the course
of this work. This whirl is very small amplitude and occurs very near the fixed point
in terms of frequency. It appears despite grid and timestep changes so it is likely to be
a physical, rather than numerical, phenomenon. Figure 3.20 shows an orbit plot of this
“small-whirl” mode found in the L=D=0:075 bearing with �M=0:1 and �=0:05. This case
has a bearing number of 3.22 and was started from the �=3:2 fixed-point solution. Due to
its close proximity to the fixed-point stability boundary, the oscillations grew very slowly,
requiring nearly 5000 revolutions to establish the stable whirl shown in Fig. 3.20. It is this
small growth rate that made the observation of this mode possible because it was found
that the slightest perturbation caused a decay to the large whirl solution. This sensitivity
makes the mode unlikely to be observed experimentally. It therefore has little practical
importance.

3.2.3 Radial Instability

It was noted in Sec. 2.2.2 that a high-frequency mode was observed at the startup of fixed-
point stability calculations. Furthermore, it was observed that this mode was more visible
when plotting eccentricity than when plotting attitude angle. These observations were
explained by Jacobson [40] through an eigenvalue analysis. He showed that the unstable
eigenvalue when approaching the fixed-point stability boundary from below is associated
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Figure 3.21: Initial revolutions of a bearing exhibiting radial instability at �=4, �M=0:01,�=0:9635.
The observed frequencies agree very well with the predictions of Orr [34]

with the attitude angle. He also showed, however, that a high frequency mode associated
with eccentricity was lightly damped and had the potential to cross the imaginary axis.
With a higher-order model, Orr [34] later showed that the high frequency mode, did, in
fact, become unstable at very high eccentricities. The stability boundaries presented in
Sec. 3.2.1 are therefore not thresholds, but lower boundaries on a stability corridor.

Orr has presented detailed stability maps for this mode at L=D=0:075. The objective
of this section is to demonstrate the existence of this mode through an independent means
and to observe the orbit in order to gain physical insight into the relevant mechanism.

Choosing the case of Fig. 4-27 in [34]: � = 4 and �M = 0:948, a simulation was run in
SPECTRES at �=0:9635. Orr’s calculation places this point just past the stability boundary
so it expected to be weakly unstable. The resulting eccentricity and attitude angle progres-
sions for the first few revolutions are shown in Fig. 3.21.

From Fig. 3.21, it can be seen that the predicted behavior indeed occurs. First, the ec-
centricity oscillations are growing slightly with time. Second, the oscillation frequency is
1.26!, which compares well with Orr’s prediction of 1.21!. Third, the attitude angle trace,
though contaminated by the eccentricity oscillation, shows a convergent oscillation at ap-
proximately 0.23!, which compares well with Orr’s prediction of approximately 0.22!.

At this point, the orbit appears as narrow interlinked ellipses slowly expanding in the
radial direction. The position of these orbits oscillates in the circumferential direction and
the envelope of these oscillations decreases. As the calculation evolves, these orbits con-
verge on top of one another and continue expanding in the radial direction. At this point,
an expansion is evident in the attitude angle variation as well because the orbit ceases mov-
ing back and forth and begins grow and tilt from the radial direction. The corresponding
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Figure 3.22: Later revolutions of a bearing exhibiting radial instability at �=4, �M=0:01,�=0:9635.
The convergent, low frequency attitude angle oscillations have given way to growing oscillations
at the radial mode frequency.

eccentricity and attitude angle progressions are shown in Fig. 3.22.

Thanks to the slow growth of this orbit, it establishes a stable whirl. Very slight in-
creases in � result in crashes, however. This behavior is due to the very high loading,
which results in a highly skewed, largely radial orbit, with extremely large eccentricities at
its bottom that eventually reach unity. The bifurcation predicted by the eigenvalue anal-
ysis therefore does not generally lead to a stable nonlinear orbit and the instability traces
reported by Orr [34] represent operational boundaries.

Physically, the behavior of this orbit is consistent with a “bouncing” action against the
extremely high stiffness near the wall. Each rebound produces a trajectory toward the
center which acts against the applied load but no significant stiffness. When the bounce
peaks, the journal falls back toward the wall under the action of the applied load. It then
penetrates the large stiffness area slightly further, gaining energy and bouncing up slightly
further, and so on until failure. Due to the extremely high stiffness at the wall, squeeze film
damping is largely unable to restrict the orbit’s energy and it usually makes wall contact.

3.2.4 Imbalance Effects

In real machines, the rotor geometric and mass centers are inevitably separated by some
distance, du, due to asymmetries in the manufactured geometry or irregularities in the
material. This separation is referred to as an “imbalance”. In this document, in common
with much of the bearing literature, the distance will be normalized by the clearance and
reported as an “imbalance distance,” �u. This normalization provides the convenient inter-
pretation of �u as the eccentricity at which the journal whirls when rotating about its mass
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center in an otherwise unloaded state.

From a bearing perspective, imbalance results in a load proportional to the rotor weight,
the imbalance distance, and the rotor frequency squared. The direction of this load varies
sinusoidally at the rotor (synchronous) frequency and is thus often referred to as a “ro-
tating load.” This load can have a beneficial or detrimental effect on bearing operation
depending on geometry and operating point. If, for example, the journal is operating at
very high eccentricity, as is often the case for microbearings, a sufficiently large imbalance
can produce destructive wall contact. Conversely, if the static load on the journal load is
insufficient to guarantee fixed-point stability, the rotating load contributed by imbalance
can defeat a tendency to whirl.

Reynolds and Gross [26] support the rotating load argument experimentally with their
finding that an unloaded rotor became stable to self-excited whirl when the speed was
sufficient to produce an imbalance orbit at an eccentricity approximately equal to the min-
imum value required for fixed-point stability. Sternlicht and Elwell [54] also observed a
stabilizing influence while performing a series of experiments with variable imbalance.
Notably, these authors stated their finding as “synchronous whirl tends to suppress half
frequency whirl.” This viewpoint is a common alternative to the rotating load argument.

An example SPECTRES imbalance response is presented in Fig. 3.23. In this case
(L=D = 0:1, � = 4:6, �M = 0:7), the minimum eccentricity for fixed point stability is 80%.
To represent a running case with a “safety factor”, the eccentricity was set to 85%, cor-
responding to � = 1:6�min. The calculation was begun from a zero imbalance which was
slowly increased. While this progression appears to be nonphysical, the calculation is actu-
ally a numerical analog of Sternlicht and Elwell’s experiment, which was performed with
a series of bolt-on imbalance weights.

One key difference between the earlier experiment and the current work is the presence
of a sideload. Because a sideload is applied in the current work, the resulting orbits will
be nonconcentric with the bearing. Consequently, it was necessary to generalize Sternlicht
and Elwell’s presentation in terms of whirl eccentricity to include the orbit’s maximum and
minimum eccentricity at each imbalance level. For a centered, circular orbit, �max = �min

and the two presentations are identical. Three sample orbits are also included.

The results presented in Fig. 3.23 begin as intuitively expected: a small circular orbit,
centered on the static point forms and expands as the imbalance distance grows. As �u
passes 5%, however, a discernible asymmetry is visible between �min and �max with respect
to the zero-imbalance eccentricity. This asymmetry implies that the orbit’s radial motion is
no longer centered on the static point.

To investigate this issue, the pertinent orbits are expanded in Fig. 3.24. From this figure,
it is immediately evident that the median eccentricity is indeed decreasing with increasing
imbalance, indicating a departure of the orbit’s center from the static point. Furthermore,
the orbit shape is elliptical, rather than circular. The minor axis of the ellipses is oriented
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Figure 3.23: Rotor response to imbalance at 160% of loading required for fixed-point stability. Three
example orbits are included, where the dashed line corresponds to positions associated with wall-
contact. A bifurcation from a single to a double loop orbit is clearly visible. A second, though less
obvious, bifurcation also occurs just before the maximum imbalance.

in the circumferential direction and has length equal to twice the imbalance radius. The
major axis is radial and is larger than expected from the imbalance distance. The median
attitude angle decreases with increasing imbalance level.

The inverse relationship between median eccentricity and imbalance distance is a con-
sequence of the increasing stiffness with eccentricity that is characteristic of self-acting
bearings (see, for example, Fig. 3.30). When attempting to whirl around the static point,
the journal therefore experiences greater resistance to its motion in the direction of increas-
ing � than in the opposite direction (where it is resisted only by a weak squeeze film effect).
As a result, the orbit’s minimum eccentricity shrinks faster than its maximum grows, de-
creasing the median eccentricity as the imbalance distance increases.

The elliptic orbits of Fig. 3.24 were predicted analytically by Ausman [18], though his
analysis indicated that the center would rest on the static point. This shape is another
consequence of the anisotropic stiffness around the orbit.

Finally, the decrease in attitude angle with increasing imbalance distance mirrors the
effect of increasing load in a plain bearing (see Fig. 3.1), lending support to the view of
imbalance as a load source. From this point of view, the experimental observation of im-
balance as a stabilizing mechanism is not surprising because, as shown in Sec. 3.2.1, in-
creasing the load generally improves fixed-point stability. The fact that this effect occurs
despite the decreasing median eccentricity with �u implies that the former quantity may
not be a good choice for expressing imbalance behavior.

Returning to Fig. 3.23, a bifurcation occurs at � � 0:066 that results in a sudden increase
in the maximum eccentricity and the minimum eccentricity slope with respect to �u. In-
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Figure 3.24: Journal orbits for increasing levels of imbalance. The zero-imbalance position is indi-
cated with a solid circle and the locus of positions corresponding to wall contact are denoted by
’- -’. Noting the scale, it can be seen that the elliptic orbits have a minor axis equal in length to twice
the imbalance radius, but a larger major axis due to a rebound effect from the increasing stiffness
in the inward wall-normal direction.

specting the orbit at this point, the jump in maximum eccentricity is a result of a second
loop forming in the orbit that extends beyond the circular path. At this point, the depicted
orbit represents two revolutions and is indicative of a second-order subharmonic response.
This orbit shape is maintained and increases in size with �u until � � 0:1, where the orbit
shape remains the same but the paths split in two, indicating a 1

4
! component is asserting

itself. Shortly thereafter, a 1

16
! component appears and the paths divide into fours, with

two of them separating at one point to form a third loop. These orbits, along with their
associated frequency spectra, are presented in Fig. 3.25.

It may be noted from the power spectra in Fig. 3.25 that frequency components ap-
pear in addition to the expected peaks at the synchronous frequency plus the appropriate
number of subsynchronous peaks for the path divisions. These peaks occur at sums and
differences of the expected frequencies and are indicative of a nonlinear system. In this
case, the nonlinearity is provided by the strong increase in stiffness with eccentricity char-
acteristic of a self-acting bearing.

The pattern of sum and difference modes may be calculated via an empirical formula
promulgated by Ehrich [63] for rotating machinery. This idea was applied to hybrid bear-
ings by Orr [34], who employed the Cauchy product to extend Ehrich’s method and re-
produce an extremely complex spectrogram. In this case, the key point to note is that the
modes in Fig. 3.25 show only whole multiples of 1/2!. The zero imbalance case, however,
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Figure 3.25: Frequency spectra and orbits for increasing levels of imbalance as limit is approached.
As imbalance increases, each path splits so the lowest frequency is divided by a power of two i.e.
first a 1/2! mode appears, then 1/4!, then 1/16!.
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Figure 3.26: Rotor response to imbalance at 80% of loading required for fixed-point stability. Be-
cause � < �min, a stable orbit cannot be maintained if �u < 0:065. The maximum �u is, however,
increased significantly to �u > 0:55. The orbits are all nearly circular.

has a natural frequency of 0.09!, which is weakly visible on the power spectrum for the
elliptical orbit at �u=0:06. The imbalance has therefore suppressed the natural whirl fre-
quency and the orbit bifurcations are entirely due to an intermittent interaction between
the rotating journal and the large stiffness at the wall.

For the bearing/load combination of Fig. 3.23, further increases of �u beyond approx-
imately 10% resulted in crashes. This imbalance level was therefore ruled the operational
limit for this case. A possible explanation of this limit is that a bifurcation involving a step-
increase in maximum eccentricity, such as that observed near �=0:066, would form after
that point but was prevented from doing so by the already-high eccentricity.

In this case, imbalance can have a destructive effect on an otherwise stable bearing. A
demonstration of the opposite situation is presented in Fig. 3.26. This case is identical to
that of Fig. 3.23 except the load is set below the minimum for fixed-point stability, instead
of above it. In this series of calculations, � = 0:8�min, corresponding to an eccentricity of
78%. The fixed point is thus expected to be unstable for some range of imbalance including
zero. For the current bearing/loading combination, this range is 0 < �u < 0:065, which is
shaded gray in Fig. 3.26. At greater imbalances, as observed by previous experimenters,
the orbit stabilizes into a nearly circular shape.

Two key differences between Figs. 3.23 and 3.26 can be seen. First, the eccentricity
limits do not undergo the sudden slope changes associated with orbit bifurcations in the
previous case. Indeed, the orbits over the entire imbalance range were nearly circular.
Second, the range of tolerable imbalances is much greater in the current series: while the
overloaded case could not tolerate imbalances much greater than 10%, the underloaded
case’s tolerance extends above 55%. In fact, the simulation was simply stopped at this
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point; a limit was never encountered.

This finding implies that “under-loading” the journal can increase its tolerance to im-
balance. A pitfall exists for this approach, however: if the imbalance is smaller than
planned, the journal could be subject to a whirl instability. In cases where the imbalance
can be measured after manufacture, this situation can be avoided; the load schedule is sim-
ply tuned for the known imbalance. For a microdevice, however, it is generally difficult to
estimate the imbalance of a given unit. It is therefore desirable to have a method for tuning
the load schedule experimentally.

A key issue with the experimental approach is that the number of observables in a
microdevice tends to be quite low. Toward a solution of this problem, Orr [34] showed
that significant information can be gleaned from the frequency content of the rotor motion.
This is a significant finding because the necessary data may be obtained from a sensor of
marginal spatial accuracy, provided it is responsive in time.

Exploring this possibility for determining the proper loading in the presence of im-
balance, the power spectra and orbits for a series of calculations of increasing load are
presented in Fig. 3.27. In this figure, the calculation was started at the load and imbalance
of the last case in Fig. 3.23 (�=0:155, �u=0:103375), and the load was slowly reduced until
the orbit began to break up, indicating a whirl instability. This break-up point was found
to be �=0:0645, which is less than half of the starting load.

Comparing Figs. 3.25 and 3.27, it is immediately evident that increasing load and in-
creasing imbalance have very similar effects. The most notable difference between these
two figures is that the orbits in the current case, due to the constant imbalance level, are of
roughly the same size, while they grow with �u in the variable-imbalance case.

In terms of the power spectra, the imbalance orbits have components at frequencies
that are multiples of 1=2! when they become very close to the wall. In the interim re-
gion, where the bearing is in a roughly circular orbit, the spectrum is very clean, showing
only multiples of the synchronous frequency. In the lowest stable load case, the spectrum
again becomes rich, but this time the strongest frequency, not counting the synchronous,
is roughly the whirl frequency yielded by the fixed point stability analysis for this case:
0:088!.

This suggests that the ideal load for a given geometry, running point, and imbalance
may indeed be found from spectral information. If the spectrum shows power at multiples
of 1=2!, the load is lowered until only synchronous forcing and its multiples appear. If,
however, these modes are absent but the significant power appears at the bearing’s fixed-
point whirl frequency, then the load should be increased to establish a clean synchronous
spectrum. This technique may be difficult, however, for very small �M , low speeds, and
large L=D, where, as shown in Fig. 3.19, the self-excited whirl frequencies tend to be very
near 1=2!.

Finally, even when the load was decreased slightly below the minimum found for whirl
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Figure 3.28: Example of a failed attempt to establish a stable whirl in a bearing with neither suffi-
cient load nor imbalance to maintain fixed-point stability. In this case, the eccentricity oscillations
grow very slowly and the orbit is relatively stationary for nearly 1500 revolutions before the journal
breaks out and crashes.

stability and the orbit grew very slowly, which tended to produce a stable whirl mode in
even the most sensitive zero-imbalance cases, the journal would suddenly spiral out and
crash. This behavior is shown in Fig. 3.28 for the previous case run at � =0:06375. In this
case, the bearing makes nearly 1500 revolutions before coming to an abrupt end.

From experiences such as these, the conclusion may be made that establishing a stable
whirl in the presence of imbalance is difficult. This result is not surprising when the high
eccentricities typically associated with whirling modes are considered. The synchronous
frequency imbalance orbit cannot coexist with the nearly half-frequency, large-radius, self-
excited whirl orbit except, perhaps, when their radii are comparable. In this case, an orbit
of two linked and nearly concentric circles can satisfy both frequencies without causing
the “wobbling” motion that resulted in the crash of Fig. 3.28.

3.2.5 Shock Tolerance

Another performance parameter of interest to designers is a device’s tolerance to shock
loading. Such loading may be imposed by dropping (most likely the worst case), aero-
dynamic buffeting and maneuvering loads in flight vehicles, or vibration from external
sources.

Two failure modes may be envisioned as a result of an impulsive load. In the first, the
shock load simply exceeds the bearing’s capacity and forces the journal into the wall. In the
second, the shock load reduces the eccentricity below the minimum required for stability
and the resulting whirl results in wall contact. Due to the short duration of most shocks
and the multiple rotations required for hydrodynamic whirls to grow to failure, the latter
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mode is unlikely to be of concern. This intuitive contention is supported by experimental
observations of Reynolds and Gross [26], who conclude that “both synchronous and self-
excited whirl are uniformly asymptotically stable to excitations which are not large enough
to cause initial metal-to-metal contact.” Consequently, shock tolerances reported in this
section will refer to the first failure mode.

In this section, three methods are presented for determining shock tolerance. The first
two techniques will be referred to as “quasi-static” estimation methods because they rely
entirely on a bearing’s steady-state performance charts. The final method is a full dynamic
simulation of a running bearing subjected to a step increase in load. The chief difference
between these methods is the dynamic calculation’s inclusion of squeeze-film and history
effects versus the static calculation’s assumption of a quasi-equilibrium at each eccentricity
during the journal reaction. Additionally, the journal is allowed to follow a general path
in the dynamic simulation, rather than a strictly radial motion, as assumed in the static
analysis.

Quasi-Static Estimation

To estimate the shock magnitude necessary to force the bearing to wall contact from static
data, the total work done by the shock load may be equated to the work done by the fluid
against its motion. The eccentricity at which this equation balances will be the maximum
eccentricity under the shock, assuming that its duration is sufficient to reach this eccen-
tricity. The maximum shock will therefore be the case where the final eccentricity is nearly
unity.

Assuming the shock acts in the direction of the bearing’s static load, the resulting equa-
tion for its shock tolerance in multiples of the gravitational acceleration (g’s) is:

as =
1

�f � �o

Z �f

�o

�

�g
d�� �o

�g
(3.5)

where �o is initial eccentricity, �f is the final eccentricity, �o is the static applied load param-
eter, and �g is the load parameter calculated from the journal weight.

There are a number of ways to handle this integral. The most direct, and most accurate
within the constraints of the quasi-static method, is to numerically integrate a steady-state
dataset taken at closely-spaced eccentricities. A more convenient option is to freeze the
stiffness at its initial value so that:

� = �o +

�
d�

d�

�
o

(�� �o);

in which case Eq. 3.5 becomes simply:

as =
�f � �o
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o

(3.6)
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Figure 3.29: Comparison of shock tolerance for L=D=0.075 bearings at �=5 computed with vari-
able and constant stiffness. The variable stiffness model can over or underpredict the shock tol-
erance at low eccentricity, with respect to the variable stiffness model, by more than an order of
magnitude depending on whether the starting or average stiffness is employed.

To compare the results of the variable and constant stiffness techniques, the shock tol-
erance for an L=D=0:075 bearing at �=5 is shown in Fig. 3.29 for �f=0:995. To generalize
the chart to bearings with different masses, a normalized shock tolerance, as�g, is plotted.

It is clear from this figure that the frozen-stiffness model consistently underpredicts the
shock tolerance computed with the variable stiffness model. This result is not surprising
because the former model neglects the considerable stiffness increase found near the wall
shown in Fig. 3.30. As a result, one would expect the greatest difference between the
constant and variable stiffness estimates to be found at low eccentricity. An inspection
of Fig. 3.29 shows that this is indeed the case, with the difference exceeding an order of
magnitude near �o=0:7.

It may be suggested that a means of reducing this error may be to use an average of
initial and final stiffnesses in Eq. 3.6. In this case, due to the exceptionally large stiffnesses
at high � shown in Fig. 3.30, the shock tolerance is drastically larger than predicted by the
variable stiffness model at all but the largest eccentricities.

Due to the orders-of-magnitude error of the frozen-stiffness model, and the uncom-
plicated nature of generating and numerically integrating the steady-state data, the latter
model is recommended for all but the roughest estimates of shock tolerance.

Dimensionalizing the variable-stiffness result for a microdevice: solid, millimeter-scale
silicon rotors were shown in Sec. 1.3.3 to have �g of order 10�4. From Fig. 3.29, the nor-
malized shock tolerance predicted by the variable stiffness model is of order unity, thus
the estimated shock tolerance for the microdevice at this operating point is of order 104

g’s. Conversely, a macrodevice with order unity mass at the same operating point would
tolerate only order unity g’s. As noted previously, this is a key feature of microdevices
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Figure 3.30: Nondimensional stiffness (@�
@�

) for an L=D=0.075 bearing at �=5. Note the extremely
rapid stiffness increase as the eccentricity approaches unity.

in general: their low inertia implies that sudden accelerations produce little stress on the
surrounding structure compared to macrodevices at the same conditions.

The effect ofL=D on the variable stiffness shock tolerance estimate is shown in Fig. 3.31.
Due to the longer bearing’s greater load capacity (compare Figs. 3.1 and 3.2), it is more
tolerant to shocks. This conclusion also holds true for changes in rotation speed, i.e. slower
running speeds imply lesser shock tolerance than faster speeds.

Dynamic Simulation

To investigate the importance of unsteady effects, which are very likely to be significant
in a sudden-load situation, a dynamic simulation of shock loading was performed at the
same conditions used in the previous section. Before the calculation even begins, however,
a complication appears: in the quasi-static calculation, the journal mass can be eliminated
by reporting the shock tolerance in terms of the load parameter due to weight, �g. In the
dynamic case, however, �M remains as a parameter. This observation highlights �M ’s role as
a dynamic variable involving the unsteady film properties in addition to the journal mass.

A further complication in comparing these results is presented by the fact that the jour-
nal does not react to the shock with a simple monotonic approach to the wall; it may
rebound several times. If, as may be intuitively assumed, the first approach produces the
maximum eccentricity, this fact is not an issue. It was found in the course of this inves-
tigation, however, that a shock loading may be found for many configurations where the
journal survives the initial wall approach but crashes on a subsequent approach. This be-
havior is shown in Fig. 3.32 for an L=D = 0:075 bearing with �M = 0:1, running at � = 5

and an initial eccentricity of 83%, subjected to an order-of-magnitude step increase of the
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Figure 3.31: Comparison of shock tolerances at � = 5 for bearings with L=D=0:075 and L=D=0:5.
Owing to its larger load capacity, the longer bearings have a greater tolerance to shocks at a given
running speed and eccentricity.

applied load. In this case, the second bounce occurs at higher eccentricity (99.4%) than
the first (99%) and the bearing crashes on the fourth bounce after a relatively weak third
bounce to 98.8% eccentricity.

For the purpose of comparison with the static results, we will take the maximum shock
as that which pushes the journal’s first bounce to 99.5% eccentricity. These calculations
will therefore yield the true tolerance to shocks with duration greater than or equal to the
time required to reach the first eccentricity peak, but shorter than that needed to reach a
subsequent higher peak, if such a peak exists. This time tends to decrease with �M and
initial eccentricity, �o. Its variation for an L=D = 0:075 bearing at � = 5 moving to an
eccentricity of 99.5% after a step input from various �o is shown in Fig. 3.33 in units of
journal revolutions. Dimensionalizing this example for a microturbomachine: a journal
with �M =0:1 revolving at 2 million RPM at a steady-state eccentricity of 80% will require
approximately 8 microseconds to reach its first eccentricity peak.

With the above provisos in place, the shock tolerance for an L=D = 0:075 bearing at
�=5 may be compared to the statically-derived results of the previous section. As before,
the shock is applied along the direction of the steady-state load holding the bearing at the
initial eccentricity. In this case, it was necessary to perform the calculation for a range of
�Ms. The numerically-integrated static estimate is included for comparison.

From a design standpoint, a key trend of Fig. 3.34 is that the static calculation underes-
timates the shock tolerance for all �Ms, except at very high initial eccentricities (�o > 0:95).
The shock tolerance calculated from the static data therefore represents a “worst case” for
most bearings. The difference between the dynamic and static results tends to increase
with decreasing �M except near the cross-over of the constant- �M lines above �o ' 0:92.
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Figure 3.32: Response of an L=D = 0:075 bearing with �M = 0:1 running at � = 5 and an initial
eccentricity of 83% to an order-of-magnitude step increase in applied load. The ’o’ in (a) indicates
the starting position and the ’x’ indicates the static position associated with the increased load.
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Figure 3.34: Shock tolerance at � = 5 for L=D = 0:075 bearings of various �M compared to an
estimate computed from steady-state data.

Bearings with small �M may thus be considerably more tolerant to shocks than predicted
from static data.

Furthermore, in place of the uniform concave up shape of the static estimate (except
near the limiting eccentricity), the dynamic results show a varying curvature that becomes
concave-down in the neighborhood of �=0:8. This transition occurs at lower eccentricity
and becomes more pronounced as �M decreases. In the lower �M curves, this behavior
produces a maximum in the shock tolerance versus initial eccentricity. For the smallest �M ,
this is also a global maximum. For these bearings, the shock tolerance may be maximized
without incurring the drag penalty associated with very high eccentricity operation.

The results of Fig. 3.34 may be understood in terms of a tradeoff between two unsteady
effects that have competing influence on shock tolerance. Hamrock [12] refers to these ef-
fects as as “squeeze” and “local expansion.” Both of these effects necessarily spring from
the unsteady term in the continuity equation because all unsteady terms in the fluid mo-
mentum equations vanish when inertia is dropped during the Reynolds equation’s devel-
opment.

Squeeze appears as a p @h=@t term. Its position in the Reynolds equation with respect
to the Poiseuille term implies that a negative value brings increased load capacity. When
a sudden load is applied, @h=@t is negative on the journal side opposite the loading direc-
tion, thus the squeeze effect acts to counter the shock loading. In addition, as the journal
moves under its new load, this region also becomes the minimum gap location where both
squeeze and viscous pumping effects act to increase the pressure. The presence of a pres-
sure multiplier on the squeeze term increases the importance of @h=@t as the eccentricity
(and hence the peak pressure) increases.

Physically, squeeze produces load capacity via the local increase in pressure required
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to force fluid out of a decreasing volume against viscous retardation. On the leeward side,
it has the reverse effect, causing a decrease in pressure to draw fluid into the increasing
volume. This effect is present in incompressible bearings, as evidenced by the existence of
oil-filled squeeze-film dampers.

Local expansion appears as an h@p=@t term. In the impulsive loading case, this term
could be referred to as “local compression” because the time derivative of pressure is pos-
itive under the journal. This term’s position in the Reynolds equation is similar to that of
the squeeze term. The positive derivative therefore implies that local compression acts to
weaken opposition to the journal motion.

Physically, the local compression effect is related to the coupling between pressure and
density changes in an isothermal film. Unlike an incompressible fluid, upon a sudden
change of its boundary conditions, a compressible fluid may undergo a density change
instead of immediately redistributing itself in the new volume. The time rate of change of
density in the compressible continuity equation thus produces a “history effect,” whereby
the pressure field can differ from that predicted by the instantaneous conditions at the
solid walls. For example, the steady-state analysis can predict a higher pressure in a given
region than currently exists, thus mass must be moved into the area. As in the squeeze
mechanism, moving fluid against viscosity requires a pressure distribution. In this case,
however, the distribution is counter to the load-carrying distribution because fluid can
only be moved into its characteristic high pressure area by a higher pressure elsewhere. In
the shock case, this implies that the integrated work is lower than predicted by the static
analysis because the force at each eccentricity is lower than predicted by the static analysis,
thus this effect reduces shock tolerance.

Competition between these effects produces the cross-over in constant �M lines at � '
0:92 on Fig. 3.34. Journals operating at lower eccentricities when the shock load is applied
reach higher translational speeds because the initial bearing stiffness is smaller. The combi-
nation of large translational speed and small stiffness implies that squeeze effects provide
a large share of the unsteady reaction for these bearings. Furthermore, because the mean
translational speed has an inverse relationship with �M (see Fig. 3.33), this effect increases
with decreasing �M . In Fig. 3.34, this situation produces the increasing agreement with the
static estimate at low �o as �M increases.

Conversely, journals operating at larger initial eccentricities experience larger stiff-
nesses along their entire path so the maximum journal speed is lower. Viscous pump-
ing, as predicted by the static analysis, therefore provides a larger share of the reaction.
The higher load capacity at these eccentricities, however, implies large peak pressures and
therefore large @p=@t, even with small translation speeds. Local compression effects there-
fore cause a net decrease in the shock tolerance over the statically-calculated value for
high �o. This decrease worsens as �M shrinks because the increase in journal speed results
in an increase in @p=@t. The trend of increasing agreement between static and dynamic
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Figure 3.35: Shock tolerance at � = 0:5 for L=D = 0:075 bearings of various �M compared to an
estimate computed from steady-state data.

cases with decreasing �M is therefore reversed at high eccentricity when local compression
dominates.

The tradeoff between these unsteady effects may be altered by changing the bearing
number. Squeeze is independent of bearing number because it is created by journal trans-
lation, rather than rotation. Local compression, however, is a function of @p=@t. For a
given change in journal position, the change in pressure is dependent on �, thus local
compression in the shock loading context should also be dependent on �. The result of
this rebalancing of unsteady effects via � change is shown in Fig. 3.35.

Several observations can be made on this figure. First, the statically-estimated shock
tolerance is sharply reduced by decreasing �. This reduction is a consequence of the
steady-state load capacity’s dependence on � (see Sec. 3.1.1). Second, once again, the
unsteady results show a shock tolerance greater than the static estimate, with the im-
provement increasing with decreasing �M . Notably, however, the peak shock tolerance for
�M = 0:01 changes very little between Figs. 3.34 and 3.35, despite the order-of-magnitude

reduction in �. This observation implies that squeeze dominates the shock tolerance of
low �M bearings running at moderate eccentricities for the range of bearing numbers stud-
ied. This conclusion is further supported by the larger peak differences from the static
estimate for all �M traces at the lower �. Finally, the crossover of traces is absent from
Fig. 3.35. Because the lower speed case reaches a much lower peak pressure at all eccen-
tricities, the eccentricity at which local compression becomes important increases, thus the
handoff of dominance from squeeze to local compression will occur later. In the � = 0:5

case of Fig. 3.35, the crossover point shifts out of the depicted eccentricity range.

Additional insight into the tradeoff between squeeze and local compression effects may
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Figure 3.36: Shock tolerance at �=5 for L=D=0:075 bearings of various �Ms calculated with time
derivative of height deleted.

be obtained by performing a series of calculations with one of them removed. In Fig. 3.36,
the calculations of Fig. 3.34 were performed with the @h

@t set to zero, eliminating the squeeze
mechanism.

In this case, all the �M traces fall below the static estimate. In addition, their ordering is
inverted, i.e. larger �Ms now imply greater shock tolerance. This finding supports the above
hypothesis that local compression has a uniformly deleterious effect on shock tolerance,
with the level of degradation increasing with journal translational speed.

3.3 Chapter Summary

In this chapter, the behavior of plain journal bearings was investigated. Due to the small
lengths found in most micromachines, a focus was held on the effect of very small L=D on
the treated phenomena.

Load Capacity

The steady-state load parameter at low speed was shown to decrease significantly as the
bearing L=D was reduced. This trend was explained via the analytical solution for an
incompressible short bearing. The remarkable fit of this solution to theL=D=0:075 bearing
throughout the depicted speed and eccentricity range led to the conclusion of a later onset
of compressibility effects as L=D decreases. Because compressibility tends to decrease
load capacity, this observation implies that a portion of the short bearing’s load capacity
disadvantage may be recovered at high speed.
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Drag

It was shown that calculation of drag may be considerably simplified for the short bearing
because its low load capacity and large attitude angles deemphasize the Poiseuille term
involving these quantities compared to the Couette term involving only the eccentricity.
Due to the relative insensitivity to design permutations of the stability boundaries in terms
of eccentricity shown in Sec. 3.2.1, this finding implies that a reasonable estimate of the
bearing drag can be obtained very early in the design process.

Fixed-Point Stability

The tendency of a journal to return to fixed-point (i.e. non-orbiting) operation following a
small perturbation was presented in a number of formats. The experimental observations
of other researchers were explained via trends illuminated on these charts. In general, it
was found that decreasing L=D increases the running eccentricity but, due to the asso-
ciated loss of load capacity to side-leakage, it may also reduce the required load. For a
self-contained machine, this situation implies that the short bearing may have lower bleed
air requirements when loading is provided via a pressure differential. Furthermore, when
designing bearings under the fixed C=L constraint imposed by microfabrication, it was
found that greater improvement is generally obtained by increasing L than by decreasing
D.

Whirling Operation

A stable whirling mode was shown to exist for journals with negligible imbalance, in
agreement with previous researchers’ experimental and numerical observations. This so-
lution was demonstrated in regions with a fixed point solution as well as those where no
such solution exists. The extent of the whirling solution into both regions was shown to
be a function of applied L=D and �M . A method for estimating this extent from fixed-point
stability solutions was suggested. For microbearings, whirling solutions were shown to
exist at very high eccentricities and were difficult to establish in the presence of significant
imbalance. They are therefore unlikely to be of operational importance.

Imbalance

A striking similarity was shown between applied load and imbalance in terms of bearing
operation. In both cases, too little produces self-excited whirl and too much implies a
direct wall strike. Applying the two quantities in tandem, tradeoffs may be made between
them. If sufficient load is applied to guarantee fixed-point stability, a limit to the allowable
imbalance is implied. Reducing this load implies a tolerance to greater imbalance levels,
but the journal is liable to whirl if some minimum imbalance is not maintained. A method
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for determining the load boundaries experimentally for a journal with unknown imbalance
based on a power spectrum of its motion was suggested.

Shock Tolerance

By comparing unsteady simulations of step-input loading to quasi-static estimation re-
sults, it was shown that the shock tolerance estimated by numerically integrating steady-
state data is a “worst-case” value except at very high initial eccentricities and high speeds.
It was noted that the difference between these solutions increases as �M decreases because
squeeze film effects become more important. These results indicate that the shock toler-
ance will typically be thousands of g’s for millimeter-scale devices made of silicon.





Chapter 4

Geometric Variations

This chapter explores the effect of variations in geometry from the plain, cylindrical journal
bearing case. These deviations may be deliberate, eg. Dimofte’s “wave bearing” [30], or an
undesirable consequence of the manufacturing method, eg. axially-tapering clearance in
etched bearings [64]. In either case, geometric effects can significantly alter the bearing’s
performance so it is important to consider them early in the design process.

4.1 Noncircular Bearing

As noted in Sec. 3.2, the plain journal bearing has a limited envelope within which oper-
ation is possible. For machines that cannot tolerate the vibration associated with a high-
eccentricity whirling mode examined in Sec. 3.2.2, the envelope is reduced further to the
fixed-point mode boundaries examined in Sec. 3.2.1. In an effort to expand this envelope,
many researchers have suggested that the journal’s tendency to whirl may be reduced by
breaking the bearing’s rotational symmetry. In effect, this changes the distribution of con-
vergence/divergence in the fluid passage. Because the Reynolds equation relates pressure
gradients to passage height gradients in time and space, a shape change can greatly alter
a bearing’s steady-state and dynamic performance.

Comparisons between various noncircular shapes appear in the literature [65, 66]. For
example cases, this section will employ a relatively recent geometry: the wave bearing [30].
This bearing, introduced in 1995 by Dimofte, has a sinusoidally-varying clearance. Three
parameters must therefore be chosen to define the noncircularity of wave bearings: the
wave amplitude, Anc, normalized by the mean clearance, Cnc, to yield anc, the wave phase,
�, and the number of wave cycles, nw. The influence of wave amplitude and phase are
treated in [30]. The influence of the number of waves is treated in [67]. Results on the
influence of these parameters on microfabricated wave bearings will be presented in the
current section.

113
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4.1.1 Considerations for Microfabricated Machines

The microfabrication environment’s unique characteristics affect the design tradeoffs of
noncircular bearings. First, because many devices are made from a single photolitho-
graphic mask, an increase in shape complexity has no effect on the per-unit manufacturing
difficulty in the ideal case. 1 Second, because the minimum clearance is set by etching con-
siderations discussed in Sec. 1.3, any departure from circularity must be accomplished
solely by increasing the clearance around the bearing in various locations. A microfabri-
cated noncircular bearing will therefore always have a larger mean clearance than its plain
counterpart. This consideration is illustrated in Fig. 4.1, which contains a sketch of the
wave bearing and its controlling parameters as well as its equivalent circular bearing.

Anc

α

noncircular bearing
equivalent
circular bearing

W

ω

Figure 4.1: Schematic of a three-wave (nw = 3) bearing showing the definition of the wave phase
and the wave amplitude with respect to the equivalent microfabricated circular bearing (dashed
line). The noncircular bearing’s mean clearance (dotted line) is always greater than that of the
equivalent circular bearing due to the fixed minimum clearance constraint.

From a physical standpoint, it can be understood that increasing the mean clearance
generally reduces the steady-state load capacity of a bearing because its rotating surface
area decreases with respect to the total fluid volume. Unsteady operation is also affected
by increasing the clearance due to a reduction in the ratio of journal to bearing projected
areas. This reduction tends to weaken squeeze film effects because a given displacement
produces a smaller volume change relative to the area over which the fluid can escape.
This, in addition to the reduced static load capacity, makes it more difficult for a large-
clearance bearing to defeat a whirl.

These physical arguments can be supported by examining the nondimensional param-

1In the real case, aspect ratio-dependent etching (ARDE) [64] can be a serious concern if the clearance varies
appreciably around the bearing.
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eters. As noted in Sec. 2.2.2, the parameters used in this work are based on the mean
clearance. These quantities will therefore reflect the increase in mean clearance associated
with adding noncircularity to microfabricated bearings.

The minimum clearance for a noncircular bearing is:

Cmin = Cnc �Anc = Cnc(1� anc) (4.1)

Because the Cmin is held constant as the geometry is varied, it is also the clearance of the
equivalent circular bearing, Cc. The mean clearance of a noncircular case may be therefore
be related to an equivalent circular case by:

Cnc

Cc
=

1

1� anc
(4.2)

With Eq. 4.2, the nondimensional parameters of noncircular bearings may be related to
those of comparable circular bearings running at the same conditions:

�nc = �c(1� anc) (4.3)

�nc = �c(1� anc)
2 (4.4)

�Mnc =
�Mc

(1� anc)5
(4.5)

where the first expression assumes equal dimensional deflection of the journal from its
concentric position between the circular and noncircular cases, as shown in Fig. 4.1. A
convenient trait of this formulation is that, while the noncircular bearing can crash with
�nc < 1, �c is always at least unity at crash, though it can be greater than unity as well. Un-
fortunately, it is not possible to define an eccentricity that is always unity at crash without
including details of the shape and the journal position.

Inspecting Eqs. 4.3 - 4.5, the physical arguments regarding the effect of clearance in-
creases on bearing operation become clear in nondimensional space. Under otherwise
identical conditions, a noncircular bearing runs at a smaller eccentricity, a lower bearing
number, and a larger dimensionless mass than comparable circular bearing. It was shown
in Chap. 3 that each of these changes results in lower load capacity and, in general, poorer
stability.

In view of this finding, the decision to adopt noncircular bearings in a microfabricated
machine must be justified by performance gains large enough to offset any losses associ-
ated with the concomitant increase in mean clearance. The current section is constructed
with this tradeoff in mind.
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4.1.2 Steady-State Behavior

To demonstrate the effect of the microfabrication constraints on the steady-state perfor-
mance of a wave bearing, a series of calculations were performed for an L=D = 0:075

bearing at �=0:3 with varying wave phase angles. A sample result of this series at a fixed
� is included in Fig. 4.2.

0 20 40 60 80 100 120
0.01

0.02

0.03

0.04
ζ

α (deg)

Figure 4.2: Dependence of load capacity on wave position angle, �, for a 3-wave bearing with
anc=0:4. In this case, L=D=0:075,�=10, and �=0:3

Following Dimofte [30], the maximum load parameter obtained from the series of cal-
culations performed at each � is plotted in Fig. 4.3 for bearings of various wave amplitudes
with equal mean clearances. As observed by Dimofte, the maximum load capacity of a
wave bearing is generally greater than that of a circular bearing. In Fig. 4.3, � increases by
more than an order of magnitude when the wave amplitude reaches 60% of the clearance
(i.e. anc=0:6).

Two features distinguish Fig. 4.3 from Dimofte’s result atL=D=1 (see [30], Fig. 3). First,
the overall load level is two orders of magnitude smaller. This effect is a consequence of in-
creased side leakage suffered by the much shorter bearing treated here. Second, and more
importantly, the difference between the circular and noncircular results is much greater
for the shorter bearing. This observation implies that a greater benefit may be obtained by
adopting noncircular geometries as the L=D shrinks.

The comparison presented in Fig. 4.3 changes considerably under fixed minimum clear-
ance constraint imposed on microfabricated bearings. Under this constraint, the bearing
number is reduced in the calculation using Eq. 4.4, but the data is plotted with respect to
the equivalent circular case bearing number, �c. Furthermore, the running eccentricity is
reduced using Eq. 4.3 to provide a fixed dimensional running distance between the journal
and bearing centers.
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Figure 4.3: Maximum load parameter of L=D=0:075 three-wave bearings of various amplitude at
�=0:3 for a range of bearing numbers. In this case, as in much of the bearing literature, the mean
clearance is held constant, so the minimum clearance decreases with increasing wave amplitude

Repeating the calculations with these factors in mind, a new chart is presented in
Fig. 4.4. Notably, the trend of Fig. 4.3 is reversed: now the load capacity at a given
running point decreases as the wave amplitude increases. This finding demonstrates that
the increase in mean clearance brought by noncircularity under the minimum clearance
constraint can consume the advantage in steady-state load capacity reported by other re-
searchers.

For a turbomachine with self-acting bearings, the decreased load capacity may be an
advantage because it reduces the bleed air flow required to force the bearing to a sufficient
eccentricity to guarantee stability. The associated disadvantage is realized in terms of a
reduced tolerance to transient loading from vibration, dropping, or unplanned pressure
imbalances.

Before proceeding with comparisons involving noncircular bearings, an important fea-
ture regarding the load capacity in terms of eccentricity should be noted: these parame-
ters do not necessarily have a one-to-one relationship. This behavior is demonstrated in
Fig. 4.5, where the load on two 40% three-wave bearings with differing phase angles was
slowly increased at �= 1 and the corresponding eccentricity measured. The results for a
circular bearing running at the same nondimensional conditions (i.e. without adjustment
for the minimum-clearance constraint) are also shown for reference.

Unlike the circular bearing, whose eccentricity always increases with applied load,
Fig. 4.5 shows that wave bearings have regions in which increasing the load decreases
the eccentricity. Moreover, the extent and amplitude of the decreasing-� region is a strong
function of the wave phase angle.

An additional peculiarity of wave bearings is presented in Fig. 4.6, which shows the at-
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Figure 4.4: Maximum load parameter of L=D=0:075 three-wave bearings of various amplitude at
a range of bearing numbers. In this case, the running eccentricity was adjusted to reflect a fixed
dimensional running distance under the fixed minimum clearance constraint. The bearing number
is also renormalized to match the circular case at the same running condition.
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Figure 4.5: Eccentricity variation with applied load for L=D=0:075, anc=0:4 three-wave bearings
with �=0� and �=60� at �=1. A given eccentricity does not imply a unique load, as it does in the
circular case run at the same nondimensional conditions.
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Figure 4.6: Attitude angle variation with applied load for L=D = 0:075 40% three-wave bearings
with �=0� and �=60� at �=1. The �=60� trace exhibits unusual features of increasing � with
load and � > 90� in the low-� region.

titude angles associated with the load points in the previous figure. Once again, the traces
show a strong dependence on �. In a stark contrast to typical circular bearing behavior, the
�=60� trace shows an increasing attitude angle with load for small loads. Furthermore, �
exceeds 90 degrees, which is not possible in circular bearings.

The physical mechanism behind the behavior shown in Figs. 4.5 and 4.6 can be under-
stood with the help of Fig. 4.7. This figure shows the journal path with respect to the wave
geometry, which has been greatly exaggerated for visibility. In the �=0� case, a clearance
minimum occurs at � = 180� and another at � = 300�. In this case, the journal assumes
smaller attitude angles than the circular case for small loads because it tracks down the
wave peak centered at �=300� as eccentricity increases. When the attitude angle reaches
60� (i.e. hmin is at �=240�), however, it begins to track up the �=180� peak and the rate of
� decrease, as well as the rate of � increase, with � slows. At very large loads, the journal
approaches the �=180� peak and the measured eccentricity begins to decrease strongly.

In the � = 60� case, the bearing geometry has clearance minimum at � = 240�. The
attitude angle trace of Fig. 4.6 therefore implies that the increasing attitude angle for low
� corresponds to the journal moving to higher eccentricity by tracking down the geometry
peak in the direction of rotation, thus the unusual result of increasing attitude angle with
load. As � increases past 10�3, the journal’s attitude angle progression with load reverses
and it moves to the upstream side of the peak. In the course of this movement, the eccen-
tricity decreases briefly as it passes the peak, hence the turndown in Fig. 4.5 corresponds
to the area where � is near 60� in Fig. 4.6. From this point forward, the behavior is more
familiar because the increasing eccentricity causes the journal to track down the lobe in a
direction opposite its rotation, as it would in the circular case.
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(a) �=0
� (b) �=60

�

Figure 4.7: Demonstration of the effect of wave phase angle on the journal path under increasing
load. The positions shown correspond to the data in Figs. 4.5 and 4.6 and the wave shape is greatly
exaggerated for visibility.

Thus, the aberrant behavior of the wave bearing with respect to the circular bearing
stems from a varying relationship between journal position and wave shape as the attitude
angle decreases under increasing load. From this argument, one would also expect similar
behavior from bearings run under fixed load over a range of speeds because the attitude
angle is dependent on speed.

The apparently complex behavior of noncircular bearings under increasing load shown
in the preceding figures may be simplified by replacing eccentricity with the minimum
distance between solid surfaces normalized by the clearance, a quantity to be referred to
as �. For the circular case, � is simply 1��. For the noncircular case, � also depends on �

and the three wave bearing parameters, nw, anc, and �. As shown in Fig. 4.8, however, the
additional effort involved in computing � is rewarded by a vastly simplified presentation.

In this coordinate space, the noncircular bearing data fall closer to the behavior ex-
pected from circular cases. First, the relationship between � and � becomes one-to-one and
monotonic. Second, the traces for differing � collapse almost perfectly. The key to un-
derstanding steady noncircular bearing behavior therefore lies in examining the journal’s
position with respect to nearby features in the bearing shape instead of its position with
respect to the bearing center.

Figure 4.8 exhibits another important feature to keep in mind when comparing noncir-
cular bearing data found in the literature: the circular case � has a zero-load asymptote of
unity while the noncircular case’s asymptote occurs at 0.6. In other words, the noncircu-



4.1. NONCIRCULAR BEARING 121

10
-4

10
-3

10
-2

10
-1

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ζ

δ

α = 0o 
α = 60o

circular     

Figure 4.8: Data of Fig. 4.5 replotted versus the minimum distance between journal and bearing,
�. In this case, the curves for differing wave phase angles collapse and a one-to-one relationship is
shown.

lar bearing may have a much smaller minimum running clearance for a given eccentricity
due to the incursion of the bearing surface into the mean circle. The fixed minimum clear-
ance constraint eliminates the incursion issue, but it also implies a larger mean clearance
and, hence, a different normalizing factor in the definition of �. The relationship between
dimensional minimum heights for various bearings is therefore unclear when examining
�. This issue is addressed in the current document by reporting � in terms of �c, which
is � renormalized by the clearance of the equivalent circular bearing under the minimum
clearance constraint using Eq. 4.2. With this normalization, the nondimensional minimum
height will vary between zero and one for all cases.

4.1.3 Unsteady Behavior

Repeating the progression followed in Chap. 3, this section will expand upon its predeces-
sor by adding time-dependent effects to the calculation. As noted in the previous chapter,
the operating positions reported in the previous section are only realizable by bearings
within a given range of dimensionless mass. Other bearings will depart from their static
equilibrium position to enter a whirl that may or may not end in wall contact.

Fixed-Point Stability

In this section, as in Sec. 3.2.1, journal stability will be assessed with respect to the tendency
to return to a fixed position after a small perturbation. Noncircular bearings complicate
this investigation and the presentation of its results for two primary reasons. First, the
already-large parameter space expands to include constants describing the bearing shape.
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Figure 4.9: Demonstration of stable and unstable bearings with the same equilibrium eccentricity
(�=0:4). Both cases are L=D=0:075, 40% three-wave bearings with � = 60�. The unstable case is
�=0:0037 and the stable case is �=0:0055.

For the wave bearing, this description adds three variables (anc, nw, �). Second, the charts
used in Sec. 3.2.1 in terms of eccentricity are not appropriate for noncircular bearings be-
cause, as pointed out in the previous section, the relationship between � and � is not always
one-to-one. From a physical standpoint, however, one expects the stability boundary to be
one-to-one in terms of a loading condition. The load parameter and � will be investigated
in this section as a more appropriate variables for this role.

To underscore this point, a demonstration of a stability boundary lying between two
load parameters corresponding to the same eccentricity is presented in Fig. 4.9. The bear-
ing is a L=D = 0:075, 40% three-wave bearing with �M = 1 and � = 1. Supporting the
concept of a loading condition, the bearing under higher � (0.0055) is stable and that under
lower � (0.0037) is not, despite the fact that both correspond to an equilibrium position of
�=0:4.

It should be noted that, while the static equilibrium points for the two cases depicted
in Fig. 4.9 have the same eccentricity, their attitude angles are different: 69:5� and 91:8� for
the high and low � cases, respectively. This observation supports the intuitive expectation
that a given load corresponds to a unique running position at fixed �. The varying ge-
ometry simply introduces multiple points along the load line that correspond to the same
eccentricity.

In addition, the higher and lower � traces in Fig. 4.9 correspond to �=0:20 and �=0:25,
respectively. The minimum running distance is therefore a good candidate for use as a
loading condition in the same way � was used in the previous chapter.

As a demonstration of bearing stability dependence on various wave parameters in
the coordinate space used in this document, Fig. 4.10 contains the minimum load required



4.1. NONCIRCULAR BEARING 123

0 20 40 60 80 100 120
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

α

ζ

ε
w
 = 0.2

ε
w
 = 0.4

circular        

(a) Load

0 20 40 60 80 100 120
0.1

0.12

0.14

0.16

0.18

0.2

0.22

α (deg)

δ

(b) Minimum Running Distance

Figure 4.10: Minimum stable � and � for 20 and 40% amplitude three-wave bearings as a function
of wave phase angle. The circular result at the same nondimensional condition (L=D=0:075 �=1,
�M=1) is included for reference.

for stability at � = 1 for three-wave bearings of amplitude 0.2 and 0.4 with �M = 1 at a
range of wave phase angles. The results for a circular bearing at the same nondimensional
condition are included for reference.

As noted by Dimofte [67] for the L=D=1 steady-state case, the 20% wave bearing trace
crosses the circular bearing result. This finding implies that � must be chosen carefully
when adopting small amplitude three wave bearings to avoid a performance degradation,
both in steady state load capacity and stability margin. Because the optimal � is likely to
depend on � (see [30], Fig. 5), these bearings may not be a good choice for machines that
operate at a wide range of speeds. In the context of this result, Dimofte [67] points out
that manufacturing tolerances on a circular bearing can make it appear to be a small am-
plitude, small wavenumber, noncircular bearing so its performance can be worse than the
intended circular bearing. In this case, Dimofte recommends increasing the manufacturing
tolerances to ensure that the variation is greater than 20% of the clearance (which has the
beneficial side-effect of reducing cost in a conventionally-machined bearing).

Another feature of Fig. 4.10 worth noting is that the variation of both � and � decreases
slightly with increasing wave amplitude. In this case, the variation of � and � from the
median value is 63% and 25% for the anc = 0:2 bearing and 51% and 17% for the anc = 0:4

bearing.
To reinforce the difference between � and � in noncircular bearings discussed in the pre-

vious section, the minimum eccentricities corresponding to Fig. 4.10 is shown in Fig. 4.11.
It is immediately evident that the variation of � with � is much greater than that of �.
Furthermore, significant differences can be seen in the curve shapes. For instance, the ec-
centricity plot for the 40% bearing shows a sharp minimum near � = 60� whereas the �
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Figure 4.11: Data of Fig. 4.10 replotted versus eccentricity. Note that variation of � with � is much
greater than that of � and the curve shapes are not related in a simple manner.

chart shows a much broader maximum. This is also true, although to a lesser extent, for
the 20% bearing. In both cases, the peak in � occurs at a smaller phase angle than predicted
by the eccentricity plot.

Finally, Fig. 4.11 implies that larger wave amplitudes are generally better in terms of
lower required load and larger running clearance. Under the minimum clearance con-
straint often imposed by microfabrication concerns, this may not be the case because larger
amplitudes imply larger mean clearances.

Before applying the minimum clearance constraint to the noncircular bearing results,
the effect of wavenumber on stability in the parameter space employed in this document
will be investigated. For a fixed wave amplitude, changing the wavenumber does not
affect the clearance. These results will therefore be independent of the minimum clearance
constraint. As mentioned previously, increasing bearing shape complexity has little effect
on the manufacturing difficulty of each unit in a microfabrication environment. Most of
the increased difficulty is absorbed in the construction of the mask, which is then used
to define to geometry of many units. In addition, Dimofte [67] reported that increasing
the wavenumber decreases the performance variation with phase angle. If these findings
apply to the current bearings and parameter space, subsequent tradeoff investigations can
be greatly simplified.

For this study, 40% wave bearings of wavenumber 3, 6, and 9 were run at the conditions
of the previous figure. The resulting data are presented in Fig. 4.12.

The most immediately evident trend in Fig. 4.12 supports the findings of Dimofte [67]:
the performance data variation with � weakens considerably as wavenumber increases.
In the depicted case, the span of � changes from a factor of three for the 3-wave bearing
to almost imperceptible for the 9-wave bearing. The collapse of the � variation is also
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Figure 4.12: Minimum stable � and � for 40% amplitude wave bearings as a function of wave phase
angle and wavenumber at the same nondimensional condition (L=D=0:075 �=1, �M=1).

dramatic: the ratio of maximum to minimum � drops from a factor of 1.42 in the 3-wave
case to 1.06 in the 9-wave case.

Dimofte also reported a decreasing load capacity with increasing wave number. Sup-
port for this finding may be found in Fig. 4.12. For instance, the 3 and 6-wave bearings
have similar � in the interval 50 < � < 70. Referring to Fig. 4.12(a), however, � is signifi-
cantly higher in this interval for the 3-wave bearing. Similarly, the 6 and 9-wave bearings
have virtually indistinguishable � near �=40, but the 6-wave bearings shows a greater �
in this area in Fig. 4.12(a).

As mentioned previously, reduced load capacity is an advantage for turbomachines
loaded with self-generated pressures in terms of bleed air requirements but a disadvan-
tage in terms of shock tolerance. Fortunately, the reduced load required for stability with
increasing wavenumber shown in Fig. 4.12(a) is much larger than can be explained by
lost load capacity; it is also a result of the increased � realized at most � as the bearing
wavenumber increases. Furthermore, the increased � also implies reduced running drag
and that the journal will not be riding between wave peaks, which could be a problematic
situation in the presence of imbalance.

An intuitive attempt to explain this finding may be made by considering the infinite
wavenumber limit. Approaching this limit, the waves become so tightly packed that the
bearing begins to appear circular to the journal, but with clearance equal to Cmin. This
thought experiment explains the decreased dependence on �, because � is irrelevant to a
circular bearing, as well as the increased stability, because decreasing clearance generally
improves stability.

The above argument does not, however, explain the reduced load capacity reported by
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Figure 4.13: Mid-length pressure distribution for a 40% 9-wave bearing at �=1, �=0:35. The wave
shape’s clearance maxima are indicated by dotted lines. It can be seen that, even at the pressure
peak, the pressure is fixed at its ambient value at the lobes, supporting the axial groove argument
of wave bearing behavior under the minimum clearance constraint.

Dimofte. Furthermore, for the circular case with C = Cmin, the nondimensional condition
represented in Fig. 4.12(a) is: �=2:8 and �M=0:078. From the previous chapter, this implies
�=0:16 and �=0:04; a much higher load and lower � asymptote than the data suggest. The
discrepancy can be explained by considering the effect of the wave valleys: they appear as
axial grooves of depth much greater than their width. Particularly for a short bearing, these
grooves will function as restricted vents to atmospheric pressure. They will therefore bleed
down high pressure areas, reducing the load capacity, but they will also break the pressure
film into several somewhat independent segments, which typically improves stability [29].

Far from the infinite-wavenumber limit, this effect is visible in the pressure distribution
of a 9-wave bearing, such as that presented in Fig. 4.13. In this case, a 40% bearing with
�=10� at �= 1 is shown at �=0:35, �=50:58�. As suspected, the pressure is fixed at its
ambient value at each of the wave valleys, whose positions are indicated by dotted lines.

In this case, the attitude angle places the journal between two wave peaks. Conse-
quently, two major pressure peaks occur upstream of the geometric peaks, divided by a
sub-ambient region. The appearance of this sub-ambient region amidst the high-pressure
peak indicates that the fixing of pressures at the ambient value in the wave valleys is more
of a leeward-facing step effect than an axial leakage phenomenon. This contention is also
supported by the appearance of significant sub-ambient pressures opposite the journal
position, where the pressure is indistinguishable from ambient in the circular case.

To demonstrate the effect of� dependence on bearings operating over a range of speeds,
40% wave bearings of wavenumbers three and nine with �M=1 were run over a two order
of magnitude range of �. The 3-wave bearing was run with �=0� and �=60�, which cor-
respond to placing a wave peak at �=00 and �=600, respectively (as shown in Fig. 4.7).
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Figure 4.14: Minimum stable � and � for 40% amplitude three and nine wave bearings as a function
of speed. For reference, a circular bearing at the same nondimensional condition (L=D = 0:075
�M=1) is included.

The results of these calculations are presented in Fig. 4.14. As before, the circular case at
the same nondimensional condition is included for reference.

From this figure, it may be seen that the 0�, 3-wave bearing has an advantage at low �

over the 60� case, in terms of both the required load and its associated minimum running
distance. As � increases, however, this advantage is lost and the 0� case has significantly
higher required load and lower running clearance. It is therefore necessary to make a
choice between low and high speed performance when employing a three-wave bearing
in the depicted conditions.

In contrast, the 9-wave bearing retains its stability advantage in terms of required load
over both 3-wave bearings and the unnormalized circular bearing except near � = 10,
where the 60� 3-wave bearing requires a smaller load. In terms of � the 9-wave bearing’s
advantage holds throughout the depicted range. It is notable that, because the 9-wave
bearing still has a larger � when the � curves cross over, the 9-wave bearing’s load capacity
exceeds that of the 3-wave bearing near this point, in contrast to the result reported at �=1

in Fig. 4.10.

With the 9-wave bearing’s insensitivity to � and its improved � and � for most �, a rea-
sonably fair comparison may finally be made between wave and circular bearings under
the minimum clearance constraint simply in terms of wave amplitude. Such a comparison
is presented in Fig. 4.15. In this case, the bearing number and minimum running clearance
is reported in terms of the equivalent circular bearing, �c and �c, so the wave bearing cases
were actually run at lower bearing numbers according to Eq. 4.4.

In contrast to the steady-state load capacity findings of the previous section, where the
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Figure 4.15: Comparison of minimum stable � and �c for circular and two 9-wave bearings as a
function of speed under the minimum clearance constraint. Despite the fact that the wave bearings
run at a lower bearing number and higher �M than the circular case under this constraint, their
advantage holds. L=D=0:075 for all cases. �M=1, 3, and 13 for the circular, anc=0:2, and anc=0:4

cases, respectively.

minimum clearance constraint reversed the trend of increasing load capacity with wave
amplitude, Fig. 4.15 indicates that the wave bearing’s improvement to the stability bound-
ary, in terms of both presented metrics, survives the constraint. In terms of required load,
this result is not surprising in light of the previous findings of a decreased load capacity
because the wave bearing will have a lower required load even if the minimum running
clearance is smaller. The finding of an increased �c with increasing wave amplitude was
not expected because �M increases by more than an order of magnitude and � is reduced
by a factor of three for the 40% bearing under the minimum clearance constraint. Despite
these adjustments, even the unnormalized � for the wave bearing was larger than that of
the circular case. This advantage is amplified even further by the adjustment of the nondi-
mensionalizing factor in � to the circular bearing’s clearance.

Whirl Stability

In a similar manner used in Sec. 3.2.2 for plain bearings, the current section will explore
the behavior of noncircular bearings when they depart from fixed point operation and
enter a whirling motion. This mode change may be brought about by either a violation
of the stability criteria outlined in the previous section or a jolt, as shown experimentally
by Reynolds and Gross [26]. In either case, it is important to understand the conditions
under which this whirl is stable and those under which it ends in potentially destructive
wall contact.
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Figure 4.16: Whirl mode at fixed point for 40% 9-wave equivalent to the bearing of Fig. 3.15. As in
previous figures, the contact with the dashed line denotes a wall strike. The extent of the noncircu-
larity is greatly exaggerated in this presentation and the shape is cropped.

The line of inquiry in the current section will follow that of its predecessor for plain
bearings. Numerical experiments will be conducted in which the load is fixed and the
speed is increased past the threshold of fixed point stability. Once a whirl is entered, the
speed will be increased until operation can no longer be sustained. A parallel series of
computations will also be performed in which the speed is reduced once a whirl is es-
tablished to examine the “overlap region” detailed in Sec. 3.2.2, where the whirling mode
persists despite the fact that the speed has dropped below its threshold value for fixed
point stability.

In order to facilitate comparison between the results of this section and those of Sec. 3.2.2,
the first case to be presented is the 40% 9-wave analogue of the condition shown in Fig. 3.15.
In this case, under the minimum clearance constraint, �M =0:1=(1 � 0:4)5=1:29. Also, the
load parameter was set to 0.0028 so that the loss of fixed point stability occurred at a circu-
lar equivalent bearing number of approximately 3.5.

The whirl mode at the threshold speed for this bearing is shown in Fig. 4.16. Two
features of this orbit are immediately evident. First, the shape is decidedly noncircular
due to the interaction between the wave peaks and the whirling journal. Second, despite
the fact that this orbit is at the whirl threshold, the journal and bearing surfaces approach
each other to within 2.5% of the clearance. In terms of an eccentricity-like measure, 1��,
this orbit reaches 97.5%.
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Figure 4.17: Stable running modes for an L=D = 0:075 40% 9-Wave Bearing with �M = 0:13 and
�=0:0028. Under the minimum clearance constraint, this �M corresponds to a circular bearing with
�M=0:01

The orbit shown in Fig. 4.16 was established gradually by choosing a fixed-point with
a very small growth rate. Attempts to increase or decrease the speed to gather data of the
form presented in Sec. 3.2.2 caused the journal to crash. The extreme sensitivity of this
orbit makes it unlikely to be observed in a physical system, thus the fixed point stability
boundary for this case is, in effect, an operational boundary.

Following the progression of Sec. 3.2.2 the �M of this bearing was reduced by an order
of magnitude and the simulation repeated. The resulting behavior is shown in Fig. 4.17 in
a format similar to that used in Sec. 3.2.2. Again, the eccentricity was replaced by 1�� to
ease comparison between the current figure and Fig. 3.17.

In this case, a stable whirl was established at sufficiently small eccentricity that the orbit
was circular. Also in contrast to the previous case, it was possible to increase the speed
significantly from the fixed-point threshold and maintain a stable whirl. At approximately
�= 5:25, however, further increases caused the journal to crash. At this bearing number,
the whirl orbit was still almost perfectly circular. The difficulty in increasing � at this
point may therefore be caused by an attempted transition to an orbit of the type shown
in Fig. 4.16 where the journal “hops” from peak to peak. Because this trajectory results in
situations where the journal eccentricity is increasing as the bearing surface is closing in
(at the orbit “corners” in Fig. 4.16) the minimum height dips to a very small value. As a
result, a small disturbance, such as a speed increase, can easily cause a crash, hence the
sensitivity of the �M=1:29 case.

As observed for the circular bearing in Sec. 3.2.2, the whirling mode also persisted
below the fixed-point threshold speed if the bearing was started from a whirling condition
and � was slowly decreased. This finding implies that, as observed experimentally by



4.2. AXIALLY-VARYING CLEARANCE 131

Reynolds and Gross [26] for circular bearings, a jolt can cause a bearing operating below
its threshold speed to whirl while another jolt can return it to fixed-point operation. In this
case, unlike the �M=1:29 case, the running distance between the journal and bearing in the
whirl mode is sufficiently large to make it tolerant to disturbances.

4.2 Axially-Varying Clearance

In all previous (and following) sections of this document, the clearance is assumed con-
stant in the axial direction. This assumption implies strictly translatory journal motion
in addition to the geometric requirement of journal surface normals everywhere perpen-
dicular to the rotation axis. In this section, the kinematic constraint will be held, but the
geometric constraint will be released.

4.2.1 Description

In a conventional fabrication environment, unintended clearance variations in the axial
direction are typically negligible because the parts are turned, ground, and/or lapped.
Axial clearance variation would therefore be produced only through misalignment of the
machine tool’s axes. On commercial tools, this misalignment is typically very small com-
pared to the clearance of most macro-bearings.

In the microfabrication environment, however, the parts are created by etching or de-
position; generally starting at one axial end and proceeding to the other. As a result, many
factors can cause the local clearance to change as the members are defined. Examples in-
clude varying chamber conditions during the process, erosion of (or buildup on) the resist,
redeposition of etch products, device charging, and uneven erosion of the protective layer
on the sidewalls [68]. Because the clearances required to create viable bearings in the micro
scale are on the order of tens of microns, these effects have produced clearance variations
as high as 40% in some of the early MIT micromachines.

Two general classes of axial clearance variation have been observed in the MIT mi-
croengine bearings and will be explored in this section: taper and bow. SEMs showing
cross-sections of bearings with each type of variation are provided in Fig. 4.18. In taper,
the clearance varies linearly from the maximum to the minimum value. In bow, the clear-
ance reaches a maximum at the bearing center and has minima at both ends. For modeling
purposes, this variation is taken to be hyperbolic.

Because the local clearance appears as only a total channel height in the Reynolds equa-
tion, there is no difference between clearance variation on both the journal and the bearing,
as shown in Fig. 4.18, or the same total variation on one or the other member.

The inclusion of height variation adds terms to the Reynolds equation (Eq. 2.6) that are
absent in all other sections of this document. Both taper and bow add a term involving the
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(a) Taper (b) Bow

Figure 4.18: SEMs showing taper and bow in etched channels [64]. Figure courtesy A. Ayón.

first derivative of height in the axial direction. Bow adds an additional term involving the
second derivative.

Because the clearance is a function of axial location in this section, a choice must be
made regarding the definition of C for nondimensional parameters such as eccentricity
and bearing number. For convenience in the code, C was chosen to be the minimum clear-
ance. With this choice, � = 1 denotes wall contact, as it does in the cylindrical case, but
contact does not take place along the entire bearing length.

4.2.2 Steady-State Effects

From the outset, both taper and bow are expected to have a deleterious effect on load
capacity when compared to an axially-uniform case at the minimum clearance. From a
physical point of view, this expectation springs from observing that part of the bearing
will be operating further from the wall and at a larger clearance ratio. The reduced area
ratio in the converging region will reduce the pressure rise developed by rotation and,
consequently, the load capacity. From a nondimensional point of view, the portions with
larger clearance, ~C, are effectively running at lower eccentricities and bearing numbers, ~�
and ~�, given by:

~� = �

�
Cmin

~C

�
(4.6)

~� = �

�
Cmin

~C

�2
(4.7)
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As shown in Sec. 3.1, reduction of either � or � results in reduced load capacity and
increased attitude angles, supporting the intuitive expectation of performance degradation
due to axial clearance variation.

The effects of taper will be investigated first. This process will then be repeated for
bow. Besides the changes in distribution of clearance, taper and bow differ in the slope
and curvature of the channel height, h, in the axial direction. In particular, @

2h
@z2

=0 for taper
while it is nonzero for bow.

Taper

The pressure distribution of a bearing with 25% taper (i.e. �C=Cmin = 0:25) is compared
to that of an untapered bearing with C=Cmin in Fig. 4.19. Not surprisingly, the increased
clearance of the tapered case weakens the pressure variation, reducing the load capacity
from �=0:096 to �=0:033, a loss of 66%. In addition, the pressure peak in the tapered case
shifts from the axial center toward the end with smaller clearance (bottom of figure).
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Figure 4.19: Pressure distributions for constant-clearance and tapered bearings. In both cases,
L=D = 0:075, � = 5, and � = 0:85. In the tapered case, the maximum and minimum pressures
relax and shift toward the minimum clearance end (bottom of figure).

It may be intuitively expected that the performance of a tapered bearing will fall some-
where between that of a bearing with clearance Cmin and one with clearance Cmax run-
ning at a lower eccentricity, ~�, and bearing number, ~�, given by Eqs. 4.6 - 4.7. As shown in
Fig. 4.20, this expectation proves to be correct.

This result, at the very least, suggests that untapered bearing calculations at the clear-
ance extremes can be used to establish bounds for the operating characteristics of tapered
bearings. Because these bounds are quite coarse (they are an order of magnitude apart
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Figure 4.20: Comparison of tapered result with untapered bearings at clearance extrema. Bearing
has L=D=0:075 and 25% taper and is running at �=0:9. For comparison purposes, Cmax results
computed at ~� are reported at �. An estimate computed from a constant-clearance bearing with
C = Cmin + 0:45�C, calculated at the appropriate ~� and reported at �, is also included. This
estimate shows excellent agreement with the tapered calculation at all �.

in � for the case of Fig. 4.20), it is desirable to refine this estimate. Possibilities are there-
fore investigated for estimating tapered bearing performance from untapered results. The
primary goal of this effort is to construct a general purpose scheme that obviates numer-
ical solutions for tapered bearing so codes without taper models, or existing cylindrical
bearing design charts, can be used. One step below this ideal, a scheme that reduces the
number of tapered bearing calculations would still provide a significant savings.

Noting that the tapered load parameter trace is nearly parallel to the Cmax trace, a
simple scheme is proposed in which the tapered load parameter is estimated as multiple
of the Cmax load parameter. For the case shown in Fig. 4.20, the multiplier proves to be
approximately 2.3. This multiplier also provides a good estimate if the L=D is doubled.
Unfortunately, the load multiplier drops to 1.8 if the taper level is halved and it becomes
1.5 if � is halved (at 25% taper). Consequently, it is not possible to to eliminate taper calcu-
lations entirely under this scheme, but they can be reduced to a single case per eccentricity
or taper level if only � is required. Furthermore, the attitude angle curves are not parallel,
so this scheme is ineffective for estimating �.

In an attempt to remedy these shortfalls, an alternative scheme suggested by Jacobson
[40] is investigated. In this case, the estimate is constructed from data for an untapered
bearing with a clearance between Cmin and Cmax. For the example case of Fig. 4.20, good
estimates of both � and � are obtained from a bearing with:

C=Cmin + 0:45�C: (4.8)
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Figure 4.21: Comparison of tapered results for bearings with various L=D, �, and �c with an esti-
mate computed from a comparable untapered bearing with C=Cmin + 0:45�C.

These estimates are shown in Fig. 4.20.

To assess the generality of this method, the calculation was repeated for cases with
different L=D taper level, and eccentricity. The results are shown in Fig. 4.21. In all cases,
data from an untapered bearing with C =Cmin + 0:45�C provides an excellent estimate
of the load parameter and attitude angle at all studied bearing numbers. The method is
therefore shown to be general, at least for the MIT microengine class of bearings.

The effect of taper on both � and � for a wide range of eccentricities and bearing num-
bers is presented in Fig. 4.22 in the form of a percent change from the untapered case. Two
major trends are visible in this figure: the taper effect increases with increasing eccentricity
and it varies with bearing number; decreasing at high � after passing through a maxi-
mum at an intermediate �. The � variation increases with eccentricity and results from
compressibility-related curvature in the load lines (see Fig. 3.1(a)).

To investigate the relative importance of �C and slope on taper losses, the above cal-
culation was repeated with L=D=0:15 and the results presented in Fig. 4.23. Examination
of this figure reveals that doubling the L=D (hence halving the taper slope, while hold-
ing Cmax and Cmin constant) does not have a strong effect on the magnitude of change
induced by taper. The curves remain almost exactly the same shape, though they shift to-
ward lower �. This shift is a result of compressibility effects occurring earlier in the longer
bearing, forcing an earlier departure from linearity in the load, and from � = 90� in the
attitude angle, versus � trace.

The similarity between Figs. 4.22 and 4.23 implies that the effect of taper is primarily
due to portions of the bearing running at higher clearance, rather than the introduction of
an axial slope to the bearing walls. This conclusion is supported by the clearance-based
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Figure 4.22: Percent change in steady-state parameters when 25% taper is added to an L=D=0:075

journal bearing. The taper-induced performance change increases with eccentricity, with the load
capacity loss reaching 78% at �=0:9.
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Figure 4.23: Percent change in steady-state parameters when 25% taper is added to a L=D = 0:15

journal bearing. The performance change is very similar to that obtained at L=D=0:075, implying
that taper effects are more closely related to the clearance change than to the wall slope.
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Figure 4.24: Percent change in steady-state parameters when 12.5% taper is added to aL=D = 0:075

journal bearing.

estimator’s (Eq. 4.8) effectiveness. Furthermore, it is intuitively reasonable considering
that the slope for a 25% taper on 300�m bearing with a 12�m clearance, for example, is
only approximately 0.01 radians, yet it results in a loss of as much as 80% in the load
capacity at �=0:9.

Finally, to demonstrate the effect of taper level on a given bearing, Fig. 4.24 presents
the results of a series of calculations in which the L=D was held at 0:075 but the taper was
halved, corresponding to a 10% decrease in Cmax over the previous case (but a 50% de-
crease in �c). Not surprisingly, the load capacity loss weakens as the taper level decreases.
In addition, noting that the constant � lines are closer together in Fig. 4.24(a), it can be seen
that the rate of load capacity degradation with increasing eccentricity also decreases, par-
ticularly at low eccentricity. Reducing taper therefore brings a greater performance benefit
as eccentricity increases. Also, in both � and �, curve shape is similar to the baseline case
and the point of maximum taper effect is relatively stationary, shifting only slightly to-
ward lower speed. These observations support the previous contention that the shift is
a product of compressibility because the constant-clearance bearing at Cmin is equivalent
for Figs. 4.22 and 4.24, thus compressibility will appear at the same �. The slight shift in
the smaller taper case is a consequence of is closer proximity to the C=Cmin case, which
exhibits compressibility effects earlier than the larger clearance cases.

Bow

The above analysis will now be repeated for bearings with bowed clearances of the form
shown in Fig. 4.18(b). Looking at the geometries, it is tempting to conclude that the bow
will induce milder performance degradation than taper bearing because the clearance
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Figure 4.25: Pressure distributions constant-clearance and bowed bearings. In both cases, L=D=

0:075, �=5, and �=0:85

maximum’s appearance at the axial center, rather than at one end, may decrease leak-
age. On the other hand, the results of the previous section point to a dependence on total
clearance variation, rather than slope.

In a similar fashion to Fig. 4.19, the pressure distributions of a bowed and an unbowed
bearing with C = Cmin are compared in Fig. 4.25. Again the increased clearance in the
unbowed case weakens pressure variation, reducing the load capacity. The reduction is
less severe than in the tapered case, however. This observation is reflected in the load
capacity, with �=0:044 for this case; 54% of the unbowed � under the same conditions and
33% higher than with equivalent taper. Also, as might also be expected from symmetry,
the pressure peak in this case remains in the axial center for the bowed cases, in contrast
to the eccentric pressure peak observed in tapered cases.

The scheme for estimating steady-state performance from constant-clearance bearing
data, shown in the previous section to be successful for taper, is applied to a L=D=0:075

bearing with 25% bow at �=0:9 in Fig. 4.26.

Two differences between bowed and tapered bearings are evident in Fig. 4.26. First,
as noted previously, the performance degradation due to bow is less severe than that of
taper. In Fig. 4.26, this conclusion is evidenced by the smaller coefficients on �C of the un-
bowed bearings yielding estimates comparable to the bowed result. The bowed bearing’s
performance is therefore nearer to that of the unbowed bearing. Second, unlike the taper
case, a single �C coefficient does not exist that produces a good estimate for both � and
�. In Fig. 4.26, a coefficient of 0.30 yields a good result for � , while � appears to require a
coefficient between 0.15 and 0.20 to yield the best estimate.

To assess the generality of this result, the estimate is repeated for an L=D=0:15 bearing
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Figure 4.26: Comparison of bowed result with unbowed bearings at clearance extrema and an
estimate calculated from them. Bearings have L=D = 0:075 and 25% bow and are running at
�=0:9.
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Figure 4.27: Comparison of bowed result with unbowed bearings at clearance extrema and an
estimate calculated from them. Bearings have L=D = 0:15 and 25% bow and are running at �=0:9.
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Figure 4.28: Comparison of bowed result with unbowed bearings at clearance extrema and an
estimate calculated from them. Bearings have L=D = 0:075 and 12.5% bow and are running at
�=0:9.
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Figure 4.29: Comparison of bowed result with unbowed bearings at clearance extrema and an
estimate calculated from them. Bearings have L=D = 0:075 and 25% bow and are running at
�=0:5.
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at otherwise identical conditions. The results of this calculation are presented in Fig. 4.27.
Comparing this figure to its predecessor, it can be seen that, unlike in tapered bearings, the
error of a given estimate changes with L=D. The larger coefficient and, thus, a larger “ef-
fective clearance” in both � and � indicates a trend of increasing performance degradation
with L=D at a given level of bow. Fortunately, the �C coefficient changes very little for � ,
which is typically more important to designers than �. A useful load estimate can still be
constructed with a coefficient of 0.30.

The effect of �C=C on the estimate’s error is demonstrated in Fig. 4.28. Comparing
with the previous figure, a striking similarity is evident. Again, the 0.30 coefficient pro-
vides a reasonable estimate of for � and the ideal coefficient for � lies between 0.20 and
0.25.

Finally, the effect of eccentricity on the relative positions of the traces is shown in
Fig. 4.29 by repeating the baseline case at �=0:5. Several observations may be made from
the result. First, due to the lower eccentricity, the � traces are almost perfectly straight and
parallel. Second, the estimate derived from a 0.30 coefficient on �C overpredicts the load
capacity throughout. Performing calculations with a coefficient of 0.35 yields an estimate
that is almost indistinguishable from the bowed calculation. The bowed calculation for
attitude angle once again falls between the 0.20 and 0.25 traces.

Overall, estimating bearing performance from constant-clearance calculations for bowed
bearings involves additional considerations not important in tapered bearings. First, the
optimum coefficients differ for load and attitude angle. Separate calculations are there-
fore required for each quantity. Second, the optimum coefficients vary slightly with L=D,
eccentricity, and bow level. The coefficients must therefore be adjusted on a case-by-case
basis to achieve estimation accuracy for bowed bearings comparable to that shown for ta-
pered bearings. This consideration reduces the method’s flexibility because a tool with
nonconstant clearance capability is required to provide comparison cases for coefficient
calculation.

Fortunately, these considerations may be neglected in many situations. For example,
the error in constructing a load estimate using a coefficient of 0.30 is no greater than 10%
for the cases in Figs. 4.26 - 4.29, except for the L=D = 0:15 case at � > 8. This is an
acceptable error under many operating circumstances because the running eccentricity is
relatively insensitive to changes in applied load at the high eccentricities studied. Similarly,
a coefficient of 0.20 provides a reasonable estimate for � in all treated cases.

The effect of bow on both � and � for a wide range of eccentricities and bearing num-
bers is presented in Fig. 4.30 in the form of a percent change from the unbowed case. From
this figure, it is apparent that, throughout the studied space, bow causes milder load capac-
ity depression than taper (maximum of 65% vs. 78% for �=0:9). In addition, bow causes
much weaker attitude angle increase than taper (maximum 63% vs. 155% for �=0:9). In
addition, the peak change occurs at slightly lower speed.
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Figure 4.30: Percent change in steady-state parameters when 25% bow is added to an L=D = 0:075

journal bearing

In common with the shift associated with reducing taper, the leftward shift observed
when comparing tapered and bow results is caused by the closer relationship between
the bowed case to its associated C = Cmin case. This closer relationship is also visible in
the optimum estimator coefficients for the two cases, which are approximately 0.30 and
0.45 for bow and taper, respectively. The bowed case therefore runs at a smaller effective
clearance and will, consequently, begin to exhibit compressibility effects at a lower �.

Investigating the dependence of bow effect onL=D, a similar presentation for anL=D=

0:15 bearing is provided in Fig. 4.31. As noted from Fig. 4.31, and unlike the taper case,
it is evident that increasing L=D increases the effect of bow. The maximum load capacity
loss at �=0:9 increases slightly, from 65% to 68%, but the attitude angle growth increases
sharply, from 63% to 77%. In addition, while the curves in the taper case hold their shape
and simply shift to lower speed when L=D increases, the peaks in the bow case become
sharper, in addition to shifting to the left.

It is not possible to explain this behavior based on mean clearance arguments. While
the expression for the mean clearance of the bowed case is considerably more complex
than for the tapered case, it is not a function of L=D.

To establish the dependence on the amplitude of clearance variation, the change in
steady-state parameters for 12.5% bow is shown in Fig. 4.32. In this case, the behavior
mirrors that observed in the taper case: the loss of load capacity is reduced by about 15%,
the increase in attitude angle is cut almost in half, and the curves shift only slightly to
lower speed, maintaining their overall shape.
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Figure 4.31: Percent change in steady-state parameters when 25% bow is added to an L=D = 0:15

journal bearing
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Figure 4.32: Percent change in steady-state parameters when 12.5% bow is added to an L=D=0:075

journal bearing
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4.2.3 Unsteady Effects

The increased attitude angles observed in the previous section for both the bow and taper
cases arouse suspicion that these shapes also degrade the bearing stability. To investigate
this suspicion, stability boundaries were computed for L=D=0:075 bearings with �M=0:5

and various levels of taper and bow. The results are presented in Fig. 4.33.
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Figure 4.33: Effect of clearance taper and bow on stability boundaries for L=D = 0:075 bearings
with �M=0:5.

As suspected, tapered and bowed bearings have higher minimum eccentricities through-
out the presented � range. This has serious implications for low L=D bearings because
their stability boundaries are already close to �=1 before the addition of clearance varia-
tion. For example: at 33% taper, the minimum eccentricity reaches unity at approximately
�=0:38. Such a bearing will therefore be unable to operate hydrodynamically below this
bearing number. Even at 25% and 17% taper, the stable eccentricity range is extremely
narrow, with minimum eccentricities peaking above 99% and 97%, respectively, at low �.

Bowed bearings have a less serious effect on the stability boundaries. The stability
boundary for the 33% bow roughly corresponds to that of 17% taper at low �. At high
�, the 17% bow case is significantly better than the 33% taper case. Most importantly,
even for the 33% bow case, the bearing still has a physically-attainable, though not terribly
attractive, minimum eccentricity at low �.

It can be observed in Fig. 4.33(a) that the traces for varying levels of taper are quite
nearly parallel throughout the depicted bearing number range. At large �, the traces for
varying levels of bow also become parallel. This observation raises the possibility of es-
timating axial clearance variation effects on the minimum stable eccentricity over a range
of � by performing calculations at a single � and drawing a trace parallel to the constant-
clearance trace through the resulting data point.
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Figure 4.34: Effect of increasing levels of taper on �min at three values of � for an L=D = 0:075

bearing with �M=0:5.

As a first step toward investigating this possibility, Fig. 4.34 presents the increase in
minimum eccentricity associated with various levels of taper at �= 0:5; 1; and 5. As sus-
pected, the curves are nearly coincident for taper magnitudes less than approximately 15%.
Furthermore, the maximum difference in ��min between traces anywhere on the chart is
approximately 0.02.

Noting that the zero-taper minimum eccentricities, �mino , are nearly 90% and increase
with decreasing �, it may be surmised that the divergence of the constant-� traces in
Fig. 4.34 at high levels of taper may be caused by the extremely rapid change in bearing
behavior when approaching unity eccentricity. Remembering from Chap. 3 that increasing
L=D generally decreases �min, and from Sec. 4.2.2 that the effect of taper on steady-state
parameters is a weak function of L=D, this theory may be tested by repeating the calcu-
lation at a larger L=D. The results of such a calculation at L=D = 0:15 are presented in
Fig. 4.35.

The closer proximity of the higher L=D, and hence lower �mino , traces of Fig. 4.35
at high ��min supports the near-wall effect theory. In addition, the similarity between
Figs. 4.34 and 4.35 demonstrates that the effect of taper on unsteady parameters is a weak
function of L=D, as observed previously for steady parameters. These observations may
be used to simplify design analyses. In fact, the straightforward linear estimate of:

��min = 0:4
�C

C
; (4.9)

which describes a corner-to-corner diagonal line in Fig. 4.35, departs by no more than 0.01
from any computed trace in Fig. 4.35. This accuracy is also obtained in Fig. 4.34 for taper
ratios lower than 20%.
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Figure 4.35: Effect of increasing levels of taper on �min at three values of � for an L=D = 0:15

bearing with �M=0:5.
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Figure 4.37: Effect of clearance taper and bow on required load for L=D = 0:075 bearings with
�M=0:5.

It may be noted that Figs. 4.35 and 4.34 are both drawn for �M=0:5. Thus, while Eq. 4.9
is useful for design studies at fixed �M , such as varying the length of a solid rotor, its ap-
plicability to studies involving variable �M , such as varying the clearance, is unclear. The
above observations simply imply that��min for a range of taper ratios may be calculated at
a single � for each �M . While this finding provides a considerable time savings over repeat-
ing the calculations over a range of �, the convenience of Eq. 4.9 warrants an investigation
of its applicability for varying �M . Such an investigation is presented in Fig. 4.36.

In the calculations for Fig. 4.36, an L=D = 0:15 bearing was run at � = 5 and various
levels of taper with three values of �M covering two orders of magnitude. Once again,
Eq. 4.9 provides an estimate of ��min that departs from the computed value by no more
than 0.01. It therefore proves to be a convenient estimator for taper effects on minimum
eccentricity in short bearings, provided the net minimum eccentricity is not sufficiently
large (greater than roughly 95%) for near-wall effects to become prominent.

Finally, for applications that depend on a fixed load, such as the shaft weight, to main-
tain stability, there may be a bright note to axial clearance variation: the diminished load
capacity may reduce the required load at a given speed, despite the larger associated ec-
centricity. This effect is presented in Fig. 4.37 for the conditions of Fig. 4.33. As suspected,
the required load decreases as the clearance variation increases throughout the depicted
� range. The threshold speed for a fixed load therefore increases with �C=C . Similarly,
the applied load required for a fixed speed is lower, reducing side-pressurization require-
ments. Taper and bow may therefore be a desirable features if the circularity, surface
roughness, etc. allow operation at high eccentricity.
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4.3 Chapter Summary

In this chapter, bearings with circumferential and axial clearance variation were investi-
gated. It was shown that this variation has beneficial as well as harmful effects so it must
be carefully adopted, in the case of deliberate variation, or controlled, in the case of manu-
facturing limitations.

Circumferential Clearance Variation

With circumferential clearance variation, it was noted that the results reported in the lit-
erature must be reinterpreted for microfabricated bearings due to their etching-imposed
constraint of fixed minimum clearance. Noncircularity must therefore be obtained by in-
creasing the clearance in various circumferential locations, causing an increase in its mean
value.

For the wave bearing, the reported increase in load capacity with wave amplitude was
indeed reversed by the minimum clearance constraint. This was not the case for stability,
which showed improvement in terms of minimum separation between journal and bearing
despite the increased mean clearance. Combining these results, the wave bearing was
shown to have a much lower load requirement for stability than the equivalent circular
bearing. Furthermore, high-wavenumber bearings were shown to be preferable to low-
wavenumber bearings because they were less sensitive to orientation variation and had
generally better performance.

Many attempts to obtain stable whirls over speed ranges, such as those obtained in
Sec. 3.2.2 were unsuccessful. It was observed that very near-wall operation in the wave
bearing made it sensitive to perturbations because the orbit was not circular, dipping be-
tween wave peaks and becoming very susceptible to crashing into one. Whirls at lower �M

with their associated greater minimum running distances, were circular and were main-
tainable over ranges of � comparable to those found for circular bearings.

Axial Clearance Variation

Two types of axial clearance variation observed in microfabricated bearings were investi-
gated: taper and bow.

Taper was modeled as a linear variation that creates a bearing with a clearance max-
imum at one end and a minimum at the other. It was shown that this variation caused
a significant decrease in load capacity, as great as an order of magnitude, at a given ec-
centricity. Furthermore, the minimum eccentricity for fixed point stability exceeded unity
at low speed for the 33% taper case, implying that this bearing was inoperative below a
certain �.

Bow was modeled as a hyperbolic clearance variation with a maximum in the axial
center. This type of variation was shown to have a less deleterious effect on bearing per-
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formance, both in terms of the load capacity and the minimum eccentricity required for
stability.

For both cases, an attempt was made to derive an estimate for the varying clearance
case from bearings running at an intermediate clearance. It was shown that this method
is quite effective for taper but slightly less satisfactory for bow. In both cases, a good load
estimate is available.

Finally, because axial clearance variation effects scale as the ratio of �C = C , increasing
the nominal clearance can improve performance. First, increasing C is likely to decrease
�C . Even if it does not, however, the overall ratio will still decrease due to the larger de-
nominator. Particularly in the case of taper, where the performance degradation is strong,
this improvement may outweigh the loss (in terms of reduced � and increased �min) nor-
mally suffered by increasing C .





Chapter 5

Considerations of Operation

This chapter presents information regarding issues that emerge when considering the de-
tails of operating journal bearings. These issues are general, but they are most significant
in the somewhat unique operating regime of microbearings.

5.1 Side-Pressurization Loading

It was shown in Sec. 1.3.2, via the cube-square law, that microbearings tend to have a much
smaller load parameters due to weight than their macro-scale counterparts. While a low
�g presents advantages in terms of shock tolerance, for example, it can be problematic in
terms of providing sufficient side-load to guarantee stability. In Sec. 3.2.1, for instance, it
was calculated that the silicon microturbine of Fig. 3.6 becomes unstable at only 5000 RPM
when loaded by its weight alone.

To quantify the load deficit, we first recall from Sec. 1.3.3 that millimeter-scale silicon
machines have load parameters due to weight of order 10�4. Assuming the millions of
RPM (105 rad=s) required by the MIT microengine and clearances in tens of microns, a
similar order-of-magnitude analysis for the bearing number yields:

� =
6�!

Pa

�
r

c

�2
=

(10)(10�5)(105)

(105)

 
(10�3)

(10�5)

!2

= (1) (5.1)

Referring to Figs. 3.10 and 3.11, this � implies a load parameter of order 10�2 will be
necessary at the design speed for the range of L=D currently likely to be found in these
devices. It can therefore be concluded that the required load is two orders of magnitude
greater than that available from rotor weight for many microturbomachines.

This finding has a positive implication: weight loading will be insignificant to the bear-
ing’s operation, thus the machine will be insensitive to orientation with respect to gravity.
This is a key feature because microdevices are, in general, intended to be portable. The
negative implication is that an external load source must be found. This section explores
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the possibility of providing this load via a noncircumferentially-uniform pressure on the
journal, supplied from plena at one of its axial ends.

5.1.1 Description

Although the responsible mechanism was not understood at the time, it was observed long
ago that a bearing’s threshold speed could be significantly increased by the provision of a
high pressure source on one side. The technique was patented in 1952 by Brewster [69],
who supplied high pressure air through a single port located at the bearing’s axial center.

This technique is particularly attractive in turbomachines due to the availability of a
range of pressures via tapping different locations in the device. The 2-D extrusion con-
straint on the geometry implied by microfabrication, however, makes it difficult to impose
pressures through ports in the bearing midplane. In fact, only one method is currently
deemed feasible for the MIT micromachines: etching into a wafer surface then bonding
this surface to another wafer to yield a centerline channel between two wafers. The bear-
ing is then defined on the two-wafer stack.

This method, while demonstrated to be possible [68], entails either etching trenches
that are twice as deep to define the bearing, which will generally at least double the clear-
ance, or handling wafers half as thick, which tend to be fragile and subject to warping.
Furthermore, this technique adds another wafer bonding step to an already-complex fab-
rication process. This is an unattractive addition when striving for a robust process because
contaminants and gases can create voids between the wafers, resulting in poor bonds and
subsequent rejection of devices.

An alternative means of supplying side-pressure that is entirely compatible with cur-
rent microfabrication techniques is to apply the nonuniform circumferential pressure from
plena at one of the bearing ends. This opportunity exists in the MIT microturbomachines
because the rotors are held in a “sandwich” of wafers, as shown in Fig. 1.2. A schematic of
a proposed plenum geometry is presented in Fig. 5.1.

The arrangement of Fig. 5.1 is similar to that used in the macro-scale experiments for
the MIT microengine bearings [34]. In this device, as in the early microbearing experiments
[70], the “high” pressure PH was applied to two plena and the “low” pressure, PL was
applied to one. The thin circumferential extensions of the two high-pressure plena visible
on Fig. 5.1 were included to reduce torque caused by pressure differences under the rotor.

5.1.2 Steady-State Effects

A comparative demonstration of side-loading options is presented in Fig. 5.2. In this figure,
pressure distributions from weight loading and three side-pressurization combinations are
presented for L=D = 0:075 bearings running at � = 5 displaced to � = 0:8. In all cases,
the axis of rotation is assumed aligned with the bearing’s symmetry axis. In practice,
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(a) Plenum Plate (b) Plenum Plate + Rotor Plate

PLPH

(c) Side View

Figure 5.1: Schematic of three-plenum, axially-imposed side-pressurization arrangement. The thin
circumferential extension of the two high-pressure plena around the plenum plate was included to
reduce torque caused by pressure differences under the rotor.
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nonuniform pressures below the rotor associated with side-pressurization will produce an
out-of-plane torque that will cause a misalignment inversely proportional to the restoring
moment provided by the thrust and journal bearings.

In the first case of Fig. 5.2, load was applied directly to the journal, simulating, for
example, weight loading (though it could also represent electrostatic or magnetic loading).
In the second case, the low pressure sump was held at ambient conditions and PH was
increased. In the third case, a combination of increased PH and lowered PL was applied.
In the final case, PH was held at ambient conditions and PL was lowered. Color bars
above and below each case indicate the relative local pressure at each axial end. On these
bars, white, gray, and black represent sub-ambient, ambient, and super-ambient pressures,
respectively.

In the side-pressure cases, the imposed pressure departs little from the ambient to pro-
duce the required eccentricity, despite the appreciable bearing number. For the high pres-
sure alone, PH=Pa = 1:121; for high + low pressure, PH=Pa = 1:062 and PL=Pa = 0:938

and, finally, for the low pressure alone, PL=Pa=0:874. The modest pressure requirements
are a consequence of the low load capacity of the L=D = 0:075 bearing. As mentioned
previously, low pressure requirements are desirable in a self-contained machine because
they imply that less air must be bled from the cycle to run the bearings, improving overall
efficiency.

Not surprisingly, the imposed pressures associated with this loading method affect the
pressure distribution produced by rotation. Comparing Figs. 5.2(a) and 5.2(b), it may be
observed that the pressure peak upstream of the channel convergence changes very little
when high pressure is imposed, except for a slight adjustment where the distribution is
near the active plenum. The the pressure valley downstream of the convergence, however,
is reduced in magnitude by roughly 6% and its peak moves away from the plenum as the
low pressure region is preferentially “filled-in” by fluid from the higher-pressure end. The
situation in the low pressure case of Fig. 5.2(d) is almost its mirror image: the downstream
pressure valley is virtually unaffected but the upstream pressure peak is reduced in mag-
nitude and shifted away from the active plenum. In this case, the peak reduction and shift
is caused by fluid being preferentially bled-off to the lower-pressure plenum. The result of
applying high and low side-pressure simultaneously, shown in Fig. 5.2(c), is a combination
of these effects. In this case, the magnitude of both pressure extrema are reduced and their
position shifts away from the active plena.

To construct an estimate for the pressure level required for a given loading condition,
we recall the Reynolds equation discussion of Sec. 1.2.3. Due to its assumption of negli-
gible fluid inertia, Reynolds equation solutions for flow through a channel with different
pressures imposed at each end is guaranteed to be “fully-developed,” or of constant ve-
locity distribution. Remembering the elementary Poiseuille flow solution for flows of this
type [46], it is observed that the imposed pressures are connected by a linear distribution.
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Figure 5.2: Pressure contours for four methods of achieving � = 0:8 at � = 5 in an L=D = 0:075

bearing. Color bars above and below each case indicate pressures applied at its axial ends. White,
gray, and black indicate sub-ambient, ambient, and super-ambient pressure, respectively
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Figure 5.3: Comparison of eccentricities produced by loads from weight and from side pressure
in the sump arrangement of Fig. 5.1 imposed according to Eq. 5.2. A trace calculated under the
assumption of two equal sumps is also included.

Consequently, if the journal were not rotating, the axial pressure distribution would be
linear throughout.

When the journal rotates, however, a moving surface-driven (Couette) flow produces a
pressure distribution that can affect the linear axial distribution. For the current purpose,
it is fortunate that this effect is generally weak at the bearing “top,” or the circumferential
position opposite the minimum channel height. This phenomenon may be observed as an
absence of pressure contours at �=0 in Fig. 5.2(a). It may also observed as a nearly linear
axial distribution near this region in Fig. 5.2(b).

It is therefore expected that, if the two plena at the top (at the left in Fig. 5.1) are
run with a high pressure and the plenum at the bottom (at the right in Fig. 5.1) is run
at ambient pressure, a reasonable estimate may be derived for the load parameter due to
side-pressurization through the assumption of a linear axial pressure profile. For the high
pressure-only case of Fig. 5.2(b), the resulting expression is simply:

�sp =
1

2
(PH � Pa)(L)(2r)

2rLPa
=

p
3

4

�
PH

Pa
� 1

�
(5.2)

To test the applicability of Eq. 5.2, a series of calculations were performed by setting
PH and measuring the resulting eccentricity. The data was then plotted against the load
parameter calculated from Eq. 5.2 and compared against a similar series generated using
weight loading. This comparison is presented in Fig. 5.3 for �=1 and �=10.

From Fig. 5.3, it may be observed that, while the estimate of Eq. 5.2 agrees reasonably
well with the conventionally-loaded case over the entire eccentricity range for both bearing
numbers, it consistently overpredicts the eccentricity. This overprediction is likely caused



5.1. SIDE-PRESSURIZATION LOADING 157

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
0

10

20

30

40

50

60

70

80

90

ε

φ
Gravity      

SidePressure

Λ = 10

Λ = 1

Figure 5.4: Comparison of attitude angles associated with eccentricities produced by gravity and
side-pressure loading. From this information, it is clear that side-pressurization increases the atti-
tude angle. This increase grows with speed and, for a fixed speed, is strongest at moderate eccen-
tricity.

by interaction of the applied pressure distribution with the self-acting pressure distribution
neglected when developing Eq. 5.2. This interaction is visible in Fig. 5.2(b) where the
high pressure sump overlooks the low pressure region of the self-acting distribution near
�=3�=2.

Surmising that the high pressure sump’s effect may be effectively canceled in this re-
gion, traces are included in Fig. 5.3 for two sumps of equal extent (via multiplying Eq. 5.2
by 2=

p
3). In this case, the eccentricity is consistently under-predicted. Consistent bracket-

ing of the calculated result by the two estimates implies that the arguments behind them
are valid but that the physical situation is somewhere between the assumed effective ge-
ometries.

Further inspection of Fig. 5.2 reveals another effect of side pressurization: larger atti-
tude angle for a given eccentricity. Qualitatively, this effect is visible as a slight variation
in the sharpest circumferential gradient’s � location among the various loading schemes,
despite the fact that they are all drawn for � = 0:8. Quantitatively, the attitude angles
differ significantly, particularly between the gravity and side-pressurization cases, with
� = 59:8�, 66:4�, 64:4�, and 66:1� for gravity, high, high+low, and low pressure loading,
respectively.

Making use of the data generated for Fig. 5.3, the attitude angles produced by grav-
ity and high-side loading are compared over a range of conditions in Fig. 5.4. From this
presentation, it can be seen that achieving a given eccentricity via side-pressurization con-
sistently produces a larger attitude angle than doing so via weight. Moreover, the � differ-
ence increases with speed and, for a given speed, it is strongest at moderate eccentricities,
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where � begins to fall sharply from its low-speed asymptote of 90�.

Recalling from Fig. 5.2b that the pressure valley, which is near the active plenum, is
affected strongly by side-pressure while the peak is not, the physical mechanism behind
these observations may be understood if three trends in gas bearing pressure distributions
are noted: (1) the asymmetry in magnitude between the peak and valley increases with
eccentricity at fixed speed until, at very high eccentricity, the valley is insignificant (2) the
attitude angle decreases with eccentricity at fixed speed, thus the whole distribution shifts
away from the high-side plenum with increasing � (3) the pressure valley magnitude, com-
pared with the peak, does not increase strongly with speed at fixed eccentricity (actually, a
corollary of (1)).

Items 1 and 2 may be used to explain the decrease in attitude angle effect when the
eccentricity is increased: not only does the pressure valley lose significance with respect to
the overall flowfield (1), its position shifts away from the plenum (2). The overall impact
of the plenum on the pressure field is thus reduced. Item 3 may be used to explain the
increase in effect with speed by recalling from Fig. 3.1 that the load capacity increases
approximately proportionally with speed. Combined with (3), this observation implies
that the pressure in the high-side plenum is increasing proportionally with speed (for fixed
�) but the pressure valley is deepening much more slowly. More leakage into the valley is
therefore expected at high speed, increasing the difference between the pressurized and
non-pressurized cases observed on Fig. 5.4.

5.1.3 Unsteady Effects

The increased attitude angle observed for loading from the high-side plenum over the
gravity-loaded case immediately raises suspicion of an effect on stability. In general,
higher attitude angles imply larger cross stiffnesses and an increased tendency for a bear-
ing to whirl when disturbed.

To test this suspicion, the critical �M was computed for bearings moved to �=0:8 and
�= 0:9 via side-pressurization at a range of bearing numbers. This result is compared to
its gravity-loaded counterpart in the minimum eccentricity chart shown in Fig. 5.5. In this
case, it is helpful to read the chart in a slightly different manner than was discussed in
relation to Fig. 3.5: bearings whose �M is above the trace appropriate for their � at a given
� are unstable (in a fixed-point sense) and vice-versa.

From this figure, it may be observed that side pressurization reduces the maximum
�M ( �Mcrit) for stability at fixed eccentricity. Furthermore, in agreement with the attitude

angle trend of Fig. 5.4, the degradation increases with speed. In this case, because �Mcrit

is constant at low speed for the gravity-loaded case, this effect causes a local minimum
to occur. This finding implies an operational difference in the sense that a gravity-loaded
bearing will be stable at all speeds if it is stable at low speed, while its side-pressurized
counterpart may become stable at an intermediate speed if �M is sufficiently close to �Mcrit.
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Figure 5.5: Comparison of minimum eccentricities for bearings loaded by gravity and side-
pressurization over a range of bearing numbers.

Fortunately, due to the decrease in side-pressurization effect at high eccentricity, this
degradation will not eliminate the stability corridor, as the taper effect, which showed
increasing strength with �, did in Fig. 4.33.

5.2 Stiffness Due to Axial Flow Inertia

In early journal bearing experiments for the MIT microengine, Orr [34] observed a trans-
lational natural frequency that was independent of rotor speed and gravity side-load.
Because its stiffness is derived by a pumping action due to rotation and passage asym-
metry, however, such a natural frequency is extremely unlikely in a self-acting bearing.
Furthermore, Orr’s bearing could operate stably at eccentricities much lower than the
minimum predicted by SPECTRES or any other Reynolds equation-based tool, such as
LUBEPACK [34].

From these observations, it was clear that the responsible mechanism was not repre-
sented in the Reynolds equation. After further observation by Orr that the frequency was
a function of the axial pressure difference, the likely culprit was identified: inertial effects
associated with axial flows produced by pressure gradients across the bearing length, such
as those imposed by the side-pressurization scheme of the previous section.

In this section, a mechanism that produces stiffness from axial flow inertia is detailed, a
general model and nondimensionalization is proposed, and results of including this model
in SPECTRES simulations are presented.
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5.2.1 Description

After trying several possible inertial models of various effects, a reasonable fit to the data
was finally obtained by Orr [34] for an entry-length phenomenon suggested by Breuer [71].
This fit is presented in Fig. 5.6, which is a reproduction of Fig. 6-4 from Orr [34].
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Figure 5.6: Comparison of Orr’s interacting boundary layer theory model to the experimentally-
observed natural frequency. Figure courtesy D.J. Orr [34].

To understand this phenomenon, two terms commonly used in channel flows must
be introduced. First, the velocity profiles are identical at every lengthwise station in a
pressure-driven flow of an inertialess fluid through a channel of constant area. This type
of flow, and its associated parabolic velocity profile, is termed “fully-developed.” Second,
in a pressure-driven flow of a real fluid, the inlet velocity distribution evolves into the
fully-developed profile over a finite distance. This distance, termed the “entry length,”
results from a need to overcome inertia when accelerating or decelerating fluid to change
its velocity distribution.

For the current purpose, the important consequence of the entry region is its increased
pressure drop over the linear rate predicted by fully-developed flow theory. Furthermore,
the entry length and, thus, the departure of the pressure distribution from the linear case,
is a strong function of channel height. An eccentric journal in a fluid with non-negligible
inertia will therefore be surrounded by dissimilar axial pressure distributions, yielding a
net force. Because the entrance region occupies a greater fraction of the channel length,
and therefore causes a larger entry-region pressure drop, when the height is increased, the
net force acts to restore the journal to a concentric position.

Because this mechanism provides stiffness even when the journal is not rotating, it will
be referred to as a “hydrostatic,” as opposed to a “hydrodynamic,” effect, as described
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in Sec. 1.2.2. Hydrostatic stiffness is not unusual in journal bearings. In the conventional
implementation, however, the varying pressure in the film is established with the help of
an upstream orifice, capillary tube, or valve known as a “restrictor” [12]. This restrictor
provides an intermediary between the bearing and the supply pressure such that a greater
pressure is communicated to the lubricating film when its height is reduced and vice-
versa, generating a restoring force on a displaced bearing. Conversely, for the mechanism
described in the current section, the supply pressure is always communicated directly to
the film inlet. The film therefore provides its own restriction within the bearing gap itself,
an arrangement known as “inherent restriction.”

5.2.2 Model

In order to model the hydrostatic contribution to the forces on the journal, the pressure
distribution must be computed for the entry length problem. Fortunately, due to its im-
portance in heat exchangers, this problem has received a vast amount of attention, with
many solutions published over a period of four decades.

In this work, incompressible flow will be assumed, which is reasonable if the flow rates
remain moderate. The axial flow will also be assumed independent of the circumferential
flow. Coney and El-Shaarawi [72] show that this is a reasonable assumption if the Reynolds
number squared divided by the Taylor number is large (> 10). For a journal bearing, this
parameter is given by:

�
2�CUax

�

�2  �2

�2!2RC3

!
=

4

CR!2
U2

ax (5.3)

where Uax is the axial flow speed. The final form is recognizable as 4R=C times the ratio
of the axial flow kinetic energy to that of the rotating flow.

For the macro-rig, this number is of order 102 for flow-rates of order 10m=s. The de-
coupling assumption may therefore be made with confidence. The MIT microengine has
linear dimensions an order of magnitude smaller than the macro-rig’s, however, but its
rotation rate is two orders of magnitude larger. In this case, assuming comparable flow
speeds, Coney and El-Shaarwi’s parameter becomes order unity. Fortunately, these au-
thors note that parameters of this size are associated with approximately a 3% change in
pressure drop over the decoupled case, so the decoupling error is likely tolerable. If, how-
ever, comparable pressure drops are assumed instead of comparable flow rates, which is
reasonable if thrust bearings at comparable supply pressures are used to cancel the axial
force imbalance, the microdevice will have flow rates an order of magnitude smaller than
the macro-rig. In this case, Coney and El-Shaarwi’s ratio becomes of order 10�2 and the
error in decoupling axial and azimuthal flow may be significant. This factor must therefore
be kept in mind when interpreting the results presented in the current section.

While Orr [34] employed interacting boundary layer theory (IBLT) to compute the en-
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try length pressure distribution, an analytical solution is desired in the current work, both
for reasons of computational efficiency and as a means to gain insight into scaling.

The most computationally convenient analytic solution was derived by Bhatti and Sav-
ery [73] by assuming a velocity profile in the entrance region and solving for the variable
pressure gradient and the local boundary layer thickness via mass balance and mechani-
cal energy relations. The resulting analytical expressions for the pressure distribution and
centerline velocity evolution in a straight channel with uniform inlet are remarkably sim-
ple:

P = Pi �
3

280
�U2

i

�
22û2 � 10û� 12� 15 ln(3� 2û)

�
(5.4)

X =
�UiH

2

4�

594û2 + 90û � 684� 15û ln(3� 2û)� 1308û ln(û)

280û
(5.5)

where X is the dimensional distance from the entrance, Ui is the dimensional inlet speed,
H is the channel height, and Pi is the pressure at the inlet. The nondimensional core flow
speed, û, is normalized by Ui and varies between unity at the entrance and 3=2 where the
flow becomes fully-developed.

Despite its simple appearance, particularly when viewed alongside many of the other
solutions in the literature, Bhatti and Savery’s solution has the correct asymptotic behavior
for long channels and it matches experimental pressure drop measurements to within 3%.
It is thus almost certainly sufficient for the current purpose.

To add hydrostatics to SPECTRES in the least disruptive manner, the linear pressure
distribution of inertialess flow, which SPECTRES calculates, is subtracted from the entry-
length correction to avoid double-counting it. This is a non-issue in uniformly pressurized
cases because the linear pressure distribution integrates to zero. It is important in cases
where side-pressurization is used, however, because the linear distribution’s endpoints
vary around the bearing.

The resulting hydrostatic force correction per unit circumferential depth may be ex-
pressed as:

Fhs =

Z X`

0

PdX +
1

2
(P` + Po)(L�X`)�

1

2
(Pi + Po)L (5.6)

whereX` is entry length, P` is the pressure atX`, and Po is the outlet pressure. The integral
is taken over the nonlinear pressure distribution in the entry region (first term) and a linear
distribution is assumed for the remainder of the passage (second term). The third term
represents subtraction of the inertialess distribution.

One complication in the above calculation is that the definition of X` is not precise.
Strictly speaking, the velocity profile is never quite fully-developed, so X` is infinite. In
common with the calculation of boundary layer thickness, convention places X` at a lo-
cation where û reaches some percentage of its asymptotic value (û1 = 1:5). Physically,
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changing the definition of X` should not change the integrated pressure, but it can do so
in Eq. 5.6 because the integration is stopped at X` and a linear distribution is assumed for
the remaining length. The error in this approximation is small, however, if û` is chosen to
be very close to û1. In the majority of this work, û`=0:999 û1=1:4985.

One more component is necessary to close the above system: a means for calculating
the inlet velocity, Ui. If the flow becomes fully-developed somewhere in the channel, this
means may be provided by rearranging the following expression, which appears in various
forms in entry-length work [73]:

Pi � P
1

2
�U2

i

= K1 +
24�

�UiH2
X (5.7)

whereK1 is a dimensionless excess pressure drop due to the entrance region. Various val-
ues for K1 appear in the literature, falling between 0.5 and 0.85. Bhatti and Savery’s anal-
ysis yields K1 = 0:5969, which is in good agreement with the experimentally-measured
value of K1=0:5924 published by Beavers et al. [74].

Writing Eq. 5.7 for the channel end, where X =L and P =Po, the resulting expression
may be solved for Ui in terms of known quantities:

Ui = �
12�L

K1�H2
+

s�
12�L

K1�H2

�2
+

2(Pi � Po)

K1�
(5.8)

If the flow does not become fully-developed, the calculation is more complex. First, Ui
is eliminated between Eqs. 5.4 and 5.5. The resulting expression is then solved numerically
at the channel exit for û, given that X = L and P = Po there. The value of Ui is then
recovered by back-substitution into either expression.

All the terms in Eq. 5.6 may now be evaluated. Before doing so numerically, however, a
significant savings may be realized through a bit more manipulation. Substituting Eq. 5.4
into the integral expression yields:

Z X`
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PdX = PiX` �
3

280
�U2

i
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0

�
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�
dX (5.9)

Transferring the integration from X to û using Eq. 5.5, the integral becomes:
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� (û� 1)2(513 � 297û)
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!
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Though this expression is considerably more complicated, it has a unique benefit: it
need only be evaluated once as long as the defined speed ratio at the entry length, û`, does
not change. The entire term may therefore be integrated offline and provided to the code
as a constant, I .
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5.2.3 Nondimensionalization

For generality, and for integration into SPECTRES’ operating space, the entry length ex-
pressions are nondimensionalized. This exercise also provides insight into the relevant
scaling through development of appropriate nondimensional groups.

For normalizing the entry length, the factor chosen by Bhatti and Savery was em-
ployed:

X` =
�UiH

2

4�
L (5.11)

and similarly for the pressure at X`:

P` = Pi �
1

2
�U2

i P (5.12)

The entry flow speed is normalized by the mean speed of a fully-developed flow through
a channel of length L and height C :

Ui =
C2

12�

Pi � Po

L
ui; (5.13)

the pressure drop across the channel is normalized by the outlet pressure:

�P = Pi � Po = Po�p; (5.14)

and the force itself is normalized by LPo to convert it to a normalized pressure per unit
depth, p̂:

Fhs = LPop̂: (5.15)

When these normalizations are inserted in Eq. 5.6, a new nondimensional group ap-
pears. Rearranging this group, it may be viewed as C=L times the Reynolds number based
on the mean flow speed through a channel of length L and height C with Po applied at
the inlet and vacuum at the outlet. Because this form is similar to the inertial parameter,
�, introduced in Sec. 1.2.3, this parameter will be called the “axial inertial parameter” and
represented by �ax:

�ax =

 
�C

�

C2 Po

12�L

!�
C

L

�
=
�C4 Po

12�2L2
(5.16)

With this framework in place, the absence of axial inertial effects in the gas bearing
literature becomes clearer. First, and foremost, most bearings are run with their ends ex-
hausted to ambient pressure. The pressure difference across the rotor, Pi�Po, is thus small
and the resulting axial flow has little discernible effect. Second, the macro-rig’s 100�m

clearance, chosen to maintain geometric similarity with the clearance-constrained silicon
microdevice after appreciable growth is experienced in its steel rotor at high speed, is a
factor of four larger than most other bearings in the literature. Similarly, the macro-rig’s
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8mm length is short relative to most conventional bearings. Inspecting Eq. 5.16, �ax has
a fourth-power dependence on clearance and a second-power dependence on the length.
The macro-rig’s �ax � 60 is therefore much larger than that of most other conventionally-
machined devices, which is of order:

�ax =
(100)(10�5)4(105)

(101)(10�5)2(10�2)2
= 10�2 (5.17)

The macro-rig will tend to exhibit larger inertial effects for a given pressure difference than
most conventional bearings.

Proceeding with the nondimensionalization, the parameters developed above are sub-
stituted into Eq. 5.6, yielding:

p̂ = �ax�p
2ui

"
h2
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�
L� 1

12
�ax�puiI

�
+
uiP
48

�
1

4
�axL�pui � 1

�#
(5.18)

where I is calculated from Eq. 5.10 and h is the channel height, H , normalized by the
bearing clearance, C . Expressions for P and L are nondimensional versions of Eqs. 5.4
and 5.5:

P =
3

140

�
22û2` � 10û` � 12� 15 ln(3� 2û`)

�
(5.19)

L =
594û2` + 90û` � 684 � 15û` ln(3� 2û`)� 1308û` ln(û`)

280û`
(5.20)

As with I , P and L do not change once the entry length definition is fixed. For exam-
ple, for û` = 0:999 û1, I = 0:4149, P = 2:3476, L = 0:2920. These values are provided to
SPECTRES as constants. As a result, only the inlet speed ui in Eq. 5.18 must be calculated
at each timestep for each circumferential station using Eq. 5.8, which, under the above
nondimensionalizations, becomes:

ui = � 12

�axK1�p h2
+

s�
12

�axK1�p h2

�2
+

24

�axK1�p
(5.21)

In Eq. 5.18, dividing through by �p yields an expression where �ax and �p always
occur together. A generalized surface may therefore be constructed of p̂=�p as a function
of h and �ax�p. Because h is guaranteed to be between 0 and 2 on a journal bearing, the
only decision to be made when constructing such a surface is the upper limit on �ax�p.
This surface is presented in Fig. 5.7 for �ax�p up to 25, which covers the entire reported
operating range of Orr’s frequency investigation. For a microdevice, which will usually
have a smaller �ax, the �p range covered in Fig. 5.7 is even greater.

A number of observations may be made from Fig. 5.7. First, as expected, the pressure
correction for fixed�p increases with increasing �ax. Particularly for large channel heights,
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journal bearings and a range of �

ax
�p.

this increase is very strong at small �ax�p but flattens considerably at larger �ax�p. Also,
because a centered journal is surrounded by a channel of uniform height h=1, the span of
variation on the generalized p̂ surface increases with �. It may be noted, however, that the
slope of p̂ with respect to h decreases toward the two extremes except at very low �ax�p.
Furthermore, the slope distribution around h= 1 varies with �ax�p. These observations
imply that the stiffness varies with eccentricity and the variation changes with �ax�p.

5.2.4 Natural Frequency Variation

Under the nondimensionalization of the previous chapter, only three parameters are re-
quired to calculate the hydrostatic restoring force on the journal: �ax, �p, and �, where � is
required simply to specify the height distribution around the journal. The attitude angle
is not required because, unlike hydrodynamics, hydrostatics always produces only direct
stiffness under the model outlined in this chapter. It should be noted, however, that finite
flow rates in the plena cause leads and lags in the force magnitude and direction that, in
some cases, can appear as a significant cross stiffness, as well as damping [75].

To calculate the natural frequency about zero eccentricity, the journal is displaced to d�,
which was 0.0005 in this work, and the resulting p̂ integrated around it to obtain a restoring
force. Dividing by this d� yields the nondimensional natural frequency squared.

!�n
2 =

1

d�

Z
2�

0

p̂(d�)d� (5.22)

This frequency can then be dimensionalized by multiplying by the reference frequency, !̂,
where

!̂ =

s
RLPo

Cm
(5.23)
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model and data from Orr [34]. The agreement between the two results is poor at low �p but their
asymptotic behavior at high pressure is comparable. The disagreement is similar to that found by
Orr using an interacting boundary layer calculation.

or it can be expressed as a multiple of the rotational frequency through:

!n

!
=

!�n

�
p
2 �M

(5.24)

The natural frequency about a nonzero eccentricity is determined through a similar
process. Integrals identical to that of Eq. 5.22 are calculated at �+d� and ��d� and their
sum is divided by 2d�.

Toward verification of the model, its results are compared to the experimental natural
frequencies measured by Orr [34]. Assuming standard conditions and noting from [34]
that C = 101:6�m, m = 0:52 kg, R = 5:2 cm and L = 7:8mm, the inertial parameter is
calculated to be �ax=60 and the reference frequency is !̂=882 rad=s for this device. The
resulting natural frequency at zero eccentricity for the given range of pressures is shown
in Fig. 5.8 along with Orr’s data.

It may be noted that the current model and Orr’s data show poor agreement at low �p

but their asymptotic behavior at high pressure is comparable. Because the disagreement
between model and experiment at low �p was also shown for Orr’s IBLT calculations, this
finding implies that the error is not one of execution, but of formulation.

The most obvious neglected phenomenon to check is compressibility. The current
model, as well as that used by Orr, assume incompressible flow. In aerodynamics, the
importance of compressibility is commonly assessed by computing the ratio between the
flow speed and the sound speed, which is 347m=s at 300K. If this ratio, known as the Mach
number, is greater than approximately 0.3, compressibility effects may be significant.
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Figure 5.9: Mach number as a function of axial�P for the data of Orr [34]. While the Mach numbers
are surprisingly large, they are not large enough to indicate that compressibility is a significant issue
in this flowfield.

The Mach number at the channel centerline after the flow becomes fully-developed
for the data of Fig. 5.8 is presented in Fig. 5.9. From this figure, it can be concluded that,
while the Mach numbers are surprisingly large, they are not large enough to indicate that
compressibility is a significant issue in this flowfield.

It should be noted, however, that this result indicates that the local density gradients
are not significant but it does not provide information about the global density change. As-
suming isothermal flow (worst case), this change is equal to �P=Po, which reaches 30% for
Orr’s data. The velocity integrated across the passage must therefore increase to conserve
mass under the decreasing density, but the pressure distribution, which is the quantity of
interest in the current section, will not be significantly affected.

The other key assumption of the current, as well as the IBLT, model is a uniform ve-
locity profile at the entrance. For the experimental rig, this is a rather poor assumption
because the entrance is a 90� corner, rather than a sharp leading edge. Separations will
therefore form at the corners. Furthermore, the plena supplying the pressure are relatively
shallow so the flow will likely experience a significant turning effect. Both effects will
cause additional pressure drops in the passage. This effect is, in fact, similar to the orifice
restriction used in many conventional hydrostatic bearings.

Recognizing that these effects may result in a greater “effective” axial inertial parameter
than predicted by Eq. 5.16, Breuer [71] suggested an attempt to improve the agreement by
varying �ax. The results of this effort are presented in Fig. 5.10.

Figure 5.10 shows that the model produces an excellent match to experimental data
over the entire pressure range when �ax is increased by a factor of five. Under the above
arguments regarding the inlet condition, this increase can be justified, if only heuristically.
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Figure 5.10: Comparison of model with 5��
ax

to experimental data. Excellent agreement is demon-
strated. It was, however, also necessary to modify the normalization terms on the frequency as well,
which is difficult to justify physically.

After modifying �ax however, it is also necessary to rescale the frequencies by increasing !̂
by a factor of 1.3. This increase is more difficult to understand physically. It may be noted
that the adjustment to both �ax and !̂ only moves in the same direction if Po is varied.
Varying any of the other variables, such as c or L increases one of the parameters but
decreases the other. Orr [34] suggested circumferential clearance variation as a possible
explanation.

A number of features of the hydrostatic effect indicated by the generalized pressure
correction surface in Fig. 5.7 can be clarified via study of the hydrostatic natural frequency,
!n. Furthermore, this frequency is important experimentally because it provides a measure
of the hydrostatic stiffness that can be easily observed from power spectra of relatively
crude position sensor data. In addition, because the natural frequency will interact with
the ever-present synchronous forcing due to imbalance, this frequency sets the location of
“critical speeds” where strong journal responses may be seen. Because these responses
may produce wall-contact, the associated ! may be an operational maximum. In these
cases, !n must be increased to reach the design speed so it is important to understand its
variation with �ax and �p to avoid excessive axial massflow and force imbalance.

First, a family of normalized natural frequency curves at zero eccentricity are presented
in Fig. 5.11 for a range of pressure ratios. The trend of hydrostatic effect versus �ax notable
by comparing Figs. 5.8 and 5.10, continues: higher �ax implies a larger natural frequency
for a given �p at small �p, but the trend reverses at large �p.

The crossing of the constant-�ax lines in Fig. 5.11 may be explained by observing the
slope reduction, or “knee point” that takes place on all curves as the pressure increases.
This knee point becomes more pronounced and occurs at smaller �p for bearings with
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Figure 5.11: Effect of axial inertial parameter on the zero-eccentricity nondimensional natural fre-
quency at a range of pressure ratios. A higher �

ax
implies a larger natural frequency for a given �p

at small �p, but the trend reverses at large �p due to earlier occurrence of the “knee” point.

larger �ax. This finding implies a tradeoff must be made between the maximum stiffness
desired from the hydrostatic mechanism and its “efficiency” with respect to the increase in
�p needed to produce a given increase in !n. Bearings with large �ax show a very rapid
increase in !�n with �p at low �p, but the curve quickly flattens and crosses the lower �ax

traces.

Toward explaining the knee points, the channel location at which the flow becomes
fully-developed is plotted in Fig. 5.12 for the cases in Fig. 5.11. Comparing these figures, it
can be concluded that the knee point in the natural frequency trace roughly corresponds to
the �p at which the flow reaches a fully-developed state at the channel exit. With further
increases in �p, the development point becomes virtual and moves outside the channel.
As it moves further downstream, the boundary layers in the channel become thinner with
respect to the channel height and, therefore, have diminished influence on the pressure
distribution. The loss of slope on the !n-�p curve is therefore related to a loss in sensitivity
to channel height when the flow fails to become fully-developed.

A second characteristic of the entry-length hydrostatic stiffness is visible in Fig. 5.7, but
most easily understood in terms of natural frequency: its dependence on eccentricity. This
dependence is shown in Fig. 5.13 for two axial inertial parameters.

From this figure, it may be seen that the variation of !�n with �p has three regions. Fur-
thermore, the extent of these regions in terms of �p is an inverse function of �ax. In the low
�ax�p region, the natural frequency increases slightly with eccentricity. In the moderate
�ax�p region the natural frequency decreases noticeably with eccentricity, with the varia-
tion increasing with �p. At high �ax�p, the curves begin to cross as the slope of !�n with
�p decreases most strongly with decreasing eccentricity. This leads to a situation at very
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Figure 5.12: Entry length location with u` = 0:999u1 for cases of Fig. 5.11. Comparing these fig-
ures, the knee point occurs as the point at which fully-developed flow is reached moves out of the
channel.
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Figure 5.13: Dependence of normalized hydrostatic natural frequency on eccentricity for two val-
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Figure 5.14: Normalized hydrostatic correction pressure as a function of channel height for various
values of �

ax
�p. The non-constant slope over h is responsible for the eccentricity dependence of
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n

shown in the previous figure. The shift in maximum slope away from h=1 as �
ax
�p increases

is responsible for the re-ordering of the frequency versus eccentricity.

high �ax�p where the trend is once again reversed and the natural frequency increases
with eccentricity.

This behavior can be explained by inspecting the generalized hydrostatic correction
pressure surface in Fig. 5.7. For convenience, several constant-�ax�p traces from this figure
are presented in Fig. 5.14. On each trace, the channel height is unity when �= 0. When �

is nonzero, the channel height varies between (1��)� h� (1+�) around the journal. For
example, for �=0:5, the channel height varies between 0:5 � h � 1:5.

At low �p, the increasing frequency with eccentricity may be explained by inspecting
�ax�p=1 trace in Fig. 5.14. On this line, a constant-slope region occurs from 1:25 � h � 2.
Furthermore, the maximum slope on the trace occurs in this region. Slight perturbations at
zero eccentricity and small �P therefore do not penetrate the maximum slope region and
the natural frequency is smaller than at larger eccentricity, where the span of h penetrates
the high-slope region.

At moderate �p, the constant-slope region encloses h = 1. The maximum stiffness is
therefore found around � = 0 because the entire height distribution is within the maxi-
mum slope region. At a nonzero eccentricity, however, the height distribution extends into
regions outside the maximum slope region. Slight perturbations about these points will
therefore reveal decreased stiffness over the zero eccentricity case. Furthermore, because
the slope decreases at both ends of the h range, increasing eccentricity further decreases
the stiffness.

At very high �p, the maximum slope region moves to the left of h=1. The maximum
stiffness is therefore no longer found at � = 0. In this case, increasing eccentricity once
again causes the height distribution to move out into the maximum-slope region so it will
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increase the stiffness.

In the areas between the three �p regions, increasing eccentricity has a varying effect
due to an interplay between penetrating the constant slope region and the reduced slope
regions at the h extremes.

5.2.5 Interaction with Hydrodynamics

When the hydrostatic correction pressures are added to the dynamic simulation, a num-
ber of new effects are seen. First, of course, a frequency appears on the spectrum at !n
that is independent of bearing number. Second, operating conditions that resulted in large
whirls under solely hydrodynamic operation become stable under combined, or “hybrid”
operation. Stability boundaries microbearings in this hybrid mode were calculated by
Savoulides [76] using an eigenvalue analysis. This section will present examples of dy-
namic interactions between the operating modes in nonlinear orbits.

An example of a bearing operating in a primarily hydrostatic mode is presented in
Fig. 5.15. In this case, the imbalance was set to 5% and all pressure plena were set to
P=Pa = 1:2 and �ax = 5. The bearing number was 0.17, placing the hydrostatic natural
frequency at !n=!=0:7.
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Figure 5.15: Frequency spectrum for a primarily hydrostatic case. The orbit is nearly circular and
the spectrum consists of only the hydrostatic natural frequency and the synchronous frequency due
to imbalance.

In this case, the orbit is centered and circular and the power spectrum shows a peak
at the hydrostatic natural frequency and the synchronous frequency due to imbalance.
Notably, the power spectrum is absent of the additional peaks due to sum and differ-
ence modes observed by Orr [34] for hybrid operation and also observable in Fig. 3.27 for
purely hydrodynamic operation. This absence is a consequence of a very small hydro-
dynamic stiffness and the relatively constant hydrostatic stiffness found at small � and �.
Furthermore, the hydrostatic case was chosen such that the stiffness was nearly constant
with �.
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Because !n is fixed and can be calculated in advance from the model, it is relatively
easy to manipulate � to produce coherent orbits at rotation speeds that are fractions or
multiples of !n. In these cases, it was also necessary to provide load to prevent the orbit
from precessing in the perfectly circular bearing used in the numerical simulation. An
example of a series of these orbits and their associated power spectra are shown in Fig. 5.16.
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Figure 5.16: Frequency spectra and orbits for cases in which rotation frequency is a whole-number
fraction or multiple of the hydrostatic natural frequency.

In these cases, the power spectrum contains sum and difference modes due to the large
�, which introduces nonlinearities due to hydrodynamics, and the large �ax, which intro-
duces nonlinearity in the force characteristic.

The relative magnitude of hydrostatic and hydrodynamic forces during a beta orbit
are shown in Fig. 5.17. As may be expected, the hydrodynamics provide a very strong
repulsive force when the journal approaches the wall. In addition, a weaker attractive
force is applied via the squeeze-film mechanism as the journal retreats from the wall after
being repelled. For the remainder of the orbit, hydrostatic forces dominate.
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Figure 5.17: Comparison of hydrostatic and hydrodynamic radial force levels during a beta orbit.
A positive value denotes force away from the wall. Hydrodynamics provides a strong repelling
force on wall approach and a weaker attractive force on retreat. Hydrostatics is dominant through
the remainder of the orbit.
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5.3 Chapter Summary

In this chapter, information was presented on two considerations for bearings in operation.
The first consideration, the need to apply loads via side-pressurization, is a consequence
of the very low weight of MEMS and the high eccentricities required for stable operation
of short bearings. The second consideration, axial flow inertia, is a consequence of the first.

Side-Pressurization Loading

It was shown in Sec. 5.1 that imposing a non-circumferentially-uniform pressure at an axial
end is an effective means of providing side load to a journal bearing. Furthermore, due to
the low load capacity of the low L=D bearings likely to be found in microdevices, the
required pressures are quite moderate.

An unfortunate consequence of this type of loading was discovered however: it tends
to increase the attitude angle and decrease the critical �M at a given eccentricity. This effect
becomes stronger at higher speed but, fortunately, weakens with increasing eccentricity.
This weakening is important for microbearings due to their typically large required eccen-
tricity because it prevents the stability corridor from closing altogether, as it did for some
tapered bearings.

Stiffness Due to Axial Flow Inertia

In Sec. 5.2, it was shown that pressure gradients in the axial direction of a short bearing,
such as in side-pressurization loading of microbearings, can result in a flow with signif-
icant inertial effects. These inertial effects make the pressure distribution dependent on
the local channel height, which results in a restoring force on a displaced journal. This
restoring force is similar to that of a traditional externally-pressurized bearing with a flow
restrictor but, in this case, the restrictor is built into the bearing itself.

A model was developed for these this stiffness and its controlling nondimensional pa-
rameter was shown to be very similar to the inertial parameter used in typical lubrication
flows. The model was used to construct a generalized surface for determining the ax-
ial pressure distribution’s departure from the inertialess case computed via the Reynolds
equation. The variation of the stiffness with �ax, �p, and � was shown. This model was
also incorporated into SPECTRES and several coherent orbits indicative of resonance with
the new frequency observed in macro-scale bearing experiments were reproduced.

Finally, it should be noted that, while the axial flow hydrostatic mechanism originates
from pressurization of the side-loading plena, it was experimentally detected when both
plena were increased to large �p, rather than one or the other, as would be the case if they
were being used for their intended purpose. Due to the low load capacity of microbearings,
significant hydrostatic effects are unlikely to be seen if one plenum is held at ambient
pressure and the other is increased for the purpose of loading a hydrodynamic bearing.
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For example, reading � from Fig. 5.3 and using Eq. 5.2 to recover �p, it can be seen
that producing a 90% eccentricity by side-pressurization at � = 1 will require �p � 0:1.
Noting that �ax � 5 for the microturbine of Fig. 3.6, the hydrostatic correction pressure
is, at maximum (h = 1:9), approximately -0.0058. Given that the input �p � 0:1 and the
maximum �p produced hydrodynamically at this operating point is approximately 0.27,
this correction pressure is unlikely to contribute significantly to the forces on the journal.





Chapter 6

Conclusions

6.1 Numerical Tools

Two distinct numerical tools were developed expressly for this work. This document is
based almost entirely on their results. The large design space and wide variety of effects
investigated are testament to the generality of their approach.

BASICS

BASICS was written to examine effects invisible to tools constructed via the standard as-
sumptions of lubrication theory. Though it must be extended to 3-D, unsteady flows to
provide direct solutions to problems of interest to (typically short) microbearings, its 2-D
steady state results were useful for providing temperature data, inertia effects and insight
into the flowfield that applies at least qualitatively to finite-length bearings.

SPECTRES

SPECTRES was written to be a flexible research tool and it has served this purpose well.
First, it provided steady-state and stability data for the high eccentricities required by mi-
crobearings that was impossible with the low-order Galerkin methods and impractical
with finite difference methods. Second, its “numerical experiment” framework allowed
effects not necessarily expected or under study, such as the high frequency radial mode, to
come to the fore. In addition, the flexibility of this approach allowed many models to be
added in a modular fashion as new effects were identified in the course of the MIT micro-
engine development. The wide variety of effects investigated is especially striking when
it is noted that SPECTRES’ source is only slightly over 2000 lines (not including the FFT
routines).

A key enabler for SPECTRES is its pseudospectral formulation. This formulation strikes
a balance between the run-time resolution flexibility of finite difference techniques and the
grid efficiency of spectral techniques.

179
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6.2 Design Methodology

In this work, a categorization of nondimensional variables is suggested consisting of three
conditions: loading, geometry, and fluid. It is shown that one loading, two geometric, and
one fluid condition are required to fully specify an unsteady problem in a finite bearing.
It is also noted that the parameter sets that can be categorized into the above conditions
tend to be complimented by other researchers while those that cannot, due to recurrence
of variables logically associated with only one condition, such as !, received complaints
about their utility in a design environment. Framing the design process in terms of the
suggested categorization should therefore be valuable in both micro and macro bearing
design environments.

Stability boundaries in this work are expressed in terms of required load or eccentric-
ity, rather than critical mass or threshold speed. This presentation highlights a difference
in design philosophies for macro and micro bearings: a macro-bearing designer typically
must choose a geometry to carry a given load whereas the micro-bearing designer must
choose a load to stabilize a tightly-constrained geometry. It is asserted, however, that pre-
senting the data in this format clarifies certain trends, so it is a worthwhile exercise even
for macrobearing designers.

6.3 Microfabricated Journal Bearings

As concluded by Orr [34] on the basis of experiments, the extremely short bearings likely
to appear in microdevices fabricated with current techniques are shown to be a viable
means of supporting high-speed rotating members with gaseous lubricants. In addition,
an exploration of the associated design space, enabled by the computational nature of the
current investigation, suggests a number features that are typical of these bearings.

Low L / D

The L=D of the baseline MIT microengine bearing is nearly a factor of three smaller than
the smallest value found in the literature. LowL=D is put forth as a characteristic feature of
microbearings because, due to an interplay of constraints discussed primarily in Chap. 1,
it is not likely to increase greatly in the near future.

It was shown in this work that the short bearing’s substantial side-leakage causes it
to behave very much like an incompressible bearing. Significant departure of the load
capacity from the incompressible result, for example, was obtained only through a com-
bination of high eccentricity and speed. Because (non-cavitating) incompressible bearings
are unconditionally unstable, this finding implies a radical running mode is required for
stability.
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High Eccentricity

The combination of small L=D and relatively large C=R found in the MIT microengine
bearings implies a large eccentricity (eg. � > 0:90) is required for stability, particularly at
low speed. Such a large eccentricity in a clearance measured in microns leads to an ex-
tremely small physical separation between journal and bearing ('1�m). Tolerances for
allowable contaminant size and, to a lesser extent, surface roughness and journal round-
ness are therefore also small.

Near-wall operation is put forth as a characteristic feature of plain microfabricated
bearings because it is shown in this work that variations in length, diameter, and clearance
have a surprisingly weak effect on stability in terms of dimensional running separation
between solid surfaces. This finding is traceable to a reduced sensitivity of the minimum
stable eccentricity to these parameters when its baseline value is high, as demonstrated in
Fig. 3.12. Furthermore, as discussed in Sec. 3.2.1, the consistent trend of increasing mini-
mum eccentricity with clearance, and vice versa, works to cancel attempts to improve the
separation via clearance modification alone.

The design charts of Sec. 3.2.1 show that, of the variable parameters in a plain bearing,
increasing the length generally brings the most benefit in terms of increasing allowable
separation between surfaces. Figure 3.14 shows that this conclusion most often holds even
if the clearance increases with the length, as is most often the case when it is produced
via deep etching. In this situation, the minimum eccentricity increases with length, but
it does so at a slower rate than the clearance increases. The running separation therefore
improves, although only slightly.

The benefit of increased length can, however, be canceled if it exacerbates the axial
clearance variation often seen in etched bearings. For example, it is shown in Sec. 4.2.3
that a tapered clearance can be modeled as an increase in �min proportional to the axial �C
divided by the clearance (Eq. 4.9). This parameterization implies that the greater running
separation obtained by increasing the length via a fixed aspect ratio etch survives if �C
increases at no more than a linear rate with C . The benefit can easily be canceled, however,
if �C grows faster than C as the length increases.

In addition to varying the plain bearing geometric parameters of Fig. 1.3 to increase
running separation, varying the bearing radius as a function of location is investigated
in this work. While, various noncircular shapes have proven beneficial in macro-scale
bearings, their effect on microfabricated bearings has not previously been assessed. The
key difference is that the minimum clearance between features is more or less fixed in an
etched bearing, thus noncircularity must be obtained solely through introducing clearance
increases at various circumferential positions. A noncircular bearing’s mean clearance will
therefore be larger than its circular equivalent, possibly canceling the performance gain
imparted by the shape change. The load capacity was shown to suffer from this cancella-
tion. Conversely, the minimum running separation required for bearing stability improved
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despite the clearance increase. In cases where low load capacity can be tolerated, the non-
circular bearing shows some promise for achieving running separations comparable to
those of macro-scale bearings.

Low Load Capacity

The large C=R - small L=D combination responsible for near-wall operation of microfab-
ricated journal bearings produces another characteristic feature: low load capacity. As
shown Sec. 1.3.3, however, microdevices tend to have very low (order 10�4) load parame-
ters from rotor weight. Ability to carry a static load is therefore not necessarily a primary
design concern.

In this context, low load capacity is worrisome only in terms of accuracy required to
control appropriate side load for stability and resistance to impulsive loading. In terms
of the former concern, the high eccentricities required for stability imply high stiffnesses.
The load can therefore be overspecified to guarantee stability in view of load-control uncer-
tainty without greatly increasing the running eccentricity and, thus, the drag and danger
of crashing. In terms of the latter concern, despite their low static load capacity, micro-
fabricated bearings are shown in Sec. 3.2.5 to tolerate shocks in the thousands of g’s. This
result is traceable to very low rotor weight, large stiffness at high eccentricity, and squeeze
film effects.

As pointed out in Sec. 3.1 low load capacity proves to be an advantage in terms of sta-
bility because it implies smaller side-load requirements for producing the required eccen-
tricity. In a turbomachine with side load provided via self-tapped pressures, this translates
to reduced bleed-air requirements, increasing machine efficiency. In addition, as shown in
Sec. 3.1.2, the low load capacity allows use of a greatly-simplified expression for calculat-
ing the bearing drag, simplifying design tradeoffs.

Imbalance

Due to their small size and constraints inherent to available tools, post-fabrication balanc-
ing of microrotors is extremely difficult. Imbalance is therefore most easily minimized by
careful design and control of the fabrication process. Unfortunately, with clearances com-
parable to the achievable tolerances on various manufacturing steps, significant imbalance
is likely to be an unavoidable feature of microbearings.

In Sec. 3.2.4 a duality between applied load and imbalance level was demonstrated.
This situation allows the imbalance tolerance to be adjusted through manipulation of the
side-load. In addition, by adjusting the load using the rotor motion’s spectral content as
a guide, the duality may still be exploited in many cases when the imbalance level is not
known a priori.



6.4. RECOMMENDATIONS 183

6.4 Recommendations

In terms of improving microbearings, this work indicates a number of areas that merit
further investigation.

First, lengthening the bearing appears to improve its operating state in almost all re-
spects. This trend does not always hold, however, for shrinking the clearance. This result
indicates that process development effort is most profitably spent on the former issue.

Second, noncircular shapes appear to be a useful idea for microbearings. Because the
parameter space is so large, however, only a very small subset of the possibilities were
treated in this document. More complex shapes that take advantage of the microfabrication
characteristics should be investigated. For machines that spend the majority of their time at
a single operating point, the idea of inverse design, where the shape is tailored to produce
a desired pressure distribution, may also be useful.

Varying the rotor (as opposed to the bearing) shape, which was entirely neglected in
this document, also merits investigation, particularly in view of Fleming and Hamrock’s
finding that placing herringbone grooves on the rotating member was more effective than
placing them on the stationary member [28]. In addition, reshaping both the bearing and
rotor, such that the clearance etch is of uniform width, simplifies fabrication considerably
and is therefore desirable even if the bearing performance does not improve. An experi-
mental investigation of startup issues may be required in this case.

Third, the load / imbalance duality proposed in this work offers great promise for deal-
ing with possibly large imbalances in microdevices. Issues of starting such a bearing hy-
drodynamically were not addressed in the current work, however. As shown by Orr [34],
this issue may be circumvented via the hydrostatic mechanism of Sec. 5.2. In some devices,
such as turbomachines where the bearing supply pressure is provided by the compressor,
a hydrostatic startup is not possible without external equipment. The difficulties inherent
in hydrodynamic startup should therefore be investigated to enable the design tradeoffs
to be made.

Finally, the development of BASICS, or a similar tool that does not rely on lubrication
assumptions, should be pushed forward to provide insight into thermal effects on bearings
in the MIT microengine. Conditions for the formation of Taylor vortices, or large-scale
turbulence, should be examined more quantitatively than was possible in this document
because such an investigation may open design space in terms of increased C=R.





Appendix A

Analysis Example

In this appendix, a quantitative example is presented to demonstrate the application of
various charts presented in this document and the interaction of various considerations.

For circular, cylindrical bearings near the MIT microengine’s design point, a series of
densely-populated charts are provided in Appendix C of Orr [34]. In that work, load
parameter and attitude angle versus bearing number and minimum eccentricity charts, of
the type employed in this appendix, are provided for 0:075 � L=D � 0:125 in steps of
0:005.

The baseline parameters to be used in this example are shown below:

R = 2mm

C = 10�m

L = 300�m

Pa = 101325Pa

� = 1:8 � 10�5Pa � s
m = 1� 10�5kg

! = 210; 000rad=s

which yield the following nondimensional parameters:

L=D = 0:075

�M = 0:5

�g = 0:0008

� = 9

With the above parameters, the minimum stable eccentricity at the design point, as
well as during acceleration to this point, can be obtained from the minimum eccentricity
chart, described in Sec. 3.2.1. The minimum eccentricity chart for this case is shown in
Fig. A.1. On this chart, the operating line during acceleration is indicated by a dashed line,
assuming only ! changes during acceleration.
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Figure A.1: Minimum eccentricity chart for example case. The operating line during startup is
indicated by a dashed line (- - -).

From Fig. A.1 the eccentricity at the design point is approximately 80% and the worst-
case (low speed) eccentricity is approximately 91%. The minimum separation between
solid surfaces anywhere on the operating line is therefore:

(1� 0:91)10�m = 0:9�m (A.1)

Assuming, for the time being, that this distance is acceptable, the load schedule, used
to guarantee the minimum eccentricity at each speed along the operating line, is then con-
structed. To construct this chart, the �min contour intersecting the operating line at each �

is determined from Fig. A.1. The load parameter (and attitude angle) associated with each
�-� pair may then be obtained from the steady-state performance charts, such as those
presented in Sec. 3.1.1. The charts for the example case are presented in Fig. A.2 and the
resulting load schedule is presented in Fig. A.3.

Assuming the load is to be applied with side-pressurization from two plena of equal
size, the pressure schedule may now be constructed. Further assuming that the low side
plenum is held at Pa, as is the opposite end, a rearranged two-plenum version of Eq. 5.2 is
employed to generate Fig. A.4 from Fig. A.3:

PH

Pa
= 2� + 1 (A.2)

Two traces are included on Fig. A.4: one for the vertical (non gravity-loaded) rotor
case and one for the horizontal (fully gravity-loaded) case. The difference between these
cases is simply whether or not �g is subtracted from the required � before computing the
pressures. As noted elsewhere in this document, the rotor weight is slight with respect to
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Figure A.2: Steady-state performance charts for example case.
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Figure A.3: Load schedule for example case.
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Figure A.4: Pressure schedule for example case.

the required load at most speeds, so there is little difference between the two cases.

Now, to correct for taper, the linear estimate of Eq. 4.9 is applied to each eccentricity
on the operating line and a new load is calculated. For example, assuming the clearance
reaches 11�m at one end and the shape is nearly linear, the taper level is (11�10)=10 = 0:1.
Equation 4.9 then predicts a minimum eccentricity increment of ��min = 0:4(0:1) = 0:04.
The worst-case minimum eccentricity then becomes emin = 0:91 + 0:04 = 0:95. Similarly,
the minimum eccentricity at the design point becomes 84%.

Because the adjusted worst-case eccentricity is large enough to arouse concern about
the near-wall effects demonstrated in Sec. 4.2.3, a simulation with taper was run to confirm
the adjusted minimum eccentricity. The result

To adjust the load schedule,��min is first added to the eccentricities along the operating
line. The steady-state taper estimator introduced in Sec. 4.2.2 is then applied to find the
associated load parameter. In this scheme, the tapered bearing performance is estimated
from that of an equivalent untapered bearing with clearance ~C , where:

~C

C
= 1 + 0:45(0:1) = 1:045 (A.3)

Each �� � operating point is then recalculated as an ~�� ~� operating point, where:

~� = �

�
C

~C

�2
(A.4)

~� = �

�
C

~C

�
(A.5)

The resulting load and pressure schedules are shown in Fig. A.5 and Fig. A.6, respec-
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Figure A.5: Load schedule for example case with 10% taper.
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Figure A.6: Pressure schedule for example case with 10% taper.
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tively. Notably, despite the fact that taper has increased the eccentricity along the operating
line, the required load is actually slightly lower. This result is a consequence of the drastic
loss of load capacity in tapered bearings.



Appendix B

Neglected Effects

This chapter examines the major assumptions inherent to the results presented in this doc-
ument. For macro-scale bearings, this would be a short exercise because these assumptions
are often easily justifiable. For microbearings, however, these assumptions are often called
into question by an unusual geometry or application. For data presented in nondimen-
sional form, which is the vast majority of this document, assumption breakdown emerges
only when certain parameters, for example � and C=R, are calculated for a given geome-
try. If these “watchdog” parameters indicate violation of an assumption, it does not mean
that the data itself is invalid - it is questionable only when used for that particular case.

B.1 Inertia

When developing the Reynolds equation from the Navier Stokes equations (see, for ex-
ample, Hamrock [12], Chapter 7), terms of order (C=R)2 and (C=L)2 are dropped. This
operation eliminates all the viscous terms except the cross-channel shear stress gradient in
the azimuthal and axial directions for the momentum equations in those directions.

For the vast majority of bearings, including microbearings, this is a good assumption.
First, with deep-etching techniques, achieving a C=L of at least 1/20 is relatively routine.
Second, due to the strong movement of �M and � toward a more difficult position in terms
of bearing stability when C=R increases, this ratio is often kept as small as practicable. It
is therefore at least as small as C=L in most machines.

Under this assumption, the inertia terms are the smallest remaining members of the
momentum equations. While the pressure, time, and shear gradients are order unity, these
terms are multiplied by a parameter C=R times the Reynolds number based on clearance
and the flow speed at the journal surface, U = R!. This quantity was introduced earlier as
the inertial parameter, �, where:

� =
�Uc

�

C

R
=
�!c2

�
(B.1)
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Figure B.1: Comparison of Navier-Stokes and Reynolds equation calculations for an infinite-length
bearing with unity inertial parameter at 80% eccentricity over a range of bearing numbers. The
error maxima are -2% for the load parameter and +9% for the attitude angle. The error generally
increases with �.

Noting that � is much smaller than unity for typical lubrication flows, the inertial terms are
dropped and the Reynolds equation is derived based on the shear and pressure gradient
terms alone.

For liquid-filled macro-bearings, due to the large viscosities of liquids, this is a good
assumption because inertial parameters of order 10�4 are not unusual. For high speed, gas-
filled macrobearing, � is significantly larger, but not yet large enough to arouse concern.
For example, an order-of-magnitude analysis assuming rotation rates in tens of thousands
RPM and clearances in the tens of microns (single-digit mils) yields:

� =
(1)(103)(10�5)2

(10�5)
= (10�2) (B.2)

In the microturbomachines currently being developed at MIT, however, the clearance
is a similar order of magnitude as a good macrobearing, but the rotation rates are two
orders of magnitude larger. The inertial parameter can therefore be order unity. Conse-
quently, inertial terms have a potential for significant impact on the pressure distribution
in these bearings because they reach a similar order of magnitude as the viscous and pres-
sure terms.

The most direct way to measure the effect of the inertial terms is to include them in
the governing equations. BASICS, described in Sec. 2.1, was written for this approach by
solving the Navier-Stokes equations instead of the Reynolds equation. A BASICS result for
infinite-length bearings at �=1 and �=0:8 is compared to a Reynolds equation solution in
Fig. B.1.
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In Fig. B.1, it may be seen that the error in calculating the steady-state parameters under
the inertialess flow assumption is less than 10% for infinite bearings with � < 10. For all
cases, the inclusion of inertia decreased � and increased �. Except for the highest � value,
the trend is of increasing error with � for both � and �.

The conclusion of small contributions to the steady-state variables from first-order iner-
tial terms is supported by DiPrima and Stuart’s [77] results for incompressible lubricant in
infinite-length bearings. Their analytic method was a small parameter expansion in terms
of variables functionally equivalent to C=R and �. Their analysis could therefore provide
corrections for both curvature and inertia.

Nataraj et al. [13] also found a negligible contribution of inertia to the steady state vari-
ables. Like DiPrima and Stuart, their analysis was a small-parameter expansion in C=R

for incompressible lubricants, but it was derived for short bearings with cavitation. It was
shown in Fig. 3.3 that this solution provides very good estimate for � for the very short
bearings treated in this work at a surprisingly large range of � and �. It should be noted,
however, that this solution does not provide a good estimate for the attitude angle.

Because it retains time derivatives in its momentum equations, the analysis of Nataraj
et al. is also capable of modeling unsteady effects. Changes in the stiffness and damping
coefficients due to inertia were presented in [13]. As with the steady-state parameters, the
authors conclude that the changes in coefficients are not very large and could be neglected
for the Reynolds numbers they studied, which were as large as 1000. Both steady and
unsteady variables for finite-length incompressible bearings are therefore shown to change
very little for order-unity inertial parameters.

A straightforward solution to the problem of adding inertial effects to a finite-length
compressible gas bearing was presented by Banerjee et al. [78] in a “predictor-corrector”
framework. In this scheme, the Reynolds equation is solved and the velocity components
are recovered from the continuity and inertialess momentum equations. These compo-
nents are then used to construct inertia terms for the momentum equations. Treating these
terms as constants, the momentum equations may be integrated across the clearance as
in the standard Reynolds equation development. The resulting Reynolds equation is then
solved for the “corrected” pressure in the presence of extra terms from the “predictor”
step. If additional accuracy is required, the process can be repeated, through either a more
complex equation or an iteration on the current scheme.

Banerjee et al. then show that the effect of inertia for an incompressible short bearing is
always to increase the net load capacity. Performing calculations for finite-length incom-
pressible bearings with this method, Chen and Chen [79] show that the inertial increase
to the load capacity at �= 1:4 is strongest at moderate eccentricity, but still reaches only
2.1% for an L=D=0:5 bearing at �=0:5. This peak is only 1.5% for the L=D= 1 bearing.
Moreover, Chen and Chen show that the side leakage flow rate increases due to inertia.
The trends for leakage are quite different than for load capacity. The leakage was shown
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to increase with L=D and eccentricity but, again, reached only 3% in the worst case.

While Banerjee et al. assume an incompressible bearing later in their paper, which was
also assumed by Chen and Chen, their general result is valid for compressible flows. Fur-
thermore, though their analysis neglects the unsteady term in the continuity equation, this
term may be added relatively easily because the output from the predictor step is used to
recover velocities in terms of pressures. These velocities are carried through the integration
to yield velocities at the corrector step which are then inserted into the spatial derivative
terms in the continuity equation to produce the Reynolds equation. The time term escapes
modification because involves only the density at the corrector time level.

If the time derivative terms in the momentum equations are retained, however, many
complications arise in this method. Retention of the time terms is considered necessary if
the “squeeze number” is non-negligible:

�s =
�c2

to�
(B.3)

where to is a reference time. If the inverse rotational frequency is used for the reference
time, which is a reasonable choice for journal bearings, the squeeze number becomes iden-
tical to the inertial parameter. It is thus appropriate to keep the temporal terms in the
momentum equations. Unfortunately, this addition causes the corrector-step velocities to
contain mixed second derivatives with temporal and spatial components, which consider-
ably complicates the recovery of needed information from the predictor step.

Because many previous researchers have found that order-unity inertial parameters
have negligible impact on both the steady and unsteady bearing performance for incom-
pressible flow, and BASICS supports this conclusion for steady flow in infinite-length com-
pressible bearings, it is unlikely that the effort required to negotiate these complications is
worthwhile. Not only is compressibility unlikely to significantly worsen the problem for
finite-length bearings, but the very short bearings treated in this work behave largely as
incompressible bearings due to their large side-leakage.

B.2 3-D Vortices

A literature search for Couette flow between rotating cylinders yields a surprising quantity
of papers for a problem whose incompressible case can be solved analytically and whose
compressible case is easily treated numerically with finite difference techniques. Closer in-
spection reveals that the interest centers around a secondary flow that appears in the form
of toroidal vortices under certain conditions. Such a flow is known as “Taylor-Couette”
flow because the first successful treatment of this problem was due to Taylor [80], who
showed that vortices appear in concentric cylinders when a quantity, now known as the
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“Taylor number” and given by:

Ta =
�2R!2C3

�2
(B.4)

reaches a critical value of approximately 1700.

From a journal bearing perspective, the formation of these vortices is important be-
cause they are a large-scale feature in the flowfield that is not represented in the Reynolds
equation. Furthermore, the vortices themselves can be unstable and lead to fully-turbulent
flow. Though modeling turbulent bearings is possible, it involves the use of empirically-
derived constants, leading to considerable uncertainty [81]. Moreover, turbulent bearings
have a larger drag and thus increased power consumption.

The infrequent appearance of these vortices in conventional bearings can be explained
if the Taylor number is re-expressed in terms of quantities used elsewhere in this docu-
ment:

Ta = �2
R

C
(B.5)

Thus, for conventional bearings where C=R is on the order of 1=1000, the Taylor number
reaches the critical value only if � becomes order unity. As shown in the previous section,
however, � is typically orders of magnitude smaller than unity for conventional bearings.

Remembering that � was shown to be of order unity for microturbomachine bearings,
Eq. B.5 appears to indicate that Taylor vortices will form in these devices. Fortunately,
three characteristics of these bearings act to prevent such formation: larger C=R, large �,
and compressibility.

First, microbearings tend to have C=R of order 10�2 instead of 10�3 due to an interplay
of design constraints outlined in Sec. 1.3. This order-of-magnitude increase C=R raises the
threshold � for the initiation of Taylor vortices by a factor of

p
10, or slightly more than 3.

Second, the critical Taylor number of 1700 was obtained for concentric cylinders. As
shown in Chap. 3, however, hydrodynamic journal bearings must be displaced to some
eccentricity to avoid whirling. The effect of this displacement on Tacrit has been the subject
of experiments and several analytic efforts, four of which are compared in Fig. 9-3.1 in
Gross et al. [82]. From this figure, where their Taylor number is the square root of the
version used in this document, it can be seen that operating at eccentricities above 80%,
which is usually a necessity for microbearings, increases the critical Taylor number by
approximately a factor of two.

Third, Hatay et al. [83] showed that compressibility has a stabilizing effect if the gap
spacing is “small.” In their work, “small” was defined as a ratio of outer cylinder radius
to inner cylinder radius of 0.82. In the nomenclature of this document, this corresponds to
1�C=R < 0:82, a condition which is met by almost any practical journal bearing.

Finally, Hatay et al. [83] also showed that heat flux from the outer to the inner cylin-
der has a stabilizing effect on the flow. In the MIT microengine, where the combustor
surrounds the bearing, Tacrit will therefore be increased.
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In sum, despite the order-unity inertial parameter typical of microbearings, it is un-
likely that Taylor vortices will form due to several factors that increase the critical Taylor
number.

B.3 Temperature Variation

Most bearing analysis tools, including SPECTRES, assume isothermal flow. This assump-
tion enables temperatures that appear when densities are replaced with pressures via the
ideal gas law to be brought outside the derivatives and canceled, leaving the Reynolds
equation with pressure as the sole dependent variable. Moreover, assumption of con-
stant temperature removes the energy equation from the system and allows viscosity to
be brought outside integrals and derivatives.

Toward developing a straightforward method for assessing the importance of temper-
ature variation, Elrod and Burgdorfer [44] derived an estimate for the maximum tempera-
ture at the point of maximum pressure in an infinite-length bearing. This choice of location
causes the pressure gradient to vanish and considerably simplifies the equations. A closed-
form temperature estimate can then be derived:

Tmax � Tw

Tw
� 
 � 1

2
PrM2 ' M2

6
(B.6)

where Tw is the wall temperature of both journal and bearing and M is the Mach number
at the journal surface. Pr is the Prandtl number and 
 is the ratio of specific heats, which
are 0.72 and 1.4, respectively, for air.

Elrod and Burgdorfer note that this equation does not contain information as to the
maximum temperature anywhere in the bearing. It does, however, give a maximum at
a very important point which, they argue, should be indicative of values occurring else-
where in the film.

To test this estimate, a sample bearing temperature distribution from BASICS is pre-
sented in Fig. B.2. In this case, �=0.8, �=0.8, M=0.31, Re=1000, �=0.001, and �=1.0. The
gap is greatly exaggerated for visibility and the figure is oriented such that the load points
vertically downward. The temperature at the journal and bearing walls were set equal and
the distribution is normalized by the wall value.

The appearance of this distribution is somewhat typical of bearing flows. Notably, the
temperature and pressure maxima do not coincide. This observation may be understood
in the context of isothermal walls: the point of maximum pressure is near the point of
minimum height, where the walls are best able to remove heat from the fluid volume.
The temperature maximum is therefore found upstream of the minimum height where
the fluid is being compressed but the walls are further apart. In addition, the maximum
temperature does not occur in the channel center; it occurs closer to the journal surface,
where energy is being added to the fluid via viscous work.
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Figure B.2: Temperature distribution for an infinite-length bearing at 80% eccentricity with a tan-
gential Mach number of 0.31.

For these conditions, Eq. B.6 yields Tmax=Tw � 1:013 whereas the BASICS result is
Tmax=Tw ' 1:0085. Elrod and Burgdorfer’s estimate therefore appears to yield a very
pessimistic upper bound for the Tmax at Pmax and, moreover, a pessimistic upper bound
for the temperature maximum in the entire bearing.

A second temperature distribution, this time for operating point of an early MIT micro-
engine is shown in Fig. B.3 as a more extreme example. In this case, �=0.6, �=3.5, M=1.09,
Re=577, �=0.005, and �=2.9. The pressure distribution from this case was shown previ-
ously in Fig. 2.4.

In this case, Elrod and Burgdorfer’s temperature estimate is Tmax=Tw � 1:17 while
the BASICS result is Tmax=Tw ' 1:07. Again, the estimated maximum was pessimistic by
approximately a factor of two for the global maximum.

In a microengine, taking the Elrod and Burgdorfer estimate as an upper bound and
assuming the rotor speed is held near Mach 1 to maximize the compressor pressure ratio,
the temperature variation will be less than 15% through the bearing. Assuming � has
2/3 power-law dependence on temperature, a viscosity variation of less than 10% should
therefore be seen.

This estimate is very pessimistic, not only in the context of the findings presented above
with regard to Elrod and Burgdorfer’s result, but also because the finite bearing will have
significant axial massflow which will act to reduce the maximum temperature. Further-
more, side-loading via axial pressure gradients will increase the massflow. With this sit-
uation in mind, thermal effects originating from the bearing operation are unlikely to be
significant.

A complication exists in the MIT microengine: as noted previously, the combustor sur-
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Figure B.3: Temperature distribution for an infinite-length bearing at 60% eccentricity with a tan-
gential Mach number of 1.09.

rounds the bearing. The bearing temperature could therefore be significantly higher than
the journal temperature. If this proves to be the case, the thermal effect on bearing perfor-
mance should be evaluated. Equations for this type of analysis was derived by Kao [84] by
including the energy equation in the set before invoking the lubrication assumptions and
constructing the governing equations.

B.4 Rarefaction

The Navier-Stokes equations, on which the Reynolds equation is based, computes molecular-
scale transport phenomena, such as shear stress, from macroscopic mean variables, such
as flow speed. For this technique to be useful, the macroscopic mean must be taken over
a volume large enough to contain a statistically sufficient number of molecules, but small
enough to capture the flow features of interest. The applicability of this method is thus
indicated by the ratio of the mean distance a molecule travels between collisions, known
as the mean free path, �, to a characteristic length in the flowfield, H . This ratio is known
as the “Knudsen number” and given by:

Kn =
�

H
(B.7)

For journal bearings, H can be taken as the channel height. The mean free path is a
function of pressure and temperature:

� =
kT

P�
p
2�2

(B.8)

where k is Boltzmann’s constant and � is the molecular diameter [85].
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Based on the Knudsen number, flows may be divided into three categories [86] : If
Kn<0:01, the Reynolds equation may be used without modification. If 0:01<Kn<0:1, the
Reynolds equation must be redeveloped from the Navier-Stokes equations with a nonzero
velocity, known as the slip velocity, at the wall. If Kn> 0:1 the continuum representation
of the fluid is usually replaced by its molecular counterpart.

Air at standard conditions has a mean of approximately 50nm, so the Reynolds equa-
tion may be applied without considering rarefaction if the gap size is greater than approxi-
mately 5�m. In a journal bearing running at high eccentricity, however, the channel height
may be a fraction of a micron at the location of closest approach. Fortunately, the inverse
dependence of Eq. B.8 on pressure prevents rarefaction from becoming an issue in this
case because the pressure is elevated significantly at the minimum channel height when
running at high eccentricity. The mean free path is thus reduced and rarefaction remains
unimportant. Even if Kn is not negligible in this case, the region for which rarefaction is
significant is a small portion of the total bearing circumference so it is unlikely to have a
notable impact on the overall flowfield.

In a turbomachine, the overall pressure levels tend to be high, so the mean free path will
be reduced. In an engine, however, elevated temperatures may reduce, or even reverse this
gain. The importance of rarefaction should therefore be reevaluated if the cycle changes
significantly.

B.5 Curvature

Though C=R is often viewed in terms of its effect on �, it appears by itself in several key
places in the Reynolds equation development. First, the viscous terms of order (C=R)2

are dropped from the Navier-Stokes equation before � is introduced to eliminate inertial
terms. Second, the channel height is taken to be:

h = 1 + � cos(�) (B.9)

whereas the full expression is actually [82]:

h = 1 + � cos � +
R

C

2
41�

0
@1�

s
�2
�
C

R

�2
sin2 �

1
A
3
5 (B.10)

Finally, the equations are written in a Cartesian system despite the fact that the geom-
etry is cylindrical. The passage between the journal and bearing is thus “unwrapped” to a
linear, varying height channel with the argument that the radius of curvature is large with
respect to the channel height, or, again, that C=R is small.

As noted previously, C=R can be of order 10�2 for microfabricated bearings, which is
an order of magnitude larger than typically seen in macro-scale bearings. During design
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Figure B.4: Comparison of Navier-Stokes and Reynolds equation calculations for an infinite-length
bearing with unity inertial parameter and C=R=1=200 at 80% eccentricity over a range of bearing
numbers. No discernible additional error is incurred over the �=1, C=R = 1=1000 case of Sec. B.1.

iterations, this ratio may increase as the radius is reduced to improve stability via larger
L=D (see Fig. 3.13), reduce drag via to smaller circumferential area, or increase the number
of devices on a wafer.

In Fig. B.1, the inertial parameter was set to unity while the clearance ratio was held at
1=1000 to ensure that the observed effects were strictly due to inertia. In Fig. B.4, a similar
calculation is performed to evaluate the additional effect of curvature. In this case, the
inertial parameter is held at unity and the clearance ratio is increased by a factor of five to
1=200.

Comparing Figs. B.1 and B.4, it can be seen that little or no additional error is incurred
by the increase in C=R. Curvature effects, in isolation from inertial effects, are therefore
not likely to be an issue.

B.6 Summary

The impact of several effects commonly neglected in bearing analyses was discussed.
These effects are often easily ruled negligible for macro bearings based on certain nondi-
mensional parameters falling into theoretical or empirical ranges. In this case, the nondi-
mensional results presented in this document may be dimensionalized and applied with-
out adjustment. For microfabricated bearings, however, several parameters can exceed the
accepted range. The effects they measure must therefore be examined to establish their
importance before using results computed without them.

The most glaring boundary-crossing was the nondimensional parameter measuring
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the importance of fluid inertia. The lubrication equations are developed by eliminating
inertia terms from the nondimensional momentum equations because they are multiplied
by an “inertial parameter,” �, while the retained terms are order unity. For macro bearings,
� is usually of order 10�3. For microbearings, however, � is of order unity. Based on the
results of BASICS and several published works it was shown that the inertial effect was
negligible for order-unity �.

Another complication of an order-unity inertial parameter is, due to its close relation-
ship with the Taylor number, it exceeds the value commonly quoted for the formation of
toroidal vortices in a rotating Couette flow, of which journal bearings are a special case.
Again, by a careful examination of the literature, it was shown that Taylor vortices are not
likely to form because the critical Taylor number is increased by compressibility and by
running at large eccentricity.

Of the neglected effects, only thermal variation could not be so handily dismissed.
This variation is likely unimportant if the journal and bearing surfaces are held at the
same temperature but the effect may be significant if heat is flowing through the lubricant.
This is a likely situation in the MIT microengine because the bearing is surrounded by a
combustor. In this case, thermal effects on the bearing performance should be evaluated,
either through BASICS or by a lubrication analysis that does not assume isothermal flow,
such as that of Kao [84].
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