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Abstract

In this project, a JPEG compliant, low-power dedicated, two-dimensional, Discrete Cosine Trans-
form (DCT) core meeting all IBM Softcore requirements is developed. Power is optimized com-
pletely at the algorithmic, architectural, and logic levels. The architecture uses row-column
decomposition of afast 1-D agorithm implemented with distributed arithmetic. It features clock
gating schemes as well as power-aware schemes that utilize input correlations to dynamically
scale down power consumption. Thisis done by eliminating glitching in the ROM Accumulate
(RAC) unitsto effectively stop unnecessary computation. The coreis approximately 180K tran-
sistors, runs at a maximum of 100MHz, issynthesized to a.18um double-well CMOS technology
with a1.8V power supply, and consumes between 63 and 87 mW of power at 100MHz depending
on theimage data. The thesis explores the algorithmic evaluations, architectural design, develop-
ment of the C and VHDL models, verification methods, synthesis operations, static timing analy-
sis, design for test compliance, power analysis, and performance comparisons for the
development of the core. The work has been completed in the ASIC Digital Cores| department of
the IBM Microelectronics Division in Burlington, Vermont as part of the third assignment in the
MIT VI-A program.
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1. Introduction

As multimediaapplications on portable, |low-power devices become more prominent, the need for
efficient, low-power image encoding and decoding techniques increases. The Discrete Cosine
Transform (DCT) and the Inverse Discrete Cosine Transform (IDCT) form the transform pair in
the JPEG, MPEG, H.261, and H.263 image and video compression standards. Its widespread use
can be attributed to the energy compaction quality of the transform. DCT transformation of a nat-
ural image from the spatial to the frequency domain resultsin a concentration of energy in low-

order frequency coefficients.

Other applications of the DCT include DCT domain algorithms such as: trandation, downscaling,
filtering, masking, and blue screen editing. | mage enhancements such as brightness adjustment
and detail enhancement also become more efficient in the DCT domain. Although the DCT has
many applications, the softcore developed in this project targeted the lossy, baseline sequential
JPEG application to be developed by the Microelectronics Division of IBM in Burlington, Ver-

mont.

The project, detailed in thisthesis, outlines the development of a JPEG compliant 2-D DCT that
met al IBM Softcore Requirements. The designed softcore was approximately 160K transistors,
ran at a maximum of 100MHz, and targeted a 0.18um double-well CMOS technology with a1.8V

power supply. The design, which scaled power consumption down with increasing input correla
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tion, incorporated optimizationsfor low power at the algorithmic, architectural, and logical levels.

It consumed between 63 and 87 mW of power at 100MHz depending on the image data.

This document investigates the algorithmic analysis, architectural design, implementation, verifi-

cation, synthesis, static timing, and design for test compliancy phases of the project.
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2. Project Requirements

The softcore design for the 2-D DCT was constrained by several sets of requirements. The design
had to be compliant with IBM Softcore methodology to facilitate its fabrication and incorporation
into standard offerings. Second, the design had to meet all requirements set by the JPEG standard
for baseline sequential image compression in order to be used in afuture JPEG system. In addi-
tion, the design had to be a compatiblein the JPEG ASIC that would be developed at IBM.

Finally, considerations were made for reusability and time to market.

2.1 1BM Softcore Requirements

The design of the 2-D DCT had to meet all IBM M ethodology requirements for Digital Softcores.
This requirement imposed constraints on many phases of the project including: algorithm selec-

tion, architectural design, synthesis, timing, and design for test compliance.

The design needed to contain operations that could easily be implemented in hardware. For
instance, this meant that all computation was constrained to integer arithmetic. Simplicity was
necessary since all operations would map to elementsin the IBM SA27E Standard ASIC Library
or the associated Bit-Stack Library. The standard library contained the building block, lower-level
elementslike basic gates and flip flops. Sample elements available in the Bit-Stack library include
higher level elements such as: adders, multipliers, multiplexors, and comparators. Since ASIC

design isintended to be extremely reliable, somewhat technology independent, and easily ported
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to future IBM ASIC technologies, the elementsin the standard libraries are static CMOS. These
hardware limitations affected our choice of algorithms as well as the types of optimizations that
were made. For instance, no custom circuitry could be incorporated into the design to help attain

low power.

IBM methodology requirements also imposed constraints on the implementation of the core. For
instance, it was mandated the use of certain wire load models, power level components, and
capacitance values. These limitations are explored in greater detail in the synthesis section (7.0).
Methodology also required larger than zero dlack times to pass static timing analysis. Stricter tim-
ing requirements affected core implementation because it imposed design changes to reduce criti-
cal path length and to ow down fast paths. These timing requirements and their impacts are
highlighted in the timing section (8.0). In addition, the core implementation was driven for manu-
facturing and needed to support IBM’sdesign for test compliance methodology. This meant that
the core was limited in the number of redundant paths it contained since it needed to attain a cer-
tain rate of testability. For more detailed information, refer to the section on design for test com-

pliance (9.0).

2.2 JPEG Standard Requirements

JPEG standards imposed other sets of restrictions on the project. JPEG Baseline sequential opera-

tion set the DCT input pixel element (pel) precision to 8 bits/sample. The standard also required

2-D DCT input blocks be 8x8 pelsin size. This requirement affected algorithmic selection for

13



hardware implementation as many algorithms were optimized for particular block sizes that

would not be efficient for the mandated 8x8 block size.

While the desired accuracy in the datapath of the DCT isleft up to the designer, the standard did
impose requirements to limit the lossiness of the system. This margin of acceptable error allowed
some degree of exploitation of the human visua system to reduce full accuracy requirements.
This leniency allowed for better compression and performance. The limit on lossiness preserves
image integrity by preventing the excessive trimming of datapath bit width as ameans to achieve

reduced power and area.

Therefore, the compliancy requirements outlined in the JPEG standard basically determined the
internal bit width or computational precision necessary for each stage in the design. It also deter-
mined the degree of accuracy needed to emulate floating point arithmetic asinteger arithmetic.
These architectural necessities were determined in the verification phase and are described in

detail in the compliancy testing section (6.1).

2.3 JPEG Core Design Specifications

The 2-D DCT was being developed for use in a proposed JPEG core that would be designed at

IBM. For thisreason, the DCT would need to interface properly with the other subsystemsin the

JPEG core. To meet JPEG core requirements, the design had to support a clock rate less than or

equal to 100MHz. JPEG core specifications a so indicated the DCT would receive one raw data
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input per clock and would output one coefficient per clock. This requirement implied that

throughput was not be akey parameter for optimization.

DCT integration into the JPEG core would require additional pipeline functionality for the coreto
properly communicate at the input and output interfaces. The design would have to handle pipe-
line stalls, resets, and flushes. Furthermore, it would have to provide information about incorrect

operation to other systems. Section 5.0 addresses the devel oped interface protocol for the design.

2.4 Other Considerations

Aside from meeting all the required standards and specifications, it was desirable to develop a
multi-purpose core. While it was desired that the DCT design be compliant with JPEG standards
and the JPEG core, it was not desirable for the DCT implementation to be dependant on incorpo-
ration into a JPEG core. For example, the chosen implementation should not depend on the pres-
ence of a quantization table immediately following the DCT calculation (refer to section 3.3 for
more information). Such a dependency would eliminate the modularity of the design and would

not allow its use in non-compression applications such as image enhancement.

In addition, other factors such as cost and available time affected design decisions of this core.
The project was only allocated funds for one staff member. Furthermore, thesis completion dead-
lines limited the time available for work on the project to eight months. These combined factors,
which limited the number of man hours available for completion of the project, mandated adesign

with afast time to market.
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3. Background

3.1 Discrete Cosine Transform

The forward discrete cosine transform (DCT) processes 64 spatial samples, arranged as an 8x8

block, and converts them to 64 similarly arranged frequency coefficients. These 64 coefficients

are the scale factors which correspond to the 64 respective cosine waveforms shown in figure 3.

1

[1]. The cosine basisfunctions are orthogona, and hence, independent. Figure 3.1 shows the 64
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Figure 3.1: 2-D Cosine Basis Functions

cosine basis functions organized in a zigzag fashion of increasing spatial frequency. The basis

function in the top left corner is the constant, DC basis function. The lower right corner contains
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the cosine basis function with the highest spatial frequency. Horizontal frequenciesincreasein the
basis functions from left to right and vertical frequenciesincrease from top to bottom. Hence, the
top row of figure 1 correspondsto 1-D horizontal basis functions while the left column corre-

spondsto the 1-D vertical basis functions. The 64 2-D basis functions are products of these two 1-

D basis functions.

Any block of 64 samples can be represented by first scaling the 64 cosine basis functions by the
corresponding 64 DCT-computed coefficients and then progressively summing the results. Asa
result of the energy compaction properties of the DCT on natural images, the most significant
contributionsto the reconstructed image are from the low-order frequency coefficients. Therefore,
the majority of an image can be captured from just the summation of the lower order values. The
DCT coefficients needed for the reconstruction process can be found mathematically from the fol -
lowing JPEG appropriate DCT formulas[2]:

Forward DCT in 1-dimension on 8 samples:

7
S(u) = QZH) z S(x) cos[li—g(ZX + 1)} (Equation 3.1)
x=0

1
C(u) = = for u=0, C(u) = 1 for u>0
A2

S(x) isasamplevaue
S(u) isaDCT Coefficient

The two dimensiona DCT is merely a product of terms between a horizontal 1-D DCT and a ver-

tical 1-D DCT.
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Forward DCT in 2-dimensions on an input block of 8x8 samples:

S(v, u) = J—)J—) z z s(y, x)cos[—(Zx 1)} cos[ (2y + 1)}
Ox =
o (Equation 3.2)

C(u), C(v) = %2 for u,v=0; C(u),C(v) =1 for u,v>0

s(y,x) isasamplevalue
S(v,u) isaDCT Coefficient

3.2 Algorithms
3.2.1 Two-Dimensional Approaches

Implementation of the 2-D DCT directly from the theoretical equation (equation 3.2), resultsin
1024 multiplications and 896 additions. Fast algorithms exploit the symmetry within the DCT to

achieve dramatic computational savings.

There are three basic categories of approach for computation of the 2-D DCT [3]. The first cate-
gory of 2-D DCT implementation is indirect computation through other transforms--most com-
monly, the Discrete Hartley Transform (DHT) and the Discrete Fourier Transform (DFT). The
DHT-based a gorithm of [4] shows increased performance in throughput, latency, and turnaround
time. Optimization with respect to these parametersis not the focus of the proposed project. A
DFT approach [5] calculates the odd-length DCT, which is not applicable to this project since the

design must be compatible with JPEG standards.
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The second style of algorithms computesthe 2-D DCT by row-column decomposition. In this
approach, the separability property of the DCT is exploited. An 8-point, 1-D DCT isapplied to
each of the 8 rows, and then again to each of the 8 columns. The 1-D algorithm that is applied to
both the rows and columnsis the same. Therefore, it could be possible to use identical pieces of
hardware to do the row computation as well as the column computation. A transposition matrix

would separate the two as the functional description in figure 3.2 shows. The bulk of the design

Figure 3.2: 2-D implementation

1-D DCT 1-D DCT

samples | performed \ Transpose performed | Coefficients
gn each Matrix ™ onexch | ™
row row

and computation isin the 8 point 1-D DCT block, which can potentialy be reused 16 times--8
timesfor each row, and 8 timesfor each column. Therefore, the afast algorithm for computing the
1-D DCT isusually selected (section 3.2.2). The high regularity of this approach is very attractive

for reduced cell count and easy very large scaleintegration (VLSI) implementation.

The third approach to computation of the 2-D DCT isby adirect method using the results of a
polynomial transform. Computational complexity is greatly reduced, but regularity is sacrificed.
Instead of the 16 1-D DCTsused in the conventional row-column decomposition, [6] uses all real
arithmetic including 8 1-D DCTs, and stages of pre-adds and post-adds (atotal of 234 additions)
to compute the 2-D DCT. Thus, the number of multiplications for most implementations should

be halved as multiplication only appears within the 1-D DCT.
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Although this direct method of extension into two dimensions creates an irregular relationship
between inputs and outputs of the system, the savings in computational power may be significant
with the use of certain 1-D DCT algorithms. With this direct approach, large chunks of the design
cannot be reused to the same extent as in the conventional row-column decomposition approach.
Thus, the direct approach will lead to more hardware, more complex control, and much more

intensive debugging.

It isworth mentioning another direct algorithm [3], which tries to create more regularity than [6].
Theresult isalargeincrease in computational complexity. First, real numbers are mapped to the
complex domain and then rotation techniques are applied. Other modifications follow. The result
isthat this direct algorithm requires more computation, but it doubles the throughput. The algo-
rithm developed in [3] isfed with 16 inputsinstead of 8. There is no need for thisadditional com-
plexity when our system can only take 1 input (1 byte) per clock and it isnot the intent to optimize
with regards to throughput as long as the requirement is met. Thus, of the direct algorithms, the

focus was on the algorithm presented in [6].

The computational requirements of both the row-column approach and the direct approach are
compared with the use of different 1-D base algorithmsin table 3.1. Detailed discussion of the 1-
D algorithms can be found in section 3.2.2. From the computational requirements, the row-col-
umn and direct 2-D approaches of the DA Chen and Fralick 1-D algorithm appeared optimal since
they required O multiplications. Although the direct approach used 278 less additions than the
row-column approach, it had much greater complexity. Therefore, the number of computations

alone could not determine which implementation would result in the lowest power design. Thus,
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both 2-D approaches of the Chen and Fralick 1-D DCT with DA were selected for initial architec-

tural design. The characteristics of both designs were accumulated and input to a spreadsheet to

determine that the row-column approach wasindeed optimal in terms of size and power (section

10.1).

Table 3.1: Comparison of 2-D Approacheswith Different 1-D Basis Algorithms.

2-D: | Row-Column 2-D: | Direct

1-D Base Algorithm Multiplications | Additions | Multiplications | Additions
Theoretical Equations 1024 896 512 682
Ligtenberg and Vetterli 208 464 104 466
Aral, Agui, Nakajima 208 464 104 466
Aral, Agui, Nakajimawith 144 464 not not
guantization table applicable applicable
Chen and Fralick 512 512 256 490
Chen and Fralick using DA 0 1024 0 746

3.2.2 One-Dimensional DCT Algorithms

This section describes some one-dimensional algorithms that were reviewed for usein the row-

column or direct approachesto the 2-D DCT. Table 3.2 outlines the number of additions and mul-

tiplications required for each 8-point 1-D DCT agorithm that will be discussed in this section.

Table 3.2: Comparison of 1-D DCT Algorithms

1-D Algorithm Multiplications Additions
Theoretical Equation 3.1 64 56
Ligtenberg and Vetterli 13 29
Arai, Agui, Nakajima 13 29
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1-D Algorithm Multiplications Additions
Arai, Agui, Nakajima optimized 5 29
with quantization table
Chen and Fralick 32 32
Chen and Fralick using DA 0 64

Asoutlined in [2], Vetterli and Ligtenberg reduced computation of the 1-D DCT by refining the
groupings of sums and differencesin the basic 1-D DCT equations. To reduce the number of
multiplication operations necessary, their agorithm grouped termsin such away asto utilize rota-
tion operations. A rotation is a shift about an angle, which recasts appropriately expressed equa-
tions containing four multiplications and three additions to equations containing three
multiplications and three additions. A total of three rotations are utilized to compute a 1-DDCT.
The computational requirements of thisfast algorithm for 1-D and 2-D are given in tables 3.2 and

3.1 respectively.

Certain 1-D DCT algorithms become more optimal in the row-column approach when it is known
that DCT calculation will be followed by quantization. In these cases, the number of multiplica-
tions are reduced by incorporating multiplications within the final stage of a 1-D DCT algorithm
into the quantization table. When the Agui, Arai, and Nakgjima 1-D DCT described in [2] is
implemented in the row-column fashion, as few as 144 multiplications and 464 additions are
needed (table 3.1). For this particular algorithm, a savings of 8 multiplications per 1-D DCT cad-
culation on each column can be saved, for atotal savings of 64 multiplications on the 2-D DCT
computation. The reduction in multiplications is attained by incorporating the scale factors of the

final step of the algorithm into a quantization table. The fina scale factors of computation on each
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row cannot be incorporated into the quantization table because the scale factors are distinct for
each coefficient. When elements are summed in the next phase, where the 1-D DCT is applied to
each column, those scale factors cannot be factored out. It isimportant to note that if one opti-
mizesthe 2-D DCT calculation by incorporating necessary multiplications into the quantization
matrix, the design no longer computesthe DCT. It computes a version in which each coefficient
needs to be scaled appropriately and is dependant on the presence of a quantization table. Thus,
this1-D DCT agorithm is optimized for use only within a compression core, such as JPEG,
where quantization follows DCT computation. Since it isthe intent of the project to have a stand

alone DCT core, this optimization is not feasible.

It isworth noting that while the direct method of 2-D DCT calculation [6] claims to reduce the
number of multiplicationsin the row-column approach by afactor of two, that isnot always true.
For example, when the Agui, Aral, and Nakajima 1-D DCT algorithm, optimized for use with a
guantization table, is used in row-column decomposition, the direct method does not have as great
a comparative savings. Thisis because the direct method must do some post processing after the
1-D DCT calculation stage so the constant scale factors cannot be incorporated into the quantiza-
tion matrix. Thuswith 13 multiplications per 1-D DCT computation (instead of 8 multiplications
in the optimized version), 104 multiplications would result in the direct approach (table 3.2).
Although the direct extension of the Arai, Agui, and Nakgima's 1-D DCT to two dimensions did
not exactly halve the number of multiplications, it did reduce the number of multiplications by 40
with only amereincrease of 2 additions (table 3.2). The cost, however, islessregularity, which

tranglates to greater complexity of control hardware.
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The second 6A assignment in the summer of 2000, focused on implementing the 1-D DCT with
the intention of its use in the JPEG core, which was afunded project at the time. Therefore, the
Aqui, Arai, and Nakajima 1-D DCT, with optimizations for use with a quantization table, was
chosen and implemented in C and VHDL. However, at thistime, it is desirablefor the 2-D DCT

implementation to stand alone so it can be used in other image compression or processing func-

tions.

Thefast 1-D DCT agorithm that was selected for use in both the direct and row-column 2-D

approaches was developed by Chen and Fralick[7]. The 8-point, 1-D DCT, written in matrix fac-

torization, is given below. This algorithm was chosen becauseit lends itself well to distributed

Xl (A A A Al*%
X3 _ 1|B C —C -B||*1*% (Equation 3.3)
X, 2|A-A-A Al|x*xg
Xs C-B B —Cl|x3+x,
I DEF G|
X3l = 1|E -G -D -F||[*1~%
Xg 2IF-D G E Xo=Xg
X, G —F E -D||xg-x,

A=cog(pi/4), B=cos(pi/8), C=sin(pi/8), D=cos(pi/16)
E=cos(3*pi/16), F=sn(3* pi/16), G=sin(pi/16)

arithmetic (DA) implementation thereby eliminating all multiplications. DA remaps the high cost,

high power multiplications as additions.

3.3 Distributed Arithmetic
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Distributed Arithmetic (DA), asexplained in [12], isabit level rearrangement of amultiply accu-
mulate to recast the multiplications as additions. The DA method is designed for inner (dot) prod-
ucts of a constant vector with avariable, or input, vector. It isthe order of operations that
distinguishes distributed arithmetic from conventional arithmetic. The DA technique forms partial
products with one bit of datafrom the input vector at atime. The partial products are shifted

according to weight and summed together.

Look-up tables (LUTSs) are essentia to the DA method. LUTs store al the possible sums of the
elementsin the constant vector. The LUT grows exponentially in size with the dimension of the

input, but are optimal on four dimensions.

These characteristics defining DA are visualized through an example.  Suppose the following
four-dimensional dot product in equation 3.4 isbeing calculated. The horizontal vector consists of
W
X :
ABCD] (Equation 3.4)

Y
Z

constant elements, while the vertical vector contains the four variable elements. In this example,
the two’ s complement variable elements are each eight bits. The most significant bit isthe sign
bit. In equation 3.5, the variable vector has been expanded to show theindividual bits of each ele-

ment. The various partial products mentioned earlier are attained computing the dot products for

W, W, We W, Wa Wy W, W)
X, Xg X5 X4 X5 Xy Xy Xo
Yo Ye Yo Y, Y3 Y, Y, Y,
Z, Zs Zg 24 23 Zp 2y Zg

[A BC D] (Equation 3.5)
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the constant vector with each individual column of bits from the input vector. Each partial product
isweighted according to the position of the column of input bits that was used to compute that
partial product. The weighted partial products are then summed together to produce the same
result attained from conventional arithmetic. The weighted partial product resulting from the dot
product with the most significant column of bitsisthe only partial product that is subtracted since
it determines the sign of atwo's complement number. Equation 3.6 shows how conventional

arithmetic to compute a dot product can be rearranged in a DA manner.

AW+ BX +CY +DZ =

~ [AW, + BX, + CY, +DZ,] 2+
[AW, + BX, + CY, + DZg] 2°+
[AW; + BXs + CYg + DZg] [2°+
[AW, + BX, + CY, + DZ,] 2"+ (Equation 3.6)
[AW, + BX, + CY, + DZ5] 2%+
[AW, + BX,, + CY, + DZ,] [2°+
[AW, + BX, + CY, + DZ,] [ +
[AW, + BX, + CY, + DZ,] 2°

Each bit of W, X,Y, and Z is either a zero or one. Therefore the terms in the brackets (equation
3.6) all reduce to combinations of sums of the four known constants: A, B, C, D. For each termin
the brackets, constant A, B, C, and D are either included in the sum or not, depending on the val-

uesof W;, Xj, Y, and Z; for aparticular bit i. With four constants, there are only 16 possible val-

uesthat the termsin the brackets can reduce to. These values are precomputed and stored in a 16-
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element LUT that is decoded with W, X, Y;, and Z;. The table decoding scheme for this example

(figure 3.3) issmall and fast since it only needsto store 16 elements.

Figure 3.3: LUT for generic constant column: [A B C D]

\

4
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4x16 Address Decoder
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+
>

D+C+B+A
11

contents

Asshown in equation 3.6, DA reorders computation to recast multiplications with additions. For
the example case, where the inputs are represented with 8 bits, the DA method recaststhe 4 multi-
plications and 3 additionsto 7 additions, 8 lookupsto atable, and 8 shifts. The shifts are negligi-
ble since they are ssmply mapped to rewiring in hardware. However, the savings achieved in
power and size from forgoing conventional multiplication is significant. To illustrate, an 8-bit
multiplier from the IBM Bitstack library requires approximately 4 times as many cells as an 8-bit

adder. Power consumption scales comparably as well.

DA isimplemented with the least possible resources by computing it in afully bit-seria manner.
This means that one column of bitsisfed into the system at atime. Equation 3.7 shows afactor-

ization of equation 3.6 that elucidates how such a method can be implemented in a serial manner.
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The terms in the brackets resulting from the look up tables are abbreviated to LUT ;, wherei isthe

column of bitsbeing input to the LUT.

(Equation 3.7)
AW+BX+CY +DZ=

((((LUT9)2+LUTg)2+LUTg)2+LUT )2+LUT3)2+L UT)2+LUT)2+LUT,

The key elements required to implement the DA are a 16-element LUT and decoder, an adder/
subtractor, and a shifter. These elements are grouped together in aROM Accumulate (RAC)

structure [10] as shown below (figure 3.4). A shift register inputs one column of input bits per
Figure 3.4: Bit-serial RAC structure

Shift Register

WOWLIW2W3]| 4
[X0 X1 X2 [X3] | LUT

[YO Y1 Y2|Y3]
[2z0 z1 722 |Z3]
j 11
Clk
Sign
<<1
Clk

Y

Result

clock cycle to the LUT. It begins by inputting the most significant column of bits and rotatesto
finally input the least significant column of variable bits. The contents from the LUT get summed
with the shifted contents of the previous look up. In thisfully bit-serial approach, the answer con-

vergesin as many clock cycles as the bit length of the input elements. While the serial inputs limit
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the performance of the RAC, it requires the least possible resources. Greater performance can be

achieved with an increase in hardware.

With an increase in resources, the result of the RAC can converge quicker. The speed of the calcu-

lation isincreased by replicating the LUT. In afully paralld approach, the result of the DA con-

verges at maximum speed--the clock rate [12]. In this case, the LUT must be replicated as many

times as there are input bits. For the example in equation 3.6, where the inputs are 8 bits, the LUT

must be replicated 8 times for the answer to convergein one clock cycle. Thisallowsfor each of

the columns of input bits to be calculated in parallel. An adder tree can be used to weight and

combine the results from the individual columns. The balanced tree increases regularity, reduces

the number of adders, and the critical path delay. Thisfully parallel approach ishighlighted below

in figure 3.5.

Figure 3.5: Fully parallel DA implementation
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Aside from the two extremes of the fully bit serial approach and the fully paralel approach, a par-
tially paralleled structure can be adopted. The extent of parallelization can be varied to make the
dot product converge between the number of clock cycles asinput bits to as quickly asasingle

clock cycle.
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4. Approach to L ow Power

The development of the 2-D DCT was optimized for low power mainly at the algorithmic and
architectural levels. Power considerations were a so made whenever possible during the devel op-

ment stages.

Power could not be conserved through circuit or device optimizations. IBM digital ASIC softcore
methodology did not support circuit or device level design since all elements within the design
were instantiated from standard libraries. There were some choices available between power lev-
elsof elements, so wherever possible, the lowest power consuming el ements were set to be

selected by the synthesis tool.

The newest available technology was sel ected--SA27E. The technology selection included a con-
scious decision to reduce power. SA27E is a static CMOS 7SF technology with a0.18 um lithog-
raphy process, and an effective gate length of 0.11 um. The small gate length reduced capacitive
loads and thus, proportionately reduced power consumption. Voltage islands and threshold scaling
were not supported within the SA27E technology or within digital ASIC softcore methodology.
With very little leeway for low power design at a custom circuit level, emphasis was placed on

minimizing power consumption at the algorithmic and architectural levels.

Computational efficiency was one of the primary attributes optimized to reduce power. Specifi-

cally, an algorithm that minimized the number of multiplications without creating too dramatic an
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increase in the number of additions was selected. With the use of DA, equation 3.3 eliminated all
multiplications. Furthermore, the row-column decomposition method was selected for implemen-
tation after careful power comparisons against the direct method (10.1). Theregularity of the row-
column approach significantly reduced power consumption as well as area mainly due to the sm-

plicity of the required control logic.

While physical sizeintermsof cell count was also minimized, it was mostly done as a by-product
of power reduction methods. For example, the datapath bit width was sufficient enough to pass
JPEG standard compliancy, but was kept at a minimum to reduce power. The minimum bit widths
reduced resources since fewer flip flops were needed between stages, and that in turn reduced
switching power. However, there were many instances in which logic had to be inserted to reduce

power consumption. In these cases, power reduction took precedence over areareduction.

The architectural design kept extraneous switching of logic at aminimum. Key examplesin the
control stage include the choice of aMoore FSM over aMealy FSM model and the design of one-
round decrementers (5.2.1). Another example throughout the design was that a clear of the system
did not reset all the flip flopsin the system, but rather just afew key flip flops necessary for
proper control. Thisled to the insertion of an additional mux in each RAC unit, but it wasworth
the power savings from not having to switch all the flop flopsto 0 on areset when they would be
overwritten anyway. Another significant example was the insertion of flop flops before the LSB
and MSB RAC unit partial products within both RAC stages were combined. The flop flops were

inserted to eliminate the extraneous switching of the adders (5.2.5, 5.2.9).
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All flip flops in the design were kept from switching during the assertion of the stall primary
input. Thissignal was implemented as a clock gate wherever optimal (7.1). This reduced the

power associated with the switching of clock nets.

The most significant power reduction can be attributed to the adopted “ power awareness’ scheme.
ROM Accumulate (RAC) structures that implemented Most Significant Bit Rejection (MSBR)

[10] were used to scale power consumption according to input correlations.

Most implementations of the DCT assume the worst case operating conditions. They have prima-
rily focused on minimizing power through algorithmic studiesto reduce the number of multiplica-
tions. Computation in these implementations are minimal, but constant. Xanthopoul os [10]
implemented a 2-D DCT in the conventional row-column decomposition approach using the
Chen 1-D algorithm [7]. The Chen 1-D algorithm, implemented with distributed arithmetic, lent
itself well for scaling power consumption according to operating conditions. Utilizing the high
degree of gpatial correlation within image data, the work in [10] resulted in adaptive bit width
computation through the introduction of MSBR. When successive spatial inputs were highly cor-

related with one another, the amount of computation scaled down.

4.1 Power Awareness

Distributed arithmetic implementations |lend themselves well to power awareness schemes. Power

awareness, asformulated in [13], pertains to the ability of a system to dynamically scale down

power consumption based on operating conditions.While conventional designs operate under
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worst-case operating scenarios, power-aware systems adapt to use the least possible resourcesin
accordance with the current operating environment. In atemporal solution to power-awareness,
such as the one implemented in the 2-D DCT, the entire system is used to handle worst case situa-
tions. When not operating under worst case states, parts of the system are shut off, or prevented
from switching. In aspatia solution to power awareness, different point systems, each with dif-
ferent power consumption and cell count, are built to handle specific scenarios. There is always a
point system to handle the worst case scenario, and up to as many point systems as operating sce-
narios. Each point system is optimized in size and power for that specific scenario. Usually, only
those scenarios with high enough probability of occurring, make it worth the extraoverhead to

incorporate.

4.1.1 Most Significant Bit Rejection

Both the temporal and spatial realizations of power-aware systems require scenario determining
units. The overhead of this unit should not be so great asto overshadow the reduction in power
from making the data path power-aware. A MSBR unit functions as the scenario determining unit
for the Chen and Fralick matrix factorization algorithm for computing the DCT (equation 3.3)
when implemented with a RAC structure. The MSBR unit consists of two different scenario
detections outlined by Xanthopolous [10]. The first detection scheme, termed MSBR123, deals
with the scenariosthat affect rows 1, 2, and 3 of the Chen and Fralick DCT constant matrix (equa-
tion 3.3). The second detection unit, referred to as M SBR04567, affectsrowsO0, 4, 5, 6, and 7 of

the constant matrix in equation 3.3.
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MSBR123 detects scenarios pertaining to the dot products of equation 3.3 shown again below in

equation 4.1. The column vector, or variable vector, is one column of bitsformed from the sum of

(xo+x7)i
rowl |B C —C-B| | +x.) ,
ow? |A-A-A A 1776/ (Equation 4.1)
(%5 +xg),
row3d |[C-B B C !
(X3+X4)i

theinputs. If the variable vector isall zeros, then it isknown that the partia productsfrom rows 1,
2, and 3 of the constant matrix will be zero. Furthermore, if the variable vector isall ones, then the
result of the partial product will the sum of the constantsin each constant row. For these three
rows, the sum of all the constant elementsis zero. Therefore, when the variable column of bitsis
all ones, the partial product is known to be zero as well. For both of these cases, the MSBR123
will keep the RAC structure from computing, weighting, and summing that partial product. An
exampleisformulated in figure 4.1 to illustrate how the MSBR123 works. In this example, al 8

columns of bitsforming the variable vector are shown. Normally, each column of bits would be

Figure 4.1: MSBR123 Example
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fed to the LUT of a RAC structure for decoding, summation, and weighting. However, when the
MSBR123 is employed, those columns of bits which are boxed will not be fed to the LUT. This
will keep the LUT from glitching, the adder from consuming power, and theflip flops within the

RAC from switching. These columns of bitswill not effect the result since they only add zero to
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the progressively summed result. The process of identifying these cases is described in greater

detail in section 5.2.4.

MSBRO04567 is used to determine scenarios on the variable vectors that are multiplied with rows

0,4, 5, 6, and 7 of the constant matrix from equation 3.3. For convenience, they are extracted and

replicated in equation 4.2. Since the sum of the constants from these rows do not equal zero

row 0

row4
row5

row 6
row 7

O T mOo

_(XO+X7)i_
AAAA U+ %)
(x2+x5)i
_(X3+X4)i_
e F o]0
—G -D —F||(x %),
-D G E (x2—x5)i
—F E -D||( _
_(x3 X4)i_

(Equation 4.2)

another approach to bit rejection istaken. The detection for these rows is based on the concept

that sign extension of atwo's complement number does not provide any new information. There-

fore, if the entire column of bits from the variable vector are part of the same sign extension for

each respective variable element, then that column will not be passed on to the RAC structure for

computation. Figure 4.2 shows an example variable vector that MSBR04567 operates on. The

Figure 4.2: MSBR04567 Example

11110111
11111011
11101011
11100011

first two columns are extraneous sign extension bits and are therefore rejected by MSBR04567.

Hence, the first two columns will not be fed to the corresponding RAC structure. The third col-
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umn isthe last column indicating the sign of the elements, and thus, it is necessary for correct
computation of the dot products. The last two columns are al ones, but, they are not part of the
sign extension, so they must still be fed to the RAC structures. The method for MSBR04567

rejection is described in greater detail in section 5.2.4.

This example (figure 4.2) demonstrated the difference between M SBR04567 and M SBR123
detection schemes. M SBR123 detection would have rejected the first three columns aswell asthe
last two columns from RAC calculation. Clearly, MSBR04567 isamore restricted form of
MSBR123. MSBR123 aready handles sign extension, since sign extension consists of columns
of all onesor zeros. MSBR123 can also reject computation on columns of zeros or onesthat are

not part of the sign extension.

The MSBR04567 unit is especialy useful for rows 4, 5, 6, and 7 since the variable vector is
formed from the differences of the 8 input pels. Since the 8 inputs are neighboring pixe values
from a natural image, there will be a high degree of correlation between their values. Therefore,
differences between the pels will be centered around zero. This means that many of the most sig-

nificant bits resulting from the differences will belong to the sign extension.

It isimportant to note that the MSBR stage and its effects on RAC computation do not create any

error. MSBR only reduces unnecessary computation, thereby reducing power consumption by

limiting the glitching of combinationa logic, and the switching of flip flops.

37



5. Architectural Design

This section describes the architecture of the 2-D DCT core and the different ways in which data
flows through the pipeline. The primary input and output signalsto the 2-D DCT core are shown

in the block diagram in figure 5.1. Data is an 8-hit pixel element (pel) as specified by the JPEG

Figure 5.1: Block Diagram
Data[?:gi
Reset 2D Coef[13:0]
Stall | DCT val id_Ol:it
Valid_in Alert I
Clock

Standard and is provided serialy in row-major order to the core.

The core hasthree control signals: reset, stall, and valid_in. Assertion of reset initializes the core.
Stall functions as a clock gate and whileit is asserted the state within the core stays the same
along with all values stored throughout the pipeline.V alid_in reflects the validity of data with
respect to each clock cycle. This signal would probably be passed as part of a handshaking agree-
ment from a proceeding core. Only once the pipeline isfilled with valid inputs can valid outputs
begin arriving at the output of the core. The design is synchronous--al flip flopsin the design are
controlled with the rising edge of Clock. The precedence of theinput control signalsin asfollows:
Reset, Sall, and Valid_in. If there isareset asserted at the same time as a stall, the system will
reset instead of stall. Similarly, the system will handle stalls before it determines whether to grab

valid data.
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The output signal, Coef, isa 14-bit DCT coefficient. Although the coefficients are output serially
from the core, they are output in adifferent order than samples are input. To limit the amount of
storage elements within the core, the coefficients are output as they are computed in column-
major order instead of row-major order. Under normal operation, valid_out instantaneously
reflects the validity of Coef. The assertion of alert provides warning that improper use of the pipe-

line has occurred. Normal pipeline functionality is summarized in table 5.1 below.

Table 5.1: System Functionality

Reset Sall Valid_in | Valid_out Function
1 X X X system initialization
0 1 X X system hold (clock gate)
0 0 0 0 idle
0 0 0 1 pipeline flushing
0 0 1 0 pipelinefilling
0 0 1 1 steady state computation

5.1 Interface Protocols

Thetiming of the signals at the core interfacesis crucial for correct functionality. The typical

input and output behavior of the core is shown in the timing diagram below (figure 5.2).
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Reset must be asserted for at least 2 clock cyclesto correctly initialize the core. Once reset

Figure 5.2: General Behavior
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becomes deasserted, valid inputs cannot be accepted until at least one clock cycle later. After the
onset of valid inputs, if there are no stall requests, it will take the latency of the system, whichis
108 clock cycles, for valid coefficients to appear at the output of the core. At thispoint, if there
continues to be valid inputs, the system will operate in steady state mode. The pipeline can be
stalled at any time without impacting the DCT computation. In figure 5.2, the stall functionality is

shown during the steady state phase.

A pipeline flush refers to the calculation and expulsion of those DCT coefficients which can be
computed from the remaining valid data in the pipeline once the new inputs have ceased to be
valid. The onset of pipeline flushing occurs when valid_in transitions from a high to alow. Since
there may be more than one block of 64 input samples being processed within the pipeline at once

(the latency through the pipeline 108 clock cycles), there may still some valid datain the pipeline
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whose computation must be completed once valid_in falls. If aflush begins exactly after valid_in
has been asserted for amultiple of 64 cycles, then anormal flush, demonstrated in figure 5.3, will

occur. When valid_in has been high for amultiple of 64 cycles, it falls at ablock boundary, indi-
Figure 5.3: Normal Pipeline Flush and Fill
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cating that the pipeline contains only valid, full blocks of 64 samplesthat are required for 2-D
DCT computation. From the onset of thiskind of flush, under normal operation, it will take the
latency of the system for the flush to complete. Figure 5.3 also shows the affects of a stall during

aflush. Of course, stallswill increase the time for flush completion.

Figure 5.3 also highlights how a the pipeline can correctly begin filling again after aflush. After
at least one clock cycle from the completion of aflush, when valid_out transitionsfrom 1 to O, the
system can begin accepting valid inputs, meaning valid_in can transition from O to 1. Again, it
will take the latency of the system from the onset of pipeline filling before valid outputs are com-

puted.

41



Flushing can create an alert if there isan incomplete data block in the pipeine. Thisalert should
not be thought of asincorrect flushing, but rather, as an indication to the system that some valid
data that was entered into the system will not be used. This would give the chance for the system
torerunthisdataif required. The dataof avalid, but incomplete block is not used because the 2-D
DCT requiresafull input block of 64 samplesto complete computation. The system will still cor-
rectly indicate valid outputs that correspond to coefficients calculated from the last full input
block that isin the pipeline. Hence, in the case where an incomplete block has entered the pipe-
line, the completion of a pipeline flush will have variable latency, called latency64. Latency64 is
calculated from the point where the last valid 64th sample isin the pipeline until when that last
corresponding valid coefficient is computed. The maximum value of latency64 is the latency of

the system. An exampleisdiagramed in figure 5.4. Again, for this example, correct refilling of the

Figure 5.4: Invalid Block Alert
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pipelineis shown.

Another casein which alert could become asserted iswith theincorrect refilling of the pipeline.
This occurs when the pipeline beginsto fill before a pipeline flush is complete, or basically while
valid_out is still high. In this case, the computation of coefficients will proceed correctly, but

valid_out will not properly track the valid outputs corresponding to inputs that arrived during the
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flush. Valid_out will only rise after the latency of the system from one cycle after theflushis com-

plete. Figure 5.5 helpsillustrate this example of an invalid load alert.
Figure 5.5: Invalid Load Alert
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Alert can react to both invalid loadsand invalid blocks. Alert isfirst fired when the system begins
apipeline flush at a non-block boundary. Alert becomes asserted again if the pipeline beginsto

refill before al the valid coefficients have been flushed. This exampleisillustrated in figure 5.6.
Figure 5.6: Dual Alert
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5.2 Implementation

The implementation of the 2-D DCT follows the row-column technique on the Chen and Fralick
fast 1-D DCT (eguation 3.3). The design consists of 10 units: Control, Buffer in, Butterfly Rows,

MSBR Rows, RAC Rows, Transpose, Butterfly Columns, MSBR Columns, RAC Columns, and
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Buffer out. These units are arranged as shown in figure 5.7 to provide the general pipeline flow

through the core. Butterfly Rows, MSBR Rows, and RAC Rows compose the calculation of the 1-

Figure 5.7: General System Flow Diagram
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D DCT on each row. Similarly, Butterfly Columns, MSBR Columns, and RAC Columns compose
the calculation of the 1-D DCT on each column. Therow 1-D DCT perform the same function as
the column 1-D DCT, but they operate on different bit widths. MSBR Rows and MSBR Columns
aretwo different instantiations of identical hardware. All other unitsare unique. Althoughit is not
be explicitly stated in each section, al flip flopsin the design are triggered off the rising edge of
the same system clock. Also, all flip flops are not enabled when stall is asserted. Signal stall was
set asaclock gatein the synthesis tool for al the flip flops with large enough bit width. Please

refer to section 7.1 for more details.



5.2.1 Control

The control stage has been divided into two interacting subunits: the control logic and the control

finite state machine (FSM). The Control Logic subunit is responsible for the generation of three

signals: clear, alert, and valid_out.

5.2.1.1 Clear Generation

Clear functionsastheinterna reset to the control FSM, MSBR units, and RAC units. Thelogicto

generate thissignal isshown in figure 5.8. Clear becomes asserted by either a hard reset of the

Figure 5.8: Generation of Clear Signal

clk stall

l clk stall

% % Reset ) clear_a

de D Q]

decrement_lat-1 ! = 0o ] _Stop ear
- cnt k64 07

Ick2 rstl rst2 trac

Cleai R* Q |C%J‘» st2 * ew64

Clﬁ_: i %Q

sample

HNw

Clear
fall. S

clk stall  Valid_in sample64

system or by the completion of a pipelineflush. The end of a pipeline flush is marked with the

assertion of stop. Thelogic to generate stop tracks the progress through the pipeline of the last
valid 641" pel Iatched into the system. The main unit responsible for this tracking is a special, one-

round, 7-bit decrementer. The decrementer tracks the 641" sample of the last valid input block by
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only enabling countdown after the first 64" sample has been latched into the system. Thisis
achieved with a Set-Reset flip flop (SR-ff). The SR-ff is set with the sample64 signal from the

control FSM and is reset with the clear signal.

The tracking decrementer, when reset, isinitialized to begin the countdown from the latency of
the system. Although the latency of the system is 108 cycles the decrementer is set to countdown
for 107 cycles. Thisis because the stop signal must be generated one clock cycle before the pipe-
line flush is actually completed. The stop signal asserts clear_a which must go through a D-ff,
causing the clear to be delayed by one cycle. In this manner, the system clears exactly at the com-
pletion of a pipeline flush. When the decrementer is enabled, and not stalled or reset, it counts
down by one every rising clock edge until it hits zero. The value of the decrementer will remain at

zero until reset.

This tracking decrementer has been specially designed to reset only under certain conditions.

First, it will reset whenever the clear signal is asserted. Given the condition that alock isnot in

place on the tracking decrementer, then it will also be reset whenever the 64h pel of avalid block

islatched into the system. Under steady state operation, this decrementer isreset to the latency

value every 64 clock cycleswith every 641" valid input. While the decrementer is not locked,
meaning Ick_rst2 islow, the decrementer will continue to be reset in thiscyclic manner. There-
fore, decrementer cannot hit zero to assert the stop signal until alock isset on the decrementer
preventing it to reset. Thislock is set via another SR-ff that outputs Ick_rst2. It isset when

valid_in transitions from a 1 to a O to indicate the onset of a pipeline flush. Thisimpliesthat only
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during a pipeline flush will the decrementer be alowed to count down to zero. The SR-ff control-

ling the decrementer lock is reset with the clear signal.

When the count of the 641" sample tracking decrementer hits zero, stop is asserted. When the stop
or the reset are asserted, clear_a, will become asserted after the propagation time associated with
an OR gate. Asmentioned before, clear is derived from sending the clear_a through a D-ff. This
was worth the cost of the extra cells associated with the flip-flop for several reasons. First, after

synthesis, the name of clear would be preserved if it were the output of aflip flop. Thiswould aid
in debugging the netlist. Second, the flip flop would buffer the clear signal, which drives quite a
few other gates. Furthermore, adding the flip flop may have broken what could have been critical

timing paths.

From the implementation in figure 5.8, it isclear why Reset must be asserted for two clock cycles
to initialize the core. One clock cycleis necessary for Reset to generate Clear, and the second
clock cycleis needed for Clear to restart the decrementer. Only once the decrementer does not
output an undefined value will stop become defined. Reset must be asserted until stop becomes
defined otherwise clear _a will be undefined since the OR of 0 with X is X. Clear will then

become undefined as well and the core will not function correctly.

The design for theimplementation of clear contains some notable optimizations. The decrementer
was specially designed to count down only oneround instead of using a Bit Stack library element

to save computational power. There was no need for the extra power consumption associated with
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letting the decrementer wrap around and count down again after it hit zero. Using aregular decre-
menter, the output would keep transitioning. In that case, the output of the zero check would have
to set another SR-ff to achieve the desired level output for stop. Using the specia design saves

this extralatch, which not only reduces cell count but also clock load.

Furthermore, the decrementer is used instead of an incrementer to save cdlls. The check for zero

at the output can be synthes zed to a ssmple 4-input nand gate. The use of an incrementer would

create a check for the latency value of 106, which could require more logic.

5.2.1.2 Valid_out Generation

The control logic also generates the valid_out primary output (PO) signal. The implementation is

shown infigure 5.9. The bulk of this design contains a similar one round decrementer to that used

Figure 5.9: Generation of Valid_out Signal
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to generate Clear (figure 5.8). Again, thistype of design was used to reduce power consumption.

This decrementer differsfrom the one in figure 5.8 because it only resets with Clear and does not
contain the lock functionality on the reset. Also, this decrementer counts down the full latency of
the system, or 108 clock cycles, instead of one cycle less than the latency. The full count down is

possible because Valid_out does not have an additional oneflip flop delay. Valid_out ismerely the
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output of the zero check on the count from the decrementer.

The decrementer is enabled to countdown via a SR-ff. The SR-ff is set once the system receives
valid inputs and is reset with clear. Once valid_in has gone high initially, the decrementer can
begin countdown. From that point, valid_out becomes asserted after the latency of the system to
indicate the arrival of valid DCT coefficientsat the output. If valid_in were to become deasserted,
clear would become asserted after sometimeto reset this decrementer and the SR-ff. Thisin turn

would cause valid_out to go low again.

5.2.1.3 Alert Generation

The final function of the control logic isto generate the POAlert. The alert signal reflectsinvalid
blocks or invalid loads during a pipeline flush. More details can be found in section 5.1. Alert is

generated with the logic shown in figure 5.10.
Figure 5.10: Generation of Alert Signal
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Track64 isthe output count from the tracking decrementer (figure 5.8). When track64 does not
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equal the value 106, it indicates that the 64th sample was not the last sample latched into the sys-
tem, and asserts not_boundary. Track64 can only equal 106 when the tracking decrementer is
reset, and that occurs when the 64th sample of avalid block isinput. If not_boundary is high at
the time that Valid_in transitions from high to low, it indicates that Valid_in has not been high for
amultiple of 64 cycles at the time a pipeline flush begins. In this case, invalid_block becomes

asserted to highlight an invalid block alert.

Aninvalid load aert arises when valid_in goes high when there are still vaid coefficientsin the
pipeline. Thiswould mean valid inputs would be |loaded before the pipeline could complete flush-
ing. This case is detected with the assertion of invalid_|load when two conditions are simulta-
neously met: cnt_vo does not equal the latency value andvalid_in transitions from low to high.
Signal cnt_vo isthe output from the valid out decrementer (figure 5.9). If cnt_vo does not equal
the latency stored in the valid out decrementer, then it indicates that valid datais still in the pipe-
line awaiting expulsion. The value of cnt_vo can equal the latency only when clear has been
asserted, meaning there has been a hard reset of the system or a pipeline flush has completed (fig-

ure5.9).

Another method to produce invalid_|load was investigated. The design for this approach is shown

in figure 5.11. This approach smply indicates the case where valid inputs begin to be loaded dur-

Figure 5.11: Incorrect Generation of Invalid_load
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ing aflush that was initiated after the system has reached steady state, meaning valid_out is
aready high. Thismeansthat valid_in fallsand risesagain while valid_out is still high. However,
alert was not generated for the case where valid inputs begin to |oad before the completion of a
flush that was onset during the filling of the pipeline. For this case,Valid_out would not yet be

high, but there would till be an invalid load problem that would need to be indicated.

Invalid_block or invalid_flush create alert_a. Thissignal isfed to a D-ff to create alatch bounded,
synchronous alert PO. This D-ff is essential to eliminate the timing dependency between primary
inputs (PIs) and POs. In this case, we needed to isolate the Pl, valid_in from the PO, alert. This

issueisinvestigated further in the static timing section (8.0).

5.2.1.4 Finite State Machine

The second unit comprising the control stage isthe finite state machine (FSM). The FSM is
responsible for generating most the internal control signalsin the design. It isafully synchronous
design following the Moore model with 65 defined states. The control FSM has been optimized
for power by using the Moore model, in which all outputs are only a function of the current state
instead of the Meally model, where outputs are a function of the state as well as the inputs. The

Moore design eliminated glitching of outputs on asynchronous input transitions.
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Figure 5.12 highlights enough of the FSM design to provide intuition on its functionality. With the

Figure 5.12: Control FSM
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assertion of Clear from any state, the FSM will transition to the Start state. If Clear is not on, and
stall is, then the FSM will hold its state. Stall isimplemented asa clock gate. The FSM remainsin
Start until valid_inis asserted, at which point it can transition to the first of the “counting” states,
CO0. There are 64 “counting” states, CO-C63, that will transition in a sequential manner unless
clear becomes asserted. Although there are many output signals defined by the states, only the
countO through count? are shown in figure 5.12. These signals are asserted in aperiod 8 cyclic
manner. Signals such as these, provide the correct enabling signalsto the registersin all the other
stages. Other signals such asfull64, are only asserted in one state and therefore have a periodicity
of 64 cycles. Two signals, clear_ RAC and cclear_RAC, are only asserted one time after the sys-
tem enters the “counting states.” SR-ffshave been inserted to assert clear RAC and cclear_ RAC
once the FSM has traversed through a particul ar state a certain number of times. After the FSM
has reached state C18, clear_ RAC will become high until clear is asserted. The second time
through state C32, cclear_RAC will be asserted until the assertion of clear. These two aperiodic

signals are needed for the RAC Rows and RAC Columns stages respectively.
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5.2.2 Buffer In Stage

Thefirst stage in the DCT computation datapath isthe buffer in stage. A block diagram of the

stage is provided in figure 5.13. The purpose of this stageis to convert the 1 byte per clock input

countl
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count7f[1:0
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8
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=1

Buffer

Figure 5.13: Block Diagram of Buffer In Stage
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to 8 bytes every 8 clocks. Thisisnecessary since dl 8 pels are required at the butterfly stage to

begin computation of the 1-D DCT. Theimplementation of this stage isillustrated in figure 5.14.

There are two stages of eight, 1-byte D-ffs. The first stage isreferred to as the sampling registers.

Figure 5.14: Buffer In Implementation
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Every clock, only one sampling register is enabled at atime. They are enabled in a cyclic manner
once every 8 clock cycles, as controlled by the outputs of the control FSM. Every 8 clock cycles,
after the assertion of count7, the last of the 8 sampling registers has latched anew correct value.
Then with the next clock, coubntO is asserted and all the values from the sampling registers are
copied into 8 corresponding 1-byte computation registers. The outputs of thefirst 4 registers, cor-
responding to the first 4 sasmpled inputs, are fed in ascending order to a 1 of 4 multiplexor. The
output of the multiplexor isthe signal A. Signal B, is the output of a second 1 of 4 multiplexor,
whose inputs are the last 4 sampled inputs in descending order. The period 4, cyclic select signal
to the two multiplexors (muxes) is provided by outputs from the control FSM. The outputs of the
muxes, A and B, provide the correct inputsto the next stage to either be added or subtracted in the

butterfly computation. For the input pels, x;, the output of the Buffer In stage over an 8 clock

cycle period would be:

clock A B
1 Xo X7
2 X1 Xg
3 X Xg
4 X3 X4
5 Xp X7
5 X1 Xg
7 Xo Xg
8 X3 Xq
5.2.3 Butterfly Rows Stage

The butterfly rows stage is responsible for computing the correct sums and differences of the

inputs, A and B, from the buffer in stage. A block diagram of the unit’ sinputs and outputsis
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shown in figure 5.15. The design the butterfly rows stage is shown in figure 5.16. For the 1-D

Figure 5.15: Block Diagram of Butterfly Rows Stage
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DCT, the 8-bit valuesfor A and B repeat with a period of 4. On the first period of A and B, the
sum of the two is calculated. On the second period, the difference between A and B is calculated.
The adder/subtracter subtracts whenever the sign input is asserted, otherwise it adds. The sign

input is a control signal from the FSM.

To maintain full precision, the result from the adder/subtracter is 9-bits. Theresult is stored in one
of the 8, 9-bit registers that make up the butterfly stage sampling register stage. The sampling reg-
isters are enabled one at atimein acyclic pattern that repeats every 8 clock cycles. The enabling
control signals are provided by the FSM. It isin this manner that the following butterfly matrix is
stored in the 8 sampling registersin the butterfly stage:

Reg0 Xgptx7
Regl Xx1+Xg
Reg2 Xyt+xs
Reg3 X3tx4
Regd Xg-X7
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Regs Xi-Xg
Reg6 Xo-Xg
Reg/ X3-X4

Every 8 clock cycles, acontrol signal from the FSM, allows all the valuesin the sampling regis-
ters to be copied into 8 corresponding, 9-bit computation registers. The computation registers are

expanded to show all 9-bitsin figure 5.16. In order to perform DA, a new combination of bits

Figure 5.16: Butterfly Rows Implementation
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must be formed. One bit from the same magnitude position of each computation register is
selected and adjoined. This wiring scheme creates the nine columns of bits that will be serially
used to compute the correct dot productsin the RAC stage. The most significant eight columns of

bitsarefed first to MSBR units to utilize the correl ations between them.

However, the least significant column of bitsis not fed through the MSBR units since there isthe

least amount of correlation between the LSB bits. It would not be worth the extra overhead to per-
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form MSBR on thislast column of bits. Because the LSB column of bits does not go through the
MSBR unit, it must be delayed by the equivalent amount of time so that all inputsto the RAC
stages arrive simultaneoudly. This is necessary to prevent erroneous results. Thisis done by feed-
ing the column into a D-ff that is enabled to latch new data at the exact time that the other col-
umns have arrived at the outputs of the MSBR stage. The enable signal is generated in the control

FSM.

The serial input to the MSBR stage is generated in the butterfly stage. The most significant eight
columns of bitsfrom the computation registers are fed to two 8-to-1 multiplexors. The two multi-
plexors, which each output one column of bits every clock, give the effect of ashift register. Since
they each have the same input busses, they have been drawn asonein figure 5.16. The two muilti-
plexors have different selectors which are generated in the control FSM. The value of one selector
isadvanced by 1 from the other selector. Thus, one multiplexor will produce the current column
of bits, LUT_M, and the other multiplexor will create the next column of bits, nextLUT_M. Both

are needed in order to perform most significant bit rejection in the following stage.

5.2.4 MSBR Rows Stage

The MSBR stages do not add any mathematical functionality, but rather, have been designed and

inserted to make the system power scalable. It isthe control unit that prevents needless switching

in the look up table decoding, adder/subtracter, and 19-bit result registersin the RAC units. The

MSBR unit can do this by generating signals that control the functionality of the RAC units. They
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provide the bit columns of inputs to feed the LUTs (LUTout). They also determine whether the
RAC structures should perform computation at all (add), and if so, when that computation should
be a subtraction instead of an addition (RACsign). A detailed description of how the MSBR algo-

rithmically works can befound in section 4.1.1.

MSBR Rows and MSBR Columns are two instantiations of the same design. Therefore, only a

block diagram for the inputs and outputs of the MSBR Rows stage is shown in figure 5.17.
Figure 5.17: Block Diagram of MSBR Rows Stage
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Parallel data paths are first encountered in the M SBR stage. Processing must be donein parallel to

feed the 8 RAC structures with columns of bits at the sametime. Aninsidelook at the architecture

58



(figure 5.18) helpsillustrate this. There are two MSBR04567 units, which are two different

Figure 5.18: Parallel Architecture of the MSBR Stages
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instantiations of the same hardware. The two structures are identical since they screen for the
same thing—unnecessary sign extension. This type of sign extension based bit rejection is per-
formed on for column inputs multiplying the DCT matrix rows 0, 4, 5, 6, and 7. These rows, rep-

licated from equation 3.3 are shown below:

A A A Al RowO
DE F G| Row4
E -G-D -F| Row5
F-D G E| Row6
G -F E -D| Row7?

One MSBR04567 unit receives the datafor row 0, while the other unit receivesthe datafor rows
45,6, and 7. The multiplying column vector input for row O corresponds to the summed pels,

while the multiplying column vector for rows 4, 5, 6, and 7 corresponds to the differenced pels.

MSBR123 performsan all zerosor al ones based bit rejection for column inputs multiplying

rows 1, 2, and 3 of the DCT computation matrix. These rows, replicated from equation 3.3 are

59



shown again below:

A-A-A A Row 2

B C -C-B| Rowl
C-B B -C| Row3

The column inputs that multiply these rows correspond to summed pels.

The 8-bit column busses, LUT_M and nextLUT_M that are inputs from the butterfly stage, are
each split into two 4-bit busses. The 4-bit busses, LUT_even and nextLUTO, are formed from the
most significant bitsfrom LUT_M and nextLUT_M respectively. They contain the bits from the

summed pelS(Xg+X7, X1+Xg, Xo+Xs, X3+X4), Which are used for the computation of the even coeffi-

cients. Hence, these busses are fed to the MSBR04567 unit that computes the dot product corre-
sponding to the first row. Since the type of bit rejection performed by M SBR123 does not require
the next column of bits, only LUT_evenisfed to it. The other 4-bit busses, LUT_odd and
nextLUT4567, are formed from the least significant bitsfrom LUT_M and nextLUT_M respec-
tively, and contain the bits from the differenced pelS(xo-X7, X1-Xg, Xo-Xs5, X3-X4). These 4-bit bus-
ses are used to compute the odd DCT coefficients and are fed to the other instantiation of

MSBR04567.

Asdescribed in section 4.1.1, MSBR123 is asimple function, that basically stops needless com-
putation for columns of input bits (LUTin) that are al onesor all zeros. When this occursadd will
be zero signalling no computation for the adder/subtracter (ALU) in the RAC units. Also, LUTout
will be held steady to eliminate glitching in the LUTsand ALU. When RACsign is asserted it indi-

catesthe ALU in the RAC unit should subtract instead of add. The M SB column needsisthe only
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one that subtracting, and that too, only if the column of bitsare not all zerosor al ones. Thisfunc-

tionality was achieved with the implementation shown in figure 5.19.

Figure 5.19: MSBR123 Implementation
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LUTinisonly latched if all its bits are not the same. If the input bits are the same, the unit contin-
uesto output its previously held value. RACsign is generated through the negative output of a SR-
ff. With the setup in figure 5.19, if the SR-ff isnot explicitly being reset, RACsign will be low,
signalling an addition function in the RAC. RACsign will be high whenever anew RAC begins
and if that first column of inputs of most significant bitsis being calculated (the input bits are not
all equal). A new RAC computation is signalled by newRAC, which occurs in a cyclic manner
every 8 clock cycles by the control FSM. RACsign will also be asserted when the SR-ff is reset
with the clear signal. The second stage of D-ffsto convert LUTout_2, add 2, and RACsign_2 to
LUTout, add, and RACsign wasinserted to match the latency for all outputs of the MSBR123
stage with that of all outputs from the MSBR04567 stages. Thisis necessary since MSBR123 and

MSBRO04567 units arein a parallel datapath.

The MSBR unit for the DCT matrix rows 0,4,5,6,and 7 ismoreintricate. The bit rejection isbased

on detecting extraneous sign extension (4.1.1) and stopping its associated computation. However,
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the bit rejection for these rows cannot occur anywhere during the computation of that particular
dot product. Once the end of sign extension has been detected, no more bit rejection can occur for

the rest of that particular dot product calculation.

Figure 5.20 illustrates the design of the M SBR04567 component The detection of the sign exten-
Figure 5.20: MSBR04567 Implementation
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sion isimplemented by comparing the current column of inputs, LUTin, with the next column of
input bits, nextLUTin. When new inputs arrive from the butterfly stage, if all bits of both inputs
areeither al zeros or all ones, it indicates that current column, LUTIn, is part of the sign exten-
sion. Similar to a shift register, on the next cycle, LUTin will get what nextLUTin was and so on.
Only when both columns are the same does the SR-ff become set. Oncethisis set, the rest of the
columns of bitsfor that dot product cannot be part of the sign extension. Thus, once the input col-
umns are no longer part of the sign extension, the D-ff will always be enabled to | et the current

column of bits, LUTin proceed to the RAC structure as LUTout. During the regjected cycles, the
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output for LUTout will remain steady to keep the RAC units from switching. Also, after the SR-ff

has been set, add becomes asserted to allow computation in the RAC for these columns of inputs.

Furthermore, just when the SR-ff becomes set, component edgecatch_r will find the rising edge of

en, and risewill become asserted to allow the most significant computed column of bitsto be sub-
tracted in the RAC instead of added. This subtraction is necessary for the MSB column since al

values are 2's complement.

The boundaries between different sets of inputs had to be given careful attention for the
MSBRO04567 unit. The first column of inputs from a new data set arrives at each stage in the pipe-
line every 8 clock cycles asindicated by the assertion of newRAC from the control FSM. Simi-
larly, the last column of inputs for each data set isindicated by the 8-cycle periodic assertion of
endcond from the control FSM. These inputs were necessary to ensure that the sign extension
detection did not carry through from one input group to the next. For example, if the end of sign
extension had been detected in the first set of inputs, it should not assume that the second set of
inputs has no sign extension. This problem is highlighted with the following example:

Input Set 1 Input Set 2

11110100 11111110

11110111 11111100

11110000 11111001

11110110 11111111

The M SBR04567 would detect the end of sign extension on the fourth column of inputsfrom data
set one. Without newRAC, it would appear asif the inputs from data set two were part of the first

set, and therefore columns 1-4 of the second data set would not be rejected even though they

should be. Thiswould mean that the M SBR would only reduce computation until the first sign
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extension ended and never work again. Also, if the columns of bitsfrom the two sets were viewed

as one continuous stream, then the system would not assert RACsign correctly either.

To handle this case, the system begins checking for sign extension again from the beginning of the
next set of inputs. Thisisaccomplished by resetting the SR-ff whenever thereisanewRAC and
the first two columns of inputs are the same. This means that sign extension has been detected and
to hold the previous outputs of the unit stable so no switching occursin the RAC. If both columns
are not the same, then thereis no sign extension and computation can continue as before. For this
case, there will be no rising edge of en, so rise will be 0. Therefore, additional logic wasinserted
to make RACsign assert under the condition when there is newRAC and the column of bitsis not
part of the sign extension, indicated by the assertion of nosame8. With this additional “OR” con-
dition based on newRAC, thereisno risk of RACsign asserting twice for the same input set. The
SR-ff cannot be reset during that input set if thefirst MSB columnisnot part of the sign exten-

sion. Therefore, en will not transition to zero during that set.

The second boundary condition case that the design handled used endcond to make sure that an
entire data set could not be rejected. This problem could occur if the design interpreted all col-
umns of the data set as part of the sign extension. The following example illustrates this case:
Input Set:

117111111

117111111

117111111

117111111

If all columns were interpreted as the sign extension, then all four data inputs would be viewed as
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the value O instead of -1. M easures were taken to ensure the design could not interpret al columns
as part of asign extension. Endcond, from the control FSM, isinserted to end the sign extension
on the LSB column, when the SR-ff was not already set earlier for that input stream. Thisinhib-
ited sign extension to be infinite and to stopped sign extension from carrying through to the next

input set.

D-ffshave been inserted in the M SBR04567 stage to create equivalent latency paths of two cycles
for al outputs of the unit--LUTout, add, RACsign. This provides the additional benefit that all out-
puts from the unit are latch bounded, thereby reducing the critical path in the following RAC

stages.

5.2.5 RAC Rows Stage

The RAC Rows stage calculates the 8 dot productsin the 1-D DCT algorithm (equation 3.3). It
differs from the RAC Columns stage, which performs the same function, because it requires less
bit width sinceit is earlier in the pipeline. The unit performs 8, 4-dimensional, dot products of dis-
tinct constant row vectors with 9-bit wide variableinput column vectors. It uses DA for the com-
putation method and is implemented with an adaptation of a RAC structure (3.3). Control signals
aswell as bit-columns of inputs are provided from the MSBR stage. Additional control signalsare
supplied by the control FSM. The the 8 dot product calculations result in 8 corresponding 12-bit

valuesthat are input to the transpose stage. The block diagram of the RAC Rows stage, highlight-
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ing al the inputs and outputs, is given in figure 5.21.

Figure 5.21: Block Diagram of RAC Rows Stage
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All results from the RAC Rows stage must be ready every 8 clock cycles. This requires paralel

Figure 5.22: Parallel Architecture of the M SBR Stages
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datapaths with eight RAC units as shown in figure 5.22. The RAC units areidentical in structure
and design. However, they differ in that each hasa unique LUT that storesdifferent combinations
of constants corresponding to a particular row of the DCT matrix. For example, if the constant

row in the dot product were [A B C D], and one column of variableinput bitswere[W; X; Y; Z;]’,

figure 5.23 shows the configuration for the corresponding LUT in the RAC unit. The assertion of
Figure 5.23: LUT Design for Constant Row [A B C D]
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4x16 Addre;s‘§Decoder
o
+
ey

/

D+C+B+A
11

contents

W; indicatesthat A isincluded in the sum. Similar correlations exist between X, Y, Z and B,C, D.

The four basic constants comprising each LUT were given in equation 3.3. In order to represent
theirrational constant values asintegers, the constants wereindividually multiplied by 256, which
corresponded to aleft shift by 8. Following the DA computation, dot product results were shifted
back right by 8 to compensate for the constants. The range of sums, resulting from the combina-
tions of the constant row elements from the DCT maitrix, was -443 through +724.To represent

thisrange, awidth of 11-bitsfor the LUTsin the RAC structures was used.

While there are 8 RAC structures computing in parallel, thereisfurther parallelization within

each individual RAC structure. With afully serial RAC structure, it would take 9 clock cyclesthe

answer for a 9-bit input to converge. Due to the pipelined structure of the system, the RAC struc-
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tures must finish computation within 8 cycles so data corresponding to a new set can begin every
8 cycles. To utilize the least number of resources possible, while still meeting the performance

requirement, the RAC units are partially parallelized into two units as shown in figure 5.24. The
Figure 5.24: Partially Parellelized RAC structures for Rows
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newRAC
en 20
contents_L
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first unit, operating on the 8 M SB columns converges in 8 clock cycles. The second unit, which
operates on the LSB column of bitswill converge concurrently, but in only 1 clock cycle. The
MSB result must be shifted left by 1 before it can be added to the result of the LSB calculation.
Since the answers converge at different times, the result of the MSB calculation islatched to
ensure no glitching in the adder until the computation of the M SB cal culation is compl ete. Results
from the adder are shifted right by 8 following all computation on the 1-D DCT to compensate for

the constants that were multiplied by 278 in the LUT.

The LSB unit issimple. Sinceit only calculates on one column, there are no sums that need to be
made. Asisshown infigure 5.24, the unit consistsonly of aLUT. Thisispossible becausethereis

no bit reection on the LSB column. The inputs to this subunit arrive directly from the Butterfly
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Rows stage instead of the MSB unit. Inserting extralogic in thissmall RAC structure to imple-
ment bit rejection did not seem worth it for the LSB column sincethere is the least amount of cor-

relation at the LSB position of input pels.

The MSB unit adopts a RAC structure (3.3) to compute on the first 8 columns of inputs. Five mul-
tiplexors have been inserted into the basic RAC structure to include the additional paths necessary

to implement MSBR and initialization. There are 5 basic functions that require different paths
Figure 5.25: MSB RAC Rows Implementation
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through the MSB RAC structure: calculation on the MSB column, rejection of the MSB column,
calculation of non-MSB rows, rejection of non-MSB rows, and initiation of the unit.The design

for the 8 MSB RAC Rows unitsis given in figure 5.25.
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Inputs arrive to the unit serially from the M SBR Rows stage with the MSB column arriving first.
The most significant column of bitsis signalled with newRAC. It may be part of the extraneous
sign extension and may be skipped. In this case, add will not be asserted from the MSBR unit and
the result register will be cleared to zero. It isimportant that the previous data set result is cleared
from the feedback to the ALU so it cannot contaminate the current data set calculation. This path
through the unit in which calculation on the most significant column of bitsisreected is high-

lighted in figure 5.26. Note, this path can only be taken at most once during the 8-cycle calcula-
Figure 5.26: MSB Column Rejection Path
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tion of one dot product.
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The first column of bitsthat isnot rejected indicates the sign of the2'scomplement inputs. There-
fore, only for thisfirst computed column, the ALU in the MSB RAC unit isset to subtract instead
of add. Thisissignalled by the MSBR Rows stage through the assertion of RACsign. Careistaken
such that the first computed column for the data set is not subtracted from what isstored in the
result register. Thiswould contaminate the calculations of the current dot product with the previ-
ous dot product calculation. Instead, at the end of the clock cycle, the result register contain the
negative contents of the LUT that was addressed with the first computed input column of bits. The

data path associated with this case is highlighted in figure 5.27.
Figure 5.27: MSB Column Calculation Path
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Once the end of sign extension has been determined, computation begins. The first column com-
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puted is the most significant and will be subtracted as was shown in figure 5.27. For theremaining
columns of bitsin the data set, a different path is followed through the unit. The current contents
of the LUT are summed with the |eft-shifted results from the previous ook up. This path through

theunit isillustrated in figure 5.28. We know the column is not rejected sinceadd will be set high

Figure 5.28: Computation of Non-MSB Column
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in the MSBR Rows stage. Furthermore, RACsign will be low, to detect that the most significant

column is not being input for computation.

Another path is necessary to reject computation on columnsthat do not correspond to the MSB. In
this case, theinputsto the LUT and adder are held constant by the MSBR Rows stage so glitching

will not occur. Since computation is being rejected, the ALU is bypassed. The result register still
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grabs new data that corresponds to the previous result multiplied by two. Thisis necessary since

each column of inputs must be shifted by the correct amount corresponding to its position in the

input vector. The path for this case, where computation isrejected for columns other than the most

significant column, is highlighted in figure 5.29.

Figure 5.29: Rejection of Non-MSB Column
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The designed structure required initialization before valid computation could begin. This was nec-

essary to flush X’sout of the feedback loop to the adder. Thiswas achieved through the path illus-
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trated in figure 5.30. Initialization occurs once during the filling of the pipeline. The unit cannot
Figure 5.30: Initiaization of the RAC
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beinitialized with system Clear, because X vaues still flow through the unit until all previous
stages are overwritten with valid inputs. It would have been an option to reset al flip flopsin the
design at zero, but that would have created too much unnecessary logic. Initialization of this unit
occurs some latency after the assertion of Clear, exactly at the time when valid inputs arrive to the
unit. When valid inputs begin to arrive, the control FSM assertsclear_ RAC. Thisway, A and B
will be defined signals at the same time so the ALU result will also be defined at zero right before

it is used initially.

5.2.6 Transpose Stage
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The transpose stage collects the results of 8 sequential 1-D DCT calculations. Each 1-D calcula-
tion has 8 results. All results from 1-D calculations arrive from the RAC Rows unit periodically
every 8 clock cycles. Since al 8, 12-hit results from a 1-D calculation arriveat the same time, the
transpose unit writes all 8 input values at once. The transpose stage isfilled with correct data
every 64 clock cycles, asindicated with the control FSM signal full64. The inputs and outputs of

this stage are shown in figure 5.31.

Figure 5.31: Block Diagram of Transpose Stage

lk :al |
from

RAC RAC2 12 Transpose
12

rows RAC3 cA
4> H
RAC4 Stage
12

RACS g | CB g

RAC6 to
Butterfly

RAC7 > columns

RACO 12
RAC1

o « N[ m 0| ©f ©
CDCDCDCDgCDCDCD

count7s
full64

from
Control

The transpose stage consists mainly of two sets of registers: sampling registers and computation
registers. There are 64, enabled, 12-bit D-ffs composing each set. Data is copied to the computa-
tion registers from the sampling registers when al the datain the sampling buffers have been
overwritten with resultsfrom 8 new 1-D DCT computations. Each of the 8 inputs to the stage are

hardwired to 8 possible D-ffsin the sampling register set, only one of which will be enabled one

75



at atime. The enabling of the registersis handled with signas €0, €1, €2, €3, e4, €5, e, e7 from
the control FSM which each have aperiod of 64, and are offset from one another by 8 cycles. The

architecture of this stageisillustrated in figure 5.32.
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The transpose matrix also serves the same function as the buffer in stage had. From the 64 stored
elementsin the computation registers, 8 must be selected at atimefor 1-D DCT computation. The
8 samples are chosen via 8, 8-to-1 muxes that select the same element from each of the row com-
putations. For example, the first column computation would correspond to the RACO results from
the 8 different computations of the 1-D DCT on each row. The outputs of the first stage of multi-

plexors, sample0, samplel, sample2, up to sample7, correspond to one column. A new column is
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selected every 8 clock cycles with the count7s signal from the control FSM. The period of this
signal is 64 cycles. The second stage of multiplexors are controlled with the bottom two bits of
count7f, which has a period 4 cycles. These two 4-to-1 multiplexors extract the elements to be
added or subtracted in the butterfly computation on the columns. They follow the same order as

was discussed in the buffer in stage (5.2.2).

5.2.7 Butterfly Columns Stage

The function of the butterfly columns stage is the same as the butterfly rows stage(5.2.3). How-

ever, becauseit islater in the pipeline, it must function on increased bit-width inputs and therefore

required some design modifications. The inputs and outputs from the stage are given in figure

5.33.
Figure 5.33: Block Diagram of Butterfly Columns Stage
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Although the inputs are 12 bits, the result of the addition or subtraction in the unit isleft at 12 bits.

This adder/subtracter design accounts for one of the divisions by two mandated by the algorithm.
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Compliancy testing (6.1) determined that dropping the one bit of accuracy at this point in the
pipeline would not sacrifice image integrity. Therefore, the unit only needed to extract 12 col-
umns of bitsto passon for further computation. Only the 8 most significant columns are subject to
bit rgjection and will pass through the MSBR Columns unit. The 4 least significant columns of
bits have less correlation with one another and are not worth inserting the extralogic in the LSB
RAC structure or MSBR Columns unit necessary to perform bit rejection on those columns. The

design of thisstageisillustrated in figure 5.34. The first 8 columns of bits are extracted and sent

Figure 5.34: Butterfly Columns Implementation
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to the following MSBR unit in the same way as described in section 5.2.3. The least significant 4
columns are passed along to the RAC columns stagein adightly different way. Since they are not

subject to bit rejection, only the current column of bits is needed at atime. An 8-to-1 multiplexor
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sel ects the columns most significant first with count7f from the control FSM. The most significant

of the LSB columnsis output after 2 cycles to account for the latency of MSBR Columns unit.

5.2.8 MSBR Columns Stage

The next stage in the pipeline has the inputs and outputs shown in figure 5.35. The MSBR Col-

Figure 5.35: Block Diagram of MSBR Columns Stage
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umns stage has an identical design asthe MSBR Rows stage (5.2.4) and performs the same func-

tion.

5.2.9 RAC Columns Stage

The RAC Columns Stage is very similar to the RAC Rows stage, except it computes on 12 col-

umns of bitsinstead of 9. Since the dot product still needs to converge every 8 clock cycles,

greater parallelization is adopted. Thisrequires additional control signals from the FSM. The
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inputs and outputs of this stage are shown in figure 5.36. Similar to the RAC Rows stage, there are

Figure 5.36: Block Diagram of RAC Columns Stage
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8 parallel RAC structures, each with adistinct LUT, to compute the 8 dot products (figure 5.22).
Again, each of the RAC unitsis composed of two paralléel units: the MSB RAC unit and the LSB
RAC unit. The MSB RAC unit, which gets itsinputs and control signals from the M SBR Col-
umns stage, computes partial product from the 8 MSB columns of bits and implements bit rejec-
tion on them. The designisidentical to the MSB RAC unit from the RAC Rows stage illustrated
infigure 5.25. The other unit, LSB RAC, computesthe partial product from the 4 least significant

columns of bitsthat arrive directly from the Butterfly Columns stage.

The LSB RAC unit in the columns stage is different from the row stage because it computes the
partial product of 4 columns of bits instead of just 1. Therefore, the design is more complex than
just asimple LUT asit must contain registers and an adder. There are no subtractions necessary

since the most significant column, which provides the sign information, is calculated in the MSB
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RAC Columns unit. The design of the LSB RAC Columnsis given in figure 5.37. Note that it

Figure 5.37: LSB RAC Columns Implementation
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does not implement MSBR. Following aclear of the system, the values within the feedback loop
must beinitialized at the correct time just asvalid inputs arrive at the unit. Assertion of
clear_RAC, from the control FSM, handlestheinitialization by loading zeros into the register and
feedback path. At the beginning of each new dot product computation, the unit does not add to the
previous result, but directly loads the contents of the LUT for the first column into the result reg-
ister. The 2-to-1 mux, with select signal cO from the control FSM enablesthis behavior. Since the
latency of the LSB RAC unit isless than the latency of the MSB RAC unit, there are 4 extra clock
cycles after the partial product has converged in the LSB RAC unit. To keep result_LSB from
changing during the remaining 4 clock cycles, theregister isonly enabled 4 times until the answer
from the 4 columns has been computed. Since result_LSB cannot change after 4 cycles, and inputs

from the Butterfly Columns stage will be zero, the adder is kept from glitching.
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Thefinal partial productsfrom the MSB and LSB RAC Columns units are combined in the man-

ner illustrated in figure 5.38. The MSB partial product, result MSB, must be shifted by four posi-

Figure 5.38: Combining the Column MSB and LSB RACs

result_M SB result_L SB

newRAC
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tionsto left to get the right magnitude before it can be added with the least significant partial
product. The D-ffs areinserted to keep the adder from glitching before both partial products have
converged. The result from the MSB RAC unit, result_MSB, changes 8 times until it converges
and similarly, result_LSB changes 4 times. Once result MSB has converged, both D-ffsare
enabled. The result of the addition is shifted to the right by 8 to compensate for the integer repre-

sentation of the constantsin the LUT.

5.2.10 Buffer Out Stage

The Buffer Out stage isthefinal stagein the pipeline. A block diagram of the stageis givenin fig-
ure 5.39. Buffer Out receives 8 new dot product results from the RAC Columns stage every 8
clock cycles asisindicated with cnewRAC from the control FSM. It outputs onefinal 2-D DCT

coefficient every clock in column-major order.
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Figure 5.39: Block Diagram of Buffer Out Stage
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The design for the stageisillustrated in figure 5.40. Every 8 clock cycles, the results from the

Figure 5.40: Buffer Out Stage Implementation
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RAC Columns stage are shifted right by 1 to satisfy the second division by 2 mandated by the
algorithm. Then, the 8 shifted results are latched at once into 8 corresponding D-ffs. The shifting
was intentionally done before the results were stored to reduce the cell count aswell as the power
associated with switching the flip flops. The coefficients are read out from the flip flopsone at a
time with every rising clock edge. The correct coefficient is selected for output with an 8-to-1
multiplexor. The output coefficient, Coef, from the 2-D DCT isa 14 bit primary output of the sys-

tem.
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6. Verification

The verification strategy consisted of development of VHDL testbenches aswell as a higher-
level, bit-exact C model of the datapath. The C model was necessary for severa reasons. First, it
enabled the tracking of key signals within the datapath to highlight the sources of several errorsin
the VHDL implementation. Simple and quick modifications of the C model hel ped determinethe
changes to the architecture necessary to meet the JPEG Standard accuracy requirements. For this
reason, it wasimportant that the C model was bit-exact. Secondly, other JPEG componentswill be
modelled in C in the future. When the DCT isincluded in the JPEG design, the C model will be
useful for quickly verifying the entire system together. Furthermore, when the JPEG coreistested

with other cores, a C model is even more essential to reduce the lengthy simulation times.

Although implemented differently, the signals generated at key interfaces are designed to be bit
exact between the C and VHDL models. Thiswas desired for testability and debugging purposes.
Although hit-exact at the algorithmic level, the C model isimplemented differently. The C model
lacks bit rejection units aswell as the control logic. The C model does not handle the reset, stall,

or flushing ability involved for pipeline functionality.

Initially, the C and VHDL models were individually debugged for general functionality. The two
models were tested pipeline stage against pipeline stage with ssimple, customized tests that had
predictable results. The results for the VHDL models were viewed through MTI simulation.

Mathematical subunits for both models were debugged by comparing test case results from the
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design under test (DUT) against MATLAB results. General algorithmic functionality was estab-
lished by running hand-coded input blocks through both the C and VHDL models. Theresults
were qualitatively compared to results generated from driving the DCT function in MATLAB

with the same input vectors.

Furthermore, the C model and VHDL models were debugged against each other. Thisallowed the
discrepancies between the two models to be debugged, ensuring the two modelswould be bit-

exact.

6.1 Compliancy Verification

Next, compliancy testing on the debugged C model ensued. Compliancy testing followed the
guidelines outlined in the JPEG still image compression standard 1SO DIS 10918-1 for baseline
sequential operation. The standard provided files of four different baseline sourceimages: A, B,
C, D. For each of the 4 source images, 4 corresponding quantization tables and 4 files containing
reference, quantized DCT coefficients were provided. The test coefficients, generated from run-
ning the provided source images through the DUT, were quantized with the corresponding quanti-
zation table. To be compliant with JPEG standards, the result had to be within 1 from the provided
guantized reference DCT coefficients. Combined, the four images contained atotal of 937 blocks

or 59,968 coefficients, all of which were checked through compliancy testing.
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The compliancy testing is pictured in figure 6.1, The processing environment was automated in C.

Figure 6.1: Structure of Compliancy Tests
- Expected
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Y
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C programs read in the corresponding compliancy image sequentially in row major order from the
source file, arranged the pels in block sequential order, and wrote the new ordering to an interme-
diate file. The file was then read by the DUT, which was implemented either in C or VHDL,
depending on which model was being verified with compliancy testing. The testbench for the
DUT wrote the coefficients to another intermediate file. Other C programs were responsible for
the rest of the compliancy testing. The programs read in the DUT coefficients from the respective
file, arranged themin zig zag order, quantized the DUT coefficients, and then determined whether
they quantized coefficients were within the acceptable range of error. The standard provided four
filesfor coefficients corresponding to baselineimagesA, B, C, and D for comparison. It also gave
the unique quantization matrix that was associated with each image. Compliancy checking was
not done at run-time; results from the DUT werewritten to a fileand read in afterwards for check-

ing. Thisalleviated the need of a foreign language interface between C and VHDL.
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It isimportant to emphasize that assessment of compliancy testing, as defined in the JPEG stan-
dards, was on the quantized coefficients. Furthermore, the provided reference coefficients also
assumed that input pels had been zero-shifted before being fed into the DCT DUT. The zero shift-
ing centered the data around zero, thereby decreasing the necessary bit-width of the design. Quan-
tization had asimilar effect. It gave the DUT some slack in accuracy, or reduced the necessary bit-
width of certain stages in the pipeline, by accounting for the insensitivity of the human visual sys-

tem towards certain frequencies.

The defined method for quantization in the JPEG standard is aso worth mentioning, asit affects
compliancy results, and hence, precision requirements for the DUT. All the coefficientsfrom the
DUT areinteger values as are al the elementsin the quantization tables. The quantized coeffi-
cients are also mandated to be integer values. The result from the division of the coefficient with
the quantizor isinitially afloating point number that will be rounded to the nearest integer. Thisis
donein C by first adding one-half to the floating point number, and then chopping off the decimal
portion of the floating point number. Effectivdy, thisinteger quantization essentially loosens the

requirements for compliancy from amargin of error of 1 up to 1.5.

The edge conditions of the image also affected compliancy determination. The four input images
were sized: 85x65, 85x129, 255x65, and 85x257, which could not be divided into sequential, non-
overlapping 8x8 input blocks. Using JPEG recommendations, the edges of each of these four
images were extended to make full 8x8 blocksfor input to theDUT. The extension was done by

replicating the last column or row as many times as necessary to make the smallest image possible
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that could be divided into 8x8 sequential blocks. The sizes of the four images were extended as

part of the C testbench to 88x72, 88x136, 256x72, and 88x264 respectively.

6.1.1 Architectural Attempts

Several stages of modifications were made to the C model of the DUT to find the correct balance
between resources and the necessary accuracy to pass compliancy testing. The C model was used
for this experimentation since it was easier to modify and update. The accuracy of the design was
most significantly affected by the positioning of the bit drops within the datapath. The chosen
Chen and Fralick algorithm (equation 3.3) required a division by 2 for each dimension. Hence,
two divisions by two, implemented as right shifts, or bit drops, needed to be performed within the
design. One bit drop accounted for the division by 2 on al the rows, and the second shift
accounted for the division by 2 on all the columns. Since it was not specified in which order the
divisions by two needed to occur, the different modifications examined the accuracy impact of

performing these bit drops at different positions in the datapath.

The modifications were made progressively, to fine tune the accuracy while creating the least pos-
sible increasesin size and power. Since initial spreadsheet estimates predicted the transpose stage
was responsible for 38% of the total area, an attempt was made to keep bit width growth mini-
mum before that stage. The size of the transpose stage linearly depends on the bit width of the
input to that stage. Thisis because the stage essentially consists of 128 registers, each the width of
the input to the stage. Theinitial design, with 8 bit inputs to the transpose (figure 6.2), contained

1024 1-bit registersin the transpose stage.
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Intheinitial design (figure 6.2), the least possible resources were used. Symmetric bit width

Figure 6.2: Compliancy Attempt 1
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selection alowed identical hardware for both the row and column Butterfly, MSBR, and RAC
units. The first bit drop occurred early on in the design at the Butterfly Rows stage To keep full
accuracy, the sum/difference of two eight-bit 2's complement numbers would be 9 bits. However,
in this case, the least significant bit is dropped taking care of one of the divisions by two. The
other division by 2 occurred in the identica Butterfly Columns unit, which similarly resultsin an
8 bit number. The 8-hit outputs of the Butterfly stages allow for the row and column RAC struc-
tures to be fully serial, since the answer can still converge in 8 clock cycles. For proper pipeline

functionality, the RAC structures must finish computation by the end of 8 clock cycles.
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For full accuracy in the RAC, with 8 bit inputs and 11-bit width for the LUT, the output must be
11 bitswide. The intermediatesin the RAC are 19 bits, and then aright shift of 8 at the output
compensates for the multiplications by 256. The floating point constantsin the LUT were multi-
plied by 256 for 11-bit integer representation. To minimize the size of the transpose stage, and to
have symmetric hardware for the row and column calculations, the three |east significant bits
from the pre-transpose RAC calcul ations were dropped. This meant that the 11-bit RAC Rows
outputs were reduced to 8-bit accuracy. This division by 8 was accounted for at the end of the

pipeline by shifting the 11 bit dataleft 3 positions. Hence, the output coefficients were 14 bits.

Thisfirst architectural attempt had large margins of error, and hence, did not pass compliancy

testing on even the first block of image A.

The second implementation (figure 6.3) increased the accuracy after the transpose stage and at the
very latest stage possible. The calculations on the rows stayed the same as was described in the
first attempt. However, in the column cal culation, the butterfly stage was increased in accuracy
such that a bit was not dropped. 9-bit outputs from the Butterfly Columns resulted and were input
to the RAC Columns. Wider inputs to the RAC implied architectural changes would need to be
made at theRTL levelsthat would increase the size of the stage. Thisis because greater than 8 bit
inputs to the RAC mandate levels of parallelization in the structure for the answer to convergein
8 cycles. Outputs from the RAC columns were increased to 12 bits to account for the bit increase
at the input. The output coefficients were shifted left by 2 to account for the extra bits dropped

before the transpose. Though small improvements were found, compliancy testing still did not
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proceed past the first block of image A. Asthe margins of error slightly decreased with the

change, a small reduction in the number of failing coefficients resulted.

Figure 6.3: Compliancy Attempt 2
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Results from the second attempt indicated a much more significant change had to be made. Since
the second attempt increased the bit width in the stage directly following the transpose, the third
attempt (figure 6.4) increased the bit width of the transpose stage, but decreased the bit width fol-
lowing it. Again, the 1-D calculation on the rows was |eft the same, where a bit was dropped in

the Butterfly Rows stage. Instead of dropping the 11 bit outputs of the RAC Rows down to 8-bits
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for the transpose, the size of the transpose stage is increased to allow 11-bit inputs. This signifi-

Figure 6.4: Compliancy Attempt 3
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cant change implied an increase in the transpose stage from 1024 1-bit registersto 1408 1-bit reg-
isters. Aswith the first attempt, the second bit was dropped at the Butterfly Columns stage,
meaning that the 11-bit inputs to the stage resulted in 11-bit outputs. The 11-bit inputsto the RAC
Columns stage would mean further paralldization to that stage and larger bit-widthswithin it.
Since only 2 bit drops occurred in this attempt, no left shifting had to occur at the end. The preci-

sion of the outputs was still 14 bits.

The changesimplemented in the third attempt had a huge impact on the accuracy of the system.

The DUT passed compliancy testing on images A and B. However, it failed on 4 different coeffi-
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cients from 4 different blocks in image D. These results implied that the major source of error had

been identified and fixed. The following attempts would have to fine tune the accuracy.

In the fourth attempt (figure 6.5), the design stayed very similar to the previous attempt. However,

Figure 6.5: Compliancy Attempt 4
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the bit drop in the Butterfly Columns stage was eliminated. This resulted in 12-bit inputs and 15-
bit outputs for the RAC Columns. One bit drop remained, as thefirst drop occurred early oninthe
Butterfly Rows stage. The final bit drop was implemented at the end of the pipelinein the Buffer

Out stage resulting in the 14-bit coefficient accuracy. Thisimplementation fixed the failing coeffi-
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cientsin image D such that images A, B, and D passed compliancy testing. However, thisimple-

mentation failed on 2 different coefficientsin 2 different blocksinimage C.

To attain better accuracy, the fifth attempt (figure 6.6) modified the pre-transpose stages from the

fourth implementation. The bit drop in the Butterfly Rows stage was eliminated. 9-bit inputs to

Figure 6.6: Compliancy Attempt 5
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the RAC Rows mandated partial parallelization of that stage in the row computations. Thisisin
contrast to prior attempts, which had maintained the RAC Rows stage as fully serial. For full
accuracy, 12 bit outputs would have resulted from the RAC Rows stage. However, to try and keep

the Transpose stage at minimum size, the first bit drop occurs on the LSB to provide the transpose
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stage with 11-bit inputs. The implementation of the 1-D DCT on the columns stayed the same as

the previous attempt.

While results from compliancy testing did not get worse, the fifth implementation still failed on a
couple of coefficientsin image C. Since only fine tuning to the accuracy was required in attempts
4 and 5, the constant representation in the LUTs underwent experimentation. Multiplication of the
constants by anything less than 256 increased the error in the system while multiplying the con-

stants by up to 212, or 4096, had no affect.

Hence, experimentation on the placement of the 2 bit drops resumed. A sixth implementation was
created by minor changes to the fifth attempt. The sixth attempt (figure 6.7) rearranged the 2 bit
dropsto be in the post transpose stages. Since no bit drops occurred in the Row calculations, the
inputs to the transpose stage were 12 bits. Of the attempts, this led to the maximum size of the
transpose stage--1536, 1-bit registers. Thisis a50% increase in the number of registersin the

transpose stage from the original attempt which used 1024 1-bit registers.

Thefirst bit drop occurred immediately after the transpose stage in the Butterfly columns. The

addition/subtraction of 2 12-bit numbersisrestricted to 12-bits. The outputs of the RAC Columns

isstill 15 bits, making the final bit drop occur at the end of the pipelinein the Buffer Out stage.
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Figure 6.7: Compliancy Attempt 6
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Finally, the sixth attempt passed compliancy testing on all four images. The C implementation of
the sixth attempt revealed the architectural changes that would need to be made to the initial RTL
design. No longer could the same hardware, instantiated twice, be used to compute the row and
column 1-D DCT. The RAC stages for the rows and columns had to be partially parallelized, but
to different extents. The adder/subtractor in the Butterfly Rows stage would not divide by two,
while the one in the Butterfly Columns stage would. Of course, other bit widthsthroughout the

initial design would be increased aswell.
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After the correct accuracy was determined for the C model to pass compliancy, it became evident
what architectural changes would have to be made in the DUT. Data paths would need widening,
the control logic would be modified and extracontrol |ogic would be inserted, and the RAC struc-
tures would have to be paralleized. The Butterfly and RAC stages underwent the most design

changes, astheir designs were highly dependant on the bit width of the inputs.

The updated VHDL model was again verified by subunit against corresponding interfacesin the
compliant, bit-exact C model. Compliancy testing ensued on the updated, debugged, RTL model.

The updated, debugged RTL model passed compliancy testing on all four images.

6.2 Pipeline Functionality Verification

Pipeline functionality of the RTL model was debugged and verified. Thisincluded testing reset,
stall, flush, and error generation functions. Each of these functions were tested during the three
phases of pipeline operation: startup or filling, steady state, and flushing or shutdown. The tests
also checked different durations of assertions. For example, the stall tests were verified for the
assertion of the stall signal for 1 clock cycle, 2 clock cycles, and afew other randomly chosen val-

ues.

Specific hand-coded tests were made by modifying the existing VHDL testbench. The results for
the resets and flushes were evaluated via hand anaysis. However, for the stall tests, bad data was
inserted into compliance image A at the points where stalls were set to occur. Since a stall

neglects input data for the clock cycle whileit is asserted, the invalid inserted data should not
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affect any calculations of coefficients. The resulting outputs under the stall should remain the
same as under normal operation, except that during the stal, the previous coefficient output is
repeated. Hence, the automated compliancy testing suite was used for the stall casesto ensure that

the effects of the stall did not affect the other coefficientsin the pipeline or future computations.

6.3 Gate-Level Verification

Following the functional and compliancy verification effort on theRTL, the synthesized netlist
was verified. Similar to the RTL verification, netlist verification began with a general debug. In
this stage, several discrepancies between the RTL and the gate-level netlist were discovered and

resolved.

Thefirst discrepancy between theRTL and the gate-level models dealt with reset issues. Correct
operation of theRTL model only required the assertion of the Reset signal for one clock cycle.
However, it wasidentified that initialization of the netlist required Reset to be asserted for at |east

2 clock cycles. The generation of the clear signal in the control logic is shown again in figure 6.8

Figure 6.8: Generation of the Clear Signal
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to clarify this. The clear signal isacombination of a hard reset or a soft reset when the pipeline
has completed a flush. The following clock cycle after Reset is asserted, the clear signal becomes
asserted. However, not until the next clock cycle (2 cycles after the assertion of Reset) will the
clear initialize the decrementer, which will in turn change the stop signal from undefined to O. If
the reset were only asserted for 1 cycle, then the stop signal would still be undefined when the
reset became zero again, and the resulting clear signal would be undefined aswell. In this case,
correct initialization of the core does not occur in hardware. Hence, for correct operation, Reset
must be asserted long enough for avalid stop signal to be generated, which for thisdesignis 2
cycles. This observation did not merit changes to the design, but rather to the testbench and the

interface protocol.

This requirement on the Reset was not found for the RTL model because the adopted coding style
of some elements did not propagate X’s. However, when mapped to actual logic in the standard
libraries, the X’s did flow through the pipeline and highlighted this constraint. ThisRTL coding
style of the multiplexorsin the RAC stages also hid another error in the design that appeared only

in the netlist.

The RAC units, and in particular, the feedback path input to the adders within the units, were not
correctly reset. Thus, undefined signals became trapped in the feedback path to the adder, which
kept generating undefined outputs. For most cases, the clear signal generated from the Reset was
used to reset control circuitry, which needed to occur prior to computation. However, for the RAC
units, the reset was necessary to load zeros into the feedback path to the adders. Thiswas neces-

sary so that new valid datafrom the LUT would not be added with an undefined value in the feed-
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back path, which would result in an undefined value in hardware. Because of the coding style of
the RTL model, it was possible to use the clear signal to reset the value held in the RAC. How-
ever, for the netlist, previous stages were flushing X’ s from their system and overwriting them
with new valid inputs. In this startup process, inputs to the RAC structures were undefined, result-
ing in an undefined operand to the adder even though the other operand from the feedback 1oop
had started off reset to 0. The addition with an undefined value resulted in an undefined value

which then became trapped in the feedback path.

To eliminate this problem, two choices seemed possible. The first option wasto initialize every
flip flop in the design to O at the reset of the system. However, this option would create alarge
logical overhead since there are over 3,000 flip flopsin the design that would need to be reset.
Furthermore, inserting resets on all the flip flops seemed like a waste since, with the exception of
the RAC structure, the rest of the unitsin the datapath would overwrite their stored X values with

valid data as it became available.

The second option was to generate signals that would clear the RAC result feedback loops at the
exact time that valid datawould be entering those stagesin the pipeline. This option was selected
for implementation asit only created a small change to the control FSM and resulted in very little
logical overhead. In fact, only three, 1-bit SR flip-flops were inserted. A clear of the system resets
the flip flops to a high value and otherwise they were set to alow value when the FSM flagged
that datawas at a particular location in the pipeline. Two of the outputs from the SR flip flops cor-
responded to the reset for the RAC Rows and RAC columns respectively. These flops kept the

RAC stagesin constant reset mode, continuously selecting zerosin the feedback path to the adder,
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until valid data entered the stage. Only when the SR flip flops were set by the FSM, indicating the

data had reached the correct position in the pipeline, did they cease to reset the RAC structures.

This design change for appropriately resetting the RAC structures was implemented in the RTL
model. Following these changes, theRTL model was verified again and then resynthesized. The

resulting netlist could be correctly initialized. However, other errorstill remained.

Simulation of the netlist on ahand coded input block revealed timing errorsthat could be traced
back to the FSM. By tracing through instantiated componentsin the netlist, it was identified that
unwanted latches had been instantiated. These latches were inferred by the FSM coding style
which created combinational logic within aprocess statement. Slight stylistic modifications were

made to the RTL. This bug was resolved in the sythesized netlist of this modified RTL.

Thefinal discrepancy between theRTL and netlist simulations was not aresult of the design, but
rather of the simulation tool. The Model Tech simulator, used in zero-delay mode, read delta
delays from the instantiated logic elements from the standard library. These delta delays hel ped
the tool determine on which time slice to evaluate the signals. In certain fast paths, the simulator
erroneously interpreted the data and the clock to be on the sametime slice. This caused arace
condition between the clock and the data, where the next cycl€ s data was sampled instead of the
current cycle’'s data. Thiserror in simulation was observed because the tool ignored the 100 ps
deltadelays after each library element. The 100 ps delays were neglected since theresolution in

the setup file for the tool was set to a ns step time. Modification of the tool step time to psalowed
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the 100 ps delta delaysto be read, thereby placing the data and clock on separate time slices and

correcting the race condition.

Once the netlist passed the general debug stage, where the RTL and gate-level models did not
have any discrepancies between results for hand-coded tests, quantitative compliancy testing
ensued on the netlist. Similar to the RTL model, the netlist was tested on the four compliancy
images provided from JPEG. With a few modifications, the same compliancy testing suite was
used on the netlist. The minor changes to the testbench for the netlist accounted for the glitchy
Valid_out signal. On the RTL, since valid_out did not glitch, data was acquired once it was
detected to go high. However, on the netlist, prior to valid outputs, the valid_out signal spiked,
and it was not desired to begin capturing the data at that point. It isimportant to note that the
observed glitches on the valid_out primary output were on the order of ps, so they did not

adversely affect the functionality of the design.

The netlist passed compliancy testing on all four images without failures. Furthermore, the same
suite of pipeline functionality tests that were used on the RTL model (described above) were
applied to the netlist. The pipeline operated correctly for the netlist. Results from the verification
testing suite conclude that the C, RTL, and gate-level models of the DUT operate correctly and

with enough precision for JPEG applications and for usein the IBM JPEG core.
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7. Synthesis

The Synopsys Design Compiler tool was used in the synthesis step to map the higher-level VHDL
RTL codeto actua elementsfrom standard cell libraries targeting the IBM SA27E technology.
The result of synthesis was a gate-level netlist. Scripts were made and read by the tool to set up
the correct operating conditions, limitations on instantiated books, and input/output characteris-

tics to make the netlist compliant with IBM Softcore requirements.

The VHDL subunits were analyzed from the leaves up. The top level design was then flattened
and compiled without hierarchy. Subunits, with generic parameters, were elaborated to specify
those constant values. Also, those unitsin which clock gating was intended, were elaborated with
the clock gate switch enabled. The replace synthetic switch allowed the correct clock gating logic

structures to be inserted into the clock tree.

7.1 Clock Gating

Clock gating is instantiated during synthesis to reduce power consumption. With small logical

overhead, clock gating turned off the clock treesto keep them from switching. Two different

methods for achieving the clock gating were investigated: Clock-OR (CG-OR) and Clock-AND
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(CG-AND). The implementation of the CG-OR style, as shown in figure 7.1, requires the nega-

Figure 7.1: CG-OR Implementation
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tive clock enable signal to arrive before the falling edge of the clock for the valid stall to occur.

Thismeansthat the valid enable signal must be derived in lessthan half the clock cycle for correct
gating to occur. If the negative enable becomes avalid low during the low part of the clock, then
the intended clock gating will not occur. Furthermore, the clock can only be gated to the high

state. Thetiming restrictions for the CG-OR are shown in figure 7.2. These restrictions imply that

Figure 7.2: CG-OR Timing Diagram
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thisstyleis preferable when the enable signal is generated from rising-edge triggered logic and
when there is minimal amount of logic in the clock gate enable path. In the DUT, the clock gate
enable signal isthe primary input (PI) stall. This Clock-OR style is not preferred for the DUT
because it will restrict the PI stall to be the output of aflip flop. It isdesirableto put as few restric-

tions as possible on the primary inputs to the DUT.

In contrast to the CG-OR style, the CG-AND implementation of clock gating presents fewer

restrictions. Therefore, the CG-AND style was chosen for instantiation into the DUT. The nega-
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tive enable can gate the clock at either the high or low state. The correct negative enable signal
must be available by a small setup time before the rising edge of the clock, giving it approxi-
mately afull clock cycle to becomevalid. These characteristics are pictured in the timing diagram

infigure 7.3. Thislessrestrictive timing constraint may lead to reduced power consumption since

Figure 7.3: CG-AND Timing Diagram
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logic cells may not need to be powered up to meet strict timing.

The implementation of the more robust CG-AND style, shown in figure 7.4 is not without its

costs. For approximately every 128 gated latches this style requires the insertion of one extralevel

Figure 7.4: CG-AND Implementation

Enable
Gated_Clock
Clock

sensitive latch before the AND. Thelatch is transparent to the enable signal during the low phase

of the clock and holds its value during the high phase. The negative latch is necessary to ensure
that atransition of the enable signal does not propagate to a unintended transition on the gated
clock during the high phase of the clock. Without the presence of the latch, if the enable signal

changed during the high phase of the clock, the gated clock would asynchronously change. This
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exampleisillustrated in the timing diagram in below (figure 7.5). The insertion of alatch is not

Figure 7.5: CG-AND Timing Diagram Implemented Without a Latch
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necessary in the CG-OR style.

7.2 Setup of Library Specific Operating Conditions

AnIBM internal setup script was modified to provide the synthesistool with information specific
to the IBM ASIC library for the SA27E technology. The script set up the worst case operating
model of 100 degrees Celsius and 165 Volts.These values differ from the worst case operating
model for the static timing tool. This discrepancy will be addressed further in the static timing

section (8).

The setup script indicated the synthesistool should perform the most aggressive area optimiza-
tion. Thiswas achieved by setting the maximum area goal to zero. Initial synthesis results of the
DUT yielded a size estimate of 150K cells. This area count wastoo large for the 90K cell wire-
load model, so the next largest size wire-load model of 180K cells would have been optimal.
However, since no placement or routing is done for asoftcore, it is possible that the customer may
spread the logic across the chip. For this reason, synthesis using a 5.3mm chip wire-load model

was required. The dramatic effects of this requirement on size, timing, and power will be dis-
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cussed in detail later. Along with setting the 5.3mm chip wire-load model, the standard ceramic

perimeter (C4P) package with 5 layers of metal (5MZ) was a'so targeted.

Experimentation was done on the incorporation of elementswith varying Block Hardware Codes
(BHCs) in the netlist. Increasing BHCs of a book indicate higher power levels, performance, and
sizes for that book. The lowest power levels, were not alowed in IBM Softcore methodol ogy for
use during the synthesis step as they can potentially create wiring congestion in the physical
design. However, after the initial place and route, these cells can be incorporated during the final
placement. Therefore, a“don’'t touch” was set for certain BHC levels across all elements Wire-
ability and timing performance were further improved by setting the maximum fanout of 10 for

all the books in the standard library.

With the lower 180K Cell wire-load model, it was feasible to reduce size and power by setting
preferences on the lowest allowable BHC codes. However, with the increase to the 5.3mm chip
wire-load model, these lower power cells did not have enough drive strength or performance to
meet the capacitive and timing requirements. After experimentation with the static timing of the
DUT, the preference statement for the lowest power visible cells was removed in order to reduce

the capacitive violations and the setup time violations in the netlist.

7.3 Input and Output Assertions

The netlist generated by the synthesis tool was highly dependant on the input and output asser-

tions of the core formulated in ascript file. All the input driving gates, with the exception of the
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clock, were modeled with medium strength BHC buffers. Thiswasto ensure that the DUT would
function even with weak input drive. A resulting netlist indicated the input ports had fan outs as
large as 12. To further ensure any signal could drive the inputs to theDUT, the core was resynthe-
sized, adding a maximum fan out of 1 requirement for the input ports. Of course, the clock port

was excluded from this requirement.

The synthesis assertions were extended to include assertions made in static timing analysis. Pri-
mary input minimum and maximum slew rates were set with the knowledge of typical customer
input driving gates. Similarly, capacitive loads were set on all the primary outputs of the core with

values that modelled typical customer gates.

The primary input and output arrival times were defined as well. Primary inputs are given a max-
imum of 5nsfrom the rising edge of the clock, or half the clock cycle, to arrive at the core. Feed-
back from the static timing analysis phase led to an over constraint in synthesis for the output

arrival time. The outputs were set to arrive by 1ns after the rising edge of the clock, giving 90% of
the clock cycle time to logic external to the core. Thisisin contrast to the 2ns output arrival time

that was allocated when timing the core.

Anideal clock input was selected for the netlist. Thiswas done by setting an ideal clock skew,
indicating synchronous clock arrival at al the latches in the design. Second, a“don’t touch”
switch was sel ected on the clock network. This was intended to keep the tool from building and
repowering the clock network. By Softcore guidelines, the clock treeis designed oncethe DUT is

incorporated into a customer chip.
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The slew rate for the clock primary input underwent slight modifications in the different synthe-
sized versions of the DUT. Initial estimates for the minimum and maximum clock slew rateswere
chosen from softcore methodol ogy recommendations. Feedback from static timing analysisindi-
cated very small setup timeviolationsin alimited number of long paths.To slightly increase the
efforts of synthesisin optimizing these problematic paths, the clock slew rate was adjusted to
minimum and maximum values of 100ps and 500ps respectively. These values were chosen with
experimentation. With static timing closure, however, al thetiming constraints of Softcore guide-

lines were adhered to.

Effective clock cycle time was one of the major parameters of experimentation for timing driven
synthesis optimization. The Synopsys Design Compiler synthesistool optimized with different
algorithms and to different levels of effectiveness depending on how the system was over con-
strained. Over constraining the synthesis tool was necessary to account for the differencesin the
synthesis environment and the static timing environment. For instance, Synopsys Design Com-
piler performed its optimizations based on models analyzed at 100 degrees, while the static timing
tool used the same models analyzed at 125 degrees. Furthermore, the synthesistool optimized
until there was zero dack in the timing paths. However, in the static timing tool, delta adjusts
were made to make the netlist meet more rigorous, Softcore mandated, timing with a certain mar-

gin of positive slack for the setup and hold times.

Initially, a netlist was synthesized to an ideal clock with a 10ns period, and Ons clock uncertainty.

Although reports from the synthesis tool indicated the netlist passed timing, static timing anaysis
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indicated differently. The netlist failed setup tests on the long pathsin the RAC structures by a
worst case of -.98ns. To optimize those paths, the effective clock cycle time was incrementally
reduced by increasing the clock uncertainty. The uncertainty accounted for clock jitter and made
the synthesis tool work harder to optimize timing. As the clock uncertainty was increased from
Opsto 500ps, the worst case setup time violations decreased to -.38ns. The clock uncertainty was
increased again to 1ns, the setup time violations became smaller. However, the long paths still
needed to be sped up by about 100ps. The clock uncertainty for the synthesistool was again
increased, thistimeto 1.5ns. Static timing analysis found that the timing actually got worse under
these extreme conditions. It is hypothesized that the tool gave up optimization since it could not

meet the higher clock uncertainty specifications.

Another approach was taken to increase timing optimization in synthesis. The clock period was
reduced to 9ns, a decrease of 10%, and the clock uncertainty was reset to Ons. These netlist cre-
ated from these selections of constraints eliminated all setup time violationsin static timing. It is
hypothesized that the creation of a higher frequency clock triggered different algorithms within

Synopsys Design Compiler that made the netlist pass setup time tests.

The selected wire-load model for synthesis also had alarge impact on the types of optimizations
necessary. For instance, when the core was synthesized for the optimal 180K cell wire-load
model, it was not necessary to over constrain the synthesistool by increasing the clock frequency
specification. Instead, the netlist met late mode timing analysis just by increasing the clock uncer-

tainty to 1ns.
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Aside from timing optimizations, the wire load model had alarge effect on the size of the core.
Synthesis of the design on the small, 180K cell wire-load model, with preferences set for lowest
visible BHC elements, resulted in anetlist with acell count of 112,046. Of that, the combinational
area accounted for 46,914 cells and the noncombinational area, 65,132 cells. For this netlist, the

combinational areawas about 42% of the total area

However, the IBM softcore compliant netlist, synthesized to the 5.3mm chip wireload model,
resulted in 120,767 cells. The combinational area, making up 46% of the total area, was 55,300
cells, and the noncombinational areawas 65,467 cells. Thetotal areaincrease from the noncom-
pliant netlist (180K wire-load) to the compliant netlist (5.3mm chip wire-load) was approximately
8%. Combinational logic accounted for 96% of the increase in cell count between the two netlists.
This can be attributed to the powering up of combinational cellsto drive higher capacitances and

resi stances associated with logic spread across a chip.
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8. Static Timing Analysis

8.1 Background

Static timing analysis, performed by the IBM internal Einstimer tool, ensured that the designed
hardware functioned properly with the timing and electrical constraints of the system. Four differ-
ent path types were analyzed by the timing tool: primary inputsto primary outputs, primary inputs
to aregister, register to register, and register to primary outputs. For each of these path types, the
tool checked that data arrived at its destination in time (setup time) and that it stayed steady for
the required time (hold time). This was determined by slack measurements, or relations between
the Required Arrival Times (RAT) and the Actual Arrival Time (AT). Both the RAT and AT val-
ues differ for early mode and late mode tests. Negative slacks indicated static timing failures,
while positive slacks indicated the hardware would function properly for that path. Of course the

results of these tests were dependant on the assertions provided.

The setup tests were checked in late mode or long path analysis. The dack, in late mode analysis,
is calculated as RAT-AT. In this mode, the latest arrival times are propagated to find the longest
path delays. If this slowest path istoo long, then theAT will be larger than the required time of
arrival. In this case, data may not reach its destination in time, thereby inhibiting the hardware

from running at the specified clock frequency.
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Early mode, or short, fast path analysis, identified hold time violations. Slack times, in early mode
analysis, were equal toAT-RAT. TheAT was calculated by propagating the earliest cumulative
arrival times for apath. In afast path, the new signal may arrive too quickly, or before the RAT.
The RAT for the early mode case is earliest timethat asignal can change after the clock edge.
These problematic paths, create negative dack time, and could cause incorrect hardware opera-
tion. In these cases, arace condition could occur, where data would be stored from the next clock

cycle rather than from the current clock cycle.

The static timing tool also conducted electrical violation tests. For each element instantiated from
the standard library, the tool compared its minimum and maximum specified |oad capacitances
with itsload capacitance in the design. Thetool did the same comparisons for minimum and max-

imum dew values aswell.

8.2 Assertions

This section describes the timing assertions and constraints for the netlist, all of which were com-
pliant with IBM Softcore requirements. These inputsto the tool were provided in the Tool Com-
mand Language (TCL) timing assertion files described in detail below. The vaues were modified

from sample files provided by Peter Jenkins for IBM Softcore devel opment.

A phase file was created for the core that defined the clock period at 10ns with a50% duty cycle.

In contrast to the significance of the clock period, the duty cycle of the clock was not a significant

factor that affected the performance of the netlist. Both leading and trailing edges of the clock
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were set symmetrically with aworst case slew of 500ps and a best case dlew of 50ps using clock
overrides. User delta adjusts were set to test the netlist under more stringent timing. These delta
adjusts required the setup tests to have at least a positive slack of 600ps and the hold teststo have

greater than a 100ps positive dack.

A file describing the primary input arrival timeswas also created. The clock input for Softcoresis
ideal, sothereisno delay initsarrival. The clock slew was defined the same as it was in the phase
file. All other inputs signals to the core (stall, reset, valid_in, sample) are given a maximum of
half the clock cycle to arrive at the DUT input interface, while their minimum time for arrival was
set at 500ps. A fast late slew rate of 700ps was chosen for the Pl data. The faster choice was
intended to reduce short circuit power. The early dew rate, used for hold time checks, was set to
20ps. These requirements are made to reduce electrical violations after integration of the coreinto
achip. Furthermore, they attempt to model the bounds of atypical System On Chip (SOC) timing
environment, where either low power gates or very high power gates can drive the inputs to the

core.

Another filewas created for primary input maximum capacitance declarations. Defining resis-
tance and maximum capacitive load values for the driving gates allowed the Einstimer tool to test
that typical customer gates could drive the core. During the synthesis phase, these same con-
straints were used. The clock was idealized, since clock trees are designed and inserted at a later
phase when the coreisintegrated into a chip. The clock idealization was achieved by setting a vir-
tually infinite capacitive limit of 999pF on the clock input port, thereby allowing it to drive alarge

number of gates without repowering. Repowering of the clock net was avoided so buffers would
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not be inserted to create unwanted delays on the clock lines. The resistance was set to 0 KQ so
that the RC time delay on the clock lines would be zero. All other inputs to the core were not ide-

alized. They were set to have maximum capacitances of 0.2pF and resistances of 1KQ.

A file describing the expected time of arrival for all the primary outputswas created. It provided
the late setup and early hold time requirements for the outputs of the core. At the latest, outputs
were specified to be valid at 20% of the clock cycle or at 2ns. At the earliest, the outputs could
become valid immediately at Ons. These conditions allow up to 80% of the clock cycle timeto be

used by afollowing unit.

Requirements are set for the smallest and largest loads that the output must be able to drivein a
primary output loading file. Again, these assertions are made to reduce risks of electrical viola-
tions after integration of the core into a chip. The worst case and best case capacitances are set to
0.3pF and 0.01pF respectively. The fanout is set to zero in order to keep the capacitance at acon-

stant value.

Finally, interconnect effects on timing are accounted for by assertions in the wire-load file. Even
though the size of the coreis about 135K cells, which would optimally utilize a 180K cell wire
load model, applications of a softcore require the use of the 5.3mm chip wire-load model. Thisis
because no placement is done for Softcores, so it must be ensured that the core will pass timing

even if thelogic is spread across the entire chip.

8.3 Timing Driven Modifications
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Results from static timing analysis led to modifications at several stages of the project. Changes
were made in the design, in the RTL coding style, in the synthesis environment, and at the gate-

level netlist.

Static timing setup time violations, found in late mode analysis, made it apparent that there was a
considerable design flaw in the control logic. The PO Alert was not latch bounded and was logi-
cally dependant on the Pl valid_in. An error was created because the Pl arrived at 5ns after theris-
ing edge of the clock, but outputs were expected to be valid no later than 2ns after the clock. The
setup time violation of greater than 3ns obviously flagged this design error. It was corrected by

inserting aflip flop to make Alert latch bounded.

The RTL was further modified to hand optimize some of the elements in the longest delay paths
that created smaller setup violations. For example, the two, two-input multiplexorsin the RAC
units were recoded as one, three-input multiplexor. Unfortunately, these changes yielded very lit-

tleto no gainin timing.

To fix the setup violations, the long delay paths essentially had to be sped up. This was done by
over constraining the Synopsys Design Compiler synthesis tool. By over constraining the synthe-
sistool, the discrepancy in operating conditions between the synthesis and timing tools was
accounted for. Specifically, Synopsys Design Compiler performed its optimizations using models
at 100 degrees Celsiuswhile the Einstimer static timing tool used models analyzed at 125 degrees

Celsius. The synthesistool was over constrained by effectively reducing the clock period (see
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synthesis section for more details). The effect wasthat gates with large delaysor large Sewswere

powered up to run faster.

Once the proper constraintsfor synthesis were determined, and the new netlist passed all the setup
tests, attention was focused on passing the 1,619 hold time violations found in the early mode

analysis. These violations meant that there were fast paths in the design, where data needed to be
sdowed down. The Booledozer tool was used to insert delay books from the standard library in all

the fast paths to eliminate the hold time violations.

In the final electrical tests, the Booledozer tool found no violations. However, if books were
found to drive too large a capacitance, their power level could have been incrementally increased

by hand until the violation was resolved.

The new netlist, altered to meet all the timing requirements, increased in size to 135,407 cells.
The addition of the delay elementsin the fast paths accounted for all 14,640 cells of increase. An
approximate transistor count for the core can be obtained using the provided technology specific
IBM SA27E ratio of 2.96 cells per gate. Referencing atwo-way NAND gate, an estimation of
approximately 4 transistors per gate can be used. Thisleads to a conversion factor of 1.35 transis-

tors per cell. Hence, the total number of transistorsin the design is estimated at 182,800.

Other features of the netlist include 12 bits of inputs, 16 bits of outputs, 12,956 instantiated gates,

and 3,169 register hits. The average fanout for each book is approximately 2.025, which is well

below the 2.7 value recommended to avoid wiring congestion in the physical design.
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9. Design For Test Compliance (DFTC)

The final front-end stage required by IBM Softcore development methodology is the design for

test compliance (DFTC). This step is driven for manufacturing testability purposes.

The process is mostly automated with the use of the DFTC Cortex tool. Three pre-physical design
checks are made: Electrica Rule Checks (ERC), Pin Usage Checks (PUC), and Name Checks
(NAC). The ERC callectsal the pin typeinformation for all the books being instantiated in the
netlist of the core. It makes surethat all the correct pinstypes are being driven or are driving other
structures. The PUC makes sure all the synthesis rules (SRULES) are being abided. For instance,
it makes sure that pins mandating a connection have one. For example, al latch outputs must be
connected. The NAC checks the net names and ensures that there are no illegal charactersor for-

mats.

The Cortex tool invoked the IBM internal TestBench tool to perform testbench checking. It makes
sure all instantiated books can be located and compiles all their associated faults. Although the
DUT contained 187,900 faults, they were collapsed into 139,890 faults once the books were con-

nected. Test patterns for the transition and stuck faults are automatically generated.

Next, the Cortex tool launched the IBM internal Booledozer tool to do the design for test synthe-

sis(DFTS) process. This process replaced all pseudo flip-flops from the standard cell library with

real master-slave pairs of level sensitive scan design (LSSD) latches. The LSSD latches have
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extraclock and control pinsfor testability purposes. A, B, and C clock pins areinserted aswell as

scan in and scan out pins[14].

Test structure verification (TSV) ensuesto make sure al the latches or flip flops are accessible
through ascan chain. Thisis necessary for observability and testability. Furthermore, it eliminates
race conditions in the test patterns. For a softcore, only one scan chain is created that includes all
1-bit registersin the design. The scan chain length for the DUT was 3169 flip-flops, indicating all
the registersin the design where included. This scan chain was used in thefinal stepsto determine

the test coverage of the system.

The TestBench tool first flushed all the latches in the scan chain, successfully testing 75,437 or
53.93% of al the collapsed faults. Cortex tested the remaining faults by setting up the latches with
specific patterns, launching the scan out, and analyzing the results. Fourteen redundant logic paths
were found, and were therefore rendered untestable. However, the DUT still met IBM Softcore

requirements and passed DFT C since the final test coverage was 99.99%.

119



10. Power Analysis

The major component of power dissipation in the design is attributed to dynamic CMOS switch-

ing, as calculated by the formulain equation 10.1. The targeted IBM SA27E technology deter-

1

P = 5. ps.fCLK

2
* C|_ *Vbp (Equation 10.1)

mined the power supply voltage (V 4q). Capacitive loads (C, ) scaled proportionately with the
technology constants aswell. The JPEG core specifications set the clock frequency (fo k) at 100
MHz. Few parametersin the power calculation were left for optimization by the designer. Attain-
ing adesign with reduced cell count optimized the capacitive load factor in the power calculation.
The primary objective of the “ power aware” architectural design of the DUT was to reduce the

probability of switching (pg) factor within the core to attain low power.

Power analysis of the DUT was conducted during the beginning and ending phases of the project
development. An early power calculation of the architectural design, using spreadsheet analysis,
provided a rough estimate of power consumption. An accurate measurement of power consump-
tion was obtained during the final phase of the project by using the Sente WattWatcher tool on the

synthesized netlist that had passed static timing.

10.1 Spreadsheet Analysis
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The spreadsheet analysis technique of estimating power consumption was done in theinitial
phase of the project to determine the best of two different algorithms, both of which resulted in a
different architectural implementation. Prior to results from spreadsheet analysis, it was unclear
whether the Chen and Fralick 1-D DCT algorithm was best extended to two-dimensionsviaa

direct approach[6] or through conventional row-column decomposition methods.

Initial architectural designs were formulated for both 2-D extensions of the Chen and Fralick 1-D
DCT agorithm. The architectures provided estimates of the combinational logic area, number of
flip flops, and switching factors for each implementation. Estimated cell counts of combinational
logic in the architectures were found by determining which logic elements would be needed from
the library. Then, the IBM ASIC SA27E Databook was used to find the cell count of each antici-
pated logic element in the design. Theinitial designs assumed minimum computational accuracy,
where all bus widths were 8 bits. The reduced accuracy limited the number of flip flopsin the
design that stored intermediate calculations between pipeline stages. The number of flip flopsin
the designs were manually counted and included in the respective spreadsheets. From the archi-
tecture, it was clear that flip flops dividing pipeline stages were only being enabled only once
every 8 clock cycles. Thisknowledge helped set the register switching factor estimatein the

Spreadsheet.

Theinitial design of the row-column approach contained 1,777 flip flops and had atotal cell count

of 79,686 cells. A 0.1 activity factor was estimated for the combinational and flip flop switch fac-

tors. The design for the direct approach used the same switching factor estimates. However, the
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total number of flip flops had increased to 7,967 and the total number of estimated cells rose to

157,975.

The IBM Methodology team provided an SA27E technology specific spreadsheet template to
estimate power consumption. Design parametersincluding operating voltage, clock frequency,
combinational logic area, flip flop count, and switching factors were input to the spreadsheet. For
the direct approach design, the anticipated register arrays were also incorporated into the spread-
sheet analysis. The spreadsheet accounted for technology constants such as gate length and data
and clock capacitances. It created estimates of the clock tree and included it in the total power
consumption. Initial results of spreadsheet anaysis produced a41mW power estimate for the row

column design, while the direct approach design was estimated to consume 127mW of power.

Initial spreadsheet analysisindicated the direct approach required approximately twice as much
silicon area as the row column method and consumed about three times as much power. Thisdra-
matic difference can be attributed to theirregularity of the direct approach agorithm that created
significant control logic overhead in the design. These results confirmed that the best algorithm
for hardware implementation was based on row column decomposition. Therefore al the follow-
ing development stages of the project were done only on the optimal, fast, Chen and Fralick 1-D

DCT agorithm extended to two dimensions viarow-column decomposition.

10.2 Sente WattWatcher Analysis of the Netlist
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The final product, which was a verified, synthesized, and timed netlist, underwent refined power
analysis using the Sente WattWatcher tool. The tool was set to run in full ssmulation mode, in
which switching factors were utilized for all netsin the gate-level design. These switching factors
are obtained by writing out activitiesfiles from the M TI simulation environment of the netlist.
The WattWatcher power calculations incorporated the SA27E technology and library parameters.
Furthermore, it estimated a clock tree network for the design and included that power dissipation

in the total.

Two types of image data were tested on this design: unnatural image data and natural image data.
The unnatural image set consisted of JPEG compliancy images A and B (refer to section 6.1). The

natural image data set was obtained from the Barbaraimage, shown below in figure 10.1, which

Figure 10.1: BarbaraImage

was represented in the luminance-chrominance (YUV) coordinate system[2]. The luminance
component (Y), provided the information of the gray scale version of theimage whiletheU and V
chrominance components provided the extrainformation to convert the gray scaleimageto a

color image. Each of the luminance-chrominance components were processed separately by the
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DCT. The resulting coefficients corresponding to each component are normally interleaved in

post DCT processing.

Table 10.1 provides the results of the power estimation for the different input sets. Compliance
images A and B, were fully characterized to derive the unnatural power estimate. The total num-
ber of unnatural blocks tested was 286, which corresponded to the computation of 18,304 coeffi-
cients. The natural Barbaraimage (figure 10.1), was tested over the computation of 69,120
coefficients, corresponding to the first 1080 blocks, or first 24 rows of pixels.

Table 10.1: Power Consumption

Image Wireload Model | Power (mW)
Compliance A 5.3mm Chip 79.7
Compliance B 5.3mm Chip 87.1
IBarb, U component 5.3mm Chip 65.0
IBarb, V component 5.3mm Chip 63.9
IBarb, Y component 5.3mm Chip 73.2

Astable 10.1 highlights, the power consumption for the calculation of the luminance component
is approximately 14% greater than the average power consumed from cal culation on the chromi-
nance components. This significant increaseis not surprising since the luminance component con-

tains the majority of the edge information in the image.

Across al three natural image components, an average power of 67.4mW is estimated. Average

power isaso computed across the unnatural compliancy images A and B. The results of average

power calculations across the natural and unnatural data sets are given in table 10.2 below. On
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average, processing of the natural data consumed 23.7% less power than the processing of unnat-
ural data.

Table 10.2: Average Power

Image Type Avg Power (mW)
Unnatural 834
Natural 67.4

Results show the design did dynamically scale down power consumption based on increasing
input correlation. From the unnatural image data set, the worst case power is estimated at
87.1mW. The lowest power, estimated from the natural image sets, was 63.9mW. The data depen-
dant values for best and worst case power consumption indicate a maximum savings of 36.3% in

power consumption can be achieved with correlated inputs.

Aside from data dependant power reduction, a clock gating scheme (detailed in section 7.1) was
implemented in the DUT to reduce power in the clock net. The power savings achieved from

clock gating isyet to be measured.

All power analysis was done on the DUT that was synthesized to the 5.3mm chip wire-load
model. To study the first order affects that the required larger wire-load model had on power, a
comparison was made to when the more optimal, 180K cell wire-load model was selected in the
tool setup. Although the netlist of the DUT did not change under the two comparisons, Wait-
Watcher used different resistance and capacitive values which corresponded to each wire-load

model.
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Power comparisons between the 5.3mm chip and 180K cell wire load models were performed
over 1366 blocks. The same data, consisting of both unnatural images and the YUV components
of anatura image, weretested on both models. The results are shown in table 10.3. A 29.6%
increase in power results from the use of the 5.3mm chip wire load model asopposed to the 180K
cell model. Of course, power comparisons would have been even more dramatic if the DUT were
synthesized to the 180K cell wire-load model instead of the 5.3mm chip wire load model. If the
core were synthesized with the lower wire-load model, lower power elements could have been
selected by the tool to further reduce overall power consumption.

Table 10.3: Affects of Wire-load on Power

Wire-load power
Model (mWw)

180K Cdlls | 57.0
5.3mm Chip | 73.86

Theinitial power estimates obtained from spreadsheet analysis were along the same order of mag-
nitude to those obtained from the Sente Wattwatcher tool. The lower estimate from spreadsheet
analysis can be attributed to the minimum accuracy architecture which had to be significantly
revamped following compliancy testing. Furthermore, the initial hand estimates for combina

tional cell count did not account for the large, 5.3mm chip wire-load model. Following synthesis
and timing, exact combinational cell counts and flip flop counts of the DUT were acquired; the
combinational area of the DUT was 69,940 cells and it contained 3,169 flip flops. With all other
parameters set the same as described in section 10.1, spreadsheet analysis of the synthesized,

timed DUT resulted in a power estimate of 76mW. Since the spreadsheet did not take into account
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data dependant power scaling, it is not surprising that the estimate is approximately the same as
the average between the Sente Wattwatcher power estimates for natural and unnatural images --
75.4mW. Table 10.4 provides the breakdown for power dissipation within the DUT as calculated
through final spreadsheet analysis.

Table 10.4: Breakdown of Power Dissipation within the DUT

Percent of Power
Component .
Consumption
Clock Tree 45%
Flip Flops 22%
Combinational Logic 33%
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11. Performance Comparisons

The 2-D DCT DUT was dedicated to low-power on the algorithmic and architectural levels. The

core was optimized for power through reduced capacitive loads and switching factors. More

details on adopted power reduction methods are outlined in section 4. On natural images, the

DUT consumed an average of 67.4 mW across all components.

The features of the DUT are compared to three other similar 2-D DCT products on the market in

thetable 11.1 below. The DUT islisted as chip D. While al four designs are dedicated to low

power, they achieve this goal by focusing on different design parameters. There are similarities

between the implementations though. For instance, all the implementations use afast 1-D DCT

algorithm as abasisfor extension to 2-D. Furthermore, all incorporate DA methods for calcul at-

ing products. The comparison across the four chips will help determine the limitations of the

design and provide insight to future improvements that can be made. Furthermore, it confirmsthe

competitive nature of the developed product.

Table 11.1: Feature Comparison

Chip A ChipB ChipC ChipD
Transistor Count | 152,017 120,000 120,000 180,000
Clock Rate 100 MHz 150 MHz 14 MHz 100 MHz
Latency 198 Cycles 112 Cycles 108 Cycles
Block Size 8x8 8x8 8x8 8x8
Supply Voltage 20V 09V 156V 18V
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Chip A ChipB ChipC ChipD
Throughput 64 clk/block 64 clk/block
Power 138 mV 10 mW 5 mwW 67.4 mW
Accuracy HDTV H.261 JPEG
Technology 0.6um CMOS, | 0.3um CMOS, 0.6um 0.18um CMOS,
SPDM triplewell, DM | CMOSTM | dual well

In order to effectively compare the implementations presented in table 11.1, one must reflect on
how the different design metrics affect dynamic power consumption. For this purpose, equation
10.1isreplicated below. Power increases proportionately with the clock frequency aswell as with

_1 2 i
P = 5 P felk* €L ° Vob (Equation 10.1)

the square of the supply voltage.

Chip A [9], designed at the DSP/IC Design Lab of National Taiwan Universty, optimized for
power at the algorithmic, architectural, and circuit levels. Specia adder, memory, and register
power saving circuits were designed and used extensively in this chip. The adders had a hybrid-
architecture that combined the carry select structure for high speed and the Manchester structure
for low power. A power saving ROM was designed using precharged logic. The dual ported
SRAM used reduced voltagesto achieve low power. A TSPC D-FF register design was employed,
which enabled combinational logic to be embedded within the flip flopsin a pipelined datapath.
Compared to the static CMOS D-FFs, the TSPC D-FFs were sited to be better in terms of power,

speed, and transistor count.
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At the algorithmic level, chip A adopted the direct approach [9] to the 2-D DCT to attempt to
reduce computational complexity. The design needed several 64-word SRAMswith varying word
sizes. Asidefromthe ALUsused inthe 1-D DCT to calculate the DA, 64 other 13-bit adders were
necessary. Other substantial chunks of logic were designed as routing modules to handle the irreg-
ularity of the algorithm. This same a gorithm was investigated for use in theDUT, but after initial
architectural design and spreadsheet power analysis, it was not selected due to very high cell

counts and power consumption.

Chip B [11], designed for the Toshiba Corporation by members of the ULS| Device and System
Engineering Laboratories, used the conventiona row-column approach for the 2-D DCT. The
low-power design relied heavily on device level optimizations. Multi threshold voltage CMOS
(MT-CMOS) and self-adjusting threshold voltage schemes were developed and applied to logic
gates and memory elements throughout the design. Thisenabled alow supply voltage of 0.9V
without negatively impacting performance. As can be seen from equation 10.1, the reduced oper-
ating voltage had dramatic effects on reducing power. Furthermore, thetargeted technology had a

triple well process that was useful for isolating the sensitive circuits from noise sources.

Custom circuits, utilizing the MT-CMOS, were aso an integral part of reducing power in chip B.
Low voltage SRAMs were designed with six transistors per cell, and alatched sense-amplifier. A
carry skip structure was selected for the adder and was optimized using small-swing differential

pass-transistor logic (SAPL) and sense amplifying pipelineflip flops (SA-F/F).

130



The third design, chip C, was developed at the Massachusetts I ngtitute of Technology [10] to
reduce power consumption at the algorithmic, architectural, and circuit levels. Smilar to the sec-
ond design, chip C used row-column decomposition to extend the 1-D DCT to 2-D. The DA ver-
sion of the Chen Fast 1-D DCT [7] was chosen in chip C. Thisisthe same algorithmic
combination used in the DUT. Similar to chips A and B, chip C[10] also used custom circuitry to
achieve low power. Adders were all designed with a 4-stage carry-bypass structure. Bit rejection

unitswere aso designed and optimized at acircuit level.

Chip C adopted a unique approach to low power at the architectural and algorithmic interface. It
utilized data-dependenciesto scale down power consumption by introducing MSBR. Power could
also be scaled down via dynamic selection of computational accuracy. Note that the very low

power estimate was achieved by testing the chip at a very slow clock frequency 14 MHz.

Chip D intable 11.1 provides the characteristics of the DUT. It was developed at the IBM Micro-
electronics Division in conjunction with the Massachusetts Institute of Technology. Design D
used the same algorithmic selections as chip C. It also implemented MSBR to dynamically scale

down power consumption by reducing the switching of nets.

Design D was uniquein that it was a softcore while the other chips had gone through physical
design. This constrained Chip D from using circuit or device level optimizations since all logical
elements were selected from a standard library. Physical design would allow chip D to optimize
Size and power to greater degrees. For instance, components with reduced transistor count could

be chosen. Furthermore, the extension of design D into a hardcore would allow for the optimiza-
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tion of clock netsaswell. This could potentially be asignificant factor as chip A and C estimated

26% and 40% of total power dissipation was in the clock buffers respectively.

In essence, when the differing design metrics are accounted for, each of the dedicated low power
designs presented in table 11.1 consume around the same amount of power. The circuit optimiza-
tions presented in designs A, B, and C can always be incorporated into the DUT if ahardcore

were desired. Given approximately the same amount of power dissipation, the DUT may be opti-

mal given the faster time to market and reusability associated with a softcore.
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12. Future Work

Enhancementsto the DUT or the design’s environment can be made at all stages in the develop-
ment cycle. Genera areas of improvement include power optimization, additional core function-

ality, and development of more extensive automated verification schemes.

12.1 Architecture

At the architectural level, investigation should be made into redesigning the Transpose Stage.
This stage contained 48% of the total number of flip flops in the design and accounted for approx-
imately half the total size of the core. Since power increases proportionately with area (flip flop
count and combinational cells), the transpose stageisa critical unit to optimize in the future. One
should investigate changing the design to allow the insertion of register arrays in the transpose

stage. These arrays could optimize the size and power of this stage.

Power consumption is proportional to switching factors. To reduce power consumption in the
transpose stage, one could ping-pong the sampling and computation register stages to reduce the
the switching factors of the flip flopsin the stage by 1/2. Instead of writing to the sampling regis-
ters, and then copying the data to a set of computation registers, the sets of registers could just be
swapped once the sampling stage is full. With the design change in the transpose stage, each flip

flop would at most switch every 128 cyclesinstead of every 64 cycles as currently designed. This
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would significantly reduce power consumption of the stage to make it worth the logical overhead

that would control the ping-ponging of the registers.

Other optimizations at theRTL or architectural level could be to instantiate components from the
IBM Bitstack library. While the IBM Bitstack Library calls the SA27E standard library for basic
building blocks, it contains higher-level logic elementswith balanced or repeated structures and
wide data paths. The Bitstack elements have been optimized with respect to performance, density,
power, and size. These elements have been designed with 90-95% density, short interconnects,
and small wire capacitance and RC effects. The bits of the datapath are kept physically aligned
and logic isplaced in an orderly fashion to avoid the random structuring that can occur from syn-
thesistools. Physical design tools have the option of identifying and taking advantage of these
elements which have a specific, optimized layout. Examples of elementsin the Bitstack library

that may improve the design include adders, multiplexors, and demultiplexers.

Aside from inclusion of Bitstack elements, further analysis and evaluation of the design could
identify other means of optimizing logic. RTL coding styles could be modified to more accurately
reflect the hardware operation. For example, alteration of the coding style could reflect the move-
ment of X’swithin the design. The ability to track X’sin the design would enable more effective

verification in the RTL design rather than finding these problems after the netlist is generated.

Another simple logic optimization would beto eliminate unnecessary registers. For example,

within the RAC units, the results from the MSB partia products were shifted |eft appropriately

before being summed with the results from the LSB partial product (figures 5.24 and 5.38). The

134



design could be changed to do the left shifting after the D-ff. This simple changewould save 32 1-

bit registersin the RAC Columns stage and 8 1-hit registersin the RAC Rows stage.

The architectural design could be modified to provide more functionality for the Alert signal. In

particular, the Alert signal should indicate all types of loading errors. As currently designed, an

invalid load is signaled by the Alert if the pipelineisin the process of flushing when valid inputs

begin (valid out = 1 and valid_in transitions from O to 1). The timing diagram in figure 12.1 illus-

trates this scenario. Correct loading of the pipeline, to enable correct tracking of valid outputs,

high for multiple of 64)
valid_in

Figure 12.1: Invalid Load Alert
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requires the valid_in signal transition from 0 to 1 no earlier than 1 clock cycle after valid_out

becomes 0. For completeness, logic generating the Alert signal should be modified to also indi-

cate the boundary case when the valid_in signal transitions high on the same clock edge asthe
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valid_out signal falls. The timing diagram in figure 10.2 highlights this case, in which the current

design does not indicate an invalid loading aert, but for which a future design should.

Figure 12.2: Unsupported Invalid Load Alert
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12.2 Verification

While it would be worth implementing some design enhancementsin the future, itis critical to
invest in amore thorough verification effort of the design. In particular, independent verification
of the design would be most valuable. This additional verification effort should focus on pipeline
functionality since the current verification suite comprehensively tested for accuracy errorsvia
automated compliancy testing. The resetting, stalling, and flushing were only tested from four or
five randomly selected states from the control FSM. The testing of these selected states did occur
during the three different phases of the pipeline: filling, steady state, and emptying. Also, specific

sequences of these control signals were tested to confirm the core specifications.

The verification environment should be extended to reset, stall, and flush the system from each of

the 65 states in the FSM during all three phases of the pipeline. In addition, more thorough inves-
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tigation should be made into the affects on the system from interactions between these control sig-
nals. With the expansion of the verification effort, greater automation will become necessary.
Extensive testing would create too much datato analyze manually, andcould therefore result in
erroneous conclusions. Furthermore, it is not feasible to maintain a design with manual verifica-
tion steps. For the current pipeline verification environment, it was more time-efficient to manu-
aly analyze results instead of devel oping complicated testbenches that themselves would require

debugging.

12.3 Synthesis

The suggested effortsin verification and architectural design are predicted to have the most sig-
nificant impact on the DUT. Second order modificationsto fine tune the design can be made in the
later stages of the design flow. In the synthesis stage, most improvements rely on optimally con-

trolling the synthesistool.

Dramatic changesto the netlist, created in the synthesis stage, are difficult to make. Thereislittle
freedom for experimentation since most of the crucial input parameters to the synthesistool are
dictated by either the IBM Softcore Methodology, the SA27E technology, or the architectural
design. One area of experimentation that significantly impacts the performance of the core, isthe
means and extent to which the synthesistool is overconstrained to meet all timing requirements
while keeping power consumption and area at a minimum. Some of the values that can be varied

to include slew rates, capacitive loads, clock uncertainty, and clock period.
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Another aspect that remainsto be analyzed is the power, size, and timing trade-offs between
incorporation of the CG-OR and CG-AND clock gating styles (7.1). Currently the DUT invokes
the CG-AND style of clock gating for conservative timing. However, the CG-OR style could be
incorporated into the netlist instead. The CG-OR style would be optimal if it created lesslogic

than the CG-AND style, and passed static timing analysis.

12.4 Static Timing

There are very few changes that can be made late in the design flow. However, one could use the
static timing information to determine the critical paths that are limiting the clock rate for the
design. For this design, the slow paths are isolated to the RAC stages. To run the core at afaster

frequency than 100MHz, one could investigate deeper pipelining of this stage.

To fix hold time violations, specific delay elements from the standard library were inserted. There
were severa choices of delay elements, but a conservative element was chosen for instantiation
into all the fast paths to maintain a moderate positive slack of afew picoseconds. Perhaps, inser-
tion of asmaller delay element would have been sufficient to pass static timing. Investigating this
suggestion is straight forward since inserting delay elements to the netlist is automated and
repeatable with the Booledozer tool. Therefore, it should not pose as a barrier to synthesizing the

RTL again in the future.

12.5 Power Analysis

138



Work can be done in the future to develop more accurate power specifications of the core as well
asto ease the power calculation effort. The power specification for natural images was generated
from testing portions of one natural image. To get amore characteristic result, it is recommended
to run power estimates on a variety of natural images. In order to do this, in alimited amount of
time, better methods of acquiring switching factors from ssimulation is necessary. Currently, VCD
files are written out from the simulator, but they double the simulation time, which for anetlist is
already lengthy. Even worse, the power analysistool would take days to generate power estimates
across just one natural image. In addition, the generated VCD files, which list every changein

every net at every picosecond, would be too large for storage.

To cope with issuesrelated to VCD files, the Sente Wattwatcher tool supports |AF format activity
files. IAF files are supposed to be much faster for the power tool to analyze, and are supposed to
be magnitudes smaller in size than VCD files. Sente provided code for insertion into the design
netlist to enable the MTI simulator to generate the IAF files. The | AF capabilities were not used
because the provided code created segmentation faultsin the simulator at runtime. In the future, it

may be worth the time to debug this issue so the benefits of |AF files can be exploited.

12.6 Core Utilization or Expansion

The 2-D DCT softcore design could be extended to offer a hardcore product through an additional

physical design effort. A hardcore version would result in significant benefits with regardsto area,

power, and clock cycle time of the design. Furthermore, a hardcore version of the low-power 2-D
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DCT would provide a competitive edge in the market since most the other low-power options

have completed physical design (11).

At amuch broader scope, effortsin the future should be directed to utilize the designed softcore
implementation of the 2-D DCT. For instance, a JPEG core could be developed. It is estimated

that the availability of this softcore would reduce the JPEG core development effort by 1/3.

Furthermore, development of this core has provided insight into algorithms and design techniques

to reduce power for DCT-based transforms. One could use this expertise to develop a low-power

inverse DCT core.
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13. Conclusions

A low-power 2-D DCT core was designed according to IBM ASIC Softcore Methodology. Algo-
rithmic selection, architectural design, verification, synthes's, static timing, design for test com-
pliance, and power analysis development stages were outlined in this thesis. The core was
targeted to the IBM SA27E or 7SF technology which featured at 0.18um CM OS technology and
1.8V supply voltage. The core operated at 100 MHz, at which clock rate it consumed approxi-
mately 63mW of power on natural images. The resulting area of the core was 135,407 cells or

approximately 182,800 transistors.

While the DUT was implemented with enough accuracy to be JPEG compliant, it was designed
with minimal resourcesto reduce cell count and power consumption. The 2-D DCT was dedicated
to low-power on the algorithmic and architectural levels. The design utilized the matrix factoriza-
tion version of the Chen and Fralick fast 1-D DCT algorithm which could be implemented with
distributed arithmetic to remap the high-power, high-cost multiplications to simple additions and
shifts. Results from spreadsheet power analysisidentified row-column decomposition asthe opti-
mal 2-D extension of the 1-D agorithm. This2-D approach kept the control logic overhead at a

minimum and increased the regularity of the design.

At the architectural level, most significant bit rejection units were designed to produce a tempo-

rally “power-aware” system. Power consumption dynamically scaled down with increasing input

correlation. Thisresulted in a power savings of 23.7% for natural images compared to unnatural
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images. The 2-D DCT core aso made use of clock gating methods to reduce power consumption

in the clock tree.

The 2-D DCT project was completed at the IBM Microelectronics Division under the ASIC Digi-

tal Cores| department in Burlington,Vermont as part of the MIT VI-A program.
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