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Abstract

This thesis develops a real-time trend detection and monitoring system based on pre-
vious work by Haimowitz, Le, and DeSouza [3, 5, 2]. The monitor they designed,
TrenDx, used trend templates in which the temporal points where data patterns
change are variable with respect to the actual process data. This thesis uses similar
models to construct a monitoring system that is able to run in real time, based on a
continuous, linearly segmented process data input stream. The instantiation of tem-
porally significant template points against the process data is determined through a
simulated annealing algorithm. The rankings of competing hypotheses in the monitor
set is based on the distance of these template points from their expected temporal
values, along with the area between the process data measurements and the value
constraints placed on those parameters. The feasibility of the real-time monitor was
evaluated in the domain of pediatric growth, particularly in comparison to previous
versions of TrenDx, using an expert gold standard of the diagnoses of pediatric en-
docrinologists. Real-time TrenDx shows promise in its monitoring abilities and should
be evaluated in other domains which are more suited to its continuous data stream
input model.
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Chapter 1

Introduction

In many fields, problem solving can be described as observing a situation, identifying

what the problem is (or determining if a problem is even present), and applying an

appropriate method to solve it. Depending on the particular field, each of these steps

introduces various amounts of difficulty. Often only an expert in the field has the

required skills and knowledge to diagnose the situation accurately.

To quantify the observation stage, it is reasonable to assume that there is a set

of measurable properties related to the situation. In many interesting domains, these

properties are able to change over time. Experts are able to recognize which properties

of the system are important, how they relate to one another, and if they are changing

in a significant way. Using these observations and knowledge of the dynamics of

the system, experts are able to differentiate among different problem conditions and

identify possible causes of the problem. Their decisions are supported with evidence

from the measured properties and models of the system behavior.

Many systems exist that can be used to monitor a process and control its evolution,

provided that there is a model of the dynamics of the process that is well-specified

in time. In many domains, however, processes do not have well-defined models. One

cause of uncertainty may be due to the fact that a process may start in one of several

initial states and behave according to a model that is dependent on its initial state,

but there is no clear way to determine the initial state in a reasonable amount of

time. In other situations, different phases of a process may be well understood (and
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have different models), but there is no way to determine when the process moves from

one phase to the next. There is a need for a process monitor that can handle each of

these situations.

In recent years, progress has been made by Haimowitz, Le, and DeSouza [3, 5, 2]

in developing a monitoring system called TrenDx. TrenDx is able to be used in do-

mains in which trends of process parameters are described with qualitative terms and

points of temporal significance that may vary from one data set to the next. The

previous implementations of TrenDx have shown promise in their diagnostic abilities.

This thesis introduces revisions to the hypothesis-scoring algorithm of TrenDx, while

maintaining the trend template description language introduced by Haimowitz. The

monitoring revisions are intended to improve the efficiency of TrenDx and make it

usable in a real-time processing context. The following section explains the impor-

tance of a process monitor such as TrenDx, and discusses many of the considerations

involved in the initial design of TrenDx.

1.1 Importance

The goal of this thesis is to further develop a system that is able to monitor processes

that evolve with time and diagnose potential problems that the processes may be

experiencing. In particular, the monitor must be able to detect multivariate trends

in time-ordered process data based on inexact models of the process. The models

may consist of descriptions of how the process progresses in each of several phases

that are ordered relative to one another in time. Within each phase, the model may

describe different trends that the process data may follow, based on the state of the

process during that phase. Furthermore, the expected length of each phase may be

dependent on the current state of the process, and therefore dependent on the history

of all states of the process. The monitor must be able to adjust to match different

trends during different intervals in spite of the fact that the interval endpoints are not

precisely specified in time. The monitor needs to be able to detect landmark events

that may signal the beginning or end of an interval, and adapt its future reasoning
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about the data once one of these landmark events has been detected.

The processes that the monitor will be used to diagnose may be modeled with

inexact descriptions of the way variables behave temporally and the ways in which

they interact with one another. In many domains, these characteristics make it

difficult for novices (and even for experts) to differentiate among some similar trends.

If the monitor is to be trusted in these domains, it will need to be able to justify the

reasoning it used to draw its conclusions. This explanation should be thorough enough

that an expert is satisfied that no other diagnosis of the process is a particularly better

match.

A monitor that satisfies these requirements would be of great use in a variety of

fields. It could be used as a reference aide to help train specialists in a domain. It could

be used for supporting evidence in situations in which non-experts are responsible for

proposing a diagnosis. It could be used in situations overlooked by experts, when

too few experts are available to closely monitor all of the simultaneously evolving

processes. In essence, a monitor of this type could save time and effort for many

people, which is one of the great benefits of technology in general.

1.1.1 Difficulty of solving the problem

Representation considerations

There are several difficulties that arise in an attempt to design a diagnostic process

monitor like that described above. Some of the biggest decisions that need to be

made are the determinations of how knowledge of the process as well as knowledge of

the models is to be represented. A large benefit of this monitor as opposed to other

monitors is that it is able to handle temporally uncertain events. This introduces

constraints on the structures that can be used to represent time. The time represen-

tation must allow for the input of time-ordered (and usually discretely time-stamped)

data. It must be flexible enough to allow for the models to contain landmark events

in trends, but allow those events to be temporally uncertain. The time structure

needs to have enough power to express both discrete events and events that span a
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length of time. Models may contain trends in which some variables are to vary in a

particular fashion within certain phases of the process, while other variables should

follow trends over several phases of the process. The time representation must take

each of these requirements into account.

A related representation consideration arises during the need to express models.

There should be no loss of knowledge between the description of a process model and

its representation in the monitor. If order for this requirement to be satisfied, the

model representation must be able to express how variables interact with one another

as well as how they vary over time. The model may have particular upper and lower

bounds on data values, requiring the monitor to have a representation for a description

of the ways in which data variables can vary from a trend but still be considered to

match the model. The model descriptions should generally be high-level, but the

monitor may need to do precise computations with models: the model representation

needs to allow for these low-level calculations while only being described in high-level

terms.

Complexity

Finding the best diagnosis for a monitored process breaks down into finding the

closest match of the available models to the set of measured data. With a fixed

number of models in which all temporal boundaries are fully specified, this search is

tractable, and there are efficient methods of finding the best diagnosis. When the

temporal boundaries are allowed to be unspecified, however, the problem becomes

much harder. In a process that contains only 3 phases and one monitored variable,

with constraints such that first phase boundary is between any of the first n
2
data

points and the second phase boundary falls between any of the last n
2
data points,

the number of possibilities to search is already (n
2
)2 per model template. For mul-

tiple phases and multiple possible behaviors of the variables within each phase, the

problem to find the best match quickly becomes combinatorial in complexity, which

is computationally intractable. Another way to think about this problem is from a

constraint-satisfaction point of view. For each temporal phase boundary, there will
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be some set of constraints. For the data within each phase, there is another set of

constraints for each model. This can be considered as a multi-dimensional constraint

satisfaction problem. Unfortunately, this view does not ease the computational com-

plexity of the problem.

Applicability

It is important that the framework of the monitor that is developed be useful in a wide

variety of domains. An obvious reason for this is that it is impractical to require the

development of a new monitor system for each domain in which process monitoring is

required. Generally, the people with expertise in a domain are not adept at designing

an automated monitor such as this. Furthermore, experts may not be able to express

their knowledge in algorithmic form without an appropriate description language as

a basis. Generally, it is more practical to have a person with expert knowledge use

their skills in the ways they have been trained than to employ them as diagnostic

process monitor system developers.

In order to be of use in a variety of applications, the monitor must facilitate the

conversion of knowledge into the representations that the monitor understands. Ex-

perts should be able to add knowledge to the monitor with ease as their understanding

of the process improves. Without efficient representations of time and models, the

monitor will be ineffective in both diagnostic ability and usability in application do-

mains.

1.1.2 Application domains

There are several domains in which a monitor with these capabilities would be useful.

One of the most obvious areas in which this monitor would have great use is the

field of medicine. Often, medical conditions are described in an imprecise language,

such as, “If Y increases while X increases, and then Y decreases after X starts to

decrease, then condition Z is present.” The temporal boundaries on the significant

events in descriptions such as this are not specified, and multiple diagnoses are often
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possible, so these situations would receive great benefit from the proposed monitoring

system. The medical field also demonstrates two different situations in which this

monitor would be helpful. In intensive care units, process data are measured nearly

continuously. The monitor should be able to diagnose the situation in real time, and

either alert medical professionals or modify treatment when particular conditions

are detected. On the other hand, the monitor would be useful in settings such as

a pediatrician’s practice. In general, children’s height and weight are recorded a

few times each year. Growth dysfunctions are often difficult to detect, but it is

not reasonable to send every child to a growth specialist. The monitor could alert

the pediatrician when additional investigation into the growth condition of the child

should be made.

Another domain in which this sort of monitoring would be helpful is the mainte-

nance of computer networks. It may be desirable that certain activities are avoided

on the network, such as an abnormally high amount of traffic during busy network

times being accountable to one particular machine. Furthermore, a monitor of this

type could be used to detect security problems and potential attacks on a network or

on a machine, based on the rate and type of information traveling across the network.

Additionally, a monitor may be used to detect when a machine has been infected with

a computer virus or is overloaded with inessential tasks, based on the performance

statistics of the computer. Similarly, applications can be found in economics, indus-

trial processes, and many other areas in which crude models of behavior are known,

but the complexity of the system make it such that the points of temporal significance

are not precisely determined.

1.2 Aims of research

The intent of this thesis is to reformulate TrenDx, a diagnostic process monitor that

was developed with many of the previously mentioned qualities in mind. The original

implementation of TrenDx was applied in the medical domains of Intensive Care

Unit monitoring and pediatric growth monitoring. The results of the experiments
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were promising in both domains. However, it took TrenDx too long to process data

to be feasible for use in an Intensive Care Unit, where new data are constantly being

acquired and decisions are very time critical. TrenDx was further developed and

tested in the domain of monitoring children’s growth.

The goal of this research was to develop a real-time version of TrenDx, without

losing the template description capabilities of the original monitor. TrenDx could

express both temporal constraints and value constraints in its trend templates, and

these models were to be preserved. However, the input model to TrenDx was revised

to a streaming data input model, and therefore new ways of scoring competing behav-

ioral models needed to be developed. TrenDx was written over the course of several

years by at least 3 different people, resulting in code that is not well organized. A

large part of the work involved in this thesis was rewriting TrenDx according to the

principles of software engineering.

The revised version of TrenDx was evaluated in the domain of children’s growth

monitoring. It was compared to previous versions of TrenDx, both in terms of effi-

ciency and in accuracy of its results.

1.3 Guide to this thesis

The remainder of this thesis is organized as follows. The original TrenDx monitor

system, along with the enhancements previously made to it, is described in Chapter

2. The revisions made to TrenDx as part of this thesis follow in Chapter 3, which

discusses the changes made to the models used in TrenDx, and Chapter 4, which

describes how monitoring is performed with these revisions. Chapter 5 introduces

the domain of pediatric growth, and discusses the results of the evaluation of the

revised monitor in this domain. Finally, Chapter 6 presents the conclusions of this

thesis, describing related research and suggestions for future work on TrenDx.
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Chapter 2

TrenDx

A monitoring system with many of the desired characteristics described previously

has been developed over the last several years. This system, TrenDx, was used as the

basis for the development of the monitoring system presented in this thesis. The trend

template models presented in the original implementation of TrenDx have been largely

preserved in the revised version of the monitor. These models provide the ability to

describe both qualitative and quantitative constraints on the process data in addition

to temporally uncertain interval boundary points. The modifications made to TrenDx

significantly changed the methods by which competing trend templates were matched

and ranked against the process data, which were the primary cause of the inefficiencies

in previous versions of TrenDx. This thesis develops real-time methods of matching

the trend template models of TrenDx to the process being monitored.

For a more complete description of TrenDx, see the original description by Haimowitz

[3], and improvements made by Le [5] and DeSouza [2]. The aspects of TrenDx that

are most relevant to this thesis are discussed below.

2.1 Template representation

The largest contribution of the previously implemented versions of TrenDx to the

monitoring system presented in this thesis comes in the representation language of

trend templates. Trend templates are competing descriptions of the states of the
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monitored process. They contain the knowledge that an expert uses to diagnose the

process, expressed in the form of models that a machine can use for computation.

There are two categories of knowledge that are contained in trend templates. The

first of these is a description of temporal relations which specify when transitions occur

among various phases of a process. The other type of knowledge is an explanation of

what values each of the measured parameters is expected to take during each phase

of the possible behavioral states in which the process may currently be. A description

of the way in which TrenDx modeled these two types of knowledge is described in

this section.

2.1.1 Temporal intervals

Temporal Utility Package

The manner in which TrenDx represents time is based heavily on the Temporal Utility

Package (TUP) designed by Kohane [4]. TUP was designed with the idea in mind of

separating the temporal reasoning component of an expert system from the remainder

of the system. TUP includes structures that represent both points in time and tem-

poral intervals. TUP can represent quantitative and qualitative temporal relations

among these time structures. Additionally, relations among points and intervals may

have different values depending on the context in which the relation is interpreted.

TUP is able to make temporal inferences through the use of constraint propagation.

TUP uses temporal-clustering heuristics to maintain its computational feasibility as

a temporal reasoning tool.

Interval relations

TrenDx defines two temporal structures: temporal intervals and landmark events.

Temporal intervals correspond to lengths of time in TUP. Intuitively, each interval

has a left (“begin”) and right (“end”) boundary point. The length of a temporal

interval is described in terms of its boundary points. Relations are defined between

a pair of boundary points in terms of a minimum and maximum temporal distance
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between the pair, for example,

((begin interval A) (end interval A) 5 7)

expresses that interval A has a length of between 5 and 7 time units. Furthermore,

((end interval A) (begin interval B) 0 4)

expresses that the end of interval A and the beginning of interval B are separated

by at most 4 time units (and interval A ends before interval B begins). These

relations are depicted graphically in Figure 2-1.

((begin interval A) (end interval A) 5 7)

interval A

0 5 7

relative
time scale

(begin interval A)
valid range for

(end interval A)

((end interval A) (begin interval B) 0 4)

4

relative
time scale

0

interval B

interval A

(end interval A)

valid range for
(begin interval B)

Figure 2-1: Interval relation examples.

Landmark events

Landmark events correspond to time points in TUP. The reasoning engine in TUP

considers time points as a subset of temporal intervals, particularly temporal intervals

with zero length. In this way, landmark events and temporal intervals share many

temporal relation expression capabilities. In addition to being related to the boundary

of a temporal interval, landmark events may be fixed in time with relation to the
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monitored process. For example, the landmark event of birth can be fixed to time

0.0 in the process data. Additionally, a special landmark event of now may exist in

trend templates. now is always associated with the most recently acquired data point.

Landmark events participate in relationships in the same way as boundary points.

An example of a temporal constraint involving landmark events is

(start (end interval B) 14 19)

which describes that relation that interval B ends between 14 and 19 time units

after the landmark event start. Figure 2-2 displays this relation in graphic form.

start

0 14 19

(start (end interval B) 14 19)

relative
time scale

(end interval B)
valid range for

interval B

Figure 2-2: Landmark event relation example.

2.1.2 Value constraints

Value constraints are what TrenDx uses to describe the expected levels of the mea-

sured parameters when the process is behaving according to a particular model. Value

constraints are not independent; each must be associated with a specific temporal in-

terval. With this combination of constraints, the expected trends of each parameter

during each phase of a behavioral pattern can be described.

TrenDx provided the ability to express value constraints in terms of functions of

the measured process parameters in addition to the measurements themselves. For

instance, a value constraint could express a pattern describing the trend of the average

value of all of the measured parameters. This ability is useful because many models

are described in terms such as these, that is, they constrain parameters that are not

readily available from standard measuring equipment, but which may be derived from

those measurements.
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TrenDx allowed value constraints to be expressed in terms of low-order polynomi-

als: constant, linear, or quadratic. Examples of how these constraints could fit to a

set of data are shown in Figure 2-3. The linear and quadratic constraints required at

least a qualitative parameter to describe the desired trend. A linear constraint must

be described as either increasing or decreasing, while a quadratic constraint would

additionally require a specification of concavity. Constant and linear constraints were

also permitted to specify an exact constraint parameter to describe the trend. This

additional descriptiveness allowed the expression of constraints such as “constant at

98.6 degrees” or “(linearly) increasing at a rate of two percent per year”.

quadratic fitlinear fitconstant fit

Figure 2-3: Various polynomial constraints against a data set.

2.2 Monitoring paradigm

The monitoring scheme of TrenDx was based on the idea that if competing models

were constructed, representing different diagnoses of the monitored process, the model

for the diagnosis which accurately described the process data would prove to be a

better match to the data than the other competing model templates. In the language

of TrenDx, each competing trend template is called a hypothesis. Naturally, only the

hypotheses applicable to the particular process would be included in the monitoring

set of hypotheses for that process. The primary computational work of TrenDx is

accounted for in determining how well hypotheses fit the measured process data, in

comparison to the other hypotheses in the monitor set.

The trend template representation described in the previous section was preserved

during the revising of TrenDx for this thesis. The areas of TrenDx that were modified

to improve efficiency are described in this section. The scoring procedures for value

constraints were changed, but closely resemble the original scoring methods. The
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hypothesis scoring and searching techniques were greatly modified, but are presented

here for completeness and comparison.

2.2.1 Value constraint scoring

In order to rank the competing hypothesis in the monitor set, TrenDx assigns a

score to each hypothesis. This score is produced by first using TUP to generate all

valid mappings of data points to temporal intervals defined in the hypothesis. Each

of these mappings is then given an error score. The error score is computed using

the value constraints on the data in each temporal interval. If the value constraint

is not completely specified, a polynomial regression is computed to choose the best

parameters for the constraint. For example, if the value constraint specifies a constant

trend, but does not indicate that a particular constant value is desired, the best value

is chosen to minimize the total least-squares error over all of the data points assigned

to that temporal interval. Furthermore, if a linearly increasing trend is prescribed, but

a polynomial regression dictates a line with negative slope, the slope of the constraint

is set to zero. This would be the best possible slope of a trend line that does not

violate the qualitative value constraint placed on the data.

After the value constraint is fully specified, the data points assigned to the inter-

val are used to accumulate an error score for that particular constraint. The most

straightforward calculation of this type is the least squares error calculation:

ordinary least squares error =
∑

i

(xi − x̂i)
2

where the sum is over each data point i assigned to the interval, xi is the data

point value, and x̂i is the value predicted by the value constraint. A slightly more

meaningful error measure that is used by TrenDx is the residual mean square error, in

which the squared error is scaled by the number of degrees of freedom in the regression

fit:

residual mean square error =
1

DegreesOfFreedom

∑
i

(xi − x̂i)
2
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The degrees of freedom in a regression fit is calculated as the difference between the

number of data points being fit and the number of parameters being estimated in

the regression. For example, there are 2 parameters estimated in a linear regression

(corresponding to slope and y-intercept). If there are 5 data points being fit by this

model, the number of degrees of freedom is equal to 3. In the case that the degrees of

freedom calculation is less than 1, the regression fit will match the data perfectly, and

any error score should be zero, in which case the value given by the residual mean

square error formula is meaningless.

Another error measure used by TrenDx is the mean absolute percentage error.

This error measure is useful for combining error measurements of parameters with

varying magnitudes.

mean absolute percentage error =
1

DegreesOfFreedom

∑
i

∣∣∣∣∣
xi − x̂i

xi

∣∣∣∣∣

The mean absolute percentage error normalizes the variances of variables with dif-

ferent magnitudes. Unfortunately, for many value constraints, x̂i is zero for at least

one i (a common example being a desired constant trend at a measurement value

of zero). Furthermore, many data measurements return values close to zero, while a

value constraint may prescribe a nonzero value. This can cause artificially large error

values. For example, assume a value constraint of a constant at a level of 1, and the

process data have a variance of 2. Suppose also that two data points, x0 and x1 were

assigned to the temporal interval containing this constraint. Assume x0 = -0.5 and

x1 = 0.01. Let Errori =
∣∣∣xi−x̂i

xi

∣∣∣. The calculations of the mean absolute percentage
error would proceed as follows:

mean absolute percentage error =
1

DegreesOfFreedom

∑
i

∣∣∣∣∣
xi − x̂i

xi

∣∣∣∣∣
=

1

DegreesOfFreedom

(Error0 + Error1)

Error0 =

∣∣∣∣∣
x0 − x̂0

x0

∣∣∣∣∣ =
∣∣∣∣−0.5− 1−0.5

∣∣∣∣ =
∣∣∣∣−1.5−0.5

∣∣∣∣ = 3
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Error1 =

∣∣∣∣∣
x1 − x̂1

x1

∣∣∣∣∣ =
∣∣∣∣0.01− 10.01

∣∣∣∣ =
∣∣∣∣−0.990.01

∣∣∣∣ = 99

mean absolute percentage error =
1

DegreesOfFreedom

(Error0 + Error1)

=
1

2
(3 + 99) =

1

2
· 102 = 51

In this example, the value of x1 (0.01) is significantly closer to the desired value of 1

than x0 (-0.5), but x1 contributes a disproportionate amount to the total error score.

Because of these inadequacies in the mean absolute percentage error calculation,

TrenDx used a combination of the mean absolute percentage error and the resid-

ual mean square error metrics in determining an error score for a particular value

constraint. TrenDx allowed the user to specify which metric it should use for each

constraint.

In addition to these error metrics, TrenDx had the ability to pre-process data

values before fitting them to a value constraint. This ability was most commonly used

to express a constraint in the form of a desired range of values that the process data

should take. Many constraints are described in language such as “the temperature

should be kept between 35 and 45 degrees”. With constraints like this, it is generally

intended that a measurement in the middle of the desired value range is a good fit

to the constraint, while measurements closer to the boundaries of the range are a

poorer fit, and those outside the range do not match the constraint. To incorporate

constraints of this nature, TrenDx was constructed to allow the domain expert to

express a constraint of this type via pre-processing the data with an error curve

similar in shape to the curve in Figure 2-4.

When applying this error function, a data measurement that is exactly in between

the upper and lower bounds of the range gets mapped to the value of 0. Data

measurements outside the desired value range get mapped to a value of 1. Within

the desired value range, the distance from the data measurement to the midpoint of

the range is raised to the fourth power, after being normalized so that the function
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Figure 2-4: Pre-processing error function.

is continuous at the range boundaries. The resulting mapped data values are then

commonly used with a desired value constraint of a constant value of 0.

2.2.2 Hypothesis scoring

To produce an error score for an entire hypothesis, TrenDx computes a weighted

average of the error scores produced by the fitting of each value constraint in the

hypothesis. The weight used in this average is equal to the fraction of the total

number of degrees of freedom accounted for by each value constraint.

hypothesis score =

∑
j DegreesOfFreedomj · ValueConstraintErrorj∑

j DegreesOfFreedomj

The sums are over all value constraints j in the hypothesis trend template. De-

greesOfFreedomj is the number of degrees of freedom in value constraint j, and Value-

ConstraintErrorj is the error score resulting from the fitting of value constraint j. As

described previously, the error score of a value constraint is either a residual mean square

error value or a mean absolute percentage error value. In either of those two calculations,

DegreesOfFreedom occurs in the denominator. In the combined hypothesis score, De-

greesOfFreedom occurs in the sum in the numerator. These two occurrences result in

a term-by-term cancellation in the sum in the numerator of the hypothesis score. There-

fore the degrees of freedom is only important in the denominator of the hypothesis score

equation, which can lead to more efficient comparisons of competing hypotheses, if the total

degrees of freedom are expected to be equal across hypotheses.

This form of value constraint error weighting tends to normalize the importance of each
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value constraint in the combined hypothesis score. In many cases, this is the desired behav-

ior when constraints are placed on varying parameters in different intervals. However, some

situations require disproportionate weighting of different value constraints. For example,

running low in windshield washer fluid in a car is generally not a particularly serious condi-

tion, but having an abnormally high engine temperature requires immediate care (otherwise

total engine failure may result). For situations such as this, TrenDx allows the knowledge

engineer to provide explicit weights for each value constraint as part of the value constraint

definition.

2.2.3 Ranking hypotheses

The score used by TrenDx in ranking competing hypotheses is the best (least error) score

found for each hypothesis. The search space of all possible valid assignments of data points

to temporal intervals can be overwhelmingly large, particularly when many data points

are present. To compensate for this problem, TrenDx uses a beam search to prune the

set of assignments of data points to temporal intervals that it considers. When a new

data point is processed, TrenDx first produces all valid assignments of that data point to

temporal intervals, based on the assignments of previously encountered data points that it

has already decided. It then retrieves the entire hypothesis score for each of these potential

assignments. At this point in the computation, these competing scores for different temporal

data assignments within the same hypothesis are ranked, and the pruning beam is applied.

TrenDx uses a default beam width of 3. The assignments that score the best are kept to

be used as the basis for possible valid assignments when the next data point is processed.

The very best scoring of these assignments is used to produce the score for the hypothesis

as a whole.

To rank competing hypotheses in a monitor set, TrenDx compares the score of each

hypothesis. Hypotheses with lower scores are considered better fits to the process data

than those with higher scores. To translate this to a monitoring decision, several metrics

may be used. The procedure that was used primarily in the development of TrenDx has

been to classify each hypothesis as normal or abnormal. The score of the best-fitting normal

hypothesis was then compared to a threshold value, which would determine whether or not

to trigger a warning signal for the user.
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2.2.4 Efficiency

The original implementation of TrenDx left much room for improvement. Originally,

TrenDx took several hours to process just a handful of data points and produce meaningful

results. Since the original implementation, it has been substantially improved. One of the

primary factors increasing its speed was the general improvement in computer hardware

technology over the course of a decade. Improved programming techniques also trimmed

the time required to process data by reducing the computations performed when the data

fit the constraints in a hypothesis trivially. However, TrenDx continued to suffer from a few

setbacks that prohibited its incorporation into other monitoring systems.

One of the most significant problems that TrenDx suffered from was its failure to mem-

oize results of computations that it had previously evaluated. When TrenDx scored a data

set, it began from the earliest point in the data set and used the beam search technique

with hypothesis scoring, expanding by one data point at a time, until it had reached the

last data point, at which point it would produce an output. This required that all data

points were input before the computation began. If an additional data point were to be

added to the data set, TrenDx was not able to use the results of a calculation based on a

smaller data set and incorporate the new data. Instead, TrenDx would reset itself and start

from the first data point in the set, assigning each point to an interval and scoring each

hypothesis as before. This technique is extremely inefficient for a process in which input

data are continually being acquired.

Another area of concern in TrenDx was the technique it used to determine the best

assignment of data to intervals in a hypothesis. As described previously, a beam search

was used. Just as in hill-climbing search techniques, beam searches can become trapped

in sub-optimal paths, which would only lead to a locally minimum error score as opposed

to the globally minimum error score for the hypothesis. Unfortunately, the alternatives

available to explore all possible data assignments in order to find the optimum solution

add significant computational time to the search. Dynamic programming techniques can

be used to find the best solution in time on the order of (N + I)3, where there are N data

points and I intervals in the hypothesis. In contrast, beam search typically runs in time

linear in (N + I).

Correcting these inefficiencies in the monitoring program is the primary goal of this
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thesis.
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Chapter 3

Model Revisions to TrenDx

During the development of an improved version of TrenDx, a few revisions were made to

the problem models used in the original implementation of TrenDx. The largest concep-

tual change to the problem description was made in the model of the input process data.

Additionally, a few changes were made in the trend template description model. The mod-

ifications to the trend template descriptions were small, and were primarily necessary for

implementation of the real-time processing algorithm. These changes are extensions to the

trend template models introduced by Haimowitz [3] for purposes of computation, but do

not do much to enhance the descriptive power of the original TrenDx trend templates.

All of these changes are discussed in this chapter.

3.1 Input process data model

The most significant change in the input process data model made in the revised TrenDx

is the assumption that the input data are continuous. Furthermore, the program was

constructed with a model of streaming input, as opposed to requiring all data to be stored

in a file before running the program. The primary work of this thesis involved designing a

hypothesis scoring framework under this revised input data model.

3.1.1 Continuous data stream

In the original TrenDx program, process data were input at discrete points in time. Since

that time, it was determined that there is a greater need for a monitor whose input is
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modeled by a continuous function. There are relatively few types of measured process data

that only have meaning at discrete points in time as opposed to continuously. That is,

most parameters are (at least conceptually) measurable at any point in time, not purely at

discrete time points. In general, the measurements of these parameters result in continuous

values, if the measurements are taken at a fine enough temporal granularity. Occasionally,

however, true discontinuities may occur in the process parameters that are of interest to

the monitoring system. In order to fit these discontinuities into a model framework of

continuous input data, a discontinuity can be modeled by an arbitrarily small temporal

interval during which the magnitude of the slope of the data is arbitrarily large. In this

context, “arbitrarily small” and “arbitrarily large” are intended to mean that the differences

between a true discontinuity and this continuous construct are negligible to the monitoring

system.

It should be noted that digital measurements of process data are required in order to use

the data in computations. Digital measurements are intrinsically discrete. The principal

revision made to the input model in terms of continuity is the assumption that the data

points provided to TrenDx are sufficient to accurately represent the underlying continuous

process. The previous versions of TrenDx did not make this assumption, but instead relied

on the design of the trend templates for a particular domain to take into account the

sampling frequency of the process parameters.

The streaming data model modification is important to note because the revised TrenDx

is intended to be a real-time monitoring system. This means that it can regularly be

receiving new data and not require breaks to do its computations. It should be able to

use each new data point to update its state without restarting its calculations from the

beginning. As discussed previously, the original TrenDx suffered from performance slow-

downs due to its static data input model.

One of the advantages of a continuous data model is that continuous functions can be

well approximated with a series of simple functions. In particular, within a given error

value, all continuous functions can be modeled through linear segments over sufficiently

short temporal intervals. Additionally, most higher-order functions of interest can be well

described by linear segments between special points on the original functions, such as local

extrema, inflection points, and even at the temporal locations of the zero crossings of higher-

order derivatives of some functions. The following section describes how this ability is taken
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advantage of in the improved version of TrenDx.

3.1.2 Data stream segmentation algorithm

The revised version of TrenDx uses a linearly segmented description of the input process

data in order to perform hypothesis scoring. Due to this fact, before the data are ready to

be scored, they must be broken into linear segments. The input data model discussed above

calls for a continuous data input stream. Dr. William Long has developed a method for

producing a series of continuous linear segments from a series of data points in real-time.

His segmentation algorithm is the focus of this section.

Dr. Long’s segmentation algorithm takes a series of data points as input. In practice,

many measuring instruments return updated digital values at a rate primarily restricted by

the hardware limitations of the measuring device. If a continuous analog device is being used

to measure process parameters, an analog-to-digital conversion may be performed on the

input measurements to produce data points appropriate for the segmentation algorithm.

In essence, sampling a continuous data stream produces a discretely time-stamped data

stream. If this is done, care should be taken as to not lose too much information during the

sampling process.

The driving force behind the development of a segmentation algorithm that operates

without knowledge of templates is the desire to detect temporally significant behavioral

changing points before template matching is attempted. To do this, Dr. Long’s algorithm

uses accumulated values to determine when one linear segment no longer matches the data

points well enough from the previously determined anchor point. This decision is based

on an error threshold. If the error in a linear regression would exceed the threshold, a

new anchor point is found. The temporal location of this new anchor point is determined

by considering making an anchor at the temporal location of each data point since the

most recent anchor. An error score is produced by fitting the data points since the previous

anchor to two linear segments that intersect temporally at the location under consideration.

The new anchor is inserted at the location that provides the lowest error score. The series

of anchor points produced in this manner serve to break the data, at temporally interesting

points, into linear segments that accurately describe the data set. Dr. Long’s algorithm is

depicted in Figure 3-1.
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3. One more data point is accumulated,

1. The regression line fits the data well.

and the error becomes too large...

2. Another data point is accumulated,
but the error is still small.

4. ...so another anchor point is made.

regression line

data point

anchor point

Figure 3-1: Segmentation algorithm.

This segmentation algorithm is intended to be used for real-time trend detection pur-

poses. A constant amount of work is required for each new data point encountered until the

error threshold has been broken. This is due to the fact that a list of values is accumulated

as points are gathered, and these accumulated values are used to determine when the error

threshold has been broken. Unfortunately, the amount of work required to find the best new

anchor point is quadratic in the number of points encountered since the temporal location

of the most recent anchor point. However, computations can be performed in a manner

such that linear work is done while processing each point to avoid the quadratic load all

at once. With improving processing speeds, this is becoming increasingly feasible to be

used in real-time computations, particularly due to the latency between availability of new

data points. Additionally, in many situations, improved searching methods could be used

to reduce the load at each point from linear to logarithmic. Furthermore, this processing

time can be bounded by restricting the number of data points allowed to accumulate before

introducing a new anchor point. This technique bounds the computation requirements to

a constant, which certainly results in a real-time segmentation algorithm.
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3.2 Trend templates

In addition to modifications to the process data input model, a few revisions were made

to the trend template description requirements during the updating of TrenDx. These

changes were necessary for the computations in the new version of TrenDx, but they do

not reduce the power of the TrenDx model. One new requirement is the need for each

interval boundary point to be explicitly declared. The other required change is the need

for a distinction among which of these points are related to each other, either directly

or indirectly. Both of these changes help to clarify the trend template model. The model

descriptions are still primarily identical to those developed by Haimowitz [3], with the minor

changes added. These changes are discussed in depth in this section.

3.2.1 Temporal interval boundary points

One change in the trend template model from that of the original implementation of TrenDx

is the need to explicitly declare boundary points of temporal intervals. The original model

for temporal interval descriptions was discussed in section 2.1.1. In the new version of

TrenDx, each boundary point of a temporal interval is declared and named similarly to

landmark points in the original implementation. In the Java implementation of the revised

TrenDx, these points are now instances of the class TemplatePoint.

TemplatePoints in the new implementation share all of the features of landmark points

in the original implementation. Their locations can be fixed in time or variable in relation

to the process data. In constructing a trend template, the locations of TemplatePoints

can be specified as absolute or relative to the locations of other TemplatePoints. The

special landmark point of now is not lost in the new implementation. It is a TemplatePoint

whose relative distance from the most recent data point is zero. There are two types of

conversions needed to replace trend template models from the original TrenDx description

language with descriptions in the new implementation, which pertain to relations between

adjacent intervals and relations between non-adjacent intervals.

Adjacent intervals

The conversion from adjacent consecutive intervals in the original TrenDx description lan-

guage to the new description language is straightforward. A frequently-used construct in
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the original TrenDx was the following:

(consecutive-phase interval A interval B)

This was a macroexpression which would expand to the relation

((end interval A) (begin interval B) 0 0)

as temporal relations were described in section 2.1.11. In the new implementation, this

consecutive-phase relation would be expressed as follows, in the object-oriented syntax of

Java:

TemplatePoint A_B_boundary = new TemplatePoint();

interval_A.setEnd(A_B_boundary);

interval_B.setBegin(A_B_boundary);

As can be seen, interval A and interval B share the new TemplatePoint, A B boundary,

as their boundary point. This simple addition of one new TemplatePoint was sufficient to

express the consecutive-phase relation, in which intervals are separated with zero length. A

graphical depiction of this difference can be seen in Figure 3-2.

Original description.

(end interval A)

(begin interval B)

interval B

interval A

Revised description.

interval A interval B

A B boundary

Figure 3-2: Adjacent temporal intervals modification.

Related non-adjacent intervals

The conversion of descriptions of intervals that are related but are not separated by zero

length from the original to the new syntax of TrenDx is slightly more complicated. Relations

may exist between intervals of the following forms:

((end interval A) (begin interval B) 4 4)

((end interval B) (begin interval C) 2 7)

1The relation created by consecutive-phase would actually create upper and lower bounds of
length *epsilon* (instead of 0) between the interval boundaries, but this detail is not important.
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In these situations, the boundaries of the intervals are separated with non-zero and/or

uncertain temporal distances. In the new implementation of TrenDx, these relationships

require the creation of two new TemplatePoints as well as an additional TemplateInterval

(temporal interval). These are constructed as follows:

TemplatePoint end_A = new TemplatePoint();

TemplatePoint begin_B = new TemplatePoint();

TemplateInterval A_to_B = new TemplateInterval();

interval_A.setEnd(end_A);

A_to_B.setBegin(end_A);

A_to_B.setEnd(begin_B);

interval_B.setBegin(begin_B);

The new TemplatePoints are the boundary points for the original intervals, and the new in-

terval is sandwiched between them. The temporal distance between these boundary points

can then be set by adjusting the length of the new interval, which is equivalent to specify-

ing relative distance between the boundary points themselves. The new interval that was

created does not contain any value constraints. This behavior is the same as that which

was modeled in the relation between the original two intervals with the old TrenDx tem-

plate description language. The new interval acts purely as a temporal restriction. This

modification is displayed pictorially in Figure 3-3.

interval A

interval A

Revised description.Original description.

(end interval A)

interval B interval B

(begin interval B)
valid range for

A to B

begin B
valid range for

end A

Figure 3-3: Related non-adjacent temporal intervals modification.

As discussed previously, the requirement to add these new template points explicitly

does not result in any loss of information from the original TrenDx templates. These

changes are syntactic, and the translations from the older descriptions to the new syntax

is well-specified. Explicitly declaring these points does aid in the visualization of the trend

templates, as there are no longer any “gaps” in the progression of temporal intervals in a

template (no data points are able to fall in the holes between intervals, as there is always
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a temporal interval to contain them). The explicit declaration of these boundary points

is useful for the real-time scoring algorithm of the revised TrenDx program, which will be

discussed in chapter 4.

3.2.2 Interval chains

The other difference in the trend template models between the original version of TrenDx

and the updated program comes in the form of interval chains. In the new trend template

model, hypotheses are composed of distinct, independent interval chains. An interval chain

is composed of inter-dependent temporal units that are related to one another. In this

context, temporal points are related if they have a direct relation to one another or if they

are both related to another temporal point. That is, related is a both a transitive and

commutative property. If point A is related to point B, and point B is related to point C,

then point C is related to point A. Since temporal intervals are defined by their boundary

points, and the two boundary points of a temporal interval are inherently related, only

template points need be discussed to define interval chains.

Interval chains can be discovered from the original trend template descriptions as fol-

lows. Initially, each template point is in its own set. For each relation encountered, join

(via set union) the sets that contain those two points. Once this has been done for every

relation in the trend template description, the non-intersecting sets will form distinct inter-

val chains. In essence, interval chains are sets of temporal points whose location depend on

the locations of other points in the chain. Points from distinct interval chains do not de-

pend on the locations of each other, and therefore distinct interval chains are independent.

Due to this independence, each interval chain may be processed independently of the other

interval chains in a hypothesis. The hypothesis score is an accumulation of the scores of the

independent interval chains. Distinct interval chains are useful for expressing trends over

several process data streams whose temporally significant breakpoints are unrelated. In

the original implementation of TrenDx, these types of trends were not considered. Distinct

interval chains are an extension to the TrenDx trend template description language.
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Chapter 4

Monitoring Paradigm

To satisfy the goals of this thesis, the TrenDx monitoring procedure needed to be refor-

mulated. The original TrenDx monitoring program was not targeted at being a real-time

monitor system, which allowed it to do excessive computations without much concern about

practical applicability. As discussed in the previous chapter, a few modifications were made

to the computational models of TrenDx. These modifications help to make TrenDx suitable

for real-time processing. This chapter discusses how these changes are used to perform

hypothesis scoring, which is the core of the TrenDx monitoring system.

4.1 Error value calculations

The hypothesis scoring procedure of the original TrenDx involved calculating a weighted

average of value constraint scores for each temporal interval in the hypothesis. The revised

version of TrenDx also computes an error score for each value constraint in the hypothesis,

albeit in a different fashion, and uses a weighted average of these scores to form a score for

the hypothesis. Additionally, however, the new version of TrenDx computes error scores for

each TemplatePoint, and adds these scores into the total score for the hypothesis. This

feature was not present in the original implementation of TrenDx.

4.1.1 Temporal constraint error

As mentioned above, each TemplatePoint is given an error score. TemplatePoints contain

all of the temporal constraint information of a trend template, so these error scores repre-
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sent how well a model matches the process data in terms of the temporal locations of its

significant behavioral changing points. The original implementation of TrenDx used tem-

poral constraints in a threshold-based fashion to prune possibilities to explore in terms of

the intervals to which data points may be assigned. One problem with this approach is that

points just outside of the interval boundaries are not considered as possibly being assigned

to the interval. This is often not the behavior desired by the person designing the template.

Instead, they would prefer that points toward the center of the interval be considered very

likely candidates for being in that interval, and the possibility of a point being assigned to

an interval decreases as the temporal distance from the center of the interval increases, in

a continuous fashion. This problem is analogous to the value constraint whose intent is to

describe a “desired range of values” as discussed in section 2.2.1.

The way in which the new version of TrenDx determines the temporal locations of

interval boundary points also required revision due to the new model of input process data.

The original version of TrenDx modeled the input as a sequence of discrete data points. The

new data model describes the input to the monitor as a linearly segmented continuous data

stream. A continuous data stream translates to an infinite number of discrete points to be

handled by the original TrenDx monitor, which creates an intractable problem. If the anchor

points of the linear segments were instead considered in the same fashion as discrete points

in the original monitoring scheme, problems would arise when value constraint scores were

to be calculated. If the original value constraint scoring method were used, the information

in the process data between anchor points would be lost.

The process of determining where the TemplatePoints are assigned temporally in the

data stream is described in section 4.3. Both temporal and value constraint error scores are

used. It is easier to describe the error given to a TemplatePoint if it is assumed that the

location of the TemplatePoint in the data stream has already been determined. The error

calculation used in the new TrenDx program starts with an expected temporal location

of the TemplatePoint. This expected value is derived from the trend template. Every

interval chain contains some fixed TemplatePoint (such as “birth” or now). The expected

temporal location for a point with a direct relation to one of these points is the midpoint

of the specified range of the point in the trend template model. TemplatePoints that have

relations to other non-fixed points are assigned an expected value based on the determined

or expected value of the related point, in that order. For instance, given the relation
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(begin A end A 5 7)

the expected temporal location of end A would be 6 time units after the determined location

of begin A, but if begin A were not yet determined, end A’s expected location would be 6

time units after the expected temporal location of end A.

Given the expected temporal location of the TemplatePoint along with its determined

temporal location, the error calculation is straightforward. The error is simply the squared

difference between the expected value and the actual value, normalized so that the borders

of the specified range receive an error of 1 (and the center of the range receives an error of

0).

temporal error =
(
2 · (DeterminedTime−ExpectedTime)

UpperBound− LowerBound

)2

In general, ExpectedTime = 1
2(UpperBound+LowerBound). This error function has

the desired characteristics of increasing error as temporal distance from the center of the

range increases, and it continues to grow relatively fast outside of the desired range, which

will cause a large error score for temporally significant points in the process data that do

not match the locations of those in the hypothesis well. A graph of this error function is

displayed in Figure 4-1.

Lower

1

Bound

Upper

Bound

Expected

Time

Figure 4-1: Temporal error function.

4.1.2 Value constraint error

Due to the new process data input model, the way in which TrenDx computes the error of

each value constraint required revision. In the original program, value constraint errors were

determined with either the residual mean square error or the mean absolute percentage error

calculation. These calculations use a sum over each data point contained in the temporal
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interval. Since the data model is no longer composed of discrete points, but instead of

continuous linear segments, a different error measure must be used. The error measure

used for value constraints in the revised TrenDx monitoring algorithm is a measure of the

area between the process data and the trend template. This is conceptually analogous

to the error measure used in the original discrete-point program, but expanded to handle

continuous input.

When a value constraint is fully specified by the trend template, the error calculation

is straightforward. The area between the value constraint and the process data is easily

calculated, since the process data are presented to the monitoring algorithm as a sequence

of continuous linear segments. In general, the area between the portion of a linear segment

within the interval and the value constraint would be computed with an integration. The

trend templates used in the evaluation of the revised version of TrenDx contained only

linear or constant value constraints, which simplifies this calculation. With constraints of

this type, the area between a segment and the constraint is either in the shape of a trapezoid,

if the segment and the constraint do not intersect, or two triangles, if they do intersect.

The non-intersecting area calculation looks like the following:

non-intersecting area = trapezoidal area

=
1
2
·Height · (Basel +Baser)

=
1
2
· (tr − tl) · (|xl − x̂l|+ |xr − x̂r|)

The subscript l indicates the left side of the section, and r indicates the right side, with the

understanding that time increases toward the right. t indicates the time value, x indicates

the value of the data, and x̂ indicates the value expected by the trend template. The area

calculation for the case in which the constraint and the data intersect proceeds as follows:

intersecting area = left triangular area + right triangular area

=
1
2
·Basel ·Heightl +

1
2
·Baser ·Heightr

=
1
2
· (ti − tl) · |xl − x̂l|+ 1

2
· (tr − ti) · |xr − x̂r|

Here, ti is the temporal value of the intersection of the trend template and the data segment.

These area calculations are pictured in Figure 4-2.
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Figure 4-2: Trend template vs. data segment areas.

In each of these equations, the only variables that are not obvious from the information

in the data stream and the trend template may be the expected values of the constraint at

the endpoints of the section (x̂l and x̂r) and the intersection point, ti. When the value

constraint is a specified constant, these variables take on the value of that constant, and ti

is at the point in the data stream where the segment achieves this constant value, if any.

If the constraint is an unspecified constant, the value for the constraint to take on is first

determined by finding the average value of the process data over the temporal interval, and

using that as the value of the constant constraint. For linear constraints with an unspecified

slope, the constraint is made to be the line segment constructed between the data values

at the beginning and end of the temporal interval. For linear constraints with a specified

slope, the constraint is positioned so that it bisects this line segment. These constraint

determinations are depicted graphically in Figure 4-3.

The method of determining the free parameters of value constraints that are not fully

specified does not minimize the area between the constraint and the data stream over

all possible values of the free parameters, particularly for unspecified linear constraints.

However, the desired behavior of these area calculations is that the area tends to decrease

as the interval boundaries approach the corresponding points of temporal significance in the

actual data stream. This behavior is desired for the template point determination algorithm
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described in section 4.3. Furthermore, the exact values of the area calculations are not as

important as are the comparisons of scores produced by competing trend templates. In

general, those value constraints that more closely match the pattern of the data stream will

produce smaller areas using these methods, resulting in hypotheses that score better than

others when their trend templates more accurately describe the input process data.

Although these triangular and trapezoidal area calculations are only valid for linear

value constraints, it is advantageous to recall that the majority of functions that are used in

trend modeling are easily broken into linear segments, which is part of the rationalization for

the new TrenDx data input model. So although a true integration would be ideal in order to

describe a trend with any function, these calculations should suffice for most circumstances.

Under the new TrenDx framework, however, the program could be easily extend to perform

more complex area calculations.

As was the case in the original TrenDx, problems may arise when values derived from

parameters of varying magnitudes are used in an accumulation. In order to normalize the

percent of error that each value constraint contributes to the total error score for a temporal

interval, an idea similar to the mean absolute percentage error is used. The error score is

scaled by the average value of the process data in the interval for the parameter associated

with the constraint. However, problems similar to those encountered when using the mean

absolute percentage error in the original version of TrenDx arise when the average value is

close to zero, so the new program allows use of the unscaled error as well. Furthermore, each

value constraint may be assigned a weighting factor that specifies its relative importance in

relation to other constraints in the hypothesis.

A full description of how TrenDx assigns a score to a hypothesis, using both temporal

error scores and value constraint error scores, appears later in this chapter.

4.2 Real-time processing

The primary goal of this thesis is to develop a real-time monitoring system using the tem-

plates of TrenDx. The previous section discussed how error scores are produced for temporal

and value constraints. The next section describes how the temporal location of a template

point is determined in the data stream. This section describes how the input data travel

through the monitoring system to produce real-time results.
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Recall that the input process data are modeled as a continuous data stream. Further-

more, this stream is broken into continuous linear segments before it is presented to the

monitoring algorithm. The segmentation algorithm described in section 3.1.2 can encapsu-

late the information needed to reconstruct this sequence of segments via the anchor points it

determines. In the new TrenDx program, these anchor points are called Pivots. Therefore,

the input process data are viewed in the program as a pivot stream. When the monitor

receives a new pivot from the segmenting algorithm, it notifies each hypothesis. According

to the new model in which hypotheses contain independent interval chains, the hypothesis

propagates the notification to each of the interval chains it contains. The objects to which

this information is most relevant are the template points themselves. Once the template

points are assigned a temporal location in the data stream, the interval chain and therefore

the hypothesis can produce a final score. So the interval chain must notify each template

point in the chain of the newly encountered pivot.

The only template points that need to receive updates of new pivots are those template

points whose temporal location has not been determined1. When the data stream informa-

tion reaches an undetermined template point, the monitor decides whether that template

point is able to be determined. This decision is based on the time stamp of the incoming

pivot along with the temporal constraints of the template point. The current method used

makes a decision that a template point is ready to be determined if the time stamp of the

pivot exceeds the upper bound of the temporal constraint range on the template point. The

template point determination process is described in the next section.

One of the problems with the original implementation of TrenDx was that it was not

able to accumulate its results into a summary that could be used for future computation.

In the revised program, determined template points contain the necessary information for

further processing. Once a template point is determined, its error score will not change, and

so its score can be memoized for fast look-up. In addition to the temporal error score of the

template point itself, the error scores of each of the value constraints in temporal intervals

which are bounded on the right by the template point will no longer change (template points

may not be determined to be beyond the most recently encountered pivot). So template
1Template points whose positions are specified relative to “now” are never really determined, as

their positions are recalculated with each new pivot (so these template points also require notification
of new pivots). Template points whose position is fixed to positive infinity have similar requirements,
as the error scores of the intervals they bound need to be updated.
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points can contain all of the necessary error information for intervals in the past. Using

these properties, an interval chain score is produced by summing the error scores of the

determined template points (this value can, itself, be memoized) as well as the error scores

associated with undetermined template points. Scores for undetermined template points

are produced using the expected temporal location of the template point, as described in

section 4.1.1, and as much of the process data as is available at the time of computation. The

error scores of undetermined template points and of value constraints in intervals bounded

by these points require updating every time additional pivots are received.

The amount of time required by the monitor to process each pivot from the data stream

is represented by the equation

pivot time = (previously determined template point time)

+(newly determined template point time)

+(undetermined template point time)

The time used on previously determined template points is a constant, based on the number

of interval chains and hypotheses in the monitor set, because of the memoization of error

values discussed above. The time used on newly determined template points is equal to

the time required to determine a template point multiplied by the number of template

points that are able to be determined due to that pivot. The time required to determine a

template point is discussed in the next section. The number of points able to be determined

is dependent on the characteristics of the trend templates and the process data, but should

generally be bounded by a small constant. The time used on undetermined template points

is dependent on the number of value constraints bounded by these template points. This is

also a property of the monitor set and process data, which should again be bounded by a

constant.

4.3 Template point determination

One of the most important parts of the revised version of TrenDx is the methodology it uses

to determine the temporal locations of template points in the process data input. In the

original version of TrenDx, the hypothesis score was determined by finding the best score
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among an easily determined finite set of possible interval boundary locations. The set of

possibilities was finite because the only distinction that had an impact in the error score

was to which side of an interval boundary the discrete data points were assigned. In the

new version of TrenDx, the continuous data model results in an infinite number of possible

locations for each template point. The locations of these template points has a large impact

on the scores given to hypotheses in any scoring system that does not discard information

from the input stream. Because of this impact, the template point determination method

should not be blind to the hypothesis scoring algorithm. Rather, its placement of each

template point should strive to produce the best possible score for the hypothesis. These

considerations contributed largely to the method of error score determination described in

section 4.1. This section describes the method by which the locations of template points

are determined.

4.3.1 Simulated annealing

The algorithm used for template point determination is a form of the simulated annealing

approach to global optimization. Simulated annealing is based on the way in which a heated

substance (particularly a metal) cools slowly to form a crystalline structure. Each individual

molecule in the substance strives to achieve its lowest possible energy state. However, based

on the total energy of all of the molecules in the substance (i.e., the temperature), there is a

possibility that a molecule may be forced into a higher energy state. As time progresses, the

substance loses energy, the temperature decreases, and the molecules become less and less

likely to move from the locally minimum energy states that each has found. This process

continues until the temperature has reached “freezing”, at which point the substance is

locked into its current state and molecules are no longer able to move. When cooled slowly

enough, this process is guaranteed to result in an optimum placement of molecules to achieve

to lowest possible energy state.

The implementation of this method proceeds as follows. An initial energy is assigned

to the initially proposed solution to the problem, and the process is given an initial tem-

perature. The solution is given a random perturbation, and the energy of the resultant

state of the solution is calculated. If the perturbation resulted in a lower energy state,

the change is accepted. If the perturbation resulted in a higher energy state, the change
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is accepted with probability p = exp ∆E
T , where ∆E is the change in energy, and T is the

current temperature. The proposed change is discarded and the system is returned to its

previous state with probability (1− p). The temperature is then lowered, and the process

continues. When the temperature reaches a specified minimum, the process stops, and the

current state is returned as the solution.

4.3.2 Application to template point determination

To apply this method to determining the temporal locations of template points, a mapping

must be found for the parameters in the simulated annealing implementation. The revised

TrenDx program uses the error between the trend template and the process data as the

energy of the current state. This error is calculated as described in section 4.1, assuming

that the temporal location of the template point is the one currently being proposed. The

random perturbation in the current solution is mapped to a change in the temporal location

of the template point that is being determined. This change is randomly chosen from a

uniform distribution between -1.0 and +1.0. The proposed solution is the location of this

template point. In general, there is no natural mapping of the temperature parameter to

solving optimization problems. The manner in which temperature is handled contributes

to the effectiveness of a solution and the time required to achieve the solution in such

problems. In the revised TrenDx implementation, the temperature is initially set at 1.0,

and it is decreased logarithmically by a factor of 0.9 at each iteration, i.e., Ti+1 = 0.9 · Ti.

The algorithm stops when the temperature reaches 0.1, at which point the lowest energy

state encountered thus far is returned as the solution to the problem, and the corresponding

position of the template is fixed from that point onwards. A demonstration of the template

point determination algorithm is shown in Figure 4-4.

This approach to determining the location of template points is directly related to

the hypothesis scoring method, in that they both use the same error calculations. This

process loops for a fixed number of iterations, determined by the initial temperature, the

freezing temperature, and the temperature reduction factor. During each iteration, the

number of calculations required is determined by the number of value constraints in intervals

affected by the move in the location of the template point in conjunction with the number

of segments of the process data stream assigned to these intervals. In general, these factors
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should be bounded by a small constant. Therefore, the total time required to determine

each template point will be bounded by a constant using this method. Each template point

requires determination exactly once, after which the error values affected by its location are

memoized for fast hypothesis scoring.

There are several advantages to using this technique to locating the positions of temporal

points in the data stream. Due to its constant-bounded running time, the template point

determination can be performed in real time. In contrast to many other search techniques,

the simulated annealing method does not become trapped in search paths that only lead

to local extrema. This is a very important property of any searching method to be used in

determining the locations of template points. Finally, the template points may be positioned

in between the pivots of the data stream with this determination method. The combination

of temporal and value constraint errors used to produce a hypothesis score make it possible

for the best score for a hypothesis to be achieved when the template points are located

anywhere along a linear segment of the data stream as opposed to being restricted to

the pivot points. This is an important ability for the determination mechanism to have,

particularly when data stream pivots are spread relatively far apart in relation to temporal

constraints on the template points. Additionally, this ability partially compensates for a

detail of the segmentation algorithm described in section 3.1.2. The segmentation algorithm

only allows pivots to be placed temporally at locations where input data points occur, when

in fact a more accurate segmentation scheme might choose to put a pivot at any temporal

location. This fact becomes more important as the discrete data values are spread further

apart in time.

This completes the description of the revised TrenDx monitoring system. Hypotheses are

scored by combining the scores of their component interval chains, and interval chains scores

are determined through the scores of their component template points. After hypotheses

are scored, there are many ways to interpret the meanings of the scores. The revised version

of TrenDx follows the same model that the previous version of TrenDx used. A decision to

trigger a signal that a process is in an abnormal state is based on the lowest score of the

applicable trend templates of normal process behavior. If a threshold score is surpassed, the

signal is triggered, indicating to the user that the process requires special attention. In the

following chapter, this monitoring scheme is analyzed in the domain of children’s growth.
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Figure 4-3: Value constraints against a data stream.
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Figure 4-4: Demonstration of template point determination.
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Chapter 5

Pediatric Growth

The revised version of TrenDx described in this thesis was compared to previous versions of

TrenDx to determine its feasibility for use as a process monitor in the same domains as the

original TrenDx. This was necessary because the process data input model was significantly

modified in the revised version of TrenDx, as well as its hypothesis scoring mechanisms.

The methods and results of these comparisons are discussed in this section.

The previous versions of TrenDx were most thoroughly tested in the domain of pediatric

growth. There are many reasons why developing a monitor for this domain is important.

Several growth abnormalities can be detected in this domain by observing a small number

of parameters, particularly height and weight measurements. However, a correct diagnosis

based on these measurements is often quite difficult for general pediatricians. The decision

by a pediatrician to refer a child to a growth specialist is generally based on relatively few

height and weight data points. Such a referral would be called for only when the child is

suspected of abnormal growth behavior. Unfortunately, there are many types of growth

patterns that are considered to be normal growth. These various patterns result from the

differences in age at which children enter puberty, family history, and other influences.

The most common way to detect growth abnormalities is through plotting the height and

weight measurements on a growth chart, on which several centiles for these statistics have

been drawn based on data collected by the National Center for Health Statistics (NCHS).

Variations of this chart are available for males and females in different subpopulations.

Other than being able to detect when the growth pattern is far from the standard develop-

ment rate, doctors are able to notice when a child’s measurements are moving to different
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centile channels using these charts, which may indicate abnormal growth. Unfortunately,

doctors do not have enough time to carefully examine each patient’s records, and must make

judgement calls based on quick reviews of data. It is often difficult to differentiate between

normal and abnormal growth patterns even using these charts, as the centile channels on

the charts are modeled by complex functions, there are several charts to consider for each

patient, and children mature at different rates. Pediatricians must be careful not to refer

too many children without growth disorders to specialists, as the specialists would then

become overwhelmed and would not be able to treat each child as well as possible. On the

other hand, those children who do have growth disorders should be referred to a specialist

as soon as possible, because early detection and treatment produces the best results in the

long run.

Experts in the domain of children’s growth disorders are significantly more adept at

achieving the correct clinical diagnoses with height and weight information, but their skills

are in too great demand to be asked to review every child’s measurements. With additional

information, such as measurements of bone age and sexual development, their diagnoses

become much more accurate. It would be a great asset to children’s health care if this

expert knowledge could be programmed into a monitor system that could be used at a

general pediatrician’s office to assist in referral decisions.

5.1 Trend Templates

One aspect necessary to the proper function of TrenDx is the programming of competing

trend templates. These trend templates must be developed by a knowledge engineer in

such a way that they are able to distinguish between different diagnoses of the process

being monitored. For the evaluations of TrenDx in the pediatric growth domain, trend

templates were defined in three categories: normal templates, abnormal templates, and

supplemental templates. The normal templates were originally designed by Haimowitz [3],

and this template set was refined and expanded by Le [5].

5.1.1 Normal templates

The majority of the templates used in this domain followed a temporal interval model

similar to that depicted in Figure 5-1. There are three hypotheses that indicate normal
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growth behavior: average growth, constitutional delay, and early puberty.

growth stops

linear growth ends

Labels:

Landmark Event

Temporal Interval

birth

early childhood childhood to adulthood

Figure 5-1: Temporal interval model for growth trend templates.
Interval and landmark event names as in Le [5].

Average Growth is the trend template intended to match most closely to the growth

patterns of a child following the mean behavior of the NCHS charts. This should be

the lowest-scoring template for the majority of children seen by a pediatrician.

Constitutional Delay is a common condition in which pubertal onset occurs later than

in the average growth scenario, and therefore the end of the growing stage occurs

at a later age. Adult height and weight are equivalent to those achieved by average

growth.

Early Puberty is the hypothesis which depicts a child whose pubertal onset occurs before

that in average growth. Consequently, growth stops at an earlier age as well, but adult

height and weight achieved are equivalent to those in the average growth model.

None of the previous three templates are harmful growth conditions, and therefore do

not require referral to a specialist.

5.1.2 Abnormal templates

There were four abnormal trend templates defined in the growth monitor: congenital growth

hormone deficiency, short bone syndrome, acquired growth hormone deficiency, and preco-

cious puberty. Each of these diagnoses is a disorder that requires treatment by a growth

specialist.
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Congenital Growth Hormone Deficiency is a condition in which a child has an inabil-

ity to produce or respond to growth hormone. The child’s skeletal development is

greatly delayed, much more so than in the constitutional delay model, and therefore

the child is significantly short for his/her age.

Short Bone Syndrome models a growth disorder in which children are even shorter than

those suffering from growth hormone deficiency, but their skeletal age is not signifi-

cantly delayed.

Acquired Growth Hormone Deficiency is marked by normal growth followed by a sig-

nificant growth deceleration, which occurs after the onset of this condition. The tem-

poral intervals of this trend template are described by a model that differs from the

rest of the normal and abnormal hypotheses, and is depicted in Figure 5-2.

Labels:

Landmark Event

Temporal Interval

now

onset to now

linear growth ends

early childhood

growth stops

birth

childhood to onset

Figure 5-2: Temporal interval model for Acquired Growth Hormone Deficiency.
Interval and landmark event names as in Le [5].

Precocious Puberty describes an extremely early development of a child. The child is

generally significantly taller than his/her peers due to advanced skeletal development.

5.1.3 Supplemental templates

In addition to the diagnoses presented above, information about the build of a child is

useful to pediatricians and growth specialists. These trend templates are fairly simple, with
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a temporal interval model of that displayed in Figure 5-3.

birth

Labels:

Landmark Event

Temporal Interval

Build

now

Figure 5-3: Temporal interval model for build templates.

Three trend templates use this model: normal build, obese, and malnourished. The low-

est scoring of these templates may be used as additional information to support particular

diagnoses.

5.2 Evaluation methods

The evaluations of previous versions of TrenDx were largely based on patient data collected

by Le [5]. The patient records were collected from the Endocrine Division at the Boston

Children’s Hospital. In total, 95 patient records were used for the evaluations.

5.2.1 Expert Gold Standard

A gold standard used in the evaluations of TrenDx was the diagnosis of a pediatric endocri-

nologist for each of the patients in the study. The diagnosis was based on the height and

weight data of the patient that were available prior to that patient’s visit to the clinic. These

height and weight data were presented on NCHS growth charts for ease of visualization.

The growth specialist was asked to either recommend or deny a referral to the growth clinic

for each patient. The referral decision of the pediatric endocrinologist would be considered

the correct course of action for a general pediatrician to take. Of the 95 patient records

used in the evaluations, the pediatric endocrinologist decisions were to refer 59 patients to a

growth clinic, and to deny referrals for 36 of the patients based on the information available.
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5.2.2 Physician base line

Le conducted a study in which human participants were asked to diagnose the patients

based on the same information that was provided to the pediatric endocrinologists. The

participants (henceforth “physicians”) were required to have medical training (one regis-

tered nurse participated, along with students in medical school as well as post-residency

physicians). They were asked to determine, based on the height and weight data presented

on an NCHS growth chart, whether or not a patient should be referred to a growth clinic.

The accuracy of their responses, compared to the expert gold standard of the pediatric

endocrinologists, formed the base line to which the results of TrenDx were compared.

5.2.3 TrenDx diagnoses

To compare the results of TrenDx to the human diagnoses, the height and weight data

points were entered into the program for each patient in the study. TrenDx was used

to monitor these points, and the best score for each hypothesis in the monitor set was

recorded. To make a referral decision in previous versions of TrenDx, the score of the

lowest-scoring (closest matching) normal growth template (see section 5.1.1) was compared

against a threshold value. If this score was above the threshold value the referral would

be made, otherwise it would be denied. To perform a similar evaluation with the version

of TrenDx described in this thesis, the hypothesis scores needed to be modified before a

threshold comparison could be used. This is due to the fact that as the length of time over

which data points are spread increases, the area (which is used in the error score) between

the data and the model generally increases. To compensate for this fact, the score for each

hypothesis was scaled by the length of time over which the data points were collected. This

scaled value was then compared against a threshold to determine the referral decision. In

this evaluation, a threshold value of 0.663 was used.

5.3 Evaluation results

The revised version of TrenDx was evaluated in the same manner and using the same test

cases as previous implementations were evaluated. The results of the new evaluation are

compared to the results of the previous evaluations in this section. It is important to
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compare the reformulated version of TrenDx to previous versions of the monitor to ensure

that the revisions did not cripple its diagnostic ability. At the time of this evaluation, the

development of real-time TrenDx is at a similar stage as was the version of TrenDx used by

Le [5].

5.3.1 Evaluation metrics

There were two metrics used in the previous evaluations of TrenDx to determine its ability

to diagnose patients in the growth domain correctly. The metrics used were sensitivity and

specificity. These metrics are typically used to describe the accuracy and effectiveness of a

diagnostic test. They are defined in terms of “positive” and “negative” test results. In the

context of this evaluation, positive is to mean that the decision of the test was to refer the

patient to a growth clinic, while negative means that the decision made was not to refer the

patient.

A summary of the results of the evaluations of all of the versions of TrenDx with results

published using these metrics is presented in Table 5.1. This table also includes the data of

the expert gold standard and the physician base line provided by Le.

Sensitivity

The sensitivity of a testing mechanism is a measure of how accurate the test is in producing

positive results. It is the ratio of the number of test subjects that both should and do test

positive to the total number of test subjects that should test positive. In terms of the test

used in this thesis,

sensitivity =
number of patients referred by both gold standard and test method

number of patients referred by gold standard

In the gathering of opinions from medically trained physicians conducted by Le, the

number of responses collected varied greatly from patient to patient. This was largely due

to the methods used to conduct the study. A total of 217 diagnoses were collected from

the human participants. Each diagnosis applied to one of the 95 patient test cases used

in Le’s study, and each physician responded with up to 10 diagnoses for different patients.

142 of these were diagnoses of patients who should have been referred to a growth clinic,

according to the pediatric endocrinologist gold standard. There were 91 instances in which
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the opinion of the physician correctly resulted in a referral according to the gold standard.

Consequently, 51 diagnoses by physicians disagreed with the expert gold standard and

denied a referral that should have been given.

Physician sensitivity =
91
142

= 0.64

Le was also the first to evaluate a version of TrenDx in this fashion. His version of

TrenDx, henceforth referred to as TrenDxLe, correctly referred 36 of the 59 patients who

were referred by the pediatric endocrinologist. Likewise, 23 patients were denied referrals

by TrenDxLe who should have been referred according to the expert gold standard.

TrenDxLe sensitivity =
36
59

= 0.61

Following Le’s evaluation, more development was done on TrenDx by DeSouza [2]. This

newer version of TrenDx, referred to as TrenDxDeSouza, performed better on the patient

records collected by Le than did TrenDxLe, as compared to the expert gold standard. Of the

59 referrals diagnosed by the pediatric endocrinologist, TrenDxDeSouza correctly produced

38 of there referrals, while denying referrals to 21 patients who should have been referred.

TrenDxDeSouza sensitivity =
38
59

= 0.64

The revised version of TrenDx described in this thesis, TrenDxBull, was tested on the

same set of 95 patient records gathered by Le. TrenDxBull correctly referred 36 of the 59

patients referred by the expert gold standard, and it mistakenly denied referrals to 23 of

those 59 patients. This matches the results of TrenDxLe.

TrenDxBull sensitivity =
36
59

= 0.61

Specificity

In a complementary nature to the sensitivity of a testing mechanism, the specificity of a

test measures the accuracy of that test in producing negative results. It is the ratio of the

number of test subjects that both should not and do not test positive to the total number

of test subjects that should not test positive (those that should test negative). In terms of
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the tests of this thesis,

specificity =
number of patients denied referrals by both gold standard and test method

number of patients denied referrals by gold standard

75 of the responses from the physicians gathered by Le pertained to patients who did

not need to be referred to a growth clinic according to the pediatric endocrinologist. 56

responses in this category correctly denied referrals to the patients, while 19 of the physicians

diagnoses disagreed with the expert gold standard and suggested referrals for these patients.

Physician specificity =
56
75

= 0.75

Le’s version of TrenDx denied referrals to 19 of the 36 patients who did not need to be

referred according to the expert gold standard. TrenDxLe referred 17 of these 36 patients

in disagreement with the referral decision of the pediatric endocrinologist.

TrenDxLe specificity =
19
36

= 0.53

In the version of TrenDx that was improved after Le’s evaluation, TrenDxDeSouza, the

specificity of the program was increased along with the sensitivity. TrenDxDeSouza agreed

with the pediatric endocrinologist on 25 of 36 patients in denying referrals. For 11 patients,

TrenDxDeSouza produced referrals, while the expert gold standard decision was not to refer

the patient.

TrenDxDeSouza specificity =
25
36

= 0.69

TrenDxBull, the new version of TrenDx, agreed with the expert gold standard in not

referring 19 patients of the 36 non-referral patients of the standard. TrenDxBull decided to

refer 17 patients to whom the pediatric endocrinologist denied referrals.

TrenDxBull specificity =
19
36

= 0.53
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Diagnosis method
Correct
Positive
Referrals

Correctly
Denied

Referrals
Sensitivity Specificity

Pediatric
Endocrinologist
Expert Gold Standard∗

59 36

Physicians∗ 91 (of 142) 56 (of 75) 0.64 0.75
TrenDxLe

∗ 36 19 0.61 0.53
TrenDxDeSouza

† 38 25 0.64 0.69
TrenDxBull 36 19 0.61 0.53

∗: results from Le [5]

†: results from DeSouza [2]

Table 5.1: Summary of evaluation metrics.

5.3.2 Discussion of evaluation results

At first glance, the sensitivity and specificity of TrenDx, not to mention those of the physi-

cians, seem rather low. However, it is important to note that the patient records used in this

evaluation were taken from an endocrine clinic, a place where patient records would only be

kept for children who were referred for a particular reason. This implies that their growth

patterns may not follow behaviors of normal children, which a program like TrenDx would

understand, but instead may follow a special scenario that was not incorporated into the

growth trend templates. Experts (pediatric endocrinologists) may have special experience

with these scenarios, therefore resulting in a specificities that are significantly lower than

that which would be achieved from a sample of patients more closely resembling the whole

population. The fact that the metrics for physicians and TrenDx are similar, however, is

an encouraging sign that TrenDx may be useful in a clinical setting.

It is worthwhile to compare TrenDxBull to TrenDxLe. Each of these monitors were initial

attempts at using the TrenDx trend templates to diagnose the state of a process. However,

they differ greatly in their input models, and in the ways they score hypotheses. The first

evaluation performed with these trend template descriptions in use was done with TrenDxLe.

The sensitivity and specificity of TrenDxLe were determined to be good enough to try to

improve the monitoring system and further develop TrenDx. TrenDxBull is at a similar stage

in its development as TrenDxLe was at the time of its first evaluation. Both the sensitivity

and specificity of TrenDxBull are identical to the sensitivity and specificity of TrenDxLe,
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which suggests that TrenDxBull is also worth further development and evaluation.

When compared to TrenDxDeSouza, TrenDxBull is less accurate. It is important to note,

however, that TrenDxDeSouza was specifically tailored to perform well in this domain, and

with knowledge of the problems encountered by TrenDxLe during its evaluation. TrenDxBull

is a significant deviation from this process of iterated improvement, and therefore the drops

in sensitivity and specificity back to the levels of TrenDxLe are not very worrisome.

The sensitivity of TrenDxBull is comparable to the sensitivity of the physicians. How-

ever, the specificity of TrenDxBull is significantly lower than that of the physicians. None

of the versions of TrenDx have been able to match the specificity of the physicians without

substantial costs in the sensitivity. There is a trade-off between sensitivity and specificity

when the decision threshold is varied. Higher sensitivities may be desirable to warn doc-

tors of patients at risk for certain disorders while suffering only minor costs in specificities.

Conversely, higher specificities may be desirable to avoid over-referring patients to growth

clinics, which would put to great of a demand on the time and skills of the specialists.

For TrenDxBull to achieve a sensitivity of 0.64, the same sensitivity of TrenDxDeSouza

and of the physicians, the threshold value that is used to make referral decisions must

be lowered to 0.650. With this threshold, the specificity of TrenDxBull decreases to 0.47.

However, if the threshold is lowered further to 0.645, the sensitivity increases to 0.68 while

the specificity remains constant at 0.47. On the other hand, in order to achieve a specificity

of 0.69 for TrenDxBull, the threshold value must be increased to 0.750. At this threshold, the

sensitivity is drops dramatically to 0.34. However, as previously mentioned, the specificity

in these evaluations does not accurately reflect the standard interpretation of specificity,

due to the skewed sample set of patients.
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Chapter 6

Conclusions

The results of the evaluation of TrenDxBull in the pediatric growth domain were promising,

and comparable to those of TrenDxLe. There are several points of interest to note about

this evaluation which suggest that TrenDxBull may fare even better in a different domain.

6.1 Evaluation difficulties

The largest conceptual change introduced in TrenDxBull was in the model of process data

input. In previous versions of TrenDx, the data model consisted of a sequence of discrete

data points. In TrenDxBull, however, the input model is a continuous data stream (i.e.,

a sequence of data points that accurately describes the underlying continuous process, as

discussed in section 3.1.1). The previous versions of TrenDx were designed to perform

well under their assumptions on the data, and the evaluation in the growth domain shows

the feasibility of TrenDx in a domain with sparse and irregularly-spaced data points. An

evaluation with this data set is not well suited to determining the monitoring abilities of

TrenDxBull.

One of the reasons a domain in which the data points were sparse was used in the

evaluations of previous versions of TrenDx was the fact that TrenDx was not able to process

a large amount of data in a reasonable amount of time. Although the speed of TrenDx

improved as computational technology advanced, it still suffered from the need to explore

all possible discrete placements of temporal interval boundary points. During the evaluation

of TrenDxDeSouza, it was noted that “On average, it takes a few minutes to process a
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patient” [2, page 14]. TrenDxBull, on the other hand, is able to process several patients

(up to 10) per minute. The characteristics of the machine which was used for the trials of

TrenDxDeSouza are not known. It is suspected that the processor of the computer was a

Pentium Pro running at approximately 200 MHz. The trials of TrenDxBull were run on a

SPARC-based CPU at a speed of 270 MHz. The increase in speed appears to be significant,

though an exact comparison cannot be performed. It is possible that a large portion of

the improvement is due to optimized architecture of the computer used as well as other

technological advances since the trials of TrenDxDeSouza. Trials involving a larger number

of data points are desirable to test the efficiency improvements of real-time TrenDx.

Another disadvantage encountered in evaluating TrenDx in the growth domain is the

fact that the data samples are decidedly insufficient to reconstruct the entire growth pattern

of the patient. The assumption made in the evaluation of TrenDxBull was to linearly

interpolate between height and weight measurements. With this assumption, the pivot

stream presented to the monitoring algorithm consisted of the data points themselves. This

is likely not the best reconstruction of growth patterns from the data points given. Further

difficulties arose in the evaluation on this data set due to the absence of some values at

different time points. Part of the assumption of the monitor is that some measurement

would be present for the various parameters at each point in time, but this was not the case

in the data collected by Le. For example, many patients had height measurements but no

weight measurements at a few ages. Again, these values were linearly interpolated wherever

possible for the evaluation.

Regardless of these difficulties, TrenDxBull still performed with an accuracy identical

to that of TrenDxLe. In comparison to TrenDxDeSouza, the new version of TrenDx did not

fare as well. However, there is a concern that TrenDxDeSouza was engineered to over-fit

the evaluation data. Its improved results were accomplished one patient case at a time,

although the theoretical implications of each improvement were carefully considered prior

to implementation.

In addition to the development of the monitoring system of TrenDx previously being

conducted under the assumption of a discrete data model, the trend templates were engi-

neered to produce good results with this input model. With the revised data model, it is

likely that there could be some changes made to the growth trend templates that would

improve the results of TrenDxBull. One particular area for concern is due to the allowance
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of TrenDx to apply arbitrary functions to its input before the value constraints are used.

The monitoring system of TrenDxBull expects linearly segmented parameter streams to

score against value constraints. This caused the functions to be applied to the data points,

producing another parameter, and using the values of that parameter to construct another

data stream. Even based on a linear data point stream, there is no indication that this

new parameter stream would be accurately described by linear segments between the data

point pivots, since the functions applied to the data to produce the new parameter are

not necessarily linear transformations. This would skew the error measure for the value

constraints on those parameters. A domain expert was not on hand to assist with the ef-

fort of re-designing trend templates, but even still TrenDxBull performed well without this

additional improvement.

It would be desirable to evaluate TrenDxBull in a domain more in line with this monitor’s

model of process data. Due to time limitations, however, an evaluation of this sort was not

able to be performed. There is considerable effort involved in gathering the data needed

to perform such an evaluation, along with the need to secure the services of a domain

expert to assist in the engineering of the trend templates and to provide a gold standard

for comparison.

6.2 Related research

The areas of knowledge that are related to the ideas in this thesis are quite wide in scope,

ranging from time series analysis to medical informatics.

6.2.1 Time series analysis

Time series analysis techniques are typically used to study processes that are in some

way periodic. The models used in time series analysis often consist of four components:

seasonal components, cyclical components, trend lines, and stochastic components [6]. Al-

though these models do contain trend lines as a component, the analysis techniques are

generally more concerned with noise filtering and prediction of future values than they are

geared toward diagnosis. Time series analysis techniques may be quite useful in monitoring

domains, however, and in particular in conjunction with TrenDx, to pre-process data before

the monitoring algorithm is employed.
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The focus of time series analysis involves accurately modeling the stochastic component

of the process [8], which may then be extracted from the process. In a monitoring capacity,

the diagnosis of a process may be dependent on the type of interference to which it is

subjected, or the process may become easier to diagnose with the interference removed.

Furthermore, some techniques developed through time series analysis, such as analyses in

the frequency and wavelet domains [7], are useful in detecting different characteristics of a

process. These characteristics may be used in a monitoring capacity, such as in the form of

parameters on which trend templates may place value constraints. Time series analysis is

not particularly concerned with diagnosing processes, but may be used as part of a monitor

system such as TrenDx to enhance the descriptive capabilities and diagnostic power of the

system.

6.2.2 Neural nets

In recent years, neural nets have been used to perform recognition tasks [12]. Using a

network of nodes, each of which performs a threshold-like function, a neural net can be

trained through back-propagation to simulate any desired function. Unfortunately, the

design of neural nets is rather difficult. One of the difficulties involves the representation of

the data with which you wish the neural net to operate. Another drawback of neural nets

is that they often require large amounts of training data. For the domains in which TrenDx

is well-suited, there need not be much training data available, but instead a description of

different diagnoses by an expert. If the size of the neural net in use is not appropriate, the

function desired may be unlearnable (if the net is too small), or it may easily overfit the

training data and not work well in test cases (if the net is too large). Furthermore, it is not

clear how to apply a neural net to diagnose evolving processes such as those which TrenDx

was designed to monitor.

6.2.3 Temporal reasoning

There have been several proposed methods for representing and using time in computational

settings. Most methods used to represent time have been specific to the task which they

are trying to solve. A few of the time representation structures used in applications related

to diagnostic process monitoring are discussed below.
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Temporal Control Structure

One attempt to incorporate time-ordered data into diagnostic monitoring modeled time

through the use of memory variables. In the Temporal Control Structure (TCS) [10], all

data are associated with either a point or an interval in time and are stored in point or

interval variables. TCS maintains a historical database of data values over time, using

propagation of data through memory variables to draw conclusions about the state of the

process. However, TCS is limited in that it does not allow uncertain endpoints of temporal

intervals and it does not allow variables to vary within a particular interval.

Knowledge-Based Temporal-Data Abstraction

Another approach to the problem of using data that varies over time in a computational

setting is proposed by the Knowledge-Based Temporal-Data Abstraction method (KBTA)

[11]. The goal of KBTA is to create interval-based temporal abstractions from a set of

time-ordered data with a domain-independent methodology. KBTA decomposes the task of

temporal abstraction into 5 subtasks, each of which is solved by mechanisms that depend

on 4 domain-specific knowledge types. Only these knowledge types are domain-specific, and

they are formally defined. This approach to abstracting qualitative temporal behaviors of

time-oriented clinical data emphasizes the explicit representation of knowledge required for

such a task.

6.2.4 Constraint programming

There has been interest recently in the development of improved constraint satisfaction

solvers [9]. The trend detection problem discussed in this thesis can be viewed as a multi-

dimensional constraint satisfaction problem (temporal constraints providing one dimen-

sion, value constraints providing additional dimensions). Constraint satisfaction solvers

have been used with success in some commercial applications, resulting in a desire to de-

velop a standard framework for representing and computing with constraints. Emphasis

has been placed on developing constraint-programming libraries for common programming

languages. Additionally, work has continued in improving the search-based methods that

have been successful. A significant drawback of constraint programming is the difficulty of

representing models that involve trends and temporal uncertainties with current available
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tools. Furthermore, many of these tools are not geared toward real-time problem solving,

which is one of the goals of this thesis.

6.2.5 Medical expert systems

Several diagnostic programs have been developed in recent years that are commercially

available. Many expert systems are developed around a rule-based paradigm. Due to the

qualitative nature of descriptions of symptoms for various disorders in the medical domain,

however, strict rule-based systems tend not to fare very well with their dependence on

quantitative tests. Most systems use probability distributions in one way or another, as

exhibited in the following comparison of four medical diagnostic programs [1]:

Iliad and Meditel use Bayesian logic, but they differ in the assignment of prior

probabilities, in specific decision rules, and in the use of expert judgment.

Dxplain and QMR use non-Bayesian algorithms, but they incorporate semi-

quantitative scales to express the probabilistic association of findings (signs

and symptoms) with particular diagnoses, and they use these scales to derive

a weighted assessment of the patients’ combined signs and symptoms.

TrenDx does not have prior probability distributions inherent in is design, but through the

engineering of trend templates and by weighting value constraints appropriately, similar

biases to particular diagnoses can be achieved. There is no clear way to decide what the

best design for a medical expert system will be, but through continued research the goal of

attaining a reliable health monitoring system may well be achieved.

6.3 Future work

There are several areas to investigate in terms of further development of real-time TrenDx.

Perhaps the most informative future work on TrenDx would be to perform an evaluation

of real-time TrenDx in a domain that is more aptly suited for the monitor’s abilities than

the pediatric growth domain. Originally, TrenDx was perceived as being useful in an in-

tensive care unit context. In that domain, the process data would more closely resemble

the continuous data stream that real-time TrenDx expects. With the appropriate form of

data input, the matching algorithm of real-time TrenDx is likely to perform better than on
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the sparse data set of the growth evaluation. Evaluating TrenDx in an intensive care unit

setting would also be a good test to determine the efficiency of TrenDx and its practicality

as a real-time monitoring tool.

The future development of real-time TrenDx is expected to be more enticing than the

development of previous versions of TrenDx. Real-time TrenDx runs much faster than the

older versions of the monitor. The previous versions of TrenDx were implemented in various

dialects of the Lisp programming language. From version to version, the implementation

had to be updated depending on the Lisp interpreter that was being used in conjunction with

the type of operating system of the computer on which the program was being run. Real-

time TrenDx was implemented in the Java language. Java was designed with portability and

quick development considerations in mind. Under this design, Java programs are compiled

into byte code that does not need to be modified when transferring files from one operating

system to another, which is intended to make the programs platform independent. These

advantages of the Java language should make it easier to maintain real-time TrenDx over

evolving operating systems and computer technology.

Another area to look into for future development concerns the problem discussed above

in which arbitrary functions may be applied to process data before applying a value con-

straint. As discussed above, this can cause skewed error measures to result from value

constraints on parameters of this type. The Java language does allow arbitrary functions

to be dynamically applied to variables, so it is possible that the type of function could be

analyzed to determine an appropriate scaling mechanism for use with these constraints.

As discussed in section 4.1.2, the methods by which unspecified value constraints are fit

to the data stream are sub-optimal in terms of minimizing the area between the segments.

An optimal method of free parameter determination should be explored and incorporated

into the monitor, although the current method was sufficient for use in this thesis. One

unsettling fact of the method described for constraint fitting is that an unspecified constant

constraint may be instantiated differently than a linear constraint with a specified slope of

zero would be fit to the data stream.

Furthermore, it may be desirable for real-time TrenDx to allow the description of value

constraints in terms of higher-order functions than simply first-order polynomials. Linear

value constraints were used in this implementation due to the straightforward computations

that they allow in finding areas, especially in combination with the process data input model.
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Furthermore, the trend templates in existence did not specify any higher-order functions,

and therefore linear constraints were sufficient for the evaluation. The mechanism required

for generalized function constraints would be an integrator (to find the area between curves),

which was not readily available. The implementation of real-time TrenDx was designed in

such a way that expansion of the available types of constraints would be relatively easy for

the developer. An integrator should be built into the monitor to enable generalized function

constraints, which would not be a difficult task.

An important part of any system that is to be used by a variety of people in different

fields is a well-designed user interface. Part of this user interface is for the end user of the

monitoring system. For this person, it would be important for the monitor to provide a

customizable display of its current state, including the rankings of the possible diagnoses

of the process along with the reasoning it used to achieve those results. For the domain

expert, it would be desirable to have an intuitive interface that she may use to encode her

knowledge into trend templates. Neither of these interfaces have been developed. In the

medical domain, there is a particular need for an explanatory display to be available to

support a diagnosis.

Finally, in addition to exploring the applicability of TrenDx in the medical world, the

feasibility of real-time TrenDx should be explored in other areas. A natural domain for a

software-based monitoring system such as this is in the observation of computer systems

themselves. In particular, TrenDx may be used for network monitoring purposes, to deter-

mine when a machine has been compromised. This has not been fully explored, but many

areas such as this seem promising to demonstrate the usefulness of TrenDx.
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