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Abstract 
Vector field visualization is a useful tool in science and engineering, giving us a powerful 

way of understanding the structure and evolution of the field. A fairly recent technique called 

Line Integral Convolution (LIC) has improved the level of detail that can be visualized by 

convolving a random input texture along the streamlines in the vector field. This thesis extends 

the technique to time-varying vector fields, where the motion of the field lines is specified 

explicitly via another vector field. The sequence of images generated is temporally coherent, 

clearly showing the evolution of the fields over time, while at the same time each individual 

image retains the characteristics of the LIC technique. This thesis describes the new technique, 

entitled Dynamic Line Integral Convolution, and explores its application to experiments in 

electromagnetism. 
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1 INTRODUCTION  
In science and engineering, vector fields often play a central role in describing things 

such as electromagnetism or fluid flow. For the very simplest fields, it is usually possible to 

analyze its structure on a global scale, and to create a mental image of what it looks like. 

However, we are often presented with complicated, time-varying fields whose properties are not 

intuitive or easily analyzable. With the aid of modern technology, we can use computer graphics 

to create illustrative representations of the vector field, giving us tremendous insight into its 

structure. 

In a fairly recent paper by Cabral and Leedom [3], a general, high-quality method was 

introduced for visualizing vector fields, called Line Integral Convolution (LIC). A number of 

papers published thereafter have extended this technique in different ways. One important 

generalization is to be able to visualize a time-varying vector field, maintaining a natural 

correspondence between successive frames of the visualization. None of the solutions presented 

by other researchers can satisfactorily do so for time-varying electromagnetic fields. 

This thesis describes a new method called Dynamic Line Integral Convolution (DLIC) 

developed in conjunction with the TEAL / Studio Physics project that can effectively visualize 

dynamic electromagnetic fields. It extends LIC by allowing the vector field to vary over time and 

using a second vector field to describe how the field line structures vary over time. As a result, we 

have been able to create several animation sequences of experiments in electromagnetism that 

exhibit all the wonderful detail of the LIC method as well as the evolution of the field over time. 

 

1.1 DYNAMIC VECTOR FIELD VISUALIZATION PROBLEM  

Before choosing a method for visualizing vector fields, we need to decide what features 

of the vector field we would like the image to represent. For example, in some problems only the 

magnitude of the vector field is important. In this case, a natural representation is to modulate the 

color/intensity of a pixel on the screen by the magnitude of the vector field at each point. Of 

course, since a computer display is only a two-dimensional device, this is much more difficult for 

vector fields of three dimensions of higher. 

In other problems, we might instead be interested in the direction of the vector field at 

each point. Again, we could conceivably modulate the pixel’s color/intensity by the direction of 

the field. This could even be done for three-dimensional fields, since a pixel’s color is a three-
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dimensional quantity. Unfortunately, color is not a natural way of representing direction. A better 

solution is to use local directional indicators throughout the vector field. For example, we could 

establish an ordered grid in a two-dimensional vector field and draw tiny arrows along the 

direction of the field at those points. The maximum resolution of the visualization is limited, 

however, because the grid must be coarse enough to provide spacing between the arrows. 

Another objective of the visualization may be to observe streamlines (integral lines) in 

the vector field. One possible solution is to use the above technique to denote the direction at each 

grid point, and let the observer mentally integrate curves in the vector field. Unfortunately, what 

the observer perceives is often inaccurate or incomplete, and it is difficult to analyze the features 

in the field. Instead, we could have the computer automatically integrate along the streamlines 

and display them. However, this gives rise to the question of which streamlines should be 

displayed. There are methods for automatically selecting a reasonable distribution of streamlines, 

but they cannot guarantee that all the important features will be represented. Fortunately, texture-

based methods such as LIC are straightforward and robust alternatives that faithfully represents 

the streamlines with as much detail as possible. 

Finally, extending the visualization to dynamic fields creates a new set of challenges. In 

some applications, it might suffice to render each frame independently via one of the previous 

techniques, in which case the solution is straightforward. However, other problems, including 

electromagnetism, have complex inter-frame dependencies since we expect to be able to 

understand how field lines evolve over time. Thus, one difficulty is how to describe the 

correspondence between vector field points or streamlines over time in the first place. Once we 

have defined their motion, we face the challenge of producing an animation sequence that depicts 

this evolution in an intuitive fashion. Another problem is maintaining a consistent level of detail 

throughout the image, even as streamlines are compressed and expanded. LIC by itself cannot be 

used in general for time-varying vector fields, since it does not use any information about how the 

field lines move, nor does it attempt to maintain any sort of inter-frame coherence. The DLIC 

method introduced here offers a solution to these challenges.  

 

1.2 THESIS OVERVIEW  

This thesis is organized into four major sections. Chapter 2 introduces the basic concepts 

that are needed to discuss vector fields, streamlines, and some of the computational methods used 

to work with them. Chapter 3 is an overview of related work, discussing the Line Integral 
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Convolution technique and some of its important improvements, as well as other attempts to 

extend the method to dynamic vector fields. Chapter 4 describes the new Dynamic Line Integral 

Convolution algorithm and some of the details of our implementation. Finally, chapter 5 

illustrates the application of DLIC to two experiments in electromagnetism.  
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2 BASIC CONCEPTS 
In this chapter, some of the fundamental ideas used in vector field visualization will be 

introduced, along with some practical computational techniques. 

2.1 NOTATION  

2.1.1 VECTOR FIELDS 

We define a vector field f as a function mapping a Euclidean domain nRD ⊂  to another 

space nR  of the same dimension:  

 ( ) nRyDxf ∈=∈  (2-1) 

For our purposes, we only use two- and three-dimensional vector spaces, since higher dimensions 

are not natural to visualize. 

For time-dependent vector fields, we write f as a function mapping TD×  to nR , where 

T is some scalar time interval: 

 ( ) nt RyTDxf ∈=∈∈ ,  (2-2) 

2.1.2 STREAMLINES AND PATH LINES 

A streamline 1  is defined as an integral curve in a stationary vector field: 

 ( ) ( ) ( ) 00     , 111f1 == uu
du

d
 (2-3) 

In this case, the magnitude of the vector field determines how 1  is parameterized. We can 

reparameterize the curve by arc length s to obtain 1̂ : 

 ( ) ( ) ( )1f
f
1f1

1f ˆˆˆ
ˆ          ===⇒=

ds

du

du

d
s

ds

d
duds  (2-4) 

Care must be taken, as this parameterization breaks down where the vector field vanishes. The 

notation ( )sx1̂  will often be used to indicate the streamline for which ( ) x1 x =0ˆ . 

For time-dependent vector fields, a streamline is similarly defined at a constant time: 

 ( ) ( ) ( ) 000      ,, 111f1 == utu
du

d
 (2-5) 

In chapter 4, to describe such a streamline, the following notation will be used instead: 
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 ( ) ( ) ( ) 00
0

00 00
     ,, 1111f11 == t

u
t t

du

d
, (2-6) 

where ( )00
11

u
t  indicates the streamline seeded at 01  when 0=u  at the constant time 0t . 

Note that this is different from a path line, which is an integral path taken over time: 

 ( ) ( ) ( ) 00     ,, ���f� == ttt
dt

d
 (2-7) 

Again in chapter 4, an alternative notation will be used for such an integral path: 

  ( ) ( ) ( ) 00
0

00 00
     ,, ����f�� =+= t

t
t tt

dt

d
, (2-8) 

where ( )00
��

t
t  is the path line seeded at 0�  at time 0t  when 0=t . 

 

2.2 NUMERICAL METHODS 

2.2.1 VECTOR FIELD INTERPOLATION 

In computer programs, vector fields are often represented as samples over a discrete grid, 

either as a result of a grid-based field computation method or as a way to speed up vector field 

evaluations. In order to reconstruct the continuous field function, a number of different 

interpolation methods can be employed. A general technique is to convolve the discrete samples 

with a continuous kernel. For example, on a two-dimensional integer grid { }ji,g  with a kernel 

( )yx,χ  we define the vector field f by: 

 ( )    { } ( )∫∫ ′′′′′+′+= ydxdyxyyxxyx ,,, χgf  (2-9) 

For our purposes, bilinear interpolation is sufficient because the vector fields are 

generally smooth. The bilinear convolution kernel in two dimensions is: 

 ( )


 <<<<

=
otherwise,0

10  and  10,1
,

yx
yxχ  (2-10) 

The resulting expression for the vector field simplifies to 

 ( ) ( ) ( )( ) ( )( )1,10,10,10,0 111, ggggf ffffff xxyxxyyx +−++−−= ,  where (2-11) 

        { }nymxyyyxxx nmff ++=−=−= ,     ,     , , gg  (2-12) 
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This expression can be evaluated very quickly. 

2.2.2 HERMITE CURVE INTERPOLATION 

Another place that interpolative methods are useful is for reconstructing a continuous 

streamline from discrete samples. Suppose we have a sequence of samples parameterized by arc 

length: 

 ( ) ( ) ( ) ( )nssss 1111 ˆ...,,ˆ,ˆ,ˆ 210  (2-13) 

In addition to the position, we know the tangent of the curve at those parameters from the vector 

field: 

 ( ) ( )( )kk ss
ds

d
1f1 ˆˆˆ =  (2-14) 

Between two adjacent sample points k and 1+k , we can fit a cubic Hermite curve by using the 

two positions and the two tangents: 

 
( ) [ ]

( )
( )

( )( )
( )( )

kk
k

k

k

k

k

k

ssh
h

ss
s

sh

sh

s

s

ssss

−=
−

=′




































−−−

−

′′′=

+

+

+

1

1

123

   ,

ˆˆ
ˆˆ

ˆ

ˆ

0001

0100

1233

1122

1~

1f

1f

1

1

1

 (2-15) 

This curve has the desired properties at the endpoints 

 
( ) ( ) ( ) ( )
( ) ( )( ) ( ) ( )( )11

11

ˆˆ~,ˆˆ~

,ˆ~,ˆ~

++

++

==

==

kkkkkk

kkkkkk

ss
ds

d
ss

ds

d
ssss

1f11f1

1111

 (2-16) 

and smoothly interpolates between the sample points as we’d expect, illustrated in Figure 2-1. 

( )ks1̂

( )1ˆ +ks1

( )( )ks1f ˆˆ

( )( )1ˆˆ
+ks1f

 

Figure 2-1: Cubic Hermite curve interpolation 
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Unfortunately, even though the tangents at the endpoints are unit magnitude, in general 

this will not be true in between. However, as long as the streamline does not vary excessively 

between two successive sample points, Hermite curves are a good approximation. In addition, 

because a Hermite curve is a cubic polynomial, it can be evaluated at equi-spaced points along s 

very quickly using forward differences. First, the initial values of four variables are computed: 

 
( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 3
3

21

012301
2

2
3

3

6     ,2~~2~     ,~~

~

ad111d11d

aaaaaaaa1

sssssssssss

sssssss

∆=∆∆−+∆−−=∆−−=

+++=+++=
 

Then, we can compute the next sample point in succession with only three additions: 

 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ddd

ddd

d11

∆+=∆+
∆++=∆+

∆++=∆+

sss

sssss

sssss

22

211

1
~~

 (2-17) 

2.2.3 INTEGRATING FIRST ORDER ODES 

In scientific computing, one of the most basic types of problems is integrating first order 

ordinary differential equations. Given the differential equation and initial condition 

 ( ) ( ) 00     ,, xxxf
x == tt

dt

d
, (2-18) 

how do we compute the value of ( )1tx ? If the vector field f is continuous and satisfies the 

Lipschitz condition, then a unique solution exists. Often, this is not the case, and care must be 

taken to understand the consequences of picking one particular solution over another. 

Most methods for evolving the system by the required time step 01 tt −  use one-step or 

multi-step techniques. The simplest possible (and also the least accurate) is the Simple Euler 

method. To evolve the system by a time step h, we use the rule: 

 ( ) ( ) ( )( )tththt ,xfxx +=+  (2-19) 

A much more accurate and robust technique devised by Runge and Kutta is the standard 

RK4 integrator, which uses four evaluations of f to estimate the next step: 
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( ) ( ) [ ]
( )( )
( )( )
( )( )
( )( )htht

htht

htht

tt

h
tht

cd

bc

ab

a

dcba

++=
++=
++=

=

++++=+

,

2,2

2,2

,

22
6

fxff

fxff

fxff

xff

ffffxx

 (2-20) 

Although there are more sophisticated, higher-order methods for integrating ODEs, such as the 

Adams predictor-corrector methods, the added complexity does not provide significant gains for 

our application. Indeed, for the fourth-order RK4 method the error goes as ( )5hO , so to obtain the 

desired accuracy we can simply reduce the step size h. 

If we have an implicit equation for the exact integral curve (for example, as a result of a 

potential function), then we can use it to automatically adjust the step size to keep the results of 

the integrator within the desired error tolerance. Or, we can more generally construct an error 

metric by comparing the results of two integrators of different order. As discussed in Stalling 

dissertation [19], Fehlberg came up with a technique to use the intermediate results of the RK4 

integrator to construct a third-order result to be used as an error estimate: 

 
( ) ( ) ( )( )[ ]

( ) ( ) ( )( )ht
h

htht

ht
h

tht

d

cba

+−=+−+=

+++++=+

xffxx

xffffxx

6
~

22
6

~

ε
 (2-21) 

Given an error tolerance tolε , and knowing the error goes as ( )5hO , we can estimate the largest 

step size h* that will remain within the tolerance as 

 









= max

5 ,min* hh tol

ε
ρε

, (2-22) 

where ρ < 1 is a safety factor to compensate for higher-order errors. The step size needs to be 

limited to a maximum of maxh  since the error can become arbitrarily small. When a step is taken 

whose error is too large, the step size h is adjusted to h* and the step is recomputed. When the 

step taken falls within the error tolerance, the next step is computed with the new step size h*. 

This way, the integrator’s performance is maximized by taking the largest steps possible. 



 14 

2.2.4 STREAMLINE INTEGRATION 

When the adaptive error-controlled RK4 integrator is combined with a cubic Hermite 

polynomial interpolator, the result is a fairly robust and efficient method for producing samples 

spaced evenly along a streamline 1̂ . To summarize the algorithm: 

1. Starting at the initial point ( )0ˆ s1 , use the adaptive error-controlled RK4 on the unit-

magnitude vector field to produce a sequence of sample points and their parameters: 

 ( ) ( ) ( ) ( ) ...,ˆ,ˆ,ˆ,ˆ 3210 ssss 1111  

2. For each equi-spaced point sns ∆+0 , let nk  be the index of the integrator sample point 

immediately preceding it (i.e. 10 +<∆+≤
nn kk ssnss ). Compute the sample point by fitting 

a cubic Hermite polynomial to the integrator points ( ) ( )1ˆ,ˆ +nn kk ss 11  and the tangents 

( )( ) ( )( )1ˆˆ,ˆˆ
+nn kk ss 1f1f . A contiguous subsequence of equi-spaced points between two 

adjacent integrator sample points should be computed quickly via forward differences. 

The result is another sequence: 

 ( ) ( ) ( ) ( ) ...,3~,2~,~,~
0000 sssssss ∆+∆+∆+ 1111  

With these more or less evenly spaced samples, we can approximate line integrals taken 

along streamlines. For example, the line integral over the scalar field RD →:r  can be 

approximated as a discrete sum: 

 ( )( ) ( )( )∑∫ ∆+∆≅
n

snsrsdssr 0
~ˆ 11 . (2-23) 

A line integral convolution can be computed similarly: 

 ( )[ ]( ) ( )( ) ( ) ( )( ) ( )∑∫ ∆∆+∆≅+=⊗
n

snsnsrsdssssrsr κκκ ~~ˆˆ 000 111$ , (2-24) 

where ( )sκ~  is a discrete approximation of the convolution kernel ( )sκ . Note that the kernel 

should have a limited extent in order for the summation to be feasible. 

A streamline integrator is not complete if it does not deal with streamline abnormalities, 

however. For example, what is the correct behavior when the streamline leaves the vector field 

domain D or terminates in a sink? What should the integrator do if the vector field does not obey 

the Lipschitz condition, and there isn’t a unique solution? These questions can only be answered 

by examining the particular problem at hand. 
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3 PREVIOUS WORK 

3.1 LINE INTEGRAL CONVOLUTION  

In a seminal paper published by Cabral and Leedom entitled “Imaging Vector Fields 

Using Line Integral Convolution” [3], a new technique was introduced that allows us to represent 

vector fields with a level of detail as fine as the pixels on a computer screen, without causing 

confusion by being so densely packed. Line Integral Convolution (not to be confused with merely 

convolving via a line integral) can be viewed as an operation on an input texture and a vector 

field to produce an output image that represents the field. 

Ideally, we can describe the result of this operation as: 

 ( ) ( )[ ]( ) ( )( ) ( )∫=⊗= dsssTTI κκ xx 11x ˆ0ˆ$ , (3-1) 

where ( )xI  is the output image intensity at the continuous location x, ( )xT  is the input texture 

intensity at x, ( )sκ  is the convolution kernel, and ( )sx1̂  is the arc-length parameterized 

streamline such that ( ) x1 x =0ˆ . The above Figure 3-1 was generated by applying LIC separately 

to each of the red, green, and blue color components of the color photograph, using a constant 

⊕ 

 

LIC  
⇒ 

 

Figure 3-1: Line Integral Convolution 
applied to a photograph 
and a spiral vector field 
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convolution kernel of finite extent. We can see that the image has been “blended” along the 

direction of the spiral vector field. 

One interesting effect of this operation is the correlation between output intensities along 

the same streamline, for example between x and ( )s∆x1̂ . The integral for the intensity at ( )s∆x1̂  

can be rewritten as:  

 
( )( ) ( )( )( ) ( ) ( )( ) ( )( )

( )( ) ( )∫
∫∫
′∆−′′=

∆−+∆+∆==∆ ∆

sdsssT

dssssssTdsssTsI s

κ

κκ

x

x1x

1

111
x

ˆ

ˆˆˆ ˆ
 (3-2) 

This identity uses the fact that ( )( ) ( )ssss +∆=∆ x1
11

x
ˆˆ ˆ . The resulting difference in intensity can 

therefore be expressed as: 

 ( )( ) ( ) ( )( ) ( ) ( )[ ]∫ −∆−=−∆ dsssssTIsI κκxx 1x1 ˆˆ  (3-3) 

If the difference between κ and itself shifted by ∆s is small, then the output intensities will be 

very similar. 

For a two-dimensional field, in order to compute the output intensity of a particular pixel 

0x , ideally we would convolve ( )xI  with the spatial response curve ( )xχ  of a pixel: 

 ( ) ( ) ( )∫∫ += xxxxx dIO χ00  (3-4) 

Using something like a radially-symmetric Gaussian response curve would give high-quality 

results, but computing the full integral is too time-consuming. In practice, if the input texture 

( )xT  comes from pixels with a resolution at least as coarse as ( )xO , then ( )xI  will have 

frequency components that are only as high as those in ( )xT . Therefore, we can get results that 

are almost as good by using a much simpler filter. For example, we could use a constant response 

curve 

 ( ) ( )




 ∆<<∆−∆<<∆−

∆=
otherwise,0

22
 and 

22
,

1
212

x
x

xx
x

x

xxχ  (3-5) 

where x∆  is the width and height of a square pixel. Usually, it is simplified even further by 

approximating the convolution integral as the sum of a few samples; often even a single sample 

will suffice. 
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Though the LIC technique can be viewed as an image operator, in order to visualize 

vector fields, random white noise is typically used as the input texture. This way, the net effect of 

LIC is that output intensities along a streamline tend to vary very slowly in intensity, while pixels 

in the perpendicular direction have no correlation. Thus, an observer can easily discern the 

direction of the vector field – an example can be seen in Figure 3-2. Although the above 

description of LIC has focused on two-dimensional vector fields, the method extends naturally to 

higher dimensions. In particular, three-dimensional fields can be successfully imaged, although it 

is more difficult to present the results on a two-dimensional computer display. 

Images produced in this way have a strong resemblance to particle streak images 

produced by real-life flow experiments. The reason is because the input texture can be viewed as 

an instantaneous image of the particles at one point in time, and the consequent application of 

LIC spreads the particles along their streamlines via the convolution kernel ( )sκ . The following 

discussion of the particle image-formation process is similar to the model described in Stalling’s 

dissertation [19]. For one particle, given its initial position ( )0ip , we can describe its advection 

path as: 

 ( ) ( )( )tt
ii 0p1p =  (3-6) 

 
⊕ 

 

LIC  

⇒ 

 

 

 

Figure 3-2: Line Integral Convolution applied 
to random white noise 

and a spiral vector field 
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Suppose the particle has an intrinsic intensity level ia , and that over time its “exposure” on the 

output image is proportional to ( )tκ . Then, the resulting image due to that particle is: 

 ( ) ( )( ) ( )∫ −= dtttaI iii κδ pxx , (3-7) 

where we represent the image of the particle via a delta-function. Taking the contributions of all 

the particles together, the output image is: 

 ( ) ( ) ( )( ) ( ) ( )( )( ) ( )∑∫∑∫∑ −=−==
i

i
i

ii
i

i dtttadtttaII
i

κδκδ x1xpxx p 0  (3-8) 

Now, suppose all the particles at time 0=t  densely cover the domain D. Then, we can 

turn the sum over the particles into an integral over D: 

 ( ) ( )( ) ( ) ( )( ) ( )∫ ∫∫ ∫ −=−= dtdtatddttatI
D

yx1yx1x yy
D

yy κδκδ  (3-9) 

where ya  is the intensity of the particle that is at y at time 0=t . Assuming the particle paths are 

unique, the delta function is non-zero when: 

 ( ) ( )tt −=⇔= xy 1yx1            (3-10) 

In order to integrate out the delta function, we need to consider what happens as we vary the 

integration variable y near the point where the delta function is non-zero. If we vary y an amount 

ε along the direction of the streamline, then ( )ty1  will move by an amount 

 











⋅

−

tdt

ds

dt

ds
1

0

ε , (3-11) 

where s is the arc-length along the streamline. Similarly, if we vary y in a direction perpendicular 

to the streamline, ( )ty1  will also move, scaled some relative expansion or contraction of the 

streamlines. This can be an extremely complicated effect, and so I will simply denote it by the 

symbol β.  Thus, taking these variances into account, we can integrate out the delta function and 

rewrite the intensity of a point as: 

 ( )∫ 






















⋅=

−
− dt

dt

ds

dt

ds
taI

t

1

0

1)( βκyx , (3-12) 

where y comes from Equation 3-10. Next, we define ya  as the input texture ( )yT , giving us: 
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 ( )( ) ( )∫ 






















−=

−
− dt

dt

ds

dt

ds
ttTI

t

1

0

1)( βκx1x  (3-13) 

If we parameterize the particle paths by distance instead of time, then we would have 

st =  and 1=dtds , which would dramatically simplify the equation. Indeed, this is desirable if 

we are more interested in the direction of the vector field than the magnitude. Finally, although β 

may have a strong effect on the intensity, for visualization purposes it makes sense to set this to 

one. For example, a large β means that the streamlines have “spread apart”, and that the particles 

have a overly small effect on the output intensity. I argue that particles should not be affected by 

how the streamlines expand and contract, but that their advection should simply represent the 

directions of the streamlines. Finally, reversing the direction of the integral, the result is the 

expression: 

 ( ) ( )( ) ( )∫ −= dsssTI κx1x ˆ  (3-14) 

This is identical to the output intensity function for Line Integral Convolution, if ( ) ( )ss −= κκ . 

Intuitively, the above particle-advection model can be seen as “scattering” the particles along 

their streamlines, while Line Integral Convolution “gathers” particles along the streamlines that 

would have contributed to each output point. 

Typically, as discussed earlier, streamlines used in LIC are reparameterized by arc-

length, which is important in order to control the degree of streamline correlation and maintain a 

consistent level of detail despite large variances in the vector field magnitude. Unfortunately, 

information about the vector field’s magnitude is by this reparameterization. A simple method for 

reintroducing this information is color-coding the output intensities by the local field magnitude, 

as seen in Figure 3-3. Another technique due to Kiu and Banks [12] uses multiple input textures 

with different frequency extents, blending them according to the local vector magnitude. This 

results in images that have very coarse detail where the magnitude is small and fine detail where 

the magnitude is large (or vice versa). 
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3.2 EXTENSIONS 

A number of papers published after the introduction of LIC have extended it in important 

ways. In the article “Fast and Resolution Independent Line Integral Convolution” by Stalling and 

Hege [18], a method was described to decouple the input and output resolutions, and also to 

accelerate the LIC computation by an order of magnitude for box-filter convolutions. We can 

make the output resolution independent of the input resolution simply by introducing a 

transformation ΦΦ from the output pixels ( )xO  to the output intensity field ( )xI : 

 ( ) ( )( ) ( )∫∫ += xxxx-x dIO χ00  (3-15) 

Indeed, we could also have separate coordinate systems for the input texture and the vector field. 

For example, if the input texture is made coarser than the vector field, then the resulting output 

image will be a coarser rendition of the vector field. In her paper “Visualizing Flow Over 

Curvilinear Grid Surface Using Line Integral Convolution” [6], Forsell extended it further, 

allowing LIC to work on more general surfaces. 

A number of other methods have been developed whose results are similar to those 

achieved by the LIC method. For example, the concept of “splatting” was used to visualize vector 

fields by Crawfis and Max [4] and similarly by de Leeuw and van Wijk [14]. Another paper by de 

 

Figure 3-3: LIC rendering of two electric charges 
color coded by electric field intensity 
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Leeuw and van Liere, “Comparing LIC and Spot Noise”[13], describes how the two relate, while 

Verma, Kao, and Pang attempt to consolidate LIC with the idea of drawing streamlines in their 

article on a hybrid method called Pseudo-LIC [20]. Wegenkittl, Gröller and Purgathofer use an 

asymmetric LIC convolution kernel in order to provide additional information about the 

orientation of the vector field in their paper on Oriented Line Integral Convolution [21]. 

Surprisingly, a radically different diffusion method developed by Diewald, Preußer, and Rumpf 

[5] produces results very similar to LIC – in fact they claim it is more general than LIC. Also, 

there exist several methods for approximating LIC in order to speed it up substantially. For 

example, the document “Adaptive LIC Using a Curl Field and Stochastic LIC Approximation 

using OpenGL” by Bryan [2], takes advantage of hardware acceleration. 

3.2.1 FAST LINE INTEGRAL CONVOLUTION 

Returning to the paper by Stalling and Hege on Fast Line Integral Convolution (FLIC) 

[18], suppose that the convolution kernel ( )sκ  takes on the form: 

 ( )




 <<−

=
otherwise,0

,
2

1
SsS

Ssκ  (3-16) 

Then, there is an interesting relationship between the output intensities of two points along a 

streamline separated by Ss 2<∆ : 
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 (3-17) 

Next, we turn the continuous integrals into discrete sums taken with a step size of s∆ , 

using the discrete version of the convolution kernel: 

 ( )




 ≤≤−

+∆=∆
otherwise,0

,
12

1
NnN

sNsnκ  (3-18) 

The relationship between adjacent output intensities along the streamline becomes much simpler: 

 

( )( ) ( ) ( )( ) ( )( ) ( )[ ]

( )( )( ) ( )( )[ ]sNTsNT
sN

snsnsnTIsI
n

∆−−∆+
+∆

=

∆−∆−∆≅−∆ ∑

xx
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1x1

ˆ1ˆ
12

1

~1~ˆˆ κκ

 (3-19) 
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Thus, we can incrementally compute the output intensities along a streamline in constant time per 

step. In fact, this method can be extended to speed up piece-wise polynomial convolution kernels 

as well [10] [19]. 

In the original LIC algorithm, the discrete convolution that produces the output pixels 

( )0xO  dictates which output intensity points ( )xI  are computed. For the Fast LIC algorithm, in 

order to take advantage of the above relationship, we cannot insist on sampling the output 

intensities according to the discrete convolution filter ( )xχ . In fact, if we pick random starting 

points for the incremental streamline convolutions, the resulting set of output intensity samples 

are themselves pseudo-randomly distributed. 

However, consider the convolution filter 

 ( ) ( )( )∑
=

−=
0

0

0

0

1

1 x

x
x

x zxx
N

i

i

N
δχ , (3-20) 

which is specific to each output pixel 0x . The number of samples 
0xN  is small, and the sample 

locations ( )i
0xz are scattered randomly around the pixel center. As is well known in computer 

graphics, as long as the frequency components in ( )xI  are not higher than the frequencies that 

can be represented by ( )0xO , a random sampling gives a reasonable approximation to a 

continuous convolution with a kernel proportional to the probability density of the sample points. 

Therefore, given a set of samples ( )iI x , the uniform square convolution kernel (Equation 3-5) 

can be approximated by accumulating each sample in the appropriate output pixel, and then 

dividing each output pixel by the number of samples that hit it. 

Thus, FLIC is typically implemented as follows: 

1. Pick a random sample point x and compute ( )xI  by a discrete streamline 

convolution. Accumulate this result in the appropriate output pixel. 

2. Produce a sequence of new sample points ( )( )skI ∆x1̂  via the incremental method 

and accumulate those pixels. Continue along the streamline for some maximum 

distance sM∆ . 

3. If “most” of the output pixels have been hit at least as often as some specified 

minimum, then continue to the next step. Otherwise, go back to step 1. 
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4. For the remaining pixels that have not been hit often enough, sample the output 

intensity at those pixels and accumulate the result until every pixel has been hit the 

minimum amount. 

5. Normalize the output pixels by dividing out the number of samples that have hit each 

pixel. 

This algorithm produces results that are almost the same as those produced by LIC. For a 

streamline convolution of length sN∆ , if we follow it for a distance sM∆ , the ratio between the 

number of input textures sampled for LIC and for FLIC is roughly 

 ( )N
MN

MN θθ ≈






+
⋅

, (3-21) 

where M is typically some factor larger than N. Since the cost of computing one streamline 

convolution is amortized over the entire length that the streamline is followed incrementally, 

FLIC achieves an order of magnitude speed-up. 

Note the one downside of FLIC is that its results are somewhat dependent on how the 

streamlines are sampled. Two different random samplings will produce variations in the output 

images that are distinguishable upon careful examination. Thus, if the same vector field (or one 

that is similar) is to be visualized more than once using FLIC, care must be taken to preserve the 

order of the sampling. 

3.2.2 DYNAMIC FIELD VISUALIZATION  

There have been a number of articles describing methods for animating vector field 

images in the style of LIC. Most of them fall into one of two categories: depicting cyclic motion 

along streamlines for static vector fields, or simulating fluid motion along the streamlines of time-

dependent flow fields. 

The original paper by Cabral and Leedom on LIC [3] described a method for animating 

the field lines in the direction of the vector field by varying the convolution kernel over time. This 

method is based on a technique first described by Freeman, Adelson, and Heeger in “Motion 

Without Movement” [8]. By shifting a pseudo-periodic kernel in space over time, the output 

image appears to move along the direction of the kernel translation, in this case along the field 

lines. Jobard and Lefer reduced the time it takes to render an animation sequence by 

precomputing a “motion map”, from which all the frames can be quickly extracted [11]. Forssell 

and Cohen improved LIC for variable-speed animation on curvilinear grids [7]. 
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Other research has been done that allows the vector field itself to vary over time, but the 

application has almost always been fluid-flow models. In the same paper by Forssell and Cohen 

[7], they describe a modification to LIC whereby streaklines instead of streamlines are followed, 

where streaklines are defined as the set of points that pass through a seed point when advected 

through time. Unfortunately, because convolutions are performed over space as well as time, 

images exhibit behavior that looks “ahead” in time, which is unphysical and can be misleading. 

Shen and Kao modify this algorithm by feeding forward advected streakline paths and the results 

of the convolution instead of using future streakline immediately in their two publications on 

Unsteady Flow LIC [16] [17]. 

Evidently, vector field visualization techniques are most often used in flow problems, 

where the field indicates the direction of flow. Thus, the very same vector field that is being 

visualized also indicates how it should “flow” over time. In electromagnetism, this is no longer 

the case. We are visualizing electric or magnetic fields, but their “motion” is not generally along 

the field lines – in fact, motion along streamlines has no meaning. Visualizing electromagnetic 

fields presents us with a more general problem than that of visualizing fluid flow, since the vector 

field and the “motion” of the vector field lines themselves are different. 
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4 DYNAMIC L INE INTEGRAL CONVOLUTION  

4.1 PROBLEM FORMULATION  

Given two time-dependent vector fields nRTDdf →×:, , where f is the vector field we 

would like to visualize, and d describes how its field lines evolve over time, how do we generate 

a sequence of images that represents this information effectively? The field f is the same as 

before, except that it is allowed to vary over time, while the new field d is the instantaneous 

velocity of the motion of every streamline point in f. The sequence of images must intuitively 

depict the streamlines in f evolving over time as indicated by d. Each individual image must by 

itself be an accurate and detailed representation of the vector field f at a particular time. When 

viewed as a sequence, it should be clear how its streamlines evolve over time. Figure 4-2 below 

is an example of the two fields for an electric charge moving against a uniform electric field. 

At this point, the notation ( )x1
s
tˆ  will be used to specify streamlines in f at constant time t 

     

Figure 4-1: DLIC animation of a charge moving through a constant electric field 

f vector field: the background vertical field 
lines “bend” around the electric charge 

d vector field: as the charge moves down, the 
field lines are “pushed” apart horizontally, 

and near the charge move down along with it 

  

Figure 4-2: f and d fields of a charge moving against a uniform electric field 
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seeded at x and parameterized by arc-length s, while ( )x�
t

t
∆  will denote path lines in d starting at 

x at time t, evolved by a time delta t∆ . Assuming the streamlines are all unique and can be 

labeled by some parameter . , every point must move such that 

 ( ) ( ) ( ).1xdx.1x s
dtt

s
t dtt ′

+=+⇒= ˆ,          ˆ , (4-1) 

for some parameters s and s′  and an infinitesimal time delta dt. In other words, a point x must 

move with a velocity specified by d to another point on the same streamline at a different time. 

It may seem that d and f encode redundant information, or that the above condition is 

excessively constrained. Indeed, for an n-dimensional domain nRD ⊂ , we could label the 

streamlines by an ( )1−n -dimensional parameter . , and thus a function 11: −− →× nn RTRd  

could describe the evolution of the streamlines over time. However, not only is this representation 

very difficult to work with, it does not specify how different points on a particular streamline 

evolve along the streamline. Using two fields f and d is a straightforward way of representing all 

the information. 

Note that fluid flow visualization becomes a subclass of this problem, where we take 

fd = . Since the streamlines visualized in f depict the direction of flow, it can likewise be used 

to describe how particles move along streamlines.  

 

4.2 SOLUTION  

The solution presented in this thesis, called Dynamic Line Integral Convolution, allows 

us to visualize time-varying vector fields represented by the f and d fields described above. 

Although it makes use of the LIC algorithm to render the images, the method is actually more 

general in that other texture-based vector visualization techniques could be used as well. Figure 

4-1 is an example of DLIC, which shows a sequence of images of a charge moving against a 

uniform electric field. 

4.2.1 ALGORITHM OVERVIEW 

Conceptually, the technique employed by DLIC is fairly simple. Going back to the model 

of the particle image-formation process in Equation 3-7, the output intensity can be seen as a sum 

of contributions from a number of particles: 
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 ( ) ( )( ) ( )∑∫ −=
i

ii dssasI κδ pxx  (4-2) 

Now, instead of interpreting the streamlines in f physically as the motion of particles over time, 

we think of it simply as an imaging effect. Instead, we allow the particles to advect over time in 

the d field: 

 ( ) ( )i
t

i t p�p 0=  (4-3) 

At any particular time, we form streamlines that are seeded at the location of the particle at that 

time: 

 ( ) ( )( ) ( )( )i
ts

ti
s
ti tts p�1p1p 0ˆˆ, ==  (4-4) 

Thus, the image-formation process over time can now be described as: 

 ( ) ( )( ) ( )∑∫ −=
i

ii dssatstI κδ ,, pxx  (4-5) 

This two-phase evolution of the particle position, first via d from time 0 to t, and second via f by a 

distance s along the streamline, is illustrated in Figure 4-3. 

Once again, assuming the particles cover the domain D for all time, we can rewrite the 

sum as an integral and replace the intrinsic intensity a  by a time-varying texture T: 

 ( ) ( )( ) ( ) ( )( ) ( )∫∫ ∫ ≅−= dsstTddssatI s
t

ts
t κκδ ,ˆˆ, x1yy1xx

D
y , (4-6) 

( )0,0ip

( )ti ,0p

( )tsi ,p

( )( )0,0ip�

( )( )tit ,0p1

( )td

( )tf̂

 

Figure 4-3: (s,t) parameterization of a 
particle’s position via advection 

along d and f fields 
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where the index i has been replaced via the mapping 

 ( ) ( )x1py s
ti t ˆ,0 == , (4-7) 

and the direction of the integral has been reversed. 

The above derivation introduced a time-varying texture ( )tT ,x  that represents the 

intrinsic intensities of the particles as they move over time. Once we have such a texture at a 

particular time, the standard LIC algorithm will yield the output image for that time: 

 ( ) ( )( ) ( )∫= dsstTtI s
t κ,ˆ, x1x  (4-8) 

Thus, the basic idea of the algorithm is to first evolve the particles via d to their locations 

at a particular time, then generate a texture representing those particles, and finally compute the 

output intensities ( )tI ,x  (and ( )tO ,x ) using the texture and vector field f. This process is 

illustrated in Figure 4-4, and the result is an image representing the field at that particular time 

that evolves naturally from the previous frame. After an image is rendered, the current time is 

incremented by a small amount dt and the process is repeated for the next frame of the sequence. 

4.2.2 TEMPORAL CORRELATION 

From a visualization standpoint, we would like the intensity of a point on a streamline at 

a certain time to remain highly correlated with itself as the point moves via d over time. 

Comparing the intensity of a point as it moves over a small time delta dt: 

 ( )( ) ( ) ( )( )( ) ( ) ( )( ) ( )∫∫ −′′+=−+ ′
+ dsstTsdsdttTtIdttI s

t
dt
t

s
dtt

dt
t κκ ,ˆ,ˆ,, x1x�1xx�  (4-9) 

Now, since each point on the streamline at time t moves to another point on the streamline at time 

dtt +  via d, we can come up with a function ( ) ssu ′=  mapping these points, as illustrated in 

Figure 4-5. We can then rewrite the first integral as: 

f

(Fast)  L ine
Integral

Convolu t ion

Texture
Generat ion

T I ,OPart ic le
Advect ion and

Adjus tment

d

part ic les

 

Figure 4-4: Organization of DLIC 
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 ( )( )( ) ( ) ( ) ( )( )( ) ( )( )∫∫ +=′′+ +
′
+ ds

ds

du
sudttTsdsdttT dt

t
su
dtt

dt
t

s
dtt κκ ,ˆ,ˆ x�1x�1  (4-10) 

Since the particles do not change their intrinsic intensity, we assert that the texture is the same at 

corresponding points in time: 

 ( ) ( )( )( ) ( )( )tTdttT s
t

dt
t

su
dtt ,ˆ,ˆ x1x�1 =++  (4-11) 

This allows us to combine the two integrals: 

 ( )( ) ( ) ( )( ) ( ) ( )∫ 



 −=−+ dss

ds

du
utTtIdttI s

t
dt
t κκ,ˆ,, x1xx�  (4-12) 

Because the relationship between s and s′  may be incredibly complex, this result may 

not seem very useful. However, consider what happens if we had a well-behaved relationship 

with a simple convolution kernel: 
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The mapping function I have chosen is linear, with the required condition ( ) 00 =u , though other 

functions that are close to ( ) ssu =  would yield similar results. The integral can then be simplified 

to: 
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Figure 4-5: Temporal arc-length 
parameter mapping 
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In other words, for a small “stretching” parameter µ, the first term of the difference is 

approximately µ times smaller than the intensity ( )tI ,x , and the remaining two terms are small 

corrections at the ends of the streamline. 

Qualitatively, when ( )1−dsdu  is small and ( )sκ  is smooth, the difference in intensity of 

a particular point on a streamline as it evolves over time will also be small. Thus, we can 

recognize how points on a streamline move over time by their intensity correlation. In fact, since 

different points along a streamline are themselves close in intensity, the entire streamline is 

highly correlated as its points evolve over time. 

4.2.3 TEXTURE GENERATION 

If the output image has a pixel size of x∆ , then by Nyquist’s sampling theorem we know 

that the maximum frequency it can exhibit is x∆21 . Since spatial convolutions are equivalent to 

multiplication in the frequency domain, and the output image ( )0xO  is computed from the 

texture ( )xT  via the convolution kernels ( )sκ  and ( )xχ , the frequencies present in O are only as 

high as the lowest of the frequency extents of T, κ, and χ. Therefore, if the maximum frequency 

in T is x∆< 21ω , then O will also have a frequency extent limited to ω . On the other hand, 

additional detail in the input texture beyond a frequency of x∆21  is clearly lost in the output. 

Therefore, we could reduce the frequency extent of T and still achieve similar results in the output 

O. This is wonderful from an implementation standpoint, since it would have been difficult to 

work with a function T that had an arbitrary frequency extent.  

Returning to the model of discrete particles, we can realistically only work with a finite 

number. Unfortunately, a finite number of particles represented by delta functions will no longer 

fill the texture domain. Instead, we let the particles contribute to the texture via a shape 

distribution function ( )xA . The output texture can then be written as a convolution over the sum 

of particle distribution functions scaled by their intrinsic intensity: 

 ( ) ( )( ) ( )∫ ∫ ∑ ′′











−+′= xxpxxx dtAatT

i
ii χ,  (4-15) 

This process is depicted in Figure 4-6. Since the particles are typically very small, their 

actual shape does not significantly affect the result of the output image. Similarly, the particulars 

of the convolution kernel are not critical. Thus, for simplicity, in my implementation I choose a 

square shape function and kernel: 
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The above integral then simplifies tremendously: 
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 (4-17) 

To compute ( )xT  on the pixel grid, for each particle we compute the bilinear interpolation 

coefficients of its four surrounding pixels, scale by the particle’s intrinsic intensity, and 

accumulate the results in the four pixels. 

Although it is clear that the particle shapes need to mostly cover the texture domain D, it 

is not as obvious how densely packed they should be. If the particles are separated by a distance 

roughly equal to the pixel size x∆ , then the maximum frequencies in the texture ( )xT  would be 

on the order of x∆21 , the frequency cut-off of the output image ( )0xO . If the particle density 

was greater, then the frequencies in the texture would also be greater, but this could not improve 

the level of detail in the output image. On the other hand, if the particles were separated by much 

more than x∆ , we would see a degradation in the output detail. Therefore, distributing particles 

on an ordered grid of pixel size x∆  (perhaps jittered) gives the best results. 

T

 

Figure 4-6: Texture generation from particles 
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For vector field visualization purposes, the intrinsic intensities of the particles are usually 

chosen randomly. In this case, the above process is somewhat wasteful, since we could have 

simply chosen random values for ( )xT  at each pixel. In fact, filling the texture randomly has the 

desirable property that we can control the distribution of random values in texture. In contrast, the 

distribution of texture pixel intensities computed from particles depends on the spatial distribution 

of the particles. Unfortunately, generating the texture from a set of particles is absolutely critical 

for the operation of DLIC. 

There are ways, however, of adjusting the resulting input texture T so that its distribution 

is somewhat controlled. For example, to normalize the standard deviation of pixel intensities, we 

can use the following scheme. First, we introduce another function, the square coverage ( )tTS ,x : 

 ( ) ( )( ) ( )[ ]∑ ∫∫ ′′−+′=
i

iS dtAtT
2

, xxpxxx χ , (4-18) 

where the intrinsic intensities have been removed and the contribution from each particle is 

squared. For every output pixel, we note that the convolution integrals for T and ST  are 

essentially weighted sums: 

 ( ) ( ) ( ) ( )[ ]∑∑ ==
i

iS
i

ii wtTawtT
2

,    ,, xx xx  (4-19) 

Suppose the intrinsic intensities ia  are independent and have a Gaussian distribution with 

a mean of zero and a variance of 2s . Then, each output pixel will have a zero mean and a 

variance of: 

 ( ) ( ) 2222 , stTsws S
i

i xx
x == ∑  (4-20) 

Thus, to renormalize the distribution, we divide by the square root of ST  to produce a new texture 

function ( )tT ,x′  whose variance is 2s : 

 ( ) ( )
( )tT

tT
tT

S ,

,
,

x

x
x =′  (4-21) 

Each pixel in the resulting texture will have the same Gaussian distribution. Note that because a 

particle can contribute to more than one pixel, their distributions will not be entirely independent. 

This, however, is necessary if we want to be able to correlate the movement of particles over 

time. 
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A simpler way of controlling the distribution is by simply dividing out the coverage level 

( )tTC ,x : 

 ( ) ( )( ) ( ) ( ) ( )
( )tT

tT
tTdtAtT

Ci
iC ,

,
,          ,

x
x

xxxpxxx =′⇒′′−+′= ∑∫∫ χ  (4-22) 

This way, if the particle intensities are limited to the range 11 <<− ia , then the texture pixel will 

also be limited to ( ) 1,1 <′<− tT x . In addition, increasing the texture coverage reduces the 

standard deviation of the texture pixels. Therefore, texture particles packed closely together tend 

to “average out”, which may or may not be a desirable property. 

One unfortunate consequence of these two normalization techniques is that it affects the 

temporal correlation of the texture pixels over time. Another conceivable solution is to avoid 

normalizing the texture pixel intensity, and instead control the texture coverage. If we can 

constrain the coverage to some range, then as a consequence the pixel intensity will be bounded. 

The next section describes a method for maintaining a consistent separation between particles, 

resulting in a somewhat uniform texture coverage. 

Experimentation with these three methods has shown that no solution is significantly 

better or worse. As expected, the first method yields a uniform standard of deviation, but the 

frame-to-frame coherence is not as good. In contrast, the third method produces a more consistent 

evolution, but the distribution of intensities is not as uniform. The second method seems like a 

compromise between the other two. 

4.2.4 PARTICLE ADVECTION AND ADJUSTMENT 

As a minimum, over time the texture function should roughly satisfy 

 ( ) ( )( )dttTtT dt
t +≅ ,, x�x  (4-23) 

so that the intrinsic intensities of the particles remain constant as they advect over time. However, 

this condition is not sufficient to guarantee that the resulting sequence of images is a good 

representation of the vector field. 

For example, consider the simple evolution 

 ( ) xxd ˆ= . (4-24) 

This yields the condition 

 ( ) ( )0,ˆ, xxx tTtT −≅  (4-25) 
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for t>x . However, for t<x , the particles have appeared out of a source at the origin, and 

have no constraint. What intensities should these new particles take on? 

In regions where the evolution vector field d has a positive divergence, the particles will 

“spread out”, and the frequency extent of the texture will be reduced. After LIC is applied, the 

frequency components perpendicular to the direction of the vector field f will therefore be 

diminished, which reduces the amount of detail that can be discerned. Ideally, we would like the 

texture’s frequency extent to be homogeneous in order to maintain a constant level of detail in the 

images output by LIC. 

The last section described how DLIC generates the texture by using a collection of 

particles distributed over the pixel grid. When it evolves the particles through time, we no longer 

have the luxury of choosing the distribution of particles, as they move according to the motion 

described by d. In regions where d diverges and as a result the particle separation is too great, 

DLIC generates new random detail. In addition, when particles are packed too closely together, 

they do not produce any benefit in the level of detail in the output image. Therefore, to avoid 

unnecessarily tracking extra particles, DLIC collapses the particles together to a single particle. 

The method I use to determine where new detail needs to be created and where particles 

need to be merged is by examining the coverage level for each texture pixel: 

 ( ) ( )( ) ( )∑∫∫ ′′−+′=
i

iC dtAtT xxpxxx χ,  (4-26) 

The result of this computation can be seen in Figure 4-7, and in my implementation, this occurs 

at the same time that the texture is generated. 

CT

 

Figure 4-7: Texture coverage 
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For every texture pixel x, if the coverage is below some minimum threshold, we need to 

create more detail. One way is to take a particle that contributes to the pixel and replace it with 

two particles spaced slightly apart, with different intrinsic intensities that average out to the 

intensity of the original particle. However, in my implementation I use a much simpler scheme, 

depicted in Figure 4-8. For each pixel with a low coverage (the three pixels in CT  to the right and 

bottom), a new particle is created near the pixel center with a completely random intensity. This 

results in new random intensities being introduced in the corresponding pixels of T. Clearly, this 

has the potential of introducing variations in the streamlines of the output images that would ruin 

the frame-to-frame correlation. Fortunately, the number of pixels along a streamline that fall 

below the minimum coverage level is usually very small. For example, suppose the mapping 

between points along a streamline between two successive time steps is as in Equation 4-13: 
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 <<−
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 (4-27) 

Also, suppose the separation between adjacent streamlines expands by a factor ( )β+1 . Then, if 

we want to maintain a minimum particle separation of x∆ , the number of new particles created 

within the streamline convolution range is approximately: 

 ( )( ) ( )( )µβ
βµµβ

µβ ++
++

∆
=

++∆
−

∆ 11
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21

2
1
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 (4-28) 
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Figure 4-8: Particle creation 
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For small expansion factors µ and β, very few particles are created relative to the total number of 

particles in a streamline convolution, xS ∆2 . Therefore, in most cases where streamlines are 

evolving gradually, the effect of adding random particles to it is very gradual. 

One addition benefit is that regions that are not mapped by a time step of the evolution 

will automatically have new random detail added, since their coverage will be zero, which is 

presumably below the minimum coverage. Thus, for the example of radial evolution d field 

(Equation 4-24), the source at the origin will be continuously filled with new random particles, 

producing a never-ending amount of detail. Similarly, for a different evolution field d that points 

inward at edges of the domain D, the same technique will create new particles to flow inward. 

For each pixel whose coverage exceeds a certain maximum level, we need to somehow 

eliminate the excess particles around that pixel. The method I use in this case is also fairly simple, 

and is illustrated in Figure 4-9. First, both the texture and texture coverage are computed for the 

current set of particles. Then, for each pixel whose coverage level is too great, every particle 

close to the pixel center is deleted. Next, a new particle is created near the pixel center whose 

intensity equals the value of the texture at that pixel. The net effect is the collapse of particles 

packed too tightly together into a single particle with a rough average of their intensities. Thus, 

the input texture’s evolution for that pixel remains nearly continuous. 

In addition, for particles that leave the domain D, my implementation immediately 

deletes them to avoid tracking extra detail. If the evolution field d is defined on some larger 

domain then it is very possible that the particle will return to D at some future time, for example 

for some oscillatory motion. However, experimentation has shown that this sort of discrepancy is 

T T

CT

 

Figure 4-9: Particle merging 
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not noticeable. Therefore, the extra effort involved in tracking these particles is not worth it. 

It should be noted that though these techniques work well from one frame to the next, it 

does not maintain consistency across a long, looping animation sequence, where f and d are 

periodic. Because particles are destroyed and created randomly, there will be little correlation 

between the output pixels of images separated by one period of the loop. This can be corrected by 

a post-processing step to gradually blend between frames one period apart, as described by 

Stalling and Hege [18]. 

In order to advect the particles according to d, we can use the same techniques described 

earlier on integrating first-order ODEs to compute the evolution of the particles over a time step. 

A fourth-order Runge-Kutta method will of course yield excellent results, but it may be overkill. 

If the motion of the particles is relatively small over a time step, it usually suffices to use a simple 

integration scheme like Euler’s method. Despite the accumulated errors in the particle positions, 

the streamlines that are visualized will always accurately reflect f. Since the errors are usually 

small, the average resulting error in the line integral convolution, which takes into account a large 

number of particles, will be even smaller. Although these small errors in the line integral 

convolution accumulate over time, the effect is gradual and does not significantly affect the 

frame-to-frame coherence. 

4.2.5 LINE INTEGRAL CONVOLUTION 

Though Line Integral Convolution is used as the final stage of DLIC, it could equally 

well be replaced by another texture-based vector field visualization technique in order to either 

speed up the computation or increase the quality. For example, in the next section I will describe 

how the Fast Line Integral Convolution method is used to speed up rendering the animation by an 

order of magnitude. For fields that contain singularities, a particle-scattering method may 

improve the quality of the image near the singularities. 

It is absolutely critical that the rendering method is deterministic and stable. By 

deterministic I mean that if a particular time frame in the visualization sequence is rendered 

twice, the results should be essentially indistinguishable. Also, for two successive frames where 

the input texture and vector field changes only slightly, the algorithm should be stable in that the 

resulting output images also change very slightly. For the original LIC algorithm, randomness 

does not enter anywhere, so it is certainly deterministic. In addition, at each pixel a line integral 

convolution is computed independently of the results of other pixels, so small changes in the 

texture and vector field will likewise have a small effect on the output. Care must be taken when 

using other rendering methods that do not guarantee these properties. 
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One common problem with these techniques is that the behavior near the edge of the 

domain D is ill defined. On method for dealing with this is to simply terminate the streamline at 

the edge and shorten the convolution kernel. Unfortunately, modifying the kernel in this way 

noticeably affects the output image, especially at the corners where streamlines can be extremely 

short. Another method is to reverse the direction of the streamline at the edge. This effectively 

samples the same pixels in the input texture more than once, which again adversely affects the 

output image. 

The solution I use is to increase the domain DD ⊃′ of the vector fields f and d and the 

texture image T. Assuming the LIC convolution kernel ( )sκ  has a limited extent maxs , i.e. 

 ( ) 0max => ssκ , (4-29) 

and the domain D′  is large enough that 

 ( )DyxyDx ′∈⇒≤−⇒∈             maxs , (4-30) 

then LIC will never need to leave the domain D′ . In other words, if D is completely contained in 

D′  with its edge at least a distance maxs  inside, then a line integral convolution seeded at a point 

in D will never have to trace a streamline outside D′ , because the kernel would be zero there 

anyway. This is illustrated in Figure 4-10, where the outer rectangle is D′  and the inner is D. 

 

 

Figure 4-10: Expanding the domain so that the convolutions remain entirely inside 
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4.3 IMPLEMENTATION DETAILS  

Although the above description of DLIC is essentially complete, a few more details of 

our implementation are worth discussing. 

4.3.1 TRANSFORMING THE FIELDS 

One extension that can be added naturally to DLIC is to again separate the output image 

resolution from the input texture resolution via a transformation - . Indeed, this transformation 

can be made to vary over time, to allow an animation sequence to be zoomed, panned, or rotated: 

 ( ) ( )( ) ( )∫∫ += xxxx-x dtItO t χ,, 00  (4-31) 

Unfortunately, this is not the best method because we want the input texture to match the 

resolution of the output image. Otherwise, when the transformation zooms in, the level of detail 

will not increase, and the frequency extent of the streamlines visualized in O will decrease. A 

more desirable way to allow for time-dependent transformations is to instead transform the fields 

f and d: 
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 (4-32) 

In addition, the particles that generate the texture T must reside in the coordinate system of f and 

d, and therefore the texture generation procedure must be modified as follows: 

 ( ) ( )( )( ) ( )∫ ∫ ∑ ′′











−+′= xxp-xxx dtAatT

i
iti χ,  (4-33) 

This gives us the desired effect, since zooming in causes the particles to separate, and as a result 

the particle adjustment stage of DLIC will add in new detail automatically. Similarly, zooming 

out or translating will produce new particles at the edges where they are needed. 

4.3.2 FAST DLIC 

One very important extension of DLIC is to make use of the Fast Line Integral 

Convolution algorithm to accelerate rendering, particularly for long animation sequences. As I 

mentioned earlier, FLIC is sensitive to the ordering of the initial samples, and using a random 

sampling for each frame will destroy both the necessary conditions of determinism and stability. 

Using a pseudo-random generator, we could very well seed samples in exactly the same 

order for each frame, which would make it deterministic. However, suppose we have a particle 
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motion field d that moves particles slowly and uniformly in one direction. If this motion does not 

fall along pixel centers for each frame, then the sampling will be different for each frame relative 

to the particles. A better approach is to begin sampling at particle centers in a pseudo-random 

ordering. If the same frame is rendered twice, even if it is translated, the sampling order will be 

the same relative to the particles. Even for more complicated evolutions of the particles, the 

sampling points will follow the particles, and hence FLIC will sample the streamlines in a mostly 

consistent order. Thus, results produced in this way will be fairly stable. 

One other issue is how to deal with particles that are removed or created. In my 

implementation, I keep an ordered list of particles that are used to seed the FLIC samples. When 

particles are deleted, they are simply removed from that list. Newly created particles are added to 

the end of the list in a random order. This way, new particles that are created will have a small 

influence on the results of FLIC via the texture, and will not significantly affect the sampling. 

Though this method is not guaranteed to give an absolutely stable ordering, particularly 

because of the disconnect between the continuous domain of the particles and the discreet 

representation of the texture and output image, experimentation has shown that this method works 

very well. The resulting order-of-magnitude speed-up makes this extension well worth the effort. 

4.3.3 LOCAL CONTRAST NORMALIZATION  

Consider the vector field 

 ( ) �rf ˆ= , (4-34) 

whose streamlines go in concentric circles around the origin, and the kernel: 

 ( )




 <<−=

otherwise,0

,
2
1

SsS
Ssκ  (4-35) 

Then, for radii Sr 22 <π  the line integral convolution “folds in” on itself, integrating over the 

same texture points more than once. Close to the origin, a very small circle of the texture is 

sampled multiple times. This has the effect that texture values near the origin contribute an 

inordinate amount to the output, producing exaggerated intensity values. Figure 4-11 shows the 

degree of over-sampling in such a vector field for streamlines at different radii. 

Another example of this problem is the vector field 

 ( ) xf ˆ, =yx , (4-36) 
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with uniformly horizontal streamlines. Suppose line integral convolutions are computed by 

discrete samples spaced a distance equal to the texture resolution. Then, output intensities ( )tI ,x  

at pixel centers will sample the texture only at its pixel centers, while any other output intensities 

will sample interpolated points that lie between pixel centers. Therefore, the output intensity of a 

point not at a pixel center will effectively be a weighted sum of a much larger set of pixels than 

for the output intensity at a pixel center. As more texture pixels are averaged together, the 

variance goes down. Hence, the contrast level in the output intensity is non-uniform, even for this 

simple vector field. 

To solve this problem, we suppose for the sake of simplicity that the pixels in the input 

texture have the same random distribution of values, and that we know its mean µ and variance 

2s  (for example, a uniform or Gaussian distribution is common). We would like to compute the 

mean Iµ  and variance 2Is  of the output intensity ( )xI  at a constant time 

 ( ) ( )( ) ( )∫= dsssTI κx1x ˆ . (4-37) 

Of course, the continuous integral is implemented in the algorithm as a discrete sum, and the 

texture values are interpolated between texture pixels: 

 ( ) ( )( ) ( )∑ ∆∆∆=
n

snsnTsI κ~~~~
x1x  (4-38) 

Each texture interpolation can be written as a weighted sum over the texture pixels: 

 

Figure 4-11: Convolution extent in a circular vector field – shaded by over-sampling 
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Therefore, the output intensity is itself a weighted sum over the texture pixels: 
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For a large number of pixels, by the central limit theorem we know that the resulting mean and 

variance of the output intensity is: 

 ( )∑∑ ≅≅
m

mI
m

mI WssW 222     ,µµ  (4-40) 

Note that this result is exact if the texture values have a Gaussian distribution. 

Computing the mean can be simplified tremendously with a few assumptions. Usually, 

texture interpolation is done in such a way that: 

 1=∑
m

n
mw  (4-41) 

In other words, though several pixels contribute to the interpolated result, the total contribution is 

always unity. For example, this is true with bilinear interpolation. In fact, any convolution kernel 

with unit volume used to interpolate the texture will have this property. Then, 

 ( ) ( )∑∑∑ ∆∆=∆∆=
nn m

n
mI snssnsw κµκµµ ~~ , (4-42) 

which is constant for every pixel. Of course, in the simplest case, if the mean of each pixel is 

zero, then the mean of the output intensity will also be zero. 

Unfortunately, there is no simple way of computing the variance. The brute-force method 

is to store the entire set of texture pixel weights mW  in memory, and compute it in parallel with 

the convolution sum. With all the weights set to zero initially, every time we add a weighted 

texture pixel 

 ( )[ ] ( )m
n
m Tsnws x∆∆ κ~  (4-43) 

to the convolution sum, we accumulate the weight in the corresponding pixel weight: 

 ( )snwsWW n
mmm ∆∆+=′ κ~  (4-44) 
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After the convolution sum is computed, the texture pixel weights can be squared and summed to 

get the total variance. 

Noting that most of the coefficients nmw  are zero, with some careful programming it is 

possible to perform the computation with little extra effort. First, in addition to storing the texture 

pixel weights, we keep a running sum-of-squares 2
totW , which is initialized to zero. Then, for 

every weighted texture pixel sampled, we apply the rules: 
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 (4-45) 

This way, the sum-of-squares is always equal to the sum of the squares of all the mW , without 

needing to consider the pixels that never take part in the convolution sum in the first place. 

Finally, one additional improvement can be applied if the convolution kernel ( )sn∆κ~  has 

a finite extent, i.e: 

 ( ) 0~
max =∆>∆ snsnκ  (4-46) 

In this case, every two pixels in the convolution sum will be separated by a distance of at most 

sn ∆max2 . Given a pixel separation of x∆  and a texture interpolation kernel of width Tx∆ , every 

texture sample will be separated by at most M pixels, where 

 Tx
x

sn
M ∆+

∆
∆= max2

. (4-47) 

Therefore, there is no need to store the weights for every pixel in the texture. Instead, a square 

array W of M by M pixel weights is large enough to cover the entire convolution sum. A simple 

way of mapping the pixels is via: 

 ( )MyMxWWW yxm mod,mod        , =→  (4-48) 

Finally, now that we are able to compute the mean and variance of the output intensity, 

we can renormalize the distribution. For example, to center the distribution at zero and give it a 

unit variance, we compute: 

 ( ) ( )
2

,
,

I

I

s

tI
tI

µ−=′ x
x  (4-49) 

The resulting image has a uniform contrast throughout. 
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4.4 ALTERNATIVES  

In many ways, the core idea behind DLIC is more general than the techniques that I have 

described above. It is a texture-based method for visualizing a vector field f, where the texture 

somehow evolves over time according to another vector field d. I have found that my particular 

implementation works wonderfully when visualizing experiments in electromagnetism. However, 

it is certainly possible to use alternative methods that fit within the same framework. This section 

explores some other possibilities and explains why I chose my particular implementation. 

4.4.1 DIRECT PARTICLE IMAGING 

From the previous discussion of the particle image-formation process, it may seem that 

the intermediate texture image is unnecessary. Indeed, at each time frame we could very well 

iterate over each particle, scattering the intensity value in the output image along its streamline. 

We could use the same particle advection and adjustment techniques described earlier to manage 

the particles, and skip the texture generation stage altogether. This method reduces the number of 

translations between the continuous and discrete representations, potentially producing higher 

quality results. Unfortunately, there does not seem to be any simple way of accelerating this 

process. There is no way of taking advantage of the fact that many particles lie close to the same 

streamlines. Thus, it is not a realistic implementation for long animation sequences. In contrast, 

DLIC is designed to use a texture image as an intermediate stage so that optimized texture-based 

visualization methods can be used. 

4.4.2 TEXTURE WARPING 

Since the texture is a representation of all the particles, it is conceivable that we could 

advect the texture itself according to d and eliminate the particles altogether. Indeed, this would 

save a tremendous amount of memory, since we would only need to store one scalar value per 

pixel. In contrast, there are roughly as many particles as pixels in the texture, and for each particle 

we need to store its position and intensity value. 

But how can we make sure that the level of detail remains roughly the same throughout 

the texture as it evolves over time? Certainly, we don’t have to worry about the texture becoming 

too detailed, since its resolution limits the level of detail that can be represented. However, if the 

d field diverges over time, the corresponding features of the texture will be stretched and its 

frequency extent will be reduced. One possible solution is to maintain a measure of the 
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“coverage” for each pixel ( )tTC ,x . Initially, when the texture is set to random white noise, the 

coverage is uniformly set to 1. Then, CT  is warped in exactly the same way as T. If the warping is 

done in a conservative fashion, where 

 ( ) CtTC =∑
x

x, , (4-50) 

meaning that coverage values are transferred between pixels and not lost or created, then CT  

serves as a measure of the frequency extent of each pixel. When the coverage falls below a 

certain level, this is the result of too much “stretching” of the texture. Therefore, random values 

can be added to the texture to increase the level of detail in the same way as adding random 

particles. 

Unfortunately, repeatedly warping the texture, and therefore refiltering it ever frame, 

reduces the frequency extent much more than can be measured by a simple “coverage” indicator. 

In the paper on Unsteady Flow LIC (UFLIC) [16], Shen and Kao suggest applying a sharpening 

(high-pass) filter to the output and using it as the texture for the next frame. They also suggest 

mixing in a low-intensity random texture to continuously add small amounts of detail. However, 

adjusting the level-of-detail globally for every single frame is excessive, and this is essentially a 

feedback process that takes time to converge. Due to the arbitrary nature of the random detail 

added, if we tried to visualize a stationary vector field, the output would vary from frame to frame 

because of the continual sharpening and random detail added. 

One extreme solution would be to explicitly compute the frequency content in the texture 

to find regions where the frequency extent has been limited by stretching and repeated filtering. 

However, this sort of technique would be computationally expensive. At this point, it makes more 

sense to simply track the particles that give rise to the texture via the procedure I described 

earlier. The memory cost is not prohibitive for today’s computers. 

4.4.3 PATH LINES 

In the paper by Forssell and Cohen [7], it was suggested that tracing path lines instead of 

streamlines was more appropriate for time-varying fields. Unfortunately, this gives the vector 

visualization technique “predictive” powers, where an image at a certain time includes features 

from the vector field at a future time. For flow fields, it does take into account the motion of 

particles over time, but for fields where f and d are not equal, such as electromagnetic fields, this 

is not very useful. 
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The UFLIC method works better in that path lines are traced forward in time and the 

texture value is “deposited” in the output image at that time. Thus, it both accounts for the 

unsteady motion of particles over time, and does not expose the features in the vector field until 

the correct time. However, maintaining output images for several future time steps can take up a 

significant amount of memory for long path lines. And again, this does not work for fields where 

df ≠ . 

The goal of DLIC is to visualize the vector field f at each moment in time in such a way 

that the temporal streamline correspondence can be discerned as specified in d. Streamlines are 

indeed the correct way of visualizing the vector field f at each moment in time. The effect of the 

past and future is seen only in the correlation of intensities along streamlines over time. 
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5 EXPERIMENTS IN ELECTROMAGNETISM  
The ultimate goal of this research project was to devise a way to visualize dynamic 

electromagnetic fields with the same amount of detail afforded by the Line Integral Convolution 

technique. To make use of the DLIC technique, we need to be able to compute f and d fields over 

time. Electric and magnetic fields can be computed via the principles of classical electro-

magnetism, for example with the help of a standard textbook such as Griffith’s [9]. Describing 

the motion of the electric or magnetic field lines is typically not discussed, however. 

 

5.1 FIELD L INE MOTION  

For visualizing magnetic field lines, we can compute the magnetic field f using the Biot-

Savart law, Ampère’s law, or Maxwell’s equations. Similarly, for electric field lines, f can be 

computed via Gauss’s law, Faraday’s law, or Maxwell’s equations. Or, both fields can be 

computed via the scalar and vector potentials. The questions remains, however: how do we track 

the motion of the field lines over time? 

5.1.1 DEFINITION OF A FIELD LINE 

Although field lines are essentially imaginary constructs in physics, they can be used to 

aid our understanding of electromagnetism. A field line is simply a streamline in the electric or 

magnetic field at a constant time. In quasi-static situations, where the speed of light is much 

greater than any velocities we would perceive in our animation, these streamlines are easy to 

construct. For electric fields, we expect to see these streamlines start at positive charges and end 

at negative charges, while for magnetic fields the streamlines circle around currents. In the 

relativistic case, we take field lines to be streamlines over the field as perceived by observers 

located throughout space in the laboratory frame at the same time. 

For texture-based vector visualization methods like (D)LIC, it is difficult to map three-

dimensional fields to two-dimensional displays. Although it is sometimes possible to effectively 

use transparency to see the structure of the field, usually the results are much too convoluted. 

Instead, we take a two-dimensional “slice” of the vector field: points in the two-dimensional 

domain of f map to a plane in space, and the components of the vector field parallel to the plane 

map to the range of f. We can describe the mapping from the domain of f to the vector field as: 

 ( ) [ ] OxMMxM yx += c , (5-1) 
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where xM  and yM  are the orthonormal x- and y-axes in three-space, c is a scale factor, and O is 

to origin. Similarly, given the vector field at a point in space, we can project it back on to the 

plane with: 

 ( )( ) [ ] ( )xEMMxEP yx ′=′ T

c

1
 (5-2) 

Thus, given the electric (or magnetic) field ( )xE ′ , we define f as: 

 ( ) [ ]( )xMEPxf $$=  (5-3) 

Now that we have f, how do we compute the corresponding d field? In the paper “Field 

Line Motion in Classical Electromagnetism” [1], Belcher and Olbert define the motion of field 

lines to be the drift motion of low energy test particles. This definition is physically motivated, 

and matches our intuition for how field lines should move. For example, if we scatter electric test 

charges along a magnetic field line, the charges will move with the field line over time. This is a 

physically plausible but not unique way to define field line motion. 

5.1.2 MAGNETIC FIELDS 

The following derivation is taken from Belcher and Olbert’s article [1]. For visualizing 

magnetic fields, we start by considering the (non-relativistic) motion of an electric test charge in 

constant fields: 

 ( )BxEx ×+= ��� qm  (5-4) 

First, we split the electric field into its components parallel and perpendicular to the magnetic 

field: 

 ( )BxEEx ×++= ⊥ ��� qqm ||  (5-5) 

Since motion of the particle along the parallel component is motion along the magnetic field line, 

we make the choice to neglect this portion. Thus for fields where the electric and magnetic fields 

are not perpendicular, we are not computing the true motion of a particle, but a particle that is 

constrained to move perpendicular to the magnetic field. With only the perpendicular component, 

we can then make the substitution 

 driftvxx +′= �� ,  where 
2B

BE
v

×= ⊥
drift , (5-6) 

which yields the acceleration: 
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���
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 (5-7) 

The solution to this is a gyrating motion around the magnetic field line, and therefore the solution 

to the motion of the particle is to drift along the field at driftv  while gyrating. Since this is a 

hypothetical test charge, we can make its gyrations as small as we like. Indeed, even if we allow 

the E and B fields to vary over space, we could make the radius of gyration small enough that the 

fields are effectively constant. Finally, if we allow the fields to vary over time as well, the period 

of gyration can be made much smaller than the time scale over which the fields change. 

Thus, we define the motional vector field d for magnetic fields as follows: 

 ( ) ( )xM
B

BE
Pxd 













 ×= $$

2
, 

where the domain of d is mapped to three-space, the motion is computed at that point, and then 

projected back to the plane. 

Interestingly, though this motion only has a physical interpretation if the drift velocity is 

less than the speed of light, it will still give us an intuition for the direction of energy flow since it 

is parallel to the Poynting vector. For electromagnetic waves, where 

 EkB ×= ˆ1
c

, 

the drift velocity is the speed of light in the direction of propagation: 

 ( ) kEkE
EB

BE
v ˆˆ

22 ⋅=××=×= c
c

drift  

5.1.3 ELECTRIC FIELDS 

Similarly, for visualizing electric fields, we consider the motion of a hypothetical 

magnetic test charge. Its equation of motion is: 

 ( )2cqm m ExBx ×−= ���  (5-8) 

Again, ignoring the component of the magnetic field that is parallel to the electric field, since it 

would move the particle parallel to the field lines, we can make the drift velocity substitution 

 driftvxx +′= �� ,  where 
2

2

E

BE
v ⊥×= cdrift , (5-9) 
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which yields the equation: 
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( )( ) ExEBBEEBEx

EBE
E
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���
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1
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 (5-10) 

The solution to this is again a gyrating motion, and thus the motion of the magnetic monopole is 

also the drift velocity plus the gyration. Electric and magnetic fields that vary over space and time 

can be made effectively constant for small enough gyrations so that this motion is still a good 

approximation. Thus, the motional field for electric field lines is defined as: 

 ( ) ( )xM
E

BE
Pxd 













 ×= $$

2
2c  (5-11) 

Though this physical interpretation also only holds for drift velocities less than the speed of light, 

the motion still depicts the flow of energy. In this case, the drift velocity for electromagnetic 

waves again yields the speed of light in the direction of propagation. 

 

5.2 THE FALLING MAGNET 

One experiment that we wanted to visualize was a permanent magnet falling through the 

axis of a conducting ring. This experiment is a good demonstration of induction and the resulting 

Eddy currents in the ring. 

5.2.1 EXPERIMENTAL SETUP 

The experiment consists of two objects, a permanent magnet and a conducting ring, 

ẑ

x̂
ŷa

I

0M

z

v

LR,

mg

 

Figure 5-1: Falling magnet experimental setup 
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illustrated in Figure 5-1. For the sake of computation, the magnet is modeled as an infinitesimal 

magnetic dipole, and the conducting ring has an infinitesimal cross-sectional area. The ring is 

fixed, centered at the origin with its axis pointing in the ẑ  direction, and has radius a, resistance 

R, and inductance L. The dipole is constrained to slide along the axis of the ring with its dipole 

moment ẑ0M  pointing along the axis. Initially, the dipole is located at a height z above the ring 

and has a zero velocity v, and the current I in the ring also starts at zero. Gravity takes it toll, and 

the dipole begins to fall down into the ring. The change in flux through the ring gives rise to a 

current in the ring, giving rise to a magnetic field, which in turn affects the dipole. 

5.2.2 COMPUTING THE FIELDS 

The electric and magnetic fields can be computed separately for the dipole and ring and 

then superimposed. For a stationary dipole, the magnetic field can be computed by: 

 ( ) ( )[ ] ( )zrmrrmrB ˆˆ3
4

ˆˆ3
4 3

0030 −=−⋅= −
zdip r

r

M
r

π
µ

π
µ

 (5-12) 

Note that r is measured in the coordinate system whose origin is at the dipole’s center. If the 

dipole is moving with a constant velocity in the laboratory frame, the magnetic field gives rise to 

an electric field: 

 ( ) ( )dipdipdip v BzBvrE ×=×= ˆ  (5-13) 

Additionally, if the dipole is accelerating, it will produce other radiating terms. For this 

experiment, the time scale is much larger than the time it takes for light to traverse the domain of 

the field we are concerned with, so we can ignore these extra terms. 

For the ring of current, the computation is much more difficult. We begin by computing 

the vector potential A in the coordinate system centered at the ring’s center: 

 ( )
( ) ( )∫∫

+−+−

+−==
π

θ
θθ

θθ
π

µ
ρπ

µ 2

0
222

00

sincos

cosˆsinˆ

44
da

rarar

I
dl

zyx

ring
yxI

rA  (5-14) 

The scalar potential is zero since there are no electric charges. We can simplify this somewhat 

since the problem has azimuthal symmetry by constraining it to the x-z plane. In addition, we can 

remove the dependence on radius by doing a change of coordinates: 
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The integral then becomes: 
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The electric field can therefore be computed by 
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 (5-17) 

where the integral has been simplified by taking advantage of symmetry. This is an elliptic 

integral and must be evaluated numerically. 

The magnetic field is 
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  (5-18) 

where again symmetry has exploited to simplify the integral. Although the equations for 

computing the fields at a point seem formidable, they can both be evaluated by computing two 

fairly coarse numeric integrals. 
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5.2.3 EQUATIONS OF MOTION 

Since the dipole is constrained to lie along the axis of the ring with its dipole moment 

pointing along the axis, it is easy to compute the force it feels: 

 ( ) z
z

B
Mgmg z ˆˆ 0 







∂
∂

+−=⋅∇+−= BmzF  (5-19) 

Fortunately, the magnetic field along the axis can be evaluated in closed form: 

 ( ) 2322

2
0

2
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z
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+
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µ
 (5-20) 

Therefore, if we use the variable z to denote the height of the dipole over the ring, the equation of 

motion for the dipole is: 

 ( ) 2522

2
00
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2

2

3
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zIaM
mg

dt

zd
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+

⋅⋅−−=
µ

 (5-21) 

Next, although the ring is constrained not to move, we will get a current in it due to the 

changing magnetic field of the moving dipole. From Faraday’s Law, 

 
dt

dI
Ld

dt

d
d

dt

d
IRd dip −⋅−=⋅−==⋅ ∫∫∫ ABABlE , (5-22) 

where R is the ring’s resistance and L is its inductance. The flux through the ring is equal to the 

flux through a spherical cap centered at the ring’s center, which is: 

 ( ) 2322

2
00

2 za

aM
dABdip

+
=⋅∫

µ
 (5-23) 

Therefore, the equation for the current in the ring is: 

 ( ) dt
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zaM

dt

dI
LIR ⋅

+
⋅+−=

2522

2
00

2

3µ
 (5-24) 

By introducing dtdzv = , we can summarize the equations of motion with three first-order 

differential equations: 
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Given the initial conditions, this set of equations can be integrated very accurately using a scheme 

such as the 4th order Runge-Kutta method. 

5.2.4 RESULTS 

In Figure 5-2 below are two sequences of images from an animation of the dipole falling 

through the ring. Both the input textures and output images have been filtered substantially in 

order to enlarge the streamline features. It should also be noted that the time step is larger than 

normal in order to show enough of a change between successive images. The images represent a 

cross-section of the vector field through the origin with the ẑ  axis pointing up and the x̂  axis 

pointing to the right. Thus, the dipole falls vertically down the center of the images, and the ring 

intersects the plane of the image at two points. 

The left-hand column shows the dipole just before it goes through the ring. The flux 

through the ring due to the dipole varies more the closer it gets, and so a large current is induced 

in the ring. As a result, the magnetic field lines appear to be compressed as they “squeeze” 

through the ring, exerting an upward force on the dipole and a downward force on the ring. 

Although the correspondence between field lines is not always obvious when the images in time 

are presented vertically, the thick bright and dark bands (over-saturated intensities) can serve as 

references. Note especially the interesting evolution of the bright stripes near the current ring. 

In the right-hand column we see the dipole below the ring, falling further down. Although 

it is accelerating due to gravity, again the flux change through the ring induces a current that 

slows down the falling dipole. We see this as the field lines stretching around and through ring, 

and as a consequence there is a downward force on the ring and the dipole is “pulled” up. Again, 

the field evolution is the most interesting in the bright bands around the ring. 

It should be noted that animating the fields of this particular experiment was especially 

difficult and error prone. One reason is that the dipole represents a singularity that is difficult for 

the streamline integrator to detect automatically. In addition, notice that the magnetic field 

emanates vertically from the dipole, and that the dipole itself is moving vertically. This results in 

a horizontal motion for the particles below and above the dipole, instead of vertically with the 
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velocity of the dipole as we would expect. Indeed, this is a direct consequence of the fact that our 

definition of particle motion ignores any components along the direction of the magnetic field. 

Therefore, instead of moving with the dipole, the particles appear to flow around it. Worse, since 

streamlines near the center of the dipole depend on a small number of particles, movements in 

those particles produce large variations in the output intensity. One solution may be to introduce 

motion in d along the streamlines in f according to what we would expect, for example ( )BvB ˆˆ ⋅ , 

but we have not done that for these images.  



 56 

Magnet just above the ring 

 

 

 

 

 

 

Magnet falling below ring 

 

 

 

 

 

 
Figure 5-2: Animation sequences of the magnet falling through the conducting ring 
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5.3 RADIATING DIPOLE  

Another experiment we were interested in visualizing is the radiation pattern of a time-

varying electric dipole. 

5.3.1 EXPERIMENTAL SETUP 

 

In this experiment, we have a single electric dipole located at the origin with its dipole 

moment oriented along the ẑ  axis, as in Figure 5-3. We allow the dipole to vary as any function 

in time: 

 ( ) ( )zp ˆtpt = , (5-26) 

and we would like to see the resulting radiation pattern. Therefore, we have to adjust the time and 

distance scales so that the speed of light is visible. 

5.3.2 COMPUTING THE FIELDS 

To compute the fields, we need to be able to evaluate the dipole moment function at the 

retarded time, or the time that a signal traveling at the speed of light left the dipole in order to 

reach the point: 

 
c

r
ttr −=  (5-27) 

The electric field can be computed as: 
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Similarly, assuming the dipole is stationary, the magnetic field is: 
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Figure 5-3: Electric dipole setup 
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In order to evaluate these, we need to be able to compute the first and second derivatives of ( )tp . 

For our experiment, we wanted to visualize an oscillating dipole: 

 ( ) ( ) ( ) tptptptptptp ωωωωω sin     ,cos     ,sin 2
000 === ���  (5-30) 

In addition, we wanted to observe the effects of switching a dipole on and off. The dipole 

switches on via the smooth differentiable function: 

 ( ) ( )
on

on

T

tt
ttttptp

−
=′′+′−′=<′<      ,1015610 345

0  (5-31) 

where the dipole begins switching at ont  and has finished in time onT . Similarly, the dipole 

switches off via the complementary function: 

 ( ) ( )
off

off

T

tt
ttttptp

−
=′′+′−′−=<′<      ,10156110 345

0  (5-32) 

5.3.3 RESULTS 

Although the physical interpretation behind the particle “drift” model of field line motion 

breaks down when they are moving at or beyond the speed of light, the results of DLIC are still 

useful. The “drift velocity” still gives us the direction of the electromagnetic Poynting flux. For a 

radiating dipole, the result is a circle of electromagnetic waves expanding at the speed of light, as 

we expect. 

In the left column of Figure 5-4, we see a cross-section of the field of an oscillating 

dipole located at the center with its moment pointing up in the plane of the image. The 

correspondence between the field lines of successive images is very clear in these images. The 

frequency of oscillation is high enough that the periodicity is clear in the image, and we can see 

waves being “pushed out” as a new domain emanates from the dipole. At the left and right edges 

of the image, we are far enough away from the dipole that the electromagnetic waves begin to 

look planar locally. 

On the right in Figure 5-4, we see the electric field of the dipole switching on and then 

off. Areas of random white noise indicate a zero field. In the first three images, we see the 

expanding field of the dipole switching on. Except for the outer-most portion of the field, the 

pattern is the same as for a constant dipole. In the next three images, the dipole has switched off 

and we see an expanding circle of zero field. Note the interesting band just outside the zero field 

for which the dipole is actually switching. 
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Oscillating dipole 

 

 

 

 

 

 

Dipole switching on and off 

 

 

 

 

 

 
Figure 5-4: Expanding field waves of electric dipoles 
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6 CONCLUSIONS 

6.1 SUMMARY  

The animation sequences we generated for the two experiments demonstrate the power of 

DLIC in rendering dynamic vector fields. Provided that we can describe the dynamics of a time-

varying vector field f via another motional vector field d, DLIC produces a sequence of coherent 

images that communicate the evolution of the field. It does so by using d to advect a collection of 

random particles, generating an input texture to represent those particles, and finally passing it to 

LIC along with f to render the vector field images. In this thesis, I have presented a complete 

description of the details on how I implement DLIC, for example the texture generation and 

particle advection schemes.  

 

6.2 FUTURE WORK 

During the development of DLIC, several implementation choices needed to be made. 

Though this thesis attempts to discuss the algorithm in as much generality as possible, the full 

range of possible implementation variations has not been explored. For example, rather than 

using LIC and FLIC, perhaps some other texture-based visualization method would produce 

better results, particularly near singularities in the vector field. Or, there may be a more elegant 

and efficient way of rendering LIC-like images directly from the particles rather than sampling 

them to a texture first. Other methods for managing particles as they advect over time may 

produce higher-quality, more stable renderings. It may also be worthwhile to explore ways of 

representing the evolution of streamlines other than via the d field. In the example of the magnet 

falling through the ring, it does not seem to be the best way of describing motion near the dipole 

singularity. Finally, though it has not been our primary focus, speeding up the computation is 

highly desirable for lengthy animations. Being able to render these images in real-time would be 

an incredibly powerful tool for exploring vector fields. 
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