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Abstract

Fabrication of pipes requires the use of several manufacturing processes, such as bending,
welding, drilling and wringing. However, in most cases the circular ends deviate from true
circles and need reformation to be welded to anges. Currently the reformation is conducted
by hammering and relies on the intuition of skilled workers. This reforming process is not
only expensive but also generates unhealthy loud noise.

The objective of this research is to develop an automatic system of circularizing the
ends of a deformed pipe by laser line heating. The overall problem is de�ned as follows:
Given the design of a metal pipe, measure the shape of the cross sections of both ends and
a branch end of the manufactured pipe and determine the heating paths together with the
heating conditions to reform the manufactured pipe to within acceptable tolerances with
respect to the designed pipe using the line heating method.

The line heating conditions to be applied to the pipe have to be determined in real
time to make the process e�cient. A Neural Network is created for this purpose and the
database used to run it is generated using a simpli�ed thermo-mechanical model of the pipe
validated by a Finite Element Model (FEM).
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Chapter 1

Introduction

1.1 Background and motivation

Fabrication of pipes used for switchgears requires the use of several manufacturing processes,

such as bending, welding, drilling and wringing as shown in Figure 1-1. The complete

process makes very di�cult to preserve the exact circularity at the free ends of the pipe,

which causes problems when it will be welded to a ange. The correction of circularity

Bending

Welding

Drilling

Wringing

Figure 1-1: Processes involved in the manufacturing of pipes

is currently conducted by hammering and is performed by skilled workers relying on their

intuition and experience to obtain the desired result. Also, the process generates unhealthy

loud noise and is also expensive; many years of on-the-job training are often necessary for
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a worker to master this skill through experience. Line heating appears at this point as

an alternative to perform the reformation process to overcome the disadvantages of the

reformation by hammering.

Line heating is a process of gradually adding plastic strain to a metal plate to generate

the desired shape. When a plate is subjected to a thermo-mechanical process, plastic de-

formation is produced by the thermal stresses generated during the heating and subsequent

cooling of the material. During this process, one side of the plate's surface is heated while

the other side is kept at a lower temperature. The temperature gradient in the material

across the thickness causes the metal to bend in one direction. In the mean time, the

expanded metal is constrained by the surrounding cooler metal, and compressive stresses

result. When the heat is removed, the material cools and the metal contracts (see Figure 1-

2). The surface will then deform and assume an equilibrium state in the direction reverse

to that when it was heated. The curvature generated is a function of temperature gradient

between the top and bottom surfaces of the material. An ideal thermo-mechanical forming

system would be able to heat a steel plate with desired temperature gradient at any point.

The line-heating process is currently being used in a large number of shipyards to form hull

HEATED AREA

HEATED AREA

HEATING PATH

INITIAL SHAPE

SHAPE DURING HEATING

SHAPE AFTER COOLING

Figure 1-2: Line heating e�ect over a plate

plates. Three types of heat sources can be used in the line heating process: an oxyacetylene

torch or a set of torches, induction heating and laser. Compared with mechanical pressing,

thermo-mechanical forming using an oxyacetylene torch is more versatile and less expensive.

However, line heating with an oxyacetylene torch has some inherent drawbacks. Forming by

line heating is an art which requires many years of experience because complex mechanisms
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are involved. In order to produce the exact desired shape, one must know how the plate

should be heated. One must also have a means to control the heating and cooling processes.

Compared with torch heating, induction heating is easier to control, and is used in some

Japanese shipyards. However, the equipment is heavier and the heated area is larger, so

induction heating is usually not performed manually. Instead, a robotic system is needed

to control the heating process.

Laser forming is a thermo-mechanical method which uses a laser instead of an oxyacety-

lene torch as the heat source [17]. The basic metal forming mechanisms for laser forming

are essentially the same as the forming technique using an oxyacetylene torch. Compared

with the heat source of an oxyacetylene torch, a laser has the following advantages: (1) The

power and its distribution are easier to control and reproduce. (2) The heated region is

smaller so that material degradation (degradation of material properties due to line heating)

is minimized. (3) A laser system can be integrated with a robotic system for automation

of the line heating process. We will use this laser line heating technique for reformation of

pipe ends so that they are nearly circular.

1.2 Research objective

This thesis research aims to develop an automatic system of circularizing the ends of a pipe

which is used for switchgears by line heating. In other words, the thesis intends to solve

the following problems:

(1) Modeling of the thermo-mechanical process over a pipe by using a non-linear three-

dimensional �nite element method.

(2) Modeling of the simpli�ed thermo-mechanical process applied to a pipe which further

reduces simulation time so that the model can be used in real time process planning.

(3) Designing of a Neural Network based on the information generated by using the models

developed in (1) and (2) to e�ciently predict the necessary heating conditions to

reform the circularity on the pipe's free end.

1.3 Thesis outline

The remainder of the thesis is arranged as follows:

Chapter 2 presents a non-linear thermo-mechanical three-dimensional �nite element

model for the temperature �eld and the resulting deformation prediction of a pipe's free

end due to line heating.

Chapter 3 presents a simpli�ed thermo-mechanical model for the prediction of the tem-

perature �eld and the resulting deformation of a pipe's free end due to line heating.

Chapter 4 presents a neural network application to determine in real time the heating

parameters necessary to correct the deformation of a pipe.

13



Finally, Chapter 5 concludes the thesis, summarizes its contributions, and provides

suggestions for future research.
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Chapter 2

Coupled thermo-mechanical �nite

element analysis

2.1 Introduction

The process of correction of the circularity of a pipe by line heating is a coupled nonlinear

thermo-mechanical process which makes its analytic simulation and prediction di�cult to

perform. Finite element analysis (FEM) is a suitable tool to achieve a good representation

and prediction of the application and e�ects of the heating source. On the other hand,

the �nite element analysis takes a considerable computation time making it not suitable to

obtain results in a short time. In this chapter a Finite Element Model based on ABAQUS

software [1] is developed for thermo-mechanical analysis of the process of circularity correc-

tion of a pipe. The use of the FEM technique provides a way to verify, validate and compare

the results obtained using the simpli�ed thermo-mechanical model described in Chapter 3

of this thesis.

2.2 FEM model de�nition

2.2.1 Pipe geometry

The characteristics of the model used in this research are based on the pipes manufactured

to be used on switchgears. The pipes are formed from plates using cold rolling, and the

complete manufacturing process requires the use of bending, welding, drilling and wringing,

which in most cases make the circular ends of the pipes deviate from true circles, thereby

requiring reformation to be welded to anges. The model consists of a pipe formed from a

mild steel plate and its typical dimensions and characteristics are:

1. Length: 1.4 m

2. Internal diameter: 0.75 m

15



3. Thickness: 0.009 m

4. Material: Mild Steel

2.2.2 Finite element model mesh generation

Using ABAQUS we have developed a full 3-D FEM model for a pipe to perform a non-

linear coupled thermo-mechanical FEM analysis and determine the relation between heating

conditions and curvature distribution of the deformed cross section. The pipe can be treated

as a thick pipe since it is the gradient of the temperature across the thickness that provides

the mechanism to bend it. Therefore, a 3-D analysis is necessary and 3-D mesh needs to

be generated. For our research the 20-node brick elements and 15-node triangular prism

elements shown in Figure 2-1 are the type of elements used in the analysis. Mesh generation

is carried out �rst on the upper or lower surface of the attened rectangular plate of the pipe

using quadrilateral and triangular elements as shown in Figure 2-2 . A dense 256 � 240

grid of points is generated on the attened plate, which lie on the x � y plane. The

�nest quadrilateral elements consist of a 3 � 3 grid, while the coarsest elements consist

of a 17 � 17 grid of points. Then, using the reference system de�ned in Figure 2-3, a

3-D mesh can be generated by mapping onto a circular cylinder and o�setting across the

pipe thickness. When the �nest quadrilateral element is mapped onto the 3-D pipe, its

dimension is 1:84 cm by 1:75 cm while the coarsest one is 14:7 cm by 14:0 cm. In order to

accurately capture the characteristics of the laser forming process, we choose a mesh size

which increases exponentially across the thickness of the pipe, being �ner near the heated

side of the pipe. The ith layer thickness from the bottom layer is de�ned as

�zi =
tk � (1� r)

1� rnz
r(nz�i) i = 1; : : : ; nz ; (2.1)

where �zi is the i
th layer thickness starting from the bottom, tk is the material thickness,

nz is the number of layers across the thickness, and r is de�ned by

r = ratio
1:0

nz�1 ; (2.2)

where ratio is the de�ned ratio between the bottom layer and the upper layer. For the

simulation we used nz = 3 and ratio = 6. The �nal generated mesh is shown in Figures 2-4

and 2-5. The �rst shows a general view of the pipe meshing and the second shows a closer

view of the denser meshed area and the di�erent layer heights across the thickness.

2.2.3 Thermal boundary conditions

Boundary heat transfer is modeled by natural heat convection and radiation. Convection

follows Newton's law, according to which the rate of the loss of heat per unit area inWm�2

16
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Figure 2-1: Elements used in FEM analysis

Figure 2-2: Initial mesh
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Figure 2-3: Coordinate system de�nition

due to convection is

q = hc(Ts � Ta) ; (2.3)

where the coe�cient of convective heat transfer hc is a function of the di�erence between

the wall temperature Ts and the environment temperature Ta and of the orientation of the

boundary [19][22] given by:

hc =
ksNu

L
; (2.4)

where ks is the thermal conductivity of the metal plate, Nu is the Nusselt number, and L is

the characteristic length of the plate (or surface). Since the pipe diameter is relatively large

compared with the diameter of the heating spot size we can treat the pipe as a horizontal

plane surface. For horizontal plane surfaces with surface area As and perimeter p, the

characteristic length is given by L = As=p. If we denote the Rayleigh number by RaL, the

Nusselt number is de�ned by:

Nu = b(RaL)
m; (2.5)

where for horizontal surfaces facing upwards,

b = 0:54; m =
1

4
; when 104 < RaL � 107 ;

b = 0:15; m =
1

3
; when 107 < RaL < 1011 ; (2.6)
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Figure 2-4: Pipe mesh general view
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Figure 2-5: Pipe mesh thickness layers view
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for horizontal surfaces facing downwards,

b = 0:27; m =
1

4
; when 105 < RaL < 1011 : (2.7)

The Rayleigh number is given by RaL = GrL � Pr, where GrL is the Grashof number,

and Pr is the Prandtl number. Both the Grashof number and the Prandtl number are

functions of ambient air properties and temperature di�erences between the wall and the

environment. The Grashof number is de�ned as

GrL =
g�(Ts � Ta)L

3

�2
; (2.8)

where g is the gravitational acceleration; � is the coe�cient of thermal expansion of air; Ts

and Ta are the temperatures (in degrees oC or K) of the metal plate and air, respectively;

L is the characteristic length of the plate; � is the kinematic viscosity of air. The Prandtl

number Pr is de�ned as

Pr =
�Cp

ka
� =

�

�
; (2.9)

where Cp is the speci�c heat of air, � the air density, ka the thermal conductivity of air,

and � = ka
Cp�

is the thermal di�usivity of air.

The rate of the loss of heat per unit area in Wm�2 due to radiation [19] is

q = 5:67� 10�8"(T 4
s � T 4

a ); (2.10)

where " is the surface emissivity (non-dimensional), whose value depends on the surface

condition and the temperature of the metal plate. Ts and Ta are measured in degrees K.

Thermal properties of mild steel plates

The thermal conductivity k, speci�c heat Cp and convective heat transfer coe�cients

adapted from [23] for a mild steel pipe of the dimensions de�ned in Section 2.2.1 are shown

in Table 2.1. In the table, \{" means either the data is not available (for thermal conduc-

tivity and speci�c heat) or was not calculated (for convective heat transfer coe�cients).

Spatial distribution of the heat ux

Heat ux from an oxyacetylene torch or a laser beam is usually modeled as a Gaussian

distribution [20]. Accurate measurements of energy distribution of the Nd:YAG laser system

with �ber optic beam delivery and focus optics were performed using a charged coupled

device (CCD) by researchers at the Applied Research Laboratory of Pennsylvania State

University [21]. The Nd:YAG beam displays a Gaussian distribution with an annular lobe,
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Temperature Thermal Speci�c Convective heat transfer
conductivity k heat Cp coe�cient (Wm�2K�1)

T (oC) Wm�1K�1 Jkg�1K�1 hup hdown
0 51.9 450 { {

75 { 486 { {

100 51.1 { 4.4468 1.8028

175 { 519 { {

200 49.0 { 5.1405 2.1258

225 { 532 { {

275 { 557 { {

300 46.1 { 5.3252 2.2583

325 { 574 { {

375 { 599 { {

400 42.7 { 5.5800 2.3303

475 { 662 { {

500 39.4 { 5.6701 2.4723

575 { 749 { {

600 35.6 { 6.2027 2.6202

675 { 846 { {

700 31.8 { 6.5913 2.8011

725 { 1432 { {

775 { 950 { {

800 26.0 { 6.7781 2.8881

900 { { 7.0061 2.9515

1000 27.2 { 7.2161 3.0093

1100 { { 7.4101 3.0626

1200 { { 7.5911 3.1120

1500 29.7 400 { {

Table 2.1: Thermal properties of mild steel
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the amplitude of which is approximately 12% of the amplitude of the inner lobe. The outer

lobe is believed to be a higher-order transverse mode caused by interaction of the beam and

�ber. About 30% of the beam power is distributed in the outer lobe. The outer lobe has

the shape of the sine (cosine) function. For the heating condition used for processing the

Inconel plates, the inner lobe is 27.5 mm in diameter and the center of the outer lobe is

59.4 mm. Based on these data, the composite beam pro�le can be expressed as [22]:

q00(r) =

8<
: qmaxe

�cr2 r � r2

qmax

h
c1 + c2 sin

�
r�r2
r1�r2

�
2

�i
r > r2

; (2.11)

where qmax, r2, c, c1, c2 are unknown variables, and r1 =
59:4
2 = 29:7 mm. Denote Q the

power of the laser, and p the absorption rate. The unknown variables satisfy the following

conditions:

(1) At r = r0 =
27:5
2 = 13:75 mm:

qmaxe
�cr2

0 = 0:12qmax ; (2.12)

(2) At r = r1 = 29:7 mm:

qmax

�
c1 + c2 sin

�
r � r2
r1 � r2

�

2

��
= 0:12qmax ; (2.13)

(3) At r = r2, compatibility between inner and outer regions:

qmaxe
�cr2

2 = qmaxc1 ; (2.14)

(4) The inner region has heat ux 0:7Q � p:

2�

Z r2

0
qmaxe

�cr2rdr = 0:7Q � p ; (2.15)

(5) The outer lobe has heat ux 0:3Q � p:

2�

Z 2r1�r2

r2

�
c1 + c2 sin

�
r � r2
r1 � r2

�

2

��
rdr = 0:3Q � p : (2.16)

After solving the above 5 equations (2.12-2.16), we obtain

qmax = p6:4815 � 106 W=m2 ;

c = 1:1215 � 104=m2 ;

c1 = 6:80757 � 10�4 ;

c2 = 0:11932 ;
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r2 = 25:5mm :

The composite laser beam pro�le is shown in Figure 2-6. Energy distribution of the laser is
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Figure 2-6: The composite laser pro�le (spatial heat distribution)

also characterized by the approximate beam diameter (spot size) as a function of distance

from the focus optics to the work-piece (stand-o� distance). Spot size was measured from

burn patterns obtained from a Cotronix board, which is a �ber based low temperature

refractory material, after a short period (2 seconds) of irradiation using various stand-o�

distances. The measured spot size for the above heat distribution is 22 mm, which corre-

sponds to a stand-o� distance of 18.5 cm. Researchers at the Applied Research Laboratory

of Pennsylvania State University [21] suggest to use a Gaussian distribution within an

equivalent diameter to simplify the heat ux distribution. The spot size diameter range

measured by this institution for di�erent stand-o� distances and heating powers is used in

our simulations as an aproximation of the dimension of the equivalent area heated with

a Gaussian distribution. Twice the spot size will be de�ned as the area with a constant

heating distribution.

When the spot size is enlarged by increasing the stand-o� distance, the size of the inner

region increases. Here we assume the size of the inner region increases proportionally to

the spot size. For a spot size of 25.4 mm, the inner region has a diameter of 31.75 mm. To

make the FEM simulation easier, the heat ux region is modeled as a truncated Gaussian
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distribution, along with a uniform distribution:

q00(r) =

(
qmaxe

�cr2 if r < 15:875 mm

q0 if 15:875 mm < r < 33:9 mm
(2.17)

where qmax = p � 4:8740 � 106W=m2, c = 8:4132 � 103=m2, q0 = p � 5:8488 � 105W=m2 :

2.2.4 Mechanical properties of mild steel

Mechanical properties of the mild steel used for the simulation are given as follows [6] [5]:

1. Density: 7800 kg=m3.

2. Mechanical properties are shown in Table 2.2. Young's modulus and yield stress are

given small, �nite values at high temperatures to avoid di�culties with numerical

convergence [5].

Temperature Yield Young's �y at strain Thermal expansion
stress modulus of 1.0 coe�cient

T (oC) �y (MPa) E (GPa) (MPa) � (10�61=oC)

0 290 200 314 10

100 260 200 349 11

300 200 200 440 12

450 150 150 460 13

550 120 110 410 14

600 110 88 330 14

720 9.8 20 58.8 14

800 9.8 20 58.8 14

1200 { 2 { 15

1550 0.98 0.2 1.0

Table 2.2: Mechanical properties for mild steel

Mechanical boundary conditions

In mechanical analysis, necessary constraints are added to eliminate rigid body movement.

The �xtures are de�ned in such way as to reduce the number of degrees of freedom and

by making them similar to the �xtures used in real experiments. Figure 2-7 shows the

boundary conditions used in the �nite element model. To reduce the number of degrees of

freedom we used a symmetry condition along the top and bottom centerlines nodes of the

pipe, constraining them in the x direction (blue dots in Figure 2-7). Total �xture in the

three directions was used at point B which is located at the bottom far end of the pipe,

and partial constraints in the x and y direction were used at point T which is located at

the pipe's top far end.

25



z

y
O

B

T

z

x
O

r

r
i

o

tk

Figure 2-7: Model mechanical boundary conditions

2.3 Non-linear �nite element analysis

For the FEM analysis we used a sequential coupled thermal-stress analysis. It assumes that

the temperature �eld on the pipe can be found without knowledge or inuence of the stress

or deformation response [1]. Hence, an uncoupled heat transfer analysis can be conducted

�rst and use then its results to perform a stress-deformation analysis.

2.3.1 Non-linear thermal analysis

We �rst conduct a thermal analysis of the pipe where we apply the heat over the line

formed with the coordinates x = 0; 0 � y � 0:25 m; z = ro (see Figure 2-3). The line

heating application follows the time and speed settings de�ned by the user and starts at

time t = 0 at the position x = y = 0; z = ro. The computed resulting temperature �eld is

stored in a separate �le. As mentioned in the previous sections, the surface heating input

is de�ned as a Gaussian distribution inside the inner lobe which concentrates about 70% of

the total power and as a constant distribution in the outer lobe concentrating the other 30%

of the total ux [22]. The heat along the pipe thickness follows a triangular distribution

from the surface through a certain depth �, de�ned as a fraction of the thickness [22][3]. We

used a value of 0.09 for �.

The input parameters used for the non-linear thermal and mechanical analysis example

shown next are in Table 2.3

The output for the thermal analysis is the individual surface nodal temperature. Its

maximum value for a node at the center of the heating path was 672.5 Co. Figure 2-8

shows the surface temperature contours obtained during the thermal analysis. Simulations
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Parameter Value Unit

Heating power 1300 kW

Heating speed 1.6 mm=s

Heating spot radius 12.7 mm

Heating absorption rate 0.81

Table 2.3: Example input parameters

using di�erent combinations of the parameters indicated above were performed and the

results are indicated in Table 2.4. The parameters ranges were taken from the previous

study of the e�ect of heating over a at plate [23]. The results will be used in the next

chapters to validate the simpli�ed thermal model.

Case Power input Source speed Spot size radius Temperature
W mm=s mm Co

1 1300 1.6 12.7 672.6

2 1000 1.6 11.8 552.8

3 700 1.0 8.9 611.3

4 1100 1.3 10.8 732.3

5 800 0.7 10.8 646.7

6 600 0.3 12.7 528.1

7 900 1.0 11.8 566.9

8 600 0.7 8.9 527.9

Table 2.4: Non-linear FEM maximum nodal temperature prediction

2.3.2 Non-linear mechanical analysis

After the thermal analysis is completed, we conduct the non-linear FEM mechanical simu-

lation. It uses the previously stored temperature data and analyzes the mechanical e�ects

over the pipe due to the variation of the temperature �eld in time. The 20-node brick

element and the 15-node triangular prism elements are of the second order type [1], and

use isoparametric interpolation between their nodes de�ned by the local coordinates r; s; t

shown in Figure 2-9. Gauss integration [9] is used to provide the most accurate strain pre-

diction at the interpolation points. The isoparametric formulation spans the range �1 to

+1 in the elements and provides the local coordinates to de�ne the displacement vector

u(r; s; t) = (u(r; s; t); v(r; s; t); w(r; s; t))T ; (2.18)

within each element. Therefore for element m we have [4]

u(m)(r; s; t) = H(m) Û ; (2.19)
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Figure 2-8: FEM line heating simulations over a pipe surface: temperature contours. Color
temperature scale is in degrees Celsius
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Figure 2-9: Isoparametric coordinates de�nition for brick and prism elements
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where Û is the vector that represents the three global displacement components Ui; Vi and

Wi at all nodal points given by

Û = [U1V1W1 U2V2W2 : : : : : : UnVnWn]
T ; (2.20)

where n is the number of nodes in element m. The matrix H(m) is the displacement

interpolation matrix given by

H(m) =

2
664
h1 0 0 h2 0 0 h3 0 0 : : : : : : hn 0 0

0 h1 0 0 h2 0 0 h3 0 : : : : : : 0 hn 0

0 0 h1 0 0 h2 0 0 h3 : : : : : : 0 0 hn

3
775 (2.21)

where hi; i = 1; : : : ; n are the interpolation functions corresponding to the ith node. For a

20-node brick element hi; i = 1; : : : ; 20 are de�ned by [1]

h1 = �1

8
(1� r)(1� s)(1� t)(2 + r + s+ t) ; (2.22)

h2 = �1

8
(1 + r)(1� s)(1� t)(2� r + s+ t) ;

h3 = �1

8
(1 + r)(1 + s)(1� t)(2� r � s+ t) ;

h4 = �1

8
(1� r)(1 + s)(1� t)(2 + r � s+ t) ;

h5 = �1

8
(1� r)(1� s)(1 + t)(2 + r + s� t) ;

h6 = �1

8
(1 + r)(1� s)(1 + t)(2� r + s� t) ;

h7 = �1

8
(1 + r)(1 + s)(1 + t)(2� r � s� t) ;

h8 = �1

8
(1� r)(1 + s)(1 + t)(2 + r � s� t) ;

h9 =
1

4
(1� r)(1 + r)(1� s)(1� t) ;

h10 =
1

4
(1� s)(1 + s)(1 + r)(1� t) ;

h11 =
1

4
(1� r)(1 + r)(1 + s)(1� t) ;

h12 =
1

4
(1� s)(1 + s)(1� r)(1� t) ;

h13 =
1

4
(1� r)(1 + r)(1� s)(1 + t) ;

h14 =
1

4
(1� s)(1 + s)(1 + r)(1 + t) ;

h15 =
1

4
(1� r)(1 + r)(1 + s)(1 + t) ;

h16 =
1

4
(1� s)(1 + s)(1� r)(1 + t) ;
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h17 =
1

4
(1� t)(1 + t)(1 � r)(1� s) ;

h18 =
1

4
(1� t)(1 + t)(1 + r)(1� s) ;

h19 =
1

4
(1� t)(1 + t)(1 + r)(1 + s) ;

h20 =
1

4
(1� t)(1 + t)(1 � r)(1 + s) ;

and for the 15-node triangular prism element hi; i = 1; : : : ; 15 are de�ned by [1]

h1 =
1

2
((1� r � s)(2(1� r � s)� 1)(1 � t)� (1� r � s)(1� t2)) ; (2.23)

h2 =
1

2
(r(2r � 1)(1 � t)� r(1� t2)) ;

h3 =
1

2
(s(2s� 1)(1 � t)� s((1� t2)) ;

h4 =
1

2
((1� r � s)(2(1� r � s)� 1)(1 + t)� (1� r � s)(1� t2)) ;

h5 =
1

2
(r(2r � 1)(1 + t)� r(1� t2)) ;

h6 =
1

2
(s(2s� 1)(1 + t)� s((1� t2)) ;

h7 = 2(1 � r � s)r(1� t)

h8 = 2rs(1� t) ;

h9 = 2s(1� r � s)(1� ts) ;

h10 = 2(1 � rs� s)r(1 + t) ;

h11 = 2rs(1 + t) ;

h12 = 2s(1� r � s)(1 + t) ;

h13 = (1� r � s)(1� t2) ;

h14 = r(1� t2) ;

h15 = s(1� t2) :

The integrals in the �nite element analysis are conducted by Gauss quadrature [9],

where both the positions of the sampling points and the weights are optimized. For the

20-node brick element the weights are equal to 1 and the sampling points are given in

isoparametric coordinates de�ned in Figure 2-10 which shows their values at the planes

t = �0:774596669241483; t = 0 and t = 0:774596669241483. Table 2.5 shows the complete

set of values for the brick element used in the analysis.

For a 15-node triangular prismoid, the sampling points position are shown in Figure 2-

11 at planes t = �0:774596669241483; t = 0 and t = 0:774596669241483. The values of

the coordinates at each node were not included in order to have a better visualization of

the picture. Table 2.6 shows the complete set of coordinates and weights for the prismoid

element used in the analysis.
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Figure 2-10: Gauss quadrature rules for a 20-node brick element
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Integration Degrees of Integration r-coordinates s-coordinates Weights
order precision points

r1=-0.77459666924 s1=-0.77459666924 w1 = 1:0
r2= 0.77459666924 s2=-0.77459666924 w2 = 1:0
r3= 0.77459666924 s3= 0.77459666924 w3 = 1:0
r4=-0.77459666924 s4= 0.77459666924 w4 = 1:0
r5=-0.77459666924 s5=-0.77459666924 w5 = 1:0
r6= 0.77459666924 s6=-0.77459666924 w6 = 1:0
r7= 0.77459666924 s7= 0.77459666924 w7 = 1:0

3� 3 5 See Figure r8=-0.77459666924 s8= 0.77459666924 w8 = 1:0
2-10 r9= 0.0 s9=-0.77459666924 w9 = 1:0

r10= 0.77459666924 s10= 0.0 w10 = 1:0
r11= 0.0 s11= 0.77459666924 w11 = 1:0

r12=-0.77459666924 s12= 0.0 w12 = 1:0
r13= 0.0 s13=-0.77459666924 w13 = 1:0

r14= 0.77459666924 s14= 0.0 w14 = 1:0
r15= 0.0 s15= 0.77459666924 w15 = 1:0

r16=-0.77459666924 s16= 0.0 w16 = 1:0
r17=-0.77459666924 s17=-0.77459666924 w17 = 1:0
r18= 0.77459666924 s18=-0.77459666924 w18 = 1:0
r19= 0.77459666924 s19= 0.77459666924 w19 = 1:0
r20=-0.77459666924 s20= 0.77459666924 w20 = 1:0

Table 2.5: Gauss numerical integrations over quadrilateral domains

Integration Degrees of Integration r-coordinates s-coordinates Weights
order precision points

r1= 0.101286507 s1= 0.101286507 w1 = 0:3333333
r2= 0.797426985 s2= 0.101286507 w2 = 0:3333333
r3= 0.101286507 s3= 0.797426985 w3 = 0:3333333
r4= 0.101286507 s4= 0.101286507 w4 = 0:3333333
r5= 0.797426985 s5= 0.101286507 w5 = 0:3333333
r6= 0.101286507 s6= 0.797426985 w6 = 0:3333333
r7= 0.470142064 s7= 0.059715871 w7 = 0:0132394

7-point 2 See Figure r8= 0.470142064 s8= 0.470142064 w8 = 0:0132394
2-11 r9= 0.059715871 s9= 0.470142064 w9 = 0:0132394

r10= 0.470142064 s10= 0.059715871 w10 = 0:0132394
r11= 0.470142064 s11= 0.470142064 w11 = 0:0132394
r12= 0.059715871 s12= 0.470142064 w12 = 0:0132394
r13= 0.101286507 s13= 0.101286507 w13 = 0:3333333
r14= 0.797426985 s14= 0.101286507 w14 = 0:3333333
r15= 0.101286507 s15= 0.797426985 w15 = 0:3333333

Table 2.6: Gauss numerical integrations over triangular domains
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Figure 2-11: Interpolation nodes spatial position for a 15-node prism

34



The mechanical model starts with zero stresses for all the nodes and reads the tempera-

ture �le at the corresponding time increments de�ned for the thermal analysis. The model

applies the resulting temperature �eld at the nodes, varying the temperature dependent

mechanical properties of the pipe inducing deformations of the pipe itself. The computa-

tional results provide the total deformation of the pipe as shown in Figure 2-12, which can

also be decomposed into the x; y; z components (see Figures 2-13 to 2-15).

X

YZ

U, Magnitude

+0.000e+00
+3.412e-05
+6.824e-05
+1.024e-04
+1.365e-04
+1.706e-04
+2.047e-04
+2.388e-04
+2.730e-04
+3.071e-04
+3.412e-04
+3.753e-04
+4.094e-04
+4.436e-04
+4.777e-04
+5.118e-04
+5.459e-04

Figure 2-12: Deformation magnitude after the non-linear mechanical analysis

It can be seen that the model has distinctive deformations at three locations: at the

position of application of the heat and at two positions located symmetrically distributed

with respect to the heating line. The line where heat is applied along x = 0; z = ro in

a positive y direction will become plastic, creating a contraction mechanism as explained

in section 1.5, deforming the heated area towards the pipe center as shown in Figures 3-

14 and 3-15. This produces two contiguous areas besides the heated line to deform in

a radial direction away from the center of the pipe. This means that if the centerline

deforms inwards, its sides will deform outwards. The e�ect can be seen more clearly in

Figure 2-13 where there is a displacement in the x direction at both sides of the heating line.

These resultant deformations are certainly important. The curvature analysis presented in

Chapter 4 shows that for every deformation from the true circle to the inside or outside of

the pipe, there are two almost symmetric deformation at its sides, that can be corrected

taking advantage of the e�ect induced in the pipe under line heating. The maximum value

for the deformation in the z direction using the values speci�ed in Table 2.3 was -0.5160
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Figure 2-13: Deformation in the x direction
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Figure 2-14: Deformation in the y direction
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-1.861e-04
-1.448e-04
-1.036e-04
-6.237e-05
-2.113e-05
+2.012e-05
+6.136e-05
+1.026e-04
+1.438e-04

Figure 2-15: Deformation in the z direction

mm at the free end. Table 2.7 shows the results of the non-linear mechanical analysis based

on the results of the heat transfer analysis under the heat conditions indicated in Table 2.4.

These results are used to validate the simpli�ed mechanical model in Chapter 3.

Case Power input Source speed Spot size radius Deformation
at (0,0,ro), z direction

W mm=s mm mm� 10�4

1 1300 1.6 12.7 -5.16

2 1000 1.6 11.8 -3.30

3 700 1.0 8.9 -3.43

4 1100 1.3 10.8 -3.59

5 800 0.7 10.8 -3.66

6 600 0.3 12.7 -4.17

7 900 1.0 11.8 -3.49

8 600 0.7 8.9 -5.35

Table 2.7: Deformation at the free end under several heat conditions
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Chapter 3

Simpli�ed model

3.1 Introduction

As mentioned in Chapter 2, the process of correction of the circularity of the ends of a

pipe by line heating is a coupled nonlinear thermo-mechanical process and simulated by a

full three-dimensional FEM analysis. However the required computational time for such

process is typically very long, from hours to days, and is not suitable for real-time analysis.

The objective of this chapter is to adapt the simpli�ed thermo-mechanical model for the

line heating process of a at plate developed at the MIT Fabrication Laboratory [22][23]

to a cylindrical body, and then compare its results with the solution obtained by the non-

linear FEM analysis. The equivalent analytic parameters predicted by the simpli�ed model

will then be used to simulate the deformation e�ect over a FEM model of a pipe with

shell elements and with a linear application of equivalent forces and bending moments.

In Sections 3.2 and 3.3 we review the simpli�ed thermal model and simpli�ed mechanical

model developed at the MIT Fabrication Laboratory [22] [23].

3.2 Thermal model with heat loss and a distributed heat

source

In the process of metal forming by line heating, residual plastic strains generated by the

heating and subsequent cooling deforms a metallic body. Therefore, determination of tem-

perature �eld is the prerequisite for predicting its �nal deformation. A method which can

be applied to this problem is Rosenthal's solution of temperature distribution in a plate

with a moving heat source [15].

Rosenthal makes three major assumptions which a�ect the solution of the temperature

distribution. Rosenthal �rst assumes that the physical characteristics of the heated material,

such as heat conductivity and speci�c heat, are independent of temperature. The second

major assumption is that the speed of the moving heat source and the rate of heat input

to the material are constant. When the heat source speed and the heat ux are considered
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constant, the third assumption of a quasi-stationary heat ow can be made. In a quasi-

stationary heat ow state, while the temperature distribution is not constant with respect

to a �xed coordinate system on the heated solid, it does remain constant with respect to a

position on the moving heat source. This assumption is valid when the solid is long enough

for a given heating condition for the quasi-stationary state to exist.

Rosenthal discusses the solutions of the heat equation for one-dimensional, two-dimensional,

as well as three-dimensional cases. The solution of the temperature distribution of a mov-

ing point heat source with two-dimensional heat ow, as given by Rosenthal is presented in

three ways [15]. The �rst solution is the most fundamental, where the linear source of con-

stant strength through the thickness is applied without any surface heat losses. The second

solution accounts for the e�ects of surface heat losses, but only for a thin plate where the

temperature gradient across the thickness can be neglected. The third solution applies to a

linear source of variable strength through the thickness but does not account for the surface

heat losses. With the addition of a variable strength heat source, the temperature distribu-

tion varies through the thickness of the plate, e�ectively turning the two-dimensional heat

ow solution into a three-dimensional solution [23][22]. However, none of the solutions is

suitable for the line heating process, which involves a distributed heat source and heat loss,

and also temperature gradient across plate thickness.

Further improvements are made in this chapter to the third solution which make the

solution suitable for the line heating process. The �rst modi�cation is the incorporation of

the e�ects of surface heat losses to the solution with a source of variable strength across

thickness. The second adaptation is the replacement of the single point source with a

distributed source of an equivalent total heat ux [23][22]. This reects the heat distribution

during line heating to avoid melting the metal plate.

The rectangular coordinate system �xed on the solid is shown in Figure 3-1a. The heat

source moves with speed v along the x-axis and the thickness is along the z-axis. For a

coordinate system moving with the heat source, a quasi-stationary heat ow is observed.

The distance from the point source along the x-axis is de�ned as � = x� vt where t equals

the time the source has been moving on the plate. The heat source-�xed coordinate system

is shown in Figure 3-1b.

3.2.1 General solution of a quasi-stationary heat source

Following on Rosenthal [15], the partial di�erential equation of heat ow in a solid can be

expressed in the rectangular coordinates (x; y; z) as

@2T

@x2
+
@2T

@y2
+
@2T

@z2
= 2�

@T

@t
; (3.1)
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(a) (b)

Figure 3-1: (a) Plate-�xed coordinate system (b) Heat source-�xed coordinate system.

where 1
2� is the thermal di�usivity of the metal (m

2

s
in SI units) and

2� =
cp�

k
; (3.2)

where k is the heat conductivity of the metal ( W
mK

in SI units), cp is the speci�c heat (
J

kg�K

in SI units), and � is the density ( kg
m3 in SI units).

The coordinate transformation of � = x � vt introduced into the heat ow partial

di�erential equation (3.1) results in

@2T

@�2
+
@2T

@y2
+
@2T

@z2
= �2�v@T

@�
+ 2�

@T

@t
: (3.3)

In the moving coordinate system, the quasi-stationary heat ow condition implies that the

temperature remains constant with time, @T
@t

= 0, yielding

@2T

@�2
+
@2T

@y2
+
@2T

@z2
= �2�v@T

@�
: (3.4)

Equation (3.4) can be simpli�ed by putting

T = T0 + e��v�' (�; y; z) ; (3.5)

where T0 equals the initial temperature of the plate before heating and ' is a function to

be determined. When equation (3.5) is substituted into equation (3.4), the result is

@2'

@�2
+
@2'

@y2
+
@2'

@z2
� (�v)2 ' = 0 : (3.6)
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3.2.2 Variable strength source with surface heat losses

Solution methodology

The solution of a moving source with a constant strength through the thickness with surface

losses can not be applied directly to the line heating problem since it is the temperature

gradient through the plate thickness that causes angular deformations. The e�ect of temper-

ature gradient can be accounted for by allowing for a variable strength heat source [23][22].

If the method of separation of variables is applied to equation (3.6), the function ' can

be expressed as a function of the depth and the radial distance from the source in the x-y

plane, or

' = Z (z)R (r) : (3.7)

Substituting equation (3.7) into equation (3.6) results in

R
d2Z

dz2
+ Z

 
d2R

dr2
+
1

r

dR

dr
� (�v)2R

!
= 0 ; (3.8)

which can be rearranged to become

� 1

Z

d2Z

dz2
=

1

R

 
d2R

dr2
+
1

r

dR

dr
� (�v)2R

!
= c2 ; (3.9)

where c2 is a constant to be determined by using the boundary conditions. The two ordinary

di�erential equations which result from equation (3.9) are

d2Z

dz2
+ c2Z = 0 ; (3.10)

d2R

dr2
+
1

r

dR

dr
�
�
(�v)2 + c2

�
R = 0 : (3.11)

The solution of equation (3.11) has the form of the modi�ed Bessel function of the second

kind and zero order, where the value of c still must be determined. The value of c is found

through the solution of equation (3.10). The general solution of equation (3.10) has the

form

Z = A0 cos (cz) +B sin (cz) : (3.12)

Taking the derivative with respect to z yields

dZ

dz
= �A0c sin (cz) +Bc cos (cz) : (3.13)

Let us assume that the value of the heat convection coe�cient for the upper surface of the

plate is hU , and the value of the heat convection coe�cient for the lower surface of the plate

is hL. When the heat loss due to radiation is also considered, the heat loss coe�cients hU

and hL are the equivalent convective heat loss coe�cients. The boundary conditions at the
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surfaces of the plate with di�erent heat loss coe�cients are given below

k
dT

dz
= hU (T � T0) at z = 0 ; (3.14)

k
dT

dz
= �hL (T � T0) at z = g ; (3.15)

where k is the thermal conductivity, and g is the plate thickness. After substituting Equation

(3.7) into equation (3.5), and substituting equation (3.5) into equations (3.14) and (3.15),

we obtain

ke��v�R (r)
dZ

dz
= hUe

��v�Z (z)R (r) at z = 0 ; (3.16)

and

ke��v�R (r)
dZ

dz
= �hLe��v�Z (z)R (r) at z = g ; (3.17)

which simplify to

dZ (0)

dz
=

hU
k
Z (0) at z = 0 ; (3.18)

dZ(g)

dz
= �hL

k
Z (g) at z = g : (3.19)

Equation (3.12) and its derivative in Equation (3.13) are evaluated at points on the

upper and lower surfaces of the plate, and substituted into relations (3.18) and (3.19),

respectively. On the upper surface of the plate, z = 0, we have

Bc =
hU
k
A0 : (3.20)

On the lower surface of the plate, z = g, we have

�A0c sin (cg) +Bc cos (cg) = �hL
k

�
A0 cos (cg) +B sin (cg)

�
: (3.21)

When the result in relation (3.20) is substituted into (3.21) and simpli�ed, the result

is [23][22]

tan (cg) =
� (hU + hL) kc

hUhL � k2c2
: (3.22)

In the above equation, the tan(cg) is a periodic function, so multiple roots exist and

these roots can be determined numerically. Because of the rapid decay of the right hand

term in equation (3.22), the solution of the roots rapidly approaches the value of cn =
n�
g
,

which is the solution for the case when there is no surface heat loss, i.e., tan (cg) = 0. It

should be noted that, while c = 0 satis�es Equation (3.22), the root is a trivial solution

and the root corresponding to A0 term in the Fourier series representation of the heat ux

distribution is the �rst non-zero root of c.

With the values of cn solved for numerically, the solutions of equations (3.10) and (3.11)
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expressed in terms of A0

n become

Zn = A0

n

�
cos (cnz) +

hU
cnk

sin (cnz)

�
; (3.23)

Rn = K0

�q
(�v)2 + c2n r

�
; (3.24)

whereK0 is the modi�ed Bessel function of the second kind and zero order [23][22]. For con-

venience, a portion of the argument of the Bessel function in equation (3.24) is represented

by �n so that

�n =
q
(�v)2 + c2n : (3.25)

When the expression for �n in equation (3.25) and the solution of Rn in equation (3.24)

are substituted into equation (3.7), the result is

'n = A0

n

�
cos (cnz) +

hU
cnk

sin (cnz)

�
K0 [�nr] : (3.26)

The substitution of the result for ' into the assumed form of the temperature at a point

given by Equation (3.5) yields

T � T0 = e��v�
NX
n=0

A0

n

�
cos (cnz) +

hU
cnk

sin (cnz)

�
K0 [�nr] : (3.27)

Now we are left with the determination of A0

n from the following boundary condition:

�@T
@r

2�rk �! q0 (z) as r �! 0 ; (3.28)

where q0(z) is the heat ux per unit thickness at z (W
m

in the SI units). We assume the heat

ux distribution across thickness follows a triangular distribution which decreases linearly

from a maximum magnitude q0(0) at the top surface to q0(�) = 0 at a depth of �, where � is

a fraction of the thickness [23][22]. The area of the heat distribution

q =
1

2
q0(0)� ; (3.29)

is the total heat input per unit time (W in the SI units), which is kept as a constant.

Therefore, q0(0) increases when � decreases. For very small � compared with thickness

g, the heat ux becomes close to the case of surface ux [3]. This triangular heat ux

distribution can be represented by a Fourier series of the assumed form

q0 (z) = q0 (0)
NX
n=0

An

�
cos (cnz) +

hU
cnk

sin (cnz)

�
; (3.30)

where a trigonometric series involving cn is used for expedience of the analytical solution.
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After substituting equation (3.27) and equation (3.30) into the boundary condition

(3.28), We obtain the relation between the values of the A0

n and An:

A0

n =
q0 (0)

2�k
An : (3.31)

The relation between the coe�cients is substituted into equation (3.27) to get an expression

for the temperature increase at a point in terms of the An coe�cients of the heat ux

distribution. The solution for the temperature change at a point in a plate heated with a

variable strength source with di�erent values of convective surface heat transfer coe�cients

for each surface is therefore [23][22]

T � T0 =
q0 (0)

2�k
e��v�

NX
n=0

An

�
cos (cnz) +

hU
cnk

sin (cnz)

�
K0 [�nr] : (3.32)

Determination of An coe�cients

When heat losses are accounted for, the solution for cn results in a non-orthogonal behavior

of the cosine and sine terms in the summations. The integration method used for solving

the values of the coe�cients can therefore not be applied and the coe�cients must be

determined with direct use of the heat ux distribution.

The values of the An coe�cients in the summations in the expressions for the heat ux

distribution and the temperature change are found by solving a linear system of equations

created by substitution of values of z into the Fourier series representation of the heat ux

distribution given by [23][22]

q0 (z) = q0 (0)
NX
n=0

An

�
cos (cnz) +

hU
cnk

sin (cnz)

�
: (3.33)

When the total heat ux to the plate is kept constant, and triangular heat ux distri-

bution is used for the method of direct substitution to solve for coe�cients, the value of

� determines not only the value of q0 (0), but also the minimum number of terms required

to accurately represent the heat ux distribution, and therefore the minimum number of

equations required in the linear system [3]. At least two points of the heat ux distribution

between z = 0 and z = � must be represented. When � is chosen so that (g=�) is an integer

N0, this requirement is satis�ed when N+1 points are used to de�ne the distribution, where

N is a multiple of N0. Since N + 1 points are used to represent the heat ux distribution

accurately, N + 1 unknown An coe�cients are in each equation in the linear system and,

therefore, N + 1 equations are required for a determinate system. In our application, we

chose � = 0:09, and N = 200.

Each of the N + 1 equations of the system is evaluated at a discrete value of z, which
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when evenly distributed across the thickness is given by

zn =

�
g

N

�
n for n = 0; 1; :::N ; (3.34)

and each equation will therefore have the form

A0m;0 +A1m;1 + � � �+Aim;i + � � �+ANm;N = q0(zm) m = 0; :::; N ; (3.35)

where the value of i;m is given by

m;i = cos(cizm) +
hU
cik

sin(cizm) : (3.36)

With the values of An in the linear system (3.35) solved, they can be applied with their

corresponding values of cn to the summations required to evaluate the heat ux distribution

and the temperature distribution within the plate [23][22].

3.2.3 Continuous heat source

In the previous sections, a point source is used in deriving the temperature �eld. The use

of point source has the following disadvantages: (1) it does not reect the actual practice

of line heating when the heat source is di�used; (2) the temperature �eld has a singular

point under the point source where temperature goes to in�nity. A continuous heat source

representation eliminates these disadvantages.

The continuous heat source is de�ned by the assumed truncated Gaussian distribution

of the total heat ux [24], which is given by

q000(r) = q0000 e
�cr2 ; (3.37)

where q000 (W=m3 in SI units) is the value of the heat ux per unit thickness and unit area

on top surface at a radial distance r in the �-y plane from the maximum value of the heat

ux q0000 (W=m3 in SI units). The value of the constant c is determined by the radius r0 of

the heat ux region, where the value of the heat ux is assumed to be �ve percent of the

maximum value. The value of c is given as

c = � ln (0:05)

r20
; (3.38)

and the maximum heat ux is therefore given as

q0000 =
q0(0)c

0:95�
; (3.39)

where q0(0) is the total heat ux per unit thickness at top surface. Equation (3.39) is

obtained by equalizing the total ux per unit thickness inside the circle of radius r0 to be
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q0(0) [23][22].

A di�erential element on the plate within the heat ux region at a distance r from the

maximum value of the heat ux has an area dA = rdrd�. The integral of the products of

the di�erential areas and the corresponding value of the heat ux at the radial distance r

over the heat ux region is the total value of the heat ux per unit thickness. On the heated

surface of the plate, a di�erential amount of heat ux is given as

dq0 = q000(r)rdrd� (3.40)

With reference to equation (3.32), the expression of the temperature change at a point,

with the application of equation (3.40), yields [23][22]

T � T0 =

Z r0

0

Z 2�

0

q000(r)

2�k
e��v(��r cos �)

NX
n=0

An

�
cos (cnz) +

hU
cnk

sin (cnz)

�

K0

�
�n

q
(� � r cos �)2 + (y � r sin �)2

�
rdrd� ; (3.41)

which can be computed numerically using Gaussian quadrature [7].

Elimination of singularities

When we evaluate equation (3.41) numerically using Gaussian quadrature, for all points

outside the heat ux region, the modi�ed Bessel function has no singularity. However, for

points inside the heat ux region and are close to the Gaussian integration points, singularity

in modi�ed Bessel function results in very high temperature there.

The singularities in temperature computation can be removed by using a coordinate

transformation [23][22]. We perform numerical integration using the polar coordinate sys-

tem (R; ) centering at the point of interest instead of the polar coordinate system (r; �)

whose origin is at the center of the heat ux region, see Figure 3-2.

Let O be the center of the heat ux region, and B be the point whose temperature is to

be computed. Then we have

jODj = j�j; jBDj = jyj ; (3.42)

jOBj =
q
jODj2 + jBDj2 =

q
�2 + y2 ; (3.43)

and

�0 =

8>>>>><
>>>>>:

tan�1 y
�

if � > 0

� + tan�1 y
�

if � < 0
�
2 if � = 0 and y > 0

��
2 if � = 0 and y < 0

(3.44)

We assume the radius of the heat ux region is r0, and consider the intersection of a ray of
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Figure 3-2: Coordinate transformation

an angle  2 (0; �2 ) with the boundary of the heat ux region. We have

jABj = jOBjj cos j =
q
�2 + y2j cos j ; (3.45)

jOAj = jOBjj sinj =
q
�2 + y2j sinj ; (3.46)

jACj =
q
r20 � jOAj2 =

q
r20 � (�2 + y2) sin2  (3.47)

Therefore,

R0() = jBCj = jACj � jABj =
q
r20 � (�2 + y2) sin2  �

q
�2 + y2 cos  (3.48)

It can be veri�ed that equation (3.48) also apply when  62 (0; �2 ).

The temperature change at point B due to the di�erential heat input at the di�erential

area dA = RdRd located at point F is

dT =
q000(r)

2�k
e��vR cos(+�0)

NX
n=0

An

�
cos(cnz) +

hU
cnk

sin(cnz)

�

K0 [�nR]RdRd ; (3.49)

where R is the distance between points F and B, and

r = jOF j =
q
jOBj2 + jBF j2 + 2jOBjjBF j cos  ;

=

r
�2 + y2 +R2 + 2R

q
�2 + y2 cos  (3.50)

q000(r) = q0e
�cr2 = q0e

�c(�2+y2+R2+2R
p
�2+y2 cos ) : (3.51)
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Therefore, after integrating the temperature change due to all the di�erential heat ux

within the circle in Figure 3-2, we obtain the temperature increase at point B located inside

the heat ux region as [23][22]

T � T0 =

Z 2�

0

Z pr2
0
�(�2+y2) sin2 �

p
�2+y2 cos 

0

q0e
�c(�2+y2+R2+2R

p
�2+y2 cos )

2�k

e��vR cos(+�0)
NX
n=0

An

�
cos(cnz) +

hU
cnk

sin(cnz)

�
K0[�nR]RdRd (3.52)

Since K0 [�nR]R is �nite when R ! 0, equation (3.52) can be evaluated numerically by

using Gaussian quadrature with no singularity.

Therefore, when equation (3.41) is used for computation of the temperature at points

located outside the heat ux region, and equation (3.52) is used for computation of the

temperature at points located inside the heat ux region, the temperature �eld can be

evaluated without any singularity [23][22].

3.2.4 Discussion of the thermal model

From the derivation of the thermal model, we can see that the e�ects of heat loss on

temperature �eld expressed in equation (3.27) lie in (1) di�erence between the solution c of

equation (3.22) and n�
g
, which is the solution for the case of no surface heat loss, and (2)

the term with hU in equation (3.27). Equation (3.22) can be rewritten as [23][22]

tan(cg) =
hU+hL

kc

1� hUhL
k2c2

: (3.53)

Therefore, as a �rst approximation, the di�erence between cn and n�
g
depends on

hU + hL
kc

� (hU + hL)g

n�k
; (3.54)

hUhL
k2c2

� hUhLg
2

n2�2k2
: (3.55)

The term with hU in equation (3.27) has the same order of magnitude as the right hand

side of equation (3.54).

It should be noted that when heat loss due to radiation is taken into account, hU ,

hL become the equivalent heat loss coe�cients. For the forming process of a mild steel

plate of the size 2.35 m � 1.4 m � 0.009 m equivalent to the pipe developed surface,

under an average temperature of 500oC, the equivalent heat loss coe�cient due to radiation

h = 5:67 � 10�8"(T 3
s � T 3

a ) = 5:74044Wm�2K�1 is of the same order of magnitude as the

convective heat loss coe�cients. Since

(hU + hL)g

�k
= 7:41645 � 10�4 ; (3.56)
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hUhLg
2

�2k2
= 1:239 � 10�7; (3.57)

these terms are negligible, and the temperature �eld with heat loss does not di�er much

from that without heat loss.

At high temperature, the equivalent heat loss coe�cient due to radiation increases

rapidly. For example, h = 45:9Wm�2K�1 at Ts = 1000oC. Therefore, the e�ects of

heat loss on temperature �eld become more important at high temperatures. Tungsten

typically has a service temperature around 2000oC. If a tungsten plate is bent at high

temperature, then heat loss will be signi�cant.

3.3 Simpli�ed mechanical model

3.3.1 Assumptions

A simpli�ed mechanical model was �rst proposed by Jang et al. [13] with the following

assumptions:

(1) The elasto-plastic process is concentrated on a circular disk under the heat source and

that the plate is in�nite in two dimensions. Also, the diameter of the disk changes through

the thickness of the plate, resulting in elliptical isothermal boundaries in the cross-section

of the plate perpendicular to the direction of the heating line.

(2) The thermal elasto-plastic process occurs within the small, circular region axisym-

metrically and the remaining elastic region resists the expansion and contraction of the

circular plastic region. The resistance of the elastic region on the plastic zone is modeled

as a set of surrounding springs which is illustrated in Figure 3-3(a). The spring constant

K is evaluated by deriving the radial displacement of a circular hole of an in�nite plate

subjected to an inner uniform pressure p, as shown in Figure 3-3(b).

(a) (b)

Figure 3-3: (a) Model of plastic region (b) Model of elastic region.

(3) The temperature increasing process, which results in thermal expansion, can be
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thought of as a mechanical plastic loading in the plastic region and the temperature de-

creasing process is a mechanical plastic unloading. This plastic unloading process is the

cause of the residual strains which ultimately result in the plate angular deformation.

(4) The �nal angular deformation results from the integration of deformation due to the

residual strain in each disk. The bounds of integration are de�ned by the region of inherent

strain produced during heating, which is assumed to have an elliptical distribution in the

plane of the plate perpendicular to the heating path. The assumed elliptical distribution is

based on experimental results and Rosenthal's solution [16][15].

3.3.2 Plastic strain

Under the previous assumptions, during the temperature increasing process, the central

circular area goes to plastic. After the plate cools down, the residual plastic strain in the

radial direction of the circular plastic region is [13]

��rr = ��Tc + �yD

�
1

aK
+
1� �D
ED

�
; (3.58)

where � is the thermal coe�cient of the disk; Tc is the critical temperature of the plate

material; �yD is the yield stress of the disk; a is the radius of the disk; �D is the Poisson's

ratio of the disk; ED is the Young's modulus of the disk, and

K =
p

up
=

E

a (1 + �)
; (3.59)

is the spring constant of the surrounding area. In equation (3.59), up is the increment of

the radius of the circle in Figure 3-3(b) due to pressure p; E and � are the Young's modulus

and Poisson's ratio of the elastic region respectively. It can be seen from equation (3.58)

that Jang et al. [13] treats the temperatures inside the plastic region to be all Tc, which

tends to underpredict the plastic strain. We make a reasonable modi�cation. We use the

average of the critical temperature and the maximum temperature inside the plastic region

to compute the residual strain, i.e.,

��rr = ��Ta + �yD

�
1

aK
+
1� �D
ED

�
; (3.60)

where Ta = (Tc+Tmax)=2, and Tmax is the maximum temperature inside the plastic region.

Ta is an approximation of the average temperature inside the plastic region.

3.3.3 Inherent strain zone dimensions

The inherent strain zone is de�ned as the maximum region where peak temperature is equal

to or greater than the critical temperature where material strength becomes minimal and

is dependent on the heating conditions.
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On the plane perpendicular to the direction of the heat source, Jang's model assumes

a half-elliptical isothermal, and therefore, a plastic region, as illustrated in Figure 3-4 [13].

This idealization is based on temperature distributions determined analytically by Rosen-

thal's solution for an in�nite plate with �nite thickness and a point heat source moving

with constant speed without any heat loss [15].

Figure 3-4: Assumed elliptical distribution of critical isothermal region and corresponding
dimensions. Adapted from [13]

The isothermal region relevant to the calculation of the deformation due to heating is

the region which is bounded by the critical temperature and therefore bounds the plastic

region. The dimensions of the inherent strain zone are set by the maximum breadth b, and

depth d, of the region as illustrated in Figure 3-4. The assumed elliptical distribution is

given by

Y 2�
b
2

�2 +
�
Z + g

2

�2
d2

= 1 ; (3.61)

where the X-Y plane is de�ned as the mid-plane of the plate with the Z-axis directed

downward at the middle of the breadth of the inherent strain zone. The thickness of the

plate is denoted by the variable g.

The width of the inherent strain zone at any depth is required in the solution of the

angular deformation due to heating and is found by rearranging equation (3.61) to yield

bZ = b

s
1� 1

d2

�
Z +

g

2

�2

; (3.62)

where bZ is the width of inherent strain zone at any location through the thickness.

As mentioned previously, the dimensions and shape of the inherent strain zone are

functions of the heating conditions, such as heat ux and heating source speed. The relations

between inherent strain zone size and heating parameters used by Jang et al. is through an

assumed linear relationship by constants determined in welding experiments [13] which is

hard to verify. A more reasonable method for determining the size of the inherent strain is
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to use the information of isothermal lines computed from the thermal model presented in

Section 3.2.

The maximum breadth and depth of the inherent strain zone are determined numerically

by successively integrating the initial value problem for a system of coupled non-linear

di�erential equations using a fourth-order Runge-Kutta method. Since the inherent strain

zone is de�ned as the region which had reached a critical temperature, solving for the

maximum dimensions of an isothermal region of the critical temperature is equivalent to

solving for the maximum dimensions of the inherent strain zone [23][22].

3.3.4 Maximum breadth

Isothermal contour lines on the �-y plane satisfy the relation

T (�; y) = constant ; (3.63)

where T (�; y) is the temperature given by equation (3.41) or equation (3.52) at a �xed

value of z. The maximum breadth of the inherent strain zone occurs on the upper surface

of the plate, where z = 0. The isotherm in the �-y plane on the plate can be expressed as

a parametric curve de�ned by

r(s) = r (�(s); y(s)) : (3.64)

Di�erentiating the expression for temperature along an isotherm given by expression (3.63)

with respect to arc length s along the contour line yields [23][22]

@T

@�

d�

ds
+
@T

@y

dy

ds
= 0 ; (3.65)

where the derivatives of the positions with respect to the arc length of the isotherm together

give the direction of the contour line. The solutions of equation (3.65) are

d�

ds
= �

@T

@y
; (3.66)

dy

ds
= ��@T

@�
; (3.67)

� is an arbitrary, non-zero constant which is selected to satisfy the arc length parameteri-

zation given by

ds2 = d�2 + dy2 = �2

"�
@T

@�

�2

+

�
@T

@y

�2
#
ds2 ; (3.68)

which results in

� = � 1r�
@T
@�

�2
+
�
@T
@y

�2 : (3.69)
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The substitution of the solution for the value of �, using the positive solution, into equations

(3.66) and (3.67) yields
d�

ds
=

1r�
@T
@�

�2
+
�
@T
@y

�2 @T@y ; (3.70)

dy

ds
=

�1r�
@T
@�

�2
+
�
@T
@y

�2 @T@� ; (3.71)

where @T
@�

and @T
@y

on the upper surface of the plate where z = 0 can be obtained by taking

derivatives of equation (3.41) or equation (3.52).

Points on an isothermal contour line are computed successively by integrating equations

(3.70) and (3.71) using the Runge-Kutta method [7]. The initial value required for the

integration process is taken to be the point on the isotherm of the critical temperature

which lies along the �-axis, or y = 0. This point is found by the method of bisection. Using

the initial point on the isotherm, the Runge-Kutta method computes the position of another

point along the isotherm, where the distance of the iterated point from the initial point is

controlled by the value of an incremental step size, h [23][22].

3.3.5 Maximum depth

The maximum depth of the inherent strain zone is found using the same method as that

used to �nd the maximum breadth, except the isothermal contour line lies in the �-z plane

and all expressions are in terms of � and z [23][22], i.e. we solve the equation

T (�; z) = constant ; (3.72)

by using the fourth order Runge-Kutta method [7].

3.3.6 Maximum depth in an overheated condition

The depth of the critical isotherm will be the thickness of the plate if the heat input is

high enough. For this case, in order to characterize the elliptical isotherm of the critical

temperature in Figure 3-4 and given by equation (3.62) for the estimation of plate deection,

the breadth of the critical isotherm on the bottom surface needs to be evaluated. The

breadth at z = g can be solved using the same expressions for the Runge-Kutta method

used to determine the breadth on the upper surface of the plate, except with z = g instead

of z = 0 in the equation of temperature �eld.

3.3.7 Angular deformation

The assumption made in the simpli�ed mechanical model presented by Jang et al. [13] that

a unit strip of plate behaves like a beam is still applicable when values of the maximum
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Figure 3-5: Angular deformation � in the y-z plane. Adapted from [13]

breadth and depth of the inherent strain zone are used directly in the estimation of plate

deformation.

It can be shown that the angular deformation in Figure (3-5) can be expressed as [13]

� =
�12 �1� �2

�
��rr

g3

Z �

�
bZZdZ : (3.73)

After substituting Equation (3.62) into Equation (3.73), the actual value of the angular

deformation is obtained by simply evaluating the integral in equation (3.73). Depending on

the heating conditions however, the solution of the integral can be one of two forms.

With a low heat input, the depth of the inherent strain zone is less than the thickness

of the plate and the bounds of integration are set by the maximum depth of the inherent

strain zone. The limits of integration are from � = �g
2 to � = d � g

2 , using a coordinate

system shown in Figure 3-4. With these bounds on the integral, the solution becomes

� =
�2 �1� �2

�
g3

��rrbd

�
2d� 3�

4
g

�
: (3.74)

At a certain value of heat input, the depth of the inherent strain zone equals the thickness

of the plate. For this condition, and all conditions with higher values of heat input where

the depth of the assumed elliptical inherent strain zone projects beyond the plate thickness,

the limits of integration for Equation (3.74) become � = �g
2 to � = g

2 , or across the entire

thickness of the plate and the solution becomes [23][22]

� =
�2 �1� �2

�
g3

��rrbd

2
4�2d

0
@ 1� �g

d

�2
! 3

2

� 1

1
A� 3g

2

0
@g
d

s
1�

�
g

d

�2

+ sin�1 g

d

1
A
3
5 :

(3.75)
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Figure 3-6: Shrinkage forces and moments due to line heating. Adapted from [13].

3.3.8 Shrinkage forces

The strains which result in the angular deformation of a plate from line heating can also

be expressed by shrinkage forces and bending moments shown in Figure 3-6 [13]. These

forces and moments are due to shrinkage of the inherent strain zone upon cooling and

can be determined from integration of inherent strains. Since the inherent strain zone

is assumed to have an elliptical distribution, the e�ects of the strains are represented by

both a transverse moment and shrinkage force, which act perpendicular to the heating

line. Similarly, the strains also create an longitudinal bending moment and shrinkage force

which act parallel to the direction of the heating line, with much smaller magnitude that

the transverse moment and shrinkage force.

Transverse shrinkage forces

Transverse bending moments and shrinkage forces along the heating line result from inte-

gration of inherent strains with respect to a unit longitudinal section [13]. According to the

reference system de�ned in Figure 2-3, the transverse bending moment per unit length my

(Nm
m

in SI units) is given by [23][22]

my =

Z d�
g

2

�
g

2

E��rr
bz

bjz=0
zdz = E��rrd

�
d

3
� g�

8

�
; (3.76)
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where the expression for bz from equation 3.62 is used. The transverse shrinkage force per

unit length fx (
N
m

in SI units) is given by

fx =

Z d�
g

2

�
g

2

E��rr
bz

bjz=0
dz = E��rr

�

4
d ; (3.77)

when the depth of the inherent strain zone is less than the thickness of the plate. Like the

solution for the angular deformation however, two solutions of both the transverse bending

moment and shrinkage force exist. Therefore, when the depth of the inherent strain zone

exceeds the thickness, the bounds of integration change to include the entire plate thickness

and the solution of the transverse bending moment per unit length becomes

my = E��rrd

2
4�d

3

0
@ 1� �g

d

�2
! 3

2

� 1

1
A� g

4

0
@g
d

s
1�

�
g

d

�2

+ sin�1 g

d

1
A
3
5 ; (3.78)

and the transverse shrinkage force becomes

fx =

Z g

2

�
g

2

E��rr
bz

bjz=0
dz = E��rrd

2
4 g

2d

s
1�

�
g

d

�2

+
1

2
sin�1 g

d

3
5 : (3.79)

Because the transverse bending moment and shrinkage forces are a result of the inherent

strains, they are assumed to act along the edge of the inherent strain zone.

Longitudinal shrinkage forces

The longitudinal bending moments and shrinkage forces which act along the heating line

result from the integration of inherent strains with respect to a unit transverse section

perpendicular to the heating line [13].

When the depth of the inherent strain zone is less than the plate thickness, the longitu-

dinal bending moment (Nm in SI units) is expressed as [23][22]

mx =

Z d�
g

2

�
g

2

E (1� �) ��rrbzzdz = E (1� �) ��rrbd

�
d

3
� g�

8

�
; (3.80)

and the longitudinal shrinkage force (N in SI units) is given by

fy =

Z d�
g

2

�
g

2

E (1� �) ��rrbzdz = E (1� �) ��rr
�

4
bd : (3.81)

When the depth of the inherent strain zone is greater than the plate thickness, the

longitudinal bending moment becomes

mx =

Z d�
g

2

�
g

2

E (1� �) ��rrbzzdz = E (1� �) ��rrbd

2
4�d

3

0
@ 1� �g

d

�2
!3

2

� 1

1
A ;
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and the longitudinal shrinkage force becomes

fy =

Z g

2

�
g

2

E (1� �) ��rrbzdz = E (1� �) ��rr
bd

2

2
4g
d

s
1�

�
g

d

�2

+ sin�1 g

d

3
5 : (3.83)

Within the inherent strain zone, the longitudinal bending moments and shrinkage forces

cancel. Therefore, the moments and forces only act at the ends of it and are the total

reaction. Because the longitudinal shrinkage forces cancel within the inherent strain zone

and because they act perpendicularly to the heating path and are therefore a�ected by

Poisson's ratio, the total relative longitudinal forces are much lower than the transverse

forces. Therefore, while angular deformation occurs in both the transverse and longitudinal

directions, the transverse deformation is dominant. If line heating is applied only to a

fraction of the plate's total length, the inherent strain zone will have dimensions de�ned

by the heating distance length and the thermal model calculated breadth. This is the case

when the simpli�ed model is applied to the pipe model; the heating is applied at the free

end and the resultant bending moments and forces will act over the described area inducing

deformation on the pipe.

3.4 Shell elements FEM analysis of a pipe

The equivalent shrinkage forces and bending moments estimated from the inherent strain

zone are applied to the shell elements stress-displacement FEM model. The topology and

the dimensions of the mesh were kept the same as those of the 3-D model. However instead of

using 20-node parallelepiped elements and 15-node triangular prism elements, we employed

8-node rectangular shell elements and 6-node triangular elements. Shell elements allow the

application of bending moments and the de�nition of thickness at the nodes emulating the

mechanical properties of a 3-D element. The loads obtained from the simpli�ed mechanical

model were applied in one single step at the nodes corresponding to the inherent strain

zone.

3.4.1 Results of the simpli�ed thermal model

The results obtained by using the simpli�ed thermal model for a at plate can be used for

the pipe since the radius of curvature of the heated area is large compared to the spot size,

making the a�ected area almost at. The simpli�ed thermal model was used to obtain the

temperature distribution and the inherent strain zone dimensions for the de�ned heating

cases. As explained in Section 2.2.3, the heat input of the laser beam can be modeled as a

truncated Gaussian distribution. The temperature distribution and the breadth and depth
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of the plastic region are computed by the thermal model presented in Section 3.3. For

mild steel, Young's modulus and yield stress become very small at a temperature above

725oC [12] [5]. Due to the restraint of the surrounding material during line heating process,

not only the area with temperature above 725oC will become plastic, but also the region

with lower temperature is expected to become plastic. Thus we choose a critical temperature

of 500oC. The material properties of mild steel are also chosen to be those at 500oC and

the heat absorption rate is chosen to be 0.81, the same value used in Chapter 2. The results

shown in this section correspond to a simulation with the same heating parameters used

in the non-linear example indicated in Section 2.3. The simpli�ed thermal model output

values obtained after the calculations were:

1. Maximum temperature: 724.9 oC

2. Inherent strain zone breadth: 1.496 cm

3. Inherent strain zone depth: 3.97 mm

3.4.2 Results of the simpli�ed mechanical model

The values obtained in the simpli�ed thermal model are used as inputs of the simpli�ed

mechanical model to obtain the equivalent forces and bending moments to be applied to

the shell stress-displacement analysis. Following the formulas de�ned in Section 3.3.8, the

absolute magnitudes of the resultant forces and bending moments applied to the inherent

strain zone (see Figure 3-6) were:

� fx : 2 :130 � 10 6N=m

� fy : 2 :230 � 10 4N

� mx : 6 :272 � 10 1Nm

� my : 5 :997 � 10 3Nm=m

where the units of fx and my are force and moment per unit length distributed along the

heating length. The deformation magnitude computed using the simpli�ed method is shown

in Figure 3-7 which can also be decomposed into the x; y; z components (see Figures 3-8

to 3-10).

3.5 Comparison between the two models

3.5.1 Computational time

One of the advantages of the simpli�ed model over the non-linear FEM analysis is the

shorter computational time. The total time of the coupled non-linear FEM thermal and

mechanical analysis using an SGI Irix machine running at 200 MHz was 42,179 sec in CPU
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Figure 3-7: Predicted magnitude of total deformation using the simpli�ed thermo-
mechanical model (See Figure 2-12 for the corresponding 3-D FEM analysis)

time (50,209 sec in wall clock time). On the other hand the total average CPU time to

perform both the simpli�ed thermal model and the simpli�ed mechanical model analysis is

1,601 sec (2,320 sec in wall clock time) which represents 3.79% of the computational time

of the non-linear FEM analysis.

3.5.2 Temperature �eld prediction of both models

The predicted surface temperature for both models can be compared using the top view

of the isothermal temperature �eld over the pipe's surface. The non-linear FEM analysis

prediction is shown in Figure 3-11 while the temperature �eld using the simpli�ed thermal

model is shown in Figure 3-12. The maximum temperature and the temperature contour

lines distribution in both cases have similar values and shapes. If we compare the tem-

perature variation in time predicted by both models for a single node in the heating path

we obtain Figure 3-13. The solid line plots the non-linear model prediction temperature

and the dashed line plots the simpli�ed model result. The di�erence in peak temperature

is about 7% and the distribution in time is similar in both cases. Simulations using the

di�erent heating conditions indicated in Table 2.4 were performed in order to compare and

validate the simpli�ed thermal model.

The results obtained using both models are shown in Table 3.1. The di�erence in per-
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Figure 3-8: Predicted x component deformation using the simpli�ed thermo-mechanical
model (See Figure 2-13 for the corresponding 3-D FEM analysis)

centage between the non-linear and the simpli�ed models lies around 10% of the maximum

temperature. For all cases the simpli�ed thermal model tends to overpredict the temper-

ature value. The analysis shows a good match in the results and validates the simpli�ed

thermal model as a tool to perform multiple calculations and obtain an appropriate tem-

perature �eld to be used in the simpli�ed mechanical model. The largest error is obtained

in the cases where a combination of low power and low speed is used (cases 6 and 8). This

is probably because in those cases the heated area is small compared with the distance be-

tween nodes and the time it takes for the heating source to move from one node to the next

is also larger. These two factors contribute to a less accurate temperature �eld prediction.

For these cases a �ner mesh in the heated area is recommended.

3.5.3 Predicted deformation comparison between the two models

The results obtained from the simpli�ed thermal model were used to calculate the equivalent

forces and bending moments de�ned in section 3.3.8 and then apply them to the simpli�ed

mechanical model described in section 3.4. The comparison between the predicted defor-

mations using the heating parameters indicated in Section 2.3 for the x� z and the y � z

planes at the pipe's free end using both procedures are shown in Figures 3-14 and 3-15.

The non-linear FEM deformation prediction at the free end has a 15.5% of di�erence in
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Figure 3-9: Predicted y component deformation using the simpli�ed thermo-mechanical
model (See Figure 2-14 for the corresponding 3-D FEM analysis)

Case Power Source Spot size T non T simp. Di�erence
input speed radius linear model model
W mm=s mm oC oC %

1 1300 1.6 12.7 672.3 724.8 7.2

2 1000 1.6 11.8 552.8 605.9 8.7

3 700 1.0 8.9 611.3 663.3 7.8

4 1100 1.3 10.8 732.3 785.1 6.7

5 800 0.7 10.8 646.7 716.1 9.6

6 600 0.3 12.7 528.1 629.6 16.0

7 900 1.0 11.8 566.9 655.3 13.4

8 600 0.7 8.9 527.9 636.5 17.0

Table 3.1: Predicted temperature comparison between both models
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Figure 3-10: Predicted z component deformation using the simpli�ed thermo-mechanical
model (See Figure 2-15 for the corresponding 3-D FEM analysis)
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Figure 3-11: Coupled thermo-mechanical model surface temperature distribution
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Figure 3-12: Simpli�ed thermal model surface temperature distribution
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Figure 3-13: Temperature variations at a single node located at the center of the heating
path
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magnitude with the one obtained using the simpli�ed mechanical model. The shape is sim-

ilar in both cases. In the x� z plane the �gures are also similar and both models predicts

similar deformations starting form the centerline (x = 0). A comparison of the predicted
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Figure 3-14: Deformation prediction in the y-z plane using the non-linear FEM model and
simpli�ed mechanical model

deformation at (0,0,ro) in the z direction using both models under the heating conditions

speci�ed in Table 2.4 is shown in Table 3.2.

Here we see that the di�erence in percentage for the predicted deformation between

models was increased with respect to the di�erence obtained in the thermal model. The

percentage error lies around 20%, and for all cases the simpli�ed model predicts a higher

absolute deformation when compared with the non-linear mechanical model. The highest

values are again in the cases where a slower speed and smaller spot size were used. This is

probably because the di�erence obtained in the thermal models is carried to the mechanical

analysis, resulting in an increase of the error.

In order to make a sensitivity analysis and determine the e�ect of the temperature

di�erence in the deformation prediction, we performed a simpli�ed mechanical analysis

using as inputs the temperatures obtained from the non-linear thermal model for the same

cases indicated. The results are shown and compared between the non-linear results versus

the corrected simpli�ed model results in Table 3.3. The di�erence of the �nal predicted

deformation between the non-linear and simpli�ed mechanical models was reduced in all

cases to around 10%.
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Figure 3-15: Deformation prediction in the x-z plane using the non-linear FEM model and
simpli�ed mechanical model

Case Power Source Spot size Deform. non Deformation Di�erence
input speed radius linear model simpli�ed model
W mm=s mm mm� 10�4 mm� 10�4 %

1 1300 1.6 12.7 -5.160 -5.94 15.5

2 1000 1.6 11.8 -2.203 -2.51 13.9

3 700 1.0 8.9 -2.833 -3.22 18.1

4 1100 1.3 10.8 -3.593 -4.83 25.6

5 800 0.7 10.8 -3.662 -4.44 17.5

6 600 0.3 12.7 -2.856 -3.96 27.8

7 900 1.0 11.8 -3.258 -3.59 14.3

8 600 0.7 8.9 -2.219 -3.04 27.2

Table 3.2: Predicted deformation comparison between both models
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Case Power Source Spot size Deform. non Corrected def. Di�. after
input speed radius linear model simp. model correction
W mm=s mm mm� 10�4 mm� 10�4 %

1 1300 1.6 12.7 -5.160 -5.676 10.0

2 1000 1.6 11.8 -2.203 -2.33 5.4

3 700 1.0 8.9 -2.833 -3.01 5.8

4 1100 1.3 10.8 -3.593 -4.17 16.2

5 800 0.7 10.8 -3.662 -4.09 10.4

6 600 0.3 12.7 -2.856 -3.45 17.2

7 900 1.0 11.8 -3.258 -3.20 1.7

8 600 0.7 8.9 -2.219 -2.62 15.3

Table 3.3: Predicted deformation comparison between both models

3.6 Discussion

From the comparisons of the results obtained in the non-linear and simpli�ed thermo-

mechanical methods, we observe

1. There is a good correlation between the results of the two thermal models. However,

some of the heating combinations used in the simulations increased the di�erence of

the predicted temperature magnitude between the two models. This e�ect can be

corrected by modifying the pipe's mesh making it �ner near the heated area. This

will reduce the nodal distance, providing a more accurate temperature �eld prediction

in the model when a small spot size and speed are used.

2. The results of the simpli�ed thermo-mechanical model predict a higher temperature

and a higher deformation than the 3-D non-linear model. The temperature result can

be a�ected by the element size and that error is carried to the mechanical analysis

which can also has an additional error due to the same reason.

3. The deformation prediction di�erence was reduced by correcting the temperature

input of the simpli�ed mechanical model by an additive factor equal to the error

di�erence between thermal models. This procedure made the �nal deformation result

closer for both models.

4. There is a good agreement between the results obtained from both methods, but

a more extensive research including real-scale experiments has to be considered to

completely validate the results obtained in this chapter

5. The simulations performed in chapters 2 and 3 validate the simpli�ed thermo-mechanical

model as a way to obtain fast and accurate results to create the database to be used

in the neural network application in the Chapter 4.
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Chapter 4

Neural network application

4.1 Introduction

Line heating conditions to be applied to a pipe have to be determined in a short time in order

to make an automatic process e�cient. A neural network [10] is an e�cient tool to perform

this type of analysis since it allows the user to obtain an output almost instantaneously.

The model written in MATLAB [8] uses the data obtained by both the non-linear �nite

element analysis and the simpli�ed thermo-mechanical model in a manner conforming to

the neural network. Using the deformation measured at the pipe's free end perimeter as

input, we develop a neural network capable of predicting the necessary heating power and

heating source speed to reform the pipe circularity.

4.2 Neural network principles

The neural network method is based on the concept that the human brain computes in a

di�erent way than a conventional digital computer. In fact, the brain is a highly complex,

non-linear and parallel information-processing system [10]. It has the capability to organize

its neurons to perform certain computations many times faster than the fastest computer.

The human brain adapts to its surrounding environment through a learning process. The

same principle is used by an arti�cial neural network: it models the way the brain performs

a particular task acquiring the knowledge from the environment through a similar learning

process, and uses interneuron connection strengths known as synaptic weights to store such

knowledge. This ability to learn, and therefore generalize, gives the neural network its

strength: the capacity of produce reasonable outputs for inputs not encountered during the

learning process [10].

67



4.2.1 General structure

Basic neuron model

The neuron shown in Figure 4-1 is the basic and fundamental information-processing unit

for the operation of a neural network. The basic elements of the neuron are [10]:

� Synapses or connecting links: Each characterized by a weight wjm of its own. The

signal xi at the input of synapse i connected to neuron j is multiplied by the synaptic

weight wji where j refers to the neuron in question and i refers to the input end of

the synapse to which the weight refers.

� Summing junction: All the input signals weighted by the respective synapses of the

neuron are added.

� Activation function: Used to limit the amplitude range of the output signal of a neuron

to a �nite value.

� Bias: Externally applied function that increases or reduces the net input of the acti-

vation function depending whether it is positive or negative, respectively.
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Figure 4-1: Esquematic diagram of a neuron (adapted from [10]).

The neuron j can be written by the following pair of equations [10]:

uj =
mX
i=1

wjixi ; (4.1)
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and

yj = '(uj + bj) ; (4.2)

where x1; x2; :::; xm are the input signals, wj1; wj2; :::; wjm are the synaptic weights of the

neuron j, uj is the linear combiner output of the input signals, bj is the bias, ' is the

activation function and yj is the output signal of the neuron. The bias bj applies to the

output uj of the linear combination according to the equation

vj = uj + bj ; (4.3)

so if the bias is considered as the 0th element, equations (4.1) and (4.2) can be rewritten

as [10]

vj =
mX
i=0

wjixi ; (4.4)

and

yj = '(vj) ; (4.5)

resulting in the neuron shown in Figure 4-2
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Figure 4-2: Esquematic diagram of a neuron including the bias as an input element (adapted
from [10])
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4.2.2 Feedforward networks

There are in general three di�erent types of architectures that can be identi�ed in this class.

Single-layer, Multilayer and Recurrent networks [10]. We describe the �rst two architectures

since they are the types that will be used in our analysis.

Single-layer feedforward networks

They have an input layer of source nodes that project onto an output layer of neurons, but

not vice-versa. Figure 4-3 shows a single layer network with four nodes in both the input

and output layers. The input layer is not considered as a layer, since no computation is

performed there.

Input layer
of source
 nodes

Output layer
of neurons

Figure 4-3: Single layer feedforward architecture (adapted from [10])

Multilayer feedforward networks

This type of network has one or more hidden layers whose computation nodes are called

hidden neurons. Their function is to connect the external input and the network input in a

useful manner. By adding one or more hidden layers, the network is enabled to extract high

order statistics, specially valuable when the size of the input layer is large. The elements

of the input vector are presented to the �rst layer of neurons. Their output acts as input

for the second hidden layer and so on for the rest of the network until the �nal output is

obtained. It corresponds to the overall response of the structure to the activation pattern

represented by the input vector. Figure 4-4 shows the layout of a multilayer feedforward

neural network for the case of a single hidden layer. To identify a particular structure, the

notation m � h1 � h2 � q is used, where m is the number of source nodes, h1 and h2 the

number of neurons in the �rst and second hidden layer respectively, and q the numbers of

neurons in the output layer. A neural network is said to be fully connected if every node in
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each layer is connected to every other node in the adjacent forward layer. If any connection

is missing, it is partially connected.

Input layer
of source
 nodes

Layer
of output 
neurons

Layer
of hidden
neurons

Figure 4-4: Multiple layer feedforward architecture (adapted from [10])

4.2.3 Learning process

Probably one of the most important characteristic of the neural networks is their ability

to learn and improve their performance through this process [10]. The neural network

learns about its environment through an interactive process of adjustment applied to its

synaptic weights and bias levels, becoming more knowledgeable after each iteration of the

learning process. For the learning process the neural network uses an already known set

of data called training set. It consists in inputs and their corresponding outputs which are

presented together to the neural network. There are many di�erent learning processes and

paradigms, but in this chapter we will focus only in describing the learning rule and the

learning paradigm we used in our research.

Error correction learning

The output signal of the neuron j, yj(n) shown in Figure 4-5, where n is number of iterations

performed by the net, is compared to the corresponding desired response included in the
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training set denoted by dj(n). Their di�erence is the error signal ej(n) de�ned by

ej(n) = dj(n)� yj(n) : (4.6)
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Figure 4-5: Error correction learning signal ow diagram(adapted from [10]).

The error function travels backwards acting as a control mechanism that applies correc-

tive adjustments to the synaptic weights of the neuron j to make the output yj(n) closer

to dj(n) in the next iteration. The goal is to minimize the cost function �(n) de�ned by

�(n) =
1

2
e2j(n) : (4.7)

The adjustment of the weights continues until the system reaches a steady state after n

iterations, a point at which the learning process is terminated. Then the minimization of

the cost function �(n) leads to a learning rule known as theWidrow-Ho� rule [10]. If wji(n)

denotes the value of synaptic weight wji of neuron j excited by element xi(n) of the signal

vector x(n) at time step n, the adjustment �wji(n) applied to the synaptic weight wji at

time step n is de�ned by

�wji(n) = �ejxi(n) ; (4.8)
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where � is a positive constant that determines the rate of learning as the learning process

proceeds from one step to another. Therefore, � is referred to as the learning rate pa-

rameter [10]. So the adjustment of the synaptic weight of a neuron is proportional to the

product of the error signal and the input signal of the synapse in question. The value of �

determines the stability and convergence of the iterative learning process playing a key role

in determining the performance of error-correction learning. The rate of learning is a scalar

that perhaps be decreased at each iteration as learning progresses, or it may perhaps be a

constant �xed value throughout the learning process. If � is selected to decrease, the rate

at which it decreases a�ects the speed of convergence to the optimum solution.

Supervised learning

Supervised learning, also known as learning with a teacher [10], can be seen as a process

where a teacher is available to check if a system is performing correctly and indicating a

desired response, or to validate the acceptability of the system's response, or to indicate the

amount of error in system performance [14]. The teacher has knowledge of the environment,

with that knowledge being represented by a set of input-output examples. However the

environment is unknown to the neural network. If both are exposed to a training vector,

the teacher is able to provide the neural network with the desired response for a training

vector. The desired response represents the optimum action to be performed by the neural

network. The network parameters are adjusted under the combined inuence of the training

vector and the error signal de�ned in the previous paragraph. The adjustment is carried

step by step trying to make the neural network to emulate the teacher in a statistical sense.

When the knowledge of the teacher is transferred by training of the network, the teacher

can let the net deal with the environment by itself.

The error correction learning is a closed loop feedback system, but the unknown envi-

ronment of the supervised learning is not in the loop. The performance of the system is

measured in terms of the sum of the squared errors over the training sample, which can

be visualized as a multidimensional error surface averaged over all possible input-output

examples with the free parameters as coordinates. Any operation of the system under the

teacher's supervision is represented as a point on the error surface. For the system to im-

prove performance over time and therefore learn from the teacher, the operating point has

to move down successively toward a minimum point of the error surface that can be a local

or a global minimum. A supervised learning network (explained next) is able to do this

with the gradient information it has. The gradient of an error surface at any point is a

vector that points in direction of the steepest descent.
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4.2.4 Perceptrons

Single layer perceptrons

The perceptron is the simplest form of a neural network used for classi�cation of patterns

that are linearly separable [10]. It is built around a non-linear neuron and consist of a linear

combiner followed by a hard limiter that performs the sigmum function (see Figure 4-6)

limiting the amplitude of the output. The output will be equal to +1 if the hard limiter is

positive or �1 if it is negative, classifying the answers in two decision regions C1 and C2

separated by the hyperplane de�ned by

mX
i=1

wixi + b = 0 : (4.9)

The case for two input variables x1 and x2 is illustrated in Figure 4-7. The goal of the

perceptron is to correctly classify the set of externally applied stimuli xm into one of the

two classes C1 or C2. From Figure 4-7 it can be seen that if a point (x1; x2) lies above the

boundary line, is assigned to class C1, and if lies below it is assigned to class C2. The e�ect

of the bias b is only shifting the decision boundary away from the origin. The single neuron
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Figure 4-6: Architecture of a single layer perceptron (adapted from [10]).

also forms the basis of an adaptive �lter [10], a name given to the mathematical numerical

process of adjustment of weights to produce the desired response. The adaptive �lter

numerical techniques used to adjust the synaptic weight values include the steepest descent
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Figure 4-7: Hyperplane w1x1 + w2x2 + b = 0 for two input variables x1 and x2 (adapted
from [10]).

method, Newton's method, Gauss-Newton method and Least-Mean-Square method [18].

Any of them can be implemented in a neural network.

Multilayer perceptrons

The multilayer perceptron shown in Figure 4-8 is a generalization of the single-layer per-

ceptron and consists of a set of sensory units that constitute the input layer, one or more

hidden layers of computational nodes and an output layer of computation nodes [10]. The

input signal propagates through the network in a layer-by-layer basis. The network in the

�gure has two hidden layers and an output layer and is fully connected. The �rst hidden

layer is fed from the input layer, and the outputs are in turn applied to the next hidden

layer and so on for the rest of the network. In a multilayer perceptron there are two kinds

of signal that can be identi�ed:

1. Function signal: It is an input signal or stimulus that comes in at the input end of the

network, propagates forward neuron by neuron, and emerges at the output end of the

network as an output signal. At each neuron of the network through which a function

signal passes, the signal is calculated as a function of the inputs and associated weights

are applied to that neuron.

2. Error signal: It is originated at an output neuron and propagates backwards layer by
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layer through the network as explained in Section 4.2.3.

Each hidden or output neuron of a multilayer perceptron is designed to compute the function

signal appearing at the output of a neuron, which is expressed as a continuous nonlinear

function of the signal and synaptic weights associated to that neuron, and to compute an

estimate of the gradient vector which is needed for the backward pass. One of the most

input
signal
(stimulus)

input
layer

first
hidden
layer

second
hidden
layer

output
layer

Output
signal
(response)

Figure 4-8: Architecture of a multilayer perceptron (adapted from [10]).

popular methods to train this type of networks is called error backpropagation algorithm

(explained in Section 4.2.5), based on the error correction rule explained in Section 4.2.3.

A multilayer perceptron has three distinctive characteristics [10]:

� The model of each neuron includes a non-linear activation function. Since the non-

linearity is smooth, the function has to be di�erentiable everywhere. A commonly

used form is the sigmoid function de�ned by the logistic function:

yj =
1

1 + e�vj
; (4.10)

where vj is the weighted sum of all synaptic inputs plus the bias of neuron j, and yj

is the output of the neuron. If non-linearities are not used, the input-output could be

reduced to a single layer perceptron.

� It contains one or more layers of hidden neurons. These neurons enable the network

to learn more complex tasks than the single layer case.

� There is a great degree of connectivity between the weights of the network.
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The combination of this characteristics and the ability to learn from experience through

training gives this tool its ability to solve complex problems.

4.2.5 Backpropagation algorithm

Backpropagation consists of two passes through the di�erent layers of the network: a forward

pass and a backward pass. In the forward pass the input vector is applied to the nodes of the

network propagating its e�ect layer by layer obtaining at the output the actual response

of the network. During the forward pass the synaptic weights are all �xed. During the

backward pass the synaptic weights are adjusted in accordance with the error correction

rule using the error signal generated in the comparison between the target and the output

of the network. This error travels backwards correcting the synaptic weights to make the

response of the network closer to the desired response in a statistical sense [10]. The

backpropagation algorithm uses the error signal ej(n) de�ned by equation (4.6). The value

of the total error energy �(n) is obtained summing equation (4.7) over all the neurons in

the output layer and is de�ned by

�(n) =
1

2

X
j�C

e2j(n) ; (4.11)

where C includes all the neurons in the output layer. If N is the number of examples

contained in the training set, the averaged squared error energy is obtained by summing

�(n) over all n, the number of iterations performed by the net, and normalizing with respect

to the set size N (ie. number of examples in the training set) as shown by

�av =
1

N

NX
n=1

�(n) : (4.12)

Both �(n) and �av are functions of the synaptic weights and bias levels. For a training

set, �av represents the cost function or measure of learning performance. The �nal objective

is to minimize it by the adjust of the free parameters of the network using a simple method

of training, in which the weights are updated until one epoch is completed. An epoch is the

complete presentation of an entire training set. The adjustments of the weights are made

in accordance with the respective errors computed for each training set element presented

to the network. So the arithmetic average of these individual changes over the training set

is therefore an estimate of the true change that would result from modifying the weights

based on minimizing the cost function �av over the entire training set. The induced local

�eld vj(n) produced at the input of the activation function associated with neuron j shown

in Figure 4-9 is therefore

vj(n) =
mX
i=0

wij(n)yi(n) ; (4.13)

where m is the total number of inputs (excluding the bias) applied to the neuron j. The
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Figure 4-9: Signal-ow graph of output neuron j (adapted from [10])
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synaptic weight wjo (corresponding to a �xed input yo = +1) equals the bias bj applied to

neuron j. Hence the function signal yj(n) appearing at the output of neuron j at iteration

n is

yi(n) = 'j(vj(n)) : (4.14)

The backpropagation algorithm applies a correction �wkj(n) to the synaptic weight wij(n)

which is proportional to the partial derivative @�(n)=@wji(n). According to the chain rule,

this derivative can be expressed as:

@�(n)

@wji(n)
=

@�(n)

@ej(n)

@ej(n)

@yj(n)

@yj(n)

@vj(n)

@vj(n)

@wji(n)
: (4.15)

This derivative represents the sensitivity factor, which determines the direction of search in

weight space for the synaptic weight wij . Di�erentiating equation 4.7 with respect to ej(n)

we get
@�(n)

@ej(n)
= ej(n) ; (4.16)

and di�erentiating equation (4.6) with respect to yj(n) we get

@ej(n)

@yj(n)
= �1 : (4.17)

Di�erentiating equation (4.14) with respect to vj(n) we get

@yj(n)

@vj(n)
= '

0

j(vj(n)) ; (4.18)

and di�erentiating equation (4.13) with respect to wji(n) we get

@vj(n)

@wji(n)
= yi(n) : (4.19)

Substituting equations (4.16) to (4.19) in (4.15) yields

@�(n)

@wji(n)
= �ej(n)'0

j(vj(n))yi(n) (4.20)

The correction �wji(n) applied to wji(n) is de�ned by the delta rule [10]

�wji(n) = �� @�(n)

@wji(n)
; (4.21)

where � is the learning rate indicated previously. The minus sign accounts for the gradient

descent in weight space. Substituting equation 4.20 in equation (4.21) we obtain

�wji(n) = ��j(n)yi(n) ; (4.22)
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where �j(n) is the local gradient de�ned by

�j(n) = � @�(n)

@vj(n)
(4.23)

= �@�(n)

@ej(n)

@ej(n)

@yj(n)

@yj(n)

@vj(n)
(4.24)

= ej(n)'
0

j(vj(n)) :

This means that the local gradient �j(n) for output neuron j is equal to the product of

the corresponding error signal ej(n) for that neuron and the derivative '
0

j(vj(n)) of the

associated active function.

When the neuron j is located in a hidden layer of the network, there is no speci�ed

response for that neuron. The error signal for a hidden neuron has to be determined in terms

of the error signals of all the neurons to which that hidden neuron is directly connected.

For a 2-layer neural network like the one shown in Figure 4-10, the local gradient �j(n) for

the hidden neuron j can be expressed as

�j(n) = '
0

j(vj(n))
X
k

�k(n)wkj(n) ; (4.25)

where the index k represents the output neuron and
P

k �k(n)wkj(n) is the local gradient

�k(n) at the neuron k.

Improving the backpropagation neural network performance

There exist some techniques that signi�cantly improve the performance of the backpropa-

gation method [10]:

1. Sequential and batch update: The sequential learning is a mode of operation where

the weight update is performed after the presentation of each training example. On

the other hand the batch learning mode updates its weights after the presentation of

all the training examples that constitute an epoch. The �rst one is computationally

faster, especially when the data set is large and highly redundant.

2. Maximizing information content: The information contained in the training example

should be as large and di�erent as possible.

3. Activation function: A multilayer perceptron using backpropagation can use an anti-

symmetric or a non-symmetric sigmoid activation function to improve its performance.

A common function used to satisfy the �rst condition is the hyperbolic tangent sigmoid

function like the one shown in Figure 4-11, de�ned by

'(v) = a tanh(bv) ; (4.26)
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Then equation (4.12) becomes

�reg = 
1

N

NX
n=1

e2j (n) + (1� )
1

n

pX
j=1

e2j ; (4.27)

where  is the performance ratio and msw is the added term equal to the mean square

weights de�ned by

msw =
1

p

pX
j=1

e2j ; (4.28)

where p is the number of weights in the network.

4.3 Neural network application

The de�nition of the neural network used to determine the line heating conditions to be

applied over a pipe, considers the deformation as input and the heating power and heat

source speed as outputs. The spot size dimension was kept �xed and a diameter of 17.0

mm was used. The training set includes the values obtained from the non-linear 3-D FEM

analysis and the simpli�ed model analysis for a pipe of the characteristics indicated in

section 2.2 using a �xed spot size and varying the heating source power and speed. For

the use of the already trained network, the MIT Fabrication Laboratory has developed

a system that e�ciently represents the deformed cross section of a pipe, identifying the

positions and magnitude of the deformations from the true circle. This information will be

used in future developements as the input of the trained network, obtaining the necessary

heating conditions to reproduce such deformation.

4.3.1 Cross section curve �tting and curvature analysis

The distribution of in-plane shrinkage and angular distortion on a deformed pipe is estimated

from the measurement of the deviation of the cross section curve of the manufactured pipe

vessel from the true circle. Curve �tting has been performed [11, 2] measuring points as

shown in Figure 4-13 to approximately represent the cross section of the deformed pipe.

The black squares in Figure 4-13 are the measured points and the yellow green line is the

approximated curve of the deformed cross section, while the blue line is the ideal circle. Also

a curvature analysis of the �tted cross section curve has been conducted. The curvature

plot [2], which consists of segments normals to the �tted curve emanating from a number

of points on the �tted curve and whose lengths are proportional to the magnitude of the

curvature, is also given in the �gure. Figure 4-13 clearly shows the location where the

curvature distribution is not exactly a true circle (the inner circle represents curvature of

the true circle). Based on this curvature plot, it is possible to locate where to put heat and

predict the amount of heat by examining the magnitude of the curvature.
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Figure 4-13: Curve �tting of measured points from the cross section of the deformed pipe
vessel.

4.3.2 Neural network model

The network was designed based on the topology of a feedforward backpropagation neural

network. Various combinations of layers and number of neurons in each layer were tested in

order to �nd the topology that provides a good and computationally e�cient result. There

is a point where the computational time consumed in the analysis increases signi�cantly

compared with the improvement of the network performance. The combination of these

properties led to the topology shown in Figure 4-14. It has a single input layer and a

multilayer perceptron with two hidden layers and one output layer. The �rst hidden layer

has six neurons, the second hidden layer has �ve neurons and the output layer has two,

corresponding to the number of output vectors. The activation functions used in the hidden

layers were logistic sigmoid functions and the one used at the output layer was a linear

transfer function.

Data set

The input vector used in the analysis has dimension [224 � 1] and corresponds to the

predicted deformation in the z direction for various heating conditions at the free end top

surface of the pipe using the methods presented in Chapters 2 and 3. The output vector,

also called target, has dimension [224 � 2] corresponding to the heating source power and

speed required to obtain the input corresponding deformation. The data set was divided in
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Figure 4-14: Neural network topology used in the analysis
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four groups: the �rst and third were used to train the network (training set), the second to

validate the network (validation set) and the fourth to test its work (test set).

Data analysis

The data set was presented to the network using sequential learning update, and its training

was performed using the Levenberg-Marquardt algorithm [8]. This algorithm uses the same

approach as the Newton method, minimizing the quadratic approximation of the cost func-

tion �(n) around the current point w(n) at each iteration of the process. The di�erence

between the two methods is that the Levenberg-Marquardt algorithm does not compute the

Hessian matrix required for the computation of the Newton method. Instead, it uses the

relations

H = JTJ ; (4.29)

to approximate the Hessian matrix and

g = JTe ; (4.30)

to compute the gradient. J is the Jacobian matrix which contains the �rst derivatives of

the network errors with respect to the weights and biases and e is the vector containing

the network errors. The computation of the Jacobian is less complex than the computation

of the Hessian matrix, making this algorithm faster to converge than the other routines

MATLAB incorporates, with a similar degree of accuracy. The learning rate is automati-

cally adapted by the algorithm during the training, adjusting its value to have the optimal

convergence of the error function. To improve the generalization of the network we used

Bayesian regularization and preprocessing of the data by normalization.

4.3.3 Neural network results

The performance of a neural network can be measured to some extent by the errors on the

training, validation and test sets [8]. The averaged square error performance (see equation

(4.12)) obtained by evaluating the validation and test sets after the training, was equal to

3:0250�10�5. This low value indicates that the network is well trained and that it provides

a good representation of the outputs.

To make a more detailed analysis of the network, it is possible to make a linear regression

analysis between the network response and the corresponding targets. Figures 4-15 and 4-16

show the regression curve for both network output parameters with respect to the input.

The linear functions de�ned in each of them are of the form y = ax+b, where a corresponds

to the slope and b is the y � axis intercept of the best linear regression relating targets to

network outputs. The third variable in the Figures corresponds to the correlation coe�cient

R between the outputs and targets. Its value is 0.894 for the heating power prediction and

0.644 for the heating source speed prediction. This indicates that the network tracks well
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the heating power output with respect to the corresponding target, but it does not have

the same performance when predicting the source speed.
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Figure 4-15: Heating power linear regression analysis

This can be seen more clearly when the validation data set is presented as new inputs

to the network. Figures 4-17 and 4-18 show the neural network curve �tting for the heating

power and the heating source speed given the deformation inputs contained in the validation

data set. The �rst �gure shows that there is a good generalization of the output with respect

to the target. In the second case, the curve shows the best �t to the presented data. In

the latter case the target data is sparse enough to make it di�cult to the network to �t an

accurate curve. This will produce in some cases an increase in the error of the predicted

heating speed with respect to the target values. In this case it is recommended to choose

the data more selectively, avoiding duplication of results and making the data less sparse.

When the test data set not included in the training is presented to the already trained

network, we can compare its prediction with the target value obtained from the experiments.

The results obtained are shown in Table 4.1. The di�erence between the predicted and the
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Figure 4-16: Heating source speed linear regression analysis
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target heating power required to produce a given deformation is less the 10% in the presented

cases. On the other hand, the error in the heating speed prediction increases to almost 30%

in some examples. The network will not be highly accurate to reproduce the same heating

speed result for some of the presented cases. However, the value delivered using the curve

shown in Figure 4-18 will provide a continuous range of results for any given deformation,

providing from the statistical standpoint, the most accurate representation of the required

heating parameters to obtain a desired input using the data given.

1 2 3 4 5 6 7 8

x 10
−4

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

Input: Deformation magnitude, m

O
ut

pu
t: 

H
ea

tin
g 

po
w

er
 W

x1
0−

3

Initial heating power values 
NN Predicted values          

Figure 4-17: Neural network heating power prediction vs heating power original values
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Figure 4-18: Neural network heating source speed vs heating source speed original values

Deformation Actual Predicted Di�erence Actual Predicted Di�erence
power power speed speed

mm W W % mm=s mm=s %

0.2440 550 567 -3.05 0.7 0.746 -6.59

0.4600 750 779 -3.83 0.925 1.042 -12.74

0.2610 600 587 2.11 1.0 0.786 21.33

0.5950 850 912 -7.30 1.075 1.134 -5.55

0.3683 700 700 0.0 1.15 0.969 15.67

0.6170 900 942 -4.72 1.15 1.167 -1.53

0.4075 750 734 2.07 1.225 1.008 17.69

0.6325 950 967 -1.73 1.225 1.197 2.26

0.4800 800 796 0.54 1.30 1.053 18.99

0.6730 1000 1042 -4.19 1.30 1.306 -0.52

0.4910 850 805 5.28 1.375 1.058 23.02

0.6703 1050 1036 1.30 1.375 1.297 5.60

0.5140 900 825 8.28 1.525 1.069 29.85

0.6890 1100 1078 2.02 1.525 1.366 10.42

Table 4.1: Results obtained after presenting the test data set to the network
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Chapter 5

Conclusions and recommendations

5.1 Conclusions and contributions

The major contributions of this thesis are:

1. Development of a full 3-D �nite element model for a nonlinear thermo-mechanical

analysis of a pipe of any dimension subjected to line heating. With this model we are

able to investigate the induced deformation of a pipe due to line heating.

2. Development of a shell element �nite element model of a pipe that uses distributed

shrinkage forces and bending moments predicted by the semi-analytical thermal model

and the simpli�ed mechanical models developed at the MIT Fabrication Laboratory to

simulate the deformation of a pipe. With this model the computational time required

for a simulation was reduced by 90 %.

3. Development of a neural networks to e�ciently predict the heating parameters, namely

the heating power and the heating speed, necessary to generate a desired deformation

at a pipe's free end.

Based on the models developed and the corresponding simulations performed, we draw the

following conclusions:

1. The non-linear FEM model as well as the simpli�ed thermo-mechanical model are

able to predict the deformation of a pipe due to line heating.

2. The non-linear FEM thermal model prediction can be considered a more exact repre-

sentation of the temperature distribution in a pipe when subjected to line heating than

the simpli�ed thermal model. The di�erence obtained between the two models for its

highest temperature was of 10.8% in the average. When the temperature results of

both models are used as input for the corresponding mechanical models, the di�erence

between the predicted deformation of the two models increases in percentage. Apply-

ing a correction factor of 0.9 to the temperature obtained from the simpli�ed thermal
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model and then using it as the input in the simpli�ed mechanical model reduces the

�nal deformation di�erence between models for all the cases analyzed.

3. The neural network is a useful tool to e�ciently predict the necessary heating condi-

tions to be applied over a pipe to obtain a desired deformation. The neural network

used for this application has small errors and generalizes well in most of the heating

cases described.

5.2 Recommendations

The ultimate objective of this research is to develop an automatic system of circularizing

the ends of a deformed pipe by laser line heating. Towards this direction we have developed

a 3-D non-linear thermo-mechanical FEM model as well as a simpli�ed thermo-mechanical

model of a pipe subjected to line heating to predict the deformation for the di�erent cases

analyzed. The following topics are recommended for future research.

1. Up to now, we have applied the heat starting from the pipe free-end and moved along

(0; y; ro), 0 � y � 0:2. If we start applying the heat from (0; 0:2; ro) and move towards

the free end, we may have a higher temperature at the free end and may have a higher

gradient of temperature across the thickness, and hence larger deformation.

2. From previous MIT Fabrication Laboratory research (Yu [22]), we have found that

successive line heating on at plates leads to an almost linear response for the amount

of deformation. This means that if several runs are performed over the same region,

the �nal deformation should be proportional to the number of runs. Therefore we need

to develop a program to automatically generate an input �le for the FEM analysis to

handle the ABAQUS command 00RESTART 00.

Even though the results between the 3-D non-linear FEM model and the simpli�ed

model are in good agreement, they need to be veri�ed by experimental data obtained

from the actual pipe. This will provide the validation of the numerical data obtained

and will provide information to make suitable adjustments of the models.

3. The neural network application is particular for each case and the topology and func-

tions used in this research will not necessarily be the same for di�erent types of

problems or sets of data. The next step is to include successive heating runs over the

pipe as a new variable in the data set to have a larger deformation when it is needed.

This will require rede�nition of the neural network topology.
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Appendix A

Non-linear thermal analysis

ABAQUS input �le

The routine included in this appendix corresponds to the ABAQUS input �le generated

by the heat.inp �le to perform the non-linear thermal analysis of a pipe subjected to line

heating.

HEADING

ABAQUS job created on File name: testh.inp

*

PHYSICAL CONSTANTS, ABSOLUTE ZERO=-273.16

*

PREPRINT, ECHO=NO

RESTART, WRITE, FREQUENCY=50

*

NODE,NSET=ALL

1, 0.0000000, 0.0000000, -0.3750000

2, -0.0731589, 0.0000000, -0.3677945

�
�
7786, 0.1469504, 1.4000000, -0.3547697

7787, 0.0749147, 1.4000000, -0.3766215

*

*

ELEMENT, TYPE=DC3D20, ELSET=HEX

1, 1, 3, 339, 337, 2074, 2076, 2412, 2410, 2, 177, 338, 176, 2075, 2250, 2411, 2249,

1569, 1570, 1675, 1674

2, 337, 339, 675, 673, 2410, 2412, 2748, 2746, 338, 513, 674, 512, 2411, 2586, 2747,

2585, 1674, 1675, 1780, 1779
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�
�
1223, 5617, 5587, 5635, 5665, 7690, 7660, 7708, 7738, 5618, 5619, 5666, 5634,

7691, 7692, 7739, 7707, 6187, 6172, 6188, 6203

1224, 5665, 5635, 5683, 5713, 7738, 7708, 7756, 7786, 5666, 5667, 5714, 5682, 7739,

7740, 7787, 7755, 6203, 6188, 6204, 6219

*

*

ELEMENT, TYPE=DC3D15, ELSET=TRI

1225, 13, 15, 183, 2086, 2088, 2256, 14, 103, 102, 2087, 2176, 2175, 1575, 1576, 1628

1226, 13, 183, 349, 2086, 2256, 2422, 102, 263, 182, 2175, 2336, 2255, 1575, 1628, 1680

�
�
1673, 5117, 5175, 5173, 7190, 7248, 7246, 5148, 5174, 5147, 7221, 7247, 7220, 6021, 6038,

6037

1674, 5119, 5175, 5117, 7192, 7248, 7190, 5149, 5148, 5118, 7222, 7221, 7191, 6022, 6038,

6021

*

* hex

*

SOLID SECTION, ELSET=HEX, MATERIAL=MILDSTEE

1.,

*

* tri

*

SOLID SECTION, ELSET=TRI, MATERIAL=MILDSTEE

1.,

*

*

* mildsteel

*

MATERIAL, NAME=MILDSTEE

*

DENSITY

7800,

*

CONDUCTIVITY, TYPE=ISO

51.9, 0.

51.1, 100.

49.0, 200.
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46.1, 300.

42.7, 400.

39.4, 500.

35.6, 600.

31.8, 700.

26.0, 800.

27.2, 1000.

29.7, 1500.

*

SPECIFIC HEAT

450.0, 0.

486.0, 75.

519.0, 175.

532.0, 225.

557.0, 275.

574.0, 325.

599.0, 375.

662.0, 475.

749.0, 575.

846.0, 675.

1432.0, 725.

950.0, 775.

400.0, 1500.

*

* step 1

*

*initial cond

*

INITIAL CONDITIONS, TYPE=TEMPERATURE

ALL, 21.1

*

*

USER SUBROUTINE

SUBROUTINE DFLUX(FLUX,TEMP,KSTEP,KINC,TIME,NOEL,NPT,COORDS,JLTYP)

include 0abaparam:inc0

DIMENSION FLUX(2),TIME(2),COORDS(3)

REAL*8 R1,X1,X2,RP,PHI

X2=COORDS(3)

R1=(COORDS(2)- 0.001600*TIME(2))

X1=COORDS(1)
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RP = SQRT(X1*X1 + X2*X2)

PHI = ATAN2(X2,X1)

X1=RP*ABS( 1.570796 - PHI)

IF(RP.GE. 0.383037568) THEN

IF(TIME(2).LE. 312.50000) THEN

IF((R1*R1+X1*X1).LT. 0.000161290000) THEN

FLUX(1)=3677986.8808*2.0*(RP- 0.383047568)

FLUX(1)=FLUX(1)*DEXP(-13145.660216*(R1*R1+X1*X1))

FLUX(1)=FLUX(1)/ 0.000952432/ 0.000952432

ELSE IF ((R1*R1+X1*X1).LT. 0.000645160000) THEN

R=SQRT(R1*R1+X1*X1)

FLUX(1)= 171275.3426*4.0*(RP- 0.3830)*( 0.025400000000-R)

FLUX(1)=FLUX(1)/ 0.000952432/ 0.000952432/ 0.012700000000

END IF

ELSE

FLUX(1)=0.0

END IF

END IF

RETURN

END

*

STEP, AMPLITUDE=STEP, INC=3000

HEAT TRANSFER, END=PERIOD, DELTMX=50.

0.1, 600, 0.0005, 20.

*

monitor,node=6298, dof=11

*

FILM PROPERTY, NAME=FILMUP

4.4468 , 100.0

5.1405 , 200.0

5.3252 , 300.0

5.5800 , 400.0

5.6701 , 500.0

6.2027 , 600.0

6.5913 , 700.0

6.7781 , 800.0

7.0061 , 900.0

7.2161 , 1000.0

7.4101 , 1100.0
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7.5911 , 1200.0

*

FILM PROPERTY, NAME=FILMDOWN

1.8028, 100.0

2.1258, 200.0

2.2583, 300.0

2.3303, 400.0

2.4723, 500.0

2.6202, 600.0

2.8011, 700.0

2.8881, 800.0

2.9515, 900.0

3.0093, 1000.0

3.0626, 1100.0

3.1120, 1200.0

*

* conv

*

FILM, OP=NEW

*

1, F1, 21.1, FILMDOWN

2, F1, 21.1, FILMDOWN

�
�
408, F1, 21.1, FILMDOWN

817, F2, 21.1, FILMUP

818, F2, 21.1, FILMUP

�
�
1223, F2, 21.1, FILMUP

1224, F2, 21.1, FILMUP

1225, F1, 21.1, FILMDOWN

1226, F1, 21.1, FILMDOWN

�
�
1373, F1, 21.1, FILMDOWN

1374, F1, 21.1, FILMDOWN

1525, F2, 21.1, FILMUP

1526, F2, 21.1, FILMUP

�

98



�
1673, F2, 21.1, FILMUP

1674, F2, 21.1, FILMUP

*

RADIATE, OP=NEW

*

1, R1, 21.1, 0.000000048186

2, R1, 21.1, 0.000000048186

�
�
407, R1, 21.1, 0.000000048186

408, R1, 21.1, 0.000000048186

817, R2, 21.1, 0.000000048186

818, R2, 21.1, 0.000000048186

�
�
1223, R2, 21.1, 0.000000048186

1224, R2, 21.1, 0.000000048186

1225, R1, 21.1, 0.000000048186

1226, R1, 21.1, 0.000000048186

�
�
1373, R1, 21.1, 0.000000048186

1374, R1, 21.1, 0.000000048186

1525, R2, 21.1, 0.000000048186

1526, R2, 21.1, 0.000000048186

�
�
1673, R2, 21.1, 0.000000048186

1674, R2, 21.1, 0.000000048186

*

BOUNDARY, OP=NEW

CFLUX, OP=NEW

DFLUX, OP=NEW

HEX,BFNU

TRI, BFNU

*

NODE PRINT, FREQ=50

NT

NODE FILE, FREQ=5
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NT

EL PRINT, POSITION=INTEGRATION POINT, FREQ=0

*

EL FILE, POSITION=INTEGRATION POINT, FREQ=0

*

EL PRINT, POSITION=NODES, FREQ=0

*

EL FILE, POSITION=NODES, FREQ=0

*

EL PRINT, POSITION=CENTROIDAL, FREQ=0

*

EL FILE, POSITION=CENTROIDAL, FREQ=0

*

EL PRINT, POSITION=AVERAGED AT NODES, FREQ=0

*

EL FILE, POSITION=AVERAGED AT NODES, FREQ=0

*

MODAL PRINT, FREQ=99999

*

MODAL FILE, FREQ=99999

*

PRINT, FREQ=20

END STEP
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Appendix B

Non-linear mechanical analysis

ABAQUS input �le

The routine included in this appendix corresponds to the ABAQUS input �le generated by

the mech.inp �le to perform the non-linear mechanical analysis of a pipe subjected to line

heating.

HEADING

ABAQUS job created on File name: mechanical.inp

*

PHYSICAL CONSTANTS, ABSOLUTE ZERO=-273.16

*

PREPRINT, ECHO=NO

RESTART, WRITE, FREQUENCY=50

*

NODE,NSET=ALL

1, 0.0000000, 0.0000000, -0.3750000

2, -0.0731589, 0.0000000, -0.3677945

�
�
7786, 0.1469504, 1.4000000, -0.3547697

7787, 0.0749147, 1.4000000, -0.3766215

*

*

ELEMENT, TYPE=DC3D20, ELSET=HEX

1, 1, 3, 339, 337, 2074, 2076, 2412, 2410, 2, 177, 338, 176, 2075, 2250, 2411, 2249,

1569, 1570, 1675, 1674

2, 337, 339, 675, 673, 2410, 2412, 2748, 2746, 338, 513, 674, 512, 2411, 2586, 2747,

2585, 1674, 1675, 1780, 1779
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�
�
1223, 5617, 5587, 5635, 5665, 7690, 7660, 7708, 7738, 5618, 5619, 5666, 5634,

7691, 7692, 7739, 7707, 6187, 6172, 6188, 6203

1224, 5665, 5635, 5683, 5713, 7738, 7708, 7756, 7786, 5666, 5667, 5714, 5682, 7739,

7740, 7787, 7755, 6203, 6188, 6204, 6219

*

*

ELEMENT, TYPE=DC3D15, ELSET=TRI

1225, 13, 15, 183, 2086, 2088, 2256, 14, 103, 102, 2087, 2176, 2175, 1575, 1576, 1628

1226, 13, 183, 349, 2086, 2256, 2422, 102, 263, 182, 2175, 2336, 2255, 1575, 1628, 1680

�
�
1673, 5117, 5175, 5173, 7190, 7248, 7246, 5148, 5174, 5147, 7221, 7247, 7220, 6021, 6038,

6037

1674, 5119, 5175, 5117, 7192, 7248, 7190, 5149, 5148, 5118, 7222, 7221, 7191, 6022, 6038,

6021

*

* hex

*

SOLID SECTION, ELSET=HEX, MATERIAL=MILDSTEE

1.,

*

* tri

*

SOLID SECTION, ELSET=TRI, MATERIAL=MILDSTEE

1.,

*

*

* mildsteel

*

MATERIAL, NAME=MILDSTEE

*

DENSITY

7800,

*

ELASTIC, TYPE=ISO

200E+9, 0.3, 0.

200E+9, 0.3, 100.

200E+9, 0.3, 300.
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150E+9, 0.3, 450.

109.62E+9, 0.3, 550.

88E+9,0.3, 600.

62E+9, 0.3, 720.

20E+9, 0.3, 800.

2E+9, 0.3, 1200.

2E+9, 0.3, 1550.

*

PLASTIC

290E+6, 0.0, 0.

314E+6, 1.0, 0.

260E+6, 0.0, 100.

349E+6, 1.0, 100.

200E+6, 0.0, 300.

440E+6, 1.0, 300.

150E+6, 0.0, 450.

460E+6, 1.0, 450.

120E+6, 0.0, 550.

410E+6, 1.0, 550.

110E+6, 0.0, 600.

330E+6, 1.0, 600.

9.8E+6, 0.0, 720.

58.8E+6, 1.0, 720.

9.8E+6, 0.0, 800.

58.78E+6, 1.0, 800.

9.8E+6, 0.0, 1200.

58.78E+6, 1.0, 1200.

0.98E+6, 0.0, 1550.

1E+6, 1.0, 1550.

*

* *EXPANSION, TYPE=ISO, ZERO=0.

10E-6, 0.

11E-6, 100.

12E-6, 300.

13E-6, 450.

14E-6, 550.

14E-6, 800.
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15E-6,1200.

*

* step 1

*

*initial cond

*

INITIAL CONDITIONS, TYPE=TEMPERATURE

ALL, 21.1

*

INITIAL CONDITIONS, TYPE=STRESS, USER 1, 0.000e+00, 0.000e+00, 0.000e+00,

0.000e+00, 0.000e+00, 0.000e+00 2, 0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00,

0.000e+00 �
�
1673, 0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00 1674, 0.000e+00,

0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00 **

USER SUBROUTINE

SUBROUTINE SIGINI(SIGMA,COORDS,NTENS,NCRDS,NOEL,NPT,LAYER,KSPT,

* LREBAR,REBARN)

INCLUDE 0ABAPARAM:INC 0

DIMENSION SIGMA(NTENS),COORDS(NCRDS)

CHARACTER*8 REBARN

DIMENSION ST(6, 7787)

DIMENSION XI(20),ETA(20),ZETA(20),XP(20),YP(20),ZP(20)

INTEGER NTOT,NTOT0,NELEB0,NELET0,NELEBT,NELETT,NZ

INTEGER ELEMB(20),ELEMT(15)

INTEGER ELES8(12, 408),ELES6(9, 150)

DATA ((ST(I,J),I=1,6),J= 1, 100)/

0.000, 0.000, 0.000, 0.000, 0.000, 0.000,

0.000, 0.000, 0.000, 0.000, 0.000, 0.000,

�
�
0.000, 0.000, 0.000, 0.000, 0.000, 0.000,

0.000, 0.000, 0.000, 0.000, 0.000, 0.000

DATA ((ST(I,J),I=1,6),J= 7701, 7787)/ * 0.000, 0.000, 0.000, 0.000, 0.000, 0.000,

0.000, 0.000, 0.000, 0.000, 0.000, 0.000,

�
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�
0.000, 0.000, 0.000, 0.000, 0.000, 0.000,

0.000, 0.000, 0.000, 0.000, 0.000, 0.000

/

DATA ((ELES8(I,J),I=1,12),J= 1, 100)/

1, 3, 339, 337, 2, 177, 338, 176, 1569, 1570, 1675, 1674,

337, 339, 675, 673, 338, 513, 674, 512, 1674, 1675, 1780, 1779,

�
�
1471, 1441, 1489, 1519, 1472, 1473, 1520, 1488, 2041, 2026, 2042, 2057,

1519, 1489, 1537, 1567, 1520, 1521, 1568, 1536, 2057, 2042, 2058, 2073

/

DATA ((ELES6(I,J),I=1,9),J= 1, 100)/

13, 15, 183, 14, 103, 102, 1575, 1576, 1628,

13, 183, 349, 102, 263, 182, 1575, 1628, 1680,

�
�
971, 1029, 1027, 1002, 1028, 1001, 1875, 1892, 1891,

973, 1029, 971, 1003, 1002, 972, 1876, 1892, 1875

/

NTOT0= 2073

NZ= 3

NTOT=NTOT0*(NZ+1)

NELEB0= 408

NELET0= 150

NELEBT=NELEB0*NZ

NELETT=NELET0*NZ

IF(NOEL.LE.NELEBT) THEN

NZ=(NOEL-1)/NELEB0

ELEMB(1)=ELES8(1,NOEL-NZ*NELEB0)+NZ*NTOT0

ELEMB(2)=ELES8(2,NOEL-NZ*NELEB0)+NZ*NTOT0

ELEMB(3)=ELES8(3,NOEL-NZ*NELEB0)+NZ*NTOT0

ELEMB(4)=ELES8(4,NOEL-NZ*NELEB0)+NZ*NTOT0

ELEMB(5)=ELES8(1,NOEL-NZ*NELEB0)+(NZ+1)*NTOT0

ELEMB(6)=ELES8(2,NOEL-NZ*NELEB0)+(NZ+1)*NTOT0

ELEMB(7)=ELES8(3,NOEL-NZ*NELEB0)+(NZ+1)*NTOT0

ELEMB(8)=ELES8(4,NOEL-NZ*NELEB0)+(NZ+1)*NTOT0

ELEMB(9)=ELES8(5,NOEL-NZ*NELEB0)+NZ*NTOT0

ELEMB(10)=ELES8(6,NOEL-NZ*NELEB0)+NZ*NTOT0

ELEMB(11)=ELES8(7,NOEL-NZ*NELEB0)+NZ*NTOT0
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ELEMB(12)=ELES8(8,NOEL-NZ*NELEB0)+NZ*NTOT0

ELEMB(13)=ELES8(5,NOEL-NZ*NELEB0)+(NZ+1)*NTOT0

ELEMB(14)=ELES8(6,NOEL-NZ*NELEB0)+(NZ+1)*NTOT0

ELEMB(15)=ELES8(7,NOEL-NZ*NELEB0)+(NZ+1)*NTOT0

ELEMB(16)=ELES8(8,NOEL-NZ*NELEB0)+(NZ+1)*NTOT0

ELEMB(17)=ELES8(9,NOEL-NZ*NELEB0)+NZ*NTOT0

ELEMB(18)=ELES8(10,NOEL-NZ*NELEB0)+NZ*NTOT0

ELEMB(19)=ELES8(11,NOEL-NZ*NELEB0)+NZ*NTOT0

ELEMB(20)=ELES8(12,NOEL-NZ*NELEB0)+NZ*NTOT0

DO 10 I=1,6

SIGMA(I)=0

SIGMA(I)=SIGMA(I)+ST(I,ELEMB(1))*(-1.0/8.0*(1.0+0.77459)

* *(1.0+0.77459)*(1.0+0.77459)*(2.0-0.77459-0.77459-0.77459))

SIGMA(I)=SIGMA(I)+ST(I,ELEMB(2))*(-1.0/8.0*(1.0+0.77459)

* *(1.0+0.77459)*(1.0+0.77459)*(2.0-0.77459-0.77459-0.77459))

SIGMA(I)=SIGMA(I)+ST(I,ELEMB(3))*(-1.0/8.0*(1.0+0.77459)

* *(1.0+0.77459)*(1.0+0.77459)*(2.0-0.77459-0.77459-0.77459))

SIGMA(I)=SIGMA(I)+ST(I,ELEMB(4))*(-1.0/8.0*(1.0+0.77459)

* *(1.0+0.77459)*(1.0+0.77459)*(2.0-0.77459-0.77459-0.77459))

SIGMA(I)=SIGMA(I)+ST(I,ELEMB(5))*(-1.0/8.0*(1.0+0.77459)

* *(1.0+0.77459)*(1.0+0.77459)*(2.0-0.77459-0.77459-0.77459))

SIGMA(I)=SIGMA(I)+ST(I,ELEMB(6))*(-1.0/8.0*(1.0+0.77459)

* *(1.0+0.77459)*(1.0+0.77459)*(2.0-0.77459-0.77459-0.77459))

SIGMA(I)=SIGMA(I)+ST(I,ELEMB(7))*(-1.0/8.0*(1.0+0.77459)

* *(1.0+0.77459)*(1.0+0.77459)*(2.0-0.77459-0.77459-0.77459))

SIGMA(I)=SIGMA(I)+ST(I,ELEMB(8))*(-1.0/8.0*(1.0+0.77459)

* *(1.0+0.77459)*(1.0+0.77459)*(2.0-0.77459-0.77459-0.77459))

SIGMA(I)=SIGMA(I)+ST(I,ELEMB(9))*1.0/4.0*(1.0+0.77459)*(1.0+0.77459)

SIGMA(I)=SIGMA(I)+ST(I,ELEMB(10))*1.0/4.0*(1.0+0.77459)*(1.0+0.77459)

SIGMA(I)=SIGMA(I)+ST(I,ELEMB(11))*1.0/4.0*(1.0+0.77459)*(1.0+0.77459)

SIGMA(I)=SIGMA(I)+ST(I,ELEMB(12))*1.0/4.0*(1.0+0.77459)*(1.0+0.77459)

SIGMA(I)=SIGMA(I)+ST(I,ELEMB(13))*1.0/4.0*(1.0+0.77459)*(1.0+0.77459)

SIGMA(I)=SIGMA(I)+ST(I,ELEMB(14))*1.0/4.0*(1.0+0.77459)*(1.0+0.77459)

SIGMA(I)=SIGMA(I)+ST(I,ELEMB(15))*1.0/4.0*(1.0+0.77459)*(1.0+0.77459)

SIGMA(I)=SIGMA(I)+ST(I,ELEMB(16))*1.0/4.0*(1.0+0.77459)*(1.0+0.77459)

SIGMA(I)=SIGMA(I)+ST(I,ELEMB(17))*1.0/4.0*(1.0+0.77459)*(1.0+0.77459)

SIGMA(I)=SIGMA(I)+ST(I,ELEMB(18))*1.0/4.0*(1.0+0.77459)*(1.0+0.77459)

SIGMA(I)=SIGMA(I)+ST(I,ELEMB(19))*1.0/4.0*(1.0+0.77459)*(1.0+0.77459)

SIGMA(I)=SIGMA(I)+ST(I,ELEMB(20))*1.0/4.0*(1.0+0.77459)*(1.0+0.77459)

10 CONTINUE
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ELSE

NZ=(NOEL-1-NELEBT)/NELET0

ELEMT(1)=ELES6(1,NOEL-NELEBT-NZ*NELET0)+NZ*NTOT0

ELEMT(2)=ELES6(2,NOEL-NELEBT-NZ*NELET0)+NZ*NTOT0

ELEMT(3)=ELES6(3,NOEL-NELEBT-NZ*NELET0)+NZ*NTOT0

ELEMT(4)=ELES6(1,NOEL-NELEBT-NZ*NELET0)+(NZ+1)*NTOT0

ELEMT(5)=ELES6(2,NOEL-NELEBT-NZ*NELET0)+(NZ+1)*NTOT0

ELEMT(6)=ELES6(3,NOEL-NELEBT-NZ*NELET0)+(NZ+1)*NTOT0

ELEMT(7)=ELES6(4,NOEL-NELEBT-NZ*NELET0)+NZ*NTOT0

ELEMT(8)=ELES6(5,NOEL-NELEBT-NZ*NELET0)+NZ*NTOT0

ELEMT(9)=ELES6(6,NOEL-NELEBT-NZ*NELET0)+NZ*NTOT0

ELEMT(10)=ELES6(4,NOEL-NELEBT-NZ*NELET0)+(NZ+1)*NTOT0

ELEMT(11)=ELES6(5,NOEL-NELEBT-NZ*NELET0)+(NZ+1)*NTOT0

ELEMT(12)=ELES6(6,NOEL-NELEBT-NZ*NELET0)+(NZ+1)*NTOT0

ELEMT(13)=ELES6(7,NOEL-NELEBT-NZ*NELET0)+NZ*NTOT0

ELEMT(14)=ELES6(8,NOEL-NELEBT-NZ*NELET0)+NZ*NTOT0

ELEMT(15)=ELES6(9,NOEL-NELEBT-NZ*NELET0)+NZ*NTOT0

DO 20 I=1,6

IF (NPT.EQ.1) THEN

SIGMA(I)=0.261401181296201*ST(I,ELEMT(1))

SIGMA(I)=SIGMA(I)+(0.261401181296375)*ST(I,ELEMT(2))

SIGMA(I)=SIGMA(I)+(0.261401181296375)*ST(I,ELEMT(3))

SIGMA(I)=SIGMA(I)+(0.261401181296201)*ST(I,ELEMT(4))

SIGMA(I)=SIGMA(I)+(0.261401181296375)*ST(I,ELEMT(5))

SIGMA(I)=SIGMA(I)+(0.261401181296375)*ST(I,ELEMT(6))

SIGMA(I)=SIGMA(I)+(0.784487892046003)*ST(I,ELEMT(7))

SIGMA(I)=SIGMA(I)+(0.784487892046002)*ST(I,ELEMT(8))

SIGMA(I)=SIGMA(I)+(0.784487892046002)*ST(I,ELEMT(9))

SIGMA(I)=SIGMA(I)+(0.784487892046003)*ST(I,ELEMT(10))

SIGMA(I)=SIGMA(I)+(0.784487892046002)*ST(I,ELEMT(11))

SIGMA(I)=SIGMA(I)+(0.784487892046002)*ST(I,ELEMT(12))

SIGMA(I)=SIGMA(I)+(0.797426985353000)*ST(I,ELEMT(13))

SIGMA(I)=SIGMA(I)+(0.797426985353100)*ST(I,ELEMT(14))

SIGMA(I)=SIGMA(I)+(0.797426985353100)*ST(I,ELEMT(15))

ELSE IF (NPT.EQ.2) THEN

SIGMA(I)=0.261401181296375*ST(I,ELEMT(1))

SIGMA(I)=SIGMA(I)+(0.261401181296201)*ST(I,ELEMT(2))

SIGMA(I)=SIGMA(I)+(0.261401181296375)*ST(I,ELEMT(3))

SIGMA(I)=SIGMA(I)+(0.261401181296375)*ST(I,ELEMT(4))

SIGMA(I)=SIGMA(I)+(0.261401181296201)*ST(I,ELEMT(5))
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SIGMA(I)=SIGMA(I)+(0.261401181296375)*ST(I,ELEMT(6))

SIGMA(I)=SIGMA(I)+(0.784487892046002)*ST(I,ELEMT(7))

SIGMA(I)=SIGMA(I)+(0.784487892046003)*ST(I,ELEMT(8))

SIGMA(I)=SIGMA(I)+(0.784487892046002)*ST(I,ELEMT(9))

SIGMA(I)=SIGMA(I)+(0.784487892046002)*ST(I,ELEMT(10))

SIGMA(I)=SIGMA(I)+(0.784487892046003)*ST(I,ELEMT(11))

SIGMA(I)=SIGMA(I)+(0.784487892046002)*ST(I,ELEMT(12))

SIGMA(I)=SIGMA(I)+(0.797426985353100)*ST(I,ELEMT(13))

SIGMA(I)=SIGMA(I)+(0.797426985353000)*ST(I,ELEMT(14))

SIGMA(I)=SIGMA(I)+(0.797426985353100)*ST(I,ELEMT(15))

ELSE IF (NPT.EQ.3) THEN

SIGMA(I)=0.261401181296375*ST(I,ELEMT(1))

SIGMA(I)=SIGMA(I)+(0.261401181296375)*ST(I,ELEMT(2))

SIGMA(I)=SIGMA(I)+(0.261401181296201)*ST(I,ELEMT(3))

SIGMA(I)=SIGMA(I)+(0.261401181296375)*ST(I,ELEMT(4))

SIGMA(I)=SIGMA(I)+(0.261401181296375)*ST(I,ELEMT(5))

SIGMA(I)=SIGMA(I)+(0.261401181296201)*ST(I,ELEMT(6))

SIGMA(I)=SIGMA(I)+(0.784487892046002)*ST(I,ELEMT(7))

SIGMA(I)=SIGMA(I)+(0.784487892046002)*ST(I,ELEMT(8))

SIGMA(I)=SIGMA(I)+(0.784487892046003)*ST(I,ELEMT(9))

SIGMA(I)=SIGMA(I)+(0.784487892046002)*ST(I,ELEMT(10))

SIGMA(I)=SIGMA(I)+(0.784487892046002)*ST(I,ELEMT(11))

SIGMA(I)=SIGMA(I)+(0.784487892046003)*ST(I,ELEMT(12))

SIGMA(I)=SIGMA(I)+(0.797426985353100)*ST(I,ELEMT(13))

SIGMA(I)=SIGMA(I)+(0.797426985353100)*ST(I,ELEMT(14))

SIGMA(I)=SIGMA(I)+(0.797426985353000)*ST(I,ELEMT(15))

ELSE IF (NPT.EQ.4) THEN

SIGMA(I)=0.261401181296201*ST(I,ELEMT(1))

SIGMA(I)=SIGMA(I)+(0.261401181296375)*ST(I,ELEMT(2))

SIGMA(I)=SIGMA(I)+(0.261401181296375)*ST(I,ELEMT(3))

SIGMA(I)=SIGMA(I)+(0.261401181296201)*ST(I,ELEMT(4))

SIGMA(I)=SIGMA(I)+(0.261401181296375)*ST(I,ELEMT(5))

SIGMA(I)=SIGMA(I)+(0.261401181296375)*ST(I,ELEMT(6))

SIGMA(I)=SIGMA(I)+(0.784487892046003)*ST(I,ELEMT(7))

SIGMA(I)=SIGMA(I)+(0.784487892046002)*ST(I,ELEMT(8))

SIGMA(I)=SIGMA(I)+(0.784487892046002)*ST(I,ELEMT(9))

SIGMA(I)=SIGMA(I)+(0.784487892046003)*ST(I,ELEMT(10))

SIGMA(I)=SIGMA(I)+(0.784487892046002)*ST(I,ELEMT(11))

SIGMA(I)=SIGMA(I)+(0.784487892046002)*ST(I,ELEMT(12))

SIGMA(I)=SIGMA(I)+(0.797426985353000)*ST(I,ELEMT(13))
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SIGMA(I)=SIGMA(I)+(0.797426985353100)*ST(I,ELEMT(14))

SIGMA(I)=SIGMA(I)+(0.797426985353100)*ST(I,ELEMT(15))

ELSE IF (NPT.EQ.5) THEN

SIGMA(I)=0.261401181296375*ST(I,ELEMT(1))

SIGMA(I)=SIGMA(I)+(0.261401181296375)*ST(I,ELEMT(2))

SIGMA(I)=SIGMA(I)+(0.261401181296201)*ST(I,ELEMT(3))

SIGMA(I)=SIGMA(I)+(0.261401181296375)*ST(I,ELEMT(4))

SIGMA(I)=SIGMA(I)+(0.261401181296375)*ST(I,ELEMT(5))

SIGMA(I)=SIGMA(I)+(0.261401181296201)*ST(I,ELEMT(6))

SIGMA(I)=SIGMA(I)+(0.784487892046002)*ST(I,ELEMT(7))

SIGMA(I)=SIGMA(I)+(0.784487892046002)*ST(I,ELEMT(8))

SIGMA(I)=SIGMA(I)+(0.784487892046003)*ST(I,ELEMT(9))

SIGMA(I)=SIGMA(I)+(0.784487892046002)*ST(I,ELEMT(10))

SIGMA(I)=SIGMA(I)+(0.784487892046002)*ST(I,ELEMT(11))

SIGMA(I)=SIGMA(I)+(0.784487892046003)*ST(I,ELEMT(12))

SIGMA(I)=SIGMA(I)+(0.797426985353100)*ST(I,ELEMT(13))

SIGMA(I)=SIGMA(I)+(0.797426985353100)*ST(I,ELEMT(14))

SIGMA(I)=SIGMA(I)+(0.797426985353000)*ST(I,ELEMT(15))

ELSE IF (NPT.EQ.6) THEN

SIGMA(I)=0.261401181296375*ST(I,ELEMT(1))

SIGMA(I)=SIGMA(I)+(0.261401181296201)*ST(I,ELEMT(2))

SIGMA(I)=SIGMA(I)+(0.261401181296375)*ST(I,ELEMT(3))

SIGMA(I)=SIGMA(I)+(0.261401181296375)*ST(I,ELEMT(4))

SIGMA(I)=SIGMA(I)+(0.261401181296201)*ST(I,ELEMT(5))

SIGMA(I)=SIGMA(I)+(0.261401181296375)*ST(I,ELEMT(6))

SIGMA(I)=SIGMA(I)+(0.784487892046002)*ST(I,ELEMT(7))

SIGMA(I)=SIGMA(I)+(0.784487892046003)*ST(I,ELEMT(8))

SIGMA(I)=SIGMA(I)+(0.784487892046002)*ST(I,ELEMT(9))

SIGMA(I)=SIGMA(I)+(0.784487892046002)*ST(I,ELEMT(10))

SIGMA(I)=SIGMA(I)+(0.784487892046003)*ST(I,ELEMT(11))

SIGMA(I)=SIGMA(I)+(0.784487892046002)*ST(I,ELEMT(12))

SIGMA(I)=SIGMA(I)+(0.797426985353100)*ST(I,ELEMT(13))

SIGMA(I)=SIGMA(I)+(0.797426985353000)*ST(I,ELEMT(14))

SIGMA(I)=SIGMA(I)+(0.797426985353100)*ST(I,ELEMT(15))

END IF

20 CONTINUE

END IF

RETURN
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END

*

STEP, AMPLITUDE=STEP, INC=2000

STATIC

0.001, 600, 0.0001, 20.

*

monitor, node=29,dof=3

CONTROLS,ANALYSIS=DISCONTINUOUS

CONTROLS,PARAMETERS=LINE SEARCH

*

BOUNDARY, OP=NEW

1, 1,, 0.

29, 1,, 0.

�
�
7756, 1,, 0.

7756, 1, 3, 0.

7772, 1,, 0.

7772, 1, 2, 0.

* read temperature from .�l �le

*

TEMPERATURE, FILE=testh.inp

*

CLOAD, OP=NEW

DLOAD, OP=NEW

*

NODE PRINT, FREQ=20

U

NODE FILE, FREQ=50

U

*

EL PRINT, POSITION=INTEGRATION POINT, FREQ=20

S

E

*

EL FILE, POSITION=INTEGRATION POINT, FREQ=0

S
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E

*

EL PRINT, POSITION=NODES, FREQ=0

*

EL FILE, POSITION=NODES, FREQ=0

*

EL PRINT, POSITION=CENTROIDAL, FREQ=20

S

E

*

EL FILE, POSITION=CENTROIDAL, FREQ=40

S

E

*

EL PRINT, POSITION=AVERAGED AT NODES, FREQ=20

S

E

*

EL FILE, POSITION=AVERAGED AT NODES, FREQ=0

*

MODAL PRINT, FREQ=99999

*

MODAL FILE, FREQ=99999

*

ENERGY PRINT, FREQ=0

*

ENERGY FILE, FREQ=0

*

PRINT, FREQ=50

*

END STEP
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Appendix C

Shell elements FEM analysis

ABAQUS input �le

The routine included in this appendix corresponds to the ABAQUS input �le generated by

the simp.inp �le to perform the shell FEM analysis of a pipe subjected to line heating.

HEADING

ABAQUS job created on File name: simpli�ed.inp

*

PREPRINT, ECHO=NO

RESTART, WRITE, FREQUENCY=50

*

NODE,NSET=ALL

1, 0.0000000, 0.0000000, -0.3807146

2, -0.0731589, 0.0000000, -0.3733993

�
�
3640, 0.1456932, 1.4000000, -0.3517344

3641, 0.0742737, 1.4000000, -0.3733993

*

*

ELEMENT, TYPE=S8R, ELSET=HEX

409, 2074, 2076, 2412, 2410, 2075, 2250, 2411, 2249

410, 2410, 2412, 2748, 2746, 2411, 2586, 2747, 2585

�
�
815, 3544, 3514, 3562, 3592, 3545, 3546, 3593, 3561
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816, 3592, 3562, 3610, 3640, 3593, 3594, 3641, 3609

*

ELEMENT, TYPE=STRI65, ELSET=TRI

1375, 2086, 2088, 2256, 2087, 2176, 2175

1376, 2086, 2256, 2422, 2175, 2336, 2255

�
�
1523, 3044, 3102, 3100, 3075, 3101, 3074

1524, 3046, 3102, 3044, 3076, 3075, 3045

*

*

NODAL THICKNESS

ALL, 0.009

*

* hex

*

SHELL GENERAL SECTION, ELSET=HEX, POISSON=0.3, MATERIAL=MILDSTEE,

NODAL THICKNESS

1.,

*

* tri

*

SHELL GENERAL SECTION, ELSET=TRI, POISSON=0.3, MATERIAL=MILDSTEE,

NODAL THICKNESS

1.,

*

* mildsteel

*

MATERIAL, NAME=MILDSTEE

*

ELASTIC, TYPE=ISO

2E+11, 0.3

DENSITY

7800,

*

* step 1

*

*initial cond

*

INITIAL CONDITIONS, TYPE=STRESS
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409, 0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00

410, 0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00

�
�
1523, 0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00

1524, 0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00

*

STEP

STATIC

*

monitor, node=2102, dof=3

*

BOUNDARY, OP=NEW

2074, 1,, 0.

2102, 1,, 0.

�
�
3610, 1, 3, 0.

3626, 1, 2, 0.

*

CLOAD, OP=NEW

2103, 1, -24208.7418810

2103, 5, -68.1445026

�
�
2973, 2, -7434.4704166

2973, 4, 20.9270804

*

DLOAD, OP=NEW

*

NODE PRINT, FREQ=1

U

NODE FILE, FREQ=1

U

*

EL PRINT, POSITION=INTEGRATION POINT, FREQ=1

S

E

*

EL FILE, POSITION=INTEGRATION POINT, FREQ=0
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S

E

*

EL PRINT, POSITION=NODES, FREQ=0

*

EL FILE, POSITION=NODES, FREQ=0

*

EL PRINT, POSITION=CENTROIDAL, FREQ=1

S

E

*

EL FILE, POSITION=CENTROIDAL, FREQ=1

S

E

*

EL PRINT, POSITION=AVERAGED AT NODES, FREQ=1

S

E

*

EL FILE, POSITION=AVERAGED AT NODES, FREQ=0

*

MODAL PRINT, FREQ=99999

*

MODAL FILE, FREQ=99999

*

ENERGY PRINT, FREQ=0

*

ENERGY FILE, FREQ=0

*

PRINT, FREQ=1

*

END STEP
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Appendix D

Neural Network MATLAB input

�le

The routine included in this appendix corresponds to the MATLAB input �le to perform

the neural network simulation. It considers the deformation as the input vector and the

heating source power and speed as the output vector.

%The neural network de�nition

clear

%Including the input and output vectors contained in the vector.m �le

pn= input matrix

tn= output matrix

[R,Q]=size(pn);

% De�nition of the training, validation and test data sets

iitst=2:4:Q;

iival=4:4:Q;

iitr=[1:4:Q 3:4:Q];

v.P=pn(:,iival); v.T=tn(:,iival); % Validation data set

t.P=pn(:,iitst); t.V=tn(:,iitst); % Test data set

ptr=pn(:,iitr); ttr=tn(:,iitr); % Training data set

% Neural network de�nition

net = new�([0 0.1],[6,5,2],'logsig','logsig','purelin','trainbr');

% NN characteristics

% new�=Feedforward backpropagating neural network

%[0 0.1]=Range of the data in the input vector
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% One input layer

% [6,5,2]=Two hidden layers. Six neurons in the �rst and �ve in the second. One output

layer with two neurons

% 'logsig'=Log sigmoid activation function in both hidden layers

% 'purelin'=Linear activation function in the output layer

% 'trainbr'=Bayesian regularization function using Levenberg-Marquardt training

net.trainParam.show=50; net.trainParam.epochs=1600;

% Neural network initialization with function 'init'

net=init(net);

% Training using the training data set with function 'train'

net=train(net,ptr,ttr);

% Simulation of the network performance using all the data sets with function 'sim'

y=sim (net,v.P);

y1=sim(net,t.P);

y2=sim(net,ptr);

% Plotting of the NN prediction

�gure

plot(v.P,v.T(1,:),'*',v.P,y(1,:),'o');

xlabel('Input: Deformation magnitude, m');

ylabel('Output: Heating power Wx10�30);

legend('Initial angle-speed values', 'NN Predicted values');

�gure

plot(t.P,t.V(1,:),'*',t.P,y1(1,:),'o');

xlabel('Input: Deformation magnitude, m');

ylabel('Output: Heating power Wx10�30);

legend('Initial angle-speed values', 'NN Predicted values');

�gure

plot(ptr,ttr(1,:),'*',ptr,y2(1,:),'o');

xlabel('Input: Deformation magnitude, m');

ylabel('Output: Heating power Wx10�30);

legend('Initial angle-speed values', 'NN Predicted values');

�gure

plot(v.P,v.T(2,:),'*',v.P,y(2,:),'o');

xlabel('Input: Deformation magnitude, m ');

ylabel('Output: Heating source speed, m/s');

legend('Initial angle-speed values', 'NN Predicted values');
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�gure

plot(t.P,t.V(2,:),'*',t.P,y1(2,:),'o');

xlabel('Input: Deformation magnitude, m ');

ylabel('Output: Heating source speed, m/s' );

legend('Initial angle-speed values', 'NN Predicted values');

�gure

plot(pn,ttr(2,:),'*',ptr,y2(2,:),'o');

xlabel('Input: Deformation magnitude, m ');

ylabel('Output: Heating source speed, m/s' );

legend('Initial angle-speed values', 'NN Predicted values');

% NN linear regression analysis and plot

�gure

[m(1), b(1),r(1)] = postreg(y2(1,:),tn(1,:));

xlabel('Output: Heating power,Wx1000');

ylabel('Input: Deformation magnitude, mx10�3 ' );

legend('Data from 3-D and simpli�ed FEM models', 'A=T','Best linear �t');

�gure

[m(2), b(2),r(2)] = postreg(y2(2,:),tn(2,:));

xlabel('Output: Heating source speed, m/s' );

ylabel('Input: Deformation magnitude, m ');

legend('Data from 3-D and simpli�ed FEM models', 'A=T','Best linear �t');

% Error function matrix and error performance values

e=ttr-y2;

%absolute performance mean error

apme=mae(e)

%mean squared error performance

msep= mse(e)

%sum of squared error performance

ssep = sse(e)
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