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Abstract

Many optimization problems arising in various applications require minimization of
an objective cost function that is convex but not di�erentiable. Such a minimization
arises, for example, in model construction, system identi�cation, neural networks,
pattern classi�cation, and various assignment, scheduling, and allocation problems.
To solve convex but not di�erentiable problems, we have to employ special meth-
ods that can work in the absence of di�erentiability, while taking the advantage of
convexity and possibly other special structures that our minimization problem may
possess. In this thesis, we propose and analyze some new methods that can solve con-
vex (not necessarily di�erentiable) problems. In particular, we consider two classes
of methods: incremental and variable metric.
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1

Introduction

1.1. PURPOSE OF THE THESIS

Many optimization problems arising in various applications require minimization of an objec-
tive cost function that is convex but not di�erentiable. Such a minimization arises, for example,
in model construction, system identi�cation, neural networks, pattern classi�cation, and var-
ious assignment, scheduling, and allocation problems. To solve convex but not di�erentiable
problems, we have to employ special methods that can work in the absence of di�erentiabil-
ity, while taking the advantage of convexity and possibly other special structures that our
minimization problem may possess.

In this thesis, we propose and analyze some new methods that can solve convex (not nec-
essarily di�erentiable) problems. In particular, we consider two classes of methods: incremental
and variable metric. In the �rst part of the thesis, we discuss the incremental methods, which
are applicable to problems where the objective cost function has an additive structure. These
methods combine the ideas of the incremental approach with those of the standard methods
for convex minimization. We propose and analyze several versions of the incremental method,
including some that are stochastic, as well as some with special features such as weights. We
study convergence of the method for various stepsize rules and for synchronous and asyn-
chronous computational setting. Our convergence analysis and computational results indicate
that the incremental methods can perform far better than their nonincremental counterparts.

9



10 Introduction Chap. 1

In the second part of the thesis, we consider variable metric methods, which are applicable
to unconstrained convex minimization problems. These methods are particularly well suited for
poorly scaled problems, for which the standard methods of convex minimization are typically
very slow. The variable metric methods combine the principles of variable metric approach
with those of the standard methods for convex minimization. We discuss a variable metric
method in a general form and a more speci�c method that employs space dilation.

1.2. SUBGRADIENT METHODS

Subgradient methods are the principal methods used in convex nondi�erentiable mini-
mization. This type of minimization arises in many applications, as well as in the context of
duality, and various general solution strategies such as penalty function methods, regulariza-
tion methods, and decomposition methods. Most notably, subgradient methods are used in
the context of duality arising from Lagrangian relaxation, where they are referred to as dual
ascent methods or dual methods.

Subgradient methods were �rst introduced in the Soviet Union in the middle sixties by
N. Z. Shor. Since then, they have been extensively studied, and in general two major classes of
subgradient methods have been developed: descent-based methods and nondescent methods.
The descent-based subgradient methods are based on the principal idea of the function descent,
which lies in the framework of gradient-type minimization. Nondescent subgradient methods
are based on the idea of the distance decrease (distance from the set of minima), and their
implementation is simpler than that of descent-based methods.

For nondescent subgradient methods, the early work of Ermoliev [Erm66] and Polyak
[Pol67] was particularly in
uential. Due to their simple implementation, the nondescent sub-
gradient methods have drawn a lot of attention, and the literature on these methods is very
rich. An extensive treatment of these subgradient methods can be found in the textbooks by
Dem'yanov and Vasil'ev [DeV85], Shor [Sho85], Minoux [Min86], Polyak [Pol87], Hiriart-Urruty
and Lemar�echal [HiL93] Shor [Sho98], and Bertsekas [Ber99].

Our work is in the framework of the nondescent subgradient methods, for which we study,
separately, the merits of the incremental approach and variable metric approach. In the next
two sections, we describe these approaches and discuss the contributions of the thesis.

1.3. INCREMENTAL APPROACH

1.3.1 Problem Formulation

In the �rst part of the thesis, we consider an incremental approach for minimizing a function
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that consists of the sum of a large number of component functions:

minimize f(x) =

mX
i=1

fi(x)

subject to x 2 X;
(1.1)

where the functions fi : <n 7! <, i = 1; : : : ;m; are convex, and the set X � <n is nonempty,
closed, and convex. The most prominent example of this type of minimization is the linear
least-squares problem arising in a broad class of practical problems such as model construction,
system identi�cation, neural networks, and pattern classi�cation. This type of minimization
also arises from Lagrangian relaxation of coupling constraints of large-scale separable problems
in the domains of integer programming and combinatorial optimization, including various
assignment, scheduling, and allocation problems such as: job assignment, job-shop scheduling,
�le allocation, bank accounts location, location of plants, concentrator location (in network
design), and warehouse location.

Our primary interest is in the problem where f is nondi�erentiable. Nondi�erentiability
is typical for problem (1.1) arising from Lagrangian relaxation, and solving this problem,
possibly within a branch-and-bound or some heuristic context, is one of the most important and
challenging algorithmic areas of optimization. When a branch-and-bound algorithm involves
subproblems of the form (1.1), solving such subproblems quickly and with high accuracy results
in a faster and more eÆcient search, thus improving the overall performance of the branch-
and-bound algorithm. Hence, it is important to have an algorithm that quickly yields a good
approximation of the optimal cost for problem (1.1).

A classical method for solving problem (1.1) is the subgradient method, whereby at
each iteration we take a step in the opposite direction of a subgradient of f and we obtain
a new iterate by projecting on the constraint set X (for the time being, we can think of a
subgradient as a substitute for a gradient in the absence of the di�erentiability of f). This
classical subgradient method, however, does not exploit the additive structure of the function
f . To take advantage of the special structure of f , we consider an incremental approach.
The idea of this approach is to perform iterations incrementally, by sequentially taking steps
along the negative subgradients of the component functions, with intermediate adjustment
of the variables after processing each component function. An iteration of the incremental
subgradient method can be visualized an a long cycle consisting of m steps, whereby at each
step we process only one component fi such that all components f1; : : : ; fm are processed
exactly once within the cycle.

1.3.2 Previous Work

Incremental gradient methods for di�erentiable unconstrained problems have a long tradition,
most notably in the training of neural networks, where they are known as backpropagation

methods. These methods are related to the Widrow{Ho� algorithm [WiH60] and to stochastic
gradient/stochastic approximation methods. The incremental gradient methods have been ex-
tensively studied, most recently by Luo [Luo91], Gaivoronski [Gai94], Grippo [Gri94], Luo and
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Tseng [LuT94], Mangasarian and Solodov [MaS94], Bertsekas and Tsitsiklis [BeT96], Bertsekas
[Ber97], Tseng [Tse98], Bertsekas and Tsitsiklis [BeT00]. It has been experimentally observed
that incremental gradient methods often converge much faster than the steepest descent.

Incremental subgradient methods are similarly motivated by rate of convergence consid-
erations. Despite the success of the incremental gradient methods, the merits of the incremen-
tal approach for solving nondi�erentiable convex problems had not been properly evaluated
prior to this work. Previous work on the incremental subgradient method is rather scarce.
The method was proposed and analyzed by Kibardin in [Kib79], and later, also analyzed by
Solodov and Zavriev [SoZ98]. In both of these references, convergence properties and some
convergence rate estimates were established only for a cyclic nonrandomized processing order
of function components f1; : : : ; fm and for a stepsize diminishing to zero.

1.3.3 Our Work and Contributions

Our work has two general contributions:

(a) New Algorithms. The development of fast and simple methods, with low overhead per
iteration, and in particular, the development of the incremental method with randomiza-
tion, and the development of distributed and asynchronous incremental methods.

(b) Unifying Analysis. A line of analysis that provides a new framework for the convergence
analysis of the whole class of nondescent subgradient methods including the methods with
variable metric. This uni�es the existing theory of nondescent subgradient methods.

Our work also has many speci�c contributions, such as new stepsize rules, convergence
results, and convergence rate estimates. In particular, in the �rst part of the thesis, we give an
exhaustive study of the incremental subgradient method and its versions using randomization,
weights, and approximate subgradients. For the method and each of its versions, we provide a
number of convergence and convergence rate results under four di�erent stepsize rules:

(1) Constant stepsize rule, where the stepsize is �xed to a positive scalar.

(2) Diminishing stepsize, where the stepsize diminishes to zero.

(3) Dynamic stepsize with known optimal cost value, where the stepsize is proportional to
the di�erence between the function value at the current iterate and the optimal cost
value.

(4) Dynamic stepsize with unknown optimal cost value, which is a modi�cation of the stepsize
rule (3) obtained by using an estimate of the optimal cost value. For this stepsize, we
give two estimate update procedures.

Even though the incremental approach performs well in centralized computation, it may
perform even better in parallel computation especially for typical problems where computation
of the component subgradients is relatively costly. For such problems, we propose and analyze
a distributed asynchronous incremental subgradient method, where the computation of the
component subgradients is distributed among a set of processors that communicate only with a
coordinator. Our distributedmethods are motivated by the parallel asynchronous deterministic
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and stochastic gradient methods of Tsitsiklis, Bertsekas, and Athans [TBA86], and Bertsekas
and Tsitsiklis [BeT89]. However, our algorithms do not �t in the framework of the general
algorithmic models of Chapter 6 and 7 Bertsekas and Tsitsiklis [BeT89], and therefore our
algorithms are not covered by the line of analysis of this reference.

We discovered that the performance of the incremental method depends not only on
stepsize choice, but also on the processing order for the component functions. The dependence
on the stepsize choice is captured by our convergence rate analysis. However, the dependence
on the processing order for processing the component functions turned out to be very complex,
and we were not able to capture it analytically. We also discovered that randomization can
alleviate possibly detrimental e�ects of unfavorable processing orders, which we were able to
prove analytically and to support by computational results.

Our convergence results are more general and by far richer than those of Kibardin [Kib79],
and Solodov and Zavriev [SoZ98]. Our analytic approach is motivated by that of Dem'yanov
and Vasil'ev [DeV85], Polyak [Pol87], and Correa and Lemar�echal [CoL93] for the ordinary
subgradient method. Since the ordinary subgradient method is a special case of the incremental
subgradient method where m = 1, our convergence results can be viewed as a generalization
of the corresponding convergence results for the ordinary subgradient method, which can be
found in the textbooks by Dem'yanov and Vasil'ev [DeV85], Shor [Sho85] and [Sho98], Minoux
[Min86], Polyak [Pol87], Hiriart-Urruty and Lemar�echal [HiL93], Bertsekas [Ber99].

Most of the thesis work on incremental methods was previously published in the journal
papers by Nedi�c, Bertsekas, and Borkar [NBB01], and Nedi�c and Bertsekas [NeB01a], [NeB01b].

1.4. VARIABLE METRIC APPROACH

1.4.1 Problem Formulation

In the second part of the thesis, we focus on an unconstrained problem

minimize f(x); (1.2)

where the function f : <n 7! < is convex. Such a minimization arises in parameter estimation,
model construction, pattern classi�cation, etc. Furthermore, such a minimization also arises
when applying a penalty approach to a problem involving a convex constraint set.

We are particularly interested in poorly scaled problems, where the changes of the ob-
jective function are rapid along some directions and very slow along other directions. For
such problems, standard subgradient method is very slow, since the subgradients are almost
orthogonal to the directions pointing toward the set of minima. Thus, along the subgradient
directions, the function improvements are insigni�cant and the method jamms. In this case,
changing the stepsize generally cannot improve the situation, since the diÆculties are associ-
ated with bad subgradient directions. However, by transforming the variables (i.e., varying
the metric), we can modify subgradient directions and obtain a faster method.
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1.4.2 Previous Work

Variable metric approach has traditionally been applied to poorly scaled di�erentiable prob-
lems. The idea of this approach is to rescale the original problem by varying the metric. The
most common methods using this approach are diagonally scaled steepest descent method,
Newton method, quasi-Newton method and its various modi�cations. The literature on vari-
able metric methods for di�erentiable problems is vast (see, for example, the textbook by
Bertsekas [Be99]).

Variable metric approach has also been used for solving nondi�erentiable problem (1.2).
The �rst variable metric subgradient method was proposed and studied by Shor [Sho70a],
[Sho70b], [Sho77a], [Sho77b] (see also the books by Shor [Sho85] and [Sho98]). Shor suggested
to use special linear transformations based on space dilation along a subgradient and along
the di�erence of the two successive subgradients. According to some experimental results
(see Lemar�echal [Lem82]), Shor's method using space dilation along the di�erence of the two
successive subgradients is an excellent method, for which however convergence results have
been established only for a stepsize with exact line search (cf. Shor [Sho85]). Based on Shor's
work, Khachian [Kha79] has developed the celebrated ellipsoid method. Since then, most of
the work on variable metric subgradient methods was closely related to ellipsoid method (see,
for example, a review by Akg�ul [Akg84]). Some other variable metric subgradient methods,
which are descent-based, have been proposed by Lemar�echal [Lem78] and Uryasev [Ury91].

1.4.3 Our Work

We here study two types of variable metric subgradient methods: with limited amount of space
transformation and with dilation transformation. The methods rely only on the convexity
property of the objective cost function, and they are not descent based. The method with
limited amount of space transformation is new. Our analysis shows that this method converges
for various stepsize rules. Our results are very general and include as a special case a diagonal
scaling. However, there are still some open questions that need to be addressed, such as how
to speci�cally choose the space transformations.

As for the dilation methods, we discuss dilation along subgradients and along other
directions, including the direction of subgradient di�erence. For these methods, we propose
a new dynamic stepsize rule that uses estimates of the optimal function value. The dilation
method that can use dilation along directions other than subgradients is new. In a special
case, this method is similar to Shor's method with dilation along subgradient di�erence. For
this new dilation method, we establish convergence properties and convergence rate estimates
using dynamic stepsize rules for known and unknown optimal function value.

1.5. OUTLINE OF THE THESIS

In the �rst part of the thesis, we consider the incremental approach. In Chapter 2, we formally
introduce the incremental subgradient method, and we establish convergence properties and
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convergence rate estimates for various stepsize rules. In Chapter 3, we propose and analyze the
incremental subgradient method that uses randomization. By comparing the incremental ran-
domized method with the nonrandomized method, both analytically and computationally, we
demonstrate the advantages of randomization. We here also study the distributed asynchronous
incremental method. In Chapter 4, we investigate the modi�cations of the incremental method
involving weights and approximate subgradients (�-subgradients).

In the second part of the thesis, we discuss the variable metric subgradient methods.
In Chapter 5, we propose a method with limited amount of metric changes. We establish
convergence properties of the method under several stepsize rules. In Chapter 6, we consider
Shor's dilation method, and we also propose and analyze a new dilation method.
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2

An Incremental Subgradient Method

Throughout the whole thesis, we view the elements of <n as column vectors. We use x0 to
denote the transpose of a vector x, and k � k to denote the standard Euclidean norm in <n, i.e.,
kxk = p

x0x. For a function f : <n 7! < and a constraint set X � <n, we write f� and X� to
denote, respectively, the minimum value of a f over X and the set of minima of f over X i.e.,

f� = inf
x2X

f(x); X� =
�
x 2 X j f(x) = f�

	
:

We refer to the value f� and the set X�, respectively, as the optimal function value and the
optimal solution set. We also write dist(x; Y ) to denote the distance between a vector x and
a nonempty set Y , i.e.,

dist(x; Y ) = inf
y2Y

kx� yk:

In this part of the thesis, we consider the problem

minimize f(x) =

mX
i=1

fi(x)

subject to x 2 X;
(2.1)

where the function f : <n 7! < is convex, and the constraint set X � <n is a nonempty, closed,
and convex.

19
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2.1. THE METHOD

As mentioned earlier, a classical method for solving problem (2.1) is the subgradient method

xk+1 = PX
"
xk � �k

mX
i=1

di;k

#
; (2.2)

where PX denotes the projection on the setX, �k is a positive stepsize, and di;k is a subgradient
of fi at xk. In many important applications, the set X is simple enough so that the projection
can be easily implemented. In particular, for the problems of the type (2.1) arising in the dual
context from Lagrangian relaxation, the set X is either <n or the positive orthant in <n so
that projecting on X is either not needed or not expensive.

The incremental subgradient method is similar to the standard subgradient method (2.2).
The main di�erence is that at each iteration, x is changed incrementally, through a sequence
of m steps. Each step is a subgradient iteration for a single component function fi, and
there is one step per component function. Thus, an iteration can be viewed as a cycle of m
subiterations. If xk is the vector obtained after k cycles, the vector xk+1 obtained after one
more cycle is

xk+1 =  m;k; (2.3)

where  m;k is obtained after the m steps

 i;k = PX [ i�1;k � �kgi;k] ; i = 1; : : : ;m; (2.4)

starting with
 0;k = xk; (2.5)

where gi;k is a subgradient of fi at  i�1;k. The updates described by Eq. (2.4) are referred to
as the subiterations of the kth cycle.

Incremental subgradient methods that are somewhat di�erent from the method (2.3){
(2.5) have been proposed by Kaskavelis and Caramanis [KaC98], and Zhao, Luh, and Wang
[ZLW99]. Their methods share with ours the characteristic of computing a subgradient of only
one component fi per iteration, but di�er from ours in that the direction used in an iteration
is the sum of the (approximate) subgradients of all the components fi. Thus, these methods
essentially belong to the class of approximate subgradient (�-subgradient) methods.

2.2. ASSUMPTIONS AND SOME BASIC RELATIONS

In our analysis here and in the subsequent chapters, we repeatedly use the de�ning property
of a subgradient g of a convex function h : <n 7! < at a point x, which is

h(x) + g0(z � x) � h(z); 8 z 2 <n: (2.6)

We denote by @h(x) the subdi�erential (set of all subgradients) of h at x.
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We start with some assumptions and preliminary results that we frequently use in the
forthcoming analysis. In particular, regarding the subgradients of the component functions fi,
we assume the following:

Assumption 2.1: (Subgradient Boundedness) There exists a positive scalar C such that

kgk � C; 8 g 2 @fi(xk) [ @fi( i�1;k); 8 i = 1; : : : ;m; 8 k:

Since each component fi is real-valued and convex over the entire space <n, the subdi�erential
@fi(x) is nonempty and compact for all x and i. Therefore, if the set X is compact or
the sequences f i;kg are bounded, then Assumption 2.1 is satis�ed since the set [x2Z@fi(x)
is bounded for any bounded set Z (see e.g., Bertsekas [Ber99], Prop. B.24). We note that
Assumption 2.1 is also satis�ed if each fi is a polyhedral function, i.e., fi is the pointwise
maximum of a �nite number of aÆne functions. In this case, for every x, the set of subgradients
@fi(x) is the convex hull of a �nite number of vectors. In particular, often in problems (2.1)
arising from Lagrangian relaxation, each fi is a polyhedral function.

In the next lemma, we give a relation that captures the distance decrease property of the
iterates generated by the incremental method (2.3){(2.5). This lemma will play a crucial role
in establishing all of our convergence results.

Lemma 2.1: Let Assumption 2.1 hold. Then, for the sequence fxkg generated by the incre-
mental subgradient method, we have

kxk+1 � yk2 � kxk � yk2 � 2�k
�
f(xk)� f(y)

�
+ �2km

2C2; 8 y 2 X; 8 k;

where C is as in Assumption 2.1.

Proof: Using the nonexpansion property of the projection, the subgradient boundedness (cf.
Assumption 2.1), and the subgradient inequality (2.6) for each component function fi, we
obtain for all y 2 X,

k i;k � yk2 =


PX [ i�1;k � �kgi;k]� y



2
� k i�1;k � �kgi;k � yk2
� k i�1;k � yk2 � 2�kg0i;k( i�1;k � y) + �2kC

2

� k i�1;k � yk2 � 2�k
�
fi( i�1;k)� fi(y)

�
+ �2kC

2; 8 i = 1; : : : ;m; 8 k:

By adding the above inequalities over i = 1; : : : ;m, we see that for all y 2 X and k,

kxk+1 � yk2 � kxk � yk2 � 2�k

mX
i=1

�
fi( i�1;k)� fi(y)

�
+ �2kmC

2

= kxk � yk2 � 2�k

 
f(xk)� f(y) +

mX
i=1

�
fi( i�1;k)� fi(xk)

�!
+ �2kmC

2:
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By de�nition of the method [cf. Eqs. (2.3){(2.5)] and Assumption 2.1, we have that k i;k �
xkk � �kiC for all i and k. By using this relation, the subgradient inequality (2.6), and
Assumption 2.1, we obtain for all i and k,

fi(xk)� fi( i�1;k) � k~gi;kk � k i�1;k � xkk � Ck i�1;k � xkk � �k(i� 1)C2;

where ~gi;k 2 @fi(xk). From this and the preceding relation, we see that for all y 2 X and k,

kxk+1 � yk2 � kxk � yk2 � 2�k
�
f(xk)� f(y)

�
+ �2k

 
2

mX
i=2

(i� 1)C2 +mC2

!

= kxk � yk2 � 2�k
�
f(xk)� f(y)

�
+ �2km

2C2:

Q.E.D.

Among other things, Lemma 2.1 guarantees that given the current iterate xk and some other
point y 2 X with lower cost than xk, the next iterate xk+1 will be closer to y than xk, provided
the stepsize �k is suÆciently small [less than 2

�
f(xk) � f(y)

�
=(mC)2]. We will use this fact

repeatedly, with a variety of choices for y. Furthermore, when the optimal solution set X� is
nonempty, Lemma 2.1 yields a relation that plays an important role in our convergence rate
analysis. This relation is given in the following lemma.

Lemma 2.2: Let Assumption 2.1 hold, and assume that the optimal solution set X� is
nonempty. Then, for the sequence fxkg generated by the incremental subgradient method,
we have�

dist(xk+1;X�)
�2 � �dist(xk;X�)

�2 � 2�k
�
f(xk)� f�

�
+ �2km

2C2; 8 k: (2.7)

Proof: Using Lemma 2.1 with y = x� for any x� 2 X�, we see that

kxk+1 � x�k2 � kxk � x�k2 � 2�k
�
f(xk)� f�

�
+ �2km

2C2; 8 x� 2 X�; 8 k;

and by taking the minimum over all x� 2 X�, we obtain the desired relation. Q.E.D.

The assumption that the optimal solution set X� is nonempty is satis�ed, for example,
when the constraint set X is compact. Moreover, it can be seen that this assumption is also
satis�ed when infx2X fi(x) is �nite for each i, and at least one of the components fi has
bounded level sets (see Rockafellar [Roc70], Theorem 9.3).

2.3. CONSTANT STEPSIZE RULE

We here give convergence results and convergence rate estimates for the method using a con-
stant stepsize rule. Our �rst result shows that, when f� is �nite, this method yields (in the
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limit) a suboptimal function value with the approximation error �m2C2=2, and otherwise
yields the optimal function value, as seen in the following proposition.

Proposition 2.1: Let Assumption 2.1 hold. Then, for the sequence fxkg generated by the
incremental subgradient method with the stepsize �k �xed to some positive constant �, we
have:

(a) If f� = �1, then
lim inf
k!1

f(xk) = �1:

(b) If f� > �1, then

lim inf
k!1

f(xk) � f� +
�m2C2

2
;

where C is as in Assumption 2.1.

Proof: We prove (a) and (b) simultaneously. If the result does not hold, there must exist an
� > 0 such that

lim inf
k!1

f(xk)� �m2C2

2
� 2� > f�:

Let ŷ 2 X be such that

lim inf
k!1

f(xk) � f(ŷ) +
�m2C2

2
+ 2�;

and let k0 be large enough so that for all k � k0, we have

f(xk) � lim inf
k!1

f(xk)� �:

By combining the preceding two relations, we obtain

f(xk)� f(ŷ) � �m2C2

2
+ �; 8 k � k0:

Using Lemma 2.1, where y = ŷ, together with the preceding relation, we see that

kxk+1 � ŷk2 � kxk � ŷk2 � 2��; 8 k � k0;

implying that

kxk+1 � ŷk2 � kxk � ŷk2 � 2�� � kxk�1 � ŷk2 � 4�� � � � � � kxk0 � ŷk2 � 2(k + 1� k0)��;

which cannot hold for k suÆciently large, a contradiction. Q.E.D.

The preceding bound is sharp within a constant, i.e., there exists a problem such that
for any stepsize �, we can choose an initial point x0 and a processing order for components fi
so that

lim inf
k!1

f(xk) = f� +
1

16

�m2C2

2
; 8 i = 1; : : : ;m:

This is shown in the following example.
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Example 2.1:

Consider the following problem

minimize f(x1; x2) =

pX
i=1

�
jx1 + 1j + 2jx1j+ jx1 � 1j + jx2 + 1j+ 2jx2j + jx2 � 1j

�
subject to (x1; x2) 2 <2;

where p is a positive integer. The optimal value is f� = 4p and is attained at the point (x�1 ; x
�

2) =
(0; 0), which is the only optimal solution. Given any positive stepsize �, we choose (�p; 0) as an
initial point, where �p � 1, and we process the component functions of f in the following order: p
components of the form jx2 � 1j, p components of the form jx1j followed by p components of the
form jx1 +1j, p components of the form jx2j followed by p components of the form jx2 +1j, then p
components of the form jx1j followed by p components of the form jx1�1j, and then the remaining
p components of the form jx2j. It can be seen that this processing order produces the iterates xk
such that

f(xk) = f� + 2�p2; 8 i = 1; : : : ;m; 8 k:

Since m = 8p and C = 1, it follows that

f� + 2�p2 = f� +
1

16

�m2C2

2
;

which together with the preceding relation implies that

lim
k!1

f(xk) = f� +
1

16

�m2C2

2
; 8 i = 1; : : : ; m:

Furthermore, it can be seen that, even when subiterates  i;k are considered, the function values
f( i;k) cannot attain values lower than this bound.

We next estimate the number K of iterations needed to have

min
0�k�K

f(xk) � f� +
�m2C2 + �

2
;

where � is a given error tolerance. In particular, we have the following result.

Proposition 2.2: Let Assumption 2.1 hold, and assume that the optimal solution set X�

is nonempty. Let the sequence fxkg be generated by the incremental subgradient method
with the stepsize �k �xed to some positive constant �. Then, for a positive scalar � and the
nonnegative integer K given by

K =

�
1

��

�
dist(x0;X�)

�2�
;

we have

min
0�k�K

f(xk) � f� +
�m2C2 + �

2
: (2.8)
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Proof: To arrive at a contradiction, assume that

f(xk) > f� +
�m2C2 + �

2
; 8 k = 0; 1; : : : ;K:

By using this relation and Lemma 2.2, where �k is replaced by �, we obtain

�
dist(xk+1;X�)

�2 � �dist(xk;X�)
�2 � 2�

�
f(xk)� f�

�
+�2m2C2

� �dist(xk;X�)
�2 � (�2m2C2 + ��) + �2m2C2

=
�
dist(xk;X�)

�2 � ��; 8 k = 0; 1; : : : ;K:

Adding the above inequalities over k = 0; 1; : : : ;K yields

�
dist(xK+1;X�)

�2 � �dist(x0;X�)
�2 � (K + 1)��;

implying that

(K + 1)�� � �dist(x0;X�)
�2
;

which contradicts the de�nition of K. Q.E.D.

The result of Prop. 2.2 indicates that a higher accuracy in the computation of the optimal
function value f�, (i.e., small stepsize � and tolerance level �) corresponds to a larger number
K. This is quite natural since higher accuracy usually requires more work.

We next show that, for a function f with sharp minima, the convergence rate of the
method is linear for a suÆciently small stepsize. However, only convergence to a neighborhood
of the optimal solution set X� can be guaranteed.

Proposition 2.3: Let Assumption 2.1 hold, and assume that the optimal solution set X� is
nonempty. Assume further that there exists a positive scalar � such that

f(x)� f� � �
�
dist(x;X�)

�2
; 8 x 2 X: (2.9)

Then, for the sequence fxkg generated by the incremental subgradient method with the stepsize
�k �xed to some positive constant �, where � � 1

2� , we have

�
dist(xk+1;X�)

�2 � (1� 2��)k+1
�
dist(x0;X�)

�2
+
�m2C2

2�
; 8 k:

Proof: By using Eq. (2.9) and Lemma 2.2 with �k replaced by �, we obtain

�
dist(xk+1;X�)

�2 � �dist(xk;X�)
�2 � 2�

�
f(xk)� f�

�
+�2m2C2

� (1� 2��)
�
dist(xk;X�)

�2
+ �2m2C2; 8 k:
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From this relation, by induction, we can see that

�
dist(xk+1;X�)

�2 � (1� 2��)k+1
�
dist(x0;X�)

�2
+ �2m2C2

kX
j=0

(1� 2��)j ; 8 k;

which combined with
kX

j=0

(1� 2��)j � 1

2��
; 8 k;

yields the desired relation. Q.E.D.

2.4. DIMINISHING STEPSIZE RULE

We here consider the method that employs a diminishing stepsize. Our �rst result is a gener-
alization of a classical convergence result for the ordinary subgradient method, which was ob-
tained by Ermoliev [Erm66] and Polyak [Pol67], independently (see also Correa and Lemar�echal
[CoL93]).

Proposition 2.4: Let Assumption 2.1 hold, and let the stepsize �k be such that

lim
k!1

�k = 0;

1X
k=0

�k =1:

Then, for the sequence fxkg generated by the incremental method, we have

lim inf
k!1

f(xk) = f�:

Proof: Suppose to arrive at a contradiction that there exists an � > 0 such that

lim inf
k!1

f(xk) + 2� > f�:

Let ŷ 2 X be such that
lim inf
k!1

f(xk) � f(ŷ) + 2�;

and let k0 be large enough so that for all k � k0, we have

f(xk) � lim inf
k!1

f(xk)� �:

From the preceding two relations it follows that

f(xk)� f(ŷ) � �; 8 k � k0:
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Using Lemma 2.1, where y = ŷ, together with the preceding relation, we obtain

kxk+1 � ŷk2 � kxk � ŷk2 � �k(2�� �km2C2); 8 k � k0:

Because �k ! 0, without loss of generality, we may assume that k0 is large enough so that
� � �km2C2 for all k � k0, implying that

kxk+1 � ŷk2 � kxk � ŷk2 � �k� � kxk�1 � ŷk2 � �(�k�1 + �k) � � � � � kxk0 � ŷk2 � �

kX
j=k0

�j :

Since
P1

k=0 �k =1, this relation cannot hold for k suÆciently large, a contradiction. Q.E.D.

If we assume in addition that X� is nonempty and bounded, the result of Prop. 2.4 can
be strengthened, as seen in the forthcoming proposition. This proposition is also an extension
of the convergence result obtained by Solodov and Zavriev [SoZ98], which was proved by a
di�erent line of analysis using the stronger assumption that X is a compact set.

Proposition 2.5: Let Assumption 2.1 hold, and assume that the optimal solution set X� is
nonempty and bounded. Assume further that the stepsize �k is such that

lim
k!1

�k = 0;

1X
k=0

�k =1:

Then, for the sequence fxkg generated by the incremental subgradient method, we have

lim
k!1

dist(xk;X�) = 0; lim
k!1

f(xk) = f�:

Proof: The idea is to show that once xk enters a certain level set, it cannot get too far out
of that set. Fix an arbitrary 
 > 0, and let k0 be such that 
 � �km2C2 for all k � k0. We
consider k for k � k0 and we distinguish two cases:

Case 1: f(xk) > f� + 
. From Lemma 2.1 we obtain

kxk+1 � x�k2 � kxk � x�k2 � 2�k
�
f(xk)� f�

�
+ �2km

2C2; 8 x� 2 X�;

Hence,

kxk+1 � x�k2 < kxk � x�k2 � 2
�k + �2km
2C2 � kxk � x�k2 � �k
; 8 x� 2 X�;

so that
dist(xk+1;X�) � dist(xk;X�)� �k
: (2.10)

Case 2: f(xk) � f� + 
. This case must occur for in�nitely many k, in view of Eq. (2.10)
and the relation

P1
k=0 �k =1. Since xk belongs to the level set

L
 =
�
y 2 X j f(y) � f� + 


	
;
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which is bounded (in view of the boundedness of X�), we have

dist(xk;X�) � d(
) <1; (2.11)

where we denote
d(
) = max

y2L

dist(y;X�):

From the iteration (2.3){(2.5), we have kxk+1 � xkk � �kmC for any k, so that

kxk+1 � x�k � kxk � x�k+ kxk+1 � xkk � kxk � x�k+ �kmC; 8 x� 2 X�:

By taking the minimum in this relation over x� 2 X� and by using Eq. (2.11), we obtain

dist(xk+1;X�) � d(
) + �kmC: (2.12)

Combining Eq. (2.10) which holds when f(xk) > f� + 
 (Case 1 above), with Eq. (2.12)
which holds for the in�nitely many k such that f(xk) � f� + 
 (Case 2 above), we see that

dist(xk;X�) � d(
) + �kmC; 8 k � k0:

Therefore, because �k ! 0, we have

lim sup
k!1

dist(xk;X�) � d(
); 8 
 > 0:

Since in view of the continuity of f and the compactness of its level sets, we have that

lim

!0

d(
) = 0;

it follows that dist(xk;X�)! 0. This relation also implies that f(xk)! f�. Q.E.D.

The assumption thatX� is nonempty and bounded holds, for example, when infx2X fi(x)
is �nite for all i, and at least one of the components fi has bounded level sets (cf. Rockafellar
[Roc70], Theorem 9.3). Prop. 2.5 does not guarantee convergence of the entire sequence fxkg.
However, with slightly di�erent assumptions that include an additional mild restriction on the
stepsize sequence, this convergence is guaranteed, as shown in the following proposition.

Proposition 2.6: Let Assumption 2.1 hold, and assume that the optimal solution set X� is
nonempty. Assume further that the stepsize �k is such that

1X
k=0

�k =1;

1X
k=0

�2k <1:

Then, the sequence fxkg generated by the incremental subgradient method converges to some
optimal solution.
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Proof: By Lemma 2.1, where y = x� with x� 2 X�, we have

kxk+1 � x�k2 � kxk � x�k2 � 2�k
�
f(xk)� f�

�
+ �2km

2C2; 8 x� 2 X�; 8 k: (2.13)

Since f(xk)�f� � 0 for all k and
P1

k=0 �
2
k <1, it follows that the sequence fxkg is bounded.

Furthermore, by Prop. 2.4, we have that

lim inf
k!1

f(xk) = f�:

Let fxkjg be a subsequence of fxkg along which the above liminf is attained, so that

lim
j!1

f(xkj ) = f�: (2.14)

The sequence fxkjg is bounded, so it has limit points. Let x be one of them, and without loss
of generality we can assume that xkj ! x. By continuity of f and Eq. (2.14), we have that
x 2 X�, so from Eq. (2.13) with x� = x, we obtain for any j and any k � kj ,

kxk+1 � xk2 � kxk � xk2 + �2km
2C2 � � � � � kxkj � xk2 +m2C2

kX
i=kj

�2i :

Taking �rst the limit as k !1 and then the limit as j !1, from the preceding relation we
obtain

lim sup
k!1

kxk+1 � xk2 � lim
j!1

kxkj � xk2 +m2C2 lim
j!1

1X
i=kj

�2i ;

which by xkj ! x and
P1

k=0 �
2
k <1, implies that

lim sup
k!1

kxk+1 � xk2 = 0;

and consequently, xk ! x with x 2 X�. Q.E.D.

In Props. 2.4{2.6, we use the same stepsize �k in all subiterations of a cycle. As shown
by Kibardin in [Kib79] the convergence can be preserved if we vary the stepsize �k within each
cycle, provided that the variations of �k within a cycle are suitably small. We will see this
later on in Section 3.9 for a more general incremental method.

For a function f with a sharp minima, the convergence rate of the incremental subgradient
method using the stepsize �k = r=(k+1), with a positive scalar r, is sublinear. This convergence
rate estimate is given by Nedi�c and Bertsekas in [NeB01b].
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2.5. DYNAMIC STEPSIZE RULE FOR KNOWN f �

To this end, we analyzed the constant and the diminishing stepsize choices. An interesting
alternative for the ordinary subgradient method is the dynamic stepsize rule

�k = 
k
f(xk)� f�

kgkk2 ; 0 < 
 � 
k � 
 < 2;

where gk is a subgradient of f at xk. This stepsize rule was introduced by Polyak in [Pol69] (see
also discussions in Shor [Sho85], [Sho98], Br�annlund [Br�a93], and Bertsekas [Ber99]). Clearly,
this stepsize rule can be used only if f� is �nite, which we assume throughout this section. We
would like to use such a stepsize rule for the incremental method, so we propose a variant of
this stepsize where kgkk is replaced by an upper bound mC:

�k = 
k
f(xk)� f�

m2C2
; 0 < 
 � 
k � 
 < 2; (2.15)

where C is as in Assumption 2.1. For this choice of stepsize, we have to be able to calculate
the upper bound C, which can be done, for example, when the components fi are polyhedral.

We �rst consider the case where f� is known, and later we modify the stepsize so that f�

can be replaced by a dynamically updated estimate. Throughout this section, we assume that
f� is �nite, which is evidently needed to use the stepsize (2.15). We next give convergence and
convergence rate results for the method employing this stepsize.

Proposition 2.7: Let Assumption 2.1 hold. Then, for the sequence fxkg generated by the
incremental subgradient method with the dynamic stepsize rule (2.15), we have

lim inf
k!1

f(xk) = f�:

Proof: Suppose to obtain a contradiction that there exists � > 0 such that

f� +
2�

2� 
 � Æ
< lim inf

k!1
f(xk);

where Æ > 0 is a positive scalar such that 2� 
 � Æ > 0. Let k0 be large enough so that

2�

2� 
 � Æ
� f(xk)� f�; 8 k � k0; (2.16)

and let a vector ŷ 2 X be such that

f(ŷ)� f� � �:

Then, we have

f(ŷ)� f� � 2� 
 � Æ

2

�
f(xk)� f�

�
; 8 k � k0: (2.17)
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By Lemma 2.1, where y = ŷ and �k is given by Eq. (2.15), it follows that for all k � k0,

kxk+1 � ŷk2 � kxk � ŷk2 � �k

�
2
�
f(xk)� f(ŷ)

�� 
k
�
f(xk)� f�

��
= kxk � ŷk2 � �k

�
2
�
f(xk)� f�

�� 2
�
f(ŷ)� f�

�� 
k
�
f(xk)� f�

��
:

By using Eq. (2.17) in this relation, we see that

kxk+1 � ŷk2 � kxk � ŷk2 � �k(
 + Æ � 
k)
�
f(xk)� f�

�
; 8 k � k0:

Using the de�nition of the stepsize [cf. Eq. (2.15)] and Eq. (2.16), from the preceding inequality
we obtain for all k � k0,

kxk+1 � ŷk2 � kxk � ŷk2 � 4
Æ�2

m2C2(2� 
 � Æ)2
� � � � � kxk0 � ŷk2 � (k + 1� k0)4
Æ�2

m2C2(2� 
 � Æ)2
;

which cannot hold for k suÆciently large, a contradiction. Q.E.D.

When the optimal solution set X� is nonempty, the method converges to an optimal
solution, which we show in the next proposition.

Proposition 2.8: Let Assumption 2.1 hold, and assume that the optimal solution set X� is
nonempty. Then, the sequence fxkg generated by the incremental subgradient method with
the dynamic stepsize rule (2.15) converges to some optimal solution.

Proof: From Lemma 2.1 with y = x� 2 X�, we have

kxk+1 � x�k2 � kxk � x�k2 � 2�k
�
f(xk)� f�

�
+ �2km

2C2; 8 x� 2 X�; 8 k;
and by using the de�nition of �k, we obtain

kxk+1 � x�k2 � kxk � x�k2 � 
(2� 
)

�
f(xk)� f�

�2
m2C2

; 8 x� 2 X�; 8 k:

This implies that fxkg is bounded. Furthermore, f(xk)! f�, since otherwise we would have
kxk+1 � x�k � kxk � x�k � � for some suitably small � > 0 and in�nitely many k. Hence, for
any limit point x of fxkg, we have x 2 X�, and since the sequence

�kxk � x�k	 is decreasing,
it converges to kx� x�k for every x� 2 X�. If there are two limit points ~x and x of fxkg, we
must have ~x 2 X�, x 2 X�, and k~x� x�k = kx� x�k for all x� 2 X�, which is possible only if
~x = x. Q.E.D.

We next give several convergence rate estimates for the method with the dynamic stepsize.
In the next proposition, we present an asymptotic estimate for convergence rate of f(xk), which
extends the estimate for the ordinary subgradient method given by Polyak in [Pol87], Theorem
2, p. 142. In the same proposition, we also estimate the number K of cycles required for

min
0�k�K

f(xk) � f� + �
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to hold, where the scalar � is a prescribed error tolerance.

Proposition 2.9: Let Assumption 2.1 hold, and assume that the optimal solution set X� is
nonempty. Let the sequence fxkg be generated by the incremental subgradient method with
the dynamic stepsize (2.15). Then, the following hold:

(a) We have

lim inf
k!1

p
k
�
f(xk)� f�

�
= 0:

(b) For a positive scalar � and the nonnegative integer K given by

K =

�
m2C2

�2
(2� 
)

�
dist(x0;X�)

�2�
;

we have
min

0�k�K
f(xk) � f� + �:

Proof: (a) Assume, to arrive at a contradiction, that lim infk!1
p
k
�
f(xk) � f�

�
= 2� for

some � > 0. Then, for k0 large enough, we have f(xk)� f� � �p
k
for all k � k0, so that

1X
k=k0

�
f(xk)� f�

�2 � �2
1X

k=k0

1

k
=1: (2.18)

On the other hand, by using the de�nition of �k and Lemma 2.2, for all k � k0, we obtain

�
dist(xk+1;X�)

�2 � �dist(xk;X�)
�2 � 
k(2� 
k)

�
f(xk)� f�

�2
m2C2

; (2.19)

so that 1X
k=0

�
f(xk)� f�

�2
<1;

contradicting Eq. (2.18). Hence, we must have lim infk!1
p
k
�
f(xk)� f�

�
= 0.

(b) To arrive at a contradiction, assume that

f(xk)� f� > �; 8 k = 0; 1; : : : ;K:

By using this relation in Eq. (2.19), since 
k 2 [
; 
] for all k, we obtain

�
dist(xk+1;X�)

�2 � �dist(xk;X�)
�2 � 
(2� 
)

�2

m2C2
; 8 k = 0; 1; : : : ;K:

Adding these inequalities over k = 0; 1; : : : ;K yields

�
dist(xK+1;X�)

�2 � �dist(x0;X�)
�2 � (K + 1)

�2
(2� 
)

m2C2
;
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implying that

(K + 1)
�2
(2� 
)

m2C2
� �dist(x0;X�)

�2
;

contradicting the de�nition of K. Q.E.D.

Note that the bound on number K in Prop. 2.9(b), viewed as a function of 
 and 
, is smallest
when 
 = 
 = 1. Note also that, for a practical use of this bound, we need some additional
information about f or X such as, for example, an upper bound on dist(x0;X�).

Under some additional assumptions on f , we can obtain some di�erent types of estimate
of the convergence rate for the method with the dynamic stepsize. In deriving these estimates,
we use the following result given by Polyak [Pol87], Lemma 6, p. 46.

Lemma 2.3: Let fukg be a sequence of positive scalars satisfying

uk+1 � uk � �ku
1+p
k ; 8 k;

where �k are nonnegative scalars and p is a positive scalar. Then, we have

uk � u0

0
@1 + pup0

k�1X
j=0

�j

1
A
� 1
p

; 8 k:

In particular, if �k = � for all k, then

uk � u0(1 + pup0�k)
� 1
p ; 8 k:

By using this lemma, we have the following.

Proposition 2.10: Let Assumption 2.1 hold, and assume that the optimal solution set X� is
nonempty. Let the sequence fxkg be generated by the incremental subgradient method with
the dynamic stepsize (2.15). Then, the following hold:

(a) If for some positive scalar �, the function f satis�es

f(x)� f� � � dist(x;X�); 8 x 2 X;

we have
dist(xk;X�) � qk dist(x0;X�); 8 k;

where

q =

r
1� 
(2� 
)

�2

m2C2
:

(b) If for some positive scalars � and p, the function f satis�es

f(x)� f� � �
�
dist(x;X�)

�1+p
; 8 x 2 X;
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we have

dist(xk;X�) � dist(x0;X�)�
1 + Ck

� 1
2p

; 8 k;

where

C = p
(2� 
)
�2

m2C2

�
dist(x0;X�)

�2p
:

Proof: (a) By applying Lemma 2.2 with �k as in Eq. (2.15) and by using the given property
of f , we obtain

�
dist(xk+1;X�)

�2 � �1� 
(2� 
)
�2

m2C2

��
dist(xk;X�)

�2
; 8 k;

from which, by induction, the desired relation follows.

(b) Similar to part (a), from Lemma 2.2 with �k as in Eq. (2.15) and the given property of f ,
we obtain

�
dist(xk+1;X�)

�2 � �dist(xk;X�)
�2 � 
(2� 
)

�2

m2C2

�
dist(xk;X�)

�2(1+p)
; 8 k:

By denoting uk = (dist(xk;X�))2, we can rewrite the preceding inequality as follows

uk+1 � uk � �u1+pk ; 8 k;

where � = 
(2� 
)(�=mC)2. By Lemma 2.3, we have that

uk � u0�
1 + kp�up0

� 1
p

; 8 k;

and by using uk =
�
dist(xk;X�)

�2
and � = 
(2� 
)(�=mC)2, we obtain the desired relation.

Q.E.D.

2.6. DYNAMIC STEPSIZE RULE FOR UNKNOWN f �

In most practical problems the value f� is not known. In this case, a popular modi�cation of
the dynamic stepsize rule for the ordinary subgradient method is

�k = 
k
f(xk)� f levk

kgkk2 ; 0 < 
 � 
k � 
 < 2; (2.20)

where gk 2 @f(xk), and f levk is an estimate of f� often referred to as a target level. This
stepsize with a constant target level (i.e., f levk = w for some scalar w > 0 and all k) was
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�rst proposed by Polyak in [Pol69], and further analyzed by Allen, Helgason, Kennington,
and Shetty [AHK87], and Kim and Um [KiU93]. The adjustment procedures for the target
level f levk in Eq. (2.20) that require knowledge of an underestimate of f� are presented in
Bazaraa and Sherali [BaS81], Kim, Ahn, and Cho [KAC91], Kiwiel [Kiw96a], [Kiw96b]. The
procedures for f levk that do not require any additional information about f� are considered
in Bertsekas [Ber99], Br�annlund [Br�a93], GoÆn and Kiwiel [GoK99], Kiwiel, Larsson, and
Lindberg [KLL98], Kulikov and Fazylov [KuF90].

Here, we consider a modi�cation of the stepsize (2.20) of the form

�k = 
k
f(xk)� f levk

m2C2
; 0 < 
 � 
k � 
 < 2: (2.21)

We discuss two procedures for updating f levk that do not require any additional information
about f�. In both procedures, the estimate f levk is equal to the best function value achieved up
to the kth iteration, i.e., min0�j�k f(xj), minus a positive amount Æk which is adjusted based
on the algorithm's progress. The �rst adjustment procedure is new, even when specialized to
the ordinary subgradient method. This procedure is simple but is only guaranteed to yield a
Æ-optimal objective function value with Æ positive and arbitrarily small (unless f� = �1 in
which case the procedure yields the optimal function value). The second adjustment procedure
for f levk is more complex but is guaranteed to yield the optimal value f� in the limit.

In the �rst adjustment procedure, f levk is given by

f levk = min
0�j�k

f(xj)� Æk; (2.22)

and Æk is updated according to

Æk+1 =

�
�Æk if f(xk+1) � f levk ,
max

�
�Æk; Æ

	
if f(xk+1) > f levk ,

(2.23)

where Æ0, Æ, �, and � are �xed positive constants with � < 1 and � � 1. Thus, in this
procedure, we essentially \aspire" to reach a target level that is smaller by Æk over the best
value achieved thus far. Whenever the target level is achieved, we increase Æk or we keep it
at the same value depending on the choice of �. If the target level is not attained at a given
iteration, Æk is reduced up to a threshold Æ. This threshold guarantees that the stepsize �k of
Eq. (2.21) is bounded away from zero, since by Eq. (2.22), we have f(xk)� f levk � Æ and hence

�k � 

Æ

m2C2
:

As a result, the method behaves similar to the one with a constant stepsize (cf. Prop. 2.1), as
seen in the following proposition.

Proposition 2.11: Let Assumption 2.1 hold. Then, for the sequence fxkg generated by the
incremental method and the dynamic stepsize rule (2.21){(2.23), we have:
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(a) If f� = �1, then

inf
k�0

f(xk) = f�:

(b) If f� > �1, then

inf
k�0

f(xk) � f� + Æ:

Proof: To arrive at a contradiction, assume that

inf
k�0

f(xk) > f� + Æ: (2.24)

Each time the target level is attained [i.e., f(xk) � f levk�1], the current best function value
min0�j�k f(xj) decreases by at least Æ [cf. Eqs. (2.22) and (2.23)], so in view of Eq. (2.24), the
target value can be attained only a �nite number times. From Eq. (2.23) it follows that after
�nitely many iterations, Æk is decreased to the threshold value and remains at that value for
all subsequent iterations, i.e., there is an index k such that

Æk = Æ; 8 k � k: (2.25)

In view of Eq. (2.24), there exists y 2 X such that infk�0 f(xk) � Æ � f(y), so that by
Eqs. (2.22) and (2.25), we have

f levk = min
0�j�k

f(xj)� Æ � inf
k�0

f(xk)� Æ � f(y); 8 k � k;

implying that

�k
�
f(xk)� f(y)

� � �k
�
f(xk)� f levk

�
= 
k

�
f(xk)� f levk

mC

�2

; 8 k � k:

By Lemma 2.1 with y = y, it follows that

kxk+1 � yk2 � kxk � yk2 � 2�k
�
f(xk)� f(y)

�
+ �2km

2C2; 8 k � 0:

Using the preceding two relations and the de�nition of �k [cf. Eq. (2.21)], we obtain

kxk+1 � yk2 � kxk � yk2 � 2
k

�
f(xk)� f levk

mC

�2

+ 
2k

�
f(xk)� f levk

mC

�2

= kxk � yk2 � 
k(2� 
k)

�
f(xk)� f levk

mC

�2

� kxk � yk2 � 
(2� 
)
Æ2

m2C2
; 8 k � k;
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where the last inequality follows from the relations 
k 2 [
; 
] and f(xk)� f levk � Æ for all k.
Finally, by adding the above inequalities over k, we see that

kxk+1 � yk2 � kxk � yk2 � (k + 1� k)
(2� 
)
Æ2

m2C2
; 8 k � k;

which cannot hold for large k, a contradiction. Q.E.D.

When m = 1, the incremental subgradient method (2.3){(2.5) becomes the ordinary subgra-
dient method

xk+1 = PX [xk � �kgk]; 8 k:
Even for this method, the dynamic stepsize rule (2.21) with the adjustment procedure (2.22){
(2.23) (where mC is replaced by kgkk), and the convergence result of Prop. 2.11 are new.

We now consider another procedure for adjusting f levk , which guarantees that f levk ! f�,
and convergence of the associatedmethod to the optimum. This procedure is based on the ideas
and algorithms of Br�annlund [Br�a93], and GoÆn and Kiwiel [GoK99], where the parameter Æk
is reduced whenever the iterates \travel" a long distance without reaching the corresponding
target level. The incremental method using such a procedure is described in the following
algorithm.

Path-Based Incremental Target Level Algorithm

Step 0 (Initialization) Select x0, Æ0 > 0, and b > 0. Set �0 = 0, f rec�1 = 1. Set k = 0,
l = 0, and k(l) = 0 [k(l) will denote the iteration number when the l-th update of f levk

occurs].

Step 1 (Function evaluation) Compute f(xk). If f(xk) < f reck�1, then set f reck = f(xk).
Otherwise set f reck = f reck�1 [so that f reck keeps the record of the smallest value attained
by the iterates that are generated so far, i.e., f reck = min0�j�k f(xj)].

Step 2 (SuÆcient descent) If f(xk) � f reck(l)� Æl
2 , then set k(l+1) = k, �k = 0, Æl+1 = Æl,

increase l by 1, and go to Step 4.

Step 3 (Oscillation detection) If �k > b, then set k(l + 1) = k, �k = 0, Æl+1 =
Æl
2 , and

increase l by 1.

Step 4 (Iterate update) Set f levk = f reck(l) � Æl. Select 
k 2 [
; 
] and compute xk+1 via

Eqs. (2.3){(2.5) with the stepsize (2.21).

Step 5 (Path length update) Set �k+1 = �k + �kmC, increase k by 1, and go to Step 1.

The algorithm uses the same target level f levk = f reck(l)� Æl for k = k(l); k(l)+1; : : : ; k(l+1)� 1.

The target level is updated only if suÆcient descent or oscillation is detected (Step 2 or Step
3, respectively). It can be shown that the value �k is an upper bound on the length of the
path traveled by iterates xk(l); : : : ; xk for k < k(l + 1). Whenever �k exceeds the prescribed
upper bound b on the path length, the parameter Æl is decreased, which (possibly) increases
the target level f levk .
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We will show that infk�0 f(xk) = f� even if f� is not �nite. First, we give a preliminary
result showing that the target values f levk are updated in�nitely often (i.e., l ! 1), and that
infk�0 f(xk) = �1 when Æl is bounded away from zero.

Lemma 2.4: Let Assumption 2.1 hold. Then, for the path-based incremental target level
algorithm, we have l !1, and either infk�0 f(xk) = �1 or liml!1 Æl = 0.

Proof: Assume that l takes only a �nite number of values, say l = 0; 1; : : : ; l. In this case, we
have �k + �kC = �k+1 � B for all k � k(l), so that limk!1 �k = 0. But this is impossible,
since for all k � k(l), we have

�k = 
k
f(xk)� f levk

m2C2
� 


Æl
m2C2

> 0:

Hence, l!1.
Let Æ = liml!1 Æl. If Æ > 0, then from Steps 2 and 3 it follows that for all l large enough,

we have Æl = Æ and

f reck(l+1) � f reck(l) � �Æ
2
;

implying that infk�0 f(xk) = �1. Q.E.D.

We next give a convergence result for the path-based algorithm. In the special case of
the ordinary subgradient method, this result coincides with that of GoÆn and Kiwiel [GoK99].

Proposition 2.12: Let Assumption 2.1 hold. Then, for the path-based incremental target
level algorithm, we have

inf
k�0

f(xk) = f�:

Proof: If liml!1 Æl > 0, then by Lemma 2.4, we have infk�0 f(xk) = �1 and we are done,
so assume that liml!1 Æl = 0. Let � be given by

� =

�
l
��� Æl = Æl�1

2
; l � 1

�
:

Then, from Steps 3 and 5, we obtain

�k = �k�1 + �k�1mC =

k�1X
j=k(l)

�jmC;

so that k(l+ 1) = k and l + 1 2 � whenever
Pk�1

j=k(l) �jmC > b at Step 3. Hence,

k(l)�1X
j=k(l�1)

�j >
b

mC
; 8 l 2 �;



Sec. 2.6 Dynamic Stepsize Rule for Unknown f � 39

and since the cardinality of � is in�nite, we have

1X
j=0

�j �
X
l2�

k(l)�1X
j=k(l�1)

�j >
X
l2�

b

mC
=1: (2.26)

Assume, to obtain a contradiction, that infk�0 f(xk) > f�, so that for some ŷ 2 X and
� > 0, we have

inf
k�0

f(xk)� � � f(ŷ): (2.27)

Since Æl ! 0, there is a large enough l̂ such that Æl � � for all l � l̂, implying that

f levk = f reck(l) � Æl � inf
k�0

f(xk)� � � f(ŷ); 8 k � k(l̂):

Using this relation, Lemma 2.1 with y = ŷ, and the de�nition of �k, we obtain

kxk+1 � ŷk2 � kxk � ŷk2 � 2�k
�
f(xk)� f(ŷ)

�
+ �2km

2C2

� kxk � ŷk2 � 2�k
�
f(xk)� f levk

�
+ �2km

2C2

= kxk � ŷk2 � 
k(2� 
k)

�
f(xk)� f levk

�2
m2C2

� kxk � ŷk2 � 
(2� 
)

�
f(xk)� f levk

�2
m2C2

; 8 k � k(l̂):

By adding these inequalities over k � k(l̂), we see that


(2� 
)

m2C2

1X
k=k(l̂)

�
f(xk)� f levk

�2 � kxk(l̂) � ŷk2;

yielding
P1

k=k(l̂) �
2
k < 1 [see the de�nition of �k in Eq. (2.21)], and consequently �k ! 0.

This and the relation
P1

k=0 �k =1 [cf. Eq. (2.26)] imply by Prop. 2.4 that

lim inf
k!1

f(xk) = f�;

contradicting Eq. (2.27). Q.E.D.

Let us note that there is no need to keep the path bound b �xed. Instead, as the method pro-
gresses, we can decrease b (possibly at Step 3) in such a way that

P
l2� bl =1 [cf. Eq. (2.26)],

which ensures that the convergence result of Prop. 2.12 is preserved.
In an attempt to improve the eÆciency of the path-based incremental target level algo-

rithm, one may introduce parameters �; � 2 (0; 1) and � � 1 (whose values will be �xed at
Step 0), and modify Steps 2 and 3 as follows:
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Step 20 If f(xk) � f reck(l) � �Æl, then set k(l + 1) = k, �k = 0, Æl+1 = �Æl, increase l by 1,

and go to Step 4.

Step 30 If �k > b, then set k(l+ 1) = k, �k = 0, Æl+1 = �Æl, and increase l by 1.

It can be seen that the result of Prop. 2.12 still holds for this modi�ed algorithm. If we choose
� > 1 at Step 30, then in the proofs of Lemma 2.4 and Prop. 2.12 we have to replace liml!1 Æl
with lim supl!1 Æl.

We next give a convergence rate estimate that applies to the stepsize rule (2.21){(2.22)
with any of the two adjustment procedures previously discussed.

Proposition 2.13: Let Assumption 2.1 hold, and assume that the optimal solution set X� is
nonempty. Let fxkg be the sequence generated by the incremental subgradient method with
the dynamic stepsize (2.21){(2.22). Then, for the largest positive integer K such that

K�1X
k=0

Æ2k �
m2C2


(2� 
)

�
dist(x0;X�)

�2
;

we have
min

0�k�K
f(xk) � f� + max

0�j�K
Æj :

Proof: Assume, to arrive at a contradiction, that

f(xk) > f� + max
0�j�K

Æj ; 8 k = 0; 1; : : : ;K;

which implies that

f levk = min
0�j�k

f(xj)� Æk > f� + max
0�j�K

Æj � Æk � f�; 8 k = 0; 1; : : : ;K: (2.28)

From Lemma 2.2 and the de�nition of the stepsize, we obtain for all k,

�
dist(xk+1;X�)

�2 � �dist(xk;X�)
�2 � 2
k

f(xk)� f levk

m2C2

�
f(xk)� f�

�
+ 
2k

�
f(xk)� f levk

�2
m2C2

:

By using f(xk) � f� � f(xk) � f levk [cf. Eq. (2.28)] and f(xk) � f levk � Æk for all k, in the
preceding inequality, we see that

�
dist(xk+1;X�)

�2 � �dist(xk;X�)
�2 � 
k(2� 
k)

Æ2k
m2C2

; 8 k = 0; 1; : : : ;K:

Summing these inequalities over k = 0; 1; : : : ;K and using 
k 2 [
; 
] yields

�
dist(xK+1;X�)

�2 � �dist(x0;X�)
�2 � 
(2� 
)

KX
k=0

Æ2k
m2C2

;
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implying that
KX
k=0

Æ2k �
m2C2


(2� 
)

�
dist(x0;X�)

�2
;

thus contradicting the de�nition of K. Q.E.D.

The estimate of Prop. 2.13 is similar to the estimates for the ordinary subgradient method
that are obtained by Kiwiel [Kiw96a], and Kulikov and Fazylov [KuF90]. For the adjustment
procedure (2.23) with � = 1 and for the path-based adjustment procedure, the estimate of
Prop. 2.13 holds with Æ0 in place of max0�j�K Æj .

2.6.1 Remarks

It can be veri�ed that all the results of this section are valid for the incremental method that
does not use projections within the cycles, but rather employs projections at the end of cycles:

 i;k =  i�1;k � �kgi;k; gi;k 2 @fi( i�1;k); i = 1; : : : ;m;

where  0;k = xk and the iterate xk+1 is given by

xk+1 = PX [ m;k]:

This method and its modi�cations are proposed and analyzed by Solodov and Zavriev [SoZ98],
for the case of a compact set X and a diminishing stepsize rule.

The preceding convergence and convergence rate results hold assuming any order for pro-
cessing the component functions fi within a cycle, for as long as each component fi is processed
exactly once in every cycle. In particular, at the beginning of each cycle, we could reorder the
components fi by either shifting or reshu�ing and then proceed with the calculations until the
end of the cycle.

The convergence rate estimates of this section emphasize the role of the stepsize choice
in the performance of incremental subgradient methods. These estimates do not capture the
e�ects of processing order on the methods' performance, which can be signi�cant, as we will
see in the next section.

2.7. EFFECTS OF FIXED CYCLIC PROCESSING ORDER

Here, we will demonstrate by some examples the e�ects of a cyclic processing order on the
performance of the incremental subgradient method. For this, we assume that the component
functions f1; : : : ; fm are processed in the same order within each cycle. We also assume that
the optimal solution set X� is nonempty, and we consider the method with a constant stepsize
�, in which case the method exhibits an oscillatory behavior. To get some insights about
this phenomenon, we will consider some simple examples where the oscillatory behavior is
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displayed by the presence of limit cycles. We will introduce the size of a limit cycle, which in
a sense measures the oscillations, and we will show that the size of oscillations depends on the
processing order. As we will see, in the worst case (i.e., for the most unfavorable processing
order), the size of oscillations can be proportional to m�.

We de�ne the size of a limit cycle to be the maximal distance from the cycle points to
the optimal solution set X�. In particular, if the points  0;  1; : : : ;  m�1;  m (with  0 =  m)
comprise the limit cycle, then the size of this cycle is

max
1�i�m

dist
�
 i;X

��:
In the following example, we compute the size of limit cycles corresponding to the worst

and best cyclic processing order, for the case where f is a nondi�erentiable function.

Example 2.2: (Convex Nondi�erentiable Function)

Assume that x is a scalar, and that the problem has the form

minimize f(x) =

pX
i=1

jx+ 1j +

pX
i=1

jx� 1j+

2rpX
i=1

jxj

subject to x 2 <:

Here, the cost function f consists of p copies of the functions jx � 1j and jx + 1j, and 2rp copies
of the function jxj, where p and r are positive integers. We focus primarily on the case where p
is large in order to exhibit most prominently the e�ects of processing order. For simplicity, we
assume that x is unconstrained; a similar example can be constructed when there are constraints.
The minimum of f is attained at x� = 0, which is the unique optimal solution.

We consider the incremental subgradient method with a constant stepsize �. For xk outside
the interval [�1; 1], which contains the minima of the component functions fi, the subgradient of
each component fi is

gi;k =
n
�1 if xk < �1,
1 if xk > 1.

In this case, each of the steps

 i;k =  i�1;k � �gi;k ; i = 1; : : : ; m

[cf. Eq. (2.4) with �k = �] makes progress towards the minimum x� = 0, and in fact we have

j i;kj = j i�1;k j � �:

However, once the method enters the interval [�1; 1], it exhibits oscillatory behavior, i.e., the
iterates are trapped in a limit cycle.

For the method starting at the initial point x0 = p� with p� � 1, we determine the limit
cycles and compute their sizes for the worst and the best processing orders. To keep the analysis
simple, we assume that the subgradient g = 0 is used for component functions jxj at x = 0.

Let the processing order be as follows: rp functions of the form jxj followed by p functions
of the form jx + 1j, then rp functions of the form jxj followed by p functions of the form jx �
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1j. For this processing order, it can be seen that in each cycle, the �rst p + rp iterates are
p�; : : : ; �; 0;��; : : : ;�p�, and the subsequent p+rp iterates are �p�; : : : ;��; 0; �; : : : ; p�. Hence,
the size of the limit cycle is p�, which is proportional to m� [here m = 2(1+ r)p] and corresponds
to the worst processing order.

Let now the processing order be as follows: a function of the form jx + 1j followed by a
function of the form jx� 1j until all such components are processed, and then 2rp functions of the
form jxj. This is the best processing order, because after the �rst cycle, we have x1 = 0 = x�, and
each of the subsequent cycles generates the iterates 0;��; 0; : : : ;��; 0; 0; : : : ; 0, which comprise the
limit cycle. Thus, in this case, the size of the limit cycle is �, corresponding to the best processing
order.

As seen in this example, the performance of the method is substantially a�ected by the order
in which the functions fi are processed within each cycle, and in the worst case, it can be
proportional to m�. Therefore, a stepsize converging to zero is needed to con�ne the limit
cycle within the optimal solution set X�, thus resulting in convergence of the method.

When f is a di�erentiable function, the incremental method with a constant stepsize
exhibits a similar behavior, as seen in the following example.

Example 2.3: (Convex Di�erentiable Function)

Assume that x is a scalar, and that the problem has the form

minimize f(x) =
1

2

 
pX
i=1

(x� 1)2 +

pX
i=1

(x+ 1)2

!

subject to x 2 <:

Thus, the cost function consists of p copies of just two functions, (x�1)2 and (x+1)2, where p is a
large positive integer. The minimum value of f is attained at x� = 0, which is the unique optimal
solution.

We next determine limit cycles corresponding to the worst and best processing orders for
the method starting at x0 = �=(2 � �), with the stepsize � < 2. Consider �rst the case where, in
each cycle, the p terms (x � 1)2 are processed �rst and the p terms (x + 1)2 are processed next.
Let  0 be the iterate at the beginning. Then, the �rst p iterates within the cycle are given by

 i =  i�1 � �( i�1 � 1) = (1� �) i�1 + �; i = 1; : : : ; p;

leading to the mid-cycle iterate

 p = (1� �)p 0 + �
�
1 + (1� �) + � � �+ (1� �)p�1

�
= (1� �)p 0 +

�
1� (1� �)p

�
:

(2.29)

The subsequent p iterates within the cycle are given by

 p+i =  p+i�1 � �( p+i�1 + 1) = (1� �) p+i�1 � �; i = 1; : : : ; p;

leading similarly to the �nal iterate of the cycle

 2p = (1� �)p p �
�
1� (1� �)p

�
: (2.30)
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Thus, by combining Eqs. (2.29) and (2.30), we have

 m = (1� �)2p 0 �
�
1� (1� �)p

�2
:

Since m = 2p and since we must have  m =  0 in the limit, we obtain that the limit cycle starts
and ends at the point

 0 = �
1� (1� �)m=2

1 + (1� �)m=2
:

It can be seen that the size of the limit cycle is

1� (1� �)m=2

1 + (1� �)m=2
: (2.31)

Consider now the case where, in each cycle, we use the following processing order: a function
of the form (x+1)2 followed by a function of the form (x� 1)2. Since x0 = �=(2��), in the �rst
cycle, we have

 1 = x0 � �( 0 + 1) = (1� �)
�

2� �
� � = �

�

2� �
;

 2 =  1 � �( 1 � 1) = �(1 + �)
�

2� �
+ � =

�

2� �
;

and therefore, because m = 2p, the �rst cycle ends at the point  m = x0 and all subsequent cycles
are the same as the �rst one. Hence, the size of the limit cycle is

�

2� �
: (2.32)

When � is small, this processing order is worse than the preceding one, as seen from Eqs. (2.31)
and (2.32). However, when � is moderate and m is large enough, then this processing order is
better than the preceding one.

The preceding examples illustrate several common characteristics of the incremental subgradi-
ent and incremental gradient methods, which tend to manifest themselves in some generality:

(a) When far from the optimal solution set, the incremental method makes progress compa-
rable to that of the nonincremental method.

(b) When close to the optimal solution set X�, the method can be trapped in an oscillatory
region whose size depends on the stepsize and on the processing order for the component
functions.

(c) The precise e�ect of the processing order is not fully understood at present, but it is
interesting and substantial.



3

An Incremental Subgradient Method

with Randomization

In this chapter, we consider a version of the incremental subgradient method that uses ran-
domization. In particular, at each iteration we select randomly a component function whose
subgradient is used in the iteration update, where each component function fi is selected
with the same probability 1=m. We will here analyze the method for various stepsize choices,
and we will see that this randomized method can have a better convergence rate than the
nonrandomized incremental method (2.3){(2.5) discussed in Chapter 2.

3.1. THE METHOD

As discussed in the preceding chapter, the processing order for the components fi has a sig-
ni�cant a�ect on the convergence rate of the method. Unfortunately, determining the most
favorable order may be very diÆcult in practice. A popular technique for incremental gradient
methods (di�erentiable components fi) is to reshu�e randomly the order of the functions fi
at the beginning of each cycle. A variation of this method is to pick randomly a function fi at
each iteration rather than to pick each fi exactly once in every cycle according to a randomized
order. This variation can be viewed as a gradient method with random errors, as shown in
Bertsekas and Tsitsiklis [BeT96] (see also Bertsekas and Tsitsiklis [BeT00]). Similarly, the
corresponding incremental subgradient method at each step picks randomly a function fi to
be processed next. In this section, we will analyze the method for the constant, diminish-
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ing, and dynamic stepsize rules. For the case of a diminishing stepsize, the convergence of the
method follows from known stochastic subgradient convergence results (e.g., Ermoliev [Erm69],
[Erm76], [Erm83], and [Erm88], and Polyak [Pol87]). The analysis for the constant and dy-
namic stepsize rules is new and has no counterpart in the available stochastic subgradient
literature.

The formal description of the randomized order method is as follows:

xk+1 = PX
�
xk � �kg(!k; xk)

�
; k = 0; 1; : : : ; (3.1)

where x0 is an initial random vector, !k is a random variable taking equiprobable values from
the set f1; : : : ;mg, and g(!k; xk) is a subgradient of the component f!k at xk [i.e., if the
random variable !k takes a value j, then the vector g(!k; xk) is a subgradient of fj at xk].

3.2. ASSUMPTIONS AND SOME BASIC RELATIONS

In our analysis, we use the following assumption regarding the randomized method (3.1).

Assumption 3.1: Assume the following:

(a) The sequence f!kg is a sequence of independent random variables, each uniformly dis-
tributed over the set f1; : : : ;mg. Furthermore, the sequence f!kg is independent of the
sequence fxkg.

(b) The set of subgradients
�
g(!k; xk) j k = 0; 1; : : :

	
is bounded, i.e., there exists a positive

constant C such that with probability 1

kg(!k; xk)k � C; 8 k:

Note that if the constraint set X is compact or the components fi are polyhedral, then As-
sumption 3.1(b) is satis�ed. In our analysis, along with the preceding assumption, we often
use the assumption that the optimal solution set X� is nonempty. Furthermore, the proofs
of several propositions in this section rely on the Supermartingale Convergence Theorem as
stated, for example, in Bertsekas and Tsitsiklis [BeT96], p. 148.

Theorem 3.1: (Supermartingale Convergence Theorem) Let fYkg, fZkg, and fWkg
be sequences of random variables, and let Fk, k = 0; 1; 2; : : :, be sets of random variables such
that Fk � Fk+1 for all k. Suppose that:

(a) The random variables Yk, Zk, and Wk are nonnegative, and are functions of the random
variables in Fk.

(b) For each k, we have E
�
Yk+1 j Fk

	 � Yk � Zk +Wk.

(c) There holds
P1

k=0Wk <1.

Then, with probability 1, the sequence fYkg converges to a nonnegative random variable andP1
k=0 Zk <1.
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3.3. CONSTANT STEPSIZE RULE

Here, we establish convergence properties and convergence rate estimates for the method using
a constant stepsize �. We start with a basic result that we use in the analysis of this section
and the next one, where the diminishing stepsize rule is considered.

Lemma 3.1: Let Assumption 3.1 hold. Then, for the sequence fxkg generated by the ran-
domized method and a deterministic stepsize �k, we have

E
�kxk+1 � yk2 j Fk

	 � kxk � yk2 � 2�k
m

�
f(xk)� f�

�
+ �2kC

2; 8 y 2 X; 8 k;

where Fk = fx0; x1; : : : ; xkg.

Proof: By using Eq. (3.1), the nonexpansion property of the projection, and the boundedness
of the subgradients g(!k; xk), we have for any y 2 X and all k,

kxk+1 � yk2 = 

PX [xk � �kg(!k; xk)]� y


2

� kxk � �kg(!k; xk)� yk2
� kxk � yk2 � 2�kg(!k; xk)0(xk � y) + �2kC

2:

Since g(!k; xk) is a subgradient of f!k at xk, it follows that

g(!k; xk)0(xk � y) � f!k(xk)� f!k(y);

so that

kxk+1 � yk2 � kxk � yk2 � 2�k
�
f!k (xk)� f!k (y)

�
+ �2kC

2; 8 y 2 X; 8 k:
By taking the expectation conditioned on Fk = fx0; x1; : : : ; xkg in the preceding inequality
and by using

E
�
f!k(xk)� f!k(y) j Fk

	
=

1

m

mX
i=1

�
fi(xk)� fi(y)

�
=

1

m

�
f(xk)� f(y)

�
;

we obtain

E
�kxk+1 � yk2 j Fk

	 � kxk � yk2 � 2�k
m

�
f(xk)� f(y)

�
+ �2kC

2; 8 y 2 X; 8 k:

Q.E.D.

For the method (3.1) using the constant stepsize rule, we have the following convergence result.

Proposition 3.1: Let Assumption 3.1 hold. Then, for the sequence fxkg generated by the
randomized method and the stepsize �k �xed to some positive constant �, with probability 1,
we have:
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(a) If f� = �1, then

inf
k�0

f(xk) = f�:

(b) If f� > �1, then

inf
k�0

f(xk) � f� +
�mC2

2
:

Proof: We prove (a) and (b) simultaneously. Let N be an arbitrary positive integer, and let
yN 2 X be such that

f(yN) =

��N if f� = �1,
f� + 1

N
if f� > �1.

Consider the level set LN de�ned by

LN =

�
x 2 X j f(x) � f(yN) +

1

N
+
�mC2

2

�
;

and note that yN 2 LN . De�ne a new process fx̂kg as follows

x̂k =

�
xk if xk =2 LN ,
yN otherwise.

Thus, the process fx̂kg is identical to fxkg, except that once xk enters the level set LN , the
process fx̂kg terminates with x̂k = yN (since yN 2 LN ). Using Lemma 3.1 with y = yN , we
have

E
�kx̂k+1 � yNk2 j Fk

	 � kx̂k � yNk2 � 2�

m

�
f(x̂k)� f(yN)

�
+ �2C2; 8 k;

or equivalently,

E
�kx̂k+1 � yNk2 j Fk

	 � kx̂k � yNk2 � zk; 8 k; (3.2)

where

zk =

�
2�
m

�
f(x̂k)� f(yN)

�� �2C2 if x̂k =2 LN ,
0 if x̂k 2 LN .

For x̂k =2 LN , we have
f(x̂k)� f(yN) � 1

N
+
�mC2

2
;

implying that
2�

m

�
f(x̂k)� f(yN)

�� �2C2 � 2�

mN
:

Hence, zk � 0 if x̂k =2 LN , and since otherwise zk = 0, we see that zk � 0 for all k. Therefore,
by the Supermartingale Convergence Theorem, we obtain

P1
k=0 zk < 1 with probability 1,
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implying that x̂k 2 LN for some k, with probability 1. Thus, in the original process, by the
de�nitions of yN and LN , we have

inf
k�0

f(xk) �
(
�N + 1

N + �mC2

2 if f� = �1,

f� + 2
N + �mC2

2 if f� > �1,

with probability 1, and by letting N !1, we obtain the desired relations. Q.E.D.

The estimate in part (b) of the preceding proposition is sharp. For example, let fi(x) =
Cjxj for all x 2 < and i = 1; : : : ;m. For any �, choose the initial point x0 = �C=2. In this
case, it can be seen that the iterates xk generated by the method (3.1) take the values �C

2 or

��C
2
, so that

f(xk) =
�mC2

2
; 8 k:

To compare fairly the error bounds of Props. 2.1 and 3.1, we will assume that, in the
randomized method, the function f is evaluated every m iterations. Thus, by Prop. 3.1, for
the randomized method, we have

inf
k�0

f(xmk) � f� +
�mC2

2
:

At the same time, by Prop. 2.1, for the nonrandomized incremental method, we have

lim inf
k!1

f(xk) � f� +
�m2C2

2
:

Thus, for the same value of the stepsize �, the error bound for the randomized method is
smaller by a factor of m than that for the nonrandomized method (2.3){(2.5). This indicates
that when randomization is used, the stepsize �k could generally be chosen larger than in
the nonrandomized methods. Being able to use a larger stepsize suggests a potential rate
of convergence advantage in favor of the randomized methods, which is consistent with our
experimental results.

We next estimate the expected number of iterations needed to guarantee that, with
probability 1, a solution is obtained with the approximation error �. Such an estimate requires
that the optimal solution set is nonempty.

Proposition 3.2: Let Assumption 3.1 hold, and assume that the optimal solution set X� is
nonempty. Let the sequence fxkg be generated by the randomized method with the stepsize
�k �xed to some positive constant �. Then, for any positive scalar �, there exists a random
nonnegative integer N such that

min
0�k�N

f(xk) � f� +
�mC2 + �

2
;

with probability 1, and

EfNg � m

��
E
n�
dist(x0;X�)

�2o
:
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Proof: From Lemma 3.1 with y = x� and �k = �, we have

E
�kxk+1 � x�k2 j Fk

	 � kxk � x�k2 � 2�

m

�
f(xk)� f�

�
+ �2C2; 8 x� 2 X�; 8 k:

By taking the minimum over x� 2 X� of both sides in this relation and by using the inequality

E
n�
dist(xk+1;X�)

�2 �� Fko � min
x�2X�

E
�kxk+1 � x�k2 j Fk

	
;

we obtain

E
n�
dist(xk+1;X�)

�2 �� Fko � �dist(xk;X�)
�2 � 2�

m

�
f(xk)� f�

�
+ �2C2; 8 k: (3.3)

Let the level set L be given by

L =

�
x 2 X �� f(x) < f� +

�mC2 + �

2

�
;

and consider a new process fx̂kg de�ned by

x̂k =

�
xk if xk 62 L,
x� otherwise,

where x� 2 X� is some �xed vector. The process fx̂kg is identical to fxkg, except that once
xk enters the level set L the process fx̂kg terminates at x�. Thus, by Eq. (3.3), it follows that

E
n�
dist(x̂k+1;X�)

�2 �� Fko � �dist(x̂k;X�)
�2 � 2�

m

�
f(~xk)� f�

�
+ �2C2

=
�
dist(x̂k;X�)

�2 � zk; 8 k;
(3.4)

where

zk =

�
2�
m

�
f(x̂k)� f�

�� �2C2 if x̂k 62 L,
0 otherwise.

We have

zk � 2�

m

�
f� +

�mC2 + �

2
� f�

�
� �2C2 =

��

m
; if x̂k 62 L; (3.5)

and since otherwise zk = 0, by the Supermartingale Convergence Theorem, it follows thatP1
k=0 zk < 1 with probability 1. Hence, there exists a random nonnegative integer N such

that zk = 0 for all k � N , implying that x̂N 2 L with probability 1. Therefore, in the original
process, with probability 1, we have

min
0�k�N

f(xk) � f� +
�mC2 + �

2
:
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Furthermore, by taking the total expectation in Eq. (3.4), we obtain

E
n�
dist(~xk+1;X�)

�2o � E
n�
dist(~xk;X�)

�2o�Efzkg
� E

n�
dist(x0;X�)

�2o�E

8<
:

kX
j=0

zj

9=
; ; 8 k:

Therefore,

E
n�
dist(x0;X�)

�2o � E

( 1X
k=0

zk

)
= E

(
N�1X
k=0

zk

)
� ��

m
EfNg;

where the last inequality above follows from Eq. (3.5), and the facts xk 62 L for k < N and
zk = 0 for all k � N . Q.E.D.

To compare the result of Prop. 3.2 with that of Prop. 2.2, as a measure of complexity, we
will consider the number of function evaluations. For the nonrandomized incremental method
implemented with a constant stepsize �, we showed that (cf. Prop. 2.2)

min
0�k�K

f(xk) � f� +
�m2C2 + �

2

holds after K iterations, where

K =

�
1

��

�
dist(x0;X�)

�2�
:

Recall that, in the nonrandomized incremental method, we evaluate the function f at each iter-
ation. Thus, the number K represents the number of function evaluations needed to guarantee
that the optimal function value is achieved with error (�m2C2 + �)=2.

For a fair comparison, we assume that, in the randomized method, we use the same initial
point x0, the same tolerance level � and stepsize �, and that we evaluate the function f every
m iterations. Then, from Prop. 3.2 it follows that with probability 1,

min
0�k�K

f(xmk) � f� +
�mC2 + �

2
;

where the expected number of function evaluations K is such that

EfKg � 1

��

�
dist(x0;X�)

�2
:

Thus, the bound on the number of function evaluations is the same for both nonrandomized
and randomized method. However, the error term �m2C2 in the nonrandomized method is m
times larger than the corresponding error term in the randomized method.
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We now give a di�erent estimate of the convergence rate for the randomized method with
the constant stepsize rule, assuming that f has sharp minima.

Proposition 3.3: Let Assumption 3.1 hold, and assume that the optimal solution set X� is
nonempty. Assume further that for some positive scalar �, with probability 1, we have

f(x)� f� � �
�
dist(x;X�)

�2
; 8 x 2 X:

Then, for the sequence fxkg generated by the randomized order method with a stepsize �k
�xed to some positive scalar �, we have

E
n�
dist(xk+1;X�)

�2o � �1� 2��

m

�k+1

E
n�
dist(x0;X�)

�2o
+
�mC2

2�
; 8 k:

Proof: By using Lemma 3.1 with y = x� and �k = � for all k, we can see that [cf. Eq. (3.3)]

E
n�
dist(xk+1;X�)

�2 �� Fko � �dist(xk;X�)
�2 � 2�

m

�
f(xk)� f�

�
+ �2C2; 8k:

Then, by taking the total expectation and by using the given property of f , we obtain

E
n�
dist(xk+1;X�)

�2o � E
n�
dist(xk;X�)

�2o� 2�

m
E
�
f(xk)� f�

	
+ �2C2

�
�
1� 2��

m

�
E
n�
dist(xk;X�)

�2o
+ �2C2; 8 k:

Thus, by induction, we see that for all k,

E
n�
dist(xk+1;X�)

�2o � �1� 2��

m

�k+1

E
n�
dist(x0;X�)

�2o
+ C2�2

kX
j=0

�
1� 2��

m

�j
;

and by using the relation
kX

j=0

�
1� 2��

m

�j
� m

2��
;

we obtain the desired estimate. Q.E.D.

Let us compare, for the same initial vector x0 and stepsize �, the estimate of Prop. 3.3
with that of Prop. 2.3. For the nonrandomized method, we have shown that (cf. Prop. 2.3)

�
dist(xk+1;X�)

�2 � (1� 2��)k+1
�
dist(x0;X�)

�2
+
�m2C2

2�
; 8 k:

Thus, in both estimates, the error bound consists of two terms: the exponentially decreasing
term and the asymptotic term. For the same value of the stepsize �, the asymptotic term in



Sec. 3.4 Diminishing Stepsize Rule 53

the error bound for the nonrandomized method is m times larger than the asymptotic term
in the error bound for the randomized method. However, if in the randomized method the
stepsize � is replaced by m�, then the asymptotic terms and the exponentially decreasing
terms in the error bounds for both methods are the same. The main di�erence is that in the
nonrandomized method, k represents the number of cycles (with m iterations per cycle), while
in the randomized method, k represents the number of iterations. Therefore, for the same
error level, the nonrandomized method requires a number of iterations that is m times larger
than that of the randomized method.

3.4. DIMINISHING STEPSIZE RULE

We here analyze convergence of the randomized method (3.1) using a diminishing stepsize. In
this case, the method exhibits the convergence similar to that of the stochastic subgradient
method with the same stepsize, as seen in the following proposition.

Proposition 3.4: Let Assumption 3.1 hold, and assume that the optimal solution set X� is
nonempty. Assume further that the stepsize �k is such that

1X
k=0

�k =1;

1X
k=0

�2k <1:

Then, the sequence fxkg generated by the randomized method converges to some optimal
solution with probability 1.

Proof: Using Lemma 3.1 with y = x� 2 X�, we obtain

E
�kxk+1 � x�k2 j Fk

	 � kxk � x�k2 � 2�k
m

�
f(xk)� f�

�
+ �2kC

2; 8 x� 2 X�; 8 k:

By the Supermartingale Convergence Theorem, for each x� 2 X�, with probability 1, we have

1X
k=0

�k
�
f(xk)� f�

�
<1; (3.6)

and the sequence
�kxk � x�k	 converges.

For each x� 2 X�, let 
x� denote the set of all sample paths for which Eq. (3.6) holds
and

�kxk � x�k	 converges. By convexity of f , the set X� is convex, so there exist vectors
v0; v1; : : : ; vp 2 X� that span the smallest aÆne set containing X�, and are such that vi � v0,
i = 1; : : : ; p; are linearly independent. The intersection


 = \pi=1
vi
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has probability 1, and for each sample path in 
, the sequences
�kxk � vik

	
, i = 0; : : : ; p,

converge. Thus, with probability 1, fxkg is bounded, and therefore it has limit points. Fur-
thermore, for each sample path in 
, by Eq. (3.6) and the relation

P1
k=0 �k = 1, it follows

that
lim inf
k!1

f(xk) = f�;

implying that fxkg has at least one limit point that belongs to X� by continuity of f . For
any sample path in 
, let x and x̂ be two limit points of fxkg such that x 2 X�. Because�kxk � vik

	
converges for all i = 0; : : : ; p, we must have

kx� vik = kx̂� vik; 8 i = 0; 1; : : : ; p:

Moreover, since x 2 X�, the preceding relation can hold only for x = x̂ by convexity of X�

and the choice of vectors vi. Hence, for each sample path in 
, the sequence fxkg has a unique
limit point in X�, implying that fxkg converges to some optimal solution with probability 1.
Q.E.D.

When f has sharp minima, for a diminishing stepsize of the form �k = r=(k + 1) with
a positive scalar r, the convergence rate of the method is sublinear, i.e., the expected value

of
�
dist(xk;X�)

�2
converges to zero sublinearly. This is shown by Nedi�c and Bertsekas in

[NeB01b].

3.5. DYNAMIC STEPSIZE RULE FOR KNOWN f �

One possible version of the dynamic stepsize rule for the method (3.1) has the form

�k = 
k
f(xk)� f�

mC2
; 0 < 
 � 
k � 
 < 2;

where f
kg is a deterministic sequence. This stepsize requires knowledge of the cost function
value f(xk) at the current iterate xk. However, it would be ineÆcient to compute f(xk) at
each iteration since that iteration involves a single component fi, while the computation of
f(xk) requires all the components. We thus modify the dynamic stepsize rule so that the value
of f and the parameter 
k that are used in the stepsize formula are updated everyM iterations
rather than at each iteration, where M is any �xed positive integer. In particular, assuming
f� is known, we use the stepsize

�k = 
p
f(xMp)� f�

mMC2
; 0 < 
 � 
p � 
 < 2; k =Mp; : : : ;M(p+ 1)� 1; p = 0; 1; : : : ;

(3.7)
where f
pg is a deterministic sequence. Thus, we use the same stepsize within each block of
M consecutive iterations. We can chooseM greater than m, if m is relatively small, or we can
select M smaller than m, if m is very large.
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We next give a relation that will be used in the forthcoming convergence analysis.

Lemma 3.2: Let Assumption 3.1 hold, and let the sequence fxkg be generated by the ran-
domized method with the stepsize �k such that

�k = �Mp; k =Mp; : : : ;M(p+ 1)� 1; p = 0; 1; : : : :

Then, we have

E
�kxM(p+1)�yk2 j Gp

	 � kxMp�yk2�
2M�Mp

m

�
f(xMp)�f(y)

�
+M2�2MpC

2; 8 y 2 X; 8 p;

where Gp =
�
x0; x1; : : : ; xM(p+1)�1

	
.

Proof: By adapting Lemma 2.1 to the case where f is replaced by f!k , we have

kxk+1 � yk2 � kxk � yk2 � 2�k
�
f!k(xk)� f!k(y)

�
+ �2kC

2; 8 y 2 X; k � 0:

Because �k = �Mp for all k = Mp; : : : ;M(p + 1) � 1, by adding these inequalities over
k =Mp; : : : ;M(p+ 1)� 1, we obtain for all y 2 X and all p,

kxM(p+1) � yk2 � kxMp � yk2 � 2�Mp

M(p+1)�1X
k=Mp

�
f!k (xk)� f!k(y)

�
+M�2MpC

2:

Taking the conditional expectation with respect to Gp =
�
x0; x1; : : : ; xM(p+1)�1

	
, we have for

all y 2 X and all p,

E
�kxM(p+1) � yk2 j Gp

	 � kxMp � yk2 � 2�Mp

M(p+1)�1X
k=Mp

E
��
f!k(xk)� f!k(y)

� j xk	
+M2�2MpC

2

� kxMp � yk2 � 2�Mp

m

M(p+1)�1X
k=Mp

�
f(xk)� f(y)

�
+M2�2MpC

2:

(3.8)
We now relate f(xMp) and f(xk) for k =Mp; : : : ;M(p+ 1)� 1. We have for all y 2 X,

f(xk)� f(y) =
�
f(xk)� f(xMp)

�
+
�
f(xMp)� f(y)

�
� ~g0Mp(xk � xMp) + f(xMp)� f(y)

� f(xMp)� f(y)�mCkxk � xMpk; 8 k =Mp; : : : ;M(p+ 1)� 1; 8 p;
(3.9)

where ~gMp is a subgradient of f at xMp and in the last inequality we use the fact

k~gMpk =






mX
i=1

~gi;Mp






 � mC
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[cf. Assumption 3.1(b)], with ~gi;Mp being a subgradient of fi at xMp. Furthermore, by using
Assumption 3.1(b), we see that

kxk�xMpk � �Mp

k�1X
l=Mp

kg(!l; xl)k �
�
k�Mp

�
�MpC; 8 k =Mp; : : : ;M(p+1)�1; 8 p;

which when substituted in Eq. (3.9) yields for all y 2 X,

f(xk)� f(y) � f(xMp)� f(y)� �k �Mp
�
m�MpC2; 8 k =Mp; : : : ;M(p+ 1)� 1; 8 p:

From this relation and Eq. (3.8) we obtain for all y 2 X and all p,

E
�kxM(p+1) � yk2 j Gp+1

	 � kxMp � yk2 � 2M�Mp

m

�
f(xMp)� f(y)

�

+ 2�2MpC
2

M(p+1)�1X
k=Mp

�
k �Mp

�
+M�2MpC

2:

Since for all p,

2�2MpC
2

M(p+1)�1X
k=Mp

�
k �Mp

�
+M�2MpC

2 = 2�2MpC
2

M�1X
l=1

l +M�2MpC
2 =M2�2MpC

2;

it follows that for all y 2 X and all p,

E
�kxM(p+1) � yk2 j Gp

	 � kxMp � yk2 � 2M�Mp

m

�
f(xMp)� f(y)

�
+M2�2MpC

2:

Q.E.D.

In the next proposition, assuming that the optimal solution set is nonempty, we show that
the method (3.1) with the stepsize (3.7) converges to some optimal solution, with probability
1.

Proposition 3.5: Let Assumption 3.1 hold, and assume that the optimal solution set X� is
nonempty. Then, the sequence fxkg generated by the randomized method with the stepsize
(3.7) converges to some optimal solution with probability 1.

Proof: Using Lemma 3.2 (with y = x�) and the de�nition of �k, we see that

E
�kxM(p+1) � x�k2 j Gp

	 � kxMp � x�k2 � 
p
�
2� 
p

��f(xMp)� f�
�2

m2C2
; 8 x� 2 X�; 8 p:
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By the Supermartingale Convergence Theorem, it follows that with probability 1,

1X
p=0


p
�
2� 
p

��f(xMp)� f�
�2

m2C2
<1;

and for each x� 2 X�, the sequence
�kxMp � x�k	 converges. Because 
p 2 [
; 
] � (0; 2), it

follows that with probability 1,
lim
p!1

f(xMp) = f�:

For each x� 2 X�, let 
x� denote the set of all sample paths for which f(xMp)! f� and�kxMp � x�k	 converges. By convexity of f , it follows that X� is convex, and therefore there
exist the vectors v0; v1; : : : ; vr 2 X� that span the smallest aÆne set containing X�, and are
such that vi � v0, i = 1; : : : ; r are linearly independent. The intersection


 = \ri=1
vi

has probability 1, and for each sample path in 
, the sequences
�kxMp � vik

	
, i = 0; : : : ; r

converge. Thus, fxMpg is bounded and therefore has limit points, which belong to X� by
continuity of f and the relation f(xMp) ! f�. For any sample path in 
, if x and x̂ are two

limit points of fxkg, then since
�kxMp � vik

	
converges for every i = 0; : : : ; r, we must have

kx� vik = kx̂� vik; 8 i = 0; 1; : : : ; r:

Since x 2 X� and x̂ 2 X�, the preceding relation can hold only for x = x̂ by our choice of the
vectors vi. Hence, for each sample path in 
, the sequence

�
xMp

	
has a unique limit point in

X�, implying that
�
xMp

	
converges to some optimal solution with probability 1. Moreover,

by Assumption 3.1(b), it follows that for all p and k =Mp; : : : ;M(p+ 1)� 1,

kxk � xMpk � �Mp

k�1X
l=Mp

kg(!l; xl)k �
�
k �Mp

�
�MpC �M�MpC:

By the de�nition of �Mp and the relation f(xMp) ! f�, we have �Mp ! 0. Therefore, since
xMp converges to some optimal solution with probability 1, from preceding relation we see
that the same is true for xk. Q.E.D.

We next give some convergence rate estimates for the randomized method with the dy-
namic stepsize (3.7). We start with a preliminary result, which we will use here and in the
next section for a dynamic stepsize with unknown optimal function value.

Lemma 3.3: Let Assumption 3.1 hold, and assume that the optimal solution set X� is
nonempty. Let the sequence fxkg be generated by the randomized method with the step-
size �k such that

�k = �Mp; k =Mp; : : : ;M(p+ 1)� 1; p = 0; 1; : : : :
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Then, we have for all p,

E
n�
dist(xM(p+1);X

�)
�2 �� Gpo � �dist(xMp;X

�)
�2 � 2M�Mp

m

�
f(xMp)� f�

�
+M2�2MpC

2;

where Gp =
�
x0; x1; : : : ; xM(p+1)�1

	
.

Proof: The relation follows from Lemma 3.2 with y = x�, by taking the minimum over
x� 2 X�, and by using the following inequality

E
n�
dist(xM(p+1);X

�)
�2 �� Gpo � min

x�2X�
E
�kxM(p+1) � x�k2 j Gp

	
:

Q.E.D.

For the method with the dynamic stepsize, we have the following convergence rate result.

Proposition 3.6: Let Assumption 3.1 hold, and assume that the optimal solution set X� is
nonempty. Let the sequence fxkg be generated by the randomized method with the dynamic
stepsize (3.7). Then, the following hold:

(a) We have
lim inf
p!1

p
pE
�
f(xMp)� f�

	
= 0:

(b) For any positive scalar �, there exists a random nonnegative integer K such that

min
0�p�K

f(xMp) � f� + �;

with probability 1, and

EfKg � m2C2

�2
(2� 
)
E
n�
dist(x0;X�)

�2o
:

Proof: (a) Assume, to arrive at a contradiction, that for some � > 0,

lim inf
p!1

p
pE
�
f(xMp)� f�

	
= 2�:

Then, there exists p0 such that

E
�
f(xMP )� f�

	 � �p
p
; 8 p � p0;

implying that
1X

p=p0

E
n�
f(xMp)� f�

�2o � �2
1X

p=p0

1

p
=1: (3.10)
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On the other hand, by using the de�nition of �Mp, from Lemma 3.3 we have

E
n�
dist(xM(p+1);X

�)
�2 �� Gpo � �dist(xMp;X

�)
�2 � 
p(2� 
p)

m2C2

�
f(xMp)� f�

�2
; 8 p;

(3.11)
from which by using the relation 
p 2 [
; 
] for all p and by taking the total expectation, we
can see that

1X
p=0

E
�
f(xMp)� f�

	2
<1;

which contradicts Eq. (3.10). Hence, we must have lim infp!1
p
pE
�
f(xpM)� f�

	
= 0.

(b) Let the level set L be given by

L� =
�
x 2 X j f(x) � f� + �

	
;

and consider a new process fx̂kg de�ned by

x̂k =

�
xk if xMp 62 L,
x� otherwise,

k =Mp; : : : ;M(p+ 1)� 1; p = 0; 1; : : : ;

where x� 2 X� is some �xed vector. Thus, the process fx̂kg is identical to fxkg, except that
once xMp enters the level set L�, the process fx̂kg remains at the point x�. Then, for the
process fx̂kg it can be seen that [cf. Eq. (3.11)],

E
n�
dist(x̂M(p+1);X

�)
�2 �� Gpo � �dist(x̂Mp;X

�)
�2 � 
p(2� 
p)

m2C2

�
f(x̂Mp)� f�

�2
=
�
dist(x̂Mp;X

�)
�2 � zp; 8 p;

(3.12)

where

zp =

�

p(2�
p)
m2C2

�
f(x̂Mp)� f�

�2
if x̂Mp 62 L�,

0 otherwise.

In the case where x̂Mp 62 L�, by de�nition of �Mp, we have f(x̂Mp)� f� > �, so that

zp >
�2
(2� 
)

m2C2
; (3.13)

and since otherwise zp = 0, we see that zp � 0 for all p. Therefore, by the Supermartingale
Convergence Theorem, from Eq. (3.12) it follows that

P1
p=0 zp < 1 with probability 1, im-

plying that zp = 0 for all p � K, where K is a nonnegative random integer. Hence, x̂MK 2 L�
with probability 1, so that in the original process, we have with probability 1,

min
0�p�K

f(xMp) � f� + �:
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Furthermore, by taking the total expectation in Eq. (3.12), we obtain

E
n�
dist(x̂M(p+1) ;X�)

�2o � E
n�
dist(x̂Mp;X

�)
�2o�Efzpg

� E
n�
dist(x0;X�)

�2o�E

8<
:

pX
j=0

zj

9=
; ; 8 p:

Therefore,

E
n�
dist(x0;X�)

�2o � E

8<
:

1X
j=0

zj

9=
; = E

8<
:
K�1X
j=0

zj

9=
; � EfKg�

2
(2� 
)

m2C2
;

where the last inequality above follows from Eq. (3.13). Q.E.D.

When f has sharp minima, we can obtain a di�erent estimate of the convergence rate for
the randomized method with the dynamic stepsize, as seen in the following proposition.

Proposition 3.7: Let Assumption 3.1 hold, and assume that the optimal solution set X� is
nonempty. Assume further that for some positive scalar �, with probability 1, we have

f(x)� f� � � dist(x;X�); 8 x 2 X:
Then, for the sequence fxkg generated by the randomized method with the dynamic stepsize
(3.7), we have

E
�
dist(xMp;X

�)
	 � rp

r
E
n�
dist(x0;X�)

�2o
; 8 p;

where

r =

r
1� 
(2� 
)

�2

m2C2
:

Proof: From Lemma 3.3, by using the de�nition of �Mp, we obtain

E
n�
dist(xM(p+1);X

�)
�2 �� Gpo � �dist(xMp;X

�)
�2 � 
p(2� 
p)

m2C2

�
f(xMp)� f�

�2
; 8 p:

By taking the total expectation in this inequality, and by using the given property of f and
the relation 
p 2 [
; 
] for all p, we have

E
n�
dist(xM(p+1);X

�)
�2o � �1� 
(2� 
)

�2

m2C2

�
E
n�
dist(xMp;X

�)
�2o

; 8 p;

from which the desired estimate follows by induction. Q.E.D.

It is diÆcult to compare the results of Props. 3.6 and 3.7 with the results of the corre-
sponding Props. 2.9 and 2.10. Based on these results, if M is much smaller than m, then the
convergence rate of the randomized method is superior. However, for a small M , there is an
increased overhead associated with calculating the value of the dynamic stepsize.
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3.6. DYNAMIC STEPSIZE RULE FOR UNKNOWN f �

In the case where f� is not known, we modify the dynamic stepsize (3.7) by replacing f� with
a target level estimate f levp . Thus, the stepsize is

�k = 
p
f(xMp)� f levp

mMC2
; 0 < 
 � 
p � 
 < 2; k =Mp; : : : ;M(p+ 1)� 1; p = 0; 1; : : : :

(3.14)
To update the target values f levp , we may use any of the two adjustment procedures described
in Chapter 2. Before we go into analysis of these procedures, let us �rst establish a preliminary
result that applies to both of them.

Lemma 3.4: Let Assumption 3.1 hold and let the sequence fxkg be generated by the ran-
domized method using the stepsize (3.14). Assume that the target values f levp in Eq. (3.14)
are such that

f levp = min
0�j�p

f
�
xMj

�� Æp; 8 p;

where the scalar sequence fÆpg is positive and nonincreasing. Then, with probability 1, we
have

inf
p�0

f(xMp) � f� + lim
p!1

Æp:

Proof: Let p̂ and N be arbitrary positive integers but �xed, and let yN 2 X be such that

f(yN) =

��N if f� = �1,
f� + 1

N if f� > �1.

De�ne the level set L by

L =
�
x 2 X j f(x) � f(yN) + Æp̂

	
;

and note that yN 2 L. In parallel with the process fxkg, consider the process fx̂kg de�ned by

x̂k =

�
xk if xMp 62 L,
yN otherwise,

8 k =Mp; : : : ;M(p+ 1)� 1; 8 p:

Thus, the process fx̂kg is the same as fxkg up to the time when xMp enters the level set L, in
which case the process fx̂kg remains at yN .

In view of the de�nition of x̂k, similar to the proof of Lemma 3.2 with y = yN , we can
see that for all p � p̂,

E
�kx̂M(p+1) � yNk2 j Ĝp

	 � kx̂Mp � yNk2 �
2M�Mp

m

�
f(x̂Mp)� f(yN)

�
+M2�2MpC

2

� kx̂Mp � yNk2 � zp;

(3.15)
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where Ĝp =
�
xMp̂; xMp̂+1; : : : ; xM(p+1)�1

	
and

zp =

(
2M�Mp

m

�
f(x̂Mp)� f(yN)

��M2�2MpC
2 if x̂Mp 62 L,

0 if x̂Mp 2 L,
8 p � p̂:

If x̂Mp 62 L for p � p̂, then we have by de�nition of the process fx̂kg that
x̂Mj 62 L; 8 j = 0; 1; : : : ; p;

which by de�nition of the set L implies that

f
�
x̂Mj

�
> f(yN) + Æp̂; 8 j = 0; 1; : : : ; p:

Hence,
min
0�j�p

f
�
x̂Mj

�� Æp̂ > f(yN):

Since Æp is nonincreasing, we have Æp � Æp̂ for p � p̂, so that

f levp = min
0�j�p

f
�
x̂Mj

�� Æp � min
0�j�p

f
�
x̂Mj

�� Æp̂ > f(yN);

and therefore,
f(x̂Mp)� f(yN) > f(x̂Mp)� f levp :

This relation, and the de�nitions of zp and �Mp yield

zp > 
p(2� 
p)

�
f(x̂Mp)� f levp

�2
m2C2

� 
(2� 
)
Æ2p

m2C2
> 0:

Hence, if x̂Mp 62 L for p � p̂, then zp > 0, and since otherwise zp = 0, it follows that zp � 0
for all p � p̂. From Eq. (3.15) by the Supermartingale Convergence Theorem, we have thatP1

p=p̂ zp < 1 with probability 1, implying that x̂Mp 2 L for some p � p̂, with probability 1.
Therefore, in the original process, we have with probability 1,

inf
p�0

f
�
xMp

� � ��N + Æp̂ if f� = �1,
f� + 1

N + Æp̂ if f� > �1,

and by letting N !1, we obtain

inf
p�0

f
�
xMp

� � ��1 if f� = �1,
f� + Æp̂ if f� > �1.

Finally, by letting p̂!1, the desired relation follows. Q.E.D.

We next consider the adjustment procedures of Section 2.6 that are adapted to the
stepsize (3.14). In the �rst adjustment procedure, f levp is given by

f levp = min
0�j�p

f
�
xMj

�� Æp; (3.16)
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and Æp is updated according to

Æp+1 =

(
Æp if f

�
xM(p+1)

� � f levp ,

max
�
�Æp; Æ

	
if f
�
xM(p+1)

�
> f levp ,

(3.17)

where Æ0, Æ, and � are �xed positive scalars with � < 1 [note here that the parameter � of Eq.
(2.23) is set to 1; our results rely on this restriction]. Thus, all the parameters of the stepsize
are updated every M iterations. Since the stepsize is bounded away from zero, the method
behaves similar to the one with a constant stepsize (cf. Prop. 3.1), as seen in the following
proposition.

Proposition 3.8: Let Assumption 3.1 hold. Then, for the sequence fxkg generated by the
randomized method and the stepsize (3.14){(3.17), with probability 1, we have:

(a) If f� = �1, then
inf
p�0

f(xMp) = f�:

(b) If f� > �1, then
inf
p�0

f(xMp) � f� + Æ:

Proof: We prove (a) and (b) simultaneously. By Lemma 3.4, it follows that with probability
1,

inf
p�0

f(xMp) � f� + lim
p!1

Æp:

If limp!1 Æp = Æ with some probability �, then we have with probability �,

inf
p�0

f(xMp) � f� + Æ:

If limp!1 Æp > Æ, which occurs with probability 1��, then the target level is achieved in�nitely
many times, i.e., f

�
xM(p+1)

� � f levp in�nitely many times, with probability 1��. Since Æp � Æ

for all p, it follows that the function value is reduced by at least Æ in�nitely many times. Hence,
in this case, we have with probability 1� �,

inf
p�0

f
�
xMp

�
= �1:

Thus, if f� = �1, the relation in part (a) holds with probability 1. If f� > �1, then we
must have limp!1 Æp > Æ with probability 0, thereby implying that the relation in part (b)
holds with probability 1. Q.E.D.

The target level f levp can also be updated according to the second adjustment procedure
discussed in Section 2.6, which we adjust for the randomizedmethod that uses the same stepsize
within each block of M consecutive iterations. We present this procedure in an algorithmic
form, as follows.
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Path-Based Randomized Target Level Algorithm

Step 0 (Initialization) Select x0, Æ0 > 0, and b > 0. Set �0 = 0, f rec�1 = 1. Set p = 0,
l = 0, and p(l) = 0 [p(l) will denote the iteration number when the l-th update of f levp

occurs].

Step 1 (Function evaluation) Compute f(xMp). If f(xMp) < f recp�1, then set f recp =
f(xMp). Otherwise set f recp = f recp�1 [so that f recp keeps the record of the smallest value
attained by the iterates at the end of each block of M iterations that are generated so
far, i.e., f recp = min0�j�p f(xMj)].

Step 2 (SuÆcient descent) If f(xMp) � f recp(l)� Æl
2 , then set p(l+1) = p, �p = 0, Æl+1 = Æl,

increase l by 1, and go to Step 4.

Step 3 (Oscillation detection) If �p > b, then set p(l + 1) = p, �p = 0, Æl+1 =
Æl
2
, and

increase l by 1.

Step 4 (Iterate update) Set f levp = f recp(l) � Æl. Select 
p 2 [
; 
] and for k = Mp +

1; : : : ;M(p+ 1), calculate xk via Eq. (3.1) with the stepsize (3.14).

Step 5 (Path length update) Set �p+1 = �p+�MpMC, increase p by 1, and go to Step 1.

For this algorithm, we have the following convergence result.

Proposition 3.9: Let Assumption 3.1 hold. Then, for the sequence fxkg generated by the
path-based randomized incremental algorithm, with probability 1, we have

inf
k�0

f(xk) = f�:

Proof: We �rst show that l ! 1 with probability 1. To obtain a contradiction, we assume
that l takes only a �nite number of values, say l = 0; 1; : : : ; l, with some positive probability.
In this case, we have �p +�MpC = �p+1 � B for all p � p(l), so that limp!1 �Mp = 0, with

some positive probability. But this is impossible, since for all p � p(l), we have

�Mp = 
p
f(xMp)� f levp

mMC2
� 


Æl
mMC2

> 0:

Hence, l!1 with probability 1.
By Lemma 3.4, it follows that with probability 1,

inf
p�0

f(xMp) � f� + lim
p!1

Æp:

If limp!1 Æp = 0 with some probability �, then we have with probability �,

inf
p�0

f(xMp) � f�:
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If limp!1 Æp > 0, which occurs with probability 1��, then from Steps 2 and 3, it follows that
for all l large enough, we have Æl = Æ and

f recp(l+1) � f recp(l) � �Æ
2
;

implying that with probability 1� �,

inf
p�0

f(xMp) = �1:

Hence, if f� = �1, then the relation in part (a) holds with probability 1. If f� > �1, then
we must have limp!1 Æp > 0 with probability 0, thereby implying that the relation in part (b)
holds with probability 1. Q.E.D.

In the next proposition, we give a convergence rate result that applies to both procedures.

Proposition 3.10: Let Assumption 3.1 hold, and assume that the optimal solution set X�

is nonempty. Let the sequence fxkg generated by the randomized method with the stepsize
(3.14), (3.16), where the scalar sequence fÆpg is positive and nonincreasing. Then, there exists
K is a random nonnegative integer such that

min
0�p�K

f(xMp) � f� + Æ0;

with probability 1, and

E

(
K�1X
p=0

Æ2p

)
� m2C2


(2� 
)
E
n�
dist(x0;X�)

�2o
:

Proof: Let the level set L be given by

L =
�
x 2 X j f(x) � f� + Æ0

	
;

and consider a new process fx̂kg de�ned as follows

x̂k =

�
xk if xMp 62 L,
x� otherwise,

8 k =Mp; : : : ;M(p+ 1)� 1; 8 p = 0; 1; : : : ;

where x� is a �xed vector in X�. The process fx̂kg is identical to fxkg, except that once xMp

enters the level set L, the process fx̂kg terminates at the point x�. Then, for the process fx̂kg,
by Lemma 3.3, we have for all p,

E
n�
dist(xM(p+1);X

�)
�2 �� Gpo � �dist(xMp;X

�)
�2 � 2M�Mp

m

�
f(xMp)� f(y)

�
+M2�2MpC

2;
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and by using the de�nition of �Mp, we obtain

E
n�
dist(xM(p+1);X

�)
�2 �� Gpo � �dist(x̂Mp;X

�)
�2 � zp; 8 p; (3.18)

where

zp =

(

p

m2C2

�
f(xMp)� f levp

��
f(xMp)� f�

�� 
2p
m2C2

�
f(xMp)� f levp

�2
if x̂Mp 62 L,

0 otherwise,
8 p:

When x̂Mp =2 L, we have

f(x̂Mj) > f� + Æ0; j = 0; : : : ; p;

so that
f levp = min

0�j�p
f(x̂Mj)� Æp � f� + Æ0 � Æp � f�;

where we use Æ0 � Æp for all p. Therefore, it follows that

f(xMp)� f� � f(xMp)� f levp :

Using this relation and f(xMp)� f levp � Æp, we obtain

zp � 
p(2� 
p)

m2C2

�
f(xMp)� f levp

�2 � Æ2p
p(2� 
p)

m2C2
> 0: (3.19)

Thus, zp > 0 if x̂Mp 62 L and since otherwise zp = 0, we see that zp � 0 for all p. By the

Supermartingale Convergence Theorem, from Eq. (3.18) it follows that
P1

p=0 zp < 1 with
probability 1, implying that zp = 0 for all p � K, where K is a random nonnegative integer.
Hence, x̂MK 2 L with probability 1, so that in the original process with probability 1,

min
0�p�K

f(xMp) � f� + Æ0:

Furthermore, by taking the total expectation in Eq. (3.18), we have

E
n�
dist(x̂M(p+1) ;X�)

�2o � E
n�
dist(x̂Mp;X

�)
�2o�Efzpg

� E
n�
dist(x0;X�)

�2o�E

8<
:

pX
j=0

zj

9=
; ; 8 p:

Using this relation, the de�nition of zp, and Eq. (3.19), we see that

E
n�
dist(x0;X�)

�2o � E

( 1X
k=0

zk

)
= E

(
K�1X
k=0

zk

)
� E

(
K�1X
k=0

Æ2p
p(2� 
p)

m2C2

)
;
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and since 
p 2 [
; 
] for all p, we obtain

E

(
K�1X
k=0

Æ2p

)
� m2C2


(2� 
)
E
n�
dist(x0;X�)

�2o
:

Q.E.D.

We can compare the estimate of Prop. 3.10 with that of Prop. 2.13 for the nonrandomized
method. For the same initial point x0, when M is much smaller than m, the convergence rate
of the randomized method is better. But for a small M , there is more overhead associated
with function evaluation, which is needed to compute the dynamic stepsize.

In both adjustment procedures [cf. Eqs. (3.16) and (3.17), and the path-based algorithm],
we have Æ0 � Æp for all p, since the scalars Æp are nonincreasing in each procedure. Thus, the
estimate of Prop. 3.10 applies to both procedures. In particular, based on this estimate, we
can obtain another upper bound on EfKg for the �rst adjustment procedure [cf. Eqs. (3.16)
and (3.17)],

EfKg � m2C2

Æ2
(2� 
)
E
n�
dist(x0;X�)

�2o
:

3.7. EFFECTS OF RANDOMIZED PROCESSING ORDER

In the preceding sections, for various stepsize rules, we compared convergence rates of the
randomized method with that of the nonrandomized incremental method. To get some further
insights into the e�ects of randomization, let us revisit the examples of Section 2.7.

For an easier reference, let us again state the problem considered in Example 2.2.

Example 3.1: (Convex Nondi�erentiable Function)

The problem has the form

minimize f(x) =

pX
i=1

jx+ 1j +

pX
i=1

jx� 1j+

2rpX
i=1

jxj

subject to x 2 <;

(3.20)

where p and r are positive integers. Here, the optimal solution set consists of a single vector,
x� = 0. We consider the randomized method, as applied to this problem, using a small constant
stepsize � such that p� � 1, and the initial point x0 = p�. At each step, an index j is selected
from the set

�
1; : : : ; 2(1 + r)p

	
with probability 1=

�
2(1 + r)p

�
and then the iteration

xk+1 = xk � �gk

is executed, where gk is a subgradient of fj at the point xk.
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Since the starting point is an integer multiple of �, all the points generated by the algorithm
are integer multiples of �. As a result, the algorithm can be modeled by a Markov chain of a
random walk type. Let N > 0 and � = 1=N . De�ne the states of the chain to be �N�; (�N +
1)�; : : : ;��; 0; �; : : : ; (N � 1)�;N�. To simplify the notation, we will use i to denote the state i�
for i = �N;�N + 1; : : : ;�1; 0; 1; : : : ; N � 1; N . It can be seen that the transition probabilities

Pi;j = Pfxk+1 = j j xk = ig

are given by
P�N;�N+1 = PN;N�1 = 1;

Pi�N;i+1�N = PN�i;N�(i+1) =
1 + 2r

2(1 + r)
; i = 1; : : : ; N � 1;

P�i;�i�1 = Pi;i+1 =
1

2(1 + r)
; i = 0; : : : ; N � 1:

The stationary probability distribution of the chain is

Pfx = ig = Pfx = �ig = �iPfx = 0g; i = 1; : : : ; N;

Pfx = 0g =

 
1 + 2

NX
i=1

�i

!
�1

;

where � = 1=(1 + 2r). For N large, we have Pfx = 0g � 1��
1+�

= r=(1 + r) and

Efx2g = 2Pfx = 0g

NX
i=1

�2i2�i

� 2�2Pfx = 0g
�+ �2

(1� �)3

� 2�2
�

(1� �)2

= 2�2
1 + 2r

4r2
;

where we used the estimate
PN

i=1
i2qi � q+q2

(1�q)3
for a large scalar N and any scalar q 2 (0; 1).

Since Efxg = 0, we have

�x �
�

2r

p
2(1 + 2r):

Thus, the standard deviation �x of x does not depend on the value of p and tends to 0 as r increases.
As seen in Example 2.2, when incremental method is used with a �xed cyclic order, the size

of the limit cycle is p� for the worst processing order. If p is large then this distance is also large
as compared to the standard deviation �x of the randomized method. Hence, the e�ects of a poor
processing order of the components fi within a cycle can be eliminated by randomization.

The most interesting aspect of the preceding example is that the randomized method has
qualitatively superior convergence characteristics than the nonrandomized variant (unless the
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order of processing the components fi is favorably chosen). This type of behavior can be seen
in other similar (but multidimensional) examples involving nondi�erentiable cost functions,
and is also evident in our computational experiments to be described in the next chapter.

In the preceding example, the functions fi are nondi�erentiable, and it may be that the
behavior of the randomized order method was in
uenced by nondi�erentiability of fi. As we
now revisit Example 2.3, we will see that the behavior is qualitatively di�erent, although still
interesting.

Example 3.2: (Convex Di�erentiable Function)

The problem is

minimize f(x) =
1

2

pX
i=1

(x� 1)2 +
1

2

pX
i=1

(x+ 1)2

subject to x 2 <:

The minimum value of f is attained at x� = 0, which is the unique optimal solution. We assume
that the stepsize is equal to some positive constant � < 2.

Consider now the variant of the incremental gradient method that selects randomly (with
equal probability 1

2m
) the index i from the set f1; 2; : : : ; 2mg at each iteration. This method has

the form
xk+1 = xk � �(xk � wk) = (1� �)xk + �wk;

where wk takes the value 1 with probability 1/2 [corresponding to the components with gradient
x�1], and the value -1 with probability 1/2 [corresponding to the components with gradient x+1].
The second moment of xk obeys the recursion

E
�
x2k+1

	
= (1� �)2E

�
x2k
	
+ �2E

�
w2
k

	
:

The steady-state value of the second moment of xk (which is also the steady-state value of the
variance of xk, since the expected value Efxkg converges to 0) is given by

lim
k!1

E
�
x2k
	
=

�2

1� (1� �)2
=

�

2 � �
:

Thus, for the standard deviation �k of xk with k large, we have

�k �

r
�

2� �
: (3.21)

As seen in Example 2.3, for the incremental gradient method that, in each cycle, processes
�rst all components of the form (x� 1)2 and then all components of the form (x+ 1)2, the size of
the limit cycle is given by

1� (1� �)m=2

1 + (1� �)m=2
: (3.22)

While for the incremental gradient method that, in each cycle, processes a component of the form
(x+1)2 followed by a component of the form (x�1)2 and so on until all components are processed,
the size of the limit cycle is

�

2� �
: (3.23)
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Thus, we see that for small values of �, the randomized method can be worse than the
nonrandomized method (with the best processing order) in the sense that the standard deviation
in the limit is larger than the size of the limit cycle [cf. Eqs. (3.21) and (3.22)]. For moderate
values of � and large enough values of m, we see that the randomized method is as good as the
nonrandomized method with the best processing order [cf. Eqs. (3.21) and (3.23)].

As seen from these examples, randomization can alleviate potentially detrimental e�ect of
bad processing order. This is very important for practical problems, where typically the best
processing order of the functions fi cannot be determined.

3.8. EXPERIMENTAL RESULTS

We here present and interpret our experimental results. We �rst describe our test problem,
and the stepsize and the order rules that we used in our experiments. We then compare the
incremental subgradient method (2.3){(2.5) with the ordinary subgradient method (2.2), and
the nonrandomized incremental with the randomized incremental method [cf. Eqs. (2.3){(2.5)
and Eq. (3.1), respectively]. Our experimental results show that the randomized methods have
substantially better performance, which is consistent with our analytical results of Chapter 4.

3.8.1 Test Problem

In this section, we report some of the numerical results for a certain type of test problem: the
dual of a generalized assignment problem (see the book by Martello and Toth [MaT90], p.
189, or Bertsekas [Ber98], p. 362). The problem is to assign m jobs to n machines. If job i is
to be performed at machine j, then it costs aij and requires pij time units. Given the total
available time tj at machine j, we want to �nd the minimum cost assignment of the jobs to
the machines. Formally, the problem is

minimize

mX
i=1

nX
j=1

aijyij

subject to

nX
j=1

yij = 1; 8 i = 1; : : : ;m;

mX
i=1

pijyij � tj ; 8 j = 1; : : : ; n;

yij = 0 or yij = 1; 8 i = 1; : : : ;m; 8 j = 1; : : : ; n;

where yij is the assignment variable, which is equal to 1 if the ith job is assigned to the jth
machine and is equal to 0 otherwise. In our experiments, we chose n equal to 4 and m equal
to one of the four values 500, 800, 4000, or 7000.
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By relaxing the time constraints for the machines, we obtain the dual problem

maximize f(x) =

mX
i=1

fi(x)

subject to x � 0;

(3.24)

where

fi(x) = minPn

j=1
yij=1

yij=0 or yij=1

nX
j=1

(aij + xjpij)yij � 1

m

nX
j=1

tjxj ; 8 i = 1; : : : ;m:

Since aij + xjpij � 0 for all i and j, we can easily evaluate fi(x) for each x � 0:

fi(x) = aij� + xj�pij� � 1

m

nX
j=1

tjxj ;

where j� is such that
aij� + xj�pij� = min

1�j�n
faij + xjpijg:

At the same time, at no additional cost, we obtain a subgradient g of fi at x:

g = (g1; : : : ; gn)0; gj =

(
� tj
m if j 6= j�,

pij� � tj�

m if j = j�.

The experiments are divided in two groups, each with a di�erent goal. The �rst group
was designed to compare the performance of the ordinary subgradient method [cf. Eq. (2.2)]
and the incremental subgradient method [cf. Eqs. (2.3){(2.5)], as applied to the test problem
(3.24), for di�erent stepsize rules and a �xed cyclic processing order of the components fi.
The second group of experiments was designed to evaluate the incremental method for a �xed
stepsize rule and di�erent rules for the processing order of the components fi.

3.8.2 Incremental vs. Ordinary Subgradient Method

In the �rst group of experiments, the data for the problems (i.e., the matrices [aij ]; [pij ]) were
generated randomly according to a uniform distribution over di�erent intervals. The values tj
were calculated according to the formula

tj =
t

n

mX
i=1

pij ; j = 1; : : : ; n; (3.25)

with t taking one of the three values 0.5, 0.7, or 0.9. We used two stepsize rules:
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(1) A diminishing stepsize of the form

�kN = �kN+1 = � � � = �(k+1)N�1 =
D

k + 1
; 8 k � 0;

where D is a positive scalar, and N is a positive integer representing the number of cycles
during which the stepsize is kept at the same value. To guard against an unduly large
value of D, we implemented an adaptive feature, whereby if within some (heuristically
chosen) number S of consecutive iterations the current best cost function value is not
improved, then the new iterate xk+1 is set equal to the iterate at which the current best
value is attained.

(2) The dynamic stepsize rule given by

�k =
f(xk)� f levk

kgkk2 ;

and its modi�cation, where f levk is adjusted according to the path-based procedure (cf.
path-based incremental target level algorithm). In this procedure, the path bound is
not �xed but rather the current value for B is multiplied by a certain factor � 2 (0; 1)
whenever an oscillation is detected (see the discussion following Prop. 2.12). The initial
value for the path bound is B0 = rkx0 � x1k for some (heuristically chosen) positive
scalar r.

In the forthcoming tables, we report the number of iterations required to achieve a given
threshold cost ~f for various methods and parameter choices. The notation used in the tables
is as follows:

> k � 100 for k = 1; 2; 3; 4: means that the value ~f has been achieved or exceeded after
k � 100 iterations, but in less than (k + 1)� 100 iterations.

> 500: means that the value ~f has not been achieved within 500 iterations.

D=N=S=iter: gives the values of the parameters D, N , and S for the diminishing stepsize
rule (1), while iter is the number of iterations (or cycles) needed to achieve or exceed ~f .

r=�=Æ0=iter: describes the values of the parameters and number of iterations for the
target level stepsize rule (2).

Tables 1 and 2 show the results of applying the ordinary and incremental subgradient methods
to problem (3.24) with n = 4, m = 800, and t = 0:5 in Eq. (3.25). The optimal value of the
problem is f� � 1578:47. The threshold value is ~f = 1578. The tables show when the value ~f
was attained or exceeded.
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Ordinary subgradient method

Initial point Diminishing Target level
x0 D=N=S=iter r=�=Æ0=iter
(0,0,0,0) 0:08=2=7= > 500 0:03=0:97=12� 105= > 500

(0,0,0,0) 0:1=2=7= > 500 0:5=0:98=2� 104= > 500
(0,0,0,0) 0:07=3=10= > 500 0:5=0:95=3� 104= > 500
(0,0,0,0) 0:01=10=7= > 500 0:3=0:95=5� 104= > 400
(0,0,0,0) 0:09=1=7= > 500 0:1=0:9=106= > 200

(0,0,0,0) 0:03=5=500= > 500 0:2=0:93=5� 104= > 300
(0,0,0,0) 0:08=4=7= > 500 0:8=0:97=12� 103= > 500
(0,0,0,0) 0:09=5=10= > 500 0:03=0:95=106= > 500

(1.2,1.1,2,1.04) 0:005=2=5= > 500 0:4=0:975=2� 104= > 200

(1.2,1.1,2,1.04) 0:009=1=5= > 500 0:5=0:97=4� 103= > 50
(0:4; 0:2; 1:4; 0:1) 0:009=2=5= > 500 0:4=0:8=2700= > 500
(0:4; 0:2; 1:4; 0:1) 0:005=5=500= > 500 0:5=0:9=1300= > 500

Table 1. n = 4, m = 800, f� � 1578:47, ~f = 1578.

Incremental subgradient method
Initial point Diminishing Target level

x0 D=N=S=iter r=�=Æ0=iter
(0,0,0,0) 0:05=3=500=99 3=0:7=5� 106=97
(0,0,0,0) 0:09=2=500= > 100 2=0:6=55� 105= > 100
(0,0,0,0) 0:1=1=500=99 0:7=0:8=55� 105= > 100

(0,0,0,0) 0:1=1=10=99 0:4=0:95=107=80
(0,0,0,0) 0:05=5=7= > 100 0:3=0:93=107= > 100
(0,0,0,0) 0:07=3=10= > 100 0:5=0:9=107= > 200
(0,0,0,0) 0:01=7=7= > 500 0:3=0:93=15� 106=30
(0,0,0,0) 0:009=5=7= > 500 2=0:8=5� 106= > 100

(1.2,1.1,2,1.04) 0:05=1=500=40 0:4=0:97=12� 106= > 100
(1.2,1.1,2,1.04) 0:04=3=500=35 0:3=0:975=107=27
(0.4,0.2,1.4,0.1) 0:07=1=500=48 0:4=0:975=12� 106=100
(0.4,0.2,1.4,0.1) 0:048=1=500=39 0:5=0:94=12� 106= > 100

Table 2. n = 4, m = 800, f� � 1578:47, ~f = 1578.

Tables 3 and 4 show the results of applying the ordinary and incremental subgradient
methods to problem (3.24) with n = 4, m = 4000, and t = 0:7 in Eq. (3.25). The optimal
value of the problem is f� � 6832:3 and the threshold value is ~f = 6831:5. The tables show
the number of iterations needed to attain or exceed the value ~f = 6831:5.
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Ordinary subgradient method

Initial point Diminishing Target level
x0 D=N=S=iter r=�=Æ0=iter

(0,0,0,0) 0:01=2=7= > 500 1=0:9=5000=58

(0,0,0,0) 0:001=5=7= > 300 2=0:99=5500= > 100
(0,0,0,0) 0:0008=5=10= > 300 1:3=0:98=4800=54
(0,0,0,0) 0:0005=5=7= > 200 1:5=0:98=2000=88
(0,0,0,0) 0:0001=5=10=99 0:5=0:8=4000=99

(0,0,0,0) 0:0001=2=500= > 100 0:4=0:9=4000=89
(0,0,0,0) 0:0001=5=10= > 200 0:5=0:9=3000=88
(0,0,0,0) 0:00009=5=500=100 0:5=0:95=2000=98

(0.5,0.9,1.3,0.4) 0:0005=3=500= > 100 0:5=0:98=2000=95

(0.5,0.9,1.3,0.4) 0:0002=7=7= > 100 0:4=0:97=3000=98
(0.26,0.1,0.18,0.05) 0:0002=5=7=100 0:3=0:98=3000=90
(0.26,0.1,0.18,0.05) 0:00005=7=7=30 0:095=0:985=10=50

Table 3. n = 4, m = 4000, f� � 6832:3, ~f = 6831:5.

Incremental subgradient method
Initial point Diminishing Target level

x0 D=N=S=iter r=�=Æ0=iter
(0,0,0,0) 0:005=2=500=46 5=0:99=106=7
(0,0,0,0) 0:007=1=500=37 8=0:97=11� 105=5
(0,0,0,0) 0:001=2=500=95 2=0:99=7� 105= > 100

(0,0,0,0) 0:0008=1=500=30 0:8=0:4=9� 105=6
(0,0,0,0) 0:0002=2=500=21 0:7=0:4=106=7
(0,0,0,0) 0:0005=2=500=40 0:1=0:9=106=15
(0,0,0,0) 0:0002=2=7=21 0:08=0:9=15� 105=18
(0,0,0,0) 0:0003=1=500=21 0:25=0:9=2� 106=20

(0.5,0.9,1.3,0.4) 0:001=1=500=40 0:07=0:9=106=7
(0.5,0.9,1.3,0.4) 0:0004=1=500=30 0:04=0:9=106=26

(0.26,0.1,0.18,0.05) 0:00045=1=500=20 0:04=0:9=15� 105=10
(0.26,0.1,0.18,0.05) 0:00043=1=7=20 0:045=0:91=1:55� 106=10

Table 4. n = 4, m = 4000, f� � 6832:3, ~f = 6831:5.

Tables 1 and 2 demonstrate that the incremental subgradient method performs substan-
tially better than the ordinary subgradient method. As m increases, the performance of the
incremental method improves as indicated in Tables 3 and 4. The results obtained for other
problems that we tested are qualitatively similar and consistently show substantially and often
dramatically faster convergence for the incremental method.
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3.8.3 Nonrandomized vs. Randomized Incremental Method

We suspected that the random generation of the problem data induced a behavior of the
(nonrandomized) incremental method that is similar to the one of the randomized version.
Consequently, for the second group of experiments, the coeÆcients faijg and fpijg were gener-
ated as before and then they were sorted in an nonincreasing order, so as to create a sequential
dependence among the data. In all runs, we used the diminishing stepsize choice (as described
earlier) with S = 500, while the processing order for the components fi was changed according
to the following three rules:

(1) Fixed Order . The components are processed in the �xed order 1; 2; : : : ;m.

(2) Cyclically Shifted Order . In the �rst cycle, the components are processed in the order
1; 2; : : : ;m. If in the kth cycle, the components are processed in the order i1; : : : ; im, then
in the k + 1st cycle, they are processed in the order iK+1; : : : ; im; i1; : : : ; iK , where K is
a positive integer K.

(3) Random Order . The index of the component to be processed is chosen randomly, with
each component equally likely to be selected.

To compare fairly the randomized methods with the other methods, we count as an
\iteration" the processing ofm consecutively and randomly chosen components fi. In this way,
an \iteration" of the randomized method is equally time-consuming as a cycle or \iteration"
of any of the nonrandomized methods.

Table 5 below shows the results of applying the incremental subgradient method with
order rules (1){(3) for solving the problem (3.24) with n = 4, m = 800, and t = 0:9 in Eq.
(3.25). The optimal value is f� � 1672:44 and the threshold value is ~f = 1672. The table
gives the number of iterations needed to attain or exceed ~f .

Incremental subgradient method / Diminishing stepsize
Initial point Fixed order Cyclically shifted order Random order

x0 D=N=iter D=N=K=iter D=N=iter
(0,0,0,0) 0:005=1= > 500 0:007=1=9= > 500 0:0095=4=5
(0,0,0,0) 0:0045=1= > 500 0:0056=1=13= > 500 0:08=1=21
(0,0,0,0) 0:003=2= > 500 0:003=2=7= > 500 0:085=1=7

(0,0,0,0) 0:002=3= > 500 0:002=2=29= > 500 0:091=1=17
(0,0,0,0) 0:001=5= > 500 0:001=6=31= > 500 0:066=1=18
(0,0,0,0) 0:006=1= > 500 0:0053=1=3= > 500 0:03=2=18
(0,0,0,0) 0:007=1= > 500 0:00525=1=11= > 500 0:07=1=18

(0,0,0,0) 0:0009=7= > 500 0:005=1=17= > 500 0:054=1=17
(0.2,0.4,0.8,3.6) 0:001=1= > 500 0:001=1=17= > 500 0:01=1=13
(0.2,0.4,0.8,3.6) 0:0008=3= > 500 0:0008=3=7= > 500 0:03=1=8
(0,0.05,0.5,2) 0:0033=1= > 400 0:0037=1=7= > 400 0:033=1=7

(0,0.05,0.5,2) 0:001=4= > 500 0:0024=2=13= > 500 0:017=1=8

Table 5. n = 4, m = 800, f� � 1672:44, ~f = 1672.
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The following table 6 shows the results of applying the incremental subgradient method
with order rules (1){(3) for solving the problem (3.24) with n = 4, m = 7000, and t = 0:5 in
Eq. (3.25). The optimal value is f� � 14601:38 and the threshold value is ~f = 14600. The
table gives when the value ~f was attained or exceeded.

Incremental subgradient method / Diminishing stepsize
Initial point Fixed order Cyclically shifted order Random order

x0 D=N=iter D=N=K=iter D=N=iter
(0,0,0,0) 0:0007=1= > 500 0:0007=1=3= > 500 0:047=1=18

(0,0,0,0) 0:0006=1= > 500 0:0006=1=59= > 500 0:009=1=10
(0,0,0,0) 0:00052=1= > 500 0:00052=1=47= > 500 0:008=1=2
(0,0,0,0) 0:0008=1= > 500 0:0005=1=37= > 500 0:023=1=34
(0,0,0,0) 0:0004=2= > 500 0:0004=2=61= > 500 0:0028=1=10

(0,0,0,0) 0:0003=2= > 500 0:0003=2=53= > 500 0:06=1=22
(0,0,0,0) 0:00025=3= > 500 0:00025=3=11= > 500 0:05=1=18
(0,0,0,0) 0:0009=1= > 500 0:00018=3=79= > 500 0:007=1=10

(0,0.1,0.5,2.3) 0:0005=1= > 500 0:0005=1=79= > 500 0:004=1=10
(0,0.1,0.5,2.3) 0:0003=1= > 500 0:0003=1=51= > 500 0:0007=1=18

(0,0.2,0.6,3.4) 0:0002=1= > 500 0:0002=1=51= > 500 0:001=1=10
(0,0.2,0.6,3.4) 0:0004=1= > 500 0:00007=2=93= > 500 0:0006=1=10

Table 6. n = 4, m = 7000, f� � 14601:38, ~f = 14600.

Tables 5 and 6 show how an unfavorable �xed order can have a dramatic e�ect on the
performance of the incremental subgradient method. Note that shifting the components at the
beginning of every cycle did not improve the convergence rate of the method. However, the
randomization of the processing order resulted in fast convergence. The results for the other
problems that we tested are qualitatively similar and also demonstrated the superiority of the
randomized method.

3.9. DISTRIBUTEDASYNCHRONOUS INCREMENTAL SUBGRADIENT
METHOD

To this end, we considered the incremental subgradient methods in centralized computation.
However, for problems where the computation of subgradients of some of the component func-
tions is relatively costly, it is better to parallelize the subgradient computations. For such prob-
lems, we here propose and analyze distributed asynchronous incremental subgradient methods,
where the computation of the component subgradients is distributed among a set of processors
which communicate only with a coordinator. We will �rst introduce the method and describe
the distributed computing system. We will then present convergence results and give their
proofs.
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3.9.1 The Method

We develop the method departing from the classical subgradient iteration

x(t+ 1) = PX
"
x(t)� �(t)

mX
i=1

gi(t)

#
; (3.26)

where �(t) is a positive stepsize, gi(t) is a subgradient of fi at x(t), and x(0) 2 X is an initial
vector. The most straightforward way to parallelize the above iteration is to use multiple pro-
cessors to compute in parallel the component subgradients gi(t). Once all of these components
have been computed, they can be collected at a single processor, called the updating processor ,
which will execute the update of the vector x(t) using iteration (3.26). The updating processor
will then distribute (broadcast) the new iterate x(t+1) to the subgradient-computing proces-
sors which will collectively compute the new subgradients for the subsequent iteration. The
parallel method just described is more eÆcient than the serial method (3.26). It can be termed
synchronous, in the sense that there is clear division between the computations of successive
iterations, i.e., all computation relating to iteration t must be completed before iteration t+1
can begin.

A more general method is the parallel method that uses subgradient components not
necessarily computed at the same vector x(t). Such a method, termed asynchronous, is far
more interesting and useful in the situations where some subgradient components gi(t) are
not available at time t, which can be due to, for example, communication delay or excessive
computation of some subgradients. In such situations, to avoid further delay in executing the
update of x(t), the most recently computed components gi

�
�i(t)

�
can be used in the iteration

(3.26) in place of the missing components gi(t). A method of this form is the following:

x(t+ 1) = PX
"
x(t)� �(t)

mX
i=1

gi
�
�i(t)

�#
; (3.27)

where �i(t) � t for all i and the di�erence t � �i(t) represents the \delay". This method was
proposed and analyzed by Kiwiel and Lindberg in [KiL01].

We will here consider a more general method given by

x(t+ 1) = PX

2
4x(t)� �(t)

X
i2I(t)

gi
�
�i(t)

�35 ; (3.28)

where I(t) is a nonempty subset of the index set f1; : : : ;mg, gi
�
�i(t)

�
is a subgradient of fi

computed at x
�
�i(t)

�
with �i(t) � t for all i. To visualize the execution of this iteration, it is

useful to think of the computing system as consisting of two parts: the updating system (US for
short), and the subgradient-computing system (GCS for short). The US executes iteration (3.28)
at each time t and delivers the corresponding iterate x(t) to the GCS. The GCS uses the values
x(t) obtained from the US, computes subgradient components gi(�i(t)), and deposits them in



78 An Incremental Subgradient Method with Randomization Chap. 3

a queue from where they can be accessed by the US. There is no synchronization between
the operations of the CS and the GCS. Furthermore, while the GCS may involve multiple
processors that compute subgradient components in parallel, the characteristics of the GCS
(e.g., shared memory, message passing, communication architecture, number of processors,
synchronization rules, etc.) are not material to the description of our algorithm.

The motivation for considering iteration (3.28) rather than its special case (3.27) is
twofold. First, it makes sense to keep the US busy with updates while the GCS is com-
puting subgradient components. This is particularly so if the computation of gi is much more
time consuming for some i than for others, thereby creating a synchronization bottleneck.
Second, it appears that updating the value of x(t) as quickly as possible and using it in the
calculation of the component subgradients has a bene�cial e�ect in the convergence rate of the
subgradient method. As seen from the preceding sections, this is the main characteristic of the
incremental subgradient methods, which we may view as a special case of the iteration (3.28)
where �i(t) = t for all i and the set I(t) consists of a single index.

We believe that the incremental structure that is inherent in our proposed parallel sub-
gradient method (3.28) results in convergence and rate of convergence properties that are
similar to those of incremental subgradient methods. In particular, we expect an enhanced
convergence rate over the nonincremental version given by Eq. (3.27).

In what follows, we will analyze a version of the method (3.28), where the set I(t) in
the iteration (3.28) consists of a single element denoted i(t). In particular, we consider the
following method

x(t+ 1) = PX
h
x(t)� �(t)gi(t)

�
�(t)

�i
: (3.29)

For X = <n, analysis of this simpli�ed version does not involve an essential loss of generality
since an iteration involving multiple component function subgradients may be broken down
into several iterations each involving a single component function subgradient. When X 6= <n,
our analysis can be extended for the more general iteration (3.28). The most important
assumptions in our analysis are:

(a) The stepsize �(t) is either constant or is diminishing to 0, and satis�es some common
technical conditions such as

P1
t=0 �(t) =1 (see a more precise statement later). In the

case of a constant stepsize, we only show convergence to optimality within an error which
depends on the length of the stepsize.

(b) The \delay" t � �(t) is bounded from above by some (unknown) positive integer D, so
that our algorithm belongs to the class of partially asynchronous methods, as de�ned by
Bertsekas and Tsitsiklis [BeT89].

(c) All the component functions fi are used with the same \long-term frequency" by the
algorithm. Precise methods to enforce this assumption are given later, but basically
what we mean is that if ni(t) is the number of times a subgradient of the component fi
is used by the algorithm up to time t, then the ratios ni(t)=t should all be asymptotically
equal to 1=m (as t!1).

(d) The subgradients gi(t)(�(t)) used in the method are uniformly bounded.
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The restriction (c) can be easily enforced in a number of ways, by regulating the frequency
of the indices of subgradient components computed by the subgradient-computing system.
We will consider one speci�c approach, whereby we �rst select a sequence of indexes

�
j(t)

	
according to one of two rules:

(1) Cyclic Rule. The sequence
�
j(t)

	
is obtained by a permutation of each of the periodic

blocks f1; 2; : : : ;mg in the periodic sequence f1; 2; : : : ;m; 1; 2; : : : ;m; : : :g.
(2) Random rule. The sequence

�
j(t)

	
consists of independent identically distributed random

variables, each taking the values 1; 2; : : : ;m with equal probability 1=m.

Given a sequence
�
j(t)

	
obtained by the cyclic or the random rule, the sequence

�
i(t)
	
used

in the iteration (3.29) is given by
i(t) = j

�
�(t)

�
; (3.30)

where �(�) is a permutation mapping that maps the set f0; 1; : : :g into itself such that for some
positive integer T , we have

j�(t)� tj � T; 8 t = 0; 1; : : : : (3.31)

The permutation mapping �(�) captures the asynchronous character of the algorithm, whereby
component function subgradients are o�ered to the updating system in the order of

�
j
�
�(t)

�	
,

which is di�erent than the order of
�
j(t)

	
in which their computation was initiated within the

subgradient-computing system. Note that when �(t) = t for all t and there is no delay (i.e.,
�(t) = t for all t), then the method (3.29) reduces to the incremental subgradient method.

A version of the algorithm that does not work in this setting is when the component sub-
gradients gi(t)

�
�(t)

�
are normalized by multiplying with 1=kgi(t)(�(t))k, which may be viewed

as a weight associated with the component fi(t) at time t. Unless these weights are asymptot-
ically equal, this modi�cation would e�ectively alter the \long-term frequency" by which the
components fi are selected, thereby violating a fundamental premise for the validity of our
algorithm.

We note that our proposed parallel algorithms (3.28) and (3.29) do not �t in the frame-
work of the general algorithmic models of Chapters 6 and 7 of Bertsekas and Tsitsiklis [BeT89],
so these algorithms are not covered by the line of analysis of this reference. In the algorithmic
models of Bertsekas and Tsitsiklis [BeT89], at each time t, only some of the components of x
are updated using an equation that (within our subgradient method context) would depend
on all components fi (perhaps with communication delays). By contrast in the present paper,
at each time t, all components of x are updated using an equation that involves some of the

components fi.
The proof ideas of this section are related to those of parallel asynchronous deterministic

and stochastic gradient methods as discussed in Tsitsiklis, Bertsekas, and Athans [TBA86],
and Bertsekas and Tsitsiklis [BeT89], as well as the proof ideas of incremental deterministic
and randomized subgradient methods as discussed in the preceding sections. In particular, the
key proof idea is to view the parallel asynchronous method as an iterative method with deter-
ministic or stochastic errors, the e�ects of which are controlled with an appropriate mechanism,
such as a stepsize selection. An alternative approach is possible based on di�erential inclusions
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that extend the \ODE" approach for the analysis of stochastic approximation algorithms (see
Benveniste, Metivier, and Priouret [BMP90], Borkar [Bor98], and Kushner and Yin [KuY97]).

3.9.2 Convergence Results for Cyclic Selection Rule

We here give convergence results for the method (3.29) with the cyclic selection rule, under
the following assumption.

Assumption 3.2:

(a) There exists a positive constant C such that

kgk � C; 8 g 2 @fi
�
x
�
�(t)

�� [ @fi�x(t)�; 8 i = 1; : : : ;m; 8 t;

where @fi(x) denotes the set of subgradients of fi at a vector x.

(b) There exists a positive integer D such that

t� �(t) � D; 8 t:

Note that if the components fi are polyhedral or if the set X is compact, then Assumption
3.2(a) holds. Assumption 3.2(b) is natural, since our algorithm does not use the value of the
bound D.

For the method using a constant stepsize, we have the following result.

Proposition 3.11: Let Assumption 3.2 hold. Then, for the sequence
�
x(t)

	
generated by

the method with the cyclic selection rule and the stepsize �xed to some positive scalar �, we
have:

(a) If f� = �1, then
lim inf
t!1

f
�
x(t)

�
= �1:

(b) If f� is �nite, then

lim inf
t!1

f
�
x(t)

� � f� +mC2

�
1

2
+m+ 2D + T

�
�:

When T = 0 and D = 0, in which case the method (3.29) reduces to the incremental subgra-
dient method, the order of the error in part (b) is m2C2�, thus coinciding with that of the
error in Prop. 2.1(b) for the incremental subgradient method.

We next consider a diminishing stepsize that satis�es the following assumption.

Assumption 3.3: The stepsize �(t) is given by

�(t) =
r0

(l + r1)q
; 8 t = �l; �l + 1; : : : ; �l+1 � 1; 8 l = 0; 1; : : : ;
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where r0, r1, and q are some positive scalars with 0 < q � 1, and the sequence f�lg is increasing
nd is such that for some positive integer S,

�l+1 � �l � S; 8 l:

For the method (3.29) using this stepsize, we have the following convergence result.

Proposition 3.12: Let Assumptions 3.2 and 3.3 hold. Then, for the sequence
�
x(t)

	
gener-

ated by the method with the cyclic selection rule, we have 1

lim inf
t!1

f
�
x(t)

�
= f�:

When the optimal solution set is nonempty, under a mild additional restriction on the step-
size, we can strengthen the result of Prop. 3.12 by showing that the entire sequence fx(t)g
converges to some optimal solution. This stronger convergence result is established in the next
proposition.

Proposition 3.13: Let Assumptions 3.2 and 3.3 hold, where 1=2 < q � 1 in Assumption
3.3. Assume further that the optimal solution set X� is nonempty. Then, the sequence

�
x(t)

	
generated by the method with the cyclic selection rule converges to some optimal solution.

3.9.3 Convergence Results for Random Selection Rule

In this section, we present convergence results for the method (3.29) with the random selection
rule. We assume that the stepsize sequence

�
�(t)

	
deterministic. We also assume the following.

Assumption 3.4:

(a) Assumption 3.2 holds.

(b) Assumption 3.3 holds with a scalar q such that 3=4 < q � 1.

(c) The sequence
�
j(t)

	
is a sequence of independent random variables each of which is

uniformly distributed over the set f1; : : : ;mg. Furthermore, the sequence �j(t)	 is inde-
pendent of the sequence

�
x(t)

	
.

We next give the convergence result for a diminishing stepsize.

Proposition 3.14: Let Assumption 3.4 hold. Then, for the sequence
�
x(t)

	
generated by

the method with the random selection rule, we have with probability 1,

lim inf
t!1

f
�
x(t)

�
= f�:

When the optimal solution set is nonempty, we can strengthen this result, as shown in the
following proposition.
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Proposition 3.15: Let Assumption 3.4 hold, and assume that the optimal solution set X�

is nonempty. Then, the sequence
�
x(t)

	
generated by the method with the random selection

rule converges to some optimal solution with probability 1.

We note that when the underlying set X is compact, it can be shown that the preceding
result holds using a wider range of values for q in the stepsize rule [cf. Assumption 3.4(b)]. In
particular, the result is valid for 1=2 < q � 1, which we discuss in more detail in Section 3.9.5.

3.9.4 Convergence Proofs for Cyclic Selection Rule

Here and in the next section, we give the proofs for the convergence results for the selection
rules of Sections 3.9.2 and 3.9.3, respectively. The material in these two sections is rather
technical, and the reader who is not interested in the proofs can safely skip them.

The proofs are complicated and long, so we break them down into several steps. For
notational convenience, we de�ne

�(t) = �(0); 8 t < 0;

tk = km; xk = x(tk); 8 k � 0:

We �rst provide some estimates of the progress of the method in terms of the distances of
the iterates to an arbitrary point in the constraint set and in terms of the objective function
values. These estimates are given in the subsequent Lemma 3.6. Some preliminary results that
are used in the proof of this lemma are given below.

Lemma 3.5: Let Assumption 3.2 hold. Then, we have:

(a) For any y 2 X and all t,

kx(t+ 1)� yk2 � kx(t)� yk2 � 2�(t)
�
fj(t)

�
x(t)

�� fj(t)(y)
�

+ C2(1 + 4D)�2(t�D)

+ 2�(t)

mX
l=1

�
Ælj(t) � Æli(t)

��
fl
�
x(t)

�� fl(y)
�
;

where Æli is the Kronecker symbol (i.e., Æ
l
i = 1 if l = i and Æli = 0 otherwise).

(b) For any y 2 X, and all N and K with N � K,



Sec. 3.9 Distributed Asynchronous Incremental Subgradient Method 83

mX
l=1

NX
t=K

�(t)
�
Ælj(t) � Æli(t)

��
fl
�
x(t)

�� fl(y)
�
� C2T

NX
t=K

�2(t� T )

+ max
�
C;G(y)

	 NX
t=K

�
�(t� T )� �(t+ T )

� 
C

tX
r=0

�(r) + kx0 � yk
!

+ c(y)
�
�2(K) + �(K) + �2(N + 1� T ) + ��(N + 1� T )

�
+

�
�(K)kx(K)� yk2 + 1

�
�(N + 1� T )kx(N + 1)� yk2

�
;

where � is an arbitrary positive scalar, and

G(y) = max
�kgk j g 2 @fl(y); l = 1; : : : ;m

	
; (3.32)

c(y) = max

�
CT 2

�
C +G(y)

�
;
T 2

2

�
C2 +G2(y)

��
: (3.33)

Proof: (a) From the de�nition of x(t + 1) [cf. Eq. (3.29)], the nonexpansion property of the
projection, and the subgradient boundedness [cf. Assumption 3.2(a)], we have

kx(t+ 1)� yk2 � kx(t)� yk2 � 2�(t)gi(t)
�
�(t)

�0�
x(t)� y

�
+ C2�2(t)

� kx(t)� yk2 � 2�(t)
�
fi(t)

�
x(t)

�� fi(t)(y)
�

+ 4C�(t)


x(t)� x

�
�(t)

�

+ C2�2(t); 8 y 2 X; 8 t:
(3.34)

where in the last inequality we use

gi(t)
�
�(t)

�0�
x(t)� y

� � fi(t)
�
x(t)

�� fi(t)(y)� 2C


x(t)� x

�
�(t)

�

; 8 y 2 X; 8 t;

which can be obtained from the fact x(t) = x
�
�(t)

�
+
�
x(t)� x

�
�(t)

��
, the convexity of fi(t),

and the subgradient boundedness. Furthermore, from the relation

kx(t)� x(t̂)k � C

t�1X
s=t̂

�(s); 8 t; t̂; t � t̂; (3.35)

and the relations t�D � �(t) � t and �(r) � �(t �D) for r = t�D; : : : ; t� 1 and all t, we
obtain 

x(t)� x

�
�(t)

�

 � C

t�1X
r=t�D

�(r) � CD�(t�D); 8 t:
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By using this estimate and the fact �(t) � �(t�D) for all t, from Eq. (3.34) we see that for
any y 2 X and all t,

kx(t+ 1)� yk2 � kx(t)� yk2 � 2�(t)
�
fi(t)

�
x(t)

�� fi(t)(y)
�
+ C2(1 + 4D)�2(t�D):

Finally, by adding and subtracting 2�(t)
�
fj(t)

�
x(t)

�� fj(t)(y)
�
, and by using the Kronecker

symbol, we obtain for any y 2 X and all t,

kx(t+ 1)� yk2 � kx(t)� yk2 � 2�(t)
�
fj(t)

�
x(t)

�� fj(t)(y)
�

+ C2(1 + 4D)�2(t�D)

+ 2�(t)

mX
l=1

�
Ælj(t) � Æli(t)

��
fl
�
x(t)

�� fl(y)
�
:

(b) For each K and N with N � K, we introduce the following sets:

MK;N =
n
t 2 fK; : : : ; Ng j j(t) = i

�
p(t)

�
with p(t) 2 fK; : : : ; Ng

o
;

PK;N =
n
t 2 fK; : : : ; Ng j j(t) = i

�
p(t)

�
with p(t) < K or p(t) > N

o
; (3.36)

QK;N =
n
t 2 fK; : : : ; Ng j i(t) = j

�
�(t)

�
with �(t) < K or �(t) > N

o
; (3.37)

where p(t) is the inverse of the permutation mapping �(t), i.e., p(t) = ��1(t). Note that, since
j�(t)� tj � T for all t [cf. Eq. (3.31)], for the inverse mapping p(t) we have

jp(t)� tj � T; 8 t = 0; 1; : : : :

The set MK;N contains all t 2 fK; : : : ; Ng for which the subgradient gj(t) of fj(t) is used
in an update of x(t) at some time between K and N . Similarly, the set PK;N contains all
t 2 fK; : : : ; Ng for which the subgradient gj(t) of fj(t) is used in an update x(t) at some

time before K or after N
�
i.e., j(t) = i

�
p(t)

� 62 �i(K); : : : ; i(N)
	 �

. The set QK;N contains
all t 2 fK; : : : ; Ng for which the subgradient gi(t) of fi(t) is used in an update x(t) at some

time between K and N , but the j
�
�(t)

�
corresponding to i(t) does not belong to the set�

j(K); : : : ; j(N)
	
. By using the above de�ned sets, we have

mX
l=1

NX
t=K

�(t)
�
Ælj(t) � Æli(t)

��
fl
�
x(t)

�� fl(y)
�
=

mX
l=1

X
t2MK;N

�(t)
�
Ælj(t) � Æli(t)

��
fl
�
x(t)

�� fl(y)
�

+

mX
l=1

X
t2PK;N

�(t)Ælj(t)

�
fl
�
x(t)

�� fl(y)
�

�
mX
l=1

X
t2QK;N

�(t)Æli(t)

�
fl
�
x(t)

�� fl(y)
�
:

(3.38)
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We now estimate each of the terms in the preceding relation. According to the de�nition
of MK;N , we have j(t) = i

�
p(t)

�
for all t 2 MK;N

�
i.e., gj(t) is used at time p(t) with the

corresponding step �
�
p(t)

��
, so that

mX
l=1

X
t2MK;N

�(t)
�
Ælj(t) � Æli(t)

��
fl
�
x(t)

�� fl(y)
�

=

mX
l=1

X
t2MK;N

Ælj(t)

h
�(t)

�
fl
�
x(t)

�� fl(y)
�
� �

�
p(t)

��
fl
�
x
�
p(t)

��� fl(y)
�i

=

mX
l=1

X
t2MK;N

Æl
j(t)

�
�
p(t)

��
fl
�
x(t)

�� fl
�
x
�
p(t)

���

+

mX
l=1

X
t2MK;N

Ælj(t)

�
�(t)� �

�
p(t)

���
fl
�
x(t)

�� fl(y)
�
:

By using the convexity of each fl, the subgradient boundedness, the monotonicity of �(t), and
the facts jp(t)� tj � T and

Pm
l=1 Æ

l
j(t) = 1 for all t, from the preceding relation we obtain

mX
l=1

X
t2MK;N

�(t)
�
Ælj(t) � Æli(t)

��
fl
�
x(t)

�� fl(y)
�
� C

NX
t=K

�(t� T )


x(t)� x

�
p(t)

�



+max
�
C;G(y)

	 NX
t=K

�
�(t� T )� �(t+ T )

�
kx(t)� yk;

where G(y) is given by

G(y) = max
�kgk j g 2 @fl(y); l = 1; : : : ;m

	
:

Furthermore, we have 

x(t)� x
�
p(t)

�

 � CT�(t� T );

kx(t)� yk � C

tX
r=0

�(r) + kx0 � yk;

where in the �rst relation we use the monotonicity of �(t) and the fact jp(t) � tj � T , while
in the second relation we use Eq. (3.35). By substituting these relations in the preceding
inequality, we have

mX
l=1

X
t2MK;N

�(t)
�
Ælj(t) � Æli(t)

��
fl
�
x(t)

�� fl(y)
�
� C2T

NX
t=K

�2(t� T )

+ maxfC;G(y)g
NX
t=K

�
�(t� T )� �(t+ T )

� 
C

tX
r=0

�(r) + kx0 � yk
!
:

(3.39)



86 An Incremental Subgradient Method with Randomization Chap. 3

We next consider the second term on the right hand side of Eq. (3.38). For t = K; : : : ; N ,
we may have j(t) 62 �i(K); : : : ; i(N)

	
possibly at times t = K; : : : ;K + T � 1 and t = N + 1�

T; : : : ; N . Therefore, from the convexity of each fl, the subgradient boundedness, and the factPm
l=1 Æ

l
j(t) = 1 for all t, we obtain

mX
l=1

X
t2PK;N

�(t)Ælj(t)

�
fl
�
x(t)

�� fl(y)
�
� C

K�1+TX
t=K

�(t)kx(t)� yk+ C

NX
t=N+1�T

�(t)kx(t)� yk:

By using Eq. (3.35), the triangle inequality, and the monotonicity of �(t), we have

C

K�1+TX
t=K

�(t)kx(t)� yk � C

K�1+TX
t=K

�(t)
�
kx(t)� x(K)k+ kx(K)� yk

�
� C2T 2�2(K) + CT�(K)kx(K)� yk

� C2T 2�2(K) +
�(K)

2

�
C2T 2 + kx(K)� yk2

�
;

where in the last inequality we use the relation 2ab � a2 + b2 valid for any scalars a and b.
Similarly, it can be seen that

C

NX
t=N+1�T

�(t)kx(t)� yk � C

NX
t=N+1�T

�(t)
�
kx(t)� x(N + 1)k+ kx(N + 1)� yk

�
� C2T 2�2(N + 1� T ) + CT�(N + 1� T )kx(N + 1)� yk
� C2T 2�2(N + 1� T )

+
�(N + 1� T )

2

�
�C2T 2 +

1

�
kx(N + 1)� yk2

�
;

where the last inequality follows from the fact 2ab � �a2+ 1
� b

2 for any scalars a,b, and � with
� > 0. Therefore,

mX
l=1

X
t2PK;N

�(t)Ælj(t)

�
fl
�
x(t)

�� fl(y)
�
� C2T 2

�
�2(K) + �2(N + 1� T )

�

+
C2T 2

2

�
�(K) + ��(N + 1� T )

�
+
1

2

�
�(K)kx(K)� yk2 + 1

�
�(N + 1� T )kx(N + 1)� yk2

�
:

(3.40)
Finally, we estimate the last term in Eq. (3.38). For t = K; : : : ; N , we may have i(t) 62�

j(K); : : : ; j(N)
	
possibly at times t = K; : : : ;K+T �1 and t = N +1�T; : : : ; N . Therefore,
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similar to the preceding analysis, it can be seen that

�
mX
l=1

X
t2QK;N

�(t)Æli(t)

�
fl
�
x(t)

�� fl(y)
�
� G(y)CT 2

�
�2(K) + �2(N + 1� T )

�

+
G2(y)T 2

2

�
�(K) + ��(N + 1� T )

�
+

1

2

�
�(K)kx(K)� yk2 + 1

�
�(N + 1� T )kx(N + 1)� yk2

�
;

whereG(y) is given by Eq. (3.32). By substituting Eqs. (3.39)-(3.40) and the preceding relation
in the equality (3.38), and by using the de�nition of c(y) [cf. Eq. (3.33)], we obtain the desired
relation. Q.E.D.

Lemma 3.6: Let Assumption 3.2 hold. Then, we have:

(a) For any y 2 X, and all k0 and k̂ with k̂ > k0,�
1� 2

�
�(tk̂ �W )

�
kxk̂ � yk2 �

�
1 + 2�(tk0)

�
kxk0 � yk2

� 2

k̂�1X
k=k0

�(tk)
�
f(xk)� f(y)

�
+ 2 ~C

k̂�1X
k=k0

�2(tk �W )

+ 2K(y)

k̂�1X
k=k0

�
�(tk �W )� �(tk+1 +W )

�0@C tk+1X
r=0

�(r) + kx0 � yk
1
A

+ 2c(y)
�
�2(tk0) + �(tk0) + �2(tk̂ �W ) + ��(tk̂ �W )

�
;

where W = maxfT;Dg, � is an arbitrary positive scalar,

K(y) = mC +mmax
�
C;G(y)

	
;

~C = mC2

�
1

2
+m+ 2D + T

�
; (3.41)

and G(y) and c(y) are de�ned by Eqs. (3.32) and (3.33), respectively.

(b) For any y 2 X and all k̂ � 1,Pk̂�1
k=0 �(tk)f(xk)Pk̂�1

k=0 �(tk)
� f(y) +

�
1 + 2�(0)

�
kx0 � yk2

2
Pk̂�1

k=0 �(tk)
+ ~C

Pk̂�1
k=0 �

2(tk �W )Pk̂�1
k=0 �(tk)

+K(y)

Pk̂�1
k=0

�
�(tk �W )� �(tk+1 +W )

��
C
Ptk+1

r=0 �(r) + kx0 � yk
�

Pk̂�1
k=0 �(tk)

+ c(y)

�
�2(0) + �(0) + �2(tk̂ �W ) + ��(tk̂ �W )

�
Pk̂�1

k=0 �(tk)
;
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where � � 2�(0).

Proof: (a) By using the convexity of each fj(t), the subgradient boundedness, the monotonic-
ity of �(t), and the following relation [cf. Eq. (3.35)]

kx(t)� x(t̂)k � C

t�1X
s=t̂

�(s); 8 t; t̂; t � t̂;

we have for any t 2 ftk; : : : ; tk+1 � 1g,

fj(t)
�
x(t)

� � fj(t)(xk) + gj(t)(tk)0
�
x(t)� xk

� � fj(t)(xk)�mC2�(tk);

where gj(t)(tk) is a subgradient of fj(t) at xk. By substituting this relation in Lemma 3.5(a)
and by summing over t = tk; : : : ; tk+1 � 1, we obtain

kxk+1 � yk2 � kxk � yk2 � 2

tk+1�1X
t=tk

�(t)
�
fj(t)(xk)� fj(t)(y)

�

+mC2(1 + 2m+ 4D)�2(tk �D)

+ 2

mX
l=1

tk+1�1X
t=tk

�(t)
�
Ælj(t) � Æli(t)

��
fl
�
x(t)

�� fl(y)
�
;

(3.42)

where we also use �(tk) � �(tk �D) and

tk+1�1X
t=tk

�2(t�D) � m�2(tk �D);

tk+1�1X
t=tk

�(t) � m�(tk);

which follow from the monotonicity of �(t) and the fact tk+1 � tk = m for all k.
We now estimate the second term on the right hand side in the inequality (3.42). For

this we de�ne

I+k (y) =
n
t 2 ftk; : : : ; tk+1 � 1g j fj(t)(xk)� fj(t)(y) � 0

o
;

I�k (y) =
n
t 2 ftk; : : : ; tk+1 � 1g j fj(t)(xk)� fj(t)(y) < 0

o
:

Since �(tk) � �(t) � �(tk+1) for all t with tk � t < tk+1, we have for t 2 I+k (y),

�(t)
�
fj(t)(xk)� fj(t)(y)

�
� �(tk+1)

�
fj(t)(xk)� fj(t)(y)

�
;

and for t 2 I�k (y),

�(t)
�
fj(t)(xk)� fj(t)(y)

�
� �(tk)

�
fj(t)(xk)� fj(t)(y)

�
:
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Hence, for all t with tk � t < tk+1,

tk+1�1X
t=tk

�(t)
�
fj(t)(xk)� fj(t)(y)

�
� �(tk+1)

X
t2I+

k
(y)

�
fj(t)(xk)� fj(t)(y)

�

+ �(tk)
X

t2I�
k
(y)

�
fj(t)(xk)� fj(t)(y)

�

= �(tk)

tk+1�1X
t=tk

�
fj(t)(xk)� fj(t)(y)

�

�
�
�(tk)� �(tk+1)

� X
t2I+

k
(y)

�
fj(t)(xk)� fj(t)(y)

�
:

(3.43)

Furthermore, by using the convexity of each fj(t), the subgradient boundedness, and Eq. (3.35),
we can see that

fj(t)(xk)� fj(t)(y) � C
�kxk � x0k+ kx0 � yk� � C

 
C

tkX
r=0

�(r) + kx0 � yk
!
;

and, since the cardinality of I+k (y) is at most m, we obtain

X
t2I+

k
(y)

�
fj(t)(xk)� fj(t)(y)

�
� mC

 
C

tkX
r=0

�(r) + kx0 � yk
!
:

For the cyclic rule, we have fj(tk); : : : ; j(tk+1 � 1)g = f1; : : : ;mg, so that
tk+1�1X
t=tk

�
fj(t)(xk)� fj(t)(y)

�
= f(xk)� f(y):

By using the last two relations, from Eq. (3.43) we obtain

tk+1�1X
t=tk

�(t)
�
fj(t)(xk)� fj(t)(y)

�
� �(tk)

�
f(xk)� f(y)

�

�mC
�
�(tk)� �(tk+1)

� 
C

tkX
r=0

�(r) + kx0 � yk
!
;

which when substituted in Eq. (3.42) yields for all y 2 X and k

kxk+1 � yk2 � kxk � yk2 � 2�(tk)
�
f(xk)� f(y)

�
+mC2(1 + 2m+ 4D)�2(tk �D)

+ 2mC
�
�(tk)� �(tk+1)

� 
C

tkX
r=0

�(r) + kx0 � yk
!

+ 2

mX
l=1

tk+1�1X
t=tk

�(t)
�
Ælj(t) � Æli(t)

��
fl(x(t))� fl(y)

�
:
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By adding these inequalities over k = k0; : : : ; k̂� 1, and by using the facts tk < tk+1, �(tk) �
�(tk �W ), �(tk+1) � �(tk+1 +W ), �2(tk �D) � �2(tk �W ), we obtain

kxk̂ � yk2 � kxk0 � yk2 � 2

k̂�1X
k=k0

�(tk)
�
f(xk)� f(y)

�

+mC2(1 + 2m+ 4D)

k̂�1X
k=k0

�2(tk �W )

+ 2mC

k̂�1X
k=k0

�
�(tk �W )� �(tk+1 +W )

�0@C tk+1X
r=0

�(r) + kx0 � yk
1
A

+ 2

k̂�1X
k=k0

mX
l=1

tk+1�1X
t=tk

�(t)
�
Ælj(t) � Æli(t)

��
fl(x(t))� fl(y)

�
;

(3.44)

with W = maxfD;Tg. Note that the last term in the preceding relation can be written as the
sum over l = 1; : : : ;m and over t = tk0 ; : : : ; tk̂ � 1, so that by using the monotonicity of �(t),
and Lemma 3.5(b) with K = tk0 and N = tk̂ � 1, we have

mX
l=1

t
k̂
�1X

t=tk0

�(t)
�
Ælj(t) � Æli(t)

��
fl
�
x(t)

�� fl(y)
�
� C2T

t
k̂
�1X

t=tk0

�2(t�W )

+ max
�
C;G(y)

	 t
k̂
�1X

t=tk0

�
�(t�W )� �(t+W )

� 
C

tX
r=0

�(r) + kx0 � yk
!

+ c(y)
�
�2(tk0) + �(tk0) + �2(tk̂ �W ) + ��(tk̂ �W )

�
+

�
�(tk0)kx(tk0)� yk2 + 1

�
�(tk̂ �W )kxk̂ � yk2

�
:

(3.45)
Furthermore, by the monotonicity of �(t), it follows that

t
k̂
�1X

t=tk0

�2(t�W ) =

k̂�1X
k=k0

tk+1�1X
t=tk

�2(t�W ) � m

k̂�1X
k=k0

�2(tk �W );

and

t
k̂
�1X

t=tk0

�
�(t�W )� �(t+W )

� 
C

tX
r=0

�(r) + kx0 � yk
!

� m

k̂�1X
k=k0

�
�(tk �W )� �(tk+1 +W )

�0@C tk+1X
r=0

�(r) + kx0 � yk
1
A :
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The desired relation follows from Eq. (3.44) by using Eq. (3.45) and the preceding two relations.

(b) The desired relation follows from part (a), where k0 = 0, by dividing with 2
Pk̂�1

k=0 �(tk),
and by using the relation � � 2�(0) � 2�(t) for all t. Q.E.D.

In the forthcoming proofs, we also use the following lemma.

Lemma 3.7: Let f�kg and f�kg be scalar sequences such that �k > 0 for all k and
P1

k=0 �k =
1. Then, we have

lim inf
k!1

�k � lim inf
k!1

Pk
j=0 �j�jPk
j=0 �j

� lim sup
k!1

Pk
j=0 �j�jPk
j=0 �j

� lim sup
k!1

�k:

In particular, if limk!1 �k exists, then

lim
k!1

�k = lim
k!1

Pk
j=0 �j�jPk
j=0 �j

:

Proof: Let � be an arbitrary positive scalar. Then, there exists ~k large enough so that

lim inf
k!1

�k � �j + �; 8 j � ~k;

implying that

lim inf
k!1

�k � inf
j�~k

�j + � �
Pk

j=~k �j�jPk
j=~k �j

+ �; 8 k � ~k: (3.46)

We further have for all k,

Pk
j=~k �j�jPk
j=~k �j

=

Pk
j=0 �j�jPk
j=0 �j

Pk
j=0 �jPk
j=~k �j

�
P~k�1

j=0 �j�jPk
j=~k �j

;

and since by
P1

k=0 �k =1, we have that

lim
k!1

Pk
j=~k �jPk
j=0 �j

= 1; lim
k!1

P~k�1
j=0 �j�jPk
j=~k �j

= 0;

it follows that

lim inf
k!1

Pk
j=~k �j�jPk
j=~k �j

= lim inf
k!1

Pk
j=0 �j�jPk
j=0 �j

:
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From the preceding relation and Eq. (3.46) we see that

lim inf
k!1

�k � lim inf
k!1

Pk
j=0 �j�jPk
j=0 �j

+ �;

and by letting �! 0, we have

lim inf
k!1

�k � lim inf
k!1

Pk
j=0 �j�jPk
j=0 �j

:

Replacing �k with ��k in the preceding relation, it follows that

lim sup
k!1

Pk
j=0 �j�jPk
j=0 �j

� lim sup
k!1

�k:

Q.E.D.

We now prove Prop. 3.11.

Proof of Prop. 3.11: It suÆces to show (a) and (b) for the sequence fxkg. Since �(t) = �
for t 2 (�1;1) [recall that �(t) = �(0) for t < 0], from Lemma 3.6(b) we obtain

1

k̂

k̂�1X
k=0

f(xk) � f(y) +
(1 + 2�)kx0 � yk2

2�k̂
+ ~C�+ c(y)

1 + 2�+ �

�k̂
; 8 y 2 X; 8 k̂ � 1:

By letting k̂ !1 and by using Lemma 3.7 with �k = f(xk) and �k = 1=k, we see that

lim inf
k̂!1

f(xk̂) � f(y) + ~C�; 8 y 2 X;

from which the desired results follow by taking the minimum over y 2 X and by using ~C =
mC2(1=2 +m+ 2D + T ) [cf. Eq. (3.41)]. Q.E.D.

In the proofs of Props. 3.12 and 3.13, we use some special properties of the stepsize �(t)
satisfying Assumption 3.3. These properties are given in the following lemma.

Lemma 3.8: Let the stepsize �(t) satisfy Assumption 3.3. Then, we have

lim
k!1

�2(tk �W )

�(tk)
= 0; lim

k!1
�(tk �W )� �(tk+1 +W )

�(tk)

tk+1X
t=0

�(t) = 0;

1X
k=0

�(tk) =1;

1X
k=0

�
�(tk �W )� �(tk+1 +W )

�
<1;
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where tk = mk and W is a nonnegative integer. In addition, for 1=2 < q � 1, we have

1X
k=0

�2(tk �W ) <1;

1X
k=0

�
�(tk �W )� �(tk+1 +W )

� tk+1X
t=0

�(t) <1:

Proof: Let 0 < q � 1. The stepsize �(t) is smallest when S = 1, so that

1X
k=0

�(tk) � r0

1X
k=0

1

(km+ r1)q
=1:

Let flkg be a sequence of nonnegative integers such that

�(tk �W ) =
r0

(lk + r1)q
; 8 k: (3.47)

Note that lk !1 as k!1. Given the value of �(tk�W ), the values of �(tk) and �(tk+1+W )
are smallest if we decrease the stepsize �(t) at each time t for t > tk �W . Therefore,

�(tk) � r0
(lk +W + r1)q

; 8 k; (3.48)

�(tk+1 +W ) � r0
(lk +m+ 2W + r1)q

; 8 k; (3.49)

where in the last inequality above we use the fact tk = mk. By combining Eqs. (3.47) and
(3.48), we see that

lim
k!1

�2(tk �W )

�(tk)
= 0:

Moreover, from Eqs. (3.47) and (3.49) we obtain

�(tk �W )� �(tk+1 +W ) = r0
(lk +m+ 2W + r1)q � (lk + r1)q

(lk + r1)q(lk +m+ 2W + r1)q

� r0q(m+ 2W )

(lk + r1)(lk +W + r1)q
; 8 k;

(3.50)

where in the last inequality above we use lk +m+ 2W + r1 � lk +W + r1 and

bq � aq = q

Z b

a

dx

x1�q
� q

a1�q

Z b

a

dx =
q(b� a)

a1�q
; 8 a; b; 0 < a � b; 8 q; 0 < q � 1:

In particular, the relation (3.50) implies that

�(tk �W )� �(tk+1 +W ) � r0q(m+ 2W )

(lk + r1)1+q
; 8 k; (3.51)



94 An Incremental Subgradient Method with Randomization Chap. 3

so that
P1

k=0

�
�(tk �W )� �(tk+1 +W )

�
< 1. Furthermore, by combining Eqs. (3.48) and

(3.50), we obtain

�(tk �W )� �(tk+1 +W )

�(tk)
� q(m+ 2W )

lk + r1
; 8 k: (3.52)

We now estimate
Ptk+1

t=0 �(t). By using the de�nition and the monotonicity of �(t), and
Eq. (3.47), we have for all k large enough (so that tk �W > 0),

tk+1X
t=0

�(t) �
tk�WX
t=0

�(t) + (1 +m+W )�(tk �W ) �
lkX
l=0

Sr0

(l + r1)q
+ (1 +m+W )�(tk �W ):

Since
lkX
l=0

1

(l + r1)q
�
8<
:

1
r1

+ ln(lk + r1) if q = 1,

1
rq
1
+ (lk+r1)

1�q

1�q if 0 < q < 1,

from the preceding relation we obtain for all k large enough,

tk+1X
t=0

�(t) � uk; (3.53)

where

uk =

8<
:
O
�
ln(lk + r1)

�
if q = 1,

O
�
(lk + r1)1�q

�
if 0 < q < 1.

(3.54)

This together with Eq. (3.52) implies that

lim
k!1

�(tk �W )� �(tk+1 +W )

�(tk)

tk+1X
t=0

�(t) = 0:

Let now 1=2 < q � 1. Then, by using the de�nition of �(t), we have for K large enough
(so that tk �W > 0 for all k � K)

1X
k=K

�2(tk �W ) �
1X
t=K

�2(t�W ) �
1X
s=0

�2(s) �
1X
l=0

Sr21
(l + r1)2q

;

implying that
P1

k=0 �
2(tk �W ) is �nite. Furthermore, by combining Eqs. (3.51), (3.53), and

(3.54), we obtain

�(tk �W )� �(tk+1 +W )

tk+1X
t=0

�(t) � vk; 8 k � K;
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where

vk =

8<
:
O
�
ln(lk+r1)
(lk+r1)

2

�
if q = 1,

O
�

1
(lk+r1)

2q

�
if 0 < q < 1.

Hence,
P1

k=0 �(tk �W )� �(tk+1 +W )
Ptk+1

t=0 �(t) is �nite for 1=2 < q � 1. Q.E.D.

We are now ready to prove Props. 3.12 and 3.13.

Proof of Prop. 3.12: It suÆces to show that lim infk!1 f(xk) = f�. From Lemma 3.6(b)

by letting k̂ ! 1 and by using the relation
P1

k=0 �(tk) = 1 [cf. Lemma 3.8], we obtain for
all y 2 X,

lim inf
k̂!1

Pk̂�1
k=0 �(tk)f(xk)Pk̂�1

k=0 �(tk)
� f(y) + ~C lim

k̂!1

Pk̂�1
k=0 �

2(tk �W )Pk̂�1
k=0 �(tk)

+K(y)C lim
k̂!1

Pk̂�1
k=0

�
�(tk �W )� �(tk+1 +W )

�Ptk+1
r=0 �(r)Pk̂�1

k=0 �(tk)
:

Since by Lemma 3.8 we have

lim
k!1

�2(tk �W )

�(tk)
= 0;

lim
k!1

�(tk �W )� �(tk+1 +W )

�(tk)

tk+1X
r=0

�(r) = 0;

it follows from Lemma 3.7 that

lim
k̂!1

Pk̂�1
k=0 �

2(tk �W )Pk̂�1
k=0 �(tk)

= 0;

lim
k̂!1

Pk̂�1
k=0

�
�(tk �W )� �(tk+1 +W )

�Ptk+1
r=0 �(r)Pk̂�1

k=0 �(tk)
= 0:

Hence,

lim inf
k̂!1

Pk̂�1
k=0 �(tk)f(xk)Pk̂�1

k=0 �(tk)
� f(y); 8 y 2 X:

Using Lemma 3.7 and taking the minimum over y 2 X, we see that

lim inf
k!1

f(xk) � lim inf
k̂!1

Pk̂�1
k=0 �(tk)f(xk)Pk̂�1

k=0 �(tk)
� f�;
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thus implying that lim infk!1 f(xk) = f�. Q.E.D.

We next prove Prop. 3.13.

Proof of Prop. 3.13: It suÆces to show that fxkg converges to some optimal solution. >From
Lemma 3.6(a) by letting � = 1 and y = x� for some x� 2 X�, and by dropping the nonpositive

term involving f(xk)� f�, we obtain for all x� 2 X� and k̂ > k0,

�
1� 2�(tk̂ �W )

�
kxk̂ � x�k2 �

�
1 + 2�(tk0)

�
kxk0 � x�k2 + 2 ~C

k̂�1X
k=k0

�2(tk �W )

+ 2K(x�)
k̂�1X
k=k0

�
�(tk �W )� �(tk+1 +W )

�0@C tk+1X
r=0

�(r) + kx0 � x�k
1
A

+ 2c(x�)
�
�2(tk0) + �(tk0) + �2(tk̂ �W ) + �(tk̂ �W )

�
;

(3.55)

As k̂!1, by using Lemma 3.8 with 1=2 < q � 1, it follows that

lim sup
k̂!1

kxk̂ � x�k <1;

implying that fxkg is bounded. Furthermore, according to Prop. 3.12, we have

lim inf
k!1

f(xk) = f�;

so that by continuity of f and by boundedness of fxkg, there exists a subsequence fxkjg � fxkg
and a vector x̂� 2 X� such that

lim
j!1

kxkj � x̂�k = 0:

Set x� = x̂� and k0 = kj for some j in Eq. (3.55). In the resulting relation, by �rst letting

k̂ !1 and then j !1, and by using Lemma 3.8 and the fact xkj ! x̂�, we obtain

lim sup
k̂!1

kxk̂ � x̂�k = 0:

Q.E.D.

3.9.5 Convergence Proofs for Random Selection Rule

In this section, we give proofs of Props. 3.14 and 3.15. The proofs rely on the martingale
convergence theorem (see, for example, Gallager [Gal96], p. 256).
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Theorem 3.2: (Martingale Convergence Theorem) Let fZkg be a martingale such that

E
n
Z2
k

o
� M for some positive scalar M and all k. Then, there exists a random variable Z

such that with probability 1,
lim
k!1

Zk = Z:

In the proofs, we also use some properties of the stepsize �(t) that are given in the following
lemma.

Lemma 3.9: Let Assumption 3.3 hold with 3=4 < q � 1. Then, we have

1X
t=0

�2(t�W ) <1;

1X
t=0

�
�(t� T )� �(t+ T )

�
<1;

1X
t=0

�(t) =1;

1X
t=0

�
�(t� T )� �(t+ T )

� tX
r=0

�(r) <1;

1X
t=0

�2(t)

 
tX

r=0

�(r)

!2

<1; (3.56)

where W is a nonnegative integer.

Proof: We show the last relation in Eq. (3.56). The rest can be shown similar to the proof
of Lemma 3.8. Note that �(t) is largest when we change the step every S iterations, i.e.,
�l+1 � �l = S for all l, so that

�(t) � r0

(l + r1)q
; t = lS; : : : ; (l + 1)S � 1; l = 0; 1; : : : ;

and consequently,

tX
r=0

�(r) � Sr0

lX
k=0

1

(k + r1)q
�
8<
:
Sr0

�
1
r1

+ ln(l + r1)
�

if q = 1,

Sr0
�

1
r
q
1
+ (l+r1)

1�q

1�q

�
if 0 < q < 1.

Therefore,

�2(t)

 
tX

r=0

�(r)

!2

� wl; t = lS; : : : ; (l + 1)S � 1;

where

wl =

8<
:
O
�
ln2(l+1+r1)

(l+r1)2

�
if q = 1,

O
�

1
(l+r1)4q�2

�
if 0 < q < 1.

Hence,
P1

t=0 �
2(t)

�Pt
r=0 �(r)

�2
is �nite for 3=4 < q � 1. Q.E.D.

In the next lemma, we give some relations that are crucial for the subsequent proofs of
Props. 3.14 and 3.15.
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Lemma 3.10: Let Assumption 3.4 hold. Then, we have:

(a) For any y 2 X and all t,

kx(t+ 1)� yk2 � kx(t)� yk2 � 2�(t)

m

�
f
�
x(t)

�� f(y)
�
+ 2
�
zy(t)� zy(t� 1)

�
+ C2(1 + 4D)�2(t�D)

+ 2�(t)

mX
l=1

�
Æl
j(t)

� Æl
i(t)

��
fl
�
x(t)

�� fl(y)
�
;

(3.57)

where Æli is the Kronecker symbol, zy(�1) = 0, and

zy(t) =

tX
r=0

�(r)

�
1

m

�
f
�
x(r)

�� f(y)
�
�
�
fj(r)

�
x(r)

�� fj(r)(y)
��

; 8 t � 0: (3.58)

(b) For any y 2 X, and all N and K with N � K,

kx(N + 1)� yk2 � kx(K)� yk2 � 2

m

NX
t=K

�(t)
�
f
�
x(t)

�� f(y)
�

+ 2
�
zy(N)� zy(K � 1)

�

+ C2
�
1 + 4D + 2T

� NX
t=K

�2(t�W )

+ 2max
�
G(y); C

	 NX
t=K

�(t)

 
C

tX
r=0

�(r) + kx(0)� yk
!

+ 2c(y)
�
�2(K) + �(K) + �2(N + 1� T ) + �(N + 1� T )

�
+ 2
�
�(K)kx(K)� yk2 + �(N + 1� T )kx(N + 1)� yk2

�
;

where W = maxfD;Tg, G(y) and c(y) are given by Eqs. (3.32) and (3.33), respectively,
and �(t) = �(t� T )� �(t+ T ) for all t.

(c) For any y 2 X, the sequence fzy(t)g de�ned by Eq. (3.58) is a convergent martingale
with probability 1.

Proof: (a) From Lemma 3.5(a) by adding and subtracting 2�(t)
m

�
f(xk)� f(y)

�
, and by using

the de�nition of zy(t) [cf. Eq. (3.58)], we obtain the relation (3.57).
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(b) Summing the inequalities (3.57) over t = K; : : : ; N yields for any y 2 X,

kx(N + 1)� yk2 � kx(K)� yk2 � 2

m

NX
t=K

�(t)
�
f
�
x(t)

�� f(y)
�

+ 2
�
zy(N)� zy(K � 1)

�
+ C2(1 + 4D)

NX
t=K

�2(t�D)

+ 2

NX
t=K

mX
l=1

�(t)
�
Ælj(t) � Æli(t)

��
fl
�
x(t)

�� fl(y)
�
:

The desired relation follows by using Lemma 3.5(b) where � = 1 and x0 = x(0).

(c) Let y 2 X be �xed. We �rst show that the sequence fzy(t)g is a martingale. By using the
de�nition of zy(t) [cf. Eq. (3.58)], we have

E
�
zy(t) j zy(t� 1)

	
= zy(t� 1) + �(t)E

�
1

m

�
f
�
x(t)

�� f(y)
�
�
�
fj(t)

�
x(t)

�� fj(t)(y)
��

= zy(t� 1);

where in the last equality we use the iterated expectation rule and

E

�
1

m

�
f
�
x(t)

�� f(y)
�
�
�
fj(t)

�
x(t)

�� fj(t)(y)
� �� x(t)� = 0;

which follows from the properties of
�
j(t)

	
[cf. Assumption 3.4(c)]. Hence, zy(t) is indeed a

martingale.
We next show that E

�
z2y(t)

	
is bounded. From the de�nition of zy(t) it follows that

E
n
z2y(t)

o
=

tX
r=0

�2(r)E

(�
1

m

�
f(x(r))� f(y)

�
�
�
fj(r)(x(r))� fj(r)(y)

��2
)
; 8 t � 0:

(3.59)
This is because the expected values of the cross terms appearing in z2y(t) are equal to 0, which
can be seen by using the iterated expectation rule [i.e., by conditioning on the values x(s) and
x(r) for s; r � t] and by exploiting the properties of j(r) [cf. Assumption 3.4(c)]. Furthermore,
by using convexity of each fi, the triangle inequality, and the following relation [cf. Eq. (3.35)]

kx(t)� x(t̂)k � C

t�1X
s=t̂

�(s); 8 t; t̂; t � t̂;
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for every r, we have�
1

m

�
f
�
x(r)

�� f(y)
�
�
�
fj(r)

�
x(r)

� � fj(r)(y)
��2

� 2

m2

�
f
�
x(r)

�� f(y)
�2

+ 2
�
fj(r)

�
x(r)

�� fj(r)(y)
�2

� 4
�
max

�
G(y); C

	�2kx(r)� yk2

� 4
�
max

�
G(y); C

	�2 
C

rX
s=0

�(s) + kx(0)� yk
!2

� 8
�
max

�
G(y); C

	�2 24C2

 
rX

s=0

�(s)

!2

+ kx(0)� yk2
3
5 :

By using this inequality and Lemma 3.9, from Eq. (3.59) it follows that E
�
z2y(t)

	
is bounded.

Thus, by theMartingale Convergence Theorem, the sequence fzy(t)g converges to some random
variable with probability 1. Q.E.D.

We now prove Prop. 3.14.

Proof of Prop. 3.14: Let � > 0 be arbitrary and let ŷ 2 X be such that

f(ŷ) �
�
f� + � if f� is �nite,
� 1
� otherwise.

Fix a sample path, denoted by P , for which the martingale
�
zŷ(t)

	
is convergent [cf. Lemma

3.10(c)]. From Lemma 3.10(b), where K = 0 and y = ŷ, we have for the path P and all N
suÆciently large,

2

m

NX
t=0

�(t)
�
f(x(t))� f(ŷ)

�
�
�
1 + 2�(0)

�
kx(0)� ŷk2 + 2zŷ(N)

+ C2
�
1 + 4D + 2T

� NX
t=0

�2(t�W )

+ 2maxfC;G(ŷ)g
NX
t=0

�(t)

 
C

tX
r=0

�(r) + kx(0)� ŷk
!

+ 2c(ŷ)
�
�2(0) + �(0) + �2(N + 1� T ) + �(N + 1� T )

�
;

where �(t) = �(t�T )��(t+T ), we use the fact zŷ(�1) = 0, and we take N suÆciently large
so that 1� 2�(N + 1� T ) � 0. Since zŷ(N) converges, by dividing the above inequality with

(2=m)
PN

t=0 �(t), by letting N !1, and by using Lemma 3.9, we obtain

lim inf
N!1

PN
t=0 �(t)f

�
x(t)

�
PN

t=0 �(t)
� f(ŷ):
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By Lemma 3.7, we have

lim inf
N!1

f
�
x(N)

� � lim inf
N!1

PN
t=0 �(t)f

�
x(t)

�
PN

t=0 �(t)
;

so that for the path P ,
lim inf
N!1

f
�
x(N)

� � f(ŷ):

Therefore, lim inft!1 f
�
x(t)

� � f(ŷ) with probability 1, implying by de�nition of ŷ that with
probability 1,

lim inf
t!1

f
�
x(t)

� � � f� + � if f� is �nite,
� 1
� otherwise.

Since � is arbitrary, it follows that lim inft!1 f(x(t)) = f� with probability 1. Q.E.D.

We next give the proof of Prop. 3.15.

Proof of Prop. 3.15: For each x� 2 X�, let 
x� denote the set of all sample paths for which
the sequence

�
zx�(t)

	
is a convergent martingale and

lim inf
t!1

f(x(t)) = f�: (3.60)

By Lemma 3.10(c) and Prop. 3.14, the set 
x� has probability 1 for each x� 2 X�. Since f
and X are convex, the set X� is also convex, so there exist vectors v0; v1; : : : ; vp 2 X� that
span the smallest aÆne set containing X�, and are such that vi � v0, i = 1; : : : ; p; are linearly
independent. The intersection


 = \pi=1
vi

has probability 1.
We now �x a sample path P 2 
, for which by de�nition of 
, every martingale zvi(t) is

convergent and the relation (3.60) holds. Furthermore, we �x an i 2 f0; : : : ; pg. Let K0 be a
positive integer large enough so that

1� 2�(K � T ) > 0; 8 K � K0:

By using Lemma 3.10(b) with y = vi and N > K � K0, and by dropping the nonnegative
term involving f

�
x(t)

�� f(vi), we obtain�
1� 2�(N + 1� T )

�
kx(N + 1)� vik2 �

�
1 + 2�(K)

�
kx(K)� vik2 + 2

�
zs(N)� zs(K � 1)

�

+ C2
�
1 + 4D + 2T

� NX
t=K

�2(t�W )

+ 2maxfG(vi); Cg
NX
t=K

�(t)

 
C

tX
r=0

�(r) + kx(0)� vik
!

+ 2c(vi)
�
�2(K) + �(K) + �2(N + 1� T ) + �(N + 1� T )

�
:
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By using Lemma 3.9 and the convergence of the martingale
�
zvi(t)

	
, from the preceding

relation we obtain
lim sup
N!1

kx(N + 1)� vik2 � lim inf
K!1

kx(K)� vik2:

Because i is arbitrary, limt!1 kx(t) � vik exists for all i = 0; : : : ; p. Furthermore,
�
x(t)

	
is

bounded so it has limit points, at least one of which must belong to X� by Eq. (3.60) and
continuity of f . Let x 2 X� be such a limit point. If x̂ is another limit point of

�
x(t)

	
, then

since
�kxk � vik

	
converges for all i = 0; : : : ; p, we must have

kx� vik = kx̂� vik; 8 i = 0; 1; : : : ; p:

Since x 2 X�, by convexity of X� and the choice of vectors vi, the preceding relation can hold
only for x = x̂. Hence, for the path P , the sequence �x(t)	 has a unique limit point in X�,
implying that

�
x(t)

	
converges to some optimal solution with probability 1. Q.E.D.

When the constraint set X is compact, the result of Prop. 3.15 holds under Assumption
3.4(b) with 1=2 < q � 1 instead of 3=4 < q � 1. This can be seen similar to the preceding
analysis by using the fact that the martingale fzy(t)g is convergent for 1=2 < q � 1 [cf. Lemma
3.10(c)]. In particular, for 1=2 < q � 1, we can show that

E
�
z2y(t)

	 � 4
�
max

�
G(y); C

	�2
sup
x2X

kx� yk2
tX

r=0

�2(r)

[see the proof of Lemma 3.10(c)].



4

Extensions of the Incremental

Subgradient Method

In this chapter, we consider the incremental subgradient method with some special features.
In particular, in Sections 4.1 and 4.2, respectively, we discuss two variants of the incremental
method: one with weights and one with approximate subgradients (�-subgradients).

4.1. AN INCREMENTAL SUBGRADIENTMETHODWITHWEIGHTS

Here, we consider an incremental subgradient method with weights. Just like the pure incre-
mental method of Section 2.1, this method also operates in cycles, but it uses directions that
are di�erent from that of the pure incremental method. In particular, at the ith subiteration
of a cycle, the direction used is a weighted sum of a subgradient of a newly selected component
fi and the subgradients of components f1; f2 : : : ; fi�1 that have already been processed within
the current cycle. More precisely, in a typical cycle, the method starts with

 0;k = xk; (4.1)

performs m subiterations

 i;k = PX

2
4 i�1;k � �k

iX
j=1

wki;jgj;k

3
5 ; i = 1; : : : ;m; (4.2)

103



104 Extensions of the Incremental Subgradient Method Chap. 4

where the scalar �k is a positive stepsize, the scalars wki;1;; : : : ; w
k
i;i; are nonnegative weights,

and the vector gj;k is a subgradient of fj at  j�1;k. The last of these subiterations is the
beginning of a new cycle

xk+1 =  m;k: (4.3)

The incremental method of Section 2.1 is a special case of this method corresponding to the
case where

wki;1 = 0; : : : ; wki;i�1 = 0; wki;i = 1; 8 i = 1; : : : ;m; 8 k:

4.1.1 Assumptions and Basic Relation

Regarding the method (4.1){(4.3), we assume the following:

Assumption 4.1:

(a) The weights wki;j are nonnegative and

mX
i=j

wki;j = 1; 8 j = 1; : : : ;m; 8 k:

(b) There exists a positive scalar C such that

kgk � C; 8 g 2 @fi(xk) [ @fi( i�1;k); 8 i = 1; : : : ;m; 8 k:

Assumption 4.1(a) says that in each cycle k, the sum of all weights corresponding to the same
subgradient gj;k is equal to 1. A possible choice of such weights is the one where the weights
corresponding to the same subgradient gj;k are all equal, i.e.,

wki;j =
1

m� j + 1
; 8 j = 1; : : : ;m; 8 i = j; : : : ;m; 8 k:

In the next lemma, we establish an important relation between the iterates obtained at
the beginning and the end of a cycle.

Lemma 4.1: Let Assumption 4.1 hold and let fxkg be the sequence generated by the incre-
mental subgradient method with weights. We then have

kxk+1 � yk2 � kxk � yk2 � 2�k
�
f(xk)� f(y)

�
+ �2km

2C2; 8 y 2 X; 8 k;

where C is as in Assumption 4.1(b).
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Proof: By using the nonexpansion property of the projection, we obtain for all y 2 X, and
all i and k,

k i;k � yk2 =






PX

2
4 i�1;k � �k

iX
j=1

wki;jgj;k

3
5� y








2

�






 i�1;k � �k

iX
j=1

wki;jgj;k � yk2







2

� k i�1;k � yk2 � 2�k

iX
j=1

wki;jg
0
j;k( i�1;k � y) + �2kC

2

0
@ iX
j=1

wki;j

1
A

2

;

(4.4)

where in the last inequality we use the following relation






iX

j=1

wki;jgj;k








2

�
0
@ iX
j=1

wki;jkgj;kk
1
A

2

and the subgradient boundedness [cf. Assumption 4.1(b)].
For i = 1, from the relation  0;k = xk [cf. Eq. (4.1)] and the subgradient inequality

g01;k(xk � y) � f1(x0)� f1(y);

we have

k 1;k � yk2 � kxk � yk2 � 2�kwk1;1
�
f1(x0)� f1(y)

�
+�2kC

2
�
wk1;1

�2
; 8 y 2 X; 8 k: (4.5)

For i = 2; : : : ;m, we next estimate the term
Pi

j=1 w
k
i;jg

0
j;k( i�1;k � y) in the right hand

side of Eq. (4.4). In particular, by using the subgradient inequality and the subgradient
boundedness assumption, we obtain

iX
j=1

wki;jg
0
j;k( i�1;k � y) �

iX
j=1

wki;j
�
g0j;k( j�1;k � y) + g0j;k( i�1;k �  j�1;k)

�

�
iX

j=1

wki;j
�
fj( j�1;k)� fj(y)� Ck i�1;k �  j�1;kk

�

�
iX

j=1

wki;j

��
fj(xk)� fj(y)

�
+
�
fj( j�1;k)� fj(xk)

�� Ck i�1;k �  j�1;kk
�
:

By convexity of each fj and by Assumption 4.1(b), it follows that

fj( j�1;k)� fj(xk) � ~g0j;k( j�1;k � xk) � �Ck j�1;k � xkk;
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where ~gj;k is a subgradient of fj at xk. Combining the preceding two relations, we see that

iX
j=1

wki;jg
0
j;k( i�1;k � y) �

iX
j=1

wki;j

��
fj(xk)� fj(y)

��C
�k i�1;k �  j�1;kk+ k j�1;k � xkk

��
:

Furthermore, from the subiterate de�nition [cf. Eq. (4.2)] and the subgradient boundedness
assumption, we have for all p and s with 1 � s < p,

k p;k �  s;kk � k p;k �  p�1;kk+ � � �+ k s+1;k �  s;kk � �kC

 
pX
l=1

wkp;l + � � � +
s+1X
l=1

wks+1;l

!
:

Using this and the relation xk =  0;k, it can be seen that for all i = 2; : : : ;m and j = 1; : : : ; i,

k i�1;k �  j�1;kk+ k j�1;k � xkk � �kC

 
i�1X
l=1

wki�1;l + � � � + w1;1

!
:

Therefore,

iX
j=1

wki;jg
0
j;k( i�1;k � y) �

iX
j=1

wki;j

"�
fj(xk)� fj(y)

�� �kC2

 
i�1X
l=1

wki�1;l + � � � + w1;1

!#
:

Substituting the preceding relation in Eq. (4.4), we obtain for all y 2 X, i = 2; : : : ;m,
and all k,

k i;k � yk2 � k i�1;k � yk2 � 2�k

iX
j=1

wki;j
�
fj(xk)� fj(y)

�

+ 2�2kC
2

0
@ iX
j=1

wki;j

1
A i�1X

l=1

wki�1;l + � � � + w1;1

!
+ �2kC

2

0
@ iX
j=1

wki;j

1
A

2

;

or equivalently,

k i;k � yk2 � k i�1;k � yk2 � 2�k

iX
j=1

wki;j
�
fj(xk)� fj(y)

�

+ �2kC
2

2
64
0
@ iX
j=1

wki;j + � � � + w1;1

1
A

2

�
 
i�1X
l=1

wki�1;l + � � � + w1;1

!2
3
75 :

By adding these inequalities for i = 2; : : : ;m and then adding Eq. (4.5) for i = 1, and by using
 m;k = xk+1 [cf. Eq. (4.3)], we have for all y 2 X and all k,

kxk+1 � yk2 � kxk � yk � 2�k

mX
i=1

iX
j=1

wki;j
�
fj(xk)� fj(y)

�
+ �2kC

2

0
@ mX
j=1

wkm;j + � � �+ w1;1

1
A

2

:

(4.6)
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Finally, since
mX
i=j

wki;j = 1; 8 j = 1; : : : ;m; 8 k:

[cf. Assumption 4.1(b)], it follows that

mX
i=1

iX
j=1

wki;j
�
fj(xk)�fj(y)

�
=

mX
j=1

�
fj(xk)�fj(y)

� mX
i=j

wki;j =

mX
j=1

�
fj(xk)�fj(y)

�
= f(xk)�f(y);

and
mX
j=1

wkm;j + � � � + w1;1 =

mX
i=1

iX
j=1

wki;j =

mX
j=1

0
@ mX

i=j

wki;j

1
A =

mX
j=1

1 = m:

Using the preceding two relations in Eq. (4.6), we obtain for all y 2 X and all k,

kxk+1 � yk2 � kxk � yk � 2�k
�
f(xk)� f(y)

�
+ �2km

2C2:

Q.E.D.

The relation established in Lemma 4.1 is the same at the relation given in Lemma 2.1
for the pure incremental subgradient method (cf. Section 2.2). Since all convergence and
convergence rate results of Chapter 2 are based on Lemma 2.1, all these results apply to the
incremental subgradient method with weights.

4.2. AN INCREMENTAL APPROXIMATE SUBGRADIENTMETHOD

The incremental approximate subgradient method is similar to the incremental subgradient
method of Section 2.1. The only di�erence is that subgradients are replaced by approximate
subgradients. Thus, at a typical iteration, the method starts with

 0;k = xk; (4.7)

performs m subiterations

 i;k = PX [ i�1;k � �kgi;k]; i = 1; : : : ;m; (4.8)

where the scalar �k is a positive stepsize and the vector gi;k is an �i;k-subgradient of fi at
 i�1;k with �i;k � 0. The last of these subiterations is the new iteration

xk+1 =  m;k: (4.9)
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In our analysis, for an � � 0, we use the de�ning property of an �-subgradient g of a
convex function h : <n 7! < at a point x, which is

h(x) + g0(z � x) � h(z) + �; 8 z 2 <n: (4.10)

We denote by @�h(x) the �-subdi�erential (set of all �-subgradients) of h at x. Regarding the
method (4.7){(4.9), we de�ne

�k = �1;k + � � � + �m;k; 8 k; (4.11)

" = lim sup
k!1

�k;

and we assume the following:

Assumption 4.2:

(a) " <1.

(b) There exists a positive scalar C such that

kgk � C; 8 g 2 @fi(xk) [ @�i;kfi( i�1;k); 8 i = 1; : : : ;m; 8 k:

When the sequence f�i;kg is bounded, i.e., there exists a scalar �� � 0 such that

�i;k � ��; 8 i; k;
then Assumption 4.2(a) is satis�ed. In this case, if the constraint set X is compact or the
sequence f i;kg is bounded, then Assumption 4.2(b) is also satis�ed, since the set [x2Z@�fi(x)
is bounded for any bounded set Z and any positive scalar � (see e.g., Bertsekas, Nedi�c, and
Ozdaglar [BNO02], Exercise 4.11). Furthermore, Assumption 4.2(b) is also satis�ed if each fi
is a polyhedral function, i.e., fi is the pointwise maximum of a �nite number of aÆne functions.

We next establish a relation that is a basis for the forthcoming convergence results.

Lemma 4.2: Let Assumption 4.2 hold and let fxkg be the sequence generated by the incre-
mental approximate subgradient method. Then, we have

kxk+1 � yk2 � kxk � yk2 � 2�k
�
f(xk)� f(y)

�
+ �2km

2C2 + 2�k�k; 8 y 2 X; 8 k;
where �k is given by Eq. (4.11), and C is as in Assumption 4.2(b).

Proof: Using the nonexpansion property of the projection, the �i;k-subgradient boundedness
[cf. Assumption 4.2(b)], and the �-subgradient inequality (4.10) for each component function
fi with � = �i;k, we obtain for all y 2 X, and all i and k,

k i;k � yk2 = 

PX [ i�1;k � �kgi;k]� y


2

� k i�1;k � �kgi;k � yk2
� k i�1;k � yk2 � 2�kg

0
i;k( i�1;k � y) + �2kC

2

� k i�1;k � yk2 � 2�k
�
fi( i�1;k)� fi(y)

�
+ 2�k�i;k + �2kC

2:
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By adding the above inequalities over i = 1; : : : ;m and by using �k = �1;k + � � �+ �m;k [cf. Eq.
(4.11)], we see that for all y 2 X and k,

kxk+1 � yk2 � kxk � yk2 � 2�k

mX
i=1

�
fi( i�1;k)� fi(y)

�
+ 2�k�k + �2kmC

2

= kxk � yk2 � 2�k

 
f(xk)� f(y) +

mX
i=1

�
fi( i�1;k)� fi(xk)

�!

+ 2�k�k + �2kmC
2:

By de�nition of the method [cf. Eqs. (4.7){(4.9)] and Assumption 4.2(b), we have that k i;k�
xkk � �kiC for all i and k. Using this relation, the subgradient inequality, and Assumption
4.2(b), we obtain for all i and k,

fi(xk)� fi( i�1;k) � k~gi;kk � k i�1;k � xkk � Ck i�1;k � xkk � �k(i� 1)C2;

where ~gi;k 2 @fi(xk). From this and the preceding relation, we see that for all y 2 X and k,

kxk+1 � yk2 � kxk � yk2 � 2�k
�
f(xk)� f(y)

�
+ �2k

 
2

mX
i=2

(i� 1)C2 +mC2

!
+ 2�k�k

= kxk � yk2 � 2�k
�
f(xk)� f(y)

�
+ �2km

2C2 + 2�k�k:

Q.E.D.

Lemma 4.2 guarantees that given the current iterate xk and some other point y 2 X whose cost
is lower than f(xk)��k, the next iterate xk+1 will be closer to y than xk, provided the stepsize
�k is suÆciently small [less than 2

�
f(xk) � �k � f(y)

�
=(mC)2]. This fact, with appropriate

choices for y, will be used in the analysis of the method (4.7){(4.9).

4.2.1 Constant and Diminishing Stepsize Rules

In this section, we give convergence results for the method (4.7){(4.9) using either a constant
or a diminishing stepsize. The analysis here is similar to that of the incremental subgradient
method (cf. Sections 2.3 and 2.4).

For the method with a constant stepsize, we have the following result.

Proposition 4.1: Let Assumption 4.2 hold. Then, for the sequence fxkg generated by the
incremental approximate subgradient method with the stepsize �k �xed to some positive con-
stant �, we have:

(a) If f� = �1, then
lim inf
k!1

f(xk) = �1:
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(b) If f� > �1, then

lim inf
k!1

f(xk) � f� +
�m2C2

2
+ ";

where " and C are as in Assumption 4.2.

Proof: We prove (a) and (b) simultaneously. If the result does not hold, there must exist a
% > 0 such that

lim inf
k!1

f(xk)� �m2C2

2
� "� 3% > f�:

Let ŷ 2 X be such that

lim inf
k!1

f(xk) � f(ŷ) +
�m2C2

2
+ "+ 3%;

and let k0 be large enough so that for all k � k0, we have

f(xk) � lim inf
k!1

f(xk)� %:

By combining the preceding two relations, we obtain

f(xk)� f(ŷ) � �m2C2

2
+ "+ 2%; 8 k � k0:

Since " = lim supk!1 �k, we may assume without loss of generality that k0 is large enough so
that

"+ % � �k; 8 k � k0;

implying that

f(xk)� f(ŷ) � �m2C2

2
+ �k + %; 8 k � k0:

Using Lemma 4.2, where y = ŷ and �k = �, together with the preceding relation, we see that

kxk+1 � ŷk2 � kxk � ŷk2 � 2�%; 8 k � k0:

Therefore,

kxk+1 � ŷk2 � kxk�1 � ŷk2 � 4�% � � � � � kxk0 � ŷk2 � 2(k + 1� k0)�%;

which cannot hold for k suÆciently large, a contradiction. Q.E.D.

We next give a result for the method that employs a diminishing stepsize.

Proposition 4.2: Let Assumption 4.2 hold, and let the stepsize �k be such that

lim
k!1

�k = 0;

1X
k=0

�k =1:
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Then, for the sequence fxkg generated by the incremental approximate subgradient method,
we have:

(a) If f� = �1, then
lim inf
k!1

f(xk) = �1:

(b) If f� > �1, then
lim inf
k!1

f(xk) � f� + ":

Proof: Suppose to arrive at a contradiction that there exists an % > 0 such that

lim inf
k!1

f(xk) + "+ 3% > f�:

Let ŷ 2 X be such that
lim inf
k!1

f(xk) � f(ŷ) + "+ 3%;

and let k0 be large enough so that

f(xk) � lim inf
k!1

f(xk)� %; 8 k � k0;

"+ % � �k; 8 k � k0:

From the preceding three relations it follows that

f(xk)� f(ŷ) � �k + %; 8 k � k0:

Using Lemma 4.2, where y = ŷ, together with the preceding relation, we obtain

kxk+1 � ŷk2 � kxk � ŷk2 � �k(2%� �km2C2); 8 k � k0:

Because �k ! 0, without loss of generality, we may assume that k0 is large enough so that
% � �km2C2 for all k � k0, implying that

kxk+1 � ŷk2 � kxk � ŷk2 � �k% � kxk�1 � ŷk2 � %(�k�1 + �k) � � � � � kxk0 � ŷk2 � %

kX
j=k0

�j :

Since
P1

k=0 �k =1, this relation cannot hold for k suÆciently large, a contradiction. Q.E.D.

Let us now consider the case where " = 0. In this case, the results of Props. 4.1 and 4.2
coincide with those of Props. 2.1 and 2.4 for the incremental subgradient method (cf. Sections
2.3 and 2.4). In addition, we have the following two results.

Proposition 4.3: Let Assumption 4.2 hold with " = 0, and let the optimal solution set X�

be nonempty and bounded. Assume further that the stepsize �k is such that

lim
k!1

�k = 0;

1X
k=0

�k =1:
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Then, for the sequence fxkg generated by the incremental approximate subgradient method,
we have

lim
k!1

dist(xk;X�) = 0; lim
k!1

f(xk) = f�:

Proof: Use Lemma 4.2 and a line of analysis similar to that of Prop. 2.5 (cf. Section 2.4).
Q.E.D.

Proposition 4.4: Let Assumption 4.2 hold with " = 0, and let the optimal solution set X�

be nonempty. Assume further that the stepsize �k is such that

1X
k=0

�k =1;

1X
k=0

�2k <1:

Then, the sequence fxkg generated by the incremental approximate subgradient method con-
verges to some optimal solution.

Proof: Use Lemma 4.2 and a line of analysis similar to that of Prop. 2.6 (cf. Section 2.4).
Q.E.D.

4.2.2 Dynamic Stepsize Rules

Here, we consider the method using dynamic stepsize rules. We start with the dynamic stepsize
rule for known f�, where

�k = 
k
f(xk)� f�

m2C2
; 0 < 
 � 
k � 
 < 2; 8 k: (4.12)

For this stepsize, we have the following result.

Proposition 4.5: Let Assumption 4.2 hold. Then, for the sequence fxkg generated by the
incremental approximate subgradient method with the dynamic stepsize rule (4.12), we have

lim inf
k!1

f(xk) � f� +
2"

2� 

:

Proof: Suppose to obtain a contradiction that there exists % > 0 such that

f� +
2(%+ ")

2� 

< lim inf

k!1
f(xk):

Let k0 be large enough so that

2(%+ �k)

2� 

� f(xk)� f�; 8 k � k0; (4.13)
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and let a vector ŷ 2 X be such that

f(ŷ)� f� � %

2
:

Then, we have

2
�
f(ŷ)� f� + �k

� � 2(%+ �k)� % � (2� 
)
�
f(xk)� f�

�� %; 8 k � k0: (4.14)

By Lemma 4.2, where y = ŷ and �k is given by Eq. (4.12), it follows that for all k � k0,

kxk+1 � ŷk2 � kxk � ŷk2 � �k

�
2
�
f(xk)� f(ŷ)

�� 
k
�
f(xk)� f�

�� 2�k

�
= kxk � ŷk2 � �k

�
2
�
f(xk)� f�

�� 2
�
f(ŷ)� f�

�� 
k
�
f(xk)� f�

�� 2�k

�
:

By using Eq. (4.14) in this relation and the fact 
k � 
, we see that

kxk+1 � ŷk2 � kxk � ŷk2 � �k

�
(
 � 
k)

�
f(xk)� f�

�
+ %
�
� kxk � ŷk2 � �k%; 8 k � k0:

By the de�nition of the stepsize [cf. Eq. (4.12)] and Eq. (4.13), from the preceding inequality
we obtain for all k � k0,

kxk+1 � ŷk2 � kxk � ŷk2 � 2
%2

m2C2(2� 
)
� � � � � kxk0 � ŷk2 � (k + 1� k0)2
%2

m2C2(2� 
)
;

which cannot hold for k suÆciently large, a contradiction. Q.E.D.

If " = 0 (or equivalently �k ! 0), then the result of Prop. 4.5 coincides with that
of Prop. 2.7 for the incremental subgradient method (cf. Section 2.5). Furthermore, if the
optimal solution set X� is nonempty and �k tend to zero fast enough, then fxkg converges
to some optimal solution. This result is shown in the next proposition. A similar result, for
the (nonincremental) approximate subgradient method, was shown by Br�annlund [Br�a93] in
Theorem 3.1, p. 41.

Proposition 4.6: Let Assumption 4.2(b) hold, and assume that for some scalar c with c 2
(0; 1),

�k � c
2� 
k
2

�
f(xk)� f�

�
; 8 k:

Assume further that the optimal solution set X� is nonempty. Then, the sequence fxkg
generated by the incremental approximate subgradient method with the dynamic stepsize rule
(4.12) converges to some optimal solution.

Proof: By Lemma 4.2, where y = x� and �k is given by Eq. (4.12), it follows that

kxk+1 � x�k2 � kxk � x�k2 � �k(2� 
k)
�
f(xk)� f�

�
+ 2�k�k; 8 x� 2 X�; 8 k:
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By our assumption, we have that for c 2 (0; 1),

2�k � c (2� 
k)
�
f(xk)� f�

�
; 8 k;

implying that

kxk+1 � x�k2 � kxk � x�k2 � �k(1� c)(2� 
k)
�
f(xk)� f�

�
; 8 x� 2 X�; 8 k:

Therefore, by using the de�nition of the stepsize �k, we obtain

kxk+1 � x�k2 � kxk � x�k2 � 
(1� c)(2� 
)

�
f(xk)� f�

�2
m2C2

; 8 x� 2 X�; 8 k:

Thus, for any x� 2 X�, the sequence
�kxk � x�k	 is nonincreasing, and therefore bounded.

Furthermore, from the preceding relation it follows that

kxk+1 � x�k2 � kx0 � x�k2 � 
(1� c)(2� 
)

m2C2

kX
j=0

�
f(xj)� f�

�2
; 8 x� 2 X�; 8 k;

implying that
P1

j=0

�
f(xj) � f�

�2
is �nite. Hence, f(xk) ! f�, and by continuity of f , we

have x 2 X� for any limit point x of fxkg. Since the sequence
�kxk � x�k	 is nonincreasing,

it converges to kx� x�k for every x� 2 X�. If there are two limit points ~x and x of fxkg, we
must have ~x 2 X�, x 2 X�, and k~x� x�k = kx� x�k for all x� 2 X�, which is possible only if
~x = x. Q.E.D.

We next consider the dynamic stepsize rule with unknown f�,

�k = 
k
f(xk)� f levk

m2C2
; 0 < 
 � 
k � 
 < 2; (4.15)

where the estimates f levk are given by

f levk = min
0�j�k

f(xj)� Æk; (4.16)

while Æk is updated using procedures similar to those of Section 2.6. We start with the adjust-
ment procedure where Æk is updated according to the following rule:

Æk+1 =

�
�Æk if f(xk+1) � f levk ,
max

�
�Æk; Æ

	
if f(xk+1) > f levk ,

(4.17)

where Æ0, Æ, �, and � are �xed positive scalars with � < 1 and � � 1.
For the method using the stepsize (4.15){(4.17), we have the following result.

Proposition 4.7: Let Assumption 4.2 hold. Then, for the sequence fxkg generated by the
incremental approximate subgradient method and the dynamic stepsize rule (4.15){(4.17), we
have:
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(a) If f� = �1, then
inf
k�0

f(xk) = f�:

(b) If f� > �1, then
inf
k�0

f(xk) � f� + Æ + ":

Proof: To arrive at a contradiction, assume that

inf
k�0

f(xk)� Æ � � > f�: (4.18)

Each time the target level is attained [i.e., f(xk) � f levk�1], the current best function value
min0�j�k f(xj) decreases by at least Æ [cf. Eqs. (4.16) and (4.17)], so in view of Eq. (4.18), the
target value can be attained only a �nite number times. From Eq. (4.17) it follows that after
�nitely many iterations, Æk is decreased to the threshold value and remains at that value for
all subsequent iterations, i.e., there is an index k such that

Æk = Æ; 8 k � k: (4.19)

In view of Eq. (4.18), there exists a y 2 X such that

inf
k�0

f(xk)� Æ � " > f(y):

Without loss of generality, we may assume that k is large enough so that

inf
k�0

f(xk)� Æ � �k � f(y); 8 k � k:

Thus, by Eqs. (4.16) and (4.19), we have

f levk � �k = min
0�j�k

f(xj)� Æ � �k � inf
k�0

f(xk)� Æ � �k � f(y); 8 k � k; (4.20)

By Lemma 4.2 with y = y and �k as in Eq. (4.15), it follows that

kxk+1 � yk2 � kxk � yk2 � 2�k
�
f(xk)� f(y)

�
+ �2km

2C2 + 2�k�k

= kxk � yk2 � �k

�
2
�
f(xk)� f(y)

�� 
k
�
f(xk)� f levk

�� 2�k

�
= kxk � yk2 � �k

�
(2� 
k)

�
f(xk)� f levk

�
+ 2
�
f levk � f(y)� �k

��
; 8 k � 0:

Using Eq. (4.20) in the preceding relation and the de�nition of �k [cf. Eq. (4.15)], we obtain

kxk+1 � yk2 � kxk � yk2 � �k(2� 
k)
�
f(xk)� f levk

�
� kxk � yk2 � 
k(2� 
k)

�
f(xk)� f levk

mC

�2

� kxk � yk2 � 
(2� 
)
Æ2

m2C2
; 8 k � k;
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where the last inequality follows from the relations 
k 2 [
; 
] and f(xk)� f levk � Æ for all k.
Finally, by adding the above inequalities over k, we see that

kxk+1 � yk2 � kxk � yk2 � (k + 1� k)
(2� 
)
Æ2

m2C2
; 8 k � k;

which cannot hold for suÆciently large k, a contradiction. Q.E.D.

We now describe the method that employs the stepsize (4.15)-(4.16), where the param-
eters Æk are adjusted according to the path-based procedure. The method is given in the
following algorithm.

Path-Based Incremental Approximate Subgradient Algorithm

Step 0 (Initialization) Select x0, Æ0 > 0, and b > 0. Set �0 = 0, f rec�1 = 1. Set k = 0,
l = 0, and k(l) = 0 [k(l) will denote the iteration number when the l-th update of f levk

occurs].

Step 1 (Function evaluation) Compute f(xk). If f(xk) < f reck�1, then set f reck = f(xk).
Otherwise set f reck = f reck�1 [so that f reck keeps the record of the smallest value attained
by the iterates that are generated so far, i.e., f reck = min0�j�k f(xj)].

Step 2 (SuÆcient descent) If f(xk) � f reck(l)� Æl
2 , then set k(l+1) = k, �k = 0, Æl+1 = Æl,

increase l by 1, and go to Step 4.

Step 3 (Oscillation detection) If �k > b, then set k(l + 1) = k, �k = 0, Æl+1 =
Æl
2 , and

increase l by 1.

Step 4 (Iterate update) Set f levk = f reck(l) � Æl. Select 
k 2 [
; 
] and compute xk+1 via

Eqs. (4.7){(4.9) with the stepsize (4.15).

Step 5 (Path length update) Set �k+1 = �k + �kmC, increase k by 1, and go to Step 1.

The interpretation of the parameters b and �k is the same as in the path-based incremental
algorithm of Section 2.6.

For the preceding algorithm, we have the following convergence result.

Proposition 4.8: Let Assumption 4.2 hold. Then, for the path-based incremental approxi-
mate subgradient algorithm, we have:

(a) If f� = �1, then
inf
k�0

f(xk) = f�:

(b) If f� > �1, then
inf
k�0

f(xk) � f� + ":

Proof: Use Lemma 4.2, and a line of analysis similar to that of Prop. 2.12 of Section 2.6.
Q.E.D.
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Variable Metric

Subgradient Methods
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5

A Variable Metric

Subgradient Method

We here propose a new subgradient method that uses a variable metric. This method combines
the principles of the variable metric approach with those of subgradient methods. The main
idea is the same as in variable metric methods for di�erentiable problems, namely, to transform
the original space coordinates in order to get better convergence rates. This is important, in
particular, for problems where subgradients are almost perpendicular to the directions pointing
toward the set of minima, in which case the ordinary subgradient method is slow. Changing
the stepsize cannot improve the method's progress, since poor performance is due to bad
subgradient directions. In this case, it is better to modify subgradient directions, which can
be done by transforming the space coordinates.

Our method is applicable to unconstrained convex problems

minimize f(x)

subject to x 2 <n;

where the function f : <n 7! < is convex but not necessarily di�erentiable. In Section 5.1,
we introduce the method, and in Section 5.2, we establish its basic properties. In Sections 5.3
and 5.4, we analyze its convergence for the three stepsize rules: constant, diminishing, and
dynamic.
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5.1. THE METHOD

At a typical iteration of a variable metric subgradient method, we have

xk+1 = xk � �kBkB0kgk; (5.1)

where �k is a positive stepsize, Bk is an n�n invertible matrix representing a linear transfor-
mation of the space coordinates, and gk is a subgradient of f at xk. In what follows, we use
the terms \matrix" and \linear transformation" interchangeably.

An important property of subgradients under a linear transformation, thanks to which
variable metric subgradient methods work, is the following: A linear transformation maps a
subgradient of f in the original space into a subgradient of some function in the transformed
space. In particular, let y = B�1x for x 2 <n, so that y-space is the transformed space. Let
x 2 <n and y = B�1x, and let g be a subgradient of f at x. In the y-space, consider the
function F given by

F (y) = f(By);

which is convex since f is convex (see [Roc70], Theorem 5.7). Furthermore, for the vector B0g
and any y 2 <n, we have by using y = B�1x,

F (y) + (B0g)0(y � y) = f(x) + g0(By � x):

Because g is a subgradient of f at x, it follows that for any y 2 <n,

F (y) + (B0g)0(y � y) � f(By) = F (y);

thus showing that B0g is a subgradient of F at y.
Using this property of subgradients and appropriate linear transformations, we can ensure

that the distance between the iterates xk and the set of minima is bounded. In particular, this
can be guaranteed by allowing a limited total amount of space transformation in some sense,
which we describe in the next section.

5.2. ASSUMPTIONS AND SOME BASIC RELATIONS

We �rst establish a basic relation for the iterates generated by the method (5.1). This relation
is given in the following lemma and is used repeatedly in our convergence analysis.

Lemma 5.1: Let fxkg be the sequence generated by the variable metric method. Then, for
any y 2 <n and all k, we have



B�1k+1(xk+1 � y)


2 � kB�1k+1Bkk2

�

B�1k (xk � y)


2 � 2�k

�
f(xk)� f(y)

�
+ �2kkB0kgkk2

�
:
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Proof: Let y 2 <n be arbitrary. By the iterate de�nition [cf. Eq. (5.1)], we have for all k,

B�1k+1(xk+1 � y) = B�1k+1(xk � �kBkB0kgk � y) = B�1k+1Bk

�
B�1k (xk � y)� �kB0kgk

�
:

From this relation, we obtain for all k,



B�1k+1(xk+1 � y)


2 � kB�1k+1Bkk2



B�1k (xk � y)� �kB0kgk


2

= kB�1k+1Bkk2
�

B�1k (xk � y)



2 � 2�kg0k(xk � y) + �2kkB0kgkk2
�
:

Since gk is a subgradient of f at xk, we have

g0k(xk � y) � f(xk)� f(y);

implying that for all k,



B�1k+1(xk+1 � y)


2 � kB�1k+1Bkk2

�

B�1k (xk � y)


2 � 2�k

�
f(xk)� f(y)

�
+ �2kkB0kgkk2

�
:

Q.E.D.

When the function f has a nonempty set of minima over <n, the result of Lemma 5.1
can be strengthened, as seen in the following lemma.

Lemma 5.2: Let fxkg be the sequence generated by the variable metric method, and assume
that the optimal solution set X� is nonempty. Then, we have for all k,

min
x�2X�



B�1k+1(xk+1 � x�)


2 � kB�1k+1Bkk2

�
min
x�2X�



B�1k (xk � x�)


2

� 2�k
�
f(xk)� f�

�
+ �2kkB0kgkk2

!
:

Proof: By Lemma 5.1, where y = x�, we obtain for any x� 2 X� and all k,



B�1k+1(xk+1 � x�)


2 � kB�1k+1Bkk2

�

B�1k (xk � x�)


2 � 2�k

�
f(xk)� f(x�)

�
+ �2kkB0kgkk2

�
;

from which the result follows by taking the minimum over all x� in X�. Q.E.D.

In our convergence analysis, we use the following assumption.

Assumption 5.1:

(a) There exists a positive scalar �C such that

kB0kgkk � �C; 8 k:
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(b) The linear transformations Bk are such that

kB�1k+1Bkk � 1; 8 k;
1Y
k=0

kB�1k+1Bkk2 <1:

Assumption 5.1(a) says that the subgradients in the transformed space are bounded. Assump-
tion 5.1(b) allows us to guarantee that the distance between the iterates xk and the set of
minima is bounded in some appropriate norm. In particular, the second condition is the one
that poses a limit on the total amount of space transformation.

Let us now discuss the cases where Assumption 5.1 is satis�ed. When f a is polyhedral
function, Assumption 5.1 is satis�ed, for example, when Bk is the identity matrix for all
suÆciently large k. The assumption can also be satis�ed with diagonal matrices Bk. However,
it is hard to give a general rule for selecting the diagonal entries of Bk. The selection of the
diagonal entries may be based on some additional information about the function f .

Assumption 5.1 can also be satis�ed with the matrices Bk generated as in Shor's space
dilation method (cf. Shor [Sho70a], Shor and Zhurbenko [ShZ71], see also Shor [Sho85] and
[Sho98]), where

Bk = Bk�1R�k (�k); 8 k � 1;

B0 is some invertible initial matrix, for example, B0 = I. The linear transformation R�k (�k)
is given by

R�k(�k) = I + (�k � 1)�k�0k; 8 k � 1;

for a positive scalar �k and the vector �k de�ned by

�k =
B0k�1dk
kB0k�1dkk

;

where dk = gk or dk = gk � gk�1. It can be shown that (cf. Shor [Sho85] and [Sho98]) for a
positive � 2 < and � 2 <n with k�k = 1,

�
R�(�)

��1
= R 1

�
(�);



R�(�)


 = maxf1; �g: (5.2)

Thus, if the parameters �k are chosen such that

1Y
k=1

maxf1; �kg <1;

then for all k � 1

kB0kgkk = kR0�k(�k) � � �R0�1(�1)gkk �
 

kY
i=1

maxf1; �ig
!
kgkk;
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implying that Assumption 5.1(a) is satis�ed for a polyhedral function f .
Furthermore, by using the relations in (5.2), we obtain

kB�1k+1Bkk = max

�
1;

1

�k+1

�
� 1;

showing that, for Bk generated as in Shor's space dilation method, the �rst condition of
Assumption 5.1(b) is always satis�ed. In order to have

Q1
k=0 kB�1k+1Bkk2 < 1; it suÆces to

choose the parameters �k such that

1Y
k=0

max

�
1;

1

�2k+1

�
<1:

5.3. CONSTANT AND DIMINISHING STEPSIZE RULES

Here, we give convergence results for the method using the constant and diminishing stepsize
rules. Our �rst result is for the constant stepsize rule, where the stepsize �k is �xed to some
positive scalar �. In this case, as seen in our next proposition, the function values f(xk) along
a subsequence of fxkg converge to f� within an error proportional to �.

Proposition 5.1: Let Assumption 5.1 hold, and let the sequence fxkg be generated by the
variable metric method with the stepsize �k �xed to some positive scalar �. We have:

(a) If f� = �1, then
lim inf
k!1

f(xk) = �1:

(b) If f� > �1, then

lim inf
k!1

f(xk) � f� +
� �C2

2
;

where �C is as in Assumption 5.1.

Proof: We prove (a) and (b) simultaneously. If the result does not hold, there must exist an
� > 0 such that

lim inf
k!1

f(xk)� �� � �C2

2
> f�:

Let ŷ 2 <n be such that

lim inf
k!1

f(xk)� �� � �C2

2
> f(ŷ);

and let k0 be large enough so that for all k � k0, we have

f(xk)� �� � �C2

2
� f(ŷ):
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Using Lemma 5.1, where y = ŷ and �k = �, together with the preceding relation, we see that



B�1k+1(xk+1� ŷ)


2 � kB�1k+1Bkk2

�

B�1k (xk� ŷ)


2�2����2 �C2+�2kB0kgkk2

�
; 8 k � k0:

By Assumption 5.1(a), we have kB0kgkk � �C for all k, implying that



B�1k+1(xk+1 � ŷ)


2 � kB�1k+1Bkk2

�

B�1k (xk � ŷ)


2 � 2��

�
; 8 k � k0:

Since, by Assumption 5.1(b), we have kB�1k+1Bkk � 1 for all k, it follows that for all k � k0,



B�1k+1(xk+1 � ŷ)


2 � kB�1k+1Bkk2



B�1k (xk � ŷ)


2 � 2��

�
0
@ kY
i=k0

kB�1i+1Bik2
1
A

B�1k0 (xk0 � ŷ)



2 � 2(k + 1� k0)��:

Furthermore, by the same assumption,
Qk

i=k0
kB�1i+1Bik2 �

Q1
i=0 kB�1i+1Bik2 < 1; implying

that the preceding relation cannot hold for k suÆciently large, a contradiction. Q.E.D.

When the optimal solution set X� is nonempty, we can estimate the number of iterations
required to achieve the optimal function value f� within some error not greater than (� �C2 +
�)=2; where � is an arbitrarily small positive scalar. In particular, we have the following result.

Proposition 5.2: Let Assumption 5.1 hold, and assume that the optimal solution set X�

is nonempty. Let the sequence fxkg be generated by the variable metric method with the
stepsize �k �xed to some positive scalar �. Then, for a positive scalar � and the smallest
positive integer K such that

��K �
 
K�1Y
i=0

kB�1i+1Bik2
!

min
x�2X�



B�10 (x0 � x�)


2;

we have

min
0�k�K

f(xk) � f� +
� �C2 + �

2
:

Proof: To arrive at a contradiction, assume that

f(xk) > f� +
� �C2 + �

2
; 8 k = 0; 1; : : : ;K:

By using this relation and Lemma 5.2, where �k is replaced by �, we obtain for k = 0; 1; : : : ;K,

min
x�2X�



B�1k+1(xk+1�x�)


2 � kB�1k+1Bkk2

�
min
x�2X�



B�1k (xk � x�)


2 � ��� �2 �C2 + �2kB0kgkk2

�
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By Assumption 5.1, we have kB0kgkk � �C and kB�1k+1Bkk � 1 for all k, implying that for
k = 0; 1; : : : ;K,

min
x�2X�



B�1k+1(xk+1 � x�)


2 � kB�1k+1Bkk2

�
min
x�2X�



B�1k (xk � x�)


2 � ��

�

� kB�1k+1Bkk2 min
x�2X�



B�1k (xk � x�)


2 � ��:

Hence, for k = 0; 1; : : : ;K,

min
x�2X�



B�1k+1(xk+1 � x�)


2 �

 
kY
i=0

kB�1i+1Bik2
!

min
x�2X�



B�10 (x0 � x�)


2 � (k + 1)��:

In particular, we have that for k = K � 2,

min
x�2X�



B�1K�1(xK�1 � x�)


2 �

 
K�2Y
i=0

kB�1i+1Bik2
!

min
x�2X�



B�10 (x0 � x�)


2 � (K � 1)��;

implying that

(K � 1)�� �
 
K�2Y
i=0

kB�1i+1Bik2
!

min
x�2X�



B�10 (x0 � x�)


2;

contradicting the de�nition of K. Q.E.D.

We now consider the method that uses a diminishing stepsize. In this case, the function
values f(xk), along a subsequence of fxkg, converge to the optimal function value f�, as seen
in our next proposition.

Proposition 5.3: Let Assumption 5.1 hold, and let the stepsize �k be such that

lim
k!1

�k = 0;

1X
k=0

�k =1:

Then, for the sequence fxkg generated by the variable metric method, we have

lim inf
k!1

f(xk) = f�:

Proof: Suppose to arrive at a contradiction that there exists an � > 0 such that

lim inf
k!1

f(xk)� � > f�:

Let ŷ 2 <n be such that
lim inf
k!1

f(xk)� � > f(ŷ);
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and let k0 be large enough so that

f(xk)� � � f(ŷ); 8 k � k0:

Using Lemma 5.1, where y = ŷ, together with the preceding relation, we obtain



B�1k+1(xk+1 � ŷ)


2 � kB�1k+1Bkk2

�

B�1k (xk � ŷ)


2 � �k

�
2� � �kkB0kgkk2

��
; 8 k � k0:

Because �k ! 0 and kB0kgkk � �C for all k [cf. Assumption 5.1(a)], without loss of generality,
we may assume that k0 is large enough so that � � �k �C2 for all k � k0, implying that

B�1k+1(xk+1 � ŷ)



2 � kB�1k+1Bkk2
�

B�1k (xk � ŷ)



2 � �k�
�
; 8 k � k0:

By Assumption 5.1(b), we have kB�1k+1Bkk � 1 for all k, and therefore



B�1k+1(xk+1 � ŷ)


2 � kB�1k+1Bkk2



B�1k (xk � ŷ)


2 � �k�

�
0
@ kY
i=k0

kB�1i+1Bik2
1
A

B�1k0 (xk0 � ŷ)



2 � �

kX
j=k0

�j ; 8 k � k0:

However, this relation cannot hold for suÆciently large k, since
P1

j=0 �j = 1 and since by
Assumption 5.1, we have

kY
i=k0

kB�1i+1Bik2 �
1Y
i=0

kB�1i+1Bik2 <1;

a contradiction. Q.E.D.

5.4. DYNAMIC STEPSIZE RULES

Here, we discuss the method using a dynamic stepsize rule. We �rst consider the dynamic
stepsize rule for known f�, where

�k = 
k
f(xk)� f�

kB0kgkk2
; 0 < 
 � 
k � 
 < 2; 8 k: (5.3)

For this stepsize, we have the following convergence result.

Proposition 5.4: Let Assumption 5.1 hold, and let the sequence fxkg be generated by the
variable metric method with the dynamic stepsize (5.3). Then, we have

lim inf
k!1

f(xk) = f�:
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Proof: To obtain a contradiction, suppose that there exists scalar � > 0 such that

lim inf
k!1

f(xk) > f� +
2�

2� 

;

implying that for some large enough k0,

f(xk) � f� +
2�

2� 

; 8 k � k0: (5.4)

Let a vector ŷ 2 <n be such that

f� +
�

2
� f(ŷ):

Using Lemma 5.1, where y = ŷ and �k is as in Eq. (5.3), we obtain for all k � k0,



B�1k+1(xk+1� ŷ)


2 � kB�1k+1Bkk2

h

B�1k (xk � ŷ)


2 ��k�2�f(xk)� f(ŷ)�� 
k�f(xk)� f���i:

From Eq. (5.4) and the fact f� + �=2 � f(ŷ), we see that for all k � k0,

2
�
f(xk)� f(ŷ)

�� 
k
�
f(xk)� f�

�
= (2� 
k)

�
f(xk)� f�

�
+2
�
f� � f(ŷ)

� � (2� 
k)
2�

2� 

� �;

and since 
k � 
 for all k, it follows that

2
�
f(xk)� f(ŷ)

�� 
k
�
f(xk)� f�

� � 2�� � = �; 8 k � k0:

Therefore, for all k � k0,



B�1k+1(xk+1 � ŷ)


2 � kB�1k+1Bkk2

�

B�1k (xk � ŷ)


2 � �k�

�
:

By using the de�nition of �k [cf. Eq. (5.3)], the relation (5.4), and the boundedness of kB0kgkk
[cf. Assumption 5.1(a)], we obtain

�k = 
k
f(xk)� f�

kB0kgkk2
� 2�


(2� 
) �C2
; 8 k � k0:

Since kB�1k+1Bkk � 1 for all k by Assumption 5.1(b), the preceding two relations imply that
for all k � k0,



B�1k+1(xk+1 � ŷ)


2 � kB�1k+1Bkk2



B�1k (xk � ŷ)


2 � 2�2


(2� 
) �C2

�
0
@ kY
i=k0

kB�1i+1Bik2
1
A kB�1k0 (xk0 � ŷ)



2 � (k + 1� k0)
2�2


(2� 
) �C2
:
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But this relation cannot hold for k suÆciently large, since by Assumption 5.1(b), we have

kY
i=k0

kB�1i+1Bik2 �
1Y
i=0

kB�1i+1Bik2 <1;

a contradiction. Q.E.D.

Assuming that the optimal solution set X� is nonempty, we can estimate the number of
iterations required to achieve the optimal function value f� within a given error, as seen in the
following proposition.

Proposition 5.5: Let Assumption 5.1 hold, and assume that the optimal solution set X� is
nonempty. Let fxkg be the sequence generated by the variable metric method with the stepsize
(5.3). Then, for a positive scalar � and the smallest positive integer K such that

K
�2
(2� 
)

�C2
�
 
K�1Y
i=0

kB�1i+1Bik2
!

min
x�2X�



B�10 (x0 � x�)


2;

we have
min

0�k�K
f(xk) � f� + �:

Proof: By using Lemma 5.2, with �k given by Eq. (5.3), we obtain for all k,

min
x�2X�



B�1k+1(xk+1 � x�)


2 � kB�1k+1Bkk2

�
min
x�2X�



B�1k (xk � x�)


2

� 
k(2� 
k)

�
f(xk)� f�

�2
kB0kgkk2

!
:

By the de�nition of �k, we have 
k 2 [
; 
], while by Assumption 5.1, we have kB0kgkk � �C

and kB�1k+1Bkk � 1, implying that for all k,

min
x�2X�



B�1k+1(xk+1 � x�)


2 � kB�1k+1Bkk2 min

x�2X�


B�1k (xk � x�)



2 � 
(2� 
)

�
f(xk)� f�

�2
�C2

:

Assume now, to arrive at a contradiction, that

f(xk) > f� + �; 8 k = 0; 1; : : : ;K:

Combining this with the preceding relation, we obtain for all k = 0; 1; : : : ;K,

min
x�2X�



B�1k+1(xk+1 � x�)


2 � kB�1k+1Bkk2 min

x�2X�


B�1k (xk � x�)



2 � 
(2� 
)
�2

�C2

�
 

kY
i=0

kB�1i+1Bik2
!

min
x�2X�



B�10 (x0 � x�)


2 � (k + 1)
(2� 
)

�2

�C2
:
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Thus, in particular for k = K � 2, we have

min
x�2X�



B�1K�1(xK+1�x�)


2 �

 
K�2Y
i=0

kB�1i+1Bik2
!

min
x�2X�



B�10 (x0�x�)


2� (K�1)
(2�
) �

2

�C2
;

implying that

(K � 1)
�2
(2� 
)

�C2
�
 
K�2Y
i=0

kB�1i+1Bik2
!

min
x�2X�



B�10 (x0 � x�)


2;

contradicting the de�nition of K. Q.E.D.

We now consider the dynamic stepsize rule with unknown f�, where

�k = 
k
f(xk)� f levk

kB0kgkk2
; 0 < 
 � 
k � 
 < 2; (5.5)

the estimates f levk are given by

f levk = min
0�j�k

f(xj)� Æk; (5.6)

for positive scalars Æk. We discuss two adjustment procedures for updating Æk, which are
modi�cations of the procedures discussed in Section 2.6. We start with the �rst adjustment
procedure, where Æk is updated according to the following procedure

Æk+1 =

�
�Æk if f(xk+1) � f levk ,
max

�
�Æk; Æ

	
if f(xk+1) > f levk ,

(5.7)

where Æ0, Æ, �, and � are �xed positive scalars with � < 1 and � � 1.
For the method using the stepsize (5.5){(5.7), we have the following result.

Proposition 5.6: Let Assumption 5.1 hold, and let the sequence fxkg be generated by the
variable metric method with the dynamic stepsize (5.5){(5.7).

(a) If f� = �1, then
inf
k�0

f(xk) = f�:

(b) If f� > �1, then
inf
k�0

f(xk) � f� + Æ:

Proof: We prove (a) and (b) simultaneously. To arrive at a contradiction, assume that

inf
k�0

f(xk)� Æ > f�: (5.8)
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Each time the target level is attained [i.e., f(xk) � f levk�1], the current best function value
min0�j�k f(xj) decreases by at least Æ [cf. Eqs. (5.6) and (5.7)], so in view of Eq. (5.8), the
target value can be attained only a �nite number times. From Eq. (5.7) it follows that after
�nitely many iterations, Æk is decreased to the threshold value and remains at that value for
all subsequent iterations, i.e., there is a k̂ such that

Æk = Æ; 8 k � k̂: (5.9)

In view of Eq. (5.8), there exists ŷ 2 <n such that

inf
k�0

f(xk)� Æ � f(ŷ):

Thus, by Eqs. (5.6) and (5.9), we have

f levk = min
0�j�k

f(xj)� Æ � inf
k�0

f(xk)� Æ � f(ŷ); 8 k � k̂; (5.10)

By Lemma 5.1, with y = ŷ and �k as in Eq. (5.5), it follows that



B�1k+1(xk+1� ŷ)


2 � kB�1k+1Bkk2

h

B�1k (xk� ŷ)


2��k�2�f(xk)�f(ŷ)��
k�f(xk)�f levk

��i
:

Using the fact f levk � f(ŷ) for all k � k̂ [cf. Eq. (5.10)] and the de�nition of �k [cf. Eq. (5.5)],

from the preceding relation we obtain for all k � k̂,



B�1k+1(xk+1 � ŷ)


2 � kB�1k+1Bkk2

�

B�1k (xk � ŷ)


2 � �k(2� 
k)

�
f(xk)� f levk

��

= kB�1k+1Bkk2
 

B�1k (xk � ŷ)



2 � 
k(2� 
k)

�
f(xk)� f levk

�2
kB0kgkk2

!
:

Since 
k 2 [
; 
] and f(xk)�f levk � Æk � Æ for all k [cf. Eqs. (5.5){(5.7)], and since kB0kgkk � �C
[cf. Assumption 5.1(a)], it follows that



B�1k+1(xk+1 � ŷ)


2 � kB�1k+1Bkk2

�

B�1k (xk � ŷ)


2 � 
(2� 
)

Æ2

�C2

�
; 8 k � k̂:

Furthermore, by Assumption 5.1(b), we have kB�1k+1Bkk � 1 for all k, implying that for all

k � k̂,



B�1k+1(xk+1 � ŷ)


2 � kB�1k+1Bkk2



B�1k (xk � ŷ)


2 � 
(2� 
)

Æ2

�C2

�
0
@ kY
i=k̂

kB�1i+1Bik2
1
A kB�1

k̂
(xk̂ � ŷ)



2 � (k + 1� k̂)
(2� 
)
Æ2

�C2
:
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However, by Assumption 5.1(b), we have
Qk

i=k̂ kB�1i+1Bik2 �
Q1

i=0 kB�1i+1Bik2 < 1; so that
the preceding relation cannot hold for k suÆciently large, a contradiction. Q.E.D.

We now describe the method that employs the stepsize (5.5)-(5.6), where the parameters
Æk are adjusted according to a path-based procedure. The idea here is to adjust Æk only if
a suÆcient descent occurs or if the iterates travel a path longer than some prescribed path
bound b. Thus, the idea is the same as in the path-bound procedure of Section 2.6, however,
there is a di�erence: we here measure the path length of the iterates in a variable metric. The
method (5.1) using the path-based procedure is given in the following algorithm.

Path-Based Variable Metric Algorithm

Step 0 (Initialization) Select x0, B0, Æ0 > 0, and b > 0. Set �0 = 0, f rec�1 = 1. Set
k = 0, l = 0, and k(l) = 0 [k(l) will denote the iteration number when the l-th update of
f levk occurs].

Step 1 (Function evaluation) Calculate f(xk). If f(xk) < f reck�1, then set f reck = f(xk).
Otherwise set f reck = f reck�1 [so that f reck keeps the record of the smallest value attained
by the iterates that are generated so far, i.e., f reck = min0�j�k f(xj)].

Step 2 (SuÆcient descent) If f(xk) � f reck(l)� Æl
2 , then set k(l+1) = k, �k = 0, Æl+1 = Æl,

increase l by 1, and go to Step 4.

Step 3 (Oscillation detection) If �k > b, then set k(l + 1) = k, �k = 0, Æl+1 =
Æl
2 , and

increase l by 1.

Step 4 (Iterate update) Set f levk = f reck(l) � Æl. Select Bk and 
k 2 [
; 
]. Compute a

subgradient gk of f at xk, and compute xk+1 via Eq. (5.1) with the stepsize (5.5).

Step 5 (Path length update) Set �k+1 = �k + �kkB0kgkk, increase k by 1, and go to
Step 1.

Upon each change of the target level f levk , which occurs at k = k(l) (see Steps 2 and 3), the
parameter �k is reset to zero so as to keep track of the path length traveled by the subsequent
iterates xk(l); xk(l)+1; : : :. As seen from Step 5 and the iterate de�nition xk+1 = xk��kBkB0kgk,
this path is measured in a variable metric

�k+1 = �k + �kkB0kgkk =
kX

j=k(l)

�jkB0jgjk =
kX

j=k(l)



B�1j (xj+1 � xj)


:

We next prove the correctness of the algorithm. We �rst give a preliminary result showing
that the target values f levk are updated in�nitely often (i.e., l !1), and that infk�0 f(xk) =
�1 when the sequence fÆlg is bounded away from zero.

Lemma 5.3: Let Assumption 5.1(a) hold. Then, for the path-based variable metric algorithm,
we have l!1, and either infk�0 f(xk) = �1 or liml!1 Æl = 0.
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Proof: Assume that l takes only a �nite number of values, say l = 0; 1; : : : ; l. In this case, we
have

�k+1 = �k + �kkB0kgkk � b; 8 k � k(l);

implying that

lim
k!1

�kkB0kgkk = 0:

But this is impossible, since by the de�nition of �k and Assumption 5.1(a), we have

�kkB0kgkk = 
k
f(xk)� f levk

kB0kgkk
� 
 Æl

�C
; 8 k � k(l):

Hence, l!1.
Let Æ = liml!1 Æl. If Æ > 0, then from Steps 2 and 3 it follows that for all l large enough,

we have Æl = Æ and

f reck(l+1) � f reck(l) � �Æ
2
;

implying that infk�0 f(xk) = �1. Q.E.D.

For the algorithm, we have the following convergence result.

Proposition 5.7: Let Assumption 5.1 hold. Then, for the path-based variable metric algo-
rithm, we have

inf
k�0

f(xk) = f�:

Proof: If liml!1 Æl > 0, then by Lemma 5.3, we have infk�0 f(xk) = �1 and we are done,
so assume that liml!1 Æl = 0. Let � be given by

� =

�
l
��� Æl = Æl�1

2
; l � 1

�
:

Then, from Steps 3 and 5, we obtain

�k = �k�1 + �k�1kB0k�1gk�1k =
k�1X
j=k(l)

�jkB0jgjk;

so that k(l + 1) = k and l + 1 2 � whenever
Pk�1

j=k(l) �jkB0jgjk > b at Step 3. Thus, by using

kB0kgkk � �C [cf. Assumption 5.1(a)], we see that

k(l)�1X
j=k(l�1)

�j � 1
�C

k(l)�1X
j=k(l�1)

�jkB0jgjk >
b
�C
; 8 l 2 �:
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Since Æl ! 0, it follows that the cardinality of � is in�nite, and therefore we have

1X
j=0

�j �
X
l2�

k(l)�1X
j=k(l�1)

�j >
X
l2�

b
�C
=1: (5.11)

To obtain a contradiction, suppose that infk�0 f(xk) > f�, so that for some ŷ 2 <n and
� > 0, we have

inf
k�0

f(xk)� � � f(ŷ): (5.12)

Since Æl ! 0, there is a large enough l̂ such that Æl � � for all l � l̂, implying that

f levk = f reck(l) � Æl � inf
k�0

f(xk)� � � f(ŷ); 8 k � k(l̂):

Using this relation and the de�nition of �k in Lemma 5.1,where y = ŷ, we obtain for all
k � k(l̂),



B�1k+1(xk+1 � ŷ)


2 � kB�1k+1Bkk2

h

B�1k (xk � ŷ)


2

� �k

�
2
�
f(xk)� f(ŷ)

�� 
k
�
f(xk)� f levk

��i
� kB�1k+1Bkk2

�

B�1k (xk � ŷ)


2 � �k(2� 
k)

�
f(xk)� f levk

��

= kB�1k+1Bkk2
 

B�1k (xk � ŷ)



2 � 
k(2� 
k)

�
f(xk)� f levk

�2
kB0kgkk2

!
:

Because kB�1k+1Bkk � 1 and 
k 2 [
; 
] for all k [cf. Assumption 5.1(b) and Eq. (5.5), respec-

tively], we have for all k � k(l̂),



B�1k+1(xk+1 � ŷ)


2 � kB�1k+1Bkk2



B�1k (xk � ŷ)


2 � 
(2� 
)

�
f(xk)� f levk

�2
kB0kgkk2

�
0
@ kY
i=k(l̂)

kB�1i+1Bik2
1
A

B�1

k(l̂)
(xk(l̂) � ŷ)



2

� 
(2� 
)

kX
j=k(l̂)

�
f(xj)� f levj

�2
kB0jgjk2

:

Since by Assumption 5.1(b), we have
Qk

i=k(l̂) kB�1i+1Bik2 �
Q1

i=0 kB�1i+1Bik2 < 1; from the
preceding relation we obtain

1X
k=k(l̂)

�
f(xk)� f levk

�2
kB0kgkk2

<1:
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This relation and the de�nition of �k [cf. Eq. (5.5)] imply that
P1

k=k(l̂) �
2
k < 1, and conse-

quently �k ! 0. Furthermore, we have already shown that
P1

k=0 �k = 1 [cf. Eq. (5.11)], so
that by Prop. 5.3, we have

lim inf
k!1

f(xk) = f�;

contradicting Eq. (5.12). Q.E.D.

For the dynamic stepsize with unknown optimal function value f�, under assumption
that the set X� of optimal solutions is nonempty, we can estimate the number of iterations
needed to guarantee achievement of f� within some error. In particular, we have the following.

Proposition 5.8: Let Assumption 5.1 hold, and assume that the optimal solution set X�

is nonempty. Let the sequence fxkg be generated by the variable metric method with the
dynamic stepsize of the form (5.5){(5.6). Then, for the smallest positive integer K such that


(2� 
)
�C2

K�1X
k=0

Æ2k �
 
K�1Y
i=0

kB�1i+1Bik2
!

min
x�2X�



B�10 (x0 � x�)


2;

we have

min
0�k�K

f(xk) � f� + max
0�j�K

Æj :

Proof: The proof is similar to that of Prop. 5.5, where to arrive at a contradiction, we assume
that

f(xk) > f� + max
0�j�k

Æj ; 8 k = 0; 1; : : : ;K:

Q.E.D.

In particular, if in the dynamic stepsize (5.5), we use

f levk = min
0�j�k

f(xj)� Æ; 8 k;

with a scalar Æ > 0, then from Prop. 5.8 it follows that for the nonnegative integer K given by


(2� 
)
�C2

KÆ �
 
K�1Y
i=0

kB�1i+1Bik2
!

min
x�2X�



B�10 (x0 � x�)


2;

we have

min
0�k�K

f(xk) � f� + Æ:

Furthermore, if

f levk = min
0�j�k

f(xj)� Æk; 8 k;
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and Æk are adjusted by using either Eq. (5.7) with � = 1, or the path-based procedure, then
Æk is nonincreasing. Thus, in Prop. 5.8, we have

min
0�k�K

f(xk) � f� + Æ0:

Let us note that all the results of this section (cf. Props. 5.4{5.8 and Lemma 5.3) can
hold if instead assuming that the sequence

�
B0kgk

	
is bounded [cf. Assumption 5.1(a)], we

assume that the sequence fBkg of linear transformations is bounded. The reason for this lies
in the fact that, for the stepsizes of the form (5.3) or (5.5), the sequence fxkg is bounded,
which implies the boundedness of the subgradients gk. Thus, for such stepsizes, in order to
have bounded kB0kgkk, it suÆces to assume that kBkk is bounded.





6

Space Dilation Methods

In this chapter, we discuss a special class of variable metric methods where the metric is
changed through space dilations, aiming at accelerated convergence. In particular, we will
consider methods with two types of space dilations: along subgradient directions and along
directions that can di�er from subgradient directions.

As mentioned earlier, poor performance of subgradient methods is most notable in the
cases where subgradient directions are almost orthogonal to a direction pointing toward a
minimum. In such cases, typically, the subgradient components that are orthogonal to the
directions pointing toward the minima are very small as compared to the other subgradient
components. Thus, by moving along subgradients, the advances toward the set of minima are
insigni�cant, and if the stepsize is small, the method can jam. This situation can be avoided
by scaling the subgradients appropriately, and one such scaling can be carried out through
space dilations along subgradients. The method with space dilations along subgradients was
proposed and analyzed by N. Z. Shor. However, for this method, we here give new convergence
results, including a new stepsize choice.

The situation where the subgradients are almost orthogonal to the directions pointing
toward the set of minima can be alternatively viewed as the case where the cone of subgradient
directions is too wide. In this case, convergence can be accelerated by transforming this cone
into a narrower cone, which can be done, for example, by using space dilation along the
di�erence of the two successive subgradients. To include this case, as well as other choices
that may be appropriate for speci�c problems, we here propose and analyze a rather general
dilation method.

137
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Our methods are applicable to unconstrained minimization problems

minimize f(x)

subject to x 2 <n;

where f : <n 7! < is a convex function.
This chapter is organized as follows: In Section 6.1, we introduce and interpret dilation

along subgradients. In Section 6.2, we establish some important properties of space dilation
transformations in a general form. In Section 6.3 and 6.4, respectively, we give some basic rela-
tions and we discuss the convergence properties of the dilation method along subgradients. In
Sections 6.5{6.7, we introduce and analyze the general dilation method that can use directions
di�erent from subgradient directions.

6.1. DILATION ALONG SUBGRADIENTS

In this section, we introduce a method using dilation along subgradients, where the coordinate
transformations (changes in metric) are carried out through successive dilations. At a typical
iteration of the method, we have the current iterate xk, a subgradient gk of f at xk, and a
matrix Bk. We next compute the new iterate according to the following rule

xk+1 = xk � �k
BkB0kgk
kB0kgkk

; (6.1)

where the scalar �k is a positive stepsize, and the initial transformation is B0 = I. We then
update Bk as follows:

Bk+1 = BkR�k(�k); (6.2)

where
R�k(�k) = I + (�k � 1)�k�0k; (6.3)

for the scalar �k is positive and the vector �k is given by

�k =
B0kgk
kB0kgkk

: (6.4)

This method was proposed by Shor [Sho70a] (see also Shor [Sho70b], [Sho77a], [Sho77b],
[Sho83], [Sho85], and [Sho98]). We will refer to it as dilation method along subgradients.
Let us mention that the celebrated ellipsoid method, which is due to Khachian [Kha79] (see
also Bertsimas and Tsitsiklis [BeT97], p. 363), is just a special case of dilation method along
subgradients (cf. Shor [Sho77a] and [Sho98]).

To interpret the method, let us �rst take a closer look at the transformation

R�(�) = I + (�� 1)��0;
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where � is a positive scalar and � is a vector with k�k = 1. If a vector x is orthogonal to �,
then the transformation R�(�) leaves the vector x unchanged, i.e., R�(�)x = x. If the vector
x is parallel to �, then R�(�) scales the vector x by the factor �, i.e., R�(�)x = �x. Thus, the
transformation R�(�) does not change the components of a vector that are orthogonal to � and
scales the other components of the vector by the factor �.

Let us now interpret the method. For this, consider the coordinate transformation given
by

y = B�1k x; x 2 <n;
(as we will see later each transformation Bk is invertible). The vector B0kgk is a subgradient of
the function F (y) = f(Bky) at the point yk = B�1k xk, as discussed in Section 5.1, Suppose now
that, starting at yk, we move in the opposite direction of the normalized subgradient B0kgk,
which gives

yk+1 = yk � �k
B0kgk
kB0kgkk

:

Thus, the iteration (6.1) corresponds to an iteration of the subgradient method applied to the
function F (y) = f(Bky).

Assume, for the sake of simplicity, that the set of minima consists of a single vector x�.
Let y� be the vector in the y-space corresponding to x�, and note that y� is the minimum of
F (y). Then, by using y = B�1k x, we have

(B0kgk)0(yk � y�) = g0k(xk � x�) = 0:

Thus, if the subgradient gk is almost orthogonal to the direction xk �x�, then, in the y-space,
the same is true for the subgradient B0kgk and the direction yk � y�. Then, in order to have
the subsequent subgradient better pointed toward the minimum, we would like to scale down
the subgradient components that are orthogonal to yk � y�, while leaving the other directions
unchanged. For this, since B0kgk is almost orthogonal to yk � y�, we can use a contraction
along B0kgk, which is formally done via Eqs. (6.2){(6.4).

Let us mention that there is an alternative implementation form of dilation method along
subgradients that was given by Skokov in [Sko74], where

xk+1 = xk � �k
Hkgkp
g0kHkgk

; (6.5)

with Hk = BkB0k, and Hk is updated via the following formula

Hk+1 = Hk + (�2k � 1)
Hkgkg0kHk

g0kHkgk
: (6.6)

These iteration formulas bear some similarities with those of quasi-Newton method (see, for
example the textbook by Bertsekas [Ber99], p. 149), but other than this, there is no useful
connection between these two methods.

The implementation of dilation method along subgradients in the form (6.5)-(6.6) is
computationally more eÆcient than its implementation in the form (6.1)-(6.4). However, the
method in the form (6.5)-(6.6) is more sensitive to computational errors. In particular, the-
oretically, the matrices Hk are positive de�nite. However, due to computational errors, the
approximation of Hk that is actually used instead of Hk may not be positive de�nite, and this
can distort the method.
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6.2. PROPERTIES OF DILATION TRANSFORMATIONS

In this section, we give basic properties of the transformation R�(�), which is the building
block for the transformations Bk. We then examine the properties of Bk for a general case
where the directions �k are given by �k = B0kdk=kB0kdkk with nonzero vectors dk.

In the following lemma, we list some important features of the transformation R�(�).
The proof of this lemma can be found in Shor [Sho98], p. 73.

Lemma 6.1: Let the linear transformation R�(�) : <n 7! <n be given by

R�(�) = I + (�� 1)��0;

where � is a vector with k�k = 1, � is a scalar, and I is the identity matrix. We then have:

(a) For any nonzero scalar �,
R�(�)R�(�) = R��(�):

In particular, if � 6= 0, then the linear transformation R�(�) is invertible and its inverse
is R 1

�
(�), i.e.,

R�(�)R 1
�
(�) = I:

(b) For any x 2 <, 

R�(�)x


2 = kxk2 + (�2 � 1)(�0x)2:

(c) The norm of R�(�) is given by 

R�(�)


 = max

�
1; j�j	:

We next establish basic properties of transformations Bk of the form Bk+1 = BkR�k(�k),
where the direction �k is not necessarily the same as in dilation method along subgradients [cf.
Eq.(6.4)]. By considering more general directions �k, we can bring to the surface the properties
of Bk that are independent of any iterative process. This, in turn, will allow us to consider
the methods that use dilation along directions other than the subgradient directions.

The basic properties of transformations Bk are given in the following lemma. The proof
of this lemma exploits some ideas of Nesterov [Nes84].

Lemma 6.2: Let the sequence fBkg of linear transformations be such that

Bk+1 = BkR�k (�k); with �k =
B0kdk
kB0kdkk

; 8 k;

where B0 = I, dk are nonzero vectors, and �k are scalars. Assume that the vectors dk are
bounded, i.e., there exists a positive scalar C such that

kdkk � C; 8 k:
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Assume further that the scalars �k are such that

0 < � � �k � � < 1; 8 k:

We then have:

(a) limk!0 kB0kdkk = 0:

(b) For all k,

min
0�j�k

kB0jdjk � C
� (k+1)=n

�

s
(k + 1)

n

(1� �2)�
1� � 2(k+1)=n

� :

Proof: (a) We will prove that BkB0kdk ! 0, and then conclude that B0kdk ! 0. For this, we
de�ne

Hk = BkB0k; 8 k;
and we note that the matrix Hk is symmetric and positive de�nite for all k. We next establish
a relation between Hk+1 and Hk, which will be important for our proof. By de�nition of Bk+1,
we have

Hk+1 = BkR�k(�k)R
0
�k(�k)B

0
k; 8 k:

Since R�k (�k) is symmetric, by using Lemma 6.1(a) with � = � = �k, we obtain

Hk+1 = BkR�2
k
(�k)B0k; 8 k:

Therefore,

Hk+1 = Bk

�
I + (�2k � 1)�k�0k

�
B0k = Hk + (�2k � 1)Bk�k�0kB

0
k; 8 k:

By using �k = B0kdk=kB0kdkk in this relation, we see that

Hk+1 = Hk + (�2k � 1)
Hkdkd0kHk

d0kHkdk
; 8 k; (6.7)

We now show that BkB0kdk ! 0 by estimating the trace of the matrix Hk+1, denoted by
Tr(Hk+1). In view of Eq. (6.7), we have

Tr(Hk+1) = Tr(Hk)� (1� �2k)
Tr(Hkdkd0kHk)

d0kHkdk
; 8 k:

Since Hk is positive de�nite, we must have d0kHkdk > 0. Furthermore, because �k < 1,
by Lemma 6.1(c), it can be seen that kHkk � 1, which together with our assumption that
kdkk � C yields

0 < d0kHkdk � kHkkkdkk2 � C2; 8 k:
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Moreover, since Hk is symmetric, we have Tr(Hkdkd0kHk) = kHkdkk2. Therefore, for all k,

Tr(Hk+1) � Tr(Hk)� (1� �2k)
kHkdkk2
C2

� Tr(H0)�
kX

j=0

(1� �2j )
kHjdjk2
C2

:

For each k, all eigenvalues of Hk are positive because Hk is a positive de�nite. Since the
trace of a matrix is equal to the sum of its eigenvalues, we have that Tr(Hk) > 0 for all k.
Furthermore, since H0 = I, we have Tr(H0) = n. By using these relations and the inequality
�k � �, we obtain

0 < Tr(Hk+1) � n� (1� �2)

C2

kX
j=0

kHjdjk2; 8 k;

implying, by 1� � > 0, that the sum
P1

j=0 kHjdjk2 is �nite, and hence

lim
k!1

kHkdkk = 0:

We now have by the de�nition of Hk,

kB0kdkk2 = d0kHkdk � kdkkkHkdkk; 8 k:

By our assumption, the vectors dk are bounded, so that

lim sup
k!1

kB0kdkk2 � 0;

implying that kB0kdkk ! 0.

(b) We will derive the desired relation by estimating the determinant of the matrix H�1
k+1,

denoted by det
�
H�1
k+1

�
. We have by Eq. (6.7),

�
Hk+1

��1
=

�
Hk + (�2k � 1)

Hkdkd0kHk

d0kHkdk

��1
; 8 k:

According to Sherman-Morrison formula (cf. Golub and Van Loan [GoV84], p. 3), we have

(A+ uv0)�1 = A�1 � A�1uv0A�1

1 + v0A�1u
;

for any invertible matrix A, and any vectors u and v. By using this formula with the following
identi�cations:

A = Hk; u = (�2k � 1)
Hkdk
d0kHkdk

; v = Hkdk;
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after some algebra, we obtain

H�1
k+1 = H�1

k +
(1� �2k)

�2k

dkd0k
d0kHkdk

; 8 k: (6.8)

Therefore, for all k,

det
�
H�1
k+1

�
= det

�
H�1
k

�
I +

(1� �2k)

�2k

Hkdkd0k
d0kHkdk

��

= det
�
H�1
k

�
det

�
I +

(1� �2k)

�2k

Hkdkd0k
d0kHkdk

�
:

Since det(I+uv0) = 1+ v0u for any vectors u and v (see Golub and Van Loan [GoV84], p. 43),
the last determinant in the relation above is equal to 1=�2k, implying that for all k,

det
�
H�1
k+1

�
= det

�
H�1
k

� 1
�2k

= det
�
H�1

0

� 1Qk
j=0 �

2
j

� 1

� 2(k+1)
; (6.9)

where the inequality above follows from H0 = I and �j � �.
The determinant det

�
H�1
k+1

�
is equal to the product

Qn
i=1 �i of its eigenvalues �i, while

the trace 2(k+1) Tr
�
H�1
k+1

�
is equal to the sum

Pn
i=1 �i, where all eigenvalues �i are positive

since Hk+1 is a positive de�nite matrix and so is H�1
k+1. Furthermore, because the geometric

mean
�Qn

i=1 �i
�1=n

of any positive scalars �1; : : : ; �n, n � 1, is smaller than their arithmetic

mean (�1 + � � �+ �n)=n, it follows that

�
det
�
H�1
k+1

�� 1
n � 1

n
Tr
�
H�1
k+1

�
; 8 k:

This relation and Eq. (6.9) yield

n

� 2(k+1)=n
� n

�
det
�
H�1
k+1

�� 1
n � Tr

�
H�1
k+1

�
; 8 k:

In view of Eq. (6.8), we have

Tr
�
H�1
k+1

�
= Tr

�
H�1
k

�
+
(1� �2k)

�2k

Tr(dkd0k)
d0kHkdk

= Tr
�
H�1
k

�
+
(1� �2k)

�2k

kdkk2
d0kHkdk

:

Hence, for all k,

n

� 2(k+1)=n
� Tr

�
H�1
k

�
+

(1� �2k)

�2k

kdkk2
d0kHkdk

� n+

kX
j=0

(1� �2j )

�2j

kdjk2
d0jHjdj

:
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Since �k � � > 0, we have that (1 � �2k)=�
2
k � (1 � �2)=�2 for all k. Furthermore, by our

assumption, we have kdkk � C for all k, implying that

n

� 2(k+1)=n
� n+ C2

(1� �2)

�2

kX
j=0

1

d0jHjdj

� n+ C2
(1� �2)

�2
(k + 1)

min0�j�k d0jHjdj
; 8 k:

After some algebra, from this relation we obtain

min
0�j�k

d0jHjdj � C2
(k + 1)

n

(1� �2)

�2
� 2(k+1)=n�

1� � 2(k+1)=n
� ; 8 k;

from which the desired estimate follows by using the relation d0jHjdj = kBjdjk2. Q.E.D.

Lemma 6.2 has important consequences for the dilation method along subgradients. In
particular, by part (a) of this lemma (where dk = gk), we have B0kgk ! 0, which we will use
to prove convergence of the method. Furthermore, by using part (b) of the lemma, we will be
able to assess the convergence rate of the method. Moreover, the lemma is also important for
the analysis of the dilation method that we consider later in Section 6.4.

6.3. ASSUMPTIONS AND SOME BASIC RELATIONS

Here, we give our assumptions and a key relation between the two successive iterates of the
dilation method (6.1). The assumption that we use in assessing convergence is the following:

Assumption 6.1:

(a) There exists a positive scalar C such that

kgkk � C; 8 k:

(b) There exists a positive scalar � such that for every nonempty level set
�
y 2 <n j f(y) �

!
	
and every vector x with f(x) � !, we have

f(x)� ! � � dist(x;L!);

where L! is the level set
�
y 2 <n j f(y) � !

	
:

Assumption 6.1 is satis�ed, for example, when f is a polyhedral function, i.e.,

f(x) = max
�
a01x+ b1; : : : ; a0mx+ bm

	
;
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for some vectors ai (not all equal to zero) and scalars bi. In this case, we have

C = max
1�i�m

kaik; � = min
1�i�m

�kaik j ai 6= 0
	
:

Under Assumption 6.1, we can establish a basic relation for the iterates generated by
dilation method along subgradients, as seen in the following lemma.

Lemma 6.3: Let Assumption 6.1 hold, and let the parameters �k be such that

0 < �k � 1; 8 k:
Let further fxkg be the sequence generated by dilation method along subgradients. Then, for
any k, and any scalar ! such that f(xk) � ! and the level set L! =

�
y 2 <n j f(y) � !

	
is

nonempty, we have

min
y2L!



B�1k+1(xk+1 � y)


2 � min

y2L!



B�1k (xk � y)


2

+
(1� �2k)

�2k

C2

�2

�
f(xk)� !

�2
kB0kgkk2

� 2
�k
�2k

�
f(xk)� !

�
kB0kgkk

+
�2k
�2k
;

where C and � are as in Assumption 6.1.

Proof: Let k be arbitrary but �xed. By the de�nition of xk+1 and Bk+1 [cf. Eqs. (6.1) and
(6.2), respectively], we have for any y,

B�1k+1(xk+1 � y) =
�
R�k (�k)

��1
B�1k

�
xk � y � �k

BkB0kgk
kB0kgkk

�

=
�
R�k (�k)

��1 �
B�1k (xk � y)� �k

B0kgk
kB0kgkk

�
;

Since by Lemma 6.1(a), we have
�
R�k (�k)

��1
= R1=�k (�k); and by Lemma 6.1(b), we have



R�(�)x


2 = kxk2 + (�2 � 1)(�0x)2; 8 x;

it follows that for any y,



B�1k+1(xk+1 � y)


2 = 



R 1

�k

(�k)

�
B�1k (xk � y)� �k

B0kgk
kB0kgkk

�




2

=





B�1k (xk � y)� �k
B0kgk
kB0kgkk






2

+

�
1

�2k
� 1

��
�0kB

�1
k (xk � y)� �k�0k

B0kgk
kB0kgkk

�2

:
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By using the relation �k = B0kgk=kB0kgkk [cf. Eq. (6.4)] and by expanding the terms on the
right hand-side in the preceding relation, we obtain for any y,



B�1k+1(xk+1 � y)


2 = 

B�1k (xk � y)



2 � 2�k
g0k(xk � y)

kB0kgkk
+ �2k

+
1� �2k
�2k

 �
g0k(xk � y)

�2
kB0kgkk2

� 2�k
g0k(xk � y)

kB0kgkk
+ �2k

!

=


B�1k (xk � y)



2 + (1� �2k)

�2k

�
g0k(xk � y)

�2
kB0kgkk2

� 2
�k
�2k

� g
0
k(xk � y)

kB0kgkk
+
�2k
�2k
:

By Schwartz inequality, we have�
g0k(xk � y)

�2 � kgkk2kxk � yk2;
while by the subgradient inequality, we have

f(xk)� f(y) � g0k(xk � y):

From the preceding three relations, since 1��2k � 0, we obtain for any y with f(xk) � ! � f(y),



B�1k+1(xk+1 � y)


2 � 

B�1k (xk � y)



2 + (1� �2k)

�2k

kgkk2kxk � yk2
kB0kgkk2

� 2
�k
�2k

�
f(xk)� !

�
kB0kgkk

+
�2k
�2k
:

Using subgradient boundedness [cf. Assumption 6.1(a)] and taking the minimum over all y in
the level set L! =

�
y 2 <n j f(y) � !

	
, we see that

min
y2L!



B�1k+1(xk+1 � y)


2 � min

y2L!



B�1k (xk � y)


2

+
(1� �2k)

�2k

C2
�
dist(xk; L!)

�2
kB0kgkk2

� 2
�k
�2k

�
f(xk)� !

�
kB0kgkk

+
�2k
�2k
:

Finally, by Assumption 6.1(b), we have

dist(xk; L!) � 1

�

�
f(xk)� !

�
;

which when substituted in the preceding inequality yields the desired relation. Q.E.D.
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6.4. CONVERGENCE PROPERTIES OF THE METHOD WITH
DILATION ALONG SUBGRADIENTS

In this section, we discuss the convergence properties of the method (6.1){(6.4) using dynamic
stepsize rules. Even though this method belongs to the class of variable metric methods, its
behavior and its analysis are di�erent from those of the variable metric methods of Chapter 5.

Let us brie
y outline our analytical approach. Assuming, for the time being, that the
optimal solution set consists of a single vector x�, we note that, based on the subgradient
de�ning property, the following relation holds

f(xk)� f� � g0k(xk � x�); 8 k:

We then change the space coordinates appropriately, so that

f(xk)� f� � (B0kgk)
0

B�1k (xk � x�) � kB0kgkk


B�1k (xk � x�)



:
Thus, if the vectors B0kgk converge to zero and the distances



B�1k (xk � x�)


 are bounded,

then the function values f(xk) will converge to the optimal function value f�. This, precisely,
describes the basis of our analysis. In particular, we establish the convergence of the vectors
B0kgk by using Lemma 6.2. The harder task is to show that the distances



B�1k (xk � x�)


 are

bounded, and that will be done by using Lemma 6.3 with appropriate stepsize choices.

6.4.1 Dynamic Stepsize Rule for known f�

We establish here the convergence properties of the method using a dynamic stepsize rule for
known f�, where

�k = 
k
f(xk)� f�

kB0kgkk
; 0 < 
 � 
k � 
 < 2; 8 k: (6.10)

For this stepsize, we have the following result.

Proposition 6.1: Let Assumption 6.1 hold, and let the parameters �k be such that

0 < � � �k � � < 1; 8 k;

(1� �2k)
C2

�2
� 
k(2� 
k); 8 k:

Assume further that the optimal solution set X� is nonempty. Then, for the sequence fxkg
generated by dilation method along subgradients and the dynamic stepsize (6.10), we have

lim
k!1

f(xk) = f�:
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Furthermore,

min
0�j�k

f(xj) � f� + C
� (k+1)=n

�

s
(k + 1)

n

(1� �2)�
1� � 2(k+1)=n

� dist(x0;X�):

Proof: We �rst prove that the distances minx�2X�


B�1k (xk � x�)



 are nonincreasing. From
Lemma 6.3, where ! = f�, we see that

min
x�2X�



B�1k+1(xk+1 � x�)


2 � min

x�2X�


B�1k (xk � x�)



2
+
(1� �2k)

�2k

C2

�2

�
f(xk)� f�

�2
kB0kgkk2

� 2
�k
�2k

�
f(xk)� f�

�
kB0kgkk

+
�2k
�2k
; 8 k:

By using the de�nition of the stepsize �k [cf. Eq. (6.10)], we obtain for all k,

min
x�2X�



B�1k+1(xk+1 � x�)


2 � min

x�2X�


B�1k (xk � x�)



2
+

�
f(xk)� f�

�2
�2kkB0kgkk2

�
(1� �2k)

C2

�2
� 
k(2� 
k)

�
:

By our assumption that (1��2k)C
2

�2
�
k(2�
k) � 0 for all k, it follows that the scalar sequence�

minx�2X�


B�1k (xk � x�)



	 is nonincreasing, and since B0 = I, we have that

min
x�2X�



B�1k (xk � x�)


 � min

x�2X�


B�10 (x0 � x�)



 = dist(x0;X�); 8 k:

We now show that f(xk) converges to f�. By using the subgradient inequality, we have
for all x� 2 X� and all k,

f(xk)� f� � g0k(xk � x�)

= (B0kgk)0B
�1
k (xk � x�)

� kB0kgkk


B�1k (xk � x�)



:
Taking the minimum over x� 2 X� in this inequality and using the preceding relation, we
obtain

f(xk)� f� � kB0kgkk dist(x0;X�); 8 k: (6.11)

Letting k!1 in the preceding relation, we see that

lim sup
k!1

f(xk)� f� � lim
k!1

kB0kgkk dist(x0;X�):
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Since kB0kgkk ! 0 by Lemma 6.2(a), where dk = gk, it follows that

lim sup
k!1

f(xk)� f� � 0;

thus implying that f(xk)! f�.
We next prove the given convergence rate estimate. In view of Eq. (6.11), it follows that

min
0�j�k

f(xj)� f� � min
0�j�k

kB0jgjk dist(x0;X�); 8 k:

By Lemma 6.2(b), where dk = gk, we have

min
0�j�k

kB0jgjk � C
� (k+1)=n

�

s
(k + 1)

n

(1� �2)�
1� � 2(k+1)=n

� ; 8 k;

which when substituted in the preceding relation gives the desired estimate. Q.E.D.

The dilationmethod (6.1){(6.4) with the dynamic stepsize rule for known f� was proposed
and analyzed by Shor in [Sho70b] (see also [Sho98], Theorem 50) for a function f satisfying a
special growth condition. When f is convex, the growth condition that Shor assumed reduces
to the following: there exists an optimal point x� and positive scalars r and M , with M > 1,
such that

g(x)0(x� x�) �M
�
f(x)� f�

�
; 8 x with kx� x�k � r; (6.12)

where g(x) is a subgradient of f at x. Furthermore, the initial point x0 was assumed to lie in
the sphere centered at x� with radius r. Thus, Shor had analyzed only a local behavior of the
method. Furthermore, the dilation parameters �k were such that

�k = � � M � 1

M + 1
; 8 k;

Therefore, to implement the method, we would need to know the value of M , as well as to
choose the initial point x0 within the distance r from x� and to make sure that the condition
(6.12) holds. This is practically impossible, even for a polyhedral function f .

Nesterov in [Nes84] also analyzed the method (6.1){(6.4) with the dynamic stepsize rule
for known f�. He assumed that a condition (6.12) is satis�ed for some optimal point x� and
all x, which from practical point of view is not any easier to verify than the original condition
(6.12). However, some analytical ideas of Nesterov were applicable to the functions satisfying
Assumption 6.1, and we have used these ideas in the proof of Prop. 6.1.

When �k is �xed to some positive scalar �, then the convergence rate of min0�j�k f(xj)
to f� is at least as fast as

�
k+1
n

r
k + 1

n
:

Thus, we would like to use the smallest � satisfying the condition

(1� �)
C2

�2
� 
k(2� 
k); 8 k:
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It can be seen, that such smallest � corresponds to the case where 
k = 1, and it is given by

� =

r
1� �2

C2
:

Thus, in this case, the estimate of Prop. 6.1 shows that the values min0�j�k f(xj) converge to
f� at least as fast as �

1� �2

C2

� k+1
2n
r
k + 1

n
:

This convergence rate is somewhat slower than geometric.
In the next proposition, under a slightly stronger assumption on the parameters �k, we

give some more convergence rate estimates.

Proposition 6.2: Let Assumption 6.1 hold, and let the parameters �k be such that

0 < � � �k � � < 1; 8 k;

(1� �2k)
C2

�2
� 
k(2� 
k)� c; 8 k;

for a positive scalar c. Assume further that the optimal solution set X� is nonempty, and
let fxkg be the sequence generated by dilation method along subgradients and the dynamic
stepsize (6.10). Then, the following hold:

(a) We have

lim inf
k!1

p
k + 1

�
f(xk)� f�

�
kB0kgkk

= 0:

(b) For a positive scalar � and the smallest positive integer K such that

K�1X
k=0

c�2

�2kkB0kgkk2
� �dist(x0;X�)

�2
;

we have
min

0�k�K
f(xk) � f� + �:

Proof: (a) By using Lemma 6.3, with ! = f�, and the de�nition of the stepsize �k, we can
see that for all k,

min
x�2X�



B�1k+1(xk+1 � x�)


2 � min

x�2X�


B�1k (xk � x�)



2
+

�
f(xk)� f�

�2
�2kkB0kgkk2

�
(1� �2k)

C2

�2
� 
k(2� 
k)

�
:
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Since by our assumption, we have (1� �2k)C2=�2 � 
k(2� 
k) � �c for a positive scalar c and
all k, it follows that for all k,

min
x�2X�



B�1k+1(xk+1 � x�)


2 � min

x�2X�


B�1k (xk � x�)



2 � c

�
f(xk)� f�

�2
�2kkB0kgkk2

: (6.13)

Therefore, since �k � � for all k, it follows that

1X
k=0

�
f(xk)� f�

�2
kB0kgkk2

<1: (6.14)

Suppose now that

lim inf
k!1

p
k + 1

�
f(xk)� f�

�
kB0kgkk

> 0;

in which case there exist a positive scalar " and a nonnegative integer k0 such that

p
k + 1

�
f(xk)� f�

�
kB0kgkk

� "; 8 k � k0:

We then have
1X
k=0

�
f(xk)� f�

�2
kB0kgkk2

�
1X
k=0

"2

k + 1
=1;

contradicting Eq. (6.14).

(b) Suppose, to arrive at a contradiction, that

f(xk)� f� > �; 8 k = 0; : : : ;K:

By using this inequality, from Eq. (6.13) we obtain for k = 0; : : : ;K,

min
x�2X�



B�1k+1(xk+1 � x�)


2 � min

x�2X�


B�1k (xk � x�)



2 � c �2

�2kkB0kgkk2

� min
x�2X�



B�10 (x0 � x�)


2 � kX

j=0

c �2

�2jkB0jgjk2
:

Therefore, for k = K � 2, since B0 = I, it follows that

K�2X
j=0

c �2

�2jkB0jgjk2
� min

x�2X�


B�10 (x0 � x�)



2 = �dist(x0;X�)
�2
;

contradicting the de�nition of K. Q.E.D.



152 Space Dilation Methods Chap. 6

6.4.2 Dynamic Stepsize Rule for Unknown f�

We here consider the dynamic stepsize rule with unknown f�, where

�k = 
k
f(xk)� f levk

kB0kgkk
; 0 < 
 � 
k � 
 < 2: (6.15)

The estimates f levk have the form

f levk = min
0�j�k

f(xj)� Æk; (6.16)

where the positive scalars Æk are updated according to the following rule

Æk+1 =

�
�Æk if f(xk+1) � f levk ,
max

�
�Æk; Æ

	
if f(xk+1) > f levk .

(6.17)

The scalars Æ0, Æ, �, and � are positive, with � < 1 and � � 1.
For the method using the stepsize (6.15){(6.17), we have the following result.

Proposition 6.3: Let Assumption 6.1 hold, and let the parameters �k be such that

0 < � � �k � � < 1; 8 k;

2(1� �2k)
C2

�2
� 
k(2� 
k); 8 k;

Then, for the sequence fxkg generated by dilationmethod along subgradients with the dynamic
stepsize (6.15){(6.17), we have:

(a) If f� = �1, then
inf
k�0

f(xk) = f�:

(b) If f� > �1, then
inf
k�0

f(xk) � f� + Æ:

Proof: We prove (a) and (b) simultaneously. To obtain a contradiction, assume that

inf
k�0

f(xk)� Æ > f�; (6.18)

Each time the target level is attained [i.e., f(xk) � f levk�1], the current best function value
min0�j�k f(xj) decreases by at least Æ [cf. Eqs. (6.16) and (6.17)], so in view of Eq. (6.18), the
target value can be attained only a �nite number times. From Eq. (6.17) it follows that after
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�nitely many iterations, Æk is decreased to the threshold value and remains at that value for
all subsequent iterations, i.e., there is a k̂ such that

Æk = Æ; 8 k � k̂:

Let the scalar ! be given by

! = inf
k�0

f(xk)� Æ:

Using the preceding two relations and the de�nition of f levk [cf. Eq. (6.16)], we have

f levk = min
0�j�k

f(xj)� Æ � !; 8 k � k̂; (6.19)

f levk # !; as k!1: (6.20)

By Eq. (6.19), it follows that f(xk) � ! for all k � k̂. Furthermore, the level set L! =
�
y 2

<n j f(y) � !
	
is nonempty since ! > f� [cf. Eq. (6.18)]. Thus, by Lemma 6.3 and the

de�nition of the stepsize �k [cf. Eq. (6.15)], we obtain for all k � k̂,

min
y2L!



B�1k+1(xk+1 � y)


2 � min

y2L!



B�1k (xk � y)


2

+
(1� �2k)

�2k

C2

�2

�
f(xk)� !

�2
kB0kgkk2

� 2

k
�2k

�
f(xk)� f levk

��
f(xk)� !

�
kB0kgkk2

+

2k
�2k

�
f(xk)� f levk

�2
kB0kgkk2

:

By using the estimate

�
f(xk)� !

�2 � 2
�
f(xk)� f levk

�2
+ 2
�
f levk � !

�2
;

and by writing

f(xk)� ! =
�
f(xk)� f levk

�
+
�
f levk � !

�
;

we see that for all k � k̂,

min
y2L!



B�1k+1(xk+1 � y)


2 � min

y2L!



B�1k (xk � y)


2

+

�
2(1� �2k)

C2

�2
� 2
k + 
2k

� �
f(xk)� f levk

�2
�2kkB0kgkk2

+ 2
(1� �2k)

�2k

C2

�2

�
f levk � !

�2
kB0kgkk2

� 2

k
�2k

�
f(xk)� f levk

��
f levk � !

�
kB0kgkk2

:
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By our assumption, we have

2(1� �2k)
C2

�2
� 2
k + 
2k; 8 k;

which implies that

2(1� �2k)
C2

�2
� 2
k; 8 k:

Using these two inequalities in the preceding relation, we obtain for all k � k̂,

min
y2L!



B�1k+1(xk+1 � y)


2 � min

y2L!



B�1k (xk � y)


2

+ 2

k
�2k

�
f levk � !

�
kB0kgkk2

��
f levk � !

�� �f(xk)� f levk

��
:

Since f levk monotonically decreases to ! as k ! 1 [cf. Eq. (6.20)], without loss of generality,

we may assume that k̂ is large enough so that f levk �! � Æ for all k � k̂, which combined with
the fact f(xk)� f levk � Æ for all k [cf. Eqs. (6.16) and (6.17)], yields

�
f levk � !

�� �f(xk)� f levk

� � 0; 8 k � k̂:

Furthermore, since f levk � ! for all k � k̂ [cf. Eq. (6.19)], we see that

2

k
�2k

�
f levk � !

�
kB0kgkk2

��
f levk � !

�� �f(xk)� f levk

�� � 0; 8 k � k̂;

implying that

min
y2L!



B�1k+1(xk+1 � y)


2 � min

y2L!



B�1k (xk � y)


2; 8 k � k̂:

Therefore, the sequence
n
miny2L!



B�1k (xk � y)


o is bounded.

By the subgradient inequality, we have for all k and all vectors y in the level set L!,

f(xk)� ! � f(xk)� f(y) � g0k(xk � y):

By writing g0k(xk � y) = (B0kgk)0B
�1
k (xk � y) and by using Schwartz inequality, we see that

f(xk)� ! � kB0kgkk


B�1k (xk � y)



; 8 k; 8 y 2 L!:

Taking the minimum over y 2 L! in this relation, we obtain

f(xk)� ! � kB0kgkk min
y2L!



B�1k (xk � y)


; 8 k:
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By Lemma 6.2(a), where dk = gk, we have that kB0kgkk ! 0, so that by letting k !1 in the
preceding relation and by taking into the account that miny2L!



B�1k (xk� y)


 is bounded, we

see that
lim sup
k!1

f(xk)� ! � 0;

which is impossible because
inf
k�0

f(xk)� ! = Æ > 0:

Q.E.D.

Since the stepsize rule considered in Prop. 6.3 is new, accordingly, the convergence result
established in this proposition is new. Furthermore, this result is the �rst to show the con-
vergence of the dilation method with a dynamic stepsize rule using estimates of the optimal
function value f� instead of the exact value f�. In practice, it is not typical that we know the
optimal function value f�, so that the dynamic stepsize rule (6.15){(6.17) is more practical
than the dynamic stepsize rule with known f�.

On a technical side, let us note that by taking a closer look at the proof of Prop. 6.3, we
can see that the result of this proposition holds if

2(1� �2k)
C2

�2
� 
k(2� 
k) � 0;

for all suÆciently large k (instead of all k).

6.5. DILATION ALONG OTHER DIRECTIONS

In this section, we discuss the method that uses dilations along directions that may di�er from
subgradient directions. The method is similar to the method (6.1){(6.4), with a major di�er-
ence being the update formula for xk+1 and the choice of dilation direction �k. In particular,
at a typical iteration, we have the current iterate xk, a subgradient gk of f at xk, and a matrix
Bk. We compute Bk+1 as follows:

Bk+1 = BkR�k(�k); (6.21)

with B0 = I, and
R�k(�k) = I + (�k � 1)�k�0k; (6.22)

�k =
B0kdk
kB0kdkk

; (6.23)

for a positive scalar �k and a nonzero vector dk. We next compute xk+1 according to the
following rule

xk+1 = xk � �k
Bk+1B0k+1gk

kB0k+1gkk
: (6.24)
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We refer to this method as dilation method. This method is rather general, and its interpre-
tation depends on the choice for the directions dk. For example, the method with dk = gk
can be related to Shor's method of Section 6.1. In particular, Shor's method can be viewed
as a \delayed" dilation method (6.21){(6.24), where dk = gk. To see this, note that in the
dilation method, we �rst update Bk+1, and then we use it to compute xk+1. In Shor's method,
however, we �rst compute xk+1 using the transformation Bk from the preceding iteration, and
then we update Bk+1. Thus, the use of Bk+1 is delayed until the next iteration.

The dilation method along the di�erence of two successive subgradients (i.e., dk = gk �
gk�1), also known as r-algorithm, was proposed and analyzed by Shor and Zhurbenko [ShZ71]
(see also, Shor [Sho85] and [Sho98]).

Before closing this section, let us mention that we can write the formulas (6.21){(6.24)
in an alternative form by introducing the matrix Hk = BkB0k. In this case, it can be seen that

Hk+1 = Hk + (�2k � 1)
Hkdkd0kHk

d0kHkdk
;

xk+1 = xk � �k
Hk+1gkp
g0kHk+1gk

:

These formulas are computationally more eÆcient than Eqs. (6.21){(6.24). However, the up-
date formula for Hk+1 is more sensitive with respect to computational errors than the update
formula for Bk+1.

6.6. ASSUMPTIONS AND SOME BASIC RELATIONS

We here give the assumption and the basic relation that we use throughout our analysis. In
particular, the assumption that we use is the following:

Assumption 6.2:

(a) The sequence fdkg is bounded, i.e., there exist a positive scalar C such that

kdkk � C; 8 k:

Furthermore, the directions dk are such that

kB0kdkk � kB0kgkk; 8 k:

(b) There exists a positive scalar � such that for every nonempty level set
�
y 2 <n j f(y) �

!
	
and every vector x with f(x) � !, we have

f(x)� ! � � dist(x;L!);

where L! is the level set
�
y 2 <n j f(y) � !

	
:
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Assumption 6.2(b) is the same as Assumption 6.1(b), which we repeated here for an easier
reference. When dk = gk, then Assumption 6.2 coincides with Assumption 6.1, but this case
is not very interesting, since as discussed earlier, the dilation method with dk = gk can be
related to the dilation method (6.1){(6.4) of Section 6.1.

We now discuss the possibility to use the direction of the di�erence of two successive
subgradients, i.e., dk = gk � gk�1. This choice for directions dk is motivated by the instances
where the angle formed by subgradients gk�1 and gk is too wide, which can be an indication
that the subgradient gk is almost orthogonal to directions pointing toward the set of minima.
In this case, to obtain the subgradient directions better pointed toward the set of minima, we
can think of reducing the angle formed by gk�1 and gk by applying a space contraction along
the di�erence of the vectors gk and gk�1. By combining this idea with the idea of changing
the metric, we can consider the directions dk of the following form

dk =

�
gk � gk�1 if g0kBkB0kgk�1 < 0,
gk otherwise.

Let us verify that the conditions of Assumption 6.2(a) are satis�ed for this choice. If the
subgradients gk are bounded, then

kdkk � kgkk+ kgk�1k; 8 k;

thus showing that the vectors dk are also bounded. Hence, in this case, the �rst condition
of Assumption 6.2(a) is satis�ed with C = 2maxk kgkk. Furthermore, for the case where
g0kBkB0kgk�1 < 0, we have

kB0kdkk2 = kB0kgkk2 � 2g0kBkB0kgk�1 + kB0kgk�1k2 � kB0kgkk2:

Therefore, by the de�nition of dk, it follows that

kB0kdkk � kB0kgkk; 8 k:

The method using directions dk that we just discussed is not the same as the dilation
method using dk = gk � gk�1 in all iterations, which was proposed and analyzed by Shor and
Zhurbenko [ShZ71] (see also, Shor [Sho85] and [Sho98]). Since, for our analysis, the assumption
Assumption 6.2(a) is essential, our results do not apply to the method that uses dk = gk�gk�1
in all iterations.

From now on, our focus is on the method (6.21){(6.24) with directions dk satisfying the
requirements of Assumption 6.2(a). In our next lemma, we establish a basic relation for the
iterates generated by the method. This relation will be repeatedly invoked in our convergence
analysis.

Lemma 6.4: Let Assumption 6.2 hold, and let the parameters �k be such that

0 < �k � 1; 8 k:
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Let further fxkg be the sequence generated by the dilation method. Then, for any k, and any
scalar ! such that f(xk) � ! and the level set L! =

�
y 2 <n j f(y) � !

	
is nonempty, we

have

min
y2L!



B�1k+1(xk+1 � y)


2 � min

y2L!



B�1k (xk � y)


2 + (1� �2k)

�2k

C2

�2

�
f(xk)� !

�2
kB0k+1gkk2

� 2�k

�
f(xk)� !

�
kB0k+1gkk

+ �2k;

where C and � are as in Assumption 6.2.

Proof: Let k be arbitrary but �xed. By the de�nition of xk+1 [cf. Eq. (6.24)], we have for
any y, 

B�1k+1(xk+1 � y)



2 = 



B�1k+1(xk � y)� �k
B0k+1gk

kB0k+1gkk





2

=


B�1k+1(xk � y)



2 � 2�k
g0k(xk � y)

kB0k+1gkk
+ �2k:

Furthermore, by using the subgradient inequality

f(xk)� f(y) � g0k(xk � y); 8 y;

we obtain for all y,



B�1k+1(xk+1 � y)


2 � 

B�1k+1(xk � y)



2 � 2�k

�
f(xk)� f(y)

�
kB0k+1gkk

+ �2k: (6.25)

We next estimate the term


B�1k+1(xk � y)



2. By the de�nition of Bk+1 [cf. Eq. (6.21)],
we have

B�1k+1 = R�1�k (�k)B
�1
k :

Since by part (a) of Lemma 6.1, we have
�
R�k (�k)

��1
= R1=�k (�k); and by part (b) of the

same lemma, we have



R�(�)x


2 = kxk2 + (�2 � 1)(�0x)2; 8 x;

we obtain for any y,



B�1k+1(xk � y)


2 = 

B�1k (xk � y)



2 + � 1

�2k
� 1

��
�0kB

�1
k (xk � y)

�2

=


B�1k (xk � y)



2 + (1� �2k)

�2k

�
d0k(xk � y)

�2
kB0kdkk2

:
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The last equality in the preceding relation follows from �k = B0kdk=kB0kdkk [cf. Eq. (6.23)]. By
Schwartz inequality and assumption that kdkk � C [cf. Assumption 6.2(a)], it follows that

�
d0k(xk � y)

�2 � kdkk2kxk � yk2 � C2kxk � yk2:

Furthermore, since 0 < �k � 1, by Lemma 6.1(c), we have


R0�k (�k)

 = 1. This relation,

together with the de�nition of Bk+1 [cf. Eq. (6.21)] and our assumption that kB0kdkk � kB0kgkk,
yields

kB0kdkk � kB0kgkk =


R0�k (�k)

kB0kgkk � 

R0�k (�k)B0kgk

 = kB0k+1gkk:

From the preceding three relations, we obtain



B�1k+1(xk � y)


2 � 

B�1k (xk � y)



2 + (1� �2k)

�2k

C2kxk � yk2
kB0k+1gkk2

:

By substituting the preceding relation in Eq. (6.25), we see that for all y,



B�1k+1(xk+1 � y)


2 � 

B�1k (xk � y)



2 + (1� �2k)

�2k

C2kxk � yk2
kB0k+1gkk2

� 2�k

�
f(xk)� f(y)

�
kB0k+1gkk

+ �2k:

Let ! be a scalar such that f(xk) � ! and the level set L! =
�
y 2 <n j f(y) � !

	
is nonempty.

Then, for all y 2 L!, we have

f(xk)� f(y) � f(xk)� !:

By �rst using this inequality in the preceding relation, and then taking the minimum over all
y 2 L!, we obtain

min
y2L!



B�1k+1(xk+1 � y)


2 � min

y2L!



B�1k (xk � y)


2 + (1� �2k)

�2k

C2
�
dist(xk; L!)

�2
kB0k+1gkk2

� 2�k

�
f(xk)� !

�
kB0k+1gkk

+ �2k:

Finally, since by Assumption 6.2(b), we have

dist(xk; L!) � 1

�

�
f(xk)� !

�
;

which when substituted in the preceding inequality gives the desired relation. Q.E.D.
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6.7. CONVERGENCE PROPERTIES OF THE METHOD WITH
DILATION ALONG OTHER DIRECTIONS

In our analysis here, we use the same idea as in Section 6.4 with some technical adjustments.
In particular, by using the subgradient inequality and by changing the space coordinates, we
can see that for an optimal solution x�,

f(xk)� f� � g0k(xk � x�) � kB0k+1gkk


B�1k+1(xk � x�)



; 8 k:
Then, under some conditions, Lemma 6.2(a) will easily yield convergence of vectors B0k+1gk to

zero. After that, the main analytical e�ort is to show that the distance


B�1k+1(xk � x�)



 is
bounded, in which Lemma 6.4 will play a crucial role.

6.7.1 Dynamic Stepsize Rule for Known f�

We here give convergence and convergence rate results for the dilation method using a dynamic
stepsize rule for known f�,

�k = 
k
f(xk)� f�

kB0k+1gkk
; 0 < 
 � 
k � 
 < 2; 8 k: (6.26)

Our �rst result shows that the function values f(xk) converge to the optimal function value
f�, and that the values min0�j�k f(xj) converge to f� as fast as � (k+1)=n

p
(k + 1)=n.

Proposition 6.4: Let Assumption 6.2 hold, and let the parameters �k be such that

0 < � � �k � � < 1; 8 k;
(1� �2k)

�2k

C2

�2
� 
k(2� 
k); 8 k:

Assume further that the optimal solution set X� is nonempty. Then, for the sequence fxkg
generated by the dilation method and the dynamic stepsize (6.26), we have

lim
k!1

f(xk) = f�:

Furthermore,

min
0�j�k

f(xj) � f� + C
� (k+1)=n

�2

s
(k + 1)

n

(1� �2)�
1� � 2(k+1)=n

� dist(x0;X�):

Proof: We �rst show that the distances minx�2X�


B�1k (xk � x�)



 are nonincreasing. From
Lemma 6.4, where ! = f�, we see that for all k,

min
x�2X�



B�1k+1(xk+1 � x�)


2 � min

x�2X�


B�1k (xk � x�)



2 + (1� �2k)

�2k

C2

�2

�
f(xk)� f�

�2
kB0k+1gkk2

� 2�k

�
f(xk)� f�

�
kB0k+1gkk

+ �2k:
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By using the de�nition of the stepsize �k [cf. Eq. (6.26)], we obtain for all k,

min
x�2X�



B�1k+1(xk+1 � x�)


2 � min

x�2X�


B�1k (xk � x�)



2
+

�
f(xk)� f�

�2
kB0k+1gkk2

�
(1� �2k)

�2k

C2

�2
� 
k(2� 
k)

�
:

By our assumption that
(1� �2k)

�2k

C2

�2
� 
k(2� 
k); 8 k;

it follows that the distances minx�2X�


B�1k (xk � x�)



 are nonincreasing, and since B0 = I,
we have that

min
x�2X�



B�1k (xk � x�)


 � min

x�2X�


B�10 (x0 � x�)



 = dist(x0;X�); 8 k: (6.27)

We now prove that f(xk) ! f�. By using the subgradient inequality, we have for all
x� 2 X� and all k,

f(xk)� f� � g0k(xk � x�) = (B0k+1gk)
0B�1k+1(xk � x�) � kB0k+1gkk



B�1k+1(xk � x�)


: (6.28)

Since 0 < � � �k � � < 1 and Bk+1 = BkR�k (�k); by using Lemma 6.1, it can be seen that



B�1k+1(xk � y)


 � 

R�1�k (�k)



B�1k (xk � y)



 � 1

�



B�1k (xk � y)


; 8 k; (6.29)

kB0k+1gkk � kR0�k (�k)kkB0kgkk � kB0kgkk; 8 k:
Furthermore, because by Assumption 6.2, we have kB0kgkk � kB0kdkk for all k, from the
preceding relation it follows that

kB0k+1gkk � kB0kdkk; 8 k: (6.30)

By combining Eqs. (6.28){(6.30), we obtain for all x� 2 X�,

f(xk)� f� � 1

�
kB0kdkk



B�1k (xk � y)


; 8 k:

Taking the minimum over x� 2 X� in this inequality and using the relation (6.27), we obtain

f(xk)� f� � 1

�
kB0kdkk dist(x0;X�); 8 k: (6.31)

Since kB0kdkk ! 0 by Lemma 6.2(a), it follows that

lim sup
k!1

f(xk)� f� � 1

�
lim
k!1

kB0kdkk dist(x0;X�) = 0;
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thus implying that f(xk)! f�.
We next show the given convergence rate estimate. In view of Eq. (6.31), it follows that

min
0�j�k

f(xj)� f� � 1

�
min
0�j�k

kB0jdjk dist(x0;X�); 8 k:

By Lemma 6.2(b), we have

min
0�j�k

kB0jdjk � C
� (k+1)=n

�

s
(k + 1)

n

(1� �2)�
1� � 2(k+1)=n

� ; 8 k;

which when substituted in the preceding relation gives the desired estimate. Q.E.D.

Under a slightly more restrictive condition on the parameters �k, we can give convergence
rate estimates that do not depend on n, as seen in the following proposition.

Proposition 6.5: Let Assumption 6.2 hold, and let the parameters �k be such that

0 < � � �k � � < 1; 8 k;

(1� �2k)

�2k

C2

�2
� 
k(2� 
k)� c; 8 k;

for a positive scalar c. Assume further that the optimal solution set X� is nonempty, and
let fxkg be the sequence generated by the dilation method and the dynamic stepsize (6.26).
Then, the following hold:

(a) We have
lim inf
k!1

p
k + 1

�
f(xk)� f�

�
= 0:

(b) For a positive scalar � and the nonnegative integer K given by

K =

�
C2

c �2
�
dist(x0;X�)

�2�
;

with C being an upper bound on the norms kdkk, we have
min

0�k�K
f(xk) � f� + �:

Proof: (a) By using Lemma 6.4, with ! = f�, and the de�nition of the stepsize �k, we can
see that for all k,

min
x�2X�



B�1k+1(xk+1 � x�)


2 � min

x�2X�


B�1k (xk � x�)



2
+

�
f(xk)� f�

�2
kB0k+1gkk2

�
(1� �2k)

�2k

C2

�2
� 
k(2� 
k)

�
:
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Since by assumption, we have (1� �2k)C
2=(�2k�

2) � 
k(2� 
k)� c for a positive scalar c and
all k, it follows that

min
x�2X�



B�1k+1(xk+1 � x�)


2 � min

x�2X�


B�1k (xk � x�)



2 � c

�
f(xk)� f�

�2
kB0k+1gkk2

; 8 k:

By using Assumption 6.2(a) and Lemma 6.1(c), we can see that

kB0k+1gkk � kR0�k(�k)kkB0kgkk � kB0kgkk � kB0kdkk � kBkkkdkk � C; 8 k:
Hence,

min
x�2X�



B�1k+1(xk+1 � x�)


2 � min

x�2X�


B�1k (xk � x�)



2 � c

�
f(xk)� f�

�2
C2

; 8 k: (6.32)

implying that
1X
k=0

�
f(xk)� f�

�2
<1 (6.33)

Suppose that
lim inf
k!1

p
k + 1

�
f(xk)� f�

�
> 0;

in which case there exist a positive scalar " and a nonnegative integer k0 such that
p
k + 1

�
f(xk)� f�

� � "; 8 k � k0:

We then have 1X
k=0

�
f(xk)� f�

�2 � 1X
k=0

"2

k + 1
=1;

contradicting Eq. (6.33).
(b) Suppose, to arrive at a contradiction, that

f(xk)� f� > �; 8 k = 0; : : : ;K:

By using this inequality, from Eq. (6.13) we obtain for k = 0; : : : ;K,

min
x�2X�



B�1k+1(xk+1 � x�)


2 � min

x�2X�


B�1k (xk � x�)



2 � c �2

C2

� min
x�2X�



B�10 (x0 � x�)


2 � (k + 1)

c �2

C2
:

Therefore, for k = K, since B0 = I, it follows that

(K + 1)
c �2

C2
� min

x�2X�


B�10 (x0 � x�)



2 = �dist(x0;X�)
�2
;

contradicting the de�nition of K. Q.E.D.
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6.7.2 Dynamic Stepsize Rule for Unknown f�

We here consider the dynamic stepsize rule for unknown f�, where

�k = 
k
f(xk)� f levk

kB0k+1gkk
; 0 < 
 � 
k � 
 < 2: (6.34)

The estimates f levk are given by

f levk = min
0�j�k

f(xj)� Æk; (6.35)

where the positive scalars Æk are updated according to the following rule

Æk+1 =

�
�Æk if f(xk+1) � f levk ,
max

�
�Æk; Æ

	
if f(xk+1) > f levk ,

(6.36)

where Æ0, Æ, �, and � are �xed positive scalars with � < 1 and � � 1.
For the method using this stepsize, we have the following result.

Proposition 6.6: Let Assumption 6.2 hold, and let the parameters �k be such that

0 < � � �k � � < 1; 8 k;

2
(1� �2k)

�2k

C2

�2
� 
k(2� 
k); 8 k;

Then, for the sequence fxkg generated by Shor's method with the dynamic stepsize (6.34){
(6.36), we have:

(a) If f� = �1, then
inf
k�0

f(xk) = f�:

(b) If f� > �1, then
inf
k�0

f(xk) � f� + Æ:

Proof: We prove (a) and (b) simultaneously. To obtain a contradiction, assume that

inf
k�0

f(xk)� Æ > f�; (6.37)

Each time the target level is attained [i.e., f(xk) � f levk�1], the current best function value
min0�j�k f(xj) decreases by at least Æ [cf. Eqs. (6.35) and (6.36)], so in view of Eq. (6.37), the
target value can be attained only a �nite number times. From Eq. (6.36) it follows that after



Sec. 6.7 Convergence Properties of the Method with Dilation along Other Directions 165

�nitely many iterations, Æk is decreased to the threshold value and remains at that value for
all subsequent iterations, i.e., there is a k̂ such that

Æk = Æ; 8 k � k̂:

Let the scalar ! be given by

! = inf
k�0

f(xk)� Æ:

Using the preceding two relations and the de�nition of f levk [cf. Eq. (6.35)], we have

f levk = min
0�j�k

f(xj)� Æ � !; 8 k � k̂; (6.38)

f levk # !; as k!1: (6.39)

By Eq. (6.38), it follows that f(xk) � ! for all k � k̂. Furthermore, the level set L! =
�
y 2

<n j f(y) � !
	
is nonempty since ! > f� [cf. Eq. (6.37)]. Thus, by Lemma 6.4 and the

de�nition of the stepsize �k [cf. Eq. (6.34)], we obtain for all k � k̂,

min
y2L!



B�1k+1(xk+1 � y)


2 � min

y2L!



B�1k (xk � y)


2 + (1� �2k)

�2k

C2

�2

�
f(xk)� !

�2
kB0k+1gkk2

� 2
k

�
f(xk)� f levk

��
f(xk)� !

�
kB0k+1gkk2

+ 
2k

�
f(xk)� f levk

�2
kB0k+1gkk2

:

By using the estimate �
f(xk)� !

�2 � 2
�
f(xk)� f levk

�2
+ 2
�
f levk � !

�2
;

and by writing
f(xk)� ! =

�
f(xk)� f levk

�
+
�
f levk � !

�
;

we see that for all k � k̂,

min
y2L!



B�1k+1(xk+1 � y)


2 � min

y2L!



B�1k (xk � y)


2

+

�
2
(1� �2k)

�2k

C2

�2
� 2
k + 
2k

� �
f(xk)� f levk

�2
kB0k+1gkk2

+ 2
(1� �2k)

�2k

C2

�2

�
f levk � !

�2
kB0k+1gkk2

� 2
k

�
f(xk)� f levk

��
f levk � !

�
kB0k+1gkk2

:

By our assumption, we have

2
(1� �2k)

�2k

C2

�2
� 2
k + 
2k � 0; 8 k;
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implying that

2
(1� �2k)

�2k

C2

�2
� 2
k; 8 k:

Using these two inequalities in the preceding relation, we obtain for all k � k̂,

min
y2L!



B�1k+1(xk+1�y)


2 � min

y2L!



B�1k (xk�y)


2+2
k

�
f levk � !

�
kB0k+1gkk2

��
f levk �!���f(xk)�f levk

��
:

Since f levk decreases to ! [cf. Eq. (6.39)], without loss of generality, we may assume that k̂ is

large enough so that f levk � ! � Æ for all k � k̂, which together with the fact f(xk)� f levk � Æ
for all k [cf. Eqs. (6.35) and (6.36)], yields

�
f levk � !

�� �f(xk)� f levk

� � 0; 8 k � k̂:

Furthermore, since f levk � ! for all k � k̂ [cf. Eq. (6.38)], we see that

2
k

�
f levk � !

�
kB0k+1gkk2

��
f levk � !

�� �f(xk)� f levk

�� � 0; 8 k � k̂;

implying that

min
y2L!



B�1k+1(xk+1 � y)


2 � min

y2L!



B�1k (xk � y)


2; 8 k � k̂:

Therefore, the distances miny2L!


B�1k (xk � y)



 are bounded.
By using the subgradient inequality, we have for all k and all vectors y 2 L!,

f(xk)�! � f(xk)� f(y) � g0k(xk� y) = (B0k+1gk)
0B�1k+1(xk� y) � kB0k+1gkk



B�1k+1(xk� y)


:

(6.40)
Since 0 < � � �k � � < 1 and Bk+1 = BkR�k (�k), by Lemma 6.1(c), it can be seen that



B�1k+1(xk � y)


 � 

R�k (�k)

�1




B�1k (xk � y)



 � 1

�



B�1k (xk � y)


; 8 k; (6.41)

kB0k+1gkk � kR0�k(�k)k kB0kgkk � kB0kgkk; 8 k:
Furthermore, because by Assumption 6.2, we have that kB0kgkk � kB0kdkk for all k, from the
preceding relation it follows that

kB0k+1gkk � kB0kdkk; 8 k: (6.42)

By combining Eqs. (6.40){(6.42), we obtain for all y 2 L!,

f(xk)� ! � 1

�
kB0kdkk



B�1k (xk � y)


; 8 k:
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Taking the minimum over y 2 L!, we further obtain

f(xk)� ! � 1

�
kB0kdkk min

y2L!



B�1k (xk � y)


; 8 k:

Since kB0kdkk ! 0 by Lemma 6.2(a), and since the distances miny2L!


B�1k (xk � y)



 are
bounded, by letting k !1 in the preceding relation, we see that

lim sup
k!1

f(xk)� ! � 0;

which is impossible because
inf
k�0

f(xk)� ! = Æ > 0:

Q.E.D.

A closer look at the preceding proof reveals that the result of Prop. 6.6 holds when the
condition

2
(1� �2k)

�2k

C2

�2
� 
k(2� 
k) � 0;

holds for all suÆciently large k (instead of all k).
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