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Abstract 
 
Single molecule spectroscopy has progressed substantially in the past ten years and the 
accompanying progress in the optical study of single semiconductor nanocrystals has 
opened a new dimension in our understanding of the photophysical properties of these 
quantum-confined materials.  In this thesis, I describe experimental advances that 
investigate and manipulate optical dynamics – blinking and spectral diffusion – in single 
CdSe and CdTe nanocrystals caused by complex interactions of electric fields and charge 
migration between a nanocrystal and its nearby environment.  With the aid of a simple 
yet powerful fluorescence far-field microscope, we examine the blinking phenomenon 
using statistical analysis to determine a temperature-independent physical mechanism 
(charge tunneling) that is universal to every nanocrystal.  Furthermore, we uncover a 
strong correlation between the blinking and spectral diffusion processes.  This correlation 
proves to be critical in connecting the power-law statistics observed from blinking in 
isolated nanocrystals with the binary spectral shifts in surface plasmon coupled 
nanocrystals.  Moreover, we identify charged nanocrystal emission signatures and create 
charged nanocrystals on command.  This level of control, whether to turn the 
nanocrystals off or to eliminate the blinking behavior, also improves the prospects for 
nanocrystal device applications.  Finally, we explore the impact of external magnetic 
fields on single nanocrystal optical properties and reveal behavior that is dependent on 
nanocrystal orientations relative to the applied field.  In addition, we observe evidence of 
zero-field splitting in a subset of nanocrystals.  This corroborates theoretical models that 
propose paramagnetic interactions as an explanation for the fundamental physics of CdSe 
nanocrystal emission.  
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Chapter 1 Introduction 

1.1 Motivation 

Continuing research and development of well-controlled nanometer sized 

macromolecules promise unprecedented chemical control over optical, electrical, and 

thermal properties of inorganic semiconductor[1-4], metallic[5, 6] and organic solids[7, 

8].  With physical properties no longer determined solely by their atomic numbers, the 

physics of semiconductor nanomaterials depends on their potential energy boundary 

conditions and the effective masses of the exciton that leads to quantization of electronic 

energy levels.  This control is expected to bring advances in various applications 

including biological fluorescence and absorbance tagging[9, 10], low-threshold, tunable 

solid-state lasers[11], light guiding photonic bandgap crystals[12], photovoltaic devices, 

and cheap and compact imaging displays[13, 14].  However, in order to reach these goals 

and to discover additional possibilities, a better understanding of the nanomaterial 

physical properties is necessary.   

The work in this thesis describes stepwise efforts to comprehend the full 

complexity of single II-VI semiconductor (CdSe and CdTe) nanocrystal (NC) quantum 

dots* interacting with their immediate electrostatic and magnetic environment.  The first 

sign of intricate mechanisms underlying the light emitted from CdSe nanocrystals was 

revealed in NC photobleaching in CdSe-doped glasses[15].  This has progressed to the 

observation of binary fluorescence intensity fluctuations[16] and recently to 

measurements of ultra-fast population inversion (bi-exciton) lifetimes, limiting 

nanocrystal lasing[17, 18].  Presently, theory suggests that Auger relaxation processes, a 
                                                 
* The terms nanocrystal, nanoparticle, and (colloidal) quantum dot (QD) are synonyms in this field.  
However, self-assembled QDs also known as Stranski-Krastanow QDs are significantly different from 
colloidal QDs. 
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form of exciton-electron (or exciton-hole) energy transfer, dominate in all of the 

aforementioned semiconductor nanocrystal experimental results and connect results 

attained in single NC studies to ensemble studies and technological applications. 

The discovery of blinking NCs in 1996 marked the beginning of a unique and 

interesting research topic.  Unfortunately, during our pursuits to measure intrinsic NC 

physical properties such as structural dipole moments, excited state lifetimes, and band 

gap electron energy levels, the blinking optical behavior always showed a greater impact 

on the data.  Therefore, learning about and altering the behavior of blinking NCs is 

paramount to all areas of single NC studies.  

 

1.2 Quantum Dots 

 Quantum confinement of the electron (and hole) in one dimension, taught in 

freshman quantum chemistry as a particle in a small box, initially explains the quantum 

size effects in structures ranging from quantum wells (1-D confinement)[19], quantum 

wires (2-D confinement)[20], and quantum dots (3-D confinement)[21].  Commonly, 

quantum wells and quantum wires will also emulate a quantum dot when surface defects 

produce small potential wells to localize the exciton[22].  For a spherical quantum “box”, 

the resulting dispersion curve behaves as follows: 

2
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where Eg is the bulk bandgap (CdSe values are 1.74 ~ 1.84 eV for temperatures between  
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300 K down to 10 K**) and me and mh are the effective masses of the electron and hole,  

respectively, in the semiconductor dielectric.  h  is Planck’s constant divided by 2π, a  is 

the sphere’s radius, and ee ln ,α and hh ln ,α  are the nth zero of the lth order spherical 

Bessel function for the electron and hole, respectively. 

In CdSe NCs, the confining box is nearly spherical with a slightly prolate shape as 

shown in figure 1.1(a) and 1.1(b).  The mesoscale size of this sphere begins with a 

handful of atoms[23] and extends towards crystals of ~10,000 atoms with sizes 

approaching the Bohr exciton diameter of 110 Å (a measure of the characteristic length 

scale).  For CdSe nanocrystals, this characteristic length scale is larger than the confining 

length scale, a.  In this strong confinement regime, the exciton energy primarily follows 

the confinement potential (~ 
1
a2 ) and the coulombic interaction (~ 

1
a ) is treated as a 

perturbation[24, 25].  In the case of weak confinement, where the exciton-confining box 

is much larger than the characteristic length scale of the semiconductor material, the 

coulombic interaction is used in the Hamiltonian leaving the confinement term as a 

perturbation.  Both wet chemical synthesis and molecular beam vapor phase deposition 

methods can produce various colloidal nanocrystals (CdSe[26], CdTe[27], PbSe[28], 

PbS[29], InP[30], Au[31], Ag[32], etc) and self-assembled quantum dots 

(InGaAs\GaAs[33], InGaP\InP[34], CdSe\ZnSe[35], etc), respectively.  Indeed, many 

research groups have succeeded in producing particles with a high level of control over  

the size, shape, and surface passivation.  Furthermore, the use of band-gap engineering by  

                                                 
** The bandgap is temperature dependent because the average lattice spacing of the crystal nuclei will 
become smaller as the temperature decreases and the vibrational energy in the crystal decreases.  
Accordingly, the energy of the electron in a more closely spaced lattice increases. 
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a.

b.
TEM images taken by F.V. Mikulec and C.B. Murray

Figure 1.1: (a) A cartoon drawing of a single CdSe nanocrystal excited by a photon
of energy E= hν.  The surrounding brush-like structures represent organic ligands
such as tri-octylphosphine oxide.  (b) A transmission electron microscope image of
many NCs.  The organic ligands keep the NCs from aggregating and the
monodisperse size distribution allows for hexagonal close packing of the NC film.
The inset shows a high-resolution image with clear lattice fringes of the single
crystalline core.    
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overcoating the core NCs with a higher band gap semiconductor material[36, 37] has 

shown improvement in photoluminescence efficiency, stability, and shows longer 

emissive durations during single NC blinking sequences compared to the native core 

nanocrystal.  In self-assembled quantum dots, the wetting/capping layer is deposited 

epitaxially to passivate the surface; the rare occurrence of optical dynamics in self-

assembled QDs is attributed to the nearly defect free semiconductor passivation[38].  

The 3-dimensional confinement for quantum dots leads to comparisons of the 

electronic levels to atomic energy levels due to the spectrally discrete absorption and 

emission features shown in figure 1.2(a) and 1.2(b).  The question is, “Where do the 

similarities end and the differences begin in the fundamental physical properties of these 

NCs?”  Various experiments over the last 10 years have shown examples where clear 

differences exist between the artificial atom picture and the physics of colloidal CdSe 

NCs.  First, the band gap optical transitions are distributed into eight fine structure states, 

split into five energy levels, that relax to the ground state[39].  Consequently, transitions 

from the lowest of the band gap states to the ground state are predicted to be optically 

forbidden (dark exciton state).  This is the primary explanation for the surprisingly long 

excited state lifetimes at cryogenic temperatures (~100 ns to ~µs)[40].  By applying 

magnetic fields across a film of NCs, the total angular momentum eigenstates of the NCs 

aligned perpendicular to the field are mixed, resulting in shorter lifetimes[41].  Size 

selective methods such as fluorescence line narrowing can better resolve spectral 

features[42]; however, the earlier ensemble experimental data used to form and verify the 

theoretical models have reached their limits.  To further develop these models, we require 

spectroscopic data from truly homogeneous sizes and crystal orientations to unravel the  
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Figure 1.2: (a) Absorption and (b) emission spectra from a size series of CdSe
nanocrystals in solution.  Typically, the first, second, and third absorption features
can be identified for narrow size distributions as shown above.  Corresponding
fluorescence peak characterized by a Gaussian profile and 25nm full width half
maximum. 
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intrinsic properties of each nanocrystal.  

 

1.3 Single Molecule Microscopy 

 The history of single molecule optical microscopy is rather short and the road to 

achieving this high sensitivity has been paved by technological advances in photodiodes 

and charge-coupled device (CCD) cameras[43, 44].  Twelve years after the first single 

molecule fluorescence experiments[45], commercial confocal microscopes are now 

readily available and achieve high signal-to-noise for real-time monitoring of single 

chromophores in a variety of applications.  The original techniques employed attaching 

samples directly to one end of a fiber optic and immersing the sample in a dewar of liquid 

helium[46].  Single molecule features observed on the wings of the ensemble were the 

first indicators of single chromophore optical isolation[47].  Most experiments were 

conducted at low temperatures since cryogenic temperatures increase the oscillator 

strength of the molecule[43] or quantum dot and make the analysis of spectral 

information much cleaner after “freezing” out vibrational and other thermal contributions 

to the spectra.  The highlights of single chromophore research include absorption[48], 

linear[45] and non-linear photoluminescence[49], photoluminescence excitation[50], 

excitation[51, 52] and emission polarization[53], and excited state lifetime 

measurements[54] to analyze the electronic energy landscape.  In addition, Stark[55], 

magneto-optic[56], and surface enhanced Raman spectroscopy[57, 58] showed 

interesting perturbation effects on the single molecule level.  As proof that this field 

continues to mature, single molecule spectroscopy can now be used as a nanometer probe 

to examine the molecule’s host environment for determining molecular orientations and  
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3-dimensional matrix conformations[59]. 

Further variations in the single molecule spectroscopic setup have revealed 

additional insight into the sample topography using near field scanning microscopy to get 

both nanometer spatial resolution and single chromophore photon detection[54].  

However, these measurements are limited to serial data acquisition, prone to sample 

perturbation by the near field tip, and are more difficult due to lower light throughput.  

For samples without the flexibility to change the concentration of chromophores on the 

substrate, metal masks with ~50 nanometer-sized holes can also yield single QD 

spectra[60].  This form of near-field microscopy removes the excess chromophores by 

screening them out of the excitation field. 

The optical studies of NCs go hand in hand with single molecule spectroscopy.  

Regardless of how the quantum dots are fashioned, the inherent distribution in particle 

size directly impacts the measured NC ensemble electronic structure.  Even a difference 

of a few atoms on the surface of NCs can change the size distribution by 4%[26].  To 

understand the full potential of nanoparticles and their interaction with the environment, 

we use the high throughput, non-invasive technique of far-field fluorescence microscopy.  

By illuminating NCs spatially separated by distances greater than the diffraction limit of 

light, we can analyze optical data from individual nanoparticles as opposed to the average 

optical behavior of many particles.  This becomes critical not only when the different size 

of each particle determines the spectral character under study but also when differences 

in the nanoparticle electric, magnetic, and electromagnetic environment, crystalline 

orientation and the nanoparticle’s dynamic (charged) state affect the optical measurement.   

We follow a number of criteria to determine whether we are observing single NCs.   
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Although one must rely on experience to apply these criteria properly, the following 

provides evidence that behavior from individual NCs is under study.  First, we start with 

a dilute concentration of the NCs; the nanomolar concentrations should provide 

approximately 1~2 µm separation between adjacent NCs.  Second, the intensity and 

spectral fluctuations, discussed in detail in chapters II and III, should not be synchronized 

between different NCs.  If two or more NCs were imaged close together, the intensity 

fluctuations would appear quantized in steps depending on the number of NCs aggregated 

in the same spot.  Also, in spectral measurements, two or more NCs would appear as 

multiple peaks that “diffuse” incoherently from each other.  This spectral signature is 

clearly pronounced at cryogenic temperatures because the linewidths are much narrower.  

The spectral features also identify NCs apart from organic dye molecules and other 

impurity chromophores due to the size-dependent emission energy and phonon-

progression features spaced 25 meV apart.  Finally, the polarization of the NC emission 

can help to determine whether single NCs are present.  Although there is a small 

percentage of NC that should have no polarization, most NCs would show either elliptical 

or linear polarization in the emission.  If multiple NCs were imaged in the same 

diffraction-limited spot, then they would most likely have no polarization assuming that 

these NCs would have random orientations relative to each other.   

    The basic configuration of the far field fluorescence microscope is outlined in 

figure 1.3.  Although we have employed variations in the excitation light source, primary 

light collection objective, sample temperature, electric and magnetic field environment, 

and in the detector equipment, the overall geometry of the optical layout remains 

unchanged in all four of our custom optical microscopes.   The list of excitation sources 
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Figure 1.3: Schematic Diagram for an optical far-field fluorescence microscope.
The inset shows a physical photo of the ultra-fast optical microscope.  The
dispersing prism removes any stray lines of the laser.  The laser is then focused
into the microscope objective such that the laser spot is defocused onto the sample
plane.  Emission is collected through the same objective and reflected into the
spectrometer.  A holographic or band pass filter combination removes the excess
laser light.  Either a CCD or photodiode detector is used to capture the emitted
image or spectrum.  The photo below is a working setup for taking time-resolved
single NC measurements.     
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Table 1.1: Comparison of Various Microscope Light Sources and Detection 
Instrumentation. 
Excitation Source Detection 

Source 
Typical Time 
Resolution: 
Integration time  
and Readout time 

Advantages Disadvantages 

Ar+ Ion CW laser 
(514.5nm, 488nm, 
457 nm) 

PentaMax 
Intensified 
CCD 

100ms to 1s, within 
integration time 

- Easy to focus 
images. 
- Fast and near 
continuous time 
resolution. 

- Not adept for long 
integration times. 
- Maximum frames 
limited to 320000. 
- Low threshold for 
intensifier damage.  

 MicroMax 
Thermal-
electrically 
cooled CCD 

500ms to 60s,  
~500ms (100x100) 
to ~2s (1024x1024) 
 

- Robust 
- Large CCD area. 
- High quantum 
efficiency for 
general-purpose 
use. 

- Slow readout time. 
- Dark counts limit 
max integration time 
to 1 min.  

 LN2 cooled 
CCD  

1s to 10min, 
~10ms (512x1) to 
~500ms (512x512) 

- Robust. 
- Ultra-low dark 
counts for long 
exposure 
measurements. 

- Slow readout time. 
- Outdated software. 
- Requires liquid 
nitrogen and 30 min 
cool down time. 

 EG&G 
Avalanche 
Photodiode 
(APD) 

~200µs to 10ms  - Single photon 
counting.  
- Low dark counts. 
 

- Vulnerable to 
damage by stray light. 
- No imaging 
capability without 
scanning. 

 Human eye < 60ms - Auto-focus 
- Color detection 

- Laser damage 
permanent. 
- Data storage is 
limited. 

CW Dye laser 
(530~620nm) 

All of the 
above 

 Tunable within 
~20nm range of 
dye emission 
maximum. 

- Dye Photostability. 
- Excitation power not 
constant throughout 
wavelength range.   

Mira/OPO 
picosecond (3ps) or 
femtosecond 
(100fs) pulsed laser 
(400~1200nm) 

LaVision 
Picostar 
Intensified, 
Gated CCD 

200ps to 5ns at rep. 
rates of 76 Mhz to 
1Mhz 

- Ultrafast resolved 
images. 
 

- Limited to 200ps. 
- Gated data 
acquisition results in 
long sample 
illumination during 
entire scan. 

 APD 30~200ps - Time correlated 
single photon 
counting (with 
counting 
electronics) 

- No imaging 

400 nm diode laser  All of the 
above 

~ns - Turn key 
operation. 
- Portable. 

- Limited to 400nm 
wavelength. 
- Maximum power is 
5mw. 
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and detectors are listed in table 1.1 with a comparison of their advantages and 

disadvantages.  All experiments dealing with low temperature or temperature dependence 

were conducted using a high numerical aperture (N.A. = 0.7, 60X) air objective, while 

room temperature investigations used liquid immersion objectives (N.A. = 1.25, 100X) 

that achieve numerical apertures greater than 1 by refracting a greater amount of light 

into the objective collection angle.   

 

1.4  Thesis Overview 

In this thesis, I describe a number of experiments that showcase the involved 

interactions of electric fields and charge migration between the nanoparticle core and its 

nearby environment.  The simple far field microscope is incorporated in different aspects 

to retrieve the relevant information and reveal the wide applicability of laser-induced 

fluorescence microscopy.  Chapter II deals with the primary issue of blinking as a starting 

point for investigating single nanocrystal emission dynamics.  Chapter III takes 

advantage of rich spectral data that can be simultaneously taken to understand the 

correlation between blinking and spectral diffusion.  Chapters IV and V take the next 

steps in harnessing the possible technology presented by nanometer-sized blinking 

particles.  In particular, chapter IV explains how blinking can be removed or drastically 

reduced by coupling of the nanocrystal to electromagnetic fields through surface plasmon 

resonance from nearby metallic surfaces.  In chapter V, we apply the charged NC model 

to develop a working device that makes NCs blink in unison.  This fluorescence 

quenching is controlled by charge injection into the NC core.  Finally, chapter VI touches 

on the impact of applied magnetic fields on single NC optical properties.  By examining 



 25

individual NCs, behavior that is dependent not only on optical orientations, but also 

properties specific to a subset of NCs can be uncovered.  In particular, evidence for zero-

field splitting in NCs is observed, corroborating suggestions of a magnetic impurity in a 

subset of NCs to explain the fluorescence lifetime behavior. 
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Chapter 2. Single Nanocrystal Blinking * 

2.1  Introduction 

Analyzing the light-matter interactions in a vial filled with billions of NCs, one 

would never imagine that every single NC was turning on and off independent from each 

other.  As the solute concentration is decreased to its final dilution of one chromophore, 

such dynamic and intricate information about its unique environment and quantum state 

is revealed.  This fluorescence intermittency or blinking has become a signature of single 

chromophore studies due to the ubiquitous and almost self-serving nature of this 

phenomenon.  The list includes conjugated polymers[1], Green Fluorescent Proteins 

(GFP) [2], organic dye molecules, silicon nanoparticles [3], SERS of single dye 

molecules [4], CdSe and InP self-assembled quantum dots[5], and CdSe, CdTe, InP[6] 

colloidal nanocrystals and this list continues to grow.  By definition, fluorescence 

intermittency or blinking refers to binary intensity fluctuations (on and off) that occur as a 

function of time (on the order of µs to minutes and longer) under continuous wave (CW) 

light excitation.  This differs from the Poisson statistics for single photon arrival times.  

As such, the minimum duration of the integration time needs to be sufficient to acquire a 

steady flux of photons for the NC excitation-relaxation cycle.  Hence, the blinking-off 

refers to the extended interruption of photon flux for this minimum duration or longer.  

Although the blinking behavior is observed under similar conditions, the blinking 

statistics are distinct for different chromophores.  Accordingly, the explicit mechanism 

that controls the blinking kinetics differs.  For example, blinking in single dye molecules 

follows an exponential distribution of on and off-times – the time duration of each 

                                                 
* Much of this chapter has appeared in print (K. T. Shimizu et al. Phys. Rev. B.  63, art. 205316, 2001) 
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emissive or non-emissive sequence.  This indicates transitions between the singlet 

(bright) and triplet (dark) state[7].  The statistical distribution of on and off times is then 

dictated by the forward, kf, and backward, kb, transition rate.  In GFP, two protein 

confirmations exist that absorb and emit at different wavelengths where first order rate 

kinetics between the two confirmations governs the switch from one confirmation to the 

other[2].  In the case of semiconductor nanocrystals, recent room temperature (RT) 

studies [8] show a power-law histogram of the off-times indicative of a distribution in 

kinetic rates between the bright and dark NC state(s).  In this chapter, we examine the 

CdSe blinking behavior for various physical parameters – temperature, intensity, and 

surface passivation – in the context of power-law statistics.   

 

2.2 Experimental 

We study over 200 individual NCs simultaneously using a home-built, epi-

fluorescence microscope apparatus.  Under photo-excitation of the 457 nm or the 514 nm 

line of an Ar ion laser, the emission intensity fluctuations are measured with a time 

resolution of 100 ms for durations of an hour.  Single dot fluorescence was acquired 

through an oil immersion lens for room temperature studies while temperature dependent 

studies were performed in a liquid helium cold finger cryostat adapted to an x-z 

translation stage.  All single NC samples are highly diluted (500X dilution from a 0.1 

absorbance solution) and spin-cast in a 0.2~0.5 micron thin film of low molecular weight 

polymethylmethacrylate (PMMA) matrix.  A Roper Scientific Pentamax intensified CCD 

detector was used to collect data from all of the dots that emit light during the 

observation period to ensure a complete statistical treatment of blinking.  The raw data,  
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Figure 2.1:  Data cube of x-axis–y-axis–time dimensions.  Each dark spot represents
emission from a single nanocrystal.  Each frame consists of a 100 ms time-integrated
image with roughly 200 NCs in view.  Movies with 30000 frames are collected
typically with 100x100 pixel area producing a 650 MB data file. 
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shown in figure 2.1, consists of consecutive images that form nearly continuous** 3-

dimensional (x-y-time) data sets.  The dark spots represent emission from individual NCs 

spaced approximately 1~2 µm apart.  This highly parallel form of data acquisition is vital 

for a proper statistical sampling of the entire population.  The raw image files were 

processed through Visual Basic macros to facilitate quantitative analysis of each data set. 

 

2.3 Results 

An illustrative 3000 s time-trace of fluorescence intermittency is shown for a 

CdSe/ZnS NC at RT and at 10 K in figure 2.2(a) and 2.2(b), respectively.  A small 

section of the time trace is expanded to show the self-similarity and complexity of the 

traces on different time scales.  We define the on time (or off time) as the interval of time 

when no signal falls below (or surpasses) a chosen threshold intensity value as labeled in 

figure 2.2(c).  The probability distribution is given by the histogram of on or off events:  

 
)(tP  =

 Σ
 

  
[events of length t]

       
(1) 

where t refers to the duration of the blink off or blink on event.  The choice of threshold 

can make a large difference in the resulting probability distribution.  Ideally, the time 

trace is taken with sufficient signal and time resolution to attain binary blinking behavior.  

As a counter example, RT data taken with high excitation intensity (1 kW/cm2) with 100 

ms integration times often led to “grass-like” traces even for overcoated samples.  These 

results should be analyzed with the caveat that events shorter than the integration time 

now dominate the observed time trace.  In all of the experiments described below, the  

                                                 
** The intensified CCD camera can integrate the signal on the multiple channel plate (intensifier) while the 
charges are read out from the CCD silicon chip.  The dead time between consecutive scans is negligible as 
long as the integration time is slightly longer than the readout time. 
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Figure 2.2: Typical intensity time trace of CdSe/ZnS NC fluorescence intermittency at
(a) Room Temperature and (b) 10 K.  Expanded view illustrates the similar nature of
the blinking behavior at RT and 10 K but with different time scales.  Data taken with
100 ms time resolution.  (c) Theoretical time-trace describing ton and toff as it pertains
to the statistical treatment of the blinking kinetics. 
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threshold was chosen as twice the root mean square value of the baseline intensity, when 

the NC was deemed off. 

 

2.3.1  Off-time Results 

The off-time probability distribution for a single CdSe/ZnS NC at room 

temperature is shown in figure 2.3(a).  The distribution follows a pure power law for the 

time regime of our experiments (~103 s): 

 α−= tAtP    )(          (2) 

Moreover, most individual NCs also follow a power-law probability distribution with the 

same value in the power-law exponents (α ≈ 1.5 ± 0.1).  A histogram of α values for 

individual NCs is shown in figure 2.3(b).  The universality of this statistical behavior 

indicates that the blinking statistics for the off-times are insensitive to the different 

environments of each NC.  Kuno et al.[8] first observed this behavior at room 

temperature using conventional confocal microscopy.  Due to higher signal-to-noise, 

confocal microscopy provides time resolution as high as 200 µs; however, the same 

probability distribution is also observed with 100 ms integration times.  Initial 

experiments at RT (figure 2.4) show that the same blinking statistics are also observed in 

CdTe NCs demonstrating that this power-law phenomenon is not restricted to CdSe NCs.    

To develop a physical model from this phenomenological power-law behavior, 

we probe the temperature dependence of the blinking statistics; this dependence should 

provide insight into the type and the energy scales of the blinking mechanism (tunneling 

vs. hopping).  Qualitatively, the data in figure 2.2(a) and 2.2(b) suggests that at low 

temperature the NCs blink less and stay in the on state for a larger portion of the time  
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Figure 2.3:(a) Normalized off-time probability distribution for one CdSe NC (open
diamond) and average of 39 CdSe NCs (filled triangle).  Straight line is a best fit to
the the average distribution with exponent ~ –1.5.  (b) Histogram of fitting values for
the power-law exponent in the 39 CdSe NCs.  



 36

0.1 1 10 100
10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

O
n/

O
ff-

tim
e 

Pr
ob

ab
ili

ty
 D

is
tri

bu
tio

n

0 2000 4000 6000 8000 10000 12000 14000

C
ou

nt
s

Time (s)

(a)

(b)

Time (100 ms)

Figure 2.4: (a) Time trace of a single CdTe NC at room temperature with 125 W/cm2

excitation power.  (b) Normalized probability distribution of the on-time(filled
triangle) and off-time (empty triangle) for CdTe NCs at RT plotted on a log-log scale.
The best-fit line shows a power-law behavior with exponent ~ – 1.6.  The CdTe NCs
were packaged in a TiO2 matrix to prevent premature oxidation and photobleaching. 
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Figure 2.5(a): Average off-time probability distribution for 25 Å radius CdSe(ZnS) NC
at 300 K (

 

), 10 K (
 

), 30 K (
 

), and 70 K (
 

).  The α values are 1.41, 1.51,
1.37, and 1.45, respectively.  
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observed.  However, when we plot the off-time probability distributions at temperatures  

ranging from 10 K to 300 K, as shown in figure. 2.5(a), the statistics still show power-law 

behavior regardless of temperature.  Moreover, the average exponents in the power law 

distributions are statistically identical for different temperatures (10 K: −1.51 ± 0.1, 30 K: 

−1.37 ± 0.1, 70 K: −1.45 ± 0.1, RT: −1.41 ± 0.1).  Such a seemingly contradictory 

conclusion is, however, resolved by plotting the on-time probability distribution at 10 K 

and RT as shown in figure 2.6.  Unlike the off-time distribution, the on-times have a 

temperature dependence that is then reflected in the raw data of figure 2.2. 

Previous studies have shown intensity independent off-time behavior [9, 10].  

Intensity independent off-time statistics are also observed here.  Varying the CW average 

excitation power in the range of 100W/cm2 to 3 kW/cm2 at 300 K and 10 K showed 

power-law, off-time probability distributions with no changes in the exponent value.  We 

also compared the off-time statistics for NCs differing in size (15 Å vs. 25 Å core radius) 

and NCs with and without a 6 monolayer shell of ZnS overcoating shown in figure 2.5(b).  

Again, the results showed no difference in the statistical nature of the blinking-on process. 

 

2.3.2 On-time Results 

The on-time statistics yield a power law distribution with the same exponent [11] 

as for the off-times, but with a temperature dependent “saturation effect” that alters the 

long time tail of the distribution.  This saturation reflects a secondary mechanism that 

limits the maximum on-time of the NC.  The saturation effect can be seen in the on-time 

distribution of a single NC in figure 2.6(a) and 2.6(b) as a “truncation”, and in the 

average distribution of many single NCs (figure 2.6 (c) and (d)) as a downward deviation  
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Figure 2.5(b): Intensity time traces from CdSe/ZnS NCs of radius 15 Å (red) and 25 Å
radius (black) and 25 Å radius CdSe bare NCs (green).  Below are the average off-time
probability distributions for 39 NCs with corresponding NC size and surface
overcoating.  The exponent values are –1.54, –1.59 and –1.47, respectively. 
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Figure 2.6: (a) Three single NC on time probability distributions at 10K, 700 W/cm2.
The arrows indicate the truncation point for the probability distribution for each NC.
(b) Three single NC on-time probability distributions for CdSe(ZnS) NCs at RT, 100
W/cm2.  (c) Average on-time probability distribution for 25 Å radius CdSe(ZnS) NC
at 300 K and 175 W/cm2 (

 

), 10 K and 700 W/cm2 (
 

), and 10 K and 175 W/cm2

(
 

).  The straight line is a best-fit line with exponent ~ –1.6.  (d) Average on-time
probability distribution for 15 Å radius CdSe(ZnS) NC (

 

) and 25 Å radius
CdSe(ZnS) NC (

 

) and 25 Å radius CdSe NC (
 

) at RT, 100 W/cm2.  The straight
line here is a guide for the eye.  The vertical lines correspond to truncation points
where the power law behavior is estimated to end. 
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from the pure power law [12].  At low temperatures, the saturation effect sets in at longer 

times and the resulting time trace shows ‘long’ on-times.  The extension of the power law 

behavior for low temperatures on this logarithmic time scale drastically changes the time 

trace as seen in Fig. 2.2; i.e. fewer on-off events are observed and the on-times are longer.   

Given that the exponent for the on-time power law distribution is nearly the same 

for all of our samples, then a measure of the average truncation point (or maximum on-

time) is possible by comparing ‘average on-times’ for different samples while keeping 

the same overall experimental time.  We calculate average on time of 312 ms, 283 ms, 

and 256 ms for the same CdSe/ZnS sample under 10 K and 175 W/cm2, 10 K and 700 

W/cm2, and RT and 175 W/cm2 excitation intensity, respectively.  The effective 

truncation times (1.5 s, 4.6 s, and 71 s, respectively) can be extrapolated by determining 

the end point within the power-law distribution that corresponds to the measured average 

on-time.  In figure 2.6(c) and (d), the vertical lines correspond to this calculated average 

truncation point indicating the crossover in time domain from one blinking mechanism to 

the other.   

Furthermore, we can understand the consequence of this secondary mechanism in 

terms of single NC quantum efficiency.  For ensemble systems, quantum efficiency is 

defined as the rate of photons emitted versus the photons absorbed.  Figure 2.7(a) shows 

the changes to the single NC time trace with increasing excitation intensity: the intensity 

values at peak heights increase linearly with excitation power, but the frequency of the 

on-off transitions also increases.  Moreover, the measured time-averaged single NC 

emission photon flux at different excitation intensities, marked by empty triangles in 

figure 2.7(b), clearly shows a saturation effect.  We suggest that this saturation behavior  
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Figure 2.7(a): Time trace of a CdSe(ZnS) NC with increasing excitation intensity in 30
second stages.  Inset shows the on-off nature still holds at high excitation intensity.
(b): The photon flux at the peak emission intensity ( ) and average emission intensity
(

 

) from the time-trace in (a).  The average photon flux calculated from an intensity
independent power-law distribution of on-times and the intensity dependent truncation
values in figure 2.6 are shown by the shaded triangles (

 

).  
 



 43

is due to the secondary blinking-off process mentioned above.  The filled triangles in 

figure 2.7(b) plot the expected time-averaged emitted photon flux at different excitation 

intensities calculated from a power-law blinking distribution and truncation values 

similar to those in figure 2.6.  The similarity of the two saturation plots (triangles) in 

figure 2.7(b) demonstrates the significance of the secondary mechanism to the overall 

fluorescence of the NC system.  The filled circles represent the peak intensity of the 

single NC at each of the excitation intensities.   

Modification of the surface morphology or excitation intensity showed no 

difference in the statistical nature of the off-times or blinking on process.  The statistical 

data is consistent with previous work[9, 10]; however, the separation of the power-law 

statistics from the truncation effects demonstrates that two separate mechanisms govern 

the blinking of CdSe NCs: (1) a temperature independent tunneling process and (2) a 

temperature-dependent photo-ionization process.  The truncation effect is not observed in 

the off-time statistics on the time scale of our experiments.  Since the power law of the 

off-time statistics extends well beyond the truncation point of the power law distribution 

of the on-time statistics, the on-time truncation/deviation is not an artifact of the 

experimental time  

 

2.5  Discussion 

2.5.1  Charged Dots Are Dark 

The initial model for CdSe NC fluorescence intermittency [9, 13] correlated a 

theoretical model for photodarkening observed in CdSe doped glasses [14] with the 

blinking phenomenon under the high excitation intensity used for single NC spectroscopy.   
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Figure 2.8: Cartoon drawing of the physical mechanism distinguishing a bright NC
from a dark NC.  (a) An emitting NC is either neutral or net neutral such that the
exciton recombines with quantum efficiency, q, to emit the photon with the size-
dependent energy, hν.  (b) A charged NC still absorbs a photon but a fast (~ ps) non-
radiative relaxation pathway is opened by the close proximity of the third charge.  This
energy transfer from the exciton to the third charge (not necessarily a hole as drawn
here) is referred to as Auger relaxation.  The temperature independent power-law
behavior in the off-time and on-time statistics identifies the transition as a charge
tunneling mechanism.  However, the saturation or limited maximum on-time indicates
a secondary blink-off mechanism that is influenced by laser intensity, temperature and
NC surface composition.  
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In the photodarkening experiments, Chepic et al. [15] described a NC with a single 

delocalized charge carrier (hole or electron) as a dark NC.  When a charged NC absorbs a 

photon and creates an exciton, it becomes a quasi three-particle system.  The energy 

transfer from the exciton to the lone charge carrier and non−radiative Auger relaxation of 

the charge carrier (~ 100 ps) [16] is predicted to be faster than the radiative 

recombination rate of the exciton (100 ns ~ 1 µs).  Therefore, within this model outlined 

in figure 2.8, a charged NC is a dark NC.  This describes the state of a dark NC, but does 

not explain the transition mechanism between a dark and bright NC. 

The universality of the off-time statistics for all the NCs indicates an intrinsic 

physical parameter driving the power-law blinking behavior.  Furthermore, since the 

power law statistics are temperature and excitation intensity independent, the process that 

couples the dark to bright states is a tunneling process and not photon-assisted.  As 

expanded on in the next chapter, spectrally resolved emission measurements showed a 

correlation between blinking and spectral shifting at cryogenic temperatures.  

Considering the large variations in the transition energy (as large as 60 meV [17]) of the 

bright state, we propose a theoretical framework using a random walk-first passage time 

model [18] of a dark trap state that shifts into resonance with the excited state to explain 

the transition from on to off and vice versa. 

 

2.5.2  Random Walk, First Passage Return Time 

In this random walk model, the “on-off” blinking takes place as the electrostatic 

environment around each individual NC undergoes a random walk oscillation.  When the 

electric field changes, the total energy for a localized charged NC also fluctuates and only  
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Figure 2.9(a) simple 1-D random walk phase space with a single transition point to go
from on to off or vice versa.  (b): Histogram of return times to the origin in a 1-D
discrete-step random walk simulation.  The boxed region of the histogram represents
the accessible time regime (>100ms and <1hr) in relation to our experiments.  The
filled circles represent room temperature statistics while the unfilled circles represent
the low temperature behavior.  The change from the RT to the low temperature
simulation is modeled by allowing for a probability for the random walker to remain
stationary, analogous to insufficient thermal energy at the low temperatures. (c)
Simulations of time traces produced from power-law distributions of on and off-times.
The maximum on-times were decreased to illustrate the changes in the experimental
time traces as temperature is increased, excitation intensity is increased, and/or surface
passivation is decreased.  Top and bottom traces are illustrative experimental traces to
show the similarities between the simulation and data.  
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when the total energy of the localized charge (off) state and neutral (on) state is in 

resonance, the change between the two occurs.  An analogy can be pictured as a 

skyscraper with two elevators and a single passenger: Whenever the bright elevator and 

dark elevator doors open on the same floor, the person can switch from one to the other.  

Otherwise, the person remains inside the bright (or dark) elevator from floor to floor 

assuming that the elevator stops at each floor and the elevator’s direction is random.  

Obviously, the shift from the dark to bright state (vice versa) is the critical step when the 

charge becomes delocalized (localized) and the NC turns on (off).  The observed power 

law time-dependence can be understood as follows:  If the system has been off for a long 

time, the system is deep within the charged state (off-region) of the dynamic phase space 

and is unlikely to enter the neutral state (on-region) of the phase space.  On the other 

hand, close to the transition point, the system would interchange between the charged and 

neutral states rapidly.  As the simplest random walk model, we propose an illustrative 

example of a one-dimensional phase space (figure 2.9a) with a single trap state that is 

wandering up and down in energy.  At each crossing of the trap and intrinsic excited state 

energies, the NC changes from dark to bright or bright to dark.  Since the transition from 

on to off is a temperature independent tunneling process, it can only occur when the trap 

state and excited state of the NC are in resonance.  In addition, a temperature-dependent 

hopping process, related to the movement and creation/annihilation of trapped charges 

surrounding the NC core [17, 19] drives the trap and excited NC core states to fluctuate 

in a random walk.  The minimum hopping time of the surrounding charge environment 

gives the minimum time-scale for each step of the random walk to occur.  This simple 1-

dimensional discrete-time random walk model for blinking immediately gives the 
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characteristic power law probability distribution of off-times with a power law exponent 

of −1.5 [20].  The intrinsic hopping time is likely to be much faster than our experimental 

binning resolution (100 msec).  Although the hopping mechanism is probably 

temperature-dependent, this temperature dependence would only be reflected in 

experiments that could probe timescales on the order of the hopping times, before power-

law statistics set in and beyond the reach of our experimental time resolution. 

Although this simple random walk model may require further development, it 

nevertheless explains the general properties observed.  The off-time statistics are 

temperature and intensity independent because although the hopping rate of the random 

walker changes, the statistics of returning to resonance between the trap and excited state 

does not.  In addition, size and surface morphology do not play a significant role in this 

model as long as a trap state is energetically accessible to the intrinsic excited state.  

Further experimental and theoretical work is needed to complete this model.  For 

example, temperature and state dependent hopping rates as well as a higher dimension 

random walk phase space and multiple transition states may be necessary. 

 

2.5.3 Other Models 

 The random walk model is by no means the only possible explanation for the 

extraordinary power-law behavior in the on-time and off-time statistics.  Another model 

is based on a set distribution of trap states surrounding the NC.  In ref[21, 22], the authors 

describe the probability density for charge tunneling rates to be:   

β (r) ~ exp (─k r).   
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This can be argued from the spatial decay of the exciton wavefunction outside the NC 

boundary.  The next step relies on the time in the trap (charged) state.  If one assumes a 

first-order kinetics rate to return, this neutralization rate to the uncharged state will follow  

P(τ) ~ exp (–β τ).   

When all the possible trap states are accounted for, the probability to return back to the 

NC core will follow a power law for long times, τ.  In addition, an emitting, charged state 

is described where the extra charge is localized on the surface such that Auger non-

radiative relaxation does not occur but coulombic repulsion prevents any charges from 

also tunneling out near the surface.  This model is proposed to explain the power-law 

behavior for the on-time distribution.   

 

2.5.4 Intensity Saturation 

The magnitude of truncation of the on-time power law distribution depends on 

which NC is observed as shown in figure 2.6(a) and 2.6(b).  In figure 2.6(b), the arrows 

indicate the on-time truncation point for three different NCs under the same excitation 

intensity at RT.  Qualitatively, we can describe and understand the changes as a result of 

the interaction between the dynamic dark and bright states modeled earlier.  As the 

excitation intensity or thermal energy is reduced, the hopping rate of the random walker 

slows down and the time constant for the truncation is extended within our experimental 

time.  Surface modification in the form of ZnS overcoating also extends the power law 

distribution for the on-times.  This surface modification should not change the hopping 

rate of the random walker but rather changes the Auger scattering rate.  Hence, a 

mechanism such as photo-assisted ejection of a charge due to Auger ionization[9, 13] 
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may be responsible for the on-time truncation effect.  Recently, reversible quenching of 

CdSe NCs was shown due to interactions with oxygen molecules in the presence of 

light[23].  Although the single NC blinking data was not interpreted using the power-law 

statistics, the kinetic behavior is consistent with our description above: the off-times are 

independent of the oxygen molecules introduced; however, the on-times show a dramatic 

decrease in the maximum duration.  The simulated time traces in figure 2.9(c), taking into 

account shorter termination points for the maximum on-time relative to the maximum off-

time, elucidates the difference in blinking at higher temperatures, higher excitation 

intensity, and poorer surface passivation.  The change in the time traces is comparable 

between the simulation in figure 2.9 and data in figure 2.2. 

Recent results on CdTe NCs, displayed in figure 2.4, show that the power law 

behavior, its exponent, and the on-time phenomenology is reproduced, indicating that the 

effects observed are not unique to the particulars of CdSe NCs, but rather reflect more 

universal underlying physics of nanocrystal NCs. 

 

2.6  Conclusion 

We have used a highly parallel imaging microscope setup to study fluorescence 

intermittency in single CdSe, CdSe/ZnS core-shell, and CdTe semiconductor 

nanocrystals, providing insight into the mechanism of single NC blinking dynamics.  The 

statistics of both on and off time distributions are obtained under varying temperature, 

excitation intensity, size and surface morphology conditions.  Although similar 

experiments have been conducted earlier, the analysis of the data did not include the 

framework of power-law statistics, and the data sets were limited to small numbers of 
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single NCs and relatively short observation times [9, 10].  Here we show an unexpected 

temperature independence in the observed power-law probability distribution of off times.  

Furthermore, we report that the on-time behavior also shows a power law component to 

the probability distribution. However, a secondary, thermally activated and photo-

induced process causes the probability distribution of the on-time statistics to be 

truncated at the ‘tail’ of the power law distribution.  The temperature independent, power 

law statistics observed for all the CdSe NCs studied suggest a complex, yet universal, 

tunneling mechanism for the blinking on and off process. 
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Chapter 3 Spectral Diffusion and Blinking * 

3.1  Introduction 

Now that we have examined the blinking statistics in great detail, we can also 

examine the spectral information for clues to understand the strange kinetics that have 

besieged single nanocrystal (NC) optical measurements.  The spectral identification of 

single NCs is particularly clear due to (i) the quantum-confined size effect that 

determines the peak position, (ii) relatively narrow emission peak widths at room 

temperature (> 14 nm) and cryogenic temperatures (< 0.5 nm), (iii) the optical phonon 

modes spaced ~25 meV apart, and (iv) the dynamic spectral changes that occur as a 

function of time at room temperature down to 10 K.  This dynamic behavior was termed 

spectral diffusion and includes both the discrete and continuous shifts in the emitting 

wavelength as a function of time.  Since there appears to be no correlation in the 

magnitude or the direction of the spectral shifts between nearby NCs, we can discriminate 

whether two or more NCs are aggregated within the resolution of our image detection by 

monitoring if a single emission peak will split into two or more peaks when the spectrum 

diffuses.    Similar to the blinking behavior described in the previous chapter, spectral 

diffusion has also been observed in a myriad of single chromophore studies[1-3].  This 

behavior in NCs was first observed by Empedocles [4] but the data was taken with long 

integration times (> 10 s) and there was no connection made with the blinking behavior.   

In this chapter, we report experimental results that probe both of the optical 

dynamics in single NCs – spectral diffusion and blinking – simultaneously.  The results 

suggest that the two separate long time dynamical processes that have been observed, 

                                                 
* Much of this chapter has appeared in print (Neuhuaser R. G. and K. T. Shimizu et al. Phys. Rev. Lett.  85, 
15. p 3301, 2000) 
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fluorescence intermittency and spectral diffusion, are correlated through redistribution of 

charged species in and around each individual NC.   

 

3.2 Experimental 

The experimental setup is similar to the apparatus described in the previous 

chapter.  The key difference lies in observing single NC emission spectra with fast time 

resolution (~100 ms).  Instead of collecting data in a series of consecutive images, we 

take all of the NCs imaged on the entrance slit (175 µm) of the monochromator and 

spectrally resolve their emission as shown in figure 3.1.  An advantage of CCD detection 

over avalanche photodiode or photomultiplier tube detection is that spectral data of single 

NCs can be obtained in one frame.  Moreover, all of the NCs imaged on the entrance slit 

of the monochromator are observed in parallel.  If only relative frequency changes need 

to be addressed, then the entrance slit can be removed entirely because each NC spot size 

forms its own spatial point source.  This allows for parallel tracking of emission 

frequencies and intensities of up to 50 nanocrystals.  The data analysis software program 

then retrieves the time-frequency-intensity emission trajectories for all of these NCs.   

 

3.3 Results 

The spectrally resolved time-traces shown in figure 3.2(b) and (c) summarize the 

typical phenomenology of spectral shifting and blinking for different quantum NCs at 

low temperature (10 K) and room temperature, respectively.  Both RT and the 10 K data 

show blinking dynamics along with changes in the emission energy.  The differences,   
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Figure 3.1: Single CdSe NC images and corresponding spectra.  The entrance slit is
closed to filter out all but one NC at each vertical position.  If the entrance slit is left
wide open, then the laser line will produce a broad background centered about the
laser position. However, far from the laser line (and higher order harmonics), the
single NC image spots can form its own slit and relative spectral behavior can be
analyzed with higher sample throughput. 
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Figure 3.2: Spectral time trace of a single CdSe/ZnS QD at 10K.  The phonon
progression (~25meV) can be seen to the red of the strongest zero-phonon peak.  A
comparison between spectral time traces for (b) 10K and (c) room temperature shows
that spectral diffusion is present at both temperatures.   
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however, are quite clear.  At RT, thermal contributions to the homogenous linewidth 

conceal any phonon-assisted emission profile.  Furthermore, the signal-to-noise is 

diminished for RT data since the NC has lower quantum yield and the photons are spread 

over several more pixels on the CCD detector.  As the temperature falls below ~30 K, the 

spectral linewidth decreases and phonon progression features, the zero and first phonon 

lines, are observable as shown in figure 3.2(a).  We can see the variable nature of spectral 

diffusion for different dots and short observation times in figure 3.3(a-c).  Time-traces of 

these three NCs were observed simultaneously.  The spectrum in figure 3.3(a) shows 

sharp emission lines with nearly constant frequency and intensity, the spectrum in figure 

3.3(b) shows some pronounced spectral shifts and a few blinking events, and the 

spectrum in figure 3.3(c) is fluctuating in frequency and shows a number of blinking 

events on a much faster time-scale.  The spectral information clearly shows that, for a 

single quantum NC under the perturbations of its environment, there are many possible 

transition energies (i.e. a dynamically changing emitting state).  Net shifts as large as 14 

nm were observed in our experiments.  The organic dye molecule system described in 

chapter I applies a static three (or four) level model to describe the emission dynamics; 

however, in light of our spectral data, a similar model would not describe our single NC 

system.  Rather, these emission dynamics suggest a NC intimately coupled to and 

reacting to a fluctuating environment.  We expect from this observation that physical 

properties like fluorescence lifetimes or quantum efficiency, even when measured on a 

single NC basis, will provide average values over a large number of different states of the 

NC/environment system.  Recently, fluctuations in room temperature single NC lifetimes 

(as we had predicted) have been reported by Schelgel et al[5].  Zooming into the time  
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Figure 3.3: Low temperature spectral time trace of three CdSe/ZnS NCs demonstrating
the different dynamics observed simultaneously on short time scales.  The resulting
averaged spectrum is plotted for each NC.  The boxed areas in (b) and (c) are
magnified and shown in (d) and (e).  The blinking back “on” after a dark period is
accompanied by a large spectral shift.  The white dotted line is drawn in (d) and (e) as
a guide to the eye. 
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traces of figure 3.3(b) and 3.3(c) reveals that blinking and hopping between these 

multiple emitting states is correlated.  As shown in figure 3.3(d), magnifying the marked 

region in the time-trace of figure 3.3(b) reveals a pronounced correlation between 

individual spectral jumps and blinking: following a blink-off/blink-on event, the energy 

of the emitted photons is changed.  At first glance, this does not seem to hold for the NC 

shown in figure 3.3(c).  However, as shown in figure 3.3(e), zooming into the time-trace 

of figure 3.3(c) reveals a similar correlation.  As in figure 3.3(d), the trace shows dark 

periods that are accompanied by discontinuous jumps in the emission frequency.  The 

periods between shifts in figure 3.3(d) and 3.3(e), however, differ by nearly an order of 

magnitude in timescales.  Due to our limited time resolution, no blinking events shorter 

than 100 ms can be detected.  Any fluorescence change that is faster than the ‘blink-and-

shift’ event shown in figure 3.3(e) is not resolved by our apparatus and appears in a 

statistical analysis as a large frequency shift during an apparent on-time period.  This 

limitation weakens the experimentally observed correlation between blinking and 

frequency shifts.  Nevertheless, a statistically measurable difference between shifts 

following on and off-times can be extracted from our results.   

 

3.4  Discussion 

3.4.1  Statistical Analysis 

Since changes in the emitting state cannot be observed when the NC is off, we 

compare the net shifts in the spectral positions between the initial and final emission 

frequency of each on and off event.  The histogram of net spectral shifts during the on 

times, shown in figure 3.4(a), reveals a nearly Gaussian distribution (dark line) with 3.8  
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Figure 3.4: Distribution of net spectral shifts between the initial and final emission
frequency for 2400 on and off periods of 9 CdSe/ZnS NCs at 10K.  (a) Histogram of
net spectral shifts for the on period shows a Gaussian distribution of shifts.  The dark
line is a best fit to Gaussian profile.  (b) Histogram for off periods displays large
counts in the wings of a similar Gaussian distribution.  (c) Subtracting the on-period
distribution from the off period distribution magnifies the large counts in the wings
of the Gaussian distribution.  This quantifies the correlation that the large spectral
shifts accompany an off event (longer than 100ms) more than an on event.  (d) A
logarithmic plot of the histogram shows a clearer indication of the non-Gaussian
distribution in the net spectral shifts during the off-times.  The dark line is a best fit
to a Gaussian profile. 
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meV full width at half maximum.  However, the histogram for the off-time spectral shifts 

in figure 3.4(b) shows a distribution better described as a sum of two distributions: a 

Gaussian distribution of small shifts and a distribution of large spectral shifts located in 

the tails of the Gaussian profile that do not fit a simple Gaussian distribution.  To 

illustrate the difference between the distributions of on and off-time spectral shifts, the 

on-time spectral distribution is subtracted from the off-time spectral distribution shown in 

figure 3.4(c).  Even though our measurements have a time resolution of 100 ms, this 

difference histogram shows that large spectral shifts occur significantly more often 

during off-times (longer than 100 ms) than during on-times; hence, large spectral shifts 

are more likely to accompany a blink-off event than during the time the NC is on.  This 

statistical treatment does not try to assess the distribution of NCs that show this 

correlation but rather confirms the strong correlation between spectral shifting and 

blinking events in the NCs observed.  The off-time histogram, plotted on a logarithmic 

scale in figure 3.4(d), shows that a Gaussian distribution (dark line) does not describe the 

distribution of off-time spectral shifts [6].   

The correlation observed between blinking and spectral shifting events elucidates 

the possible mechanisms behind these dynamical processes.  The two behaviors have 

been described as a consequence of the interaction between the NC and the local 

environment, but a correlation between blinking and spectral shifting events had not been 

predicted.  This correlation differs from blinking caused by spectral shifting observed in 

single molecules such as pentacene in a p-terphenyl matrix [7],[8].  In single molecule 

experiments, the chromophore is resonantly excited into a single absorbing state and a 

spectral shift of the absorbing state results in a dark period since the excitation is no 
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longer in resonance.  In our experiments, we excite non-resonantly into a large density of 

states above the band-edge[9].   

 

3.4.2  The Model: charges in (and out of the) nanoenvironment 

An early model [10] described the fluorescence intermittency results based on a 

photo-ionization process.  The transition from a bright to a dark NC occurs through the 

trapping of an electron or hole leaving a single delocalized hole or electron.  Upon further 

excitation of the NC, fast non-radiative relaxation follows due to energy transfer from the 

exciton to the delocalized charge carrier through the Auger mechanism [11].  The switch 

from a dark to a bright NC then occurs through recapture of the initially localized 

electron (hole) back into the NC core or through capture of another electron (hole) from 

nearby traps.  When the electron-hole pair recombines, the NC core is no longer a site for 

exciton-electron (exciton-hole) energy transfer.  Concomitantly, Empedocles et al. [12] 

showed evidence that spectral diffusion shifts are caused by a changing local electric 

field around the NC.  The magnitude of the changing local electric field was consistent 

with a single electron and hole trapped near the surface of the NC.   

We can now combine both models to explain the correlation as shown in Figure 

3.3(d) with the arrows between large spectral jumps and blinking.  Using the assumption 

that a charged NC is a dark NC [13], there are four possible mechanisms for the transition 

back to a bright NC.  Cartoon drawings depicting the four different mechanisms are 

shown in figure 3.5.  EFM studies on single CdSe NCs recently showed positive charges 

present on some of the NCs [14] even after exposure to only room light.  In our model, 

after CW laser excitation and exciton formation, the NC turns “off” when an electron or  
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Figure 3.5: Four possible mechanisms for the correlation between spectral shifting and
blinking. (a) An electron and hole become localized independent of the other charges
surrounding the QD leading to a change in the electric field environment.  (b) An
electron from the core localizes to the surface, but a surrounding charge is recaptured
into the core.  After recombination with the delocalized hole, the net electric field has
changed. (c) Although the same electron that was initially localized returns to the core
to recombine with the delocalized hole, due to coulomb interaction, the charge
distribution surrounding the QD has changed.  (d) The same electron initially localized
returns to the core to recombine with the delocalized hole and there is no change in the
local electric field around the QD. 
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hole from the exciton localizes near the surface of the NC leaving a delocalized charge 

carrier inside the NC core.  Following this initial charge localization or ionization, the NC 

turns back “on” as a result of the following possible mechanisms: (a) the delocalized 

charge carrier can also become localized near the surface leading to a net neutral NC. 

This localization may be thermally driven, or more likely driven through the Auger 

process itself.  (b) If the NC environment is decorated by charges following process (a), 

then after subsequent ionization, a charge localized in the NC’s nearby environment can 

relax back into the NC core recombining with the delocalized charge carrier, or (c) the 

initial localized charge relaxes back into the core and recombines with the delocalized 

carrier.  This last mechanism can be accompanied by a permanent reorganization of the 

localized charges present in the NC environment due to coulombic interactions as the 

photogenerated carrier traps and detraps.  Mechanisms (a), (b), and (c) would create, if 

not alter, a surface dipole and lead to a net change in the local electric field.  The single 

NC spectra express this change as a large Stark shift in the emission frequency.  

However, the model does not necessarily require that a blinking event be followed always 

by a shift in emission frequency.  If the dark period is produced and removed by a 

localization and recapture of the same charge without a permanent reorganization of 

charges in the environment (mechanism d), the emission frequency does not change.  

Any changes in the emission frequency during this mechanism would be entirely 

thermally induced and such small spectral shifts are observed.  Indeed, this pathway for 

recombination dominates very strongly, as most dark periods are not accompanied by 

large frequency shifts.  The processes described under mechanism (a), (b), and (c) appear 

much less likely to occur.  Nevertheless, these processes can introduce an increased   
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Figure 3.6: Typical single CdSe NC Stark spectrum (a) before and (b) after a spectral
diffusion shift has occurred.  The schematic of the spectral diffusion mechanism is
drawn in (c).  The inset shows the microfabricated electrode substrate used where the
red dot exemplifies a single NC.   
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complexity to the observed dynamics.  

 

3.5 DC Stark Spectroscopy Experiments 

We performed Stark spectroscopy on the NCs to test whether the charges 

described above may be perturbed by an externally applied DC electric field.  For this 

purpose, we used lithographically deposited, interdigitated gold electrodes to apply fields 

up to 4 x 105 V/cm across the NCs.  Earlier work showed that spectral diffusion jumps 

occurred independent of the applied field[12].  As an example, figure 3.6(a) shows a 

typical Stark spectrum of a single NC.  The Stark energy shift can be described by 

2
zzzzzE Ε+Ε=∆ αµ         (1)  

where µz is the dipole moment of the NC, Ez is the electric field, and αzz is the NC 

polarizability.  Local electric fields from surface charges can contribute to the total Ez 

field: 

Ez, total = Ez, local + Ez, applied       (2) 

Then inserting equation (2) back into equation (1), the total linear contribution is a sum of 

the intrinsic dipole moment and the local field multiplied to the NC polarizability.  This 

can be observed by comparing figure 3.6(a) and (b), where the same NC shows drastic 

changes to the magnitude of the stark linear response before and after a spectral diffusion 

shift has occurred.  Figure 3.6 (c) describes how the spectator charges may have changed 

leading to a change in the linear Stark spectrum.  However, the quadratic term does not 

change as the charge environment of the NC changes.  In figure 3.7, we show preliminary 

attempts to change the blinking-spectral diffusion behavior by applying electric fields at 

fixed intervals at 10 K.  The electric field (4 x 105 V/cm) is toggled back and forth  
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Figure 3.7: Stark spectra time trace.  (a) The field is toggled from 4 x 105 V/cm to 0
V/cm to −4 x 105 V/cm in 30 s intervals.  (b) The field is held at 0 V/cm for most of
the time and switched on momentarily (2 s) to 4 x 105 V/cm.  In both cases, the spectra
respond to the applied field but there is no residual change (memory) in the local
electric field that should be reflected in the emission position after the external field
has turned back off.  Data taken with 1s integration times. 
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between positive, zero, and negative bias or simply turned on for 2 s at 30 sec intervals.   

If the applied fields were large enough, we expect the spectator charges described in 

figure 3.5 to adjust.  However, in this case, no spectral residual effects are observed after 

applying the large electric field bursts.   

 

3.5  Conclusion 

In conclusion, we have shown a strong correlation between large spectral shifting 

events and blinking of single nanocrystals by measuring simultaneously fluorescence 

intensity and fluorescence frequency of single NCs.  This dynamic behavior can be 

explained by extending the photo-ionization model that describes blinking in 

semiconductor nanocrystals as a result of a NC ionization and Auger electron-exciton 

(hole-exciton) energy transfer, a mechanism that differs from the process known to cause 

blinking in single molecules.  
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Chapter 4 Surface Enhanced Fluorescence * 

4.1 Introduction 

 Metallic interfaces play a complex role in the basic interactions of an 

electromagnetic field with optically active materials.  For example, smooth metallic 

surfaces reduce the radiation from nearby organic dyes through non-radiative energy 

transfer [1], while molecules adsorbed onto rough metallic electrodes [2] show orders of 

magnitude increase in surface-enhanced Raman signals.  Colloidal semiconductor 

nanocrystal quantum dots (NCs) can be considered as unique testing materials for 

electromagnetic-radiating dipole interaction models because of their nature as 

“customizable” chromophores that can be tailored to absorb or emit light anywhere in the 

visible spectrum, and beyond [3].  Yet, there is little known about chromophore-metal 

surface interactions for colloidal semiconductor NCs.  Recent advances in single 

molecule detection offer an opportunity to probe and understand the details of optical 

quenching or enhancement, details that are hidden in ensemble experiments by sample 

inhomogeneity [4,5].  Furthermore, there is continued interest in increasing the maximum 

rate of photons emitted as well as in understanding the sensitivity of NC chromophore 

properties to their immediate environment.  Such advances would help to better 

implement NCs in biological and solid-state device applications.  We combine a study of 

NC-metal surface interactions with single molecule detection methods to show that novel 

photophysics emerges from having a NC next to a rough metal surface.  We find that 

radiative and non-radiative relaxation rates are strongly affected, and that the usually 

dominant Auger non-radiative relaxation channel is no longer competitive.  We focus on 

                                                 
* Much of this work will appear in print (K. T. Shimizu et al. Accepted in Phys Rev Lett 2002.) 
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single CdSe(ZnS) NC investigations that reveal surface-enhanced exciton fluorescence 

via an electromagnetic interaction with the gold surface plasmon.  This intensity 

enhancement can reach five-fold and is accompanied by dramatic changes in the 

dynamical optical behavior (blinking [6-9] and spectral diffusion [10]), the emission 

polarization, and the fluorescence lifetime. Surface-enhanced fluorescence experiments at 

cryogenic temperatures on single NCs show that (i) blinking effects are dramatically 

diminished and (ii) emission energy jumps now follow the same statistical behavior as 

the blinking behavior of NCs on non-metallic substrates.  These results suggest that the 

ionization mechanism usually responsible for blinking remains, but emission from both 

charged and neutral excitons in individual nanocrystals is now observed. 

 

4.2 Experimental 

 We used far-field photoluminescence microscopy to investigate the surface 

enhancement properties of the fluorescence in single CdSe(ZnS) NCs on rough gold 

surfaces.  The substrates were fabricated by thermal evaporation of titanium/gold 

(20nm/120nm) on silicon wafers followed by electrochemical etching.  Atomic force 

microscopy studies, shown in figure 4.1, confirmed the formation of rough valleys and 

peaks with 10~50 nm size features.  CdSe(ZnS) core-shell nanocrystals were synthesized 

following the methods in Ref.[11-13].  Single NCs were dispersed by spin-coating dilute 

samples directly onto the gold substrates.  We used the 514 nm line of an Ar ion CW 

laser for sample excitation.  Further instrumental details are described elsewhere [10]. 
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Figure 4.1: A 3µm x 3µm AFM image of a sample gold substrate after the
electrochemical-etching procedure outlined in the text.  The cross-sectional view
(inset) shows various hills and valleys in the 75nm size range. 
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4.3  Results 

Initial experiments of CdSe(ZnS) NCs on smooth gold substrates showed an 

immediate quenching of the luminescence, a behavior that has been well documented 

with various organic dye molecules.  We observed an increase in the number of emitting 

individual NCs as we increased the surface roughness while keeping the (dilute) 

concentration of NCs constant.  Of the detectable NCs, we typically measured a three to 

five-fold increase in the fluorescence intensity (figure 4.2a.), as compared to the same 

NCs placed on crystalline quartz substrates under identical conditions.  Furthermore, the 

duration of “on” times increases to a point where the frequency of blinking events 

appreciably diminishes.  A large distribution of NC/gold coupling strengths exists as 

some NCs show as much as five-fold increase in fluorescence intensity, while other NCs 

show diminished fluorescence.   

 

4.3.1 Power-Law Spectral Jumps 

Figure 4.2 (b) shows the dynamic behavior observed for single CdSe(ZnS) NCs at 

10 K on quartz substrates [14].  The optical fluctuations include the on-off blinking of the 

emission intensity as well as large and small continuous spectral shifts.  In Figure 4.2(c), 

the low temperature emission from a single NC interacting with the rough gold surface is 

shown.  The spectral shifts occur more frequently as discrete shifts and there is no “off” 

behavior during the entire scan.  We can identify two categories of spectral shifts that are 

present: the first type is binary with energies ranging from 10~22 meV and the second 

type is a more continuous, small shift that appears random in direction and  

magnitude.  This behavior was observed over many (>50) NCs on many similarly  
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Figure 4.2: (a) shows the relative intensity difference of the emission peaks between
normal (black line) and enhanced (red line) NCs.  A spectral diffusion trajectory of a
single CdSe/ZnS nanocrystal (b) in poly(methyl-methacrylate) polymer on quartz
substrate and (c) on a roughened gold surface with no polymer matrix.  (a),(b), and (c)
taken with 100 ms integration time and 514 nm CW laser excitation (200 W/cm2).
Magnified spectrum in (d) shows the clear binary shifts from (c) with the proposed
charged and neutral exciton peaks labeled.  (e) Statistical distribution of the time
intervals in between discrete spectral shifts plotted on a log-log scale.  The straight
line is a best-fit curve to a power-law (P = tα) where α = −1.4.   
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prepared substrates.    

Previous work analyzing the statistics of the fluorescence intermittency (blinking) 

showed that the on and off-times follow a universal power-law distribution: every single 

CdSe(ZnS) NC blinks on and off and follows a power-law distribution in the histogram of 

on and off-time durations [15, 16].  This power-law was attributed to the statistics of the 

tunneling kinetics of an extra charge between localized and delocalized states of the NC. 

Similarly, we measure the time intervals between spectral jumps for the NCs coupled to 

the gold substrates.  We plot a histogram of these “wait” times in figure 4.2(e).  Apparent 

in the log-log plot, we see that the distribution of wait times also shows a power-law 

distribution.  Moreover, the exponent of the power is –1.4, similar to the results seen in 

previous blinking studies (−1.5 exponent).   

 

4.3.2 Emission Polarization 

To verify the NC/surface interaction, we also probed the emission polarization.  

The symmetry of the CdSe NC shape and crystal structure gives rise to a doubly 

degenerate emitting state with a 2-dimensional emission polarization [17].  Figure 4.3(a) 

and (b) show RT NC images and 10 K NC spectra, respectively, as the polarization 

analyzer is rotated.  The surface interaction results in a conversion of the NC emission 

from a degenerate to a non-degenerate linear dipole.  All of the NCs show emission 

polarization consistent with a linear dipole at 10 K and at room temperature; the emission 

polarization is easily measured even at room temperature due to the decrease in blinking 

that would normally result in large intensity fluctuations [18].  The polarization change is  

not an artifact of the experimental setup as the phase of the polarization from individual  
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Figure 4.3: (a) RT images monitoring the emission polarization of single NC coupled
to gold substrates. (left) Single NC image averaged over 10 frames. (right) Emission
polarization of single NCs while the linear analyzer is rotated continuously during the
scan.  Data taken with 100 ms integration time and 150 W/cm2 laser excitation. 
(b) 10 K spectra showing that the spectral emission peaks (jumping back and forth) are
both linearly polarized and in phase. 



 78

NCs differs from that of the laser and from that of nearby NCs. 

 

4.3.3 Excited State Lifetimes 

Finally, we measured the exciton lifetime for NCs interacting with the gold 

surface.  Figure 4.4(a) and (b) show the instrumentation used and the corresponding 

image of single NCs captured on the LaVision CCD camera, respectively.  Figure 4.4(c) 

shows 40 single CdSe(ZnS) NC exciton lifetimes at 10 K simultaneously.  These 

individual NCs were easily imaged and fluorescence lifetimes as fast as 130 ps were 

measured.  The red trace in figure 4.4(d) is a plot of one of the NCs in figure 4.4(c).  The 

black trace shows the lifetime of an ensemble CdSe(ZnS) NC film at 10 K; although 

multi-exponential, the lifetime is roughly on the order 200 ns.  NC ensemble fluorescence 

lifetimes have previously also been reported as ~20 ns at room temperature [19] and ~150 

ns at 10 K [20]. 

 

4.3.4 Hot Band Emission 

  During a few spectral trajectory scans, we observed a blue shifted emission 

(roughly 125 meV away from the band edge emission in figure 4.5a).  Since an ensemble 

of NCs includes a distribution of sizes, this may be emission from a nearby smaller NC.  

However, when we inspect the emission trajectory of the band-edge and blue shifted 

peaks, we find an exact correlation to every spectral diffusion shift, shown in figure 

4.5(b).  This would seem highly unlikely from two NCs even adjacent to each other.  

Polarization measurements have shown that they also have the same phase in the linear 

polarized emission.  The assignment of these features to hot-band emission is tentative   
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Figure 4.4: (a) Layout of the fs/ps ultra-fast laser and detector system.  (b) Image of
single NCs on the gated, intensified CCD camera (LaVision Picostar).  Photodecay
scan taken with 533 nm, ps-pulsed excitation, 300W/cm2 (Coherent Mira/OPO) at 10
K.  (c) 3-D plot showing the decay of 40 individual NCs taken simultaneously.   
(d) Comparison of time scales between lifetime of an ensemble film (black) and a
single CdSe/ZnS NC interacting with the gold substrate (red); the two decays are
offset in time for ease in comparison.  Inset shows the same curves in a linear plot for
the first 5 ns, now superimposed in time.   
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Figure 4.5: (a) CdSe/ZnS NC on roughened gold surface at 10 K. Emission spectra
shows blue shifted peaks at certain times.  Both peaks have phonon-progression
indicative of semiconductor NC emission.  Zooming into the center area of (a), we can
see that (c) and (d) have identical spectral diffusion traces but at different
wavelengths.  At this point, we speculate that this may be evidence for hot-band
emission from single NCs.  The increase in lifetimes may indeed allow for observing
hot-band emission.  
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since we do not have a consistent spacing between the band-edge and blue-shifted 

emission. 

 

4.4  Discussion 

4.4.1 Charged Exciton Emission 

The blinking model suggests that fast Auger relaxation rates [6,21] are 

responsible for quenching the emission from charged exciton in CdSe NCs.  Theoretical 

predictions indicate that if the emission were observable, the charged NC should emit 25 

meV to the red of the neutral exciton emission [22].  In the context of our results, we 

propose that the observed binary emission shifts are caused by neutral (X) and charged 

(X*) exciton emission from a single NC for the following reasons:  First, the binary shifts 

in the emission energy fluctuate between two positions with a spacing of 15~25 meV.  

Second, these shifts are not optical phonon progressions since the two emissions seldom 

emit together within our integration bin time.  This also excludes the possibility of 

biexciton emission.  If a biexciton were created, we would observe both lines 

simultaneously within our integration time as the biexciton relaxes to the exciton 

radiatively, followed by exciton emission [23].  A charged exciton, on the other hand, 

would relax to a charged NC, which can persist for many seconds or longer.  Third, and 

possibly most significant, the statistics of the dynamics between the two emissive states 

follows a power-law distribution matching that of the kinetics observed in previous 

blinking studies.   

When we examine the magnitudes of the binary shifts (X→X*), we observe that 

there is a correlation between the spectral position of the high-energy peak (labeled X in 
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Figure 4.2d) and the size of the energy jump (∆E) from X to X*.  In Figure 4.2(c), the 

region marked (i) has ∆E ≈ 10 meV with the spectral position of X at 2.04 eV whereas 

the region marked (ii) has ∆E ≈ 22 meV with the spectral position of X at 2.065 eV.  A 

change in the local electric field and the appearance of mirror charges in the metal will 

cause a Stark shift [24] of both X and X*, but these shifts need not be identical, hence the 

varying ∆Es.   

 

4.4.2 The Electromagnetic Model 

The source of the fluorescence intensity enhancement can be explained through 

previous studies on surface-enhanced fluorescence and Raman scattering.  Although 

many models persist in the literature, a leading contributor to the surface enhanced 

behavior is the electromagnetic model [25].  Simply, the rough corrugation of the surface 

is approximated by ellipsoids that scatter the incident electromagnetic field.  A dipole 

near the surface of this ellipsoid interacts with both the incident and the scattered field; 

however, the coupling of the scattered field to the dipole can become much larger than 

the incident field when the dipole frequency is near resonance with the metal surface 

plasmon.  Other factors such as the shape of the rough features lead to further 

enhancement, i.e. the lightning rod effect [26].  In the case of radiative dipoles (i.e. 

organic dye molecules or semiconductor nanocrystals), two competing factors determine 

the overall enhancement of the luminescence intensity [27]: increased absorption and 

emission due to the coupling of the radiative mode of the transition dipole with the metal 

plasmon, and non-radiative energy transfer from the excited dipole to the metal.  We 

examine our observed enhancement factor in the context of this model.  We define the 
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quantum yields for NCs coupled (Y) and uncoupled (Yfree) to the metal surface as 

follows: 

Y = 
nrr

r

kk
k
+

         (1a) 

Yfree  = 
freenrfreer

freer

kk
k
+

        (1b) 

where kr is the radiative rate and knr  is the nonradiative rate for the nanocrystal. The 

excited state lifetime of the NC is τ = (kr  + knr )-1. To take into account the increase in 

absorption, we relate the change in the intensities by an enhanced intensity factor γ, 

 γ = 
freefreeY

Y
σ
σ

           (2) 

where σ is the effective absorption cross-section of the NC/metal system (σfree is for the 

uncoupled NC).  Finally, we make an order of magnitude approximation following Ref. 

[26] that assumes similar enhancements in cross-sections for both absorption and 

emission; 
freeσ
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 where g(ω) is the rate enhancement function, 

and ωex and ωfl are the excitation and emission frequencies, respectively.  By rearranging 
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By applying the measured values γ = 5, τ free = 150 ns [20], τ = 130 ps, and Yfree = 0.3, we 

obtain radiative rate and absorption cross-section enhancements of ~70 and a non-
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radiative rate enhancement of ~1400.  While the apparent quantum yield of the NC is 

lower in the surface enhanced system, the enhancement factors are large enough that we 

still see an overall increase in intensity.  The linear polarization in the emission is also 

consistent with a surface coupled electromagnetic model that breaks the degeneracy in 

the symmetry of the free NCs.  The linear polarization results primarily from the electric 

dipole polarization of the metal that couples to the NC radiation. 

 

4.4.3 Beating the Auger Rate 

Why do we observe emission from charged nanocrystals?  The blinking of single 

NCs is due to an Auger relaxation process that competitively inhibits radiative relaxation 

when the NC is charged [28].  However, by increasing the non-radiative decay rate, the 

Auger rate (~147 ps for 2.8 nm radius at RT) [29] is no longer the rate-determining step 

in the excited state relaxation process.  Despite the ~1400 fold increase in the non-

radiative rate, the neutral and charged NCs both show emission due to the combination of 

an increased radiative and absorption rate; the only distinction for the charged emission is 

the shifting of the emission energy by the binding energy of the extra charge.  According 

to calculations in ref. [22], the binary, discrete red shift in emission observed here is 

predicted to be similar whether it is an electron or hole that is involved in the charging 

process.  

The observation of some room temperature blinking in NCs coupled to the gold 

substrate may be an indication of mobile NCs.  That is, if the NC can move on the surface 

of the substrate, the distance and orientation of the NC on the metal substrate can change 
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in time, leading to significant changes in the decay rates.  We have previously observed 

mobile NCs in trioctylphosphine-rich films that diffuse a few microns within one second.   

 

4.5 Conclusion  

 Our results strongly suggest that we have observed emission from charged single 

CdSe(ZnS) NCs.  The same mechanism for giant enhancements observed in surface 

enhanced Raman and surface enhanced fluorescence effects for molecular species are 

presented here in the context of single NC optical dynamics.  By dramatically decreasing 

the NC lifetimes, the charged exciton relaxation has crossed over from non-emissive to 

emissive and allowed the identification of the charged exciton spectrum in single NCs.   
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Chapter 5: Charging Nanocrystals 

5.1 Introduction 

Throughout the previous chapters, we continually suggest that a charged 

nanocrystal (NC) is the cause of fluorescence quenching resulting in blinking on the 

single NC level.  Furthermore, drastic changes in the infrared and visible absorption as 

well as electrical properties are predicted for charged NCs[1].  Considering how widely 

applied transistors and field effect devices are in present-day computer chips[2], we 

approach charge injection of the NC core in a similarly device oriented manner.  Recent 

results [3] observed charged NCs in solution phase by using an electrochemical approach.  

Although these electrochemical-charging experiments allowed for interesting intraband 

transition measurements, the solid-state, metal-insulator-semiconductor device has the 

advantage of easy miniaturization, scaled-up production, and sample robustness.  In self-

assembled quantum dots (QD), the addition and removal of electrons into the quantum-

confined energy levels have opened up a realm of new electronic properties[4, 5].  

However, these structures are in the weak quantum confinement regime compared to NCs 

and so the addition of extra charges has less impact on the quantum mechanical nature of 

these materials.  Consequently, Auger processes in self-assembled QDs do not quench the 

fluorescence; rather, the spectra changes to reveal the charged and uncharged status of the 

QD. 

In this chapter, we investigate electron (and hole) addition effects in close-packed 

films of colloidal NCs that exhibit strong quantum confinement properties, with organic 

ligands that facilitate NC film formation but also complicate charge mobility.  To reduce 

this complication, the sample thickness was kept between 2~4 monolayers to provide 
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both a sacrificial first layer directly beside the metal electrode and to minimize the poor 

conductivity properties between adjacent NCs. 

 

5.2 Experimental 

Our device consists of an insulating polymer or a polycrystalline semiconductor 

layer and a thin, spin-coated NC layer sandwiched between two conducting electrodes 

shown in figure 5.1.  In the first set of devices, we use a layer-by-layer deposition 

technique[6] to cast the polyelectrolytes poly(allylamine hydrochloride) (PAH) and 

poly(acrylic acid) (PAA) sequentially onto an indium-tin oxide (ITO) electrode.  The 

resistivity of these PAH/PAA thin films (1012 Ω⋅cm)[7] is comparable to those of 

inorganic films.  The PAH/PAA films are baked in a vacuum oven to create an amide 

cross-link between the NH3
+ groups of PAH and the COO- groups of PAA.  This was 

significant to enhancing the film stability[8] and to reducing pin-hole currents through the 

insulator film.  In the second set of devices, we employ a vapor-phase deposition 

technique called atomic layer deposition (ALD)[9].  In the ALD process, two gas-phase 

precursors (hydrogen sulfide and diethyl zinc) are flowed sequentially and exclusively 

through the reaction chamber and the sequence repeated for the number of layers required.  

The reactants interact only after the first layer has adsorbed onto the substrate and the 

reaction then occurs on an atomic layer basis.   Because of the physical dipping process 

in the PAH/PAA films, the films cannot be deposited after the NCs are spin-cast.  With 

the ZnS films, however, this limitation does not hold and we can deposit the insulating 

layer next to the metal, next to the ITO, or next to both and sandwich the NCs film in 

between two insulating ZnS layers.  We tested bare CdSe and “core-shell” CdSe/ZnS  



 89

3-4 layers of CdSe 
QDs 
Insulating layer

Glass 
slide

ITO

Metal 
Electrode

~ 200 Å

~ 800 Å

V

QD capacitor

Figure 5.1: Device structure design.  The insulating layer consists of 15.5 bilayers
of PAH/PAA with the PAH layer on top or 200nm of a ZnS polycrystalline thin
film.  The ITO serves as a transparent electrode for photoluminescence
measurements through an optical microscope.  The excitation source consists of a
CW Ar ion laser (514 nm, 50 W/cm2) and the photoluminescence (PL) is detected
by a CCD camera.  Typical working pixel area is 6 mm2 with eight pixels per
device.  The CdSe NCs were spin cast from toluene solution with absorbance of ~1
after 100X dilution at the first absorption peak.   
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NCs for a comparison in their charging behavior.  Finally, a gold or aluminum electrode 

is deposited.   

In all of our experiments, the metal electrode is grounded and the ITO electrode is 

connected to the applied voltage.  By applying a sufficient electric field, the Fermi energy 

level of the aluminum/gold electrode aligns with the energy levels of the NCs and the 

charge carriers are injected into or extracted out of the NCs.  The magnitude and direction 

of the applied field dictate the nature of the carriers (electrons or holes) and the charging 

process (injection or extraction).   

 

5.3 Results and Discussion 

5.3.1 Fluorescence Quenching 

In figure 5.2, the relationship between the CdSe NC fluorescence and different 

applied voltages are shown.  The field strengths used in the top and the bottom 

experiments are 3 x 105 V/cm and 4 x 105 V/cm, respectively.  In our model, individual 

NCs arbitrarily turn on and off.  However, for an ensemble that comprises of 100,000 

NCs, an equilibrium between the on and off states exists and the ensemble fluorescence 

remains constant.  Immediately after applying a positive voltage, we observe a fast drop 

in the fluorescence within the first 100 ms for both applied voltages.  This initial 

darkening effect is most likely caused by field-assisted photoionization of carriers out of 

the NCs.  These events not only impede the radiative recombination of the electron-hole 

pairs, but also leave NCs charged (dark).  At low applied fields, the fluorescence either 

recovers for the polymer insulator device or remains constant for the ZnS insulator device. 

In order to inject electrons from the electrode into the NCs, the applied field (positive  
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Figure 5.2: The charging time-traces for bare, 2.2 nm radius, CdSe NCs with an
applied field of (a) 3 x 105 V/cm and (b) 4 x 105 V/cm.  The corresponding spectral
behavior is attached above.  This shows that there is a slight spectral shifting to lower
energy that accompanies the fluorescence quenching. (c) shows the extent of the
spectral shifting which is much less than predicted for a purely Stark effect.   
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voltage) must raise the Fermi level of the metal above the lowest unoccupied energy level 

of the NCs.  That is, we expect a critical voltage below which no injection is likely.  Field 

strength of 3 x 105 V/cm is not sufficient to inject electrons from the electrode into the 

NCs, and the fluorescence quenching stops after the initial drop due to photoionization 

(figure 5.2).  Although the fluorescence remains constant or recovers slowly in the 

presence of the applied voltage, the fluorescence fully recovers once the applied voltage 

is turned off. 

 

5.3.2 Charge Injection 

When the field strength exceeds 4 x 105 V/cm, injection of electrons occurs and 

the fluorescence is further quenched after the initial fast drop (figure 5.2b).  As electrons 

migrate by a slow hopping[10] from charged NCs to uncharged ones, a slow decay in 

fluorescence results.  After the voltage is turned off, the fluorescence shows an initial, 

fast recovery step and then gradually recovers completely.  Clearly, there are differences 

between the charging and the discharging process.  First, the magnitude of the initial 

recovery is considerably smaller than the magnitude of the initial fast drop induced by 

applying the voltage.  Second, a complete discharging process (fluorescence fully 

recovered) usually takes more time than the charging process.  One possible reason is that 

the surface states of the NCs are also being filled with electrons while the NCs are being 

charged.  The number of vacant states for transporting electrons between the NCs and the 

electrode during the discharging process may be smaller than during the charging process.  

The discharging recovery time is usually on the order of seconds to a few minutes longer 



 93

than the charging time when the NCs are under continuous light excitation with no 

applied voltage (figure 5.2a) (the time depends on the degree of quenching). 

 

5.3.3 ZnS Overcoated NCs 

The effect of a ZnS overcoat on CdSe NCs at a given applied voltage can be 

observed when comparing figure 5.3 with figure 5.2.  As the NCs are coated by a ZnS 

shell of ~1 nm thickness which forms a tunnel barrier for injection of electrons and holes 

into the CdSe core, the probability of injecting charges into the NC is significantly 

reduced.  Our attempts to charge ZnS overcoated NCs and “bare” NCs using the same 

applied field clearly illustrate this.  Although slightly diminished due to the overcoating, 

the applied field still assists the tunneling of photoexcited carriers from the NC cores to 

the core/shell interfaces and causes the initial drop in the fluorescence.  However, the 

subsequent injection of electrons from the aluminum into the overcoated NCs fails unless 

an even higher field is applied.  The critical field for the injection of electrons into the 

overcoated NCs is about 1.2 - 1.3 x 106 V/cm.  The fluorescence of the overcoated NCs 

can be reversibly quenched to only 45% even when the applied field strength is as high as 

2.2 x 106 V/cm (figure 5.3b).  A relatively fast saturation is also observed.  All these 

indicate an inefficient charging process and a dynamic competition between charge 

injection through the ZnS layer and photo-assisted discharging of core carriers into 

interface trap states. 

 

5.3.4 Positive Bias 

Figure 5.4 shows that holes can also be injected into the NCs at a sufficiently 
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large applied negative voltage.  The separation between the highest occupied energy level 

of the NC and the Fermi level of aluminum is expected to be larger than the separation 

between the Fermi level and the lowest unoccupied energy level[11].  Thus, a larger field 

strength (1.3 x 106 V/cm) is necessary to initiate the hole injection process.  The 

fluorescence in figure 5.2(b) and 5.4 does not fully recover between the voltage pulses as 

the recovery time is insufficient.  In this device, the fluorescence recovers fully after 

approximately one minute following the end of the voltage cycling.  This strongly 

indicates that hole-rich NCs are unchanged even after an “oxidation” process.  As both 

electron-rich and hole-rich NCs can be readily prepared with the same device, we can 

also cycle the NCs between these two “oxidation” states.  

 

5.3.5 Device Stability 

For potential applications of these nanocrystal capacitor structures as optical 

modulators or in displays, the stability and the response times of the charging structure 

are important issues that are addressed in figure 5.5(a) and 5.5(b).  As the device is 

cycled between zero and positive bias, the recovering fluorescence suggests that the 

charging/discharging process does not cause degradation to the NCs.  Although the time 

frame in figure 5.5(a) is in the tens of seconds, the device can be operated at room 

temperature for tens of hours and similar stability has been demonstrated.  In figure 

5.5(b), a device operating below the critical voltage is shown.  The fluorescence responds  

approximately as a step function with modulation of ~25% and both charging and  
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discharging times are on the order of 100 µs. 

The charging device can reversibly quench the fluorescence of the CdSe NCs up 

to ~65-75% (figure 5.2a).  The possible reasons for the saturation are (1) a number of 

NCs are continuously discharged by Auger ionization of excitons generated by the 

excitation light, and (2) as more NCs are charged, this screens the remaining uncharged 

NCs and effectively makes the charging process more difficult.  Consequently, a dynamic 

equilibrium is reached and the quenching saturates. 

 

5.3.6 Polymer vs. ZnS insulating layer 

 The different insulating layers also showed interesting behaviors when combined 

with the NC charging film.  For the polymer device below the threshold voltage, the 

fluorescence begins to slowly recover during the charging period as charge carriers 

migrate to screen the external field and the excitation light discharges the NCs through 

Auger processes.  For the ZnS film device, however, the fluorescence does not recover 

but remains constant.  Recent experiments have shown that the polymer may have 

electrostatic effects that can trap and release charged species.  This results in other 

interesting photophysical differences.  For example, a memory effect was present for the 

polymer PAH/PAA but not for the ZnS polycrystalline film:  When the NC film in the 

polymer device was illuminated during the charging cycle, the zero-field intensity would 

differ depending on the bias (positive or negative) of the previous field applied.  Both 

device structures still showed the slow quenching once the threshold voltage was reached.   

Finally, the geometry of the device was changed to incorporate the NC adjacent to 

the ITO or with the insulating ZnS film on both sides of the NC film.  The goal of these 
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modifications was to explore any effect dependent on the injecting electrode or to nullify 

the possibility to inject any charges from the electrodes altogether.  For NCs placed next 

to the ITO electrode as compared to the aluminum electrode, the behavior was very 

similar.  Unfortunately, for the case where insulator material was placed between the 

films, the data observed was inconclusive to whether the charge injection was primarily 

through the electrode or from NC ionization.  When we increase the electric field to the 

injection threshold, the applied electric field had crossed beyond the breakdown potential 

of the insulator material itself.  The increase in distance between electrodes due to the 

extra insulator material required a higher electric field to reach the same injection field.  

Upon surpassing the breakdown field, we observed similar slow fluorescence quenching. 

 

5.3.7 Absorption Changes 

The device also allows us to reversibly bleach the absorption of the CdSe NCs.  Since the 

injected electrons should reside in the 1Se state of the NCs, the probability of absorbing 

into this state from underlying hole states is reduced by half (figure 5.6a).  If every NC 

has one excess electron, all transitions involving the 1Se state should be bleached by 50%.  

The difference absorption spectra taken between the uncharged and charged state  (-

∆OD) is shown in figure 5.6(b).  We can clearly see that all transitions involving the 1Se 

state, shown in the solution absorption spectrum of the same NC sample, are bleached.  

Figure 5.6(c) shows the percentage-bleaching time trace of the 1S3/21Se transition; the 

reversible bleaching is as much as 40%.  The results also illustrate the absence of a Stark 

effect, as a red-shifted induced absorption peak does not exist[12, 13]. 

Ideally, fluorescence and absorption (1Se state) of a charged NC should be 100% 
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Figure 5.6: Absorption bleaching in charged NCs.  (a): The electronic energy model
predicts a ~50% decrease in the probability to absorb a photon for a charged NC since
the lowest electron energy level follows the Pauli exclusion principle. (b): The upper
spectrum (solid line) shows the absorption spectrum from a solution of the NCs
making up the film.  The lower spectrum (dashed line) is the difference spectrum for
absorption  [-∆OD = OD(neutral) - OD(charged)] taken from the NC charging device.
Specific electronic transitions to the ground state (i) 1S3/21Se, (ii) 2S3/21Se, (iii)
2S1/21Se are labeled accordingly.  (c): The time dependent change in the percentage
bleaching of the 1S3/21Se state is shown to saturate near a maximum of 40%. 
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quenched and 50% bleached, respectively.  However, the experimental results 

(fluorescence quenching followed by absorption bleaching measurements or vice versa 

on the same sample) show that the magnitude of the fluorescence quenching generally 

falls short (within 20%) of the expected value compared to the bleach of the absorption.  

This may be attributed to our experimental conditions, where the higher excitation 

intensities and shorter wavelengths enhance the discharging rate during fluorescence 

quenching experiments, with the result that the number of charged NCs in our 

fluorescence quenching experiments may be slightly smaller than in the absorption 

bleaching studies. 

 

5.4 Future Studies  

In the immediate future, low temperature and NC size dependent measurements 

may provide further details and more accurate measure of the energy scales in the charge 

and field-induced mechanisms.  However, the ultimate goal is to reach the single NC 

limit.  By reaching this limit, we can determine whether the photoluminescence from a 

population of single NCs is quenched or if every NC has diminished in fluorescence by a 

given percentage.  Our initial attempts have been hampered by device limitations:  First, 

any NCs placed < 5 nm away from the metal electrode will quench due to image dipole 

energy transfer.  Second, the glass substrate of our device contains too many impurities to 

observe single NC emission.  The most likely solution is to use thin cover slide substrates 

with ITO sputtered on top.  To alleviate the problem with the metal electrode, we can 

incorporate NCs of one size as dopants into a film of smaller size (higher band gap) NCs.  
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In this manner, single NC photophysics can be monitored keeping the general device 

design unchanged.   

 

5.5 Conclusion  

In summary, we have fabricated simple, stable, solid-state devices that can 

reversibly charge multiple layers of NCs at room temperature.  The drastic changes in the 

optical properties lead to the possibility of using NCs in optical modulators and in tunable 

fluorescent or photochromic displays.  Further improvements, such as decreasing the NC 

layer thickness, the device size, and improving conduction through the nanocrystals by 

engineering the organic ligands, should shorten both charging and discharging times.  

Additionally these structures should also allow systematic studies of the photophysics of 

charged NCs.   
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Chapter 6: Single Nanocrystal Zeeman Spectroscopy 
 

6.1 Introduction 

 Magnetic perturbations of semiconductor materials have emerging prospects in 

areas such as “spintronics”[1], where the motion of electrons depends on the spin angular 

momentum of the electron.  The possibilities for controlling the electronic behavior in 

semiconductors through magnetic interactions are still in their early development.  

However, the use of quantum-confined structures enables a more thorough investigation 

of the properties of the spin degree of freedom by changing the density of electronic 

states and phonon coupled relaxation of the electronic states, the latter leading to 

decoherence of the electron spin polarization.  In addition to answering fundamental 

physics questions, the manipulation of spin states has potential for technological impact 

in areas of memory storage as well as computation by using spin-valve transistors that 

modulate electrical current based on spin[2].  

Although investigations of the intrinsic electron spin properties of low 

dimensional structures have been previously performed in self-assembled quantum 

dots[3-5], the same behavior in nanocrystals (NC) or colloidal quantum dots derived from 

wet chemical synthesis procedures have yet to be as conclusive[6, 7].  Some early reports 

have shown great potential for exploring fundamental spin physics in semiconductor 

NCs[8, 9].  However, the primary impediment lies in the intrinsic particle size 

inhomogeniety and the random orientation of the NCs’ crystalline axes in densely packed 

films.  In our attempt to overcome this barrier, we report magnetic field dependent optical 

polarization and spectral behavior of single CdSe(ZnS) nanocrystals.  The emission 

polarization anisotropy and the spectral data demonstrate the lifting of the electron spin 



 106

degeneracy when a magnetic field is applied parallel to the crystalline axis orientation.  

Surprisingly, we also observe an unexpected spin splitting in a small number of NCs with 

no external magnetic field.   

 

6.2 Experimental 

 We incorporated a far-field photoluminescence microscope into the bore of a 

superconducting magnet (Janis Research) in the Faraday geometry (optical axis parallel 

to the applied magnetic field, see figure 6.1a).  A 40X UV-grade fused silica air objective 

(Partec GmbH N.A.=0.7) was immersed with the sample manipulator into the liquid 

helium flow-through magneto-cryostat.  Images focus was maintained down to 3.3K, 

however, most experiments were performed between 6 K and 15 K.  The 514 nm line of 

the Ar ion CW laser supplied laser illumination to the sample.  Sample excitation and 

emission collection was conducted through quartz and fused silica windows at the base of 

the magnet and a suitable dichroic or 90% reflective mirror guided the light into the 

spectrometer.  A schematic of the optical layout is shown in figure 6.1(b).  In step (i) and 

(ii), the 45o linear polarization rotator and the polarization beam splitter are used to 

decipher the NC 3-D orientation.  In step (iii), a suitable quarter waveplate and the 

polarization beam splitter help to elucidate the circular polarization dependence to 

measure the splitting of the spin-degenerate energy levels.  As shown in figure 1(a), the 

orientation of the NC sample can be described by the angle, θ, between the c-axis and 

optical axis.  The spectral data were acquired using a 550 mm single monochrometer and 

a thermo-electrically cooled CCD camera (Roper Scientific MicroMax).  This 

spectrometer achieved spectral resolution on the order of ~70 µeV with the 1800 gr/mm  
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Figure 6.1(a): Orientation of the NC c-axis is described by the out of plane angle, θ,
relative to the magnetic field, Hz, and optical axis.  (b): Schematic of the optical layout
for magneto-optic microscopy.  Both the sample and microscope objective are placed
in the cryostat assembly.  The combination of the linear polarization rotator (45R) and
the polarization beam splitter (PBS) aid in determining the NC 3-D orientation and the
quarter waveplate (QW) and the PBS combination allow for characterization of the
circular polarized nature of the NC emission.  Inset shows a typical image acquired
onto the CCD camera with 2 sec integration time.  Laser excitation intensity was
limited to <10mW entering the base of the cryostat.  
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grating.  The single CdSe/ZnS nanocrystals were spin-cast onto a crystalline quartz 

substrate in a polymer matrix of polymethyl-methacrylate (PMMA).  Translational drifts 

in the sample position usually accompanied data sets taken during a magnetic field ramp 

from 0 to 10 T.  In order to follow the same individual NCs, software correction was used 

to track these drifts.  The core-shell CdSe/ZnS nanocrystals were synthesized following 

previously published methods[10-12].    

 

6.3 Results 

 The inset of figure 6.1(b) shows fluorescence images from single NCs inside the 

magnet cryostat.  Each spot represents emission from an individual NC with each spaced 

2~3 µm apart.  Although optical detection of single chromophores has been performed 

previously[13], the incorporation of the primary focusing lens inside a cryostat required 

changes from our past microscope design.  In particular, we use a non-magnetic, air-

spaced objective to adequately collect light independent of the cryostat temperature (3 K 

~ 300 K).  Earlier attempts using conventional microscope objectives with aspheric 

doublet lenses resulted in background fluorescence from the adhesive material binding 

the optical elements and light collection efficiency loss at low temperatures.  Ubiquitous 

to single NC spectroscopy, we still observe blinking and spectral diffusion behaviors that 

have been well documented in single NC optical measurements[13, 14].  Inevitably, this 

complicates the experimental results because extraneous peaks may appear and disappear 

due to the spectral/intensity fluctuations during a single acquisition scan.  When 

interpreting the data, these dynamic artifacts were distinguished from the true spin-
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dependent behaviors.  Moreover, we minimized the influence of these extrinsic effects by 

reducing both the laser intensity and integration time. 

 In figure 6.2(a), we show typical single NC polarization data where the NC 

emission is separated into two according to its circular (or linear) polarization and imaged 

onto the CCD detector.  The double headed arrows point to corresponding images that 

originated from the same NC.  In figure 6.2(b), we plot the distribution of polarization 

anisotropy values, PA,σ,   

σ,AP  =    +−

+−

+

−

σσ

σσ

II
II

         (1) 

where Iσ+ and Iσ¯ are the intensities of right and left circularly polarized light, 

respectively, for a set of 50 single NCs as the magnetic field is increased from 0 to 10 T.  

These NCs were spin-cast in a polymer matrix and are assumed to be randomly oriented 

relative to the applied field.  In figure 6.2(c), we track the mean value in the distribution 

of polarization anisotropies as a function of applied magnetic field.  We observe a linear 

relationship between the magnetic field and the change in the anisotropy with a slope of 

3% per Tesla.  This linear dependence and the maximum 30% change is consistent with 

previous reports on ensemble CdSe NCs[7].  However, unlike the ensemble experiments, 

we observe a distribution of behaviors and some anisotropy values reach 50%[15].  To 

investigate further into the single NC Zeeman effects, figure 6.3(a) displays a single NC 

intensity time trace for right and left circularly polarized light as a function of magnetic 

field.  While the magnetic field ramped from 0 to 10 T over a 15-minute span, we 

acquired an intensity trace of 180 frames, as shown in figure 6.3(b), to observe the 

Zeeman splitting behavior on an individual NC basis.  Blinking effects on the single NC  
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Figure 6.2(a): Typical images of the polarization-resolved NCs.  The arrows help to
identify the same NCs in the s- (σ+) polarized and p- (σ−) polarized sections.  5 s
integration time with 5 mW excitation intensity into the microscope objective. (b)
Histogram of single NC circular polarization anisotropy values at 10 K as the field is
increased from 0 to 10 T.  (c) Mean position of the Gaussian fitting of the plots in (b).
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Figure 6.3(a): Intensity time trace of the σ+ polarized (red line) and σ− polarized (black
line) emission as the magnetic field is increased.  (b) The circular polarization
anisotropy time trace for the same NC. (c) The linear polarization intensity and
corresponding linear polarization anisotropy time trace for the same NC just prior to
magnetic field measurements.  The first 130 s measure the 45o and 135o linear
polarization intensity and the next 130 s measure the 0o and 90o linear polarization
intensity values. 
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level can reduce the overall signal and lead to sudden jumps in the PA,σ values, but the 

overall trend is easily captured by the polarization intensity-time trace.  Just before the 

magnetic field is applied, we also attained information regarding its 3-D orientation 

through linear polarization measurements at 0o, 45o, 90o, and 135o angles (figure 6.3(c)).  

The ratios of these linear anisotropy values (0o:90o and 45o:135o) can be extrapolated to 

give the longitudinal and latitudinal orientation of the c-axis[16].  In figure 6.4, we take 

data from 70 NCs to illustrate the relationship between 3-D crystal orientation and 

magnetic field perturbation effects.  While the change in PA,σ shows no dependence on 

the in-plane angle, there is a clear trend for the out-of-plane angle.  Specifically, we see 

that the NCs with smaller out-of-plane angles (i.e. more parallel to the magnetic field) 

correspond to NCs with higher circular polarization changes indicative of larger Zeeman 

splitting of the emitting states.  The red (blue) line drawn in figure 6.4(b) and (c) follows 

the theoretical fit for the population of the spin states following a Boltzmann distribution 

and angular-dependent Zeeman splitting[7].  The predicted polarized intensities follow: 

 [ ]
[ ]2/2/

2/22/2 ))cos(1())cos(1()( ββ

ββ

σ
θθθ ∆−∆

∆−∆

± +
±+

=
ee

eeI m     (2) 

where )cos(θµ Hg Bex=∆  and 1)( −= TkBβ .  We use values of gex = 3.6 (red) and 1.3 

(blue) from our spectral results and ref[7], respectively, for T = 6 K.  The higher density 

of data points near 0o and 180o in figure 6.4(b) results from the uncertainty in 

extrapolating orientation angles from anisotropy values.  The 90% reflective mirror used 

may have also introduced a slight preferential polarization along the vertical (0o) 

direction leading to data points skewed towards 0o and 180o. 



 113

C
ir

cu
la

r 
Po

la
ri

za
tio

n
A

ni
so

tr
op

y 
D

iff
er

en
ce

 (%
)

0 30 60 90 120 150 180
-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

In Plane Angle

0 30 60 90 120 150 180
-0.1

0.0

0.1

0.2

0.3

0.4

0.5

C
ir

cu
la

r 
Po

la
ri

za
tio

n
A

ni
so

tr
op

y 
at

 1
0 

T
 (%

)
C

ir
cu

la
r 

Po
la

ri
za

tio
n

A
ni

so
tr

op
y 

at
 0

 T
 (%

) (a)

(b)

(c)

-0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Out of Plane Angle 

-0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0 30 60 90

0 30 60 90

0 30 60 90

0 30 60 90 120 150 180
-0.1

0.0

0.1

0.2

0.3

0.4

0.5

Figure 6.4: Circular polarization anisotropy values plotted against the NC in-plane and
out-of-plane orientations for 70 NCs at 6 K with (a) no magnetic field applied and (b)
10 T applied.  (c) The change in the circular polarization anisotropy from 0 to 10 T is
plotted against the NC orientation.  The NCs data was acquired as outlined in figure 3.
The red (blue) curve is a theoretical behavior following a Boltzmann distribution for
gex = 3.6 (1.3) 
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 In Figure 6.5(a) and 6.5(b), we show the Zeeman-split spectra from two different 

single CdSe nanocrystal at 10 T.  The splitting observed over several NCs are constant 

with time and the magnitude of the separation ranged from 1.1 meV to as high as 2.2 

meV.  The spectra are followed for 10 frames with 25 s integration times and typical 

spectral linewidths of the NC emission did not allow for identification of Zeeman 

splitting less than ~1 meV apart.  Although the data show the expected spectral diffusion, 

the magnitude of the peak separation remains constant.  Spectral diffusion effects can 

produce false positive results if a single peak were to jump during one acquisition scan to 

create an artificial doublet.  However, when we observe the spectral doublet shift together 

throughout multiple acquisitions, this supports the view that the doublet is due to an 

interaction with the applied magnetic field.   

In Figure 6.6(a), we observe a very surprising result.  In the absence of any 

external magnetic field, a single NC spectrum is collected and isolated based on the 

direction of the circular polarization emission.  When the σ− and σ+ polarization spectra 

are overlaid, the data shows clear splitting for a single CdSe NC; the two peaks emitting 

with opposite circular polarization.  The observed zero field splitting in this example is 

~1.1 meV.   The frequency of this observation was less than 15%; however, an accurate 

statistical analysis is made difficult by the spectral and blinking dynamics.  These 

dynamics blur spectra and diminish the true number of NCs with zero field spin splitting.  

Also, since the random distribution of NC orientations limits the number of NCs that emit 

circularly polarized light in the direction of optical collection, we cannot verify whether 

two emission peaks originate from oppositely polarized spin-states.  In figure 6.6(b), we 

turn on the magnetic field and monitor the polarization-resolved spectra as a function of  
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Figure 6.5: Single NC spectra for two different NCs: (a) NC # 1 and (b) NC # 2 taken
with 25 sec integration times at 13 K.  The offset peaks represent 10 consecutive
frames at 10 T.  Small spectral diffusion shifts show that the mean position of the
peaks moves, but the separation between the peaks remain constant.   
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Figure 6.6(a): Polarization-resolved single NC spectra taken at 0 T and 11 K.  The
spectra were separated based on the right (black plot) and left (red plot) circular
polarization.  Clear polarization dependence to the zero-field splitting is present.  (b)
Polarization-resolved single NC spectra where the magnetic field is increased from 0
to 10 T.  In this series, the peak position of the black plot was centered to show the
increasing peak separation of the red plot as the field is increased.  Note that this NC
also shows zero-field splitting and that the split peaks are susceptible to magnetic
fields.   Near 7 T, the NC has either spectrally shifted outside of our detector range or
simply turned off.  
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time.  At frame 1, there is no field applied, and we already observe polarized, spectral 

splitting.  As the magnetic field increases, the magnitude of the splitting also increases.  

At frame 13, the NC has blinked off, and the spectra can no longer be followed.   

 

6.4 Discussion 

Single molecule measurements, as presented here, have clearly shown that the 

ensemble averaging over different sizes and different orientations is no longer a barrier 

that hinders the inspection of NC magneto-optical properties; however, we still contend 

with optical dynamic effects and a distribution of NC orientations.   

 

6.4.1  The Exciton Fine Structure 

Figure 6.7 is a schematic of the electron-hole energy level diagram and the 

transitions that dictate the band-edge emission taking into consideration the nanocrystal 

shape anisotropy, unit cell hexagonal crystalline structure, and the electron-hole exchange 

interaction[17].  The fine structure of the band edge consists of five energy levels that are 

labeled by their total angular momentum, F.  In the exciton total angular momentum basis 

set, the lowest energy states, F = ±2L, are optically forbidden and the lowest optically 

active states are F = ±1L.  Evidence from previous experiments has shown that emission 

from the ±2L states is possible and explains the fluorescence Stokes shift and µs scale 

excited state lifetimes.  The symmetry for the transition from the F = ±2L (if spin-flip 

assisted) and ±1L states to the ground state allows for circular polarized light emission 

and for the sign of the polarization to determine the emitting state.  Regardless of the total 

angular momentum number, the splitting of these |+> and |−> lowest excited states should  
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Figure 6.7:  An energy level diagram of the 1Se1S3/2 fine structure states and the
predicted perturbations for an external magnetic field applied parallel to the hexagonal
crystal axis. 
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result in spectrally observable doublet peaks and a change in the detected emission 

polarization from non-polarized to circularly polarized.   

 

6.4.2 Molecular Zeeman Effect 

 Previous experiments to measure the g-factor were based on magnetic circular 

dichroism measurements on the absorption into the entire 1Se1S3/2 state and ensemble 

emission polarization measurements that relied purely on polarization intensity values.  

Both cases involved averaging over the sample orientation and size distribution.  The 

molecular Zeeman effect is described by 

 Η−Η= κµσµ BhBeH ggH
2
1        (3) 

where ge (gh) are the electron (hole) g factors, H is the magnetic field, σ is the Pauli Spin 

matrix, κ is the hole angular momentum operator, and µB is the Bohr magneton.  The 

analysis of the Zeeman splitting neglects higher order terms in H (i.e. diamagnetic 

effects) because the NC is smaller than the magnetic characteristic length of ~ 110 Å at 

10 T.  Following the work in ref [17],  the energy splitting for an applied magnetic field 

parallel to the NC c-axis is: 

 ∆ E (F = −2 → +2) = )3( hezB ggH −µ cos (θ)     (4a) 
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

























+

+
−















+

±

df

fdf
g

df
fgH hezB 2

2

2

2 m
µ cos(θ) (4b) 

where f and d are functions related to the electron-hole exchange interaction and 

asymmetry of the nanocrystal (see Eq. (21) in ref. [17]) and θ is the angle between the 

magnetic field direction and the c-axis of the NC unit cell.  Consistent with a variety of 
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NC orientations, we observe a distribution of the doublet peak separations.  We could not 

directly correlate the magnitude of the Zeeman splitting to the NC orientation relative to 

the applied field.  The long integration times (60 s) for polarization-resolved spectra 

acquisition combined with spectral and intensity fluctuations make these assignments 

very difficult.  Comparing the theoretical predictions to the experimental data, we can 

apply the calculated ge and gh values of 0.68 and –1.09, respectively to equation 2 and 3.  

This corresponds to Zeeman splitting of 2.29 meV and 1.50 meV for the ±2L and ±1L 

states, respectively, at 10 T.  The magnitude of the largest observed peak splitting was 2.1 

meV and this corresponds better to the ±2L state for a NC with hexagonal crystal axis 

nearly parallel to the applied field.  Indeed, we would expect the emission to occur 

primarily from the ±2L state at these low temperatures.  

 

6.4.3 Correlation Between NC Orientation and Magnetic Field  

The symmetry of the CdSe NC shape and crystal structure gives rise to a doubly 

degenerate emitting state with a disk-shaped emission polarization [18].  This has 

allowed us to probe the orientation of single NCs with respect to the laboratory frame of 

reference [19].  These 2-D emission dipole signatures include the statistical variation in 

the degree of polarization (0 to 100%) for a randomly oriented sample.  That is, single 

dipole emitters such as single dye molecules have linear dipoles that can be completely 

filtered by a linear polarizer rotated orthogonal to the incoming polarization.  On the 

other hand, depending on the 3-D orientation, a circular emitter such as CdSe NCs may 

have both emitting dipoles in the plane such that the light cannot be completely filtered, 

regardless of the linear polarizer angle.  For example, the detection of linearly polarized 
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light corresponds to a NC with its c-axis perpendicular to the optical axis and applied 

field.  In these particles, we expect no splitting of the degenerate spin states and hence, no 

change in the emission circular polarization when an external magnetic field is applied.  

However, for particles with the c-axis parallel to the optical axis, we expect an increase in 

the spin splitting and in the +2 and −2 state populations (kBT ≈ 0.52 meV at 6 K) with 

increasing applied magnetic field.  This should cause emission of preferentially left 

circularly polarized light.  The data in figure 6.4 indeed shows the out of plane 

dependence and the in plane angle independence consistent with the picture above.  

Although the trend is visible, the fit to the theoretical curve is rather poor when we use 

the theoretical gex value.  Polarized background fluorescence or laser light may be one 

reason.  There may be another more interesting explanation.  The authors in ref [7] 

reported temperature dependent g values for the exciton.  This type of behavior observed 

in dilute magnetic semiconductors is not included in the theoretical model.  If we were to 

apply the temperature adjusted g-factor of 0.97 then the theoretical curve fits much better 

with our experimental results.  The spectra were taken at >10 K in part because the 

appearance Zeeman split spectra were more frequently observed at these temperatures.  

This may also be explained by a temperature dependent g-factor.  As the g-factor 

decreases faster than the inhomogeneous emission linewidth (due to spectral diffusion) 

changes for lower temperatures, this would reduce the chances of observing spin-split 

emission spectra.  A careful temperature analysis is required to determine the exact 

temperature dependence of the g-factor on individual NCs.  Qualitatively, we validate the 

theoretical models that (i) describe the correlation between the NC 3-D orientation based 

on the crystal symmetry and (ii) angular-dependent Zeeman splitting.   
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6.4.4 Zero Field Splitting 

 During our investigation of external magneto-optical effects, we observed zero 

field effects where the degeneracy in the spin states is lifted as shown in figure 6.4.  

Although this was a surprise, previous magnetic field experiments have also reported data 

suggesting NC interactions with paramagnetic centers or uncompensated spins on the NC 

surface.  These behaviors include non-single exponential excited state decay kinetics[20] 

and temperature dependence of the g-factor[7].  The effects of an intrinsic magnetic 

impurity here are quite convincing.  First, the Zeeman split spectra have doublet peaks 

that remain regardless of spectral diffusing peak positions.  Second, the circular 

polarization is consistent with emission from spin states.  Finally, the peak separation is 

still affected by an externally applied magnetic field.  A closer examination of 

polarization data in figure 6.3 also shows the presence of a non-zero polarization 

anisotropy at zero field.   

We now speculate on the possible explanation for observing this zero-field 

Zeeman splitting in CdSe/ZnS core-shell NCs.  Although zero field splitting (ZFS) is 

commonly observed in quantum well heterostructures, the origin of the ZFS in CdSe/ZnS 

NCs is not the Rashba effect.  First, an interfacial electric field is necessary to produce a 

spin splitting term in the Hamiltonian and second, this should occur for all NCs.  Another 

possible source of the zero-field splitting is the presence of unpaired electrons in the NC.  

We have observed a variety of single NC optical dynamics that originate from a charged 

or charge decorated NC.  These charges may also cause a paramagnetic interaction that 

splits the NC electronic level degeneracy.  Determining whether the zero-field splitting is 
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dynamic and correlating the changes to the blinking-charging behavior can further 

corroborate this model.   

 

6.5 Conclusion and Future Studies 

We have observed the molecular Zeeman effect in single CdSe/ZnS NCs, with g-

factor values consistent with theory and previous ensemble averaged experiments.  The 

advantages of single molecule spectroscopy offer direct analysis of the Zeeman effect in 

correlation to the NC 3-D orientation and have revealed an intrinsic magnetic interaction 

leading to Zeeman splitting in the absence of an external magnetic field.  In future work, 

the nature of this intrinsic magnetic interaction needs further investigation possibly 

assisted with ultra-fast measurements of the excited state lifetime.  The areas of diluted 

magnetic semiconductors may be of keen interest for single NC study to understand 

effects of spin coherence.  The pursuit to understand the dynamic nature of the magnetic 

interaction is severely limited by the light collection efficiency of the magneto-cryostat.  

One possible scenario is to couple the surface-enhanced fluorescence system into the 

magnet system.  Although polarization information will be lost due to the strong gold-NC 

coupling, the five-fold increase in light output may help to attain faster time resolution 

and greater signal-to-noise in the spectral analysis. 
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