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Abstract

Spread spectrum communication systems have seen widespread usage in wireless sys-
tems. Spreading is used to provide diversity in frequency and results in a number of
benefits. However, recent literature has shown that for a channel that decorrelates
in time and frequency, and given second and fourth moment constraints that decay
inversely and inverse squared, respectively, with the spreading bandwidth, the ca-
pacity of a wideband system in a fading channel goes to zero in the limit of infinite
bandwidth. Despite the detrimental asymptotic performance of wideband systems,
there may still be an appropriate range within which spread spectrum techniques can
be gainfully employed. By adapting the upper bound from Médard and Tse [12],
and deriving a suitable lower bound, it is possible to obtain the desired range for
the optimal spreading bandwidth. The single user result is then extended to the two
user case as a representative example of the multiple access scenario. For both the
single user case and the two user case, this thesis shows that there exist a non-trivial
minimum spreading bandwidth that correlates closely with those parameters used by
commercial spread spectrum systems. Furthermore, given typical system and channel
parameters, the minimum spreading bandwidth behaves as a linear function of the
energy of the propagation coefficient.

Thesis Supervisor: Muriel Médard
Title: Assistant Professor






Acknowledgments

I wish to thank my thesis supervisor, Professor Muriel Médard, for her patience and
guidance throughout this thesis and my graduate education at MIT.

I wish to thank my parents and my brother for their love and encouragement
throughout my years of growing up, and especially during this stressful year of thesis
undertaking.

I would also like to thank Mingxi Fan for his help throughout my undergraduate
and graduate education at MIT. The many hours of discussions gave me a greater
understanding of the exciting field of wireless communications.

Lastly, I wish to thank all my friends at MIT for making the past five years fun

and memorable.






Contents

1 Introduction

1.1 Motivations . . . . . . . . . .,
1.2 Existing Results . . . . . . .. ... oo
1.3 Thesis Outline. . . . . . . . . . . . . . ..

Analysis of Single User Scenario

2.1 Channel Model . . . . . .. .. ...
2.1.1 Brief Note on Notation . . . . .. ... ... ... .......

2.2 Upper Bound to Wideband Capacity . . . .. .. ... ... .....
2.2.1 Tightness of the Upper Bound . . . . . .. .. ... ......

2.3 Lower Bound to Wideband Capacity . . . ... ... ... .. ....
2.3.1 A Binary Signaling Scheme . . . ... .. ... ... ... ..
2.3.2 Tightness of the Lower Bound . . . . . .. ... ... ... ..

24 Analysisof Results . . .. ... ... ... ... .

2.4.1 Effect of Varying Parameters. . . . . . .. .. .. ... ....

Analysis of Two User Multiple Access Scenario

3.1 Channel Model . . . . ... . .. . . ... ...

3.2 Upper Bound to Wideband Capacity . . ... ... ... ... ....
3.2.1 Tightness of the Upper Bound . . . . . . . .. ... ... ...

3.3 Lower Bound to Wideband Capacity . . ... .. ... ... .....
3.3.1 The Binary Signaling Scheme . . . . ... ... ... .....
3.3.2 Tightness of the Lower Bound . . . . . . ... ... ... ...

7

13
14
15
17

19
20
22
23
25
26
26
30
31
32



3.4 Analysisof Results . . . ... ... ... ... ... ... ..., 54

3.4.1 Upper Bound to Multi-access Capacity Region . . . . . . . .. 54
3.4.2 Comparison of the Upper Bound to Lower Bound . . . . . .. o6
3.4.3 Effect of Varying Parameters. . . . . . .. .. .. ... .. .. o8
4 Conclusion and Further Work 61
A Equations and Proofs 63



List of Figures

2-1
2-2

2-3

2-5

2-6
2-7

3-1
3-2
3-3
3-4

Discrete Binary Channel with cross-over probabilities py and p, . . . 28
Single User Upper and Lower Bound — (W = 100KHz, 02 = 4, v = 100,

T=01sec,E=20,p=0.04) . ... ... ... .. ... ... 32
Effect on Capacity Bounds with varying p — (W = 100 KHz, 0% = 4,

v=100,T=0.1sec, E =20,p=0.04t00.1) . . . . ... ... .... 34
Effect on Capacity Bounds with varying W — (W = 50 KHz — 500 KHz,

0% =16,7=100, T =0.1sec, E=20,p=0.04) . . . .. ... .... 35
Effect on Capacity Bounds with varying £ — (W = 100 KHz, ¢% = 16,

v =100, T = 0.1 sec, £ = {10, 20, 30,80}, p = 5—2) ........... 37
Single User: 0% vs. minimum g . . . . . . . . .. .o 39
Single User: the slope m as £ and yisvaried . . . . . .. .. ... .. 40
Discrete Binary Channel with cross-over probabilities py and p, . . . 49
Upper Bound to Capacity Region for different p . . . . . . . . . . .. 55
Achievable Rates used in Comparison of Upper and Lower Bound . . 57
Two User: Effect of Varying € . . . . .. ... ... ... .. .. 58
O% VS, MINIMUIM [ . . . o o o v e e e 60



10



List of Tables

2.1 Summary of Channel Model Parameters

3.1 Summary of Channel Model Parameters

11



12



Chapter 1

Introduction

In spread spectrum communication systems, a signal is made to occupy a bandwidth
beyond that which is minimally required prior to being transmitted. This bandwidth
expansion factor is referred to as the processing gain. Spreading of a signal is generally
obtained through direct sequence or frequency hopping techniques. In frequency
hopping techniques, in a pseudorandom manner, the signal is made to occupy different
frequency bands at different times so that the effective bandwidth occupied by the
signal over time is much greater. If the hopping pattern for each user is constructed
such that only one user occupies a particular section of the bandwidth at a time, then
frequency hopping spread spectrum reduces to a frequency division multiple access
(FDMA) problem with added diversity.

By contrast, in direct sequence spread spectrum, also call direct sequence code
division multiple access (DS-CDMA), each user is assigned a code and shares the
bandwidth with all other users. Each bit of the original signal is multiplied by the
spreading code to create a string of “chips” to achieve the desired enlargement of
occupied bandwidth. At the receiver, synchronized reception using the spreading
code performs the despreading and the subsequent data recovery. Under certain
channel conditions, if orthogonal codes are used, the users will not interfere with each
other. Otherwise, codes with low cross-correlation, such as Gold codes in the uplink
of Wideband-CDMA, are used to mitigate the effect of multiple access interference.

At the cost of extra bandwidth, spreading produces a number of benefits, of
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which the military was the first to exploit. Spread spectrum techniques produce
anti-jamming and low detectability properties that have been of particular interest
to the military. The wideband property of a spread spectrum signal reduces the
effectiveness of a hostile jammer by forcing it to distribute its finite resources (power)
over a wider bandwidth. Furthermore, in direct sequence spread spectrum, because of
the processing gain at the receiver, a signal can be transmitted well below the ambient
noise level, rendering detection by hostile parties difficult. At the same time, after
despreading, the processing gain allows the signal to still be received with sufficient
Signal to Noise Ratio (SNR) for proper decoding. Therefore, everything else being
equal, a spread spectrum signal is more likely to be received accurately through a
jamming environment.

As cellular wireless communication began to be widely used, researchers began to
investigate spread spectrum techniques for multiple access purposes. Spread spectrum
multiple access techniques, more specifically Direct Sequence Code Division Multiple
Access (DS-CDMA) offers a number of advantages over Frequency Division Multiple
Access (FDMA) and Time Division Multiple Access (TDMA), the competing forms
of multiple access techniques. The DS-CDMA variant of spread spectrum promises
two important benefits over TDMA and FDMA: optimal frequency reuse, soft user-
capacity constraint and graceful degradation of performance. Partly due to these
benefits, the DS-CDMA variant of spread spectrum has gained widespread acceptance
as the technology of choice for the Third Generation cellular mobile communication

systems.

1.1 Motivations

Spread spectrum systems first saw use in the 1970’s when the military made use of its
anti-jamming and low detectability properties. In the 1990’s, Qualcomm pioneered
the commercial application of CDMA systems, first in Omnitrac, a tracking system for
trucks, and then in IS-95 CDMA, a cellular mobile radio system. At present, all Third
Generation cellular mobile communication systems (W-CDMA, CDMA2000) that
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are deployed or slated for deployment are based on DS-CDMA principles. However,
until recently, little has been done to study the effect of spreading bandwidth on the
capacity of communications systems operating in a wireless environments.

The wide use of DS-CDMA systems entails that the study of the capacity regions
of spread spectrum systems in wireless environments is highly relevant to effective
deployment of new systems. When a CDMA system using white-noise like signals is
spread to increasingly large bandwidths, it becomes increasingly difficult for the rake
receiver to measure the channel and correspondingly more difficult for detection to
take place. Determining the capacity regions of a spread spectrum system makes it
possible to determine the range of bandwidths to which a signal should be spread. The
outcome of this thesis will hopefully aid future wireless system engineers to optimize

bandwidth usage given design parameters.

1.2 Existing Results

The information theoretic study of wideband fading channels dates back to the 1960’s
when Kennedy in [7] showed that the capacity of an infinite bandwidth Rayleigh
fading channel is equal to that of an infinite bandwidth additive white Gaussian
noise (AWGN) channel. In the last decade or so, further research into wideband
fading channels has yielded a wealth of significant new results. Recent results in the
professional literature on this topic relate to the capacity of a wideband channel as
the spreading bandwidth is increased to infinity.

In [11], Médard considered bandwidth scaled spreading over independent fading
channels. The available bandwidth is divided into contiguous slices of equal size,
and the available power is distributed evenly over the entire spectrum. Within each
bandwidth slice the signaling method is unchanged except for the downward scaling
in power as the total bandwidth is increased. Using this model, the author showed
that for large bandwidth DS-CDMA, spreading has adverse effects on the achievable
rate when the channel truly decorrelates in frequency or when the channel bandwidth

slices are correlated but not jointly estimated.
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In [13], Médard and Gallager further extended the result in [11] to show that
very large bandwidths cannot be effectively utilized by spread spectrum systems that
spread the available power uniformly over both time and frequency. By expressing
the input process as an expansion localized in time and frequency of orthonormal
set, of functions, the fourth moment of each coefficient of this expansion is uniformly
constrained. Such a uniform constraint of the fourth moment forces the mutual
information to decay to zero inversely with increasing bandwidth. This result suggest
that conventional DS-CDMA systems do not scale well to extremely large bandwidths.
Therefore, ultra wideband systems using uniform signaling over time and frequency

over gigahertz of bandwidth should only be used over quasi-static channels [13].

Related to the result of [13] are those of Subramanian and Hajek, where the au-
thors showed an alternate derivation using using the theory of capacity per unit cost
for fourthegy. The results in [14] reinforces the conclusion in [13] that signals need to
be bursty in time and/or frequency to be able to achieve constant mutual information
rates per unit power over ultra-wideband wide-sense-stationary uncorrelated scatter-
ing fading channels [14]. Another recent result by Hajek and Subramanian is one that
considered a peak signal constraint going to zero [6]. The authors showed the difficulty

of transmitting small peak constrained signals over Rayleigh fading channels.

Other related results include [15], where the authors consider a wideband multi-
path fading channel and showed that, subject to energy constraint, the capacity of
the channel is inversely proportional to the number of resolvable paths. While in this
case bandwidth does not directly affect capacity, if the number of paths is very large
and the delays between paths are significant, then the number of resolvable paths
increases with bandwidth. As the number of resolvable paths increase, capacity suf-
fers. Furthermore, the above result holds even if the receiver is able to perfectly
track the timing of the different paths. If the receiver does not have perfect timing
knowledge, then the capacity of the channel goes to zero as bandwidth increases to

infinity irrespective of the number of resolvable paths.

All of the results above consider the upper limit to capacity and does not offer

a range for the optimal spreading bandwidth. Despite the detrimental asymptotic
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performance of wideband systems, there must still be an appropriate range within
which spread spectrum techniques can be gainfully employed. By combining an upper
bound with a suitable lower bound, it is possible to obtain the desired range for the

optimal spreading bandwidth.

1.3 Thesis Outline

The scope of this thesis will cover both the single user scenario as well as the two
user scenario as a representative example of the multi-user case for a channel that
decorrelates in time and frequency, and using DS-CDMA signaling. In the single user
case, a theoretical analysis will be performed and insights distilled from the results.
These will then be expanded to the two-user scenario. Below is a chapter by chapter
breakdown of the contents.

Chapter Two describes the channel model, and the theoretical analysis leading
to the upper and lower capacity bounds in the single user scenario. Derivation of
the upper and lower bounds to capacity is followed by analysis of various ranges of
parameters and the resulting optimum spreading bandwidth.

Chapter Three describes the channel model, and the theoretical analysis leading
to the upper and lower capacity bounds in the two-user multiple access scenario.
Derivation of the upper and lower bounds to capacity are followed by analysis of
the capacity bounds in the two-user multiple access scenario for various ranges of
parameters and the resulting optimum spreading bandwidth.

Chapter Four will summarize the results of the thesis and point to possible areas

for future work.
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Chapter 2

Analysis of Single User Scenario

In this chapter a time and frequency block fading channel model is developed. Using
this model, an upper bound, along with an appropriate lower bound is derived. In
mobile communications, the transmitted signals are subject to additional disruptive
environmental factors not present in traditional wire-line communications. These
disruptive factors cannot be controlled or predicted, and can at best be modeled as
stochastic processes and analyzed as such. In mobile communications in a wireless
environment, the receiver must contend with a multiplicative noise, as well as the
additive receiver noise, that further degrades the transmitted signal. Fading is the
term given to this multiplicative noise in the aggregate and is in part the result of
time varying multipath. In fact, multipath accounts for most deep fades and may
change far more rapidly than other fading phenomenon, such as scattering.
Multipath results from the signal reflecting upon obstacles and arriving at the re-
ceiver with different time delays. Absent additive noise, in a stationary, non-changing
environment, multipath as a linear, time-invariant (LTI) phenomenon can be effec-
tively combatted using standard LTT filtering techniques such as echo cancellation
filters. However, multipath is entirely dependent on the transmission environment,
and in mobile communications, the mobile nature of the transmitter and receiver
produces added challenges. Owing to the constantly changing surroundings of the
transmitter and receiver, multipath in mobile communications is a time-varying pro-

cess and traditional LTI techniques no longer apply.
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Associated with multipath in mobile communications is the Doppler effect. The
Doppler effect encompass two related phenomenon, the Doppler shift and the Doppler
spread. Suppose the sender transmits a sinusoid of frequency fy, then the receiver
receives a sinusoid of frequency fg. The difference between f; and fr is the Doppler
shift and results from the relative motion between the transmitter and receiver. Rel-
ative to the sender, if the receiver is moving away from the sender, then fy > fg.
Conversely, if the receiver is moving towards the sender, then f; < fr. The magni-
tude of the Doppler shift B is a function of the relative velocity @ and the sender

carrier frequency f, given by the following:
w

where c is the speed of light. A derivation of Equation 2.1 can be found in [10], pp.
22-23.

Without multipath, the Doppler shift can be compensated at the receiver by
adjusting the frequency oscillator. With the additional effect of multipath, each
path arriving at the receiver experiences its own frequency shift. Like multipath,
the Doppler shifts in mobile communication are also time-varying. Additionally, the
range of Doppler shifts experienced by the different paths together constitute the
Doppler spread that enlarges the bandwidth occupied by the signal. Generally how-
ever, the bandwidth expansion contributed by the Doppler spread is small compared
to the channel spacing usually considered, and its effect can be considered negligible.
While the bandwidth expansion effect can in general be neglected, the time varying

characteristic of the Doppler shift represent the speed at which the phase changes.

2.1 Channel Model

This section presents a simplified block fading model that captures the decorrelation in
time and frequency. Decorrelation in time and frequency are the important character-

istics that motivate the use of the block fading model. With decorrelation in time, the

20



| Parameter | Description | Constraints/Distribution

W coherence bandwidth size
W number of coherence bands p € {positive integers}
& total average power
T length of coherence time
y peakiness of the signal
Fi propagation coefficient Fi] is zero mean, circularly symmetric,
in coherence band i complex Gaussian. E[F?] = 0%,
Xi]; input at sample time j E[X?]< ¢
in coherence band ¢ 1X| < %\/m = ﬁ
Zi); noise at sample time j Z|i]; is zero mean, circularly symmetric,
in coherence band 1 complex with normalized unit variance

Table 2.1: Summary of Channel Model Parameters

fading coefficient between coherence time intervals are uncorrelated. This is critically

related to the length of each coherence time interval. If the coherence time is large,

then decorrelation in time is unlikely. With coherence time 7" Dopplell‘ spread’ and
Doppler spread on the order of 10 Hz to 100 Hz, that gives a coherence time on the
order of 0.01sec to 0.1sec. With decorrelation in frequency, the fading coefficient be-
tween different coherence bands are uncorrelated. This is critically related to the size
of the coherence bandwidth. If the coherence bandwidth is large, then decorrelation

in frequency is unlikely. With coherence bandwidth W o and delay

delay spread’
spread typically on the order of microseconds (us) to tens of microseconds, that gives
a coherence bandwidths on the order of 100 KHz to 1 MHz. Therefore, as long as T’
and W remain within these typical bounds, decorrelation in time and frequency can
be assumed to be valid. So long as W remains inside the typical bounds of coher-
ence bandwidth, all frequency components undergo the same attenuation and phase
change. Moreover, if the channel decorrelates in time (i.e., multipath components
are separated by less than the coherence time), then the different paths cannot be

resolved and flat fading can be assumed. For a channel that decorrelates in time and

frequency, it can be modeled as Rayleigh flat fading.

The channel model used for this single user scenario is based on that described
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in [9], and extended in [12]. This is a standard Rayleigh flat fading channel that
undergoes block fading in time and frequency. Each channel over distinct coherence
bandwidths are independent, and transmission occurs over pu distinct coherence band-
widths. The propagation coefficient for each coherence bandwidth remains constant
for T', the coherence time, after which it changes to a new independent value. These
random propagation coefficients are modeled as independent, identically distributed,
zero mean, complex circularly symmetric Gaussian random variables. In addition to
the multiplicative noise associated with Rayleigh fading, there is also the standard ad-
ditive receiver noise. Here, the additive noise is also modeled as a zero mean, complex

circularly symmetric Gaussian random variable, normalized to unit variance.

Each coherence band is of size W, and samples are obtained at the Nyquist rate
of W samples per second. Thus within the coherence time T there are a total of TW
samples and the received vector in the i"® coherence band over the j** coherence time

1s:

A(i+1TW . A1+ 1D))TW A(74+-1D))TW
YT = FLi X5 + 2[5 (2.2)

Naturally there is an average power constraint imposed on the X [i]}s, for without
an average power constraint then the channel can achieve an arbitrarily large data
rate. Thus a limited amount of power £ is distributed equally to each of the u coher-
ence bands, yielding an upper bound on the second moment given by F [X [z]ﬂ < g
Additionally, in practical communication systems, there may be peak power con-
straints, leading to an upper bound on the peak amplitude. The peak amplitude is
upper bounded by |X| < 1,/FE [X [z]?], where ~y is defined as the peakiness of the

£

signal. Table 2.1 summarizes the parameters of the channel model.

2.1.1 Brief Note on Notation

The following notation is used throughout the thesis: logz is the base-two logarithm

of x, while Inz is base e logarithm.
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2.2 Upper Bound to Wideband Capacity

Based on the channel model, within each coherence band there is an average power
constraint corresponding to an upper bound on the second moment of the signal.
However, only signals which satisfy the second moment constraint with equality can
achieve the upper bound to capacity. Suppose that an upper bound is derived using
signals which do not satisfy the second moment constraint with equality, then by
the data processing inequality, the capacity of the channel with the input multiplied
by some constant o would be greater than that of the channel not multiplied by «.
Keeping that in mind, Lemma 1 gives the upper bound to capacity in the single user

scenario, which follows from the derivation in [12].

Lemma 1 The upper bound on wideband capacity based on the channel model de-

scribed in Section 2.1 is:

2

2
C (VV, E,0%,T, u, q/) < Wulog (0%% + 1) i E log (TW_SUF + 1) (2.3)

Proof:

7

1
C = lim max ( >0 A (X]i [ Y ]jﬁfﬁ) (2.4)
j=1li=

k—oo PX 1

The fourth central moment of X[i]; is -5 and its average power constraint is %

Since there are no sender channel side information and all the bandwidth slices are
independent, applying the concavity of mutual information in the input distribution
results in selecting all the inputs to be IID to maximize the righthand side (RHS) of
Equation 2.4.

First rewrite mutual information in terms of entropy:
G+1)TW G+1)TW
LG Y h")
1 HTW HTW HTW
= ChOEIRY) — SR AGWEY | XAGWRY) (25)
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Now find a suitable upper bound to Equation 2.5. First upper bound h(Y")

A=

1 YTW
(G

IN=

Cc
<

1
— log ((W&)TWV\ 2 (G+1)TW |> (2.6)
T |:}]TWJ—I
1
— log ( me)tW H O'FO'X )
T
W log(me) + = Z log (0%03( + 1)
=1

5, €

W log(me) + W log UF; +1 (2.7)

(a) follows because entropy is maximized by a Gaussian distribution for a given co-

variance matrix. Equation 2.6, which gives the entropy of a zero mean, complex

circularly symmetric Gaussian random vector, follows from Lemma 6 given in

Appendix A.

(b) follows from Hadamard’s inequality [3].

(c) follows from the average power constraint of the channel model.

Next find a suitable lower bound to A(Y|X)

| X[ilrwa")

1 AG4+1)TW
Th(Z[Z] ey FTW+1

JTW+1

(a) results from the fact that conditioned on X[ ]TW AT

o 1
= TEX [log ((W@)TW|A H](””TWX[]YTWﬂWD]
b 1 TW ( ;2 2
L L5 [iog ((mey™ (311X + 1)
1
= Wlog(me) + TEX [log(af,ﬂHXH2 + 1)] (2.8)
GrTW K[z]yﬁ,[l,)ffv is a zero mean,

complex circularly symmetric Gaussian random vector.

(b) follows from taking the determinant of the conditional covariance matrix, which
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is given by the following:

o2z[12+1  orz[l|z[2] -+ o%z[l]x[TW]
oxx2)z[l]  orz[2]P+1 - oZz[2]z[TW]
Ayix = . : ,
| o3x[TW]z[1] ofz[TW]z[2] --- opz[TW] +1 |
the eigenvalues of A GHD)TW |y G+ )TW follows from Lemma 7 given in Appendix
[ ]]TW+1 | [ ]]TW+1

A, and taking the product of the eigenvalues gives the resulting determinant.

Any particular signaling scheme would constitute a valid lower bound to capac-
ity so long as it satisfied the conditions outlined in the channel model. Therefore, a
suitable lower bound to Equation 2.8 can be obtained by using a binary signal constel-
lation that satisfies the second moment constraint and the peak amplitude constraint
with equality. X is therefore distributed as follows:

: _ e

- 0 with prob. 1 v
£2
2

ﬁ with prob.

thus, using this distribution and applying the concavity of the log function, Equation

2.8 can be lower bounded as:

52
PR | XTI > Wios(ae) + - tog (TW ot 1) (29)

Substituting Equations 2.7 and 2.9 into Equation 2.5 and taking the limit in Equa-
tion 2.4 yields the desired result. Q.E.D.

2.2.1 Tightness of the Upper Bound

Based on research work already published in the literature on the capacity of wideband
fading channels, it is expected that a suitable upper bound to capacity for this channel
model would also behave similarly. Specifically, in the limit of infinite bandwidth,

capacity should converge to zero from above. Therefore, having derived an upper
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bound in Lemma 1, it is now necessary to make sure that Equation 2.3 does indeed

converge to zero as M — OQ.

: £ E%p 7
,}1—{130 W plog (0%; + 1) — 2T log (TWM—SJ% +1

and applying L.’Hospital’s rule:
2

v?Tx

Wor€ Wo%&

i -1
setting r = m

_ im Y log (afvé'x + 1) -

z—0t I

2
log (TWQ—:EJ% + 1)

o0t o%€x +1 TW@:E 41
= Wo2& —Wor&
=0

Therefore, the above derivation shows that Equation 2.3 does indeed provide a

sufficiently tight upper bound to the wideband capacity.

2.3 Lower Bound to Wideband Capacity

There are many different possible lower bounds to capacity. One approach would
be to start from the definition of mutual information as in the upper bound, and
apply information theory inequalities to obtain a lower bound. Another approach
is to devise a particular signaling scheme, and either compute the exact achievable
rate or obtain a lower bound. Either method produces a valid lower bound. In this
case, the second approach is favored because a signaling scheme can be chosen whose

achievable rate can be easily determined.

2.3.1 A Binary Signaling Scheme

In [1] the authors determined that for a power constrained discrete-time Rayleigh fad-
ing channel, in which successive symbols face independent fading and neither sender
nor receiver has channel state information, the capacity achieving a distribution is
discrete with a finite number of mass points. One of the mass points of this discrete

finite mass point distribution is located at the origin. Additionally, for low signal
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to noise ratio, a binary signal gives relatively good performance. Therefore, a sim-
ple signaling scheme is one where the transmitter sends binary signals, one of which
is located at the origin. As in the upper bound, let the X[z']g-s be chosen IID, and
Xi]; € {0, a} with the following distribution:

0 with prob. 1 —
X = i P b (2.10)
— < 0 :
a=./5< 7= with prob. p

The above distribution satisfies the second moment constraint with equality, and

£
VP

not directly factor into the second moment constraint, varying « in this distribution

keeping the peak amplitude constraint in mind, the peakiness v > <. Because v does
gives one extra degree of freedom in adjusting the resulting capacity. Once trans-
mitted, the receiver performs Maximum a Posteriori Probability (MAP) detection to
recover the transmitted signal. Having constructed the signaling scheme, Lemma 2

gives the lower bound to capacity

Lemma 2 The lower bound to wideband capacity based on the channel model de-
scribed in Section 2.1 and the particular signaling scheme with MAP detection given

in Section 2.3.1 is:

1
C (W,€,08, T 7,p) = Wa|(1-1)log

1
+r10g—]
—r r

—Wu(1-p) [(l—po)logl_po

1
+ po log —]
Do

1 1
—Wup [(1 — Pa) log 1 + po log —] (2.11)

(67 (67

where

po = exp(—p°)

52
Pa = 1—exp<——2>
o1




Figure 2-1: Discrete Binary Channel with cross-over probabilities pg and p,

2 2
o, = —op+1
! up F

Proof:

During transmission through the communication channel the signal is corrupted
by multiplicative and additive noise. Applying MAP detection reduces the channel
into a discrete binary channel with cross-over probabilities py and p,, as shown in
Figure 2-1.

To calculate the cross-over probabilities, the detection threshold must first be

calculated:

e let CN(0,0?) represent the PDF of a zero mean, complex circularly symmetric

Gaussian random variable with variance o?.

To?

fx(@) = ON(0,0%) = —— exp (_I(ﬂ;_\j)

e given a “0” is send, the distribution of the received signal is fy x(y|z = 0) =
CN(0,1); given an “a” is send, the distribution of the received signalis fy x (y|z =

a) = CN(0,a%0? +1).

e for the complex received signal, the detection threshold is determined wholly

by its magnitude, and can be found by solving the following equation:

1=-pfyixylz=0) = (p)fyrixWylz=a)
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(1-p)CN(0,1) = (p)CN(0,%0; +1)
letting 02 = a?02% + 1
(- )2 e (<) = ()—syexp (1%
T 2 0'2

solving the above equation

ly| = \l 20%1111[(1—19)0%] (2.12)

e the detection threshold based solely on the magnitude of the received complex

signal is that given in Equation 2.12.

Having determined the detection threshold as given in Equation 2.12, the crossover
probabilities can be calculated by integrating over the corresponding decision regions.
Since only the magnitude factors into the decision regions, the conditional PDF of the
magnitude p of the received signal, by a simple change of variable plus accounting

for the phase, is Rayleigh distributed given by the following:

foax(olz=0) = (20)exp(—g®) forp>0
Jox(olz =0a) = <§—i2’) exp (—%) for p >0

Let 8 be the detection threshold given by Equation 2.12, the crossover probabilities

po and p, are:

# - o]0

o? -1 P
Py = A“nx@x=mdg
= exp (—f?) (2.13)
B
DPa = /) fg\X(Q|$ = a) dQ

= 1—exp <——§> (2.14)

Given the crossover probabilities, the probability r of receiving an « can be easily
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calculated:

r=py(y=a) = (1-p)po+ (1 —pa)p (2.15)

substituting in Equations 2.13 and 2.14
ﬂQ
= (1-— —p2 =
r = (1—p)exp( ﬂ)+peXp< p
The mutual information of a single use of the discrete binary channel is given by:
I(YV;X) = HY)-H(Y|X)
for a discrete binary distribution

with probabilities @ and 1 — a, let

1
H(a) = aloga—i—(l—a)logl_a

therefore, for a single use of the channel
I(Y;X) = H(r) = E; [HY|X = z)]

= H(r) — pH(pa) — (1 — p)H(po) (2.16)

Substituting r, pg, po from Equations 2.15, 2.13, and 2.14, respectively, into Equa-
tion 2.16, and multiplying by W u to account for the W i uses of the channel per second
yields the capacity in bits/second as given in Equation 2.11. Q.E.D.

2.3.2 Tightness of the Lower Bound

Having established that the upper bound given by Equation 2.3 of Lemma 1 is asymp-
totically tight, it stands to reason that the lower bound must also be asymptotically
tight as well. The lower bound given by Equation 2.11 of Lemma 2 is mainly a func-
tion of the crossover probabilities py and p,. The crossover probabilities are functions
of 3%, which is a function of ¢?, which is a function of y. Taking their limits as
W — 00!

lim 07 = lim —o% +1
H—>00 H—>00 ,up



. - . 2
Jimpo = Jim exp (~57)
2 1— 2
= lim exp | — 201 In l( p)‘ﬁ])
oo oi — p
1— 2
= lim exp (— 201 In [( p)%])
031 of —1 p
=0
iSPa = 01— exp

The above steps show that asymptotically, if MAP detection is used, then as yu — oo,
the receiver will always decide that a “0” was sent. Furthermore, the probabilities
decay towards their limiting value exponentially. Since the lower bound to capacity is
C > W f(po, pa), the exponential convergence of py and p, dominates over the linear
increase of Wy, the lower bound to capacity decays to zero as y — oo. Therefore,

Equations 2.3 and 2.11 are tight bounds to capacity.

2.4 Analysis of Results

The purpose of this thesis is to get an idea for what might be the optimal spreading
bandwidth for a DS-CDMA system. Based on the channel model described previously
in Section 2.1, a pair of asymptotically tight upper and lower bounds have been
derived. Figure 2-2 is a plot, in semi-log scale, of the upper and lower bounds using
parameters commonly found in a communication scenario (W = 100 KHz, 0% = 4,
v =100, T = 0.1sec, £ = 20, and p = 0.04). In this scenario the maximum capacity
achievable with the binary signaling scheme is approximately 2.5 Mbits per second.
By drawing a horizontal line from the maxima of the lower bound, it is clear that

the upper bound achieves this data rate between spreading bandwidths y = 6 and
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Figure 2-2: Single User Upper and Lower Bound — (W = 100 KHz, 0% = 4, v = 100,
T =0.1sec, &€ =20, p=0.04)

i = 7 coherence bands. Therefore, it can be concluded that in a communication
channel with these characteristics, the minimum spreading bandwidth should be at
least ;4 = 6 coherence bands. Because the upper bound decays very slowly, while it
is theoretically possible to determine the maximum number of coherence bands to

spread to, that value is so large that it is not of any practical value.

2.4.1 Effect of Varying Parameters

The upper and lower bounds to capacity are functions of the several parameters:

W, E, 0%, T, v, and p. When examining the upper and lower bounds to capacity,
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these six parameters provide various degrees of freedom that can affect the optimal
spreading bandwidth. Of course, the manifested results of varying these parameters
are only accurate to the extend that the model was able to capture their full effects.

The Significance of p

This parameter only affects the lower bound, since in the upper bound no assump-
tion is made about using a specific signaling scheme. In the lower bound, the pa-
rameter p is the probability that a non-zero signal is transmitted. In [16], E. Telatar
showed that for energy limited Rayleigh fading channels, on-off signaling with low
duty cycles should be used to approach capacity. In the context of the lower bound,
the result from [16] means that p should be set as low as possible. Owing to the

maximum amplitude constraint, p must satisfy:

weJE < 2
pp TV pE
52

A plot of several cases of varying p (while still satisfying Equation 2.17) confirms
the above hypothesis. Figure 2-3 is a plot of the upper bound versus the lower bound
using several different values of p. Using the parameters W = 100 KHz, 0% = 4,
v =100, T = 0.1sec, £ = 20, with p varying from 0.1 to 0.04, the plots show that the
highest data rate in the lower bound is achieved by p = 0.04, which is the smallest p
that still satisfies the constraint of Equation 2.17.

p and v

Since maximizing the data rate in the lower bound means using the lowest possible
value of p, it can be seen from Equation 2.17 that the data rate increases with ~.

Variations in 7’

The length of the coherence time is captured by the parameter 7. Normally, a
longer coherence time implies less variability and greater opportunity for better chan-
nel estimation, hence the achievable rate can be expected to increase as T' increases.
In the signaling scheme chosen, since the binary signal for the lower bound does not

use any form of channel estimation, the coherence time does not affect the achievable
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Figure 2-3: Effect on Capacity Bounds with varying p — (W = 100 KHz, ¢% = 4,
v=100,7T = 0.1sec, £ =20, p=0.04t00.1)

rate of the lower bound. In the upper bound, longer 7" only has minor effect on the

upper limit to capacity.
Variations in W

The length of the coherence bandwidth is captured by the parameter W. Co-

herence bandwidth is W with delay spread typically on the order

1
delay spread’
of microseconds (usec). A longer coherence bandwidth implies less variability in the
channel and the ability to accommodate higher data rate. Therefore, capacity should

increase as the length of the coherence band increases. In the signaling scheme chosen
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for the lower bound, W is only accounted for in terms of the number of samples that
can be transmitted in the band, which is a linear function. In the upper bound, the

equation of which is shown again below:
9 5 & &?
C(VV,E,O’F,T,/J,,’Y) < Wulog O'F;—{—l — 7—log TW—op +1

within each coherence band, the capacity is also very nearly a linear function of W.
Hence, as Figure 2-4 shows, varying W does not change the number of coherence

bands p that the system should spread to.
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Figure 2-4: Effect on Capacity Bounds with varying W — (W = 50 KHz — 500 KHz,
0% =16, v=100, T = 0.1sec, £ = 20, p = 0.04)
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The plots in Figure 2-4 were made with the parameters o2 = 16, v = 100,
T = 0.1sec, £ = 20, and p = 0.04. The coherence bandwidths W were varied from
50 KHz to 500 KHz. The plots, as well as examination of the output data, says that
while the capacity increases linearly (or nearly so) as the coherence bandwidth W
increases, the corresponding minimum number of coherence bands y that the system

should spread to remains constant at p = 27.
Variations in £

From the examination of the effect of the parameter p, Equation 2.17 shows that
the lower bound to p is directly proportional to £2. Because using the smallest p
possible achieves the maximum data rate in the lower bound, it is logical to examine
whether reduction in p achieved by a decrease in £ can significantly increase the
maximum achievable rate in the lower bound, leading to a larger minimum number
of coherence bands p to spread to. In fact, as Figure 2-5 shows, the benefits resulting
from lower p does not compensate for the decrease in the achievable rate resulting

from lower total average power.

The plots in Figure 2-5 were made with the parameters W = 100 KHz, % = 16,
v =100, T = 0.1sec, The total average power £ were varied from 10 to 40, with p = 5—;
The plots, as well as examination of the output data, says that lowering £ did not
result in a higher minimum number of spreading coherence bands pu, despite having a
lower p that resulted from having a lower £. This agrees with the intuition that that
in order to maximize achievable rate, use as much power as possible. However, as
Equation 2.17 shows, p is a function of £2, and p < 1 means that £ < v. Furthermore,
as Telatar showed in [16], on-off signaling with low duty cycle should be used to
approach capacity. Therefore, when £ < 7, increasing £ is beneficial in increasing
achievable rate; as £ approaches 7, p approaches 1, and the achievable rate drops
catastrophically. This is illustrated in the last plot of Figure 2-5, where £ = 80. In
the upper bound, no assumptions are made about the signaling scheme used, and
so increasing &£ strictly increases upper bound to capacity. Unfortunately too much
power in the lower bound is detrimental to the achievable rate, and as £ approach v,

the minimum number of coherence bands u to spread with decreases dramatically.
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Figure 2-5: Effect on Capacity Bounds with varying £ — (W = 100 KHz, o2 = 16,
v =100, T = 0.1 sec, £ = {10, 20, 30,80}, p = 5_3)

The Significance of o2

The parameter o% represents the energy of the propagation coefficient, and is
particularly significant in determining the achievable rate of the lower bound. In the
lower bound, because MAP detection is used, 0% determines the detection threshold
and therefore determines the crossover probabilities. As can be seen from the equation

of the detection threshold 3 as a function of 0% (repeated above), the greater 0% is, the
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easier it is for receiver to figure out which signal X € {0, a} was sent. Therefore, the
lower bound to capacity would be expected to increase significantly as 0% increases.
A number of trials were run with some common parameters W = 100 KHz, v = 100,
€ =20, T = 0.1sec, and p = 0.04 (satisfying the constraint in Equation 2.17 with
equality) with varying o%. In the top plot of Figure 2-6, the minimum number
of coherence bands u to spread to as 0% was varied, shows that there is a linear
relationship between the energy of the fading coefficient 0% and minimum z. However,
since the domain of u is the set of all positive integers, if the plot is made with
sufficiently fine granularity, it will show a step-wise change as 0% is varied. The
bottom plot of Figure 2-6, which uses the same parameters as the top plot, but
plotted with much finer granularity, shows the staircase behavior. Nevertheless, the
general trend is linear and positive.

One way to interpret this graph is to view the energy of the propagation coefficient
0% as a metric of the signal power. The ratio of ¢% to additive noise power can be
thought of as the fading coefficient energy to noise ratio. Since the additive noise
power has already been normalized to unity, Figure 2-6 says that given the user
transmits with the above parameters (W = 100 KHz, v = 100, £ = 20, T = 0.1 sec,
and p = 0.04), then the minimum number of coherence bands pu to spread is a linear
function of the energy of the fading coefficient 0%. As an example, for 0% = 8, the
minimum number of coherence bands to spread is y = 13. Since each coherence
bandwidth is of size W = 100 KHz, that means given the system parameters, the
system should be spread to 1.3 MHz. Considering that the commercial DS-CDMA
system [S-95 transmits at a bandwidth of 1.25 MHz, these results serve as meaningful

references for designing future communication systems.

Let m denote the slope of 0% vs. minimum number of spreading bandwidths .
The plots of Figure 2-6 suggest that it may be possible to derive a closed form,
analytic equation to describe m. However, it appears that a closed form analytic
solution, should it exist, will be very unwieldy and would provide little additional
value. A first attempt at an analytic solution may be to attempt a Taylor series

expansion to simplify the lower bound. As the maxima of the lower bound occurs at
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Figure 2-6: Single User: o2 vs. minimum p

large 1, the probability of detecting an « is very small, and r = py(y = ) ~ 0. Since
r = 0 is a singularity point of logr, to attempt a Taylor series expansion runs into
the problem of trying to expand around a singularity.

Statistical methods offers another possibility for arriving at a simplified expression
to describe m. Since it was shown previously that the coherence bandwidth W and
coherence time T does not influence the minimum number of spreading bandwidths,
m is a function of £ and . The plots of Figure 2-7 show that multivariate linear

regression methods are not adequate for deriving an expression for m(&, 7).
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Chapter 3

Analysis of Two User Multiple

Access Scenario

The analysis of the single user scenario in Chapter 2 was illustrative of the basic
characteristics of the system. In the typical scenario, several users simultaneously
send information to the base station, and the base station receives a signal that is the
sum of all the user signals. In trying to decode the signals transmitted by each user,
the receiver must contend with not only environmental noise but also interference
from other users as well. The multiple access scenario in Additive White Gaussian
Noise (AWGN) channel has been thoroughly studied, and is well understood ([2], [8],
[3]). This chapter will perform an analogous examination of the multiple access case
in a fading environment. A basic illustration of the multiple access scenario can be

obtained by an examination of the simple two user case.

3.1 Channel Model

The channel model for this two user scenario is the same as that for the single user
scenario detailed in Section 2.1. Each user experiences independent Rayleigh flat fad-
ing, whose random multiplicative propagation coefficient is modeled as a zero mean,
complex circularly symmetric Gaussian random variable, with variance o%. At the

receiver, the sum of the user signals are further corrupted by an additive noise that is
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| Parameter | Description | Constraints/Distribution

W coherence bandwidth size
W number of coherence bands p € {positive integers}
€ total average power
T length of coherence time
y peakiness of the signal
Fi propagation coefficient Fi] is zero mean, circularly symmetric,
in coherence band i complex Gaussian. E[F?] = 0%,
Xi]; input at sample time j E[X? < s
in coherence band 7 X| < IE[X?] = \/LE_M
Zi); noise at sample time j Z|i]; is zero mean, circularly symmetric,
in coherence band 7 complex with normalized unit variance

Table 3.1: Summary of Channel Model Parameters

also modeled as zero mean, complex circularly symmetric Gaussian random variable,
but with normalized unit variance. Each channel over distinct coherence bandwidths
are independent, and transmission occurs over y distinct coherence bandwidths. The
propagation coefficient for each coherence bandwidth remains constant for 7', the

coherence time, after which it changes to a new independent value.

Each user is subject to the same constraints (e.g. the variance of the propaga-
tion coefficient are both ¢%), and independence between the parameters (modeled as
random variables) associated with different users are assumed. The users transmit
within the same number of coherence bands p, each of size W hertz. The signals are
sampled at the Nyquist rate of W samples per second. Thus within the coherence
time T there are a total of TW samples and the received vector in the i’ coherence

band over the j** coherence time is:
nTW nTW nTW nTW
YIGwh' = XA+ Rl Xl + 2l (3.1)

Each user is subject to the same average power constraint and peakiness constraint
imposed on the X[i];s. Thus a limited amount of power ¢ is distributed equally to each

of the u coherence bands, yielding an upper bound on the second moment given by
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E [X[z]?] < £. The peak amplitude is upper bounded by [X| < 1,/E [X[z]?], where

v is the peakiness of the signal. The relevant channel parameters are summarized in

Table 3.1.

3.2 Upper Bound to Wideband Capacity

Based on the channel model, within each coherence band, each user has an average

power constraint corresponding to an upper bound on the second moment of the sig-

nal. However, only signals which satisfy the second moment constraint with equality

can achieve the upper bound to capacity. The capacity region of a multiple access

channel is the closure of the convex hull of the set of points (C1, Cy) satisfying:

Ch
&
C1+Cy

IA

IN

I(Xl; K|X2)

1(52; X|11)

I(XlaXQ; X)

Keeping that in mind, Lemma 3 gives the capacity region of the upper bound in the

two user scenario.

Lemma 3 The upper bound to wideband capacity for the two user scenario based on

the channel model described previously in Section 3.1 is:

£ £? 0%

C, < Wyl 2=+ 1| — —=log | TW —=0% + 1 3.2
1 < ,Uog(UFN"‘ > T 08( \/EUF“‘ > (3.2)
Cy < Whpulog 02§+1 —5—210g TW-—L_o2 +1 (3.3)
: = " V2T ViE " '

& £

Ci+Cy <

Proof:

The proof to Equations 3.2 and 3.3 is as follows:
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. 1 &1 OTW NTW HTW
¢ = Jim max (;ZZ L (0, [TV YA | XG0T
j=1li=1
| NTW NTW
= klggonggx ZZ [ ]JT+W—|—1 |X2[]]JT+W)+1 )
j=l1i= 1
OTW HNTW ) TW
—h(X, H?;WH | XQ[ 19 E YIS Y]
a 1)TW NTW
< ICILIIC}OI%%X ZZ [ ]JT+W—|—1 | Fa, Xofi ]]‘?T—;V‘Fl )
=11= 1
OTW HTW i+ 1)TW
—h(X, Hf;ml |F2,X2[21f;w)+1 YLED)]
) OTW OTW DTW
= klgx;rr;gx( ZZ I X [],]T+W+1 ; Y ]]JTJrWH | Fp, Xo[i ]]JT_;V—H ))
j=li= 1
. 1 OTW O)TW AG+1)TW
G ( >3 FICGHEEY R + 2645
j=l1i= 1
b E%p 7
< Wul 27 41— =21 TW 0% +1
2 (o +1) - (et 1)

(a) follows from the properties of conditional entropy:

because X, X5, and F, are independent
h(£1|¥2) = h(£1|F2512) = h(iﬂ
similarly, because conditioning

does not increase entropy

v

X, Y, X5) WX, |, Y, X,)

therefore I(Xla X‘Xﬁ < I(Xla X|F2a XZ)

(b) follows from the same line as that given in the proof of Lemma 1.

The proof for Cy of Equation 3.3 follows by symmetry. To prove Equation 3.4,

begin with the definition of capacity as mutual information.

. 1 1 NTW
Ci+C, = lim max<z_zz (X [ ol Y1) §3.5)



The fourth central moment of X[i]; is -5 and its average power constraint is %

Since there are no sender channel side information and all the bandwidth slices are
independent, applying the concavity of mutual information in the input distribution
results in selecting all the inputs to be IID to maximize the righthand side (RHS) of
Equation 3.5.

First rewrite mutual information in terms of entropy:

nNTWw 1TW nNTW
IO Xl YY)
1 A(G+1)TW nTW nTW nTW
= ZROESVEY) — SRS | XY XY (36)

Now find a suitable upper bound to Equation 3.6. First upper bound A(Y)

1 a 1
ZhOCEEWTT) £ Zlog ()™ Ay uenmw ) (37)

b 1 W T[22 2

< T log | (me) H [UF(UXLm + JX2,m) + 1]

m=1
1K 2 2 2
= log(me) + T > log [UF(GXW +0%,.,.) + 1]
m=1
c &
< Wlog(me) + W log <2012¢; + 1) (3.8)

(a) follows because entropy is maximized by a Gaussian distribution for a given co-
variance matrix. Equation 3.7, which gives the entropy of a zero mean, complex
circularly symmetric Gaussian random vector, follows from Lemma 6 given in

Appendix A.
(b) follows from Hadamard’s inequality [3].

(c) follows from the average power constraint of the channel model.

Next find a suitable lower bound to h(Y|X,, X,)

1 NTW nNTW nNTW
7t (G | XY Xl

1
TEX [log (( ) |A (]+1)TW|X [](]+1)TW Xz[](]+1)TW‘):|

]TW+1 JTW+1 JTW+1

II=
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> B [log ((re)™ [P + 1Xa07) +1])]
= Wlog(re) + o Bx [log (3(1X, | + [1Xa]) +1)] (3.9)

(a) results from the fact that conditioned on X; [z]yﬁ%,)ffv and X, [z]yﬁ‘l,)flw , K[Z]EJTJFV%,)IIV

is a zero mean, complex circularly symmetric Gaussian random vector.

(b) follows from taking the determinant of the conditional covariance matrix, which
is given by the following:

o2 (zi[12 + 22[1)2) +1 0% (@i[l]za[2] + z2[]a2[2]) -+ o
o (mi[2z[1] + 22[222(1]) o (za[2? +22[2?) +1 - o

o (@i[nlzi[1] + a[n]ea(1]) ok (z1[n]za[2] + @an]eal2]) - o (21[n]? + 22[n]?) + 1

the eigenvalues of A, . G+1rw, .G+1)rw can be obtained using Lemma 8, given
X[Z]ij.H |K[z]ij+1

in Appendix A. Taking the product the eigenvalues gives the resulting deter-

minant:

Ayix,x,] = o (||X1||2 + ||X2||2) +1
TW—-1 TW
+opop | Do D (@ulklzell] — @1 [ao[k])?
k=1 [=k+1

which can be upper bounded as:

Ayix,x,| > of (X0 + |1 X.?) +1

Any particular signaling scheme would constitute a valid lower bound to capacity
so long as it satisfied the conditions outlined in the channel model. Therefore, a
suitable lower bound to Equation 3.9 can be obtained by using a binary signal con-
stellation that satisfies the second moment constraint with equality and and subject
to the peak amplitude constraint. X is therefore distributed as follows:
with prob. 1 — s—z

0
X = )
ﬁ with prob. 5—2
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thus, using this distribution and applying the concavity of the log function, Equation

3.9 can be lower bounded as:

—h( H(g+1 YTW X Hg+1)TW X [-](j—l—l)TW)

T JTW +1 JTW+1 227w 41
52 2
> Wlog(me) + T log <2TW—50F + 1) (3.10)

Substituting Equations 3.8 and 3.10 into Equation 3.6 and taking the limit in
Equation 3.5 yields the desired result. Q.E.D

3.2.1 Tightness of the Upper Bound

Now verify that the asymptotic behavior of the upper bounds just derived does, in the
limit as p — 00, approach zero just as in the single user case. It was already shown
in Section 2.2 that the bounds given by Equations 3.2 and 3.3 are asymptotically
tight. In a similar manner, it can be shown that in the limit of infinite bandwidth,

the upper bound to capacity given by Equation 3.4 approaches zero:

2
1 log | 2 1 log | 2TW — 1
1quog<aF’u+> 7T0g< W 0F+)

HU—00

let ©z = % and applying L’Hospital’s rule:
2

€
v?Tx
i 2Woie 2Wote
im —
z—0t 20'1278.%' +1 2TW720%.’E +1
€
= 2Woke —2Wore

= lim W log (20F6x + 1)

z—0t T

2
log <2TW76—%§ + 1)

= 0

3.3 Lower Bound to Wideband Capacity

Like the single user scenario, the upper bound to wideband capacity in the two user
case provides little information by itself. Having derived the upper bound, it is now

necessary to develop an appropriate lower bound. For the sake of simplicity, as well
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as ease of comparison to the single user case, the binary signaling scheme developed
in Section 2.3.1 can be transplanted and used for this multiple access scenario. The
general idea of the scheme in Section 2.3.1 remains the same, however, the nature of

multiple access introduces issues and problems that must be accounted for.

3.3.1 The Binary Signaling Scheme

As in the single user case, the binary signaling scheme also be used here. Just as in
the upper bound, let the X[i];’s be chosen IID, and X[i]; € {0, o} with the following

distribution:

0 with prob. 1 —
X = P P (3.11)

= /£ < X wi
o= upgx/lf with prob. p

The above distribution satisfies the second moment constraint with equality, and

£

VP
not directly factor into the second moment constraint, varying v in this distribution

keeping the peak amplitude constraint in mind, the peakiness v > <. Because y does
gives one extra degree of freedom in adjusting the resulting achievable rate. Since this
is a multiple access scenario, the received signal is the sum of all the user signal, each

corrupted by their independent fading coefficient, plus the additive Gaussian noise.

Once transmitted, the receiver performs MAP detection to recover the transmitted
signal. In attempting to decode a particular user’s signal, the receiver accounts for
the presence of the other user by treating its signal as noise. Lemma 4 gives the lower

bound to capacity.

Lemma 4 The lower bound to wideband capacity based on the channel model de-
scribed in Section 3.1 and the particular signaling scheme with MAP detection given

in Section 3.3.1 1s:

1
+rlog —
r

1
C(W,€,03,Tm7m) = Wi [(1—r)log

-T
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Figure 3-1: Discrete Binary Channel with cross-over probabilities pg and p,

—~Wp(l-p) l(l—po)log1 !

1
+ po log —]
— Do b

0

1
—Wup [(1 — Do) log :

1
+ pq log p_] (3.12)

87 (87

where

po = (1—p)exp(—F) +pexp (—5—2)

Pa = (1—p) (1 — exp <—§—;>> +p (1 — exp (—%))

r = (1-p)po+p(1 - pa)
g _ o ln[(l—p)%%]

oy —1 p?

Proof:

During transmission through the communication channel the signal is corrupted by
the multiplicative and additive noise. Applying MAP detection reduces the channel
into a discrete binary channel with cross-over probabilities py and p,, as shown in
Figure 3-1.

Let CN(0,0?) represent the PDF of a zero mean, complex circularly symmetric

Gaussian random variable with variance o2.

|

fx(z) = CN(0,0%) = # exp (—?)
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Unlike the single user case, the additive noise in this case is the sum of additive
receiver noise plus the corruption that results from the presence of the other user’s
signal. Let Z[i]; be the sum of the contributing additive noise effects, then for a

receiver trying to decode user one’s signal:

Y[il; = RXili;+ 2l
where Z[i]; is the sum of additive
receiver noise and the other user’s signal
Zli); = Zlil; + FXoli;
= (1 =p)fzGlz =0) +pf;(Zlz = a)
= (1-p)CN(0,1) + pCN(0,00% + 1)
let 0 = a?0% +1

= (1-p)CN(0,1) +pCN(0,07)
Given user one sent a “0”, the distribution of the received signal is:
frix (ylz1 =0) = (1 — p)CN(0,1) +p CN(0,0%)
Given user one sent an “o”, the distribution of the received signal is

frixi(yler =a) = (1 —p)CN(0, o?) + pCN(0,20%0% + 1)
let 03 = 20%0% + 1

= (1-p)ON(0,07) + pCN(0,03)

Because of the circular symmetry of the PDF, the detection threshold is deter-
mined solely by its magnitude and can be calculated by solving the following equa-

tions:

(1 =) fyix,(ylz1 =0) = p fyx,(ylr1 =)
(1-p) (1=p)CN(0,1) +pCN(0,07)) = p((1—p)CN(0,07) +pCN(0,03))
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(1 - p)QCN(O, 1) = pQCN(07 O-g)
(1—p)*~ exp (~lwP) = P exp (0
T To2 o2

solving the above equation

lyl = \l % [0%(1_10)2] (3.13)

The detection threshold based solely on the magnitude of the received complex

signal is that given in Equation 3.13.

Having determined the detection threshold as given in Equation 3.13, the crossover
probabilities can be calculated by integrating over the corresponding decision regions.
Since only the magnitude factors into the decision regions, the the conditional PDF of
the magnitude p of the received signal, by a simple change of variable plus accounting
for the phase, is the scaled sum of Rayleigh distributed random variables given by

the following:

fox(olz=0) = (1-p)(20) exp(—0*) +p (3—?) exp (—%) for p >0
fox(olz=0a) = (1-p) (3—?) exp (—%) +p (3—‘%’) exp (—g—g) for p >0

Let 3 be the detection threshold given by Equation 3.13, the crossover probabilities

po and p, are:

ﬂZ

7 [H0
o5 —1 p

po = //:o fox(olz = 0) do
= (1—p)exp (—F°) +p exp (—%) (3.14)

B
Pa = [ fux(elr=a)de

Sl G or () e

Given the crossover probabilities, the probability r of receiving an « can be easily
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calculated:

r=py(y=a) = (1-p)po+ (1 —pa)p (3.16)

substituting in Equations 3.14 and 3.15

P = p) a-pew () +pew (-5 )|+

(e ())-
(e ()

The mutual information of a single use of the discrete binary channel is given by:

I(YV;X) = H(Y)-H(Y|X)
for a discrete binary distribution

with probabilities ¢ and 1 — a, let

1 1
H(a) = alog—+(1—a)log1
a

therefore, for a single use of the channel
I(Y;X) = H(r) - E; [HY|X = z)]

= H(r) —pH(pa) — (1 — p)H(po) (3.17)

Substituting r, pg, po from Equations 3.16, 3.14, and 3.15, respectively, into Equa-
tion 3.17, and multiplying by W u to account for the W i uses of the channel per second
yields the capacity in bits/second as given in Equation 3.12. Q.E.D.

3.3.2 Tightness of the Lower Bound

Having established that the upper bound to capacity region given by Equations 3.2,
3.3, and 3.4 of Lemma 3 is asymptotically tight, it stands to reason that the lower
bound must also be asymptotically tight as well. The lower bound given by Equation
3.12 of Lemma 4 is mainly a function of the crossover probabilities py and p,. The

crossover probabilities are functions of 02 and o3, which are functions of p. Taking
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their limits as y — oc:

lim 0? = lim io% +1
H—r0o0 H—00 up
=1
. 2 . € o
lim o5 = lim 2—op +1
HU—>00 H—>00 /j,p
=1
2 B
Jim po = lim (1 —p)exp (—6 ) + p exp (—0—%)
2 2 2
T 0y (1—-p)?o3
= ,}ggo(l — p) exp (—0% T In l po +

2 2 2
0y (1—10) 09
- ]
pexP( 720 — 1) [ P D

i (e (_0203 n [(1 —p)zagp -

0’%,0’%—)1 5 —
2 2 9
09 (1 - p) 02]
pexp|— In [
( oi(o3 —1)

p? )
=0
2 2
Jimpe = Jim(1=p) {1 exp (‘?))“’ (“exp (—>)

The above steps show that asymptotically, if MAP detection is used, then as yu — oo,
then the receiver will always decide that a 0 was sent. Furthermore, the probabilities
decay towards their limiting value exponentially. Since the lower bound to capacity is
C > W f(po, pa), the exponential convergence of py and p, dominates over the linear
increase of W, the lower bound to capacity decays to zero as u — oo. Therefore,

Equations 3.2, 3.3, 3.4 (for the upper bound to capacity region) and 3.12 are tight
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bounds to capacity.

3.4 Analysis of Results

Having already examined the behavior of the system in the single user case, it is
expected that many of the results obtained in Section 2.4 will also hold for the multiple
access scenario. This section will focus on distilling results significant and particular
to the multiple access scenario. Where it arises, differences between the multi-access

case and the single user case will be noted.

3.4.1 Upper Bound to Multi-access Capacity Region

From information theory the capacity region of a two user multi-access channel is the

closure of the convex hull of the set of points (C, Cy) satisfying:

Ci

IN

I(Kﬁ X‘XQ)

N

Gy < I(XyY[X))

Ci+Cy < I((Xy,X,);Y)

The bounds to the above capacity region were proved in Lemma 3 and given
by Equations 3.2, 3.3, and 3.4 respectively. Using some parameters for a common
communications channel where W = 100KHz, 0% = 4, v = 100, T = 0.1, and
& = 20, Figure 3-2 plots the upper bound to capacity regions for several values of u.

The plots show an interesting phenomenon. Assuming that the users are allowed
to transmit at the same rate (i.e., Ry = Ry), the plots indicate that for low values
of u, the maximum rate that the two users can transmit is significantly lower than
if there were only one user transmitting. As p increases, the achievable rate of two
users transmitting simultaneously approaches that of the rate achieved by only one
user transmitting. One possible way to interpret this result is that for low values of
i, the interference resulting from the presence of the other user (the Multiple Access

Interference — MAI), dominates over the interference resulting from the additive re-
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Figure 3-2: Upper Bound to Capacity Region for different

ceiver noise. As the y increases, the effect of MAI mitigates and the achievable rate
is mainly hampered by the additive receiver noise. This result agrees with what is ex-
pected based on the channel model. With increasing number of coherence bands used
for transmission, the power available to each coherence bands decrease. For lower
numbers of u, each user within each coherence band still has enough power that its
interference dominates over the additive noise. For large values of pu, the power of
each user within each coherence band is so small that the achievable rate is limited

by the additive receiver noise.
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3.4.2 Comparison of the Upper Bound to Lower Bound

In the multiple access scenario, the upper bound is a capacity region with sets of
achievable rates. To make for meaningful comparison with the lower bound, which
is just one set of points where each user transmits at the same rate and treats the
signal of all other users as noise, use the set of points in the upper bound where each
user also transmits with the same rate. In the two user case, the pair of achievable

rates in the upper bound where R; = Ry corresponds to:
1
Ri=Ry = 51((X1a12)§x)

where (X, X,;Y) is given by Equation 3.4, making R, Ry:

2

1 & £ v
R =R, = 5 {Wplog <20§;; + 1) — ’)/Q—Tlog <2TW MEU% + 1)}

Figure 3-3 shows such an example. For a given 1 = 100, the set of rates chosen for
comparison are such that R; = Ry in both the upper and lower bound. Henceforth,
any result that involves application of the upper bound assumes that the above rate

is used.

Recall from Section 2.4 that in the single user scenario, decreasing power did not
result in capacity gains despite lowering p. However, in the two user scenario, the
presence of MAI would suggest that there is a fine balance between the amount of
power to use. Using too much power would mean that users suffer from significant
MALI Using less power for each user, while reducing MAI, would also negatively affect
the capacity of the user. Plotting the lower bound for several values of £, (using some
common parameters W = 100K Hz, 0% = 16, v =100, T = 0.1, and p = 5—;) confirms
that too much power indeed is detrimental.

The left side of Figure 3-4 shows several plots of the lower bound for different
values of £. As is readily evident, for low values of £, increasing £ leads to higher

maximum achievable rate. However, comparing the curves for £ = 50 and £ = 80

shows that use too much power and the achievable rate drops dramatically. Recall
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Lower Bound

Figure 3-3: Achievable Rates used in Comparison of Upper and Lower Bound

also that it was shown in the single user case that too much power leads to a high
p, which significantly reduces the achievable rate. The question that remains then
is which of the two factors, MAI or high duty cycle (i.e. high p), is the dominant
cause of this drop in achievable rate in the lower bound. Regardless of which is the

dominant effect, the end result is the same. Too much power is bad.

The fact that using too much power is bad is reinforced by the right side of Figure
3-4. This plot shows that increasing £ increases the minimum number of coherence
bands p to spread, until £ is between 50 and 60, when the minimum spread factor
starts to plummet. Keep in mind however that this result is particular to having
chosen binary on-off signaling, which limits £ < . Nevertheless, the effect of MAI
at high £ cannot be ignored, and the above result indirectly supports the assertion

that the transmit power of each user should be limited.
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Figure 3-4: Two User: Effect of Varying £

3.4.3 Effect of Varying Parameters

The upper and lower bounds to capacity are functions of the several parameters: W,
&, 0%, T, v, and p. When examining the upper and lower bounds to capacity, these six
parameters provide various degrees of freedom that can affect the optimal spreading
bandwidth. Many of the results obtained for varying the above parameters in the
single user case hold for the two-user case as well. In particular, the significance of

0% is such that it warrants a second pass here.

The Significance of %
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5—\103_1lnl o ]

The parameter 0% represents energy of the propagation coefficient, and is partic-
ularly significant in the determining the capacity of the lower bound. In the lower
bound, because MAP detection is used, 0% determines detection threshold and there-
fore determines the crossover probabilities. As can be seen from the equation of the
detection threshold 3 as a function of 0%, repeated above, the greater 0% is, the easier
it is for receiver to figure out which signal X € {0, «} was sent. Therefore, the lower
bound to capacity would be expected to increase significantly as o% increases. A
number of trials were run with some common parameters W = 100K Hz, v = 100,
£ =20,T =0.1, and p = 0.04 (satisfying the constraint in Equation 2.17 with equal-
ity) with varying o%. The minimum number of coherence bands y to spread to as 0%
was varied, plotted in Figure 3-5 shows that there is a linear relationship between the
energy of the fading coefficient 0% and minimum . However, since the domain of
is the set of all positive integers, if the plot is made with sufficiently fine granularity,
it will show a step-wise change as o% is varied. Recall that in the single user case,
the staircase behavior was shown in Figure 2-6 of Section 2.4.1.

Also plotted on the same figure is the result from the single user case. As is readily
evident, the presence of a second user reduces the minimum spreading bandwidth by

a factor of almost two.
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Chapter 4

Conclusion and Further Work

The results the preceding chapters several results of note. Of course, these results are
particular to the specific channel model and signaling scheme chosen. Nevertheless,
they provide reasonable references for future work. For a DS-CDMA system on
time and frequency fading channels, this thesis showed that given an average power
constraint and peak signal amplitude constraint, capacity goes to zero as bandwidth
increases to infinity. Moreover, by combining the upper bound with a suitable lower

bound, the following results were determined:

e taking the energy of the propagation coefficient 0% as a metric of the signal
power, then the minimum number of coherence bands i to spread is a linear
function of the o%. Furthermore, when extended to the two user scenario, the
presence of a second user reduces the minimum spreading bandwidth by a factor

of almost two.

e the linear relationship between o% and minimum spreading bandwidth is sig-

nificant in the following sense. For the single user case, given that the relevant
parameters are W = 100 KHz, v = 100, £ = 20, T' = 0.1 sec, and p = 0.04,
for 0% = 8, the minimum number of coherence bands to spread is u = 13.
Since each coherence bandwidth is of size W = 100 KHz, that means given the
system parameters, the system should be spread to 1.3 MHz. Considering that
the commercial DS-CDMA system IS-95 transmits at a bandwidth of 1.25 MHz,
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these results serve as meaningful references for designing future communication

systems.

Despite having obtained some meaningful results, further work remains to be done.
In particular, the possibility of a tighter lower bound that is not dependent on any
specific signaling scheme should be explored. Expanding the two user multiple access

scenario to the general N user case may also be explored.
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Appendix A

Equations and Proofs

Lemma 5 Let Z,, be a zero mean, complex circularly symmetric Gaussian random

vector with covariance matriz Ay , its PDF is:

fz,(z0) = exp {—2ZIA;' Z,} (A1)

1
(m)"|Ag,|

Proof:

Since each circularly symmetric complex Gaussian random variable can be ex-
pressed as a random vector of two independent, identically distributed Gaussian
random variables Z,, can be expressed as two independent, identically distributed

Gaussian random vectors:

ZRn
ZI n

Zn = XZn =

and the covariance of matrix of Y,, can be expressed as:

A 0
AZ?TL = ZR”

0 AZIn
Ay, | = Az, l[Az,,|
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: _ _ 1
now, because of circular symmetry, Az =Az = 3Az

fz,(z0) = fv,,(Y,,) = fz,,(2r0) f2,, (21m)

1 1

= — ——(ZL A7 Z
(2w>n\Aan|eXp{ 32k, 2
1
Wexp{ (Z?nAz, ZIn)}
Zln
_ ! {1(ZTAZ+ZA Z)}
T @m)rlAg,, [[Ag, [ TP T g e S "
o 1 _1 Tl -1 T 1 -1 :|}
_ 1 T 1 1
1 H -1

= Wexp{—ZnAZnZn} Q.E.D.

Lemma 6 Let Z, be a zero mean, complex circularly symmetric Gaussian random

vector with covariance matrix AZ,,} 1ts entropy is:

h(Z,) =log (me)" [Ag,| (A.2)

Proof:

From Lemma 5, the probability density function of Z,, is:

on (én) = exp{_ZgAéiZn}

1
7Tn|AZ

—TL|

Then from the definition of differential entropy:

WZy) = E|-Infg,(z)]

1
= — [ fz.(z) xIn lm
= In(n"|Ag [) + E [ZrleZLZ"]

exp{—Z, A} Z,, }] dz
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= In(m"|Ag,[) + E

= In(x"[Ag,|) + E

Zz

= In(7"[Ag | +ZE z; 2] (A
= In(n"|Ag |) +ZZAJZ

= |AZ + ZI]J

= In(7"|Az,|) +n

= Ine" +In(7"[Az,

)

= In [(We)"|AZn|] nats

= log(me)"|Az | bits

Z 27 zj(A

)ijZj

)i

-1y,

i .

Lemma 7 Let the covariance matriz of Y, given X, be given as follows:

[ o%x[1]? + 1

opr(2)a(1]

| ohz[n]zl]

then the eigenvalues of Ay |x are:

N =
A =

Proof:

1

Q.E.D.

Fhaltle2] - ohelllaln] |

opa[n|z(2] -+ ofz[n]?+1 |
forj=1...n—-1 (A.4)

opllzall* +1 forj=mn

Axn| X, = 0'%]\” + I,, where I, is the identity matrix and /~\n is as follows:

=
S
Il

o2 a[lz[2] - a[len] ]
z[2z[1] 22 - z[2z[n]
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the problem of calculating \;, the eigenvalues of Ay |x , therefore reduces down to

finding 5\2-, the eigenvalues of A,. Where \; = 012?5\1- + 1.

Now show that A = ||z,||? is an eigenvalue of A, by finding the corresponding

eigenvector W ..

From the definition of eigenvalue — eigenvector pair:

| z[n]z[1] zln]e[2]

Now expand the matrix equation A.5

constraining |jw,||*> = 1.

2[1] Y afiJw(i]
2[2) Y alifu(i

2ln] 3 aliuli]

Taking the ratio of any two of the above system of linear equations yields:

alk] wlk]
l w

[
xl] U

Tk

W = wlw—l

o1 a[l]z2] .- z[l]zln]
(1] 22 - z[2z(n]

z[n]*

w(1] |
w|2]

| L wlnl |

wl1] Y lif
wl2) Y alil

wln] Y i’

= |lz||*

for k,1 € {1,2,...n}
for k,1 € {1,2,...n}

Express w[k]|, k # n in terms of w[n] and z[l], | € {1,2,..

wll] = wn]
wi2] = wn)ZE
win—1] = wn]2=d

= w[l]? =
= w[2]? =
= wh-1P7 =
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w(t]
w|2]

w(n]

(A.5)

into a system of n linear equations, and

.n}, to solve for w(n].



wllP + w2+ +wn -1 = wln]?

P (s

w1 + w2’ + - +whn — 1 + ) = w[nQ(”” o L )+w[n]2
(*
(%

o, =1
_ 2 z[1 —I— —I—xn 1]2 z[n)?
L = wln] + )
= ) (Ll ||2)
wll® =
win] = &
(A.6)
Extending the result derived in Equation A.6, conclude that A = ||z,||? is an
- T
eigenvalue of A, with eigenvector W, = [Ilfv[i]ll’ wa[j]ll’ e, wa[:]”

From linear algebra and the properties of covariance matrices, the following are

known:
e covariance matrices are positive semidefinite — all eigenvalues are non-negative.
A — 2 _
o trace(A,) = ||z.||2 = S N

e since Equation A.6 showed that |z,|® is an eigenvalue of A, which equal to

tmce(]\n) =3 ;\i, all the other eigenvalues must be zero.
Given that \; = 02\; + 1, conclude:

N =0 = )\ =1 forj=1...n—1

A= laall® = A = oFllzall*+1 forj=n

Q.E.D.

Lemma 8 Let the covariance matriz of Y, given X, , and X, , be given as follows:

of (@1[1]? + z2[1]%) + 1 o2 (z1[1]z1[2] + z2[1]z2[2]) -+ 0% (@1[l)z1[n] + z1[1]z1[N])
A | oF @RE0] 4 w2el]) ok (@2 +2[207) +1 - oF (@1[2an[n] + 22[2)z2[n])
Y, X, X,, = . . .
o (z1[n]ei[1] + za[nlza[1])  oF (z1[n]2i[2] + z2[n]ea(2]) - of (21[n]® + 22[n]?) +1
(A7)

67



then the eigenvalues of Ay |x are:

forj=1...n—2

<
|
[S) -

2
A= T (lzal 4z )
o 2 - .
Tan,m+||g2,n||2] 4y IELVZH(wl[k]m[l]—wl[l]wz[kw)+1 forj=n—1
N o= % (lzenl? + llzanl?)

= (v lzsal + s P~ 4 S0 S0 o lKaal] — xlaalk)?) 41 or i =n
(A.8)

+

Proof:

AX,LI Xy Xop = a%]\n + I, where I, is the identity matrix and An is as follows:

[ P+l w2+ wele]2] -z [lz[n] + za[lws[n] |
i 1[2]z1[1] + z2[2]2[1] 71[2] + 2[2] oz [2]z[n] + 22[2] 2 [n]
I zi[n]z1[1] + zo[n]zo[1] z1[n]x1[2] + x2[N]22[2] --- x1[n)? + T2 [n)?

the problem of calculating A;, the eigenvalues of Ay |x , therefore reduces down to
finding 5\,-, the eigenvalues of /~\n. Where \; = 0'1295\,' + 1.

The eigenvalues of A, can be calculated by solving the following:

Ay — M| =0

which yields the following eigenvalues:

A o= 0 forj=1...n—2
i = 5 (2l + llzs %)
+3 (\/ (21 all? + llz2,l2)” = 4020 T2 (@1 [Kleall] - 21 [l]xz[k])"’) for j=n—1
A= 5 (lzal? + s ,l1%)
-3 (\/[II&,HIP +lzo 2] = 4 Ti T ST (@ [Rall] - wl[l]azg[k])Q) for j=n

Given that \; = a%:\i+1, the eigenvalues of Equation A.8 follow. Q.E.D.
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