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Abstract

The measurement, design, and theory of ultralow-noise actively modelocked lasers
are presented. We demonstrate quantum-limited noise performance of a hybridly
modelocked semiconductor laser with an rms timing jitter of only 47 fs (10 Hz to
10 MHz) and 86 fs (10 Hz to 4.5 GHz). The daunting task of measuring ultralow-noise
levels is solved by a combined use of microwave and optical measurement techniques
that yield complete characterization of the laser noise from DC to half the laser
repetition rate.

Optical cross-correlation techniques are shown to be a useful tool for quantifying
fast noise processes, isolating the timing jitter noise component, measuring timing
jitter asymmetries, and measuring correlations of pulses in harmonically modelocked
lasers. A noise model for harmonically modelocked lasers is presented that illustrates
how to correctly interpret the amplitude noise and timing jitter from microwave mea-
surements. Using information about the supermodes, the amplitude and timing noise
can be quantified independently, thereby making it possible to measure the noise of
harmonically modelocked lasers with multi-gigahertz repetition rates.

Methods to further reduce the noise of a modelocked laser are explored. We
demonstrate that photon seeding is effective at reducing the noise of a modelocked
semiconductor laser without increasing the pulse width. Experimental demonstra-
tions of a timing jitter eater, consisting of a phase modulator and dispersive fiber,
show that the noise power spectral density can be reduced by more than 12 dB. Fi-
nally, we demonstrate how to reduce the timing jitter with electronic feedback to the
saturable absorber and gain terminals.

An analytical theory for semiconductor lasers that includes carrier dynamics is
presented. Ultralow noise performance is achieved by reducing the dispersion of the
cavity, reducing the linear losses in the cavity, by operating at high optical powers,
and with a tight optical filter. The gain dynamics of the semiconductor laser do not
severely degrade the noise performance.

Thesis Supervisor: Erich P. Ippen
Title: Elihu Thomson Professor of Electrical Engineering
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Chapter 1

Introduction

The generation of low-noise photonic pulse trains is critical to optical sampling and
communications applications. Modelocked lasers are excellent pulse sources since
they can produce short picosecond or sub-picosecond pulses at gigahertz repetition
rates with low timing jitter. Erbium-doped fiber lasers and semiconductor lasers are
the lasers of choice for these applications since they operate at the popular telecom-
munications wavelength of 1.5 ym and are technologically mature. Picosecond pulse
widths and multi-gigahertz repetition rates have been demonstrated with fiber and
semiconductor lasers by many groups [6, 7, 8, 9], but the timing jitter is usually
measured to be greater than half a picosecond.t

This thesis reports on the theory, measurement, and design of ultralow-noise mod-
elocked lasers with an emphasis on semiconductor lasers. With careful cavity design,
it is shown that sub 100-fs jitter can be obtained. One major achievement in this the-
sis was the demonstration of quantum-limited noise performance of a semiconductor
laser with only 47 fs jitter (10 Hz to 10 MHz).

The theory of actively modelocked laser noise presented in chapter 2 of this thesis
is based upon the work of Haus and Mecozzi [10], Moores [11], and Grein [12]. The
new additions to the theory are the inclusion of oscillator noise and gain dynamics.

This work presents probably the most rigorous testing of a laser noise model against

IThese groups compute the timing jitter of their lasers by integrating their phase noise measure-
ments from tens to hundreds of Hertz to hundreds of kilohertz or megahertz.
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actual experimental results. Phase noise measurements of the semiconductor laser
output as a function of modulation depth, saturable absorption, and filter bandwidth
are compared with the theory, and the theory is found to be exceptionally accurate
at predicting real experimental results. Having a trustworthy theory provides a solid
theoretical foundation for understanding how to design low noise lasers. I hope that
this work dispels several misconceptions about low-noise laser design. One of the
major misconceptions is that one can make the jitter arbitrarily small by extending
the cavity length. This is certainly not true and the presented noise theory provides

a way to understand this.

In chapter 2 of this thesis, a new model for noise in harmonically modelocked
lasers is presented. Harmonically modelocked lasers are lasers that contain multiple
pulses in the cavity. Since all fiber lasers, as well as some semiconductor lasers, are
harmonically modelocked, this is an extremely important issue. The model shows
how to correctly interpret the phase noise measurement into a number for timing
jitter. Numbers less than 10 fs (100 Hz to 1 MHz) have been reported [13], but are

about 100 times smaller than the actual value!

Chapter 3 is intended to be a comprehensive treatment of modelocked laser jit-
ter measurement. Residual phase noise measurements are shown to be an extremely
sensitive measurement technique for phase noise of fundamentally modelocked cavi-
ties. It is shown that the nonlinear cavity response of the harmonically modelocked
laser makes it difficult to obtain a true residual measurement at all frequency offsets.
Here it is explained why many have observed that their “residual” measurements
depend on the phase noise of their microwave oscillator. Section 3.2 of this chap-
ter summarizes the work that was done with optical cross-correlations. This optical
measurement technique can be used to characterize the pulse-to-pulse timing jitter,
reveal the pulse-to-pulse jitter correlations in the modelocked laser, and verify the
noise model for harmonically modelocked lasers. In addition, we use it to find the
probability density function of the timing jitter and show how it simplifies jitter

measurements in recirculating loop experiments.

Chapter 4 focuses on methods to reduce the timing jitter in modelocked lasers.
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Reducing the jitter of a laser without increasing the pulse width proves to be a difficult
problem. Section 4.1 shows how photon seeding can be used to reduce the timing
jitter of a laser without penalty to the pulse width. Section 4.3 shows how phase
modulation plus dispersion can be used to reduce the timing jitter of any pulse train.
This apparatus is called the “timing jitter eater,” and over 12 dB reduction in the

phase noise has been demonstrated with just a single phase modulator.

1.1  Jitter Timescales

In simplest terms, jitter refers to the uncertainty, or variability, of waveform timing.
Although the definition is straightforward, describing the physical origin of noise in
lasers, measuring the noise and understanding the measurements, as well as under-
standing how timing jitter degrades optical sampling and communication systems is

rather complicated.

One important concept is that the timing jitter of modelocked lasers arises from
distinctly different physical mechanisms that have different timescales. On long
timescales, > 100 us, length fluctuations and flicker noise of the voltage and cur-
rent sources dominate. On medium timescales, 100 us to 100 ns, the jitter is held
constant by re-timing from the active modulator. On faster timescales, < 100 ns,
spontaneous emission is the dominant noise source. Fig. 1-1 shows how these various
noise mechanisms show up in the pulse-to-pulse jitter and the phase noise spectrum.
The solid line plots the timing variance between the first pulse and pulse n and resem-
bles the single-sideband phase noise curve. For sampling applications, high-frequency
noise must be mitigated since this affects the quality of sampling from pulse-to-pulse.

For optical clock applications, reducing low-frequency phase noise is critical.
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Figure 1-1: Timing jitter mechanisms and timescales.

1.2 Importance of Ultralow-Noise Modelocked Lasers

in Optical Communications

In optical time-division multiplexed communications systems [14, 15, 16], high bit
rates are achieved by using short pulses and packing them tightly together. Trans-
mission at 160 Gbit/s has been demonstrated with 1.2 ps pulses [17]. This repetition
rate corresponds to a bit period of only 6.25 ps, which means that the modelocked
laser source must have small timing jitter to yield acceptable bit error rates. Timing
jitter should be less than 10% of the bit period to have better than a 10~ bit error
rate. This implies that the timing jitter must be better than 625 fs at 160 Gbit/s.
Fig. 1-2 shows a plot of the maximum allowed timing jitter as a function of bit rate.
As the bit rate increases the pulses must be correspondingly shorter. In the theo-
retical section of this thesis, we will see that the timing jitter increases dramatically
as the pulse width decreases. Therefore, as the bit rate increases, the laser source
must not only have lower timing jitter, but it must also be able to do so with shorter

pulses.
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Figure 1-2: Bit rate versus maximum allowed timing jitter.

1.3 Importance of Ultralow-Noise Modelocked Lasers

in Optical Sampling

A new generation of optical analog-to-digital converters is being investigated as a pos-
sible route to obtain better sampling resolution and rates than what can be achieved
electronically [18]. There is an inherent tradeoff between the sampling rate and the
bits of resolution for a given amount of jitter in the sampling gate. The maximum
allowable jitter in the optical pulse train used to electro-optically sample an electrical
waveform is plotted in Fig. 1-3 [18]. The figure shows that less than 20 fs of timing
jitter is required for a sampler with 12-bits of quantization at a sampling rate of 10
Gsamples/s. The benefit of improving ADC performance with optical sampling tech-
niques is to improve signal-processing capabilities for pulsed radar, electronic warfare,
and cell phone bay stations. Requirements on the optimal sampling pulse width are

presented in Appendix D.

The recent interest in developing optical sampling systems also brought attention

to the high-frequency jitter of the modelocked laser output. The power spectral
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Figure 1-3: The maximum allowable timing jitter is plotted as a function of sampling
rate for 2, 8, and 12 bits of resolution. The relationship between pulse width and
timing can be derived by considering a sinusoidal signal at frequency wj;. The most
difficult point to sample is at the zero crossing where the slope is the greatest. A pulse
that samples at the zero crossing yields no detected power. If that pulse experiences
a time displacement of At, the detected output would be wj; At. This quantity must
be less than the quantization spacing, 2/2. Remember that according to Nyquist,
the sampling rate must be at least 27 foump = 2wpr. Therefore, 7 foump At < 2/2N.

density of the timing jitter up to the half the repetition rate of the laser causes
sampling errors. Since we can express any amplitude or timing change from one pulse
to the next as a sum of sinusoids with maximum frequency of 1/27;, where T); is
the repetition rate, the timing variance is found by integrating the power spectral

density of the timing jitter from —wy//2 < w < wyr/2, where wyy = 27 /Ty

1.4 Choice of Modelocked Laser

Out of all possible gain media and laser types, Erbium-doped fiber lasers (EDFLs)
and semiconductor lasers are most appropriate for optical sampling and telecommu-

nication applications due to the following reasons

1. Both laser media can operate at a wavelength of 1.5 pym which corresponds
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to the low-loss wavelength in silica fiber. In addition, there are many optical

components that are commercially available at this wavelength.
2. The gain bandwidth can easily support sub-picosecond pulses.

3. Active modelocking at high repetition rates in excess of 10 GHz of these lasers

has been routinely demonstrated.

4. These lasers can be packaged into reasonable sizes. Less than a few cubic

centimeters in the case of the semiconductor laser.
5. Low noise operation has been demonstrated with both lasers.

Ti:Sapphire lasers have been shown to have 1 ps (1 Hz to 40 MHz) of integrated timing
jitter [19]. This number is a bit surprising since Ti:Sapphire lasers have very low
internal loss. These lasers are passively modelocked which means that the repetition
rate of the laser changes with fluctuations in the cavity length. The length is often
stabilized by adjusting the length with a PZT and locking to a microwave reference
frequency. This is equivalent to using a modulator with a very weak modulation
depth. Our theory predicts that the timing variance should scale as the inverse of
the modulation depth. Hence, the 1 ps of timing jitter could be due to the way in
which the repetition rate is stabilized. The introduction of an active electro-optic
modulator into the Ti:Sapphire cavity increases the cavity loss. In addition, the gain
bandwidth of Ti:Sapphire does not cover 1.5 um.

The gain-switched semiconductor laser is another optical pulse source that may be
considered for optical sampling. Even with optical and electronic feedback schemes
[20], the noise of these lasers is typically well above 0.5 ps [21]. Physically, each pulse
must arise from spontaneous emission, and the turn-on time is a stochastic process.

Other non-modelocked pulse sources such as those produced by a combination of
modulation, amplification, and then dispersion decreasing fiber are not well studied.
Optical pulses of 200 fs duration at 10 GHz repetition rate have been demonstrated
[22]. Random nonlinear effects such as stimulated Raman backscattering and intensity

to phase noise conversion through the Kerr effect may limit the noise performance.
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For a long time, it was thought that semiconductor lasers could not obtain low
noise operation due to their slightly higher inversion parameter compared to Erbium-
doped fiber lasers and to their short nanosecond upper-state lifetime. Through the
work of Derickson [23]|, DePriest [24] and our work [25], it has been shown that
semiconductor lasers can indeed be very quiet with under 100 fs of timing jitter,

thereby reviving interest in these lasers as optical sampling sources.

1.5 Organization of Thesis

This thesis is organized into three parts. The first part describes the salient features
of the noise theory that are necessary for designing ultralow noise modelocked lasers.
The second part explains how to accurately measure the noise power spectral density
over a large range of frequency offsets. The last part demonstrates several techniques
that we have used to reduce the noise of modelocked lasers even further. Many of the
detailed theoretical calculations and pulse characterization algorithms can be found

in the appendix.
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Chapter 2

Modelocked Laser Noise Theory

2.1 Timing Variance and Power Spectral Density

The pulses in an actively modelocked laser cavity are randomly pushed around their
equilibrium positions by noise. The resulting variability in the pulse train timing is
called timing jitter. When noise nudges a pulse, the amplitude or phase modulator in
the laser cavity drives the pulse back to its equilibrium position. Timing restoration
of the optical pulses has been found to behave like a mass on a spring with a dashpot
[12]. The displacement of the mass is equivalent to delaying or expediting the pulse.
The mass is analogous to the pulse energy. A larger mass is less sensitive to small
noise perturbations just as a pulse with many signal photons is not greatly perturbed
by a few noise photons. The amplitude modulator is analogous to the spring since
they both apply restoration forces.! Noise applies randomly directed forces on the
mass.

There are two major analytical theories for noise in actively modelocked lasers.
The soliton noise theory (chapter B, section B.3) describes the noise in soliton lasers
in which the pulse intensity has a hyperbolic secant shape [26]. The Hermite-Gaussian
noise theory (chapter B, section B.2) describes the noise for lasers in which the pulse

intensity is closer to a Gaussian shape. Depending on the magnitude of the saturable

!Comparing equation (B.102) for the laser noise with (B.208) for a mass with dashpot and spring,
we see that the analogy is @ = 29 and wy = 275 .
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Figure 2-1: Autocorrelation of the temperature-controlled external-cavity modelocked
semiconductor laser at 10 GHz. The modulation power to the saturable absorber was
23.8 dBm, the injection current was 35 mA, and the saturable absorber bias was
-2.08 V. The pulse shape could be described with either a Gaussian or hyperbolic
secant function.

absorber bias, the pulse shape can be anywhere between a hyperbolic secant and a
Gaussian. For high saturable absorber biases (-2 V), the pulse shape is hyperbolic
secant-like, as shown in Fig. 2-1. For low saturable absorber biases (< —1.6 V), the
pulse intensity profile is Gaussian, as shown in Fig. 2-2. The differences between
the two noise theories are discussed in chapter B, section B.4 and are found to yield

similar expressions for the timing jitter power spectral density.

The power spectral density for timing jitter in an AM actively modelocked laser

is derived in chapter B, section B.2, equation (B.108) and found to be equal to
[AHQ)]? = CQN(Q) (2.1)

where C'(Q) is the laser cavity response and N () is the noise power spectral density.

The cavity response is
~ 272 1

CO) = TR (2.2)
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Figure 2-2: Autocorrelation of the non-temperature-controlled external-cavity mod-
elocked semiconductor laser at 5 GHz. The applied rf power was about 20 dBm,
the injection current was 50 mA, and the saturable absorber bias was -1.6 V. The
autocorrelation function fits well to a Gaussian function.

where 7 is the pulse width, wy is the pulse energy,

p _ Mauwi,* (2.3)

Yo = 4TR
is a function of the modulation depth M 4,;, modulation frequency wy;, and round-
trip time 7. The cavity response is Lorentzian and hence is analogous to a critically
damped mass on a spring and dashpot. The noise is a sum of the spontaneous
emission noise, cavity length fluctuations, and microwave oscillator noise. The noise

power spectral density is

N(@) = 52y (2 2|AE<Q>|2+%(AWW)Q|AJ> @F, (24
47 272 \v,Tr 8 Tr ¢ ’

where Pysp is the amplified spontaneous emission power, v, is the group veloc-
ity, |AL(Q)|? is the power spectral density of the cavity length fluctuations, and

|Adose(Q)[? is the phase noise of the microwave oscillator. More exactly, the numer-
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ator PaggTR is the spontaneous emission energy that overlaps with the pulse.

Equation (2.1) is integrated over all frequencies to obtain the timing variance?

P 2 72 PiopTr)/2 1
o2 = ASE/ T?R _ (PaseTr)/ i (2.5)
wy 27 Wy M gprwiy

In obtaining this expression, the length fluctuations and microwave oscillator noise
was ignored. Hence, equation (2.5) yields the fundamental quantum noise of the laser
due to spontaneous emission.

The fast gain dynamics in a semiconductor laser due to short nanosecond upper-
state lifetimes were examined to see whether they affect the timing jitter. Sec-
tion B.2.3 in Appendix B shows how to include gain dynamics in the laser noise

theory and it is found that the effect on timing jitter is negligible.

2.2 Design Rules for Ultralow-Noise Modelocked
Lasers

A summary of the design rules for ultralow noise modelocked lasers can be obtained

from equation (2.5) and is as follows

1. Minimize cavity loss. The slope of the P-I curve in saturation, shown in Fig. 2-
3, steepens for decreasing cavity loss. Therefore, the ratio of the spontaneous
emission power to the signal power decreases resulting in a reduction of the

timing jitter according to equation (2.5).

2. Increase output power. Above threshold, Fig. 2-3 shows that the spontaneous
emission power clamps at a constant value since the carrier concentration clamps
at Ny, and the spontaneous emission rate is proportional to N2. The signal
power, on the other hand, increases with increasing pump current. Therefore,
the signal-to-noise ratio in equation (2.5) improves and the timing jitter de-

creases.

2This is the pulse-to-clock variance.
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. Maximize modulation depth. The timing variance is inversely proportional to

M.

. Increase modulation curvature by either increasing the frequency or using an
comb generator, such as a resonant tunnelling diode (RTD) or step-recovery
diode (SRD). The timing variance is inversely proportional to w?,. Generally,
operating at higher microwave frequencies does not introduce significant excess

timing jitter since doublers are relatively quiet.

. Increase saturable loss relative to the linear loss. This will improve the signal

energy to noise energy ratio.

. Minimize dispersion for AM modelocked lasers. This can be seen from equa-
tion (B.329). Dispersion gives rise to Gordon-Haus jitter. This can quickly

become a problem for short pulses since the timing variance scales as 1/78.

. Reduce classical noise sources: (1) use quiet rf oscillator, (2) remove ground
loops, (3) use quiet current and voltage supplies, (4) protect laser from ther-
mal variations and vibrations, (5) use isolator on output port to prevent back
reflections into the cavity. Even a 4% reflection can cause the laser output to

be chaotic.

Making the cavity longer does not improve the noise performance since the gain-per-

pass and noise-per-pass added to each pulse remains the same. This will be explained

in more detail in section 2.5.

2.2.1 Semiconductor Lasers vs. Fiber Lasers

It is hard to compare the timing jitter performance of semiconductor modelocked

lasers with fiber modelocked lasers since there are no valid residual phase noise mea-

surements of fiber lasers in the literature.? If we assume that both lasers have same

3To accurately measure the noise of these lasers requires a low noise oscillator (such as Poseidon’s
shoe box oscillator), and the measurement of all the supermodes up to half the repetition rate. Most
measurements in the literature are absolute phase noise measurements of the first supermode.
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Figure 2-3: The steady-state photon density and carrier density as a function of
injection current. Adapted from [1, p.41,43].

modulation depth M and frequency wj; and the total dispersion in the EDFL is zero,
then the rms timing jitter of the EDFL can be about five times better than the MLLD
according to equation (2.5). The spontaneous emission energy in the MLLD is about
1-3 times larger than the EDFL since the inversion factor is ng, = 1 — 3. In addition,
the output power of the EDFL can easily be 10 mW versus the typical 1 mW output
of the MLLD. This implies that the EDFL pulse energy is approximately ten times
larger than that of the MLLD.

Both lasers will continue to be interesting since there are advantages to both
technologies (1) it is difficult to get close to zero dispersion in an EDFL; (2) feedback
techniques may be used to dramatically reduce the laser noise level so that the small
difference in the laser noise between EDFLs and MLLDs is not important; (3) MLLD
can be small, compact, and environmentally more stable; and (4) the low frequency

noise of the EDFL is generally cleaner than that of the MLLD.
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Figure 2-4: Single-sideband phase noise of the temperature controlled external-cavity
modelocked semiconductor laser at 10 GHz with a 5-nm optical BPF. The phase noise
increases as the microwave driving power to the saturable absorber decreases from
24 dBm to 15 dBm. The dashed lines show the theoretical values.

2.3 Comparison Between Theory and Experiment

The derivation of the power spectral density of the timing jitter, equation (2.1),
contains many simplifications that are outlined in appendix B, but is nonetheless

amazingly powerful at predicting the actual phase noise of our lasers.

2.3.1 Timing Jitter vs. Modulation Depth

The residual phase noise of the temperature-controlled modelocked semiconductor
laser at 10 GHz is shown in Fig. 2-4 for two different modulation strengths. The
noisier curve corresponds to an applied rf power of 15 dBm and the lower curve
corresponds to an applied rf power of 24 dBm. These two curves fit very well to
the theoretically predicted Lorentzian power spectral densities for the spontaneous
emission noise. At high offsets, the laser noise rolls off at 20 dB/decade.

The theoretical curves (the dashed lines) in Fig. B-5 fit very closely to the mea-

sured values. The values used in constructing the dashed lines were P4sg = 0.008 mW,
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Figure 2-5: Integrated timing jitter of temperature-controlled external-cavity semi-
conductor laser corresponding to Fig. B-5.

wo = 0.7 pJ, 7 = 3.5 ps, Tyy = 100 ps, 27¢(24 dBm) = 27 x 1.8 MHz, and
29%(15 dBm) = 27 x 450 kHz. The re-timing parameter, 73, was chosen to fit

the knee of the measured noise data. All the other values were measured.

The modulation depth was increased by a factor of 4 from increasing the applied
rf power from 15 to 24 dBm. Equations (2.2) and (2.3) show that if M 4y, increases
by a factor of 4, then the roll-off frequency decreases by a factor of 4 and the phase
noise at low offsets decreases by a factor of M? = 16 or 12 dB. The measured values

show excellent agreement with the theoretically predicted trends.

The importance of noise at high-frequency offsets becomes apparent when the tim-
ing jitter is plotted as a function of integration range. Fig. 2-5 shows a histogram plot
of the integrated timing jitter due to the noise in each decade. The integrated noise
values from 10 Hz to 10 MHz are 951 fs (with 24 dBm drive) and 1943 fs (with 15 dBm
drive). Most of the noise is due to high-frequency (100 kHz to 10 MHz) fluctuations.
For ultralow-noise lasers with large modulation depths, the largest contributions to

the integrated timing jitter come from high frequency offsets.
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2.3.2 Timing Jitter vs. Saturable Absorption

Neither the soliton nor Hermite-Gaussian noise theory predict how the timing jitter
changes with saturable absorption. Nevertheless, the saturable absorption can be
tuned by changing the applied reverse bias of the saturable absorber. Fig. A-8 shows
that the saturable absorption increases as the reverse bias increases. If the saturable
loss increases, then the small-signal noise is attenuated more than the high-peak-
intensity pulse. The ratio of the ASE power to the signal power decreases, and hence
equation (2.5) shows that the timing jitter must decrease. Increasing the magnitude
of the saturable absorber bias also has the effect of shortening the output pulses.

Fig. 2-6 shows the residual phase noise of an actively modelocked semiconductor
laser for a reverse bias of -0.95 V and -2.00 V. The applied rf power was kept at
10 dBm for both measurements and the applied rf frequency was 9.5 GHz. The phase
noise for the Vg4 = —2.00 V curve is about 12 dB lower than the phase noise for
the Vg4 = —0.95 V curve. The theoretical curves for the spontaneous emission noise
spectra, shown with dashed lines, fit well to the measurements.*

The phase noise at low offsets in Fig. 2-6 shows a 1/f characteristic from the
flicker noise of the current and voltage sources as well as large electrical pickups at
harmonics of 60 Hz. A detailed discussion of these classical noise sources is given in
appendix B. The non-temperature controlled semiconductor laser was mounted in an
aluminum mount that was securely bolted to the optical table. Ground loops between
the saturable absorber ground, current source ground, and the grounded tabletop are
probably the cause for the enhanced noise at frequency offsets less than 1 kHz. Our
temperature controlled mount was electrically isolated from the optical table, and
the resulting phase noise spectrum does not exhibit as much low frequency noise, see
Fig. B-5. Therefore careful isolation of the ground loops, not grounding the power
supplies to the rf amplifiers, running the voltage supply off of alkaline batteries, by

using inner /outer DC blocks on all rf feeds as well as electrically isolating the diode

4Theoretical values corresponding to Fig. 2-6: The lower curve corresponds to I ; = 65 mA,
Vsa = —2 V, Pagep = 0.001 mW, 278 = 27 x 450 kHz, wy = 0.7 pJ, and 7 = 1.74 ps. The
upper curve corresponds to I; = 65 mA, Vgyg = —0.95 V, P4gg = 0.01 mW, 2’)/8ce = 27 x 350 kHz,
wo = 0.7 pJ, and 7 = 1.74 ps.
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Figure 2-6: Residual phase noise of modelocked semiconductor laser as a function of
saturable absorption.

chip from the optical table is critical for good noise performance at low frequency

offsets.

2.3.3 Timing Jitter vs. Filter Bandwidth (Pulse Width)

According to the noise theory outlined in appendix B, the rms timing jitter scales
either as 1/72 for actively modelocked lasers or as 1/7* for lasers with dispersive cav-
ities that are dominated by Gordon-Haus jitter. Hence, there is an inherent tradeoff
between low noise performance and pulse width.

Fig. 2-7 shows a plot of the timing jitter as a function of pulse width for several
lasers. Points C and D are fiber lasers and the other points correspond to semicon-
ductor lasers. Since fiber lasers generally have large dispersion, a dotted line with
slope 1/7% is drawn through those points that indicates a constant figure of merit.
The figure of merit depends on cavity loss and the inversion of the gain. Since semi-

conductor lasers generally have negligible dispersion®, a dashed line with slope 1/72

®The dispersion of our laser was measured at < —16.8 & 1.7 fs/nm.
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Figure 2-7: Timing jitter plotted as a function of pulse width for several lasers.
Dashed lines have a slope of 1/72. Dotted lines have a slope of 1/7%. Reported
results for harmonically modelocked lasers are corrected by multiplying the reported
number by v/M and shown with hollow circles (see section 2.5 for explanation). The
hollow squares show how the noise should theoretically improve if the repetition
rate increased from 5 to 10 GHz (rms timing jitter is inversely proportional to the
modulation frequency). Table 2.1 shows the repetition rate, integration range, and
reference for points A to J.

is drawn through those points.

Points B, C, D correspond to harmonically modelocked lasers. The reported values
considered only the first supermode. Section 2.5 shows that these numbers need to
be multiplied by the square root of their harmonic number (assuming that all pulses
in the cavity are uncorrelated). The solid circles indicate the corrected timing jitter
for points B, C, and D.

Points E and J corresponds to the best results with 0.7 and 5 nm optical band-
pass filters, respectively. The internal cavity loss of the 0.7-nm filter was larger and
hence has a lower figure of merit.® For reference, their phase noise plots are shown in

Fig. 2-8 and 2-9 for the 0.7 and 5 nm filters, respectively.”

6For Vsga =0V, I;,(0.7 nm) = 29.6 mA, and I;;(5 nm) = 22 mA.
"Theoretical values corresponding to Fig. 2-9: The lower curve corresponds to I j = 35 mA,
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Point | Repetition Rate | Integration Range Laser Type Reference

A 5 GHz 100 Hz to 100 MHz | Semiconductor | [23]

B 10 GHz 10 Hz to 10 MHz Semiconductor | [27, 28]

C 10 GHz 100 Hz to 1 MHz Er-Fiber [13]

D 10 GHz 100 Hz to 30 MHz | Er-Fiber [29]

E 9 GHz 10 Hz to 10 MHz Semiconductor | [25]

F 5 GHz 200 kHz to 2.5 GHz | Semiconductor | [26]

G 10 GHz 10 Hz to 10 MHz Semiconductor | 11/27/01 data
H 10 GHz 10 Hz to 10 MHz Semiconductor | 11/27/01 data
I 10 GHz 10 Hz to 10 MHz Semiconductor | 3/15/02 data
J 10 GHz 10 Hz to 10 MHz Semiconductor | 3/15/02 data

Table 2.1: Description of points A to J in Fig. 2-7
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Figure 2-8: Best phase noise results in external-cavity modelocked semiconductor
laser with 0.7-nm filter.

52



-80

-90 |

N 11 dBm (500 f5)

~

2 ‘ ™

@ 100

e 3

€ ]
-110 4 SldBm-(150-4s) \

C:\Documents anif Settings\Leaf Jiarig\My D MData\0 W
-120 . |
10 100 1k 10k 100k 1M 10M

Frequency Offset (Hz)

Figure 2-9: Best results for temperature-controlled external cavity modelocked semi-
conductor laser with 5-nm filter.

2.4 Pulse-to-Pulse Timing Jitter Correlations

The noise theory outlined in appendix B predicts that the timing variance between

pulse 1 and pulse N are

o2, T, Passively Modelocked

207, [1 — exp(—29% )} , Actively Modelocked
(2.6)

(AT + Ty) — AH(Ty)|?) =

where T' = NTpx. The variance grows linearly and is unbounded for passively mod-

8 The variance

elocked lasers since there are no restoration forces on the pulses.
grows as 1 —exp(—T") for actively modelocked lasers. For long delays, the variance is
bounded by the active modulation which forces the pulses back into their time slots.

The constant 273 corresponds to the angular frequency at which the phase noise

Vea = —1.841V, Pasg = 0.009 mW, 2’yge =27 x 11 MHz, wy = 0.7 pJ, and 7 = 1.74 ps. The upper
curve corresponds to I; = 35 mA, Vgq = —1.841 V, Pygr = 0.0033 mW, 298 = 27 x 800 kHz,
wo = 0.7 pJ, and 7 = 1.74 ps.

8There are however weak forces that can bound their position such as electrostriction in fibers
and gain saturation [30].
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Figure 2-10: A schematic showing the 45 GHz monolithically integrated passively
MLLD.

rolls off. If there is significant high frequency noise, then 27 is large, and not much
delay is required to obtain most of the jitter in the cross-correlations. In section 2.5,
correlations in harmonically modelocked lasers will be discussed.

The pulse-to-pulse timing jitter was measured for a passively and actively mod-
elocked laser.? The passively modelocked laser is shown in Fig. 2-10 and its timing
variance in Fig. 2-12. The actively modelocked laser is shown in Fig. 2-11 and its
timing variance in Fig. 2-13. Just as the theory predicted, the timing variance of the
passively modelocked laser has a linear dependence and the timing variance of the
actively modelocked laser has a 1 — exp(—7") dependence.

The pulse position in the passively MLLD is said to undergo a random walk, since
the timing variance increases linearly as a function of delay. For the measurements
reported here, the pulse-to-pulse kicks of the random walk are 73 fs.

In the actively MLLD, the timing variance is approximately linear for delays of
less than 1500 round-trips, which indicates that the pulses do not feel the effect of
the modulator and locally undergo a random walk. By fitting a line to the timing
variance in Fig. 2-13 over the interval of 0 to 1500 round-trips, we estimate that the

pulse-to-pulse kicks are 18 fs.

9The MLLDs that we used in our experiments are shown in Fig. 2-10 and Fig. 2-11. The 45 GHz
MLLD ([31] has a 960 pum gain section driven with an injection current of 38.2 mA and a 60 pm
saturable absorber section, which was reverse biased at 0.224 V. The resulting output pulses were
1.3 ps in duration. The hybridly MLLD shown in Fig. 2-11 was driven at 5 GHz (to match fun-
damental cavity round-trip time) with 19 dBm of RF power, an injection current of 50 mA, and a
reverse-biased saturable absorber voltage of 1.55 V. The resulting pulses were 3 ps wide.

o4



Ven ANTI-REFLECTION

. COATING
: | | gain
5-nm BPF
fa— /7
— !
— KZ-/’V
OUTPUT
SELFOC MIRROR
LENS R =99.9%

Figure 2-11: A schematic showing the hybridly MLLD with external cavity.
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Figure 2-12: Timing variance of the passively MLLD. The pulse-to-pulse timing vari-
ance is normalized to T3, < |At(T + Ty) — At(Ty)|? > /T3 and plotted as a function
of delay (normalized to the round-trip time Tg). The RMS pulse-to-pulse kicks of the
random walk were computed by taking the slope of the total noise, multiplying by T,
and then taking the square root of the result. The 4.7 ps refers to the pulse-to-clock
RMS timing jitter after a delay of 4500 round-trips.
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Figure 2-13: Timing variance of the actively MLLD. The squares represent experi-
mental data and the solid lines represent theoretical values.

The pulse-to-pulse timing jitter correlations were measured using a second-harmonic
non-colinear optical cross-correlation technique shown in Fig. 2-14. The details of this
technique are explained in chapter 3.2. Pulses from the hybridly or passively mode-
locked laser diode (MLLD) were amplified and split into two different paths with a
beam-splitter. One arm was delayed with respect to the other arm using a fiber delay
line so that pulse 1 and pulse n would overlap in the nonlinear crystal (a 4 mm POM
crystal with type II phase matching). The fine delay stage was used to sweep pulse
1 and pulse n through each other as the second-harmonic signal was detected with a
photo-multiplier tube and lock-in detection. For greater delays, or equivalently, for
increasing n, the cross-correlation width increases, since timing jitter increases as a

function of delay.

2.5 Harmonically Modelocked Lasers

Until recently [32, 33|, the noise of harmonically modelocked lasers and how to char-
acterize it has not been well understood. Most of the lowest noise actively modelocked
lasers reported to date are harmonically modelocked, but their amplitude noise and
timing jitters have been reported incorrectly. This section will show how to cor-
rectly measure the noise of a harmonically modelocked laser using residual phase

noise measurements and spectrum analyzer measurements. Optical cross-correlation
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Figure 2-14: Cross-correlator.

measurements are also used to check the results.

Modelocked Erbium-doped fiber lasers [34] and semiconductor ring lasers [27]
are typically harmonically modelocked since their cavity round-trip time is longer
than the active modelocker’s modulation period. Understanding the pattern noise
in harmonically modelocked lasers is of particular importance for high-speed optical
sampling systems [18].

Models for the noise in gain-switched lasers [35, 21] and fundamentally modelocked
lasers [36, 37| are well known, but there is currently no treatment for patterning
effects, which are inherent in harmonically modelocked lasers. The noise model for
gain-switched lasers and the noise model for fundamentally modelocked lasers cover
two extremes: in the case of gain-switched lasers, each pulse independently builds
up from ASE and therefore the pulse-to-pulse timing jitter is mainly independent
and uncorrelated. In the case of fundamentally modelocked lasers, the same pulse
recirculates through the cavity and hence the pulse-to-pulse jitter is highly correlated.
In a harmonically modelocked laser, there is a mix of these two effects. Just like a
gain-switched laser, all M pulses in the cavity at any time instant are independent of
each other since they all arise separately from spontaneous emission. On the other

hand, similar to a fundamentally modelocked laser, the pulses recirculate in the laser
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cavity and hence the output is correlated, e.g. pulse 1 is correlated with pulse M + 1,
but pulse 1 and 2 are not strongly correlated. The assumption that all M pulses in
the cavity are independent is a good approximation as long as the gain dynamics or
other scattering and coupling mechanisms do not cause pulse-to-pulse correlations,
i.e. the gain recovers between pulses (semiconductor laser) or is not significantly
affected by a single pulse (Erbium laser). The case in which neighboring pulses are
highly correlated has also been investigated [32]. In this analysis we assume that all
M pulses in the cavity are uncorrelated.

The correlated /uncorrelated output of a harmonically modelocked laser leads to
an interesting power spectral density shape. There are delta functions spaced at
multiples of the modulation frequency and noise energy at multiples of the cavity

round-trip frequency.

2.5.1 Model

Following the notation of [37], the intensity of the pulses can be written as sum of

equally spaced delta functions

=3 1) @)
where
L) = COE[L N ¢

is a set of pulses separated by T, and time-shifted by k77, /M (see Fig. 2-15) with
average power P/M (the average power of I(t) is P), and Ni(t) and Ji(t) are the
amplitude and jitter fluctuations of the kth pulse in the group of M independent
pulses. Since we can express any amplitude changes from pulse I;(t) to neighboring
pulse I(t + T1) as a sum of sinusoids with maximum frequency of 1/277, Nj(w) is

bandlimited to —w;/2 < w < wy/2. For the same reason, the Fourier transform of
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Ji(t) is also bandlimited to the same range. Using the identity

i St —nTL — J(t) = = Y. exp [jmwr(t — Ji(t))] (2.9)

n=—oo

where wy, = 27 /Ty, and expanding exp(jnwyJi(t)) to first order, equation (2.8) can
be simplified to

I(t) = ]\]j[ [1+ Ni(t)] _f: exp [jmwr(t — kKT /M)] x
(1~ g (1)) (2.10)

The Fourier transform of (2.10) is

o

It (t) exp(—jwt)dt

?’;n
£
Il
—

P & ~
= > [27?5(w — nwr,) — jnwrJi(w — nwy)
+ Ny(w — nwL)] exp (—j2ﬂk> : (2.11)

where second order perturbation terms, Ny () Ji(t), were dropped. The power spectral

density of I(t) is

2

> L)

= P? > 278(w — mwy)

+ (%) nioo [aniSJ(w — nwr)
+ Sn(w — nwp)] (2.12)

where wy; = Mwy, is the modulation frequency,

Si(w) = [ A W)]* = [ Rw)]* = SLw)* = ... (2.13)
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is the power spectral density of the timing jitter fluctuations and

Sy(w) = [Ni(w)[*

[
&
&
T

I

|N3(w)]* = ... (2.14)

is the power spectral density of the amplitude fluctuations. Equations (2.13) and
(2.14) are valid since each pulse in the cavity experiences the same noise excitations
and hence should have the same noise power spectral densities. Equation (2.12) looks
very similar to the expression one would obtain for fundamentally modelocked lasers
[37, Eq. 3], except there are a few important differences. First, there are delta func-
tions only at multiples of the modulation frequency; the delta functions at multiples
of the cavity round-trip frequencies cancel out. It may appear as if the cavity axial
modes were delta functions when measured experimentally with an electrical spec-
trum analyzer, implying that there is a periodic signal of infinite duration, but upon
closer inspection, the peaks of cavity axial modes are due to long-time-scale varia-
tions. When viewing the cavity axial modes of a harmonically modelocked laser, the
resolution bandwidth of the spectrum analyzer is typically tens of kilohertz or larger.
Therefore all the low-frequency variations in a ten kilohertz bandwidth are integrated
into one bin and hence appear like a delta function on the spectrum analyzer display.
Second, there is a factor of 1/M multiplying the noise power spectral densities in
(2.12). Later, we will see that this means that the integrated single-sided phase noise
spectrum from 0 Hz to 1/27; needs to be multiplied by a factor of v/M to obtain the

standard deviation of the timing jitter probability density function.

Equation (2.12) shows that the timing jitter component of the power spectral
density of I(t) scales as the square of the round-trip frequency harmonic number as
well as the square of the modulation-frequency harmonic number. Fig. 2-16 shows
the power spectral density of a harmonically modelocked laser. The amplitude power
spectral density repeats every multiple of w;. The timing jitter power spectral density
increases quadratically as a function of harmonic number. This means that Sy(w) is
highly insensitive to timing jitter fluctuations at low offsets. Therefore, there is no

need to measure out to high modulation-frequency harmonics to separate timing
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from amplitude fluctuations. One simply can measure the amplitude contribution by
recording the noise of the first cavity axial mode at w; with a spectrum analyzer. The
power density spectrum of the first cavity axial mode at wy, can be subtracted from the
power density spectrum of the first modulation harmonic at wy; to obtain the timing
jitter power density spectrum. Therefore, it is easy to separate timing and amplitude
fluctuations in harmonically modelocked lasers. In addition, this measurement scheme
has the advantage over previous schemes since it is not always possible to go out
to high modulation-harmonics since this is limited by the detection electronics and
spectrum analyzer bandwidth which are typically limited to 50 GHz. In addition, by
measuring the noise around the axial modes, it may be possible to characterize the

intensity noise and timing jitter of extremely high-repetition rate lasers [38].

The RMS intensity and timing fluctuations are given by

1 o)
ok = (V) = o= [ Swlw)dw, (2.15)
where oy is unitless and
2 2 Lo
o3 = () =5 [ Siw)dw (2.16)

where o ; has units of time. Notice that the RMS values are not equal to S 0L (N2 (t))
or ML J2(t)) since the intensity and timing noise of each I,(t) does not overlap
in time, and hence the random variables do not add. The RMS intensity and timing
fluctuations are equal to the standard deviation of the probability density function

for the intensity and timing displacements.

Measuring laser noise with an RF spectrum analyzer

A spectrum analyzer does not directly measure Sy(w) and S;(w), but measures a
power density proportional to S;(w), which we relabel as P(w)/B, where B is the
bandwidth resolution. Since it is not straightforward to determine the proportionality

constant, which depends on quantum efficiency of the detector and various settings
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on the spectrum analyzer, it is easier to normalize the measured spectral density to

the carrier power, P, = P(wy;). Therefore, assuming no timing jitter noise,

P(w)/B _ PSy(w)/M

2.17

P, 2w ( )
for —wp/2 < w < wr/2, or assuming no intensity noise,
P B PuwyS M

P, 2w

for wy —wr /2 < w < wy +wp /2. The RMS intensity fluctuations from 0 Hz to wy, /2

can be found from the measured RF spectrum according to (substituting (2.17) into
(2.15))

2 :M/ R 2.1
oN w2 BE, ™ (2.19)

It is difficult to make measurements at DC due to flicker noise and low-pass filtering
(the Agilent 8565EC rf spectrum analyzer only goes down to 7 kHz). The intensity
noise can measured from the noise spectrum centered at wy. Since the timing jitter
decreases as the square of the cavity harmonic number, n?, for M large, the first

cavity axial mode is almost entirely dominated by intensity noise. Therefore,

0% ~ M /w ij:f };—;C)dw. (2.20)
The intensity noise can be separated from the timing jitter noise by measuring the
spectral content of the first cavity axial mode.

The RMS timing fluctuation can be determined from measuring the noise skirts
around the first modulation harmonic at w = Mw/, and subtracting out the intensity
noise computed by (2.20). The RMS timing fluctuation from 0 Hz to wr/2 can
be found by using (2.18) in (2.16) and is equal to (note that the intensity noise

contribution is subtracted out)

Mwrtwr/2 P(w) — P(w — (M — 1)wy)
Mwp—wr, /2 BPC

=54 (w)/(2m)?

03 = Mwy, dw (2.21)
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Figure 2-15: The output of a harmonically modelocked laser is a sum of independent

pulse patterns.

2

T 2
O'J:M(—M)

MWL—H.«)L/Q
/ Sy(w)dw |, (2.22)

27 Mwp—wr, /2

where Ty, = Tp,/M. The factor of M in the equation above is often ignored in the

literature for noise measurements of harmonically modelocked lasers.
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Figure 2-16: The power spectral density of a harmonically modelocked laser.
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Measuring laser noise with residual noise technique

The intensity noise and timing jitter of a harmonically modelocked laser can also
be measured with a residual phase noise measurement, which are discussed in detail
in chapter 3. This technique involves mixing the directly detected signal with the
same oscillator used to modelock the laser with the relative delay set so that the
measurement is either AM or PM sensitive. For phase noise measurements, the
detected power spectral density of the voltage from the IF port of the mixer is the
product of the detected signal voltage and the sinusoidally modulated clock:

Sy(w) = |FT{I(7§)><Bsin(w]\/ﬂf)}|2

— ‘f(w) * JnB[—0(w — wpyr) + 0w + WM)]‘Z

Bn? . ~ 2
= o T(w = wu) = T(w = wu))|

~~

o 2
_ j27nrk

= B?P%? > Je(w — rwp,)e” (2.23)

r=—o00 |k=—o00

where F'T is the Fourier transform operator, Bsin(wy,t) is the microwave oscillator,
and Jy is the Fourier transform of Jj(t). The mixer conversion efficiency, detector
quantum efficiency, loss in the microwave cables, and other proportionality constants

can be lumped into the unknown quantity, B. We consider three cases:

e Case I (Single noisy pulse): For the case where all pulses are perfectly timed
except for one pulse in the cavity such that jo # 0 and jl = jg = jg =...=0,
equation (2.23) simplifies to

SI(w) = B2P%W?,

r=—00

Sy(w—rwp)

T (2.24)

e Case IT (Uncorrelated pulses): For uncorrelated pulses where jmjn = S7(w)0mn,

equation (2.23) simplifies to

Sy(w —rwr)

Si(w) = B*P*w}, =

r=—00

(2.25)
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e Case III (Correlated pulses): If we assume that the pulses in the cavity are

correlated so that Jo = J; = Jy = ... = Jy_1, equation (2.23) simplifies to

StH(w) = B*P%w3, Sy(w —rwar). (2.26)

Notice that the noise spectrum repeats at frequency intervals of wj; rather than

wy,.

To convert the voltage spectral density to a phase spectral density requires dividing
by a calibration constant /{i. The calibration constant is obtained by changing relative
phase between the oscillator and signal (¢) and measuring the DC voltage level (V).
The output voltage of the IF port of the mixer is

Voo = DC{FTHPTM i 6(t—nTM)1

n=—oo

x Bsin(wyt — @)}
- DC{FT{—PTMB i 6(t—nTM)}}

n=—oo

o & 27k
— DC{—PIyBsingx — ¥ 5<w—i>
Tor Tur
= —2nPBsing
~ —21PB¢ (2.27)

where DC' is an operator that takes the DC part of the bracketed expression. The

calibration constant is therefore given by

v
K = %C — —27PB, (2.28)

and the power spectral density of the phase is

I: Single noisy pulse Si(w) = Sul) _ ey Yo Slepen)

KG (2m)?2 M? ’
IT: Uncorrelated S(})I(w) = S‘Zg") = (;J%Z S W,
I1I: C 111 _ SxI/H(W) _ W12\/1 o0
: Correlated Sy (w) = 2= e >0 o Ss(w—nwp),



for the single noisy pulse, uncorrelated, and correlated cases, respectively. The units
of 10log,, Ss(27f) are in dBc/Hz. Surprisingly, extracting the timing jitter from
the phase noise power spectral density is different depending on the correlations of
the pulses. The rms timing jitter can be calculated from the residual phase noise

measurement by

2m)? wr/2 1. dw
2 _ g / Shw) 22 2.29
9 T (W) o (2.29)
2m)? [wr/2 d
_n @0 / et (2.30)
Wy J-wr/2 2w
(2m)? /‘”L/2 I, \dw
= —. 2.31
wi; Jowp/2 5 (w>27r (231)

Note that experimentally, a vector signal analyzer will fold a double-sided spectrum
into a single-sided spectrum, so one integrates a residual phase noise measurement
from 0 to wr/2. Note that in case II, the uncorrelated case, the timing jitter is also

equal to

o2 = 27 / S (2.32)

w2 w2 2r
and therefore one must integrate the residual phase noise spectrum up to half the
repetition rate to obtain the rms timing jitter.

Physically, the residual phase noise measurement contains the sum of the noise
energy from the timing jitter of each pulse in the pattern. Therefore, if one wants
to obtain the uncertainty of the pulse position relative to clock for an uncorrelated
pattern, the residual phase noise measurement must be integrated from 0 to wp /2
and multiplied by M. For phase noise measurements, often the single-side band
phase noise, 2L(w) = Sy(w) for w < wy,/2, is quoted, but only contains 1/M of the
total noise.

An important result of this analysis is that the timing jitter power spectral density
does not scale as the round-trip frequency harmonic number in the residual phase
noise measurement as it does in the RF spectrum analyzer measurement.

The relation between the power spectral density of the phase and the power spec-

tral density of the timing jitter is not simple. For a given amount of timing jitter, it
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seems strange that the magnitude of the phase noise power spectral density changes
depending on the correlation of the pulses. In addition, in case I, it is also strange that
there is noise energy at high frequencies, since at first hand, it would seem that the
power spectral density of the phase noise should be band-limited to —wy < w < wy,
as well. In fact, the power spectral density of the phase noise is not band-limited
(assuming delta function pulses and infinite bandwidth mixer) since the output of
the mixer is a periodic train of impulses. Assume that we take the first pulse in the
pattern and delay it by a constant amount. Then the mixer output is a periodic train
of impulses with period T7,. The Fourier transform of the mixer output is also a sum
of delta functions centered at frequency multiples of w;. Therefore, the phase noise

in case I should not be band-limited to —w;, < w < wy,.

Case II can be understood as follows. A single pulse in the pattern generates
phase noise with magnitude proportional to S;/M? at frequency multiples of wy. If
all M uncorrelated pulses in the pattern now have timing jitter, their phase noises
at multiples of wy, add to give a total phase noise proportional to S;/M at frequency
multiples of wy. This case corresponds to the timing jitter found in most harmonically
modelocked Er-fiber lasers. An interesting consequence of equation (2.30) is that for
a given amount of timing jitter, the phase noise becomes increasingly difficult to
measure as M is increased. The reason is that the power spectrum of the phase noise
is spread over all the supermodes, and so each supermode has very little phase noise.
Therefore, residual phase noise measurements of the first supermode are generally
contaminated by the phase noise of the oscillator for reasons outlines in Section 3.1.4.
Therefore, one should not multiply the phase noise of the first supermode by M to
get the timing variance since the first supermode is mainly due to oscillator noise

injected through the LO port of the mixer.

Case I1II is a pulse train in which the timing jitter of each pulse in the cavity is the
same. In other words, if pulse 0 moves forward by time 7, so does pulse 2 through
M —1. For this correlated case, the phase noise is terrible for a given S ;. The physical
picture necessary to understand this case is to think of all the pulses in one round-

trip as a super-pulse since they all move together. If we were to do a phase noise
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measurement using a local oscillator with angular frequency wy, instead of wy, then

o0
r=—00

the phase noise and timing jitter are related by Sg(w) = (wy/27)? Sj(w—rwr).
Increasing the oscillator frequency to wy; = Mwy, is equivalent to increasing the slope
of the local oscillator with frequency wy, in the previous case by a factor of M, which
scales the voltage by M and the power by M?. The resulting phase noise is then
Sp(w) = (Mwr/2m)2 3% Sy(w —rwr) = (war/2m)? 300 o Sy(w — rwy) which is
the same as equation 2.31.

A similar analysis can be carried out for the residual amplitude noise by replacing
Asin(wt) with Acos(wt). Likewise, the optical intensity variance can be obtained
by methods integrating according to methods (1) and (2) above. Again, the many
authors just integrate the residual amplitude noise from —wy /2 to wr /2 but do not

multiply the variance by M for case II.

Cavity Length and Timing Jitter

The timing jitter of the harmonically modelocked laser does not improve as the cavity
length is increased and the modulation rate is kept the same, i.e. harmonic mode-
locking does not provide any advantages over fundamental modelocking for noise
performance. According to equation (2.2), if the cavity length is increased by a factor
of 2, the knee of the phase noise plot, L(f), also moves in by a factor of 2. But since
there are two supermodes that must be integrated to obtain the total timing jitter
according to equation (2.32), the total noise is the same. The next section will show
experimental evidence that the timing jitter does not change as the cavity length is
increased.

If we keep the laser fundamentally modelocked, the modulation curvature fixed
at wyr, and increase the cavity length, then the timing jitter will improve. Fig. 2-3
shows that the average output signal power and average spontaneous emission power
are constant for a given injection current. A common trick to increase the pulse
energy in passively modelocked lasers is to increase the cavity length [39]. Since the
average power and pulse width are approximately constant, the peak pulse energy

must increase. Equation 2.5 shows that the timing jitter is proportional to the ratio
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Figure 2-17: Experimental setup for semiconductor laser.

of the spontaneous emission energy to the pulse energy. By increasing the pulse energy
with the spontaneous emission energy kept fixed, the timing jitter can improve, but

the repetition rate decreases.

2.5.2 Experiments

To experimentally verify our model for noise in harmonically modelocked lasers, we
measured the optical cross-correlation and residual phase noise of a semiconductor
laser and a fiber laser. We found that the supermodes contain timing jitter noise
energy that must be included in the total timing jitter.

The semiconductor laser shown in Fig. 2-17 was actively modelocked at a 3 GHz
repetition rate [25]. In these experiments, the cavity length was adjusted while the
driving modulation frequency was kept constant at 3 GHz. The cavity length was
adjusted to a repetition rate of 3 GHz (M = 1) or 600 MHz (M = 5). The injection
current was 65.2 mA, the saturable absorber reverse bias was -1.18 V, and the rf
power driving the saturable absorber was 25 dBm. The rf pulse source that drove
the saturable absorber consisted of a step-recovery diode driven by a 3 GHz sinusoid.
The resulting microwave pulses were 73 ps long.

The residual phase noise measurement of the semiconductor laser is shown in
Fig. 2-18. The knee of the power spectral density moves in by a factor of about 5
as the cavity round-trip length is increased by a factor of 5. In addition, the the
power spectral density of the two laser configurations at offset frequencies less than

1 MHz are approximately equal. The 1.5 dB difference is most likely due to differences
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in the cavity Q. The threshold current of the fundamentally modelocked laser was
22 mA versus 30 mA for the harmonically modelocked laser, which indicates that the
fundamentally modelocked laser suffered less diffraction loss. Looking closely at the
600 MHz supermodes reveals that the first through fourth supermodes have similar

shapes and magnitudes, which indicates that the pulses are uncorrelated [32].

Integrating the residual phase noise plot of the fundamentally modelocked laser
from 10 Hz to 1 GHz yields an rms timing jitter of 2489 fs. Integrating the residual
phase noise plot of the harmonically modelocked laser from 10 Hz to 300 MHz yields
1161 fs of timing jitter. Multiplying this number by v/M yields 1161 x /5 = 2597 fs,

which is very close to the total noise of the fundamentally modelocked laser.

Additional proof of the fact that the supermodes contribute to the total integrated
timing jitter is given by measurements of the cross-correlation between pulses. The
optical auto and cross-correlations of the fundamentally and harmonically modelocked
laser pulses are shown in Fig. 2-19 and 2-20, respectively. Unfortunately, the autocor-
relation reveals satellite pulses, but nonetheless illustrates the following points. The
timing jitter of the fundamentally modelocked laser from pulse 1 to pulse 2 is the
same as the timing jitter from