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Abstract 
 
The main topic of this thesis is the development of light-duty vehicle dynamic emission 
models and their integration with dynamic traffic models.  Combined, these models 
constitute fundamental components to support the development and assessment of traffic 
management policies, and the optimization of their parameters, to alleviate the negative 
impacts of road traffic. 
 
We develop and implement a dynamic model of emissions ( 2CO , CO , HC , and xNO ) and 
fuel consumption for light-duty vehicles.  The model is derived from regression-based and 
load-based emissions modeling approaches, and effectively combines their respective 
advantages.  The model is calibrated for two vehicle categories using FTP as well MEC01 
driving cycles data.  The US06 driving cycle is used to validate the estimation capabilities of 
the proposed model.  The preliminary results indicate that the model gives reasonable results 
compared to actual measurements as well to results obtained with CMEM, a well-known 
load-based dynamic emission model.  Furthermore, the results indicate that the model runs 
fast, and is relatively simple to calibrate. 
 
We propose a framework for the integration of dynamic emission models with non-
microscopic dynamic traffic models, that do not estimate vehicle acceleration.  A 
probabilistic model of acceleration is designed and implemented to link the traffic and the 
emission models.  The model provides an experimental distribution of the accelerations for 
any given speed and road type.  The framework is applied to integrate the dynamic emission 
model developed in this thesis with a mesoscopic dynamic traffic flow model.  Using a 
hypothetical case study, we illustrate the potential of the combined models to estimate the 
effects of route guidance strategies, which are one of numerous examples of dynamic traffic 
management strategies, on traffic travel times and traffic emissions.  In presence of 
incidents, it is shown that route guidance can reduce total travel times as well as total 
emissions. 
 
 
 
Thesis Supervisor: Ismail Chabini 
Title: Associate Professor, Civil and Environmental Engineering 
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This thesis is concerned with the modeling of traffic flow emissions.  This chapter 

introduces the context in which traffic emission models are used, and presents the 
objectives, the contributions, and the organization of the thesis. 

���� �����������
�
�������	����

���
�

Road transportation has an essential economic and social role.  However, it is one of the 

major contributors to energy consumption, air pollution, and emission of greenhouse gases 

(WBCSD, 2001).  Moreover, it is at the origin of various other externalities, such as 

congestion, incidents, and noise pollution.  Air quality, fuel consumption, and the production 
of greenhouse gases are major topics of national and local regulations and of international 

agreements.  To comply with these regulations and improve the quality of the environment 

where we live, it is necessary to implement adequate policies.  Hence, there is need to 

develop methods for the assessment of the impacts on environment and mobility of these 
policies, and for the optimization of the associated parameters. 

Benefits on emissions and fuel consumption are generally believed to be strictly linked 

to reduction in congestion.  Congestion corresponds to increases in the density of traffic as 

well as in the frequency of accelerations and stop-and-go transients, during which more 
emissions are generated.  However, improvements in congestion may not always correspond 

to improved total emissions.  For example, high free flow speeds generally represent 

favorable traffic conditions, but can generate high emissions, and lower travel times may 

encourage vehicle drivers to make more and longer trips (Dowling Associates, 2000).  
Moreover, the spatial distribution of emissions can be affected in a negative way by 

measures that improve congestion.  For example, the use of traffic signals and ramp 
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metering can prevent the formation of congestion, but their introduction leads to higher 

concentration of emissions in the proximity of the signals. 
As a consequence, it is necessary to consider both congestion and emissions in the 

problem of policies development, assessment and optimization.  Moreover, other criteria, 

such as safety and equity, can be considered (Button and Verhoef, 1999).  Therefore, the 

problem can benefit from multi-criteria analysis methods, a review of which can be found in 
Gal et al. (1999). 

Mathematical models of traffic flow and vehicle emissions are useful tools to support the 

policies development, assessment and optimization process (Barratt, 2001).  Often, 

especially in environmental problems, the decision processes are characterized by a high 
degree of complexity, uncertainty, and subjectivity (Colorni et al., 1999).  Therefore, models 

should be used in the context of Decision Support Systems (DSS) to provide the analyst and 

the decision maker with quantitative estimates, trends, and insight on the policies simulated 

(Guariso and Werthner, 1989).  Figure 1-1 shows a DSS framework that can be designed to 
manage traffic congestion and emissions.  The framework includes a model-based traffic 

emission laboratory and a policy generation module.  The model-based laboratory receives 

data and actions from the policy generation module, simulates the policy, and sends back 

indicators of congestion and emissions, which are used to evaluate the policy. 
The following sections present an overview on the policies and the models that can be 

applied in this framework. 
 

Figure 1-1: DSS framework for traffic and emissions control. 
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The policies for traffic and emissions control can be classified as follows1: 

- Vehicle technology measures, aimed at reducing engine-out emissions (e.g. use of 
cleaner fuel or exhaust gas recirculation), and/or tailpipe emissions (e.g. more effective 

catalytic converters). 

- Traditional transportation measures, such as the construction of new road infrastructure, 

and the introduction of additional public transportation services. 
- Innovative measures, relying on the application of information, communication and 

processing technologies to transportation systems.  This concept is generally referred to 

in the literature as Intelligent Transportation Systems (ITS). 

 
Now we analyze the principal strengths and limitations of these three classes of policies. 

Using vehicle technology measures, criteria pollutant emissions per unit of length 

traveled (g/km of CO , HC , xNO ) have been significantly reduced during the last decades.  

Today’s sophisticated emissions control devices keep emissions at a minimum with the help 
of optimal engine operation conditions.  As a result, without a shift in the powertrain system 

(e.g. fuel cells), further technological improvements for internal combustion engine driven 

vehicles can only be marginal. On the other hand, vehicles can become high emitters if their 

emission control devices do not work correctly or if drivers tamper with them.  It is 
estimated that 10% of the vehicles on the road contribute to half of the mobile emissions 

inventory (Wenzel and Ross, 1996).  Therefore it is very important to minimize the 

emissions during the entire vehicle life.  This can be accomplished with effective inspection 

and maintenance and on-board diagnostic (Degobert, 1995).  Moreover, the positive effects 
of technological improvements require time to take effect, due to the gradual fleet 

substitution rate (WBCSD, 2001).  It is estimated, for example, that in Europe, given the rate 

of new vehicle registration, the general use of new pollution control systems on vehicles is 

liable to take approximately a decade (Degobert, 1995).   
With respect to traditional transportation measures, the construction of new road 

infrastructures is becoming increasingly limited by economic, spatial and environmental 

constraints, especially in urban areas (WBCSD, 2001).  The introduction of traditional 

                                                 
1 An alternative way to classify policies for traffic and emissions control is to distinguish between demand-
oriented (for instance, move transportation demand from individual vehicles to public transportation using road 
pricing) and supply-oriented (for instance, increase the capacity of a road network).  It is important to 
remember, though, that there are interactions and feedback effects to be taken into account when designing and 
evaluating a policy.  For example, in the medium and long term, supply-oriented policies can lead to an 
increase in demand, with a consequent deterioration of the level of service.   
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public transportation services is desirable in dense urban areas, but is not practically feasible 

in situations of urban sprawl, as is the case in major urban areas of the United States. 
ITS applications require time before they can be broadly implemented, but some 

technologies are already available and have the potential of being effective methods to 

minimize traffic negative impacts, including congestion and emissions.  In particular, the 

following innovative technologies are becoming available (Sussman, 2000):  
- Advanced Traffic Management Systems (traffic light control, incident management, 

ramp metering, electronic toll collection, etc.), which can support Travel Demand 

Management (TDM) measures and prevent congestion; 

- Advanced Traveler Information Systems, including pre-trip information and on-trip 
dynamic information, which can optimize the users’ choices (route, time, and mode); 

- Advanced Vehicle Control Systems, such as cruise control, which can directly reduce 

fuel consumption and emissions by controlling the vehicle operating conditions, and also 

reduce congestion by reducing the likelihood of accidents. 
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The interactions between transportation demand and supply determine the traffic flows on 

the road network.  Vehicles consume fuel and produce emissions that, diffused from these 

mobile sources, determine the concentration of the pollutants in the air.  The models needed 

in a traffic emissions laboratory to simulate these phenomena are represented in Figure 1-2.   
Models can represent networks at various spatial scales, from a regional area to a single 

intersection.  With respect to the temporal dimension, models can be static, if they assume a 

steady-state equilibrium condition, or otherwise time-dependent (or dynamic).  These 

various modeling approaches require different efforts in terms of model development and 
calibration, input data, and computational effort.  The choice of the modeling approach 

depends on the objective (from regional transportation planning to local traffic management 

measures) and on the constraints in terms of data availability and computational time.  For 

example, applications that involve real–time data collection and information processing 
typically need to operate much faster than real time. 

 

A typical model-based traffic emission laboratory is composed of a system of sub-models.  

The most sophisticated systems are composed of: 
- Demand models: trip generation, trip distribution, modal choice, and possibly other 

models.  These are generally econometric models that estimate the transportation 

demand from demographic and land use information.  Trip generation, trip distribution, 
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mode choice, together with traffic assignment, constitute the classical four-steps 

modeling approach.  Alternatively, activity based or trip-chain based approaches can be 
used (Ben-Akiva and Bowman, 1998).  Main outputs of demand models are Origin-

Destination (O/D) demand matrices by transportation mode.  In the following, we 

consider only the road transportation mode.  In static models the O/D demand is 

constant, while in dynamic models it is time-dependent, where the time index refers to 
the departure time from the origin.  Note that, in addition to within-day dynamic models, 

there are day-to-day dynamic models, that can represent, for example, the time-

dependence of the demand in terms of day of the week. 

- Supply models, which simulate the performances resulting from users’ demand, and the 
technical and organizational aspects of the physical transportation supply.  The system 

includes the network configuration, the network loading or flow propagation model (that 

defines the relationship among path and link flows), the link performance model (that 

defines the relationships between link performances (such as travel time and cost) and 
flow of vehicles), and the path performance model (that defines the relationships 

between the performances of the single links and those of a whole path between any 

origin-destination pair). 

- Traffic assignment models, which represent the interaction between demand and supply. 
A variety of traffic flow models exist, and differ in the way traffic flow is represented 

and moved across a network.  Microscopic and mesoscopic models represent flows at a 

vehicle level, while macroscopic models represent flows as a real number quantity.  In 

microscopic models, vehicles are moved according to car following and lane changing 
models, while in macroscopic and mesoscopic models flows are moved using 

relationships between aggregated traffic flow variables (speed, density, and flow).   

Microscopic models’ outputs are position, speed, and acceleration of each vehicle at 

each time step.  Macroscopic models’ outputs are link flows and link travel times.  The 
output is constant if the model is static and time-dependent if the model is dynamic.  

Mesoscopic models’ outputs are link flows and link traversal times for each vehicle, or 

time-dependent speed for each vehicle. 

Microscopic models allow for a detailed representation of traffic networks and are 
usually appropriate for a local area only, as, at a larger scale, they can be time-

consuming from a computational and development standpoints, and difficult to calibrate.  

Non-microscopic models possess better computational speed and are relatively easier to 

calibrate.  They do not allow for detailed representation of traffic as micro-simulation 
models do, but they are applicable to larger scale traffic networks.  They are then 

typically more appropriate for regional modeling. 
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Moreover, each type of traffic model can be used alone, or integrated to other types of 

traffic models.  For example, a macroscopic model can be used to model a large 
network, while a microscopic model can be used to generate more detailed information 

on single intersections considered individually. 

- Emission models, which calculate emissions produced by the vehicles as a function of 

their characteristics and of their operating conditions (i.e. speed and acceleration). 
- Dispersion and photochemical models (called also air quality models), which estimate 

how the pollutants emitted react with other components of the air, how they are 

dispersed and how ultimately they impact air quality in terms of concentrations of 

pollutant.  While macroscopic dispersion models are relatively simple, microscopic 
dispersion models require detailed information about the external environment such as 

urban morphology (e.g. road width, buildings height, etc.), and micro-climate conditions 

(Barratt, 2001). 

 
For an overview on demand, supply, and traffic models, the reader is referred to Cascetta 

(2001).  Emission models and their integration with traffic models are discussed in more 

details in Chapter 3.  An overview on dispersion and photochemical models can be found in 

Barratt (2001). 
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Within the context described in the previous section, we are interested in the area of 
dynamic emission models and their integration with dynamic traffic models. 

In the area of dynamic emission models, we note the following.  Some models represent 

the physical phenomena that generate emissions.  These models are sophisticated as they 

require extensive data for their calibration, and can involve high computational time 
requirements.  Other models are simpler to calibrate and require lower computational time, 

but they use explanatory variables that are not derived from a physical basis, and therefore 

can give non-desirable results if applied to situations not covered by the calibration data. 

In the area of traffic and emission models integration, we note the following.  
Microscopic traffic models can be integrated directly with dynamic emission models and 

examples of this integration have been reported upon in the literature.  On the contrary, there 

are fewer examples of integration involving non-microscopic traffic models and dynamic 

emission models.  However, as discussed previously, non-microscopic traffic models have 
some advantages (such as better computational speeds and easier calibration) that make 

them more suitable for large-scale applications. 
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Figure 1-2: Models system for the estimation of the impact of traffic on air quality. 
The scheme represents a simplification, in the sense that in real world there are feedbacks that complicate the 
system, such as the influence of transportation supply on land use, or the effect of traffic flows on travel 
demand in case of congestion. 
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This thesis has the following main objectives: 
- Identify the main strengths and limitations of existing approaches to traffic emissions 

modeling. 

- Develop a new dynamic emission model, that is simple to calibrate in various situations, 

gives reasonably accurate results and can run fast.  Such model would build on existing 
approaches, and combine some of their advantages. 

- Develop a methodology for the integration of dynamic emission models with non-

microscopic dynamic traffic models. 
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- Implement a combined dynamic traffic and emission model using the above 

developments, and explore, by modeling a small network, the potential of the combined 
model to assess the impacts of traffic management policies on congestion and emissions. 

 

This thesis provides answers to the above objectives.  Its main contributions are the 

following. 
- An extensive literature review on emission models and their integration with traffic 

models was carried out.  Strengths and weaknesses of different emissions modeling 

approaches have been identified.  The principal approaches for dynamic emissions 

modeling are the emission maps, the regression-based approach, and the load-based 
approach. 

- We designed EMIT, an emission model of instantaneous emissions and fuel 

consumption for light-duty vehicles.  The model is designed based on an effective 

combination of the regression-based and the load-based approaches.  EMIT was 
calibrated and validated for two vehicle categories.  The model gives results with good 

accuracy for fuel consumption and carbon dioxide, reasonable accuracy for carbon 

monoxide and nitrogen oxides, and less desirable accuracy for hydrocarbons.  The model 

runs fast, and is relatively easy to calibrate. 
- We proposed a probabilistic approach to model accelerations for given road types and 

speed ranges, and an approach to integrate dynamic emission models and non-

microscopic dynamic traffic models. 

- The approach to integrate dynamic emission models with non-microscopic dynamic 
traffic models was used to assess the impacts of traffic management strategies on travel 

times, emissions, and fuel consumption. 

- In the course of this thesis a number of future research questions have been identified. 
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This thesis is organized as follows.  Chapter 2 provides a background on the principal motor 

vehicle emissions in order to understand their characteristics and the mechanisms of their 
generation, and introduces the related US regulations.  Chapter 3 presents the literature 

review on available vehicle emission models and their integration with traffic models.  

Chapter 4 describes the development, calibration and validation of the emission model 

EMIT.  Chapter 5 proposes the probabilistic approach to integrate dynamic emission models 
and non-microscopic dynamic traffic models, and describes how the expected emission and 

fuel consumption rates are calculated.  Chapter 6 describes the application of the combined 
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model to assess the impact of dynamic traffic management strategies.  Finally, Chapter 7 

concludes the thesis and gives suggestions for future research. 
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In Chapter 1 we generically introduced the problem of traffic emissions.  We now provide 

more detailed information on this topic and define terminology that is used in the sequel of 
this thesis.  In particular, we provide a summary of the US regulation on air quality and 

vehicle emissions and a description of the principal vehicle emissions.  For more 

information about the emission standards, the reader is referred to the website of the US 

Environmental Protection Agency (EPA)’s Office of Transportation and Air Quality 
(www.epa.gov/otaq).  For more detailed information about vehicle emissions, the reader is 

referred to Degobert (1995) and Heywood (1988).   

This chapter is organized as follows.  Section 2.1 summarizes the US regulations on air 

quality and vehicle emissions.  Section 2.2 describes the principal vehicle emissions, their 
generation processes in motor vehicles, and their effects on health and environment. 
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The Clean Air Act of 1970 first allowed for the regulation of automobile emissions in the 

United States.  The next twenty years saw great advancements in emissions control and 

after-treatment technologies, however more was needed since the air quality in cities was 

still poor.  The Clean Air Act Amendments of 1990 (CAAA90) mandate that every area in 
the United States meet air quality standards for six pollutants: ozone ( 3O ), sulfur dioxide 

( 2SO ), carbon monoxide ( CO ), nitrogen dioxide ( 2NO ), lead ( Pb ), and particulate matter 

with an aerodynamic diameter less than 10 microns (PM10).  The standards are defined in 

terms of concentration of the pollutant in the air using various temporal aggregations.  Short-
term (24 hours or less) averages are designed for CO  and 3O , to protect against acute, or 

short-term, heath effects; long-term averages (i.e. annual average) are designed for the other 

pollutants to protect against chronic health effects. 
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While 2SO  and Pb  are presently emitted principally by stationary fuel combustion and 

industrial processes respectively, for the other four pollutants transportation represents a 
significant source.  The CAAA90 regulate motor vehicles emissions by gradually phasing in 

more stringent standards for light duty vehicles.  The emission standards, called Tier 1 (and 

later Tier 2) control total HC  (THC ), non-methane HC  ( NMHC ), CO , xNO  and PM .  

Heavy-duty vehicles are regulated separately and are not considered in this study.  The 
standards fix the maximum tailpipe emission rates for a vehicle taking account of its type 

and mileage.  The emission rates must be measured on standard driving cycles using the 

Federal Test Procedure and calculated in g/mile using the official EPA method.  The 

following two sections present the driving cycles and the emission standards defined by the 
EPA. 
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The official protocol for testing vehicles compliance with the emissions standards requires 

laboratory measurements.  Light-duty vehicles are tested on chassis dynamometers (Figure 

2-1), which allow the wheels to spin and use inertial weights at various horsepower settings 
to simulate real world conditions.  A hose is attached to the tailpipe to collect the exhaust 

gases and direct them into a sampler. 

 

 
 

 

 

 
 

 

 

 
 

 
Figure 2-1: A chassis dynamometer 

(from http://www.ott.doe.gov/otu/field_ops/emis_tour/dynam.html) 

 

Once the non-kinematic variables (such as different types of resistances, air temperature, 

and engine temperature) are reproduced on the chassis dynamometer, the movement of the 
vehicle is simulated using a speed-time curve, called ‘driving cycle’.  The driver follows the 
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driving cycle shown on a computer monitor, by accelerating and breaking the vehicle.  The 

driver function can also be performed using a robot.  A more detailed description of chassis 
dynamometers can be found in Degobert (1995). 

We present the driving cycles regulated by the EPA in the US.  In Chapter 4 of this 

thesis we present another driving cycle, used for the development of emission models.  For 

each driving cycle, we report the speed-time curve and some statistics that summarize the 
characteristics of the driving cycles: total time, distance driven, average speed, highest 

speed, and maximum specific power.  Specific power is two times the product of vehicle 

speed and acceleration ( av ⋅⋅2 ). 
In the US, the standard cycle is the Federal Test Procedure (FTP) cycle (Figure 2-2).  

Originally developed in the 70’s, it was intended to reflect the actual driving conditions both 
on arterial roads and highways.  This cycle has three separate phases: a cold-start (505 
seconds) phase, a hot-transient (870 seconds) phase, and a hot-start (505 seconds) phase.  
The three phases are referred to as bag 1, bag 2, and bag 3 because exhaust samples are 
collected in three separate bags during each phase.  Between the end of the second phase and 
the start of the third phase, the engine is turned off for 10 minutes, which are called soak 
time.  The 505-second driving curves for the first and third phase are identical. The total test 
time for the FTP is 2,457 seconds (40.95 minutes), the top speed is 56.7 mph (92.3 km/h), 
the average speed is 21.4 mph (34.2 km/h).  The distance driven is approximately 11 miles 
(17.6 km) and the maximum specific power is 192 (mph)2/s (491 (km/h)2/s). 

 

Figure 2-2: The FTP cycle. 
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It has been recognized that the FTP cycle does not accurately characterize today’s real-world 
driving conditions; for example it does not include aggressive high power driving (Goodwin, 
1996).  A Supplemental Federal Test Procedure (SFTP) has been introduced progressively 
starting in year 2000 and will be effective for all light-duty vehicles in year 2004.  The SFTP 
includes two additional cycles: the US06 to represent aggressive highway driving, and the 
SC03 to measure the increased emissions due to air conditioning.   

The US06 (Figure 2-3) is a hot-start cycle representing driving conditions with higher 
speeds and harder accelerations.  The total time for the US06 test is 600 seconds (10 
minutes), the highest speed is 80.3 mph (128.5 km/h), the average speed is approximately 48 
mph (76.8 km/h), and the maximum specific power is 480 (mph)2/s (1223 (km/h)2/s.  The 
distance driven is 8 miles (12.8 km). 

 

Figure 2-3: The US06 cycle. 
 

The SC03 (Figure 2-4) driving cycle is similar to the FTP bag 3, but with slightly higher 
accelerations and excludes the 10 minutes soak. 
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Emission standards for light duty vehicles are checked from chassis dynamometers tests 
measuring the total tailpipe emissions generated during each phase.   

The Tier 1 standards (see Table 2.1) were phased-in progressively between 1994 and 
1997.  They are defined for light-duty vehicles at two vehicle ages: 50,000 miles (or 5 years) 
and at 100,000 miles (or 10 years).  Light-duty vehicles are divided into the following 
principal vehicle categories: passenger cars, light light-duty trucks (LLDT), with a gross 
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vehicle weight rating (GVWR) below 6000 lb, and heavy light-duty trucks (HLDT), with a 
GVWR above 6000 lb.  Diesel and gasoline vehicles have different xNO  standards. 

 

Figure 2-4: The SC03 cycle. 

 
 

Table 2.1: Tier 1 emission standards (g/mi) for light-duty vehicles 
 50,000 miles / 5 years 

Vehicle category THC NMHC CO NOx 
diesel 

NOx 
gasoline PM 

Passenger cars 0.41 0.25 3.4 1.0 0.4 0.08 
LLDT, LVW <3,750 lbs - 0.25 3.4 1.0 0.4 0.08 
LLDT, LVW >3,750 lbs - 0.32 4.4 - 0.7 0.08 
HLDT, LVW <5,750 lbs 0.32 - 4.4 - 0.7 - 
HLDT, ALVW >5,750 lbs 0.39 - 5.0 - 1.1 - 

 

 100,000 miles / 10 years2 
Vehicle category THC NMHC CO NOx 

diesel 
NOx 

gasoline PM 

Passenger cars - 0.31 4.2 1.25 0.6 0.10 
LLDT, LVW <3,750 lbs 0.80 0.31 4.2 1.25 0.6 0.10 
LLDT, LVW >3,750 lbs 0.80 0.40 5.5 0.97 0.97 0.10 
HLDT, LVW <5,750 lbs 0.80 0.46 6.4 0.98 0.98 0.10 
HLDT, ALVW >5,750 lbs 0.80 0.56 7.3 1.53 1.53 0.12 
       
Notes: 
THC denotes total hydrocarbons; NMHC denotes non-methane hydrocarbons; NOx diesel 
denotes NOx for diesel vehicles; NOx gasoline denotes NOx for gasoline vehicles. 
LLDT denotes light light-duty trucks; HLDT denotes heavy light-duty trucks; LVW denotes 
loaded vehicle weight (unloaded weight + 300 lbs); ALVW denotes adjusted LVW, equal to 
(gross vehicle weight + loaded weight)/2. 
(from http://www.dieselnet.com/standards/us/light.html) 

                                                 
2 Useful life 120,000 miles / 11 years for all HLDT standards and for THC LDT standards. 
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The Tier 2 standards are planned to be phased in between 2004 and 2009.  These standards 
fix a reduction of the amount of sulfur in fuels and define more stringent emission limits 
regardless of the fuel used and the vehicle weight.  As a consequence, vehicles with larger 
engines will need to improve the emission control technology more than smaller vehicles to 
meet the standards.  The standards are defined at 50,000 miles and at 120,000 miles and are 
structured into 8 certification levels (called bins).  Manufacturers will have to certify every 
vehicle model to any of the 8 bins.  Moreover, the average xNO  emissions of the entire fleet 
produced by every manufacturer will have to meet the fixed standard of 0.07 g/mi. 
 
Although the introduction of emission standards caused a major decrease in emissions, there 
are factors that limit this positive effect.  First, vehicle miles traveled have considerably 
increased.  In fact, total passenger km by light-duty vehicles in North America increased by 
240% from 1960 to 1990 (Schafer, 1998).  In addition, it is estimated that the average on-
road vehicle exceeds the standards.  This is due to factors such as the presence of high 
emitters (i.e. vehicles with malfunctioning emission control devices), and the frequency of 
cold starts and high power driving events that are not represented in the FTP cycle 
(Goodwin, 1996). 
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In the previous section we introduced the four vehicle emission species regulated by the 
EPA ( CO , HC , xNO , and PM ).  In this section, we describe the main characteristics, the 
mechanisms of generations, and the effects on health and environment of these emissions.  
In addition, we describe ozone ( 3O ), which is a byproduct of xNO  and HC , and carbon 
dioxide ( 2CO ), which is a greenhouse gas. 
 
In order to understand the principles of emissions generation in a motor vehicle, it is useful 
to introduce the variable “air-to-fuel mass ratio”.  The stoichiometric ratio (~14.5) 
corresponds to the mass of air needed to oxidize completely a mass of fuel. 

Under high power conditions, engines are typically designed to operate with a mixture 
rich in fuel, in order to prevent the catalyst from overheating.  This is called enrichment.  
Enrichment also often occurs during cold starts to heat faster the engine and the exhaust so 
that the catalyst can light-off sooner.  Enrichment can have a significant effect on emissions. 

Alternatively, during long deceleration events, the mixture can go lean because engines 
are often designed to shut off the fuel since power is not required.  Though less significant 
than enrichment, enleanment conditions can also affect emissions.   
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2.2.1.1 Carbon Monoxide 

Carbon monoxide (CO ) is a byproduct of incomplete combustion.  The principal chemical 
reactions that happen during a combustion are: 

22

2

22
22

COOCO

COOC

→+
→+

 (2.1) 

The first reaction is much faster (~10 times) than the second.  Therefore, CO  can be either 
an intermediate product, or a final product, when there is insufficient O2 to adequately mix 
with the fuel.  Under enrichment conditions, due to the lack of oxygen, much of the carbon 
present in the excess fuel is partially oxidized to CO  instead of 2CO .  Note that CO  is also 
generated under stoichiometric conditions due to possible partial oxidation of HC . 

CO  is colorless, odorless, but poisonous.  It reacts with the hemoglobin present in the 
blood to form carboxyhemoglobin, causing a reduction in the oxygen transported from the 
lungs to the body cells.  High concentrations of CO  can increase the risk of cardiovascular 
problems and impede the psychomotor functions.  Infants, elderly, and people with 
cardiovascular diseases and respiratory problems are more at risk.  Also, CO  indirectly 
contributes to the buildup of ground-level ozone and methane. 

The EPA estimates that 51% of CO  emissions in the US come from on-road mobile 
sources, and in cities the proportion can be much higher (EPA, 2001c).   

2.2.1.2 Hydrocarbons 

Hydrocarbon emissions ( HC ) result from incomplete combustion or from fuel evaporation.  
The incomplete combustion in motor vehicles can be due to several causes.  For example, 
for a lack of O2, or because fuel can collect in the crevices of the cylinder, or because some 
fuel species burn at a higher temperature, thus do not completely combust.  In stoichiometric 
and enrichment conditions, HC  emissions are usually proportional to fuel rate consumption.  
HC  puffs can be emitted under enleanment conditions, which can occur during long 
deceleration events (An et al., 1998) and transients (Nam, 1999).  During decelerations, the 
dramatic drop in fuel results in a cessation of combustion, and hence virtually all of the 
remaining fuel (what little is left) is emitted unburned.  However this fuel excess is typically 
oxidized in the catalyst.  This is an example of a history effect. 

Evaporative emissions related to motor vehicles can be: (a) diurnal emissions, caused by 
the diurnal temperature while the vehicle is not being driven; (b) hot-soak emissions, 
occurring for about one hour after the end of the trip due to the high temperature of the fuel 
system; (c) running losses, occurring during the trip due to the higher temperature and 
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pressure of the fuel system; (d) resting losses of gasoline vapor through faulty connections, 
gas tanks, etc.; (e) refueling emissions. 

Hydrocarbons react in the presence of xNO  and sunlight to form ground-level ozone and 
contribute to the formation of smog, which has deleterious health and greenhouse effects.  A 
number of aromatic hydrocarbons, such as benzene, are carcinogens (Degobert, 1995). 

The EPA estimates that on-road mobile sources contribute 29% of the total HC  emitted 
in the US (EPA, 2001c). 

2.2.1.3 Nitrogen Oxides 

Nitrogen oxides ( xNO ) is the generic term for a group of highly reactive gases.  They form 
when fuel is burned at high pressure and temperature conditions, which induce the 
dissociation and subsequent recombination of atmospheric N2 and O2 that generate xNO .  
Many of the nitrogen oxides are colorless and odorless.  However, nitrogen dioxide ( 2NO ) 
can be seen in the air as a reddish-brown layer over many urban areas. 

The primary sources of xNO  are motor vehicles and other industrial, commercial, and 
residential sources that burn fuels.  The combustion in motor vehicle engines causes the 
production of primarily NO but also 2NO , as shown by the following chemical reactions: 
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 (2.2) 

When the fuel consumption rate is low, very little xNO  is emitted.  Under enleanment 
conditions, more xNO  tends to be formed due to the excess oxygen.  During stoichiometric 
conditions, xNO  emissions tends to increase as more fuel is burned, due to the increased 
combustion temperature. 

xNO  is a precursor to the formation of ground level ozone.  It reacts with ammonia, 
moisture, and other compounds to form nitric acid that may cause serious respiratory 
problems.  It also contributes with 2SO  to the formation of acid rain and of particulate 
matter.  It also causes eutrophication (nutrient overload in water bodies) and contributes to 
the formation of smog. 

The EPA estimates that on-road mobile sources contribute 34% of the total xNO  emitted 
in the US.  42% of this is produced by diesel vehicles (EPA, 2001c).  This is since diesels 
engines operate lean and haul heavy loads. 

2.2.1.4 Ozone 

Ozone ( 3O ) is a gas not usually emitted directly into the air, but created at ground level by 
quite complex photochemical reactions that involve principally nitrogen oxides, oxygen, and 
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hydrocarbons, in the presence of sunlight (NRC, 1991).  As a result, its concentration in the 
air is usually higher during summertime.  Ozone is beneficial in the upper atmosphere, 
where it protects the Earth by filtering out ultraviolet radiation; at ground level, it can cause 
health problems, such as eye inflammation, short term decrease in lung functions, and long 
term damage to the lungs and chronic respiratory illness.  Moreover, it causes damage to 
plants and ecosystems.  Many urban areas tend to have high levels of ozone, but even rural 
areas are subject to increased ozone levels because wind can carry ozone and its precursors 
over long distances.  Therefore, managing ozone pollution is most effective if done from a 
regional rather than local perspective. 

2.2.1.5 Particulate Matter 

Particulate matter ( PM ) is a generic term for all the particles suspended in the air, including 
resuspended road dust, smoke, and liquid droplets.  Some particles are emitted directly into 
the air from a variety of sources such as motor vehicles (from brakes and tires), factories, 
and construction sites.  Other particles are formed when gases from burning fuels (such as 

xNO , 2SO , and ammonia) react with water vapor in the atmosphere.  They are usually 
classified based on their size, which varies from visible to microscopic.  The CAAA90 set a 
standard for particulate with an aerodynamic diameter less than 10 microns ( 10PM ).  The 
EPA has only recently begun to monitor PM2.5.  Breathing small size PM  can cause 
respiratory health problems, including lung cancer.  Moreover, PM  harms the environment 
by changing the nutrient and chemical balance in water bodies, it causes erosion and staining 
of structures and monuments, and is the major cause of reduced visibility in many parts of 
the US. 

The EPA estimates that on-road mobile sources contribute 10% of the total PM2.5 
emitted in the US.  72% of this is produced by diesel vehicles (EPA, 2001c). 

2.2.1.6 Carbon Dioxide  

Carbon dioxide ( 2CO ) is the principal product of complete combustion (see Equation 2.1).  
Although it is naturally present in the atmosphere and it is not considered a pollutant, 2CO  
is a greenhouse gas that contributes to the potential for global warming.  The EPA reports 
that 2CO  represents about the 80% of the greenhouse gas emissions in the US (EPA, 2001b) 
and that motor vehicles contribute 30% to the total emissions of 2CO  from fossil fuel 
combustion.  Since greenhouse gases control is a global problem, it requires long-term 
efforts and international agreements, as proposed for example in the United Nations 
Framework Convention on Climate Change (see http://unfccc.int). 
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In Chapter 2 we summarized the characteristics and the mechanisms of generations of the 
principal vehicle emissions.  In this chapter we describe various approaches present in the 
literature to model vehicle emissions.  Strengths and weaknesses of these modeling 
approaches are identified and examples of emission models are presented.  We also present 
some examples of how emission models have been integrated with traffic models in the 
literature. 

Other reviews exist in the literature.  For example, NRC (2000) gives an overview of 
models used in the US, and Joumard (1999) reviews models used in Europe. 

 This chapter is organized as follows.  In Section 3.1 we present the literature review of 
vehicle emission models.  First, we introduce the variables and parameters that influence 
emissions and that can be represented in emission models.  Then, we classify models in 
static and dynamic models, and we divide dynamic models into three subclasses.  For each 
class of models, we give examples.  In Section 3.2 we present examples of integration 
between emission and traffic models.  Section 3.3 concludes the chapter pointing out some 
research needs in the area of traffic emissions modeling. 
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Variables and parameters that influence emissions can be grouped in the following 
categories: vehicle technology specifications, vehicle status, vehicle operating conditions, 
and external environment conditions. 
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- Vehicle technology specifications include general vehicle design characteristics (weight, 
aerodynamic efficiency, etc.), propulsion characteristics (Otto or Diesel cycle), type of 
fuel, emission control devices (i.e. catalyst converter), and engine power. 

- Vehicle status includes mileage, age, and mechanical status. 
- Vehicle operating conditions include engine dynamics (engine speed, power demand, 

etc.), air-to-fuel mass ratio, vehicle kinematic variables (speed and acceleration), and 
temperature of the catalyst.  These variables can in turn depend on the vagaries of 
individual driver behavior.   

- External environment conditions include air conditions (ambient temperature, 
atmospheric pressure, relative air humidity), and road characteristics (longitudinal grade, 
curves, and pavement quality). 

Given the strong influence of vehicle technology specifications and status on the emissions 
generation process, emission models are usually calibrated separately for every vehicle 
make and model, or for homogeneous vehicle categories.  Vehicle operating conditions are 
generally the principal input to the models, while external environment conditions can be 
introduced as secondary inputs. 

There are a variety of approaches for vehicle emissions modeling, each with its 
strengths, its weaknesses and its limitations.  There are technology-based engineering 
models that are very detailed and are usually in practice developed for a specific vehicle or 
engine (Heywood, 1988).  These models are needed for technology development, calibration 
and regulation purposes.  However, integrated traffic emissions modeling requires a simpler 
and more general approach that takes account of vehicles diversity grouping them in 
homogeneous categories. 

Emission models are usually calibrated using chassis (or engine) dynamometer 
measurements (see Section 2.1.1).  During a dynamometer test, emissions can be measured 
(a) as total generated during the cycle or during single bags, or (b) continuously (typically 
second-by-second).  These approaches correspond to two different ways of modeling 
emissions, which in this thesis are called average speed-based modeling (or static modeling, 
using the correspondent traffic models taxonomy) and dynamic modeling respectively. 
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Let iE  denote the total emissions of a species i or the total fuel consumption, for a given 
time period (i.e. hour, day, year) and a given area (region, city, or generic network).  These 
models, referred to in the literature as static models or emission inventory models, calculate 

iE  as: 
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( )� � ⋅⋅=
c l licli csBERfVKTE ,  

where:  
c  is the vehicle category; 
l  is the index of a sub-network (e.g. a single link or a set of links) characterized by an 

average speed ls ; 

lVKT  are the vehicle-kilometers traveled (or vehicle-miles traveled lVMT ) in the 
given time period in sub-network l ; 

cf  is the fraction of vehicles of category c ; 
( )csBER li ,  is the base emission rate per kilometer (or mile) for a species i .  

( )csBER li ,  is determined from standard driving cycles at a particular average 
speed  ls , for each vehicle category c .  For this reason, base emissions are also 
called cycle emissions, and non-base emissions are called off-cycle emissions.  The 
BERs can be corrected at different speeds with the use of speed correction factors 
(SCFs).  Correction factors can also be used to take account of different conditions, 
such as cold-start and facility-specific modes of operation. 

 
Average speed-based models are generally fed with output from macroscopic static traffic 
models or with forecasts of total VKT (or VMT).  These models cannot be used to generate 
estimates of instantaneous emissions, since they determine the emissions in a time interval 
as a function of the average speed of a cycle.  They should therefore be used in steady state 
conditions.  Applications of these models typically include large-scale analyses and cases 
when the average speed adequately characterizes the vehicle flow (i.e. uninterrupted flow in 
highways).   

However, in most applications, it is necessary to predict traffic emissions with a higher 
spatial and temporal resolution.  Moreover, in many cases the same average speed can 
correspond to significantly different driving conditions.  Thus, average speed-based models 
may significantly misestimate the emissions.  For example, these models can underestimate 
the emissions in highly dynamic driving conditions, for the same average speed of a given 
cycle. 

 
Internationally used inventory emission models are: 
- the MOBILE6 model, developed by the EPA, which is used in all US States except 

California; 
- the Motor Vehicle Emission Inventory (MVEI) Models developed by the California Air 

Resources Board (CARB, 1996); 
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- the COmputer Programme to calculate Emissions from Road Transport (COPERT) III 
model (Ntziachristos and Samaras, 2000).  COPERT III is a part of the CORINAIR 
programme, sponsored by the European Environmental Agency, that develops sets of 
software tools to support European countries in compiling annual air emission 
inventories. 

In the rest of this section we give an overview of MOBILE6. 

MOBILE6 

MOBILE6 (EPA, 2002) is the latest in a series of MOBILE models, the first version of 
which dates back to 1978.  MOBILE6 calculates average fleet emissions for: 
- HC , CO , and xNO ; 
- evaporative emissions; 
- gasoline, diesel, and natural gas-fueled cars, trucks, buses, and motorcycles; 
- years from 1952 to 2050. 
Compared with the previous versions, MOBILE6 has a new modeling methodology that 
uses facility-specific (i.e. freeways, arterial/collectors, freeway ramps, and local roadways 
with different levels of congestion) driving cycles, developed in Sierra Research (1997), to 
calculate facility-specific speed correction factors (EPA, 2001a). 

The EPA is currently designing a new generation model (called MOVES), which will 
probably be a modal model.  It would cover HC , CO , xNO , PM , air toxics, and 
greenhouse gases emissions (see http://www.emc.mcnc.org/projects/ngm/).   
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In the dynamic approach, emissions are measured continuously during chassis dynamometer 
tests and stored for particular time intervals (usually every second).  The operational 
conditions of the vehicle at a given time, defined commonly by the speed value, are recorded 
simultaneously with the emissions.  The accelerations are then calculated from the speed-
time curve.  More comprehensive measurements can include quantities such as engine 
speed, throttle position, mass air flow, air conditioning use, and transmission gear. 

Instantaneous measurements allow both instantaneous and modal analysis and modeling, 
based respectively on instantaneous vehicle kinematic variables, such as speed and 
acceleration, or on more aggregated modal variables, such as time spent in acceleration 
mode, in cruise mode, and in idle mode. 
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Let )(tEi  denote the emissions of species i (or the fuel consumption) generated at time t  
in a given area (i.e. region, city, or generic network).  )(tEi  may be calculated as follows3: 

�=
j jjii txcetE ))(,()(  

where: 
j   is the vehicle ID; 

jc  is the category of vehicle j ; 
)(tx j  denotes instantaneous  or modal variables of vehicle j  at  time t .  Some 

models use also history variables (such as past values of speed, and time elapsed 
since the beginning of the trip). 

))(,( txce jji  denotes the emission of species i  for vehicle j  at time t . 
 
In the rest of this thesis, unless otherwise indicated, when calculating the emissions at time 
t , all kinematic variables will refer to the same time t . 

Due to the large amount of information needed and to the computational requirements, 
the dynamic approach was used until recently to model only the emissions of a single 
vehicle, single links or single intersections, instead of a network containing multiple 
vehicles.  Due to new developments in data availability and improved computational power, 
the dynamic approach is increasingly applicable to larger networks. 

The dynamic emission models in the literature can be classified into three principal 
groups: emission maps, regression-based models, and load-based models. 

3.1.3.1 Emission Maps 

Emission maps, called also velocity-acceleration (VA) lookup tables, have the form of 
matrices, where one dimension represents speed ranges, and the other acceleration or 
specific power ranges.  For each emission species and for each vehicle category, the 
instantaneous emission measurements are assigned to one cell of the emission matrix, 
according to vehicle speed and acceleration measured at that instant of time.  Then, for each 
cell the mean of all emission measurements is calculated. 

Although easy to generate and use, emission maps have several limitations.  They can be 
sparse and sensitive to the driving cycle used to populate them (Sturm et al., 1998).  
Moreover, they are usually not flexible enough to account for such factors as road grade, 

                                                 
3 Similarly, dynamic models allow calculating the emissions of a single vehicle trip, summing over time 

the emissions generated by the single vehicle. 
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accessory use, or history effects.  Some of these factors can be represented building a library 
of emission maps by defining the conditions under which a matrix is populated or 
introducing multiplicative factors to apply after the matrix is used. 

Due to their simplicity, emissions maps are widely used, especially in Europe.  For a 
detailed review of emission maps, and for a discussion on their limitations and applicability, 
see Hickman et al. (1999) and Sturm et al. (1998).  Sturm et al. (1998) investigate the 
requirements that driving cycles should satisfy to obtain satisfactory maps, the influence of 
data aggregation and data interpolation methods, and the need of additional parameters to 
account for dynamics of driving behavior. 

MODEM 

The MODEM microscopic emission database was developed as a part of the European 
Commission’s DRIVE II research program (Jost et al., 1992).  The database derives from 
tests on 150 vehicles sampled from the vehicle population of different European Union 
countries.  The vehicles were tested on 14 cycles based on a large-scale survey of the 
operating conditions of vehicles in urban areas across Europe. 

The emissions of HC , CO , 2CO , and xNO  are calculated using emission maps for 12 
different vehicle types.  The speed ranges between 0 km/h and 90 km/h, and the product of 
acceleration and speed ranges between –15 and +15 (m2/s3). 

3.1.3.2 Regression-Based Models 

Regression-based models are usually linear regressions that employ functions of 
instantaneous vehicle speed and acceleration, or modal variables, as explanatory variables.  
These models overcome the sparseness and discretization problems of the emission maps.  
However, they can lack a clear physical interpretation, and can also overfit the calibration 
data when using a large number of explanatory variables.  Therefore these models can give 
non-desirable results if applied to situations not covered by the calibration data. 

In the following paragraphs, some examples of statistical models from the recent 
literature are described. 

Georgia Institute of Technology Model 

This model was developed within the framework of MEASURE (see Section 3.2) for the 
metropolitan region of Atlanta, Georgia.  It is a statistical aggregate trip-based model, 
designed for the application to measured or forecasted trip-based traffic activity.  This 
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means that the model predicts not instantaneous emissions, but average emission rates per 
second relative to an entire trip or driving cycle. 

The model consists of least squares regressions on driving cycle data (Fomunung et al., 
1999).  The estimated variable is the emission rate (for CO , HC , and xNO ) normalized to 
the mean FTP bag 2 emission rate.  The explanatory variables are selected, using a 
hierarchical tree-based regression technique, among the following sets of variables4: 
- modal variables such as average speed and percentage of cycle exceeding various 

thresholds of positive kinetic energy, power, and acceleration; 
- interaction dummy variables obtained combining vehicle characteristics, such as 

odometer readings, fuel injection type, catalytic converter type, and high/normal emitter 
status. 

The model is calibrated using a very large database containing more than 13,000 vehicle 
tests, which enhances its statistical significance, although only few recent model year 
vehicles are represented.  For the calibration, the data were weighted to reflect the model 
year distribution of the Atlanta fleet. 

Unlike the other models described in this chapter, the Georgia Institute of Technology 
model is not calibrated separately for different vehicle technology categories.  Rather, it 
represents explicitly, within the regressions, vehicle technology specifications and status.  
Thus, it is somehow more compact.   

Despite its qualities listed above, the Georgia Institute of Technology model has some 
limitations.  First, to adapt it to another urban area, it is complex to design and calibrate, 
since many derived variables have to be calculated and offered to the model.  Second, the 
model does not predict instantaneous emission rates, but only trip based emission rates, 
which prevents its applicability to microscale studies.  Third, the model is place-specific, 
because the model year distribution is incorporated in the calibration coefficients. 

The model has been validated for the Atlanta metropolitan region and compared with 
MOBILE5a (Fomunung et al., 2000). 

                                                 
4 As an example, for NOx the significant explanatory variables are: (1) average speed of cycle, (2) percent of 
cycle time spent with inertial power surrogate greater than 120 mph2/s, (3) percent of cycle time spent 
accelerating at rates greater than 6 mph/s, (4) percent of cycle time spent with deceleration rate greater than 2 
mph/s, (5) an interaction variable between fuel injection type c̀arburetor' and odometer reading less than 
25,000 miles, (6) a variable representing vehicles that have carburetors with odometer reading between 25,000 
and 50,000 miles, (7) a variable for vehicles that have òxidation only' type catalyst and odometer reading is 
between 50,000 and 100,000 miles, (8) a variable for vehicles that have 3̀-way catalyst' type converter and 
mileage between 25,000 and 50,000 miles, (9) a variable for vehicles with 3-way catalyst type converter and 
mileage between 50,000 and 100,000 miles, (10) a variable with fuel injection type p̀ort' with odometer 
reading between 50,000 and 100,000 miles, and is also a high emitter, (11) a variable with t̀hrottle body' fuel 
injector type and odometer reading 50,000-100,000 miles, and is also a high emitter. 
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POLY 

POLY was developed by researchers at the Polytechnic University of New York and the 
Texas Southern University.  This model adopts linear least squares regressions that take into 
account, in addition to instantaneous speed and acceleration, also past accelerations and road 
grade (Teng et al., 2002).  The model formulation is as follows: 
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where: 
),( tcei  denotes the emission rate for species i , that depends on vehicle category c  

and time t ; 

)(tv  is the speed at time t ; 
)(tT ′  is the duration of acceleration since its inception up to the current time t ; 
)(tT ′′  is the duration of deceleration since its inception up to the current time t ; 

)( ttA −  is the combined acceleration or deceleration at time tt −  ( 9,,0�=t ), 
calculated from the acceleration )(ta  and the grade )(tg  (in %) as follows: 
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)(tW  is the product of )(tv  and )(tA  
sβ  are the parameters calibrated for each vehicle category c . 

 
The model uses the NCHRP vehicle emissions database, described in Section 3.1.3.3.  For 
its calibration, the model uses the FTP data, while for its validation it uses both the MEC01 
and the US06 data.  The results obtained for some individual vehicles have been compared 
with the results obtained with CMEM (see Section 3.1.3.3) and with the Virginia 
Polytechnic Institute model (see next paragraph). 

Virginia Polytechnic Institute Model 

It is a statistical instantaneous model that predicts CO , HC , and xNO , consisting in a set of 
linear least squares regressions (Dion et al., 1999).  So far it has been developed using a 
limited database derived from 8 vehicles tested at the Oak Ridge National Laboratory.  The 
data were aggregated into a composite vehicle lookup table.  The vehicle speed ranges from 
0 to 121 km/h and the vehicle acceleration ranges from –1.5 to 3.7 m/s2. 

The explanatory variables are the set of combinations of speed and acceleration that 
obtained the best fit among many combinations.  The model estimates the logarithm of the 
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emission (or fuel consumption) rate, in order to prevent the prediction of negative emission 
rates.  The model is given by the following equations: 
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where: 

ie  is the emission (or fuel consumption) rate; 
v  is the vehicle speed; 
a  is the vehicle acceleration. 

 
Ahn et al. (2002) validated the model, using one vehicle from EPA data.  The model is 
planned to be recalibrated using the NCHRP vehicle emissions database (described in 
Section 3.1.3.3). 

The model has been integrated both with the traffic microsimulation model 
INTEGRATION, and with a mesoscopic model that calculates the average profile of speed 
along the network links, given average speed, number of stops, and duration of stops (Dion 
et al., 1999). 

 
Although POLY and the Virginia Polytechnic Institute model were validated with 
reasonable results, these models, due to the large number of explanatory variables, may 
overfit the data.  Therefore they may give non-desirable results if applied to situations not 
covered by the calibration data.  In Chapter 4 of this thesis, we show that using a 
significantly smaller number of variables it is possible to obtain a model with good 
estimation capabilities. 

3.1.3.3 Load-Based Models 

Load-based models represent the physical and chemical phenomena that generate emissions.  
These models are usually composed of modules that simulate single steps of the process, 
each calibrated with laboratory measurements as well vehicle specifications data. 

The model developed in Chapter 4 of this thesis is derived from the load-based 
approach.  In this section we present the principles of the approach.  Chapter 4 describes in 
greater detail the relationships used by load-based models.  Readers interested in a more 
comprehensive description are referred to Barth et al. (2000), Goodwin (1996), Thomas and 
Ross (1997), An et al. (1998), and Nam (1999). 
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The primary variable of these models is the fuel consumption rate FR .  When the engine 
power is zero, the fuel rate equals a small constant value.  Otherwise, fuel consumption is 
mainly dependent on engine speed, engine power, and air-to-fuel ratio.  Engine power is 
calculated as the sum of total tractive power requirement at the wheels and engine power 
requirement for accessories, such as air conditioning.  Tractive power is given by the sum of 
an inertial driving term, a rolling resistance term, and an air drag resistance term.  These 
terms depend on vehicle characteristics and on vehicle speed and acceleration. 

Once the fuel rate FR  is calculated, the engine-out emission rates for a species i  ( iEO ) 
are modeled as function of FR  and air-to-fuel ratio.  The tailpipe emission rates for a 
species i  ( iTP ) are modeled as the fraction of the engine-out emission rates that leave the 
catalytic converter: iii CPFEOTP ⋅= , where iCPF  is the catalyst pass fraction.  Hot-
stabilized catalyst pass fractions are modeled in the literature in various ways as a function 
of the air-to-fuel ratio, the fuel rate, and/or the engine-out emissions.  Catalyst pass fractions 
corresponding to cold-starts are modeled taking account also of the cumulative fuel 
consumption (as a surrogate for catalyst temperature) and the time elapsed since the 
beginning of the trip. 

Alternatively to fuel rate, vehicle specific power (VSP ) can be used as the principal 
variable in the load-based approach.  VSP  is equal to the tractive power divided by the 
vehicle mass.  This is a variable generally used to evaluate and compare emissions from 
different measurement sources such as remote sensing, tunnel studies, chassis dynamometer, 
and on-board sensors (Jimenez et al., 1999).  The EPA may use VSP  (instead of FR ) in its 
new generation model. 

Theoretically, load-based models are adaptable to any vehicle with similar technologies 
and to any operating mode or vehicle condition, by adjusting their parameters.  They have a 
detailed and flexible physical basis, which define the variables and parameters that should 
be included when modeling emissions.  Moreover, they can take into account history effects 
and road grade.  However, these models require knowledge of various vehicle specifications 
and a relatively complex modeling of the processes involved.  Moreover, when applied to 
the entire flow of vehicles in a network over a period of time, the computational effort can 
be high. 

In the rest of this section we give an overview of CMEM, a load-based model, which is 
gaining in popularity. 
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CMEM 

CMEM (Comprehensive Modal Emissions Model) is a model developed at the University of 
California at Riverside and at the University of Michigan (Barth et al., 2000).  The model 
has been calibrated using the National Cooperative Highway Research Program (NCHRP) 
vehicle emissions database, which was developed at UC Riverside (Barth et al., 2000).  The 
database includes chassis dynamometer measurements of second-by-second speed, and 
engine-out and tailpipe emission rates of 2CO , CO , HC  and xNO  on three driving cycles: 
the FTP cycle, the US06 cycle, and an engineered cycle, called Modal Emission Cycle 
(MEC01).  The chassis dynamometer tests were conducted on more than 300 automobiles 
and light trucks divided in 26 vehicle/technology categories.  A more detailed description of 
the database is presented Section 4.2.1. 
 

Figure 3-1: CMEM structure (from Barth et al., 2000). 

 
As shown in Figure 3-1, CMEM is composed of six modules (depicted in square boxes): 

(1) power demand, (2) engine speed, (3) air/fuel ratio, (4) fuel rate, (5) engine-out emissions, 
and (6) catalyst pass fraction.  The user specifies the composition of the vehicle fleet and, 
for each vehicle, its category and second-by-second speed trajectory.  Optionally, soak time, 
acceleration, road grade, and accessory use can be specified.  CMEM estimates second-by-
second fuel consumption and tailpipe emission rates of CO , HC , xNO , and 2CO .  The 
model represents stoichiometric, cold-start, enrichment, and enleanment conditions.  At a 
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given moment, the model determines which of these conditions the vehicle is operating in, 
by comparing the vehicle power demand with thresholds.  The model represents also cold 
and intermediate soak time starts. 

CMEM was calibrated for the 26 vehicle/technology categories, using FTP bag 1 and 
bag 2 and MEC01 data.  It was validated using FTP bag 3 and US06 data (Barth et al., 2000; 
Schultz et al., 2001). 
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In this section, we give an introduction on the topic of integration between traffic and 
emission models, and we report some examples from the recent literature. 

In the literature there are varieties of traffic models and emission models. 
As discussed in Section 1.1.2, traffic models can be static or dynamic.  The latter models 

can differ from the traffic representation standpoint, and have different limitations on the 
spatial and temporal scales that can be represented. 

As discussed in Section 3.1, vehicle emission models can be more aggregate (average 
speed-based or static models) or more detailed (dynamic models).  The latter models can use 
instantaneous or modal variables. 

The integration between traffic and emission models can be done at various levels.  
Spatial aggregation, temporal scale, and vehicle aggregation characterize the integration.  
The choice of the level of detail depends on the objective behind the use of the models (i.e. 
regional transportation planning vs. design of local traffic control measures), and on other 
constraints such as data availability and computational time requirement. 

Average speed-based emission models are usually combined with static traffic models.  
Sometimes, for large-scale inventory analysis applications, no traffic model is used, and 
VKT  (or VMT ) determined from driver surveys are used as input to the emission model.  
Although these models cannot provide a disaggregate and accurate output, they are 
commonly used for transportation planning purposes due to their relative simplicity.  To 
represent time variability, the same combination of models can be applied on a time of the 
day basis. 

Recently research efforts have been made to integrate models that use time-dependent 
speeds and accelerations.   

Dynamic macroscopic (or mesoscopic) traffic models can be used to generate time-
dependent link flows and speeds.  In order to feed the emission model with vehicle speeds 
and accelerations, various approaches can be used.  It is possible for example to apply a 
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spatial distribution of speeds and/or accelerations, consisting of facility-based driving cycles 
or statistical distributions. 

When the needed input data are available and the scale of the application is not such that 
the computational effort becomes excessive, a traffic microsimulator can be integrated with 
an instantaneous emission model in a straightforward fashion.  The traffic model generates 
time-dependent speeds and accelerations for each vehicle, which constitute the input to the 
emission model. 
 
In the following paragraphs, we briefly describe some examples of efforts to integrate 
dynamic traffic and emission models. 

Models in the DIANA project 

The aim of the DIANA (Development of integrated air pollution modeling systems for urban 
planning) project is to create a comprehensive traffic emissions modeling system.  In 
(Niittymaki et al., 2001) the traffic microsimulation model HUTSIM and its emission 
calculation sub-program, both developed by the Helsinki University of Technology 
(Kosonen, 1999), are integrated with an atmospheric street dispersion model developed by 
the Finnish Meteorological Institute (Berkowicz, 1997).  The emission sub-module 
calculates fuel consumption and emissions of xNO , 2NO , and CO  using a VA lookup table 
for cars and vans (length < 8m), and a lookup table for buses and trucks. 

CMEM and the ITEM framework 

Researchers at the University of California at Riverside developed various applications of 
their emission model CMEM.  They proposed ITEM (Integrated Transportation/Emissions 
Model), a modeling framework designed to integrate CMEM with a hybrid 
macroscopic/microscopic architecture of traffic models (Barth, 1998).  By combining a 
macroscopic traffic assignment model with a set of microscopic simulation models 
(organized by roadway facility type), both regional and local emission inventories are 
estimated.  The primary component of ITEM is a macroscopic traffic assignment model that 
can dynamically determine link densities and speeds for a regional network.  This 
component provides input into microscopic simulation sub-models that incorporate detailed 
emissions data for the particular case they simulate.  The macroscopic and microscopic 
components are set up to run in parallel. 

An integration of CMEM with a microscopic traffic model, PARAMICS, is presented in 
(Malcom et al., 2001).  The integrated modeling tool was validated with real-world traffic 
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and emissions data from existing tunnel studies.  The average predicted speeds and xNO  
emissions were slightly higher than the field measurements.  Results for CO  and HC  
emissions, and fuel consumption were still being analyzed at the time of the study. 

Another application of CMEM is presented in Barth et al. (1999b) and in Barth et al. 
(2000).  As mentioned in Section 3.1.2, a set of facility-specific driving cycles was 
developed by the EPA to reproduce the driving characteristics of a wide range of roadway 
types and congestions levels (Sierra Research, 1997).  CMEM was applied to these cycles to 
obtain facility-specific emission factors for every vehicle category.  These factors could be 
applied to traffic models that predict traffic flow and congestion conditions for the network 
links. 

MEASURE 

MEASURE (Mobile Emissions Assessment System for Urban and Regional Evaluations), 
developed by the researchers of the Georgia Institute of Technology, is an aggregated traffic 
emission model that uses large databases and the GIS technology (Bachman et al., 2000).  
The model has been implemented for the metropolitan area of Atlanta. 

MEASURE does not include a proper traffic simulation model, in the sense that vehicles 
are not tracked through the network.  Instead, empirical statistical distributions of vehicle 
activity by facility type are used.  The modules presented in Bachman et al. (2000) are based 
on statistical analysis of real-world data, and are integrated on an hour of the day basis.  
More details follow. 

Fleet composition and vehicle activity in terms of modal variables are generated for the 
principal network and for the local roads.  Modal variables distributions are defined as a 
function of road type, level of service, and other Highway Capacity Manual parameters with 
the following method.  Congestion level is estimated from traffic volume and road capacity.  
Then the model uses speed and acceleration distribution tables (available for interstate 
highways, ramps, arterials, and signalized intersections) to estimate the modal activities. 

At this point, emissions for each link and sub-zone are estimated.  For example, the total 
emissions of a single link are calculated using the expression: 

TFIBTGE i
Cc

ccci
i

⋅⋅⋅⋅= �
∈

)(  

where: Ci denotes the vehicle categories defined for the species i, cTG  is the fraction of 
registered vehicles on the road in category c, Bc is the mean FTP bag 2 emission rate in g/s 
for category c, Fi is the normalized emission factor for species i derived with the emission 
model described in the Section 3.1.3.2 (or with other models), Ic denotes the interaction 
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factor for category c and the estimated modal conditions, and T is the total travel time for 
that road link. 

In addition, engine start emissions are estimated using aggregate zonal information. 
Finally, the GIS support is loaded with the estimated emissions that can be used as input 

to air quality models. 

Integration of emission models with VISSIM 

PTV is a German company that offers software for transportation modeling.  In Fellendorf 
(1999) the following set of models has been integrated.  (1) A traffic demand model 
(VISEM) that includes: traffic generation, traffic distribution, and mode choice.  The output 
is the set of individual trip chains within one day in the study area.  (2) A microscopic traffic 
model (VISSIM), in which the individual vehicles are moved according to a car following 
model for longitudinal vehicle movements and a rule-based algorithm for lateral 
movements, plus special driving maneuvers.  (3) A dynamic traffic assignment model to 
represent route choice.  The traffic assignment algorithm applies iteratively the microscopic 
traffic model.  (4) Emission maps of CO , HC , and xNO  emissions for passenger cars and 
heavy trucks.  To improve the accuracy of the emission maps in hot-stabilized operating 
conditions, ‘dynamic correction factors’ are applied to the emission maps.  These factors 
depend on kinematic variables such as the number of changes from positive to negative 
accelerations, idling portions, and mean acceleration values.  For cold-start conditions, two 
approaches, one developed by the TÜV Rheinland and one developed by the Volkswagen 
Group Research Department, are discussed and compared.  To the best of our knowledge, 
these emission models are not publicly available. 

The microscopic model VISSIM has been integrated with other emission models. 
In Young Park et al. (2001) VISSIM was combined with MODEM (described in Section 

3.1.3.1), and with a simple Gaussian dispersion model.  Pollutant concentrations were 
calculated with this combined model for a real local network using data from the SCOOT 
urban traffic control system (Hunt et al., 1991).  The results were compared with on-road 
measurements and macroscopic estimates obtained with the UK Design Manual for Road 
and Bridges model (UKDOT, 1995).  The two models gave similar results but showed 
significant errors from the field measurements. 

The integration of VISSIM with a load-based model is presented in Nam et al. (2002).  
The emission model is derived from CMEM, with the introduction of an air conditioning 
module.  The integrated model was validated by comparing its output in a modeled network 
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with the emissions measured on-board a vehicle driving through the real-world network.  
Larger scale comparisons are still under development. 

TRANSIMS 

TRANSIMS (TRansportation ANalysis and SIMulation System), developed by Los Alamos 
National Laboratory, is an integrated system of models (Los Alamos National Laboratory, 
2002).  It is part of the Travel Model Improvement Program sponsored by the US 
Department of Transportation, the Environmental Protection Agency, and the Department of 
Energy.  The model has been implemented for the city of Portland, Oregon. 

TRANSIMS defines a framework and provides some tools that can be directly used by 
analysts.  The framework includes the following modules: population synthesizer, household 
and commercial activity generator, route planner, traffic simulator, emissions estimator, and 
output visualizer. 

In Williams et al. (1999) the integration between the traffic and the emissions modules is 
explained.  In the traffic simulation module, the transportation network is discretized into 
7.5 meters long cells (cellular automata).  The model can be viewed as a hybrid between a 
mesoscopic and a microscopic model.  Due to the spatial discretization, the speed is defined 
in 16 mph ranges.  Since the emission module requires a finer resolution, the vehicle 
trajectories are smoothed using frequency distributions of the product speed times 
acceleration ( av ⋅ ) using the so-called ‘three-cities data’ (EPA, 1993).  This results in speed 
and acceleration values, which are clustered in bins, for all vehicles. 

The emission module has three sub-modules: an evaporative module, a light-duty 
tailpipe module, and a heavy-duty tailpipe module. 

The light-duty tailpipe module uses CMEM (see Section 3.1.3.3) to populate emission 
maps with bins of 2 mph for the speed, and 1.5 foot per second squared for the acceleration.  
Tailpipe emissions of 2CO , CO , HC , and xNO , and fuel consumption on 30 meters long 
road segments for 15 minutes time periods are calculated using the traffic model, the 
distribution of accelerations, and the emission maps. 

The emission module can be combined with the EPA’s MODELS-3 
(http://www.epa.gov/asmdnerl/models3/) to produce three-dimensional hourly gridded 
emissions over the metropolitan area.  MODELS-3 includes a meteorology model and an 
air-chemistry and dispersion model. 
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Although not exhaustive, our review reveals that traffic emissions modeling constitutes a 
challenging and multifaceted area of research. 

As regards emissions modeling, it has been recognized that average speed-based models 
are too simple and aggregate.  In the last decade, research efforts have focused on dynamic 
emissions modeling, which is based on instantaneous or modal vehicle variables, such as 
speed and acceleration.  The principal approaches for dynamic emissions modeling are the 
emission maps, the regression-based approach, and the load-based approach. 

Although easy to build and use, emission maps have several limitations.  They can be 
sparse and sensitive to the driving cycle used to populate them.  Moreover, they are usually 
not flexible enough to account for such factors as road grade, accessory use, or history 
effects. 

Regression-based models are relatively easy to calibrate, and typically run fast.  
However, they can lack a physical interpretation, when using explanatory variables that are 
not derived from a physical basis.  Moreover, in some cases the number of explanatory 
variable is excessive, causing the risk of over-fitting the calibration data.  Therefore these 
models can give non-desirable results if applied to situations not covered by the calibration 
data. 

Load-based models have a detailed and flexible physical basis and can take into account 
history effects and road grade.  However, these models require knowledge of various vehicle 
specifications and a relatively complex modeling of the processes involved.  Moreover, they 
require higher computational times. 

We conclude that there is need of models that are simultaneously simple to calibrate in 
various situations, give reasonably accurate results and can run fast.  Based on these 
objectives, in Chapter 4 of this thesis we develop a model that combines the regression-
based and load-based approaches and captures some of their respective advantages.   

 
We presented examples of integration of dynamic emission models with both microscopic 
and non-microscopic dynamic traffic models.  Microscopic traffic models can be integrated 
directly with dynamic emission models and examples of this integration are well represented 
in the literature.  On the contrary, to the best of our knowledge, there are few examples of 
integration involving non-microscopic traffic models.  As discussed in Chapter 1, non-
microscopic traffic models have some advantages (such as better computational speeds and 
easier calibration) that make them more suitable for large-scale applications.  Therefore, we 
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believe that it is valuable to investigate further the integration of emission models with non-
microscopic traffic models. 

The few examples found in the literature include TRANSIMS, the approach presented in 
Dion et al. (1999), and ITEM, introduced in Barth (1998).  While the approaches used in 
those cases are valuable for particular applications, they do not generally allow for the 
integration of dynamic emission models with any non-microscopic dynamic traffic model.  
In Chapter 5 of this thesis, we propose a probabilistic approach for the integration of 
dynamic emission models and any type of non-microscopic dynamic traffic models.  The 
proposed approach can be adopted in applications where non-microscopic models are 
typically used, such as the analysis of large-scale networks and the solution of non-
operational (such as planning) application problems. 
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From the literature review of emission models described in Chapter 3, it is possible to draw 
the following observations.  First, emission maps are not satisfactory because they can be 
cycle dependent, sparse, and not flexible enough to account for history effects, accessory 
usage and road grade.  Second, regression-based models often lack a clear physical 
interpretation and tend to overfit the calibration data using arbitrary numbers and 
combinations of explanatory variables.  Third, load-based models have a detailed and 
flexible physical basis, but are more complex to design and calibrate, and can be 
computationally intensive. 

Consequently, we believe, it is valuable to design a simple model that, in addition of 
giving results with reasonable accuracy, can run fast and is easy to calibrate in various 
situations.  The latter property is useful as emission models are more likely to be 
recalibrated as fleet compositions differ in real world.  For instance, vehicle fleet 
compositions vary from city to city and country to country, as well as over time. 

This chapter presents a new model for instantaneous emissions and fuel consumption of 
light-duty vehicles, referred to here as EMIT5. 
The chapter is organized as follows.  Section 4.1 presents the structure of the model.  
Section 4.2 describes the analysis and the preprocessing of the data used for the model 
development.  The description of the data precedes the description of the model because the 
data is used to verify some assumptions during the development of the model.  Section 4.3 
presents the derivation from the load-based approach and the development of the model 
(notation, rationale, simplifying assumptions, and formulation).  The model was calibrated 

                                                 
5 The preliminary results of the model are published in Cappiello et al. (2002). 
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and validated for two vehicle/technology categories.  Sections 4.4 and 4.5 present 
respectively the calibration and the validation results.  Section 4.6 gives conclusions and 
outlines directions for future research. 

'��� !�	���.���������

We have developed an emission model referred to here as EMIT (EMIssions from Traffic).  
It is a simple statistical model (with a basis in the physical system) for instantaneous 
emissions and fuel consumption of light-duty composite vehicles.  In order to realistically 
reproduce the behavior of the emissions, the explanatory variables in EMIT have been 
derived from the load-based approach, using some simplifying assumptions.  The model, 
due to its simple structure, is relatively easy to calibrate and is expected to require less 
computational time than load-based models. 

Figure 4-1 depicts a block diagram of the structure of EMIT.  EMIT is composed of two 
main modules: the engine-out emissions module and the tailpipe emissions module.  
Although implementing two modules adds a level of complexity to the model, this allows 
EMIT to predict not only tailpipe, but also its precursor engine-out emissions.  This property 
of the model is useful in practice.  For instance, it allows for the modeling of engine and 
catalyst technology improvements, vehicle degradation, as well the implications of 
effectiveness of inspection and maintenance programs.  Moreover, it allows for modular and 
incremental modeling, by identifying model parts that would require improvements, and 
thus further research. 

Given a vehicle category and its second-by-second speed and acceleration, the first 
module predicts the corresponding second-by-second fuel consumption and engine-out 
emission rates.  These, in turn, are the inputs for the next module that predicts second-by-
second tailpipe emission rates.  Although the present thesis considers only the modeling of 
fuel consumption and emissions of 2CO , CO , HC , and xNO  for gasoline light-duty 
vehicles, we note that the methodology developed can be applied to the study of other 
pollutants, such as PM , and diesel vehicles. 
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Figure 4-1: EMIT structure. 
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The data used for the development, calibration and validation of EMIT is the National 
Cooperative Highway Research Program (NCHRP) vehicle emissions database, which 
consists of data relative to chassis dynamometer tests conducted at the College of 
Environmental Research and Technology, University of California at Riverside, between 
1996 and 1999.  The NCHRP database was used in the development of CMEM and of other 
emission models (see Section 3.1.3).  The purpose of this section is to provide the principal 
information on the database.  A complete description of the database and the dynamometer 
testing procedure can be found in Barth et al. (2000). 

The database includes measurements of second-by-second speed and engine-out and 
tailpipe emission rates of 2CO , CO , HC , and xNO  for 344 light-duty vehicles (202 cars 
and 142 light trucks).  For a limited number of vehicles the measurements of engine speed, 
throttle position, mass air flow, emission control temperature, gear, and other quantities are 
also included.  Only speed and emissions data are needed in the development of EMIT. 

For the development of the NCHRP database, a total of 26 vehicle/technology categories 
were defined in terms of fuel and emission control technology, accumulated mileage, power-
to-weight ratio, emission certification level, and, finally, by normal or high emitter status.  In 
the sequel of this thesis, we use the simplifying terminology of vehicle category to refer to a 
vehicle/technology category.  The vehicles were randomly recruited, principally in 
California.  For each vehicle category, the sample size was determined based on the 
approximate percentage contribution of that category to the emissions inventory.  The 
vehicles were tested on chassis dynamometer using three driving cycles: the standard FTP 
cycle, the high-speed aggressive US06 cycle, and the Modal Emission Cycle (MEC01), an 
engineered aggressive cycle.  The FTP and the US06 are cycles prescribed by the EPA for 
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regulation purposes, and are described in Section 2.1.1.  The MEC01 cycle was designed at 
UC Riverside for the development of the NCHRP database and the CMEM model.  We 
describe the MEC01 cycle in the following paragraph. 

The MEC01 cycle was designed with the purpose of covering the speed, acceleration, 
and specific power ranges typical of most light-duty vehicles.  The cycle was designed in 
three successive versions, labeled version 5, 6, and 7.  Version 5, which is significantly 
different from the successive versions, was used for the first 43 vehicles tested.  The 
remaining vehicles were tested on version 6 or 7, which differ only after the first 900 
seconds.  Version 7 is depicted in Figure 4-2.  It consists of five different sections: 
stoichiometric cruise, constant power, constant acceleration, scrambled cruise6, and air 
conditioning7.  The total time of the test is 1,920 seconds (32 minutes), the highest speed is 
80 mph (128 km/h), the average speed is approximately 43 mph (69 km/h), and the 
maximum specific power is 400 (mph)2/s (1,024 (km/h)2/s).  The cycle represents driving 
conditions with higher speeds and harder accelerations than the FTP cycle, but its maximum 
specific power is less than that achieved by the US06 cycle.   

The database does not contain the results of all tests.  It contains only the data of tests 
that were successfully completed, since there were cases of vehicle failure.  The most 
common reasons of failure were engine overheating or brake problems.  Appendix A 
contains information about the vehicles contained in the database, including vehicle 
characteristics (e.g. vehicle name, model year, mass, odometer reading, etc.) and availability 
of test data.  FTP data are available for all vehicles, MEC01 data are available for most 
vehicles, and US06 data are available for most cars and for a limited number of light trucks.  
Appendix A does not coincide with the vehicle testing summary reported in Barth et al. 
(2000).  First, we corrected the information about the data availability based on the data 
actually present in the database distributed by UC Riverside.  Second, we revised the vehicle 
classification, as described in Section 4.2.2.   

 

                                                 
6 The scrambled cruise section has the same cruise events as the stoichiometric cruise section (except the 50 
mph event).  The order of the cruise events is scrambled, so that each cruise event follows an opposite 
acceleration or deceleration event from the original stoichiometric cruise section. 
7 The air conditioning section repeats the stoichiometric cruise section with the air conditioner on if the vehicle 
is equipped. 
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Figure 4-2: The MEC01 cycle. 
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The primary objective of EMIT is to predict emissions from average vehicles, each 
representative of a vehicle category, rather than from specific makes and models.  Thus, for 
each category, the data were aggregated into composite vehicles data.  A compositing 
procedure similar to that used in Barth et al. (2000) was implemented.  The vehicle 
classification identified in Barth et al. (2000) was adopted with some minor modification.  
The original Category 22 (bad catalyst) includes both cars and trucks.  We divided it into 
two separate categories, given the availability of a large number of vehicles.  The other high 
emitters categories include both cars and trucks, as in the original classification.  The 
classification of individual vehicles was partly revised, with particular attention to high 
emitters, which we considered misclassified in a number of cases.  The revised classification 
is shown in Appendix A. 

Only the vehicles for which both the FTP cycle and the MEC01 cycle (version 6 or 7) 
are available were considered.  Table 4.1 shows for each category the number of vehicles 
based on the revised classification, and the number of vehicles used to obtain the composite 
vehicle data. 

The compositing procedure is conducted as follows.  For each vehicle category and for 
each driving cycle, the vehicle tests data are time-aligned by maximizing the R-square 
among the speed traces.  This is performed by time shifting the data and/or cutting few 

                                                 
8 This work was done in collaboration with Edward Nam and Maya Abou Zeid. 
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seconds of data.  Then, the average second-by-second speed and emission rates are 
calculated to create the composite vehicle data.  Only the first 900 seconds of the MEC01 
cycle (stoichiometric cruise and constant power sections) are averaged because, as 
mentioned above, versions 6 and 7 are different after the first 900 seconds. 
 

Table 4.1: Number of vehicles for each vehicle/technology category. 
 

 
Vehicle/Technology Category 

Number of vehicles 
in the NCHRP 
database based on 
the revised 
classification 

Number of vehicles 
used for the 
compositing 
procedure 

Normal Emitting Cars   

1.  No Catalyst 8 6 
2.  2-way Catalyst 12 7 
3.  3-way Catalyst, Carbureted 6 3 
4.  3-way Catalyst, FI, >50K miles, low power/weight 25 15 
5.  3-way Catalyst, FI, >50K miles, high power/weight 18 12 
6.  3-way Catalyst, FI, <50K miles, low power/weight 16 11 
7.  3-way Catalyst, FI, <50K miles, high power/weight 9 7 
8.  Tier 1, >50K miles, low power/weight 12 9 
9.  Tier 1, >50K miles, high power/weight 11 9 
10.  Tier 1, <50K miles, low power/weight 16 10 
11.  Tier 1, <50K miles, high power/weight 19 11 
24.  Tier 1, >100K miles 9 8 

Normal Emitting Trucks   
12.  Pre-1979 (<=8500 GVW) 6 4 
13.  1979 to 1983 (<=8500 GVW) 8 4 
14.  1984 to 1987 (<=8500 GVW) 11 8 
15.  1988 to 1993, <=3750 LVW 24 20 
16.  1988 to 1993, >3750 LVW 11 10 
17.  Tier 1 LDT2/3 (3751-5750 LVW or Alt.  LVW) 17 13 
18.  Tier 1 LDT4 (6001-8500 GVW, >5750 Alt.  LVW) 14 12 
25.  Gasoline-powered, LDT (> 8500 GVW) 9 8 
40.  Diesel-powered, LDT (> 8500 GVW) 10 9 

High Emitting Vehicles   
19.  Runs lean 11 8 
20.  Runs rich 7 6 
21.  Misfire 5 4 
22car.  Bad catalyst 21 16 
22truck.  Bad catalyst 19 14 
23.  Runs very rich 10 10 
 

  
Total 344 254 

 
Notes: 
FI denotes fuel injection; GVW denotes gross vehicle weight; LVW denotes loaded vehicle weight. 
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Acceleration and fuel rate are two variables required in the development of the model, 
but not reported in the database. 

We calculate acceleration as the variation between two consecutive second-by-second 
speeds. 

We calculate fuel rate using the following carbon balance formula: 

HCCOCOFR +⋅+⋅+= ]85.1112[]28/44/[ 2  (4.1) 

where numbers 44, 28, 12 and 1 are the molecular weights of 2CO , CO , C , and H  
respectively, number 1.85 is the approximate number of moles of hydrogen per mole of 
carbon in the fuel, and 2CO , CO , and HC  are the measured engine-out emission rates.  
Basically, this formula derives the equivalent mass of hydrocarbon from the carbon balance 
of the emissions measurements (Goodwin, 1996; Hickman et al., 1999). 

Other data used in the model are the following composite vehicle specification 
parameters: mass, rolling resistance coefficients, and air drag coefficient.  These parameters 
were derived in Barth et al. (2000), by averaging the parameters of the single vehicles in 
each category. 

In summary, the composite vehicle data used for the development of EMIT are: (1) 
second-by-second data from the dynamometer tests: speed, engine-out emission rate, 
tailpipe emission rate, and fuel rate (estimated from Equation 4.1), and (2) the following 
composite vehicle specific data: mass, rolling resistance coefficients, and air drag 
coefficient. 
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At the time of writing this thesis, EMIT has been calibrated for the following two vehicle 
categories: 
• category 7 (3-way Catalyst (“Tier 0” emission standard), fuel injection, less than 50,000 

miles accumulated, and high power/weight ratio), 
• category 9 (Tier 1 emission standard, more than 50,000 miles accumulated, and high 

power/weight ratio). 
The characteristics of the vehicles used for the compositing procedure for vehicle categories 
7 and 9 are presented in Tables 4.2 and 4.3. 
 
Because fuel-to-air ratio is not modeled explicitly, EMIT is calibrated using data that cover a 
large spectrum of operating conditions, including stoichiometric, enrichment and 
enleanment conditions, in order to capture the emissions variability.  The following set of 
hot-stabilized composite data are used for the calibration (see Section 4.4): (a) FTP bag 2, 
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(b) FTP bag 3, excluding the first 100 seconds (to account for the catalyst light-off time), 
and (c) first 900 seconds of the MEC01 cycle.  The US06 cycle is used to validate the model 
(Section 4.5).  Cold-start conditions are not modeled but can be easily added in a future 
development, as discussed in Section 4.6. 
 

Table 4.2: Vehicles used for the category 7 composite vehicle. 
Vehicle ID Model name Model year Mass (lb) Odometer (miles) 

126 Suzuki Swift 92 2,125 48,461 
136 Nissan 240SX 93 3,125 43,009 
147 Mazda Protege 94 2,875 40,201 
169 Mercury Tracer 81 2,500 6,025 
248 Saturn SL2 93 2,500 42,264 
257 Nissan Altima 93 3,250 32,058 
259 Honda Accord LX 95 3,000 49,764 

 
Table 4.3: Vehicles used for the category 9 composite vehicle. 

Vehicle ID Model name Model year Mass (lb) Odometer (miles) 
187 Toyota Paseo 95 2,375 56,213 
191 Saturn SL2 93 2,625 63,125 
192 Honda Civic DX 94 2,375 57,742 
199 Dodge Spirit 94 3,000 57,407 
201 Dodge Spirit 94 3,000 56,338 
229 Honda Civic LX 93 2,625 61,032 
242 Saturn_SL2 94 2,625 64,967 
260 Toyota Camry LE 95 4,000 51,286 
281 Honda Accord EX 93 3,250 72,804 
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In this section the engine-out and tailpipe emissions modules are derived from the load-
based approach (which is introduced in Section 3.1.3.3). 
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Let i  denote the generic emission species (i.e. xNOHCCOCOi ,,,2= ).  Let iEO  denote the 
engine-out emission rate of species i  in g/s, and iEI  the emission index for species i , 
which is the mass of emission per mass unit of fuel consumed.  By definition of iEI , 
engine-out emission rates are given by:  

FREIEO ii ⋅=  (4.2) 

where FR  denotes the fuel consumption rate (g/s). 
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The following paragraphs describe how FR  and iEI  are modeled in a typical load-based 
formulation. 
 
When the engine power is zero, the fuel rate is equal to a typically small constant value.  
Otherwise, fuel consumption is mainly dependent on the engine speed and the engine power.  
This is modeled as follows: 
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where: 
φ : fuel-to-air equivalence ratio, which is the ratio of the actual fuel-to-air mass ratio 

to the stoichiometric fuel-to-air mass ratio.  When 1≅φ , the mixture is 
stoichiometric.  When 1>φ , the mixture is rich.  When 1<φ , the mixture is lean. 

K : engine friction factor (kJ/rev/liter), 
N : engine speed (rev/s), 
V : engine displacement (liters),  
η : engine indicated efficiency, 

idleK : constant idle engine friction factor (kJ/rev/liter), 

idleN : constant idle engine speed (rev/s), 
P  : engine power output (kW). 

The fuel-to-air equivalence ratio φ  can be modeled for enleanment, stoichiometric, and 
enrichment conditions.  When engine power is equal to zero, the mixture becomes lean, due 
to fuel shut-off.  Since emissions are not very sensitive to the level of enleanment (except for 
a fraction of the high emitters), in enleanment conditions it is reasonable to approximate φ  
by a constant.  In enrichment conditions, φ  is a function of engine power and acceleration, 
but is usually modeled in terms of engine power (or torque) only.  When engine power (or 
torque) is greater than an enrichment threshold, the mixture goes rich.  Such a threshold can 
be modeled in terms of specific power and vehicle parameters.  Above the threshold, φ  can 
be modeled as a linear function of engine power.  When engine power (or torque) is positive 
but less than the enrichment threshold, the mixture is considered stoichiometric.  More 
details of a model of the fuel-to-air equivalence ratio are described in Barth et al. (2000). 

To link the engine speed N  to the wheel speed v , a transmission model is necessary.  
This can be modeled in a limited fashion as function of vehicle speed, gear shift schedule, 
gear ratio, and engine peak torque (Thomas and Ross, 1997; Barth et al., 2000). 
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The engine friction factor K  can then be modeled as function of engine speed (Barth et 
al., 2000). 

Engine power is modeled as: 

acc
tract P

P
P +=

ε
 (4.4) 

where: 

tractP :  total tractive power requirement at the wheels (kW), 
ε :      vehicle drivetrain efficiency, 

accP :   engine power requirement for accessories, such as air conditioning. 
The drivetrain efficiency ε  depends on engine speed and engine torque.  It can be 
approximated as a function of vehicle speed and specific power, as discussed in Barth et al. 
(2000). 

When positive, the tractive power is given by: 

vgMvaMvCvBvAPtract ⋅⋅⋅+⋅⋅+⋅+⋅+⋅= ϑsin32  (4.5) 

where: 
v : vehicle speed (m/s), 
a : vehicle acceleration (m/s2), 
A : rolling resistance coefficient (kW/m/s), 
B : speed correction to rolling resistance coefficient (kW/(m/s)2), 
C : air drag resistance coefficient (kW/(m/s)3), 
M : vehicle mass (kg), 
g : gravitational constant (9.81 m/s2), 
ϑ : road grade (degrees). 

When the right hand side of Equation 4.5 is non-positive, tractP  is set equal to zero.  All 
parameters ( A , B , C , and M ) are known and readily available for each vehicle. 

 
In conclusion, FR  can be modeled as function of v , a , ϑ , accP , and known vehicle 
parameters, since all other variables in Equations 4.3, 4.4, and 4.5 (φ , K , N , P , and ε ) 
can be expressed in terms of v , a , ϑ , and accP , and vehicle parameters.  The vehicle 
parameters are available from vehicle manufacturers or can be calibrated. 

 
Emission indices iEI  are modeled in the literature in various ways as a function of φ  
(Thomas and Ross, 1997; Barth et al., 2000), or φ  and FR  (Goodwin, 1996).  However, 
generally, as more fuel is burned, more emissions are formed.  As a result, to first 
approximation iEO  is a linear function of FR : 
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FREOi ⋅+= µλ  (4.6) 

Figures 4-3 and 4-4 show the trends of engine-out emission rates versus fuel rate for the 
vehicle categories modeled in EMIT.  With the exception of CO , the trend is approximately 
linear, though sometimes somewhat scattered.  CO  presents a linear trend for low to 
medium values of FR , and increases more rapidly for larger values of FR  corresponding  
to the enrichment conditions. 
 
EMIT has been developed and calibrated for hot-stabilized conditions with zero road grade 
( 0=ϑ ), and without accessory usage ( 0=accP ).  The model does not represent history 
effects, such as cold-start emissions and hydrocarbon enleanment puffs (see Section 2.2 for a 
description of these phenomena).  These factors can be included in future developments, as 
discussed in Section 4.6.  Nevertheless, considering only hot-stabilized conditions is not a 
critical limitation for highway applications, since most vehicles are hot by the time they 
reach the highways.  Moreover, the hydrocarbons puffs do not significantly affect tailpipe 
emissions in normal emitting vehicles, since the catalytic converter is usually effective under 
enleanment conditions (An et al., 1998). 

The following are assumptions adopted in the development of EMIT: 
- Although, as discussed, φ , K , N , and ε  can be expressed in various functional forms 

of v  and a , their effects on fuel rate can be aggregated into the effects of v , 2v , 3v , and 
va ⋅ , which are the independent variables in Equation 4.5. 

- Since emission rates can be approximated as a linear function of fuel rate (Equation 4.6), 
the variables that govern emission rates are the same variables that govern fuel rate. 

- Since in this thesis we do not consider accessory usage ( 0=accP ), tractP  is used as a 
surrogate for P  to test if the vehicle is in idle mode. 

Given the previous assumptions, combining Equations 4.3, 4.4, and 4.5, we have: 
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and, from Equation 4.6: 
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where tractP  is calculated with Equation 4.5, using A , B , C , and M  from Barth et al. 
(2000). 
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Figure 4-3: Category 7 – Engine-out emission rates versus fuel rate.  Fuel rate is estimated with Equation 4.1.  
In Figure b, in addition to CO engine-out, tractive power (in gray) is represented versus fuel rate. 
 

Figure 4-4: Category 9 – Engine-out emission rates versus fuel rate.  Fuel rate is estimated with Equation 4.1.  
In Figure b, in addition to CO engine-out, tractive power (in gray) is represented versus fuel rate. 
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For CO , the effect of enrichment is too distinct to be incorporated in the same equation, 
as seen in Figures 4-3b and 4-4b.  For enrichment conditions the emissions are modeled as a 
linear function of the corresponding stoichiometric emissions: 
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(4.9a) 
(4.9b) 
(4.9c) 

The enrichment threshold enrich
tractP  is determined empirically based on the cut-point in the 

trend of COEO  versus FR  (see Figures 4-3b and 4-4b). 
Equations 4.7, 4.8 and 4.9 are calibrated for each vehicle category using least square 

linear regressions. 
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Tailpipe emission rates iTP  (g/s) are modeled as the fraction of the engine-out emission 
rates that leave the catalytic converter: 

iii CPFEOTP ⋅=  (4.10) 

where iCPF  denotes the catalyst pass fraction for species i . 
Catalyst efficiency is difficult to predict accurately, and varies greatly from hot-

stabilized to cold-start conditions.  As stated previously, at this time cold-start conditions are 
not considered. 

Hot-stabilized catalyst pass fractions are modeled in the literature in various ways as a 
function of φ , FR , and/or engine-out emissions (Barth et al., 2000; Goodwin, 1996).  Since 
the physical and chemical phenomena that control catalyst efficiency are challenging to 
capture, often these functions are purely empirical. 

EMIT calculates: 
- The tailpipe 2CO  (which is not much different from engine-out 2CO ), directly using the 

equations: 

��
��� ′

++++
=

2

22222

2

32

CO

COCOCOCOCO
CO

avvvv
TP

α
ζδγβα

 0
0

=
>

tract

tract

Pif
Pif

 (4.11a) 
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- The tailpipe CO , HC  and xNO  with Equation 4.10.  The catalyst pass fractions are 
modeled empirically as piecewise linear functions of engine-out emission rates under 
different operating regimes.  The most general function is composed of three pieces:  
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Previous calibration of Equation 4.7a indicates that the coefficient of 2v  is negative, which 
is counterintuitive, but not statistically significant.  This second order speed term is expected 
to be small, since it mainly represents a higher order correction to the rolling resistance term.  
The term in 2v  is then dropped in the calibration process.  Dropping it, the goodness of fit of 
the regression is practically unaffected (adjusted R-squared~0.96) and all coefficients are 
positive and statistically significant. 

All regressions of Equations 4.8 give satisfactory results in terms of statistical 
significance as well as adjusted R-squared.  For Equation 4.9a, it is necessary to employ a 
more ‘robust’ calibration, by removing a few outliers (~3% of the data) from the calibration 
data.  For HC , the emissions puffs are omitted in the calculation of α′ . 

The calibrated parameters are shown in Tables 4.4 and 4.5.  Engine-out emission rates 
( iEO ) are expressed in g/s, vehicle speed ( v ) is expressed in km/h, speed times acceleration 
( av ) is expressed in m2/s3, and power is expressed in kW. 

We note the following: 
- All coefficients have a high t-statistics, except for HCβ  in both categories, and COβ  in 

category 9, which have been dropped. 
- All coefficients are, as expected, positive, except for NOxα  in both categories and COβ  in 

category 7.  The negative sign of NOxα  is consistent with the negative intercept of the 
trend of xNO  shown in Figures 4-3d and 4-4d.   
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Table 4.4: Category 7 – Calibrated parameters for the engine-out emissions 
module (Equations 4.7, 4.8, and 4.9).  The t-statistics are reported in parentheses.   

 

 CO2 CO HC NOx FR 

α  .907 
(42.9) 

.0633 
(21.2) 

.0108 
(23.1) 

-.00522 
(-5.2) 

.326 
(26.3) 

β  .0136 
(24.4) 

-3.43 e-04 
(-4.2) (dropped) .00038 

(14.4) 
.00228 
(6.9) 

δ  1.86e-06 
(53.8) 

1.73 e-07 
(30.9) 

1.20e-08 
(15.6) 

1.64e-08 
(10.8) 

9.42e-07 
(46.2) 

ζ  .231 
(216.3) 

.00977 
(43.5) 

.00124 
(52.3) 

.00282 
(55.9) 

.0957 
(152.4) 

α ′  .862 .0369 .00552 .00326 .300 

κ   -3.66 
(-11.2)    

χ   12.5 
(16.4)    

enrich
tractP   30    

 
Table 4.5: Category 9 – Calibrated parameters for the engine-out emissions 
module (Equations 4.7, 4.8, and 4.9).  The t-statistics are reported in parentheses. 

 

 CO2 CO HC NOx FR 

α  1.02 
(40.8) 

.0316 
(22.8) 

.00916 
(58.1) 

-.00391 
(-3.7) 

.365 
(26.1) 

β  .0118 
(20.7) (dropped) (dropped) .000305 

(11.4) 
.00114 
(6.5) 

δ  1.92e-06 
(48.4) 

1.09e-07 
(49.9) 

7.55e-09 
(33.3) 

2.27e-08 
(14.0) 

9.65e-07 
(44.0) 

ζ  .224 
(195.5) 

.00883 
(43.0) 

.00111 
(60.5) 

.00307 
(64.9) 

.0943 
(150.3) 

α ′  .877 .0261 .00528 .00323 .299 

κ   -6.10 
(-14.3)    

χ   21.8 
(18.9)    

enrich
tractP   34    
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Equation 4.11 is calibrated for each vehicle category using least square linear 
regressions.  The calibrated parameters are shown in Table 4.6.  Engine-out emission rates 
( iEO ) are expressed in g/s, vehicle speed ( v ) is expressed in km/h, speed times acceleration 
( av ) is expressed in m2/s3, and power is expressed in kW. 

Equation 4.12 is calibrated for CO , HC  and xNO  by minimizing the sum of the 
squared differences between the predicted and measured tailpipe emission rates.  The 
predicted tailpipe emission rates are obtained as the product of the modeled catalyst pass 
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fraction and the measured engine-out emission rates (to minimize error propagation).  The 
catalyst pass fraction functions are represented in Figure 4-5.  The calibrated coefficients are 
reported in Tables 4.7 and 4.8. 

 
 

Table 4.6: Categories 7 and 9 – Calibrated parameters for the tailpipe 
CO2 emissions module (Equation 4.11).  The t-statistics are reported 
in parentheses. 

 

 Category 7 Category 9 

α  1.01 
(41.49) 

1.11 
(47.0) 

β  0.0162 
(25.22) 

0.0134 
(19.3) 

δ  1.90e-06 
(47.62) 

1.98e-06 
(47.0) 

ζ  0.252 
(205.18) 

0.241 
(42.0) 

α ′  0.985 0.973 
 
 

Table 4.7: Category 7 – Calibrated parameters of the catalyst pass 
fraction functions (Equation 4.12). 

 

COm′  0.927  
COq′  0.048  

COz′  0.816 

COm ′′  0.0538  
COq ′′  0.749    

HCm′  0  
HCq′  0.045  

HCz′  0.022 

HCm ′′  9.16  
HCq ′′  -0.152    

NOxm′
 

0.127  
NOxq′  0.110    

 
 

Table 4.8: Category 9 – Calibrated parameters of the catalyst pass 
fraction functions (Equation 4.12). 

 

COm′  0  
COq′  0  

COz′  0.005 

COm ′′  1.15  
COq ′′  -0.006  

COz ′′  0.705 

COm ′′′  0.045  
COq ′′′  0.746    

HCm′  0  
HCq′  0.011  

HCz′  0.011 

HCm ′′  3.69  
HCq ′′  -0.031  

HCz ′′  0.047 

HCm ′′′  23.39  
HCq ′′′  -0.977    

NOxm′
 

0.124  
NOxq′  0.067    
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HCCPF  and NOxCPF  are challenging to model (Goodwin, 1996; Nam, 1999).  HCCPF  is 
scattered especially for medium levels of engine-out emissions, where the highest values are 
related to high power episodes.  NOxCPF  is especially noisy for very low engine-out 
emissions, with values ranging from nearly zero to ~0.95 in category 9 and more than 1 in 
category 7. 

 

  
Figure 4-5: Categories 7 (left) and 9 (right) – Catalyst pass fractions for CO, HC, and NOX.  The points 
represent the calibration data; the line represents the modeled CPF. 
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The quality of the calibrated model is assessed using a variety of statistics and graphical 
analyses. 

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5
EOCO (g/s)

C
PF

C
O

0

0.4

0.8

1.2

1.6

0.00 0.05 0.10 0.15 0.20

EONOx (g/s)

C
PF

N
O

x

0

0.2

0.4

0.6

0.8

1

0 0.02 0.04 0.06 0.08 0.1
EOHC (g/s)

C
PF

H
C

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6
EOCO (g/s)

C
PF

C
O

0

0.2

0.4

0.6

0.8

1

0.00 0.05 0.10 0.15 0.20

EONOx (g/s)

C
PF

N
O

x

0

0.2

0.4

0.6

0.8

1

0 0.02 0.04 0.06 0.08
EOHC (g/s)

C
PF

H
C



 70

Let TME  denote the total measured emission (in grams) of a given species (or fuel 
consumption) over the cycle.  Let TPE  denote total predicted emission (or fuel 
consumption) over the cycle.  We calculate the following statistics for each emission species 
(or fuel consumption): 
- Average error (g/s), which is the difference between TME  and TPE , divided by the 

duration of the cycle (in seconds). 
- Relative average error, which is the ratio between the average error and the measured 

average emission (or fuel consumption) rate.   
- Correlation coefficient ρ , which is the ratio between the covariance of the predicted and 

measured emission (or fuel consumption) rates and the product of their standard 
deviations. 

- R-square (R2) between the measured and the predicted emission (or fuel consumption) 
rates. 

 
Furthermore, we look at the following graphical representations: 
- Graphical analysis of predicted versus measured emission (or fuel consumption) rates. 
- Graphical analysis of the residuals (second-by-second differences between the predicted 

and measured emission rates). 
- Graphical comparison between the predicted and the measured second-by-second 

emission (or fuel consumption) rates over time. 
 
Tables 4.9 through 4.12 show, for the engine-out and the tailpipe modules of both vehicle 
categories, measured average emission (or fuel consumption) rates, average error, relative 
average error, ρ , and R2. 
 
Figures 4-6 through 4-17 show how the EMIT outputs fit the measured second-by-second 
emission (or fuel) rates used for the calibration.  The plots show also that the EMIT outputs 
are comparable with those obtained with the load-based model CMEM Version 2.01 (Barth 
et al., 1999a) (see Section 3.1.3.3) for the same vehicle categories9.  A comparison between 
Figures 4-6, 4-7, 4-12, and 4-13 (FTP bag 2) and Figures 4-10, 4-11, 4-16, and 4-17 
(MEC01) shows that the model can capture the emissions variability in a wide range of 
magnitudes. 
 

                                                 
9 EMIT and CMEM are calibrated using very similar sets of data.  From the documentation (Barth et al., 2000), 
it can be inferred that for category 7 CMEM is calibrated using the data relative to the same 7 vehicles used by 
EMIT, while for category 9 CMEM is calibrated using the same 9 vehicles used by EMIT, plus one more. 



 71

 
Table 4.9: Category 7 – Calibration statistics for the engine-out module. 

 CO2 CO HC NOX FR 
Measured average rate (g/s) 2.26 0.157 0.0147 0.0208 0.806 
Average error (g/s) -0.00111 -0.00551 -0.00170 0.000244 0.0000522 
Relative average error (%) 0.0 -3.5 -11.7 1.2 0.0 
ρ  0.99 0.93 0.76 0.93 0.98 
R2 0.98 0.87 0.58 0.86 0.97 

 
Table 4.10: Category 7 – Calibration statistics for the tailpipe module. 

 CO2 CO HC NOX 
Measured average rate (g/s) 2.52 0.0780 0.00130 0.00241 
Average error (g/s) -0.000667 -0.00602 -0.000158 0.0000404 
Relative average error (%) 0.0 -7.7 -12.1 1.7 
ρ  0.99 0.92 0.73 0.89 
R2 0.98 0.84 0.53 0.79 

 
Table 4.11: Category 9 – Calibration statistics for the engine-out module. 

 CO2 CO HC NOX FR 
Measured average rate (g/s) 2.30 0.124 0.0133 0.0211 0.797 
Average error (g/s) 0.000130 -0.00308 -0.00165 0.000181 -0.0000695 
Relative average error (%) 0.0 -2.5 -12.3 0.9 0.0 
ρ  0.99 0.95 0.79 0.93 0.98 
R2 0.97 0.90 0.63 0.87 0.97 

 
Table 4.12: Category 9 – Calibration statistics for the tailpipe module. 

 CO2 CO HC NOX 
Measured average rate (g/s) 2.49 0.0629 0.000682 0.00160 
Average error (g/s) -0.0000401 -0.00402 -0.000161 -0.0000219 
Relative average error (%) 0.0 -6.4 -23.6 -1.4 
ρ  0.99 0.94 0.76 0.82 
R2 0.97 0.88 0.58 0.67 
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Figure 4-6: Category 7 - FTP bag 2.  Second-by-second engine-out (EO) and tailpipe (TP) emission rates of CO2 and CO. Thick light line: measurements; dark 
line: EMIT predictions; thin line: CMEM predictions.  The top plot represents the speed trace. 

0.00

0.04

0.08

500 600 700 800 900 1000 1100 1200 1300
Time (s)

T
PC

O
 (g

/s
)

0

20

40

60

500 600 700 800 900 1000 1100 1200 1300

Sp
ee

d 
(k

m
/h

)

0.00

0.08

0.16

0.24

500 600 700 800 900 1000 1100 1200 1300

EO
C

O
 (g

/s
)

0.0

2.5

5.0

500 600 700 800 900 1000 1100 1200 1300

EO
C

O
2  

(g
/s

)

0.0

2.5

5.0

500 600 700 800 900 1000 1100 1200 1300

T
PC

O
2  

(g
/s

)



 73

Figure 4-7: Category 7 - FTP bag 2.  Second-by-second fuel rate (FR) and engine-out (EO) and tailpipe (TP) emission rates of HC and NOx.  Thick light line: 
measurements; dark line: EMIT predictions; thin line: CMEM predictions. 
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Figure 4-8: Category 7 - FTP bag 3.  Second-by-second engine-out (EO) and tailpipe (TP) emission rates of CO2 and CO. Thick light line: measurements; dark 
line: EMIT predictions; thin line: CMEM predictions.  The top plot represents the speed trace. 
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Figure 4-9: Category 7 - FTP bag 3. Second-by-second fuel rate (FR) and engine-out (EO) and tailpipe (TP) emission rates of HC and NOx.  Thick light line: 
measurements; dark line: EMIT predictions; thin line: CMEM predictions. 
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Figure 4-10: Category 7 – MEC01. Second-by-second engine-out (EO) and tailpipe (TP) emission rates of CO2 and CO.  Thick light line: measurements; dark 
line: EMIT predictions; thin line: CMEM predictions.  The top plot represents the speed trace. 
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Figure 4-11: Category 7 – MEC01. Second-by-second fuel rate (FR) and engine-out (EO) and tailpipe (TP) emission rates of HC and NOx.  Thick light line: 
measurements; dark line: EMIT predictions; thin line: CMEM predictions. 
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Figure 4-12: Category 9 - FTP bag 2.  Second-by-second engine-out (EO) and tailpipe (TP) emission rates of CO2 and CO. Thick light line: measurements; dark 
line: EMIT predictions; thin line: CMEM predictions.  The top plot represents the speed trace. 
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Figure 4-13: Category 9 - FTP bag 2.  Second-by-second fuel rate (FR) and engine-out (EO) and tailpipe (TP) emission rates of HC and NOx.  Thick light line: 
measurements; dark line: EMIT predictions; thin line: CMEM predictions. 
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Figure 4-14: Category 9 - FTP bag 3. Second-by-second engine-out (EO) and tailpipe (TP) emission rates of CO2 and CO.  Thick light line: measurements; dark 
line: EMIT predictions; thin line: CMEM predictions.  The top plot represents the speed trace. 
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Figure 4-15: Category 9 - FTP bag 3. Second-by-second fuel rate (FR) and engine-out (EO) and tailpipe (TP) emission rates of HC and NOx.  Thick light line: 
measurements; dark line: EMIT predictions; thin line: CMEM predictions. 
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Figure 4-16: Category 9 – MEC01. Second-by-second engine-out (EO) and tailpipe (TP) emission rates of CO2 and CO.  Thick light line: measurements; dark 
line: EMIT predictions; thin line: CMEM predictions.  The top plot represents the speed trace. 
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Figure 4-17: Category 9 – MEC01. Second-by-second fuel rate (FR) and engine-out (EO) and tailpipe (TP) emission rates of HC and NOx.  Thick light line: 
measurements; dark line: EMIT predictions; thin line: CMEM predictions. 
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The estimated fuel consumption and 2CO  match the measurements satisfactorily (0.0% 
error and R2>0.97). 

For CO , the model fits the measurements quite well (R2 between 0.84 and 0.90), with 
the exception of some FTP bag 3 peaks (Figures 4-8 and 4-14) and some MEC01 peaks 
(Figures 4-10 and 4-16), resulting in a percentage error equal to or less than –3.5% in 
engine-out and –8.3% in tailpipe. 

For HC , the model has a less desirable performance (R2 between 0.53 and 0.63).  For 
engine-out, as expected, the principal problem is represented by the enleanment puffs, which 
are not modeled, resulting in an underestimation of approximately -12%.  For tailpipe, there 
is a tendency to overestimate the low emissions and underestimate the highest MEC01 peaks 
(Figures 4-11 and 4-17).  The resulting percentage error (-12.1% for category 7 and -23.6% 
for category 9) is due not to enleanment puffs (which are not present in the measured 
tailpipe emissions), but to the underestimation of the MEC01 peaks.  Probably the model is 
not able to capture the decreased catalyst efficiency during these enrichment events. 

For xNO , engine-out emissions fit well, while the fit for tailpipe emissions is lower (R2 
drops from 0.86 to 0.79 for category 7 and from 0.87 to 0.67 for category 9), due to the 
scattered behavior of NOxCPF , which is highly sensitive to the variability of air-to-fuel ratio.  
In particular, as in the case of CO , there is underestimation of some FTP bag 3 peaks 
(Figures 4-9 and 4-15) and of the MEC01 highest speed peak (Figures 4-11 and 4-17).  
However, the percentage error is very small (less than 2% in absolute value). 

 
Figures 4-18 through 4-21 depict, for all the data used for the calibration of the model for 
category 9, (a) the predicted tailpipe emission rates plotted versus the measured tailpipe 
emission rates, (b) the residuals plotted versus the measured tailpipe emission rates, (c) the 
residuals plotted versus speed, and (d) the residuals plotted versus acceleration.  As 
exemplified in Figures 4-18a, 4-19a, 4-20a, and 4-21a the predicted emission rates as a 
function of the measured emission rates can show horizontal trends (which correspond to 
linear trends in Figures 4-18b, 4-19b, 4-20b, and 4-21b).  This is probably due to two 
factors.  First, when 0=tractP , the model estimates a constant low value (see Equations 
4.7b, 4.8b, and 4.9c), while the real data obviously are not exactly constant.  Second, it is 
likely that in the model one or more explanatory variables are missing.  This would explain 
why the model predicts values less variable than the measurements.  We verified that, 
despite such problems, the residuals are largely distributed in a limited range around the 
zero.  Figures 4-18c, 4-18d, 4-19c, 4-19d, 4-20c, 4-20d, 4-21c and 4-21d show that in 
general there is no significant dependence of the residuals on speed and acceleration. 
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Figure 4-18: Category 9 – Tailpipe CO2 predicted vs. measured emission rates (a), residuals vs. measured 
emission rates (b), vs. speed (c), and vs. acceleration (d).  In dark EMIT; in gray CMEM. 

Figure 4-19: Category 9 – Tailpipe CO predicted vs. measured emission rates (a), residuals vs. measured 
emission rates (b), vs. speed (c), and vs. acceleration (d).  In dark EMIT; in gray CMEM. 
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Figure 4-20: Category 9 – Tailpipe HC predicted vs. measured emission rates (a), residuals vs. measured 
emission rates (b), vs. speed (c), and vs. acceleration (d).  In dark EMIT; in gray CMEM. 

 

Figure 4-21: Category 9 – Tailpipe NOx predicted vs. measured emission rates (a), residuals vs. measured 
emission rates (b), vs. speed (c), and vs. acceleration (d).  In dark EMIT; in gray CMEM. 
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The validation of the calibrated model is carried out on the composite US06 data, to test the 
capability of EMIT to predict emissions and fuel consumption from input data different from 
those used in calibration.  The US06 cycle is a difficult test cycle for model predictions 
(Barth et al., 2000).  The results, as shown in Tables 4.13-4.16, are, as expected, poorer than 
those obtained on the calibration data, but in general quite satisfactory. 

 
Table 4.13: Category 7 – Validation statistics for the engine-out module. 

 CO2 CO HC NOX FR 
Measured average rate (g/s) 3.87 0.315 0.0243 0.0444 1.40 
Average error (g/s) 0.000785 -0.0516 -0.00455 -0.00111 0.0494 
Relative average error (%) 0.0 -16.4 -18.7 -2.5 3.5 
ρ  0.98 0.68 0.50 0.91 0.97 
R2 0.96 0.46 0.25 0.83 0.94 

 
Table 4.14: Category 7 – Validation statistics for the tailpipe module. 

 CO2 CO HC NOX 
Measured average rate (g/s) 4.37 0.154 0.00119 0.00427 
Average error (g/s) -0.113 -0.0256 0.000993 0.000846 
Relative average error (%) -2.6 -16.7 83.4 19.8 
ρ  0.98 0.60 0.47 0.79 
R2 0.96 0.36 0.22 0.63 

 
Table 4.15: Category 9 – Validation statistics for the engine-out module. 

 CO2 CO HC NOX FR 
Measured average rate (g/s) 3.89 0.197 0.0220 0.0447 1.34 
Average error (g/s) -0.211 -0.00428 -0.00491 -0.000156 0.0713 
Relative average error (%) -0.5 -2.2 -22.3 -0.4 5.3 
ρ  0.98 0.71 0.47 0.91 0.97 
R2 0.95 0.50 0.22 0.83 0.95 

 
Table 4.16: Category 9 – Validation statistics for the tailpipe module. 

 CO2 CO HC NOX 
Measured average rate (g/s) 4.26 0.0786 0.000778 0.00347 
Average error (g/s) -0.0932 0.00513 0.000206 -0.000105 
Relative average error (%) -2.2 6.5 26.5 -3.0 
ρ  0.98 0.66 0.57 0.73 
R2 0.95 0.43 0.32 0.53 

 
Figures 4-22 through 4-25 show how the EMIT outputs fit the measured second-by-second 
emission (or fuel consumption) rates.  The EMIT outputs are comparable with those 
obtained with CMEM for the same vehicle categories. 
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Fuel consumption and 2CO  are estimated within 5.3% and –2.6% respectively, with a very 
high R2 (~0.95). 

For CO , both engine-out and tailpipe modules overestimate some medium peaks and 
underestimate some high peaks (Figures 4-22 and 4-24).  R2 is between 0.36 and 0.50, and 
the percentage error is less than -17% for category 7 and less than 7% for category 9. 

The HC  model has the poorest performance (R2 between 0.22 and 0.32).  In engine-out 
the principal problem is related to enleanment puffs that, however, disappear in the 
measured tailpipe emissions.  Tailpipe emissions are largely overestimated in category 7 
(83.4%), while in category 9 there is a tendency towards underestimation of the high values 
and overestimation of the low values. 

For xNO , engine-out emissions are well predicted, while the fit for tailpipe emissions is 
lower (R2 drops from 0.83 to 0.63 for category 7 and from 0.83 to 0.53 for category 9), due 
to the scattered behavior of NOxCPF .  The tailpipe percentage error is 19.8% for category 7 
and -3.0% for category 9. 
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Figure 4-22: Category 7 – US06. Second-by-second engine-out (EO) and tailpipe (TP) emission rates of CO2 and CO.  Thick light line: measurements; dark line: 
EMIT predictions; thin line: CMEM predictions.  The top plot represents the speed trace. 
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Figure 4-23: Category 7 – US06. Second-by-second fuel rate (FR) and engine-out (EO) and tailpipe (TP) emission rates of HC and NOx.  Thick light line: 
measurements; dark line: EMIT predictions; thin line: CMEM predictions. 
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Figure 4-24: Category 9 – US06. Second-by-second engine-out (EO) and tailpipe (TP) emission rates of CO2 and CO.  Thick light line: measurements; dark line: 
EMIT predictions; thin line: CMEM predictions.  The top plot represents the speed trace. 
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Figure 4-25: Category 9 – US06. Second-by-second fuel rate (FR) and engine-out (EO) and tailpipe (TP) emission rates of HC and NOx.  Thick light line: 
measurements; dark line: EMIT predictions; thin line: CMEM predictions. 
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In this chapter, we presented EMIT, a dynamic model of emissions ( 2CO , CO , HC , and 

xNO ) and fuel consumption for light-duty vehicles.  The model was derived from the 
regression-based and the load-based emissions modeling approaches (presented respectively 
in Sections 3.1.3.2 and 3.1.3.3), and effectively combines some of their respective 
advantages.  EMIT was calibrated and validated for two vehicle categories. 

The results for the two categories calibrated indicate that the model gives reasonable 
results compared to actual measurements as well to results obtained with CMEM, a state-of-
the-art load-based emission model.  In particular, the model gives results with good accuracy 
for fuel consumption and carbon dioxide, reasonable accuracy for carbon monoxide and 
nitrogen oxides, and less desirable accuracy for hydrocarbons.   

The structure and the calibration of EMIT are simpler compared with load-based models.  
While load-based models involve a multi-step calibration process of many parameters, and 
the prior knowledge of several readily available specific vehicle parameters, the approach 
presented in this chapter collapses the calibration into few linear regressions for each 
pollutant.  Compared to a multi-step calibration, here the parameters directly optimize the fit 
to the emissions, avoiding error accumulations.  Furthermore, due to its relative simplicity, 
the computational time required to run the model is expected to be less compared to load-
based models. 

 
Questions for future research related to EMIT are the following: 
1. The tailpipe module for HC , which currently gives the least satisfactory results, needs 

to be improved. 
2. The model needs to be calibrated for the other categories present in the NCHRP vehicle 

emissions database.  Moreover, in order to represent the actual emissions sources present 
on roadways, other databases should be acquired and used for the model calibration, 
including data on heavy trucks, buses, more recent vehicles than those represented in the 
NCHRP database, and on-road measurements.   

3. The model can be extended to other emission species, such as particulate matter and air 
toxics, when data are available. 

4. Least square regression benefits from calibration data with extreme values.  Therefore, it 
is recommendable to calibrate EMIT using, in addition to the data presently used, also 
data from aggressive cycles, like the US06.  This is not currently possible, since US06 
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data are not available for many vehicles from the NCHRP vehicle emissions database 
(see Appendix A). 

5. EMIT has been developed and calibrated for hot-stabilized conditions with zero road 
grade, and without accessory usage.  The model does not represent history effects, such 
as cold-start emissions and hydrocarbon enleanment puffs.  Future research should 
address how to overcome these limitations, in order to provide greater generality to the 
model.  In the following, we suggest some easily realizable modifications to the model 
to include road grade, cold starts and hydrocarbon enleanment puffs, while how to make 
the model take account of accessory usage appears to be a more challenging question. 
- Road grade ϑ  can be easily introduced adding a variable ga  to the vehicle 

acceleration a  in Equations 4.7, 4.8, 4.9, and 4.11.  The variable ga  is the 
component of the gravitational acceleration g  (9.81 m/s2) along the road surface 
( ϑsin⋅= gag ). 

- In order to model cold-start emissions, two approaches could be pursued.  The first 
approach would consist in simply recalibrating the model using cold-start (e.g. FTP 
bag 1) data.  In this case, EMIT would be composed of two sub-models, one for 
cold-start and one for hot-stabilized conditions.  The second approach would be more 
general, allowing for intermediate soak times and gradual passage from cold to hot 
conditions.  In this case, it would be necessary to introduce in the model history 
variables, such as soak time, time elapsed since the beginning of the trip, and 
possibly cumulative fuel consumption. 

- Hydrocarbons puffs, as stated in Section 4.3.1, do not significantly affect tailpipe 
emissions in normal emitting vehicles.  On the other hand, they can constitute a 
significant portion of the total tailpipe emissions in high emitters.  In order to model 
hydrocarbons puffs in EMIT, it would be necessary to introduce in the model history 
variables, such as the duration of deceleration since its inception up to the current 
time. 

We note that the introduction of history effects in the emission model should be 
complemented with an investigation of how the integration with non-microscopic traffic 
models would be affected by this enhancement. 
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As stated in Chapter 3, we are interested in investigating the integration of dynamic 
emission models with non-microscopic dynamic traffic models.  These traffic models do not 
calculate vehicle accelerations directly, as microscopic models do.  However, since they 
possess better computational speeds and are relatively easier to calibrate, they are more 
suitable for large-scale applications.  To the best of our knowledge, only few papers in the 
literature address the integration with non-microscopic traffic models (see Section 3.2).  The 
approach described in this chapter is different from the approaches described in the 
literature.  While those approaches are valuable for particular applications, they are not 
general to allow for the integration of dynamic emission models with any non-microscopic 
dynamic traffic model. 

In this chapter, we propose a probabilistic approach for the integration of dynamic 
emission models and non-microscopic dynamic traffic models.  The proposed approach 
requires the calculation of expected emission and fuel consumption rates by combining a 
dynamic emission model with a probabilistic model of accelerations.  The latter model is a 
function of speed and road type.  We implement this approach by combining the dynamic 
emission model EMIT, presented in Chapter 4, and a probabilistic acceleration model, 
developed by Abou Zeid et al. (2002).  The resulting expected emission rates can then be 
used with any mesoscopic or macroscopic traffic model. 

This chapter is organized as follows.  In Section 5.1, we introduce the probabilistic 
approach for the integration of dynamic emission models with non-microscopic dynamic 
traffic models.  In Section 5.2 we summarize the probabilistic acceleration model used in 
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our implementation.  In Section 5.3 we use EMIT and the above acceleration model to 
derive expected emission and fuel consumption rates. 
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We investigate the integration between dynamic emission models and non-microscopic 
dynamic traffic models.  The latter models can be classified into those that represent the 
traffic in individual vehicles (mesoscopic models), and those that represent the traffic as a 
real number (macroscopic models).  There is a variety of each of these two classes of 
models.  Mesoscopic models can calculate the speeds of each vehicle at each time step, or 
the travel times of each vehicle to traverse each link on its path.  Macroscopic models 
calculate the time-dependent flows entering each link and their average link travel times.  
All non-microscopic traffic models do not represent explicitly vehicle accelerations.  
Dynamic emission models, on the other hand, require second-by-second vehicle speed and 
acceleration.  We consider only emission models that do not require as input the values of 
variables at past times (relative to the current time) (i.e. we consider only models that predict 
emission and fuel consumption rates at time t  based on the speeds and accelerations at time 
t ).  The integration of dynamic emission models and dynamic traffic models consists of 
linking the traffic model’s output with the emission model’s input. 

We propose a probabilistic approach for this integration, which can be adopted in 
applications where non-microscopic models are typically used, such as the analysis of large-
scale networks and the solution of non-operational (such as planning) application problems. 

 
Regardless the particular type of non-microscopic traffic model, it is always possible to 
obtain the time-dependent link travel time experienced by the traffic flow on each link.  In 
order to obtain the time-dependent speeds for each vehicle, as required by the emission 
model, we make the following assumptions.  Let j  denote a generic vehicle, l  denote a 
generic link, et  denote entrance time in a link, tt  denote travel time, and L  denote the link 
length. 
- In mesoscopic models, we assume that each vehicle j , which enters link l  at time e

ljt ,  
and traverses link l  in a travel time equal to ljtt , , travels at a speed approximately equal 
to ljllj ttLv ,, =  during its entire traversal of link l  (i.e. from time e

ljt ,  to time lj
e

lj ttt ,, + ). 
- In macroscopic models, we assume that all vehicles that enter link l  at time e

lt , which 
have an average link travel time ltt , travel at a speed approximately equal to lll ttLv =  
during their entire traversal of link l  (i.e. from time e

lt  to time l
e
l ttt + ). 
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Although the speed is assumed to be approximately constant along each link for each 
vehicle (mesoscopic models) or group of vehicles (macroscopic models), we need to model 
the accelerations to feed the emission model.  We propose to model accelerations as random 
variables distributed according to some known distribution, for a given speed range and for 
given values of other parameters, such as road type, vehicle category, and driver 
characteristics (e.g. aggressiveness, age, gender, etc.).  The probabilistic acceleration model 
that we use is described in Section 5.2. 

 
The accelerations estimated with this approach do not attempt to capture the vehicle 
dynamics (as they do in microscopic traffic models), but are random variables determined 
empirically.  As a consequence, emission and fuel consumption rates calculated for a generic 
vehicle by the emission model are random variables.  We propose (see Figure 5-1) to 
calculate the expected emission and fuel consumption rates for a generic vehicle, for given 
speed ranges and for the values of the other parameters used in the acceleration model, such 
as road type, vehicle category, and driver characteristics.  The calculated expected emission 
rates are applied to the traffic flow, given the values of vehicle speed and of the other 
parameters.  Once the emissions are calculated for all vehicles at each time instant, they are 
aggregated in time and/or space (i.e. whole network or sub-networks).  It is possible to 
extend this method to calculate other moments of the emission distribution, such as the 
variance, in addition to the expected value. 

The expected values of emission and fuel consumption rates can be calculated in 
advance (off-line), and their use is computationally equivalent to the use of emission maps.  
Therefore, the integrated model constituted by a non-microscopic traffic model and the 
expected emission and fuel consumption rates would run fast, allowing the simulation of 
many alternative policies and scenarios in a reasonable time. 

 
With respect to the domain of applicability of the above approach, it is important to specify 
the following.  The emission and fuel consumption rates calculated with this approach 
cannot represent accurately second-by-second emission and fuel consumption rates of 
individual vehicles.  The combined model has to be used not with respect to single vehicles, 
but with respect to a large number of events (simulated observations) where vehicles have 
homogeneous characteristics (i.e. with the same speed range and the same value of the other 
parameters considered in the acceleration model).  Therefore, the applicability of the 
approach is limited to cases when the number of homogeneous events is large enough over 
space at a given time, and/or over time on a given link or set of links.  This is usually 
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verified if emissions are aggregated in a large network, or over a long period of time10 (as in 
the case of planning applications).  The proposed approach is then not applicable to 
problems that involve the modeling of hot spots or high temporal resolution phenomena. 
 
 
 

 
Figure 5-1: Probabilistic approach for the integration between dynamic emission models and non-microscopic 
dynamic traffic models.   
Note: road type is an example of the other possible parameters used in the acceleration model, in addition to 
speed range. 
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Because of power and traction limitations of vehicles, the potential for accelerating 
decreases as speed increases.  Decelerations are also limited by traction and braking factors.  
As these limitations impose bounds on accelerations/decelerations, they are usually not 
sufficient to describe the dynamics of vehicles. 

                                                 
10 Given the above assumptions on the speeds, even a single vehicle on a single link produces a large number 
of homogeneous events.  For example, a vehicle traveling on a 1 km link with a speed of 50 km/h produces 70 
events, one for each second of the traversal time. 
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Studies in the literature show that acceleration patterns might be dependent on speed 
range (Williams et al., 1999), road type, vehicle category, and driving characteristics 
(Hallmark et al., 2002; Fancher et al., 1998).  One possible method to model the acceleration 
consists in using a probabilistic distribution as a function of the speed and other parameters.  
The approach presented in Williams et al. (1999) comes close to achieving this goal, but 
lacks generality and specific statistics.   

In this section we present and implement a model recently developed in Abou Zeid et al. 
(2002), which we use in Section 5.3 to develop the expected emission rates.  First we present 
the model formulation.  Then we describe the data used for the model development.  Finally, 
we report the results. 

4� ��� !�	���������������

In Abou Zeid et al. (2002), acceleration is modeled as a random variable, for a given speed 
range and road type.  Although the calibrated parameters and the functional forms used in 
this model might be specific of the data used, the same methodology can be adopted to 
develop other acceleration probability distributions.  For example, the same methodology 
can be applied taking into account other parameters, in addition to road type, such as vehicle 
category and driver characteristics. 

The probabilistic modeling of acceleration distributions was conducted as follows.  For 
each road type and speed range (intervals of 10 km/h), a probability distribution was 
calibrated on the acceleration frequency obtained from the data.  Because acceleration and 
deceleration may have different behaviors, different probability distributions were 
calibrated.  The calibrated distributions are two half-normal distributions, expressed by the 
following equations: 
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(5.1a) 

 
 

(5.1b) 

where )(, af vr
−  and )(, af vr

+  are respectively the density functions of the deceleration and 
acceleration distributions.  In Equation 5.1, r  denotes the road type, v  denotes the speed 
range, a  denotes the acceleration, and −

vr ,σ , and +
vr ,σ  are the standard deviations of the 

distributions of a , given 0≤a  and 0>a  respectively. 
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In order to consider only physically feasible accelerations, the two half-normal 
distributions (5.1a) and (5.1b) are truncated at −

va  and +
va  respectively.  −

va  and +
va  

represent the extreme values of deceleration and acceleration, which in general, for a given 
vehicle category, depend on speed.  The two truncated half-normal distributions are then 
normalized in the intervals )0,( −

va  and ),0( +
va , which is done by dividing )(, af vr

−  and 

)(, af vr
+  by � −

−0

, )(
va vr daaf  and by � +

+va

vr daaf
0 , )(  respectively. 

The complete distribution of the accelerations/decelerations, denoted by )(,
* af vr , is 

obtained as follows.  The truncated and normalized distributions are weighted respectively 
with the probability of instances when 0≤a , denoted by −

vrP , , and the probability of 
instances when 0>a , denoted by +

vrP , .  )(,
* af vr  is then given by: 
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(5.2) 
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The data used for the model development was collected by the University of Michigan 
Transportation Research Institute, as part of an Intelligent Cruise Control (ICC) study 
(Fancher et al., 1998).  The intelligent cruise control was not functional during the first week 
of the study.  The model of acceleration is built on this real-world driving portion of the 
data.  108 randomly chosen drivers participated in the study, driving in counties of South 
Eastern Michigan that include major metropolitan areas as well as rural areas. 

The number of trips conducted by every driver varied between 20 and 60, where most 
trip durations were less than 30 minutes.  The road links were classified in the study in 
several road types: interstate highway, state highway, arterial, collector, light duty, high-
speed ramp, low-speed ramp, alley or unpaved, and unknown.  The drivers were classified in 
five categories, according to their driving behavior: ultraconservative, planner, flow 
conformist, hunter/tailgater, and extremist.  The same type of vehicle was used by all 
drivers: an instrumented 1996 Chrysler Concorde.  Therefore, the parameters of the 
distributions are specific to this type of vehicle and the model of acceleration correspond to 
this vehicle type only. 

In the development of the model of acceleration, a sub-sample of 18 drivers, 
representing all five driving behaviors, was considered.  With respect to road type, the 
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following four road types have been considered: interstate highways, state highways, 
arterials, and collectors.  These categories contain most of the observations.  Furthermore, 
for practical purposes, these road types cover most road types in the transportation networks 
considered in planning applications (except for on-ramps and off-ramps).   

4� �#� *�
���
�

Table 5.1 reports the standard deviations calibrated, as described in Abou Zeid et al. (2002), 
for every road type and speed range.  Table 5.2 reports the respective number of 
observations.  Figures 5-3 and 5-4 represent the values of Table 5.1 separately for 
accelerations and decelerations.  The following observations can be made: 
- As the speed increases, the variance of the acceleration and deceleration distributions 

decreases.  The only exception is the increase of the standard deviation from the 0–10 
km/h to the 11–20 km/h speed range.  This behavior is probably due to the common 
“lurch”11 that follows a light change, or to the stop-and-go traffic, or to the automatic 
transmission “creep”12 that accompanies very slow traffic. 

- The data show that, in the specific data used for the model calibration, road type has 
little effect on acceleration and deceleration variation.  While it is expected that stop and 
go conditions, characteristic of collectors and arterials, might lead to higher acceleration 
and deceleration values, the results actually indicate that highways have similar 
acceleration/deceleration standard deviations as those of arterials and collectors, and in 
some cases have even higher variations.  This observation is consistent with other results 
in the literature (LeBlanc et al., 1995). 
 

                                                 
11 “Lurch” is a sudden positive variation in acceleration. 
12 "Creep" is a very slow motion of the vehicle, usually at a constant speed.  This occurs because auto 
transmissions are in gear (even at stop) and do not go into neutral unless forced. 
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Table 5.1: Standard deviation of acceleration and deceleration as a function of speed range and road type. 
Acceleration Deceleration Speed 

range 
(km/h) 

Interstate 
highway 

State 
highway 

Arterial Collector Interstate 
highway 

State 
highway 

Arterial Collector 

0 – 10 0.971 1.004 0.972 0.914 1.119 1.020 1.176 1.089 
11 – 20 1.451 1.331 1.514 1.416 1.294 1.145 1.322 1.302 
21 – 30 1.325 1.261 1.334 1.165 1.108 1.000 1.128 1.067 
31 – 40 1.070 0.994 1.131 0.943 1.107 1.052 1.208 1.001 
41 – 50 0.904 0.757 0.897 0.739 0.884 0.805 0.801 0.686 
51 – 60 0.696 0.625 0.638 0.541 0.660 0.563 0.484 0.470 
61 – 70 0.569 0.559 0.516 0.473 0.515 0.452 0.378 0.383 
71 – 80 0.462 0.450 0.480 0.418 0.433 0.340 0.386 0.306 
81 – 90 0.427 0.413 0.400 0.375 0.374 0.308 0.346 0.277 
91 – 100 0.368 0.407 0.395  0.232  0.261  
101 – 110 0.351    0.228    
111 – 120 0.353    0.180    

 
Table 5.2: Number of observations of acceleration and deceleration for every speed range and road type. 

Acceleration Deceleration Speed 
range 
(km/h) 

Interstate 
highway 

State 
highway 

Arterial Collector Interstate 
highway 

State 
highway 

Arterial Collector 

0 – 10 319 356 1130 346 475 571 1775 578 
11 – 20 277 333 927 299 365 429 1353 438 
21 – 30 404 432 1476 618 502 551 1800 792 
31 – 40 364 358 1200 578 437 430 1305 810 
41 – 50 531 509 1870 920 582 751 2546 1759 
51 – 60 609 524 2408 1147 840 934 4588 2519 
61 – 70 514 430 1764 1080 913 870 3573 2216 
71 – 80 479 475 815 638 961 1178 1313 1530 
81 – 90 488 198 301 178 1025 360 452 401 
91 – 100 854 18 68  3673  117  
101 – 110 636    2192    
111 – 120 122    604    

 
To truncate and weight the half-normal distributions, −

va , +
va , −

vrP , , and +
vrP ,  are estimated.  

The extreme values of deceleration and acceleration are respectively: −
va =-5 m/s2 and +

va =5 
m/s2 for speed ranges from 0-10 to 71-80 km/h, −

va =-2.5 m/s2 and +
va =2.5 m/s2 for speed 

range 81-90 km/h, −
va =-1 m/s2 and +

va =1 m/s2 for speed range 91-100 km/h, −
va =-0.75 m/s2 

and +
va =0.75 m/s2 for speed  range 101-110 km/h, and −

va =-0.5 m/s2 and +
va =0.5 m/s2 for 

speed range 111-120 km/h.  These values are approximately the maximum values of 
deceleration and acceleration present in the database for each speed range.  −

vrP ,  and +
vrP ,  are 

estimated for each road type and speed range with the sample relative frequency respectively 
of 0≤a  and 0>a  from the database. 
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Figure 5-3:  Standard deviations of the acceleration distributions for every speed range and road type (from 
Abou Zeid et al., 2002). 

 

Figure 5-4:  Standard deviations of the deceleration distributions for every speed range and road type (from 
Abou Zeid et al., 2002). 

 
The error analysis conducted in Abou Zeid et al. (2002) confirms the hypothesis that the 
accelerations and decelerations are distributed as in Equation 5.2. As an example, Figure 5-5 
compares, for the road type arterial and for the speed range 0-10 km/h, the cumulative 
relative frequency from the data and the cumulative probability from the calibrated model of 
positive accelerations. Figures for medium and high speeds and other road types would 
indicate slightly different results. 
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Figure 5-5: Cumulative relative frequency and cumulative modeled probability of accelerations for the road 
type arterial and speed range (0-10) km/h (from Abou Zeid et al., 2002). 
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Now we describe how speed and road type dependent expected emission rates are generated 
applying EMIT to the above acceleration model. 

For a given emission species i  and vehicle category c , let ),(, ave ci  denote the emission 
rate as a function of vehicle speed v  and acceleration a .  ),(, ave ci  is calculated by using 
EMIT. 

Let vrcie ,,,  denote the expected emission rate for species i , vehicle category c , road type 
r  and speed range v .  By definition vrcie ,,,  is: 

[ ] � ⋅==
∈

2

121

)(),(),( ,
*

,,],[,,,

a

a
vrciciaaavrci daafaveaveEe  

(5.3) 

To calculate vrcie ,,, , the variable a  is discretized in the interval ],[ 21 aa , and Equation 
5.3 becomes: 

�
∈

⋅=
aSa

vrcivrci aavee )(),( ,,,,, π  (5.4) 

where: 
}2,23,,23,2{ 2211 hahahahaSa −−++= �  is the discretization interval. We 

adopt h = 0.1 m/s2. 
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Figures 5-6 and 5-7 depict vrcie ,,,  for the road types arterial and highway, both for vehicle 

category 9 (which is defined in Section 4.2.3).  As expected, vrcie ,,, is in general increasing 
with the vehicle speed.  In fact, the higher the speed, the higher the fuel consumption rate, 

and the higher the emission rates, which have a positive correlation with fuel rate (see 

Equation 4.6).  For CO , there is a rapid increase in the expected emission rate for high 

values of speed, due to enrichment conditions. 

vrcie ,,,  can be used to estimate the emissions generated by a traffic flow, as described in 

Section 5.1. 

We observe that as speed increases, emission rates increase, but travel time decreases.  

We are then interested in analyzing which of the two effects prevails in a hypothetic trip 
traveled at speed v.  Therefore, we also calculate the expected emission rates per km 

traveled, dividing the expected emission rates vrcie ,,,  by the speed v .  The results for the road 

types arterial and highway are depicted in Figures 5-6 and 5-7.  We note that vrcie ,,,  presents 

a relative minimum between 50 and 70 km/h, which in general corresponds to an absolute 
minimum in the expected emission rates per km traveled. 

The expected emission rates per km traveled of CO , HC , and xNO  are also compared 

with the corresponding emission rates from MOBILE6.  These are obtained using the 

MOBILE6 Tier 1 hot-stabilized basic emission rates (BERs) and the facility-specific speed 
correction factors developed in EPA (2001a) (see Section 3.1.2). 
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Figure 5-6: Expected emission rates in g/s (on the left) and in g/km (on the right) for road type arterial and 
vehicle category 9.  The expected emission rates in g/km of CO, HC, and NOx are compared with the facility-
specific emission rates from MOBILE6 (thin line). 
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Figure 5-7: Expected emission rates in g/s (on the left) and in g/km (on the right) for road type highway and 
vehicle category 9.  The expected emission rates in g/km of CO, HC, and NOx are compared with the facility-
specific emission rates from MOBILE6 (thin line). 
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In this chapter, we present a realization of the approach described in Chapter 5 to integrate 
dynamic emission models and non-microscopic dynamic traffic models.  A set of modeling 

tools is used to predict the emissions generated and the fuel consumed in a hypothetical case 

study involving a small traffic network.  An objective of this chapter is to test the potential 

of the methodology proposed in this thesis to predict the effects of congestion and emissions 
management policies.  This is shown by considering various scenarios of traffic conditions 

and management strategies.  The scenarios include situations with and without a traffic 

incident, and with and without Intelligent Transportation Systems (ITS) measures to 

alleviate congestion and its effects.   
This chapter is organized as follows.  Section 6.1 describes the modeling tools.  Section 

6.2 describes the case study data.  Section 6.3 analyzes the results. 
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Given a time-dependent O-D demand on a network, we want to estimate the total emissions 

and fuel consumption aggregated in space and/or time, as discussed in Section 5.1 of this 

thesis.  This section describes the set of modeling tools used.   
Figure 6-1 represents the types of modeling tools used, which are: 

1. a mesoscopic dynamic traffic model; 

2. an expected emission rates component; 

3. an integration component. 
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Figure 6-1: Set of models used for the prediction of fuel consumption and emissions on a traffic network. 
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The traffic model used is a simple simulator, designed, and implemented in C++, by Bottom 

(2000).  The model represents links as deterministic first-in-first-out (FIFO) single-server 

queues with given exit (service) rate and storage capacities.  The model represents the traffic 

in individual vehicles but does not attempt to accurately represent vehicle trajectories and 
dynamics within a link.  A description of the model can be found in Bottom (2000).  In this 

section we provide only the characteristics needed for the discussion related to the case 

study of this thesis.   

The model can represent two types of route guidance: (a) an ubiquitous (available at any 
node and at all times) route guidance available to a subset of equipped vehicles (possibly all 

vehicles), and (b) a short-range guidance, available on specific links, which can be accessed 

by any vehicles in the link.  Short time guidance is intended to represent technologies such 

as variable message signs (VMS).   

Mesoscopic 
dynamic traffic 

model 

- Link travel times of 
flows entering each 
link at all times 

- Road type of each 
link 

 

Expected emission 
rates component 

For each speed range 
and road type, 

expected emission and 
fuel consumption rates 

Total emissions and fuel 
consumption aggregated 

in space and/or time 

Integration 
component 

Network 
data 

Time-dependent 
O-D demand 
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Therefore, from a route guidance standpoint, traffic can be classified in two information 

classes: vehicles equipped with route guidance provision, and unequipped vehicles.  
Equipped vehicles know at each node of their trip the fastest path to their destination, based 

on consistent anticipated travel times.  Unequipped vehicles base their path choice decisions 

on background travel times, unless they arrive on a link where a VMS is available, at which 

time they receive the latest estimates of consistent anticipated travel times.  They reconsider 
their current path, and possibly proceed to a different new path.  All drivers are assumed to 

fully comply with the indication provided by the route guidance. 

The main inputs to the model are the traffic network configuration and the time-

dependent origin-destination (O-D) travel demand.  The traffic network configuration is 
defined in terms of geometry, link capacities, free-flow speeds, and presence of VMS.  The 

O-D demand is defined in terms of step-wise demand flow rates (vehicles/hour) for each O-

D pair and for each vehicle information class. 

The outputs of the model are, at each time instant of the simulation (i.e. at each second), 
the number of vehicles entering each link and their respective travel time to traverse that 

link. 

Since this traffic model currently does not allow representing multiple vehicle categories 

from an emission standpoint, the vehicle fleet is assumed to be composed by just one vehicle 
category (vehicle category 9, which is defined in Section 4.2.3).  Therefore, the effects of 

multiple vehicle categories simultaneously traveling in the network are not analyzed in this 

case study. 

5��� � �6�����	����

����*���
�����������

This tool is described in Section 5.3 of this thesis.  It uses a probabilistic model of 
acceleration and a dynamic emission model. 

The probabilistic acceleration model used is described in Section 5.2.  Its inputs are the 

link road types and vehicle speed ranges.  Its outputs are the probabilistic distributions of 

accelerations for each road type and speed range. 
The emission and fuel consumption model used is EMIT, which is described in Chapter 

4.  Its inputs are second-by-second speed and acceleration and vehicle category (though in 

our case study the vehicle fleet is assumed to be composed by just category 9 vehicles).  The 

outputs of the emission model are second-by-second fuel consumption and emission rates of 

2CO , CO , HC , and xNO . 
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This component calculates the expected emission and fuel consumption rates for each 

speed range.  This is obtained by combining EMIT and the probabilistic acceleration model.  
The results for arterials and interstate highways are shown in Figures 5-6 and 5-7. 

The expected emission and fuel consumption rates can be calculated in advance (off-

line), and then used as an input to the integration component.  For the calculation we used a 

spreadsheet. 
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This component links the outputs of the traffic model and the expected emission rates 

component to calculate the total emissions generated and fuel consumed by the traffic flow.  

The component, which we coded in C++, performs the following three steps in order: 

 
Step 1 – The first step is to calculate at each second the number of vehicles traveling on each 

link, and their speeds.  This information is obtained from the output of the traffic 

model (number of vehicles entering each link at each second, and their travel times 

to exit the link), assuming that each vehicle j  travels at a speed approximately 
equal to ljllj ttLv ,, = during its entire traversal of link l  (see Section 5.1).  Figure 

6-2 illustrates this calculation with an example.  The top table represents the output 

of the traffic model, while the bottom table represents the output of Step 1.  At a 

given time t , it is possible to have, on the same link, vehicles that entered at 
different times, and traveling at different speeds.  To represent this, we replicate 

the information related to each group of vehicles entering a link at a given entrance 

time et  for each time t  between their entrance time and their exit time.  For 

example, in Figure 6-2, the 2 vehicles entering link 1 (1 km long) at time 1 have a 
travel time equal to 40 seconds.  We want to represent that, from second 1 up to 

second 40, on link 1 there are 2 vehicles traveling at a speed equal to 

1km/40s=90km/h.  Therefore, in the output table, we replicate the record 

containing the number of vehicles (2) and their speed (90) for all times from 1 to 
40.  Doing the same for all entrance times, we will obtain, for each time, the 

information (number, speed) of all the groups of vehicles traveling on each link. 

Step 2 – Given the vehicle speeds calculated in Step 1, the integration component multiplies, 

at each time t , the number of vehicles traveling on link l  (of road type r ) at speed 

ljv ,  by the expected emission rates for speed ljv ,  and road type r .   



 115

Step 3 – Finally, the integration component aggregates the results over time, summing travel 

times, emissions, and fuel consumption over the vehicles traveling on each link, 
and then over all network links. 

 
 

 

 

These steps are designed in a general way, that can be easily extended to cases when the 
spatial and temporal distributions of the emissions along the links are considered.  If, as in 

this case study, the final outputs are the total emissions aggregated over time, similar 

calculations can be done in other simpler ways. 
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This section summarizes the input and output data involved in a run of the tools.  In order to 

estimate the effects on travel times, emissions, and fuel consumption, of a scenario of traffic 

conditions and management strategies, it is necessary to run the traffic model and the 

 
               

Link l  Link 
length 

lL  (km) 

Entrance 

time et  
(s) 

Number of vehicles 
entering link l  at 

time et  

ljtt ,  

(s) 

1 1 1 2 40 
1 1 2 0 - 
1 1 3 10 50 
1 1 4 7 80 

 
Link l  Time t  

(s) 
Number of vehicles 
traveling on link l  

at time t  

ljv ,  

(km/h) 

1 1 2 90 
1 2 2 90 
1 3 2 90 
1 3 10 72 
1 4 2 90 
1 4 10 72 
1 4 7 45 

…
…

…
 

…
…

…
 

…
…

…
 

…
…

…
 

 

Figure 6-2: Example of calculation of the number of vehicles traveling on each link at each 
time step and their speeds. 
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integration component.  The expected emission rates are generated in advance, since they do 

not depend on the specific case study, and then used as input data to the integration 
component.  Figure 6-3 shows the input data to and output data from the traffic model and 

the integration component. 

 
 
Traffic model 
 
Input data: 

Network data: 
- Network topology 
- Attributes of the links: storage capacity, free-flow speed, length, 

number of lanes, and per lane exit capacity 
- VMS locations 
O-D demand data: 
- Time-dependent step-wise O-D demand, where the time index refers to 

the desired departure time from the origin 
 
Output data: 

- Number of vehicles entering each link at each time step and their travel 
times to exit the link 

  
Integration component 
 
Input data: 

Traffic data: 
- Number of vehicles entering each link at each time step and their travel 

times to exit the link 
Emissions data: 
- Expected emission and fuel consumption rates 

 
Output data: 

- Total travel times, emissions, and fuel consumption aggregated over 
time by link and over all networks links 

 
Figure 6-3: Input and output data of the traffic model and the integration component. 
The expected emission rates component is not represented because it is run in 
advance and it does not depend on the specific case study. 
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In this section we describe the network, the time-dependent O-D demand, and the scenarios 

that characterize the case study. 
Figure 6-4 depicts the network used.  The network contains 14 links and 9 nodes.  All 

links are 1 km long except links 2 and 9, which are 1.5 km long.  Vehicles are assumed to be 

7.5 m long, thus the link storage capacity is about 133 vehicles for 1 km long links, and 200 

vehicles for 1.5 km long links.  The free-flow speeds of all links are equal to 100 km/h.  
Except for the centroid connectors (link 0 and 7), all links have a flow (and hence exit) 
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capacity, in normal conditions, equal to 3,600 vehicles/hour.  The centroid connectors are 

considered to have length 0 and infinite storage capacity.  All links are assumed to be 
arterials.   

 

 
Figure 6-4: Network configuration of the case study. 

 
The demand is present only from node A to node B (centroids).  This O-D pair is connected 

by the following 11 paths: two 3 km long paths (1-4-6, 2-9, and 3-12-13), four 3.5 km long 

paths (1-5-9, 2-8-6, 2-10-13, and 3-11-9), and four 4 km long paths (1-5-8-6, 1-5-10-13, 3-

11-10-13, and 3-11-8-6). 
The O-D demand rate is equal to 10,800 veh/h, and its duration is equal to 20 minutes.  

The simulation ends when all vehicles have left the network.  For simplicity, we assume that 

all vehicles belong to vehicle category 9 (defined in Section 4.2.3).  Since the network is 

constituted of arterials, the expected emission rates shown in Figure 5-6 are used. 
 

The system of models, presented in Section 6.1, is run for five scenarios.  We investigate the 

change in total travel times, fuel consumption, and emissions due to an unplanned road 

blockage in the network.  The blockage is simulated by reducing the capacity of the link 
where the blockage occurs throughout the entire simulation period.  This might be thought 

of as an unplanned road blockage due to an incident that occurs during the night before the 

trip (when the network is empty), and about which trip makers only become aware through 

VMS or if their vehicle is equipped with route guidance provision.  Unless they arrive on a 
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link where a VMS is available, unequipped vehicles base their path choice decisions on 

background travel times.  The background travel times are those experienced in the same 
network given the same travel demand, and in absence of incidents, assuming that all users 

have complete information on the actual travel times. 

We want to model also the impact of ITS measures implemented to mitigate the 

congestion induced by the incident.  The ITS measures considered are the VMS and the 
ubiquitous guidance for a given percentage of vehicles equipped with route guidance 

provision. 

The scenarios considered are the following: 

- Scenario 0 – This is the background scenario, without incident, and with route guidance 
to all vehicles.  It simulates a situation where all users have become aware of the fastest 

path to their destination, because of their experience acquired, for example, from every-

day trips on the same network. 

- Scenario 1 – This is a scenario with incident on link 6 (modeled by reducing the capacity 
of link 6 from 3,600 veh/h to 1,800 veh/h), with no VMS, and no vehicles equipped with 

route guidance provision. 

- Scenario 2 – This is a scenario with the same incident on link 6 (modeled by reducing 

the capacity of link 6 from 3,600 veh/h to 1,800 veh/h), with no VMS, and with 25% 
vehicles equipped with route guidance provision, and 75% unequipped vehicles. 

- Scenario 3 – This is a scenario with the same incident on link 6 (modeled by reducing 

the capacity of link 6 from 3,600 veh/h to 1,800 veh/h), with a VMS on link 1, and no 

vehicles equipped with route guidance provision. 
- Scenario 4 – This is a scenario with the same incident on link 6 (modeled by reducing 

the capacity of link 6 from 3,600 veh/h to 1,800 veh/h), with a VMS on link 1, and with 

25% vehicles equipped with route guidance provision, and 75% unequipped vehicles. 
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Appendix B reports the outputs of the traffic model (time-dependent link volumes and link 

travel times) for the simulated scenarios.  Depending on the scenario, the duration of the 
simulation varies from 1,344 seconds (scenario 0) to 2,575 seconds (scenario 1). 

Appendix C reports, for each link, the results for all scenarios aggregated over time on 

each link.  The measures reported are total fuel consumption, total tailpipe emissions of 

2CO , CO , HC , and xNO , total travel time, and total number of vehicles.  These results are 
useful in the case the analyst is interested in looking at the individual links.  For example, 



 119

these results can be used to analyze the effects of the scenarios on single links in the 

proximity of particularly sensitive facilities (e.g. an hospital or a school). 
Table 6.1 and Figure 6-5 report, for all scenarios, the results aggregated on all network 

links and over time.  The measures reported are: total fuel consumption, total tailpipe 

emissions of 2CO , CO , HC , and xNO , and total travel time.  In Figure 6-5, as well in 

Appendix C, the measures are represented with different units, in order to visualize them all 
in the same plot across the various scenarios. 

 

First, we analyze the variations in total travel time across the scenarios. 

Scenario 0 represents (as shown in Figure B-1) a user optimum situation13.  In this 
scenario, the O-D demand is up to the capacity of the network.  A relatively small increase 

of the O-D demand or a reduction of the network capacity would increase significantly the 

travel times. 

The comparison between scenario 0 and scenario 1 shows that in case of incident, when 
the users are not aware of it, the congestion increases dramatically (the total travel time 

triplicates). 

In scenarios 2, 3, and 4, the effects of the incident are alleviated as a result of the route 

guidance.  The total travel times are reduced by approximately 40% in all scenarios, 
compared with scenario 1. 

The total travel times of these three scenarios are very similar (the maximum difference 

is approximately 1.5%).  The different levels of information to the users provided by the 

ubiquitous route guidance and/or VMS do not correspond to significantly different total 
travel times.  Reasons for this can be the following: 

- The users’ optimal route choice does not necessarily correspond to system optimal 

criteria.  Route guidance optimizes the path choice based on the user optimum, while 

total travel time is minimized if the optimization is based on system optimum. 
- The effectiveness of the VMS is strictly related to its location.  In this case study, the 

VMS is very effective because is located on the first link of the most traveled path that 

contains the link where the incident occurs. 

 
Now we analyze the variations in terms of total fuel consumption and total emissions across 

the scenarios. 

                                                 
13 Since the traffic model assumes some stocasticity in the users’ path choice, also the longer paths are used by 
a small number of users. 
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The total fuel consumption and the total emissions of 2CO  follow the trend of the total 

travel time.  For these species, scenario 0 and scenario 1 present respectively the lowest and 
the highest values, while scenarios 2, 3, and 4 present intermediate values.  For CO , the 

total emissions in scenarios 0 and 1 are comparable, while scenarios 2, 3 and 4 produce 

lower emissions.  The higher total emissions of scenario 0, compared with scenarios 2, 3, 

and 4, are probably due to the tradeoff between the values of the expected emission rates and 
the total travel times, during which the vehicles generate the emissions.  In scenario 0, the 

vehicles spend less time in the network, because there is no congestion.  However, their 

speeds are significantly greater, and the values of the expected emission rates, which 

increase significantly at high speeds (see Figure 5-6), make higher the total emissions. 
For HC  and xNO , the total emissions in scenarios 0, 2, 3, and 4 are comparable.  

Slightly higher HC  and xNO  emissions are predicted for scenario 1.  A reason for the low 

sensitivity of the total emissions of these species can be found in the low sensitivity to speed 

of their expected emission rates per km (see Figure 5-6). 
 

 
Table 6.1: Total fuel consumption, tailpipe emissions, and travel time (tt) aggregated on 
all network links and over time for every scenario modeled. 

 

scenario fuel (g) CO2 (g) CO (g) HC (g) NOx (g) tt (s)
0 543,024 1,697,068 14,059 297 1,307 484,209
1 928,030 2,889,707 14,568 402 1,530 1,531,216
2 679,980 2,130,719 10,835 347 1,276 901,880
3 687,733 2,146,816 10,895 362 1,303 886,212
4 675,462 2,119,650 10,041 352 1,270 902,277

 

Figure 6-5: Total fuel consumption, tailpipe emissions and travel time (tt) aggregated on all network links and 
over time for every scenario modeled. 
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In this chapter, we summarize the main contributions and results of this thesis, and we 

identify limitations that can be addressed in future research and other research areas that 

have not been explored in this thesis. 

 
In the first main part of this thesis, we developed and implemented EMIT, a dynamic model 

of emissions ( 2CO , CO , HC , and xNO ) and fuel consumption for light-duty vehicles.  The 

model is derived from two emissions modeling approaches (regression-based and load-

based), and effectively combines some of their respective advantages.  EMIT has been 
calibrated and validated for two vehicle categories.  The model runs fast and is relatively 

simple to calibrate.  The results for the two categories calibrated indicate that the model 

gives reasonable results compared to actual measurements as well to results obtained with 

CMEM, a state-of-the-art load-based emission model.  In particular, the estimation 
capabilities of the model are highest for fuel consumption and carbon dioxide, good for 

carbon monoxide and nitrogen oxides, and less desirable for hydrocarbons. 

Several questions for future research related on EMIT are the following:  

1. EMIT has been developed and calibrated for hot-stabilized conditions with zero road 
grade, and without accessory usage.  The model does not represent history effects, such 

as cold-start emissions and hydrocarbon enleanment puffs.  Future research should 

address how to overcome these limitations, in order to provide greater generality to the 

model.  In the conclusions of Chapter 4 of this thesis (Section 4.6) we propose 
modifications to the model to include road grade, cold starts and hydrocarbon 

enleanment puffs.  These potential modifications can be realized relatively easily.  How 
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to make the model take account of accessory usage appears, however, to be a more 

challenging question.   
2. The introduction of history effects in the emission model should be complemented with 

an investigation of how the integration with non-microscopic traffic models would be 

affected by this enhancement. 

3. EMIT needs to be calibrated for the other categories present in the NCHRP vehicle 
emissions database.  Moreover, in order to represent the actual emissions sources present 

on roadways, other databases should be acquired and used for the model calibration, 

including data on heavy trucks, buses, more recent vehicles than those represented in the 

NCHRP database, and on-road measurements.   
4. The model can be extended to other emission species, such as particulate matter and air 

toxics, when data are available. 

 

In the second main part of this thesis, we proposed an approach to integrate dynamic 
emission models with non-microscopic dynamic traffic models.  The latter models do not 

estimate vehicle acceleration.  The proposed approach requires the calculation of expected 

emission and fuel consumption rates.  These are obtained by combining a dynamic emission 

model with a probabilistic acceleration model.  The approach does not model trajectories of 
single vehicles.  Therefore, the applicability of this approach is limited to large spatial 

scales, which arise for instance in transportation planning applications.  The calculation of 

the expected emission and fuel consumption rates was implemented using EMIT and an 

experimental probabilistic acceleration model.  In the latter model, acceleration is modeled 
as a random variable, for a given vehicle speed range and road type. 

Future research should address the dependence of acceleration on other parameters, such 

as driver characteristics and vehicle category.  In particular, driver behavior data should be 

investigated because they can have important impact on emissions.  This would require the 
acquisition of additional appropriate data. 

 

In the third part of this thesis, using the above approach, we combined the developed 

emission model and a mesoscopic dynamic traffic model to assess the impact of dynamic 
traffic management strategies on travel times, emissions, and fuel consumption.  This was 

done on a small hypothetical case study and using route guidance as a traffic management 

technology. 

Future applications of the combined set of models could cover more realistic and large 
networks, and consider a variety of policies, particularly policies with enforcement 
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mechanisms (such as congestion pricing and signal control) and emissions as primary 

control objective. 
The effects of route guidance in the various scenarios were assessed from the point of 

view of total emissions ( 2CO , CO , HC , and xNO ) and total fuel consumption aggregated 

over the whole analysis period.  These assessment criteria are only one of many other 

possible criteria.  For instance, total waiting time in queues could be considered, in addition 
to the total travel time.  The temporal and spatial dimensions may also be significant.  In 

fact, effects on human health are related with the concentration of the pollutants in the air, 

that depends on the distribution over time and space of the emissions.  Moreover, using data 

on land use and demographic density, it would be interesting to evaluate the degree of 
exposure of the population to the emissions for a given traffic management strategy. 

 
Other areas that this thesis did not explore, but that are worth the investigation are: 
1. Compare the proposed approach to integrate dynamic emission models and non-

microscopic traffic models, to other approaches in the literature.   

2. Develop other integrated models based on EMIT, but using other traffic models, 
including microscopic models and mesoscopic models that represent the variation of the 

speed within a link.  An interesting aspect of this research direction would be the 

comparison of the computational efforts and the numerical accuracy of results obtained 

by each type of model. 
3. Investigate the problem of fleet composition from an emission standpoint.  Traffic 

models either do not represent vehicle categories, such as the mesoscopic model that we 

used in this thesis, or classify vehicles in coarse categories (i.e. small cars, large cars, 

trucks, buses).  On the other hand, emission models generally need more accurate 
information on the vehicles, such as mileage, power/weight ratio, and model year.  Most 

importantly, it is relevant to quantify the population of high emitters.  Therefore, it is 

important to include more precise fleet information in traffic models or to develop 

statistical mapping systems between the traffic-relevant categories and the emission-
relevant categories.  This is an important aspect in order to estimate real-world 

emissions. 

4. Build a comprehensive suite of analysis and modeling tools that includes a variety of 

types of traffic as well emission models.  The suite can be a fundamental component of 
decision support systems for the generation, assessment and optimization of policies to 

alleviate congestion and the environmental impacts of road traffic.  The modeling tools 

could be used in an integrated fashion.  For example, mesoscopic models could be used 
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to analyze a large network, while microscopic models could be used to generate more 

detailed information on single intersections considered individually. 
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This appendix reports information about the vehicles contained in the NCHRP vehicle 

emissions database, which is used to calibrate EMIT, as described in Sections 4.2.1 and 

4.2.2. 
 

The vehicle classification identified in Barth et al. (2000) was adopted with some minor           

modification.  The classification of individual vehicles was partly revised, with particular 

attention to high emitters, which we considered misclassified in a number of cases.  In this 
appendix, we present the revised classification.  The fields reported are: 

- Category – The same 26 categories used in the original database are adopted.  We 

divided the original category 22 (bad catalyst) it into two separate categories (cars and 

trucks).  The definition of the categories is reported in Table 4.1. 
- Used for composite vehicle – An ‘x’ indicates that the vehicle is used in our compositing 

procedure 

- Vehicle ID – Vehicle identification number used in the original database 

- Model name 
- Model year 

- Mass (lb) 

- Tier – This field indicates the emission standard for which the vehicle is certified (see 

Section 2.1.2 for the definition of the emission standards). 
- Vehicle type – This field indicates if the vehicle is a car or a truck 

- State – The origin state of the vehicle 

- Odometer – The odometer reading on the test date 

- FTP, MEC01, and US06 – Each column indicates if the database contains engine-out (E) 
and/or tailpipe (T) data, respectively for the driving cycles FTP, MEC01, and US06. 
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In this appendix, we report the outputs of the traffic model (time-dependent link volumes 

and link travel times) for the scenarios simulated in the case study of Chapter 6.  The 

description of the traffic model can be found in Section 6.1.1.  The description of the 
scenarios can be found in Section 6.2. 
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Figure B-1: Link travel times for scenario 0. 
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Figure B-2: Link volumes for the scenario 0.
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Figure B-3: Link travel times for the scenario 1. 
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Figure B-4: Link volumes for scenario 1. 
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Figure B-5: Link travel times for scenario 2. 
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Figure B-6: Link volumes for scenario 2. 
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Figure B-7: Link travel times for scenario 3. 
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Figure B-8: Link volumes for scenario 3. 
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Figure B-9: Link travel times for scenario 4. 
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Figure B-10: Link volumes for scenario 4. 
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In this appendix, we report, for the scenarios simulated in the case study of Chapter 6, the 

results for each link, aggregated over time.  The measures reported in Figures C-1 through 

C-5 are total fuel consumption, total tailpipe emissions of 2CO , CO , HC , and xNO , total 
travel time, and total number of vehicles.  These results are useful in the case the analyst is 

interested in looking at the effects of the scenarios on single links.   

The description of the case study and the scenarios can be found in Section 6.2. 

 
 

 

 

 

 Figure C-1: Total fuel consumption, tailpipe emissions, and travel time (tt) on link 0 for every scenario 
modeled. 
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Figure C-2: Total fuel consumption, tailpipe emissions, flow, and travel time (tt) on links 1, 2, and 3 for every 
scenario modeled.
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Figure C-3: Total fuel consumption, tailpipe emissions, flow, and travel time (tt) on links 4, 5, and 6 for every 
scenario modeled. 
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Figure C-4: Total fuel consumption, tailpipe emissions, flow, and travel time (tt) on links 8, 9, and 10 for every 
scenario modeled. 
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Figure C-5: Total fuel consumption, tailpipe emissions, flow, and travel time (tt) on links 11, 12, and 13 for 
every scenario modeled. 
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