
Understanding Expressive Action

by

Christopher R. Wren

B. S. in C. S. & E., Massachusetts Institute of Technology (1993)
M. S. in E. E. & C. S., Massachusetts Institute of Technology (1996)

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

March 2000

c© Massachusetts Institute of Technology 2000. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 1, 2000

Certified by. .
Alex P. Pentland

Academic Head, Program in Media Arts & Sciences
Professor of Media Arts & Sciences

Thesis Supervisor

Accepted by .
Arthur C. Smith

Chairman, Department Committee on Graduate Students

2

Understanding Expressive Action
by

Christopher R. Wren

Submitted to the Department of Electrical Engineering and Computer Science
on May 1, 2000, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

We strain our eyes, cramp our necks, and destroy our hands trying to interact with computer
on their terms. At the extreme, we strap on devices and weigh ourselves down with cables
trying to re-create a sense of place inside the machine, while cutting ourselves off from the
world and people around us. The alternative is to make the real environment responsive to
our actions. It is not enough for environments to respond simply to the presence of people
or objects: they must also be aware of the subtleties of changing situations. If all the spaces
we inhabit are to be responsive, they must not require encumbering devices to be worn and
they must be adaptive to changes in the environment and changes of context.

This dissertation examines a body of sophisticated perceptual mechanisms developed in
response to these needs as well as a selection of human-computer interface sketches de-
signed to push the technology forward and explore the possibilities of this novel interface
idiom. Specifically, the formulation of a fully recursive framework for computer vision
called Dyna that improves performance of human motion tracking will be examined in
depth. The improvement in tracking performance is accomplished with the combination of
a three-dimensional, physics-based model of the human body with modifications to the pixel
classification algorithms that enable them to take advantage of this high-level knowledge.
The result is a novel vision framework that has no completely bottom-up processes, and is
therefore significantly faster and more stable than other approaches.

Thesis Supervisor: Alex P. Pentland
Title: Academic Head, Program in Media Arts & Sciences
Professor of Media Arts & Sciences

3

4

Dedicated to:
Donna Khodarahmi Wren, M.D.

my love, forever.

5

6

Contents

1 Philosophical Foundations 15

1.1 Claims . 15

1.1.1 Embodiment . 16

1.1.2 Recursion . 17

1.1.3 Classification . 18

1.1.4 Expression . 19

1.2 Expression and Context . 19

1.2.1 T’ai Chi . 19

1.2.2 Wakka . 20

1.2.3 Netrek Collective . 20

1.3 Document Structure . 21

2 Theoretic Foundations 23

2.1 A Classic Observer . 24

2.2 A Lack of Control . 26

2.3 Estimation of Control . 28

2.4 Images as Observations . 29

2.5 Sumarry . 30

3 Background 33

3.1 Particle Filtering . 34

3.1.1 Recent Work on Condensation . 35

7

3.2 Analysis-Synthesis . 36

3.2.1 Overview of Analysis-Synthesis . 36

3.2.2 The Feed-Forward Nature of Analysis 37

3.2.3 Lack of System Dynamics . 39

3.2.4 How Real Systems Address These Shortcomings 40

3.3 Prior Recursive Systems . 41

3.4 Summary . 42

4 Perceptual Machinery 43

4.1 The Observation Model . 44

4.1.1 Blob Observations . 44

4.1.2 Frame Interpretation . 46

4.1.3 Model Update . 46

4.1.4 A Compact Model . 46

4.1.5 Recovery of a Three Dimensional Model 47

4.2 Modeling Dynamics . 49

4.2.1 Hard Constraints . 49

4.2.2 Soft Constraints . 56

4.2.3 Observation Influence . 57

4.3 The Inverse Observation Model . 57

4.4 A Model for Control . 60

4.4.1 A Model for Control . 60

4.4.2 Multiple Behavior Models . 62

4.4.3 Hidden Markov Models of Control 62

4.4.4 Behavior Alphabet Auto-Selection 63

4.5 Conclusion . 65

5 Results 67

5.1 Tracking Results . 67

8

5.2 Applications . 70

5.2.1 T’ai Chi . 70

5.2.2 Whack-a-Wuggle . 72

6 Future Directions 83

6.1 The Netrek Domain . 83

6.2 Initial Integration: Ogg That There . 85

6.3 Next Generation . 88

6.3.1 Wizard of Oz . 88

6.4 Future Work . 88

7 Conclusion 93

A Dynamics 95

A.1 Introduction . 95

A.2 Six Degree of Freedom Motion . 95

A.2.1 Force Conversion . 97

A.2.2 Representations for Rotational Motion 97

A.3 Constrained Motion . 97

A.4 Simulation Results . 98

B Classification 101

B.1 Definitions . 101

B.2 Example . 102

B.3 Specialized Classifiers . 103

B.3.1 Maximum A Posteriori Probability Classifier 103

B.3.2 Maximum Likelihood Classifier . 104

C Classical Kalman Filtering 105

C.1 LMMSEE . 105

9

C.2 Definition . 106

C.3 Derivation . 108

C.4 Summary . 110

D Perspective Transform Estimation 111

D.1 Deriving the Criminisi Equation . 112

D.2 The Solution . 113

10

List of Figures

2-1 A systems view of the human body. 23

2-2 Classic observer architecture . 24

2-3 An Observer of the human body can’t access u 27

2-4 An observer that estimates û as well as x̂ 28

2-5 Feature Extraction between image observations and the Observer. 29

2-6 The Observer driving a steerable feature extractor. 30

3-1 System diagram of an Analysis-Synthesis tracker 37

3-2 System diagram of a Recursive Filter . 38

3-3 Path of a convolution tracker over an image. 39

3-4 Prior information used in convolution tracker 39

4-1 The Recursive Filtering framework . 44

4-2 A person interpreted as a set of blobs. 45

4-3 The hand as an iso-probability ellipse. 47

4-4 The hand as a 3-D blobject. 48

4-5 Constraint Force Example . 50

4-6 Zero Work Constraint Force Example . 51

4-7 Modular Constraints . 53

4-8 Structure of the Constraint Jacobian . 55

4-9 Projecting a 3-D blob into a 2-D image plane. 58

4-10 Scaled-Orthographic projection approximation for Σ?
k 60

11

4-11 Circular hand motion example . 61

4-12 Cogno Alphabet-selection pipeline . 64

5-1 Visual idnput and corresponding dynamic model pose 68

5-2 Effect of behavior models on tracking . 68

5-3 Response to Modeled Constraint . 69

5-4 Response to Un-Modeled Constraint . 70

5-5 Tracking performance on a sequence with significant occlusion. 74

5-6 T’ai Chi Intro . 75

5-7 T’ai Chi Instruction . 75

5-8 Clean T’ai Chi Tracking . 76

5-9 T’ai Chi Tracking Failure . 77

5-10 Repaired T’ai Chi Tracking . 78

5-11 Wakka Intro . 79

5-12 Gesture Recognition in Whacka . 80

5-13 Style Examples in Whacka . 80

5-14 Intentionality Alphabet . 81

6-1 Netrek Screenshot . 84

6-2 Netrek Collective Interface . 85

6-3 Netrek Collective System Diagram . 86

6-4 Netrek Collective Vignette . 89

6-5 Netrek Collective wizard console . 89

6-6 Explaining a feint through gesture . 90

6-7 Space warping for navigation . 91

6-8 Space warping for action selection . 92

A-1 Gyroscope Simulation . 99

A-2 Gyroscope Precession . 100

12

A-3 Gyroscope Nutation . 100

B-1 Classification as a transmitter and receiver in noise. 101

B-2 Classification Domain . 101

B-3 Scalar classification example with two hypotheses. 102

C-1 Overall structure of the Kalman filter. 107

D-1 Perspective Transform Estimation . 111

13

14

Chapter 1

Philosophical Foundations

People live and work. We move through space and organize our environment. We dance.
Our most important experiences are interactions with other people, and we spend a lifetime
learning to communicate. Our perceptual capabilities and limitations shape the way we
perceive the people and world around us.

Today’s computers have no idea that any of this is going on.

We strain our eyes, cramp our necks, and destroy our hands trying to interact with these
machines on their terms. At the extreme, we strap on devices and weigh ourselves down
with cables trying to re-create a sense of place inside the machine, while cutting ourselves
off from the world and people around us.

The alternative is to make the real environment responsive to our actions. When computers
start to possess the same perceptual competencies that we use to communicate and interact,
amazing things start to happen: computers disappear into the environment, and the things
we do naturally suddenly become the interface. Interactions with the environment that were
previously only meaningful to us are now also meaningful to the environment. Previously
inert objects evolve into useful tools. Dead spaces come alive.

It is not enough for environments to respond simply to the presence of objects, they must
also be aware of the subtleties of changing situations. If all the spaces we inhabit are
to be responsive, they must not require encumbering devices to be worn, or unreason-
able constraints to be placed on the environment. They must be adaptive to changes in
the environment and changes of context. All these things indicate that these spaces will
require significant perceptual capabilities. The required computational tools include com-
puter vision, audio understanding including speech and prosody understanding, and other
specialized, remote sensing technologies.

1.1 Claims

This dissertation examines a body of sophisticated perceptual mechanisms developed in
response to these needs as well as a selection of human-computer interface sketches de-

15

signed to push the technology forward and explore the possibilities of this novel interface
idiom. Specifically, the formulation of a fully recursive framework for computer vision
called Dyna that improves performance of human motion tracking will be examined in
depth. The improvement in tracking performance is accomplished with the combination of
a three-dimensional, physics-based model of the human body with modifications to the pixel
classification algorithms that enable them to take advantage of this high-level knowledge.
The result is a novel vision framework that has no completely bottom-up processes, and is
therefore significantly faster and more stable than other approaches.

The Dyna framework allows every level of processing to take advantage of the constraints
implied by the embodiment of the observed human. Higher level processes take advantage
of these constraints explicitly in the process of reestimating the body state, or pose. Lower
level processes gain the advantage of the distilled body knowledge in the form of the pre-
dicted observations made possible by temporal constraints. These predictions enable more
robust classification decisions which in turn result in more accurate pose estimates. Sys-
tems which omit the full model will fail to capture important aspects of human motion and
their performance will suffer as a result. Understanding embodiment is crucial to perceiving
human motion. Systems that rely on any completely bottom-up processing will incur un-
acceptable performance penalties to recover from inevitable low-level errors, if it is possible
to recover at all. Recursive frameworks are also crucial to perceiving human motion.

1.1.1 Embodiment

The fact that people are embodied places powerful constraints on their motion. The laws of
physics, the construction of the human skeleton, the layout of the musculature, the various
levels of organization within the nervous system, the context of the task, and even forces
of habits and culture all conspire to limit the possible configurations and trajectories of the
human form. The kinematic constraints of the skeleton are instantaneous. They are always
true (we hope), and serve to bound the domain of feasible estimates. The rest of these
constraints exist to some degree in the temporal domain: given past observations, they tell
us something about future observations.

The times scales of these phenomenon cover a wide range. The laws of physics apply in
a continuous, instantaneous fashion. The subtle limits of muscle action may play out on
time scales of milliseconds. Temporal structure due to the nervous system may range from
tenths of seconds to minutes. Depending on the definition of a task, the task context may
change over fractions of a minute or fractions of an hour. Subtle affects of affect might
change over hours or even days. Habits and cultural norms are developed over a lifetime.

A truly complete model of human embodiment would encompass all of these things. Un-
fortunately many of these phenomenon are currently beyond the scope of current modeling
techniques. Neuroscience is only beginning to explain the impact of the structures of the
peripheral nervous system on motion. Models of the effect of higher processes such as affect,
task and culture are even farther away.

The things that we can model explicitly include the instantaneous geometric constraints
(blobs, perspective, and kinematics) and the dynamic constraints of Newton’s Laws. Blobs

16

represent a visual constraint that we are composed of parts and those parts appear in images
as connected, visually coherent regions. Perspective constraints model the relationship
between multiple views of the human body caused by our 3-D nature and the perspective
projection of the world onto a CCD by a lens inside a camera. Kinematic constraints are
the skeletal or connective constraints between the parts of the body: the length of a limb,
the mechanics of a joint, and so on.

Newton’s Laws represent a set of dynamic constraints: constraints in time. The assumption
of bounded forces in the system implies bounded accelerations. Bounded accelerations in
turn imply smoothness of the pose trajectory in time. Since the articulated frame of the
body is complex and involves revolute joints, this isn’t simply a smoothness constraint.
It is a shaping function that is related to the global mass matrix which is a non-linear,
time-varying function of the pose.

The rest of the constraint layers (neuromuscular, contextual, and psychological) can cur-
rently only be modeled statistically through observation. Fortunately the recursion dis-
cussed below offers a natural way to factor out these influences and treat them separately
from the geometry and physics. Unfortunately, further factorization of the signal is a poorly
understood problem. Since the signals occupy unknown, likely overlapping frequency bands,
this leads to hard problems in system identification. As a result, in this work, these separate
influences will be treated as a single, unified influence. This is obviously a simplification,
but it is curently a necessary simplification.

1.1.2 Recursion

The geometric constraints discussed above are useful for regularizing pose estimation, but
the dynamic constraints provide something even more important. Since they represent
constraints in time they allow prediction into the future. This is important because on the
time scale of video, where new observations are measured every 33ms, physics is a powerful
predictor.

With a model of the observation process, predictions of 3-D body pose in the near future
can be turned into predictions of observations. These predictions can be compared to
actual observations when they are made. Measuring the discrepancy between prediction
and observation provides useful information for updating the estimates of the pose. These
differences are called innovations because they represent the aspects of the observations
that are unexplained by the model.

This link between model and observation is the powerful idea behind all recursive filters,
including the well known Kalman filters. Kalman filters are the optimal recursive filter
formulation for the class of problems with linear dynamics, linear mappings between state
and observation, and white, Gaussian process noise. Extended Kalman filters generalize the
basic formulation to include the case of analytically linearizable observation and dynamic
models.

Recursive filters are able to cope with data in real time thanks to a Markovian assumption
that the state of the system contains all the information needed to predict its behavior. For
example, the state of a rigid physical object would include both the position and velocity.

17

The update of the state estimate then only requires combining the innovation with the
dynamic, observation, and noise models.

The complete recursive loop includes measurement, comparison of predicted observation to
actual observation, corresponding update of state estimate, prediction of future state esti-
mate, and rendering of the next predicted observation. This is the basic flow of information
in a Kalman filter, and applies equally well to recursive filters in general.

For the case of observing the human body, this general framework is complicated by the fact
that the human body is a 3-D articulated system and the observation process is significantly
non-trivial. Video images of the human body are extremely high-dimensional signals and
the mapping between body pose and image observation involves perspective projection.
These unique challenges go beyond the original design goals of the Kalman and extended
Kalman filters and they make the task of building systems to observe human motion quite
difficult.

1.1.3 Classification

Dynamic constraints enable the prediction of observations in the near future. These pre-
dictions, with the proper representation, can be used by low-level perceptual processes to
resolve ambiguities. Specifically we incorporate the predictions as prior information into
the probabilistic blob tracker. The tracker is the first process to be applied to the pixels.
There is no part of the system that is bottom-up. Even the lowest level classification process
incorporates high-level model influence in the form of state predictions represented as prior
probabilities for classification.

Most computer vision systems are modularized to help reduce software complexity, manage
bandwidth, and improve performance. Often, low-level modules, comprised of filter-based
pattern recognition pipelines, provide features to mid-level modules that then use statistical
or logical techniques to infer meaning. The mid-level processes are made tractable by the
dimensionality reduction accomplished by the low-level modules, but these improvements
can incur a cost in robustness. These systems are often brittle. They fail when the implicit
assumptions in a low-level filter are violated. Once a low-level module fails, the information
is lost. Even in the case where the mid-level module can employ complex models to predict
the failure, there is no way to avert the failure if there is no downward flow of information.
The system in forced to rely on complex heuristics to attempt repair.

Dyna avoids this problem by providing the 3-D body model with a powerful form of influ-
ence over the low-level blob tracking system. This influence is more significant than simply
modifying or bounding a search routine. Our classifier actually produces different results
in the presence of feedback: results that reflect global classification decisions instead of
decisions that may be misleading or incomplete despite being locally optimal. This modifi-
cation is made possible due to the statistical nature of our blob tracker. Prior information
generated by the body model transforms the bottom-up, maximum likelihood blob tracker
into a maximum a posteriori classifier.

18

1.1.4 Expression

An appropriate model of embodiment allows a perceptual system to separate the necessary
aspects of motion from the purposeful aspects of motion. The necessary aspects are a
result of physics and are predictable. The purposeful aspects are the direct result of a
person attempting to express themselves through the motion of their bodies. Understanding
embodiment is the key to perceiving expressive motion.

Human-computer interfaces make measurements of a human and use those measurements
to give them control over some abstract domain. The sophistication of these measurements
range from the trivial keyclick to the most advanced perceptual interface system. Once the
measurements are acquired the system usually attempts to extract some set of features as
the first step in a pattern recognition system that will convert those measurements into
whatever domain of control the application provides. Those features are usually chosen for
mathematical convenience or to satisfy an ad hoc notion of invariance.

The innovations process discussed above is a fertile source of features that are directly re-
lated to the embodiment of the human. When neuromuscular, contextual or psychological
influences affect the motion of the body, these effects will appear in the innovations process.
This provides direct access for learning mechanisms to these influences without compound-
ing them with the effects of physics, kinematics, imaging, or any other process that can be
modeled by the system. This tight coupling between appearance, motion and, behavior is
a novel and powerful implication of the framework.

1.2 Expression and Context

The primary motivation for the design and implementation of Dyna was to improve the
ability of people to interact with computation. In addition to measuring raw tracking
improvements provided by the framework, it is important to explore the important im-
provements to interface performance. This dissertation will demonstrate the operation of
the framework in the context of three applications. The first will showcase enhanced perfor-
mance for a pre-existing motion tutor called the T’ai Chi Teacher. The second application
is a game called Wakka that involves fast-paced manipulation of virtual objects. The final
application is a command and control interface built on top of the distributed, open-source
game Netrek.

1.2.1 T’ai Chi

The T’ai Chi Teacher is an example of an application that is significantly enhanced by the
recursive framework for motion understanding. The basis for this improvement is simply
improved tracking stability. The system is an interactive instructional system that teaches
a human student to perform a selection of upper-body T’ai Chi gestures[5].

There are several processes that work together to make the T’ai Chi Teacher possible. The
Teacher mirrors the actions of the user to provide instant feedback, plays back previously

19

recorded motions by the student to facilitate reflection, and interprets the motions to gen-
erate instructional critiques. All of these processes assume a certain level of stability from
the tracker. The mirroring becomes intermittent and distracting in the presence of small
tracker failures. The playback engine assumes that a small amount of smoothing will gen-
erate a clean version of the user’s gesture, and the output becomes less informative when
more significant errors disrupt the tracking data. Most importantly, the critique engine is
unduly sensitive to tracking errors that violate the noise models of the underlying learning
algorithm.

Without changing the T’ai Chi Teacher code, it was possible to improve the robustness of
the system by replacing the tracking system with one that follows the framework described
above. The improved tracking stability translates into fewer distracting errors, and thus
opens the Teacher up to a wider audience. Chapter 5 provides data to illustrate these
improvements.

1.2.2 Wakka

Wakka is a virtual manipulation game. Computer vision allows a virtual actor to mimic
the motions of the human’s upper body. The goal is for the human to touch objects in the
virtual world by guiding the hands of the virtual actor. The world contains static objects
(Wuggles) and moving objects (Bubbles). Wuggles can always be whacked by returning
to the same physical location as before since they do not move in the virtual environment
and the mapping between physical and virtual is fixed. Bubbles move, so popping a bubble
requires a visuomotor search to find the correct virtual location.

This context is very simple. There are a very small number of things that people do with
their hands when playing Wakka. Hands are usually resting, whacking (often in a ballistic
fashion once the user learns the system), or performing the more complex feedback loop
required to find and pop a bubble. The pace of the game is fast enough to discourage
motivated players from wasting time performing extraneous gesticulations. This narrow
context makes Wakka ideal for initial experiments exploring the power of the separation
between predictable and purposeful aspects of motion.

Chapter 5 includes results on automatic discovery of movement primitives present in track-
ing data from the Wakka context. These primitives are made more apparent by the sepa-
ration of predictable and purposeful motion descried above.

1.2.3 Netrek Collective

We have also built a system for interface study around the the game Netrek. Netrek
specifies a closed world that is simple enough to be tractable, but not as trivial as the
Wakka context. The need to communicate abstract concepts like strategy and coordination
provides opportunities to push the limits of what we expect from interfaces.

Context and coordination are very important in Netrek. There are programs, called robots,
that know the basics of playing Netrek, but they do not have a very good strategic engine or

20

any ability to cooperate with other members of their team. Marcus Huber explored the idea
of augmenting these robots to include cooperation with each other and found a significant
advantage over uncoordinated robots[24]. We take a different approach. With a sufficiently
sophisticated interface a human should be able to add strategy, coordination and structure
to the robots’ activities. This symbiosis between human and robots is called the Netrek
Collective.

Chapter 6 includes preliminary results on automatic discovery of movement primitives
present in tracking data from the Netrek context as well as an examination of the future
potential of this application.

1.3 Document Structure

The next chapter explores the theoretical groundwork that supports this link between the
perceptual system and the embodiment of the human being perceived. Chapter 3 describes
the intellectual context of the of this work and reviews relevant literature. Chapter 4
details the implementation of the perceptual system motivated by Chapter 2. Chapter 5
presents experimental results that demonstrate improved tracking performance and stability
and provides details on several applications, including the T’ai Chi Teacher and Wakka.
Chapter 6 presents initial work on the Netrek Collective, and preliminary results that point
toward the exciting implications of this framework for interpretation of complex human
actions.

21

22

Chapter 2

Theoretic Foundations

This chapter will expand on the ideas presented in Chapter 1, while linking them to their
roots in stochastic estimation theory.

The fundamental idea presented in Chapter 1 is that perception is improved when it is
coupled with expectations about the process being observed: specifically a model with the
ability to make qualified predictions into the future given past observations. A logical
framework for creating and employing this kind of model in a perceptual system can be
found in the control and estimation literature. Since the human body is a physical system,
it shares many properties with the general class of dynamic systems. It is instructive to
approach the task of understanding human motion in the same way that an engineer might
approach the task of observing any dynamic system.

One possible simplified block diagram of a human is illustrated in Figure 2-1. The passive,
physical reality of the human body is represented by the Plant. The propagation of the
system forward in time is governed by the laws of physics and is influenced by signals, u,
from Control. On the right, noisy observations, y, can be made of the Plant. On the left,
high level goals, v, are supplied to the Controller.

θ

Controlv u Plant
x

y

x
Figure 2-1: A systems view of the human body.

The observations are a function of the system state according to some measurement process,
h(·). In our case this measurement process corresponds to the imaging process of a camera.
As such, it is a non-linear, incomplete transform: cameras do not directly measure velocity,
they are subject to occlusion, and they project 3-D information into 2-D observations:

yt+1 = h(xt+1) + θt (2.1)

23

The measurement process is also noisy. θt represents additive noise in the observation. The
θt are assumed to be samples from a white, Gaussian, zero-mean process with covariance
Θ:

θt ← N (0,Θ) (2.2)

The state vector, x, completely defines the configuration of the system in phase-space. The
Plant propagates the state forward in time according to the system constraints. In the
case of the human body this includes the non-linear constraints of kinematics as well as the
constraints of physics. The Plant also reacts to the influences of the control signal. For the
human body these influences come as muscle forces. It is assumed that the Plant can be
represented by an unknown, non-linear function f(·, ·):

xt+1 = f(xt,ut) (2.3)

The control signals are physical signals, for example, muscle activations that result in forces
being applied to the body. The Controller obviously represents a significant amount of
complexity: muscle activity, the properties of motor nerves, and all the complex motor
control structures from the spinal cord up into the cerebellum. The Controller has access
to the state of the Plant, by the process of proprioception:

ut = c(vt,xt) (2.4)

The high-level goals, v, are very high-level processes. These signals represent the place
where intentionality enters into the system. If we are building a system to interact with a
human, then we get the observations, y, and what we’re really interested in is the inten-
tionality encoded in v. Everything else is just in the way.

2.1 A Classic Observer

~

θ
u y

ŷ

Plant

^
Observer

-

y
x

x

K
Figure 2-2: Classic observer architecture

24

A classic observer for such a system takes the form illustrated in Figure 2-2. This is the
underlying structure of recursive estimators, including the well known Kalman and extended
Kalman filters.

The Observer is an analytical model of the physical Plant:

xt+1 = Φtxt + Btut + Ltξt (2.5)

The unknown, non-linear update equation, f(·, ·) from Equation 2.3, is modeled as the sum
of two non-linear functions: Φ(·) and B(·). Φ(·) propagates the current state forward in
time, and B(·) maps control signals into state influences. Φt and Bt from Equation 2.5
are linearizations of Φ(·) and B(·) respectively, at the current operating point. The right-
hand term, (Ltξt), represents the effect of noise introduced by modeling errors on the state
update. The ξt are assumed to be samples from a white, Gaussian, zero-mean process with
covariance Ξ that is independent of the observation noise from Equation 2.2:

ξt ← N (0,Ξ) (2.6)

The model of the measurement process is also linearized. Ht is a linearization of the non-
linear measurement function h(·):

yt+1 = Htxt+1 + θt (2.7)

Linearizations, such as those invoked to form Φt and Ht, are performed by computing the
Jacobian matrix. The Jacobian of a multivariate function of x such as Φ(·) is computed as
the matrix of partial derivatives at the operating point xt with respect to the components
of x:

Φt = ∇xxΦ|x=xt
=

∂Φ1
∂x1

∣∣∣
x=xt

∂Φ1
∂x2

∣∣∣
x=xt

· · · ∂Φ1
∂xn

∣∣∣
x=xt

∂Φ2
∂x1

∣∣∣
x=xt

. . .
...

...
. . .

∂Φm
∂x1

∣∣∣
x=xt

· · · · · · ∂Φm
∂xn

∣∣∣
x=xt

This operation is often non-trivial.

Estimation begins from a prior estimate of state: x̂0|0. Given the current estimate of system
state, x̂t|t, and the update Equation 2.5, it is possible to compute a prediction for the state
at t+ 1:

x̂t+1|t = Φtx̂t|t + Btut (2.8)

Notice that ξt falls out since:

E[ξt] = E [N (0,Ξ)] = 0 (2.9)

Combining this state prediction with the measurement model provides a prediction of the
next measurement:

ŷt+1|t = Htx̂t+1|t (2.10)

25

Again, θt drops out since:
E[θt] = E [N (0,Θ)] = 0 (2.11)

Given this prediction it is possible to compute the residual error between the prediction
and the actual new observation yt+1:

ỹt+1 = νt+1 = yt+1 − ŷt+1|t (2.12)

This residual, called the innovation, is the information about the actual state of the system
that the filter was unable to predict, plus noise. A weighted version of this residual is used
to revise the new state estimate for time t + 1 to reflect the new information in the most
recent observation:

x̂t+1|t+1 = x̂t+1|t + Kt+1ỹt+1 (2.13)

In the case of the Kalman filter, the weighting matrix is the well-known Kalman gain matrix.
It is computed from the estimated error covariance of the state prediction, the measurement
models, and the measurement noise covariance, Θ:

Kt+1 = Σt+1|tH
T
t

[
HtΣt+1|tH

T
t + Θt+1

]−1
(2.14)

The estimated error covariance of the state prediction is initialized with the estimated error
covariance of the prior state estimate, Σ0|0. As part of the state prediction process, the
error covariance of the state prediction can be computed from the error covariance of the
previous state estimate using the dynamic update rule from Equation 2.5:

Σt+1|t = ΦtΣt|tΦ
T
t + LtΞtLTt (2.15)

Notice that, since ut is assumed to be deterministic, it does not contribute to this equation.

Incorporating new information from measurements into the system reduces the error co-
variance of the state estimate: after a new observation, the state estimate should be closer
to the true state:

Σt+1|t+1 = [I−Kt+1Ht] Σt+1|t (2.16)

Notice, in Equation 2.5, that that classic Observer assumes access to the control signal
u. For people, remember that the control signals represent muscle activations that are
unavailable to a non-invasive Observer. That means that an observer of the human body
is in the slightly different situation illustrated in Figure 2-3.

2.2 A Lack of Control

Simply ignoring the (Btu) term in Equation 2.5 results in poor estimation performance.
Specifically, the update Equation 2.13 expands to:

x̂t+1|t+1 = x̂t+1|t + Kt+1(yt+1 −Ht(Φtx̂t|t + Btut)) (2.17)

26

~

θ

?

u y

ŷ

Plant

^
Observer

-

y
x

x

K

û

Figure 2-3: An Observer of the human body can’t access u

In the absence of access to the control signal u, the update equation becomes:

˜̂xt+1|t+1 = x̂t+1|t + Kt+1(yt+1 −Ht(Φtx̂t|t + Bt0)) (2.18)

The error ε between the ideal update and the update without access to the control signal
is then:

ε =
∣∣∣x̂t+1|t+1 − ˜̂xt+1|t+1

∣∣∣ (2.19)

= Kt+1HtBtut (2.20)

Treating the control signal, ut, as a random variable, we compute the control mean and
covariance matrix:

ū = E[ut] (2.21)
U = E[(ut − ū)(ut − ū)T] (2.22)

If the control covariance matrix is small relative to the model and observation noise, by
which we mean:

‖U‖ << ‖Ξt‖ (2.23)
‖U‖ << ‖Θt‖ (2.24)

then the standard recursive filtering algorithms should be robust enough to generate good
state and covariance estimates. However, as U grows, so will the error ε. For large enough
U it will not be possible to hide these errors within the assumptions of white, Gaussian
process noise, and filter performance will significantly degrade [1].

It should be obvious that we expect U to be large: if u had only negligible impact on the
evolution of x, then the human body wouldn’t be very effective. The motion of the human
body is influenced to a large degree by the actions of muscles and the control structures

27

driving those muscles. This situation will be illustrated in Chapter 4.

2.3 Estimation of Control

~

θ

^g(x,y)~

u y

ŷ

Plant

^
Observer

-

y
x

x

K

û

Figure 2-4: An observer that estimates û as well as x̂

It is not possible to measure ut directly. It is inadvisable to ignore the effects of active
control, as shown above. An alternative is to estimate ut+1|t. This alternative is illustrated
in Figure 2-4: assuming that there is some amount of structure in u, the function g(·, ·)
uses x̂ and ỹ to estimate û.

The measurement residual, ỹt+1 is a good place to find information about ut for several
reasons. Normally, in a steady-state observer, the measurement residual is expected to be
zero-mean, white noise, so E[ỹt] = 0. From Equation 2.20 we see that without knowledge
of ut, ỹt+1 will be biased:

E[ỹt+1] = HtBtut (2.25)

This bias is caused by the faulty state prediction resulting in a biased measurement predic-
tion. Not only will ỹt+1 not be zero-mean, it will also not be white. Time correlation in the
control signal will introduce time correlation in the residual signal due to the slow moving
bias. Specific examples of such structure in the residuals will be shown in Chapter 4.

Learning the bias and temporal structure of the measurement residuals provides a mecha-
nism for learning models of u. Good estimates of u will lead to better estimates of x which
are useful for a wide variety of applications including motion capture for animation, direct
manipulation of virtual environments, video compositing, diagnosis of motor disorders, and
others. However, if we remain focused on the intentionality represented by v on the far left
of Figure 2-1, then this improved tracking data is only of tangential interest as a means to
compute v̂.

28

The neuroscience literature[43] is our only source of good information about the control
structures of the human body, and therefore the structure of v. This literature seems to
indicate that the body is controlled by the setting of goal states. The muscles change activa-
tion in response to these goals, and the limb passively evolves to the new equilibrium point.
The time scale of these mechanisms seem to be on the scale of hundreds of milliseconds.

Given this apparent structure of v, we expect that the internal structure of g(·, ·) should
contain states that represent switches between control paradigms, and thus switches in the
high-level intentionality encoded in v. Chapter 4 discusses possible representations for g(·, ·)
and Chapter 5 discusses results obtained in controlled contexts (where the richness of v is
kept manageable by the introduction of a constrained context).

2.4 Images as Observations

There is one final theoretic complication with this formulation of an observer for human
motion. Recursive filtering matured under the assumption that the measurement process
produced low-dimensional signals under a measurement model that could be readily lin-
earized: such as the case of a radar tracking a ballistic missile. Images of the human body
taken from a video stream do not fit this assumption: they are high dimensional signals
and the imaging process is complex.

One solution, borrowed from the pattern recognition literature, is to place a deterministic
filter between the raw images and the Observer. The measurements available to the Observer
are then low-dimensional features generated by this filter [46]. This situation is illustrated
in Figure 2-5.

Features

θ

~

Images

^g(x,y)~

u Plant
x

ŷ
^

Observer
-

y
x

K

û
y

Figure 2-5: Feature Extraction between image observations and the Observer.

29

One fatal flaw in this framework is the assumption that it is possible to create a stationary
filter process that is robust and able to provide all the relevant information from the image
as a low dimensional signal for the Observer. This assumption essentially presumes a
pre-existing solution to the perception problem. A sub-optimal filter will succumb to the
problem of perceptual aliasing under a certain set of circumstances specific to that filter.
In these situations the measurements supplied to the Observer will be flawed. The filter
will have failed to capture critical information in the low-dimensional measurements. It is
unlikely that catastrophic failures in feature extraction will produce errors that fit within
the assumed white, Gaussian, zero-mean measurement noise model. Worse, the situation
in Figure 2-5 provides no way for the predictions available in the Observer to avert these
failures. This problem will be demonstrated in more detail in Chapter 3.

Compare
~

+

θ
Images

ŷ

y

u Plant
x

Observer

K

û

^g(x,y)~

x̂

y

Figure 2-6: The Observer driving a steerable feature extractor.

A more robust solution is illustrated in Figure 2-6. A steerable feature extraction pro-
cess takes advantage of observation predictions to resolve ambiguities. It is even possible
to compute an estimate of the observation prediction error covariance, (HtΣt+1|tHT

t) and
weight the influence of these predictions according to their certainty. Since this process
takes advantage of the available predictions it does not suffer from the problems described
above, because prior knowledge of ambiguities enables the filter to anticipate catastrophic
failures. This allows the filter to more accurately identify failures and correctly propa-
gate uncertainty, or even change modes to better handle the ambiguity. A fast, robust
implementation of such a system is described in detail in Chapter 4.

2.5 Sumarry

So we see that exploring the task of observing the human from the vantage of classical
control theory provides interesting insights. The powerful recursive link between model
and observation will allow us to build robust and fast systems. Lack of access to control
signals represent a major difference between observing built systems and observing biological

30

systems. Finally that there is a possibility of leveraging the framework to help in the
estimation of these unavailable but important signals.

For the case of observing the human body, this general framework is complicated by the fact
that the human body is a 3-D articulated system and the observation process is significantly
non-trivial. Video images of the human body are extremely high-dimensional signals and the
mapping between body pose and image observation involves perspective projection. These
unique challenges go beyond the original design goals of the Kalman and extended Kalman
filters and they make the task of building systems to observe human motion quite difficult.
The details involved in extending the basic framework to this more complex domain are the
subject of Chapter 4. First, Chapter 3 will explore the alternatives to this framework that
are to be found in the literature.

31

32

Chapter 3

Background

In recent years there has been much interest in tracking the human body using 3-D models
with kinematic and dynamic constraints. Perhaps the first efforts at body tracking were by
Badler and O’Rourke in 1980, followed by Hogg in 1988 [35, 34]. These early efforts used
edge information to drive a kinematic model of the human body. These systems require
precise hand initialization, and can not handle the full range of common body motion.

Following this early work using kinematic models, some researchers began using dynamic
constraints to track the human body. Pentland and Horowitz employed non-rigid finite ele-
ment models driven by optical flow in 1991[37], and Metaxas and Terzopolous’ 1993 system
used deformable superquadrics [29, 32] driven by 3-D point and 2-D edge measurements.
Again, these systems required precise initialization and could handle only a limited range
of body motion.

More recently, authors have applied variations on the basic kinematic analysis-synthesis
approach to the body tracking problem [41, 4, 22]. Gavrila and Davis [20] and Rehg and
Kanade[40] have demonstrated that this approach has the potential to deal with limited
occlusions, and thus to handle a greater range of body motions.

Dyna, the system described here, combines the dynamic modeling work with the advantages
of a recursive approach, by use of an extended Kalman filter formulation that couples a fully
dynamic skeletal model with observations of raw pixel values, as modeled by probabilistic
‘blob’ models.

Dyna also explicitly incorporates learned patterns of control into the body model. The
approach we take is based on the behavior modeling framework introduced by Pentland
and Liu in 1995[38]; it is also related to the behavior modeling work of Blake[26] and
Bregler[8]. However, this controller operates on a 3-D non-linear model of human motion
that is closer to true body dynamics than the 2-D linear models previously employed.

33

3.1 Particle Filtering

It is useful to compare the approach advocated here with that taken by particle filtering
approaches such as the Condensation algorithm proposed by Isard and Blake[27]. Both
approaches have their roots in recursive filtering and control theory as described in Chap-
ter 2.

The fundamental difference between this method and particle filtering methods is in the
representation of the probability density from which the state estimate is drawn. Recursive
filtering methods, of which the Kalman filter is an example, represent the density para-
metrically as a unimodal Gaussian. The Condensation algorithm is a framework for
representing the density as a set of samples drawn from the underlying distribution and is
therefore not parametric, nor even necessarily unimodal. The Multiple Hypothesis Testing
(MHT) framework from the control and estimation community[1] provides an extension to
recursive filtering frameworks that allows multi-modal, parametric representations. Recent
work by Rehg[11] shows how unimodal trackers such as the one described here may be
embedded in the MHT framework. This section will discuss these issues in detail, as they
relate to this work.

All recursive filtering frameworks require a mechanism for propagation forward in time of
the estimated density. In Kalman filtering this is accomplished in parameter space using
the model of state dynamics to update both the mean, x̂t, and variance, Σt, of the density.
Kalman filters assume a linear model of the state dynamics, Φ. The mean update is
accomplished by equation 3.1, and the variance update by equation 3.2:

x̂t+1|t = Φtx̂t|t + Btut (3.1)

Σt+1|t = ΦtΣt|tΦ
T
t + LtΞtLTt (3.2)

For non-linear dynamics, the system is linearized near the operating point at each time
step.

In the Condensation algorithm, the distribution is represented non-parametrically, so
it must employ a different mechanism for state update. Specifically the distribution is
represented as a set of samples, St, in model state space with an associated set of weights
Πt. The system dynamics are represented as a density conditional on the current model
state: p(Xt+1|Xt). Model update begins by selecting a sample, s(i)

t , from the set St with
probability determined by the set of weights Πt. A new sample is then drawn from the
corresponding density p(Xt+1|Xt) = s

(i)
t , and becomes the sample s

(i)
t+1 in the updated

representation. The new weight π(i)
t+1 is determined by comparing the sample s(i)

t+1 to the
image evidence.

A tracker using Condensation must maintain a large number of samples to adequately
represent the underlying distribution. The literature calls for approximately 1500 samples
to track a bouncing ball with a single degree of freedom, and as many as 15,0000 samples
to track the hand during a drawing task [28]. The advantage is that the distribution is
not required to be unimodal. Since the Kalman filter chooses a parametric representation
that is unimodal it is possible for ambiguous observations to move the single mode away
from the truth. Dynamic state updates will likely cause the location of the mode to diverge

34

further from the truth over time. The potential for multi-modality in the representation of
density in Condensation means that it is possible for a portion of the probability mass to
be allocated to divergent hypotheses. As long as there are a sufficient number of samples
available to adequately represent the distribution, alternate hypotheses may be propagated
forward as long as there are observations to support them.

One issue with Kalman-derived filtering techniques is that it is difficult to formulate closed-
form update equations for arbitrary parametric density representations as was done for
the unimodal Gaussian case in equation 3.1. MHT is a method for maintaining a set of
N unimodal Gaussian hypotheses in the Kalman filtering framework without the need to
reformulate the update equations. The MHT method is essentially a bank of Kalman filters.
Each Kalman filter makes predictions according to its own, possibly unique, state estimate
and dynamic model. The resulting innovations sequence is a measure of how well each filter
is explaining the observed data. Filters with large innovations are poor predictors and are
candidates for reinitialization [1]. Due to the fact that each filter accounts parametrically
for some component of the underlying density, only a handful of hypotheses are required, as
compared to the thousands of point hypotheses required by Condensation. The literature
shows that MHT can track a human figure, even with relatively weak underlying unimodal
trackers, with as few as 10 hypotheses[11].

So these methods represent extremes of a continuum where computational cost can be
traded off against modeling cost. For systems where the cost of model-building is very
high compared to the cost of computation, Condensation is a good, general method for
tracking. For situations where the dynamics is reasonably well understood and the cost of
computation is very high (as in the case of real-time human motion understanding), then
parametric recursive filtering, possibly in conjunction with an MHT framework, is a better
choice.

3.1.1 Recent Work on Condensation

In the time since the first description of Condensation in 1996 [26] there have been several
documenting modifications to Condensation that help avoid the curse of dimensionality
involved in tracking systems with many degrees of freedom or with complex dynamic mod-
els. Mostly the improvements in computational efficiency of the algorithm are achieved by
incorporating more sophisticated domain models. The pure form of Condensation was
the general tracker that learned dynamics from observation at high computational cost.
These extensions involve replacing flocks of hypotheses with domain-specific models that
are better at capturing the true dynamics of the systems. The logical conclusion to this
trend is the embedding of Dyna in an MHT framework.

MacCormick and Blake [31] propose an extension that culls samples that represent
inconsistent model states. This requires the Condensation implementation to have more
domain knowledge. MHT, as described in [11], implicitly includes this capability. For the
task of tracking single degree of freedom motion of human bodies, this improvement allows
tracking 2-D movement of head and shoulders of two people with 2000 samples. That is
compared with tracking three people, two stationary and one moving with a single degree

35

of freedom with 1000 samples.

Duetscher, North, Bascle, and Blake [15] adds the notion of kinematic singularities
and end-stops. By adding significant domain knowledge they bring Condensation much
closer to MHT, requiring 50 samples to track arm motion with two degrees of freedom
(elbow flexion and and shoulder rotation). They also track walking motion that is similar
to, but less energetic than the dancing motions tracked by the MHT system in [11] with
only 10 hypotheses. The paper does not report the number of particles required to track
the walking sequence.

3.2 Analysis-Synthesis

The analysis-synthesis approach is a widely used approximation to the general framework
of recursive filtering. There are two major differences between the recursive framework
advocated here and the analysis-synthesis (AS) framework: AS includes a significant feed-
forward component and lacks a model of system dynamics. Each of these issues are discussed
in detail below.

3.2.1 Overview of Analysis-Synthesis

An AS tracker is composed of an Analysis module, a Synthesis module and a model of
the system to be tracked. The Analysis module is composed of a set of image processing
routines that extracts features from image observations. The Synthesis module renders the
model state as a synthetic image composed of features congruent to those extracted by the
image processing routines. The overall goal is to directly compare the model state to the
observed image. An iterative process updates the model state until the best match between
image and model is found. This structure is illustrated in Figure 3-1.

Due to the complexity of real world image production, direct comparison is very difficult.
The Synthesis module would have to generate photo-realistic images of each hypothesized
configuration. Further, direct image comparison would likely be dominated by aspects of
the scene that may be uninteresting: the direction of illumination for example. As a result
the comparison is actually done in an abstract feature space. Image processing routines are
used to extract a set of features from the image. In practice these features are often edge
features, but in principle could be any low-level feature. The model state is rendered into this
feature space by the Synthesis model. The set of features produced by the Synthesis module
is then compared to the set of features extracted by the Analysis module. Discrepancies
between analysis features and synthesis features represent a residual to be minimized by
the system. The minimization of this residual is solved using iterative gradient descent in
model space. This requires a model of how variation in feature space maps into variation in
model space. Since Synthesis likely involves complex non-linear components from revolute
model variables, perspective projection, and other processes, this model is usually a local,
linear approximation. This places constraints on the gradient descent step size.

36

Compare

Images

Analysis

gradients

feature data

pixel data

synthetic features

Update Synthesis
model states

Figure 3-1: System diagram of an Analysis-Synthesis tracker. Multiple thin arrows represent
an iterative loop operating at a higher frequency than the observation rate.

In the case of tracking articulated bodies or body-parts, the model usually consists of a
kinematic linkage. This model can be linearized around the current estimated operating
point to yield a set of Jacobian matrices relating variation in feature space to model state
perturbance. These Jacobians are used to transform the measured residuals into model
adjustments. The iteration process may be weighted by temperature coefficients, or filtered
by other, more sophisticated, gradient decent approaches.

3.2.2 The Feed-Forward Nature of Analysis

If we formulate the Recursive Filter using the AS terminology, as in Figure 3-2, a major
difference between the two approaches is emphasized: in AS the Analysis module is feed-
forward, meaning that the image processing routines operate without access to any context
that may be available in the rest of the system. The Analysis module in the Recursive Filter
explicitly takes advantage of prior information for processing, as described in Chapter 4.

This one failing has a serious impact on the stability of the system. The Analysis module
does not have access to the high-level constraints coded in the system model or Synthesis
module. In order to track features reliably it must either encode some or all of these
constraints within itself, or rely on heuristics independent of the known image context. At
the same time, if the Analysis module fails, the gradient decent must proceed without any

37

Update Synthesis

Images

Analysis

pixel data

innovations

model state

prior information

Figure 3-2: System diagram of a Recursive Filter formulated to facilitate comparisons with
the Analysis-Synthesis system illustrated in Figure 3-1

relevant observations. There is no one place where images and high-level knowledge are
brought together. The two domains are separated by the feature abstraction. The benefits
of breaking this barrier are discussed in detail in Section 5.1.

It is important to note that merely providing prior information to an Analysis module is
not enough. The implementation must have enough mathematical flexibility to incorporate
the information in a meaningful way. As an example, convolution trackers often use simple
Kalman predictors to improve tracking performance, but is this a truly recursive system?
Consider the normal operation of a convolution tracker: an image patch is copied from an
image, possibly matted, and then convolved with an image (or a region of an image). The
maximum resulting value is accepted as the new location of the feature represented by the
image patch. This process is shown graphically in Figure 3-3.

The predictions from the Kalman filter would indicate the most likely new location as well
as an estimate of the error in this prediction. This region of uncertainly is shown as a dotted
oval in Figure 3-4. The easiest, and most common, way to incorporate this prior knowledge
into the tracker is to constrain the search to the likely area as shown in Figure 3-4. This
does not result in a better answer. It merely results in a more efficient answer since less
area needs to be searched[23]. If the “right” answer is within the oval it will be found faster,
but there will be no difference between the result of this search and the result of the slower
search. A truly recursive system would yield a different maximum.

38

Figure 3-3: Path of a convolution tracker over an image.

Figure 3-4: Prior information used to optimize the path of a convolution tracker over an
image.

This raises the question of feature selection. Probabilistic features such as the blobs
presented in Chapter 4 provide a mathematically natural method of integrating high-level
knowledge. Features such as convolution patches, edges, and other deterministic, filter-
based features, do not provide easy integration of context.

3.2.3 Lack of System Dynamics

The second major difference between the two techniques is the form of the model update.
In AS, a distance metric is induced in the chosen feature space. These gradients are then
transformed into model space to determine the appropriate system update. The system
update is completely driven by observations. The Recursive Filter update is shaped not
only by observation models, but also the system dynamics, as described in Chapter 4.
This enables the Recursive Filter to take advantage of the constraints of system dynamics
when determining the appropriate system update. Since real dynamic systems are heavily
constrained by the laws of physics and the structure of their control mechanisms, the system
dynamics is an important source of context for the observer.

39

The lack of these constraints on the update mechanism in AS means that past model
configurations do not inform the current choice of state estimate. Ambiguities or errors
in feature extraction may result in the iteration process finding an explanation that, while
plausible in isolation, is impossible due to the physical and practical limitations on the
actual system being observed. One example of this sort of failure is the instantaneous flip
between two solutions that are ambiguous in the absence of dynamic constraints.

The iterative search in AS is initialized with the previous frame’s estimate of the model
state. In the absence of feature extraction errors, and given the stability of the gradient
decent algorithm used, this chaining represents a very weak form of smoothness constraint.
Gradient decent should lead the the local minimum that is nearest with respect to the
local Jacobians and the feature metric. In this sense, nearby minima are rejected by the
algorithm. However, this smoothness constraint is not specific to the real system and is not
powerful enough to keep the tracker from being distracted from the overall best estimate
by feature extraction errors in a single frame. The amount that the state estimate moves
toward an erroneous feature is only limited by iteration bounds placed on the search, if any,
not by any explicit dynamic constraints in the system.

3.2.4 How Real Systems Address These Shortcomings

People do build AS systems. They must find ways to overcome the shortcomings in the
framework discussed above. This section will discuss several systems, their contribution to
AS work, and how they relate to true recursive filtering.

Gavrilla and Davis [20, 21] employ a kinematic model of the human body in their
AS framework. The kinematic skeleton is augmented with a skin composed of tapered
superquadrics. The subjects wear tight clothing, so the chains of tapered superquadrics
are a good approximation to the external silhouette of the body. Tracking commences
from a known initial configuration. Edge energy is used as the common feature space:
it is extracted from the image by a filter and rendered from the model. This, combined
with the model parameter search for each image, makes the system computationally very
expensive. This is an example of classic AS applied to the tracking of the human body.
Later improvements included an improvement in the performance of the search algorithm
that avoided the inversion of Jacobian matrices that mapped motion in feature space to
motion on model parameter space.

Kakadiaris and Metaxas [30] also use contour information combined with a detailed
volumetric model of the human body. The system is hand initialized and tracking proceeds
from that known configuration. The subjects also wear tight clothing to improve the model
fidelity. Unlike the above system, this system uses 3-D deformable models to track features
in the image sequence. These low-level trackers represent a further dimensionality reduction,
and thus undoubtedly improve the computational performance of the system. However, the
trackers do not receive assistance from the body model and are subject to failures. The
system partially deals with these failures by predicting occlusions. These predictions are
used to select fortuitous views from the collection of available cameras in an attempt to avoid

40

using data from ambiguous 2-D tracking results. Dynamics are used to make observation
predictions, but these predictions are only used to reinitialize the 2-D trackers, and this is
equivalent to simply initializing a search, as discussed above. The 2-D trackers will still
make locally optimal decisions regardless of global model state.

Pavlović, Rehg, Cham and Murphy [36] present a system that tracks walking motion
parallel to the image plane. This system also dispenses with the precise volumetric and
kinematic models used above. The system uses image correlation to track parts of the
body. The trackers are initialized by a generalized form of MHT that consists of many
Kalman filters embedded in a Bayes network. The Kalman filters employ learned dynamic
models to make predictions, and the innovations process is used to drive model switching.
The two main drawbacks of this work is the bottom-up tracking and the weak body model.
The image correlation tracker are reinitialized by the model for each image, but again, this
is simply initializing a search. The weak, 2-D model limits the method to parallel motions,
such as walking past a camera parallel to the image plane.

Delamarre and Faugeras [14] use the AS framework to track the human body. The
silhouette is the common feature space. Silhouettes are tracked using active contours that
are sensitive to optic flow and image intensity. The 3-D body model is a kinematic chain
composed of spheres, parallelpipeds, and truncated cones. This model is projected into
the image plane and the model is adjusted to match the observed silhouette. Since active
contours are used, it is possible that prior information could help drive the contour tracker.
This is a distinct advantage over AS implementations that use edge energy, or other rigid
features.

The physical interpretation of springs attaching the model to the observed silhouette is used
to provide a smooth metric for gradient decent. This physics model is not used to propagate
information between frames as in the approach described here. This means that the tracker
does not incorporate dynamic constraints, or any mechanism for making predictions.

Delamarre and Faugeras attempt to solve the problems of depth ambiguity and occlusion
by using mutliple viewpoints. Constraints from all sillhouettes are applied to the model,
and this simultaneous set of constraints is solved by gradient decent. The claim is that
occlusions are resolved by having multiple viewpoints. It is not clear how many non-occluded
viewpoints are required for successful tracking. Feedback from dynamic constraints could
allow this system to predict through simultaneous occlusion in all cameras.

3.3 Prior Recursive Systems

Previous recursive systems have mostly relied on optical flow for tracking. Similar to reg-
ularization work, they attempt to induce a low dimensional model as a minimum mean
squared error explanation of noisy flow data. They modify the regularization by utilizing
the benefits of Kalman filtering: prediction of observations and corresponding revision of
the state estimate given new observations. This ideally eliminates the search inherent in
the regularization framework.

41

Pentland and Horowitz [37] demonstrate the power of this framework for tracking
3-D and 21

2 -D motions on deformable and articulated objects in video. They use modal
analysis to project the flow field into relatively low-dimensional translation and deformation
components. In this way they take advantage of the regularization approach to reduce the
dimensionality of the optic flow data, but avoid the usual search in model parameter space.
These low-dimensional signals are then used by an extended Kalman filter framework to
estimate the new best estimate of pose.

The mapping of optic flow data to model influence requires the ability to predict model
state and project that state into the image plane to determine proximity. This requires
careful initialization. Although the framework should support prediction and resolution of
ambiguities such as occlusion, those issues are not addressed in the the literature.

Bregler and Malik [8] present a very interesting recursive framework for tracking of
the human body similar to Dyna that includes probabilistic feature extraction influenced
by dynamic models, and the possibility for tightly coupled behavioral models. The system
relies on optic flow data, but tracks blobs in that data. Unfortunately the early work on
tracking focused entirely on 2-D features and 2-D models. As a result the motions tracked
were all 2-D motions parallel to the camera. The dynamic models were all learned from
observation. This is interesting, but also limits the system because it learns models in 2-D
that are not good approximations of the real system dynamics due to the unobservability
of truly 3-D motions in projective 2-D imagery.

In later work [9], the system was extended to 3-D but the extension came at the expense of
the interesting recursive aspects of the earlier system. The 3-D system involved a return to
more classical regularization work with the addition of clever representations for rotation
that make the system tractable. This system requires hand initialization and utilizes an
iterative solution for flow regularization on a per-frame basis. Like most of work covered in
this chapter the focus was on off-line motion capture, not real-time interface.

3.4 Summary

Many systems have been built to address the problem of visually tracking human motion,
but they fall into three basics categories: analysis-synthesis, recursive systems, and the more
recent particle filtering methods. Each of these methods has serious shortfalls. Analysis-
synthesis methods rely on fallible feature filters and require expensive searches. The previous
recursive work mostly relies on optical flow which requires significant computational power
to extract. Particle filtering methods are the closest approach to a truly recursive system,
but their abandonment of parametric models requires massive Monte-Carlo simulations to
adequately represent the underlying probability density. No system to date has encompassed
all the important aspects of Dyna and, as a result, no system can claim similar robustness
combined with the computational efficiency necessary for human-computer interface. The
next chapter will cover the details of the implementation of the Dyna framework.

42

Chapter 4

Perceptual Machinery

This chapter describes the Dyna system, a real-time, fully-dynamic, 3-D person tracking
system that is able to tolerate full (temporary) occlusions of body parts, and whose perfor-
mance is substantially unaffected by the presence of multiple people. The system is driven
by 2-D blob features observed in two or more cameras [2, 54]. These features are then prob-
abilistically integrated into a fully-dynamic 3-D skeletal model, which in turn drives the
2-D feature tracking process by setting appropriate prior probabilities.

The feedback between 3-D model and 2-D image features is a form of extended Kalman
filter. One unusual aspect of our approach is that the filter directly couples raw pixel
measurements with an articulated dynamic model of the human skeleton. In this aspect
our system is similar to that of Dickmanns in automobile control [16], and our results show
that we obtain similar advantages in efficiency and stability though this direct coupling.
Previous attempts at person tracking have utilized a generic set of image features (e.g.,
edges, optical flow) that were computed as a preprocessing step, without consideration of
the task to be accomplished. These systems are discussed in detail in Chapter 3.

We will show how this framework can go beyond passive physics of the body by incorporat-
ing various patterns of control (which we call ‘behaviors’) that are learned from observing
humans while they perform various tasks. Behaviors are defined as those aspects of the
motion that cannot be explained solely by passive physics or the process of image produc-
tion. In the untrained tracker these manifest as significant structures in the innovations
process (the sequence of prediction errors). Learned models of this structure can be used
to recognize and predict this purposeful aspect of human motion.

The human body is a complex dynamic system, whose visual features are time-varying,
noisy signals. Accurately tracking the state of such a system requires use of a recursive
estimation framework, as illustrated in figure 4-1. The framework consists of several mod-
ules. Section 4.1 details the module labeled “2-D Vision”. The module labeled “Projective
Model” is described in [2] and is summarized. The formulation of our 3-D skeletal physics
model, “Dynamics” in the diagram, is explained in Section 4.2, including an explanation
of how to drive that model from the observed measurements. The generation of prior in-
formation for the “2-D Vision” module from the model state estimated in the “Dynamics”
module is covered in Section 4.3. Section 4.4 explains the behavior system and its inti-

43

2-D Vision 2-D Vision

Behavior

Dynamics

Things
Model of Model of

Passive Physics
Model of

Active Control

Control3-D Estimates

Predictions

Projective Model

Figure 4-1: The Recursive Filtering framework. Predictive feedback from the 3-D dynamic
model becomes prior knowledge for the 2-D observations process. Predicted control allows
for more accurate predictive feedback.

mate relationship with the physical model. Finally, we report on experiments showing an
increase in 3-D tracking accuracy, insensitivity to temporary occlusion, and the ability to
handle multiple people in Section 5.1.

4.1 The Observation Model

Our system tracks regions that are visually similar, and spatially coherent: blobs. We can
represent these 2-D regions by their low-order statistics. This compact model allows fast,
robust classification of image regions.

Given a pair of calibrated cameras, pairs of 2-D blob parameters are used to estimate the
parameters of 3-D blobs that exist behind these observations. Since the stereo estimation
is occuring at the blob level instead of the pixel level, it is fast and robust.

This section describes these low-level observation and estimation processes in detail.

4.1.1 Blob Observations

Clusters of 2-D points, (i, j), have 2-D spatial means and covariance matrices, which we
shall denote µs and Σs. The blob spatial statistics are described in terms of these second-
order properties. For computational convenience we will interpret this as a Gaussian model.
The Gaussian interpretation is not terribly significant, because we also keep a pixel-by-pixel
support map showing the actual blob occupancy in the video frame [52].

44

Figure 4-2: A person interpreted as a set of blobs.

The visual appearance of the pixels, (y, u, v), that comprise a blob can also be modeled by
second order statistics in color space: the 3-D mean, µc and covariance, Σc. As with the
spatial statistics, these chromatic statistics are interpreted as the parameters of a Gaussian
distribution in color space. We chose the YUV representation of color due to its ready
availability from video digitization hardware and the fact that in the presence of white
luminants it confines much of the effect of shadows to the single coordinate y [52].

Given these two sets of statistics describing the blob, the overall blob description becomes
the concatenation (ijyuv), where the overall mean is:

µ =

[
µs
µc

]

and the overall covariance is:

Σ =

[
Σs Λsc

Λcs Σc

]
This framework allows for the concatenation of additional statistics that may be available
from image analysis, such as texture or motion components. Figure 4-2 shows a person rep-
resented as a set of blobs. Spatial mean and covariance is represented by the iso-probability
contour ellipse shape. The color mean is represented by the color of the blob. The color
covariance is not represented in this illustration.

45

4.1.2 Frame Interpretation

To compute Pr(O|µk,Σk), the probability that a given pixel observation, O, is a member
of a given blob, k, we employ the Gaussian assumption to arrive at the formula:

Pr(O|µk,Σk) =
exp(−1

2(O− µk)TΣ−1
k (O− µk))

(2π)
m
2 |Σk|

1
2

(4.1)

where O is the concatenation of the pixel spatial and chromatic characteristics. Since the
color and spatial statistics are assumed to be independent, the cross-covariance Λsc goes to
zero, and the computation of the above value can proceed in a separable fashion [52].

For a frame of video data, the pixel at (i, j) can be classified by selecting, from the k blobs
being tracked, that blob which best predicts the observed pixel:

Γij = arg max
k

[Pr(Oij |µk,Σk)] (4.2)

where Γij is the labeling of pixel (i, j). Due to the connected nature of people, it is possible
to increase efficiency by growing out from initial position estimates to the outer edge of the
figure. This allows the algorithm to only touch the pixels that represent the person and
those nearby [52].

4.1.3 Model Update

Once the pixels are labeled by Γ, blob statistics can be reestimated from the image data.
For each class k, the pixels marked as members of the class are used to estimate the new
model mean µk:

µ̂k = E[O] (4.3)

and the second-order statistics become the estimate of the model’s covariance matrix Σk,

Σ̂k = E[(O − µk)(O − µk)T] (4.4)

4.1.4 A Compact Model

These updated blob statistics represent a low-dimensional, object-based description of the
video frame. The position of the blob is specified by the two paramaters of the distribution
mean vector µs: i and j. The spatial extent of each blob is represented by the three free
parameters in the covariance matrix Σs. A natural interpretation of these parameters can
be obtained by performing the eigenvalue decomposition of Σs:

Σs

 | |
L1 L2

| |

 =

 | |
L1 L2

| |

[λ1 0
0 λ2

]
(4.5)

Without loss of generality, λ1 ≥ λ2, and ‖L1‖ = ‖L2‖ = 1. With those constraints, λ1 and

46

Figure 4-3: The hand as an iso-probability ellipse.

λ2 represent the length of the semi-major and semi-minor axes of the iso-probability contour
ellipse defined by Σs. The vectors L1 and L2 specify the direction of these axes. Since they
are perpendicular, they can be specified by a single parameter, say ω, the rotation of the
semi-major axis away from the x axis. Thus we can represent the model {µsΣs} with five
parameters:

{i, j, λ1, λ2, ω}

Furthermore, these parameters have the convenient physical interpretation of representing
the center, length, width, and orientation of an ellipse in the image plane, as shown in
Figure 4-3.

Since the typical blob is supported by tens to hundreds of pixels, it is possible to robustly
estimate these five parameters from the available data. The result is a stable, compact,
object-level representation of the image region explained by the blob.

4.1.5 Recovery of a Three Dimensional Model

These 2-D features are the input to the 3-D blob estimation framework used by Azarbayejani
and Pentland [2]. This framework relates the 2-D distribution of pixel values to a tracked
object’s 3-D position and orientation.

Inside the larger recursive framework, this estimation is carried out by an embedded ex-
tended Kalman filter. It is the structure from motion estimation framework developed by

47

Figure 4-4: The hand as a 3-D blobject.

Azarbayejani to estimate 3-D geometry from images. As an extended Kalman filter, it
is itself a recursive, nonlinear, probabilistic estimation framework. Estimation of 3-D pa-
rameters from calibrated sets of 2-D parameters is computationally very efficient, requiring
only a small fraction of computational power as compared to the segmentation algorithms
described above[3]. The reader should not be confused by the embedding of one recursive
framework inside another: for the larger context this module may be considered an opaque
filter.

The same estimation machinery used to recover these 3-D blobs can also be used to quickly
and automatically calibrate pairs of cameras from blob observation data[2].

After this estimation process, the 3-D blob has nine parameters:

{x, y, z, l1, l2, l3, w1, w2, w3}

As above, these parameters represent the position of the center of the blob, the length of
the fundamental axes defined by an iso-probability contour, and the rotation of these axes
away from some reference frame. Figure 4-4 shows the result of this estimation process.

48

4.2 Modeling Dynamics

There is a wide variety of ways to model physical systems. The model needs to include
parameters that describe the links that compose the system, as well as information about
the hard constraints that connect these links to one another. A model that only includes
this information is called a kinematic model, and can only describe the static states of a
system. The state vector of a kinematic model consists of the model state, x, and the
model parameters, p, where the parameters, p are the unchanging qualities of the system
(the length or mass of a given link, for example).

A system in motion is more completely modeled when the dynamics of the system are
modeled as well. A dynamic model describes the state evolution of the system over time.
In a dynamic model the state vector includes velocity as well as position: x, ẋ, and the
model parameters, p. The state evolves according to Newton’s First Law:

ẍ = W ·X (4.6)

where X is the vector of external forces applied to the system, and W is the inverse of the
system mass matrix. The mass matrix describes the distribution of mass in the system.

4.2.1 Hard Constraints

Hard constraints represent absolute limitations imposed on the system. One example is
the kinematic constraint of a skeletal joint. The model follows the virtual work formulation
of Witkin[51]. The Witkin formulation has several advantages over reduced dimensionality
solutions such as that described by Featherstone[17]: the constraints can be modified at run-
time, and the modularity inherent in the mathematics drastically simplifies the implemen-
tation. The one significant disadvantage, which will be addressed below, is computational
efficiency.

In a virtual work constraint formulation, all the links in a model have full range of uncon-
strained motion. Hard kinematic constraints on the system are enforced by a special set of
forces C:

ẍ = W · (X + C) (4.7)

The constraints are specified as mathematical relationships between objects that are defined
to be zero when the constraint is satisfied. The constraint forces C, are chosen to insure
that the constraints stay satisfied. In Figure 4-5 the constraint would be expressed as the
distance between the line and the center of the object.

The constraints are functions of model state and time: c(x, t). When a constraint is satisfied
then c = 0. If a constraint is to remain satisfied, then the constraint velocity must remain
zero, ċ = 0, and the constraint must not accelerate away from a valid state: c̈ = 0 or the
system would soon be in an invalid state. The constraint forces from Equation 4.7 and
Figure 4-5 keep the system from accelerating away from constraint satisfaction. The road

49

Constraint
Line of

X

Object

(X+C)

C

Figure 4-5: The 2-D object is constrained to move on the indicated line. An external force,
X, is applied to the object. The constraint force, C, keeps the object from accelerating
away from the constraint.

to understanding these forces begins by differentiating c:

ċ =
∂

∂x
c(x, t) =

∂c
∂x

ẋ +
∂c
∂t

(4.8)

and again:

c̈ =
∂c
∂x

ẍ +
∂ċ
∂x

ẋ +
∂2c
∂t2

(4.9)

Combining with Equation 4.7 and setting c̈ = 0 yields a relationship between the model
state, the applied external forces, and the constraint Jacobian, where the constraint resti-
tution force C is the only unknown:

∂c
∂x

W · (X + C) +
∂ċ
∂x

ẋ +
∂2c
∂t2

= 0 (4.10)

50

Constraint
Line of

X

C

Object

(X+C)

Figure 4-6: No work is performed if the constraint force lies in the null space compliment
of the constraint Jacobian.

The force in Figure 4-5 satisfies the relationship in Equation 4.10, as do many other possible
vectors. Equation 4.10 is an under-determined system since the dimensionality of c will
always be less than the dimensionality of x, or the system would be fully constrained and
wouldn’t move at all. For example, in Figure 4-5, c is the distance between the center of
the object and the line, a one dimensional value, while x is two dimensional, three if the
object is allowed rotational freedom in the plane.

One problem with that choice of C in Figure 4-5 is that it will add energy to the system.
Equation 4.10 only specifies that the force exactly counteract the component of X that is
in violation of the constraints. Since constraints that add energy to the models will lead
to instability, an additional requirement that the force C do no work on the system is
employed, where work would be Cẋ. If C is always applied perpendicular to any direction
of motion allowed by the constraint then this will be satisfied. In the example case of the
object on the line, this means that C must be perpendicular to the line of constraint, as
shown in Figure 4-6.

51

More generally, the valid displacements for the system are described by the null space of
the constraint Jacobian:

∂c
∂x

dx = 0 (4.11)

since valid displacements are required to leave c = 0. The disallowed displacements are
ones that do change c:

dx = λ
∂c
∂x

(4.12)

So, to do no work, the constraint force C is required to lie in the same subspace:

C = λ
∂c
∂x

(4.13)

Combining that equation with Equation 4.10 results in a linear system of equations with
only the one unknown, λ:

−
[
∂c
∂x

W
∂c
∂x

T
]
λ =

∂c
∂x

WX +
∂ċ
∂x

ẋ +
∂2c
∂t2

(4.14)

This equation can be rewritten to emphasize its linear nature. J is the constraint Jacobian,
ρ is a known constant vector, and λ is the vector of unknown Lagrange multipliers:

−JWJTλ = ρ (4.15)

To obtain C, λ is substituted back into Equation 4.13. Many fast, stable methods exist for
solving equations of this form.

All the components of Equation 4.14 that relate directly to the constraints are lineariza-
tions, so they must be recomputed at each integration step. This provides the opportunity
to create and delete constraints at run-time simply by modifying the calculation of the
constraint Jacobian.

Modularization

Constraints are written as mathematical relationships between points in space. Often these
points are located at some arbitrary location in the local coordinate space of some ob-
ject. Implementing constraints to understand each type of object, possibly having dif-
ferent internal representations for state, would make the constraints unnecessarily com-
plex. Witkin suggests inserting an abstraction layer between objects and constraints, called
connectors[51]. Thus c for a constraint between two objects becomes:

c(x) = f(a(x1),b(x2)) (4.16)

The constraint Jacobian can then be decomposed by the chain rule:

∂c
∂x

=
∂c
∂a

∂a
∂x1

+
∂c
∂b

∂b
∂x2

(4.17)

52

x,x x,x x,x x,x x,x

x,x,W x,x,W

δa
δx

δa
δxaa

Connector

δa
δx

δa
δxaa

Connector

δc
δa

δc
δa

δc
δa

δc
δb

δc
δb

δc
δbcc

System State Vector

Object Object

Constraint

Figure 4-7: The constraint system is made up of software modules that cooperate to con-
struct Equation 4.14. Connectors are an abstraction that allows the Constraints to be more
general, and hence more reusable.

53

The constraint module can then compute ∂c
∂a and ∂c

∂b without regard to the underlying
implementation while the connectors are responsible for calculating ∂a

∂x . The constraint
velocity Jacobian can be computed in the same way;

∂ċ
∂x

=
∂ċ
∂a

∂a
∂x1

+
∂ċ
∂ȧ

∂ȧ
∂x1

+
∂ċ
∂b

∂b
∂x2

+
∂ċ
∂ḃ

∂ḃ
∂x2

(4.18)

Figure 4-7 shows how this information moves through the system. Each block represents
a different software module. This abstraction is very powerful: in the system the same
constraint code implements pin joints in 2-D models and ball joints in 3-D models. Because
constraints involving rotational motion are somewhat more complex, the system differenti-
ates between connectors without orientation, called Points, and connectors with orientation,
called Handles.

Multiple Objects and Constraints

Systems with only a single constraint are rather limiting. Multiple objects and constraints
fit easily into the framework. For multiple objects, the state vector x becomes the concate-
nation of all the individual object state vectors. So in a 3-D model where every object has
6 degrees of freedom, with 5 objects the state vector would have dimensionality 30.

The mass matrix is similarly the concatenation of the individual mass matrices. Assuming
static geometry for each object, the individual mass matrix is constant in the object local
coordinate system. This mass matrix is transformed to global coordinates and added as a
block to the global mass matrix. Since the global mass matrix is block diagonal, the inverse
mass matrix is simply the concatenation of the individually inverted mass matrices, and so
doesn’t take an inordinate amount of time to compute.

Objects are enumerated with the order that they contribute to the global state vector.
Constraints are similarly enumerated. A constraint between two objects contributes two
blocks to the constraint Jacobian. The constraints appear on the row according to the
constraint’s enumeration and the columns associated with the constrained objects. The
structure of the constraint Jacobian is illustrated in Figure 4-8 for a model of the upper
body with five links: torso, left upper arm, left lower arm, right upper arm, and right lower
arm. The other values in Equation 4.14 are constructed in a similar fashion.

The global inverse mass matrix is block diagonal and the global constraint Jacobian is
block sparse. Both are large. Solving Equation 4.14 for λ requires sparse matrix methods
to be accomplished efficiently. Sparse matrix methods were used to construct JWJT . An
implementation of Linear Biconjugate Gradient Descent for sparse matrices was used to
solve the resulting linear system. The algorithms were taken from Numerical Recipes[39].
These improvements made the constraint system tractable on contemporary hardware. The
rest of the matrix manipulations are handled with a basic C++ matrix library.

54

c1

c2

c3

c4

o1 o2 o3 o4 o5

= δc
δqo1

c2c4 c3 c1

o4o5 o2 o3

− λ = ρ

λ =− ρ

Figure 4-8: Top: the individual constraint Jacobians each contribute one block per object
that they affect to the global constraint Jacobian. Middle: each object also contributes to
the block-diagonal inverse mass matrix from Equation 4.15. Bottom: Sparsely connected
systems result in a block-sparse linear system.

55

Discretization Error

The constraints of Equation 4.14 are only true instantaneously. When the equations are
solved at discrete time steps then errors are introduced and the system drifts away from the
manifold of valid states. A restoring force is used to keep the system from accumulating
errors over time:

ẍ = W · (X + C + F) (4.19)

Where F is determined by the relationship:

F = αc
∂c
∂x

+ βċ
∂c
∂x

(4.20)

This applies a restoring force in the constrained direction that brings the system back toward
the nearest valid state and a damping force that reduces illegal velocity. The parameters
α and β are fixed. In practice the selection of these parameters has very little impact on
model stability since deviations from constraints remain small. A typical value for α is
1000Nm and a typical value for β is 4Nsm .

Distributed Integration

Once the global forces are projected back into the allowable subspace and corrected for
discretization error, all further computation is partitioned among the individual objects.
This avoids computing the very large global version of Equation 4.7. This is possible since
the inverse mass matrix W is block diagonal, so once the global value for C is determined,
Equation 4.7 breaks down into a set of independent systems. This distributed force appli-
cation and integration also provides the opportunity for objects to transform the applied
forces to the local frame and to deal with forces and torques separately. This simplifies the
implementation of the dynamics subsystem significantly, since each link is treated as a free
six degree of freedom body.

4.2.2 Soft Constraints

Some constraints are probabilistic in nature. Noisy image measurements are a constraint
of this sort, they influence the dynamic model but do not impose hard constraints on its
behavior. As a result, the absolute constraint satisfaction described in the previous section
is not appropriate.

Soft constraints are more appropriately expressed as a potential field acting on the dynamic
system. The addition of a potential field function to model a probability density function
pushes the model toward the most likely value. In general a soft constraint might be any
function:

Xsoft = fsoft(S,x, ẋ,p) (4.21)

where S is some parameterization over the family of potential fields specified by f(·).

The simplest function is the constant potential. Gravity is well-modeled by a constant field

56

over the scales of the model. So the potential field is simply:

Xsoft = mg (4.22)

where g is acceleration due to gravity, and m is the mass of the link affected by Xsoft.

A soft constraint that attracts a body part to a specific location is somewhat more complex:

Xsoft = k(x0 − x) (4.23)

where x0 is the desired position and k is a constant multiplier that affect the “softness” of
the constraint. Care must be taken when choosing k to avoid introducing instabilities into
the model. Values of k that are too large start to turn the soft constraint into something
more like a hard constraint. In this case the constraint would be better modeled by the
techniques described above.

It is also possible to construct anisotropic constraints

Xsoft =
(x− x0)
‖(x− x0)‖

(x− x0)K−1(x− x0) (4.24)

where K is a shaping matrix that determines the weighting of various directions. This
allows soft constraints to have stronger influence in a particular direction. This is useful
for modelling the influence of the blob observations discussed above, or any other regular,
non-isotropic force field.

Note that functions may be arbitrarily complex. A good example is a controller of the
form described in Section 4.4. Despite their complexity, the dynamics engine may represent
them as a time-varying potential field. The forces applied by the controller simply become
another force affecting the dynamic evolution of the model. The neuroscience literature
supports this model[43].

4.2.3 Observation Influence

The 3-D observations described in Section 4.1 supply constraints on the underlying 3-D
human model. Due to their statistical nature, observations are easily modeled as soft con-
straints. Observations are integrated into the dynamic evolution of the system by describing
them with potential fields, as discussed in Section 4.2.2. These potential fields apply forces
to the body model, causing it evolve over time toward the observations. The strength of
these fields is related to the Kalman gain in a classic Kalman filter.

4.3 The Inverse Observation Model

In the open-loop system, the vision system uses a Maximum Likelihood framework to label
individual pixels in the scene (Equation 4.2). To close the loop, we need to incorporate
information from the 3-D model. This means generating 2-D statistical models from the
3-D body model that can be utilized by the vision system to improve its decisions.

57

3-D Isoprobability
Contour

2D Isoprobability
Contour Projection

Virtual Image Plane

COP

Figure 4-9: Projecting a 3-D blob into a 2-D image plane.

The current state of the model (xt, ẋt) specifies the best estimate of the configuration of the
body in model space given past observations. The first step in predicting future observations
is to propagate the state forward according to the dynamic constraints described above. The
external forces acting on the system can be assumed to be constant for the period of forward
prediction (33ms in the case of video rate observations), or can be predicted forward in time
by behavior models as described below in Section 4.4.

Once a best estimate of the future configuration of the system, xt+∆, has been computed, the
next step is to generate a set of hypothetical 3-D observations that we would expect to see
given that configuration. This involves generating distributions that represent 3-D ellipsoids
that fit the observable portions of the model links. These distributions are transformed into
the camera reference frame as described in Section 4.1.5. In this frame they are described
as in Section 4.1 by either their second order statistics:

{µ◦k,Σ◦k}

or, by their free parameters:

{x, y, z, l1, l2, l3, w1, w2, w3}

The process of identifying the observable portions of these links is discussed in Section 4.2.3.

To be used as a prior for the classification decision in Equation 4.2, these 3-D distributions
must be rendered into 2-D image coordinates using perspective projection. These projected
distribution will be described by their second order statistics:

{µ?k,Σ?
k}

58

or alternatively by the free parameters:

{i, j, λ1, λ2, ω}

The computation of µ?k from µ◦k is a straightforward application of the forward projec-
tive camera model. The parameters x, y, z map into the parameters i, j by perspective
projection:

µ?k =

[
i
j

]
=

[
x
y

]
1

1 + z
(4.25)

The true perspective projection of a 3-D Gaussian distribution over <3 is not a Gaussian
distribution over the image coordinates <2. It is necessary to employ an approximation to
perspective projection that will yield a Gaussian distribution in image coordinates to obtain
a value for Σ?

k

Orthographic projection of a Gaussian distribution does result in a Gaussian distribution.
This process involves integrating over the Gaussian in the direction of projection. Ortho-
graphic projection of the 3-D prior onto a XY plane passing through the mean is thus
equivalent to taking the marginal of a zero-mean Gaussian distribution:

N
(

0,

[
σx λxy
λyx σy

])
=
∫ ∞
−∞
N

0,

 σx λxy λxz
λyx σy λyz
λzx λzy σz

 ∂z (4.26)

Orthographic projection does not account for the scaling effect of perspective projection, so
simply using orthographic projection would result in priors with significantly exaggerated
covariances. A solution is to use the scaled orthographic approximation to perspective pro-
jection. Scaled orthographic projection uses perspective projection to map an intermediate
2-D orthographic projection into the virtual image plane. Since the plane of orthographic
projection is parallel to the virtual image plane, this operation is equivalent to a scale.
Scaling a Gaussian distribution retains the Gaussian nature, so we have the approximation
we need. As illustrated in Figure 4-10, by placing the plane of orthographic projection at
z, we can compute the 2-D blob covariance prior, Σ?

k, from the 3-D covariance Σ◦k:

Σ?
k =

[
σi λij
λji σj

]
=

[
1

1+z 0
0 1

1+z

] [
σx λxy
λyx σy

] [
1

1+z 0
0 1

1+z

]
(4.27)

The result of this process is a prior distribution on image observations in the next frame:

Pr(Oij |µ?k,Σ?
k) (4.28)

Integrating this information into the 2-D statistical decision framework of Equation 4.2
results in a Maximum A Posteriori decision rule for pixel classification:

Γij = arg max
k

[
Pr(Oij |µk,Σk)α · Pr(Oij |µ?k,Σ?

k)
1−α

]
(4.29)

59

3-D Isoprobability
Contour

Orthographic
Projection Plane

Virtual Image Plane

COP

2D Orthographic
Projection

Figure 4-10: Scaled-Orthographic projection approximation for Σ?
k

where α is the weighting parameter that indicates the importance of the prior information:

0 ≤ α ≤ 1 (4.30)

4.4 A Model for Control

Observations of the human body reveal an interplay between the passive evolution of a
physical system (the human body) and the influences of an active, complex controller (the
nervous system). Section 4.2 explains how, with a bit of work, it is possible to model
the physical aspects of the system. However, it is very difficult to explicitly model the
human nervous and muscular systems, so the approach of using observed data to estimate
probability distributions over control space is very appealing.

4.4.1 A Model for Control

Kalman filtering includes the concept of an innovations process. This is the difference
between the actual observation and the predicted observation transformed by the Kalman
gain:

νt = Kt(yt −HtΦtx̂t−1) (4.31)

The innovations process ν is the sequence of information in the observations that was not
adequately predicted by the model. If we have a sufficient model of the observed dynamic
process, and white, zero-mean Gaussian noise is added to the system, either in observation
or in the real dynamic system itself, then the innovations process will be white. Inadequate
models will cause correlations in the innovations process.

Since purposeful human motion is not well modeled by passive physics, we should expect

60

Physics-
only Model

2 4 6 8 10 12 14 16 18
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Innovations on Hand−Track Data

time(s)

di
st

an
ce

(in
)

−2 0 2 4 6 8 10 12

0

2

4

6

8

10

12

14
Magnified, Smoothed Innovations along the Path

Z distance(in)

Y
 d

is
ta

nc
e(

in
)

Physics +
Behavior
Model

2 4 6 8 10 12 14 16 18

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Innovations on Hand−Track Data

time(s)

di
st

an
ce

(in
)

−2 0 2 4 6 8 10 12

0

2

4

6

8

10

12

14
Magnified, Smoothed Innovations along the Path

Z distance(in)

Y
 d

is
ta

nc
e(

in
)

Figure 4-11: Modeling tracking data of circular hand motion. Passive physics alone leaves
significant structure in the innovations process. Top Left: Smoothing the innovations
reveals unexplained structure. Top Right: Plotting the Innovations along the path makes
the purposeful aspect of the action clear. Bottom: In this example, using a learned control
model to improve predictions leaves only white process noise in the innovations process. The
smoothed innovations stay near zero.

significant structure in the innovations process.

A simple example is helpful for illustrating this idea. If we track the hand moving in a
circular motion, then we have a sequence of observations of hand position. This sequence is
the result of a physical thing being measured by a noisy observation process. For this simple
example we making the assumption that the hand moves according to a linear, constant
velocity dynamic model. Given that assumption, it is possible to estimate the true state of
the hand, and predict future states and observations. If this model is sufficient, then the
errors in the predictions should be solely due to the noise in the system.

The upper plots in Figure 4-11 show that model is not sufficient. Smoothing ν reveals
this significant structure (top left). Plotting the innovations along the path of observations
makes the relationship between the observations and the innovations clear: there is some
un-modeled process acting to keep the hand moving in a circular motion (top right). This
un-modeled process is the purposeful control signal that being applied to the hand by the
muscles.

In this example, there is one active, cyclo-stationary control behavior, and its relationship to
the state of the physical system is straightforward. There is a one-to-one mapping between
the state and the phase offset into the cyclic control, and a one-to-one mapping between
the offset and the control to be applied. If we use the smoothed innovations as our model

61

and assume a linear control model of identity, then the linear prediction becomes:

x̂t = Φtx̂t−1 + Iut−1 (4.32)

where ut−1 is the control signal applied to the system. The lower plots in Figure 4-11 show
the result of modeling the hand motion with a model of passive physics and a model of the
active control. The smoothed innovations are basically zero: there is no part of the signal
that deviates from our model except for the observation noise.

In this simple, linear example the system state, and thus the innovations, are represented the
same coordinate system as the observations. With more complex dynamic and observations
models, such as described in Section 4.2, they could be represented in any arbitrary system,
including spaces related to observation space in non-linear ways, for example as joint angles.

The next section examines a more powerful form of model for control.

4.4.2 Multiple Behavior Models

Human behavior, in all but the simplest tasks, is not as simple as a single dynamic model.
The next most complex model of human behavior is to have several alternative models of
the person’s dynamics, one for each class of response. Then at each instant we can make
observations of the person’s state, decide which model applies, and then use that model
for estimation. This is known as the multiple model or generalized likelihood approach, and
produces a generalized maximum likelihood estimate of the current and future values of the
state variables [48]. Moreover, the cost of the Kalman filter calculations is sufficiently small
to make the approach quite practical.

Intuitively, this solution breaks the person’s overall behavior down into several “prototyp-
ical” behaviors. For instance, we might have dynamic models corresponding to a relaxed
state, a very stiff state, and so forth. We then classify the behavior by determining which
model best fits the observations. This is similar to the multiple model approach of Fried-
mann, and Isard[19, 26].

Since the innovations process is the part of the observation data that is unexplained by the
dynamic model, the behavior model that explains the largest portion of the observations
is, of course, the model most likely to be correct. Thus, at each time step, we calculate
the probability Pr(i) of the m-dimensional observations Yk given the ith model and choose
the model with the largest probability. This model is then used to estimate the current
value of the state variables, to predict their future values, and to choose among alternative
responses.

4.4.3 Hidden Markov Models of Control

Since human motion evolves over time, in a complex way, it is advantageous to explicitly
model temporal dependence and internal states in the control process. A Hidden Markov
Model (HMM) is one way to do this, and has been shown to perform quite well recognizing
human motion[45].

62

The probability that the model is in a certain state, Sj , given a sequence of observations,
O1,O2, . . . ,ON , is defined recursively. For two observations, the density associated with
the state after the second observation, q2, being Sj is:

Pr(O1,O2,q2 = Sj) =

[
N∑
i=1

πibi(O1)aij

]
bj(O2) (4.33)

where πi is the prior probability of being in state i, and bi(O) is the probability of making
the observation O while in state i. This is the Forward algorithm for HMM models.

Estimation of the control signal proceeds by identifying the most likely state given the
current observation and the last state, and then using the observation density of that state
as described above. We restrict the observation densities to be either a Gaussian or a
mixture of Gaussians. There are well understood techniques for estimating the parameters
of the HMM from data.

4.4.4 Behavior Alphabet Auto-Selection

Classic HMM techniques require the training data to be segmented prior to parameter
estimation. Since we don’t necessarily know how to choose a gesture alphabet a priori,
we cannot perform this pre-segmentation. We would prefer to automatically discover the
optimal alphabet for gestures automatically from gesture data. The Cogno architecture
performs this automatic clustering[12].

Unfortunately, the phrase “optimal” is ill-defined for this task. In the absence of a task
to evaluate the performance of the model, there is an arbitrary trade-off between model
complexity and genralization of the model to other data sets[47]. By choosing a task, such
as discriminating styles of motion, we gain a well-defined metric for performance.

One of our goals is to observe a user who is interacting with a system and be able to
automatically find patterns in their behavior. Interesting questions include:

• Is this (a)typical behavior for the user?

• Is this (a)typical behavior for anyone?

• When is the user transitioning from one behavior/strategy to another behavior/strategy?

• Can we do filtering or prediction using models of the user’s behavior?

We must find the behavior alphabets that pick out the salient movements relevant to the
above questions. There probably will not be one canonical alphabet for all tasks but rather
many alphabets each suited to a group of tasks. Therefore we need an algorithm for au-
tomatically generating and selecting effective behavior alphabets. The goal of finding an
alphabet that is suitable for a machine learning task can be mapped to the concept of
feature selection.

63

HMM
Clustering

ClassifierAlphabet Likelihoods

4180 4200 4220 4240 4260 4280 4300 4320 4340

0.2

0.15

0
�

.1

0.05

0

0.05

0.1

0
�

.15

0
�

.2

20 40 60 80 100 120 140 160 180 200
0.5

0

0.5

1

1.5

%

Features

Clustering Criterion

Alphabet that gives
maximum performance

Figure 4-12: Cogno pipeline for alphabet selection.

Cogno Algorithm

In rough terms, Cogno is a clustering algorithm[12]. We chose to use HMMs to model
each behavior in an alphabet. Candidate alphabets were generated by clustering the raw
features with HMMs. Free parameters of the clustering were:

1. N, Number of HMMs (number of behaviors)

2. S, Number of States per HMM (complexity)

3. T, Time Scale (typical behavior length)

A task-related criterion is used as the performance metric for a meaningful search of this
parameter space.

For each set of parameters, we cluster the raw features using an algorithm that can be
interpreted as K-Means where the Gaussians are replaced with HMMs. A more complete
description of the algorithm can be obtained in [12]. The centroids that result are HMMs
that each encode a time sequence in raw feature space (i.e. a behavior). Each HMM is a
behavior or symbol in an alphabet that is used to convert the raw features to soft symbols
or likelihoods by means of the Forward Algorithm. So if the number of HMMs used is N ,
then the alphabet size is N and the raw features will be mapped to a likelihood space of
N dimensions. The next step is to use the likelihoods to build a classifier for a given task
and evaluate the classifier’s performance. The classifier’s performance is then fed back to
the cluster parameter search for model selection. This process is illustrated in Figure 4-12
and outlined below:

1. Input Raw Features (Innovations), ν

2. For each (N,S, τ)

3. Cluster ν with N S-state HMMs at Time Scale τ HMMs H

4. Use HMMs obtained to generate likelihood traces L(t) = P (ν(t)|H)

64

5. Use L to train and test a classifier for a given task

6. Select H that maximizes step 5’s performance.

Examples with data from naive users are presented in Chapter 5.

4.5 Conclusion

This chapter presents a framework for human motion understanding, defined as estimation
of the physical state of the body combined with interpretation of that part of the mo-
tion that cannot be predicted by passive physics alone. The behavior system operates in
conjunction with a real-time, fully-dynamic, 3-D person tracking system that provides a
mathematically concise formulation for incorporating a wide variety of physical constraints
and probabilistic influences. The framework takes the form of a non-linear recursive filter
that enables pixel-level processes to take advantage of the contextual knowledge encoded
in the higher-level models. Some of the benefits of this approach including increase in 3-D
tracking accuracy, insensitivity to temporary occlusion, and the ability to handle multiple
people will be demonstrated in the next chapter.

The intimate integration of the behavior system and the dynamic model also provides the
opportunity for a richer sort of motion understanding. The innovations are one step closer
to the original intent, so the statistical models don’t have to disentangle the message from
the means of expression.

65

66

Chapter 5

Results

This chapter will provide data to support the Dyna framework. The first part of the chapter
will report on the state of the model within Dyna and the quantitative effects of tracking
improvements. The rest of the chapter details qualitative improvements in human-computer
interface performance in the context of several benchmark applications.

5.1 Tracking Results

The dynamic skeleton model currently includes the upper body and arms. The full dynamic
system loop, including forward integration and constraint satisfaction, iterates on a 500MHz
Alpha 21264 at 600Hz. Observations come in from the vision system at video rate, 30Hz,
so this is sufficiently fast for real-time operation. Figure 5-1 shows the real-time response
to various target postures. The model interpolates those portions of the body state that
are not measured directly, such as the upper body and elbow orientation, by use of the
model’s intrinsic dynamics, the kinematic constraints of the skeleton, and and the behavior
(control) model.

The model also rejects noise that is inconsistent with the dynamic model. This process
isn’t equivalent to a simple isometric smoothing, since the mass matrix of the body is
anisotropic and time-varying. When combined with an active control model, tracking error
can be further reduced through the elimination of overshoot and other effects. Table 5-2
compares noise in the physics+behavior tracker with the physics-only tracker noise. It can
be seen that there is a significant increase in performance.

The plot in Figure 5-3 shows the observed and predicted X position of the hand and the cor-
responding innovation trace before, during and after the motion is altered by a constraint
that is modeled by the system: arm kinematics. When the arm reaches full-extension,
the motion is arrested. The system is able to predict this even and the near-zero inno-
vations after the event reflect this. Non-zero innovations before the event represent the
controlled acceleration of the arm in the negative X direction. Compare to the case of a
collision between a hand and the table illustrated in Figure 5-4. The table is not included
in the system’s model, so the collision goes unpredicted. This results in overshoot, and a

67

Figure 5-1: Left: video and 2-D blobs from one camera in the stereo pair. Right: corre-
sponding configurations of the dynamic model.

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
Comparison between Physics and Physics+Behavior Models

t (sec)

S
um

 o
f S

qu
ar

e
E

rr
or

 (
in

)

Figure 5-2: Sum Square Error of a Physics-only tracker (triangles) vs. error from a
Physics+Behavior Tracker

68

1 2 3 4 5 6

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

time (s)

rig
ht

 h
an

d
X

 p
os

iti
on

 (
m

)

Tracking through a modeled constraint: body kinematics

observation
prediction
innovation

Figure 5-3: Observed and predicted X position of the hand and the corresponding innovation
trace before, during and after expression of a modeled constraint: arm kinematics.

corresponding signal in the innovations process after the event.

Figure 5-5 illustrates one of the most significant advantages to tracking of feedback from
higher-level models to the low-level vision system. The illustrated sequence is difficult to
track due to the presence of periodic, binocular, flesh-flesh occlusions. That is, one hand is
occluded by the other from both camera viewpoints in a periodic fashion: in this example
at approximately 1Hz. The binocular nature of the occlusion events doesn’t allow for view
selection to aid tracking: there is no unambiguous viewpoint available to the system. Flesh-
flesh occlusions are particularly difficult for tracking systems since it’s easier to get distracted
by an object with similar appearance (like another hand) than it is to be distracted by an
object with a very different appearance (like a green shirt sleeve). The periodic nature of the
occlusions means that the system only has a limited number of unambiguous observations
to gather data before another occlusion again disrupts tracker stability.

Without feedback, the 2-D tracker fails if there is even partial self-occlusion, or occlusion of
an object with similar appearance (such as another person), from a single camera’s perspec-
tive. In the even more demanding situation of periodic, binocular, flesh-flesh occlusions,
the tracker fails horribly. The middle pair of plots in Figure 5-5 show the results. The
plots from a cross-eyed stereo pair. The low-level trackers fail at every occlusion causing
the instantaneous jumps in apparent hand position reported by the system. Time is along
the X axis, from left to right. The other two axes represent Y and Z position of the two
hands. The circular motion was performed in the Y-Z plane, so X motion was negligible.
It is not shown in the plot.

The situation with feedback, as illustrated in the lower pair of plots in Figure 5-5, is much
better. Predictions from the dynamic model are used to resolve ambiguity during 2-D
tracking. The trackers survive all the occlusions and the 3-D estimates of hand position
reveal a clean helix through time (left to right), forming rough circles in the Y-Z plane.

69

1 2 3 4 5 6
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

time (s)

rig
ht

 h
an

d
Y

 p
os

iti
on

 (
m

)

Overshoot due to unmodeled constraint: table collision

observation
prediction
innovation

Figure 5-4: Observed and predicted Y position of the hand and the corresponding innovation
trace before, during and after expression of a un-modeled constraint: collision with a table.

With models of behavior, longer occlusions could be tolerated.

5.2 Applications

Section 5.1 provided quantitative measures of improvement in tracking performance. This
section will demonstrate improvements in human-computer interaction by providing case
studies of several complete systems that use the perceptual machinery described in Chap-
ter 4.

The three cases are the T’ai Chi instructional system, the Whack-a-Wuggle virtual manip-
ulation game, and the strategy game Netrek.

5.2.1 T’ai Chi

The T’ai Chi sensei is an example of an application that is significantly enhanced by the
recursive framework for motion understanding simply by benefiting from the improved
tracking stability. The sensei is an interactive instructional system that teaches the human
a selection of upper-body T’ai Chi gestures[5].

The sensei is embodied in a virtual character. That character is used to demonstrate
gestures, to provide instant feedback by mirroring the student actions, and to replay the
student motions with annotation. Figure 5.2.1 shows some frames from the interaction:
the sensei welcoming the student on the left, and demonstrating one of the gestures on the
right. The interaction is accompanied by an audio track that introduces the interaction
verbally and marks salient events with musical cues.

70

There are several kinds of feedback that the sensei can provide to the student. The first is the
instant gratification associated with seeing the sensei mirror their motions. This allows the
student to know that the sensei is attending to their motions and gives immediate feedback
regarding their perceived posture relative to the ideal gestures they were just shown. When
the sensei decides that feedback is appropriate this mirroring stops: indicating to the student
that the interaction paradigm has changed. In this feedback mode the sensei can either
critique individual gestures or remind the user of the global order of the sequence. The
left and center images in Figure 5-7 show an example of a critique of a specific gesture.
Visual and musical cues indicate the temporal location of the error and the sensei’s gaze
direction indicates the errant hand. The right image in Figure 5-7 is an example of feedback
regarding the overall structure of the T’ai Chi sequence.

There are several technologies at work making these interactions possible. The mirroring
is accomplished simply by piping the tracking data through the inverse-kinematics engine
inside the sensei’s body. This is technically simple, but it is imperative that it be robust.
It is a meaningful event when the sensei stops mirroring: it signals to the student that
they should stop and prepare to receive feedback. Tracking failures can cause the sensei
to pause for an indeterminate length of time. Even worse, tracking failures can cause the
sensei to spontaneously contort into one of many unpleasant configurations. Either event
will obviously detract from the student’s learning experience.

The technology behind the identification and interpretation of T’ai Chi gestures is somewhat
more complex. To summarize: the sensei learns T’ai Chi gestures by watching a human
perform the motions. The system builds Hidden Markov Model (HMM) of each gesture.
The HMMs are comprised of a sequence of states with Markov temporal dynamics and
Gaussian output probabilities. In effect they are capturing a mean path through parameter
space that represents the gesture, and a covariance that specifies an envelope around the
mean path that represents the observed variability. The gestures are recognized in the
usual way [10]. Once a gesture is recognized, the lattice is examined to find the point at
which the observed gesture differ the most from the learned ideal, weighted by the allowable
variation [5]. Tracking errors can have a large impact on this process. If a critical chunk
of a gesture is missed due to tracking error then it may be unrecognizable, or worse, the
system may attempt to correct illusory motion errors and confuse the student.

The individual T’ai Chi gestures are relatively complex. Each gesture takes several second
to perform. Critiques often involve playback of observed and ideal gestures, and as a result
a single critique may last several tens of seconds. The result is that the frequency of
interaction is relatively low. Tracking errors that result in misclassified gestures or illusory
motion errors can thus lead to a significant break in the experience. Failures thus lead to
frustration. Frustration is antithetical to the underlying goal of T’ai Chi: relaxation and
focus.

Figure 5-8 shows a flawless execution of a five gesture sequence as tracked by a bottom-up
3-D blob tracker. The individual gestures are hand-labelled at the top of the plot. The
plots show, from top to bottom, the X, Y and Z position of the left hand, right hand, and
head. Y is positive up. X is positive to the student’s right. Z is positive away from the
user. The following discussion will focus on two salient features. The first feature is the
initial bump in the Y axis of both hands. This corresponds to the up and down motion of
“Opening Form”. The second feature is the double bump in the right hand X position at

71

the end of the sequence. This corresponds to the right hand motion in “Single Whip” and
the motion of both hands to the right in “Brush Knee”.

Figure 5-9 shows the tracking output from the bottom-up 3-D blob tracker for a slightly
different execution of the sequence. To a human observer the motions are very similar
except that the motions in Figure 5-9 are slightly more exaggerated. The tracking data
looks significantly different due to the tracking failures associated with occlusions. The first
salient feature shows significant clipping as the top of the gesture is lost when one or both
of the hands occlude the face in one or both of the cameras. This is caused by the hands
being raised higher than ideal (or, alternatively if the student is shorter than the master
who taught the sensei). The second feature is lost because the hands are held too close
together. This causes the 2-D blob trackers to fail in one or both cameras. Almost no
tracking data is acquired after 14s due to this error.

Figure 5-10 is the result of tracking motion very similar to that represented by Figure 5-9.
The difference is that in this case the motion is tracked by the recursive system described
in Chapter 4. Both features are present and well-formed. This is true despite the fact that
the hands were up high enough in opening form to cause occlusion with the face and close
enough together to cause 2-D tracking failures at the end of the sequence. The recursive
structure of the tracker allows the system to integrate information at all levels of modeling
to produce good tracks in these ambiguous cases, and sensei is better able to evaluate the
student’s true departures from the ideal and provide more appropriate feedback.

5.2.2 Whack-a-Wuggle

Whacka is a virtual manipulation game. A virtual actor mirrors the motions of the human’s
upper body. The goal is for the human to touch objects in the virtual world vicariously
through the virtual actor. The world contains static objects (Wuggles) and moving objects
(Bubbles). Wuggles can always be whacked by returning to the same physical location since
they do not move in the virtual environment, and the mapping between the physical and
virtual worlds is fixed. Bubbles move through the virtual space, so they require hand-eye
coordination to pop. In addition each Bubble is at a different depth away from the player
in the virtual world. Due to poor depth perception in the virtual display, popping a Bubble
requires the human to reach up to the approximate location of the bubble and then perform
a limited search in depth.

There are a very small number of things that people do with their hands when playing
Wacka. Hands are usually either resting, whacking, or popping. Whacking quickly becomes
a ballistic action once the human learns where the Wuggles map into the physical world.
Popping always involves performing the more complex visual-motor feedback loop required
to find the Bubbles because they have random and only partially observable depth. The pace
of the game is fast enough to discourage motivated players from wasting time performing
extraneous gesticulations.

This context was used to test the method of alphabet selection described in Section 4.4.4.
The player’s motions were tracked and hand labeled for three types of behavior:

72

1. Whacking a Wuggle

2. Popping a Bubble

3. Tracker failure

Task 1 was to recognize these three classes of behavior. Task 2 was to be able to distinguish
the playing styles of different people.

Figure 5-12 shows the results of searching the model parameter space for the best alphabet
in the gesture recognition task. The best alphabet parameters for distinguishing the three
players was 3 elements, with 10 states each and a base time scale of 32 frames (1s). Figure 5-
13 shows alphabet traces for the three players over approximately one minute of play. These
traces are the features used to do player identification. Player identification performance
was 75% for three players.

Figure 5-14 illustrates the actions of the best HMMs in the intention identification task for
a specific player. For this player the best intention alphabet parameters were 3 elements,
with 9 states each and a base time scale of 8 frames (250ms). The plots show the data in
grey, and the mean position and iso-probability contours in black. The left and right HMMs
seem to be explaining salient motions for recognizing player’s intention, while the middle
HMM is modeling the outliers caused by tracker failures.

73

0 2 4
−10

−5

0

5
0

5

10

15

20
No Feedback

time

hand
Z

ha
nd

Y

0 2 4−10

−5

0

5
0

5

10

15

20

time

No Feedback

hand
Z

ha
nd

Y

0 1 2 3 4
−10

−5

0

5
0

5

10

15

20
Feedback

time

hand
Z

ha
nd

Y

0 2 4−10

−5

0

5
0

5

10

15

20

time

Feedback

hand
Z

ha
nd

Y

Figure 5-5: Tracking performance on a sequence with significant occlusion. Top: A diagram
of the sequence and a single camera’s view of Middle: A graph of tracking results without
feedback (cross-eyed stereo pair). Bottom: Correct tracking when feedback is enabled
(cross-eyed stereo pair).

74

Figure 5-6: The T’ai Chi sensei shows gives verbal instruction and uses it’s virtual body to
show the student the T’ai Chi moves.

Figure 5-7: Visual and Auditory cues are used to give the student feedback. The sensei
mimics the student motions and indicates problems to be worked on.

75

−20

−10

0

10

le
ft

x
feed−forward, no occlusions

−10

0

10

20

le
ft

y

−10

0

10

le
ft

z

−10

0

10

20

rig
ht

 x

0

10

20

rig
ht

 y

−10

−5

0

5

rig
ht

 z

−10

0

10

he
ad

 x

10

15

20

25

he
ad

 y

0 5 10 15 20

10

20

he
ad

 z

time

Open Grab Wave Whip Brush

Figure 5-8: This is an example of a T’ai Chi sentence performed without feedback enabled.
The gesture labels are at the top. The graphs show tracking data for left hand, right hand
and head. The gestures can be performed without occlusions in the STIVE space.

76

−20

−10

0

10

le
ft

x
feed−forward, many occlusions

−10

0

10

20

le
ft

y

−10

0

10

le
ft

z

−10

0

10

20

rig
ht

 x

0

10

20

rig
ht

 y

−10

−5

0

5

rig
ht

 z

−10

0

10

he
ad

 x

10

15

20

25

he
ad

 y

0 5 10 15 20

10

20

he
ad

 z

time

Open Grab Wave Whip Brush

Figure 5-9: This is an example of a T’ai Chi sentence with significant occlusion failures.
Compare to Figure 5-8. This example is intentionally pessimal to demonstrate all the
possible failure modes. Missing dots indicate periods of severe tracking failure. See text for
details.

77

−20

−10

0

10

le
ft

x
recursive, many occlusions

−10

0

10

20

le
ft

y

−10

0

10

le
ft

z

−10

0

10

20

rig
ht

 x

0

10

20

rig
ht

 y

−10

−5

0

5

rig
ht

 z

−10

0

10

he
ad

 x

10

15

20

25

he
ad

 y

0 5 10 15 20

10

20

he
ad

 z

time

Open Grab Wave Whip Brush

Figure 5-10: A T’ai Chi sentence with many of the same performance “mistakes” as in
Figure 5-9, but this time the tracker is able to resolve ambiguities and provide good data
to the sensei.

78

Figure 5-11: In Whack-a-Wuggle a clown mirrors the player’s body motions. By guiding
the clown’s arms, the player can Whack Wuggles (the objects with eyes) and pop Bubbles
(the objects floating in the air).

79

Figure 5-12: Plot showing gesture recognition performance as a function of model complex-
ity.

100 200 300 400 500

0

0.5

1

po
si

tio
n

Player 1

lik
el

ih
oo

d

100 200 300 400 500

1

2

3

100 200 300 400 500
−0.4
−0.2

0
0.2
0.4
0.6
0.8

Player 2

frame
100 200 300 400 500

1

2

3

100 200 300 400 500

0

0.5

1
Player 3

100 200 300 400 500

1

2

3

Figure 5-13: Top: Tracking data. Bottom: Corresponding likelihood trace of the identi-
fication alphabet.

80

Figure 5-14: HMMs for the intentionality alphabet.

81

82

Chapter 6

Future Directions

In this chapter the game Netrek is proposed as a test-bed for perceptual user interfaces.
The game Netrek provides a rich context for interfaces while retaining the closed world that
makes a game environment tractable as a research platform. The next section will give
an introduction to Netrek with an emphasis on the elements that make it particularly well
suited to perceptual user interface work. Section 6.2 will detail the current state of the
test-bed as embodied in Ogg That ThereṪhe last section will outline proposed additions
that are intended to push perceptual user interface research and pave the way toward a
truly novel human-computer interface.

6.1 The Netrek Domain

Netrek is a game of conquest with a Star Trek motif. The game is normally played by up to
16 players organized into two teams. A team wins by transporting friendly armies to each of
the opposing team’s planets. Figure 6-1 illustrates some of the basic elements of the game:
planets, ships, and armies. The first benefit of Netrek as a test-bed for user interfaces is
that it is a game: so it provides built in metrics for the success of a new interface design.
If the interface allows a player to play the game more effectively (to win more), then the
interface can be said to be successful.

Netrek is very much a team-oriented game. Winning requires a team that works together as
a unit. This fact , in particular, provides a rich set of interface opportunities ranging from
low-level tactics to high-level strategy. There has been some work on new tactical interfaces,
but these interfaces were blocked by the Netrek community with an authentication system
to keep games fair. We will concentrate on the opportunities for building interfaces for
high-level communication regarding strategy since these provide the most room for novel
interface design.

Netrek is usually played by groups of players on wide area networks spread over large
geographic areas. The standard interface requires the player to directly control their ship.
Communication with teammates is accomplished by type-written messages: this means
that in order to send messages the player must temporarily give up control of their ship. So

83

Figure 6-1: Netrek Screenshot: Federation ships F0 and F2 defend federation space near
Earth and Alpha Centauri. Indi Romulus and and Aldeberan are unexplored by the Feder-
ation. Romulan ships R3 and R5 hold near Romulus. R4 and F1 have just destroyed each
other near Indy.

players must communicate about strategy and complex maneuvers in an efficient manner.
This necessity led to the creation of a set of staccato jargon and an associated set of what
we will call programs. The programs are essentially little plays with a few roles that can
be filled by appropriate players.

The existence of these programs is good for research in several ways. First there is pre-
existing code, called a robot, that is capable of running a small set of these programs as
well as game basics like tactics and navigation. These robots provide a solid base on which
to build a research system. The jargon also represents a strict codification (enforced by the
difficulty of communication) of human play that might indicate that recognition of plays
and machine learning of plays through observation of human players would be tractable.
This codification also means that there may be opportunities for novel, expressive interfaces
to encourage the formation of new strategies.

One last aspect of Netrek is the virtual embodiment of the robots in the game. The ships
obey a simple dynamic model and they have limited control. This is particularly interesting
given the proposal to represent behaviors as control signals to dynamic systems. This creates
a satisfying duality between the mode of expression and the target of that expression.

84

Figure 6-2: Netrek Collective Interface: the player uses a deictic gesture to select F0.
Cameras on top of the display track the player’s movements and a head-mounted microphone
is used for speech recognition.

6.2 Initial Integration: Ogg That There

The first version of the Netrek Collective, entitled Ogg That There, is intended to per-
form in a manner similar to the classic interface demo “Put That There”[7]. Imperative
commands with a subject-verb-object grammar can be issued to individual units. These
commands override the robots internal action-selection algorithm, causing the specified ac-
tion to execute immediately. Objects can either be named explicitly, or referred to with
deictic gestures combined with spoken demonstrative pronouns. Figure 6-2 depicts a player
selecting a game object with a deictic gesture.

Figure 6-3 illustrates the system architecture of Ogg That There. Thin, solid lines indicate
standard socket-based Netrek communications. Thick, dashed lines indicate RPC based
communication between our modules. The modules can be distributed across a cluster of
machines to allow for future expansion of resource requirements. The following sections
give details on the Perception, Interpretation, Display and Robot modules.

Perception: Deictic Gestures Deictics are the only form of gesture supported by Ogg
That There. They are labeled by speech events, not actually recognized. Interpretation of
deictics relies on interpolation over a set of calibration examples obtained off-line by asking
the player to point at the four corners of the screen with both hands in turn. This results
in four sets of measurements for each hand. Separate calibrations are maintained for each
hand.

85

Perception: Vision & Speech

Interpretation

Robot

Robot

Robot

Robot

Robot

Robot

Robot

Robot

Display
Engine
Game

Figure 6-3: Netrek Collective System Diagram. Arrows indicate information flow. The
Display module doubles as a database front-end for the Interpretation module so that no
modification are needed to the Game Engine.

86

In general these four points will not form parallelograms in feature space, so linear strategies
introduce unacceptable warping of the output space. Ogg That There employs a perspective
warping to translate input features ((x, y) hand position in 3D space) to screen position: XW

YW
W

 =

 a b c
d e f
g h 1

 x
y
1

 (6.1)

where X and Y are screen position and x and y are hand position. The parameters
a, b, c, d, e, f, g, h are estimated from data. Interpolation of a novel deictic simply involves
plugging the new (x, y) into Equation 6.1. The resulting screen coordinates, (X,Y), are
then passed to the Display which does a pick action to convert those coordinates into a
game object.

Display The state of the game is displayed on a rear-projection screen. The Display
module generates the graphics for this screen. It is a standard Netrek client with several
enhancements. An RPC interface allows remote access to standard display parameters such
as viewport zoom and pan, plus addition features for the Ogg That There such as remote
cursor display, highlighting of game objects, and textual feedback to the player. Some of
these features can be seen in Figure 6-2.

The Display also provides a high-level interface for game information. For Ogg That There
this is used by the interpreter to retrieve game objects that appear near a given screen
location and satisfy a list of grammatical constraints.

Robot The Robot is instantiated several times in Ogg That There. There is one Robot for
each player on the game. Not shown in Figure 6-3 are the eight players on the enemy team:
the same code runs players on both teams.

The Robot contains a large amout of Netrek domain knowledge in the form of heuristic
functions and implementation of several of the programs discussed above. There is also a
collection of motor skills that generate commands to the Game Engine and allow the robot
to perform all the primitive Netrek functions.

The heuristic functions are used by a primitive action-selection algorithm that selects tar-
gets and dispatches one of the tactical programs each tick. An RPC interface allows the
Interpreter to override this system and explicitly execute a tactical program with supplied
targets.

Interpretation The Interpretation module reads features from the vision system de-
scribed above as well as an adaptive speech system developed by Deb Roy [42]. These
feature streams must then be converted to game actions: commands to the robots or con-
figuration of the display. The Interpretation module can query game state via the database
engine built into the Display module, and can query individual robots regarding their in-
ternal state.

Currently this module is implemented as a finite state machine implementing the subject-

87

verb-object grammar used in Ogg That There. The adaptive speech system is pre-loaded
with a set of verbs, literal nouns and demonstrative pronouns. During the game speech
events advance the state of the interpreter. If a demonstrative pronoun is encountered the
interpreter resolves the gesture features in screen coordinates as described above. Those
screen coordinates are then combined with grammatical constraints on valid referents from
the current state of the FSM to generate a query on the Display database. Once a full
sentence is parsed and all referents are instantiated, a command is issued to the appropriate
robot.

6.3 Next Generation

Current work focuses on learning patters of audio-visual behaviors in a constrained context.
The Collective vignette supplies a constrained subset of the larger Netrek universe that cov-
ers a crucial aspect of game play: cooperation among ships to take a planet. The beginning
game state is illustrated in Figure 6-4. The player begins with one planet populated with
armies, two disposable guards, and one indispensable ship that can carry armies, labelled
the quarterback in Figure 6-4. The player’s task is to capture the contested planet planet
in the center by using the quarterback to move armies there from the home planet in the
upper left. The trick is that a frontal assault will result in the loss of the quarterback and
failure. It is necessary to coordinate the actions of the friendly guards to dispose of the
enemy guard before the quarterback arrives with the armies. A certain amount of timing
is involved because the enemy guard regenerates at the enemy home in the lower-left and
will proceed back to its defensive position post in the center.

6.3.1 Wizard of Oz

The details of the actions of the ships in the vignette are controlled by freeware software
agents written by the internet netrek community. Modifications to the robot allows a remote
process to control the robots actions by setting high-level goals via remote procedure calls
(RPC). The highlevel goals are set by the operator during the experiment via a button
box written in Java. The button box is illustrated in Figure 6-5. The buttonbox issues
commands via RPC and also generates time-stamped tags to a file. There are also processes
that record game state, gesture data, and speech data with similar timestamps.

Once the data is recorded and temporally aligned with the help of the timestamps, then
the data can be analyzed with tools such as Cogno, descibed in Section 4.4.4. Current
and future work includes using Cogno to discover gestural primitive, as in the Whakka
example. The gesture primitives will then be combined with speech primitives (phonemes)
and reclustered with Cogno in an attempt to discover audio-visual primitives.

6.4 Future Work

Ogg That There is very fragile. The FSM inside the Interpreter limits the robustness of the

88

Enemy Home

Home

Enemy Target

Quarterback Friendly

Guard Enemy

Figure 6-4: Set setup for the Collective vignette. The player conrols three ships and one
planet in the upper left. The enemy controls the contested planet in the center, and some
guards.

Figure 6-5: This is the control panel that the operator uses during the Wizard of Oz
experiemnt to control the robots in response to user directives.

89

Ind

Cap

Can

Rig

Org

F0

Figure 6-6: A situation where this feint path might be provided by the user gesturally even
though the robot is not explicitly programmed to execute feints.

system as does the rigid grammar. Limiting the user to deictic gestures denies the potential
expressiveness of a gestural interface. The reliance on imperative commands issued to
specific robots doesn’t keep up with the pace of the game, and leads to frustration as the
situation changes faster than commands can be issued. Ogg That There succeeded in solving
many integration issues involved in coupling research systems to existing game code, but it’s
now time to redesign the interface to more accurately match the flexibility of the perceptual
technologies, the pace of play, and the need for a game interface to be fluid and fun.

Work is already underway to replace the FSM framework with a production system that
can propagate time-varying constraints against recent perceptual events to generate parses.
This should alleviate much of the brittleness of the Ogg That There implementation. Un-
fortunately the state-of-the-art for production systems falls short of what we would like to
have for this project. However, even if we aren’t able to break out of the need for grammars,
it should be straightforward to support a wider array of possible grammars as well as to
recover from simple speech recognition failures. Utterances and gestures that fall outside
the scope of the implemented grammars will have to be handled outside the system. Some
ideas for this special handling are explored below.

Ogg That There doesn’t make use of the machinery in Chapter 4 except as a means to
increase tracking performance. An interpreter that made more elaborate use of gesture
could provide a much richer interface. Building a gestural language system is a popular
interface technique, but it requires users to be trained and distances the user from the
control task by interposing a symbolic layer.

The innovations-based representations for behavior described in Section 4.4.1 combined
with the embodied, physics-based, nature of the Netrek robots presents a possibility for
non-symbolic communication with the robots. Innovation steams, or parametric models of

90

Figure 6-7: Modification of the navigation motor skill can affect a warping of space for any
code that uses the low-level skill.

the innovations, could be provided to the robots as a control strategy to be layered on top
of the current task. These controls can be thought of as non-verbal adverbs that would be
difficult or impossible to convey verbally. Figure 6-6 illustrates a possible situation where
the user may want a carrier, F0, to execute a feint toward Capella before hitting the real
target, Indi. Human teammates might type to F0, “Take Ind, feint at Cap”. If the robot
isn’t explicitly coded to execute feints (or if the human player doesn’t know the word feint),
then this symbolic strategy will fail.

Similar strategies, with appropriate intermediate representations, may also be possible for
the audio modality. A command “F1, get in there!” said in a staccato, high-energy way
might bias F1 toward higher speeds and maximal accelerations even if the system was only
able to recognize the word “F1” (or maybe not even this if the viewport is on F1 or the user
is gesturing toward F1). It seems that this may end up being somewhat more symbolic since
the feature space of speech is so different from the control space of the robots. An analysis
system might recognize agitated speech and generate a symbol representing agitation that
the Interpreter could choose to pass on to one or more robots.

While the preceding discussion is hypothetical, one modification to the Robot motor skill
code has already affected qualitative changes in the robots behavior without the need to
modify the existing programs that use that skill. This functionality is not used in Ogg That
There. It allows the Interpreter to specify a warping of space that affects how the low-
level navigation skill expresses itself. Figure 6-7 illustrates an example of how a ship might
avoid an area indicated as dangerous in its way to a target. This communication channel
is probably more useful for global influences, as opposed to the more local, control-level
example of the feint described above.

An even more indirect, global, non-symbolic influence involves the possibility of modifying
the way that the robot decides what action to take. Ogg That There overrides the action-
selection algorithm completely. So, either the robot is making its own decisions or it is
following the imperative commands from the user. There is no possibility to simply bias
the decisions of the robot in a certain direction. Figure 6-8 shows a possible scenario where
a robot chooses a different target depending on the presence of a bias indicating a difference

91

Figure 6-8: Modification of the action-selection algorithm to include user supplied weights.
In this example the ship may choose to attack a different target because the most desirable
target exists in an area deemed undesirable by the user.

in the value of the targets as perceived by the user.

The current action-selection implementation is the original code that came with the robots
from the Netrek community. It is a rather brittle (not to mention obfuscated) collection of
heuristics. The first step toward this sort of interaction with the robots will be the adoption
of a more sophisticated action-selection implementation. An obvious choice is to use the
current implementation of Bruce Blumberg’s reactive behavior architecture, since it has
proven itself flexible and is readily available [6].

While this mode provides the least direct control over individual robots, it is important
to note that this is also a mechanism for specifying high-level strategic goals and hazards
that can affect many robots at once. Moving away from the imperative command structure
toward a method for specifying abstract goals will increase the ability of the interface to
keep pace with the game. Deictics will undoubtedly be important for specifying these goals,
but natural specification of the polarity and severity to be associated with the demonstrated
region will probably rely on stylistic attributes of the deictic and accompanying voice events.
That makes this class of communication another interesting challenge.

All of these possibilities have a theme in common: they are attempting to extract content
from parts of the user input that are normally ignored by classic user interface techniques
like those illustrated in Ogg That There. An extreme example is useful to illustrate: imagine
that the user foresees imminent disaster. The user does not have time to communicate in
a lucid fashion, but given the desperation of the situation, they are likely to try anyway.
Classical interfaces would experience speech and gesture recognition failures, and would
either give up or, in the most advanced case, would ask the user a leading question. This
is exactly the wrong response. There are probably only a few bits of information present
in the user’s desperate squeaking, but they are very important bits: “look out!” The only
kind of process that is going to recover these bits is one that is attending to the nature
of the signals: the energy and pitch of the voice, and the style (in an innovations-based,
statistical sense) of the gesticulations.

92

Chapter 7

Conclusion

This dissertation has examined a body of sophisticated perceptual mechanisms developed
in response to the needs of human computer interface, as well as a selection of inter-
face sketches. It has covered, in depth, the formulation of a fully recursive framework
for computer vision called Dyna that improves performance of human motion tracking.
The improvement in tracking performance is accomplished with the combination of a three-
dimensional, physics-based model of the human body with modifications to the pixel clas-
sification algorithms that enable them to take advantage of this high-level knowledge. The
result is a novel vision framework that has no completely bottom-up processes, and is
therefore significantly faster and more stable than other approaches.

Every level of processing in the Dyna framework takes advantage of the constraints implied
by the embodiment of the observed human. Higher level processes take advantage of these
constraints explicitly while lower level processes gain the advantage of the distilled body
knowledge in the form of predicted probability densities. These predictions enable more
robust classification decisions. Systems which omit a model of embodiment entirely, or
try to hallucinate physical constraints in the image plane will fail to capture important
aspects of human motion and the overall system performance will suffer. Understanding
embodiment is crucial to perceiving human motion.

Systems that rely on any completely bottom-up processing will incur unacceptable perfor-
mance penalties to recover from inevitable low-level errors, if it is possible to recover at all.
Recursive frameworks are also crucial to perceiving human motion.

Improvement of the interface between people and computation was the primary motivation
for the design and implementation of Dyna. This work demonstrated the operation of the
framework in the context of three applications. The first showcased enhanced performance
for a pre-existing motion tutor called the T’ai Chi Teacher. The second application, called
Wakka, involved fast-paced manipulation of virtual objects and served as a context for
motion primitive discovery. The final application is a command and control interface built
on top of the distributed, open-source game Netrek that points the way to the future of
interface.

This dissertation contributes to the domain of machine perception. As these technologies

93

continue to develop an mature they will enable an environment rich with interactivity. Com-
puters will cease to be boxes that necessitate unnatural, and sometimes painful or damaging
interaction. Computers disappear into the environment, and the things we do naturally will
become the primary interface. Our most important experiences are interactions with other
people, and as machine perception advances, computation will finally begin to engage in
that conversation.

94

Appendix A

Dynamics

This appendix will cover some of the basics of dynamic simulation including the formation
of mass matrices, basic integration, and some simple constraint forms[25, 33, 51].

A.1 Introduction

The continuous motion of real objects is simulated digitally with a discrete model. Newto-
nian mechanics is used to determine the instantaneous relationship between applied forces
and accelerations. Accelerations are integrated over time to obtain velocities. Velocities
are integrated over time to obtain position. For a 1-D system with position x, mass m and
applied force X, the discrete approximation to the system is:

ẍt =
1
m
·Xt (A.1)

ẋt = ẋt−∆t + ∆t · ẍt (A.2)
xt = xt−∆t + ∆t · ẋt−∆t (A.3)

This representation is an approximation. The time step ∆t places a bound on the highest
frequency in X that can be represented by the discrete signal. At best, the Nyquist limit
for a sampled system states that only frequencies below 1

2∆t can be accurately represented.
If there is significant energy in the system above that boundary, aliasing effects will severely
degrade the accuracy of the model predictions.

A.2 Six Degree of Freedom Motion

For real objects the story is complicated by the fact that real motion has six degrees of
freedom: three translational and three rotational. The state vector from the 1-D case above

95

becomes the 6-D vector:

x =

Tx
Ty
Tz
Rx
Ry
Rz

Similarly, the vector of forces becomes the 6-Dvector or forces and torques:

X =

Fx
Fy
Fz
τx
τy
τz

In equation A.1, the main complication arises in the formation of m which becomes a matrix,
called the mass matrix. For a box of material with uniform density, a mass of m, aligned
with the world coordinate system, with length a on the edge parallel to the X-axis, length
b on the edge parallel to the Y-axis, length c on the edge parallel to the Z-axis, and with
the center of mass at the origin, the mass matrix looks like this:

M =

m 0 0 0 0 0
0 m 0 0 0 0
0 0 m 0 0 0
0 0 0 m(b2+c2)

12 0 0
0 0 0 0 m(a2+c2)

12 0
0 0 0 0 0 m(a2+b2)

12

The formula for the rotational inertia of various objects can be found in any physics text-
book. The mass matrix for more complex forms can be estimated numerically. The lower-
right 3x3 block is responsible for representing the rotational inertia of the object and is
called the inertial tensor, denoted I. When the object rotates away from alignment with
the global coordinate system, the inertial tensor must be adjusted. This is accomplished by
applying the object rotation to the inertial tensor. The matrix R is orthonormal rotation
matrix specified by the Euler parameters {Rx, Ry, Rz}. It can be directly from the state
vector:

R =

 c1c3 − s1s2s3 c1s3 + s1s2c3 −s1 ∗ c2

−c2s3 −c2s3 s2

s1c3 + c1s2s3 s1s3 − c1s2c3 c1c2

where s1 = sin(Rx), c1 = cos(Rx), and so on. The updated inertial tensor is:

Ig = RIlRT

96

A.2.1 Force Conversion

The preceding discussion assumes that the forces and torques, X, are applied at the center
of mass of the object. This is often not the case. Forces will be applied to distal parts of
objects through attachment or contact points on the periphery. An external force f applied
at a point p on the object needs to be converted into a body-centered force, F and torque
τ . The vector between the center of the object c and the point p defines the moment-arm
of the force and is designated by the vector a = p− c. The resulting body centered forces
are then:

F = f (A.4)
τ = a× f (A.5)

A.2.2 Representations for Rotational Motion

Over small displacements Euler parameters may be treated linearly, so the extension of inte-
gration to 6-D motion is straightforward. However, computation involving larger rotational
displacements are best carried out using the quaternion representation since that repre-
sentation is compact, supplies a ready mechanism for renormalization to correct numerical
drift, and doesn’t suffer from the singularities associated with Euler parameters.

The conversion from a set of Euler parameters to the quaternion representation involves a
vector norm and some trigonometry. If we represent the Euler parameters {Rx, Ry, Rz} as
a vector θω where θ is the magnitude and ω is the unit length directional vector, then the
quaternion q that represents the same rotation as θω is:

q =

[
cos(θ/2)

sin(θ/2)ω

]

The inverse relationship, mapping quaternion q into the Euler parameters represented by
θω is accomplished by a similar algorithm.

It is also possible to integrate in a linear fashion over rotations represented as quaternions.
Because the length of a quaternion is constrained to be 1, it is even possible to renormalize
the state vector after an integration to eliminate numerical drift. The only difficulty with
this approach is the formulation of the mass matrix. It would be necessary to calculate the
inertial tensor relative to the quaternion representation. To avoid this problem we utilize the
Euler parameter representation for physical simulation and constraint satisfaction. When
it is necessary to do computations on large rotations, measuring the angular displacement
between two objects for example, we convert to the quaternion representation.

A.3 Constrained Motion

The basics of constrained motion are covered in Chapter 4. In this appendix we will walk
through a simple example. Returning to our flat box from Section A.2 we can turn this into

97

a gyroscope by adding a constraint between the box and some inferred ground.

The first step in the modularized solution to this constraint problem discussed in Sec-
tion 4.2.1 is the formulation of the connector. The connector is a point of contact removed
from the center of mass of the object. As a software object it presents an idealized external
interface to an object. For example, the force/torque translation discussed above is im-
plemented inside the connector. Connectors may have orientation, or may be simply ideal
points. The connection between the gyro and the constraint at the origin will be insensitive
to orientation, so we will formulate a position-only connector. The positional state of the
gyro is the 6-D vector x, and the state of the connector will be the 3-D, position only vector
a.

The most important function of the connector is to provide an abstraction barrier between
constraints and simulated objects. Constraints implemented as relationships between ide-
alized points and the connectors provide that idealized interface to the more complex simu-
lated objects. The position and velocity of a connector can be computed from the position
and velocity of the host object and information about the relationship between the con-
nector and the host object’s local coordinate frame. A critical part of this abstraction is
the ability to compute the Jacobian that relates variations in object state to variation in
connector state:

∂a
∂x

=

da1
dx1

da1
dx2

da1
dx3

da1
dx4

da1
dx5

da1
dx6

da2
dx1

da2
dx2

da2
dx3

da2
dx4

da2
dx5

da2
dx6

da3
dx1

da3
dx2

da3
dx3

da3
dx4

da3
dx5

da3
dx6

 = [I|JR]

The translational component of this Jacobian in the identity, while the rotational compo-
nent, JR, varies according to the specific relationship between the object and the connector.
A similar velocity Jacobian is formed to model the relationship between object velocity and
connector velocity.

Constraints are now simply relationships between idealized connectors. All constraints are
defined to be satisfied when the states of the constrained connectors is equal. The constrain
forms Jacobian similar to the one above to model how variations in connector state affect
variations in constraint state. In the case of the gyro we want to implement a ball joint
constraint. The form of the Jacobian is particularly simple since the constraint is only
concerned with position:

∂c
∂a

= I

The same implementation can be used for ball joints in 3-D simulations, or pin joints in
2-D simulations.

A.4 Simulation Results

The gyro simulation starts with a one meter square, ten centimeter thick slab weighing one
kilogram with a one meter moment arm suspended at the origin of the global coordinate
system. This arm is massless and is implemented by a connector attached to the slab one

98

meter away from the center of mass along the X-axis. The gyro begins one meter out the
X-axis of the global coordinate system, so the connector begins coincident with the global
origin, and the constraint is thus satisfied at the start of simulation. The Y-axis is up, away
from gravity. The initial state of the gyro is zero translational velocity and a 100 radian
per second rotational velocity along the axis. The state of the gyro some time after the
beginning of simulation is illustrated in Figure A-1.

a

b c

100 rad/s

constraint

g

Figure A-1: The state of the gyro shortly after the beginning of simulation. (a, b, c) =
(10cm, 1m, 1m)

As the simulation begins, gravitational force pulls downward on the gyro. This forces causes
the gyro to precess around the point of constraint. This motion is not explicitly modeled.
It arises naturally from the equations of motion. The X and Z position of the gyro are
plotted in Figure A-2.

Other, higher order motions such as nutation are also captured by the system. Nutation
is the wobbling of the gyro and is illustrated over the first nine seconds of simulation in
Figure A-3.

On a 500MHz Alpha 21264 the gyro simulation is able to perform the constraint satisfaction
plus forward integration loop at 9400Hz. The upper-body model runs at 600Hz. The gyro
simulation runs significantly faster than the upper body model because the state vector is
only 12-dimensional (not 60) and there is a single constraint (not 5).

99

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

Z
 p

os
iti

on
 (

m
)

X position (m)

Precession of the Gyro

Figure A-2: Precession is not explicitly modeled, but It emerged from the equations of
motion.

1 2 3 4 5 6 7 8 9

−10

−5

0

time (s)

Y
 p

os
iti

on
 (

cm
)

Nutation of the Gyro

Figure A-3: Nutation, like precession, is a physically-realistic, higher-order motion that
emerges from the simulation.

100

Appendix B

Classification

The classification techniques used in this work are derived from decision theory. This
appendix will cover classification on the basis of decision theory, starting with the Bayes
Risk Criterion[44, 50].

B.1 Definitions

S xmtr R

n

^m sm y
m(y)

Figure B-1: Classification as a transmitter and receiver in noise.

Figure B-1 illustrates the basic theoretic model for classification. There is some sender, S
that chooses a discrete messagem. The message is sent with a transmitter that emits a signal
Sm determined by the message. Gaussian noise is added to the signal during transmission
producing the observation y. The receiver R must determine the best estimate of the
original message given observation m̂(y).

z0 z1

R

Figure B-2: Classification hypotheses cover the observations.

For simplicity we’ll assume there are two messages, m = 0 and m = 1, although the

101

framework easily scales to multiple hypotheses. The receiver has only two hypotheses:
hypothesis H0 that the message is zero, and hypothesis H1 that the message is one. The
receiver knows the prior probabilities of these hypotheses being true, P0 and P1. The
receiver also has access to the conditional densities of observations resulting from a message
given m = i:

Py|Hi(y|Hi) =
1√

2πσ2
e−

(y−Si)
2

2σ2

where σ2 is the variance of the zero-mean transmission noise. The receiver must partition
space of all observations into two domains: z0 and z1. When the observation falls in domain
zi then the receiver decides on hypothesis Hi:

Hi ⇔ y ∈ zi

This situation is illustrated in Figure B-2. Finally, the receiver has a cost matrix C with
elements cij that specifies the cost of deciding hypothesis Hi when the true hypothesis is
actually Hj .

The Bayes Risk Criterion specifies that the expected risk of adopting a given classifier is:

E(c) =
1∑
j=0

1∑
i=0

Pr(y ∈ zi|Hj)cij

where the probability is computed over the domain:

Pr(y ∈ zi|Hj) =
∫
zi

Py|Hj (y|Hj)dy

The optimal classifier minimizes this risk.

B.2 Example

y

P
y|

H
i

P
y|H

1

 P
y|H

2

decision boundary

Figure B-3: Scalar classification example with two hypotheses.

For example, if the transmission noise is zero-mean with a variance σ2, S0 = 0 and S1 = 3σ
then the relationship between the observation densities will be as illustrated in Figure B-3.
The equal probability decision rule will occur half way between S0 and S1. To the left of
this line Py|H0

> Py|H1
while to the right of this line Py|H0

< Py|H1
.

102

The classifier makes a decision L(y) by weighing the probability of an observation against
the prior information and the cost of making a wrong decision. The form of this decision is
called the likelihood ratio test:

L(y) =
Py|H1

(y|H1)
Py|H0

(y|H0)

H1

>
<
H0

(c10 − c00)P0

(c01 − c11)P1

The combination of the cost matrix and the prior probabilities specify the classification
threshold η:

η =
(c10 − c00)P0

(c01 − c11)P1

If η = 1, then the classification boundary is as illustrated in Figure B-3. If the prior
probability P0 is greater than the prior probability P1 then η will be biased toward the right,
requiring more evidence in the observation to overcome the bias toward H0. Alternately if
c01 is greater than C10, then the cost of mistakenly deciding H0 is high, η will shift to the
left, and more evidence evidence will be required to make the now risky decision H0.

B.3 Specialized Classifiers

There are a few special cases of Bayesian classifier that are useful and widely applied. They
represent simplifying assumptions about the problem structure.

B.3.1 Maximum A Posteriori Probability Classifier

The Maximum A Posteriori Probability (MAP) Classifier makes a minimum error proba-
bility decision. The simplifying assumption is that the cost matrix has the simple form of
being 0 for all correct decisions and 1 for all incorrect decisions:

cij = 1− δij

where δij is the Dirac delta function:

δij =

{
1 if i = j
0 otherwise

This simplifies the risk function to:

E(c) = P0Pr(y ∈ z1|H0) + P1Pr(y ∈ z0|H1)

and the likelihood ratio test becomes:

Pr(H1|y = Y) =
P1Py|H1

(Y |H1)
Py(Y)

H1

>
<
H0

P0Py|H0
(Y |H0)

Py(Y)
(c10 − c00)P0

(c01 − c11)P1
= Pr(H0|y = Y)

103

B.3.2 Maximum Likelihood Classifier

The Maximum Likelihood Classifier makes a decision based solely on the likelihood of the
observation. The simplifying assumption is that the prior probabilities are equal, The
likelihood ration test becomes correspondingly simpler as the prior probabilities P0 and P1

are no longer necessary:

Py|H1
(Y |H1)

H1

>
<
H0

Py|H0
(Y |H0)

104

Appendix C

Classical Kalman Filtering

The Kalman filter is the optimal formulation of the recursive framework under a certain
set of assumptions. This appendix covers the formulation of the discrete, multiple input,
multiple output, time varying, linear Kalman filter. This derivation formulates the Kalman
filter as a linear minimum mean squared error estimator (LMMSEE) of the system state[49,
55].

C.1 LMMSEE

Before we derive the Kalman filter, we begin with the definition of a linear minimum mean
squared error estimator and some of its properties. Given a zero-mean random variable y,
a vector of n measurements x:

x =

x1

x2
...
xn

the variance of y, σ2

y , the covariance of x defined as:

Λx
4
= E

[
xxT

]
and the cross-covariance between x and y, defined as:

Λyx
4
= E

[
yxT

]
we wish to compute the best estimator a such that:

â = arg minE
[
y − xTa

]
This estimator is known as the LMMSEE and has the form:

â = ΛyxΛ−1
x

105

An important property of this estimator is that the error is perpendicular to the data:

(y − xTa) ⊥ xT

This is due to the fact that xTa is the closest point to y in the subspace spanned by x.
Proofs of these claims are omitted, but are readily available in the literature.

Another important property of LMMSEE’s that we will need is that the LMMSEE estimator
of a random variable y based jointly on x and z is separable if x ⊥ z that is:

x ⊥ z⇒ ŷ(x, z) = ŷ(x) + ŷ(z)

This fact derives directly from the definition of the LMMSEE:

ŷ(x, z) = Λy(xz)Λ(xz)
−1

[
x
z

]

=
[
E[yxT]E[yzT]

] [Λ−1
x

Λ−1
z

] [
x
z

]
= ΛyxΛ−1

x x + ΛyzΛ−1
z z

= ŷ(x) + ŷ(z)

C.2 Definition

The filter observes a dynamic system that is defined as:

xt+1 = Φtxt + Btut + Ltξt
yt = Htxt + θt

where xt is the current state of the system. The linear, time-varying dynamic model Φt

is used to compute the next state xt+1 in combination with the control signal ut, which is
weighted by the time-varying matrix Bt, and the system process noise ξt weighted by Lt.
Observations on the system yt are made by a time-varying linear function of system state
represented by Ht and include measurement noise θt. The random variables ξt and θt have
the following properties:

E[ξt] = 0
E[θt] = 0

E[ξtξ
T
τ] = Ξtδt,τ

E[θtθTτ] = Θtδt,τ

E[ξtθ
T
τ] = 0

The goal of the filter is to compute the estimate x̂t|s which is defined as the LMMSEE of xt
given the measurements yτ for τ ≤ s. Similarly ŷt|s is defined as the LMMSEE of yt given

106

yτ for τ ≤ s. The estimation error to be minimized is:

x̃t|s
4
= xt − x̂t|s

and the error covariance is a crucial entity in the formulation of the Kalman filter:

Σt|s
4
= Λx̃t|s = E[x̃t|sx̃

T
t|s]

The filter starts with a prior estimate of systems state, x̂0|0. The filter is called recursive
because the computation of the new state estimate, x̂t+1|t+1, only relies on the previous
state prediction, x̂t+1|t, and yt+1, the new observation:

x̂t+1|t+1 = xt+1|t + Kt+1[yt+1 − ŷt+1|t]
ŷt+1|t = Ht+1x̂t+1|t

x̂t+1|t = Φtx̂t + Btut

The Kalman gain matrix Kt+1 maps the error between the predicted observation and the
actual observation into a state update. The current value of Kt+1 is a combination of the
predicted error covariance, the observation noise covariance and the observation model:

Kt+1 = Σt+1|tH
T
t

[
HtΣt+1|tH

T
t + Θt+1

]−1

The error covariance itself it estimated recursively starting from the prior covariance:

Σ0|0
4
= Λx̃0|0

The estimated error covariance of the state prediction is a function of the estimated error
covariance of the state estimate:

Σt+1|t = ΦtΣt|tΦ
T
t + LtΞtLTt

and the estimated error covariance of the state estimate is recursively defined in terms of
the estimated error covariance of the previous state prediction:

Σt+1|t+1 = [I−Kt+1Ht+1] Σt+1|t

Figure C-1 illustrated the recursive flow of information in the Kalman filter.

Φ ∆

x̂ t|tx~ty~tyt

ŷ t|t-1 x̂ t|t-1 x̂ t-1|t-1

K

H

Figure C-1: Overall structure of the Kalman filter.

It is also useful to have a symbol to represent the observation error, also know as the

107

innovation:
νt+1 = yt+1 − ŷt+1|t

and the sequence of innovations:

Nt+1 = {ν1,ν2, . . . ,νt+1}

C.3 Derivation

The prediction steps of the Kalman filter are straightforward applications of linear algebra
to random variables. Applying the system state dynamics:

xt+1 = Φtxt + Btut + Ltξt

to the state estimate yields:

x̂t+1|t = E[Φtx̂t|t + Btut + Ltξt]
= Φtx̂t + Btut

because the expected value of the Ltξt term is 0 since ξt is defined to be a zero-mean random
variable. The prediction of the error covariance proceeds similarly:

Σt+1|t = E
[
(xt+1 − x̂t+1|t)(xt+1 − x̂t+1|t)

T
]

= E
[
(Φtxt + Btut + Ltξt −Φtx̂t|t −Btut)(Φtxt + Btut + Ltξt −Φtx̂t|t −Btut)T

]
= E

[
(Φt(xt − x̂t|t) + Ltξt)(Φt(xt − x̂t|t) + Ltξt)

T
]

= E
[
(Φtx̃t + Ltξt)(Φtx̃t + Ltξt)

T
]

= E
[
(Φtx̃tx̃Tt ΦT

t + Ltξtξ
T
t LTt + Φtx̃tξTt LTt + Ltξtx̃

T
t ΦT

t

]
= ΦtΣt|tΦ

T
t + LtΞtLTt

The expected value of the cross terms go to zero since the error is independent of the data
in a LMMSEE.

The next step of the Kalman filter is the update, where the new observation is used to
update the state estimate and the error covariance estimate. The current state is the state
prediction plus the error:

xt+1 = x̂t+1|t + x̃t+1|t

The LMMSE estimate of xt+1 breaks down into two parts:

LMMSEE(xt+1|Nt,νt+1) = LMMSEE(x̂t+1|t|Nt) + LMMSEE(x̂t+1|t|νt+1) +
LMMSEE(x̃t+1|t|Nt) + LMMSEE(x̃t+1|t|νt+1)

= x̂t+1|t + Λx̃t+1|tνt+1Λ
−1
νt+1

νt+1

The middle two terms go to zero because x̂t+1|t ⊥ νt+1 and x̃t+1|t ⊥ Nt. The form of this

108

equation matches the form of the update equation sated above and implies that:

Kt+1 = Λx̃t+1|tνt+1Λ
−1
νt+1

The derivation of these values follows directly from the definitions. First we derive the
cross-covariance between the error and the innovation:

Λx̃t+1|tνt+1 = E
[
x̃t+1|tν

T
t+1

]
= E

[
(xt+1 − x̂t+1|t)(Ht+1[xt+1 − x̂t+1|t] + θt+1)T

]
= E

[
x̃t+1|tx̃

T
t+1|tH

T
t+1 + xt+1θt+1 − x̂t+1|tθt+1

]
= Σt+1|tH

T
t+1

Then we derive the covariance of the innovations:

Λνt+1 = E
[
νt+1ν

T
t+1

]
= E

[
(yt+1 − ŷt+1|t)(yt+1 − ŷt+1|t)

T
]

= E
[
(Ht+1xt+1 −Ht+1x̂t+1|t − θt+1)(Ht+1xt+1 −Ht+1x̂t+1|t − θt+1)T

]
= E

[
(Ht+1x̃t+1|t − θt+1)(Ht+1x̃t+1|t − θt+1)T

]
= E

[
Ht+1x̃t+1|tx̃

T
t+1|tH

T
t+1 −Ht+1x̃t+1|tθ

T
t+1 − θt+1x̃Tt+1|tH

T
t+1 + θt+1θ

T
t+1

]
= Ht+1Σt+1|tH

T
t+1 + Θt+1

So now we can write down the derivation of the Kalman gain matrix as simply the expansion
of the LMMSE estimator of x̃t+1|t given νt+1:

Kt+1 = Λx̃t+1|tνt+1Λ
−1
νt+1

= Σt+1|tH
T
t

[
HtΣt+1|tH

T
t + Θt+1

]−1

The only remaining derivation is the equation to update the error covariance:

Σt+1|t+1 = E
[
x̃t+1|t+1x̃

T
t+1|t+1

]
= E

[
(xt+1 − x̂t+1|t+1)(xt+1 − x̂t+1|t+1)T

]
= E

[
(xt+1 − x̂t+1|t −Kt+1νt+1)(xt+1 − x̂t+1|t −Kt+1νt+1)T

]
= E

[
(x̃t+1|t −Kt+1Ht+1x̃t+1|t)(x̃t+1|t −Kt+1Ht+1x̃t+1|t)

T
]

= E
[
([I−Kt+1Ht+1]x̃t+1|t)([I−Kt+1Ht+1]x̃t+1|t)

T
]

= [I−Kt+1Ht+1] Σt+1|t

109

C.4 Summary

So we see that the Kalman filter is a linear minimum mean squared error estimator of the
system state given a stream of observations. The recursive nature falls out of the fact that
LMMSE estimators generate estimates with error that is perpendicular to the data. This
means that current estimate errors are uncorrelated with past data, and the Kalman filter
can compute new estimates based only on the previous estimate and the new innovation.

110

Appendix D

Perspective Transform Estimation

Estimating perspective transforms from data is useful for mapping deictic gestures into
screen coordinates. as a first step to them with virtual objects displayed on the screen. The
formulation of a linear estimator is somewhat obtuse, and is presented here as an aide to
the reader[13, 53].

The task is to find a transform that maps one arbitrary 3-D quadrilateral into another.
One approach is use the perspective transform. Figure D-1 illustrates the situation: the
first quadrilateral is shown on the Image Plane and the second quadrilateral is shown on
the World Plane.

(x,y)

(x ,y)

Figure D-1: The perspective transformation of a quadrilateral onto a plane. The original
point (x, y) is projected into the plane as (x′, y′)

Why use this transform over other mappings? It has the interesting property that it maps
straight lines to straight lines. Other transforms of this nature introduce distortions that
cause some straight lines in one space to map to curves in the other space.

So the task is, given the coordinates of the four corners of the first quadrilateral, and

111

the coordinates of the four corners of the second quadrilateral, compute the perspective
transform that maps a new point in the first quadrilateral onto the appropriate position on
the second quadrilateral.

D.1 Deriving the Criminisi Equation

The solution is stated in Section 3.1 of [13], but the derivation is a bit lacking. I will briefly
sketch the derivation here to make the solution more appetizing. We start with the claim
that the camera model could be written as I = HW, where W is vector of world plane
coordinates, I is the vector of image plane coordinates, and H is a matrix transform. We
can write the this form out in more detail as: ωx′

ωy′

ω

 =

 a b c
d e f
g h 1

 x
y
1

Then if we realize that ω is actually:

ω = gx+ hy + 1

we can rewrite the equation in a way that exposes its true non-linear form where the
numerator supplies the parameters needed for affine transformation, and the denominator
allows for the non-linear effect of perspective:

 x′

y′

1

 =

 a b c
d e f
g h 1

 x
y
1

[
g h 1

] x
y
1

This is equivalent to the possibly more familiar, non-vector form of the perspective trans-
form:

x′ =
ax+ by + c

gx+ hy + 1

y′ =
dx+ ey + f

gx+ hy + 1

By multiplying each side of the equation by the denominator we get:

x′(gx+ hy + 1) = ax+ by + c

y′(gx+ hy + 1) = dx+ ey + f

and multiplying through by x’ and y’ gives us:

gx′x+ hx′y + x′ = ax+ by + c

112

gy′x+ hy′y + y′ = dx+ ey + f

Now we isolate the naked x’ and y’ terms on the left:

x′ = ax+ by + c− gx′x− hx′y
y′ = dx+ ey + f − gy′x− hy′y

If we add in some zero terms:

x′ = ax+ by + ac− 0d+ 0e+ 0f − x′xg − x′yh
y′ = 0a+ 0b+ 0c+ xd+ yd+ af − y′xg − y′yh

then it becomes more clear that this is the product of a matrix and a vector:

 x y 1 0 0 0 −x′x −x′y
0 0 0 x y 1 −y′x −y′y

...

a
b
c
d
e
f
g
h

=

 x′

y′

...

and we have reached the previously mysterious point that Criminisi leaps to in a single step:

x1 y1 1 0 0 0 −x′1x1 −x′1y1

0 0 0 x1 y1 1 −y′1x1 −y′1y1

x2 y2 2 0 0 0 −x′2x2 −x′2y2

0 0 0 x2 y2 2 −y′2x2 −y′2y2
...

xn yn n 0 0 0 −x′nxn −x′nyn
0 0 0 xn yn n −y′nxn −y′nyn

a
b
c
d
e
f
g
h

=

x′1
y′1
x′2
y′2
...
x′n
y′n

D.2 The Solution

The form of this equation is Aλ = b, and it can be solved by several methods. Given that
the data will contain noise, we need the least squares estimate of the parameter vector λ
that best satisfies the linear relationship between the matrix A and the vector of output
coordinates b. The simplest method, although not the most numerically stable, is the
pseudo-inverse:

Aλ = b

ATAλ = ATb

λ = (ATA)−1ATb

113

The rest of [13] discusses issues of measurement noise and estimation uncertainty that are
important when choosing the right estimation method for a given application.

114

Acknowledgments

Life is a sequence of punctuated equilibria. Choices we make often lead to periods of relative
stability as the consequences of our choices play out. Eventually these choices cease to have
meaning and we must make new choices. We make little choices everyday, but occasionally
we come to points in our lives where several momentous choices all expire at once. A friend
of mine calls this situation a node. I hate nodes. I think most people do. They are periods
of great opportunity, but often there is too little information and too little time to make
right decisions. Life is not a game of chess. There is not perfect knowledge. We can only
hope to make the optimal choices with imperfect data in less time than we would like. This
dissertation is a testament to the complexity of a philosophically similar task.

Complex tasks cry out for procrastination, so people spend time reflecting on how good
they had it only a couple of months ago. They write sappy reminiscences, and over-wrought
farewells to all the people they should have spent more time appreciating along the way.
It makes them feel better. It steels them for the coming node, like gathering up idols and
talismans before a storm. I am no different, so brace yourself.

First and foremost, I want to thank my wife, Donna. Her love, support, and (sometimes
not so) gentle encouragement have made this journey physically, mentally, and emotionally
more healthy than it could have been. Sandy recently referred to Donna as my secret
weapon. That is not far from the truth. I can only hope that I have the strength to be as
patient and supportive during the coming fellowship years.

I also want to express my deepest gratitude to my advisor, Sandy Pentland. I am very
fortunate that we crossed paths so many years ago, because the experiences I’ve had were
so much more than anything that I had hoped for from graduate school. I’ll count myself
successful if I go on to create an environment that is half as stimulating and supportive as
Vismod.

My committee members Eric Grimson and Trevor Darrell also deserve hearty thanks for
comments and guidance that have helped make this dissertation a significantly better doc-
ument than it was at first draft. Monica Bell has been an indispensable source of guidance
for all matters of document format.

There are some prominent figures in my past who deserve mention here for their help along
the way: Richard Bolt (thank you for hiring the all-too-excited freshman so many years
ago), Peter Elias (thank you for your guidance: now the Ph.D’s actually mine), and Marc
Raibert (thank you for your help and guidance: maybe I don’t need the letters after my
name to do cool things, but now that I have them, it’s a moot point).

115

During my time at the Media Lab, I’ve had the pleasure of interacting with some completely
incredible people, and I’m better for knowing them. They’ve all had an impact on me:
Dave Becker’s exuberance, Michael “Particle” Johnson’s erstwhile passion, Ali Azarbaye-
jani’s integrity, Lee Campbell’s activism, Erik Trimble’s existentialism, Martin Friedmann’s
perception, Yuri Ivanov’s courage, and Andy Wilson’s ineffable nature. The list goes on
almost too long to believe: Sumit Basu, Dave Berger, Bruce Blumberg, Judy Bornstein,
Brent Britton, Amy Bruckman, Bill Butera, Brian Clarkson, Jim Davis, Richard DeVaul,
Lenny Foner, Jennifer Healey, Tony Jebara, Darrin Jewell, Matt Krom, Baback Moghad-
dam, Karen “Evil Queen” Navarro, Sourabh Niogi, Mary Obelnicki, Nuria Oliver, Egon
Pasztor, Ali Rahimi, Carson Reynolds, Brad Rhodes, Deb Roy, Ken Russell, Robin Simone,
Bernt Schiele, Stephen Schwartz, Flavia Sparacino, Thad Starner, Kris Thorisson, Bill Tom-
linson, Josh Wachman, Yair Weiss, and Alan Wexelblat. There are also several groups in
and around the Lab that have made graduate school a richer experience: the Thirsty Magic
crew, the Diablo folk, and the many users of antiquated computing hardware (you know
who you are).

Over the years I’ve had the honor of working with quite a few staff members and UROP
students. I hope they have learned at least a little bit from me, as I’ve certainly learned quite
a lot from interacting with them: William Abernathy, David Bailey, Matthew Belmonte,
Cyrus Eyster, John Gu, Marc Lebovitz, Michael Li, and Theodore Weatherly.

Donna didn’t keep me sane and healthy single handedly. I am fortunate to have a wonder-
fully supportive extended family: Rosalyn Foster, Randall Foster, Alexandria Foster, Colton
Foster, Charlie Hackett, Sandie Hackett, Charles Hackett, Khodarahm Khodarahmi, Judith
Khodarahmi, Susanne Khodarahmi, Stephen Uccello, and John Khodarahmi. I greatly ap-
preciate all their love, support and, of course, the occasional reality checks (which often
come as in hockey, rather than anything fitting the more gentle aspects of the word).

Finally, and most importantly, I would like to thank my parents Mary Louise and Richard
Wren for their support and encouragement. I wouldn’t have made it this far but for their
belief in me, their sacrifices, their good example, and their love.

116

Bibliography

[1] M. Athans and C. B. Chang. Adaptive estimation and parameter identification using
multiple model estimation algorithm. Technical Report 1976-28, Massachusetts Insti-
tute of Technology Lincoln Laboratory, Lexington, Massachusetts, USA, June 1976.
Group 32.

[2] Ali Azarbayejani and Alex Pentland. Real-time self-calibrating stereo person tracking
using 3-D shape estimation from blob features. In Proceedings of 13th ICPR, Vienna,
Austria, August 1996. IEEE Computer Society Press.

[3] Ali Jerome Azarbayejani. Nonlinear Probabilistic Estimation of 3-D Geometry from
Images. PhD thesis, Massachusetts Institute of Technology, February 1997. Media Arts
and Sciences.

[4] A. Baumberg and D. Hogg. An efficient method for contour tracking using active shape
models. In Proceeding of the Workshop on Motion of Nonrigid and Articulated Objects.
IEEE Computer Society, 1994.

[5] David A. Becker. Sensei: A real-time recognition, feedback, and training system for t’ai
chi gestures. Master’s thesis, Massachusetts Institute of Technology Media Laboratory,
1997. also MIT Media Lab Perceptual Computing TR426.

[6] B. Blumberg. Action-selection in hamsterdam: Lessons from ethology. In The Pro-
ceedings of the 3rd International Conference on the Simulation of Adaptive Behavior,
Brighton, August 1994.

[7] R. A. Bolt. ’put-that-there’: Voice and gesture at the graphics interface. In Computer
Graphics Proceedings, SIGGRAPH 1980,, volume 14, pages 262–70, July 1980.

[8] Christoph Bregler. Learning and recognizing human dynamics in video sequences. In
Proc. IEEE Conf. on Computer Vision and Pattern Recognition, June 1997.

[9] Christoph Bregler and Jitendra Malik. Video motion capture. Technical Report
UCB/CSD-97-973, University of California, Berkeley, 1997.

[10] Lee W. Campbell, David A. Becker, Ali Azarbayejani, Aaron Bobick, and Alex Pent-
land. Invariant features for 3-d gesture recognition. In Second International Conference
on Face and Gesture Recognition, pages 157–62, Killington, VT, USA, 1996.

[11] Tat-Jen Cham and James M. Rehg. A multiple hypothesis approach to figure tracking.
In Workshop on Perceptual User Interfaces, San Francisco, Calif., November 1998.

117

[12] Brian P. Clarkson and Alex Pentland. Unsupervised clustering of ambulatory audio
and video. In Proceedings of the International Conference of Acoustics Speech and
Signal Processing, Phoenix, Arizona, 1999.

[13] A. Criminisi, I. Reid, and A. Zisserman. A plane measuring device. Image and Vision
Computing, 17(8):625–634, 1999.

[14] Quentin Delamarre and Olivier Faugeras. 3d articulated models and multi-view track-
ing with silhouettes. In Proceedings of the Seventh International Conference on Com-
puter Vision. IEEE, 1999.

[15] J. Deutscher, B. North, B. Bascle, and A. Bake. Tracking through singularities and
discontinuities by random sampling. In Proceedings of the Seventh International Con-
ference on Computer Vision. IEEE, 1999.

[16] Ernst D. Dickmanns and Birger D. Mysliwetz. Recursive 3-d road and relative ego-state
recognition. IEEE Trans. Pattern Analysis and Machine Intelligence, 14(2):199–213,
February 1992.

[17] Roy Featherstone. Coordinate Systems and Efficiency, chapter 8, pages 129–152.
Kluwer Academic Publishers, 1984.

[18] Martin Friedmann, Thad Starner, and Alex Pentland. Synchronization in virtual real-
ities. Presence, 1(1):139–144, 1991.

[19] Martin Friedmann, Thad Starner, and Alex Pentland. Device synchronization using
an optimal linear filter. In H. Jones, editor, Virtual Reality Systems. Academic Press,
1993.

[20] D. M. Gavrila and L. S. Davis. Towards 3-d model-based tracking and recognition of
human movement: a multi-view approach. In International Workshop on Automatic
Face- and Gesture-Recognition. IEEE Computer Society, 1995. Zurich.

[21] D. M. Gavrila and L. S. Davis. 3-d model-based tracking of humans in action: a
multi-view approach. In CVPR96. IEEE Computer Society, 1996.

[22] Luis Goncalves, Enrico Di Bernardo, Enrico Ursella, and Pietro Perona. Monocular
tracking of the human arm in 3d. In International Conference on Computer Vision,
Cambridge, MA, June 1995.

[23] Thanarat Horprasert, Ismail Haritaoglu, David Harwood, Larry S. Davis, Christo-
pher R. Wren, and Alex P. Pentland. Real-time 3d motion capture. In Workshop on
Perceptual User Interfaces, San Francisco, Calif., November 1998.

[24] Marcus J. Huber and Tedd Hadley. Multiple roles, multiple teams, dynamic environ-
ment: Autonomous netrek agents. In Autonomous Agents ’97. ACM SIGART, 1997.
http://sigart.acm.org:80/proceedings/agents97/.

[25] Peter C. Hughes. Spacecraft Attitude Dynamics. John Wiley & Sons, 1986.

[26] Michael Isard and Andrew Blake. Contour tracking by stochastic propagation of con-
ditional density. In Proc. European Conference on Computer Vision, pages 343–356,
Cambridge, UK, 1996.

118

[27] Michael Isard and Andrew Blake. Condensation - conditional density propagation for
visual tracking. Int. J. Computer Vision, 1998. in press.

[28] Michael Isard and Andrew Blake. A mixed-state condensation tracker with automatic
model-switching. In Proc 6th Int. Conf. Computer Vision, 1998.

[29] I. Kakadiaris, D. Metaxas, and R. Bajcsy. Active part-decomposition, shape and motion
estimation of articulated objects: A physics-based approach. In CVPR94, pages 980–
984, 1994.

[30] Ioannis Kakadiaris and Dimitris Metaxas. Vision-based animation of digital humans.
In Computer Animation, pages 144–152. IEEE Computer Society Press, 1998.

[31] John MacCormick and Andrew Blake. A probabilistic exclusion principle for tracking
multiple objects. In Proceedings of the Seventh International Conference on Computer
Vision. IEEE, 1999.

[32] Dimitris Metaxas and Dimitris Terzopoulos. Shape and non-rigid motion estimation
through physics-based synthesis. IEEE Trans. Pattern Analysis and Machine Intelli-
gence, 15(6):580–591, 1993.

[33] Parviz E. Nikravesh. Spatial Dynamics, chapter 11, pages 289–300. Prentice-Hall, 1988.

[34] K. Oatley, G. D. Sullivan, and D. Hogg. Drawing visual conclusions from analogy: pre-
processing, cues and schemata in the perception of three dimensional objects. Journal
of Intelligent Systems, 1(2):97–133, 1988.

[35] J. O’Rourke and N.I. Badler. Model-based image analysis of human motion using con-
straint propagation. IEEE Trans. Pattern Analysis and Machine Intelligence, 2(6):522–
536, November 1980.

[36] Vladimir Pavlović, James M. Rehg, Tat-Jen Cham, and Kevin P. Murphy. A dy-
namic bayesian network approach to figure tracking using learned dynamic models. In
Proceedings of the Seventh International Conference on Computer Vision. IEEE, 1999.

[37] A. Pentland and B. Horowitz. Recovery of nonrigid motion and structure. IEEE Trans.
Pattern Analysis and Machine Intelligence, 13(7):730–742, July 1991.

[38] Alex Pentland and Andrew Liu. Modeling and predicition of human behavior. In IEEE
Intelligent Vehicles 95, September 1995.

[39] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery.
Numerical Recipes in C: the art of scientific computing. Cambridge University Press,
Cambridge, U.K., second edition, 1992.

[40] J.M. Rehg and T. Kanade. Visual tracking of high dof articulated structures: An
application to human hand tracking. In European Conference on Computer Vision,
pages B:35–46, 1994.

[41] K. Rohr. Cvgip: Image understanding. ”Towards Model-Based Recognition of Human
Movements in Image Sequences, 1(59):94–115, 1994.

119

[42] Deb Roy and Alex Pentland. Multimodal adaptive interfaces. In AAAI Spring Sym-
posium on Intelligent Environments, 1998. also Vision and Modeling Technical Report
#438, MIT Media Lab.

[43] R. Shadmehr, F. A. Mussa-Ivaldi, and E. Bizzi. Postural force fields of the human
arm and their role in generating multi-joint movements. Journal of Neuroscience,
13(1):45–62, 1993.

[44] Henry Stark and John W. Woods. Probability, Random Processes, and Estimation
Theory for Engineers. Prentice Hall, 2 edition, 1994.

[45] Thad Starner and Alex Pentland. Real-time american sign language recognition from
video using hidden markov models. In Proceedings of International Symposium on
Computer Vision, Coral Gables, FL, USA, 1995. IEEE Computer Society Press.

[46] Charles W. Therrien. Decision, Estimation, and Classification. John Wiley and Sons,
Inc., 1989.

[47] Vladimir N. Vapnik. Statistical Learning Theory. John Wiley & Sons, 1998.

[48] A. S. Willsky. Detection of abrupt changes in dynamic systems. In M. Basseville
and A. Benveniste, editors, Detection of Abrupt Changes in Signals and Dynamical
Systems, number 77 in Lecture Notes in Control and Information Sciences, pages 27–
49. Springer-Verlag, 1986.

[49] Alan S. Willsky. Recursive Estimation Supplementary Notes. Department of Electrical
Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge,
MA, USA, Spring 1994.

[50] Alan S. Willsky, Gregory W. Wornell, and Jeffery H Shapiro. Stochastic Processes, De-
tection and Estimation. Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, Cambridge, MA, USA, Fall 1995.

[51] Andrew Witkin, Michael Gleicher, and William Welch. Interactive dynamics. In ACM
SIGGraph, Computer Graphics, volume 24:2, pages 11–21. ACM SIGgraph, March
1990.

[52] Christopher Wren, Ali Azarbayejani, Trevor Darrell, and Alex Pentland. Pfinder:
Real-time tracking of the human body. IEEE Trans. Pattern Analysis and Machine
Intelligence, 19(7):780–785, July 1997.

[53] Christopher R. Wren. Perspective Transform Estimation. Massachusetts Insti-
tute of Technology Media Laboratory, Cambridge, MA, USA, December 1998.
http://www.media.mit.edu/∼cwren/interpolator/.

[54] Christopher R. Wren and Alex P. Pentland. Dynamic models of human motion. In
Proceedings of FG’98, Nara, Japan, April 1998. IEEE.

[55] John Wyatt. Recursive Estimation Lecture Notes. Department of Electrical Engineering
and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA,
Spring 1997.

120

