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ABSTRACT

An important future addition for a Space Based High Performance Computer
System is a high-speed optical network for faster data transmission. The purpose of this
project is to research and ssimulate next generation computing applications on high-speed
optical networks. The research has been performed in the System Application context
involving embedded high-performance computing applications and optical networking
technology to guide future research and development of advanced optical devices. The
research addresses advanced processing system issues in bandwidth, latency, protocol,
topology, and fault tolerance in relation to high performance systems. The reference
distributed computer, provided by BAE SYSTEMS in Nashua New Hampshire, consists
of multiple processing nodes connected by a Myrinet copper network. The advanced
embedded computing applications include Space-Based Radar Corner Turn processing,
Synthetic Aperture Radar Back End processing, and Random Workload software models.
Two Optical networks have been developed as part of this research to replace the
reference Myrinet network, a Ring based network and a Star based network. Both
networks employ redundancy to provide an alternate direct optical path between each pair
of nodes. Of these networks the Ring design failed due to packet collisions and due to
the need for a complex networking protocol. The Star Optical network design performed
well in comparison to the reference network design. Overal, network latency was
reduced and the internode data distribution speed was dramatically increased. Also, the
memory usage for each of the three software models was analyzed and each has definite
bound that will help future development. Although the results of this research are
favorable, the eventual future design and implementation of a Space Based High
Performance Computer System would benefit from additional research on a number of
topics.
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Chapter 1

1 - Introduction
1.1 - Purpose:

Networks are an important part of everyday life. Every time you make a phone
call, send an email, or turn on alight, you are using a network. One of the most common
networks used are those computers communicate through. These networks transfer data
across the long distances between computers. Most computer networks today are copper
wire based systems. However, we have begun to reach the limit of how much data a
copper wire can transmit over long distances. Networking companies have addressed this
issue with optical technologies. Optical technology use in LAN and WAN applications
has demonstrated significant increases in data bandwidth capacity. However, use of
optical technology for embedded system network application has yet to mature due to
greater challenges in size, weight and power, and the electrical interfacing cost (e.g.
latency) associated with bridging between the optical and CMOS domain. The objective
of thiswork is to explore new optical LAN architectures for improved embedded network

performance.

1.2 - Background
1.2.1 — Reference Design for Space Applications:

A lagging technological aspect of space systems is the computer systems onboard
space satellites. This lag is due to severe requirements beyond those placed on ground
based, commercia systems, space-based processors must be radiation tolerant, low
power, light weight, and tough enough to handle the physical stresses of launch (with
high reliability). Because of such factors space based processors are typically several

generations behind equivalent terrestrial systems. Several space system applications are



currently being envisioned which require significant advances in the on-board processing
available to satellite designers.

Our research is in the context of a high-performance space computer, devel oped
by BAE SYSTEMS, which serves as a reference design for this thesis'. Part of this
research includes the modeling of a distributed computer composed of multiple
processing and input nodes connected by a Myrinet switch network. Myrinet is a byte-
wide path-based interconnect protocol and technology.? Each node on the Myrinet
network is composed of a Node Controller (NC) and a resource element such as:
processing elements, input/output elements, or external hardware control elements. The
NC is the heart of a Node, and handles all internal message and data passing as well as
any external networking needed by the elements attached to it. Each node is connected to
the Myrinet switch network through redundant ports for fault tolerance. The current
instantiation of this network is limited by its specification to 160 Mega-bytes per second,
or equivalently 1.28 Giga-bits per second (Gbps). (See Figure 1.1) The next generation
node in support of elements of planned Space Systems is expected to need at least 5x
increased network bandwidth to maintain the internal node transfer bandwidth based on
newer PCl buses 64 bits across and running at 66 MHz. Thiswill trandate to a maximum
data throughput of 4.2Gbps. Since the latest version of Myrinet will be able to handle
2Gbps of bandwidth, there will still be a large difference in ability versus need. One
possible solution for the network bandwidth problem is an optical network.

! Seer A Reliable Infrastructure Based on COTS Technology For Affordable Space Applications
2 See: Myrinet Network Specification Draft Standard
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Figure 1-1: Basic black box outline of a processing node. Notice the Myrinet

Connection and current data rates at the bottom.

1.2.2 — Integrated Optical-Electronics Technology Reference:

The core technology of our optical architecture is based on Vertica Cavity
Surface Emitting Laser (VCSEL) transmitters and diode detectors devices. A test chip
has been developed containing these devices numbering 1024 VCSEL’s and 1024
detectors named Demo-2 . This device contains four test areas with approximately 128
pairs of devices per area. An dternate device to the Demo-2 is the current test model of
TerraConnect Inc. This device contains 48 transmitters or 48 detectors per optical
transmitter or receiver device. A downside of the curent TerraConnect test model is that
the transmitters and receivers are not integrated onto a single chip. A benefit of the
Demo-2 device is that it has more elements per area and can test different data
communication paths. Both the TerraConnect device and Demo-2 are technology
demonstration models only and have been implemented in few real world applications.
For the purpose of this research, however, we use the specifications as if they were
commercia devices.

LAN Optical Networking, especially for embedded system applications remains

an area of research. It is not known what sort of requirements need to be integrated into

3 BAE SYSTEMS Demo -2 White Paper



today’ s development products to produce a LAN Optical Network. Thiswork develops a
system application concept for product research and development on a commercia scale.

Results are used to recommend future requirements for devices like the demo-2 device.

TX Logic R X

Figure 1-2: The BAE SYSTEMS Integrated Optical Electronics Department Demo 2

transceiver layout (left) and TeraConnect’s TC-48 Transmitter/Receiver (right).

1.2.3 - Foresight Modeling Tool:

The modeling tool used in this project was based on the Foresight v5.1.3
modeling tool from Foresight Systems Inc.* This tool adlows a user to model both
hardware and software design with a single tool. For this reason it was chosen as the tool
in which to develop the reference design. Using such a system node, a system devel oper
can then run the software model on the hardware model, smulating the interaction
between the software and hardware. The interface for using Foresight is the Software
Simulator Testbed developed by BAE SY STEMS.

1.3—Project Design

The goal of this project is achieved through the development of new optical LAN
models to replace the Myrinet network currertly used in the distributed computer
described above. To achieve this goal we analyzed the current hardware and software

models of the reference system as well as the current optical technology available. From

* Release Notes: Foresight v5.1.3
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this research we decided that the network needed to be entirely optical due to the latency
and size issues resulting from an optica-electrical-optica conversion, and it is
hypothesized that either a star or ring network configuration will best suit the needs of the
network and the computer. A system model of both a star network and a ring network
were developed and then simulated using the same software models tested on the

reference model.

1.3.1 —Project Description

A future addition to high performance computing technology for embedded
application is a high-speed optical network for faster data transmission. This project first
utilized current optical technology capabilities and a space system application as guided
by a high performance distributed computer architecture to develop two new high-speed
optical network models. Data was generated by testing the new network models on high
performance processing applications. These applications include Synthetic Aperture
Radar processing, Radar Corner Turn processing as it is applied in future Space-Based
Radar systems, and a randomly generated workload and transmission application. Both
the Synthetic Aperture Radar processing and Space-Based Radar Corner Turning are data
volume and bandwidth intensive applications used to process radar images from both air
and space based radar in rea time. Data from these simulations has then been used to
address system network issues such as: bandwidth, latency, protocol, topology, and fault
tolerance. Ultimately, an Optical System Network Architecture was developed to guide
future optical device development. The two BAE SY STEMS groups involved each have
a stake in this research. The Space Electronics group is interested because they see an
important future in optical networking for light speed data communication systems as
well as fast light command and control systems. The Integrated Optical Electronics
group wishes to determine a system application concept for their product research and
development on a commercial scale. Thus they wish to find out what requirements
devices like the demo 2 device might be required to meet prior to application to a product
design.

There are two main domains of concern in this project. The first domain is optical

networking technology.  Networking technology includes optical paralel fiber
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transmitters and receivers, optical fibers, optical switching or filtering devices, and high
speed network protocols. Some of these technologies are already commercially available
like the Infiniband and RapidlO protocols while some like the TeraConnect TC-48
optical transmitter/receiver devices and the Agilent Photonic Switch are ill in
development. As it stands, none of this hardware will be needed to complete this project,
their specifications will be used to simulate optical network systems.

The second domain of this project is the system application domain. This domain
is made up of the application requirements used by BAE SY STEMS to smulate the high
performance distributed computer architecture. The requirements are that it will use
COTS (Commercia Off The Shelf) parts, support multiple industry standard high level
protocols, be configurable to meet unique system architecture needs, and enable high
bandwidth, flexible topology, and be reliable, fault tolerant, and power efficient. These
requirements paired with semi-radiation hardening will allow a distributed computer to
run well in space. These requirements are derived from earlier research projects to
determine the requirements of a high performance distributed computer architecture for
space applications. This research and these simulations are from some of the next
generation space processing research programs.

To perform this project we need the new Optical Networks to replace the existing
Myrinet network in the hardware models of the simulator tools. A main design goal isto
not require the ateration of any of the higher-level software or hardware. The reason for
this goal is that the design of the distributed computer system strives to be configurable to
meet unique system needs. If a node can be swapped between a copper network and an
optical network relatively easily, then this goal has been met. Exchanging the Node
Controller should be sufficient to alter the node for this purpose. The Node Controller
has to remain capable of communicating with the other hardware elements of a node
requiring that it still communicate with the same higher-level protocols. This means
replacing the physical and the link layers while leaving the higher communication layers
virtually untouched.



Current Layers Proposed Optical Layers

IP/DSQ/MPI IP/DSQ/ MPI
v t v t
Link Layer - Myrinet Protocol Link Layer - Protocol TBD
! t v t
Physical Layer - byte wide Physical Layer - Serial
copper interconnect Optical Network

Figure 1-3: Network layers before and after the new optical network would be added.
The Link Layer will most likely utilize the Infiniband Protocol and the physical layer will
be either channel or wavelength differentiated.

By only altering the lowest two network layers we can leave the higher level of the high
performance distributed computer architecture alone, meeting the requirement of utilizing
the same high-level protocols and hardware. However, we need to determine the
characteristics of the Link and Physical layers. The Link Layer will need to contain the
protocol to transmit and receive data reliably. The Physical Layer will need to handle the
electrical-optical-electrical conversion as well as how to handle the sending and receipt of
bits.

1.3.2 - Design Goals

From the description of the project as given above, a list of design goals can be
specified. These goals are the core elements to be aware of as the project is being
performed. The design goals for this project are:

Use of COTS parts. The project must strive to use available parts to minimize

system cost and devel opment time.
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Support multiple industry standard high-level protocols. The systems must
strive to be transparent to the higher level protocols used on them In this way
any protocol used in the reference system could run on the altered system.

Be configurable to meet unique system ar chitecture needs, flexible topology:
The systems must be modular and be able to support many different
configurations as needed for different applications of the distributed high
performance computer.

Enable high bandwidth and be reliable and fault tolerant: The optical
networks replacing the current copper network should be able to handle well the
new requirements of throughpu at 580 MBps. The design should be able to
recover from faults gracefully.

Provide an Optical System Network Architecture: Will be used to guide
future optical device development as well as future development of distributed

high-performance computers.
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Chapter 2

2 — System Designs
2.1 — Reference (Myrinet Based) M oddl:

The current research model is a distributed computer composed of multiple
processing and input nodes connected by a Myrinet switch network.®> A diagram of the
computer with a Myrinet network can be found in figure 2-1. The basis for this model is
the distributed system as described in section 1.2.1, each node is composed of a Node
Controller (NC) and either processing elements, input/output elements, or control
elements. However the model of this system is much smpler than the design it follows.
The model is designed to show and analyze the network aspect of Myrinet and the
input/output characteristics of the current design. A node consists of a software module
and a node controller module. The software module reads in a software description and
then generates events such as Send, Receive, or Process for the node to perform. The
node control module is where al network functions are performed in the system.

1

&40 oy £ 5}
o, "0
HEYCR L A H
ol L

1| LAN/SAN |$——— LAN Portsto
‘ F——— Work Stations

Figure 2-1: Diagram of the current research model. The network isa Myrinet

hypercube and each block is a processing node with multiple Myrinet interfaces.

® See: Myrinet Network Specification Draft Standard
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All of the interesting modeling, like: processing, sending and receiving, and the
network fabric, are performed in the node control module. | have been purposely vague
in the description of this model as it is not my design nor does it fal under my copyright
protection. The descriptions above are to help relate the new work to the earlier work
they are based on.

2.2 — New Network Modds

When developing the specifications of these networks there were many needs to
keep in mind. The most important is that we are aiming to use today’s or tomorrow’s
optical technology. There are currently no al-optical packet switches or routers available
or hinted a by companies working on optical devices. This means that once a light
packet has been sent to the network, there is no current technology to redirect its travel,
besides devices that convert light to electricity and work with it in that domain. A
transfer of this sort would negate the benefits of optical technology in a loca area
network; Transmission lag and power consumption would be increased, as would be the
weight of the system. The simplest ways to create end-to-end transmissions that are all
optical isto use redundant optical hardware to create a direct optical path between source
and destination for each message sent.

From the research two novel network models were decided on for the Optical
System Network that encompass the idea described above. The two models are a star
network and aring network.

2.2.1 -Star Optical Network Design:

An optical star network for a distributed high-performance computer will rely on
one central optical switch while leaving most of the current node architecture untouched.
At each node there will be an optical converter device such as the IOE Demo-2.
Attached to the optical converter will be a bundle of optical fibers that connect the node
to the central switch. This converter will contain the physical layer conventions and
directly connect to a link layer interface handling al data communication needs of the

higher network levels within the node controller. The interface will transfer data to
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individual transmittersin seria at arate of 4.2 GHz per device. The receiver to which the
data is sent depends on the destination node of the data

Since no intelligent al-optical switches are available that can switch light ‘by
packet’, this star network would need to be connected differently then most star
networks. Both the Lucent Wavestar and Agilent Optical switch, among others, have
slow optical switching technology that could be used to build the central switch for this
system. The downess of switching could be a problem, however in this novel
configuration the switched paths only require an initial setup and relatively infrequent
maintenance. Since each optical converter device has many transmitters and receivers it
is possible to use an individual pair of these devices as an address for each of the other
nodes from the sending node. At initiaization of the system the host node will use alow
speed copper backbone interface to provide the central optical switch with the correct
switch path setup. This setup will provide a direct path from a sending node along a
unique optical fiber through the optical switch and then along another unique fiber to the
receiving node. Thus, there will be a direct, unique, optical connection between each
node, termed Channel Division Addressing. Upon an error of a channel or transmitter or
receiver, the system can use the backbone to allocate a new transmitter, receiver, or
channel set in the central switch. To recover from an upset, error recovery will take as
long as it takes to detect the error plus the relatively long time it takes to ask the central
switch to rearrange its internal optical connections.

An alternative in the future will be wavelength division addressing. A different
wavelength of light can be the address of another node and the light will be switched per
wavelength in a next generation optical switch. The benefit of this aternative is that all
the wavelengths of light may be transferred on the same optical fiber and multiplexed
onto and off of that fiber at eachend node. Additionally, the reduction of the number of
optical fibers would decrease weight and ssimplify wiring of the system. However, the
switch will need to be more complex as each wavelength will need to be divided first
from the main stream to be directed by the optical switch.

In this network the link protocol used will be Infiniband, however any protocol of

equal performance and specifications would suffice because the physical network is
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trangparent to the protocol used. Figure 22 below illustrates the star design described

above.

Optical Switch

InPUt \ MEMSMirrors
or alternatelight
guide

Transceiver

Input

Figure 2-2: Avisualization of the optical switch and Channel Division addressing

scheme of the star optical network. (Note: Drawing not to scale.)

Thereis apossible problem with this system. There will be a dedicated full speed
optical connection between each and every node. Each node will also be able to send
data at maximum speed on these connections. A problem would develop when many
nodes are all sending data to one node at high bandwidth. The node may not be able to
consume the incoming data fast enough and thus drop some of the data. This type of
system would best be employed in a command and control system where small amounts
of data need to have guaranteed delivery in an extremely short time frame.

The optical switch can be built today with either Lucent’'s Wavestar Lambda
Router or Agilent Technologi€e s Photonic Switch. (There may be other devices available
to perform this, but these two are my focus) However, even though the technology is
here, it would take a good deal of research and development to build a device from either
of these products. For the time being we will generalize the Optical Switch as having
many channel/wavelengths per port that can be individually routed to a unique output
channel/wavelength at any other port. Each port is bi-directional, connected to one node,

and contains multiple channels. Light can pass unimpeded through the switch instantly
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and configuration of the internal switching is done automatically and before runtime of

the smulation.

2.2.2 — Star Optical Network Model:

The modeling of the star network was intended to replace as little of the reference
model as possible to try and conform to the goa of only replacing the network aspect of
the model. In thisway only the fabric and node configuration were originally going to be
atered. However, as the reference model was delved into deeply, it became apparent that
every module of the reference model relied on other modules and that certain functions
needed in this new design were missing or incompletely implemented.

First, the Star Optical Network system model includes 8 work nodes, a host node,
and an optical switch as the hub of the star. A diagram of this system can be found in
figure 23. The nodes are modeled as described below. The optical switch forwards

packets to their destination without collisions.

Figure 2-3: The system setup of the Star Optical Network. The central moduleisthe

optical switch, and the outlying modules are the processing nodes
The highest level of the system is similar to the reference model described above.
Figure 2-4 shows the updated model. The AppFromFile module is the software module.

The software models that the system run are fed into this module and then parsed into the

19



specific commands for the node to perform. The node controller module contains the
hardware and software modeling of the sending and receiving processes as well as the
optical interface and node processor and memory models. The optical network that
replaced the Reference Myrinet network can be seen at the right of the node controller
module. The multiple channels have been modeled as one connection allowing only one

packet of each channel ID on it at a given time.
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At Time

p_TimeDuth:=~p_Timeoutr;
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Figure 2-4. Diagram of a node in the star system.

The new architecture of the node is better seen inside the node controller module.
Figure 2-5 shows the new architecture of the star model’s node control module. Initially
the only change here was to be replacement of the Reference Myrinet fabric module with
a star fabric module, S fabric. The goal of this replacement was to alter the network
makeup without touching the main modeling of the node. Upon further analysis, all of
the modules needed updating and upgrading. Most changes were required by the CPU

module.
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Figure 2-5: Hardware model of the node control module. This moduleis similar to that
found in the Reference model, however all of the modules herein have much more ability.

Alterations made to the CPU module include the completion of an
acknowledgement protocol, the addition of an automatic retransmission protocol, and
modeling of delay and size increases based on error correction coding, serialization,
deserialization, and error correction decoding. Furthermore, the addition of send and
receive memories was required to allow for the modeling and logging of memory usage
during sending and receiving messages. Besides these major alterations, there were many
small changes to the CPU module to change the network type from path-based to a
packet-based protocol. Some of these alterations were later removed from the CPU
module and placed into a new module called reservePath2. This module contains the link
activity logging and internal packet passing modeling of the node.

In general the CPU module works by first receiving a message send command. |If
the send hardware is not currently busy sending another message, the new message is
read into the system where it is parsed into packets and sent out onto the network. The
protocol for acknowledgements is Stop and Wait. This protocol is used because of the
unique architecture of the system. A message must be read out of the DRAM memory
and passed along a PCI bus to be sent out of the node. There is no memory available to
hold messages at the interface as they wait to be sent. This means that there is only ever
one path from DRAM memory available to send a message out of the node. Thus, the
system is forced to use a stop and wait protocol and only send one packet at atime.
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As a packet enters the CPU it isfirst parsed for type. If the packet is a Request to
Send, Clear to Send, or Acknowledgement packet it is passed to the send hardware
module. If the packet is a data packet, it is parsed and stored in partial message memory.
When the entire message is received, only then is it passed to the rest of the node, in this
model the rest of the node consists of the AppFromFile module.

The S _fabric module is the largest change to the node control module. Figure 2-6
is the Foresight diagram of the new star fabric module. The purpose of the star fabric
module is to model the transmission of packet data on the individua channels as guided
by the destination address. For incoming packets, there are many channels that could
possibly have a packet for the node. To handle this many to one aspect, there is an input
FIFO of packets that is modeled by the inputBuffer queue. As packets are fully received
on a channel the ABselect module places them in the inputBuffer, and the nextPktDoor
module is signaled that packets are waiting to be consumed. If the system is not currently
busy processing a packet, the first packet in the queue is read out of the inputBuffer at the
new PCl speed of 66Mhz by 64 bits across. If the inputBuffer ever reaches maximum

size it will pass packets into the overflow sink, dropping them from the network.
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Figure 2-6. S fabric module of a star node. This module handles modeling of the input
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FIFO and output transmission.

Data is collected from this model using a set of logging functions callable from
any module in the model. These functions record the time delay of packets and messages

into a log file specified at system initialization. Additionally, there are functions to



record link activity, memory allocation and deallocation, and model debugging. An
example of these functions is in Appendix A along with al of the Star Optical Network

diagrams and code.
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2.2.3-Ring Optical Network Design:

The ring network is similar in build to the star optica network in that it
also utilizes channel division addressing and strives to leave most of the node untouched.
However, the difference in this system is that each node has a single incoming channel
addressed to it and the specialized optical hardware, instead of an optical switch, is a
channel add/drop filter. The add-drop filter contains quick optical switching for each
light channel passing through it. In this model, data communication is performed by
allocating a single channel to each node. If a different node has a packet to send to the
first node it transmits the packet on the channel that is addressed to the receiving node.
The receiving node then always guides light on its channel onto a receiver at its optical
interface. In thisway each node has a full speed optical input, and if need be, could send
at full speed to any other node. Broadcast messages will be handled by transmitting on
more than one transmitter based on the message header. Figure 2-7 is a graphical
representation of an add-drop channel filter for the ring network.

An add-drop filter is not currently available. However, this device could be made
easily with Agilent Technologie's Photonic Switch. Additionally, Lucent Technologies
WaveStar Lambda Router could also fulfill this job, but the size and price of the unit is
prohibitive. Similar to the Star network, the actual product is not needed for this
simulation, ssimply the technical aspects of the devices being used. In the case of the
Add/Drop filter, all data transmission through the device is instantaneous and the receipt
of data is non-blocking. The transmission of a packet will block data flowing on the
channel already, causing a collision. Collision resolution is handled by the link protocol.
When packets collide, they will be corrupted and dropped from the network. After a
certain retransmission timeout, the data packet will be retransmitted. If the packet was a
control packet, that control packet will be attempted again after alonger timeout.

Data collision is the single glaring problem with this setup. Unlike in the star
network, a collison can happen during a node's attempt to send a packet. In the ring
network each node adds its data for a node to the same channel. Additionaly, due to the
speed of light and technology limitations it is hard to detect when a packet is passing by.

Thus, we have to add data and collide with any packets that are passing as we begin
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transmitting. It will be interesting to see what sort of data load degrades the data

transmission enough to cripple the network.
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Figure 2-7. Adrawing of the add-drop filter and optical interfaceto a nodein thering
optical network. The receive channel for this node can be seen being switched into the
receivers for the node and then being transferred into the node through the Infiniband
Protocol hardware. Data being sent out can be seen getting switched onto the channel

for the node it is being sent to.

2.2.4-Ring Optical Network Model.

The modeling of the ring network, as in the star network, was intended to replace
as little of the node model as required to replace the system network. However, from the
earlier work building the Star Optical Network Model it was found that there were many
changes to be made to update the node to work with these models. However, the work
done on the Star Optical Network Model gave me a node with all of the functionality
required. This functionality included packet acknowledgments, packet retransmission,

serialization as well as error correction coding, and message memory alocation. Thus,
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from the Star Model, besides a few timing issues, the only modeling needed was the
fabric of the star network.

At the system level a ring network is obvioudy a much different model.
However, the ring architecture still contains 8 work nodes and a host controller node.
Figure 2-8 is adiagram of the Ring Optical System Model. This network is based on two
bi-directiona rings.
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Figure2-8: Top level System diagram of the Ring Optical Network Model. Each module

is a processing node connected by a bi-directional ring network.

As most of the rode has remained the same from the star model, the high level
node model similarly contains the software parsing module and a node controller module.
Figure 2-9 shows the Foresight diagram of aring node. The node controller module is
different as it now contains a different fabric as well as the dual ring ports for the bi-

direction optical rings.
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Figure 2-9: Top level node diagram of a node in the Ring Optical System Network.

Additionally, the node controller module of the ring model is generally the same
as the node controller module of the star model. The difference of course is the
replacement of the star fabric with a ring fabric to control the bi-directional rings. The
CPU module is the same as that described in section 2.2.2 above. Figure 210 is a
diagram of the ring node controller module.
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Figure 2-10: Foresight diagram of the ring architecture node controller module.

The interesting difference between this second architecture and the star network
architecture is the ring fabric node, shown in figure 2-11. The function of this module is
to model the different optical channelsin each of the two bi-directional rings as well as to

control the flow of packets onto and off of these channels at the correct time. This part is
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easy to model. However, the colliding of packets and keeping track of how long a packet
is on a channel at each node turned out to be much more difficult. Most of the modules
shown in figure 2-11 are used to perform these timing and collision events. To describe
this model the description of how a packet is transmitted from one node to another node
on achannel is used.

The modeling of the passing of a packet is done using two data events and many
state variables per node. As the packet is passed to the ring fabric module it is first
passed to the gatekeeper module and then passed to either the clockwise (CW) ring or the
counterclockwise (CCW) ring Send queue (CWSend or SSWSend). The ring the packet
is sent to is decided by the distance to the sending node. This routing was decided on as
al channels on both rings should have approximately the same throughput, and the
fewest other nodes would be passed thus remove collision possibilities. As the packet is
entered into the correct ring's send queue, the same ring's keyMaster module
(keyMasterCW or keyMasterCCW) is signaled that an event is waiting to be parsed. At
this time the keyMaster module will notice that it is a send that is waiting to be performed
(the size of its send queue is greater then 0) and begin sending the packet. Additionally,
if there was already a packet passing this node on the same channel it will set both
packets to be corrupted and set the channel state to error for logging purposes. To time
the end of the packet a timer is started and the packet is copied into the EndSend
(CWENdSend or CCWENdSend) queue for that ring. When the timer signals that the
packet is finished sending, a “end of packet” event is sent to the recelving node on the
correct channel. If along the ring this packet finds its channel in the error state, it will
mark itself as corrupted.

As a packet passes through a node on a channel other than that node's receive
channel, it is immediately passed on to the next node. If that channel is currently being
used to send a packet, it will mark both packets as corrupted and the channel in error.
Otherwise, everything is fine and the packet remains uncorrupted. When a node receives
a packet on that node’s receive channdl, it is passed to the gateKeeper. The gateKeeper
then waits for the “end of packet” event for that packet. If the “end of packet” event is
corrupted, then entire packet is marked corrupted and dropped from the system. If that
event is not corrupted, then the packet is passed to the node.
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Figure 211 is a top level description of the ring fabric. The full code of this
model can be found in Appendix B along with all other code for the Ring Optical
Network mode.
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Figure 2-11: Foresight diagram of the network fabric in a Ring Optical Network node.

2.3-Software

The software used in the simulations run on the Star Optical Network Model and
the Ring Optical Network Model are high performance computing applications. These
models are coded in PERL to alow short amounts of code that build large processing
task lists. The PERL codes are evaluated at run time and the task list is passed to
Foresight as the software model. These specific applications were chosen because they
already had distributed architectures suited to multiprocessing. Furthermore, the radar
applications were chosen as the benchmark of these systems because these applications
are today performed at ground stations after collecting large amounts of data from space
based radar platforms. If these applications could be performed using a high-speed
redundant distributed computer onboard the satellite, then the processing of images

29



would be much faster. Also, the time needed to download all of the data from the
satellite for one of these applications s a current bottleneck of a radar system. If instead
it was only necessary to download the final image, resources could be preserved. The
debugging software models can be found in Appendix C. The Space-Based Radar
Corner-Turn, Synthetic Aperture Radar, and Random Workload software models were
built by BAE SYSTEMS and are not included in this paper.

2.3.1- Space-Based Radar Corner-Turn

This software model is based on a corner turn processing algorithm for a Space-
Based Radar application. A corner-turn is common in most signal processing
applications and involves a NxN matrix “frame”’ of data in row-major order. The rows
are then divided equally between the nodes and processed to redistribute the data into
column-major order. This benchmark requires a drge amount of inter-node traffic as
data is passed out, rotated, and then redistributed. Obvioudly, if a faster network is
involved, then the time to redistribute data should be reduced. This software model uses
amatrix of 1024x1024 pixels per frame, with eight bytes per pixel, and processing a total

of four frames.

2.3.2-Synthetic Aperture Radar — Back End Processing.

This software model is based on the back end processing of synthetic aperture
radar. However, this model is optimized for software pipelining and independent Fast
Fourier Transform (FFT) processor nodes. The process includes partial pulse
compression, polar reformatting, corner-turning, multiple FFTs, and autofocus and
multilook averaging. This application is being used for the same reasons as the corner-
turn application. This could be run on a hardware system developed from these network
simulations. The system will process eight frames containing 16 primary rate interfaces
containing 59200 range vaues per interface. This software model contains no

randomness so one run on each model will provide sufficient data.



2.3.3-Random Workload

The random workload software generates N "phases’ of computation, where one
phase consists of processors doing a random amount of work, then exchanging data in a
random pattern. The random work is distributed according to one of severa
distributions, including: uniform, normal, and exponential. The mean and standard
deviations for a given distribution are also specified. The random communication pattern
is specified with a single parameter that represents the probability that a given source
sends a message to a given destination on any given phase. The size of the message is
determined by three parameters that specify the distribution, mean, and standard
deviation. The parameters used for this software model are norma processing and
communication distributions. The mean and standard deviation of the processing
distribution are both 1000 cycles. The mean and standard deviation of the
communication pattern are 10000 and 1000 for the probability of sending and number of
bytes in the message. This software model was performed four times with 16 phases per
model. The results were than averaged for each model.

2.3.4-Debugging Workload

There were many software models coded to debug the hardware models as they
were being built. These software models include a Packet Walk model, a Congestion to
Host model, and a Two Node Dialogue software model. The Packet Walk model
transmits a single message from one node to the next in order to test simple transmission
and system setup. The Congestion to Host model makes all nodes transmit after a small
random delay to the host node. This model is to test congestion control and handling of
the system. Finally, the Two Node Dialogue model tests the ability of repeated messages
between two nodes for general debugging. The text of these models can be found in

Appendix C.
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Chapter 3

3 —Resultsand Analysis

3.1— Simulation Results

All smulations were performed using the same simulation parameters and
simulation files as described in section 2.3. The Reference hardware model using the
Myrinet network simulated the easiest as it took minimal debugging work to update the
model to a newly updated software model interface and compiler. As | was working
others were improving the Reference model and software ssmulation schema.  The Star
Optical Network hardware model took a large amount of the time to debug. In the end,
after multiple revisions, the star retwork hardware model described above worked well
over each software model. The rea disappointment was that the design for the Ring
Optical Network hardware model failed.

The ring network failed because the design did not take into account the immense
amount of data and different data types that would need to pass on the single incoming
channel of anode at any given time. It was setup such that only one node was allowed to
transmit data on a channel at a time, however there were also Request To Send packets
being sent to see if the channe was free that would corrupt the data transmission.
Additionally, at the same time the receiving node could be sending data to a third node.
The third node would then generate acknowledgements onto the receiving channel of the
receiving node. This would corrupt any data on the channel as well as the
acknowledgment. To try and solve these issues, many different protocol alterations were
made to the ring network system including message transmission retry and dynamic
retransmission times. Finally, a set of control channels was added for the
acknowledgement and other control functions. In the end the degradation incurred by
these additions and the added weight and power that would be required by a second set of

channels and transmitters and receivers was seen as too far from the system goals, and



work on the ring network system was halted. Additionally, the small amount of data that
could be taken showed a distinct loss in throughput and performance, making the system
unable to be compared with either the Reference or Star network systems. If work on the
ring network is to proceed an aternative collison avoidance scheme will have to be
introduced.

3.1.1 — Space-Based Radar Corner Turn Results.

Below are the general system results for the final simulations running the Space-
Based Radar Corner Turn software model as described in section 2.3.1. This simulation
was run twice to view the randomness involved in it. In general the same amount of data
was transferred on the network in each ssmulation, and there are only slight variations in
the timing and bandwidth utilization. This dlight variation is due to small randomness
added to the amount of processing done at each node and in a small random delay at the
start of the simulation. Because there are only dlight variations we will use the first run
of the Space-Based Radar Corner-Turn model on each network model as our guide.

Table 3-1: Space-Based Radar Corner- Turn results for the Reference Network Model

Simulation Attribute: First Run Second Run
Number of messages: 72 72

Number of bytes sent: 67108896 67108896
Total run time: (seconds) 1.264178 1.264612
Avg. message size: (Kbytes) 910.2 910.2

Avg. message latency: (ms) 17.558024 17.56406
Avg. message bandwidth: (Mbyte/s)|53.085018 53.066775

Table 3-2: Space-Based Radar Corner-Turn results for the Star Optical Network Model

Simulation Attribute: First Run Second Run
Number of messages: 72 72

Number of bytes sent: 67108896 67108896
Total run time: (seconds) 0.386004 0.385561
Avg. message size: (Kbytes) 910.2 910.2

Avg. message latency: (ms) 5.361173 5.355014
Avg. message bandwidth: (Mbyte/s)|173.855222 174.055184




3.1.2 — Synthetic Aperture Radar, Backend Processing

Below are the simulation results from the simulation runs of the Synthetic
Aperture Radar back end processing as described in section 2.3.2. As this mode is
identical every time it is run only one simulation run was performed on each hardware
network model.

Table 3-3: Synthetic Aperture Radar processing results from the Reference Network

Model
Simulation Attribute:
Number of messages. 224
Number of bytes sent: 45863424
Total run time: (seconds) 2.68871
Avg. message size: (Kbytes) 199.9
Avg. message latency: (ms) 12.003169
Avg. message bandwidth: (Mbyte/s)|17.057781

Table 3-4: Synthetic Aperture Radar processing results from the Star Optical Network

Model
Simulation Attribute:
Number of messages: 224
Number of bytes sent: 45863424
Total run time: (seconds) 0.570536
Avg. message size: (Kbytes) 199.9
Avg. message latency: (ms) 2.547035
Avg. message bandwidth: (Mbyte/s)|80.386585

3.1.3—Random Workload
The results from the Random Workload are dlightly different in nature to the prior
two models. We are averaging the results from four simulations using the random

software model described in section 2.3.3 to give genera numbers for the results of a



random workload. The average, standard deviation, and deviation percentages were then
caculated. As can be seen the individua simulations produced relatively similar
numbers for both the Reference Network and Star Optical Network; as given by the
normal work and communication distributions. In general the standard deviation is good,
however the Reference model produced higher deviations between its smulations. This
IS not an issue as the deviations follow from the number of messages sent, which deviated

wider in the Reference modd.

Table 3-5: Random Workload results from the Reference Network model

Simulation Attribute: First Run |Second Run|Third Run |Fourth Run
Number of messages: 197 227 248 223
Number of bytes sent: 1922615 2245368 2412632 (2135162
Tota run time: (seconds) 0.056013 |0.073658 [0.076962 |0.074021
Avg. message size: (Kbytes) 9.5 9.7 9.5 9.4
Avg. messae latency: (ms) 0.284331 |0.324484  |0.310332 |0.331932
Avg. message bandwidth: (Mbyte/s)|34.32432  [30.483794 131.348203 |28.845408

Simulation Attribute: Average St. Dev. Dev Pct

Number of messages. 223.75 20.9344214 |2.3

Number of bytes sent: 2178944.25 |205461.796 |2.4

Total run time: (seconds) 0.0701635 |0.00954896 |3.4

Avg. message size: (Kbytes) 9.525 0.12583057 |0.3

Avg. message latency: (ms) 0.31276975 |0.02096919 |1.7

Avg. message bandwidth: (Mbyte/s)(31.2504313 |2.29711565 |1.8

Table 3-6: Random Workload results for the Sar Optical Network Model

Simulation Attribute: First Run [Second Run|{Third Run |Fourth Run
Number of messages: 239 249 221 231
Number of bytes sent: 2444577 2420871 2225783 (2218388
Total run time: (seconds) 0.019341 |0.019207 [0.015874 |0.018242
Avg. message size: (Kbytes) 10 9.5 9.8 9.4
Avg. message latency: (ms) 0.080926 |0.077138 |0.071826 |0.07897
Avg. message bandwidth: (Mbyte/s)[126.391052 |126.038727 |140.2198 |(121.60791

Simulation Attribute: Aver age St. Dev Dev Pct

Number of messages: 235 11.8883697 (1.3

Number of bytes sent: 2327404.75 |122034.022 |1.3




Total run time: (seconds) 0.018166 |0.00160451 |2.2
Avg. message size: (Kbytes) 9.675 0.27537853 |0.7
Avg. message latency: (ms) 0.077215 |0.00391147 |1.3
Avg. message bandwidth: (Mbyte/s){128.564372 |8.06935605 |1.6

3.2—System Network Analysis:
In general both the Reference Myrinet Network System and the Star Optical

Network System are unique. The nodes of the Reference system have an internal bus
32bits wide at a speed of 33MHz. Thistotals to a maximum throughput of approximately
1Gbps. The Myrinet network of the Reference system has a throughput of 1.28Gbps in
each direction. The throughput of the network is exactly that required by the node.

Alternately, the network sends dataat a similar rate so only small amounts of receiving
buffer are required for small burst overflows.

The nodes of the star optical system have an internal bus 64 bits wide at a speed
of 66 MHz. Thisinternal bus then has athroughput of 4.2Gbps. The star optical network
has a throughput of 4.2 Gbps per channel. This totals to a maximum throughput of
37.8Gbps in each direction, assuming there are nine channels entering and leaving each
node. The throughput of the node is thus much less than the total possible data that can
be sent or received through the network. The consequences of this are analyzed in the
next few subsections. In general the results showed that the star optical network is a

good start to development of future networks and distributed computing systems.

3.2.1 - Simulation Run Time Analysis

There is no distinct way to relate the Reference Network timing characteristics to
the Star Optical Network timing characteristics. This is because so many upgrades were
made to the Star Optical Network hardware at the same time. First, the node data
processing speed was increased from 500 MHz to 750 MHz. This would then give an
average decrease in the processing time of a node by 33%. Next, the
creation/consumption ability of a node was increased by 400%. The networks were
increased in the same manner to approximately match the bandwidth of the nodes. The
software models were chosen such that the node network bandwidth increase is the
dominant factor in the increase in speed of the system. Additional factors that reduce the



overal system speed and network bandwidth increases of the Star Optical Network
model are the addition of serialization delay, and error correction delay and redundancy.
At these speeds the delay is negligible, however the increase in the size of data
transmitted due to redundancy is 25% and can not be ignored.

The network speedup is reflected well in the running times of the Space-Based
Radar Corner Turn and Random Workload software models. In each of the software
model ssimulations it can be seen that the increase in speed is dightly below four times
that of the Reference model. The Space-Based Radar Corner-Turn software model sees
an increase of 330%. The Random Workload software model sees an increase of 380%.
It is surprising to note however, that the Synthetic Aperture Radar software model saw a
470% increase in simulation speed over the Reference Network model. This higher
increase in system speed-up is probably due to the unique pipelined design of the
backend processing for Synthetic Aperture Radar as compared to the other software
models. Additionally, the Star Optical Network is better designed for the pipeline of the
Synthetic Aperture Radar processing software. This is because within the pipeline there
is a digtinct order of passing of data as each node performs its assigned task. In the
Reference Network the Myrinet fabric forced contention between nodes passing to one
another. The Star Optical network on the other hand has a guaranteed path between each
pair of nodes allowing contention free passing of the data along the processing pipe. In
this case the Star Optical network could be built such that only the required channels for

the pipeline are present, removing excess weight and power needs.

3.2.2 —Message and Packet L atency

Message and packet timing is recorded to alog file, smilar to other System data.
What might be unique is that a message is marked as sent when it is first given to the
Node Controller of a node to be transmitted. It may then be held up in a queue while
other prior messages are sent. When the last of a message’'s packets are received it is
logged as finished. This method of message latency logging is used to view node as well
as network congestion. Packets, in comparison, are marked as sent when a node first
attempts to transmit that packet. When the packet is received at a node it is then logged
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as received. In this way packet latency helps to show network as well as individua
channel congestion.
The average latencies from the three software model simulations can be seen in
Table 3-7 below.
Table 3-7: All Software Model Smulation latency results.

Reference
L atency Attributes Networ k Star Network

Space-Based Radar Corner Turn software
Avg. message latency: (ms) |17.558024 5.361173
Avg. packet latency: (ms)  |0.204808 0.005244

Synthetic Aperture Radar processing software
Avg. message latency: (ms) [12.003169 2.547035
Avg. packet latency: (ms)  |0.193584 0.005095

Random Workload software
Avg. message latency: (ms) |0.284331 0.080926
Avg. packet latency: (ms)  |0.122793 0.003614

As can be seen the average message latencies correlate to the increase in node and
network bandwidth. However, these average packet latencies are not a good judge of the
network. Beside the fact that each model uses a different maximum packet size because
of the link protocol they are using, the average packet latency includes the latency for
very small packets that are the last part of a message. In the Star Optical Network there
are smaller packets, thus average latency is much lower then expected.

A better way to analyze packet latencies is to view packet latencies over time.
Figures 3-1, 3-2, and 3-3 are graphical representations of the packet latencies vs.
simulation time for the Space-Based Radar Corner Turn, Synthetic Aperture Radar

processing, and Random Workload software model simulation runs, respectively.
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Figure 3-1. Data packet latencies vs. Smulation Time for simulations of the Space-
Based Radar Corner Turn software model. Reference Network (Top). Star Optical
Network (Bottom)

Packet latencies for the Space-Based Radar Corner-Turn model are very good. In
the Reference Network, latencies during the main section of a send are mostly uniform.
At the end of each message, the packet latency drops dramatically as there is only a small
amount of data to send to complete the message. In the Star Optical network, packet
latency holds very steady at 0.01 ms. There are much smaller latencies corresponding to
the acknowledgement packets. If viewed on a smaller time scale, data packet latency is

uniform over simulation time as is acknowledgement packet latency. These packet
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latencies are expected from the Space-Based Radar Corner Turn software. In each phase,
data is transmitted between unique sets of nodes. Thus, overall network congestion

should be uniform.
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Figure 3-2: Packet latencies vs. Smulation Time for simulations of the Synthetic
Aperture software model. Reference Network (Top). Star Optical Network (Bottom)

Synthetic Aperture Radar processing has the best packet latency. Both the
Reference Network and the Star Optical Network have very consistent latencies with very
little deviation. Of course this could mean that each packet is being delayed an equal
amount, but it is actualy due to the pipelining of the system. The software model was
built in such a way to maintain a predictable flow of information that does not interfere

with itself. One aspect that is puzzling is the large spike in latency in the Star Optical



Network latencies. This spike is a result of packet transmission from the pipeline at the
end of each frame's processing. It is possible that there is a bottleneck from the last
processing stage to the host node. This is most likely due to the fact that the host node

receives the original frame data from the sensors and then performs large amounts of

processing on said data.
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Packet latencies for the Random Workload software model are as expected. Due
to the random nature of the size of messages and when messages are sent, the overall
average packet latency does not show packet latency well. For the most part maximum
sized packets average to a consistent latency in both of the network models. Interestingly
there is a single spike of a set of larger latency packets. These packets were most likely

the victims of temporary network congestion.

3.2.3 - Network Bandwidth Utilization

Network Bandwidth utilization is recorded in link utilization in the same way that
memory usage and packet and message latencies are recorded. A network link in either
the Reference Network or the star optical network is the physical connection between two
points. Figure 3-4 below is an example of a graphical link utilization analysis showing
the link utilization as a function of time for the star optical network model running the
random workload software. Each gray horizontal band represents the state of a channel
over time. When the band turns black, it is being used to transmit data. In the Reference
model it was possible to that the network would be in contention for resources. If this
were to happen the band would turn white until the contention was resolved. In generd it
is not efficient to examine this graphical link, instead we will analyze the utilization

percentages.
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Figure 3-4. Partial Timing diagramfor a simulation of the random workload software
on the star system. The link lines at the bottom are the combined output of each node.
For example, P60utlink is the total output of the node at full network bandwidth. Above
the combined links are the individual channels from one node to the next. Thereisa

unique link from each node to every other node.
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Network bandwidth utilization during simulations running the Space-Based Radar
Corner-Turn software model can be best seen in Table 38. A node's outlink is the
output of the Node Controller before it enters a network. In the case of the Star Optical
Network the outlink is the connection between the Node Controller and the transmitters
on the individual optical channels. This outlink is the only connection to the network and
subsequently is a good measure of the utilization of the bandwidth of the node. As can be
seen, in the Reference model network utilization is amost 100%. The Star Optical
Network, in contrast, only uses 66% of its node network bandwidth. However, a lower

usage is not necessarily bad.

Table 3-8: Node output link utilization for simulations using the Space-Based Radar
Corner-Turn Software model

Reference Network Utilization Star Optical Network Utilization
Network Link Utilization Network Link Utilization
Host Node outlink 0.984345915 Host Node outlink |0.646857614
Node 1 outlink 0.984345915 Node 1 outlink 0.64678989
Node 2 outlink 0.984345631 Node 2 outlink 0.646829247
Node 3 outlink 0.984345991 Node 3 outlink 0.646843446
Node 4 outlink 0.984345803 Node 4 outlink 0.646843101
Node 5 outlink 0.984345933 Node 5 outlink 0.646811113
Node 6 outlink 0.98434581 Node 6 outlink 0.646858213
Node 7 outlink 0.984346063 Node 7 outlink 0.646873968
Node 8 outlink 0.984345747 Node 8 outlink 0.646821366

Similar data was obtained for simulations run on the Synthetic Aperture Radar
backend processing software model and the Random Workload software model. The
data for Synthetic Aperture Radar software simulations and Random Workload software

simulations are in Table 3-9 and 3-10, respectively.



Radar Software model

Table 3-9: Node output link utilization for simulations using the Synthetic Aperture

Reference Network Utilization Star Optical Network Utilization
Network Link Utilization Network Link Utilization
Host Node outlink |0.069290154 Host Node outlink  {0.021808375
Node 1 outlink 0.123072238 Node 1 outlink 0.038500425
Node 2 outlink 0.123077157 Node 2 outlink 0.038524468
Node 3 outlink 0.123064273 Node 3 outlink 0.038740131
Node 4 outlink 0.123067787 Node 4 outlink 0.038761382
Node 5 outlink 0.024413499 Node 5 outlink 0.007937666
Node 6 outlink 0.024418184 Node 6 outlink 0.007938746
Node 7 outlink 0.062575769 Node 7 outlink 0.000127867
Node 8 outlink 0.062569342 Node 8 outlink 0.01955228

Table 3-10: Node output link utilization for simulations using the Random Workload

Software model

Reference Network Utilization Star Optical Network Utilization
Network Link  |Utilization Network Link Utilization
Host Node outlink |0.389802874 Host Node outlink [0.49111572
Node 1 outlink  |0.538584948 Node 1 outlink 0.466611278
Node 2 outlink  |0.519053627 Node 2 outlink 0.609606163
Node 3 outlink ~ |0.699036908 Node 3 outlink 0.353853087
Node 4 outlink  |0.531393922 Node 4 outlink 0.431387718
Node 5 outlink  [0.441882961 Node 5 outlink 0.411944896
Node 6 outlink  [0.514080218 Node 6 outlink 0.437053923
Node 7 outlink ~ |0.522561017 Node 7 outlink 0.442546034
Node 8 outlink  |0.50308883 Node 8 outlink 0.457219244

Overdl, the bandwidth utilization data obtained from the three software
simulation models shows that although the Star Optical Network System is much faster
and has a much higher bandwidth, it is more wasteful of that bandwidth. This result is
evident before analysis of the individual channel utilizations of the Star Optical Network.
The utilization of all of the channels from a node add up to the outlink utilization for that
node. | believe that the Star Optical Network does not work as efficiently as the
Reference model because, as with the ring network, it is interfered with by control



packets. There is much room for improvement because each of the individual channels
has much more ability and is used sparingly. One such needed improvement is the
alteration of the automatic repeat protocol. Currently the protocol sends a single packet
and then waits for an acknowledgement. If a node sent a set of N packets it could then

receive acknowledgements as it transmitted more data.

3.2.4—-Memory Utilization/Requirements

An aspect of the Star Optica Network system of interest to examine is the
input/output memory requirements for a node. For a given node the network is effected
by message receilve memory, packet receive menory, and message send memory. |If
there are N nodes in the system, then there may be, at the maximum, N-1 messages in the
process of being sent to a given node. The current node model waits for the entire
message to be received before the message is processed by the node. The message is
stored in main memory, but these messages might be very large and thus consume large
amounts of memory. In the Reference network model, there was only one message being
received at any time due to the Myrinet network specifications. The receive message
memory consumption for each of the three software models can be found in figures 3-5,
3-6, and 3-7 below. In each diagram, a step shows the allocation of memory to contain
the entire message. When the message arrives that memory is deallocated as the message
is processed into the node.

w 10" Mode 8 Receive Memory

R

e
m
T
1

o
m
1

Receive Memory Usage (bytes)

D | 1 1 | 1
0 0.005 0.m 0.015 0.02 0.025 0.03
Simulation Time (seconds)

Figure 3-5: Receive memory usage for the Space-Based Radar Corner Turn software
model. Node is representative of the receive memories for all nodesin the Star Optical

network model. Thereislittle variation of the receive memories of the other nodes.



Figure 3-5 diagrams receive memory usage for node 8 of the Star Optical system
running the Space-Based Radar Corner Turn software model. All of the other nodes have
smilar receive memory usage. This pattern arises because of the communication pattern
of this software model. Each node received some data from another node and then from
a second node. Each node then processes that data, splits the processed data in two and
then sends the data out to two other nodes. Except for the fact that there is an immense
amount of data being received at any given time, this model is very predictable and thus a

static amount of receive memory may be alocated from the system memory at al times.
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Figure 3-6: Receive memory usage for the Synthetic Aperture Radar software model.
Node 8 is used as the sensor node and thus only is an input for data to the system, thus
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Figure 3-6 diagrams receive memory usage for al nodes of the Star Optical
system running the Synthetic Aperture Radar software model. In this model each node
has a different processing assignment in the pipelined processing of radar images. Ascan
be seen in the diagram, each node then requires a different amount of receive memory.
Thisis due to processing expansion and collection of the data at first, and then processing
and condensing of the data to form the final image. From this model we can see that a
system may be built in such a way that reduces cost, weight, and power. We can design
the specifications of each node to contain only the amount of receive memory that that
stage of the pipeline requires. Such a design however will reduce the flexibility of those
components For example, nodes 1 and 2 will need only smal amounts of receive
memory at any one time and in contrast node 5 will need large amounts of receive
memory at sporadic times. Node 5 may be better off alocating memory dynamically,
while nodes 1 and 2 may work better with independent static receive memory.

Finally, figure 37 diagrams receive memory usage for al nodes of the
Star Optical system running the Random Workload software model. This model shows
the general amount of receive memory required by a general system. As can be seen in
the diagrams for each node, it cannot be determined ahead of time what the requirements
of a node will be. Some nodes require little receive memory sporadically while some
nodes require larger amounts all of the time. In genera this pattern will change at each
running of this software model. We cannot make distinct statements about the total
amount of memory required as this is determined by the amount of data being processed
by the system. However, from this simulation we can say that given a uniform random
workload of this nature that the total amount of receive memory required for a given node
is approximately four times the maximum message size. This means that in the worst
case four other nodes are sending data to a given node. The other three runs of the

Random Workload software model corroborated this outcome.
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Figure 3-7: Receive memory usage for the Random Workload software model.

A similar memory concern is the buffering of just received packets before they
can be processed and added to a waiting partial message. At the Star Optical Network
interface of a node, there can be up to N-1 packets being received at a time. The
consumption of packets is then slower then the reception of packets. In the three
software models simulated on the Star Optical Network system there is no excess use of

the receive packet buffers. The software models do not make more then a few nodes



send to a single node at any time. The consumption of packets by the receiving node is
fast enough that packets do not back up in the FIFO buffer. A diagram of the size of the
incoming packet buffer is not included because it only varies between one and zero. At
no time does the packet buffer ever begin to backup. From these software models and
their requirements on the system the resulting data indicates that no packet buffer is
required.

Finally, memory utilization for the sending of messages is only an issue in this
system if it is alowed to be. If there is not enough message memory then the node will
have to wait for messages to be sent before it can queue additional messages. It is
possible that at this time the node is blocked and the system will then be slowed.
Similarly, if there is too much message memory then that memory will be wasted and the
system resource will be wasted. The full usage of the send memory for al nodes for all
three software models can be found in appendix D. Figures 3-8 and 3-9 ae
representative diagrams of the send memory usage for the Space-Based Radar Corner
Turn and Random Workload software models. The Synthetic Aperture Software model
isdightly different.
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Figure 3-8: Send Memory for simulation of the Space-Based Radar Corner Turn

software model.
The diagram above is an example of the send memory usage of the Space-Based

Radar Corner-Turn software model. This diagram looks like the receive memory usage
diagram above as there is a very even structured communication pattern in this model.
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Similarly, a large amount of memory is needed, but this is a variable of the data being
passed. In general the send memory required is bounded and will not exceed three
messages queued to be sent at any given time.

The Synthetic Aperture Radar software model send memory requirement is
similar to the Space-Based Radar Corner Turn send memory in that it mirrors the receive
memory requirements. In general each node requires a different amount. There is no
representative diagram as each node performs a different section of the SAR processing.
Additiondly, this memory requirement is bounded and can be built into the unique
specifications for each node.

The Random Workload software model send memory usage is random as
expected from analysis of the receive memory usage. The diagram below is one of the
most active send memory usage diagrams. At is peak the node has nine messages
gueued for transmission to other nodes. The memory required is a function of the size of

the messages.
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3.3—Project ResultsOverview T able

Project Issues

Ring Optical Network

Star Optical Networ k

Message and Packet
Latency

N/A

Latency increased with the
upgrade on the node speed.
Network congestion was all
but nonexistent.

Network Anaysis

N/A

Bandwidth Utilization is
lower then the Original
Networks. The network has
room for growth.

Memory Utilization

N/A

Utilization is constant and
predictable for all software
models.

Memory Requirements

N/A

Not analyzed well in this
project, but the need is
predictable and allocation
could be performed to
maximize a node.

Network Topology

Good. Implementation of a
better protocol and possible
redundancy through more
channels will be needed.

Great. Wavelength
channels could help reduce
weight and power.

Network Protocol

Needs massive collision
avoidance design and
implementation work.

Good. Node development
will clear delay issues.

Needs to be upgraded with | Needs to be upgraded with
Node design an alternate packet an alternate packet

transmission protocol. transmission protocol.

p Optical Switch is available,

MCSTTnggd al?(raor?ot but needs to be integrated
Technology Status D with the system. Node

available and need to be
designed and built.

interfaces need to be
designed and built.
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Chapter 4

4 — Conclusion

4.1 — Network Systems

4.1.1 — Star Optical Network

In general the Star Optical Network system performed better then the Reference
Network system. This result is dependent on many factors, but we believe that the Star
Optical System is the correct next step towards an optical network for a high
performance distributed computer. The high points of this new network design are
network utilization and its room for growth, memory utilization, and speed.  However,
there are many aspects of the systems that need to be looked into further like specific
system bottlenecks, transmission protocols, and the failure of the ring optical network
design.

The Reference Network has a network utilization that on average was higher then
the Star Optical Network utilization. However, the Star Optical Network has much more
room for growth. The Star Optical Network can grow because of its lower link
utilization. The lower link utilization is due to the speed increase of the network itself,
the added serialization, error correction latency, and data redundancy. Basically, the
design of the computing node itself, i.e. transmitting only one message at a time, is the
bottleneck that keeps the Star Optical Network utilization low. The current node design
is based on the Reference Myrinet Network, and for this reason the computing nodes will
need to be redesigned to work well with the Star Optical network.

Memory utilization is aso a high point of the Star Optical Network design.

In genera the send and receive memory usage of the Star Optical network system over
the three software models is good. However, we have not determined what the effects of
limitations on memory would be. Additionally, initial results from the three software
models indicate that the current setup of the Star Optical Network does not need any sort

52



of input packet buffer. This has the potential to reduce the amount of weight, cost, and
power required in the computing system.

Another high point of the Star Optical Network system is that it can handle the
increase in speed required by a new generation of computing nodes. In fact it has more
bandwidth capabilities than the nodes are able to use efficiently. These increases are
evident in the timing analysis in chapter 3. Overall, the speed of the Star Optical network
system is sufficient to meet the desired speed increase of the upgraded node, even though
there were many new aspects of a system added that can slow the system down.

Unfortunately, although the Star Optical Network system proved itself in many
areas, there are also many concerns that need to be more fully addressed. First, the Star
Optical Network system is bottlenecked not by its network, but by the nodes to which it
connects. The nodes can handle only one message and one packet transmission at atime,
which reduces the bandwidth utilization of the network. Related to this issue is the
automatic request retransmission protocol. As mentioned only one packet is transmitted
at a time and then an acknowledgement is waited for. It is preferable to change this
protocol to a sliding window protocol where a number of packets are transmitted and then
only those that were not received correctly get retransmitted. It is not certain that the
addition of the ability to send more than one message at a time is a good idea because of
the design of the node. This capability would then alter the network memory
requirements of a node. Send and receive memory usage will increase and the need for
an input packet buffer might arise. We recommend incorporation of a sliding window
packet transmission protocol, but do not recommend allowing the transmission of more
then one message at atime.

Another problem with the Star Optical Network system is the same as that which
degraded the performance and design of the Ring Optical Network system to the point
where it failed as a good design for this project. The inefficiency of bandwidth usage is
due to acknowledgements. Often the link utilization would be degraded due to a node
waiting for the acknowledgement of a packet while the node sending that
acknowledgement is busy sending a packet to another node. The maximum degradation a
node sees is when the sending node has to wait the entire send time of a maximum sized

packet before it can receive an acknowledgement. Alterations to the system to fix this



could be to modify the acknowledgement protocol to a sliding window protocol, some
sort of alternate network path for control signals as attempted in the Ring Optical
Network system, or possibly a smaler maximum packet size or aternate network

protocol.

4.1.2 — Ring Optical Network

As mentioned earlier in this paper, the Ring Optical Network system design did
not work. Basically, collisions became a large problem for the reference design and the
updated design that worked dlightly better was no longer in the scope of this project. The
addition of a second network to handle control communications is too large and would be
too power hungry to be of much use. This is not to say that a Ring Optical Network
system could not be used in a distributed computer. Originally, it was favored over the
Star Optical Network system. One of two things needs to be performed to make a ring
network a redlity; either the network architecture needs to be drasticaly, or a more
complex communications protocol needs to be used to meter transmissions on each
channel. This protocol may produce similar results to the Star Optical system, but will

require more development.

4.2 — Futur e development

Many aspects for possible future development with these network models have
been described above. From the analysis of the Star Optical Network we recommend a
new node controller design. In this design the node will have the ability to send multiple
packets at a time and possibly to allow more then one message to be sent at atime. Of
course the optimal way to send more then one message would use the novel structure of
the Star Optical Network to send to two different nodes. A variable that would need to be
decided on then is how many messages can each node send at any given time before the
nodes get overwhelmed with data being received on multiple channels at full data rates.

Another future research area concerning this project is looking at the effects of
memory limitation on the overall efficiency of the Star Optical Network system. During
the simulations performed on the three software models the processing nodes were

alocated a large amount of memory for receiving and sending messages. This memory



was never exceeded and it is a good posshility that limitations on this memory would
produce lag in the network system. It is possible that a message not be accepted at a
receiving node because of lack of memory, thus forcing the system to wait until memory
isavailable.

Additionally, we believe more research should be performed on the Ring Optical
Network system. This model does have promise, however there are multiple problems
with its current design. Redesigning of the node can help many of these problems.
Mainly the Ring Optical Network reeds a more complex packet control protocol. The
ring is quite useful for many reasons. It does not rely on one central device for all
communication and it intrinsically has more fault tolerance capability. If a ring is cut,
then the network may use the other direction ring to bypass the fault. However, from
general past experience in the networking field and from this research, we understand that
this ring design does not work. In the future aring-based system could work given more
devel opment.

Finaly, there are many research possibilities that derive from the optical
technology used as the base for these networks. One aspect of both of these models that
needs research is of course the hardware devices described above. The Star Optica
Network optical switch and node interfaces can be built today, but there is devel opment
required before any devices could be used. Similarly, the Ring Optical Network node
interface optical multiplexor could be built with today’ s technology, however they do not
exist in this form as available products. Another aspect of optical technology that would
need research are the transmitters and receivers used at each node. These devices are
currently available, but an integrated Demo-2 device is not available for production.
Additionally, an alternative to redundancy by channel, using parallel VCSELS, detectors,
and optical fibers, in these Optical Networks is redundancy by wavelength, using asingle
optical fiber and multiple different wavelength VCSELS. Research in this area would be
most helpful to reduce weight and overall connection complexity. However, additional
failure mode analysis is required to determine if there needs to be additional physical
redundancy. If the sustem were dependant on a single optical fiber and this fiber was cut
then the system would be fully interrupted.



In conclusion, this research has shown that for a next generation High
Performance Distributed Computer system a solution to its future data distribution fabric
could be a Star topology based Optical Network. The speed increases from such a
network provide the bandwidth needed by a next generation computing node. The Ring
Optical Network probably would not be a good idea because of the additional research
and development needed to make it a viable solution. However, there are still many areas
of the Star Optical system that need to be looked at like memory usage and node design.
This research concludes that a Star Optical Network is a viable future network for a High
Performance Distributed Computer.
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Appendix A: Star Optical Network System Diagrams

Top-level Star Optical Network System Diagram:
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Star Optical Network Node (StarNode) Module Diagram:
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Star Optical Network Fabric (S_Fabric) Module Diagram:
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. = I ﬁ”miﬂg a7 —Laglebugl "Fhelooe” | getTinsdl, "Tx to MaitSeaesi®is
P PR uffer
. e U
¢ phtRsumch C31oslf [ Lhuffers 2 0 e,
;;,Em = 1&&*;:?#1]; il Toe-L03 0 pRIRequestiSLzelfCirputBuFFee] F o0k
7 Delakabthe it fer 102 p; tobode ;= trputBuffer (i
LemIntufferCtate(p_Nawe, 0, Sizedfiarpusluffec) . geeTinells Teslatalthd LnputBuffer. iy
WritaAl LNucpatzls e

LesInBufferStaceip More, 0, SizpelHdinputboffer?, oetTiwedl 1
WrLbal] Ioutputedl
——Loglebugl *Frbloor" . cstTimsis . “Tx bo 270

FOTE; STD to reter out the inconding pachets fros the retsork, Mot suee seactly bos to ssnsge
1t when ws heve an sty quess eand then s rew pechst arrives. Eibher we cen desbsct the
arrival with the size of the queue or s will have to signal fro; ABsslect



Star Optical Network ABselect Finite State Machine:

Thaz rogtes detbe betwesn the CPU ard suther Bhe pramay
(A1 or pedurcant (B natuoek dnterface. depanding on
— the walue of the parasstes p_umeBside,

— . Becknarn d4-21-2000

— lloser™t oo thek anumprs For thes ster retsork,

— E. Hitchell 1-03-2002

Irpuita: Froebocdk, Frowfriz

Outperts: toPri, ABin, oueFlow;

Parawsters: p_inbBufiize. p_MNansi

Globalsr LrputBffars

Procadures: LeolnBufferSeated Ioputks: string. integer, drbegee resls.
Leslebugt Inputss ateirge real. sbringis

Initiallze:
BEGIN
AL :
Erin:
Lt
13 Frondlad=(TRLE
o tofri 3= frorbode:
-]
L_J uzirgh |
s = o -. TR
13 Frontlode

3
2

frorFr L (TRLEY
IF SizelH (inputBufFe-] ¥ p_inbufSize THEH
cerFlos 1= Frowri:

— sigral that there iz an overflow here,
SELua[nB.fFrrStutr'!p_ﬂcrw; 1. porbufSizs, gebTimscll:

ireertFbertinpubBuffer, froefri, SizelffinpatBufferho:
LoglrbufFarbtateip Mama, 0, Slzelfe inpubBuFferl., gatlTirelis:
CIENAL (ABnY:

EMD [F:

frorfrt

IF SizelH (inputBufFe-) ¥ p_inbufSize THEH
ceerFlow 1= Frowri:
LoglrBfFerSeateip flane, 1, pinBufSize, getTimedld:

ELZE
treertiFterfinputBuffer, Froefri, Size0fSinptBofferb:
Leslrfaf Ferihakedp Mams, 0. Sizelf{inpubbufferl, gstTirellr:
SICHAL (ABind:

EnD [F:
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Memory State and Usage Logging Function callable from anywhere in the Hardware
Model:

—— Thiz logs memory data to the log file,

—Eric I, Mitchell 01/23/02

Inputz: Hame, curTime, wvalue :
Globalst g_LogFile:
Localz: fatat:

Procedure:
BEGIN
fztat (= puti{g_LogFile, curTimel:
fztat := putig_LogFile, " Hemory: "i:
fztat = putig_LogFile, Mame}:
fztat = puti{g_LogFile, " "3
faztat := putig_LogFile, waluei:
fztat = putlinefg_LogFile, ""):
END:|

All other logging functions for message, packet, and link state have a similar form to this
function.
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Appendix B: Ring Opticd Network System Diagrams

Top-Level Ring Optical Network System Diagram:

link1ted linkEtel

linkSteb

linktes

linkBtal

link2ted

link3tod

linkBtaS

linkHted

~-ApPoEnds

ddﬁeEuentS

SimControl
[

Stot

pTimeOutRe= ~p_Timeoutr;
p_Hnd shkon:=-~p_Hnd Shkor;
p_FktovHd:= ~p_ PkOuHG;
p_hizaowHd:= ~p_ iza0uHd;
p_TRHWOUHG:= ~p_ THHWOLHG;
p_ ez PEtSz:= ~p_ MaxPktSz;
p_Allocon Recw= ~p_ Allocon Recwy;
p_R=OWHd=~p_RxOVH4;
p_percantEror= ~p_percentErrar
: P_THOWHD:= ~p_THOVHD;
p_FEC Sfartup:= ~p_FEC Starup;

n EEFAGL A e EEEAd.




Ring Optical Network Node Control (RING_NODE_CNTL) Module Diagram:

1 ()

nsﬁggrs CCWInFromNet
NClueue il
: AN

! Ch0ut ToNet:

,F rom_Node

Appllusue

oMode

packetReq [_Hame:= "Pl4ap_IDstr,
& L humblodes;

Rewmenlsage %
L] WInFrombet.
higher
numbers
&
Ring Optical Network Fabric (R_fabric) Moduel Diagram:
lower
Eglﬂr]___ numbers
e PR
|
signalCCl, __ | gateCCH :
é_. Chiut
fromhode E . CCUChannel=
" & T0end »& TCHTine0ut
o i M AR e - W AT A A o P e keyHasterCCl
inLine
Gatekesper
toMog —— PTTTTTTTTTITTTIITOY 1
O ]
‘ CHSend 1
dropPkt ]
"o GRETERRT) sianalCW________ [
oot |
i =ttt gatelll
: 1
1
1
_LuIn [
(15 higher
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Ring Optical Network Gatekeeper Finite State Machine Diagram:

[reute:  Froode. Dnlire:

ipubsd toleds, signalCH, signslC0d, dropPlt:
Globals; CLWS=nd, CHSand:

Ferawaterzl g _Mers, p faodas. p_ 103

Procedurest Loglebugl Inpuesiotering, real, steirgsrt
Stabic Localz: offzat, teswpPitStora, rect:

Locals: i_src. Lods=k, coonk?

[mLE1alize
FELLH

offset *= p_Muslpdes 2+
uFfeet offaak - po10T
nexk 2= 13

L Froedaded TRE:
ot 1sfc ;= froaHods. sroc:
_«1dst ¥= FromHode,dstd
=] Lo decite vhich uay to 9o
IF (Q1_sc + offeet! mod P_Husbodes>
(li_dzt + offzeth wod F_Rustlodesy THEM
Lnse-tAfFLer iCEend .. Fromfnda . SLzalf s CkEand] 1:
SIGHALCstanalCHit
H<E
LnserbRfter iCCSend , Frorbods, Sizs0F s COHS erda bt
STGHAL (51 gnalCOhl
ED [Fx

tnLine TFUE]
teouft i= 12
ragh 1= 1r
HH.LE {icount €= Sizelf (bempPktStor=i: AHD {rext = L} LOOP
i IF trldne,reszage, [D = terpPkEStorel i count ), wezsage, 10 AN
arLing.z=ghn = LerpPELALOre s 10y segbn @il
:rLinn.t-l.rEEtmp = benpPkiGtore( loowt F o tiweStane THEM
raxt 1= 9:
BSE
teownt o= oot + 1z
EMD [Fx

END LOOP:
[F inlire.packlups = dats R
inLire,packlvpe = ACK R
inLire, packlype = TS R
inLire, packlvps = CTS THEM
Tnzerchiftar (tewpPhitoore, tnlive, Sizelf (tewpPhitftorells
—Loflatgl *CabakEepar Cot packat for *+p_Nawa, getTimald. 1%
ELSIF arLins.psckTyss = ok R
taLires, packTygee = ACHerd THEM
IF Lcount <= SizelW(LespPuiStoras THEH
tolods i= bepPRbStors(icounth s
Writelutputdtobode )
EE_ Loglsbu i DatefEppar Lot and ok for "+p Mane, gelTlead). "L

—Loglebugt*Gateheeper*+p_Mane, getTinel ),
e “ERRIR: erd received For wromg phel"1:
EnD [F¢
ELSE —packTyee = haddata
IF u:uunl:- . Size0f (tempPkiSiors) THEH
pPht f= tenpPhtStorelicoont it
tht,eihtput,idmpht]'
==Lpalebug! "GatekEsssr Lok snd bad for “tp_Mere, getTimed) 175

ELZE
—L-:-g[lati.-gi Gatekappor +p_Mane gar Tined
e "ERRIR: Pkt smor recsived for owrong gkt
END [F2
ERD 1F:

Ring Optical Network gateCCW Module function: (gateCW is the same in the opposite

direction)

[nputz:  CCWIn:
Output=: =ignalCCl:
Globalz: CCHChannels:

Procedures: Loglebug!Inputsistring, real.

Parameters: p_Name:

Initialize:
BEGIN

MULL:
EMDI:

Procedure:
BEGIN

stringl:

inzertAfter{CCWChannels, CCHin . Sizelf (CCHUChannelsa ) :

SIGHAL=ignalCCl}:

——Loglebugt "gateCCl" + p_Mame +

EMD:

Limeout

getTimety, “"2"):



Ring Optical Network keyMasterCCW Module function: (keyMasterCW is the same in
the opposite direction)

-— This spec processes packets from both the

-- network and the node, It controls collizion

-- processing, In addition this process controls link
-- uzage,

== CWW means the ring in the counterclockwize direction, Thiz also means the nodes
—-- are numbered higher in the next nodes until it jumps to the lowest numbered node
-- The nodes must be bazed at node O up to Numbodes-1,

-- CCWUzage sets:

- 0 iz array for each channel for pazsthrough errors, O ok, 1 error

e 1 iz array for zend iz progress on that channel, © no send. 1 in progress
== 2 iz array for zend error. O ok, 1 error

5 3 iz array for passthrough in progress, © no, 1 in progress

- Eric J, Witchell 01-15-02

Inputzs:  =ignalCCWl:

Outputz: InLine, CCWOut, CCWTime, CCWStop:

Parameters: p_NumModes, p_LinkSpeed, p_ID, p_Mame:

Globals: CCWSend. CCWChannels, CCHEndSend:

Lozcals: i_src. i_dst, pktTemp. =_src. s_dst, s_tst:

Static Locals: CCMEnd,. sendTime. s_me, s_next, CCWUsage, s_sendDst:

Procedures; LoglinkStatelInputs: string, integer. real ),  --name, state, time
Loglebugt Inputz? string, real, stringh, —-—name, time, message
integer_to_string{Inputs: integer: Dutputs: stringl:

Initialize:
BEGIN

integer_to_stringtp_ID, =_mel:

integer_to_stringf{p_ID + 1} mod {p_MumMNodes). s_nextl:
EMWD:

Procedure:

BEGIN

—-—fired when either the node haz a new packet, the network sends us a new packet or when the timer
-= runs out on a send from this node,

--First. check if there is a packet to send, Look out for collizions,
IF Sizelf{CCWSend? > O THEN
pktTemp := CCWSendi{l}:
CCHEnd 3= pktTemp: -—store the last sent packet
DeleteMthCCCWSend, 1 :
i_src t= pktTemp,szrc:
i_dst = pktTemp,dst:



integer_to_string{i_src, s_srcit

integer_to_stringti_dst, =_dsti:

z_zendlst i= s_dst:

COMOut := pktTemp:

CCUTime = {48.0 % pktTemp,zizel /p_LinkSpeed):

Writelutput (CCMOUL >

Wr-ite0utput (CCMTime);

zendTime ;= getTime() + (3,0 * pktTemp,sizel /p_LinkSpeed);:

——rebuilding a quick fix to make it szeem az if control packetsz are on a zeperate set of rings,
——alteration iz forced becausze there were major collizion iszsues due with crozzing meszages,
IF pktTemp,packtype = ACK THEM
——LogLinkState!"Link_"+s_me+"_to_"+z_next+"+"+s_dst, 1, getTime(ii:
ELSE
CCWUsagetl, i dst) := 13 --set node szend to active
IF CCWlzagels, i dst) »>= 1 THEM --check if there iz a pazsthrough active
——collizion set all to collided.
CCWUzagein, i_dstr 3= 1:
CCWUzagel2, i_dst) 1= 1:
LogLinkState!"Link_"+s_me+"_to_"+s_next+":"+s_dst, 4, getTime{d):
LoglinkState(p_Mame+"OutLink", 4. getTimeddd:
IF pktTemp,packType = bad_data THEN
z_tzt = "bad Data":
ELSIF pktTemp,packType = ACK THEM
s_tat = "ACK":
ELSE
=z_tat := "other":
END IF:
Logllebugt "Callizion by a send pkt:", getTimell.
"From: "+s_src+" TO03 "+z_dst+" Type: " +z_tsti:
ELSE
LogLinkState("Link_"+s_met+"_to_"+s_next+":"+s_dst, 1, getTimed)}:
EMD IF:
EMD IF:
END IF:

—— MNext check to zee that sent packet did not end,
WHILE S5izelf{CCWEndSend} > O LOOP
DeleteMthiCCWENdSend, 133

——addition to fix ACKing issua
IF CCHEnd,packtype = ACK THEM
CCHWERd, packtype = ACKend:
CCWOut. 3= CCHERd:
Wi te0utput (COWOUL ) ¢
CCWMUzagefl, CCWEnd,dst} = 0
LoglinkStated"Link_"+s_me+"_to_"+z_next+":"+s_zendDzt. O, getTime({i):
EMD IF:
EMD IF:
END LOOP:

-- lastly. check the network for packetz to forward,
WHILE Size0f{CCWChannel=) > O LOOP
pktTemp 3= CCWChannelsili:
DeleteMth(CCWChannels, 10+
i_src = pktTemp,src:
i_dst := pktTemp,dst:
integer_to_stringfi_src, s_srci:
integer_to_string{i_dst, =_dsti?
--delay for the link difference
delay(l,0/p_LinkSpeed):

IF pktTemp,packTupe = data
0f pktTemp,packTuype = RTS
0f pktTemp,packType = CTS THEN
If pktTemp,dst = p_ID THEM
--itz our packet
InLine = pktTemp:
WritelutputsInLine?:

Thiz
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ELSE
-—pazz the packet through, we are not sending,
CCHOut 3= pktTemp:
Writelutput (CCWOUL )
CCWUzaget3,i_dsty := CCWUzage!3.i_dst}+1l: -- =zignal we are passing a pkt through
IF CCWUsagesl,i_dst» = 1 THEM
—- collizion has occured between passing through packet and our send of a packet,
-- Set link to 4 = errar,
CCWUzagedd,i_dsty = 13
CCWUsaget?,i_dsty := 1t
LoglinkStated"Link_"+s_me+"_to_"+s_next+":"+s_dst. 4, getTime{d}:
ELSE
LogLinkState!"Link_"+s_me+"_to_"+z_next+":"+s_dst, 1, getTimefii:
EMD IF:
EMD IF:
ELSIF pktTemp,packType = ACK THEM
If pktTemp,dst = p_ID THEN
-—itz our packet
InLine 3= pktTemp:
Writelutput{InLine}:
ELSE
CCMOut 3= pktTemp:
Writelutput (CCWOUL ) *
—— LogLinkState!{"Link_"+z_me+"_to_"+s_next+":"+z_dst, 1, getTimel)i:
EMD IF:
ELSIF pktTemp,packType = ok THEM -—thiz iz where we handle end of Tx packets ok =* good T,
IF CCWUsagein,i_dst} = 1 THEM ——collision here zo change the token to bad_data => bad Tx,
pktTemp,packType 3= bad_data:
IF CCMUsagedl, i_dsty = O AMD CCWUsage(3, i_dst) = 1 THEM
CCWUzagetd, i_dst) = 0f
EMD IF:
EMD IF:
IF pktTemp,dst = p_ID THEN
InLine := pktTemp:
Writelutput{InLine?:
ELSE
CCWOut := pktTemp:
Wi telutput (CCWOUE ? ¢
CCWU=zaget3, i_dst) ;= CCWUsagels, i_dsti-1:
IF CCMUsagesl, i_dstd = 1 THEN --zend is =till in progress
—-leave in current state
ELSE
IF (CCWUzage(3.i_dst} = 03 THEM
LoglinkStatel"Link_"+s_met"_to_"+z_next+":"+s_dst. 0, getTime{i):

ELSE
--leave in current state
END IF:
EMD IF:

EMD IF:

ELSIF pktTemp,packtype = ACKend THEN
IF pktTemp,d=zt = p_ID THEM
InLine := pktTemp:
Writelutput{InLines:
ELSE
CCWOut = pktTemp:
Writelutput { CCMOWE )
—-IF CCWUzagetl,. i_dst} = 1 OR CClUsagef3, i_dst» »= 1 THEN
] —-leawe channel az it currently is
——ELSE
--  ——szet the channel back to 0,
i LogLinkState!"Link_"+s_met+"_to_"+z_next+":"+s_dst, 0. getTime{d}:
——EMD IF:
END IF:
ELSE —-» pktTemp,packTupe = bad_data --there was already a colliszion
IF pktTemp,d=t = p_ID THEM
IrLine := pktTemp:
Writelutput{InLines:



ELSE
CCWOut ¢= pktTemp:
Writelutput CCMOUL 3 £
CCMUzage(3, i_dst) := CCWUzageis, i_dsti-1:
IF CCWUzagedl, i_dst) =1 THEN --send is still in progress
——leave in current state
ELSE
IF {(CCWU=agei3.i_dsty = O} THEM
LogLinkStatel"Link_"+s_me+"_to_"+s_rnext+":"+z_dst,. 0, getTimel)):

ELSE
--leave in current state
END IF:
END IF:
EMD IF:
EMD IF:

END LOOP:
END:

Ring Optical Network CCWoil Modudl function: (Cwail is the same in the opposite
direction)

[rputs:  CCHTimelut:

Outputs: =ignalCCl:

Globals: CCHEndSend:

localst filler = z_packet:

Procedures: Loglebugi{Inputzistring, real, stringi:
Parametersz: p_MName:

Initialize:
BEGIN

MULL
EWDI:

Procedure:
BEGIN
inzertAfter{CCWERdSend. filler,S5izelf (CCWERdSend: 2
SIGHAL signal COWI 2
——LogDebug{"CCHOi1 "+p_Mame+" timeout", getTime{l, "1"):
ENDI:
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Appendix C: Debugging Software Model PERL Files

Packet Walk Debugging Software Model:

#

# Tenpl ate for

# t hat

a pseudo-code software nodel

generates a software event trace when executed.

use GenTracev2

my $par anFi | eNanme
ny $out Fi | eNanme

($#ARGV >= 0) ? $ARGV[ 0]
($#ARGV >= 1) ? $ARGV[ 1]

" swnodel . swp' ;
' SWhodel . trc';

GenTr aceSet up( $par anti | eNane, $out Fil eName, $#ARGV >= 1);

HHHHHH R

## usage:
## usage:

BTW f or
t hrough 8

This one sinply hops a packet
0 ->1,
then 1 -> 2, 2 -> 3 etc.

the star, 0 = host,

## si zel nByt es);

## usage: PROCESS( t aski d,
# Host node |i st
SEND( 0, 1, 100, 15000);

# Processor 1 |ist

RECEI VE(1, 0, 100);
PROCESS(1, rand(200));
SEND(1, 2, 101, 15000);
# Processor 2 |ist

RECEI VE(2, 1, 101);

PROCESS( 2, rand(200));
SEND( 2, 3, 102, 15000);
# Processor 3 list
RECEI VE( 3, 2, 102);
PROCESS( 3, rand(200));
SEND( 3, 4, 103, 15000);
# Processor 4 |ist
RECEI VE( 4, 3, 103);
PROCESS( 4, rand(200));
SEND( 4, 5, 104, 15000);
# Processor 5 |ist
RECEI VE(5, 4, 104);

PROCESS( 5, rand(200));

around the nodes.

nunber Of Cycl es) ;

Send a nessage from

then there are 8 processing nodes 1

RECEI VE( dest i nati onTaskl D, sourceTaskl D, msgnun;
SEND( Sour ceTaskl D, desti nati onTaskl D,

, msgnum
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SEND(5, 6, 105, 15000);

# Processor 6 |ist
RECEI VE(6, 5, 105);
PROCESS( 6, rand(200));
SEND(6, 7, 106, 15000);

# Processor 7 list
RECEI VE(7, 6, 106);
PROCESS( 7, rand(200));
SEND( 7, 8, 107, 15000);

# Processor 8 |ist
RECEI VE(8, 7, 107);
PROCESS( 8, rand(200));

#
# Stop all tasks

STOP(0) ;
STOP(1);
STOP( 2) ;
STOP( 3) ;
STOP(4) ;
STOP(5) ;
STOP(6) ;
STOP(7) ;
STOP( 8) ;
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Congestion to Host Debugging Software Model:

#
# Tenplate for a pseudo-code software nodel
# that generates a software event trace when executed.

use GenTracev?2,
ny $paranFil eName = ($#ARGV >= 0) ? $ARGV[ 0] : 'swnodel . swp'

ny $out Fi | eName ($#ARGVY >= 1) ? $ARGV[1] : 'SWidel .trc';
GenTr aceSet up( $par anti | eNane, $out Fi |l eName, $#ARGV >= 1);

## usage: RECEI VE( dest i nati onTaskl D, sourceTaskl D, nsgnun;
## usage: SEND( Sour ceTaskl D, destinationTasklD, , nmsghum
## si zel nBytes);

## usage: PROCESS(t aski d, number Of Cycl es);

# Host node |i st

RECEI VE(1, 0, 100);
RECEI VE(1, 2, 200);
RECEI VE(1, 3, 300);
RECEI VE( 1, 4, 400);
RECEI VE(1, 5, 500);
RECEI VE(1, 6, 600);
RECEI VE(1, 7, 700);
RECEI VE(1, 8, 800);

#Ot her, all sends to O
SEND( 0, 1, 100, 15000);
SEND(2, 1, 200, 15000);
SEND( 3, 1, 300, 15000);
SEND( 4, 1, 400, 15000);
SEND(5, 1, 500, 15000);
SEND(6, 1, 600, 15000);
SEND(7, 1, 700, 15000);
SEND(8, 1, 800, 15000);
#

# Stop all tasks
STOP(0) ;

STOP(1);

STOP( 2) ;

STOP( 3) ;

STOP(4) ;

STOP(5) ;

STOP(6) ;

STOP(7) ;

STOP(8) ;
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Two Node Diaogue Debugging Software Model:

#
# Tenplate for a pseudo-code software nodel
# that generates a software event trace when executed.

use GenTracev2;

ny $paranfil eName = ($#ARGV >= 0) ? $ARGV[ 0] : 'swnodel.swp';

my $out Fi | eNane = ($#ARGV >= 1) ? S$ARGV[1] : 'Swmdel.

GenTr aceSet up( $par anti | eNane, $out Fi |l eName, $#ARGV >= 1);

## usage: RECEI VE( dest i nati onTaskl D, sourceTaskl D, nsgnun;
## usage: SEND( Sour ceTaskl D, destinationTasklD, , nmsghum
## si zel nBytes);

## usage: PROCESS(t aski d, number Of Cycl es);

# Host node |i st
SEND( 0O, 1, 100, 15000);
SEND( 0, 1, 200, 17000);

# Processor 1 |ist
RECEI VE(1, 0, 100);
PROCESS( 1, rand(200));
RECEI VE( 1, 0, 200) ;

#

# Stop all tasks

STOP(0) ;
STOP(1);
STOP(2);
STOP(3);
STOP(4);
STOP(5) ;
STOP( 6) ;
STOP(7);
STOP(8) ;

73



Appendix D: Send Memory Usage Diagrams for the three
Software models.

Space-Based Radar Corner Turn Send Memory Usage for all nodes

fi i
3 ¥ 10" Wade 0 Send Mernory 3 30 Nade 1 Send Mernory
2 1 2
IN; 1 1
0 L 0 .
q{ 1Dﬁ 0.01 0.0z 0.03 q{ 1E|B 0.01 .02 0.03
3 Mode 2 Send Mermoary 3 Mode 3 Zend hemary
2 4 2
1oL L - 1 L L]
>
E' 1 1 D 1 1
= q( 1DB 0.01 0.0z 0.03 Q( 108 0.01 0.0z 0.03
E‘* 3 Mode 4 Send Mermory 3 Mode 5 Send Metnory
£
[=k)
= 2 1 2
: L] L L L
A 1t - 1
] L g ] . L
q{ 1Dﬁ 0.071 0.0z 0.03 q{ 1E|B 0.01 0.0z 0.03
Mode 6 Send Mermary Maode 7 Send Mermary
2t 1 2
] L . 0 ; .
q( 1Dﬁ 0.01 0.0z 0.03 ] 0.0 0.0z 0.03
3 Bode 8 Send bMerpoty
2 L 4
1 4
D 1 1
0 0.01 0.0z 0.03

Simulation Time fseconds)
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Synthetic Aperture Radar Send Memory usage for all nodes

Send Memory Usage (bytes)

15 x 10 Mpde 0 Send Memnry 15 x 10 Mode 1 Send Memary
10+ 10
5 5
] A ]
E}I( 105 0.2 0.4 0B n.s q{ 105 02 0.4 0B 08
15 PMode 2 Send Memary 15 Mode 3 Send Memory
10+ 10
Lt L \
] ] i '
E}I( 105 0.2 0.4 0B s q{ 105 02 0.4 0B 08
15 Mode 4 Send Memaory 15 Mode & Send Memory
10+ 10
5t 5
g g LLLLdL,
0 mﬁ 0.2 0.4 0B 0 0 1EI§ 02 0.4 0B 08
15 % Mode B Send Memary 15 A Mode 7 Send Memary
10+ 10
5t 5
. ol W il . . . .
q{ 'IDE 02 0.4 0B nag 0 02 0.4 0B 08
E Mode 8 Send Memory
_4 &
2
D L 1 1
0 0.2 0.4 0B g

Simnlatinn Time fsprnnds
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Random Workload Send Memory usage for al nodes

Send Memaory Usage
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U‘I
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1
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ﬁm i nhh
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Mode 2 Send Mermory
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