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Abstract

Many optimization problems arising in various applications require minimization of
an objective cost function that is convex but not differentiable. Such a minimization
arises, for example, in model construction, system identification, neural networks,
pattern classification, and various assignment, scheduling, and allocation problems.
To solve convex but not differentiable problems, we have to employ special meth-
ods that can work in the absence of differentiability, while taking the advantage of
convexity and possibly other special structures that our minimization problem may
possess. In this thesis, we propose and analyze some new methods that can solve con-
vex (not necessarily differentiable) problems. In particular, we consider two classes
of methods: incremental and variable metric.
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Introduction

1.1. PURPOSE OF THE THESIS

Many optimization problems arising in various applications require minimization of an objec-
tive cost function that is convex but not differentiable. Such a minimization arises, for example,
in model construction, system identification, neural networks, pattern classification, and var-
ious assignment, scheduling, and allocation problems. To solve convex but not differentiable
problems, we have to employ special methods that can work in the absence of differentiabil-
ity, while taking the advantage of convexity and possibly other special structures that our
minimization problem may possess.

In this thesis, we propose and analyze some new methods that can solve convex (not nec-
essarily differentiable) problems. In particular, we consider two classes of methods: incremental
and variable metric. In the first part of the thesis, we discuss the incremental methods, which
are applicable to problems where the objective cost function has an additive structure. These
methods combine the ideas of the incremental approach with those of the standard methods
for convex minimization. We propose and analyze several versions of the incremental method,
including some that are stochastic, as well as some with special features such as weights. We
study convergence of the method for various stepsize rules and for synchronous and asyn-
chronous computational setting. Our convergence analysis and computational results indicate
that the incremental methods can perform far better than their nonincremental counterparts.

9



10 Introduction Chap. 1

In the second part of the thesis, we consider variable metric methods, which are applicable
to unconstrained convex minimization problems. These methods are particularly well suited for
poorly scaled problems, for which the standard methods of convex minimization are typically
very slow. The variable metric methods combine the principles of variable metric approach
with those of the standard methods for convex minimization. We discuss a variable metric
method in a general form and a more specific method that employs space dilation.

1.2. SUBGRADIENT METHODS

Subgradient methods are the principal methods used in convex nondifferentiable mini-
mization. This type of minimization arises in many applications, as well as in the context of
duality, and various general solution strategies such as penalty function methods, regulariza-
tion methods, and decomposition methods. Most notably, subgradient methods are used in
the context of duality arising from Lagrangian relaxation, where they are referred to as dual
ascent methods or dual methods.

Subgradient methods were first introduced in the Soviet Union in the middle sixties by
N. Z. Shor. Since then, they have been extensively studied, and in general two major classes of
subgradient methods have been developed: descent-based methods and nondescent methods.
The descent-based subgradient methods are based on the principal idea of the function descent,
which lies in the framework of gradient-type minimization. Nondescent subgradient methods
are based on the idea of the distance decrease (distance from the set of minima), and their
implementation is simpler than that of descent-based methods.

For nondescent subgradient methods, the early work of Ermoliev [Erm66] and Polyak
[Pol67] was particularly influential. Due to their simple implementation, the nondescent sub-
gradient methods have drawn a lot of attention, and the literature on these methods is very
rich. An extensive treatment of these subgradient methods can be found in the textbooks by
Dem’yanov and Vasil’ev [DeV85], Shor [Sho85], Minoux [Min86], Polyak [Pol87], Hiriart-Urruty
and Lemaréchal [HiL93] Shor [Sho98], and Bertsekas [Ber99].

Our work is in the framework of the nondescent subgradient methods, for which we study,
separately, the merits of the incremental approach and variable metric approach. In the next
two sections, we describe these approaches and discuss the contributions of the thesis.

1.3. INCREMENTAL APPROACH

1.3.1 Problem Formulation

In the first part of the thesis, we consider an incremental approach for minimizing a function
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that consists of the sum of a large number of component functions:

minimize f(z) = ; fi(z) (1.1)

subject to x € X,

where the functions f; : ®* — R, i = 1,...,m, are convex, and the set X C R" is nonempty,
closed, and convex. The most prominent example of this type of minimization is the linear
least-squares problem arising in a broad class of practical problems such as model construction,
system identification, neural networks, and pattern classification. This type of minimization
also arises from Lagrangian relaxation of coupling constraints of large-scale separable problems
in the domains of integer programming and combinatorial optimization, including various
assignment, scheduling, and allocation problems such as: job assignment, job-shop scheduling,
file allocation, bank accounts location, location of plants, concentrator location (in network
design), and warehouse location.

Our primary interest is in the problem where f is nondifferentiable. Nondifferentiability
is typical for problem (1.1) arising from Lagrangian relaxation, and solving this problem,
possibly within a branch-and-bound or some heuristic context, is one of the most important and
challenging algorithmic areas of optimization. When a branch-and-bound algorithm involves
subproblems of the form (1.1), solving such subproblems quickly and with high accuracy results
in a faster and more efficient search, thus improving the overall performance of the branch-
and-bound algorithm. Hence, it is important to have an algorithm that quickly yields a good
approximation of the optimal cost for problem (1.1).

A classical method for solving problem (1.1) is the subgradient method, whereby at
each iteration we take a step in the opposite direction of a subgradient of f and we obtain
a new iterate by projecting on the constraint set X (for the time being, we can think of a
subgradient as a substitute for a gradient in the absence of the differentiability of f). This
classical subgradient method, however, does not exploit the additive structure of the function
f. To take advantage of the special structure of f, we consider an incremental approach.
The idea of this approach is to perform iterations incrementally, by sequentially taking steps
along the negative subgradients of the component functions, with intermediate adjustment
of the variables after processing each component function. An iteration of the incremental
subgradient method can be visualized an a long cycle consisting of m steps, whereby at each
step we process only one component f; such that all components fi,..., f,, are processed
exactly once within the cycle.

1.3.2 Previous Work

Incremental gradient methods for differentiable unconstrained problems have a long tradition,
most notably in the training of neural networks, where they are known as backpropagation
methods. These methods are related to the Widrow—Hoff algorithm [WiH60] and to stochastic
gradient /stochastic approximation methods. The incremental gradient methods have been ex-
tensively studied, most recently by Luo [Luo91], Gaivoronski [Gai94], Grippo [Gri94], Luo and
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Tseng [LuT94], Mangasarian and Solodov [MaS94], Bertsekas and Tsitsiklis [BeT96], Bertsekas
[Ber97], Tseng [Tse98], Bertsekas and Tsitsiklis [BeT00]. It has been experimentally observed
that incremental gradient methods often converge much faster than the steepest descent.

Incremental subgradient methods are similarly motivated by rate of convergence consid-
erations. Despite the success of the incremental gradient methods, the merits of the incremen-
tal approach for solving nondifferentiable convex problems had not been properly evaluated
prior to this work. Previous work on the incremental subgradient method is rather scarce.
The method was proposed and analyzed by Kibardin in [Kib79], and later, also analyzed by
Solodov and Zavriev [SoZ98]. In both of these references, convergence properties and some
convergence rate estimates were established only for a cyclic nonrandomized processing order
of function components fi, ..., fi, and for a stepsize diminishing to zero.

1.3.3 Owur Work and Contributions

Our work has two general contributions:

(a) New Algorithms. The development of fast and simple methods, with low overhead per
iteration, and in particular, the development of the incremental method with randomiza-
tion, and the development of distributed and asynchronous incremental methods.

(b) Unifying Analysis. A line of analysis that provides a new framework for the convergence
analysis of the whole class of nondescent subgradient methods including the methods with
variable metric. This unifies the existing theory of nondescent subgradient methods.

Our work also has many specific contributions, such as new stepsize rules, convergence
results, and convergence rate estimates. In particular, in the first part of the thesis, we give an
exhaustive study of the incremental subgradient method and its versions using randomization,
weights, and approximate subgradients. For the method and each of its versions, we provide a
number of convergence and convergence rate results under four different stepsize rules:

(1) Constant stepsize rule, where the stepsize is fixed to a positive scalar.
(2) Diminishing stepsize, where the stepsize diminishes to zero.

(3) Dynamic stepsize with known optimal cost value, where the stepsize is proportional to
the difference between the function value at the current iterate and the optimal cost
value.

(4) Dynamic stepsize with unknown optimal cost value, which is a modification of the stepsize
rule (3) obtained by using an estimate of the optimal cost value. For this stepsize, we
give two estimate update procedures.

Even though the incremental approach performs well in centralized computation, it may
perform even better in parallel computation especially for typical problems where computation
of the component subgradients is relatively costly. For such problems, we propose and analyze
a distributed asynchronous incremental subgradient method, where the computation of the
component subgradients is distributed among a set of processors that communicate only with a
coordinator. Our distributed methods are motivated by the parallel asynchronous deterministic
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and stochastic gradient methods of Tsitsiklis, Bertsekas, and Athans [TBA86], and Bertsekas
and Tsitsiklis [BeT89]. However, our algorithms do not fit in the framework of the general
algorithmic models of Chapter 6 and 7 Bertsekas and Tsitsiklis [BeT89], and therefore our
algorithms are not covered by the line of analysis of this reference.

We discovered that the performance of the incremental method depends not only on
stepsize choice, but also on the processing order for the component functions. The dependence
on the stepsize choice is captured by our convergence rate analysis. However, the dependence
on the processing order for processing the component functions turned out to be very complex,
and we were not able to capture it analytically. We also discovered that randomization can
alleviate possibly detrimental effects of unfavorable processing orders, which we were able to
prove analytically and to support by computational results.

Our convergence results are more general and by far richer than those of Kibardin [Kib79],
and Solodov and Zavriev [S0Z98]. Our analytic approach is motivated by that of Dem’yanov
and Vasil’ev [DeV85], Polyak [Pol87], and Correa and Lemaréchal [CoL93] for the ordinary
subgradient method. Since the ordinary subgradient method is a special case of the incremental
subgradient method where m = 1, our convergence results can be viewed as a generalization
of the corresponding convergence results for the ordinary subgradient method, which can be
found in the textbooks by Dem’yanov and Vasil’ev [DeV85], Shor [Sho85] and [Sho98], Minoux
[Min86], Polyak [Pol87], Hiriart-Urruty and Lemaréchal [HiL93], Bertsekas [Ber99].

Most of the thesis work on incremental methods was previously published in the journal
papers by Nedié, Bertsekas, and Borkar [NBB01], and Nedi¢ and Bertsekas [NeB01a], [NeB01b].

1.4. VARIABLE METRIC APPROACH

1.4.1 Problem Formulation

In the second part of the thesis, we focus on an unconstrained problem
minimize  f(z), (1.2)

where the function f : R”? — R is convex. Such a minimization arises in parameter estimation,
model construction, pattern classification, etc. Furthermore, such a minimization also arises
when applying a penalty approach to a problem involving a convex constraint set.

We are particularly interested in poorly scaled problems, where the changes of the ob-
jective function are rapid along some directions and very slow along other directions. For
such problems, standard subgradient method is very slow, since the subgradients are almost
orthogonal to the directions pointing toward the set of minima. Thus, along the subgradient
directions, the function improvements are insignificant and the method jamms. In this case,
changing the stepsize generally cannot improve the situation, since the difficulties are associ-
ated with bad subgradient directions. However, by transforming the variables (i.e., varying
the metric), we can modify subgradient directions and obtain a faster method.
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1.4.2 Previous Work

Variable metric approach has traditionally been applied to poorly scaled differentiable prob-
lems. The idea of this approach is to rescale the original problem by varying the metric. The
most common methods using this approach are diagonally scaled steepest descent method,
Newton method, quasi-Newton method and its various modifications. The literature on vari-
able metric methods for differentiable problems is vast (see, for example, the textbook by
Bertsekas [Be99]).

Variable metric approach has also been used for solving nondifferentiable problem (1.2).
The first variable metric subgradient method was proposed and studied by Shor [Sho70a],
[Sho70b], [Sho77al, [Sho77b] (see also the books by Shor [Sho85] and [Sho98]). Shor suggested
to use special linear transformations based on space dilation along a subgradient and along
the difference of the two successive subgradients. According to some experimental results
(see Lemaréchal [Lem82]), Shor’s method using space dilation along the difference of the two
successive subgradients is an excellent method, for which however convergence results have
been established only for a stepsize with exact line search (cf. Shor [Sho85]). Based on Shor’s
work, Khachian [Kha79] has developed the celebrated ellipsoid method. Since then, most of
the work on variable metric subgradient methods was closely related to ellipsoid method (see,
for example, a review by Akgiil [Akg84]). Some other variable metric subgradient methods,
which are descent-based, have been proposed by Lemaréchal [Lem78] and Uryasev [Ury91].

1.4.3 Owur Work

We here study two types of variable metric subgradient methods: with limited amount of space
transformation and with dilation transformation. The methods rely only on the convexity
property of the objective cost function, and they are not descent based. The method with
limited amount of space transformation is new. Our analysis shows that this method converges
for various stepsize rules. Our results are very general and include as a special case a diagonal
scaling. However, there are still some open questions that need to be addressed, such as how
to specifically choose the space transformations.

As for the dilation methods, we discuss dilation along subgradients and along other
directions, including the direction of subgradient difference. For these methods, we propose
a new dynamic stepsize rule that uses estimates of the optimal function value. The dilation
method that can use dilation along directions other than subgradients is new. In a special
case, this method is similar to Shor’s method with dilation along subgradient difference. For
this new dilation method, we establish convergence properties and convergence rate estimates
using dynamic stepsize rules for known and unknown optimal function value.

1.5. OUTLINE OF THE THESIS

In the first part of the thesis, we consider the incremental approach. In Chapter 2, we formally
introduce the incremental subgradient method, and we establish convergence properties and
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convergence rate estimates for various stepsize rules. In Chapter 3, we propose and analyze the
incremental subgradient method that uses randomization. By comparing the incremental ran-
domized method with the nonrandomized method, both analytically and computationally, we
demonstrate the advantages of randomization. We here also study the distributed asynchronous
incremental method. In Chapter 4, we investigate the modifications of the incremental method
involving weights and approximate subgradients (e-subgradients).

In the second part of the thesis, we discuss the variable metric subgradient methods.
In Chapter 5, we propose a method with limited amount of metric changes. We establish
convergence properties of the method under several stepsize rules. In Chapter 6, we consider
Shor’s dilation method, and we also propose and analyze a new dilation method.






PART I:
Incremental Subgradient Methods
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An Incremental Subgradient Method

Throughout the whole thesis, we view the elements of R” as column vectors. We use z’ to
denote the transpose of a vector z, and || - || to denote the standard Euclidean norm in R”, i.e.,
|z|| = V/z'x. For a function f : ®* + R and a constraint set X C R», we write f* and X* to
denote, respectively, the minimum value of a f over X and the set of minima of f over X i.e.,

f* = inf f(z), X*={zeX|f(x)=f}.

reX

We refer to the value f* and the set X*, respectively, as the optimal function value and the
optimal solution set. We also write dist(z,Y") to denote the distance between a vector 2 and
a nonempty set Y, i.e.,

dist(z,Y) = inf ||z — y||.
ist(a,Y) = inf |}o —y]

In this part of the thesis, we consider the problem

minimize f(z) = Z fi(z) (2.1)

subject to x € X,

where the function f : " — R is convex, and the constraint set X C R is a nonempty, closed,
and convex.

19



20 An Incremental Subgradient Method Chap. 2
2.1. THE METHOD

As mentioned earlier, a classical method for solving problem (2.1) is the subgradient method

Tr4+1 = Px [xk — oy Zdlk] ) (2.2)

i=1

where Px denotes the projection on the set X, oy, is a positive stepsize, and d; 1 is a subgradient
of fi at . In many important applications, the set X is simple enough so that the projection
can be easily implemented. In particular, for the problems of the type (2.1) arising in the dual
context from Lagrangian relaxation, the set X is either " or the positive orthant in R” so
that projecting on X is either not needed or not expensive.

The incremental subgradient method is similar to the standard subgradient method (2.2).
The main difference is that at each iteration, z is changed incrementally, through a sequence
of m steps. Each step is a subgradient iteration for a single component function f;, and
there is one step per component function. Thus, an iteration can be viewed as a cycle of m
subiterations. If zj is the vector obtained after k cycles, the vector xx4+1 obtained after one
more cycle is

Tht1 = Ym i, (2.3)

where 1), 1. is obtained after the m steps
Vi = Px [Yi—1,k — 0nGi k), i=1,...,m, (2.4)

starting with
¢0,k = Tk, (25)

where g;  is a subgradient of f; at ¢;_1 5. The updates described by Eq. (2.4) are referred to
as the subiterations of the kth cycle.

Incremental subgradient methods that are somewhat different from the method (2.3)-
(2.5) have been proposed by Kaskavelis and Caramanis [KaC98], and Zhao, Luh, and Wang
[ZLW99]. Their methods share with ours the characteristic of computing a subgradient of only
one component f; per iteration, but differ from ours in that the direction used in an iteration
is the sum of the (approximate) subgradients of all the components f;. Thus, these methods
essentially belong to the class of approximate subgradient (e-subgradient) methods.

2.2, ASSUMPTIONS AND SOME BASIC RELATIONS

In our analysis here and in the subsequent chapters, we repeatedly use the defining property
of a subgradient g of a convex function h : R? — R at a point x, which is

h(z) + ¢g'(z — x) < h(z), vV z e Rn. (2.6)

We denote by 0h(z) the subdifferential (set of all subgradients) of h at x.
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We start with some assumptions and preliminary results that we frequently use in the
forthcoming analysis. In particular, regarding the subgradients of the component functions f;,
we assume the following:

Assumption 2.1: (Subgradient Boundedness) There exists a positive scalar C' such that

gl <C, Vg edfilar) VOfi(i-rk), Vi=1...,m, VEk

Since each component f; is real-valued and convex over the entire space R”, the subdifferential
Ofi(z) is nonempty and compact for all x and i. Therefore, if the set X is compact or
the sequences {1; ;} are bounded, then Assumption 2.1 is satisfied since the set Uzez0fi(x)
is bounded for any bounded set Z (see e.g., Bertsekas [Ber99], Prop. B.24). We note that
Assumption 2.1 is also satisfied if each f; is a polyhedral function, i.e., f; is the pointwise
maximum of a finite number of affine functions. In this case, for every x, the set of subgradients
Ofi(x) is the convex hull of a finite number of vectors. In particular, often in problems (2.1)
arising from Lagrangian relaxation, each f; is a polyhedral function.

In the next lemma, we give a relation that captures the distance decrease property of the
iterates generated by the incremental method (2.3)—(2.5). This lemma will play a crucial role
in establishing all of our convergence results.

Lemma 2.1: Let Assumption 2.1 hold. Then, for the sequence {zj} generated by the incre-
mental subgradient method, we have

ks = yl1? < llow — yl2 — 200 (F(o2) — F)) + 3m2C2, VyeX, Vk,
where C is as in Assumption 2.1.

Proof: Using the nonexpansion property of the projection, the subgradient boundedness (cf.
Assumption 2.1), and the subgradient inequality (2.6) for each component function f;, we
obtain for all y € X,

e ol = [Pt~ ] o
< ||7/’i—1,k — Qrgik — yl|?
< pic1k — ylI2 — 2009] , (Pic1k —y) + a2 C2
< ik =yl = 20k (fiWhio1k) = fily)) + 03C%, Vi=1,....m, VEk

By adding the above inequalities over ¢ = 1,...,m, we see that for all y € X and k,

liss — 12 < llox — g2 — 200 3 (filbiovr) — fi(9)) + amC?
=1

= |lzx — ylI? - 2a (f(xk) —f) + D (fildior) — ﬁ-(m))) +agmC?2.

=1
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By definition of the method [cf. Egs. (2.3)-(2.5)] and Assumption 2.1, we have that ||1; , —
zg|| < agiC for all ¢ and k. By using this relation, the subgradient inequality (2.6), and
Assumption 2.1, we obtain for all 7 and k,

filzr) = fi(iz1k) < |96k

where §; 1 € Ofi(xr). From this and the preceding relation, we see that for all y € X and k,

|- i1k — 2|l < Cllthi—1k — zkl] < (i — 1)CZ,

lorer = yl1? < ok — g2 — 200 (f (22) — £(9)) + 0 (zza ~10? 4 m02>

=2
= |lzk — y||2 = 20k (f(zx) — f(y)) + a2m2C2.

Q.E.D.

Among other things, Lemma 2.1 guarantees that given the current iterate xj and some other
point y € X with lower cost than z, the next iterate x;1 will be closer to y than z, provided
the stepsize oy, is sufficiently small [less than 2(f(zx) — f(y))/(mC)2]. We will use this fact
repeatedly, with a variety of choices for y. Furthermore, when the optimal solution set X* is
nonempty, Lemma 2.1 yields a relation that plays an important role in our convergence rate
analysis. This relation is given in the following lemma.

Lemma 2.2: Let Assumption 2.1 hold, and assume that the optimal solution set X* is
nonempty. Then, for the sequence {z)} generated by the incremental subgradient method,
we have

(dist(mk+1,X*))2 < (dist(ack,X*))2 — 20y, (f(zk) — f*) + a2m?2C2, V k. (2.7)

Proof: Using Lemma 2.1 with y = x* for any z* € X*, we see that
lowsr — 22 < llow — a*[? - 200 (f(x) = f+) + aZm?C2,  Ver € X*, Yk,
and by taking the minimum over all * € X*, we obtain the desired relation. Q.E.D.

The assumption that the optimal solution set X * is nonempty is satisfied, for example,
when the constraint set X is compact. Moreover, it can be seen that this assumption is also
satisfied when infyex fi(z) is finite for each 4, and at least one of the components f; has
bounded level sets (see Rockafellar [Roc70], Theorem 9.3).

2.3. CONSTANT STEPSIZE RULE

We here give convergence results and convergence rate estimates for the method using a con-
stant stepsize rule. Our first result shows that, when f* is finite, this method yields (in the
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limit) a suboptimal function value with the approximation error am2C?/2, and otherwise
yields the optimal function value, as seen in the following proposition.

Proposition 2.1: Let Assumption 2.1 hold. Then, for the sequence {z} generated by the
incremental subgradient method with the stepsize ay fixed to some positive constant «, we
have:
(a) If f* = —o0, then
liminf f(zr) = —oc.
k—o00
(b) If f* > —o0, then

2002
liminf f(z) < f*+ am*¢ ,
k—o0 2

where C is as in Assumption 2.1.

Proof: We prove (a) and (b) simultaneously. If the result does not hold, there must exist an
€ > 0 such that

2072
liminf f(zx) — am —2e > f*.
k—o0 2
Let § € X be such that
2072
liminf f(zx) > f(y) + o + 2¢,
k—o0 2

and let ko be large enough so that for all k > ko, we have
f(zr) > liminf f(zg) — €.
k—o0

By combining the preceding two relations, we obtain

am?2(C?

2

flzx) = f(9) > + €, Y k> ko.

Using Lemma 2.1, where y = ¢, together with the preceding relation, we see that
[Zkr — 917 < [lok = GI° — 26, V k> ko,
implying that
st — 712 < llo — 7112 = 2€ < |loxms — 9112 — dae < - < [lon, — G2 = 20k + 1 = ko)ae,
which cannot hold for k sufficiently large, a contradiction. Q.E.D.

The preceding bound is sharp within a constant, i.e., there exists a problem such that
for any stepsize a, we can choose an initial point o and a processing order for components f;
so that ) 20
am
et A T A

Vi=1,...,m.

This is shown in the following example.
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Example 2.1:

Consider the following problem

P
minimize  f(z1,2) = (|21 + 1 +2le] + |21 — 1 + |22 + 1] + 2|w2| + |22 — 1)
=1

subject to  (z1,z2) € R,

where p is a positive integer. The optimal value is f* = 4p and is attained at the point (z1,z3) =
(0,0), which is the only optimal solution. Given any positive stepsize a, we choose (ap,0) as an
initial point, where ap < 1, and we process the component functions of f in the following order: p
components of the form |z2 — 1|, p components of the form |z;| followed by p components of the
form |z1 + 1|, p components of the form |z2| followed by p components of the form |z2 + 1|, then p
components of the form |z | followed by p components of the form |z, — 1|, and then the remaining
p components of the form |z2|. It can be seen that this processing order produces the iterates zj
such that
flzy) = f* + 2097, Vi=1,...,m, Vk.

Since m = 8p and C =1, it follows that

1 am?C?
* 2 2: * -
[+ 2ap f+16 7

which together with the preceding relation implies that

1 am?C?
li =y =
Jim floe) ="+ g5

Vi=1,...,m.

Furthermore, it can be seen that, even when subiterates v; ; are considered, the function values
f (i) cannot attain values lower than this bound.

We next estimate the number K of iterations needed to have

. am?2C? + ¢
< *
Oérllggle(xk)_f + 5

b

where € is a given error tolerance. In particular, we have the following result.

Proposition 2.2: Let Assumption 2.1 hold, and assume that the optimal solution set X*
is nonempty. Let the sequence {zr} be generated by the incremental subgradient method
with the stepsize ;. fixed to some positive constant . Then, for a positive scalar ¢ and the
nonnegative integer K given by

K= {i(dist(xo,X*))zJ ,

(674

we have

. am?2C? + ¢
< frp 0
OQQKf(xk)—f + 5
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Proof: To arrive at a contradiction, assume that

am?2C? + ¢

VE=0,1,...,K.
9 ) P )

flze) > f*+
By using this relation and Lemma 2.2, where «y is replaced by «, we obtain

(dist(:z:k+1,X*))2 < (dist(xk,X*))2 — 2a(f(zk) — f*)+a2m2C?
< (dist(xk,X*))2 — (a2m?C? + ae) + a?>m?C?
= (dist(wk,X*))2—ae, Vk=0,1,...,K.

Adding the above inequalities over &k = 0,1,..., K yields
(dist(zrs1, X*))? < (dist(zo, X*))? = (K + 1)ae,
implying that
(K + 1)ae < (dist(xo,X*))z,
which contradicts the definition of K. Q.E.D.

The result of Prop. 2.2 indicates that a higher accuracy in the computation of the optimal
function value f*, (i.e., small stepsize « and tolerance level €) corresponds to a larger number
K. This is quite natural since higher accuracy usually requires more work.

We next show that, for a function f with sharp minima, the convergence rate of the
method is linear for a sufficiently small stepsize. However, only convergence to a neighborhood
of the optimal solution set X* can be guaranteed.

Proposition 2.3: Let Assumption 2.1 hold, and assume that the optimal solution set X* is
nonempty. Assume further that there exists a positive scalar yu such that

flz)—f*>u (dist(x,X*))2, VzeX. (2.9)

Then, for the sequence {zy} generated by the incremental subgradient method with the stepsize
oy, fixed to some positive constant a, where o < i, we have

am?2(C?

(dist($k+1,X*))2 < (1 —2ap)k+t (dist($0,X*))2 + o0

. VEk

Proof: By using Eq. (2.9) and Lemma 2.2 with «y replaced by «, we obtain

(dist(mkH,X*))z < (dist(xk,X*))2 —2a(f(zx) — f*)+a2m2C?
<(1- 2au)(dist(xk,X*))2 + a2m?2C?, v k.
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From this relation, by induction, we can see that

k
(dist(:z:k+1,X*))2 < (1—2au)k+t (dist(wo,X*))2 + a?2m?2C? Z(l —2ap)i, vk,

J=0

which combined with

yields the desired relation. Q.E.D.

2.4. DIMINISHING STEPSIZE RULE
We here consider the method that employs a diminishing stepsize. Our first result is a gener-
alization of a classical convergence result for the ordinary subgradient method, which was ob-

tained by Ermoliev [Erm66] and Polyak [Pol67], independently (see also Correa and Lemaréchal
[CoL93]).

Proposition 2.4: Let Assumption 2.1 hold, and let the stepsize aj be such that

o0
kli)n;o ar =0, Zak = o0.
k=0
Then, for the sequence {z}} generated by the incremental method, we have

liminf f(zg) = f*.
k— o0

Proof: Suppose to arrive at a contradiction that there exists an € > 0 such that
liminf f(xy) + 2€ > f*.
k—o0

Let § € X be such that
liminf f(zx) > f(9) + 2e,
k—o00

and let ko be large enough so that for all k£ > ko, we have
f(zr) > liminf f(zg) — €.
k—o0
From the preceding two relations it follows that

flae) = f@) 26 VE2>k.
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Using Lemma 2.1, where y = ¢, together with the preceding relation, we obtain
lzk+1 — 912 < |lzk — 9]|12 — ax(2e — arm2C?), V k> ko.

Because ar — 0, without loss of generality, we may assume that ko is large enough so that
€ > apm?2C? for all k > ko, implying that

k
|zkrr — 9l < o — 911> — are < llop—1 — 912 — elan—1+ o) < -+ < |lagg — 9> —€ Y aj.
J=ko

Since ZZOZO ap = 00, this relation cannot hold for k sufficiently large, a contradiction. Q.E.D.

If we assume in addition that X* is nonempty and bounded, the result of Prop. 2.4 can
be strengthened, as seen in the forthcoming proposition. This proposition is also an extension
of the convergence result obtained by Solodov and Zavriev [SoZ98], which was proved by a
different line of analysis using the stronger assumption that X is a compact set.

Proposition 2.5: Let Assumption 2.1 hold, and assume that the optimal solution set X* is
nonempty and bounded. Assume further that the stepsize ay is such that

o0
lim a =0, E Qp = 00.
k—o00 —o

Then, for the sequence {z} generated by the incremental subgradient method, we have

lim dist(xg, X*) =0, lim f(zg) = f*.
k—o00

k—o00

Proof: The idea is to show that once zj enters a certain level set, it cannot get too far out
of that set. Fix an arbitrary v > 0, and let ko be such that v > aym2C? for all k > ky. We
consider k for k > ko and we distinguish two cases:

Case 1: f(xr) > f*+7. From Lemma 2.1 we obtain

lzkt1 — z*[]2 < ||z — 2|2 = 20 (f(zr) — f*) + a2m2C2, Vaor e X+,
Hence,
|Zrt1 — z*]|2 < ||z — 2*]|2 — 2y + a2m2C2 < ||z — z*]|2 — gy, Vx* € X+,
so that
dist(zrs1, X*) < dist(xg, X*) — ag7y. (2.10)

Case 2: f(xr) < f*+ . This case must occur for infinitely many &, in view of Eq. (2.10)
and the relation ZZO:O ar = 00. Since z belongs to the level set

Ly={yeX|fly) <[ +~}
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which is bounded (in view of the boundedness of X*), we have
dist(zg, X*) < d(vy) < oo, (2.11)
where we denote

d(v) = dist(y, X*).
(7) max dis (y, X*)

From the iteration (2.3)-(2.5), we have ||xx+1 — k|| < apmC for any k, so that
lonss — 51 < ok — 2| + lwnss — sl < ok — 2* + ogmC, ¥ 2+ € X
By taking the minimum in this relation over z* € X* and by using Eq. (2.11), we obtain
dist(zr41, X*) < d(y) + apmC. (2.12)

Combining Eq. (2.10) which holds when f(zx) > f* + v (Case 1 above), with Eq. (2.12)
which holds for the infinitely many & such that f(zr) < f* + v (Case 2 above), we see that

dist(zk, X*) < d(v) + apmC, V k> ko.
Therefore, because ay — 0, we have

lim sup dist(zg, X*) < d(y), V> 0.

k—o00

Since in view of the continuity of f and the compactness of its level sets, we have that

lim d(v) = 0,
v—0

it follows that dist(xg, X*) — 0. This relation also implies that f(zx) — f*. Q.E.D.

The assumption that X* is nonempty and bounded holds, for example, when inf e x fi(x)
is finite for all 4, and at least one of the components f; has bounded level sets (cf. Rockafellar
[Roc70], Theorem 9.3). Prop. 2.5 does not guarantee convergence of the entire sequence {z}.
However, with slightly different assumptions that include an additional mild restriction on the
stepsize sequence, this convergence is guaranteed, as shown in the following proposition.

Proposition 2.6: Let Assumption 2.1 hold, and assume that the optimal solution set X* is
nonempty. Assume further that the stepsize ay is such that

o0 o0
E ap = 00, E ai < 00.

Then, the sequence {x} generated by the incremental subgradient method converges to some
optimal solution.
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Proof: By Lemma 2.1, where y = z* with x* € X*, we have
|zkt1 — 2*]2 < |lzp — 2%]2 — 205 (f (zx) — [*) + a2m2C?2, Vaoxe X* VEk  (213)

Since f(zg)— f* > 0 for all k and Y2, a2 < oo, it follows that the sequence {zj} is bounded.
Furthermore, by Prop. 2.4, we have that

liminf f(zg) = f*.

k— o0

Let {zx,} be a subsequence of {z} along which the above liminf is attained, so that

lim f(zg,) = f* (2.14)

J—ro0

The sequence {xkj} is bounded, so it has limit points. Let T be one of them, and without loss
of generality we can assume that zx, — Z. By continuity of f and Eq. (2.14), we have that
T € X*, so from Eq. (2.13) with z* = T, we obtain for any j and any k > kj,

k
laksr — 72 < lax 712 + a2m2C2 < - < oy, — 7|2+ m202 3 a2,
i:kj

Taking first the limit as £k — oo and then the limit as 7 — oo, from the preceding relation we
obtain

o0
limsup [|zg4+1 — Z(|? < lim [|zg; — 7(|? + m2C? lim Z a?,
k—00 J—roo J_moz':kj

which by zx;, — T and Yoo @2 < oo, implies that

limsup ||zg+1 — Z||2 = 0,
k—o00

and consequently, rry — T with z € X*. Q.E.D.

In Props. 2.4-2.6, we use the same stepsize ay in all subiterations of a cycle. As shown
by Kibardin in [Kib79] the convergence can be preserved if we vary the stepsize aj, within each
cycle, provided that the variations of aj within a cycle are suitably small. We will see this
later on in Section 3.9 for a more general incremental method.

For a function f with a sharp minima, the convergence rate of the incremental subgradient
method using the stepsize ay, = r/(k+1), with a positive scalar r, is sublinear. This convergence
rate estimate is given by Nedi¢ and Bertsekas in [NeBO1b).
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2.5. DYNAMIC STEPSIZE RULE FOR KNOWN f*

To this end, we analyzed the constant and the diminishing stepsize choices. An interesting
alternative for the ordinary subgradient method is the dynamic stepsize rule

flzg) = f~

B 0<1S7k§7<27
gkl

g = Yk

where gy, is a subgradient of f at . This stepsize rule was introduced by Polyak in [Pol69] (see
also discussions in Shor [Sho85], [Sho98], Brannlund [Brid93], and Bertsekas [Ber99]). Clearly,
this stepsize rule can be used only if f* is finite, which we assume throughout this section. We
would like to use such a stepsize rule for the incremental method, so we propose a variant of
this stepsize where ||gx|| is replaced by an upper bound mC:

flzk) = f~

o ror R 0<y<m<y<2 (2.15)

Qr = Yk
where C' is as in Assumption 2.1. For this choice of stepsize, we have to be able to calculate
the upper bound C, which can be done, for example, when the components f; are polyhedral.

We first consider the case where f* is known, and later we modify the stepsize so that f*
can be replaced by a dynamically updated estimate. Throughout this section, we assume that
f* is finite, which is evidently needed to use the stepsize (2.15). We next give convergence and
convergence rate results for the method employing this stepsize.

Proposition 2.7: Let Assumption 2.1 hold. Then, for the sequence {zj} generated by the
incremental subgradient method with the dynamic stepsize rule (2.15), we have

liminf f(zg) = f*.

k— o0

Proof: Suppose to obtain a contradiction that there exists € > 0 such that

2
‘ < liminf f(zy),

!/ +2—7—5 k—

where § > 0 is a positive scalar such that 2 —75 — § > 0. Let ko be large enough so that

2e

— < — fx > 2.1

2_7_5_f($k) [ V k> ko, (2.16)
and let a vector § € X be such that

f@) —f*<e
Then, we have
. 2—-5-9§
F@) = <——— @)= f*), VE>k. (2.17)
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By Lemma 2.1, where y = ¢ and «y, is given by Eq. (2.15), it follows that for all & > ko,

Vi (f (z) —f*))

ok = glI2 < llow = 9112 = o (2(f(@x) = £(9)) -
) = 20/@) = 1) = w(fow) = 1)),

= ok = 112 = e (2(f () - £) =
By using Eq. (2.17) in this relation, we see that
lker = 9l2 < llzw = 9112 — T + 0 =) (f(@r) = f*), YV k> ko.

Using the definition of the stepsize [cf. Eq. (2.15)] and Eq. (2.16), from the preceding inequality
we obtain for all & > ko,

4vHe2 k+1—ko)dvyde2
14 <o < oag — = )4y

— a2 < _ 2 =
||$k+1 y“ — ||$k y” m2C2(2 _7_ 5)2 —_ m202(2 _7_ 5)27

which cannot hold for k sufficiently large, a contradiction. Q.E.D.

When the optimal solution set X* is nonempty, the method converges to an optimal
solution, which we show in the next proposition.

Proposition 2.8: Let Assumption 2.1 hold, and assume that the optimal solution set X* is
nonempty. Then, the sequence {z)} generated by the incremental subgradient method with
the dynamic stepsize rule (2.15) converges to some optimal solution.

Proof: From Lemma 2.1 with y = z* € X*, we have
lzkt1 — 2*[]2 < ||z — 2|2 — 20k (f(zk) — f*) + a2m2C2, Vaore X+, VeEk,

and by using the definition of aj, we obtain

(f(zx) — f*)°

e VareXt Yk

[ertr = a*[|? < ok — 2*|* = 2(2 =7)
This implies that {z)} is bounded. Furthermore, f(z;) — f*, since otherwise we would have
|zk+1 — z*|| < ||lzx — z*|| — € for some suitably small € > 0 and infinitely many k. Hence, for
any limit point T of {z}, we have T € X*, and since the sequence {||:Jck — z* ||} is decreasing,
it converges to || — z*|| for every z* € X*. If there are two limit points Z and T of {z}, we
must have £ € X* T € X* and || — z*|| = || — =*|| for all z* € X*, which is possible only if
#—7 Q.E.D.

We next give several convergence rate estimates for the method with the dynamic stepsize.
In the next proposition, we present an asymptotic estimate for convergence rate of f(z), which
extends the estimate for the ordinary subgradient method given by Polyak in [Pol87], Theorem
2, p. 142. In the same proposition, we also estimate the number K of cycles required for

. <
Og,il;le(xk)—f +€
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to hold, where the scalar € is a prescribed error tolerance.

Proposition 2.9: Let Assumption 2.1 hold, and assume that the optimal solution set X * is
nonempty. Let the sequence {z} be generated by the incremental subgradient method with
the dynamic stepsize (2.15). Then, the following hold:

(a) We have
liminf vV&(f (1) — f*) = 0.

k— o0
(b) For a positive scalar € and the nonnegative integer K given by

- {%(dist(mo,X*)fJ :

we have

’ < fr 4
Oér,lclsan(ﬂEk)_f + €

Proof: (a) Assume, to arrive at a contradiction, that lim infy_, \/E(f(xk) — f*) =28 for
some 3 > 0. Then, for ko large enough, we have f(zp) — f* > % for all k > ko, so that

o0 o0

Z (f(zk) — f*)2 > (32 Z % = o0. (2.18)

k=kg k=kg

On the other hand, by using the definition of o and Lemma 2.2, for all k£ > ko, we obtain

(f(zx) — f*)°

(dist(mk_H,X*))z < (dist(:pk,X*))Z =Yk (2 = k) m2C2 (2.19)
so that -
S (flar) - £1)7 < o,
k=0

contradicting Eq. (2.18). Hence, we must have lim infy_, o, \/E(f(mk) — f*) =0.

(b) To arrive at a contradiction, assume that

flxg) — f* > ¢, VkE=0,1,..., K.
By using this relation in Eq. (2.19), since vy, € [y,7] for all k, we obtain
€2

—g  VE=01.. K

(dist(zpr1, X*))? < (dist(zr, X*))* = v(2 - 7)
Adding these inequalities over k = 0,1, ..., K yields

_ _ y(2-7)
(dist(zrr1, X*))* < (dist(zo, X*))* — (K + D= sez
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implying that

ey(2-7)
m2C?

contradicting the definition of K. Q.E.D.

(K +1) < (dist(mo,X*))2,

Note that the bound on number K in Prop. 2.9(b), viewed as a function of y and 7, is smallest
when v =75 = 1. Note also that, for a practical use of this bound, we need some additional
information about f or X such as, for example, an upper bound on dist(zo, X*).

Under some additional assumptions on f, we can obtain some different types of estimate
of the convergence rate for the method with the dynamic stepsize. In deriving these estimates,
we use the following result given by Polyak [Pol87], Lemma 6, p. 46.

Lemma 2.3: Let {uy} be a sequence of positive scalars satisfying
1
g1 < up — Brug T, V k,

where (i are nonnegative scalars and p is a positive scalar. Then, we have

k-1
uy, < ug 1+PugZﬁj ; V k.
Jj=0

S

In particular, if 8y = g for all k, then

[

uy, < ug(L+pugfk)~?, V k.

By using this lemma, we have the following.

Proposition 2.10: Let Assumption 2.1 hold, and assume that the optimal solution set X* is
nonempty. Let the sequence {zj} be generated by the incremental subgradient method with
the dynamic stepsize (2.15). Then, the following hold:

(a) If for some positive scalar u, the function f satisfies
flx) = f* > p dist(z, X*), VzelX,

we have
dist(zy, X*) < gk dist(zo, X*), Yk,

where

. M2
q= 1—1(2—7)m-
(b) If for some positive scalars p and p, the function f satisfies

fl@) = f* > p (dist(z, X)) ™, VaeX,
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we have
dist(zo, X*)

dist(zg, X*) < —,
(14 Ck)?

vk,

where )

— _ ) 2
C = p1(2 — v)mS—CQ (dzst(xo,X*)) P

Proof: (a) By applying Lemma 2.2 with ay as in Eq. (2.15) and by using the given property
of f, we obtain

2

) 2 _ ) 2
(dzst(xk+1,X*)) < (1 —1(2—7)m§—c2> (dzst(:z:k,X*)) , Yk,

from which, by induction, the desired relation follows.

(b) Similar to part (a), from Lemma 2.2 with ay as in Eq. (2.15) and the given property of f,
we obtain

2
(dist(arss, X)) < (distlar, X1))* = 1(2 =7) 5o (dist(ar, X)), V.

By denoting uy = (dist(xr, X*))2, we can rewrite the preceding inequality as follows

1+
Uk+41 S U — /Buk p, v ka

where 8 = v(2 —7%)(p/mC)?2. By Lemma 2.3, we have that
Uo

Uk < 9 V k?
(1 + kpBub)

S

and by using uy = (dist(zy, X*))2 and 8 = 7(2 —7%)(pn/mC)2, we obtain the desired relation.
Q.E.D.

2.6. DYNAMIC STEPSIZE RULE FOR UNKNOWN f+*

In most practical problems the value f* is not known. In this case, a popular modification of
the dynamic stepsize rule for the ordinary subgradient method is

flaw) — fi (2.20)

= Yk 5 0<y<wm<y<2,
9|l -

where g € Of(zx), and fj¢V is an estimate of f* often referred to as a target level. This
stepsize with a constant target level (i.e., f,lce" = w for some scalar w > 0 and all k) was
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first proposed by Polyak in [Pol69], and further analyzed by Allen, Helgason, Kennington,
and Shetty [AHK87], and Kim and Um [KiU93]. The adjustment procedures for the target
level fi° in Eq. (2.20) that require knowledge of an underestimate of f* are presented in
Bazaraa and Sherali [BaS81], Kim, Ahn, and Cho [KAC91], Kiwiel [Kiw96a|, [Kiw96b]. The
procedures for fi* that do not require any additional information about f* are considered
in Bertsekas [Ber99], Brannlund [Brd93], Goffin and Kiwiel [GoK99], Kiwiel, Larsson, and
Lindberg [KLL98], Kulikov and Fazylov [KuF90].
Here, we consider a modification of the stepsize (2.20) of the form

flze) — [

T O0<y<m<7y<2 (2.21)

g = Yk

We discuss two procedures for updating f,lce" that do not require any additional information
about f*. In both procedures, the estimate f,lce" is equal to the best function value achieved up
to the kth iteration, i.e., ming<;<y f(z;), minus a positive amount d; which is adjusted based
on the algorithm’s progress. The first adjustment procedure is new, even when specialized to
the ordinary subgradient method. This procedure is simple but is only guaranteed to yield a
d-optimal objective function value with § positive and arbitrarily small (unless f* = —oc in
which case the procedure yields the optimal function value). The second adjustment procedure
for ,lce" is more complex but is guaranteed to yield the optimal value f* in the limit.
In the first adjustment procedure, f,lce" is given by

lev _ : )
i = min, f(w;) = O, (2.22)
and § is updated according to
A0k if f(zrg1) < f32
Op4+1 = . k. 2.23
k+1 {max{ﬁék,5} if f(zp41) > f,lgev, ( )

where &y, 9, B, and A\ are fixed positive constants with 8 < 1 and A > 1. Thus, in this
procedure, we essentially “aspire” to reach a target level that is smaller by d; over the best
value achieved thus far. Whenever the target level is achieved, we increase d; or we keep it
at the same value depending on the choice of p. If the target level is not attained at a given
iteration, dy is reduced up to a threshold §. This threshold guarantees that the stepsize ay of
Eq. (2.21) is bounded away from zero, since by Eq. (2.22), we have f(zx) — fi¢¥ > 6 and hence

d
R Eech

As a result, the method behaves similar to the one with a constant stepsize (cf. Prop. 2.1), as
seen in the following proposition.

Proposition 2.11: Let Assumption 2.1 hold. Then, for the sequence {z} generated by the
incremental method and the dynamic stepsize rule (2.21)-(2.23), we have:
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(a) If f* = —o0, then
inf f(zg) = f*.

k>0

(b) If f* > —o0, then
in < fx40.
,izf)f("”’“) < f*+9

Proof: To arrive at a contradiction, assume that

Iirzl%f(xk) > f* 4 0. (2.24)

Each time the target level is attained [i.e., f(zx) < f}¢¥,], the current best function value
ming<j<y f(x;) decreases by at least § [cf. Egs. (2.22) and (2.23)], so in view of Eq. (2.24), the
target value can be attained only a finite number times. From Eq. (2.23) it follows that after
finitely many iterations, d; is decreased to the threshold value and remains at that value for
all subsequent iterations, i.e., there is an index k such that

Sk = 0, V k> k. (2.25)

In view of Eq. (2.24), there exists § € X such that infy>o f(zx) — 6 > f(¥), so that by
Egs. (2.22) and (2.25), we have

lev __ : D : _ = A
Ix —hg%j@ﬁ 5Z;gf@w 6> f(y), VYEk>k,

implying that

T _ rlev 2 _
(7o) = @) 2 () - 1) = (FIE) v

By Lemma 2.1 with y =7, it follows that
ks =P < llow — T2 — 200 (F(2) — F@) + a2m2C2, V>0,

Using the preceding two relations and the definition of oy, [cf. Eq. (2.21)], we obtain

_ _ flag) = flev\? flan) = fov)?
lzke1 = T2 < llax — 7112 — 2 (% % %
) flow) = F
= — 2 _ 2_ -~
lzi = G112 = e %>( mC
VE>E

_ . 02
<z —7l12 —v(2 - ’Y)m,
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where the last inequality follows from the relations vx € [y,7] and f(zy) — fiev > 6 for all k.
Finally, by adding the above inequalities over k, we see that

_ 52

lzkr1 —Fl2 < llog —7l2 = (+1—k)y(2 - V)Wa Vk2>Ek,

which cannot hold for large k, a contradiction. Q.E.D.

When m = 1, the incremental subgradient method (2.3)—(2.5) becomes the ordinary subgra-
dient method
Try1 = Px[zr — argrl, Vk.

Even for this method, the dynamic stepsize rule (2.21) with the adjustment procedure (2.22)—
(2.23) (where mC is replaced by ||gk||), and the convergence result of Prop. 2.11 are new.

We now consider another procedure for adjusting f;°', which guarantees that fjev — f*,
and convergence of the associated method to the optimum. This procedure is based on the ideas
and algorithms of Brannlund [Bra93], and Goffin and Kiwiel [GoK99], where the parameter
is reduced whenever the iterates “travel” a long distance without reaching the corresponding
target level. The incremental method using such a procedure is described in the following

algorithm.

Path-Based Incremental Target Level Algorithm

Step 0 (Initialization) Select o, 6o > 0, and b > 0. Set o9 = 0, f*f = o0. Set k = 0,
I =0, and k(I) = 0 [k(I) will denote the iteration number when the I-th update of fi*’

occurs].

Step 1 (Function evaluation) Compute f(xg). If f(zr) < fi, then set fi* = f(wy).
Otherwise set fi® = fr® [so that f;*¢ keeps the record of the smallest value attained
by the iterates that are generated so far, i.e., f;* = ming<;< f(x;)].

Step 2 (Sufficient descent) If f(zy) < f,g?;:) — 5—2l, then set k(I+1) =k, o, =0, §141 = Iy,
increase [ by 1, and go to Step 4.

Step 3 (Oscillation detection) If oy > b, then set k(I +1) =k, o) = 0, 6141 =

o, and
increase [ by 1.

Step 4 (Iterate update) Set fi*V = ) d1. Select yx € [y,7] and compute zy4; via
Egs. (2.3)-(2.5) with the stepsize (2.21).

Step 5 (Path length update) Set ox+1 = o + axmC, increase k by 1, and go to Step 1.

The algorithm uses the same target level fi*" = wy — 01 for k= E(),k(1)+1,...,k(I+1)—1.
The target level is updated only if sufficient descent or oscillation is detected (Step 2 or Step
3, respectively). It can be shown that the value oy is an upper bound on the length of the
path traveled by iterates zy(),..., oy for & < k(I +1). Whenever oy exceeds the prescribed
upper bound b on the path length, the parameter 0; is decreased, which (possibly) increases

the target level fieV.
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We will show that infi>o f(2x) = f* even if f* is not finite. First, we give a preliminary
result showing that the target values fi°¥ are updated infinitely often (i.e., I = 00), and that
infy>o f(zr) = —oo when ¢; is bounded away from zero.

Lemma 2.4: Let Assumption 2.1 hold. Then, for the path-based incremental target level
algorithm, we have [ — oo, and either infi>¢ f(2x) = —o0 or limy_, o & = 0.

Proof: Assume that [ takes only a finite number of values, say [ = 0,1,...,[. In this case, we

have o + ax,C = ox+1 < B for all k > k(I), so that limy_,o ar = 0. But this is impossible,

since for all & > k(I), we have

O = Yk

flxr) = [ S o7
m m

Hence, | — oo.
Let 6 = limj_ oo ;. If § > 0, then from Steps 2 and 3 it follows that for all [ large enough,
we have §; = § and

)
Feteny = i) < 5

implying that infy>o f(zx) = —00. Q.E.D.

We next give a convergence result for the path-based algorithm. In the special case of
the ordinary subgradient method, this result coincides with that of Goffin and Kiwiel [GoK99].

Proposition 2.12: Let Assumption 2.1 hold. Then, for the path-based incremental target
level algorithm, we have

inf f(zp) = f*.

k>0

Proof: If lim;_,, & > 0, then by Lemma 2.4, we have infj>o f(2;) = —oo and we are done,
so assume that lim;_, o, 9; = 0. Let A be given by

A:{l‘&:%,zy}.

Then, from Steps 3 and 5, we obtain

k—1
ok = 0p—1 + ag_1mC = E aij,
J=k(l)

so that k(I 4+ 1) =k and [ + 1 € A whenever Z?;é(l) a;mC > b at Step 3. Hence,
k(1)—1

b
. Z (07 > m—C, Vie A,
j:k(l—l)



Sec. 2.6 Dynamic Stepsize Rule for Unknown f* 39

and since the cardinality of A is infinite, we have

k(l)—1
ZaJ > Z Z aj > Z C = 00. (2.26)
lEA j=k(i—1) lea ™

Assume, to obtain a contradiction, that infy>o f(zx) > f*, so that for some § € X and
e > 0, we have

inf f(or) = € > 1(3). (2.27)

Since §; — 0, there is a large enough [ such that & < e for all [ > [ , implying that

A

lev — ron = O zggf(xk)—ez f (@), V k> k(l).

Using this relation, Lemma 2.1 with y = ¢, and the definition of aj, we obtain
lzk+1 = 9112 < lloe = 9112 = 200 (f (2x) = f(9)) + azm2C?
< llze = 9112 = 20k (f (z) — f3) + azm2C?

f
_ flev 2
ok = 12 = (2 = L)

- (f(xi:T)Lz—Cfv) . Y k> k(D).

< ok = 9112 —v(2 =

A

By adding these inequalities over k > k(l), we see that

12-7) > (Fla) = 1)° < Nl — Il

m2C?2
k=k()

yielding Z;Q'o:k(i) oF < oo [see the definition of oy in Eq. (2.21)], and consequently a; — 0.
This and the relation Y, , ax = oo [cf. Eq. (2.26)] imply by Prop. 2.4 that

liminf f(z) = f*,

k—o00

contradicting Eq. (2.27). Q.E.D.

Let us note that there is no need to keep the path bound b fixed. Instead, as the method pro-
gresses, we can decrease b (possibly at Step 3) in such a way that » ;.\ by = oo [cf. Eq. (2.26)],
which ensures that the convergence result of Prop. 2.12 is preserved.

In an attempt to improve the efficiency of the path-based incremental target level algo-
rithm, one may introduce parameters 3,7 € (0,1) and p > 1 (whose values will be fixed at
Step 0), and modify Steps 2 and 3 as follows:
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Step 2/ If f(zy) < friy — 7d;, then set k(I +1) =k, o, =0, dj41 = pdy, increase [ by 1,
and go to Step 4.

Step 3’ If oy, > b, then set k(I + 1) =k, o, = 0, §;41 = [0;, and increase [ by 1.

It can be seen that the result of Prop. 2.12 still holds for this modified algorithm. If we choose
p > 1 at Step 3/, then in the proofs of Lemma 2.4 and Prop. 2.12 we have to replace lim;_, o, d;
with lim sup;_, . 9;.

We next give a convergence rate estimate that applies to the stepsize rule (2.21)—(2.22)
with any of the two adjustment procedures previously discussed.

Proposition 2.13: Let Assumption 2.1 hold, and assume that the optimal solution set X* is
nonempty. Let {z;} be the sequence generated by the incremental subgradient method with
the dynamic stepsize (2.21)—(2.22). Then, for the largest positive integer K such that

m2C2

k=0 (2 -7) (dist(zo, X0))".

we have

Proof: Assume, to arrive at a contradiction, that

f(zx) > f*+ max Jj, Vk=0,1,...,K,

0<j<K
which implies that
lev — 3 ) * . > fx =
I Orsnjlgkf(wj) o > f +Oglja§XK5J o > f*, VkE=0,1,...,K. (2.28)

From Lemma 2.2 and the definition of the stepsize, we obtain for all k,

_ flev _ rlev 2
(dist($k+1,X*))2 < (dist(:l:k,X*))2 — 27k7f(x71;)202 : (f($k) - f*) + 72 (f(x:r)bchk ) .

By using f(zx) — f* > f(zr) — fi?¥ [cf. Eq. (2.28)] and f(zg) — fi® > 0 for all k, in the
preceding inequality, we see that

0%

(dist(zii1, X*))" < (dist(or, X*))" = 902 =) 55,

Vk=0,1,...,K.

Summing these inequalities over £ = 0,1,..., K and using v € [v,7] yields

K

(dist(zrs1,X*))* < (dist(z0,X*))" = 74(2-7) >
k=0

2
0%
m2C?2’
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implying that
K 2072
Z 62 < G (dist(wo, X*))z,

P 7(2-7)

thus contradicting the definition of K. Q.E.D.

The estimate of Prop. 2.13 is similar to the estimates for the ordinary subgradient method
that are obtained by Kiwiel [Kiw96a], and Kulikov and Fazylov [KuF90]. For the adjustment
procedure (2.23) with p = 1 and for the path-based adjustment procedure, the estimate of
Prop. 2.13 holds with dp in place of maxo<j<xk 9;.

2.6.1 Remarks

It can be verified that all the results of this section are valid for the incremental method that
does not use projections within the cycles, but rather employs projections at the end of cycles:

Yik = Yi-1,k — WGik, gik € 0fi(i—1k), i=1,...,m,
where 1 1 = 1 and the iterate xj41 is given by

ZTr+1 = Px[m, k]

This method and its modifications are proposed and analyzed by Solodov and Zavriev [SoZ98],
for the case of a compact set X and a diminishing stepsize rule.

The preceding convergence and convergence rate results hold assuming any order for pro-
cessing the component functions f; within a cycle, for as long as each component f; is processed
exactly once in every cycle. In particular, at the beginning of each cycle, we could reorder the
components f; by either shifting or reshuffling and then proceed with the calculations until the
end of the cycle.

The convergence rate estimates of this section emphasize the role of the stepsize choice
in the performance of incremental subgradient methods. These estimates do not capture the
effects of processing order on the methods’ performance, which can be significant, as we will
see in the next section.

2.7. EFFECTS OF FIXED CYCLIC PROCESSING ORDER

Here, we will demonstrate by some examples the effects of a cyclic processing order on the
performance of the incremental subgradient method. For this, we assume that the component
functions fi,..., fin are processed in the same order within each cycle. We also assume that
the optimal solution set X* is nonempty, and we consider the method with a constant stepsize
«, in which case the method exhibits an oscillatory behavior. To get some insights about
this phenomenon, we will consider some simple examples where the oscillatory behavior is
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displayed by the presence of limit cycles. We will introduce the size of a limit cycle, which in
a sense measures the oscillations, and we will show that the size of oscillations depends on the
processing order. As we will see, in the worst case (i.e., for the most unfavorable processing
order), the size of oscillations can be proportional to ma.

We define the size of a limit cycle to be the maximal distance from the cycle points to
the optimal solution set X *. In particular, if the points 9,41, ...,%,,_1,%,, (with ¢, =, )
comprise the limit cycle, then the size of this cycle is

max dist(;, X*).

1<i<m

In the following example, we compute the size of limit cycles corresponding to the worst
and best cyclic processing order, for the case where f is a nondifferentiable function.

Example 2.2: (Convex Nondifferentiable Function)

Assume that z is a scalar, and that the problem has the form

p P 2rp
minimize f(z) = Z|$+ 1] + Z |z — 1]+ Z ||
i=1 i=1 i=1

subject to = € R.

Here, the cost function f consists of p copies of the functions |z — 1| and |z + 1|, and 2rp copies
of the function |z|, where p and r are positive integers. We focus primarily on the case where p
is large in order to exhibit most prominently the effects of processing order. For simplicity, we
assume that z is unconstrained; a similar example can be constructed when there are constraints.
The minimum of f is attained at z* = 0, which is the unique optimal solution.

We consider the incremental subgradient method with a constant stepsize a. For xj outside
the interval [—1, 1], which contains the minima of the component functions f;, the subgradient of
each component f; is

-1 if e < -1,
ik = {1 if g > 1.

In this case, each of the steps
Yik = Yi-1,k — AGik, i=1,...,m

[cf. Eq. (2.4) with a; = o] makes progress towards the minimum z* = 0, and in fact we have

[Yi k| = |Piz1,k] — .

However, once the method enters the interval [—1,1], it exhibits oscillatory behavior, i.e., the
iterates are trapped in a limit cycle.

For the method starting at the initial point xo = pa with pa < 1, we determine the limit
cycles and compute their sizes for the worst and the best processing orders. To keep the analysis
simple, we assume that the subgradient g = 0 is used for component functions |z| at z = 0.

Let the processing order be as follows: rp functions of the form |z| followed by p functions
of the form |z + 1|, then rp functions of the form |z| followed by p functions of the form |z —
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1|. For this processing order, it can be seen that in each cycle, the first p 4+ rp iterates are
pa,...,a,0,—q, ..., —pa, and the subsequent p+rp iterates are —pa, ..., —a,0,a, ..., pa. Hence,
the size of the limit cycle is pa, which is proportional to ma [here m = 2(1 + r)p] and corresponds
to the worst processing order.

Let now the processing order be as follows: a function of the form |z + 1| followed by a
function of the form |z — 1| until all such components are processed, and then 2rp functions of the
form |z|. This is the best processing order, because after the first cycle, we have 1 = 0 = z*, and

each of the subsequent cycles generates the iterates 0, —, 0, ..., —,0,0,...,0, which comprise the
limit cycle. Thus, in this case, the size of the limit cycle is a, corresponding to the best processing
order.

As seen in this example, the performance of the method is substantially affected by the order
in which the functions f; are processed within each cycle, and in the worst case, it can be
proportional to ma. Therefore, a stepsize converging to zero is needed to confine the limit
cycle within the optimal solution set X*, thus resulting in convergence of the method.

When f is a differentiable function, the incremental method with a constant stepsize
exhibits a similar behavior, as seen in the following example.

Example 2.3: (Convex Differentiable Function)

Assume that z is a scalar, and that the problem has the form

p

minimize f(z) = % (Z(x - 1% + Z(x + 1)2>

i=1
subject to = € R.
Thus, the cost function consists of p copies of just two functions, (z —1)? and (z +1)?, where p is a
large positive integer. The minimum value of f is attained at 2™ = 0, which is the unique optimal
solution.
We next determine limit cycles corresponding to the worst and best processing orders for
the method starting at zo = a/(2 — «), with the stepsize a < 2. Consider first the case where, in

each cycle, the p terms (z — 1) are processed first and the p terms (z + 1)? are processed next.
Let 1o be the iterate at the beginning. Then, the first p iterates within the cycle are given by

i =i a1 —1) =1 —a)i1+a, i=1...,p,
leading to the mid-cycle iterate
Yp = (1—a)p%+a(1+(1—a)+...+(1_a)p—1)
=1 —-a)fyo+ (L (L—a)?).

The subsequent p iterates within the cycle are given by

(2.29)

VYpti = Ppriot — a(Ppri-i + 1) = (1= )Ppyio1 —a, i=1,...,p,

leading similarly to the final iterate of the cycle

Pap = (1 — a)Pep, — (1= (1 - a)?). (2.30)
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Thus, by combining Egs. (2.29) and (2.30), we have

Y = (1= )y — (1 - (1—a)?)”.

Since m = 2p and since we must have ¥, = 1 in the limit, we obtain that the limit cycle starts
and ends at the point

e e

VoS TR

It can be seen that the size of the limit cycle is

1—(1—a)™/?
%' (2.31)
14 (1—a)m/?

Consider now the case where, in each cycle, we use the following processing order: a function
of the form (x + 1)? followed by a function of the form (x — 1)?. Since o = /(2 — @), in the first

cycle, we have
Q@ «@
¢1_I0_a(¢0+1)_(1_a)2_a_a__2_a7

Yo =1 —a(h —1) = —(1+ )

+a= e
2—« T 2—a’

and therefore, because m = 2p, the first cycle ends at the point ¥, = zo and all subsequent cycles
are the same as the first one. Hence, the size of the limit cycle is

a

. 2.32
5o (2.32)
When « is small, this processing order is worse than the preceding one, as seen from Egs. (2.31)

and (2.32). However, when « is moderate and m is large enough, then this processing order is
better than the preceding one.

The preceding examples illustrate several common characteristics of the incremental subgradi-
ent and incremental gradient methods, which tend to manifest themselves in some generality:

(a) When far from the optimal solution set, the incremental method makes progress compa-
rable to that of the nonincremental method.

(b) When close to the optimal solution set X*, the method can be trapped in an oscillatory
region whose size depends on the stepsize and on the processing order for the component
functions.

(c) The precise effect of the processing order is not fully understood at present, but it is
interesting and substantial.



An Incremental Subgradient Method

with Randomization

In this chapter, we consider a version of the incremental subgradient method that uses ran-
domization. In particular, at each iteration we select randomly a component function whose
subgradient is used in the iteration update, where each component function f; is selected
with the same probability 1/m. We will here analyze the method for various stepsize choices,
and we will see that this randomized method can have a better convergence rate than the
nonrandomized incremental method (2.3)-(2.5) discussed in Chapter 2.

3.1. THE METHOD

As discussed in the preceding chapter, the processing order for the components f; has a sig-
nificant affect on the convergence rate of the method. Unfortunately, determining the most
favorable order may be very difficult in practice. A popular technique for incremental gradient
methods (differentiable components f;) is to reshuffle randomly the order of the functions f;
at the beginning of each cycle. A variation of this method is to pick randomly a function f; at
each iteration rather than to pick each f; exactly once in every cycle according to a randomized
order. This variation can be viewed as a gradient method with random errors, as shown in
Bertsekas and Tsitsiklis [BeT96] (see also Bertsekas and Tsitsiklis [BeT00]). Similarly, the
corresponding incremental subgradient method at each step picks randomly a function f; to
be processed next. In this section, we will analyze the method for the constant, diminish-

45
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ing, and dynamic stepsize rules. For the case of a diminishing stepsize, the convergence of the
method follows from known stochastic subgradient convergence results (e.g., Ermoliev [Erm69],
[Erm76], [Erm83], and [Erm88], and Polyak [Pol87]). The analysis for the constant and dy-
namic stepsize rules is new and has no counterpart in the available stochastic subgradient
literature.

The formal description of the randomized order method is as follows:

Tk+1 =Px [IEk _akg(wka$k)]7 k:()a]-a"'a (31)
where g is an initial random vector, wy is a random variable taking equiprobable values from
the set {1,...,m}, and g(wk,zr) is a subgradient of the component f,, at zj [i.e., if the

random variable wy takes a value j, then the vector g(wg, zx) is a subgradient of f; at xg].

3.2. ASSUMPTIONS AND SOME BASIC RELATIONS
In our analysis, we use the following assumption regarding the randomized method (3.1).

Assumption 3.1: Assume the following:

(a) The sequence {wy} is a sequence of independent random variables, each uniformly dis-
tributed over the set {1,...,m}. Furthermore, the sequence {wy} is independent of the
sequence {xg}.

(b) The set of subgradients {g(wk,xk) | k=0,1,.. } is bounded, i.e., there exists a positive
constant C' such that with probability 1

lg(wk, zx)|| < C, v k.

Note that if the constraint set X is compact or the components f; are polyhedral, then As-
sumption 3.1(b) is satisfied. In our analysis, along with the preceding assumption, we often
use the assumption that the optimal solution set X* is nonempty. Furthermore, the proofs
of several propositions in this section rely on the Supermartingale Convergence Theorem as
stated, for example, in Bertsekas and Tsitsiklis [BeT96], p. 148.

Theorem 3.1: (Supermartingale Convergence Theorem) Let {Yi}, {Zx}, and {W;}
be sequences of random variables, and let Fi, £ = 0,1,2, ..., be sets of random variables such
that Fr C Fr41 for all k. Suppose that:

(a) The random variables Yy, Zj, and Wy are nonnegative, and are functions of the random
variables in F.

(b) For each k, we have E{Yk+1 | ]—'k} <Yy — Zp + Wg.
(c) There holds > 2, Wi, < oo.

Then, with probability 1, the sequence {Y%} converges to a nonnegative random variable and
Zzozo Zy, < 00.
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3.3. CONSTANT STEPSIZE RULE

Here, we establish convergence properties and convergence rate estimates for the method using
a constant stepsize . We start with a basic result that we use in the analysis of this section
and the next one, where the diminishing stepsize rule is considered.

Lemma 3.1: Let Assumption 3.1 hold. Then, for the sequence {zj} generated by the ran-
domized method and a deterministic stepsize oy, we have

2«
Bfllzxr = yl2 | Fi} < llon —yll? = 5 (Fan) = f*) +0}C% VyeX, Vk

where Fj, = {zo, z1,..., 2%}

Proof: By using Eq. (3.1), the nonexpansion property of the projection, and the boundedness
of the subgradients g(wy, ), we have for any y € X and all k,

2
2k — yl? = || Px[ze — arg(wr, zx)] — |
<z — ang(wr, 1) — yl[?
< Mlzk — ylI2 — 20ng(wr, x1) (21 — y) + a2 C2.

Since g(wg, zy) is a subgradient of f,, at zy, it follows that

9wk, k) (6 —y) > fuy, (Tr) = fu, (y),

so that

2kt = yl12 < llzk = yl12 = 20k (fup, (28) = fur () +02C2, VYyeX, Vk

By taking the expectation conditioned on Fy = {xo,z1,...,zr} in the preceding inequality
and by using

Bl ) = fon ) | Bk = — 3" (filow) = i) = — (F(aa) = S ),
we obtain

2a
Bz 2 | Fi} < llow — )2 = 225 (F(a) - Fw) +03C2, VyeX, Yk

Q.E.D.

For the method (3.1) using the constant stepsize rule, we have the following convergence result.

Proposition 3.1: Let Assumption 3.1 hold. Then, for the sequence {zj} generated by the
randomized method and the stepsize ay fixed to some positive constant a, with probability 1,
we have:
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(a) If f* = —oo, then
ég%f(xk) =f*
(b) If f* > —o0, then
am(C?
5

gg%f(ﬂﬂk) < fr+

Proof: We prove (a) and (b) simultaneously. Let N be an arbitrary positive integer, and let
yn € X be such that

—N if f* = —oo0,
f(yN)_{f*-l-% if f* > —o0.

Consider the level set Ly defined by

by = {re X | 50) < ftu) + 5 + 2N,

and note that yn € Ly. Define a new process {Z} as follows

. xr ifxzg ¢ Ly,
T = .
yn otherwise.

Thus, the process {Z} is identical to {zy}, except that once zj enters the level set Ly, the
process {Zj} terminates with Z; = yn (since yy € Ly). Using Lemma 3.1 with y = yy, we
have

N . 2c .
E{llZe+1 =yl | Fr} < 120 — yw 2 - E(f(xk) — flyn)) +2C?, Vi,

or equivalently,
E{llgers — ynl? | Fi} < ok —ynll =26, VE, (3.2)

where
o= o (F@k) = flyn)) —0?C? if &y ¢ Ly,
0 if Zx € Ly

For ) ¢ Ly, we have

. 1 C?

F@x) = Fluw) > 5 + =5

implying that ) )
2o 5) — 0202 > s
2 (£(@n) — flg) —a20? > .

Hence, 2z > 0 if £ ¢ Ly, and since otherwise z; = 0, we see that z; > 0 for all k. Therefore,
by the Supermartingale Convergence Theorem, we obtain Y-, zx < oo with probability 1,
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implying that Zx € Ly for some k, with probability 1. Thus, in the original process, by the
definitions of yy and Ly, we have

inf f(zr) <

N+ L4 em = oo,
k>0 -

2
fr+ 2 +ond if f* > —o0,

with probability 1, and by letting N — oo, we obtain the desired relations. Q.E.D.

The estimate in part (b) of the preceding proposition is sharp. For example, let f;(z) =
Clz| for all z € R and i = 1,...,m. For any «, choose the initial point zyp = aC/2. In this

case, it can be seen that the iterates xy generated by the method (3.1) take the values % or
—%, so that
amC?
f((L‘k) = 2 ) VY k.

To compare fairly the error bounds of Props. 2.1 and 3.1, we will assume that, in the
randomized method, the function f is evaluated every m iterations. Thus, by Prop. 3.1, for
the randomized method, we have

am(C?
2

. <
;g%f(xmk)_f +

At the same time, by Prop. 2.1, for the nonrandomized incremental method, we have

am?2(C'?
2

liminf f(zg) < f*+
k—o0

Thus, for the same value of the stepsize a, the error bound for the randomized method is
smaller by a factor of m than that for the nonrandomized method (2.3)-(2.5). This indicates
that when randomization is used, the stepsize aj could generally be chosen larger than in
the nonrandomized methods. Being able to use a larger stepsize suggests a potential rate
of convergence advantage in favor of the randomized methods, which is consistent with our
experimental results.

We next estimate the expected number of iterations needed to guarantee that, with
probability 1, a solution is obtained with the approximation error €. Such an estimate requires
that the optimal solution set is nonempty.

Proposition 3.2: Let Assumption 3.1 hold, and assume that the optimal solution set X* is
nonempty. Let the sequence {x;} be generated by the randomized method with the stepsize
ay, fixed to some positive constant «. Then, for any positive scalar €, there exists a random
nonnegative integer N such that

. am(C? + ¢
< * -
Oér;clanf(xk)_f + 5

?

with probability 1, and
BN} < 2 B{ (dist(s0, X*))" }.
€
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Proof: From Lemma 3.1 with y = z* and o = «, we have

2c
B{llonss = o*l2 | Fi} < llzw — a2 = 2 () - 7) +02C2, Vo€ X+, V.

By taking the minimum over z* € X* of both sides in this relation and by using the inequality

E{(dist(wk+1,X*))2 | fk} < min E{|lzess — 2*|2 | Fi ),

r*eX*
we obtain
E{(dist(mkH,X*))z | fk} < (dist(zy, X*))° - %O‘(f(mk) — ) +e2C2,  VE (33)

Let the level set L be given by

L:{xex\f(x)<f*+M},

2

and consider a new process {Z} defined by

_{:Bk if xp & L,

Tk .
r* otherwise,

where z* € X* is some fixed vector. The process {Z} is identical to {z}, except that once
xy, enters the level set L the process {Zy} terminates at z*. Thus, by Eq. (3.3), it follows that

PR 2 PR 2 20,
B (tstoren, X007 | 2} < distton, X 2 san) - 1) beocn

— (dist(dx, X)) — 2z, VY

where
= { 22 (f(3) — f*) — 202 if &y & L,
0 otherwise.
We have
2 2
zkz_a<f*+M_f*>_a202:%, it s gL (3.5)
m 2 m

and since otherwise zy = 0, by the Supermartingale Convergence Theorem, it follows that
> reo 2k < 0o with probability 1. Hence, there exists a random nonnegative integer N such
that zx = 0 for all k¥ > N, implying that £y € L with probability 1. Therefore, in the original
process, with probability 1, we have

. am(C? 4 ¢
< frgp 7 T
Og,lclanf(wk)_f + 5
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Furthermore, by taking the total expectation in Eq. (3.4), we obtain
E{(dist(ik+1,X*))2} < E{(dist(ik,X*))2}—E{zk}

k
< E{(dist(mo,X*))z} ~B{Y %}, VE
§=0

Therefore,
00 N-1
B{ (dist(wo, X))} > F {sz} —E { 3 zk} > 22 B{N,
k=0 k=0

where the last inequality above follows from Eq. (3.5), and the facts z ¢ L for k < N and
zr=0forall k> N. Q.E.D.

To compare the result of Prop. 3.2 with that of Prop. 2.2, as a measure of complexity, we
will consider the number of function evaluations. For the nonrandomized incremental method
implemented with a constant stepsize a, we showed that (cf. Prop. 2.2)

. am?2C? + ¢
< *
Ogllclsan($k)_f + 5

(043 ’ '

Recall that, in the nonrandomized incremental method, we evaluate the function f at each iter-
ation. Thus, the number K represents the number of function evaluations needed to guarantee
that the optimal function value is achieved with error (am2C?2 + €)/2.

For a fair comparison, we assume that, in the randomized method, we use the same initial
point zg, the same tolerance level € and stepsize «, and that we evaluate the function f every
m iterations. Then, from Prop. 3.2 it follows that with probability 1,

. am(C? + ¢
< *
ogclsan(xmk) sfrr 2

where the expected number of function evaluations K is such that
1, 2
E{K} < —(dist(z0, X*))".
Qe

Thus, the bound on the number of function evaluations is the same for both nonrandomized
and randomized method. However, the error term am2C? in the nonrandomized method is m
times larger than the corresponding error term in the randomized method.
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We now give a different estimate of the convergence rate for the randomized method with
the constant stepsize rule, assuming that f has sharp minima.

Proposition 3.3: Let Assumption 3.1 hold, and assume that the optimal solution set X* is
nonempty. Assume further that for some positive scalar p, with probability 1, we have

fl@)—f*>u (dist(w,X*))2, VzelX.

Then, for the sequence {zj} generated by the randomized order method with a stepsize ay
fixed to some positive scalar «, we have

2 200 Fr 2 amC?
E{(dist(wkﬂ,X*)) } < (1 - —) E{(dist(xo,X*)) }+ ., Yk
m 20
Proof: By using Lemma 3.1 with y = z* and aj = « for all k, we can see that [cf. Eq. (3.3)]

E{(dist(mk+1,X*))2 | }‘k} < (dist(zy, X*))° - %“(f(xk) — f*) +a2C2, V.

Then, by taking the total expectation and by using the given property of f, we obtain

B{ (dist(wp1, X)) } < B{ (dist(er, X))} - %O‘E{f(xk) — f*} + 202

< (1 - 20‘—“’) E{(dist(ack,X*))2} +a2C?,  Vk.

m

Thus, by induction, we see that for all &,

B (dist(zi41, X))’} < (1 B 2a_u>k+lE{(dist(ﬂﬂo,X*))z} + 0202 zk: (1 - Za—u>j,

m m

and by using the relation

we obtain the desired estimate. Q.E.D.

Let us compare, for the same initial vector o and stepsize «, the estimate of Prop. 3.3
with that of Prop. 2.3. For the nonrandomized method, we have shown that (cf. Prop. 2.3)

am?2(C?

2

(dist($k+1,X*))2 < (1 —2ap)k+t (dist($0,X*))2 + , V k.

Thus, in both estimates, the error bound consists of two terms: the exponentially decreasing
term and the asymptotic term. For the same value of the stepsize «, the asymptotic term in
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the error bound for the nonrandomized method is m times larger than the asymptotic term
in the error bound for the randomized method. However, if in the randomized method the
stepsize « is replaced by ma, then the asymptotic terms and the exponentially decreasing
terms in the error bounds for both methods are the same. The main difference is that in the
nonrandomized method, k represents the number of cycles (with m iterations per cycle), while
in the randomized method, k represents the number of iterations. Therefore, for the same
error level, the nonrandomized method requires a number of iterations that is m times larger
than that of the randomized method.

3.4. DIMINISHING STEPSIZE RULE

We here analyze convergence of the randomized method (3.1) using a diminishing stepsize. In
this case, the method exhibits the convergence similar to that of the stochastic subgradient
method with the same stepsize, as seen in the following proposition.

Proposition 3.4: Let Assumption 3.1 hold, and assume that the optimal solution set X* is
nonempty. Assume further that the stepsize oy is such that

o0 o0

Z ap = 00, Z ai < 0.
Then, the sequence {zy} generated by the randomized method converges to some optimal
solution with probability 1.
Proof: Using Lemma 3.1 with y = z* € X*, we obtain

2a
B{laie — o2 | i} < low — 272 = 225 (f(on) - 2) +03C2, Yar € X+, V.

By the Supermartingale Convergence Theorem, for each z* € X*, with probability 1, we have
o0
>k (f(zx) = f*) < oo, (3.6)
k=0

and the sequence {||zx — z*||} converges.

For each z* € X*, let Q2+ denote the set of all sample paths for which Eq. (3.6) holds
and {|lzr, — z*||} converges. By convexity of f, the set X* is convex, so there exist vectors
V0, V1,...,Vp € X* that span the smallest affine set containing X*, and are such that v; — v,
1=1,...,p, are linearly independent. The intersection

Q= ﬂleﬁvi
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has probability 1, and for each sample path in €, the sequences {||mk — vi||}, i=0,...,p,
converge. Thus, with probability 1, {zj} is bounded, and therefore it has limit points. Fur-
thermore, for each sample path in ©, by Eq. (3.6) and the relation > o, ay = oo, it follows
that

liminf f(zg) = f*,

k— o0
implying that {z;} has at least one limit point that belongs to X* by continuity of f. For
any sample path in Q, let T and Z be two limit points of {z;} such that T € X*. Because
{llzx — vi||} converges for all i =0,...,p, we must have

||E_'Ui||:||£_,ui||7 V'L:O,].,,p

Moreover, since T € X*, the preceding relation can hold only for T = & by convexity of X*
and the choice of vectors v;. Hence, for each sample path in €, the sequence {z} has a unique
limit point in X*, implying that {z)} converges to some optimal solution with probability 1.
Q.E.D.

When f has sharp minima, for a diminishing stepsize of the form ay = r/(k + 1) with
a positive scalar r, the convergence rate of the method is sublinear, i.e., the expected value

of (dist(xk,X *))2 converges to zero sublinearly. This is shown by Nedi¢ and Bertsekas in
[NeBO1b].

3.5. DYNAMIC STEPSIZE RULE FOR KNOWN f+*

One possible version of the dynamic stepsize rule for the method (3.1) has the form

flzg) = f~

Ok = Yk
where {7} is a deterministic sequence. This stepsize requires knowledge of the cost function
value f(zg) at the current iterate z;. However, it would be inefficient to compute f(zy) at
each iteration since that iteration involves a single component f;, while the computation of
f(z) requires all the components. We thus modify the dynamic stepsize rule so that the value
of f and the parameter 7 that are used in the stepsize formula are updated every M iterations
rather than at each iteration, where M is any fixed positive integer. In particular, assuming
f* is known, we use the stepsize

f(pr) _f*

O =W aroe 0<y<w<y<2, k=Mp,....M(p+1)—-1, p=0,1,...,
(3.7)

where {v,} is a deterministic sequence. Thus, we use the same stepsize within each block of

M consecutive iterations. We can choose M greater than m, if m is relatively small, or we can

select M smaller than m, if m is very large.
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We next give a relation that will be used in the forthcoming convergence analysis.

Lemma 3.2: Let Assumption 3.1 hold, and let the sequence {z} be generated by the ran-
domized method with the stepsize oy such that

g =y, k=Mp,....Mp+1)—1, p=0,1,....

Then, we have

2 2 2MaMP 2,2 2
B{23ry 0y -9I7 | G0} < oagy =022 (f(aryg,) ~ () + M?0,, €2, Wy € X, Vo,
where G, = {xo,xl, ... ,xM(p+1)_1}.

Proof: By adapting Lemma 2.1 to the case where f is replaced by f,, , we have
ot = yll2 < lloe — yl12 = 200 (fu, (2x) = fur(v)) +3C%, VyeX, k>0

Because ap = a,, for all & = Mp,...,M(p + 1) — 1, by adding these inequalities over
k= Mp,...,M(p+ 1) — 1, we obtain for all y € X and all p,

M(p+1)—1
1o arpany — 9l < Nlzary — 2 = 2007, S (fug(an) = fu () + Mad,,C2.
k=Mp
Taking the conditional expectation with respect to G, = {wo, T1,... 7$M(p+1)—1}7 we have for
all y € X and all p,
M(p+1)-1
B{llerrpan 9l 1Go} < laag, P — 200, S B{(fur (@) — fur @) | &i}
k=Mp
+ M2a2, C?
ay M(p+1)—1
<o —wl2 == > (flme) = f(v)) + M?a3,,C*.
k=Mp

(3.8)
We now relate f(z,,) and f(zx) for k= Mp,...,M(p+1) — 1. We have for all y € X,

flxr) = f(y) = (f(ex) = f(@ar,)) + (f@ar,) = F()
Z Gy (@ — Tppy) + f(@0,) — F(Y)
Zf(pr)_f(y)_mc||$k_$Mp||7 Vk:Mp,...,M(p+1)—1, va

(3.9)
where g,,, is a subgradient of f at z,,, and in the last inequality we use the fact

m
Z 9i,Mp
1=1

19aspll = <mC
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cf. Assumption 3.1(b)], with g, being a subgradient of f; at x,, . Furthermore, by usin
i,Mp g g Mp g
Assumption 3.1(b), we see that

k—1

ok =2yl < gy S o) < (k= Mp)areyC, V= Mp, ..., Mp+1)—1, ¥p,
I=Mp

which when substituted in Eq. (3.9) yields for all y € X,

flzr) = f(y) > f(z5r,) = f(y) = (k= Mp)man,C2, Yk=Mp,....,M(p+1)—1, Vp.

From this relation and Eq. (3.8) we obtain for all y € X and all p,

2M«
E{| 3101y = 9l | Goi1} < gy, = ol = =2 (F(2ag,) = £(9)

M(p+1)—1
+203,C2 > (k= Mp) + Ma3,,C?.
k=Mp
Since for all p,
M(p+1)-1 M-1
203,,C2 Y (k- Mp)+Ma3,,C2=203,,C2 > 1+ Ma3, C?= M2, C?

k=Mp =1

it follows that for all y € X and all p,

2MaMp

B2y~ Y12 1 o} < gy — 12 - (f(2a,) — F)) + M202,,C2.

Q.E.D.

In the next proposition, assuming that the optimal solution set is nonempty, we show that
the method (3.1) with the stepsize (3.7) converges to some optimal solution, with probability
1.

Proposition 3.5: Let Assumption 3.1 hold, and assume that the optimal solution set X* is
nonempty. Then, the sequence {z)} generated by the randomized method with the stepsize
(3.7) converges to some optimal solution with probability 1.

Proof: Using Lemma 3.2 (with y = z*) and the definition of ay, we see that

* (|2 ®||2 (f(pr)_f*)z ® *
Bl s~ 22 1 G} < oy - 217 = 3p(2 = ) e Ty aee e vy,
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By the Supermartingale Convergence Theorem, it follows that with probability 1,

< F(zr,) = )
YDRICERS At A
p=0

and for each z* € X*, the sequence {||pr — z*||} converges. Because v, € [y,7] C (0,2), it
follows that with probability 1,

lim f(z.,) = f*

pP—0o0

For each z* € X *, let Q.+ denote the set of all sample paths for which f(pr) — f* and
{ll= Mp ~ z*||} converges. By convexity of f, it follows that X* is convex, and therefore there

exist the vectors vg,v1,...,v, € X* that span the smallest affine set containing X*, and are
such that v; —wvg, 2 = 1,...,r are linearly independent. The intersection
Q = Ni_y Qo

has probability 1, and for each sample path in €, the sequences {||:1:Mp — vi||}, i=0,...,r
converge. Thus, {z,,,} is bounded and therefore has limit points, which belong to X* by
continuity of f and the relation f(z,,,) — f*. For any sample path in €2, if T and £ are two

limit points of {xy}, then since {||:1:Mp — v} converges for every i = 0,...,r, we must have
|z —vil| = ||Z — vl Vi=0,1,...,rn

Since T € X* and £ € X*, the preceding relation can hold only for T = Z by our choice of the
vectors v;. Hence, for each sample path in 2, the sequence {:I?Mp} has a unique limit point in

X*, implying that {m Mp} converges to some optimal solution with probability 1. Moreover,
by Assumption 3.1(b), it follows that for all p and k = Mp,..., M(p+1) — 1,

k—1

ok — gyl < gy 3 Mgl zn)ll < (k — Mp)aaryC < MaagC.
[=Mp

By the definition of aar, and the relation f(:Jch) — f*, we have aarp — 0. Therefore, since
)y, converges to some optimal solution with probability 1, from preceding relation we see
that the same is true for zx. Q.E.D.

We next give some convergence rate estimates for the randomized method with the dy-
namic stepsize (3.7). We start with a preliminary result, which we will use here and in the
next section for a dynamic stepsize with unknown optimal function value.

Lemma 3.3: Let Assumption 3.1 hold, and assume that the optimal solution set X* is
nonempty. Let the sequence {zy} be generated by the randomized method with the step-
size oy such that

g =y, k=Mp,....Mp+1)—1, p=0,1,....
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Then, we have for all p,

B (dist(2 00 X)) | Gy b < (dist(rygy X)) = T2 () — ) + M0, O

where G, = {xo,fﬁla .- ’xM(p—i-l)—l}'

Proof: The relation follows from Lemma 3.2 with y = z*, by taking the minimum over
z* € X*, and by using the following inequality

E'{(dist(xj\/[(“l),X*))2 ‘ gp} < xgéi}r(l* E{||$M(p+1) —z*||? | gp}.

Q.E.D.

For the method with the dynamic stepsize, we have the following convergence rate result.

Proposition 3.6: Let Assumption 3.1 hold, and assume that the optimal solution set X * is
nonempty. Let the sequence {zj} be generated by the randomized method with the dynamic
stepsize (3.7). Then, the following hold:

(a) We have
timinf /5 B{f (2,,) ~ f*} =0,

(b) For any positive scalar €, there exists a random nonnegative integer K such that

min T < fx*
OSPSKf( Mp)—f +6?

with probability 1, and
m2C?

-7

B{K} < E{ (dist(z0, X*))*}.

Proof: (a) Assume, to arrive at a contradiction, that for some € > 0,
l;n_l)g}f\/]_)E{f(pr) — f*} =2e.

Then, there exists pp such that

implying that
= 0. (3.10)

P=Ppo P=Po
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On the other hand, by using the definition of «,,, from Lemma 3.3 we have

92—
E{ (dist(mM(p+1),X*))2 ‘ gp} S (diSt(praX*))z - %Cgp) (f(pr) - f*)za V pa
(3.11)
from which by using the relation 7, € [y,7] for all p and by taking the total expectation, we
can see that B

- 2
> E{f(zy,) = [} < o0,
p=0
which contradicts Eq. (3.10). Hence, we must have liminf,_, o \/ﬁE{f(xpM) — f*} =0.
(b) Let the level set L be given by
Le={z e X | f(z) < f*+ ¢},

and consider a new process {Zy} defined by

L) T ifIMng, . B .
xk—{$* otherwise, k=Mp,....M(p+1)—1, p=0,1,...,

where z* € X* is some fixed vector. Thus, the process {Zy} is identical to {z}, except that
once z,,, enters the level set L., the process {Z} remains at the point z*. Then, for the
process {Zx} it can be seen that [cf. Eq. (3.11)],

2 —
E{(dist(iM(pH),X*))Z | gp} < (dist (i, X*))* — %(f(im) —f*)?

= (diSt(:%Man*))z_zpa vpa

(3.12)

where
2— N 2 PN
2= {[%(f(zm) — 1) if iy, ¢ Le,

otherwise.

In the case where 2, & Le, by definition of a,,,, we have f(Z,,,) — f* > ¢, so that

e2y(2 -7)

T (3.13)

Zp

and since otherwise z, = 0, we see that z, > 0 for all p. Therefore, by the Supermartingale
Convergence Theorem, from Eq. (3.12) it follows that Z;OZO zp < 0o with probability 1, im-
plying that z, = 0 for all p > K, where K is a nonnegative random integer. Hence, £,,, € Le
with probability 1, so that in the original process, we have with probability 1,

i < f* .
S @) < I
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Furthermore, by taking the total expectation in Eq. (3.12), we obtain

E{ (dist(iM(p+1),X*))2} < E{(dist(iMp,X*))z} ~E{z)

p
< E{(dist(xo,X*))z} —B{Y 4y, v
5=0
Therefore,
. 2 = = e2y(2-7)
E{(dzst(mo,X*)) } >B{Y 20 =B Y 4 2 BIK}— S,
7=0 7=0

where the last inequality above follows from Eq. (3.13). Q.E.D.

When f has sharp minima, we can obtain a different estimate of the convergence rate for
the randomized method with the dynamic stepsize, as seen in the following proposition.

Proposition 3.7: Let Assumption 3.1 hold, and assume that the optimal solution set X* is
nonempty. Assume further that for some positive scalar p, with probability 1, we have

f(z) — f* > p dist(z, X*), VzelX.

Then, for the sequence {x} generated by the randomized method with the dynamic stepsize
(3.7), we have

B{dist(xy,, X*)} <12 \/E{(dist(xo,X*))2}, v p,

where

2

Proof: From Lemma 3.3, by using the definition of o, we obtain

: 2 , 2 w2 =) )2
E{ (dzst(xM(p+1),X )) ‘ gp} < (dzst(pr,X )) — W(f(mMp) —f ) , Y p.
By taking the total expectation in this inequality, and by using the given property of f and
the relation v, € [v,7] for all p, we have

B{ (dist(w 1)) X))} < (1 —q(2- 7)m5—202> B{ (dist(w,1,, X))}, Vo,

from which the desired estimate follows by induction. Q.E.D.

It is difficult to compare the results of Props. 3.6 and 3.7 with the results of the corre-
sponding Props. 2.9 and 2.10. Based on these results, if M is much smaller than m, then the
convergence rate of the randomized method is superior. However, for a small M, there is an
increased overhead associated with calculating the value of the dynamic stepsize.
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3.6. DYNAMIC STEPSIZE RULE FOR UNKNOWN f*

In the case where f* is not known, we modify the dynamic stepsize (3.7) by replacing f* with
a target level estimate f3°V. Thus, the stepsize is

f(‘fI;Mp) - Tl’ev

O =W Vo2 0<y<<¥<2 k=Mp,....M(p+1)—1, p=0,1,....

(3.14)
To update the target values f)°¥, we may use any of the two adjustment procedures described
in Chapter 2. Before we go into analysis of these procedures, let us first establish a preliminary
result that applies to both of them.

Lemma 3.4: Let Assumption 3.1 hold and let the sequence {zj} be generated by the ran-
domized method using the stepsize (3.14). Assume that the target values f}*V in Eq. (3.14)
are such that

1 _ .
i = min fep;) =60 Vo,

where the scalar sequence {dp,} is positive and nonincreasing. Then, with probability 1, we
have

zivrzlt(;f($Mp) < fr +pli)nolo Op-

Proof: Let p and N be arbitrary positive integers but fixed, and let yny € X be such that

-N if f* = —o0,
f(yN):{f*-l-% if f* > —o0.

Define the level set L by
L={ze X | f(z) < flyn) +dp},

and note that yy € L. In parallel with the process {zy}, consider the process {Zx} defined by

T = Lk lfop €L7 o B
xk_{yN otherwise, Vk=Mp,...,.M(p+1)—1, VYp.

Thus, the process {2} is the same as {z)} up to the time when z,/ enters the level set L, in
which case the process {Zj} remains at yy.

In view of the definition of Z, similar to the proof of Lemma 3.2 with y = yx, we can
see that for all p > p,

2MaMp

M2 (£(31,) = fly) + M203,,02

E{H‘%M(p-l-l) —yn|?| gp} < ||£Mp —yn|? -

<|1Zarp — YN II? = 2p,
(3.15)
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WheI'e Qp — {$Mﬁ7$Mﬁ+17"'7$M(p+1)—1} and
2Ma ~ A
o = (f () — flyn)) — M2a3,,02 if iy, € L, Vp>p.
P 0 if ‘%Mp € L, -

If &), & L for p > p, then we have by definition of the process {Zx} that

:%Mnga Vj:()a]-a"'apa

which by definition of the set L implies that

f(ﬁMj)>f(yN)+5ﬁ, Vi=0,1,...,p.

Hence,
omin f(#ar;) — 05 > fly).

Since ), is nonincreasing, we have §, < o, for p > p, so that

lev _ : A . “
fi = min f(#3;) =0 = min f(@y,) =05 > f(ym),

and therefore,
This relation, and the definitions of z;, and «,,, yield

2
(f (@) — 1) _. &
zp > (2 —vp) M,,:;202 >7(2-7) m2p02 > 0.

Hence, if Ty ¢ L for p > p, then 2z, > 0, and since otherwise z, = 0, it follows that z, > 0
for all p > p. From Eq. (3.15) by the Supermartingale Convergence Theorem, we have that
Z;o:ﬁ zp < 0o with probability 1, implying that z,,, € L for some p > p, with probability 1.
Therefore, in the original process, we have with probability 1,

‘ —N + if f* = —oo,
ﬁrzl%f("”Mp) = {f*+%+5p if f* > —oo,

and by letting N — oo, we obtain

. —00 if f* = —o00,
il feary) < {f* 46, if f* > —o0.

Finally, by letting p — oo, the desired relation follows. Q.E.D.

We next consider the adjustment procedures of Section 2.6 that are adapted to the
stepsize (3.14). In the first adjustment procedure, f3*V is given by

K= Ogljigpf(xMj) — 9p, (3.16)
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and ¢, is updated according to

5 if f(x ) S lev’
Spr1 =14 © M(p+1) b 3.17
P {max{ﬁép,é} if f(xM(p+1)) > fhev, ( )

where dp, 0, and /3 are fixed positive scalars with < 1 [note here that the parameter p of Eq.
(2.23) is set to 1; our results rely on this restriction]. Thus, all the parameters of the stepsize
are updated every M iterations. Since the stepsize is bounded away from zero, the method
behaves similar to the one with a constant stepsize (cf. Prop. 3.1), as seen in the following
proposition.

Proposition 3.8: Let Assumption 3.1 hold. Then, for the sequence {zj} generated by the
randomized method and the stepsize (3.14)—(3.17), with probability 1, we have:

(a) If f* = —o0, then
2ylegf(:bm,) = f*.
(b) If f* > —o0, then
i < f* .
;Izlgf(pr) <fr+d

Proof: We prove (a) and (b) simultaneously. By Lemma 3.4, it follows that with probability
1,
inf f(zyr,) < f*+ lim 6.

If limp_, 0 p = 6 with some probability =, then we have with probability ,
1 < f* .
;gf(‘)f(ﬂﬂMp) < fr+é

If limp o0 0p > §, which occurs with probability 1 —m, then the target level is achieved infinitely
many times, i.e., f(:z:M(p+1)) < frv infinitely many times, with probability 1 — . Since §, > &
for all p, it follows that the function value is reduced by at least  infinitely many times. Hence,

in this case, we have with probability 1 — 7,

inf f(2arp) = =00

Thus, if f* = —oo, the relation in part (a) holds with probability 1. If f* > —oo, then we
must have lim,_, d, > 0 with probability 0, thereby implying that the relation in part (b)
holds with probability 1. Q.E.D.

The target level fi*" can also be updated according to the second adjustment procedure
discussed in Section 2.6, which we adjust for the randomized method that uses the same stepsize
within each block of M consecutive iterations. We present this procedure in an algorithmic
form, as follows.
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Path-Based Randomized Target Level Algorithm

Step 0 (Initialization) Select o, dg > 0, and b > 0. Set 09 = 0, f*f = co. Set p = 0,
I =0, and p(l) = 0 [p(I) will denote the iteration number when the [-th update of fj*’
occurs.

Step 1 (Function evaluation) Compute f(z,r,). If f(zy,) < f32, then set f3 =
f(zyr,). Otherwise set f3°¢ = f° [so that f3°° keeps the record of the smallest value
attained by the iterates at the end of each block of M iterations that are generated so

far, i.e., f3°° = ming<j<p f (7))

Step 2 (Sufficient descent) If f(z,,,) < ;E’lc) — %, then set p(I+1) = p, op =0, §141 = 4y,

increase [ by 1, and go to Step 4.
Step 3 (Oscillation detection) If o, > b, then set p(I + 1) = p, 0p = 0, G141 = 5—21, and
increase [ by 1.

Step 4 (Iterate update) Set fi*¥ = iy — 0. Select v, € [7,7] and for k = Mp +

1,...,M(p+1), calculate zj via Eq. (3.1) with the stepsize (3.14).
Step 5 (Path length update) Set opy1 = op+ a,r,MC, increase p by 1, and go to Step 1.

For this algorithm, we have the following convergence result.

Proposition 3.9: Let Assumption 3.1 hold. Then, for the sequence {z} generated by the
path-based randomized incremental algorithm, with probability 1, we have

inf f(zx) = f*

k>0

Proof: We first show that [ — oo with probability 1. To obtain a contradiction, we assume
that [ takes only a finite number of values, say [ = 0,1,...,[, with some positive probability.

In this case, we have op + a,C' = 0pp1 < B forall p > p(1), so that lim,_ ayr, = 0, with

some positive probability. But this is impossible, since for all p > p(l), we have

S f(@ar,) - o o7
Mp = T mM C'? =2 mMC'?

> 0.

Hence, | — oo with probability 1.
By Lemma 3.4, it follows that with probability 1,

inf f(ayr,) < f*+ Jlim 8.

If limy—, oo dp = 0 with some probability 7, then we have with probability =,

inf f(ry,) < f*.



Sec. 3.6 Dynamic Stepsize Rule for Unknown f* 65

If limy— o 6p > 0, which occurs with probability 1 — 7, then from Steps 2 and 3, it follows that
for all [ large enough, we have §; = § and

rec rec 6
Fotieny = oy < — 3>

implying that with probability 1 — m,
inf f(z,,) = —ooc.

p>0

Hence, if f* = —oo, then the relation in part (a) holds with probability 1. If f* > —oo, then
we must have lim;,_, 0, > 0 with probability 0, thereby implying that the relation in part (b)
holds with probability 1. Q.E.D.

In the next proposition, we give a convergence rate result that applies to both procedures.

Proposition 3.10: Let Assumption 3.1 hold, and assume that the optimal solution set X*
is nonempty. Let the sequence {z;} generated by the randomized method with the stepsize
(3.14), (3.16), where the scalar sequence {0, } is positive and nonincreasing. Then, there exists
K is a random nonnegative integer such that

. < peis
0glglsan(:ﬂMp)_f + do,

with probability 1, and
K-l 2002
E 52 < T gl (dist(z, X)) V.
(3} < S oGt 20}

Proof: Let the level set L be given by
L={zeX| f(z)<f*+d},

and consider a new process {Zy} defined as follows

o Tk lfonga _ _ _
xk_{x* otherwise, Vk=Mp,....M(p+1)—1, Vp=0,1,...,

where z* is a fixed vector in X*. The process {#} is identical to {zy}, except that once z,,,
enters the level set L, the process {Zj} terminates at the point z*. Then, for the process {z},
by Lemma 3.3, we have for all p,

2M o
E{(dist(xM(p+l),X*))2 ‘ Qp} < (dist(pr,X*))z — TM”(f(pr) - f(y)) + M204]2V[p02,
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and by using the definition of as,, we obtain

E{(dist(mM(pH),X*))z | g,,} < (dist(@y,, X*)* =20 Y, (3.18)
where
2
Zp = { %(f(pr) - /) (f(pr) —f) - %(f(pr) - Iliev)2 if Ty ¢ L, Y p.
0 otherwise,

When &, ¢ L, we have

f@@ay) > f*+00,  j=0,....p,
so that
f]éev - orgnj-igpf(fi'Mj) —0p = f*+ 00— 0dp = [*,

where we use o > Jp for all p. Therefore, it follows that
fear,) = > flzag,) = i
Using this relation and f(z,,) — [V > 6p, we obtain
’Yp(z_')’p) v)2 51%'719(2_%)
p > m2(C'2 (f(fEMp) - Il’e ) > m202 > 0. (3.19)

Thus, 2z, > 0 if Z,,, ¢ L and since otherwise z, = 0, we see that z, > 0 for all p. By the
Supermartingale Convergence Theorem, from Eq. (3.18) it follows that Z;O:o zp < oo with
probability 1, implying that z, = 0 for all p > K, where K is a random nonnegative integer.
Hence, 2, € L with probability 1, so that in the original process with probability 1,

i < f* .
B ag) < S 48

Furthermore, by taking the total expectation in Eq. (3.18), we have
o 2 Ca 2
E{ (dist(Zar(pt1), X*)) } < E{ (dist(&yz,, X*)) }—E{zp}
) P
SE{(dist(wo,X*)) }—E sz , Y p.
§=0
Using this relation, the definition of z,, and Eq. (3.19), we see that

. 2 = = = 51%719(2 )
E{(dzst(mo,X*))}ZE sz =F sz > F ZW ,

k=0 k=0 k=0
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and since 7y, € [v,7] for all p, we obtain

= m2C? 2
o X #) = i o)
Q.E.D.

We can compare the estimate of Prop. 3.10 with that of Prop. 2.13 for the nonrandomized
method. For the same initial point g, when M is much smaller than m, the convergence rate
of the randomized method is better. But for a small M, there is more overhead associated
with function evaluation, which is needed to compute the dynamic stepsize.

In both adjustment procedures [cf. Egs. (3.16) and (3.17), and the path-based algorithm],
we have o > ¢, for all p, since the scalars §, are nonincreasing in each procedure. Thus, the
estimate of Prop. 3.10 applies to both procedures. In particular, based on this estimate, we
can obtain another upper bound on E{K} for the first adjustment procedure [cf. Egs. (3.16)
and (3.17)],

m2(C?2 . 2
E{K} < mE{(dwt(mo,X*)) }

(2 -

3.7. EFFECTS OF RANDOMIZED PROCESSING ORDER

In the preceding sections, for various stepsize rules, we compared convergence rates of the
randomized method with that of the nonrandomized incremental method. To get some further
insights into the effects of randomization, let us revisit the examples of Section 2.7.

For an easier reference, let us again state the problem considered in Example 2.2.

Example 3.1: (Convex Nondifferentiable Function)

The problem has the form

P V4 2rp
minimize f(z) = Z |z + 1] + Z |z — 1] + Z |z|
=1 i=1 i=1 (320)

subject to = € R,

where p and r are positive integers. Here, the optimal solution set consists of a single vector,
x* = 0. We consider the randomized method, as applied to this problem, using a small constant
stepsize a such that pa < 1, and the initial point o = pa. At each step, an index j is selected
from the set {1, L 2(1 r)p} with probability 1/(2(1 + r)p) and then the iteration

Tk+1 =— Tk — QGk

is executed, where g, is a subgradient of f; at the point x.
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Since the starting point is an integer multiple of «, all the points generated by the algorithm
are integer multiples of a. As a result, the algorithm can be modeled by a Markov chain of a
random walk type. Let N > 0 and @ = 1/N. Define the states of the chain to be —Na, (—N +
Da,...,—a,0,a,...,(N — 1)a, Na. To simplify the notation, we will use i to denote the state i
fori=—-N,—-N+1,...,—-1,0,1,...,N — 1, N. It can be seen that the transition probabilities

Pij = P{zksr = j |z = i}

are given by
P N _Ny1=PnnNn_1=1,

14 2r .
Pi_Nit1-N = PN N—(i41) = W +7r) i=1,...,N -1,
1
P_;,_i_1=P;; = — T, 0,...,N—-1
» 1 i +1 2(1 T T‘)

The stationary probability distribution of the chain is

P{z =i} = P{x = —i} = p'P{z = 0}, i=1,...,N,

P{x:0}2(1+22pi> ,

i=1

where p =1/(1 + 2r). For N large, we have P{z = 0} ~ %Z =r/(1+r) and

N
E{z’} =2P{z =0} Y a®i’p'
i=1

+p°

zQaQszopi

=0,

N2QQL
(1—p)?

_ 21+2’I"

= 2a 4r2 7’

) 2
where we used the estimate Zi\;l i’q" ~ 4% for a large scalar N and any scalar q € (0,1).

(1—g)3
Since E{z} = 0, we have

@

0w N o 2(1 + 2r).
Thus, the standard deviation o, of z does not depend on the value of p and tends to 0 as r increases.
As seen in Example 2.2, when incremental method is used with a fixed cyclic order, the size

of the limit cycle is pa for the worst processing order. If p is large then this distance is also large
as compared to the standard deviation o, of the randomized method. Hence, the effects of a poor
processing order of the components f; within a cycle can be eliminated by randomization.

The most interesting aspect of the preceding example is that the randomized method has
qualitatively superior convergence characteristics than the nonrandomized variant (unless the
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order of processing the components f; is favorably chosen). This type of behavior can be seen
in other similar (but multidimensional) examples involving nondifferentiable cost functions,
and is also evident in our computational experiments to be described in the next chapter.

In the preceding example, the functions f; are nondifferentiable, and it may be that the
behavior of the randomized order method was influenced by nondifferentiability of f;. As we
now revisit Example 2.3, we will see that the behavior is qualitatively different, although still
interesting.

Example 3.2: (Convex Differentiable Function)

The problem is

P P
minimize f(z) = % Z(:z: -1+ % Z(:z: +1)°
i=1 =1

subject to = € R.

The minimum value of f is attained at £* = 0, which is the unique optimal solution. We assume
that the stepsize is equal to some positive constant a < 2.

Consider now the variant of the incremental gradient method that selects randomly (with
equal probability ﬁ) the index ¢ from the set {1,2,...,2m} at each iteration. This method has
the form

Th1 = 2k — a(zp — wg) = (1 — @)z + qwy,

where wy takes the value 1 with probability 1/2 [corresponding to the components with gradient
z —1], and the value -1 with probability 1/2 [corresponding to the components with gradient =+ 1].
The second moment of xj obeys the recursion

E{xiH} =(1- a)2E{xi} + a2E{w;2c}.

The steady-state value of the second moment of z; (which is also the steady-state value of the
variance of zj, since the expected value E{xy} converges to 0) is given by

2
lim E{z?} = —2 =2
Jim E{zi} 1-(1-a)? 2-a

Thus, for the standard deviation oy of zx with k large, we have

(07

oK~ (3.21)

2—a’
As seen in Example 2.3, for the incremental gradient method that, in each cycle, processes
first all components of the form (z — 1)® and then all components of the form (z + 1)?, the size of
the limit cycle is given by
1—(1—a)™/?
1+ (1—a)ym/2’

While for the incremental gradient method that, in each cycle, processes a component of the form
(z+1)? followed by a component of the form (2 —1)? and so on until all components are processed,
the size of the limit cycle is

(3.22)

«
2—a

(3.23)
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Thus, we see that for small values of a, the randomized method can be worse than the
nonrandomized method (with the best processing order) in the sense that the standard deviation
in the limit is larger than the size of the limit cycle [cf. Egs. (3.21) and (3.22)]. For moderate
values of a and large enough values of m, we see that the randomized method is as good as the
nonrandomized method with the best processing order [cf. Egs. (3.21) and (3.23)].

As seen from these examples, randomization can alleviate potentially detrimental effect of
bad processing order. This is very important for practical problems, where typically the best
processing order of the functions f; cannot be determined.

3.8. EXPERIMENTAL RESULTS

We here present and interpret our experimental results. We first describe our test problem,
and the stepsize and the order rules that we used in our experiments. We then compare the
incremental subgradient method (2.3)-(2.5) with the ordinary subgradient method (2.2), and
the nonrandomized incremental with the randomized incremental method [cf. Egs. (2.3)—(2.5)
and Eq. (3.1), respectively]. Our experimental results show that the randomized methods have
substantially better performance, which is consistent with our analytical results of Chapter 4.

3.8.1 Test Problem

In this section, we report some of the numerical results for a certain type of test problem: the
dual of a generalized assignment problem (see the book by Martello and Toth [MaT90], p.
189, or Bertsekas [Ber98], p. 362). The problem is to assign m jobs to n machines. If job i is
to be performed at machine j, then it costs a;; and requires p;; time units. Given the total
available time ¢; at machine j, we want to find the minimum cost assignment of the jobs to
the machines. Formally, the problem is

m n
minimize E E aijYij
i=1j=1

n
subject to Zyijzl, Vi=1,...,m,
=1

m
Zpijyijgtj, Vi=1,...,n,
i=1
yij =0 or y;; =1, Vi=1,...,m, VYj=1,...,n,
where y;; is the assignment variable, which is equal to 1 if the ith job is assigned to the jth

machine and is equal to 0 otherwise. In our experiments, we chose n equal to 4 and m equal
to one of the four values 500, 800, 4000, or 7000.
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By relaxing the time constraints for the machines, we obtain the dual problem

maximize x) = i(z
7 ;ﬁ( ) (3.24)
subject to x > 0,
where
n 1 n
fi(z) = nmin Z(aij + xjpij)yij — — thxj, Vi=1,...,m.
Z]‘:1 vij=l =1 m j=1

yij:(] or yijil

Since ai; + xjpi; > 0 for all 7 and j, we can easily evaluate f;(x) for each z > 0:
1 n
fi(z) = aij= + wjepije — — Zta‘fﬁj,
j=1

where j* is such that

Gijr + T pije = W0 {ai; + 2P}
At the same time, at no additional cost, we obtain a subgradient g of f; at x:
-2 if j # 5%,

tix P .

pijr — 5 7 =7"

g:(gl,---,gn)l, gJ:{

The experiments are divided in two groups, each with a different goal. The first group
was designed to compare the performance of the ordinary subgradient method [cf. Eq. (2.2)]
and the incremental subgradient method [cf. Egs. (2.3)-(2.5)], as applied to the test problem
(3.24), for different stepsize rules and a fixed cyclic processing order of the components f;.
The second group of experiments was designed to evaluate the incremental method for a fixed
stepsize rule and different rules for the processing order of the components f;.

3.8.2 Incremental vs. Ordinary Subgradient Method

In the first group of experiments, the data for the problems (i.e., the matrices [ai}], [pi;]) were
generated randomly according to a uniform distribution over different intervals. The values ¢;
were calculated according to the formula

T — _
tj = ﬁzp”, j=1,...,m, (3.25)
=1

with ¢ taking one of the three values 0.5, 0.7, or 0.9. We used two stepsize rules:
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(1) A diminishing stepsize of the form

D
QRN = QEN41 =0 = Qe ON-1 = 7 VEk2>0,

where D is a positive scalar, and N is a positive integer representing the number of cycles
during which the stepsize is kept at the same value. To guard against an unduly large
value of D, we implemented an adaptive feature, whereby if within some (heuristically
chosen) number S of consecutive iterations the current best cost function value is not
improved, then the new iterate zry1 is set equal to the iterate at which the current best
value is attained.

(2) The dynamic stepsize rule given by

flag) — [

ap =
llgx[2

and its modification, where f,lge" is adjusted according to the path-based procedure (cf.

path-based incremental target level algorithm). In this procedure, the path bound is
not fixed but rather the current value for B is multiplied by a certain factor £ € (0,1)
whenever an oscillation is detected (see the discussion following Prop. 2.12). The initial
value for the path bound is By = r|lxo — z1|| for some (heuristically chosen) positive
scalar r.

In the forthcoming tables, we report the number of iterations required to achieve a given
threshold cost f for various methods and parameter choices. The notation used in the tables
is as follows:

>k x 100 for £ = 1,2,3,4: means that the value f has been achieved or exceeded after
k x 100 iterations, but in less than (k4 1) x 100 iterations.

> 500: means that the value f has not been achieved within 500 iterations.

D/N/S/iter: gives the values of the parameters D, N, and S for the diminishing stepsize
rule (1), while iter is the number of iterations (or cycles) needed to achieve or exceed f.

r/€/do/iter: describes the values of the parameters and number of iterations for the
target level stepsize rule (2).

Tables 1 and 2 show the results of applying the ordinary and incremental subgradient methods
to problem (3.24) with n = 4, m = 800, and £ = 0.5 in Eq. (3.25). The optimal value of the
problem is f* =~ 1578.47. The threshold value is f = 1578. The tables show when the value f
was attained or exceeded.
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Ordinary subgradient method

Initial point Diminishing Target level

Zo D/N/S/iter r/€/do/iter
(0,0,0,0) 0.08/2/7/ > 500 0.03/0.97/12 x 105/ > 500
(0,0,0,0) 0.1/2/7/ > 500 0.5/0.98/2 x 104/ > 500
(0,0,0,0) 0.07/3/10/ > 500 0.5/0.95/3 x 10%/ > 500
(0,0,0,0) 0.01/10/7/ > 500 0.3/0.95/5 x 104/ > 400
(0,0,0,0) 0.09/1/7/ > 500 0.1/0.9/108/ > 200
(0,0,0,0) 0.03/5/500/ > 500 0.2/0.93/5 x 10%/ > 300
(0,0,0,0) 0.08/4/7/ > 500 0.8/0.97/12 x 103/ > 500
(0,0,0,0) 0.09/5/10/ > 500 0.03/0.95/106/ > 500
(1.2,1.1,2,1.04) 0.005/2/5/ > 500 0.4/0.975/2 x 104/ > 200
(1.2,1.1,2,1.04) 0.009/1/5/ > 500 0.5/0.97/4 x 103/ > 50
(0.4,0.2,1.4,0.1) 0.009/2/5/ > 500 0.4/0.8/2700/ > 500
(0.4,0.2,1.4,0.1) 0.005/5/500/ > 500 0.5/0.9/1300/ > 500

Table 1.

n =4, m = 800, f*

~ 1578.47, f = 1578.

Incremental subgradient method

Initial point Diminishing Target level

Zo D/N/S/iter r/€/do/iter
(0,0,0,0) 0.05/3/500/99 3/0.7/5 % 106/97
(0,0,0,0) 0.09/2/500/ > 100 2/0.6/55 x 105/ > 100
(0,0,0,0) 0.1/1/500/99 0.7/0.8/55 x 105/ > 100
(0,0,0,0) 0.1/1/10/99 0.4/0.95/107/80
(0,0,0,0) 0.05/5/7/ > 100 0.3/0.93/107/ > 100
(0,0,0,0) 0.07/3/10/ > 100 0.5/0.9/107/ > 200
(0,0,0,0) 0.01/7/7/ > 500 0.3/0.93/15 x 106/30
(0,0,0,0) 0.009/5/7/ > 500 2/0.8/5 x 106/ > 100
(1.2,1.1,2,1.04) 0.05/1/500/40 0.4/0.97/12 x 106/ > 100
(1.2,1.1,2,1.04) 0.04/3/500/35 0.3/0.975/107/27
(0.4,0.2,1.4,0.1) 0.07/1/500/48 0.4/0.975/12 x 106/100
(0.4,0.2,1.4,0.1) 0.048/1/500/39 0.5/0.94/12 x 108/ > 100

Table 2.

n =4, m =800, f* ~ 1578.47, f = 1578.

Tables 3 and 4 show the results of applying the ordinary and incremental subgradient
methods to problem (3.24) with n = 4, m = 4000, and £ = 0.7 in Eq. (3.25). The optimal
value of the problem is f* ~ 6832.3 and the threshold value is f = 6831.5. The tables show
the number of iterations needed to attain or exceed the value f = 6831.5.
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Ordinary subgradient method

Initial point Diminishing Target level

To D/N/S/iter r/&/do/iter
(0,0,0,0) 0.01/2/7/ > 500 1/0.9/5000/58
(0,0,0,0) 0.001/5/7/ > 300 2/0.99/5500/ > 100
(0,0,0,0) 0.0008/5/10/ > 300 1.3/0.98/4800/54
(0,0,0,0) 0.0005/5/7/ > 200 1.5/0.98/2000/88
(0,0,0,0) 0.0001/5/10/99 0.5/0.8/4000/99
(0,0,0,0) 0.0001/2/500/ > 100 0.4/0.9/4000/89
(0,0,0,0) 0.0001/5/10/ > 200 0.5/0.9/3000/88
(0,0,0,0) 0.00009/5/500/100 0.5/0.95/2000/98
(0.5,0.9,1.3,0.4) 0.0005/3/500/ > 100 0.5/0.98/2000/95
(0.5,0.9,1.3,0.4) 0.0002/7/7/ > 100 0.4/0.97/3000/98
(0.26,0.1,0.18,0.05) 0.0002/5/7/100 0.3/0.98/3000/90
(0.26,0.1,0.18,0.05) 0.00005/7/7/30 0.095/0.985/10/50

Table 3.

n =4, m = 4000, f* ~ 6832.3,

f = 6831.5.

Incremental subgradient method

Initial point Diminishing Target level

Zo D/N/S/iter r/€/do/iter
(0,0,0,0) 0.005/2/500/46 5/0.99/108/7
(0,0,0,0) 0.007/1/500/37 8/0.97/11 x 105/5
(0,0,0,0) 0.001/2/500/95 2/0.99/7 x 105/ > 100
(0,0,0,0) 0.0008/1/500/30 0.8/0.4/9 x 105/6
(0,0,0,0) 0.0002/2/500/21 0.7/0.4/108/7
(0,0,0,0) 0.0005/2/500/40 0.1/0.9/108/15
(0,0,0,0) 0.0002/2/7/21 0.08/0.9/15 x 105/18
(0,0,0,0) 0.0003/1/500/21 0.25/0.9/2 x 106/20
(0.5,0.9,1.3,0.4) 0.001/1/500/40 0.07/0.9/108/7
(0.5,0.9,1.3,0.4) 0.0004/1/500/30 0.04/0.9/106/26
(0.26,0.1,0.18,0.05) 0.00045/1/500/20 0.04/0.9/15 x 105/10
(0.26,0.1,0.18,0.05) 0.00043/1/7/20 0.045/0.91/1.55 x 106/10

Table 4.

n =4, m = 4000, f* ~ 6832.3, f = 6831.5.

Tables 1 and 2 demonstrate that the incremental subgradient method performs substan-
tially better than the ordinary subgradient method. As m increases, the performance of the
incremental method improves as indicated in Tables 3 and 4. The results obtained for other
problems that we tested are qualitatively similar and consistently show substantially and often
dramatically faster convergence for the incremental method.
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3.8.3 Nonrandomized vs. Randomized Incremental Method

We suspected that the random generation of the problem data induced a behavior of the
(nonrandomized) incremental method that is similar to the one of the randomized version.
Consequently, for the second group of experiments, the coefficients {a;;} and {p;;} were gener-
ated as before and then they were sorted in an nonincreasing order, so as to create a sequential
dependence among the data. In all runs, we used the diminishing stepsize choice (as described
earlier) with S = 500, while the processing order for the components f; was changed according
to the following three rules:

(1) Fized Order. The components are processed in the fixed order 1,2,...,m.

(2) Cyclically Shifted Order. In the first cycle, the components are processed in the order
1,2,...,m. If in the kth cycle, the components are processed in the order ¢1,.. . ,%m, then
in the k + 1st cycle, they are processed in the order ¢xy1,...,%m,%1,...,1K, where K is
a positive integer K.

(3) Random Order. The index of the component to be processed is chosen randomly, with
each component equally likely to be selected.

To compare fairly the randomized methods with the other methods, we count as an
“iteration” the processing of m consecutively and randomly chosen components f;. In this way,
an “iteration” of the randomized method is equally time-consuming as a cycle or “iteration”
of any of the nonrandomized methods.

Table 5 below shows the results of applying the incremental subgradient method with
order rules (1)—(3) for solving the problem (3.24) with n = 4, m = 800, and ¢ = 0.9 in Eq.
(3.25). The optimal value is f* ~ 1672.44 and the threshold value is f = 1672. The table
gives the number of iterations needed to attain or exceed f.

Incremental subgradient method / Diminishing stepsize

Initial point Fixed order Cyclically shifted order Random order
To D/N/iter D/N/Kiter D/N/iter
(0,0,0,0) 0.005/1/ > 500 0.007/1/9/ > 500 0.0095/4/5
(0,0,0,0) 0.0045/1/ > 500 0.0056/1/13/ > 500 0.08/1/21
(0,0,0,0) 0.003/2/ > 500 0.003/2/7/ > 500 0.085/1/7
(0,0,0,0) 0.002/3/ > 500 0.002/2/29/ > 500 0.091/1/17
(0,0,0,0) 0.001/5/ > 500 0.001/6/31/ > 500 0.066/1/18
(0,0,0,0) 0.006/1/ > 500 0.0053/1/3/ > 500 0.03/2/18
(0,0,0,0) 0.007/1/ > 500 0.00525/1/11/ > 500 0.07/1/18
(0,0,0,0) 0.0009/7/ > 500 0.005/1/17/ > 500 0.054/1/17
(0.2,0.4,0.8,3.6) 0.001/1/ > 500 0.001/1/17/ > 500 0.01/1/13
(0.2,0.4,0.8,3.6) 0.0008/3/ > 500 0.0008/3/7/ > 500 0.03/1/8
(0,0.05,0.5,2) 0.0033/1/ > 400 0.0037/1/7/ > 400 0.033/1/7
(0,0.05,0.5,2) 0.001/4/ > 500 0.0024/2/13/ > 500 0.017/1/8

Table 5.

n =4, m =800, f* ~ 1672.44, f = 1672.
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The following table 6 shows the results of applying the incremental subgradient method
with order rules (1)—(3) for solving the problem (3.24) with n = 4, m = 7000, and ¢ = 0.5 in
Eq. (3.25). The optimal value is f* ~ 14601.38 and the threshold value is f = 14600. The
table gives when the value f was attained or exceeded.

Incremental subgradient method / Diminishing stepsize
Initial point Fixed order Cyclically shifted order Random order
Zo D/N/iter D/N/K/iter D/N/iter
(0,0,0,0) 0.0007/1/ > 500 0.0007/1/3/ > 500 0.047/1/18
(0,0,0,0) 0.0006/1/ > 500 0.0006/1/59/ > 500 0.009/1/10
(0,0,0,0) 0.00052/1/ > 500 0.00052/1/47/ > 500 0.008/1/2
(0,0,0,0) 0.0008/1/ > 500 0.0005/1/37/ > 500 0.023/1/34
(0,0,0,0) 0.0004/2/ > 500 0.0004/2/61/ > 500 0.0028/1/10
(0,0,0,0) 0.0003/2/ > 500 0.0003/2/53/ > 500 0.06/1/22
(0,0,0,0) 0.00025/3/ > 500 0.00025/3/11/ > 500 0.05/1/18
(0,0,0,0) 0.0009/1/ > 500 0.00018/3/79/ > 500 0.007/1/10
(0,0.1,0.5,2.3) 0.0005/1/ > 500 0.0005/1/79/ > 500 0.004/1/10
(0,0.1,0.5,2.3) 0.0003/1/ > 500 0.0003/1/51/ > 500 0.0007/1/18
(0,0.2,0.6,3.4) 0.0002/1/ > 500 0.0002/1/51/ > 500 0.001/1/10
(0,0.2,0.6,3.4) 0.0004/1/ > 500 0.00007/2/93/ > 500 0.0006/1/10

Table 6.  n =4, m = 7000, f* ~ 14601.38, f = 14600.

Tables 5 and 6 show how an unfavorable fixed order can have a dramatic effect on the
performance of the incremental subgradient method. Note that shifting the components at the
beginning of every cycle did not improve the convergence rate of the method. However, the
randomization of the processing order resulted in fast convergence. The results for the other
problems that we tested are qualitatively similar and also demonstrated the superiority of the
randomized method.

3.9. DISTRIBUTED ASYNCHRONOUS INCREMENTAL SUBGRADIENT
METHOD

To this end, we considered the incremental subgradient methods in centralized computation.
However, for problems where the computation of subgradients of some of the component func-
tions is relatively costly, it is better to parallelize the subgradient computations. For such prob-
lems, we here propose and analyze distributed asynchronous incremental subgradient methods,
where the computation of the component subgradients is distributed among a set of processors
which communicate only with a coordinator. We will first introduce the method and describe
the distributed computing system. We will then present convergence results and give their
proofs.
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3.9.1 The Method

We develop the method departing from the classical subgradient iteration

z(t+1) =Px

z(t) —a(t) ) gi(t)] : (3.26)

i=1

where a(t) is a positive stepsize, g;(t) is a subgradient of f; at z(¢), and z(0) € X is an initial
vector. The most straightforward way to parallelize the above iteration is to use multiple pro-
cessors to compute in parallel the component subgradients ¢;(¢). Once all of these components
have been computed, they can be collected at a single processor, called the updating processor,
which will execute the update of the vector x(t) using iteration (3.26). The updating processor
will then distribute (broadcast) the new iterate z(¢+ 1) to the subgradient-computing proces-
sors which will collectively compute the new subgradients for the subsequent iteration. The
parallel method just described is more efficient than the serial method (3.26). It can be termed
synchronous, in the sense that there is clear division between the computations of successive
iterations, i.e., all computation relating to iteration ¢ must be completed before iteration ¢ + 1
can begin.

A more general method is the parallel method that uses subgradient components not
necessarily computed at the same vector z(¢). Such a method, termed asynchronous, is far
more interesting and useful in the situations where some subgradient components g;(¢) are
not available at time ¢, which can be due to, for example, communication delay or excessive
computation of some subgradients. In such situations, to avoid further delay in executing the
update of z(t), the most recently computed components g; (’Tz(t)) can be used in the iteration
(3.26) in place of the missing components g;(¢). A method of this form is the following:

m

z(t+1) =Px |2(t) — at) Y gi(n())] (3.27)

i=1

where 7;(t) < t for all ¢ and the difference ¢ — 7;(¢) represents the “delay”. This method was
proposed and analyzed by Kiwiel and Lindberg in [KiLO01].
We will here consider a more general method given by

z(t+1) =Px |z(t) —alt) Y g(nt)] . (3.28)

i€I(t)

where I(t) is a nonempty subset of the index set {1,...,m}, g; (Tl(t)) is a subgradient of f;
computed at z(7;(t)) with 7;(t) < ¢ for all i. To visualize the execution of this iteration, it is
useful to think of the computing system as consisting of two parts: the updating system (US for
short), and the subgradient-computing system (GCS for short). The US executes iteration (3.28)
at each time ¢ and delivers the corresponding iterate :(¢) to the GCS. The GCS uses the values
x(t) obtained from the US, computes subgradient components g¢;(7;(¢)), and deposits them in
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a queue from where they can be accessed by the US. There is no synchronization between
the operations of the CS and the GCS. Furthermore, while the GCS may involve multiple
processors that compute subgradient components in parallel, the characteristics of the GCS
(e.g., shared memory, message passing, communication architecture, number of processors,
synchronization rules, etc.) are not material to the description of our algorithm.

The motivation for considering iteration (3.28) rather than its special case (3.27) is
twofold. First, it makes sense to keep the US busy with updates while the GCS is com-
puting subgradient components. This is particularly so if the computation of ¢; is much more
time consuming for some ¢ than for others, thereby creating a synchronization bottleneck.
Second, it appears that updating the value of x(t) as quickly as possible and using it in the
calculation of the component subgradients has a beneficial effect in the convergence rate of the
subgradient method. As seen from the preceding sections, this is the main characteristic of the
incremental subgradient methods, which we may view as a special case of the iteration (3.28)
where 7;(t) =t for all 7 and the set I(t) consists of a single index.

We believe that the incremental structure that is inherent in our proposed parallel sub-
gradient method (3.28) results in convergence and rate of convergence properties that are
similar to those of incremental subgradient methods. In particular, we expect an enhanced
convergence rate over the nonincremental version given by Eq. (3.27).

In what follows, we will analyze a version of the method (3.28), where the set I(¢) in
the iteration (3.28) consists of a single element denoted i(¢). In particular, we consider the
following method

2(t+1) = Px [:Is(t) — a(t)gice (T(t))]. (3.29)

For X = R, analysis of this simplified version does not involve an essential loss of generality
since an iteration involving multiple component function subgradients may be broken down
into several iterations each involving a single component function subgradient. When X # R»,
our analysis can be extended for the more general iteration (3.28). The most important
assumptions in our analysis are:

(a) The stepsize «(t) is either constant or is diminishing to 0, and satisfies some common
technical conditions such as Y ,2 a(t) = co (see a more precise statement later). In the
case of a constant stepsize, we only show convergence to optimality within an error which
depends on the length of the stepsize.

(b) The “delay” ¢t — 7(¢) is bounded from above by some (unknown) positive integer D, so
that our algorithm belongs to the class of partially asynchronous methods, as defined by
Bertsekas and Tsitsiklis [BeT89].

(¢c) All the component functions f; are used with the same “long-term frequency” by the
algorithm. Precise methods to enforce this assumption are given later, but basically
what we mean is that if n;(¢) is the number of times a subgradient of the component f;
is used by the algorithm up to time ¢, then the ratios n;(¢)/¢ should all be asymptotically
equal to 1/m (as t — 00).

(d) The subgradients g;;)(7(¢)) used in the method are uniformly bounded.
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The restriction (c) can be easily enforced in a number of ways, by regulating the frequency
of the indices of subgradient components computed by the subgradient-computing system.
We will consider one specific approach, whereby we first select a sequence of indexes { j (t)}
according to one of two rules:

(1) Cyclic Rule. The sequence {](t)} is obtained by a permutation of each of the periodic
blocks {1,2,...,m} in the periodic sequence {1,2,...,m,1,2,... ,m,...}.

(2) Random rule. The sequence {j(t)} consists of independent identically distributed random
variables, each taking the values 1,2,...,m with equal probability 1/m.

Given a sequence {](t)} obtained by the cyclic or the random rule, the sequence {z(t)} used
in the iteration (3.29) is given by
i(t) = j(n(t)), (3.30)

where 7(+) is a permutation mapping that maps the set {0, 1,...} into itself such that for some
positive integer T, we have

IT(t)—t|<T, Vt=01,.... (3.31)

The permutation mapping 7 (-) captures the asynchronous character of the algorithm, whereby
component function subgradients are offered to the updating system in the order of { ¥ (W(t)) },
which is different than the order of {j(t)} in which their computation was initiated within the
subgradient-computing system. Note that when 7(¢) = ¢ for all £ and there is no delay (i.e.,
7(t) = t for all ¢), then the method (3.29) reduces to the incremental subgradient method.

A version of the algorithm that does not work in this setting is when the component sub-
gradients g;;)(7(t)) are normalized by multiplying with 1/(|g;+)(7(¢))||, which may be viewed
as a weight associated with the component f;;) at time ¢. Unless these weights are asymptot-
ically equal, this modification would effectively alter the “long-term frequency” by which the
components f; are selected, thereby violating a fundamental premise for the validity of our
algorithm.

We note that our proposed parallel algorithms (3.28) and (3.29) do not fit in the frame-
work of the general algorithmic models of Chapters 6 and 7 of Bertsekas and Tsitsiklis [BeT89],
so these algorithms are not covered by the line of analysis of this reference. In the algorithmic
models of Bertsekas and Tsitsiklis [BeT89], at each time ¢, only some of the components of x
are updated using an equation that (within our subgradient method context) would depend
on all components f; (perhaps with communication delays). By contrast in the present paper,
at each time t, all components of x are updated using an equation that involves some of the
components f;.

The proof ideas of this section are related to those of parallel asynchronous deterministic
and stochastic gradient methods as discussed in Tsitsiklis, Bertsekas, and Athans [TBAS86],
and Bertsekas and Tsitsiklis [BeT89], as well as the proof ideas of incremental deterministic
and randomized subgradient methods as discussed in the preceding sections. In particular, the
key proof idea is to view the parallel asynchronous method as an iterative method with deter-
ministic or stochastic errors, the effects of which are controlled with an appropriate mechanism,
such as a stepsize selection. An alternative approach is possible based on differential inclusions
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that extend the “ODE” approach for the analysis of stochastic approximation algorithms (see
Benveniste, Metivier, and Priouret [BMP90], Borkar [Bor98], and Kushner and Yin [KuY97]).

3.9.2 Convergence Results for Cyclic Selection Rule

We here give convergence results for the method (3.29) with the cyclic selection rule, under
the following assumption.
Assumption 3.2:

(a) There exists a positive constant C' such that
llgll < C, Vgeafi(x(T(t)))Uafi(ac(t)), Vi=1,...,m, V¢,

where 0f;(z) denotes the set of subgradients of f; at a vector x.

(b) There exists a positive integer D such that

t—7(t)<D, Vit

Note that if the components f; are polyhedral or if the set X is compact, then Assumption
3.2(a) holds. Assumption 3.2(b) is natural, since our algorithm does not use the value of the
bound D.

For the method using a constant stepsize, we have the following result.

Proposition 3.11: Let Assumption 3.2 hold. Then, for the sequence {m(t)} generated by
the method with the cyclic selection rule and the stepsize fixed to some positive scalar a, we
have:

(a) If f* = —oo, then
litrgglff(x(t)) = —o0.

(b) If f* is finite, then

— 1
htn_l)glff(x(t)) < f*x+mC2 (5 —|—m—|—2D—i—T> a.

When T'= 0 and D = 0, in which case the method (3.29) reduces to the incremental subgra-
dient method, the order of the error in part (b) is m2C2q, thus coinciding with that of the
error in Prop. 2.1(b) for the incremental subgradient method.

We next consider a diminishing stepsize that satisfies the following assumption.

Assumption 3.3: The stepsize a(t) is given by

To

(l+’l")q_, VtZO'l,O'l—’—]_,...,O'H_l—]_’ Vl:(),]_,”"
1

at) =
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where 7, 71, and ¢ are some positive scalars with 0 < ¢ < 1, and the sequence {0;} is increasing
nd is such that for some positive integer S,

o141 — 01 < S, VI

For the method (3.29) using this stepsize, we have the following convergence result.

Proposition 3.12: Let Assumptions 3.2 and 3.3 hold. Then, for the sequence {x(t)} gener-
ated by the method with the cyclic selection rule, we have 1

litrgilgff(w(t)) = f*.

When the optimal solution set is nonempty, under a mild additional restriction on the step-
size, we can strengthen the result of Prop. 3.12 by showing that the entire sequence {z(t)}
converges to some optimal solution. This stronger convergence result is established in the next
proposition.

Proposition 3.13: Let Assumptions 3.2 and 3.3 hold, where 1/2 < ¢ < 1 in Assumption
3.3. Assume further that the optimal solution set X* is nonempty. Then, the sequence {:Jc(t)}
generated by the method with the cyclic selection rule converges to some optimal solution.

3.9.3 Convergence Results for Random Selection Rule

In this section, we present convergence results for the method (3.29) with the random selection
rule. We assume that the stepsize sequence {a(t)} deterministic. We also assume the following.
Assumption 3.4:

(a) Assumption 3.2 holds.

(b) Assumption 3.3 holds with a scalar ¢ such that 3/4 < ¢ < 1.

(c) The sequence {j(¢)} is a sequence of independent random variables each of which is
uniformly distributed over the set {1,...,m}. Furthermore, the sequence { j(t)} is inde-
pendent of the sequence {z(t)}.

We next give the convergence result for a diminishing stepsize.

Proposition 3.14: Let Assumption 3.4 hold. Then, for the sequence {x(t)} generated by
the method with the random selection rule, we have with probability 1,

litrgilgff(w(t)) = f*.

When the optimal solution set is nonempty, we can strengthen this result, as shown in the
following proposition.
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Proposition 3.15: Let Assumption 3.4 hold, and assume that the optimal solution set X*
is nonempty. Then, the sequence {x(t)} generated by the method with the random selection
rule converges to some optimal solution with probability 1.

We note that when the underlying set X is compact, it can be shown that the preceding
result holds using a wider range of values for ¢ in the stepsize rule [cf. Assumption 3.4(b)]. In
particular, the result is valid for 1/2 < ¢ < 1, which we discuss in more detail in Section 3.9.5.

3.9.4 Convergence Proofs for Cyclic Selection Rule

Here and in the next section, we give the proofs for the convergence results for the selection
rules of Sections 3.9.2 and 3.9.3, respectively. The material in these two sections is rather
technical, and the reader who is not interested in the proofs can safely skip them.

The proofs are complicated and long, so we break them down into several steps. For
notational convenience, we define

tr = km, zp = z(tg), Vk>0.

We first provide some estimates of the progress of the method in terms of the distances of
the iterates to an arbitrary point in the constraint set and in terms of the objective function
values. These estimates are given in the subsequent Lemma 3.6. Some preliminary results that
are used in the proof of this lemma are given below.

Lemma 3.5: Let Assumption 3.2 hold. Then, we have:
(a) For any y € X and all ¢,

e +1) = ylI2 < o (t) = yl12 = 20(0) (f (#(8)) = i)
+ C2(1 + 4D)a2(t — D)

m

+20() (8 = ) ) (=) - 1)),

=1

where 6! is the Kronecker symbol (i.e., 6! = 1 if | =4 and 4! = 0 otherwise).
(b) For any y € X, and all N and K with N > K,
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35 at 18y = 0k ) (A=) = filw)) < 2T i ot~ T
I=1t=K
+maX{CG }g:( t—T —at—i—T)( zt:a +||:1:0—y||>
t=K r=0

+e(y) <a2(K) +a(K)+a2(N+1-T)+Ba(N +1 - T))

1
+ (a(K)IIw(K) —yll>+ Ba(N +1-T)|lz(N+1) - y||2> ;
where 3 is an arbitrary positive scalar, and

G(y) = maX{Hg“ | g€ afl(y)a l=1,... vm}v (3'32)

2

¢(y) = max {CT2 (C +GW), % (c2 + G2(y))} . (3.33)

Proof: (a) From the definition of z(¢ + 1) [cf. Eq. (3.29)], the nonexpansion property of the
projection, and the subgradient boundedness [cf. Assumption 3.2(a)], we have
ot + 1) — 2 < llo(t) - 2 — 20()gic (r®) (5(8) - y) + C2a2(1)
< llo(t) = ylI2 = 2a(8) (i (+(8)) = ficn ) (3.34)
+4Ca(t)||z(t) — z(r(t)) || + C2a2(t), VyeX, Vt

where in the last inequality we use

9iy (1) (2(t) = y) > iy (2(1)) = iy (v) = 2C || (t) — 2 (7(®)) |, VyeX, Vi,

which can be obtained from the fact z(t) = z(7(t)) + (x(t) — J?(’T(t))), the convexity of f;),
and the subgradient boundedness. Furthermore, from the relation

llz(t) — z(£)]| < Cz_:a(s), Yttt >4, (3.35)

and the relations t — D < 7(t) <t and a(r) < a(t — D) forr =t —D,...,t — 1 and all ¢, we

obtain
t—1

|z(t) —z(r(®)| < C Y or) <CDa(t-D), Vt.

r=t—D
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By using this estimate and the fact «(t) < a(t — D) for all ¢, from Eq. (3.34) we see that for
any y € X and all ¢,

ot +1) = yl2 < Jla(t) = 112 = 20(t) (fico () = ficny () ) + C2(1 + 4D)a2(t - D).

Finally, by adding and subtracting 2a(t) (fj(t)(ac(t)) - fj(t)(y)), and by using the Kronecker
symbol, we obtain for any y € X and all ¢,

ot +1) = g2 < la(t) - 12 = 20(0) (F00 (+®)) — S0 (v) )
+ C2(1 +4D)a2(t — D)

m

+20(0) 3" (8 ) — 0Ly ) (e ) — o))

=1
(b) For each K and N with N > K, we introduce the following sets:
My = {t € {K,...,N}| j(t) = i(p(t)) with p(t) € {K,...,N}},
Pry = {t € {K,...,N}|j(t) =i(p(t)) with p(t) < K or p(t) > N}, (3.36)

Qx.n = {t € {K,...,N}|i(t) = j(n(t)) with n(t) < K or n(t) > N}, (3.37)

where p(t) is the inverse of the permutation mapping 7 (), i.e., p(t) = 7—1(¢). Note that, since
|m(t) —t| < T for all t [cf. Eq. (3.31)], for the inverse mapping p(t) we have

lp(t)—t| <T, Vt=0,1,....

The set My n contains all ¢ € {K,...,N} for which the subgradient g; of fj«) is used
in an update of z(¢) at some time between K and N. Similarly, the set Px ny contains all
t € {K,...,N} for which the subgradient g;¢) of f;) is used in an update z(t) at some
time before K or after N [ i.e., j(t) = i(p(t)) & {i(K),...,i(N)} ]. The set Qx,n contains
all t € {K,...,N} for which the subgradient g;() of fi) is used in an update z(t) at some
time between K and N, but the j(m(t)) corresponding to i(¢) does not belong to the set
{j(K),...,j(N)}. By using the above defined sets, we have

izo‘(t)@(t) i) (=) ~ 1) = Z > a®(aly,) = ok, ) (Ale®) - i)

I=1t=K I=1 teMg N
3 3 ad (Ai(e0) - i)

I=1 t€Pg N
=3 X e, (A=) i)

I=1teQk, N
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We now estimate each of the terms in the preceding relation. According to the definition

of Mg n, we have j(t) = i(p(t)) for all t € Mg n [ i.e., gj«) is used at time p(t) with the
corresponding step a(p(t))], so that

i > O‘(t)<5§'(t) z(t)) (fl( (1)) —fz(y))

=i Z 3o [o® (A(=®) - £iw) = ale®) (=) - 1))
-3 T helot0) (1(e0) - (1)
fj > (et - ale®)) (fi=0) - fily)-

teMpg N

By using the convexity of each f;, the subgradient boundedness, the monotonicity of «(t), and
the facts |p(t) —¢t| <T and >°, 5;'(15) =1 for all ¢, from the preceding relation we obtain

i > alt) (8 = 8k ) (i) - 5 )<OZ (¢ =T)o(0) — w(p(0)

teMp N
N
+max{C,G(y)} 3 (at = T) - alt + 7)) 2(t) - I,
t=K

where G(y) is given by
G(y) = max{|lgll | g € fily), L =1,...,m}.

Furthermore, we have

th — z(p(t)) H<C’Ta(t—T),

lz(t) —yll < CZ )+ llzo = yll,

where in the first relation we use the monotonicity of «(t) and the fact |p(t) — t| < T, while
in the second relation we use Eq. (3.35). By substituting these relations in the preceding
inequality, we have

Em: Z a(t) (52-@) z(t)) (fl( (t)) — fl(y)) <C?T EN: a2(t—T)

=1 tEMK,N t=K

+ max{C, G(y }Z( (t—T —at—i—T)(Cza +||5E0—?/||>

(3.39)
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We next consider the second term on the right hand side of Eq. (3.38). Fort = K, ..., N,
we may have j(t) ¢ {Z(K),,’L(N)} possibly at timest =K,..., K+T—-1landt=N+1—
T,...,N. Therefore, from the convexity of each f;, the subgradient boundedness, and the fact
D121 8%y = 1 for all ¢, we obtain

m K—14T N
> 3wy () - aw) <C Y oWz sl +C Y a@e@) ~yl.
=1 teEPg t=K t=N+1-T
By using Eq. (3.35), the triangle inequality, and the monotonicity of «(t), we have
K—14T K—14T
¢ Y aWla)-yl<C 3 ) (l2(t) = 2(K)| + lo(K) - y1])
t=K

S02T2a2( )+ CTa(K)||lz(K) -yl

< C?T202(K) + @ (O2T2 + ||z (K) — yllz),

where in the last inequality we use the relation 2ab < a2 + b2 valid for any scalars a and b.
Similarly, it can be seen that

N N
c > el -—yl<c Y a)(lat) - s(N+ 1)+ ls(N +1) - y]))
t=N+1-T t=N+1-T

< C?T202(N +1—T) + CTa(N + 1 —T)|Jz(N +1) — y|
< C2T202(N +1-T)

P 2T (g L - ).

where the last inequality follows from the fact 2ab < a2 + %62 for any scalars a,b, and 8 with
B > 0. Therefore,

i > adt, (fz (z(t) - fz(y)) < C?7? (a2(K) +a2(N+1— T))

I=1 tePg N
022T2 (a(K) +Ba(N +1- T))
+ % (Oé(K)HfE(K) —yll? + %G(N +1-=T)[lz(N +1) - y||2>

(3.40)
Finally, we estimate the last term in Eq. (3.38). For t = K,..., N, we may have i(t) ¢
{j(K),,j(N)} possibly at timest = K,..., K+T—1andt=N+1-T,...,N. Therefore,
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similar to the preceding analysis, it can be seen that

Y Y e (Ae) - i) < CWOT(a2() + 02V +1- 1))

= ltEQKN

+ UL ()

K —i—Ba(N—i—l—T))

‘ (a(K)IIx(K) — P+ oV 1= D)oV + 1) - y||2) ,

where G(y) is given by Eq. (3.32). By substituting Eqgs. (3.39)-(3.40) and the preceding relation
in the equality (3.38), and by using the definition of ¢(y) [cf. Eq. (3.33)], we obtain the desired
relation. Q.E.D.

Lemma 3.6: Let Assumption 3.2 hold. Then, we have:
(a) For any y € X, and all ko and k with k& > ko,

(13 = w)) llog = vl < (1+ 20(t)) s, -3l

k-1 k—1
=23 alte) (f(mn) ~ f) +2C 3 a2(ty — W)
k=kq k=kq
k—1 that
+2K(y) 3 (alts = W) = altirs + W) (c S alr) + llzo - y|)
k=kq

+ 2¢(y) (a2(tk0) + altyy) +a2(t, — W) + Balt; — W)),
where W = max{T, D}, ( is an arbitrary positive scalar,
K(y) =mC + mmaX{C’, G(y)},

C = mC? (%+m+2D+T>, (3.41)

and G(y) and c(y) are defined by Egs. (3.32) and (3.33), respectively.
(b) For any y € X and all k > 1,

Zk S a(tk) (zk) < F)+ (1 + 205(0))”$0 - y||2 Zk 0 a2(tk - W)

Zk oa(tk) _ 2Zk oa(tk) Zk oa(tk)
kg o (alte = W) = alties + W) ) (O X5 a(r) + llzo — yl))
! Zk oa(tk)

(02(0) + a(0) + a2(t;, = W) + Balty, - W))
+c(y) ,
Zk oa(tk)
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where 3 > 2a(0).

Proof: (a) By using the convexity of each f;), the subgradient boundedness, the monotonic-
ity of a(t), and the following relation [cf. Eq. (3.35)]

t—1
lz(t) —2@)| <CY als), Vi t>4,
s=i

we have for any ¢ € {tg,...,tg41 — 1},

Fiy (@) > Fiy(@r) + gy (tr) (@) — zx) > fie (@) — mC2a(ty),

where g;;)(tx) is a subgradient of f;) at z. By substituting this relation in Lemma 3.5(a)

and by summing over ¢t = {g,...,tx+1 — 1, we obtain
tpy1—1
ok =yl < llze =9l =2 3 () (fj(t)(ﬂfk) - fj(t)(y))
t=tg

+mC2(1+4 2m + 4D)a2(ty — D) (3.42)
m tg+1—1

+230 3 a3, — o) (£i(0) ~ ).
=1 t:tk

where we also use a(ty) < a(ty — D) and

tpp1—1 g1 —1
> a2(t— D) < ma?(t — D), > alt) < ma(ty),
t=ty, t=ty

which follow from the monotonicity of a(¢) and the fact tx+1 — tx = m for all k.
We now estimate the second term on the right hand side in the inequality (3.42). For
this we define

If(y) = {t € {tky s terr — 1} | fio(wr) — fie)(y) > 0},

I () = {t € {thy o tinn = 11| fi(@n) = i (v) < 0.

Since a(ty) > a(t) > a(tys1) for all ¢ with ¢, <t < tx41, we have for t € I} (y),

o) (Fie0 (@) = Fim®)) = alter) (fio (@) = fio®)),

and for ¢t € I (y),

o) (L) = Fi0®) > alt) (Fi0 (@) = Fio®))-
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Hence, for all ¢t with tx <1t < tr41,

thy1—1
> e®)(fiw@) - Fn®) = atis) > (Ho@) - fun®)
=tk tenl (v)
+ a(tr) Z (fj(t)(xk) - fj(t)(?/))
Pen () (3.43)
tpg1—1
=alty) Y, (fj(t)(ﬂﬂk) - fj(t)(y))
- (a(tk) - Oé(tk+1)) > (fj(t)(fb“k) - fj(t)(y))'
tell (y)

Furthermore, by using the convexity of each f;;), the subgradient boundedness, and Eq. (3.35),
we can see that

23
Fi(@k) = Fi(y) < Cllze — zoll + llzo —yll) <C (CZ ) + [lzo — y||>

r=0

and, since the cardinality of I ,j (y) is at most m, we obtain

> (fj(t)(xk) —fimly ) < mC <CZ ) + llzo — y||>

tell (y)
For the cyclic rule, we have {j(tx),...,j(tk+1 — 1)} = {1,...,m}, so that
tr1-1
> (HwE) = Hiww) = f) - f).
t=ty

By using the last two relations, from Eq. (3.43) we obtain

tpr1—1

> a®(fiwln) = Hiw®) > ot (Fae) - £1))

t=ty

—m0(a(te) — alter)) (oz )+ llzo —y||) ,

which when substituted in Eq. (3.42) yields for all y € X and k
s = yl2 < llze — yl12 — 20t3) (Fax) — F9)) +mC2(1+ 2m + D)ot — D)

+ 2mC( (tk) -« tk-i—l ) (CZ + ||<'I;0 - y”)

m tkr1—1

w230 3 at)(3h - o) (Ala®) - 2W)).

l:1 t:tk
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By adding these inequalities over k = ko, ... k—1, and by using the facts ty < tg41, a(ty) <
alty = W), altk+1) > altk4r + W), a2(ty — D) < a2(t, — W), we obtain

k—1
i = yll2 < llowg — w12 =2 atti)(Flar) ~ £))

k=ko
k—1
+mC2(1+2m +4D) > o2(ty — W)
o -_ (3.44)
+2mC Z ( (tx = W) — altrs1 + W)) C > alr) + ||lzo -yl
k=ko r=0
k=1 m tgr1-1
Z Z Z a(t) (55'(15) z(t)) (fl( (t) — fl(y)),
k=ko I=1 t=ty

with W = max{D,T}. Note that the last term in the preceding relation can be written as the
sum over [ = 1,...,m and over t = tg,...,t; — 1, so that by using the monotonicity of «(t),
and Lemma 3.5(b) with K = t;, and N = t; — 1, we have

m tp—1 t,—1
S )0 - 0l ) (fle®) - Alw) <CT Y a2t -W
=1 t:tko t:tko
t—1 :
+ max{C, G(y }Z( t—Ww —at—i—W)(CZa +||:1:0—y||>
t= tkO r=0
—i—c(y)(ozz(tko)+oz(tko)+oz2(tfC — W) + Ba(t; — )
1
+ (alt)lotizy) — vIP + Falt; = W)l - vl2).
(3.45)
Furthermore, by the monotonicity of «(t), it follows that
-1 k-1 tp41—1 -
dMe2t-W)=> > 2t-W Z (ty — W
t=ty, k=ko t=ty k=
and
tic—l t
Z (a(t—W)—a (t+W) ) <C’Za +||xo—y||>
t=tg, r=0
k—1 trpi1

mZ(atk— —a(tk+1+W) CZ )+ llzo =y
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The desired relation follows from Eq. (3.44) by using Eq. (3.45) and the preceding two relations.

(b) The desired relation follows from part (a), where ko = 0, by dividing with 22’;;3 a(ty),
and by using the relation § > 2a(0) > 2a(t) for all t. Q.E.D.

In the forthcoming proofs, we also use the following lemma.

Lemma 3.7: Let {¢y} and {ur} be scalar sequences such that uj > 0 for all k and Y p  px =
oo. Then, we have

p k
M < lim sup M < lim sup ¢y.

lim inf ¢, < lim inf
koo ko0 Zj:o 2] k—oo Zj:o 122 k—oo

In particular, if limg oo ¢ exists, then

k
lim ¢p = lim —————.
k—oo k—oo Zj:O L

Proof: Let ¢ be an arbitrary positive scalar. Then, there exists k large enough so that
liminf ¢ < ¢j +¢,  Vj>k,
k—o0

implying that
k
> j=k Hj b; te

k 7
j=k Hj

liminf ¢, < inf ¢; + e < Vk>k (3.46)
—00

i>k

We further have for all &,

k k k k-1
Zj:fc i $; . ijo 1 b; ijo Hj Zj:() 1 i

k - k k k

?

and since by Y2, i = 00, we have that

k k-1
I D i i _1 I D=0 MiPi _ 0
koo SE koo Sk
Zj:o Mg Zj:k Hj
it follows that i N
lim inf 723.:% ids = lim inf 7Zj:0 Hifs .

k k
koo N ik koo ol
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From the preceding relation and Eq. (3.46) we see that

k
> i=o Hibi
j=0 7 J+

liminf ¢ < lim inf - €,
k—o00 k—o0 Zj:O i

and by letting e — 0, we have

k
—r

liminf ¢ < liminf
k—o0 k— " .
]:0 Iu’.]

o0

Replacing ¢ with —¢y in the preceding relation, it follows that

k
, —o Mi®i
lim sup 7ZJ ko A < lim sup ¢k
k—o00 Zj:[) 1% k— o0

Q.E.D.

We now prove Prop. 3.11.

Proof of Prop. 3.11: It suffices to show (a) and (b) for the sequence {z}. Since a(t) = «
for t € (—o0, 00) [recall that a(t) = «(0) for ¢t < 0], from Lemma 3.6(b) we obtain

k-1
LY s < sty + CE2N0 IRy gy LH 2040

., VyeX, Vik>1.
=0 20k ak

By letting ki — oo and by using Lemma 3.7 with ¢, = f(zx) and pr = 1/k, we see that

liminf f(z;) < f(y) + Ca, VyeX,

k—o00

from which the desired results follow by taking the minimum over y € X and by using C =
mC2(1/24+m+ 2D+ T) [cf. Eq. (3.41)]. Q.E.D.

In the proofs of Props. 3.12 and 3.13, we use some special properties of the stepsize a(t)
satisfying Assumption 3.3. These properties are given in the following lemma.

Lemma 3.8: Let the stepsize a(t) satisfy Assumption 3.3. Then, we have

tgp41
2(t — tp — —aft
lim ek =) (tx = W) =0, lim oty = W) — altey + W) Z «
k—o00 a(ty) k—o00 a(ty) P

Za(tk) = 00, Z(a(tk - W) —a(trs + W)) < oo,



Sec. 3.9 Distributed Asynchronous Incremental Subgradient Method 93

where ¢t = mk and W is a nonnegative integer. In addition, for 1/2 < g < 1, we have

oo 00 tet1
3 a2t - W) < 0, Z(a(tk W) — altper + W)) 3 alt) < .
k=0 k=0 t=0

Proof: Let 0 < g < 1. The stepsize «(t) is smallest when S = 1, so that

o0

. 1
Za(tk) Zrogm = 0.

k=0
Let {l;} be a sequence of nonnegative integers such that

To
afty —W) = ——, vV k. 3.47
(1= W) = s (3.47)
Note that [, — oo as k — 0o. Given the value of a(ty — W), the values of a(t) and a(tx4+1+W)
are smallest if we decrease the stepsize «(t) at each time ¢ for ¢t > ¢t — W. Therefore,

o

_— Yk 3.48
(lg + W + 1)’ ’ (3.48)

a(tk) Z

To
(lg +m+2W + )2’

altyser + W) > vk, (3.49)

where in the last inequality above we use the fact tx = mk. By combining Eqs. (3.47) and
(3.48), we see that
a2 (tk — W)

Koo alty)

Moreover, from Egs. (3.47) and (3.49) we obtain

=0.

(I +m+2W +11)9 — (I, +11)9
(e +71)9(lg +m 4+ 2W + rq)2
rog(m + 2W)
- (lk + T1)(lk + W + 7“1)‘1’

Ot(tk — W) — Ot(tk+1 + W) =179

(3.50)

vk,

where in the last inequality above we use Iy +m + 2W +r; > I + W + 71 and

b b
d b
b‘l—aq:q/ T o 4 /d:z::q( Y Vabo<a<h Vqg0<g<l

rl—q¢ — gl—q al—4a
In particular, the relation (3.50) implies that

rog(m + 2W)

tk — W) —at W) <
Oé(k ) Oé( k+1 + )— (lk+7'1)1+q

. Yk, (3.51)
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so that > po, (a(tk - W) — atk+1 + W)) < 0o. Furthermore, by combining Egs. (3.48) and
(3.50), we obtain

a(ty — W) — atgsr + W) < q(m +2W)
a(ty) T e+

V k. (3.52)

We now estimate Zi’;{f a(t). By using the definition and the monotonicity of «(¢), and
Eq. (3.47), we have for all k large enough (so that ¢t — W > 0),

tg41 tg—W e

S
Y ah) < Y al)+ Q+m+Walte = W) <3 20— 4 (14 m+ W)alty - W).
t=0 =0 = (L4
Since
L 1 %—l—ln(lk—l—rl) ifg=1,
- < _
Z(l+7’1)q N iq+7(l'“+1r_1)1 - if0<g<l,
1=0 r] q

from the preceding relation we obtain for all k£ large enough,

tht1

> alt) < w, (3.53)

t=0

where

O(ln(lk n n)) ifg=1,

(3.54)
O((lk +r1)1—q) if0<qg< 1

U —

This together with Eq. (3.52) implies that

tgpt1
.oty = W) —atger + W)
lim a(t) = 0.
k—o0 a(tk) ; ( )

Let now 1/2 < ¢ < 1. Then, by using the definition of a(t), we have for K large enough
(so that ¢t — W > 0 for all k > K)

o0 o0 o0 oo S’]"z

2 _ 204 2 1
a2t —W)< ) a2(t-W) <Y a(s) < N
k=K t=K 5=0 =0

implying that Y2 ; a2(tx — W) is finite. Furthermore, by combining Egs. (3.51), (3.53), and
(3.54), we obtain

tet1
alty = W) = altepr + W) D alt) <w, VE>K,

t=0
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where

In(lp+ry) . _
o) g =1,
Ve =

1 .
O (W) if 0 < qg < 1.
Hence, > 00, a(ty = W) — a(tps1 + W) t’““ a(t) is finite for 1/2 < ¢ < 1. Q.E.D.
We are now ready to prove Props. 3.12 and 3.13.

Proof of Prop. 3.12: It suffices to show that liminfy_, f(zx) = f*. From Lemma 3.6(b)

by letting k& — oo and by using the relation oo (ty) = oo [cf. Lemma 3.8], we obtain for
ally € X,

k-1
k—o0 Zkz 0 a(tk) k—oo A Zk:O a(tk)
(b (ot = W) = altins + W) T alr)
+ K(y)C lim — .
k—o0 Zk:o a(tk)

k—o0 a(ty)
it follows from Lemma 3.7 that
k-1
lim k= 0 o? (tk - W)

h—o0 Zk =0 o e(tr)

=0,

) i;@w—wwwwﬂ+wofﬁwm

k—o0 Zk =0 O‘(tk)

=0.

Hence,
lim inf Zk oa(tk) (zk)
k=00 Zk oa(tk)

Using Lemma 3.7 and taking the minimum over y € X, we see that

<fly), VyeX.

Sic =0 a(tk) (zr)

11m1nff(xk) < lim inf < f*
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thus implying that liminf;_,» f(zx) = f*. Q.E.D.
We next prove Prop. 3.13.

Proof of Prop. 3.13: It suffices to show that {zj} converges to some optimal solution. ;From
Lemma 3.6(a) by letting f = 1 and y = z* for some z* € X*, and by dropping the nonpositive
term involving f(zx) — f*, we obtain for all z* € X* and k > ko,

k-1
(1 — 2a(t; — W))||xk a2 < (1 + Za(tko)) lzwg — 2*)2 + 20 Y a2(t — W)
k=ko
k-1 tht1
+2K(2%) Y (a(tk W) — altps + W)) C>" afr) + llzo — a*||
k=kq r=0

+ 2c(2%) (02(try) + alty) + 02t = W) + alty, = W),
(3.55)
As k — oo, by using Lemma 3.8 with 1/2 < ¢ < 1, it follows that

limsup ||z; — z*|| < oo,
k—oo

implying that {zy} is bounded. Furthermore, according to Prop. 3.12, we have

liminf f(zg) = f*,

k— o0
so that by continuity of f and by boundedness of {z} }, there exists a subsequence {zx; } C {zx}
and a vector £* € X* such that

lim ||z, —2*[| = 0.
j—00

Set z* = &* and ko = k; for some j in Eq. (3.55). In the resulting relation, by first letting
k — oo and then 7 — oo, and by using Lemma 3.8 and the fact Ty; — L*, we obtain

limsup ||z; — 2*|| = 0.
k—o0

Q.E.D.

3.9.5 Convergence Proofs for Random Selection Rule

In this section, we give proofs of Props. 3.14 and 3.15. The proofs rely on the martingale
convergence theorem (see, for example, Gallager [Gal96], p. 256).



Sec. 3.9 Distributed Asynchronous Incremental Subgradient Method 97

Theorem 3.2: (Martingale Convergence Theorem) Let {Z)} be a martingale such that
E{ 72 < M for some positive scalar M and all k. Then, there exists a random variable Z

such that with probability 1,
lim Z; = Z.

k—o00

In the proofs, we also use some properties of the stepsize «a(t) that are given in the following
lemma.

Lemma 3.9: Let Assumption 3.3 hold with 3/4 < ¢ < 1. Then, we have

D a2(t—W) < oo, D (at—=T) - alt+1T)) < o, > a(t) = oo,

d (at—T) - at+T)) Y a(r) <, > a2(t) (Z a(r)) < 00, (3.56)
t=0 r=0 t=0 r=0

where W is a nonnegative integer.

Proof: We show the last relation in Eq. (3.56). The rest can be shown similar to the proof
of Lemma 3.8. Note that «(t) is largest when we change the step every S iterations, i.e.,
o141 —op = S for all [, so that

To

a(t) < ma

t=1S,...,(0+1)S—1, 1=0,1,...,

and consequently,

t ! 1 Sro %—i—ln(l—i-?"l) if g =1,
ga(r) < Srokz::[) (k+ry)e < Sro Erlg + (”fl);q)) if0<gq<1.
Therefore, )
a?(t) (ia(r)) < wy, t=1S,...,(I+1)S -1,
r=0
where

B O<1n2(gl_|111—;_;1)) ifg=1,

1 .
O(W) if0<qg<1.
2
Hence, Y ",2, a2(t) (Zf:o oz(r)) is finite for 3/4 < ¢ <1. Q.E.D.

In the next lemma, we give some relations that are crucial for the subsequent proofs of
Props. 3.14 and 3.15.
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Lemma 3.10: Let Assumption 3.4 hold. Then, we have:
(a) For any y € X and all ¢,

et + 1)~ < o) — ol = 222 (1 @0) ~ 1)) +2(200) ~ 2t~ D)

m

+20() 3 () — 3Ly ) (Fi(2) - 1)),

=1

where 6! is the Kronecker symbol, z,(—1) = 0, and

t) = ia(r) (% (f(x(r)) - f(y))— (fj(r) (z(r)) - fj(r)(y))> . Vt>0. (3.58)

r=

(b) For any y € X, and all N and K with N > K,

9 N

(N +1) =yl < #(K) = yll2 = = 3~ a(t) (F(a(0) = 1))

)

+ 2<zy(N) — (K 1

M= =

+C’2<1+4D+2T) a2(t— W)

[
=

N t
+ 2maX{G(y), C’} Z A(t) (C’Za + [|z(0 y||>
t=K r=0

+ 2¢(y) <a2(K) ta(K)+a2(N+1-T)+aN+1- T))

+2(alK) () = yll2 + a(N + 1= D)l|e(N + 1) = y||2),

where W = max{D, T}, G(y) and c¢(y) are given by Egs. (3.32) and (3.33), respectively,
and A(t) =a(t—T) — a(t+T) for all ¢.

(c) For any y € X, the sequence {z,(t)} defined by Eq. (3.58) is a convergent martingale
with probability 1.

Proof: (a) From Lemma 3.5(a) by adding and subtracting 20‘7&) (f(mk) - f(y)), and by using
the definition of z,(¢) [cf. Eq. (3.58)], we obtain the relation (3.57).
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(b) Summing the inequalities (3.57) over t = K, ..., N yields for any y € X,

N

(N +1) =yl < la(K) > = = 3" () (£(x(0) ~ F(w)

t=K

+2(2(N) = 2 (K = 1)) + C2(1 + 4D) iaz
t=K

+2 iv: ia(t) (5;-(,5) z(t)) (fl( (1) — fl(y))-

t=K [=1

The desired relation follows by using Lemma 3.5(b) where = 1 and zo = z(0).

(c) Let y € X be fixed. We first show that the sequence {z,(¢)} is a martingale. By using the
definition of z,(t) [cf. Eq. (3.58)], we have

(£ = 1)) = (50 (o) = Fow) }

1
m

E{zy | 2y (t — 1)} zy(t— 1)+ a(t)E{
= Zy(t— 1)7

where in the last equality we use the iterated expectation rule and

5 {2 (160) = 10)) = (B o) = fro) | )| =0

m

which follows from the properties of {j(t)} [cf. Assumption 3.4(c)]. Hence, z,(t) is indeed a
martingale.
We next show that E{zZ(¢)} is bounded. From the definition of z,(t) it follows that

B{#®)} = iazm { (% (@) = 1®)) = (fimar) - fﬂr)(y)))z} , V0.

(3.59)
This is because the expected values of the cross terms appearing in 2Z(t) are equal to 0, which
can be seen by using the iterated expectation rule [i.e., by conditioning on the values z(s) and
z(r) for s, < t] and by exploiting the properties of j(r) [cf. Assumption 3.4(c)]. Furthermore,
by using convexity of each f;, the triangle inequality, and the following relation [cf. Eq. (3.35)]

|2 (t) |<CZ Vi, t >,
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for every r, we have

(1609 = 100) = (0 e0) = 500@))” <

T

<38 max{G(y),C’})2 C? (Za@)) + [lz(0) — yll?

s=0

By using this inequality and Lemma 3.9, from Eq. (3.59) it follows that E{z2(t)} is bounded.
Thus, by the Martingale Convergence Theorem, the sequence {z,(t)} converges to some random
variable with probability 1. Q.E.D.

We now prove Prop. 3.14.

Proof of Prop. 3.14: Let € > 0 be arbitrary and let § € X be such that

. f* 4 e if f* is finite,
F(@) < { —% otherwise.
Fix a sample path, denoted by P, for which the martingale {zy (t)} is convergent [cf. Lemma

3.10(c)]. From Lemma 3.10(b), where K = 0 and y = ¢, we have for the path P and all N
sufficiently large,

2 f ot) (F(2(®) = 13)) < (1+20(0)) [2(0) = G + 224 (N)
+C2<1+4D+2T> g:oﬂ(t— W)
t=0

N t
+2max{C,G(§)} Y A(t) (02 a(r) + [|lz(0) — QII)

0 r=0

+ 2¢(5) <a2(0) Y a0)+a2(N+1-T)+a(N+1— T)),
where A(t) = a(t —T) — a(t+T), we use the fact z;(—1) = 0, and we take N sufficiently large
so that 1 —2a(N 4+ 1 —1T) > 0. Since z;(N) converges, by dividing the above inequality with
(2/m) ZI{V:O a(t), by letting N — oo, and by using Lemma 3.9, we obtain

N

_ t t

lim inf Zt_o o )f(x( ))

Nooo SN Ca(t)

< f(@)-
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By Lemma 3.7, we have

oo et f(2(1))

s dt)

)

o < limi
l}vni)lgloff(x(N)) < l}\rfri)loréf
so that for the path P,
liminf f (z(N)) < f(9).
N—o0

Therefore, liminf; o0 f(z(t)) < f(§) with probability 1, implying by definition of § that with
probability 1,

. f*+e if f* is finite,
htrgégff(m(t)) S { —% otherwise.

Since € is arbitrary, it follows that liminf;_, f(x(¢)) = f* with probability 1. Q.E.D.

We next give the proof of Prop. 3.15.

Proof of Prop. 3.15: For each z* € X*, let Q.+ denote the set of all sample paths for which
the sequence {z«(t)} is a convergent martingale and

liminf f(z(t)) = f*. (3.60)
t—00
By Lemma 3.10(c) and Prop. 3.14, the set Q.+ has probability 1 for each z* € X*. Since f
and X are convex, the set X* is also convex, so there exist vectors vo,v1,...,vp € X* that
span the smallest affine set containing X*, and are such that v; —wvg, ¢ = 1,...,p, are linearly

independent. The intersection
Q= r\']iD:lei

has probability 1.

We now fix a sample path P € Q, for which by definition of €, every martingale z,,(t) is
convergent and the relation (3.60) holds. Furthermore, we fix an ¢ € {0,...,p}. Let Ko be a
positive integer large enough so that

1-2a(K—T)>0, VK> K,.

By using Lemma 3.10(b) with y = v; and N > K > K, and by dropping the nonnegative
term involving f(z(t)) — f(vi), we obtain

(1 —2a(N+1- T)) 2 (N + 1) — v]|? < (1 + 2a(K)) 2 (K) — vil|2 + Z(zS(N) — (K — 1))

N

+C’2<1+4D+2T) S a2t - W)
t=K
N t
+ 2max{G(v;),C} Z A(t) (CZ a(r) + [|z(0) — ”Z”)
t=K r=0

+ 2¢(w;) (az(K) ta(K)+a2(N+1-T)+a(N+1- T)).
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By using Lemma 3.9 and the convergence of the martingale {z,,(t)}, from the preceding
relation we obtain
limsup ||z(N + 1) — v]|? < liminf ||z(K) — v;]|2.
K—o00

N —o00

Because i is arbitrary, limy—,oo ||2(t) — v;| exists for all ¢ = 0,...,p. Furthermore, {z(t)} is
bounded so it has limit points, at least one of which must belong to X* by Eq. (3.60) and
continuity of f. Let T € X* be such a limit point. If # is another limit point of {z(t)}, then
since {||zx — vi||} converges for all i =0, ...,p, we must have

||f—1}i||:||§7—’l}i||, VZ:Oalaap

Since z € X*, by convexity of X* and the choice of vectors v;, the preceding relation can hold
only for T = . Hence, for the path P, the sequence {m(t)} has a unique limit point in X*,
implying that {z(t)} converges to some optimal solution with probability 1. Q.E.D.

When the constraint set X is compact, the result of Prop. 3.15 holds under Assumption
3.4(b) with 1/2 < ¢ < 1 instead of 3/4 < ¢ < 1. This can be seen similar to the preceding
analysis by using the fact that the martingale {z,(¢)} is convergent for 1/2 < ¢ < 1 [cf. Lemma
3.10(c)]. In particular, for 1/2 < g < 1, we can show that

E{22(t)} < 4(max{G(y), C’})2 sup |z — yll? Za2(r)
z r=0

[see the proof of Lemma 3.10(c)].



Extensions of the Incremental

Subgradient Method

In this chapter, we consider the incremental subgradient method with some special features.
In particular, in Sections 4.1 and 4.2, respectively, we discuss two variants of the incremental
method: one with weights and one with approximate subgradients (e-subgradients).

4.1. ANINCREMENTAL SUBGRADIENT METHOD WITH WEIGHTS

Here, we consider an incremental subgradient method with weights. Just like the pure incre-
mental method of Section 2.1, this method also operates in cycles, but it uses directions that
are different from that of the pure incremental method. In particular, at the ith subiteration
of a cycle, the direction used is a weighted sum of a subgradient of a newly selected component

fi and the subgradients of components f1, f2..., fi—1 that have already been processed within
the current cycle. More precisely, in a typical cycle, the method starts with
¢0,k = Tk, (4]‘)

performs m subiterations

[
'@bi,k =Px T/Ji—l,k — Qg wa’jgj,k , 1=1,...,m, (4.2)

i=1

103
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where the scalar ay is a positive stepsize, the scalars wF, ,...,wF, are nonnegative weights,
b bt

and the vector g, is a subgradient of f; at 1);_1 . The last of these subiterations is the
beginning of a new cycle

Tht1 = Pm k- (4.3)

The incremental method of Section 2.1 is a special case of this method corresponding to the
case where
wf’lz(),...,wf,i_l:(),w’?»:l, Vi=1,...,m, Vk.

4.1.1 Assumptions and Basic Relation

Regarding the method (4.1)-(4.3), we assume the following:

Assumption 4.1:

(a) The weights w]’ ; are nonnegative and

m
dwki=1, Vji=1,....m, Vk
=7

(b) There exists a positive scalar C' such that

gl <C, Vgedfilar)Vofi(i-rk), Vi=1....m, VEk

Assumption 4.1(a) says that in each cycle k, the sum of all weights corresponding to the same
subgradient g; 1 is equal to 1. A possible choice of such weights is the one where the weights
corresponding to the same subgradient g; are all equal, i.e.,

k 1

= Vi=1,... Vi=73,... vV k.
wl"] m_]+17 ] 7 7m7 ? ]7 7m7

In the next lemma, we establish an important relation between the iterates obtained at
the beginning and the end of a cycle.

Lemma 4.1: Let Assumption 4.1 hold and let {zy} be the sequence generated by the incre-
mental subgradient method with weights. We then have

k1 = ylI2 < llzw = yll2 = 20 (f(2r) = f(y)) + aZm?C2, VyeX, Vi,

where C' is as in Assumption 4.1(b).
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Proof: By using the nonexpansion property of the projection, we obtain for all y € X, and
all 4 and &,

2
i
ik = yll2 = |[Px [ti1h —ar Y wkigik| —y
j=1
) 2
(2
< || Pi-1,6 — Zw?’jgj,k —yll? (4.4)
=1
) ] 2
(2 (2
<lpicrp =yl = 200 Y wh gl (iie —y) +03C2 | Y wk, |,

where in the last inequality we use the following relation

2 ) 2

% %
S wkigikll <[ D wk gkl

and the subgradient boundedness [cf. Assumption 4.1(b)].
For i =1, from the relation v, = z), [cf. Eq. (4.1)] and the subgradient inequality

911 (e —y) = fi(zo) — fr(y),

we have
2
191k =yll? < llzk — yll2 = 200wty (fi(z0) — fr(y)) + 02C?(w} )", Vy€X, Vk. (45)
For i = 2,...,m, we next estimate the term ZJ Lwk i ;951 (Yi—1k —y) in the right hand

side of Eq. (4.4) In particular, by using the Subgradlent inequality and the subgradient
boundedness assumption, we obtain

% i
Zwi‘c,jg;,k("/)i—l,k —y) > szk,j (951 W16 = ) + 9} 1 (Pim1k — Pi-1,1))

j=1 j=1

> Zw (fi(Wi—1k) = fi(¥) = Cllpi-r,k — j-1.6]])

> Zwﬁj ((fj(l“k) — fi() + (fi(j—1.k) = fi(zk)) = Clithi-1,k — ¢j—1,kll).

By convexity of each f; and by Assumption 4.1(b), it follows that

fiti—16) = fizr) > g (bj—1k — z8) > =Clltpj—1,6 — ziell,
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where g; 1 is a subgradient of f; at z;. Combining the preceding two relations, we see that

—$k||)).

Furthermore, from the subiterate definition [cf. Eq. (4.2)] and the subgradient boundedness
assumption, we have for all p and s with 1 < s < p,

Sk g @ik =) > >k ((f(w0) = Fiw) = C(lpi-1 —
j=1 j=1

P s+1
[4p — Yokl < e — o1 il + -+ [Wssrk — s pll < (Z wh e+ Zw':+1,l> :
=1

=1

Using this and the relation zj = 1)k, it can be seen that for all: =2,...,m and 7 =1,...,1,

i—1
i1k — j—1 k6l + 1j—16 — 2kl < xC <Z wh et w1,1> )

=1
Therefore,
: i—1
szk,jgg',k(@bi—l,k —y) > Zw [ filzx) = fi(y)) — arC? (E wf_l,l +ooet wl,l)] .
j=1 =1

Substituting the preceding relation in Eq. (4.4), we obtain for all y € X, i = 2,...,m,
and all k,

19ie = ylI? < Nlvhi-1,6 — ylI? — 20 Zw (fi(zr) = fi(y)

j=1
2

i i—1
212 k k 22 k
+ 20;C g w; ; ( g wi g, + + w1,1> + o C Zwm ,
Jj=1 =1

or equivalently,

196 = ylI> < [[im1,6 — ylI? — 20 Zw (fi(zr) = fi(v))

j=1
2
i i—1 2
+ a2 C? who 4w - w4 tw
k Z’J 1’1 Z—I,l 151
Jj=1 =1

By adding these inequalities for i = 2,...,m and then adding Eq. (4.5) for i = 1, and by using
Ymk = Trt1 [cf. Eq. (4.3)], we have for all y € X and all &,

m

m i
lzkgr = yll2 < llok —yll = 20k Y Y wk (Filzr) = (W) +03C2 [ D wk i+ +wia

i=1j=1 j=1
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Finally, since

m
wa’jzl, Vi=1,....m, Vk
i=j

[cf. Assumption 4.1(b)], it follows that
Sk (o) () =150) 3wty =3 (fie) =1y @) = S =1 ),

i=1 j=1 j=1 j=1

and

m m i m m m

k _ ko k| _
Yowh e tua =Yy wk =3 | Y wk ) =) 1=m.
Jj=1 j=1

i=1j=1 j=1 i=j
Using the preceding two relations in Eq. (4.6), we obtain for all y € X and all k,
lek+1 = yl2 < llow = yll = 200 (F(z) = f(y)) + agm?C2.

Q.E.D.

The relation established in Lemma 4.1 is the same at the relation given in Lemma 2.1
for the pure incremental subgradient method (cf. Section 2.2). Since all convergence and
convergence rate results of Chapter 2 are based on Lemma 2.1, all these results apply to the
incremental subgradient method with weights.

4.2. ANINCREMENTAL APPROXIMATE SUBGRADIENT METHOD

The incremental approximate subgradient method is similar to the incremental subgradient
method of Section 2.1. The only difference is that subgradients are replaced by approximate
subgradients. Thus, at a typical iteration, the method starts with

ok = Tk, (4.7)
performs m subiterations
Yik = Px[i—1,6 — akgi,k], 1=1,...,m, (4.8)

where the scalar aj is a positive stepsize and the vector g; , is an ¢; g-subgradient of f; at
Pi—1,k With €5 > 0. The last of these subiterations is the new iteration

Tk+1 = Pmk- (4.9)
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In our analysis, for an € > 0, we use the defining property of an e-subgradient g of a
convex function A : R — R at a point x, which is

h(z) +9'(z —x) < h(z) +¢, V z € R, (4.10)

We denote by dch(z) the e-subdifferential (set of all e-subgradients) of h at z. Regarding the
method (4.7)-(4.9), we define
€ = €1kt + Emk, Yk, (4.11)

€ = limsup ¢,
k—o0

and we assume the following:

Assumption 4.2:
(a) € < 0.

(b) There exists a positive scalar C' such that
||§|| <, Vyge afl(Ik) U 8€i7kfi(¢i_1,k), Vi=1,...,m, VEk.

When the sequence {¢; ;. } is bounded, i.e., there exists a scalar € > 0 such that
€i,k S Ea v ia ka

then Assumption 4.2(a) is satisfied. In this case, if the constraint set X is compact or the

sequence {1;  } is bounded, then Assumption 4.2(b) is also satisfied, since the set Uzcz0e fi ()

is bounded for any bounded set Z and any positive scalar € (see e.g., Bertsekas, Nedi¢, and

Ozdaglar [BNOO2], Exercise 4.11). Furthermore, Assumption 4.2(b) is also satisfied if each f;

is a polyhedral function, i.e., f; is the pointwise maximum of a finite number of affine functions.
We next establish a relation that is a basis for the forthcoming convergence results.

Lemma 4.2: Let Assumption 4.2 hold and let {z} be the sequence generated by the incre-
mental approximate subgradient method. Then, we have

kst — yll? < llok — yl2 — 205 (f(n) — F() + a3m2C2 + 2054, VyeX, VE,
where €, is given by Eq. (4.11), and C' is as in Assumption 4.2(b).
Proof: Using the nonexpansion property of the projection, the ¢; -subgradient boundedness
[cf. Assumption 4.2(b)], and the e-subgradient inequality (4.10) for each component function
fi with € = €; 1, we obtain for all y € X, and all ¢ and k,
_ 2
i = ylI2 = | Px[thi-1,6 — G i] = ]|

< i1,k — ks 5 — yll?

< icik — ylI? = 20675 1, (Yiz1,6 — y) + 2 C?

< Wim1e — yll2 = 200 (fildi-1x) = fi(y)) + 2eeik + a3 C2.
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By adding the above inequalities over ¢ = 1,...,m and by using e; = €11 + - -+ + €k [cf. Eq.
(4.11)], we see that for all y € X and £,

m
lzrr1 = yll> < low —yll> = 200 Y (filthim1,k) = fi(y)) + 20er + aZmC?

i=1
= llzr =yl — 2c <f(93k) — () + Y (fildhimip) = fi(ﬂﬂk)))
i=1
4+ 206 + aimCZ.
By definition of the method [cf. Egs. (4.7)-(4.9)] and Assumption 4.2(b), we have that ||1; , —

2k|| < agiC for all 4 and k. Using this relation, the subgradient inequality, and Assumption
4.2(b), we obtain for all 7 and &,

filzr) = fi(iz1k) < |19k

|- [i-1k — 2|l < Cllthi—1,k — zkl] < (i — 1)CZ,

where g; . € 0fi(zx). From this and the preceding relation, we see that for all y € X and &,

k1 =yl < ok =yl = 20 (f (z) = f(y)) + o <2Z(i - 1)C? + m02> + 20k €k

i=2
= llzx — ylI2 = 200 (f () = f(y)) + Zm2C? + 200ey..

Q.E.D.

Lemma 4.2 guarantees that given the current iterate zx and some other point y € X whose cost
is lower than f(xj) — €, the next iterate zr1 will be closer to y than xy, provided the stepsize
oy is sufficiently small [less than 2(f(zx) — ex — f(y))/(mC)2]. This fact, with appropriate
choices for y, will be used in the analysis of the method (4.7)—(4.9).

4.2.1 Constant and Diminishing Stepsize Rules

In this section, we give convergence results for the method (4.7)-(4.9) using either a constant
or a diminishing stepsize. The analysis here is similar to that of the incremental subgradient
method (cf. Sections 2.3 and 2.4).

For the method with a constant stepsize, we have the following result.

Proposition 4.1: Let Assumption 4.2 hold. Then, for the sequence {z} generated by the
incremental approximate subgradient method with the stepsize «y fixed to some positive con-
stant «, we have:
(a) If f*x = —o0, then
liminf f(zr) = —oc.
k—o00
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(b) If f* > —o0, then
am?2(C?

liminf f(zx) < f* + +¢,
k—o0
where € and C are as in Assumption 4.2.

Proof: We prove (a) and (b) simultaneously. If the result does not hold, there must exist a
o > 0 such that

202
liminf f(z) — " e — 30> f*.
k—o00
Let § € X be such that
202
liminf (1) > f(7) + amz +e+ 30,
— 00

and let ko be large enough so that for all k£ > ko, we have
f(zk) > liminf f(zr) — o.
k— o0

By combining the preceding two relations, we obtain

am?2(C?
2

flae) = f(9) = +e+20,  YVEk>k.
Since € = limsupy,_, ., €x, we may assume without loss of generality that ko is large enough so
that

6+926ka VkaOa

implying that .
am

flazn) = f(9) 2

Using Lemma 4.2, where y = ¢ and oy = «, together with the preceding relation, we see that

+ € + o, YV k> k.

k41 — 911 < [lox — 9l* — 200, YV k> ko.
Therefore,
[Tk1 = G117 < [log—1 — G2 —dop < -+ <ok — G112 — 2(k + 1 — ko),
which cannot hold for k sufficiently large, a contradiction. Q.E.D.
We next give a result for the method that employs a diminishing stepsize.

Proposition 4.2: Let Assumption 4.2 hold, and let the stepsize aj be such that

o0
lim o =0, E ap = 0.
k—o00

k=0
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Then, for the sequence {zj} generated by the incremental approximate subgradient method,
we have:

(a) If f*x = —o0, then

liminf f(zr) = —oc.
k—o00

(b) If f* > —o0, then
likminff(xk) < fx+e.
—00

Proof: Suppose to arrive at a contradiction that there exists an ¢ > 0 such that
liminf f(zx) + €+ 30 > f*.
k—o0

Let y € X be such that
liminf f(xr) > f(4) + € + 3o,
k—o0
and let ko be large enough so that
k—o0

€+ o0 > e, YV k> ko.
From the preceding three relations it follows that
f(ze) = f(9) > ex + 0, V k> ko.
Using Lemma 4.2, where y = ¢, together with the preceding relation, we obtain
k1 = 9117 < [lzr — 917 — ar(20 — axm?C?), YV k> ko.

Because ar — 0, without loss of generality, we may assume that ko is large enough so that
0> apm2C? for all k > ky, implying that

k
|21 = 9I12 < llow = 112 — awo < llok-1 = 112 = oar-1 + ax) < - < |lzg, =917 =0 Y @
J=ko
Since Y p., ax = 0o, this relation cannot hold for k sufficiently large, a contradiction. Q.E.D.

Let us now consider the case where € = 0. In this case, the results of Props. 4.1 and 4.2
coincide with those of Props. 2.1 and 2.4 for the incremental subgradient method (cf. Sections
2.3 and 2.4). In addition, we have the following two results.

Proposition 4.3: Let Assumption 4.2 hold with £ = 0, and let the optimal solution set X*
be nonempty and bounded. Assume further that the stepsize «j is such that

o0
lim o =0, E Qp = 0.
k—o00 =0
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Then, for the sequence {zj} generated by the incremental approximate subgradient method,
we have

lim dist(xg, X*) =0, lim f(xg) = f*.

k—o0 k—o0

Proof: Use Lemma 4.2 and a line of analysis similar to that of Prop. 2.5 (cf. Section 2.4).
Q.E.D.

Proposition 4.4: Let Assumption 4.2 hold with £ = 0, and let the optimal solution set X*
be nonempty. Assume further that the stepsize «j is such that

o0 o0
E ap = 00, E ai < 00.

Then, the sequence {zj} generated by the incremental approximate subgradient method con-
verges to some optimal solution.

Proof: Use Lemma 4.2 and a line of analysis similar to that of Prop. 2.6 (cf. Section 2.4).
Q.E.D.

4.2.2 Dynamic Stepsize Rules

Here, we consider the method using dynamic stepsize rules. We start with the dynamic stepsize
rule for known f*, where

flzr) — f*
m2C?

For this stepsize, we have the following result.

ax = Yk 0<y<7m <¥<2 Vk. (4.12)

Proposition 4.5: Let Assumption 4.2 hold. Then, for the sequence {z} generated by the
incremental approximate subgradient method with the dynamic stepsize rule (4.12), we have

2¢e
2-75

liminf f(zx) < f*+
k— o0

Proof: Suppose to obtain a contradiction that there exists o > 0 such that

2
f*+ (974-_6) < liminf f(xg).
2 — Y k—o00
Let ko be large enough so that
2
(Q;Ek) < flwe) = f*,  Vk>ko, (4.13)

2-—%
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and let a vector § € X be such that
N 0
f(@) —f*< >
Then, we have
2(/() — f*+e) <200+e) —e< Q=) (fl@r) = f*) —os Yk > ko (4.14)
By Lemma 4.2, where y = ¢ and «y, is given by Eq. (4.12), it follows that for all & > ko,
e = 9112 <l — 17 — s (27 (x) ~ F(@)) — 6 (P ) — F*) = 265
= [lzx — 9I17 — ax (2(f($k) = f*) = 2(F(@) = f*) = (f(ze) = f*) = 26k)-
By using Eq. (4.14) in this relation and the fact vx < 7, we see that
lzks1 — 911 < llzn — 912 — o ((7 — ) (f(zx) — f*) + Q) < lzx — 911 — aro, V k> ko.

By the definition of the stepsize [cf. Eq. (4.12)] and Eq. (4.13), from the preceding inequality

we obtain for all k£ > ko,

(k+1—ko)2y0?
w2033 -7)

2702 .
Y < S lwkg — 912 —

—qall2 < -2 - ——=—
lzk+1 — 9> < ||z — 9| m2C2(2 —7) —

which cannot hold for k sufficiently large, a contradiction. Q.E.D.

If ¢ = 0 (or equivalently ¢ — 0), then the result of Prop. 4.5 coincides with that
of Prop. 2.7 for the incremental subgradient method (cf. Section 2.5). Furthermore, if the
optimal solution set X* is nonempty and e, tend to zero fast enough, then {zy} converges
to some optimal solution. This result is shown in the next proposition. A similar result, for
the (nonincremental) approximate subgradient method, was shown by Brannlund [Bria93] in
Theorem 3.1, p. 41.

Proposition 4.6: Let Assumption 4.2(b) hold, and assume that for some scalar ¢ with ¢ €
(0,1),

Assume further that the optimal solution set X* is nonempty. Then, the sequence {zy}
generated by the incremental approximate subgradient method with the dynamic stepsize rule
(4.12) converges to some optimal solution.

Proof: By Lemma 4.2, where y = z* and «y, is given by Eq. (4.12), it follows that

k1 — 212 < log — 212 = an(2 = w) (f(2x) — [*) + 20ke,  Vare X+, Vk.
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By our assumption, we have that for ¢ € (0,1),
2er, < (2= ) (f(zk) — f*), vk,
implying that
loksr — 2512 < lloe — 2412 = (L = ) (2 = ) (f(wx) = f*),  Var€X*, Vi
Therefore, by using the definition of the stepsize ay, we obtain

(f(zx) = f*)°

s = w02 < llow — w712 = y(1 = ) (2 = 7)Ao L

Vot e X+, VE.

Thus, for any z* € X*, the sequence {|zx — z*||} is nonincreasing, and therefore bounded.
Furthermore, from the preceding relation it follows that

1-0)(2-7) &
foess ol < oo = a2 = L2 0E DS (1w~ o), arex, v,
§=0

implying that Z?io (f(mj) — f*)2 is finite. Hence, f(zx) — f*, and by continuity of f, we
have T € X* for any limit point T of {z;}. Since the sequence {||zx — z*||} is nonincreasing,
it converges to ||T — z*|| for every z* € X*. If there are two limit points  and T of {x}}, we
must have £ € X* T € X* and || — z*|| = ||z — =*|| for all z* € X*, which is possible only if
i=7% Q.E.D.

We next consider the dynamic stepsize rule with unknown f*,

flxr) = [

W =W e 0<ySHmST<L, (4.15)
where the estimates f,lce" are given by
lev _ 3 ) 4.1
i = min, f(25) = 0, (4.16)

while §, is updated using procedures similar to those of Section 2.6. We start with the adjust-
ment procedure where §; is updated according to the following rule:

_ Adg if f(zre1) < 17,
Ot = {max{ﬁék,é} it F(on ) > 117 (4.17)

where dg, d, 8, and X are fixed positive scalars with § < 1 and A > 1.
For the method using the stepsize (4.15)—(4.17), we have the following result.

Proposition 4.7: Let Assumption 4.2 hold. Then, for the sequence {zj} generated by the
incremental approximate subgradient method and the dynamic stepsize rule (4.15)—(4.17), we
have:
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(a) If f* = —oo, then
égf(‘)f(xk) = f*.
(b) If f* > —o0, then

i < f* .
érzlgf(xk)_f +0+e¢€

Proof: To arrive at a contradiction, assume that
inf — 0 — *, 4.18
é>0 f(xk) € > f ( )

Each time the target level is attained [i.e., f(zx) < fje¥,], the current best function value
ming<;< f(x;) decreases by at least d [cf. Egs. (4.16) and (4.17)], so in view of Eq. (4.18), the
target value can be attained only a finite number times. From Eq. (4.17) it follows that after
finitely many iterations, dy is decreased to the threshold value and remains at that value for
all subsequent iterations, i.e., there is an index & such that

k=90, VEk>k. (4.19)
In view of Eq. (4.18), there exists a ¥ € X such that

inf f(zx) =0 = > f(@)-

Without loss of generality, we may assume that k is large enough so that

Iig%f(xk)—5—6k2f@)a Vk>k.

Thus, by Eqgs. (4.16) and (4.19), we have

lev _ — : A : 5 I T
oV — € Oggkf(wj) J 6k2,§g{)f(wk) 6 —ex > f(7), Vk>k, (4.20)

By Lemma 4.2 with y =7 and oy, as in Eq. (4.15), it follows that
k1 = G2 < llzw = T2 = 200 (f () = f(§)) + @fm2C2 + 2akey
= lla = 7112 = o (2(F (@0) = F@) = 9 (on) = Fi) = 2ex)
= llzr —¥II? — ax ((2 =) (f (k) = i) + 2(7Y - f@) - Gk)), VEk>0.
Using Eq. (4.20) in the preceding relation and the definition of ay [cf. Eq. (4.15)], we obtain
ekt = Tl2 < llze = Tl2 = aw(2 =) (f (z1) = fi)

flzr) = fi
mC

2
SW%—MP—%@—vﬂ(

< ok =l = y(2 —V)Wa
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where the last inequality follows from the relations v; € [y,7] and f(zy) — fiev > 6 for all k.

Finally, by adding the above inequalities over k, we see that
_ 2
lonsr =32 < g — g2 = (b + 1= F)a2 =9 —g .

which cannot hold for sufficiently large k, a contradiction. Q.E.D.

VEk>Ek,

We now describe the method that employs the stepsize (4.15)-(4.16), where the param-
eters 0 are adjusted according to the path-based procedure. The method is given in the
following algorithm.

Path-Based Incremental Approzimate Subgradient Algorithm

Step 0 (Initialization) Select xg, 6o > 0, and b > 0. Set o9 = 0, fF = oco. Set k = 0,
I =0, and k(I) = 0 [k(I) will denote the iteration number when the I-th update of f;*’

occurs.

Step 1 (Function evaluation) Compute f(zr). If f(zr) < £, then set fi*¢ = f(zy).
Otherwise set fi° = fi® [so that f;°¢ keeps the record of the smallest value attained
by the iterates that are generated so far, i.e., f{* = ming<;<i f(z;)].

Step 2 (Sufficient descent) If f(zy) < f,‘c”?lc) — 5—21, then set k(I+1) =k, o, =0, §141 = Iy,
increase [ by 1, and go to Step 4.

Step 3 (Oscillation detection) If o > b, then set k(I + 1) =k, o =0, §141 = %’, and
increase [ by 1.

Step 4 (Iterate update) Set fi*V = ;?lc) — 0;. Select v, € [y,7] and compute x4 via
Egs. (4.7)—(4.9) with the stepsize (4.15).

Step 5 (Path length update) Set o;+1 = o + apmC, increase k by 1, and go to Step 1.

The interpretation of the parameters b and oy is the same as in the path-based incremental
algorithm of Section 2.6.
For the preceding algorithm, we have the following convergence result.

Proposition 4.8: Let Assumption 4.2 hold. Then, for the path-based incremental approxi-
mate subgradient algorithm, we have:

(a) If f* = —oo, then
inf f(zk) = f*.
(b) If f* > —o0, then

] < fx* .
éggf(xk)_.f +e

Proof: Use Lemma 4.2, and a line of analysis similar to that of Prop. 2.12 of Section 2.6.
Q.E.D.
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Variable Metric
Subgradient Methods
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A Variable Metric
Subgradient Method

We here propose a new subgradient method that uses a variable metric. This method combines
the principles of the variable metric approach with those of subgradient methods. The main
idea is the same as in variable metric methods for differentiable problems, namely, to transform
the original space coordinates in order to get better convergence rates. This is important, in
particular, for problems where subgradients are almost perpendicular to the directions pointing
toward the set of minima, in which case the ordinary subgradient method is slow. Changing
the stepsize cannot improve the method’s progress, since poor performance is due to bad
subgradient directions. In this case, it is better to modify subgradient directions, which can
be done by transforming the space coordinates.
Our method is applicable to unconstrained convex problems

minimize f(x)

subject to x € R,

where the function f : R? — R is convex but not necessarily differentiable. In Section 5.1,
we introduce the method, and in Section 5.2, we establish its basic properties. In Sections 5.3
and 5.4, we analyze its convergence for the three stepsize rules: constant, diminishing, and
dynamic.
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5.1. THE METHOD
At a typical iteration of a variable metric subgradient method, we have
Th4+1 = Tk — oszkB,'cgk, (5.1)

where «ay, is a positive stepsize, By is an n X n invertible matrix representing a linear transfor-
mation of the space coordinates, and g is a subgradient of f at zx. In what follows, we use
the terms “matrix” and “linear transformation” interchangeably.

An important property of subgradients under a linear transformation, thanks to which
variable metric subgradient methods work, is the following: A linear transformation maps a
subgradient of f in the original space into a subgradient of some function in the transformed
space. In particular, let y = B~1x for x € R”, so that y-space is the transformed space. Let
T € ®" and ¥ = B~1T, and let g be a subgradient of f at Z. In the y-space, consider the
function F' given by

F(y) = f(By),

which is convex since f is convex (see [Roc70], Theorem 5.7). Furthermore, for the vector B’g
and any y € R", we have by using § = B~17%,

F@) + (B'g)'(y —9) = f(Z) + ¢'(By — 7).
Because g is a subgradient of f at T, it follows that for any y € R”,
F() + (B'9)'(y —y) < f(By) = F(y),
thus showing that B’g is a subgradient of F' at 7.
Using this property of subgradients and appropriate linear transformations, we can ensure
that the distance between the iterates x; and the set of minima is bounded. In particular, this

can be guaranteed by allowing a limited total amount of space transformation in some sense,
which we describe in the next section.

5.2. ASSUMPTIONS AND SOME BASIC RELATIONS

We first establish a basic relation for the iterates generated by the method (5.1). This relation
is given in the following lemma and is used repeatedly in our convergence analysis.

Lemma 5.1: Let {z;} be the sequence generated by the variable metric method. Then, for
any y € R” and all k, we have

1Bt e =)l < 1Bl Bl2 (117 wx = )||° = 200 (F () = 1) + 03| Byar2).
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Proof: Let y € ™ be arbitrary. By the iterate definition [cf. Eq. (5.1)], we have for all &,
Bk_-}{l(xk'i‘l — y) = Bk_-}{l(xk — akBkB],Cgk ) Bk+1Bk (B (:Ek — y) — akBkgk)

From this relation, we obtain for all &,

| Bjoty (@rs1 — y)H < ||Be i1 Brll?|| By M@k — y) — o B, ng
= || B, Bell? (HB;Z Tk — y)“ — 20091 (wx — y) + 2| B g ||? )

Since g is a subgradient of f at zj, we have
9i (@ —y) = flzr) — f(y),
implying that for all &,
_ _ 2
1Bty (wrar — )| < 1By Bil? (HBk Nk —y)||” = 20k (f(2r) = £(y) + o3| Brgrll? )

Q.E.D.

When the function f has a nonempty set of minima over 7, the result of Lemma 5.1
can be strengthened, as seen in the following lemma.

Lemma 5.2: Let {z}} be the sequence generated by the variable metric method, and assume
that the optimal solution set X* is nonempty. Then, we have for all k,

min

— 2
T*EX* Bkl(xk_x*)H

Bk o = o) | < 1552 (paip,

— 20, (f(:L‘k) — f* ) + ak“B gk||2>

Proof: By Lemma 5.1, where y = z*, we obtain for any z* € X* and all &,
_ 2 _ _ 2
| Bty e — 20| < 1Bt Bl (B (wr — 20| = 200 (F () = F(2%) + 0} [ Byonl12),
from which the result follows by taking the minimum over all z* in X*. Q.E.D.

In our convergence analysis, we use the following assumption.

Assumption 5.1:

(a) There exists a positive scalar C' such that

IBigxl <C, V&
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(b) The linear transformations By are such that

)
[T 1B Brl? < oo
k=0

Assumption 5.1(a) says that the subgradients in the transformed space are bounded. Assump-
tion 5.1(b) allows us to guarantee that the distance between the iterates zp and the set of
minima is bounded in some appropriate norm. In particular, the second condition is the one
that poses a limit on the total amount of space transformation.

Let us now discuss the cases where Assumption 5.1 is satisfied. When f a is polyhedral
function, Assumption 5.1 is satisfied, for example, when By is the identity matrix for all
sufficiently large k. The assumption can also be satisfied with diagonal matrices By. However,
it is hard to give a general rule for selecting the diagonal entries of By. The selection of the
diagonal entries may be based on some additional information about the function f.

Assumption 5.1 can also be satisfied with the matrices By generated as in Shor’s space
dilation method (cf. Shor [Sho70a], Shor and Zhurbenko [ShZT71], see also Shor [Sho85] and
[Sho98]), where

By = Br_1R,, (&), Vk>1,

By is some invertible initial matrix, for example, By = I. The linear transformation R,, ()
is given by
R (&) = I+ (o — )&y, VE>1,

for a positive scalar p; and the vector £ defined by

By, _,dx

§k = 1o
1B -1 il

where di, = g or dy = gr — gk—1- It can be shown that (cf. Shor [Sho85] and [Sho98]) for a
positive p € R and & € R™ with ||£]| =1,

(Ro(&) ™" = Ry (6), |Ro(©)]| = max{L, p}. (5.2)

Thus, if the parameters pg are chosen such that
o0
H max{1, pr} < oo,
k=1

then for all k > 1

k
I1Brgell = 1 Bpy, (&) - - - Bpy (€1) gkl < (H maX{l,Pi}> llgell,
i=1
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implying that Assumption 5.1(a) is satisfied for a polyhedral function f.
Furthermore, by using the relations in (5.2), we obtain

1
Bl Byl = max{l, } > 1,
1 Bjot1 Bell o1 ) 2

showing that, for By generated as in Shor’s space dilation method, the first condition of
Assumption 5.1(b) is always satisfied. In order to have [];—, ||B,€_Ji1Bk||2 < o0, it suffices to

choose the parameters p; such that

A 1
Hmax{1,2—} < 00.
k=0 P

5.3. CONSTANT AND DIMINISHING STEPSIZE RULES

Here, we give convergence results for the method using the constant and diminishing stepsize
rules. Our first result is for the constant stepsize rule, where the stepsize «; is fixed to some
positive scalar . In this case, as seen in our next proposition, the function values f(zy) along
a subsequence of {z} converge to f* within an error proportional to «.

Proposition 5.1: Let Assumption 5.1 hold, and let the sequence {z;} be generated by the
variable metric method with the stepsize oy fixed to some positive scalar a. We have:
(a) If f* = —oo, then
liminf f(zr) = —oc.
k—o0
(b) If f* > —o0, then B
. aC'?
liminf f(zg) < f*+ —,
k—o0 2

where C' is as in Assumption 5.1.

Proof: We prove (a) and (b) simultaneously. If the result does not hold, there must exist an
€ > 0 such that

C2
liminf f(zr) — € — s I
k—o0 2
Let § € %" be such that -
o aC? X
liminf f(zg) — e — —— > f(9),
k—o0 2

and let ko be large enough so that for all k£ > ko, we have

Flow) - 2 > 1),



124 A Variable Metric Subgradient Method Chap. 5

Using Lemma 5.1, where y = ¢ and oy = «, together with the preceding relation, we see that

IBit (zra —9)||° < ||B,;lek||2(HB,;1(xk -9 —zae—a2é2+a2||3,ggk||2), Yk > k.

By Assumption 5.1(a), we have || B, gx|| < C for all k, implying that

|Bihy e = 9)|” < IBEL Bel2(|| B wr = )| — 20€), V> ko.

Since, by Assumption 5.1(b), we have ||Bk_ilBk|| > 1 for all k, it follows that for all & > ko,

|Bidi e = DI < 1BiL Bell2]| By (an = )] — 20
k
< | TT 1BZLBill2 | | Bil (@re = )| = 2(k + 1 = ko)ase.

i=kg

Furthermore, by the same assumption, H;C:ko B4 Bill2 < T2, 1Bih Bill? < oo, implying
that the preceding relation cannot hold for k£ sufficiently large, a contradiction. Q.E.D.

When the optimal solution set X* is nonempty, we can estimate the number of iterations
required to achieve the optimal function value f* within some error not greater than (aC?2 +
€)/2, where € is an arbitrarily small positive scalar. In particular, we have the following result.

Proposition 5.2: Let Assumption 5.1 hold, and assume that the optimal solution set X*
is nonempty. Let the sequence {zj} be generated by the variable metric method with the
stepsize «y fixed to some positive scalar . Then, for a positive scalar ¢ and the smallest
positive integer K such that

K-1
aeK < (E) ||Bi_+113i||2> zggprcl*HBo_l(io - 9”*)“2’

we have o
min_f(z) < f*+ S

0<k<K 2

Proof: To arrive at a contradiction, assume that

C?
f(zr) >f*+O‘T+6, Vk=01,..., K.
By using this relation and Lemma 5.2, where «y is replaced by «, we obtain for k = 0,1,..., K,
. —1 * 2 —1 . -1 " 2 —
o By by (wep—2*)||” < || Beiy Bill? (rgg}%*HBk (zk — 2%)||” — ae — 202 + a2||B,’Cgk||2>
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By Assumption 5.1, we have ||Bjgx|| < C and ||Bk_ilBk|| > 1 for all k, implying that for
k=0,1,..., K,

min
r*eEX*

_ 2 _ .
Bkil(xk-i-l —z)||” < ||Bki13k||2 ( min

T*EX* Bk_l(xk - (II*)H2 B Oéﬁ)

< ||Bk_J:IBk||2$£Iéi)r(1*HB;1($k — w*)HZ — «e.

Hence, for £ =0,1,..., K,

min
T*EX*

k
_ 2 _ . _ 2
B (o o) < (H nBi:le-uz) min 185" (an = ) = 5 + D
=0
In particular, we have that for k = K — 2,

By (zo — x*)H2 — (K — 1)ae,

min
T*EX*

K-2
-1 2 —1 .
Bg_1(wr-1 - 35*)” < (H) ||Bz'+1Bi||2> m}}él)rg*
1=

implying that

B()_l(xo - x*)H2a

K—2
_ -1 p 2 ;
(K —1ae < <g B4 Bill )xyg)rg*
contradicting the definition of K. Q.E.D.

We now consider the method that uses a diminishing stepsize. In this case, the function
values f(zy), along a subsequence of {zy}, converge to the optimal function value f*, as seen
in our next proposition.

Proposition 5.3: Let Assumption 5.1 hold, and let the stepsize ay be such that

Then, for the sequence {z} generated by the variable metric method, we have

liminf f(z) = f*.

k— o0

Proof: Suppose to arrive at a contradiction that there exists an € > 0 such that
liminf f(zr) — e > f*.
k— o0

Let § € R™ be such that
liminf f(zx) — € > f(§),
k—o00
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and let ko be large enough so that
flar) —e= f(9), YV k= ko.
Using Lemma 5.1, where y = ¢, together with the preceding relation, we obtain
_ (2 _ _ (2
|Bits (g1 — 9)||” < “Bk—ilBk”2<HBk Yo — )| — ow(2e - Oék||B;'cgk||2)), V k> ko.

Because ay — 0 and || Bjgx|| < C for all k [cf. Assumption 5.1(a)], without loss of generality,
we may assume that kg is large enough so that € > a;C? for all k > ko, implying that

|Bit (ke = D)||” < ||Bk_-ilBk||2<HBk_1($k —9)|” - ane ), V k> ko.
By Assumption 5.1(b), we have || B}, By|| > 1 for all k, and therefore
|Bit @iss = )7 < IBi Bell?| By (o = )| — e
< f[ IBZLBill?2 | ||By (wke — 9)]” — ¢ Zk: aj,  Vk>ko.
i=kg J=ko

However, this relation cannot hold for sufficiently large k, since Z;'io aj = oo and since by
Assumption 5.1, we have

k 00
IT 1B Bl < J[IBZABill? < o0,
i=kqg =0

a contradiction. Q.E.D.

5.4. DYNAMIC STEPSIZE RULES

Here, we discuss the method using a dynamic stepsize rule. We first consider the dynamic
stepsize rule for known f*, where

flzr) — 1 _
A =Yk 15 0<y< 1 <y <2, V k. (53)
| B.gx|I? -
For this stepsize, we have the following convergence result.

Proposition 5.4: Let Assumption 5.1 hold, and let the sequence {z} be generated by the
variable metric method with the dynamic stepsize (5.3). Then, we have

liminf f(zg) = f*.
k—o0
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Proof: To obtain a contradiction, suppose that there exists scalar € > 0 such that

2¢
lim inf R
iminf f(zy) > f Ty

implying that for some large enough ko,

f(]?k) > f*+ VEk>kp. (54)

2_77 -

Let a vector § € ™ be such that
€ N
f*+ B > f(9).

Using Lemma 5.1, where y = ¢ and « is as in Eq. (5.3), we obtain for all k& > ko,

"< BB 1B o = ) = o (207 () = F@) = (F () = 1)) |.

| By (@1 — )

From Eq. (5.4) and the fact f* +€/2 > f(¢), we see that for all k& > ko,

2(f(zn) = F(D) = (flar) = £*) = @ =) (flzr) = f*) +2(f* = f(

<
A
N—
vV
—
N
|
2
B
N—

and since v <7 for all &, it follows that
2(f(z) = @) = v (fz) = f*) 2 2e—e=¢€ Yk > ko
Therefore, for all k > ko,
_ 12 _ _ )2
| Bty @ess = DI < 1B Bell2 (|87 @n = 9)])” = ane).

By using the definition of ay, [cf. Eq. (5.3)], the relation (5.4), and the boundedness of || B} gx||
[cf. Assumption 5.1(a)], we obtain

flag) = f* 260
I1BLokll? — (2—7)C?’

aE = Yk Y k> ko.

Since ||Bk_i1Bk|| > 1 for all k& by Assumption 5.1(b), the preceding two relations imply that

for all k£ > ko,

- 1 - - . 2e2y
1Bety @ = 9)|” < 1B Bell2l| By (2 — )| — 2-70C?
: -1 2 -1 (12 2€2
< | TL0BBi2 | 1B ny =) = (k1= o) gy 5

i=kqg
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But this relation cannot hold for & sufficiently large, since by Assumption 5.1(b), we have

k 00
[T 1BZABill? < T IBABill? < o,

i=kg =0
a contradiction. Q.E.D.

Assuming that the optimal solution set X* is nonempty, we can estimate the number of
iterations required to achieve the optimal function value f* within a given error, as seen in the
following proposition.

Proposition 5.5: Let Assumption 5.1 hold, and assume that the optimal solution set X* is
nonempty. Let {zf} be the sequence generated by the variable metric method with the stepsize
(5.3). Then, for a positive scalar € and the smallest positive integer K such that

k22D (T B2 ) win Bt - o)
C? o i=0 A rr*eX* 0 0 ’

we have

' < fr 4o
Oér;clsan(ﬂEk)_f + €

Proof: By using Lemma 5.2, with aj given by Eq. (5.3), we obtain for all k,

Bk_l(xk — :1c*)”2

_ 2 — .
Bk (on - o) <18k Bl iy

min
r*eX* T¥EX*
2
- (2 - ’Yk)—(f(xk) — /)
| B9k |2

By the definition of ay, we have vy € [v,7], while by Assumption 5.1, we have ||Bjgi| < C

and ||Bk_i1Bk|| > 1, implying that for all k,

Bk_l(:L“k — :L“*)HZ —(2- 7)—(f(xk)—_ f*) )

— 2 _ .
Bki1($k+1 —$*)H < ||Bk_ilBk||2 min =

r*eX*

min
r*eX*

Assume now, to arrive at a contradiction, that
flxg) > f* +¢, VkE=0,1,..., K.

Combining this with the preceding relation, we obtain for all kK =0,1,..., K,

_ 2 _ : _ 2 _, €2
B (@ —2)||” < 1By, Bill? min || By (ae —29)||" - 212 -V 5

min
T*EX*

VAN
< N
<|:|> x>
=
+.L
oy
=
N——
H*
mE.
=)
*
o)
SN
N
o
|
]
*
|
=
_l.
=
1=
[\
|
2
Q\‘
[\V]
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Thus, in particular for £k = K — 2, we have

min

min_ By (w0 —a*)|* — (K ~ 1)y(2—7) =

K—2
-1 2 1 .
By~ (zx41—o*)|| < < I_I ||Bi+1Bi||2> e

implying that

62
(K_ 1) (H ||Bz+lB || )zgél}(l*HBO_l(xo _:L‘*)Hza

contradicting the definition of K. Q.E.D.

We now consider the dynamic stepsize rule with unknown f*, where

flzn) — fi

k= Yk ; 0<y<ym<y<2, (5.5)
| By.gx11? -

the estimates f,lge" are given by

W= in, f(zj) — ok, (5.6)

for positive scalars d;. We discuss two adjustment procedures for updating d;, which are
modifications of the procedures discussed in Section 2.6. We start with the first adjustment
procedure, where 0y, is updated according to the following procedure

_ [ if f(zpy1) < fleV,
Ot = {m;}({ﬁdk,5} if f(zhgr) > flev, (5.7)

where dg, d, 5, and X are fixed positive scalars with 8 < 1 and A > 1.
For the method using the stepsize (5.5)—(5.7), we have the following result.

Proposition 5.6: Let Assumption 5.1 hold, and let the sequence {z} be generated by the
variable metric method with the dynamic stepsize (5.5)—(5.7).
(a) If f* = —o0, then
,g;fof(wk) f*.
(b) If f* > —o0, then

< *
égfof(wk) fx+e.

Proof: We prove (a) and (b) simultaneously. To arrive at a contradiction, assume that

ég%f(xk) —0 > f*. (5.8)
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Each time the target level is attained [i.e., f(zx) < fj¢¥,], the current best function value
ming<;<k f(x;) decreases by at least ¢ [cf. Egs. (5.6) and (5.7)], so in view of Eq. (5.8), the
target value can be attained only a finite number times. From Eq. (5.7) it follows that after
finitely many iterations, dy is decreased to the threshold value and remains at that value for
all subsequent iterations, i.e., there is a k such that

op=10, Vk>k (5.9)
In view of Eq. (5.8), there exists § € R™ such that
1 —0 > ).
inf f(ze) =0 2 1(9)
Thus, by Egs. (5.6) and (5.9), we have

fie = min, f(e) =0 > jnf flan) =6 > [(@),  Vk>E, (5.10)

0<j

By Lemma 5.1, with y = ¢ and «y as in Eq. (5.5), it follows that
1Bty s =) < 1Bk Bl ||| By (o = 9)[|° — e (2(F ) = £@) = (f ) = ) |
Using the fact fiev > f(g) for all k > k [cf. Eq. (5;1())] and the definition of ay, [cf. Eq. (5.5)],

from the preceding relation we obtain for all & > k,

I

— ar(2 = ) (Flan) = 1))
(o) - }fvf) .

I Brgkll?

|Bi e = DI < 1B Bl (1|87 @ = 9)

I

= || By 1 B2 (HBk_l(xk =9 =72 =)

Since vi, € [v,7] and f(zx) — f1e7 > 6k > 6 for all k [cf. Egs. (5.5)—(5.7)], and since || Bygx|| < C
[cf. Assumption 5.1(a)], it follows that

_ T _ _ 12 _, 02 ~
|Biir (@1 = 9)||” < 1By Bl (HBk Haw =9 — 22~ 7)§> . VEk>k
Furthermore, by Assumption 5.1(b), we have |[B_ !, By|| > 1 for all k, implying that for all

” k+1
k>,

-1 PNE: —1 ol m=l(m _ ]2 92
B @rar = D" < 11Biy Bell[| By (i — 9)

k
< | TT1BZ:BillE | 1B (2 — 9)
i=k
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However, by Assumption 5.1(b), we have Hf:k ||BZ»_JrllBi||2 < I3, ||BZ»_JrllBi||2 < 00, so that

the preceding relation cannot hold for k sufficiently large, a contradiction. Q.E.D.

We now describe the method that employs the stepsize (5.5)-(5.6), where the parameters
0 are adjusted according to a path-based procedure. The idea here is to adjust dx only if
a sufficient descent occurs or if the iterates travel a path longer than some prescribed path
bound b. Thus, the idea is the same as in the path-bound procedure of Section 2.6, however,
there is a difference: we here measure the path length of the iterates in a variable metric. The
method (5.1) using the path-based procedure is given in the following algorithm.

Path-Based Variable Metric Algorithm

Step 0 (Initialization) Select xo, Bo, 09 > 0, and b > 0. Set o9 = 0, f*f = co. Set
k=0,1=0,and k() = 0 [k(l) will denote the iteration number when the [-th update of
f1¥ occurs).

Step 1 (Function evaluation) Calculate f(x). If f(xg) < fi°, then set fi*¢ = f(wy).
Otherwise set f° = f;® [so that f;°¢ keeps the record of the smallest value attained

by the iterates that are generated so far, i.e., f{* = ming<;<i f(z;)].

Step 2 (Sufficient descent) If f(zy) < f,g?;:) — 5—2l, then set k(I+1) =k, o, =0, §141 = Iy,
increase [ by 1, and go to Step 4.

Step 3 (Oscillation detection) If oy > b, then set k(I + 1) = k, o = 0, 41 = 4

5, and
increase [ by 1.

Step 4 (Iterate update) Set fiev = k() — 01 Select By and 7y € [v,7]- Compute a

subgradient gi of f at zj, and compute zry; via Eq. (5.1) with the stepsize (5.5).
Step 5 (Path length update) Set o1 = ox + ax||Bjgx||, increase k by 1, and go to
Step 1.

Upon each change of the target level fi¢v, which occurs at k = k() (see Steps 2 and 3), the
parameter oy is reset to zero so as to keep track of the path length traveled by the subsequent
iterates Tp(1), Tk ()41, - .- As seen from Step 5 and the iterate definition x4y = @ — oy Bi B} gk,
this path is measured in a variable metric

k k
ort1 = ok + || Bygel = > ojl|Bigill= Y ||Bi (@i — z5)]|-
J=k(l) J=k(l)

We next prove the correctness of the algorithm. We first give a preliminary result showing
that the target values fi®" are updated infinitely often (i.e., | — 00), and that infy>o f(zg) =
—oo when the sequence {d;} is bounded away from zero.

Lemma 5.3: Let Assumption 5.1(a) hold. Then, for the path-based variable metric algorithm,
we have [ — 0o, and either infy > f(2r) = —00 or limy_,o 0; = 0.



132 A Variable Metric Subgradient Method Chap. 5

Proof: Assume that [ takes only a finite number of values, say [ = 0,1,...,[. In this case, we
have

Ok+1 = Ok + || Bgrl| < b, V k> k(l),
implying that
lim oy || Bygk| = 0.
k—o0

But this is impossible, since by the definition of a; and Assumption 5.1(a), we have

flzr) — i S Yo

> k(D).
Bl = ¢ R=ED

ok || Bkl = vk

Hence, | — oo.
Let 6 = limj_ oo ;. If § > 0, then from Steps 2 and 3 it follows that for all [ large enough,
we have §; = § and

T T 6
fk??+1) - k??) < DX

implying that infy>o f(zx) = —00. Q.E.D.
For the algorithm, we have the following convergence result.

Proposition 5.7: Let Assumption 5.1 hold. Then, for the path-based variable metric algo-
rithm, we have

inf f(zx) = f*

k>0

Proof: If lim;_, 0; > 0, then by Lemma 5.3, we have infi>¢ f(2x) = —oo and we are done,
so assume that lim;_, o, 9; = 0. Let A be given by

A:{l‘él:%,121}.

Then, from Steps 3 and 5, we obtain

k—1
o = op—1 + x| Bi_ygk-1ll = Y a;llBigll;

so that k(l_+ 1) =k and [ +1 € A whenever Z?;é(l) ;|| Bjg;ll > b at Step 3. Thus, by using
| Br.gr|| < C [cf. Assumption 5.1(a)], we see that

k(1) —1 k(l)—1

1 b
Y aj>= > ollBigill > 7 VieA
J=k(1-1) J=k(l-1)

Qi
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Since §; — 0, it follows that the cardinality of A is infinite, and therefore we have

k(1)1

Zaj>z > aj>z (5.11)

leA j=k(I-1) leA

To obtain a contradiction, suppose that infy>o f(zx) > f*, so that for some g € R” and
e > 0, we have

inf f(zx) —e> f(9). (5.12)

k>0

Since §; — 0, there is a large enough [ such that &; < e for all [ > , implying that

A

v = fre = 6 zggf(xk)—ez f@),  VEk=>EkQ).

Using this relation and the definition of aj in Lemma 5.1,where y = gy, we obtain for all
k> k(1),

|Bity s = DI < NBELBel2]| B (o = 9)])
— o (2(f (@) — £@) — () — 1))
< BBl (|17 @r = ) = (2 =) (F (@) = i)

(4 (@ >—flev)2>.

| Brgrll?

= || By BrlI? <HBk_1(fL“k - Q)H2 = Vk(2 = k)

Because ||Bk+1Bk|| > 1 and 7 € [y,7] for all k£ [cf. Assumption 5.1(b) and Eq. (5.5), respec-

tively], we have for all k > k(1)

_ flev 2
B2k (onen ~DIF < VBB s~ )P g2 - L~ )

k
< | IT nB5imilz | 1354 (ray - DI
i=k(0)

() = )
- 1(2 - 7) !, : '
j:%) 155951

Since by Assumption 5.1(b), we have Hf:k(i) B4 Bill? < [1:2, I1B41Bill> < oo, from the
preceding relation we obtain

00 v 2
Z (f(xk)_fllce) < 50

B! 2 '
o B
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This relation and the definition of ay [cf. Eq. (5.5)] imply that ZZik(z) o2 < oo, and conse-

quently ay — 0. Furthermore, we have already shown that Y .-, ar = oo [cf. Eq. (5.11)], so
that by Prop. 5.3, we have

liminf f(z) = f*,
k— o0
contradicting Eq. (5.12). Q.E.D.
For the dynamic stepsize with unknown optimal function value f*, under assumption

that the set X* of optimal solutions is nonempty, we can estimate the number of iterations
needed to guarantee achievement of f* within some error. In particular, we have the following.

Proposition 5.8: Let Assumption 5.1 hold, and assume that the optimal solution set X*
is nonempty. Let the sequence {zj} be generated by the variable metric method with the
dynamic stepsize of the form (5.5)—(5.6). Then, for the smallest positive integer K such that

7(2 _7) = 2 et 1 . -1 2
5 2 < | [T 18348 ) min || B3 (o — =),
k=0 =0

we have

min TE) < f* max_d;.
0<k<Kf( B ST+ 0<5<K

Proof: The proof is similar to that of Prop. 5.5, where to arrive at a contradiction, we assume
that
f(mk)>f*+0r£1a<xk5j, Vk=0,1,...,K.

Q.E.D.

In particular, if in the dynamic stepsize (5.5), we use

lev __
i Ogugk f(zj) =0, VEk,

with a scalar § > 0, then from Prop. 5.8 it follows that for the nonnegative integer K given by

— K-1
1(2_7) —1 . _1 NIL:
— Ko< (H) IBFABill? | min [|B5 (w0 — = )|,
1=

we have

< £
Oggggle(wk) f*+0.

Furthermore, if
flev_ mlg f(xj) 5k7 Vka
<j
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and J are adjusted by using either Eq. (5.7) with A = 1, or the path-based procedure, then
0 is nonincreasing. Thus, in Prop. 5.8, we have

1 < f* .
Ogllclsan(xk) < fr+4do

Let us note that all the results of this section (cf. Props. 5.4-5.8 and Lemma 5.3) can
hold if instead assuming that the sequence {Bjgr} is bounded [cf. Assumption 5.1(a)], we
assume that the sequence { By} of linear transformations is bounded. The reason for this lies
in the fact that, for the stepsizes of the form (5.3) or (5.5), the sequence {z} is bounded,
which implies the boundedness of the subgradients g;. Thus, for such stepsizes, in order to
have bounded || By gz, it suffices to assume that || By|| is bounded.






Space Dilation Methods

In this chapter, we discuss a special class of variable metric methods where the metric is
changed through space dilations, aiming at accelerated convergence. In particular, we will
consider methods with two types of space dilations: along subgradient directions and along
directions that can differ from subgradient directions.

As mentioned earlier, poor performance of subgradient methods is most notable in the
cases where subgradient directions are almost orthogonal to a direction pointing toward a
minimum. In such cases, typically, the subgradient components that are orthogonal to the
directions pointing toward the minima are very small as compared to the other subgradient
components. Thus, by moving along subgradients, the advances toward the set of minima are
insignificant, and if the stepsize is small, the method can jam. This situation can be avoided
by scaling the subgradients appropriately, and one such scaling can be carried out through
space dilations along subgradients. The method with space dilations along subgradients was
proposed and analyzed by N. Z. Shor. However, for this method, we here give new convergence
results, including a new stepsize choice.

The situation where the subgradients are almost orthogonal to the directions pointing
toward the set of minima can be alternatively viewed as the case where the cone of subgradient
directions is too wide. In this case, convergence can be accelerated by transforming this cone
into a narrower cone, which can be done, for example, by using space dilation along the
difference of the two successive subgradients. To include this case, as well as other choices
that may be appropriate for specific problems, we here propose and analyze a rather general
dilation method.

137
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Our methods are applicable to unconstrained minimization problems

minimize f(x)

subject to x € R,

where f : 1" — R is a convex function.

This chapter is organized as follows: In Section 6.1, we introduce and interpret dilation
along subgradients. In Section 6.2, we establish some important properties of space dilation
transformations in a general form. In Section 6.3 and 6.4, respectively, we give some basic rela-
tions and we discuss the convergence properties of the dilation method along subgradients. In
Sections 6.5-6.7, we introduce and analyze the general dilation method that can use directions
different from subgradient directions.

6.1. DILATION ALONG SUBGRADIENTS

In this section, we introduce a method using dilation along subgradients, where the coordinate
transformations (changes in metric) are carried out through successive dilations. At a typical
iteration of the method, we have the current iterate xg, a subgradient g of f at z, and a
matrix Bi. We next compute the new iterate according to the following rule

By By gx
T+l =Tk — Ok 6.1
+ 1BLgn] (6.1)

where the scalar ay is a positive stepsize, and the initial transformation is By = I. We then
update By as follows:
Bk+1 = BkRpk (gk)a (62)

where

Rp, (&) =T+ (px — 1)&k&p,s (6.3)

for the scalar py is positive and the vector & is given by

By g,
“ Bl o4
This method was proposed by Shor [Sho70a] (see also Shor [Sho70b], [Sho77a], [Sho77b],
[Sho83], [Sho85], and [Sho98]). We will refer to it as dilation method along subgradients.
Let us mention that the celebrated ellipsoid method, which is due to Khachian [Kha79] (see
also Bertsimas and Tsitsiklis [BeT97], p. 363), is just a special case of dilation method along
subgradients (cf. Shor [Sho77a] and [Sho98]).

To interpret the method, let us first take a closer look at the transformation

Rp(&) =T+ (p—1)£¢,
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where p is a positive scalar and £ is a vector with ||£]| = 1. If a vector x is orthogonal to &,
then the transformation R,(£) leaves the vector z unchanged, i.e., R,({)z = z. If the vector
x is parallel to &, then R,(&) scales the vector x by the factor p, i.e., R,(§)x = pz. Thus, the
transformation R,(&) does not change the components of a vector that are orthogonal to £ and
scales the other components of the vector by the factor p.
Let us now interpret the method. For this, consider the coordinate transformation given
by
Yy = Bk_lx, x € R,
(as we will see later each transformation By, is invertible). The vector By gy is a subgradient of
the function F(y) = f(Byy) at the point y = Bk_lxk, as discussed in Section 5.1, Suppose now
that, starting at yz, we move in the opposite direction of the normalized subgradient Bj gy,
which gives
B, gk
1BLol
Thus, the iteration (6.1) corresponds to an iteration of the subgradient method applied to the
function F(y) = f(Bgy).
Assume, for the sake of simplicity, that the set of minima consists of a single vector z*.
Let y* be the vector in the y-space corresponding to x*, and note that y* is the minimum of
F(y). Then, by using y = Bk_lx, we have
(Bygr)'(yk — y*) = gj,(xx — ) = 0.
Thus, if the subgradient gy is almost orthogonal to the direction zj — z*, then, in the y-space,
the same is true for the subgradient Bj g; and the direction y; — y*. Then, in order to have
the subsequent subgradient better pointed toward the minimum, we would like to scale down
the subgradient components that are orthogonal to yx — y*, while leaving the other directions
unchanged. For this, since B} gy is almost orthogonal to y — y*, we can use a contraction
along By gr, which is formally done via Eqgs. (6.2)—(6.4).
Let us mention that there is an alternative implementation form of dilation method along
subgradients that was given by Skokov in [Sko74], where

Hy gy

Ye+1 = Yk — Ok

Tk41 = T — A —FF—, (6.5)
V9. Hrgr
with Hy = By B, and Hy is updated via the following formula
H, ' H.
Hyp1 = Hy + (p;, — 1)M- (6.6)

9 Hr g
These iteration formulas bear some similarities with those of quasi-Newton method (see, for
example the textbook by Bertsekas [Ber99], p. 149), but other than this, there is no useful
connection between these two methods.

The implementation of dilation method along subgradients in the form (6.5)-(6.6) is
computationally more efficient than its implementation in the form (6.1)-(6.4). However, the
method in the form (6.5)-(6.6) is more sensitive to computational errors. In particular, the-
oretically, the matrices Hj are positive definite. However, due to computational errors, the
approximation of Hy that is actually used instead of Hy may not be positive definite, and this
can distort the method.
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6.2. PROPERTIES OF DILATION TRANSFORMATIONS

In this section, we give basic properties of the transformation R,(¢), which is the building
block for the transformations By. We then examine the properties of By for a general case
where the directions { are given by & = Bj.di /|| B} dk|| with nonzero vectors dy.

In the following lemma, we list some important features of the transformation R,(&).
The proof of this lemma can be found in Shor [Sho98], p. 73.

Lemma 6.1: Let the linear transformation R,(£) : R* — R” be given by

Ry(&) =T+ (p— 1)E¢,

where £ is a vector with ||£|| = 1, p is a scalar, and I is the identity matrix. We then have:

(a) For any nonzero scalar v,

Ry (&) Ry (&) = Rpu(§).
In particular, if p # 0, then the linear transformation R,(¢) is invertible and its inverse
is R1 (&), i.e.,
0
Ry(R1(8) =1

(b) For any = € R,
1R, (&) = l2]|2 + (02 — 1)(¢72)2.

(c) The norm of R,(&) is given by

[80(6)] = max {1, ol

We next establish basic properties of transformations By of the form By, = By R,, (&),
where the direction & is not necessarily the same as in dilation method along subgradients [cf.
Eq.(6.4)]. By considering more general directions £, we can bring to the surface the properties
of By that are independent of any iterative process. This, in turn, will allow us to consider
the methods that use dilation along directions other than the subgradient directions.

The basic properties of transformations By are given in the following lemma. The proof
of this lemma exploits some ideas of Nesterov [Nes84].

Lemma 6.2: Let the sequence { By} of linear transformations be such that

Bldj
IBr.dk ||’

Bk+1 = BkRpk (fk), Wlth fk = V ]{I,

where By = I, di are nonzero vectors, and py are scalars. Assume that the vectors dy are
bounded, i.e., there exists a positive scalar C' such that

ldel <C, V&
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Assume further that the scalars py are such that
0<p<pr<p<l, YV k.

We then have:
(a) limgo || Bydg|| = 0.
(b) For all £,

— (k+1)/n 1—p?2)
_ - 5 (k+1) (1-p
o2in 1Bdslf < € ; \/ n (1 p2kF/ny’

Proof: (a) We will prove that By B dr — 0, and then conclude that Bjd; — 0. For this, we
define
Hy = ByB.,, Yk,

and we note that the matrix Hy is symmetric and positive definite for all k. We next establish
a relation between Hy,1 and Hy, which will be important for our proof. By definition of By1,
we have

Hpy1 = BrRy, (&)R), (&k)By, VY k.

Since R, (&) is symmetric, by using Lemma 6.1(a) with p = v = p, we obtain
His1 = BeRyp (4)B), Y k.
Therefore,
Hipy = Bi(I + (p2 — 1)&k€,) By, = Hi, + (p2 — 1) Bré&i&, B, V k.
By using & = Bj.d/||B).dx|| in this relation, we see that

Hydpd!, Hy,

Hyi=Hp + (p? -1

vk, (6.7)

We now show that By, By d, — 0 by estimating the trace of the matrix Hj1, denoted by
Tr(Hg+1). In view of Eq. (6.7), we have

Tr(Hydyd), Hy,)

Tr(H = Tr(Hg) — (1 — p?

. Yk

Since Hy, is positive definite, we must have d;chdk > (0. Furthermore, because pr < 1,
by Lemma 6.1(c), it can be seen that ||Hy|| < 1, which together with our assumption that
|dx|| < C yields

0< d;ngdk < ||Hk||||dk||2 < 02, vV k.
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Moreover, since Hy, is symmetric, we have Tr(Hydrd) Hy) = ||Hydy||?. Therefore, for all k,

k
il _ LG
Tr(Hyn) < Tr(HE) - (1= ) o5 )= (=)=

Jj=0
For each k, all eigenvalues of Hj are positive because Hy is a positive definite. Since the
trace of a matrix is equal to the sum of its eigenvalues, we have that Tr(Hy) > 0 for all k.

Furthermore, since Hy = I, we have Tr(Hy) = n. By using these relations and the inequality
pr < p, we obtain

_ k
1—p?
0 < T(His) <n- SV gl vk,

implying, by 1 — p > 0, that the sum Z;'io ||H;d;||? is finite, and hence
Jim || Hydg || = 0.
We now have by the definition of Hy,
| Brdi||? = di, Hidy < ||d||[| Hydxl|, VE.
By our assumption, the vectors di are bounded, so that

limsup || By dg||? <0,

k—o0
implying that ||Bydy| — 0.

(b) We will derive the desired relation by estimating the determinant of the matrix H,_
denoted by det( k+1) We have by Eq. (6.7),

1

Hydpd Hp\ ~*

1
H H, —1
(Hi41) ( B0k — 1) & Hydy

According to Sherman-Morrison formula (cf. Golub and Van Loan [GoV84], p. 3), we have

A-lyv’ A1

A N1 — g-1_ 2 wva -
(4 +uv') 1+vA-1y’

for any invertible matrix A, and any vectors 4 and v. By using this formula with the following

identifications:
Hyd;

dj Hydy,’

A:Hk, u:(p%—l) ’U:dek,
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after some algebra, we obtain

(1—pp) _ded,

H L =H !
k+1 k + ,0% d;Cdek’

v k. (6.8)

Therefore, for all k,

_ 1 — p?) Hydyd,
det =det (H; 1[I ( k k
ot (Hia) = de ( * ( TR dHdy

L (A=0p) dekd;€>
= det det .
(#:5) ( Pr diHydy

Since det(I +uv') = 1+ v'u for any vectors u and v (see Golub and Van Loan [GoV84], p. 43),
the last determinant in the relation above is equal to 1/p?, implying that for all £,

1 1 1
det (H =det(H )= = det(H; ! > , 6.9
e ( k+1) € ( k )Pi e ( 0 )H;?:Op? = 520+1) (6.9)

where the inequality above follows from Hy = I and p; < p.

The determinant det (H k. jrll) is equal to the product H?:l A; of its eigenvalues \;, while
the trace 2(k+1) Tr(Hk_J:l) is equal to the sum Y7 | \;, where all eigenvalues A; are positive

since Hy41 is a positive definite matrix and so is Hk__&l Furthermore, because the geometric

1/n
mean (H?:l )\i) of any positive scalars A1,...,Ap, n > 1, is smaller than their arithmetic
mean (A1 + -+ + A\p)/n, it follows that

1
n 1 _
(qet(my))" < ~me(HZL), Yk
This relation and Eq. (6.9) yield
1
n n _
T < n(det(Hily))" < Te(HZL), Yk

In view of Eq. (6.8), we have

L (= p}) Te(drdy)
,0% d;chdk

_ 1—p;) lldel?
—Te(E) 4+ k :
( k )+ pi  dj Hydy
Hence, for all k,
k
n “1y @ =p3) il (1—p3) |1yl
— < Tr(H ')+ !
ﬁ2(k+1)/n - ( k ) :0% d! dek z:: p? le d]
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Since pr, > p > 0, we have that (1 — p?)/p7 < (1 — p2)/p? for all k. Furthermore, by our
assumption, we have ||dg|| < C for all k, implying that

p2D/n = p d;Hjd,

n (1-p2) i 1
<n+C? 5 E

(1-p2) (k+1)

st 02 1 ) V k.
> BQ minpe<;<k d;_E[Jd‘7
After some algebra, from this relation we obtain
kE+1)(1—p? =2(k+1)/n
min d.H;d; SCQ( + )( P ) 0 Vh

OSJSk J n £2 (1 _ ﬁ2(k+1)/n) ?
from which the desired estimate follows by using the relation d;H;d; = || B;d;[|?>. Q.E.D.

Lemma 6.2 has important consequences for the dilation method along subgradients. In
particular, by part (a) of this lemma (where dy = gx), we have B gr — 0, which we will use
to prove convergence of the method. Furthermore, by using part (b) of the lemma, we will be
able to assess the convergence rate of the method. Moreover, the lemma, is also important for
the analysis of the dilation method that we consider later in Section 6.4.

6.3. ASSUMPTIONS AND SOME BASIC RELATIONS

Here, we give our assumptions and a key relation between the two successive iterates of the
dilation method (6.1). The assumption that we use in assessing convergence is the following:

Assumption 6.1:

(a) There exists a positive scalar C such that

lgll < C, VYV E.

(b) There exists a positive scalar p such that for every nonempty level set {y € R | f(y) <
w} and every vector z with f(z) > w, we have

f(@) —w 2 p dist(z, L),

where Ly, is the level set {y € R | f(y) < w}.

Assumption 6.1 is satisfied, for example, when f is a polyhedral function, i.e.,

f(z) = max{a’lx +b1y...,amz + bm},
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for some vectors a; (not all equal to zero) and scalars b;. In this case, we have

C= max [lail, p= min {|lail | a: #0}.

Under Assumption 6.1, we can establish a basic relation for the iterates generated by
dilation method along subgradients, as seen in the following lemma.

Lemma 6.3: Let Assumption 6.1 hold, and let the parameters py be such that
0<pr <1, vV k.

Let further {z;} be the sequence generated by dilation method along subgradients. Then, for
any k, and any scalar w such that f(zx) > w and the level set L, = {y € ®" | f(y) < w} is
nonempty, we have

yrgan | B (241 — y)H < yrg}:n 1B (e — y)H2

L (0=pp) 2 (f(ar) ~w)’
pr 12 |1 Bigrll?
(07> (f(fL'k) - w) ak

p? || BLgll I

where C and p are as in Assumption 6.1.

Proof: Let k be arbitrary but fixed. By the definition of ;41 and By41 [cf. Egs. (6.1) and
(6.2), respectively], we have for any y,

~ By B
Bk_il(wkﬂ —y) = (Rpk (fk)) lBk_l (xk YT ||g k’jT)
) ol Bi.gx
= (R (&0)) (Bk (= = y) — % ||B,;gkl|> ’

Since by Lemma 6.1(a), we have (R,, ({k))_l = Ry/,, (&), and by Lemma 6.1(b), we have

2
[Ro(&)z||” = llzll? + (p? = D(€'x)?, ¥ a,
it follows that for any y,

2

_ _ B gx
B!l (zht1—y 2:HRL§I¢ (lek—y L )
H k+1( + )H pk( ) k ( ) ||B ng
Bigr ||?
= ||B; Yz —y) — "
‘ ¥ ||B' kl

1 _ B gk 2
p? Rk ’“IIB x|
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By using the relation & = Bjgx/||Bgx| [cf. Eq. (6.4)] and by expanding the terms on the
right hand-side in the preceding relation, we obtain for any y,

Bt rn =l = 187 - - 2 2 4 o

2
1— 2 / _ ! _
L1-n ((gk(xk v) AC Sl ) +a%>

I | By, gx||2 | B9kl

= HBk_l(xk _ y)H2 + (1-p7) (9k (% —?J))2

I | B.g% |2
(073 g;c(l“k —Y) a%
2= Tim e
Py ||Bk9k|| Py

By Schwartz inequality, we have
2
(9 (zr = 9)" < llgellPllzx — ylI2,
while by the subgradient inequality, we have
fzk) = f(y) < gp(ax — ).
0,

From the preceding three relations, since 1—p? > 0, we obtain for any y with f(zx) > w > f(y),

_ 2 - 2 (1= p3) llgrll?llze — yl?
Bk onn =l < 18 o =)l S
o (flan) —w) | o}
P IBigell i

Using subgradient boundedness [cf. Assumption 6.1(a)] and taking the minimum over all y in
the level set L, = {y € R | f(y) < w}, we see that

yrgiLIi,HBk_il(xk-l-l - y)H2 = ynenLri,HBk_l(xk - y)H2
(1—p2)C? (dist(wk,Lw))2

I | Blgk |2

ap (f(zk) — w) ag

Pz ||Bjgkll oy

Finally, by Assumption 6.1(b), we have

dist(zk, L,) <

=l

(f($k) - UJ),

which when substituted in the preceding inequality yields the desired relation. Q.E.D.
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6.4. CONVERGENCE PROPERTIES OF THE METHOD WITH
DILATION ALONG SUBGRADIENTS

In this section, we discuss the convergence properties of the method (6.1)—(6.4) using dynamic
stepsize rules. Even though this method belongs to the class of variable metric methods, its
behavior and its analysis are different from those of the variable metric methods of Chapter 5.

Let us briefly outline our analytical approach. Assuming, for the time being, that the
optimal solution set consists of a single vector z*, we note that, based on the subgradient
defining property, the following relation holds

flar) = f* < gplar —z%),  VE
We then change the space coordinates appropriately, so that
flax) = f* < (Bhgr) By Haw — 2%) < || Bygll|| By ' (2 — 7).

Thus, if the vectors B} gi converge to zero and the distances HBk_l(xk — (II*)H are bounded,
then the function values f(z)) will converge to the optimal function value f*. This, precisely,
describes the basis of our analysis. In particular, we establish the convergence of the vectors
By gr by using Lemma 6.2. The harder task is to show that the distances HBk_l(xk —z*) H are
bounded, and that will be done by using Lemma 6.3 with appropriate stepsize choices.

6.4.1 Dynamic Stepsize Rule for known f*

We establish here the convergence properties of the method using a dynamic stepsize rule for
known f*, where

Oék:’)/kw, 0<y<m<y<2 VEk. (6.10)
| B9kl -

For this stepsize, we have the following result.

Proposition 6.1: Let Assumption 6.1 hold, and let the parameters py be such that

0<F_’§pk§p<1a Vka

(1—P%)M— < (2 = V&), V k.

Assume further that the optimal solution set X* is nonempty. Then, for the sequence {zy}
generated by dilation method along subgradients and the dynamic stepsize (6.10), we have

lim f(w) = f*.
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Furthermore,

—(k+1)/n 1 1 2
\/(k +1) (1-p) dist(zo, X*).
p

o%lgk flzj) < f*+C n (1 _ ﬁZ(k+1)/n)

Bz, — x¥) H are nonincreasing. From

Proof: We first prove that the distances ming«¢ x*
Lemma 6.3, where w = f*, we see that

min

T*EX* Bk_l(xk_x*)HZ

_ 2 .
Byfy(zep — )" < nin,

L A=) e (fln) - 1)’

p:  u? || Bigkl?

ap (f(ze) = f*)  oF
2 m o T
Py ||Bk9k|| Py

vV k.

By using the definition of the stepsize ay [cf. Eq. (6.10)], we obtain for all k,

Bk_l(:zc;C — (II*)H2

_ 2 :
Bk_ﬂ_-l(xk_F]_ —2*))|” < min

min hS
T*reX* T*reX*
2
(f(@x) = f*) ( c2 )
MR 7T ) (= )~y — ) )

By our assumption that (1—p?) f—j —7k(2—y,) < 0 for all k, it follows that the scalar sequence

{minm*ex* Bk_l(mk — m*)H} is nonincreasing, and since By = I, we have that
CEl*rréi)lr(l* Bz, — w*)H < xgéi}lr(l* By (zo — w*)H = dist(zo, X*), vV k.

We now show that f(xy) converges to f*. By using the subgradient inequality, we have
for all z* € X* and all k,

f(x) — f* < gp (@ — x¥)
= (Bygr)' By ' (zk — *)
< |Bigell|| B; *(zr — 2*)||-

Taking the minimum over z* € X* in this inequality and using the preceding relation, we

obtain
flzk) = f* < || Bpgwll dist(zo, X*),  V k. (6.11)

Letting £ — oo in the preceding relation, we see that

limsup f(zr) — f* < lim || Bjgx|| dist(zo, X*).
k— o0

k—o00
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Since || Bjgk|| — 0 by Lemma 6.2(a), where dy = gy, it follows that

limsup f(zx) — f* <0,
k—o00
thus implying that f(zx) — f*.
We next prove the given convergence rate estimate. In view of Eq. (6.11), it follows that

1 ) — fx < 1 I . y * .
Ogljlgkf(:vg) f _OgljgkllBJggll dist(zo, X*),  Vk

By Lemma 6.2(b), where dj = gi, we have

—(k+1)/n 1—p2?)
- p (k+1) (-p
og’& ||Bj93|| <C P \/ n (1 _ ﬁZ(k+1)/n) ) V k,

which when substituted in the preceding relation gives the desired estimate. Q.E.D.

The dilation method (6.1)—(6.4) with the dynamic stepsize rule for known f* was proposed

and analyzed by Shor in [Sho70b] (see also [Sho98], Theorem 50) for a function f satisfying a

special growth condition. When f is convex, the growth condition that Shor assumed reduces

to the following: there exists an optimal point z* and positive scalars r and M, with M > 1,
such that

g(z) (z —z*) < M(f(z) — f*), Vo with ||z —z*| <, (6.12)

where g(z) is a subgradient of f at z. Furthermore, the initial point zo was assumed to lie in
the sphere centered at z* with radius r. Thus, Shor had analyzed only a local behavior of the
method. Furthermore, the dilation parameters p; were such that

M—-1

=p>— vV k
k p_M+1a )

P
Therefore, to implement the method, we would need to know the value of M, as well as to
choose the initial point ¢ within the distance r from z* and to make sure that the condition
(6.12) holds. This is practically impossible, even for a polyhedral function f.

Nesterov in [Nes84] also analyzed the method (6.1)-(6.4) with the dynamic stepsize rule
for known f*. He assumed that a condition (6.12) is satisfied for some optimal point x* and
all z, which from practical point of view is not any easier to verify than the original condition
(6.12). However, some analytical ideas of Nesterov were applicable to the functions satisfying
Assumption 6.1, and we have used these ideas in the proof of Prop. 6.1.

When py, is fixed to some positive scalar p, then the convergence rate of ming<;<x f(x;)

to f* is at least as fast as
k1 k41
p :
n

Thus, we would like to use the smallest p satisfying the condition

02
(l—p)ﬁ <Ye(2 = k), vV k.
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It can be seen, that such smallest p corresponds to the case where v, = 1, and it is given by

N P
pP= o2

Thus, in this case, the estimate of Prop. 6.1 shows that the values ming<;<x f(z;) converge to

f* at least as fast as
Et1
N2 2n k + 1
C? V. n

This convergence rate is somewhat slower than geometric.
In the next proposition, under a slightly stronger assumption on the parameters pg, we
give some more convergence rate estimates.

Proposition 6.2: Let Assumption 6.1 hold, and let the parameters py be such that

0<£Spk§ﬁ<17 Vka

1= <@ ) — Yk
( pk)ﬂz_%( V) = € ,

for a positive scalar ¢. Assume further that the optimal solution set X* is nonempty, and
let {z} be the sequence generated by dilation method along subgradients and the dynamic
stepsize (6.10). Then, the following hold:

(a) We have

liminf vk + 1 M = 0.
ko0 1B,k

(b) For a positive scalar € and the smallest positive integer K such that

K—

Ja

ce? 2
T < (dist(xo, X)),
B = )

k=0

we have

’ < fr 4
Oér;clsan(ﬂEk)_f + €

Proof: (a) By using Lemma 6.3, with w = f*, and the definition of the stepsize oy, we can
see that for all k&,

min

T*EX* Bk_l($k_$*)H2

_ 2 .
Byl (wr —z)|” < i

G =) (0
i il Br.gr? (“ pk),uz Vi (2 m).
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Since by our assumption, we have (1 — p?)C2/u? — (2 — ) < —c for a positive scalar ¢ and
all k, it follows that for all &,

(f(xx) — f*)2.

B Yz — x*) 2 ¢
‘ I = B

_ 2 :
Bkil(xk_,_l —2*)||” < min (6.13)

T*eX*

min
T*EX*

Therefore, since pi < p for all k, it follows that

2

= (f (k) = f*) o
I;O—”B - < (6.14)

Suppose now that

hmlnf\/k—i— M>O,
1 By.9% |

in which case there exist a positive scalar € and a nonnegative integer k¢ such that

\/k+lw >e, YE> k.
| B9k |l

We then have

o0

oo
Z gk||2

k=0 k=0
contradicting Eq. (6.14).

(b) Suppose, to arrive at a contradiction, that
flzg) — f*> ¢ Vk=0,...,K.

By using this inequality, from Eq. (6.13) we obtain for £ =0, ..., K,

. -1 2 i ~1 ? e
i [|Bed (s —a2)|[* < min || By (ox — )] " ANBLl?
< min B_l(IE :I?* Z ce2
i 0_ '
T*EX* 0 =0 p?“ ]gJ“Z

Therefore, for k = K — 2, since By = I, it follows that

K-2

3 i
2Bl IE = R

G By — )" = (distlao, X)),
j=0 "J

contradicting the definition of K. Q.E.D.
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6.4.2 Dynamic Stepsize Rule for Unknown f*

We here consider the dynamic stepsize rule with unknown f*, where

flxr) = [

) D<y<ym<vy<2
1Bige] TETT

g = Yk

The estimates f{°¥ have the form

lev __ 3 —
= min f(z; 1)
fk USJSkf( J) w

where the positive scalars §; are updated according to the following rule

T i f(zis) < £,
k+l = max{B0k, 0} if f(zrs1) > [

The scalars dg, 4, #, and A are positive, with 8 < 1 and p > 1.

For the method using the stepsize (6.15)—(6.17), we have the following result.

Proposition 6.3: Let Assumption 6.1 hold, and let the parameters py be such that

0<£Spk§ﬁ<17 Vka

C2

=

Chap. 6

(6.15)

(6.16)

(6.17)

Then, for the sequence {z } generated by dilation method along subgradients with the dynamic

stepsize (6.15)—(6.17), we have:
(a) If f* = —o0, then
égf(‘)f(xk) = f*.
(b) If f* > —o0, then
. < pras
ég%f(xk) < fr4+d

Proof: We prove (a) and (b) simultaneously. To obtain a contradiction, assume that

érzlf(;f(xk) -4 > fr

(6.18)

Each time the target level is attained [i.e., f(zx) < f}¢¥,], the current best function value
ming<j<k f(x;) decreases by at least ¢ [cf. Egs. (6.16) and (6.17)], so in view of Eq. (6.18), the
target value can be attained only a finite number times. From Eq. (6.17) it follows that after



Sec. 6.4 Convergence Properties of the Method with Dilation along Subgradients 153

finitely many iterations, d is decreased to the threshold value and remains at that value for
all subsequent iterations, i.e., there is a k such that

Sp =0, Yk>k.
Let the scalar w be given by

w= ég%f(xk) — 0.

lev

Using the preceding two relations and the definition of f,*¥ [cf. Eq. (6.16)], we have

lev _ : N8> > I .
fa Orsnjlgkf(xj) d > w, VEk>Ek, (6.19)
v lw, as k— oo. (6.20)

By Eq. (6.19), it follows that f(zx) > w for all £ > k. Furthermore, the level set L., = {y €
R | f(y) < w} is nonempty since w > f* [cf. Eq. (6.18)]. Thus, by Lemma 6.3 and the
definition of the stepsize ay [cf. Eq. (6.15)], we obtain for all k > k,

min HBk_-i{l(xk'i‘l — y)H2 < min HBk_l(xk - y)Hz

y€Ly y€ELy
L (0=pD) O (far) —w)’
pi  p2  ||Bpgxll?

o Flam) = ) (Flan) @) o (Flaw) = £)°

I | B}, gk |2 p:  IBpakl?

By using the estimate

() —w)” < 2(f(zr) — f1)7 +2(f1 — w)?,

and by writing
flag) —w = (far) = i) + (f = w),

we see that for all k£ > l%,

min || Byl (241 — 9)||° < min || By (2 — y)||°

yELw yELw

2
c? (f (=) = i)
+(20-05 - 2w+ 42)
( "2 *) o}l Brgxll?

v 2 v A%

+2(1—Pi)02(}f —w) e () = ) (Y —w)
2 2 B/ 2 2 B/ ||2 .
pe 1 1 Bygkll Pk 1B,k
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By our assumption, we have

2

which implies that
2

C
Q(I_P%)F < 2, Y k.
Using these two inequalities in the preceding relation, we obtain for all k > l},
) _ 2 . _ 2
min || B} (e = y)||” < min || B (o - y)

y€ELy
+ 2'7_5 ( ,lce‘,’ _w) (( llcev _w) _ (f(xk) _ Ilcev))'
Py ||Bk9k||2

Since fi* monotonically decreases to w as k — oo [cf. Eq. (6.20)], without loss of generality,

we may assume that k is large enough so that f,lce" —w < forall k> ]AC, which combined with
the fact f(zg) — f1eV > 6 for all k [cf. Egs. (6.16) and (6.17)], yields

(fir —w) = (fl@e) = fi¥) <0, VE>Fk

Furthermore, since f{* > w for all k > k [cf. Eq. (6.19)], we see that

i (fi —w) e N e )
22||BZT||2<( 2= w) = (flar) - i )) <0, Yk >k

implying that

min HBk_il(karl - y)H2 < min HBk_l(wk - y)HZ, V k> k.

yELw yELy

Therefore, the sequence {minyeLw HBk_l(xk - y)H} is bounded.
By the subgradient inequality, we have for all £k and all vectors gy in the level set L,

flar) —w < fla) = fy) < gilzr —y).
By writing g (zx — y) = (Bigx)' By, ' (vx — y) and by using Schwartz inequality, we see that
flxr) —w < IBrgell|| Bg H(en —y)|,  Vk, Vye€ L.
Taking the minimum over y € L, in this relation, we obtain

fxr) —w <||Bpgell min ||B (z —y)||, YV k.
yELw
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By Lemma 6.2(a), where dj, = gi, we have that || B} gr|| — 0, so that by letting & — oo in the
preceding relation and by taking into the account that minyer,, HBk_l(:Ek —y) H is bounded, we
see that

limsup f(zr) — w <0,

k— o0

which is impossible because

inf f(zg) —w=209>0.

k>0

Q.E.D.

Since the stepsize rule considered in Prop. 6.3 is new, accordingly, the convergence result
established in this proposition is new. Furthermore, this result is the first to show the con-
vergence of the dilation method with a dynamic stepsize rule using estimates of the optimal
function value f* instead of the exact value f*. In practice, it is not typical that we know the
optimal function value f*, so that the dynamic stepsize rule (6.15)—(6.17) is more practical
than the dynamic stepsize rule with known f*.

On a technical side, let us note that by taking a closer look at the proof of Prop. 6.3, we
can see that the result of this proposition holds if

C’2
2(1 - Pi)ﬁ — (2 =) <0,

for all sufficiently large k (instead of all k).

6.5. DILATION ALONG OTHER DIRECTIONS

In this section, we discuss the method that uses dilations along directions that may differ from
subgradient directions. The method is similar to the method (6.1)—(6.4), with a major differ-
ence being the update formula for 2541 and the choice of dilation direction £;. In particular,
at a typical iteration, we have the current iterate x, a subgradient g of f at xx, and a matrix
Bjy. We compute By as follows:

Byy1 = Br Ry, (§k), (6.21)
with By = I, and
Ry, (&) = T + (pr — 1)&x&;,, (6.22)
B d;,
bp = —E (6.23)
| By di||

for a positive scalar pr and a nonzero vector di. We next compute xy4+1 according to the
following rule
Bi1Bj, 119k

Qp————— (6.24)
||Bllc+lgk||

Th+1 = Tk —
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We refer to this method as dilation method. This method is rather general, and its interpre-
tation depends on the choice for the directions di. For example, the method with dp = g
can be related to Shor’s method of Section 6.1. In particular, Shor’s method can be viewed
as a “delayed” dilation method (6.21)—(6.24), where d = gx. To see this, note that in the
dilation method, we first update Bg41, and then we use it to compute z;41. In Shor’s method,
however, we first compute x4 using the transformation By from the preceding iteration, and
then we update Bgy1. Thus, the use of By is delayed until the next iteration.

The dilation method along the difference of two successive subgradients (i.e., dx, = g —
gk—1), also known as r-algorithm, was proposed and analyzed by Shor and Zhurbenko [ShZ71]
(see also, Shor [Sho85] and [Sho98]).

Before closing this section, let us mention that we can write the formulas (6.21)-(6.24)
in an alternative form by introducing the matrix Hy = By Bj,. In this case, it can be seen that

Hydyd!, Hy,

Hip1 = Hi + (p2 — 1

Hy119x
VI Hev19%

These formulas are computationally more efficient than Egs. (6.21)—(6.24). However, the up-
date formula for Hy41 is more sensitive with respect to computational errors than the update
formula for By41.

Tk+1 = Tk — Ok

6.6. ASSUMPTIONS AND SOME BASIC RELATIONS

We here give the assumption and the basic relation that we use throughout our analysis. In
particular, the assumption that we use is the following:

Assumption 6.2:

(a) The sequence {di} is bounded, i.e., there exist a positive scalar C such that
ldel| <C, V.
Furthermore, the directions dj are such that

1Brdill = | Brgell, VY k.

(b) There exists a positive scalar p such that for every nonempty level set {y € R | f(y) <
w} and every vector x with f(z) > w, we have

f(@) —w 2 p dist(z, L),

where Ly, is the level set {y € R | f(y) < w}.
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Assumption 6.2(b) is the same as Assumption 6.1(b), which we repeated here for an easier
reference. When di = g, then Assumption 6.2 coincides with Assumption 6.1, but this case
is not very interesting, since as discussed earlier, the dilation method with d; = g can be
related to the dilation method (6.1)—(6.4) of Section 6.1.

We now discuss the possibility to use the direction of the difference of two successive
subgradients, i.e., dp = gx — gx—1. This choice for directions dj is motivated by the instances
where the angle formed by subgradients gx—1 and g is too wide, which can be an indication
that the subgradient g is almost orthogonal to directions pointing toward the set of minima.
In this case, to obtain the subgradient directions better pointed toward the set of minima, we
can think of reducing the angle formed by gr_1 and gx by applying a space contraction along
the difference of the vectors g; and gix—1. By combining this idea with the idea of changing
the metric, we can consider the directions dj of the following form

g = L9 —gk—1 it g3 BiBygr—1 <0,
k gk otherwise.

Let us verify that the conditions of Assumption 6.2(a) are satisfied for this choice. If the
subgradients g are bounded, then

ldell < llgell +llgk—all, VY E,

thus showing that the vectors dj are also bounded. Hence, in this case, the first condition
of Assumption 6.2(a) is satisfied with C = 2maxy ||gx||. Furthermore, for the case where
91 BrB,gr—1 < 0, we have

1 BLdl|? = || Bgkll? — 295, Br Bigi—1 + | Bpge—-1% > || B, x>
Therefore, by the definition of dy, it follows that
| Br.dill > | Brgkll, V¥ k.

The method using directions di that we just discussed is not the same as the dilation
method using dy = g — gr—1 in all iterations, which was proposed and analyzed by Shor and
Zhurbenko [ShZT71] (see also, Shor [Sho85] and [Sho98]). Since, for our analysis, the assumption
Assumption 6.2(a) is essential, our results do not apply to the method that uses dx, = gx — g1
in all iterations.

From now on, our focus is on the method (6.21)-(6.24) with directions dj, satisfying the
requirements of Assumption 6.2(a). In our next lemma, we establish a basic relation for the
iterates generated by the method. This relation will be repeatedly invoked in our convergence
analysis.

Lemma 6.4: Let Assumption 6.2 hold, and let the parameters py be such that

0<pr <1, vV k.



158 Space Dilation Methods Chap. 6

Let further {x} be the sequence generated by the dilation method. Then, for any k, and any
scalar w such that f(zy) > w and the level set L, = {y e R | fly) < w} is nonempty, we
have

9 2 (1—p)C2(f( )_w)z
yrgjl:n ‘|Bk+1($k+1 y)“ < yrg}:n HB (xk o y)H + ,0% /1:2 ||Bk+19k||2
(f(zx) —w)
—2ap % + a2,
B el

where C' and p are as in Assumption 6.2.

Proof: Let k be arbitrary but fixed. By the definition of zx4; [cf. Eq. (6.24)], we have for

any y,
2
I

_ _ k 19k
1B, (e — ) :HBkil(mk—w Bigai_ H

1By 19kl

gk( -Y) 2

:HBk__il(mk—y)Hz—%z |5 + of.

k+19 k||

Furthermore, by using the subgradient inequality

flar) = fy) < gploe —y), Vo,

we obtain for all y,

(f(zr) — f(v))

+ o?. 6.25
Bl T (6.25)

|t @re =)l < [IBid (e = )| — 200

We next estimate the term HBk_il(xk - y)H2 By the definition of By [cf. Eq. (6.21)],
we have

k+1 Rﬂk (fk)
Since by part (a) of Lemma 6.1, we have (R,, (fk))_1 = Ry/,, (&), and by part (b) of the
same lemma, we have
2
|Rp(©)z|” = ll2l12 + (p? - 1)(€'2)2, Vo,
we obtain for any vy,

1

N R ¢ R [CL Ay

2
Clpet. o2, A= pi) (i (71— v))
=B @ =0l + = e

S
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The last equality in the preceding relation follows from &, = B} dy /|| B} dk|| [cf. Eq. (6.23)]. By
Schwartz inequality and assumption that ||dg|| < C [cf. Assumption 6.2(a)], it follows that

2
(di(@r = 9))" < ldelPllzx — ylI? < C?lze -yl

Furthermore, since 0 < pr < 1, by Lemma 6.1(c), we have HR’pk (fk)H = 1. This relation,
together with the definition of By [cf. Eq. (6.21)] and our assumption that || B.dy|| > || B}.gk||,
yields

IBidill > | Brgell = || Bpy (&) [ Brgell > || Bp, (&) Bigx|| = 1By 19ll.

From the preceding three relations, we obtain

L 0=pd) o~y
Pi ||Bllc+1gk||2

1Bty — )| < ||By (@ — )|

By substituting the preceding relation in Eq. (6.25), we see that for all y,

(1 - p}) C?|lzr — ylI?
P 1Bigagrll®

(f(z) = f(v))

+
1Bjet19xl

HBk_il(fEk+1_y)H2 < HB,Zl(wk—y)Hz — 20 _1_0[%,

Let w be a scalar such that f(z)) > w and the level set L, = {y € ®" | f(y) < w} is nonempty.
Then, for all y € L,,, we have

flen) = fly) = f(z) — w.

By first using this inequality in the preceding relation, and then taking the minimum over all
y € L, we obtain

(1—p2)C? (dist(xk,Lw))Q

. —1 2 . —1 2
— < —
juin [ Biis e~ v < o |15 e = )|+ = e

Tg) — w

1Bt 119%l
Finally, since by Assumption 6.2(b), we have
. 1
dist(xzy, L,) < ; (f(xk) — w),

which when substituted in the preceding inequality gives the desired relation. Q.E.D.
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6.7. CONVERGENCE PROPERTIES OF THE METHOD WITH
DILATION ALONG OTHER DIRECTIONS

In our analysis here, we use the same idea as in Section 6.4 with some technical adjustments.
In particular, by using the subgradient inequality and by changing the space coordinates, we
can see that for an optimal solution z*,

fzk) = f* < gz —z*) < ||Bllc+19k||HBk_Ji1($k - 33*)Ha V k.

Then, under some conditions, Lemma 6.2(a) will easily yield convergence of vectors B; gk to

zero. After that, the main analytical effort is to show that the distance HBk_Jil(ack — x*)H is
bounded, in which Lemma 6.4 will play a crucial role.

6.7.1 Dynamic Stepsize Rule for Known f*

We here give convergence and convergence rate results for the dilation method using a dynamic
stepsize rule for known f*,

oy :"ykf(gf#, 0<1S’Yk§7<2, vV k. (626)
I k+19k||

Our first result shows that the function values f(zx) converge to the optimal function value
f*, and that the values ming< ;<) f(z;) converge to f* as fast as p **V/™ /(k +1)/n.
Proposition 6.4: Let Assumption 6.2 hold, and let the parameters p; be such that
0<F_’§pk§p<1a Vka
(1—pf) C?
— 5 <w@2-v), Vk
Py M2
Assume further that the optimal solution set X* is nonempty. Then, for the sequence {zy}
generated by the dilation method and the dynamic stepsize (6.26), we have

lim f(i) = f~

Furthermore,

min f(zj) < f*+C

—(k+1)/n Bl 1 p2
P \/( +1) ) dist(zo, X*).
0<j<k P’

n (1 p20Diny

Proof: We first show that the distances ming=¢ x = Bk_l(mk — (I)*)H are nonincreasing. From
Lemma 6.4, where w = f*, we see that for all &,
2
1 2, (=p) C2 (f(zx) — )
min || By, (z — 24| + 2 2 IR 2
zreX e 12 k+1gk”

(f(zx) = f*)
||Bllc+lgk||

_ 2 .
Bkil(xk_}_l—x*)u < min

min
r*eEX*

— 20[k + 04%.
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By using the definition of the stepsize ay [cf. Eq. (6.26)], we obtain for all k,

. -1 x 2 . —1 % 2
 nin, B (@pe1 —a)||” <  nin, By Nz — )|
2
zk) — f* 1—p2)C2
||Bk+19k|| Py w
By our assumption that
1—p2)C2
(721016)_2 S’Yk(2_7k)7 Vka

Pk

it follows that the distances mings¢ x= Bk_l(xk - (II*)H are nonincreasing, and since By = I,

we have that

min
T*EX*

By Yz — 2%)|| £ min

r*eX*

By Hxo — a*)|| = dist(wo, X*),  Vk. (6.27)

We now prove that f(zx) — f*. By using the subgradient inequality, we have for all
z* € X* and all k,

flar) = f* < gj(zn — 1) = (Bypa98) By (@ — %) < ||Bjgull]| By (2 — 2)]|. (6.28)

Since 0 < p < pr <P < 1 and Bgy1 = B Ry, (&), by using Lemma 6.1, it can be seen that

IBit (i — )| < ||IRaEE || Bi (e — )| < = | B @e — )|, Yk, (6.29)

| =

1Br 19kl < 1Roy (o) Brgell < 1 Bpgwll, V¥ k.

Furthermore, because by Assumption 6.2, we have ||Bjgx| < ||Bjdi| for all k, from the
preceding relation it follows that

1Baull < 1Bl Y k. (6.30)
By combining Egs. (6.28)-(6.30), we obtain for all 2* € X*,
Fan) = £+ < 5 Bl B =, Wk
Taking the minimum over z* € X* in this inequality and using the relation (6.27), we obtain
flzg) — f* < % | B d || dist(zo, X*), Y k. (6.31)

Since || By di|| — 0 by Lemma 6.2(a), it follows that

1
limsup f(zr) — f* < — lim ||Bd|| dist(zo, X*) = 0,
14 k—o00

k—o00
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thus implying that f(zx) — f*.
We next show the given convergence rate estimate. In view of Eq. (6.31), it follows that

. 1 . .
Ogljlgkf(ﬂﬂj) —fr< 2 058, |Bjd; || dist(zo, X*),  V k.

By Lemma 6.2(b), we have

—=(k+1)/n 1—p?)
0 B P (k+1) (A-p
ogﬁ-‘& HBde” <cC P \/ n (1 _ ﬁz(k+1)/n) ’ vk,

which when substituted in the preceding relation gives the desired estimate. Q.E.D.

Under a slightly more restrictive condition on the parameters py, we can give convergence
rate estimates that do not depend on n, as seen in the following proposition.

Proposition 6.5: Let Assumption 6.2 hold, and let the parameters p; be such that

0<£Spk§ﬁ<17 Vka
(1-p3) C?
7_S7k(2_7k)_ca Vka
T
for a positive scalar ¢. Assume further that the optimal solution set X* is nonempty, and

let {zr} be the sequence generated by the dilation method and the dynamic stepsize (6.26).
Then, the following hold:

(a) We have
liminf vk + 1 (f(zx) - f*) = 0.

(b) For a positive scalar € and the nonnegative integer K given by
c? . 2
K= {E (dist(zo, X*)) J ,
with C' being an upper bound on the norms ||di||, we have

] < f* .
Ogllclsan(xk) < frdte

Proof: (a) By using Lemma 6.4, with w = f*, and the definition of the stepsize «j, we can
see that for all k&,

Bk_l(xk — :1c*)”2

— 2 .
By (wesr —2) | < min,

(fla) =) (a-ppc>
1Bh 119512 ( e ”’”)‘

min
r*eX*

+

Pk
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Since by assumption, we have (1 — p?)C2/(p2p?) < v,(2 — ;) — ¢ for a positive scalar ¢ and
all k, it follows that

2

> (flzr) = f*)

- YV k.
||Bllc+1gk||2

Bk_il(xk+1 - $*)H2 < min ||B; (71, — x*)“

r*eX*

min
r*eX*

By using Assumption 6.2(a) and Lemma 6.1(c), we can see that

1By 19kl < I1Rp, ()| Brgrll < 1Brgwll < [|1Bidill < |Brlllldell < C, V.

Hence,
2
) 1 NG ) 1 12 (f(zx) — f*)
i By (k41 — )H < nin, B, (z —x )H B a— Vk.  (6.32)

implying that

ST (fa) - ) < 0 (6.33)

k=0

Suppose that
likminf\/k +1 (f(wk) — f*) >0,
—00

in which case there exist a positive scalar € and a nonnegative integer k¢ such that
\/k+1(f(mk)—f*)25, YV k> ko.
We then have

o0 o0 2
g(f(xk)—f*)22kzz()ki1 = 0

k=0

contradicting Eq. (6.33).
(b) Suppose, to arrive at a contradiction, that

flze)—f*>¢, Vk=0,...,K.

By using this inequality, from Eq. (6.13) we obtain for £ =0, ..., K,

. —1 2 . —1 2 ce2
Jain (| By (@i — 2" < min [ B (e — 2|~ &
< min [|B;'(z —z*)| —(k-i—l)c—62
— p*reX* 0 0 02'

Therefore, for k = K, since By = I, it follows that

2
(K + I)C—6 < min

02 = prex« By (o — IB*)H2 = (dist(mo,X*))z,

contradicting the definition of K. Q.E.D.
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6.7.2 Dynamic Stepsize Rule for Unknown f*

We here consider the dynamic stepsize rule for unknown f*, where

flze) — [

& , O<y<m<y<2 (6.34)
1B+ 19x -

A =",

The estimates f,lce" are given by

lev _ 3 ) —
Iy —Ofsnjlgkf(%) Ok (6.35)

where the positive scalars 0 are updated according to the following rule

_ )\(5k if f(xk ) < flev,
Ok+1 = {max{ﬁék,(S} if f(xkii) > fZev, (6.36)

where dg, d, 5, and X are fixed positive scalars with 8 < 1 and A > 1.
For the method using this stepsize, we have the following result.

Proposition 6.6: Let Assumption 6.2 hold, and let the parameters p; be such that

0<F_’Spk§p<1a Vka

2——= = <m@-mw), VEk,

Then, for the sequence {z;} generated by Shor’s method with the dynamic stepsize (6.34)—
(6.36), we have:
(a) If f* = —oo, then
inf f(ze) = £+
(b) If f* > —o0, then

i < f* .
érzlf(;f(fl,‘k) < f*+46

Proof: We prove (a) and (b) simultaneously. To obtain a contradiction, assume that
érzlf(;f(xk) — 0> f*, (6.37)

Each time the target level is attained [i.e., f(zx) < f}¢¥,], the current best function value
ming<j<k f(x;) decreases by at least ¢ [cf. Egs. (6.35) and (6.36)], so in view of Eq. (6.37), the
target value can be attained only a finite number times. From Eq. (6.36) it follows that after
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finitely many iterations, d; is decreased to the threshold value and remains at that value for
all subsequent iterations, i.e., there is a k such that

§p =0, Yk>k.
Let the scalar w be given by

w= érzlf(‘) (zx) — 0.

Using the preceding two relations and the definition of f1¢V [cf. Eq. (6.35)], we have

lov — ) —6 > > k :
2 Orsrblgkf(xj) 0> w, Yk >k, (6.38)
i lw, as k— oo. (6.39)

By Eq. (6.38), it follows that f(zy) > w for all £ > k. Furthermore, the level set L., = {y €
R | f(y) < w} is nonempty since w > f* [cf. Eq. (6.37)]. Thus, by Lemma 6.4 and the
definition of the stepsize oy [cf. Eq. (6.34)], we obtain for all k > k,

2
. -1 A2 . -1 A2 (1-p}) g (f(xk) - ‘*’)
e Peea(n =0l < min 1B e =l + =0 e
_ rlev _ _ rlev 2
o (f (zx) i )(f(;fk) w) o2 (f(ﬂﬂkl) kz) .
||Bk+19k|| ||Bk+19k||
By using the estimate
(F(or) —w)® <2(f(an) = ) +2(F - w),
and by writing
flar) —w = (flzx) = ;) + (i —w),
we see that for all k£ > IAC,
: _ 2 . _ 2
min[|Bry (e — )" < min || B (2 - y)
(1-p) C? ) (f(xr) = fi)°
4 (2SR E S oy, o
( 2w ) Bl
polmp e (i) (fwn) = fi) (5 = w)
Py 12 || Bj 19kl 1B, 1191 '

By our assumption, we have

1—p2) 02
Py 1



166 Space Dilation Methods Chap. 6

implying that

(1 —Pk)C_
Py

Using these two inequalities in the preceding relation, we obtain for all & > ]AC,

lev __ w
yrg]l:n HBk—l—l(]:k-}-l _y)H2 < yrggiHBk_l(IEk - H +2’)’ ||(Bk+71||)2 <( Ilcev —w) - (f(]?k) — f]lcev)).

Since fi*" decreases to w [cf. Eq. (6.39)], without loss of generality, we may assume that k is
large enough so that fi* —w < 4 for all k > k, which together with the fact flzg) = fiev >4
for all k [cf. Egs. (6.35) and (6.36)], yields

(i —w) = (flax) = fi¥) <0, VE>k

Furthermore, since f{* > w for all k& > k [cf. Eq. (6.38)], we see that

( lev_w) . N A
s (U =) = (e ) <0 Vk=

implying that

mlnHBkH(aszrl y)H2 < mmHB (wk—y)Hz, V k> k.

yEL, T y€ELy

Therefore, the distances minyer,, HBk_l(mk —y) H are bounded.
By using the subgradient inequality, we have for all £ and all vectors y € Ly,

flar) —w < fax) = f(y) < gi(ox —y) = (By108)' Bity (wx —y) < |1Bpy 195 ll|| By (2 = 9) |-
(6. 40
Since 0 < p < pr < p < 1 and Bgy1 = Bp Ry, (&), by Lemma 6.1(c), it can be seen that
_ 1, _
[Bislen =) < |[Bon @) 1B (@ — o)l < Z{IB @ =)l VE (6.41)
1B y19kll < [|1Bo, (E) | Bigrll < [|Brgell, VY k.

Furthermore, because by Assumption 6.2, we have that || B gx|| < ||Bj.di|| for all k, from the
preceding relation it follows that

B g1l < IBrdell, YV k. (6.42)

By combining Egs. (6.40)—(6.42), we obtain for all y € L,

1
f(xk)—wé;IIB;’cdeIHBEI(:Ek—y)H, v k.
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Taking the minimum over y € L,,, we further obtain

1 o
flar) —w < ;IIB,’CdeI yfgg}uHBk Yo -y, Vk

Since ||Bjdi|| — 0 by Lemma 6.2(a), and since the distances minyeLwHBk_l(xk - y)H are
bounded, by letting £ — oo in the preceding relation, we see that

limsup f(zr) —w <0,

k— o0

which is impossible because
Iir;t(‘)f(wk) —w=20>0.

Q.E.D.

A closer look at the preceding proof reveals that the result of Prop. 6.6 holds when the
condition a e
— p?
27— — — w2 —m) <0,
AT

holds for all sufficiently large k (instead of all k).
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