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ABSTRACT 
 
 

 The intramolecular [4 + 2] cycloaddition reactions of α,β-alkynyl carbonyl 
compounds are described.  This reaction, the first heterocyclic variant of the enyne 
cycloaddition reaction, affords a product with a dihydroisobenzofuran ring system.  For 
this reaction, we propose a mechanism in which a highly strained heterocyclic allene 
intermediate undergoes an unusual rearrangement leading to a 3-furfuryl carbene.  A 
1,2-C-H insertion then produces the polycyclic furan product.  A detailed analysis of the 
scope and mechanism of this reaction is presented.  The synthetic utility of the method 
for the synthesis of complex organic molecules is illustrated by two sequences 
demonstraing further transformations of the dihydroisobenzofuran products.  A two-step 
formal benzannulation process generates a tetrahydroanthracene derivative.  Ozonolysis 
of a 7-oxabicycloheptene derivative prepared from a dihydroisobenzofuran affords a 
product that contains the core oxabicyclo[6.2.1]undecane ring system of eleutherobin and 
the sarcodictyin family of natural products. 
 
 Glycinoeclepin A is the natural hatching stimulus agent of the soybean cyst 
nematode.  A new strategy for the synthesis of an advanced A-ring intermediate in the 
total synthesis of this important compound is presented.  This strategy provides the key 
A-ring enyne intermediate in seven steps from 2,2-dimethylcyclohexanedione, utilizing a 
novel acid-catalyzed cyclization reaction of a hydroxy enedione.  
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Chapter 1 

Introduction and Background:  Intramolecular [4 + 2] 
Cycloadditions of Enynes and Arenynes 

 

Importance of Cycloadditions in Organic Synthesis 

 Cycloadditions are arguably the most powerful ring-forming reactions in organic 

synthesis.1  The convergence, regioselectivity, and stereoselectivity of many 

cycloadditions contribute to their importance as synthetic strategies.  These reactions 

have been employed as pivotal steps in the synthesis of numerous natural products and 

commercially significant organic compounds.  Both intermolecular and intramolecular 

cycloadditions are valuable; however, the intramolecular transformations allow for the 

design of highly convergent synthetic strategies, as multiple rings can be formed in one 

step from acyclic precursors. 

Research in our laboratory has focused on the development of new types of 

cycloaddition reactions.  In particular, we have investigated the intramolecular 

cycloadditions of highly unsaturated, conjugated molecules which afford 

dihydroaromatic and aromatic polycyclic compounds.  This part of the thesis is devoted 

to my studies of the intramolecular [4 + 2] cycloadditions of heteroenynes.  This chapter 

will focus on previous studies of intramolecular [4 + 2] cycloadditions of conjugated 

enynes that are background to my work. 

                                                           
1 Carruthers, W. Cycloaddition Reactions in Organic Synthesis; Pergamon Press:  New York, 1990. 



 12

Inspiration for the new cycloaddition strategies investigated in our laboratory 

came from the discovery of novel cycloaromatization reactions,2 which involve the 

thermal cyclization of highly unsaturated molecules to form high-energy aromatic 

biradical species (Scheme 1).   

 

Scheme 1 
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The mechanism of action of the enediyne antitumor antibiotics3 and 

neocarzinostatin4 involves the formation of biradicals which can cleave DNA and thereby 

promote cell death.  Several research groups have investigated the synthetic utility of 

                                                           
2 For reviews, see:  (a) Grissom, J. W.; Gunawardena, G. U.; Klingsberg, D.; Huang, D. Tetrahedron 1996, 
52, 6453.  (b) Gleiter, R.; Kratz, D. Angew. Chem. Int. Ed. Engl. 1993, 32, 842.  
3 For reviews, see:  (a) Enediyne Antibiotics as Antitumor Agents; Borders, D. B.; Doyle, T. W., Eds.; 
Marcel Dekker:  New York, 1995.  (b) Smith, A. L.; Nicolaou, K. C. J. Med. Chem. 1996, 39, 2103.  (c) 
Nicolaou, K. C. The Enediyne Antibiotics. In Modern Acetylene Chemistry; Stang P. J.; Diederich, F., Eds.; 
Wiley-VCH:  New York, 1995; pp 203-283. 
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these reactions.5  Because cycloaromatization reactions are cyclization processes, in 

which only a single new bond is formed, strategies incorporating cycloaromatizations are 

much less convergent than annulation strategies,6 in which two new bonds are formed in 

one process.  It was thus our desire to develop annulation strategies based on highly 

unsaturated conjugated molecules, reminiscent of these cycloaromatizations. 

 

Intramolecular [4 + 2] Cycloadditions of Enynes:  Early Studies 

Our laboratory became interested in the [4 + 2] cycloadditions of conjugated 

enynes in the early 1990s.  Enyne cycloadditions have several important advantages over 

other cycloaddition methodologies for the formation of aromatic and dihydromatic 

products.  The enynes are considerably easier to assemble than the α-pyrones, triazines, 

or highly-functionalized dienes required in other methods.  A wide range of substrates 

can be synthesized utilizing commercially available acetylene components and a wide 

range of versatile alkyne condensation7 and cross-coupling8 reactions.  In addition, the 

enyne cycloadditions provide the aromatic or dihydroaromatic products directly without 

additional elimination or cycloreversion steps. 

                                                           
4 For reviews, see:  (a) Neocarzinostatin:  The Past, Present, and Future of an Anticancer Drug; Maeda, 
H.; Edo, K.; Ishida, N., Eds.; Springer: New York, 1997.  (b) Goldberg, I. H. Acc. Chem. Res. 1991, 24, 
191.  (c) Myers, A. G.; Arvedson, S. P.; Lee, R. W. J. Am. Chem. Soc. 1996, 118, 4725. 
5 For reviews, see:  (a) Wang, K. K.; Chem. Rev. 1996, 96, 207.  (b) Ref. 2a. 
6 An annulation is defined as a ring-forming process in which two molecular fragments are united with the 
formation of two new bonds.  See:  Danheiser, R. L.; Gee, S. K.; Sard, H. J. Am. Chem. Soc. 1982, 104, 
7670. 
7 For general procedures for a wide range of reactions involving alkynes, see:  (a) Brandsma, L.; 
Verkruijsse, H. D. Synthesis of Acetylenes, Allenes and Cumulenes; Elsevier:  Amsterdam, 1981.  (b) 
Brandsma, L. Preparative Acetylenic Chemistry, 2nd ed.; Elsevier:  Amsterdam, 1988. 
8 (a) Diederich, F.; Stang, P. J.  Metal Catalyzed Cross-Coupling Reactions; Wiley-VCH:  New York, 
1998.  (b) Winterfeldt, E. Acetylenes in Synthesis. In Modern Synthetic Methods; Scheffold, R., Ed.; VCH: 
New York, 1992; Vol. 6; pp. 104-226. 
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A review of the literature reveals several prior examples of intramolecular [4 + 2] 

cycloaddition reactions of conjugated enynes.  The related [4 + 2] cycloadditions of 

conjugated “arenynes” (aryl-substituted alkynes) will be discussed in a subsequent 

section of this chapter. 

 The first example of an intramolecular enyne cycloaddition appeared in 1945 with 

Johnson’s report on the reaction of propargylic alcohol 7 with acetylenedicarboxylic acid 

(8) to give phthalide 10 (Scheme 2).9   

 

Scheme 2 

OH

CO2H

CO2H

+ O

O
HO2C

O

CO2H O
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2 h

79%
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In 1959, Nazarov reported the serendipitous discovery of several enyne 

cycloadditions involving propargyl ethers, and proposed that dienyl cations such as 12 

are intermediates in these reactions (Scheme 3).10  Hakopian determined that 

cycloadditions of related ethers proceed most efficiently when the “enynophile” triple 

bond is substituted with an electron-withdrawing group.11  We believe these results 

suggest that the cycloadditions may be concerted processes involving the LUMO of the 

enynophile π-bond. 

                                                           
9 Johnson, A. W. J. Chem. Soc. 1945, 715. 
10 Nazarov, I. N.; Verkholetova, G. P.; Torgov, I. V. J. Gen. Chem. USSR 1959, 29, 3277. 
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Scheme 3  
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In 1993, simultaneous with our work, Hoffmann and coworkers reported a 

detailed investigation of various intramolecular enyne cycloadditions utilizing acetal 

substrates such as 15 that possess olefinic enynophiles.12  As shown in Scheme 4, the 

authors proposed a mechanism involving the intermediacy of dienyl cation 18, although 

they failed to cite the fact that Nazarov had previously suggested this mechanism to 

account for a closely related reaction (vide supra).13  Hoffmann proposes that 

cycloaddition of dienyl cation 18 forms allyl cation 19; elimination of a proton then 

generates the observed products 16 and 17. 

 

 

 

 

 

 

                                                           
11 (a) Hakopian, L. A.; Gezalian, G. I.; Grigorian, S. G.; Matsoyan, S. G. Arm. Khim. Zh. 1974, 27, 764.  (b) 
Hakopian, L. A.; Gezalian, G. I.; Matsoyan, S. G. Arm. Khim. Zh. 1974, 27, 768.  (c) Hakopian, L. A.; 
Gezalian, G. I.; Matsoyan, S. G. Arm. Khim. Zh. 1975, 28, 72.   
12 Hoffmann, H. M. R.; Krumwiede, D.; Mucha, B.; Oehlerking, H. H.; Prahst, G. W. Tetrahedron 1993, 
49, 8999.    
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Scheme 4  
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In 1994, our laboratory reported the first systematic investigation of the scope and 

mechanism of the intramolecular [4 + 2] cycloaddition of conjugated enynes.14,15  As 

illustrated with the examples shown in Scheme 5, it was found that the enyne 

cycloaddition provides an efficient route to a variety of polycyclic aromatic and 

dihydroaromatic systems.  Notably, both protic and Lewis acids were found to promote 

the reaction, in some cases utilizing only catalytic amounts. 

 

 

                                                           
13 Later, Miller et al. proposed a similar mechanism for an intermolecular enyne cycloaddition.  See:  
Miller, B.; Ionescu, D. Tetrahedron Lett. 1994, 35, 6615. 
14 Danheiser, R. L.; Gould, A. E.; Fernández de la Pradilla, R.; Helgason, A. L.  J. Org. Chem. 1994, 59, 
5514. 
15 For a more detailed discussion of the background, scope, and mechanism of the enyne cycloaddition, see:  
(a) Gould, A. E. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, June 1996.  (b) 
Palucki, B. L. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, June 1997.  (c) 
Helgason, A. E. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, June 1994.   
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Scheme 5 
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As shown in Scheme 6, the [4 + 2] cycloaddition of conjugated enynes with 

alkynes could occur through a number of potential pathways.  The mechanism of the 

enyne [4 + 2] cycloaddition can be separated into two discrete stages.  The first stage 

involves the formation of the new six-membered ring via a high-energy cyclic allene 

(31), biradical intermediate (32), or cationic species (33).  The second stage of the overall 

process furnishes the observed aromatic product 36 through any of a number of 

pathways.   
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Scheme 6  
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Based on our studies (vide infra), we believe that in many cases the reaction 

proceeds through direct formation of the cyclic allene 31 via a concerted [4 + 2] 

cycloaddition, particularly when the “enynophile” triple bond is substituted with an 

electron-withdrawing group.  The presence of the electron-withdrawing group lowers the 

energy of the alkyne LUMO, thus lowering the activation energy for a concerted 

cycloaddition.  Calculations of the relative energies of cyclic allenes and the 

corresponding biradicals (vide infra) suggest that at elevated temperature the cyclic allene 

31 could be in equilibrium with the biradical species 32.  In substrates that lack an 

electron-withdrawing group on the enynophile, the HOMO – LUMO gap is much larger, 
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and a second pathway to cyclic allene 31 becomes competitive.  This pathway involves 

stepwise formation of 31 via initial cyclization to the biradical 30.  In summary, we 

believe it is likely that different mechanisms may be at work depending on the exact 

nature of the cycloaddition substrate.   

In the acid-catalyzed enyne cycloaddition reactions we have studied, the 

enynophile π-bonds are substituted with a carbonyl group.  In these reactions we believe 

that protonation of the carbonyl group lowers the energy of the alkyne LUMO and 

consequently reduces the activation energy for cycloaddition. 

With regard to the mechanism for isomerization of cyclic allene 31 to the 

ultimately observed aromatic product (36), we believe that the presence of a hydrogen 

atom or proton donor favors intermolecular pathways (via 32 and 33) that convert the 

cyclic allene or biradical intermediate to 36.  Discussion of recent work probing the 

intermediacy of carbene 34 will be deferred to a later section of this chapter. 

 In considering the energetic feasibility of the enyne cycloaddition, a simplistic 

calculation based on average bond energies16 indicates that a process in which two 

acetylene π bonds (ca. 51 kcal/mol each) are broken and two carbon-carbon single bonds 

(ca. 84 kcal/mol each) are formed is exothermic.  This examination of bond energies, 

however, fails to account for the ring strain of the allene.  Based on Janoschek's 

calculation of the heat of formation of 1,2,4-cyclohexatriene17 and Benson group 

                                                           
16 Mean bond energy values at 25 °C.  March, J. Advanced Organic Chemistry, 4th ed.; Wiley:  New York, 
1992, p 24. 
17 Janoschek, R. Angew. Chem., Int. Ed. Engl. 1992, 31, 476. 
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additivities,18 we calculated the enthalpy of reaction (∆HR) for the intermolecular version 

of the enyne cycloaddition to be -29.7 kcal/mol.14   

 

Cyclic Allenes and Isoaromatic Species 

 As discussed in the previous section, we believe that cyclic allenes are key 

intermediates in the [4 + 2] cycloaddition of conjugated enynes.  The cyclic allenes 

produced in cycloadditions with alkyne “enynophiles” are 1,2,4-cyclohexatrienes (e.g., 

37), highly reactive species which are difficult, if not impossible, to observe directly.  

Simpler cyclic allenes, such as 1,2-cyclohexadiene (38), have been the subject of 

numerous experimental and theoretical investigations.19   

38

H H

37

H H

 

The equilibrium geometry for allene is linear with orthogonal pairs of 

substitutents.  An allene incorporated into a ring of nine or more atoms is relatively 

unstrained.  As the ring size decreases, the linear allene becomes twisted and bent until 

the energy gained by π bonding is insufficient to offset the increased strain.  Ring 

constraints exert torsion toward a planar arrangement of substituents and lower the 

energy barrier to π-bond rotation, which results in the interconversion of enantiomers of 

chiral cyclic allenes.   

                                                           
18 (a) Benson, S. W. Thermodynamic Kinetics; Wiley:  New York, 1976.  (b) Cohen, N.; Benson, S. W. 
Chem. Rev. 1993, 93, 2419. 
19 For reviews, see:  (a) Hopf, H. Classics in Hydrocarbon Chemistry; Wiley-VCH: New York, 2000; pp 
182-187.  (b) Balci, M.; Taskesenligil, Y. In Advances in Strained and Interesting Organic Molecules; 
Halton, B., Ed.; JAI Press:  Greenwich, CT, 2000; Vol. 8, pp 43-81.  (c) Johnson, R. P. Chem. Rev. 1989, 
89, 1111. 
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The six-membered cyclic allene 38 is considerably strained; the allene bond angle 

is distorted from 180° to approximately 134°.17  The smallest unsubstituted carbocyclic 

allene that has been isolated is 1,2-cyclononadiene.20  Eight-21 and seven-membered22 

carbocyclic allenes have been generated and trapped.  

In the enyne cycloaddition reactions which utilize an alkene as the enynophile, the 

ultimate product formed is a dihydroaromatic species, and the cyclic allene intermediate 

involved is a 1,2-cyclohexadiene derivative.  1,2-Cyclohexadienes (e.g., 38) are highly 

reactive species that participate in numerous types of reactions, including [2 + 2] 

cycloadditions, [4 + 2] cycloadditions with both cyclic and acyclic dienes, dimer 

formation, tetramer formation, and reactions with nucleophiles at the central 

carbon.18,23,24,25,26 

Considerable controversy has erupted over the exact nature of the structure of 

1,2-cyclohexadiene (38).  There are five possible electronic configurations of this 

species:  the strained, chiral allene 38, and four planar achiral carbocycles containing an 

allyl system with an sp2-hybridized carbon at the center:  a singlet biradical 39, a triplet 

biradical 40, and two zwitterions 41 and 42.  Early studies by a number of groups,23,27 

                                                           
20 (a) Blomquist, A.; Burger, R. E., Jr.; Liu, L. H.; Bohrer, J. C.; Sucsy, A. C.; Kleis, J. J. Am. Chem. Soc. 
1951, 73, 5510.  (b) Skatteböl, L. Tetrahedron Lett. 1961, 2, 167.  (c) Skatteböl, L.; Solomon, S. Org. 
Synth. 1960, 49, 35. 
21 Price, J. P.; Johnson, R. P. Tetrahedron Lett. 1986, 27, 4679.   
22 Balci, M.; Jones, W. M. J. Am. Chem. Soc. 1980, 102, 7607.    
23 (a) Moore, W. R.; Moser, W. J. Am. Chem. Soc. 1970, 92, 5469.  (b)  Moore, W. R.; Moser, W. J. Org. 
Chem. 1970, 35, 908.   
24 (a) Bottini, A. T.; Corson, F. P.; Fitzgerald, R.; Frost, K. A. Tetrahedron 1972, 28, 2883.  (b) Bottini, A. 
T.; Hilton, L. L.; Plott, J. Tetrahedron 1975, 31, 1997.    
25 (a) Christl, M.; Schreck, M. Chem. Ber. 1987, 120, 915.  (b) Christl, M. Schreck, M. Angew. Chem. Int. 
Ed. Engl. 1987, 26, 449. 
26 Harnos, S.; Tivakornpannarai, S.; Waali, E. E. Tetrahedron 1986, 27, 3701.    
27 Greenberg, A.; Liebman, J. L. Strained Organic Molecules; Academic Press:  New York, 1978; p 126. 
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including low-level theoretical calculations,28 led to the conclusion that zwitterion 41 or 

42 is the lowest-energy species. 

38 39 40 41 42

H H

 

Further studies of the chemistry of 1,2-cyclohexadiene led Bottini to favor the 

formation of an initial bent allene (38) which rapidly isomerizes to the biradical 40.24  

Balci trapped optically active 38 at low temperatures, and found that racemization 

becomes competitive with trapping at 80 °C, suggesting a low barrier for racemization.22  

Wentrup29 trapped 1,2-cyclohexadiene in an argon matrix at 11 K and observed that its 

infrared spectrum shows an allene stretch at 1886 cm-1.  Although this frequency differs 

by 70 cm-1 from that for a “normal” allene, this spectrum is consistent with the presence 

of an allene moiety.  Johnson30 has performed ab initio MCSCF//3-21G calculations on 

1,2-cyclohexadiene and found the chiral allene structure (38) to be the lowest energy 

species.  Many recent experimental and theoretical studies (vide infra) support Johnson’s 

conclusion that the cyclic allene structure is indeed the lowest energy species. 

Various methods have been reported for the synthesis of 1,2-cyclohexadiene and 

its derivatives, including base-induced β-elimination of vinyl halides,31 fluoride-induced 

                                                           
28 Dillon, P. W.; Underwood, G. R. J. Am. Chem. Soc. 1974, 96, 779.     
29 Wentrup, C.; Gross, G.; Maquestiau, A.; Flammery, R. Angew. Chem., Int. Ed. Engl. 1983, 27, 542. 
30 (a) Schmidt, M. W.; Angus, R. O.; Johnson R. P. J. Am. Chem. Soc. 1982, 104, 6838.  (b) Angus, R. O.; 
Schmidt, M. W.; Johnson, R. P. J. Am. Chem. Soc. 1985, 107, 532. 
31 (a) Wittig, G.; Fritze, P. Angew. Chem., Int. Ed. Engl. 1966, 5, 684.  (b) Wittig, G.; Fritze, P. Justus 
Liebigs Ann. Chem. 1968, 711, 82. 
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β-elimination of an α-silyl vinyl halide,32 and ring-opening of a variety of substituted 

bicyclo[3.1.0]hexanes. 23,29,33  

In enyne cycloadditions that involve alkynes as enynophiles, the ultimate product 

formed is an aromatic compound, and the cyclic allene intermediate involved is a 

1,2,4-cyclohexatriene derivative, an “isoaromatic” compound.  This type of cyclic allene 

has been the subject of experimental and theoretical investigations.  In 1987, Miller and 

Shi reported the generation and trapping of the cyclic allene 44.  Dehydrohalogenation of 

vinyl bromide 43 provided 45 and 46, which are believed to arise from [4 + 2] 

cycloaddition of 44 with diphenylisobenzofuran (DPIBF) (Scheme 7).34  Miller and Shi 

noted that in the absence of DPIBF, nucleophilic addition of tert-butoxide to 44 takes 

place to afford enol ether 47.   
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32 (a) Shakespeare, W. C.; Johnson, R. P. J. Am. Chem. Soc. 1990, 112, 8578.  (b) Sütbeyaz, Y.; Ceylan, 
M.; Secen, H. J. Chem. Res. (S) 1993, 293. 
33 Runge, A.; Sander, W. Tetrahedron Lett. 1986, 27, 5835.   
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In 1992, Christl and coworkers reported the generation of isonaphthalene (49) and 

isobenzene (53) from dihalocyclopropanes 48 and 52, and the trapping of these allenes 

with styrene to afford 51 and 55, respectively (Scheme 8).35  Christl proposed that these 

reactions proceed via biradicals 50 and 54 which then close to afford the observed 

cyclobutanes.   
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Janoschek has performed AM1 calculations on isobenzene (53) which suggest 

that the allenic structure for this species is lower in energy than the biradical.17  Later, 

Christl, Engels, and coworkers performed high-level MR-CI+Q calculations on 

1,2-cyclohexadiene (38), isobenzene (53), and isonaphthalene (49), and found that in all 

three cases, the strained allenic structure is lowest in energy (Scheme 9).36  In the case of 

                                                           
34 Miller, B.; Shi, X. J. Am. Chem. Soc. 1987, 109, 578.   
35 Christl, M.; Braun, M.; Müller, G. Angew. Chem., Int. Ed. Engl. 1992, 31, 473.   
36 Engels, B.; Schöneboom, J. C.; Münster, A. F.; Groetsch, S.; Christl, M. J. Am. Chem. Soc. 2001, 124, 
287.   
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isobenzene, the allenic structure was found to be lower in energy than the singlet 

biradical by about 9 kcal/mol, with the triplet biradical lying 2-3 kcal/mol higher than the 

singlet.  In the case of isonaphthalene (49), the singlet biradical is higher in energy than 

the allene by about 11 kcal/mol.  The authors explain this difference by the fact that the 

allene is slightly less strained in isonaphthalene than isobenzene because of the increased 

bond length of the ring fusion bond compared to the corresponding bond in isobenzene.  

This is a consequence of the aromatic delocalization of the π bond in isonaphthalene.   
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In contrast to the extensive studies on carbocyclic allenes, to date only limited 

reports have appeared on heterocyclic allenes.  In 1987, Schreck and Christl reported the 

synthesis of 1-oxa-3,4-cyclohexadiene (56), and the trapping of this heterocyclic allene in 
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both [4 + 2] and [2 + 2] cycloaddition processes.37  Two years later, Christl and Braun 

reported the generation and trapping of the isomeric 1-oxa-2,3-cyclohexadiene (57).38  

Christl observed that when allene 57 was generated in the presence of styrene and other 

dienes, [2 + 2] adducts were the major or exclusive products, with reaction occurring at 

the electron-rich enol ether double bond.  Interestingly, in the case of furan, a [4 + 2] 

cycloadduct was the major product, with reaction occurring at the double bond of the 

allene farther from oxygen.  

O

56

O

57  

Heterocyclic allenes with an additional double bond in the ring are even less well 

known.  Shevlin has reported the generation of 1-aza-2,3,5-cyclohexatriene (60)39 and 

1-thia-2,3,5-cyclohexatriene (64)40 by condensation of C-13-enriched atomic carbon with 

pyrrole and thiophene in a carbon arc reaction at 77 K (Scheme 10).   

 

                                                           
37 Schreck, M.; Christl, M. Angew. Chem., Int. Ed. Engl. 1987, 26, 690.   
38 Christl, M.; Braun, M. Chem. Ber. 1989, 122, 1939. 
39 Emanuel, C. J.; Shevlin, P. B. J. Am. Chem. Soc. 1994, 116, 5991.   
40 Pan, W.; Balci, M.; Shevlin, P. B. J. Am. Chem. Soc. 1997, 119, 5035.   
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The authors subjected furan to this same carbon arc reaction, and report that furan 

“reacts rather differently.”  The only product isolated was unsaturated aldehyde 71, which 

they suggest comes directly from ring-opening of intermediate 70 (Scheme 11).39,41  

However, furan may indeed react similarly to pyrrole and thiophene, producing 

1-oxa-2,3,5-cyclohexatriene 72 as an intermediate in the formation of 71. 

 

                                                           
41 Dyer, S. F.; Shevlin, P. B. J. Am. Chem. Soc. 1979, 101, 1303.  
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Scheme 11 
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Christl, Engels, and coworkers have generated 1-oxa-2,3,5-cyclohexatriene 

(dehydropyran, 73); however, all attempts to trap this allene in a cycloaddition failed, and 

they observed only nucleophilic addition at the carbon of the allene farthest from 

oxygen.36  MR-CI+Q calculations on 73 and dehydrochromene 74 suggest that in both 

cases, the allenic structures are again the lowest energy electronic configurations, but the 

zwitterionic structures, identified based on the calculated shapes of the frontier orbitals, 

are close in energy to the cyclic allenes.  In 73, the zwitterion lies only about 1 kcal/mol 

higher than the allene, whereas in 74 the zwitterion lies about 5 kcal/mol higher than the 

allene (Scheme 12).  This is in contrast to the corresponding carbocyclic systems 

(Scheme 9), where the zwitterions are about 30 kcal/mol higher in energy that the allenes.   
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Scheme 12 
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 The authors offer a rationalization for the calculated values.  Inclusion of an 

oxygen atom in the ring allows for the possibility of a conjugated π system with six 

electrons, a situation which is not possible in the carbocyclic analog.  In this situation, the 

positive charge is more delocalized, thus lowering the energy of the zwitterions. 

Although nucleophilic addition to heterocyclic allene 73 has been observed, 

trapping experiments with cycloaddition partners so far have been unsuccessful.  The 

increased polarity of the cyclic allene, due to the contribution of the zwitterion structure, 

likely favors the addition of a nucleophile over cycloaddition.   

Recently, Sheridan and Khasanova reported the generation of cyclic allene 76 and 

the characterization of 76 by infrared and ultraviolet spectroscopy.  Irradiation of 

2-benzofurylchlorocarbene (75) at 366 nm in a nitrogen matrix at 10 K produced a 

compound with spectral data matching that calculated for 2-chlorodehydrochromene (76).  

Warming to 32 K in the presence of HCl afforded a new compound with spectral data 

consistent with that calculated for pyrylium salt 77 (Scheme 13).  To our knowledge, this 
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is the first example of the characterization and subsequent trapping of a dehydropyran 

derivative, and lends experimental support to the proposed zwitterionic structure. 
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Though the carbon arc reaction is not synthetically useful, there are other methods 

currently used for the generation of heterocyclic allenes.  The more practical reactions 

involving base-induced elimination of vinyl halides36,42 and ring-opening of substituted 

bicyclo[3.1.0]hexanes37,38 have been used to provide 1-oxa-2,3-cyclohexadiene 56, 

1-oxa-3,4-cyclohexadiene 57, and 1-oxa-2,3,5-cyclohexatriene 73. 

 

Arenyne Cycloadditions 

Closely related to the [4 + 2] cycloadditions of conjugated enynes is the class of 

analogous cycloadditions in which the double bond of the enyne component is 

incorporated in an aromatic or heteroaromatic ring.  These “arenyne cycloadditions,” 

which we believe are mechanistically related to the enyne cycloaddition, have been the 

                                                           
42 (a) Jamart-Grégorie, B.; Grand, V.; Ianelli, S.; Nardelli, M.; Caubére, P. Tetrahedron Lett. 1991, 31, 
7603.  (b) Jamart-Grégorie, B.; Mercier-Girardot, S.; Ianelli, S.; Nardelli, M.; Caubére, P. Tetrahedron 
1995, 51, 1973.  (c) Ianelli, S.; Nardelli, M.; Belletti, D.; Jamart-Grégorie, B.; Mercier-Girardot, S.; 
Caubére, P. Acta Cryst. 1996, C52, 237.  (d) Ruzziconi, R.; Naruse, Y.; Schlosser, M. Tetrahedron 1991, 
47, 4603.  
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subject of considerable attention recently.  Interestingly, the first example of an arenyne 

cycloaddition may date back to the 19th century. 

In 1898, Michael and Bucher reported43 that condensation of phenylpropiolic acid 

(78) in refluxing acetic anhydride produces not the desired anhydride 80, but rather a 

different anhydride whose structure was eventually assigned to be 79 (Scheme 14).  In 

the years since this discovery, the mechanism of this transformation has been the subject 

of much discussion.  In 1994, we proposed that the conversion of 80 to 79 may in fact 

proceed via a [4 + 2] cycloaddition involving the enyne moiety embedded in the arenyne 

80. 
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43 Michael, A.; Bucher, J. E. Am. Chem. J. 1898, 20, 89. 
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 No further examples of this class of reactions appeared until 1947 when Baddar44 

began his systematic investigation of the regiochemical course of the Michael-Bucher 

reaction.  Though Baddar’s studies revealed that these reactions do not proceed with 

significant regioselectivity, this work did serve to demonstrate the generality of the 

Michael-Bucher reaction. 

 Over the course of the next several decades, scattered reports appeared on the 

Michael-Bucher reaction, demonstrating milder conditions to effect the reaction, and 

extending the scope of the process to include terminal alkynes as 2π components.45,46,47  

Other studies focused on the mechanism of the Michael-Bucher reaction.  In 1969, 

Whitlock reported studies with deuterium-labeled substrates, and proposed a mechanism 

involving a cationic intermediate.48  Though this mechanism was consistent with the 

observed products, Whitlock’s results did not rule out other possible mechanisms.   

 Recently, there has been a surge of new interest in the arenyne cycloaddition 

reaction.  A number of groups began investigations of arenyne cycloadditions after 

Schmittel and coworkers in 1995 reported their serendipitous discovery of a new example 

                                                           
44 (a) Baddar, F. G. J. Chem. Soc. 1947, 224.  (b) Baddar, F. G.; El-Assal, L. S. J. Chem. Soc. 1948, 1267.  
(c) Baddar, F. G.; El-Assal, L. S. J. Chem. Soc. 1951, 1844.  (d) Baddar, F. G.; El-Assal, L. S.; Doss, N. A. 
J. Chem. Soc. 1955, 461.  (e) Baddar, F. G.; Fahim, H. A.; Galaby, M. A. J. Chem. Soc. 1955, 465.  (f) 
Baddar, F. G.; El-Assal, L. S.; Doss, N. A. J. Chem. Soc. 1959, 1027.  (g) Baddar, F. G.; Moussa, G. E. M.; 
Omar, M. T. J. Chem. Soc. (C) 1968, 110.   
45 (a) Brown, D.; Stevenson, R. Tetrahedron Lett. 1964, 5, 3213.  (b) Brown, D.; Stevenson, R. J. Org. 
Chem. 1965, 30, 1759.  (c) Maclean, I.; Stevenson, R. Chem. Ind. 1965, 1379.  (d) Maclean, I.; Stevenson, 
R. J. Chem. Soc. (C) 1966, 1717.  (e) Stevenson, R.; Weber, J. V. J. Nat. Prod. 1989, 52, 367.  (f) Cadby, 
P. A.; Hearn, M.T. W.; Ward, A. D. Aust. J. Chem. 1973, 26, 557. 
46 Campbell, A. D.; Grimmett, M. R. Aust. J. Chem. 1963, 16, 854. 
47 (a) Klemm, L. H.; Hsu Lee, D.; Gopinath, K. W.; Klopfenstein, C. E. J. Org. Chem. 1966, 31, 2376.  (b) 
Klemm, L. H.; Gopinath, K. W.; Hsu Lee, D.; Kelly, F. W.; Trod, E.; McGuire, T. M. Tetrahedron 1966, 
22, 1797.  (c) Klemm, L. H.; Klemm, R. A.; Santhanam, P. A.; White, D. V. J. Org. Chem. 1971, 36, 2169.  
(d) Klemm, L. H.; McGuire, T. M. J. Heterocycl. Chem. 1972, 9, 1215.  (e) Klemm, L. H.; McGuire, T. M.; 
Gopinath, K. W. J. Org. Chem. 1976, 41, 2571.  (f) Klemm, L. H.; Tran, V. T.; Olson, D. R. J. Heterocycl. 
Chem. 1976, 13, 741.   
48 Whitlock. H. W., Jr.; Wu, E.-M.; Whitlock, B. J. J. Org. Chem. 1969, 34, 1857. 
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of the reaction during their studies on Myers-Saito cyclizations.49  A typical example of 

the Myers-Saito (C2-C7) cyclization is shown in Scheme 15 (pathway a), and involves 

formation of biradical 83 which is converted to 84 by hydrogen atom transfer from 

1,4-cyclohexadiene (CHD).  Schmittel and coworkers discovered that incorporation of an 

additional aryl substituent on the alkyne of a typical cyclization substrate induces a 

complete switch to a novel C2-C6 reaction motif (pathway b).  This “Schmittel 

cyclization” proceeds via biradical 86 to provide indene 87, the product of a formal ene 

reaction.50,51   Schmittel suggests that the reaction of 85 follows this new pathway due to 

the stabilization of the vinyl radical in 86 by the additional phenyl group.  Interestingly,  

calculations indicate that the average C2-C7 distance in these cyclization substrates is 

2.96 Å, whereas the C2-C6 distance is between 3.3 and 3.5 Å.52,53  The additional 

stabilization of the intermediate 86 must reduce the activation energy of the transition 

state leading to 86 (Hammond postulate), such that this pathway becomes energetically 

viable. 

 

                                                           
49 Schmittel, M.; Strittmatter, M.; Kiau, S. Tetrahedron Lett. 1995, 28, 4975.   
50 Hock, H. A.; Kirk, B. E.; Taylor, D. R. J. Chem. Soc. Perkin Trans. 1 1974, 1209. 
51 Recent calculations by Musch and Engels suggest that the “intramolecular ene” pathway is energetically 
competitive with the biradical pathway for substrates which incorporate a bulky (but not radical-stabilizing) 
substituent at the alkyne terminus.  See:  Musch, P. W.; Engels, B. J. Am. Chem. Soc. 2001, 123, 5557.  
52 Schmittel, M.; Keller, M.; Kiau, S.; Strittmatter, M. Chem. Eur. J. 1997, 3, 807. 
53 Reaction energetics were also calculated at the AM1 level.  See:  Engels, B.; Lennartz, C.; Hanrath, M.; 
Schmittel, M.; Strittmatter, M. Angew. Chem. Int. Ed. Engl. 1998, 37, 1960. 
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Soon thereafter, Schmittel reported52 that upon replacing the alkyl substituent on 

the allene moiety with an aryl group (e.g., 88), the reaction proceeds as expected along 

the C2-C6 pathway to form biradical 89.  The vinyl radical then cyclizes onto the tethered 

aromatic ring to afford, after hydrogen atom transfer, the benzofluorene 90 (Scheme 

16).54  This overall transformation is a formal [4 + 2] cycloaddition, specifically an 

intramolecular Diels-Alder reaction55 in which the diene is a vinylbenzene56 and the 

dienophile is an acetylene. 

                                                           
54 (a) Schmittel, M.; Strittmatter, M.; Vollmann, K.; Kiau, S. Tetrahedron Lett. 1996, 37, 999.  (b) 
Schmittel, M.; Strittmatter, M.; Kiau, S. Angew. Chem. Int. Ed. Engl. 1996, 35, 1843.  (c) Schmittel, M.; 
Maywald, M.; Strittmatter, M. Synlett 1997, 165.  (d) Schmittel, M.; Kiau, S. Liebigs Ann. 1997, 733. 
55 For reviews of intramolecular Diels-Alder reactions, see:  (a) Roush, W. R. In Comprehensive Organic 
Synthesis, Trost, B. M.; Fleming, I., Eds.; Pergamon:  New York, 1991, Vol. 5, Chapter 4.4, pp 513-550.  
(b) Roush, W. R. In Advances in Cycloaddition; Curran, D. P., Ed.; JAI Press:  Greenwich, CT, 1990, Vol. 
2, pp 91 ff.  (c) Craig, D. Chem. Soc. Rev. 1987, 16, 187.  (d) Ciganik, E. Org. React. 1984, 32, 1.  (e) D. F. 
Taber, Intramolecular Diels–Alder and Ene Reactions; Springer-Verlag:  New York, 1984.  (f) Fallis, A. G. 
Can. J. Chem. 1984, 62, 183.  (g) Brieger, G.; Bennett, J. N. Chem. Rev. 1980, 80, 63.  (h) Bear, B. R.; 
Sparks, S. M.; Shea, K. J. Angew. Chem. Int. Ed. Engl. 2001, 40, 821. 
56 For reviews, see:  (a) Wagner-Jauregg, T. Synthesis 1980, 165.  (b) Wagner-Jauregg, T. Synthesis 1980, 
769.  For additional examples of intramolecular Diels-Alder reactions of styrenes with alkynes, see:  (c) 
Baba, A.; Oda, T.; Taketomi, S.; Notoya, K.; Nishimura, A.; Makino, H.; Sohida, T. Chem. Pharm. Bull. 
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Scheme 16 
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Schmittel's work on these novel reactions was initially focused on structures of 

the general type 85, and later was extended to substrates of the type 91-93.57  In the 

context of this work it was found that the Schmittel cyclization can be suppressed by ring 

strain effects.  As shown in Scheme 17, cyclopentene 91 reacts to give only the Myers-

Saito product 94, despite the presence of a phenyl substituent at the alkyne terminus 

which usually favors the Schmittel cyclization pathway.  Compounds 92 and 93, which 

incorporate six- and seven-membered rings, respectively, react exclusively according to 

the Schmittel cyclization pathway. 
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1999, 47, 369.  (d) Kashima, T.; Tanoguchi, M.; Arimoto, M.; Yamaguchi, H. Chem. Pharm. Bull. 1991, 
39, 192.  (e) Kanematsu, K.; Tsuruoka, M.; Takaoka, Y.; Sasaki, T. Heterocycles 1991, 32, 859.  (f) 
Revesz, L.; Meigel, H. Helv. Chim. Acta 1988, 71, 1697.   
57 Schmittel, M.; Steffen, J.-P.; Auer, D.; Maywald, M. Tetrahedron Lett. 1997, 37, 6177.   
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Schmittel also found that substrates in which the allene is replaced by a 

ketenimine58 or a carbodiimide59 react in an analogous fashion to form the expected 

heterocycles.  Further studies extended the scope of the reaction to include carbonyl-

substituted allenes.60 

 Schmittel has extended the scope of the C2-C6 cyclization motif to include 

reactions of the propargylic alcohols which are the synthetic precursors to his earlier 

enyne-allene substrates.61  For example, heating propargyl alcohol 97, containing two 

different phenylacetylene moieties, affords two regioisomeric products 99 and 101 

resulting from reaction according to both possible cycloaddition pathways (Scheme 18). 

                                                           
58 Schmittel, M.; Steffen, J.-P.; Ángel, M. Á. W.; Engels, B.; Lennartz, C.; Hanrath, M. Angew. Chem. Int. 
Ed. Engl. 1998, 37, 1562. 
59 Schmittel, M.; Steffen, J.-P.; Engels, B.; Lennartz, C.; Hanrath, M. Angew. Chem. Int. Ed. Engl. 1998, 
37, 2371. 
60 Schmittel, M.; Strittmatter, M. Tetrahedron 1998, 54, 13751.   
61 Schmittel, M.; Strittmatter, M.; Schenk, W. A.; Hagel, M. Z. Naturforsch. 1998, 53b, 1015. 
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Scheme 18 
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For the cycloaddition of 97, Schmittel suggests two possible mechanistic 

pathways.  A concerted [4 + 2] cycloaddition would directly form cyclic allene 

intermediates 98 and 100; a stepwise pathway via biradical 102 would provide the same 

cyclic allene intermediates (vide supra).  However, Schmittel’s initial experiments do not 

provide adequate evidence to distinguish between the two pathways.   

The attempted cycloaddition of 103, in which a phenyl has been replaced with a 

tert-butyl group, affords no cycloadduct 105 but only unreacted 103 (Scheme 19).  The 

tert-butyl group’s inability to stabilize the adjacent vinyl radical in biradical 104 would 
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cause the intermediate 104 to be higher in energy than 102.  Alternately, biradical 104 

could form reversibly, but cyclization to 105 could be impeded due to steric reasons. 
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Subsequent to Schmittel’s first report, a number of groups have published 

investigations of formal cycloadditions involving arenynes and alkynes.   

Domínguez, Saá, and coworkers have described the cycloadditions of non-

conjugated benzotriynes (e.g., 106), in which an alkynyl group is substituted for one of 

the phenyl groups of Schmittel’s arenyne cycloaddition substrates.  As expected, the 

formal [4 + 2] cycloaddition proceeds to give the cycloadduct 108 in good yield, 

presumably via biradical intermediate 107 (Scheme 20).62  Theoretical studies support a 

mechanism involving initial formation of the biradical 107, followed by fast 

intramolecular coupling to generate a strained cyclic allene which then evolves to the 

observed benzo[b]fluorene derivatives.63 

                                                           
62 Rodriguez, D.; Castedo, L.; Domínguez, D.; Saá, C. Tetrahedron Lett. 1999, 40, 7701.  
63 Rodriguez, D.; Navarro, A.; Castedo, L.; Domínguez, D.; Saá, C. Org. Lett. 2000, 2, 1497. 
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Scheme 20 
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Deuterium incorporation studies were conducted to probe the conversion of the 

cyclic allene to the aromatic product.  Cycloaddition in the presence of CH3OD led to 

deuterated product (>95% D), whereas the use of CD3OH led to no incorporation of 

deuterium.  The authors interpret these results as indicative of a protonation step in the 

transformation of the cyclic allene to the final product.  

In later work, Domínguez and Saá report the essentially the same reaction on 

ketones corresponding to the alcohols involved in the previous study.63  These substrates 

react at much lower temperatures to afford the expected benzofluorenone products 

(Scheme 21).  The authors attribute this greater reactivity to conformational and 

electronic effects imposed by the sp2-hybridized carbon of the carbonyl group. 
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Scheme 21 
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Echavarren and coworkers64 have investigated the application of related arenyne 

cycloadditions to the synthesis of benzo[b]fluorene natural products of the kinamycin 

family.65  Interestingly, these reactions produce mixtures of the desired benzo[b]fluorenes 

113 with rearranged benzo[a]fluorenes of type 114 (Scheme 22).   
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64 Atienza, C.; Mateo, C.; de Frutos, O.; Echavarren, A. M. Org. Lett. 2001, 3, 153. 
65 For a review of the biosynthesis of the kinamycins, see:  Gould, S. J. Chem. Rev. 1997, 97, 2499. 
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The authors explain these results by invoking the equilibrium of cyclic allenes 

115 and 118, which they propose can interconvert by two pathways:  electrocyclic ring 

opening to dehydro[10]annulene 117 followed by electrocyclization, or rearrangement to 

carbene 116 followed by 1,2-C-C insertion (Scheme 23).  No experimental evidence was 

provided to distinguish between the pathways. 
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In subsequent work, Domínguez and Saá have observed this same skeletal 

rearrangement in the cycloaddition of propiolic amide 119, which affords two 

regioisomeric cycloadducts 120 and 121 (Scheme 24).66  The authors suggest the 

intermediacy of dehydro[10]annulene 123 in this reaction, analogous to 117 proposed 
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earlier by Echavarren (Scheme 23).  Interestingly, the benzo[b]fluorene 120 is the 

exclusive product when the reaction is run in the presence of phenol, although in the 

absence of phenol, the rearranged benzo[a]fluorene 121 is the exclusive product.  The 

lack of an effective proton or hydrogen atom donor disfavors isomerization of cyclic 

allene 122 to 120, thus allowing rearrangemenet to take place to the energetically favored 

cyclic allene 124 (calculated to be 1.4 kcal/mol more stable than 122).  The authors do 

not comment on the mechanism of isomerization of 124 to 121 in the absence of phenol, 

though either toluene or an intermediate in the reaction could serve as a hydrogen atom 

donor. 
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66 Rodriguez, D.; Navarro-Vázquez, A.; Castedo, L.; Domínguez, D.; Saá, C. J. Am. Chem. Soc. 2001, 123, 
9178.  
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The authors note that in reactions conducted in the absence of phenol, “the 

addition of radical hydrogen donors such as 1,4-cyclohexadiene or γ-terpinene had no 

effect although radical paths for cyclic allenes had been observed.  It seems that cyclic 

allenes much prefer ionic proton abstraction.”66  This observation is consistent with their 

deuterium incorporation study conducted earlier (vide infra). 

Additional studies by Domínguez and Saá on substrates similar to Echavarren’s 

revealed similar rearrangements.67  The also found that the use of toluene instead of 

benzene led to little difference in the results, “showing that the presence of possible 

radical hydrogen donors plays at most a minor role in the final aromatization step.”  

Notably, the use of triethylamine as solvent led to quantitative yields of the cycloadduct.  

The authors attribute this result to the triethylamine “acting as a catalytic base for the 

aromatization step.” 

The cycloadditions of arenynes with arynes is a related process which has also 

been explored.  In 1997, Guitián and coworkers reported the cycloaddition of arenyne 

125 with benzyne to form a cyclic allene (126) or biradical intermediate (127), which 

then cyclizes onto the pendant alkyne moiety to ultimately furnish benzo[a]pyrene (129) 

(Scheme 25).68 

 

                                                           
67 Rodriguez, D.; Navarro-Vázquez, A.; Castedo, L.; Domínguez, D.; Saá, C. Tetrahedron Lett. 2002, 43, 
2717.  
68 Cobas, A.; Guitián, E.; Castedo, L. J. Org. Chem. 1997, 62, 4896.  
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Scheme 25 

HHH

125

126 127 128

129

THF, rt
30%

 

 

 In studies concurrent with Schmittel’s early work, Ueda and coworkers 

discovered an intramolecular [4 + 2] cycloaddition of a diyne with an alkyne to afford an 

aryne intermediate (though the authors refer to the intermediate as a “didehydrobenzene 

diradical”).69  Thus, the cycloaddition of 130 at room temperature, in the presence of 

excess anthracene as a trapping agent, affords a mixture of 134 (8%) and 135 (72%), 

presumably via arynes 132 and 133 (Scheme 26).  In the absence of anthracene, only 5% 

of the corresponding arene was isolated, along with 6% of a compound resulting from 

cycloaddition of the aryne intermediate to benzene (the solvent).   

 

                                                           
69 (a) Miyawaki, K.; Suzuki, R.; Kawano, T.; Ueda, I. Tetrahedron Lett. 1997, 38, 3943.  (b) Ueda, I.; 
Sakurai, Y.; Kawano, T.; Wada, Y.; Futai, M. Tetrahedron Lett. 1999, 40, 319. 
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Scheme 26 
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Ueda and coworkers subsequently extended this chemistry to substrates in which 

the resulting aryne intermediate undergoes further cyclization with a pendant alkyne to 

furnish a condensed polyaromatic species,70 similar to the earlier work of Guitián. 

                                                           
70 (a) Miyawaki, K.; Kawano, T.; Ueda, I. Tetrahedron Lett. 1998, 39, 6923.  (b) Miyawaki, K.; Kawano, 
T.; Ueda, I. Tetrahedron Lett. 2000, 41, 1447.   
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An interesting reaction pertinent to the mechanism of arenyne cycloadditions was 

serendipitously discovered by Oppolzer during attempted intramolecular Diels-Alder 

reaction of the styrene 136 to give 139 (Scheme 27).71  Diels-Alder reactions involving 

styrene derivatives as 4π components are known to be somewhat difficult due to the 

disruption of aromaticity of the benzene ring in the transition state for cycloaddition.56  In 

this particular substrate, an alternative pathway involving cyclization to form biradical 

140 becomes energetically competitive; the benzylic stabilization of the incipient radicals 

in the transition state lowers the activation energy for this pathway.  In this instance, the 

biradical intermediate 140 does not react according to a typical arenyne cycloaddition 

pathway.  Cyclization of the secondary radical onto the pendant phenyl ring would result 

in a bridgehead alkene, a violation of Bredt’s rule.72  Cyclization of the tertiary radical 

probably does not take place due to geometric constraints; it may simply be too far from 

the phenyl ring.  Instead, 140 undergoes a radical combination to afford the observed 

products 137 and 138, resulting in a formal [2 + 2] cycloaddition.  The initial cyclization 

step in this reaction is reminiscent of the first step of an arenyne cycloaddition, which 

forms an intermediate biradical that is stabilized by the presence of aryl groups. 

                                                           
71 Oppolzer, W.; Loosli, H.-R. Helv. Chim. Acta 1974, 57, 2605.  (b) Oppolzer, W. Helv. Chim. Acta 1974, 
57, 2610.   
72 (a) For a recent report, see:  Bear, B.R.; Sparks, S.M.; Shea, K.J; Angew. Chem. Int. Ed. Engl. 2001, 40, 
821.  For reviews, see:  (b) Keese, R.; Luef, W. In Topics in Stereochemistry, Eliel, E. L.; Wilen, S. H., 
Eds.; Wiley:  New York, 1991; Vol. 20, pp 231-318.  (c) Warner, P. M. Chem. Rev. 1989, 89, 1067.  (d) 
Broden, W. T. Chem. Rev. 1989, 89, 1099.  (e) Krause, G. A.; Yon, Y. S.; Thomas, P. J.; Laramay, S.; 
Liras, S.; Hanson, J. Chem. Rev. 1989, 89, 1591.  (f) Szeimies, G. In Reactive Intermediates; Abranovitch, 
R. A., Ed.; Plenum:  New York, 1983; Vol. 3, pp. 299-366.  (g) Shea, K. J. Tetrahedron 1980, 36, 1683.  
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Scheme 27 
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Intramolecular Enyne [4 + 2] Cycloadditions:  Recent Work  

 As mentioned earlier, our group reported the first systematic investigation of the 

scope and mechanism of the intramolecular enyne [4 + 2] cycloaddition.14  Since that 

publication, researchers in our group have undertaken additional experiments to probe the 

mechanism and expand the scope of the reaction.73  In addition, several other research 

groups have also seized upon the opportunities presented by these powerful 

cycloadditions.   

 A number of additional examples of the enyne cycloaddition have been 

investigated in our laboratory, including two cases where the enynophile is a 

trisubstituted alkene (141 and 143).73  The products resulting from this cycloaddition 

(142 and 144) retain the configuration of the double bond, thus providing evidence that 

                                                           
73 (a) Gould, A. E.; Palucki, B. L.; Fernández de la Pradilla, R.; Helgason, A. L.; Yli-Kauhaluoma, J.; 
Hayes, M. E.; Dunetz, J. R.; Danheiser, R. L. Manuscript in preparation.  (b) Gould, A. E.; Palucki, B. L.; 
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the cycloaddition is suprafacial with respect to the enyne moiety (Scheme 28).74  This 

leads to the conclusion that the cycloaddition occurs through either a concerted 

mechanism or a stepwise mechanism involving a very rapid cyclization step.  In addition, 

the cycloaddition of substrate 145 afforded exclusively the endo product 146, indicating 

that the cycloaddition proceeds with high endo selectivity (Scheme 28).  
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A number of other enynes have been synthesized in our laboratory and undergo 

cycloaddition successfully.  In addition to previous examples with all-carbon and 

                                                           
Fernández de la Pradilla, R.; Helgason, A. L.; Yli-Kauhaluoma, J.; Danheiser, R. L. Manuscript in 
preparation. 
74 This is in agreement with Miller’s recent work on intermolecular enyne cycloadditions.  See:  Ionescu, 
D.; Silverton, J. V.; Dickinson, L. C.; Miller, B. Tetrahedron Lett. 1996, 37, 1559. 
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ketone-containing tethers (Scheme 5), it has been shown that amides, esters, and 

substituted amines also can be incorporated as functionality in the tether (Scheme 29). 
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Echavarren has reported the cycloaddition of an enyne tethered to an acetylene via 

a rigid naphthalene scaffold.75  Thus, enyne 153 undergoes cycloaddition at 150 °C in 

6 hours to afford the cycloadduct 154 (Scheme 30).  In this report, the authors provide no 

mechanistic discussion on the cycloaddition.  

 

 

                                                           
75 González, J. J.; Francesch, A.; Cárdenas, D. J.; Echavarren, A. M. J. Org. Chem. 1998, 63, 2854.  
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Scheme 30 
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Johnson and coworkers have demonstrated cycloadditions of enynes 155 and 158 

and diyne 163 under flash vacuum thermolysis conditions.76  Compounds 157, 161, and 

165 isolated from these reactions support the intermediacy of a cyclic allene (Scheme 

31).  In the case of 157, cycloreversion of allene 156 results in loss of ethylene to provide 

the observed product.  The formation of 161 and 165 likely results from a six-electron 

electrocyclic ring opening of the cyclic allene intermediates. 

 

 

 

 

 

 

 

 

 

                                                           
76 Burrell, R. C.; Daoust, K. J.; Bradley, A. Z.; DiRico, K. J.; Johnson, R. P. J. Am. Chem. Soc. 1996, 118, 
4218.    
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Scheme 31 
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Johnson and coworkers also explored the intramolecular [4 + 2] cycloaddition of 

1,3,8-nonatriyne (168), which produces aryne intermediate 169, and ultimately furnishes 

indan and indene via hydrogen transfer (Scheme 32).77  Mechanistic support for a [4 + 2] 

cycloaddition was provided by deuterium labeling studies. 

                                                           
77 Bradley, A. Z.; Johnson, R. P. J. Am. Chem. Soc. 1997, 119, 9917.     
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Scheme 32 
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Johnson has also reported reaction energetics derived from ab initio calculations 

for the intermolecular version of the enyne cycloaddition.78  He reported the enthalpy of 

reaction (∆HR) based on ab initio calculations to be -25.4 kcal/mol, similar to our 

previous calculation of -29.7 kcal/mol (vide supra).   

Recently, Ananikov has calculated the potential energy surfaces for both 

intermolecular and intramolecular cycloadditions of prototypical enyne substrates, and 

has calculated the structures of transition states and intermediates.79  The calculations for 

the transformation of cyclic allene 53 to the observed aromatic product were restricted to 

unimolecular processes, and revealed two possible pathways, shown in Scheme 33.  The 

first pathway involves a 1,3-hydrogen shift, but this leads to cis, cis, trans-1,3,5-

cyclohexadiene (170) or “Möbius benzene.”80  The second pathway proceeds via a 

1,2-hydrogen shift, producing carbene intermediate 171, which undergoes a second 

1,2-hydrogen shift to form benzene.   

                                                           
78 Burrell, R. C.; Daoust, K. J.; Bradley, A. Z.; DiRico, K. J.; Johnson, R. P. J. Am. Chem. Soc. 1996, 118, 
4218.   
79 Ananikov, V. P. J. Phys. Org. Chem. 2001, 14, 109. 
80 Johnson, R. P.; Daoust, K. J. J. Am. Chem. Soc. 1996, 118, 7381.   
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The carbene 171 is calculated to be lower in energy than Möbius benzene (170) 

by 4.0 kcal/mol.  Although these calculations suggest that, in the gas phase, isomerization 

of isobenzene to benzene can involve intramolecular hydrogen shifts, we believe that in 

solution phase reactions with hydrogen atom or proton donor additives, the allene 

isomerization proceeds via intermolecular pathways.   

After Ananikov’s report, Martin Hayes in our laboratory conducted a deuterium-

labeling study to probe the possibility that carbenes such as 171 are intermediates in the 

isomerization of the cyclic allene to the aromatic product.  To this end, enyne 172 was 

synthesized and subjected to the typical cycloaddition conditions.  The product resulting 

from intermolecular aromatization pathways should be 174, whereas the pathway 

involving carbene 175 should provide a mixture of 174 and 176.  In the event, the 

reaction afforded only 174, in which no deuterium shift occurred (Scheme 34).81  The 

same product was obtained in the absence of BHT, albeit in lower yield.  This result 

provides strong evidence against the possibility of a carbene intermediate in the 

isomerization of the cyclic allene to the observed aromatic product.   

 

 

                                                           
81 Hayes, M. E., Massachusetts Institute of Technology, unpublished results. 
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Scheme 34 
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Summary 

 The intramolecular [4 + 2] cycloadditions of conjugated enynes represent an 

important new entry into the arsenal of cycloadditions for the synthetic organic chemist.  

The related formal [4 + 2] cycloadditions of arenynes are also potentially useful tools for 

the synthesis of condensed polycycles; however, unlike the enyne cycloadditions, 

cycloadditions of substituted arenynes have exhibited some lack of regiocontrol, which is 

a drawback for their application to natural products synthesis.  The expansion of the 

enyne cycloaddition methodology to “heteroenynes” will be discussed in detail in the 

following chapters. 
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Chapter 2 

Introduction and Background:  Intramolecular [4 + 2] 
Cycloadditions of Heteroenynes 

 

Importance of Heterocyclic Compounds 

 Heterocyclic compounds82 are widely distributed in nature, and they play essential 

roles in all living cells.  There are a vast number of pharmacologically active heterocyclic 

compounds; while some are natural products, the majority of compounds currently in 

clinical use are synthetic, with finely-tuned activity. 

 Other common uses for heterocyclic compounds include pesticides, insecticides, 

herbicides, flavorings, fragrances, dyes, copolymers, solvents, and photographic 

sensitizers and developers.  In addition, many heterocyclic compounds are important 

synthetic intermediates.  The range of chemical transformations in which heterocycles 

participate is growing rapidly, including their use in the synthesis of specific 

functionalized non-heterocyclic structures. 

 A practically limitless number of structurally diverse, novel heterocyclic 

compounds with a wide range of physical, chemical, and biological properties, and 

possessing a wide range of stability and reactivity characteristics, are imaginable.   

 This chapter will review the extension of the enyne cycloaddition methodology to 

“heteroenynes,” compounds of the type 177 in which one of the carbon atoms of the 

alkene is replaced by a heteroatom (Scheme 35).  Specifically, the intramolecular [4 + 2] 

                                                           
82 (a) Comprehensive Heterocyclic Chemistry; Katritzky, A. R.; Rees, C. W., Eds.; Pergamon:  New York, 
1984.  (b) Comprehensive Heterocyclic Chemistry II; Katritzky, A. R.; Rees, C. W.; Scriven, E. F. V., Eds.; 
Pergamon:  New York, 1996.  (c) Handbook of Heterocyclic Chemistry; Katritzky, A. R.; Pozharskii, A. F.; 
Pergamon:  New York, 2000. 
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cycloadditions of 1-oxaenynes (e.g., 179) with alkynes will be discussed.  Our proposed 

mechanism for the transformation involves the heterocyclic allene intermediate 180, 

which ultimately furnishes the observed dihydroisobenzofuran product 181.   
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 My work, which will be detailed in Chapter 3, involves the cycloaddition of 

several additional 1-oxaenynes.  We were particularly interested in additional studies to 

probe the mechanism of the transformation, and we sought to demonstrate the utility of 

the dihydroisobenzofuran products, which are valuable as synthetic intermediates and are 

incorporated in a number of natural products of biological importance (vide infra).   

 

Significance of Furans in Organic Synthesis 

 Furans are the most common of the five-membered heterocycles in nature and in 

organic synthesis.  Polysubstituted furans are found as key structural units in many 

natural products and pharmaceuticals.  Most naturally-occurring furans are of botanical 
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origin, though furans have also been isolated from fungi and mammals.83  In addition to 

their biological significance, furans are commonly utilized as building blocks in organic 

synthesis,84 where they function as dienes in cycloadditions,85 as masked carboxylic 

acids,86 and as 1,4-diketone equivalents.87  Furans are also utilized in the food industry as 

natural and artificial flavors, fragrances, and preservatives.88   

Due to the many applications of furans, the synthesis of polysubstituted furans 

continues to be of great import to organic chemists, and has led to the development of an 

extensive array of synthetic approaches to the furan skeleton.89  Despite the numerous 

methods available for the synthesis of furans, relatively few general methods are 

applicable to the construction of 3,4-substituted or 3,4-fused derivatives.  Previous routes 

to 3,4-fused polycyclic furans include Kanematsu’s furan ring transfer strategy90 and 

others.91  The intramolecular cycloaddition of oxaenynes is a new entrant to this area, 

providing 3,4-fused furans directly.  Cleavage of the six-membered ring in the product 

                                                           
83 (a) Dean, F. M. In Naturally Occurring Oxygen Ring Compounds; Butterworths:  London, 1963.  (b) 
Spiteller, M.; Spiteller, G.; Hoyer, G. A. Chem. Ber. 1980, 113, 699.  (c) Puchta, V.; Spiteller, G.; 
Weidinger, H. Liebigs Ann. Chem. 1988, 25.  (d) Sand, D. M.; Glass, R. L.; Olson, D. L.; Pike, H. M.; 
Schlenk, H. Biochim. Biophys. Acta 1984, 793, 429. 
84 For an overview, see:  Lipshutz, B. H. Chem. Rev. 1986, 86, 795. 
85 For recent reviews, see:  (a) Kappee, C. O.; Murphree, S. S.; Padwa, A. Tetrahedron 1997, 53, 14179.   
(b) Wright, D. L. Chem. Innov. 2001, 31, 17. 
86 For examples, see:  (a) Wiesner, K.; Tsai, T. Y. R. Pure Appl. Chem. 1986, 58, 799.  (b) Lociuro, S.; 
Tsai, T. Y. R.; Wiesner, K. Tetrahedron 1988, 44, 35.    
87 For an example, see:  Büchi, G.; Wüest, H. J. Org. Chem. 1966, 31, 977.  
88 The Chemistry of Heterocyclic Flavouring and Aroma Compounds; Vernin, G., Ed.; Ellis Horwood:  
Chichester, 1982. 
89 For recent reviews, see:  (a) Gilchrist, T. L. J. Chem. Soc., Perkin Trans. 1 2001, 2491.  (b) Gilchrist, T. 
L. J. Chem. Soc., Perkin Trans. 1 1999, 2849.  (b) Gilchrist, T. L. J. Chem. Soc., Perkin Trans. 1 1998, 615.  
(c) Gilchrist, T. L. Contemp. Org. Synth. 1995, 2, 337.  (d) Gilchrist, T. L. Contemp. Org. Synth. 1994, 1, 
205.  
90 (a) Yamaguchi, Y.; Yamada, H.; Hayakawa, K.; Kanematsu, K. J. Org. Chem. 1987, 52, 2040.  (b) Baba, 
Y.; Sakamoto, T.; Kanematsu, K. Tetrahedron Lett. 1994, 35, 5677.  (c) Wu, H.-J.; Lin, S.-H.; Lin, C.-C. 
Heterocycles 1994, 38, 1507. 
91 For a review on the synthesis of substituted furans, see:  Hou, X. L.; Cheung, H. Y.; Hon, T. Y.; Kwan, 
P. L.; Lo, T. H.; Tong, S. Y.; Wong, H. N. C. Tetrahedron 1998, 54, 1955.   
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reveals monocyclic tetrasubstituted furans which are otherwise difficult to assemble using 

conventional routes.   

 

Diels-Alder Reactions of 1-Oxabutadienes 

 We will begin with a discussion of the related cycloadditions of 1-oxabutadienes.  

The first example of a Diels-Alder reaction involving an oxabutadiene appeared in 1938 

with Sherlin’s report of the thermal dimerization of acrolein.92  Since that initial 

discovery, extensive investigations of the Diels-Alder reactions of 1-oxabutadienes have 

been reported by many groups, and numerous reviews have provided a thorough analysis 

of the scope, mechanism, and synthetic utility of these reactions.93,94,95,96 

 The hetero Diels-Alder reaction of α,β-unsaturated aldehydes and ketones 182 

with electron rich or unactivated olefins 183 (Scheme 36) gives access to 2-substituted 

dihydropyrans 184 which are useful precursors to a variety of natural products.  The use 

of alkynes 185 as dienophiles affords pyrans 186.  Theoretical calculations on this 

inverse-electron-demand cycloaddition (LUMO-controlled with respect to the 

heterodiene) are consistent with the observed formation of the 2-substituted dihydropyran 

regioisomer.  These calculations also support the preferred endo approach of the 

dienophile in a concerted asynchronous transformation, i.e., in the transition state, the 

new carbon-carbon bond is more fully formed than the new carbon-oxygen bond.  

Exceptions to the predicted regioselectivity all involve poorly matched substrates 

                                                           
92 Sherlin, S. M.; Berlin, A. Y.; Serebrennikova, T. A.; Rabinovitch, R. F. J. Gen. Chem. USSR 1938, 8, 22. 
93 Tietze, L. F.; Kettschau, G. Top. Curr. Chem. 1997, 189, 1.   
94 Boger, D. L.; Weinreb, S. M. Hetero Diels-Alder Methodology in Organic Synthesis; Academic Press:  
New York, 1987.   
95 Desimoni, G.; Tacconi, G. Chem. Rev. 1975, 75, 651. 
96 For a theoretical treatment, see:  Park, Y. S.; Lee, B. S.; Lee, I. New J. Chem. 1999, 23, 707. 
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(electron-deficient dienes with electron-deficient dienophiles).95  Electron-withdrawing 

groups attached to the carbon α to the carbonyl enhance the reactivity of the heterodiene 

by lowering the energy of the LUMO.   In addition, substitutents on the α carbon also 

stabilize the cisoid conformation of the heterodiene.  
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 Thermal hetero Diels-Alder reactions of 1-oxabutadienes with alkenes and 

alkynes typically require temperatures of 150 to 200 °C.  In these reactions, the 

competing dimerization or polymerization of the heterodienes is often a serious side 

reaction.  The addition of a radical inhibitor or the use of an excess of the oxabutadiene 

has often moderated these side reactions.  Recently, Lewis acid catalysis,97 high pressure 

techniques,98 and microwave activation99 have all come into common use as facilitators 

of the hetero Diels-Alder reactions of 1-oxabutadienes. 

                                                           
97 (a) David B. Gorman, D. B.; Tomlinson, I. A. Chem. Commun.1998, 25.  (b) Merour, J.-Y.; Bourlot, A.-
S.; Desarbe, E. Tetrahedron Lett. 1995, 36, 3527.  (c) Snider, B. B.; Phillips, G. B. J. Org. Chem. 1983, 48, 
2789. 
98 (a) Matsumoto, K.; Sera, A. Synthesis 1986, 999.  (b) Dauben, W. G.; Krabbenhoft, H. O. J. Org. Chem. 
1977, 42, 282.  (c) Dauben, W. G.; Kozikowski, A. P. J. Am. Chem. Soc. 1974, 96, 3664.  (d) Firestone, R. 
A.; Smith, G. M. Chem. Ber. 1989, 122, 1089. 
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The intramolecular cycloadditions of oxabutadienes proceed even more efficiently 

than intermolecular reactions, and intramolecular Diels-Alder reactions of activated 

oxabutadienes with electron-rich, unactivated, and even electron-poor dienophiles are all 

well known.100  Intramolecular cycloaddition substrates incorporating electron-

withdrawing groups at the α carbon display exceptional regio- and stereoselectivity, and 

exhibit enhanced reactivity, in certain cases even undergoing cycloaddition at room 

temperature.  In general, the stereochemistry of the reacting oxabutadiene system, the 

nature of the tether, and the substitution pattern of the alkene dienophile all affect the 

rate, stereoselectivity, and regioselectivity of the cycloaddition.101  Reports of unactivated 

oxabutadienes participating in intramolecular Diels-Alder reactions are limited due to the 

competition between the desired cycloaddition and the intramolecular ene reaction.102   

 In recent years, asymmetric versions of both intermolecular and intramolecular 

Diels-Alder reactions of oxabutadienes have been reported.  The use of chiral 

auxiliaries103 and substrates with stereogenic centers104 has been investigated.  In 

                                                           
99 Diaz-Ortiz, A.; Diez-Berra, E.; de la Hoz, A.; Prieto, P.; Moreno, A. J. Chem. Soc., Perkin Trans. 1 1994, 
3595.  
100 For reviews of intramolecular Diels-Alder reactions, see:  (a) Roush, W. R. In Comprehensive Organic 
Synthesis, Trost, B. M.; Fleming, I., Eds.; Pergamon:  New York, 1991, Vol. 5, Chapter 4.4, pp 513-550.  
(b) Roush, W. R. In Advances in Cycloaddition; Curran, D. P., Ed.; JAI Press:  Greenwich, CT, 1990, Vol. 
2, p 91 ff.  (c) Craig, D. Chem. Soc. Rev. 1987, 16, 187.  (d) Ciganik, E. Org. React. 1984, 32, 1.  (e) D. F. 
Taber, Intramolecular Diels–Alder and Ene Reactions; Springer-Verlag:  New York, 1984.  (f) Fallis, A. G. 
Can. J. Chem. 1984, 62, 183.  (g) Brieger, G.; Bennett, J. N. Chem. Rev. 1980, 80, 63.  (h) Bear, B. R.; 
Sparks, S. M.; Shea, K. J. Angew. Chem. Int. Ed. Engl. 2001, 40, 821. 
101 For a review of work in this area, see: Tietze, L. F. In Selectivity – A Goal For Synthetic Efficiency; 
Trost, B. M.; Bartmann, W., Eds.; Verlag Chemie:  Weinheim, 1984, pp 299-316. 
102 (a) For an example under thermal conditions, see:  Snider, B. B.; Duncia, J. B.; J. Org. Chem. 1980, 45, 
3461.  (b) For an example under Lewis acid-promoted conditions, see:  Tietze, L. F.; J. Heterocyclic. 
Chem. 1990, 27, 47.  
103 For examples, see:  (a) Tietze, L. F.; Schneider, C.; Grote, A.; Chem. Eur. J. 1996, 2, 139.  (b) Tietze, L. 
F.; Schneider, C.; Montenbruck, A. Angew. Chem. Int. Ed. Engl. 1994, 33, 980. 
104 For an example, see:  Tietze, L. F.; Geissler, H.; Fennen, J.; Brumby, T.; Brand, S.; Schulz, G. J. Org. 
Chem. 1994, 59, 182.  
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addition, the use of chiral Lewis acids not only promotes the cycloaddition but also 

provides enantioenriched compounds from racemic precursors.105 

 

The Heteroenyne [4 + 2] Cycloaddition of Ynones and Related Species 

 Our laboratory recently reported the first example of a heterocyclic variant of the 

enyne cycloaddition, the intramolecular [4 + 2] cycloaddition of conjugated ynones.106  

Analogous to the enyne cycloaddition, the heteroenyne cycloaddition occurs to give 

highly strained heterocyclic allenes 180 (Scheme 37).  In cycloadditions involving 

conjugated enynes, the cyclic allene intermediate can isomerize to furnish an aromatic 

product; however, in the cycloaddition of oxaenynes, such an isomerization of the 

heterocyclic allene intermediate cannot occur.  Two conceivable pathways providing 

products incorporating a six-membered oxygen heterocycle lead to pyran 187 or 

pyrylium cation 188.  Neither of these two products was isolated from the reaction; 

instead, the dihydrosiobenzofuran 181 was the only characterizable product.  Although 

furan formation was not expected, it opened the door to exciting possibilities for the 

application of this reaction in organic synthesis.107 

                                                           
105 Maruoka, K. In Catalytic Asymmetric Synthesis, 2nd Ed.; Ojima, I., Ed.; Wiley-VCH: New York, 2000; 
Chapter 8A.  
106 Wills, M. S. B; Danheiser, R. L. J. Am. Chem. Soc. 1998, 120, 9378. 
107 For full details of the discovery and exploration of this new reaction, see:  Wills, M. S. B. Ph.D. Thesis, 
Massachusetts Institute of Technology, Cambridge, MA, June 1998. 
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Scheme 38 shows the mechanism proposed for this fascinating reaction.  The 

alkynone 189 undergoes an intramolecular [4 + 2] cycloaddition to produce the strained 

heterocyclic allene 190.  An unusual 1,2-carbon shift then generates the furylcarbene 

intermediate 191 with concomitant release of ring strain and formation of the aromatic 

furan ring.  This carbene can undergo a variety of reactions depending on the substrate, 

the most common of which is the facile insertion into an adjacent C-H bond to afford the 

dihydroisobenzofuran 192.   
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Scheme 38 

1.1 equiv γ-terpinene
toluene, 180 °C, 48 h

80%

• •

O

CH3

CH3

O
O

CH3

O

CH3

H3C O

O

CH3

H3C
O

H3C
O

189 190

191192  

 

 Dr. Wills’ initial exploration of this new reaction focused mainly on simple 

substrates such as 187.  The conditions for effecting the cycloaddition reaction involve 

heating a degassed 0.1 M solution of the substrate in toluene in the presence of 1.1 equiv 

of γ-terpinene, a cyclohexadiene derivative.   The choice of solvent and the concentration 

of the reaction solution were selected based on previous work performed on the related 

enyne cycloaddition (vide supra).  Since the use of these conditions provided the furan 

products in good yields, Dr. Wills did not examine the use of different solvents or other 

reaction concentrations.   

The use of γ-terpinene exerts a strong effect on the efficiency of the desired 

transformation.  In reactions conducted without this additive or with a substoichiometric 

amount, yields of the furan product fell by 10-15%.  We believe that γ-terpinene acts as a 
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radical inhibitor and prevents polymerization of the oxaenyne substrates at the elevated 

reaction temperatures.  Dr. Wills explored the use of phenolic additives that could 

function as radical inhibitors, but found that these were not as effective.  This result is 

interesting since phenolic additives improve the yields of enyne cycloadditions.  In the 

cycloadditions of conjugated enynes, phenolic additives may improve the efficiency of 

the reaction by facilitating the isomerization of the cyclic allene intermediate to the 

aromatic product; however, in the cycloadditions of oxaenynes, such as isomerization 

cannot occur. 

The following three Tables summarize Dr. Wills’ experiments.  Interpretation of 

the results from these experiments will be deferred until later in this chapter in 

conjunction with the discussion of the mechanism of the reaction, and in Chapter 3 in 

relation to additional experiments aimed at extending the scope of the reaction.   

Table 1 delineates Dr. Wills’ investigation of a variety of substituted alkynes as 

the 2π component of the reaction.   
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Table 1 

O O

R R

1.1 equiv γ-terpinene

toluene
 

Entry R Substrate Cycloadduct Conditions Yield 

1 C(O)CH3 189 192 180 °C, 48 h 80% 

2 C6H5 193 194 180 °C, 48 h 70% 

3 C6H4p-OMe 195 196 180 °C, 77 h 52% 

4 C6H4p-NO2 197 198 180 °C, 48 h 81% 

5 SiMe3 199 200 220 °C, 72 h 50% 

6 C≡CEt 201 202 180 °C, 6 h 56% 

7 H  203 204 220 °C, 48 h 2-10% 

8 SPh 205 206 180 °C, 48 h 0% 

 

  

Dr. Wills also studied two substrates which deviated from the typical 3-carbon 

tether.  Table 2 summarizes the results of these experiments. 
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Table 2 

X

O
X

O

R R

1.1 equiv γ-terpinene

toluene
 

Entry R X Substrate Cycloadduct Conditions Yield

1 C(O)CH3 CH2CH2 207 208 220 °C, 72 h 20% 

2 SiMe3 TsN 209 210 111 °C, 16 h 64% 

 

 A number of experiments were conducted to probe variations in the 4π component 

of the cycloaddition, including a series of competition experiments in which a single 

substrate incorporates two different heteroenynes that can both react as 4π components in 

the cycloaddition.  Table 3 outlines the results of these investigations. 
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Table 3 

Entry Substrate Cycloadduct Conditions Yield 

1 
O

SiMe3

Ph  
 

211 

O

SiMe3

Ph  
 

212 

180 °C, 20 h 36% 

2 

O

SPh

SPh

O

 
 

213 

O

SPh

PhS
O

 
 

214 

180 °C, 45 h 0% 

3 

O

Ph

O

 
 

215 

O

Ph
O

 
 

216 

180 °C, 48 h 59% 

  
O

Ph

O
 

 
217 

180 °C, 48 h 9% 
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Entry Substrate Cycloadduct Conditions Yield 

4 

O

OMe

O

 
 

218 

O

MeO
O

 
 

219 

180 °C, 48 h 51% 

  
O

OMe

O
 

 
220 

180 °C, 48 h 0% 

5 
O

H

p-NO2C6H4  
 

221 

 

O

H

p-NO2C6H4  
 

222 

180 °C, 48 h 10% 

 

Mechanism of the Heteroenyne Cycloaddition 

In addition to her initial investigation into the scope of the reaction, Dr. Wills 

undertook a few experiments to probe the mechanism of the cycloaddition.  As shown 

earlier (Scheme 38), the proposed mechanism involves initial [4 + 2] cycloaddition to 

form a strained cyclic allene 190, followed by a 1,2-sigmatropic rearrangement to a 

3-furylcarbene 191, and subsequently a facile 1,2-C-H insertion to furnish the 

dihydroisobenzofuran system 192. 
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The [4 + 2] cycloaddition step has precedent in the related [4 + 2] cycloadditions 

of conjugated enynes.  As discussed in Chapter 1, enynes and arenynes have been the 

subject of numerous recent studies that indicate a cycloaddition process occurs under 

thermal conditions.  Theoretical studies support the existence of a cyclic allene or 

biradical intermediate in the enyne and arenyne cycloaddition reactions, and recent 

theoretical and experimental studies of heterocyclic allenes demonstrate their transient 

existence.  Reactions of enynes under flash vacuum thermolysis conditions produce 

products which support the intermediacy of a cyclic allene, as their formation likely 

results from a six-electron electrocyclic ring opening of the cyclic allene. 

Dr. Wills conducted similar investigations involving flash vacuum thermolysis 

conditions to determine whether the oxaenyne systems would provide products consistent 

with the intermediacy of cyclic allenes.  Thus, substrate 193 was heated to 600 °C in an 

FVP oven and the expected cycloadduct 194 was isolated in 39% yield along with the 

cyclopentene 224 in 28% yield (Scheme 39).  Cyclopentene 224 could be formed via a 

six-electron electrocyclic ring opening of the heterocyclic allene intermediate 223; thus 

the isolation of 224 supports the existence of cyclic allene 223 as an intermediate in the 

cycloaddition.  It is worth noting that products resulting from an electrocyclic ring-

opening of the cyclic allene intermediate are not observed in solution-phase reactions 

even at 220 °C; we believe that the electrocyclic ring-opening pathway is accessible only 

at the high temperatures typically utilized in FVP experiments. 
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Scheme 39 
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The second step in the proposed mechanism involves a 1,2-sigmatropic 

rearrangement of the strained heterocyclic allene 190 to form the 3-furylcarbene 191.  

Precedent for this rearrangement is found in the literature of certain strained π systems 

which undergo rearrangements to carbenes. 

 Examples of the rearrangement of strained bridgehead olefins to carbenes are 

shown in Scheme 40.  In all three cases, the strained olefins were generated in situ, and in 

two cases (225108 and 227109) evidence for the carbene was provided by trapping 

experiments.  In the case of olefin 229,110 the isolation of the corresponding nortricyclene 

231 provides evidence for the intermediacy of carbene 230. 

                                                           
108 Chan, T. H.; Massuda, D. J. Am. Chem. Soc. 1977, 99, 936. 
109 Eaton, P. E.; Hoffmann, K-L. J. Am. Chem. Soc. 1987, 109, 5285. 
110 Barton, T. J.; Yeh, M.-H. Tetrahedron Lett. 1987, 28, 6421.   
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Scheme 40 
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 In addition, the well-known interconversion of cycloheptatetraene 232 and 

phenylcarbene 233 is a closely related process (Scheme 41).111 

 

Scheme 41 

CH
• •

232 233  

 

 Perhaps the most relevant and closely related literature precedent for the 

generation of a furylcarbene from a strained heterocyclic allene are the 

                                                           
111 (a) Geise, C. M.; Hadad, C. M. J. Org. Chem. 2002, 67, 2532 and references therein.  (b) Gaspar, P. P.; 
Hsu, J-P.; Chari, S.; Jones, M., Jr. Tetrahedron 1985, 41, 1479 and references therein. 
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1-aza-2,3,5-cyclohexatriene112 and 1-thia-2,3,5-cyclohexatriene113 rearrangements 

discovered by Shevlin, which were previously discussed in Chapter 1 (see Scheme 10). 

 Dr. Wills attempted to trap the carbene intermediate in the heteroenyne 

cycloaddition by using DMSO as the reaction solvent (Scheme 42).  In the event, 

thermolysis of 189 produced none of the product (234) expected from intermolecular 

trapping of the carbene 191, likely due to the facility of the intramolecular 1,2-C-H 

insertion pathway available for this carbene.   

 

Scheme 42 
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An alternative plan was developed to provide evidence to support the intemediacy 

of a carbene in the cycloaddition.  The cycloaddition of the custom-designed substrate 

235 was expected to provide carbene 237 upon cycloaddition and rearrangement.  

Because the carbene 237 cannot undergo 1,2-C-H insertion, a characteristic 

fragmentation was expected to transpire which would generate the tetrasubstituted furan 

238 (Scheme 43).  In the event, heating 235 at 150 °C for 16 hours provided furan 238 in 

                                                           
112 Emanuel, C. J.; Shevlin, P. B. J. Am. Chem. Soc. 1994, 116, 5991.   
113 Pan, W.; Balci, M.; Shevlin, P. B. J. Am. Chem. Soc. 1997, 119, 5035.   
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35% yield.  The isolation of this fragmentation product lends support to the proposed 

carbene intermediate in the reaction. 

 

Scheme 43 
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 The final step in the proposed mechanism, the 1,2-C-H insertion, finds precedent 

in the literature of numerous carbene C-H insertion reactions.114  Specifically, 

2-furylcarbenes have been found to undergo C-H insertion reactions as well as 

fragmentations and cyclopropanations.115,116  Examples of 3-furylcarbenes in the 

                                                           
114 (a) For a review of the rearrangements of carbenes and nitrenes, see:  Jones, W. M. Jr. In 
Rearrangements in Ground and Excited States; DeMayo, P., Ed.; Academic Press:  New York, 1980; Vol. 
1, pp 95-160.  (b) For a recent review of stable carbenes, see:  Bourissou, D.; Guerret, O.; Gabbaï, F. P.; 
Bertrand, G. Chem. Rev. 2000, 100, 39. 
115 (a) Roser, C.; Albers, R.; Sander, W. Eur. J. Org. Chem. 2001, 269.  (b) Khasanova, T.; Sheridan, R. S. 
J. Am. Chem. Soc. 2000, 122, 8585.  (c) Khasanova, T.; Sheridan, R. S. J. Am. Chem. Soc. 1998, 120, 233.  
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literature are scarce; all instances of 3-furylcarbenes as reactive intermediates are those in 

which no C-H insertion pathways are available.117  We believe that, due to the availability 

of a 1,2-C-H insertion pathway, the carbene intermediates generated in the heteroenyne 

cycloaddition undergo rapid 1,2-C-H insertions to generate the observed 

dihydroisobenzofuran products. 

 

Goals for Further Studies 

 The initial studies by Dr. Wills established the utility of the heteroenyne 

cycloaddition for the preparation of a range of dihydroisobenzofurans.  At the conclusion 

of her studies, a number of questions concerning the scope, mechanism, and synthetic 

utility of the reaction remained unanswered.  The focus of my work, which will be 

discussed in Chapter 3, has been the design and execution of additional experiments with 

the aim of addressing the following specific concerns. 

• Dr. Wills investigated substrates in which the all-carbon tethers contain no 

substitutents.  We believed that a suitably substituted tether could enhance the 

reactivity of the substrate due to steric or conformational effects.  Thus the 

construction of a substrate having a substituted carbon backbone was a top 

priority. 

                                                           
(d) Kirmse, W.; Lelgemann, R.; Friedrich, K. Chem. Ber. 1991, 124, 1853.  (e) Albers, R.; Sander, W. 
Liebigs Ann. 1997, 897.  (f) Sander, W.; Albers, R.; Komnick, P.; Wandel, H. Liebigs Ann. 1997, 901.  (g) 
Hoffman, R. V.; Schecter, H. J. Am. Chem. Soc. 1978, 100, 7934.  (h) Hoffman, R. V.; Schecter, H. J. Am. 
Chem. Soc. 1971, 93, 5940. 
116 For a recent example of a novel rearrangement of 2-pyrrolocarbenes, see:  Frey, L. F.; Tillyer, R. D.; 
Ouellet, S. G.; Reamer, R. A.; Grabowski, E. J. J.; Reider, P. J. J. Am. Chem. Soc. 2000, 122, 1215.  
117 (a) Khasanova, T.; Sheridan, R. S. Org. Lett. 1999, 1, 1091.  (b) Ref. 115d.  (c) Hoffmann, R. V.; 
Oprhanides, G. G.; Schecter, H J. Am. Chem. Soc. 1978, 100, 7927.  
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• Dr. Wills explored only a single substrate that incorporates a heteroatom in the 

tether.  The enhanced reactivity of this substrate, as well as similar results with 

enyne substrates incorporating a heteroatom in the tether, stimulated us to explore 

additional substrates of this type. 

• Dr. Wills’ preliminary results indicated that alkynyl aldehydes do not function as 

heteroenynes in the cycloaddition.  However, aldehydes should function as 

activating groups on the “heteroenynophile,” the 2π component of the 

cycloaddition.  We planned to explore such cycloadditions to determine if 

aldehydes can indeed activate the heteroenynophile. 

• Although Dr. Wills’ single attempt to use an alkynyl aldehyde as a heteroenyne 

failed, we sought to reinvestigate the use of alkynyl aldehydes as heteroenynes.  If 

indeed they could be made to function as 4π components in the cycloaddition, one 

could then access 2-unsubstituted furans directly via the heteroenyne 

cycloaddition.  This would be a valuable extension of the methodology.   

• Dr. Wills’ single attempt to intercept the carbene intermediate in the reaction 

afforded the expected fragmentation product in low yield.  We believed that 

another example of the interception of the carbene intermediate would offer 

additional evidence in support of our proposed mechanism. In addition, we have 

been interested in intercepting the carbenes intramolecularly with reactive 

functional groups to generate new functionality and additional ring systems. 

• Dr. Wills noted that in a substrate incorporating a four-atom tether, the yield of 

the reaction dropped dramatically, and a successful reaction required a higher 

temperature.  This result is consistent with the increased entropy associated with a 
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longer tether.  We planned to examine an additional substrate with a four-atom 

tether to gain additional data on the entropic effects of tether length. 

 

The next chapter will detail my studies of the cycloaddition of several additional 

1-oxaenynes, which provide additional insight on the mechanism of the transformation 

and demonstrate the utility of the dihydroisobenzofuran products obtained from the 

reaction.   
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Chapter 3 

Scope, Mechanism, and Synthetic Utility of [4 + 2] 
Cycloadditions of Conjugated Ynones and Related Species 

 

 As mentioned previously, the study of the cycloaddition of several selected 

oxaenyne substrates was the focus of my work on this project.  We sought to investigate 

several unexplored facets of the reaction to advance our understanding of the scope and 

mechanism of the heteroenyne cycloaddition.  In addition, we planned to demonstrate the 

synthetic utility of this version of the heteroenyne cycloaddition by exploiting the 

dihydroisobenzofuran products as synthetic intermediates in the construction of complex 

carbocyclic compounds.  

 In this chapter, the three main strategies we employed for the construction of the 

oxaenyne functionality will be described.  Next, each new cycloaddition study will be 

described in detail, including the rationale for the selection of the substrate, the 

particulars of the synthesis of the requisite oxaenyne, the outcome of the cycloaddition, 

and the interpretation of the results in comparison to other heteroenyne cycloaddition 

reactions.  In the final section, two sequences demonstrating further transformations of 

dihydroisobenzofuran products will be reported. 
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Strategies for the Synthesis of α,β-Alkynyl Carbonyl Compounds 

We have employed three general strategies for the synthesis of oxaenyne 

cycloaddition substrates.118  Two of these strategies were utilized by Dr. Wills for the 

synthesis of cycloaddition substrates involved in her studies.  These approaches will be 

illustrated here with examples from her work.  The third strategy was not employed by 

Dr. Wills but represents a very useful approach to heteroenyne cycloaddition substrates. 

 

(a) Synthesis of Oxaenynes by Acylation of Acetylenes  

One common and simple approach to α,β-alkynyl carbonyl compounds involves 

the direct installation of the carbonyl group onto a terminal acetylene.  Using this 

approach, Dr. Wills generated a series of alkynyl methyl ketones via acylation of the 

lithium salt of an acetylene with acetic anhydride (Scheme 44).   

 

Scheme 44 
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Although this approach is straightforward and expeditious, it suffers from a few 

shortcomings.  The modest yield typically observed in these reactions stems from 

                                                           
118 For general procedures for a wide range of reactions involving alkynes, see:  (a) Brandsma, L.; 
Verkruijsse, H. D. Synthesis of Acetylenes, Allenes and Cumulenes; Elsevier:  Amsterdam, 1981.  (b) 
Brandsma, L. Preparative Acetylenic Chemistry, 2nd ed.; Elsevier:  Amsterdam, 1988. 
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incomplete acylation of the alkynes, which is due to proton transfer to the lithium 

acetylide from the enolizable ketone product.  In addition, the potential exists for attack 

on the ketone product by the lithium acetylide, generating a tertiary alcohol byproduct.  

To minimize these side reactions, an inverse addition technique is used in which the 

lithium acetylide derivative is added to an excess of acetic anhydride. 

In addition to acylation of lithium acetylides with acetic anhydride, there are a 

number of other methods for direct acylation of acetylenes.119  One of the most popular 

and widely used approaches is the addition of lithium or magnesium acetylides to 

Weinreb amides.120  Other common procedures include coupling of alkynylzinc reagents 

with acyl chlorides, pioneered by Negishi,121 and addition of alkynylsilanes to acid 

chorides under Lewis acid catalysis.122  Procedures involving boron trifluoride etherate123 

have been investigated, and recently microwave-assisted couplings of alkynes and aroyl 

chlorides catalyzed by copper (I) species have been reported.124   

 The direct acylation of lithium acetylides was successfully employed for the 

synthesis of one of the oxaenynes described later in this chapter.  However, another 

limitation of this approach is the requirement that substrates possess no functionality 

reactive toward strong bases or nucleophiles.  For this reason, we were forced to use 

alternate methods for the synthesis of other substrates.  

 

                                                           
119 For a recent review on the synthesis of ketones from acyl chlorides, see:  Dieter, K. R. Tetrahedron 
1999, 55, 4177.  
120 Nahm, S.; Weinreb, S. M. Tetrahedron Lett. 1981, 22, 3815.  
121 Negishi, E.; Bagheri, V.; Chatterjee, S. Fen-Tair, L.; Miller, J.; Stoll, A. T. Tetrahedron Lett. 1983, 24, 
5181.  
122 Birkofer, L.; Ritter, A.; Uhlenbrauck, H. Chem. Ber. 1963, 96, 3280.  (b) Stang, P. J.; Ladika, M. 
Synthesis 1981, 29. 
123 Brown, H. C.; Racherla, U. S.; Singh, S. M. Tetrahedron Lett. 1984, 25, 2411.  
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(b) Synthesis of Oxaenynes by Oxidation of Propargylic Alcohols 

A second common approach to α,β-alkynyl ketones and aldehydes involves the 

oxidation of the corresponding propargylic alcohols.  A number of general methods for 

the oxidation of propargylic alcohols are known.125  Dr. Wills chose to employ 

exclusively the Dess-Martin periodinane126 as an effective oxidizing agent for both 

secondary and primary propargylic alcohols.  This very mild reagent was the oxidant of 

choice because it could be deployed in the presence of a variety of functional groups. 

Propargylic alcohols are attractive as ketone precursors in the synthesis of 

oxaenynes for several reasons.  Following installation and protection of the alcohol, a 

number of functional groups can be incorporated into the substrate utilizing a wide 

variety of reaction conditions.  In many cases, these reactions would not be possible in 

the presence of the ketone itself. 

The deprotection and oxidation steps that reveal the oxaenyne are frequently 

carried out under mild conditions, and therefore are often compatible with sensitive 

functionality elsewhere in the molecule.  In many cases, the installation of the ketone via 

direct acylation would not be possible in the presence of this sensitive functionality. 

 A sequence demonstrating this approach is shown in Scheme 45.  The alkyne 241 

incorporating a protected alcohol can be converted to the alkynyl ester 242 in good yield.  

After installation of the ester, the free alcohol 243 is revealed and oxidized to afford the 

alkynyl ketone 218. 

                                                           
124 Wang, J.; Wei, B.; Hu, Y.; Liu, Z.; Fu, Y. Synth. Commun. 2001, 31, 3527. 
125 Ebenezer, W. J.; Wight, P. In Comprehensive Organic Functional Group Transformations; Pattenden, 
G., Ed.; Pergamon:  New York, 1995; Vol. 3; p 78, 275. 
126 (a) Dess, D. B.; Martin, J. C. J. Org. Chem. 1984, 48, 4156.  (b) Dess, D. B.; Martin, J. C. J. Am. Chem. 
Soc. 1991, 113, 7277.  (c) Ireland, R. E.; Liu, L. J. Org. Chem. 1993, 58, 2899.  (d) Boeckman, R. K. Jr.; 
Shao, P.; Mullins; J. J. Org. Synth. 1999, 77, 141. 
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Scheme 45 

OSit-BuMe2
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OSit-BuMe2
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O
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CO2Me

CO2Me

1.3 equiv n-BuLi
3.0 equiv ClCO2Me
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79-83%

5.0 equiv 48% aq HF
MeOH, rt, 2 h

70%

OH

243

CO2Me

1.2 equiv
Dess-Martin

CH2Cl2, rt, 1 h

70%  

  

In addition, certain transformations can be carried out in the presence of the free 

alcohol.  As shown in Scheme 46, the phenyl sulfide moiety is installed in the presence of 

the deprotonated alcohol to give 245 in moderate yield.  Subsequent oxidation of the 

alcohol with the Dess-Martin reagent gives the alkynyl ketone 205. 

 

Scheme 46 

OHOH

244 245

SPh

O

205

SPh

2.3 equiv n-BuLi
1.0 equiv PhSSPh

THF, -78 °C, 2 h

51%

1.2 equiv
Dess-Martin
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As demonstrated with these examples, the flexibility imparted by the utilization of 

propargylic alcohols makes this approach complementary to the direct acylation strategy 
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described above.  We have utilized propargylic alcohols as oxaenyne precursors in the 

synthesis of several substrates as described later in this chapter. 

 

(c) Synthesis of Oxaenynes by Ozonolysis of Enynes 

A third strategy for the synthesis of oxaenynes involves the chemoselective 

ozonolysis of conjugated enynes.  Derivatives of isopropenylacetylene, upon oxidative 

cleavage by ozone under typical ozonolysis conditions (including reductive workup), 

afford alkynyl ketones 247 (Scheme 47).  This transformation requires that the operator 

stop the reaction after reaction of the alkene but before oxidation of the alkyne.  Most 

alkenes are more reactive to ozone than alkynes,127 and so the reaction is essentially a 

titration with ozone.  Ozonolysis indicators allow one to visually determine the endpoint 

of the desired oxidation.127 

We utilized Sudan Red (248, Solvent Red 23) as our indicator of choice because it 

is known that its reactivity toward ozone is intermediate between 1,1-dialkylalkenes and 

disubstituted alkynes.128  Since the alkene reacts before Sudan Red, the reaction solution 

is an intense red color during ozonolysis of the alkene.  After the alkene is completely 

consumed, the Sudan Red begins to react with the ozone.  The oxidation products of the 

indicator are a pale purple color, so when the intense red color has disappeared, the 

reaction is stopped and ozone is purged from the reaction solution.  The ozonide 

intermediates are then quenched as desired. 

 

 

                                                           
127 Bailey, P. S. Ozonation in Organic Chemistry; New York:  Academic Press, 1978; Vol. 1. 
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Scheme 47 
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This very selective alkene oxidation method is employed in the synthesis of one 

substrate discussed later in this chapter. 

 

Cycloaddition of a Heteroenyne with a Substituted Tether 

 Initial work by Dr. Wills centered primarily on substrates containing all-carbon 

tethers synthesized from commercially available 1,6-heptadiyne.  These substrates 

contained no substituents on atoms of the tether that links the oxaenyne and 

oxaenynophile.  However, many of our projected applications of this methodology will 

require complex heteroenyne substrates with substituents and/or functional groups 

adorning the tether that links the reacting moieties.  Therefore, we were interested in 

examining the effect on the cycloaddition of tethers with substituents.   

                                                           
128 Veysoglu, T.; Mitsecher, L. A.; Swayze, J. K. Synthesis 1980, 807. 
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It is well known that the rate and efficiency of a variety of cyclization processes 

are significantly affected by steric and conformational effects in the tether linking the 

reactive functional groups.129  

One of the first observations of the effect of substitutents on ring formation was 

made by Beesley, Thorpe, and Ingold in 1915.130  Commonly referred to as the “Thorpe-

Ingold effect,” this effect was originally thought to be due to steric strain, and is often 

confused with the “reactive rotamer effect” (vide infra).  The Thorpe-Ingold effect is a 

steric effect imposed on bonding angles about a particular carbon atom by the steric 

repulsion of attached groups.  In acyclic chains, the C-C-C bond angle was estimated to 

be greater than a “normal” tetrahedral angle (109°28') because steric factors force the 

methylene groups, which are bigger than hydrogens, apart.  This leads to decreased 

nonbonded interactions between the two methylene groups.131  Replacing the hydrogens 

with bulkier substitutents should therefore decrease the C-C-C bond angle.  For example, 

the C-C-C bond angle for malonic acid is 110°, while in dimethylmalonic acid, the angle 

is 106.2°.  The opposite trend is seen for geminal substitutents on small rings:  the C-C-C 

bond angle for cyclopropanedicarboxylic acid is 118.4°.132   

109°28'

H3C CH3

H H

>109°28'

HO2C CO2H

H H

HO2C CO2H

Me Me

110° 106.2°

HO2C CO2H

118.4°  

                                                           
129 For a review, see:  Samnes, P. G.; Weller, D. J. Synthesis 1995, 1205. 
130 Beesley, R. M.; Ingold, C. K.; Thorpe, J. F. J. Chem. Soc. 1915, 105, 1080.     
131 Ingold, C. K. J. Chem. Soc. 1921, 305.     
132 Kirby, A. J.; Lloyd, G. J. J. Chem. Soc., Perkin Trans. 2 1976, 1753. 
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Accordingly, Thorpe-Ingold effect refers specifically to the facility of ring 

formation due to the consequence of changing bond angles by substitution, typically 

called “angle compression.” 

The “gem-dialkyl effect” refers to the acceleration of a reaction due to the 

substitution of two alkyl groups for two geminal hydrogen atoms on one of the carbon 

atoms in a chain that links two reacting centers.133,134  This effect was initially thought to 

be caused by angle compression, i.e., an extension of the Thorpe-Ingold effect.  However, 

the gem-dialkyl effect actually is due to a combination of factors; angle compression is a 

small contributor,135 but the main effect is the introduction of conformational changes 

into the system.  These conformational effects are called the “reactive rotamer effect.” 

The “reactive rotamer effect,” first proposed by Bruice and Pandit in 1960,136 is 

based on the hypothesis that reaction rate is dependent on the concentration of the 

reactive conformer (rotamer) of the molecule.  In order for cyclization to occur 

intramolecularly between atoms X and Y at the termini of a polymethylene chain, the 

atoms must be able to move toward one another as well as adopt a favorable 

stereoelectronic approach toward the transition state.  This proximity condition requires 

rotation about the bonds of the tether from the more stable (and therefore more highly 

populated) anti conformation of the chain to the higher energy gauche conformation 

(situation A).  The substitution of a carbon atom of the chain with one or two alkyl groups 

causes additional steric interactions that increase the energy of the anti conformation, 

making it comparable in energy to the gauche conformation, and thus allow the gauche 

                                                           
133 Brown, R. F.; van Gulick, N. M. J. Org. Chem. 1956, 21, 1046.  
134 Kirby, A. J. Adv. Phys. Org. Chem. 1980, 17, 183. 
135 Keese, R.; Meyer, M. Tetrahedron 1993, 49, 2055.    
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conformation to become more highly populated (situation B).  The increased population 

of the reactive (gauche) conformer facilitates the cyclization.137   

X

HH
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R Y
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HH
R

R Y
X

HH
Y

R R

X

HH
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H Y
X

HH
H

H Y
X

HH
Y

H H

A
anti

A
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A
reacted

B
anti

B
gauche

B
reacted  

These conformational interactions cause the ground state energy of the molecule 

to be raised, and therefore the activation energy for the reaction becomes lower.  This is 

often called the “facilitated transition state hypothesis.”138  

The Thorpe-Ingold effect, gem-dialkyl effect, and reactive rotamer effect all 

involve substitution of atoms in a connecting chain between two reactive centers.  “Steric 

buttressing” is a related strategy for the steric promotion of cyclizations and 

intramolecular cycloadditions.  This involves designed attempts at restricting the 

available conformational space that reacting groups can occupy in order to force them to 

be closer in space.  The inclusion of apparently innocuous groups, typically methyl 

groups, into a molecule limits the freedom of the rest of the molecule to occupy that 

                                                           
136 Bruice, T. C.; Pandit, U. K. J. Am. Chem. Soc. 1960, 82, 5858.     
137 (a) Jung, M. E.; Marquez, R. Tetrahedron Lett. 1997, 38, 6521.  (b) Jung, M. E.; Gervay, J. J. Am. 
Chem. Soc. 1991, 113, 224.  (c) Sternbach, D. D.; Rossana, D. M.; Onan, K. D. Tetrahedron Lett. 1985, 26, 
591. 
138 Parrill, A. L.; Dolata, J. P. Tetrahedron Lett. 1994, 35, 7319.   



 87

space, and in some cases forces reacting partners to remain closer together.139  Steric 

buttressing is also the term given to the effect observed when functionality added to a 

substrate distorts the ground state of the molecule to become more like the transition 

state, thereby increasing the ground state energy and consequently lowering the activation 

energy for reaction.140,141 

We expected that a substrate such as 249 (Scheme 48) with substituents on the 

tether would exhibit enhanced reactivity in the cycloaddition compared to the 

corresponding substrate 189 lacking such substitution.  

 

Scheme 48 
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139 Klein, L. L. J. Org. Chem. 1985, 50, 1770.  
140 Gisby, G. P.; Royall, S. E.; Sammes, P. G. J. Chem. Soc., Perkin Trans. 1 1982, 169. 
141 Grigg, R.; Heaney, F.; Makandra, J.; Surendrakumar, S.; Thornton-Pett, M.; Warnock, W. J. 
Tetrahedron 1991, 47, 4007.    



 88

Our retrosynthetic analysis of diketone 249 suggested the use of diethyl malonate 

as an inexpensive and readily available starting material.  We planned a double alkylation 

of diethyl malonate with a propargyl derivative containing a synthetic precursor to the 

necessary ketone functionality. 

 We chose the known propargylic chloride derivative 253142 as the alkylating agent 

incorporating the masked methyl ketone.  The synthesis of 253 (Scheme 49) began with 

lithiation of propargyl chloride with n-butyllithium at -90 °C.143  Low temperature is 

required because 3-lithiopropargyl chloride undergoes elimination to form 

allenylidenecarbene at higher temperatures.  Addition of acetaldehyde affords the 

propargylic alcohol 252, which we found to decompose when subjected to prolonged 

storage at 4 °C.  Therefore, immediate silylation with tert-butyldimethylsilyl chloride was 

effected,144 providing the requisite protected alcohol 253 to be used for the alkylation of 

diethyl malonate.   

 

Scheme 49 

Cl
Cl

OH

Cl

OSit-BuMe2

0.95 equiv n-BuLi,
1.5 equiv CH3CHO

Et2O, -90 °C, 3 h

79%

1.0 equiv
t-BuMe2SiCl

2.0 equiv imidazole
0.01 equiv DMAP

CH2Cl2, rt

91%251 252 253  

 

                                                           
142 Chen, C.-C.; Fan, J.-S.; Shieh, S.-J.; Lee, G.-H.; Peng, S.-M.; Wang, S.-L.; Liu, R.-S.  J. Am. Chem. Soc. 
1996, 118, 9279. 
143 Brandsma, L.; Verkruijsse, H. D. Synthesis of Acetylenes, Allenes and Cumulenes; Elsevier:  
Amsterdam, 1981; p 65. 
144 For a range of conditions used for the protection of alcohols as silyl ethers, see:  Greene, T. W.; Wutz, P. 
G. M. Protecting Groups in Organic Synthesis, 3rd ed.; John Wiley & Sons:  New York: 1999; pp 113-148. 
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 The key alkylation reaction145 (Scheme 50) was carried out in tetrahydrofuran 

with sodium hydride and a catalytic amount of sodium iodide.  Although the unoptimized 

yield for this step was only 40%, the reaction was done on sufficient scale to provide 

ample material for the rest of the sequence.  It was later determined that like alcohol 252, 

the silyl ether 253 is also not stable to storage for prolonged periods.  This leads us to 

believe that decomposition of 253 during the alkylation reaction is one possible cause of 

the low yield observed for that step.  In addition, a major byproduct of the reaction is the 

monoalkylation product, which, if necessary, can be recycled by further alkylation with 

additional 253. 

 

Scheme 50 

OSit-BuMe2EtO2C

EtO2C
OSit-BuMe2

EtO2C

EtO2C

3.2 equiv NaH
2.0 equiv 253
0.1 equiv NaI

THF, reflux, 24 h

40%
254 255  

  

Subsequent cleavage of the silyl ethers of 255 with tetra-n-butylammonium 

fluoride in THF at 0 °C proceeded in 87% yield to provide diol 256.146  Oxidation of the 

alcohols in 256 with the Dess-Martin periodinane then gave the desired bis-alkynone 249 

in 88% yield (Scheme 51). 

 

                                                           
145 For a similar alkylation of diethyl malonate with a propargylic halide, see:  Llerena, D.; Aubert, C.; 
Malacria, M. Tetrahedron Lett. 1996, 37, 7027.   
146 For a range of conditions used for the cleavage of silyl ethers, see:  Greene, T. W.; Wutz, P. G. M. 
Protecting Groups in Organic Synthesis, 3rd ed.; John Wiley & Sons:  New York: 1999; pp 113-148. 
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Scheme 51 

OHEtO2C

EtO2C
OH

OEtO2C

EtO2C
O

256 249

2.2 equiv
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255

 

 We initially thought that the cycloaddition of 249 might proceed in refluxing 

toluene.  However, under these conditions, no cycloadduct was observed, and 249 was 

recovered unchanged.  This was disappointing because Dr. Wills observed cycloadditions 

of ynones at temperatures as low as 120 °C with substrates incorporating a heteroatom in 

the tether (See Table 2, Entry 2 in the previous chapter).  Apparently, the steric or 

conformational effects exerted by the gem-disubstituted carbon in the tether were not as 

great as those exerted by the substituted nitrogen.  However, we were pleased to find that 

that the cycloaddition of 249 proceeds quite well at 180 °C in 24 h under our typical 

conditions to afford the dihydroisobenzofuran 250 in 89% yield.  The standard reaction 

conditions (including the additive γ-terpinene; see Chapter 2) employed by Dr. Wills 

were used in order to ensure valid comparison with reactions of substrates studied 

previously. 

 

Scheme 52 
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The structure for cycloadduct 250 was assigned by comparison of its spectral data 

to that of the earlier dihydrobenzofuran 192.  In particular, the IR stretch at 1670 cm-1 

corresponds to the ketone carbonyl, and is consistent with the stretch at 1660 cm-1 

associated with the ketone in compound 192.  The IR spectrum also exhibits an additional 

stretch at 1734 cm-1 corresponding to the ester carbonyls.  Signals for four quaternary 

aromatic carbons of the furan nucleus in the 13C NMR match closely those of 192.  The 

carbon resonance at 55.0 ppm corresponds to the central carbon of the malonate system.  

The molecular formula of the cycloadduct is confirmed by elemental analysis. 

Comparing this cycloaddition to that of the corresponding substrate 189 which 

lacked substitution on atoms of the tether (Scheme 48), we observe that the reaction of 

249 occurs at about twice the rate of the previous system.  Therefore, we conclude that, 

as predicted, steric and/or conformational effects cause a notable acceleration of the 

reaction. 

 

Cycloaddition of a Heteroenyne with an Aldehyde Activating the Heteroenynophile

 Although Dr. Wills did not investigate the use of alkynyl aldehydes as 2π 

components for the heteroenyne cycloaddition, she did attempt to employ an alkynyl 

aldehyde as the 4π heteroenyne component in the reaction.  As mentioned previously, 

attempts to effect this cycloaddition were not fruitful.  As shown in Scheme 53, the 

cycloaddition of alkynyl ketone 197 proceeds in good yield at 180 °C, but the alkynyl 

aldehyde 221 affords only traces of cycloadduct.   
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Scheme 53 
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198  R = Me       81%
222  R = H        2-10%

NO2 C6H4p-NO2

1.1 equiv γ-terpinene

toluene, 180 °C, 48 h

 

 

Interestingly, cycloaddition of the acylsilane 211 proceeds at 180 °C to afford the 

expected silylfuran, albeit in only 36% yield (Scheme 54).  Since the silylfuran readily 

undergoes protodesilylation upon exposure to weak acid, α,β-alkynyl acylsilanes147 can 

serve as aldehyde equivalents as 4π components in the heteroenyne cycloaddition. 

 

Scheme 54 
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It was later determined from control experiments that acylsilanes such as 211 are 

not stable to the reaction conditions; Dr. Wills recovered only 48% of a model alkynyl 

acylsilane after heating it in toluene at 180 °C for 20 h.  

In considering the reason for failure of the cycloaddition involving alkynyl 

aldehyde 221, we imagined either the alkynyl aldehyde was not stable to the high 
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temperatures employed in the reaction and thus decomposed prior to cycloaddition, or 

was simply relatively unreactive as a heteroenyne.  To shed some light on this question, 

we investigated a substrate (257) which incorporates an alkynyl ketone and an alkynyl 

aldehyde (Scheme 55).  The outcome of this cycloaddition would provide valuable 

information with respect to the relative reactivity of alkynyl aldehydes and ketones as 4π 

and 2π components in the heteroenyne cycloaddition. 

 

Scheme 55 
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Dr. Wills had previously demonstrated that incorporation of a nitrogen atom 

substituted as a p-toluenesulfonamide allowed the cycloaddition to proceed at a much 

lower temperature (Scheme 56) as compared to the all-carbon system.  We therefore 

decided to focus our attention on the keto aldehyde 257 with the expectation that 

cycloaddition would occur under relatively mild conditions, thus minimizing 

decomposition of the sensitive aldehyde functionality. 

 

 

 

                                                           
147 For a recent review of synthetic approaches to acylsilanes, see:  Najera, C.; Yus, M. Org. Prep. Proced. 
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Scheme 56 
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While considering synthetic strategies for keto aldehyde 257, we discovered that 

N,N-dipropargyl-p-toluenesulfonamide (261) is a known compound,148 and we realized 

that it could be used in a variety of reactions analogous to those in which Dr. Wills 

utilized 1,6-heptadiyne. 

The ready availability of the inexpensive starting materials encouraged us to 

prepare 261 on a large scale.  p-Toluenesulfonamide (260) is double-alkylated with 

propargyl chloride using potassium carbonate and a catalytic amount of sodium iodide in 

refluxing acetone to afford diyne 261 in 80% yield (Scheme 57).  In this fashion we 

synthesized multigram quantities of diyne 261 in short order.  The major byproduct in 

this reaction is the monoalkylated sulfonamide which is easily separated by column 

chromatography due to the large difference in polarity between it and the desired product.   

 

                                                           
Int. 1995, 27, 383.   
148 Oppolzer, W.; Pimm, A.; Stammen, B.; Hume, W. E. Helv. Chim. Acta 1997, 80, 623. 
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Scheme 57 
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The next step in the sequence involved the functionalization of only one of the 

alkyne units.  Such a transformation had been previously accomplished on 1,6-heptadiyne 

by Dr. Wills, and so we were confident this transformation was possible with 261.  As in 

previous cases, we expected that the difunctionalized derivative would be the major 

byproduct, though it should be easily separable from the desired product.  In the event, 

treatment of the diyne 261 with 1.0 equiv of n-BuLi followed by excess acetaldehyde 

afforded the secondary propargylic alcohol 262 in 70% yield (Scheme 58).  Without 

protecting the alcohol, we functionalized the remaining terminal alkyne in 262 by 

treatment with 2.3 equiv of n-BuLi followed by excess paraformaldehyde, which 

afforded diol 263 in a modest 31% yield.  We were not concerned about competing 

reaction at oxygen, because the acetal that would be formed should be easily hydrolyzed 

during an acidic workup.  This two-step sequence thus provided the unsymmetrical diol 

263 in an expeditious manner without the use of protecting groups. 

The remaining transformation for the synthesis of the cycloaddition substrate 257 

involved the oxidation of the diol 263.  The Dess-Martin reagent was again quite 

effective, providing the keto aldehyde 257 in 94% yield.   
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Scheme 58 
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Our prediction for the temperature requirements for the cycloaddition of 257 was 

based the successful cycloaddition at 111 ºC of a related substrate with a nitrogen atom in 

the tether (209, Scheme 56), explored by Dr. Wills. 

We expected that 257 would undergo cycloaddition at a temperature somewhat 

lower than 111 ºC since 257 contains an electron-withdrawing formyl group attached to 

the heteroenynophile triple bond.  Because a primary concern was the decomposition of 

the alkynyl aldehyde at high reaction temperatures, we elected to run the cycloaddition 

reaction at 85 ºC.  This also allowed more convenient monitoring of the reaction by thin 

layer chromatography than with sealed tube reactions, and permitted us to raise the 

temperature to 111 °C if the cycloaddition was sluggish.  We were pleased to find that 
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thermolysis of 257 for 24 hours at 85 ºC afforded an off-white solid in 68% yield 

(Scheme 59). 

The 1H NMR analysis of the crude solid obtained from the reaction revealed that, 

as predicted, the aldehyde functioned effectively as the activating group on the 

heteroenynophile to produce the expected cycloadduct 258.  However, a signal at 

7.17 ppm, characteristic of a proton attached at the 2-position of a furan, was also 

observed in the 1H NMR spectrum of the crude product.  The infrared spectrum of the 

reaction product, which displayed a ketone carbonyl stretch at 1646 cm-1 and an aldehyde 

stretch at 1673 cm-1, confirmed our suspicion that the alkynyl aldehyde did indeed react 

as a heteroenyne to give a small amount of the cycloadduct 259 (Scheme 59).  The ratio 

of the 258 to 259 was determined to be 87:13 based on integration of 1H NMR signals.   
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Cycloaddition of an Alkynyl Aldehyde as the Heteroenyne 

The demonstration of the feasibility of employing alkynyl aldehydes as 4π 

components in the heteroenyne cycloaddition was an important extension to the 

methodology.  Three naturally-occurring and biologically active furans containing a 
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2-unsubstituted, 3,4-fused furan in their skeleton are shown below.  Xestoquinone149 and 

halenaquinone,150 isolated from marine sponges, are inotropic agents and protein tyrosine 

kinase inhibitors.  Viridin151 is a steroidal antibiotic and exhibits anti-fungal activity. 

O

O

O O

O

O

O

O O

Halenaquinone (265)Xestoquinone (264)

O

O

O

Viridin (266)

OMe

HO

O

 

Our strategies targeting these natural products had initially required the use of 

acylsilanes as aldehyde equivalents in the heteroenyne cycloaddition.  The discovery that 

alkynyl aldehydes can function as oxaenynes allowed us to simplify our synthetic 

strategies targeting these natural products.  For example, the alkynyl aldehyde 267 would 

be expected to afford furan 268, containing all of the carbon atoms of the xestoquinone 

skeleton (Scheme 60). 
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149 Nakamura, H.; Kobayashi, J.; Kobayashi, M.; Ohizuma, Y.; Hirata, Y. Chem. Lett. 1985, 713. 
150 Scheuer, P. J.; Roll, D. M.; Matsumoto, G. K.; Clardy, J. J. Am. Chem. Soc. 1983, 105, 6177.  
151 For a review, see:  Hanson, J. R. Nat. Prod. Rep. 1995, 381. 
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 Having established that alkynyl aldehydes can function as 4π components in the 

heteroenyne cycloaddition, we desired to explore this chemistry further to gain additional 

insight into the reaction of these systems.  Alkynyl aldehyde 269 would be expected to 

undergo cycloaddition with one of the alkynyl aldehydes necessarily participating as a 

heteroenyne (Scheme 61).   
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The requisite cycloaddition substrate 269 was easily synthesized in two steps 

from the previously prepared dipropargylsulfonamide 261.  Reaction of diyne 261 with 

2.5 equiv of n-BuLi followed by quenching with excess paraformaldehyde afforded the 

symmetrical diol 271.  As in the synthesis of our previous aldehyde substrate, oxidation 

with the Dess-Martin reagent proceeded quite efficiently, providing 269 in 94% yield 

(Scheme 62).   
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An alternative route to diol 271 was also developed in which alkylation of 

p-toluenesulfonamide with the known143 propargylic chloride derivative 

4-chlorobut-2-yn-1-ol (ClCH2C≡CCH2OH) provided 271 in 72% yield. 

Our experience with the successful cycloaddition of 257 at 85 ºC encouraged us to 

explore a lower temperature for the cycloaddition of 269.  As before, the use of toluene as 

solvent permitted us to raise the temperature as high as 111 °C if necessary.  We were 

ecstatic to find that cycloaddition of 269 proceeded smoothly in 24 h at 70 ºC to afford a 

single product in 52% yield (Scheme 63).  A later cycloaddition of this same substrate 

was conducted at 111 ºC for 24 h and afforded the same product in 75% yield.   
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The spectral data for 270 was very similar to that of the closely-related furan 258 

(Scheme 59) which differs by a methyl group.  The characteristic carbonyl stretch in the 

infrared spectrum appears at 1681 cm-1 for 270 (1673 cm-1 for 258), and the characteristic 

singlet in the 1H NMR spectrum for the furan proton appears at 7.22 ppm for 270 

(7.17 ppm for 258).  Elemental analysis is consistent with the structure assigned to 

compound 270. 
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Heteroenyne Cycloaddition with Further Transformation of the Carbene 
Intermediate  
 

One aspect of the heteroenyne cycloaddition we wished to investigate further was 

the proposed intermediacy of a carbene in the mechanism of the reaction.  As discussed 

in Chapter 2, Dr. Wills’ attempts at intermolecular trapping of this intermediate failed, 

and her only success at demonstrating the participation of carbene species in the reaction 

involved the tandem cycloaddition-rearrangement-fragmentation process outlined in 

Scheme 64 (see also Chapter 2, Scheme 43).  We believed that another example of the 

interception of the carbene intermediate would offer further evidence in support of our 

proposed mechanism. 
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More importantly, we wanted to develop variants of the heteroenyne 

cycloaddition that would provide access to compounds with additional useful 

functionality on the new six-membered ring.  Specifically, we have been interested in 

intercepting the carbenes intramolecularly with reactive functional groups to generate 

new functionality and additional ring systems.   

We selected dithiane 272 as the next cycloaddition substrate for our investigation 

of the feasibility of intercepting the carbene intermediate prior to 1,2-C-H insertion.  In 

addition to the interesting mechanistic insights the cycloaddition of 272 might provide, it 

would also serve as an example of the exploitation of the carbene intermediate. 

According to our proposed cycloaddition mechanism, the cycloaddition and 

rearrangement of oxaenyne 272 should provide carbene 273 (Scheme 65).  It is known 

that sulfur ylides are readily formed by the reaction of nucleophilic sulfides with 

carbenes.152,153  Consequently, we expected that in 273, the neighboring sulfur atom 

should add to the carbene to form the sulfonium ylide 274.  We anticipated that this 

zwitterion would undergo β-elimination to form dithiepine 275, relieving ring strain and 

neutralizing the separation of charge. 

 

                                                           
152 Jones, W. M. Rearrangements of Carbenes and Nitrenes.  In Rearrangements in Ground and Excited 
States, de Mayo, P., Ed.; Academic Press:  New York, 1980; Vol. 1, pp 95-160. 
153 For a recent review on the reactions of heteroatoms with carbenes, see:  Padwa, A.; Hornbuckle, S. F. 
Chem. Rev. 1991, 91, 263. 
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Scheme 65 
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Precedent for our proposed intramolecular capture of the carbene (273→274) can 

be found in recent work by Kim and Cho (Scheme 66).154  The thermolysis of 

N-aziridinylimine 276 forms the 1,4-dithiepine 278, presumably via the carbene 277. 
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154 Kim, S.; Cho, C. M. Heterocycles 1994, 38, 1971. 
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As discussed earlier, substituents effects are important in facilitating cyclization 

processes.  The incorporation of a disubstituted carbon in the tether of this substrate could 

provide further insight into the steric and conformational effects of substituents on the 

cycloaddition.  The effect of positioning the thioketal on a carbon other than the central 

atom of the tether might also be revealing. 

Our retrosynthetic analysis of alkynyl ketone 272 suggested the use of the known 

alkynyldithiane 281155 as a key building block.  Oxidation of commercially available 

3-trimethylsilylpropargyl alcohol (279) provides the unstable propiolic aldehyde 280, 

which is not purified but immediately subjected to thioketalization with propanedithiol 

and catalytic p-toluenesulfonic acid (Scheme 67).  The alkynyldithiane 281 is a stable 

solid which according to the literature can be purified via column chromatography.  

However, in our hands chromatography provided a yellow oil of inferior purity.  Our 

preferred method for purification of this compound involves sublimation, which affords 

pure 281 as a yellow solid, mp 47.0-48.0 °C. 
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155 (a) Andersen, N. H.; Denniston, A. D.; McCrae, D. A. J. Org. Chem. 1982, 47, 1145.  (b) Johnson, W. 
S.; Frei, B.; Gopalan, A. S. J. Org. Chem. 1981, 46, 1512. 
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Our plan for the synthesis of the cycloaddition substrate next called for alkylation 

of dithiane 281 with the homopropargyl iodide 284.  This known compound156 was 

prepared in excellent yield by a two-step sequence beginning with butynol, involving 

installation of the phenyl ring on the alkyne and conversion of the alcohol to the iodide.  

The Sonogashira coupling of iodobenzene with 3-butyn-1-ol according to the procedure 

of Linstrumelle157 provided 283 in 99% yield.  Conversion of alcohol 283 to the iodide 

was effected with Ph3P and I2 to give 284 in 76% yield (Scheme 68).156   

 

Scheme 68 
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Lithiation of the dithiane 281 and alkylation of the lithiodithiane with the iodide 

284 was expected to produce the dithiane 285.  Because homopropargyl halides often 

undergo elimination to form enynes, we were concerned about competing elimination in 

this alkylation reaction.  Our fears were unfounded, however:  in the event, alkylation of 

281 afforded diyne 285 in 99% yield (Scheme 69). 

 

                                                           
156 Molander, G. A.; Retsch, W. H. J. Org. Chem. 1998, 63, 5507.  
157 Alami, M.; Ferri, F.; Linstrumelle, G. Tetrahedron Lett. 1993, 34, 6403.   
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Scheme 69 
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Scheme 70 outlines the remaining steps in our synthesis.   The desilylation of 285 

and subsequent acylation of 286 would give the oxaenyne 272.  The removal of the 

trimethylsilyl group was cleanly accomplished with catalytic potassium carbonate in 

methanol to afford terminal acetylene 286 in 85% yield.  The acylation of 286 with 

n-butyllithium and acetic anhydride proceeded to give ketone 272 in 36% yield.   
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With the alkynyl ketone 272 in hand, we were ready to attempt the cycloaddition.    

As in previous cases, we had little experience to suggest what temperature would be 

required for the successful cycloaddition of this heteroenyne.  Hoping that the thioketal 

would exert some steric or conformational effects on the substrate and thus lower the 

activation energy required for cycloaddition, we initially attempted the reaction at  
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111 °C.  We were pleased to find that under these conditions the cycloaddition proceeded 

in 24 h to afford a single product in 59% yield (Scheme 71).   
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The molecular formula of the product was established by elemental analysis.  

Identification of this compound as the expected 1,4-dithiepine 275 was confirmed by 

comparison of its spectral data to other dihydroisobenzofurans and dithiepines.  In 

particular, the C=C stretch at 1544 cm-1 in the infrared spectrum of 275 matches that of 

known dithiepines.158  The two alkenyl carbons and nine aromatic carbons are consistent 

with the spectral data for the phenyl-substituted dihydrosiobenzofuran motif present in 

cycloadducts synthesized by Dr. Wills (see Chapter 2, Table 1).  As determined from the 

DEPT spectrum, the presence of one methyl and five methylene carbons, as well as the 

three resonances resulting from the methine carbons of the phenyl ring, supports the 

structure of tricyclic compound 275.   

 

 

 

                                                           
158 Afonso, C. A. M.; Barros, M T.; Maycock, C. D. Tetrahedron 1999, 55, 801.  
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Cycloaddition of a Heteroenyne with a Tether Containing an Aromatic Ring  

 As mentioned previously, one of the limitations of the heteroenyne cycloaddition 

we hoped to address in the current study was the low yields observed with substrates 

incorporating tethers consisting of four carbon atoms.  As shown in Scheme 72, the 

cycloaddition of 189 proceeds at 180 °C and affords 192 in 80% yield, but the 

cycloaddition of 207 requires 220 °C and affords the cycloadduct 208 in only 20% yield.   

 

Scheme 72 

O O
1.1 equiv γ−terpinene
toluene, 180 °C, 48 h

80%
O

O

O
1.1 equiv γ−terpinene
toluene, 220 °C, 72 h

20%
O

189 192

207 208

O

O

 

 

We decided to next focus our attention on the diketone 286, which we expected 

would provide the cycloadduct 287 according to our proposed mechanism.  In addition to 

demonstrating whether a benzo-fused system could be generated by our reaction, the 

cycloaddition of this substrate was predicted to occur at a lower temperature than that 

required for 207 due to the incorporation of a tether which contains two geometrically-

constrained sp2-hybridized carbons in an aromatic ring (Scheme 73).   
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Scheme 73 
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The synthesis of heteroenyne 286 was not as straightforward as we had hoped.  

Initially, we envisioned a short three-step sequence (Scheme 74) exploiting the symmetry 

of the starting material to effect two transformations in each step.  Beginning with 

α,α'-dibromo-o-xylene (288), we envisaged SN2 displacement of the benzylic bromide by 

trimethylsilylacetylide, to afford 289.  Subsequent removal of the trimethylsilyl groups 

would provide 290, and acylation with acetic anhydride would furnish the desired 

diketone 286.   
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A variety of conditions were explored for the conversion of 288 to 289.  Initial 

attempts with lithium acetylides failed, and led to recovered starting material.  Likewise, 

the use of acetylenic Grignard reagents also failed to provide the desired compounds.  
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Finally, use of a copper acetylide,159 prepared from the corresponding Grignard and 

CuBr•SMe2, gave the desired diyne 289 in 88% isolated yield with no chromatography 

necessary (Scheme 75).  Although diyne 290 is a known compound,160 previous reports 

of its synthesis did not involve desilylation of 289.  Numerous attempts to desilylate 289 

proved fruitless.   
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One can imagine a few reasons for the failure of this desilylation.  Diyne 289 is a 

“skipped arenyne,”161 a class of acetylenes prone to undergo isomerization to allenes.  

This “prototropic propargylic rearrangement” is typically a base-catalyzed process in 

which a propargylic proton is transferred from the propargylic carbon to the distal alkyne 

carbon.162  Typical conditions to effect the rearrangement involve the use of bases such as 

alkali metal amides, alkylmetals, potassium tert-butoxide, or sodium dimsyl.  In some 

cases, acids have also been found to catalyze the rearrangement.  Typical conditions for 

the reaction involve aliphatic or alcoholic solvents and temperatures from 25 to 200 °C.  

                                                           
159 Rossi, R.; Carpita, A.; Lippolis, V.; Benetti, M. Gazz. Chim. Ital. 1990, 120, 783. 
160 (a) Müller, P.; Rodriguez, D. Helv. Chim. Acta 1983, 66, 2540.  (b) Bowes, C. M.; Montecalvo, D. F.; 
Sondheimer, F. Tetrahedron Lett. 1973, 34, 3181.  
161 For recent investigations of skipped enynes, see:  Gleiter, R.; Merger, R. Nuber, B. J. Am. Chem. Soc. 
1992, 114, 8921 and references cited therein.  
162 Wotiz, J. H. Propargylic Rearrangements.  In Chemistry of Acetylenes. Viehe, H. G., Ed.; Marcel 
Dekker:  New York, 1969; pp 365-424. 
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Certain substrates, especially skipped enynes and dienes, undergo particularly facile 

rearrangements under mild conditions such as contact with basic alumina or 

triethylamine. 

Examples of this type of propargylic rearrangement taking place under purely 

thermal conditions are relatively rare in the literature.163  The thermal rearrangement is 

thought to be a unimolecular process.  One proposal involves a 1,3-H shift, but a more 

likely scenario is a two-step process involving the intermediacy of a cyclopropene.  It has 

been observed that cyclopropenes can rearrange at temperatures of 220 °C to afford 

propyne and a small amount of allene. 

The product resulting from propargylic rearrangement of diyne 290 is 

o-bis(allenyl)benzene, which has been reported in the literature as an unstable oil.160b  It 

is quite likely that if isomerization occurred to form the bis-allene, facile side reactions 

could destroy the compound. 

Attempts at desilylation using basic reagents such as tetra-n-butylammonium 

fluoride, potassium carbonate in methanol, and potassium fluoride all failed, although no 

isomerization products could be isolated due to decomposition of the substrate.  In an 

attempt to avoid basic reagents, we investigated the use of HF, but reactions of 289 with 

this reagent also failed to provide 290.  Desilylation methods involving silver nitrate and 

potassium cyanide also decomposed the material.  In addition to the literature reports, we 

later obtained experimental evidence to indicate that compounds similar to 290 are not 

very stable.  We believe conditions that effect desilylation of silylalkyne 289 probably 

cause decomposition of diyne 290. 
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Consideration of different approaches led us to design a sequence in which a four-

carbon alkynone precursor would be installed in one reaction, thus avoiding the need for 

preparation and isolation of the unstable diyne 290.  The known TBDMS ether derivative 

of 1-butyn-3-ol (291) was prepared in 83% yield according to the literature procedure.164  

Reaction of dibromide 288 with the Grignard reagent derived from 291 under our 

optimized conditions afforded diyne 292 in 73% yield (Scheme 76).  We also noted that 

some decomposition of 292 occurred upon storage at 4 °C.   
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Although this route was promising, we decided to focus on an even shorter route 

to 286 involving isopropenylacetylene as the alkynone precursor.  The Grignard reagent 

derived from isopropenylacetylene was smoothly alkylated with 288 to provide the bis-

enyne 293 in 59% yield (Scheme 77).  As observed with the related compound 292, 

storage of 293 results in slow decomposition.  Ozonolysis128 with Sudan Red indicator as 

described earlier provided the diketone 286 in 67% yield. 

 

                                                           
163 Huntsman, W. D. Rearrangements Involving Allenes.  In The Chemistry of Ketenes, Allenes, and 
Related Compounds. Patai, S., Ed.; John Wiley and Sons:  New York, 1980; pp 521-667. 
164 Cotterill, A. S.; Gill, M.; Gimenez, A.; Milanovic, N. M. J. Chem. Soc., Perkin Trans. 1 1994, 3269. 
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Cycloaddition of this heteroenyne was first attempted in refluxing toluene but the 

reaction proceeded very slowly.  At 150 °C, the substrate was fully consumed in 48 h, 

and provided a mixture of two products (Scheme 78).  The expected tricyclic furan 287 

was isolated in only 20% yield, while the major product, isolated in 60% yield, was 

identified as the benzoisochromene 294. 
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 The structure of the furan 287 isolated from the reaction was confirmed by 

comparison of its NMR and IR spectra to those of furans generated from other oxaenyne 

cycloadditions.  In particular, the two alkene carbons and the methylene carbon provided 

diagnostic signals in the 13C NMR spectrum, and the coupled vinyl protons appeared 

where expected in the 1H NMR spectrum at 6.77 and 6.60 ppm. 

The structure determination for compound 294 was much more complicated.  The 

infrared spectrum of compound 294 displays a carbonyl stretch at 1726 cm-1, indicative 

of a non-conjugated ketone.  The 1H NMR spectrum of 294 includes four singlets, each 

integrating as one proton, corresponding to the three uncoupled vinylic protons and the 

single proton adjacent to the pyran oxygen atom.  Several 2-D NMR experiments were 

undertaken to help elucidate the structure of the cycloadducts.  A DEPT experiment 

showed that no methylene carbons are present, but the compound contains one 

sp3-hybridized methine carbon.  Heteronuclear multiple quantum correlation (HMQC) 

and heteronuclear multiple bond correlation (HMBC) experiments were performed, and 

the data generated by these powerful experiments allowed us to map the complete 

structure of the molecule.   

 The HMQC experiment is a heteronuclear correlation experiment which allows 

one to determine one-bond carbon-hydrogen connectivity.   
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Figure 1.  HMQC Spectrum of 294 

 

 

 The HMQC spectrum shown in Figure 1 allows us to generate the structure 

fragments depicted in Scheme 79.  In conjunction with data from the DEPT spectrum, the 

data from the HMQC spectrum allowed us to determine that a methyl group with a 

carbon resonance at 20.1 ppm contains protons with a resonance at 2.08 ppm, and a 

second methyl group with a carbon resonance at 26.1 ppm contains protons with 

resonances at 2.29 ppm.  In addition, we could determine that the carbon with a 

resonance of 83.7 ppm has an attached proton occurring at 5.65 ppm, and the carbon with 

a resonance at 101.2 ppm has an attached proton occurring at 5.76 ppm.   
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Scheme 79 
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The HMBC experiment is a more powerful heteronuclear correlation experiment 

that allows one to correlate protons with a carbon atom two bonds away (i.e., the carbon 

atom adjacent to the one to which the protons are directly attached).  It thus allows 

mapping of two-bond connectivity.   
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Figure 2.  HMBC Spectrum of 294 

 

 

Based on IR and 13C data, we were first able to assign the resonance at 205.8 ppm 

to the carbon of the carbonyl group.  From this starting point, all resonances could be 

assigned relative to this carbon.  Shown in Figure 2 is the HMBC spectrum for 294.  The 

cross-peaks A and C indicate that protons at 2.29 ppm and 5.65 ppm are attached to 

carbon atoms adjacent to the carbonyl carbon.  In conjunction with the HMQC data 

(Scheme 79), this allowed us to assign the protons at 2.29 ppm as belonging to the methyl 

ketone, and the proton at 5.65 ppm as being attached to a methine carbon.  The cross-

peak B indicates that the other methyl group in the molecule is attached to the carbon 

with a resonance at 153.8 ppm.  The DEPT spectrum indicated that no protons were 
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attached to this particular carbon.  Cross-peaks D and E both correspond to the carbon 

with a resonance at 153.8 ppm, and in conjunction with the previous data confirm the 

carbons with resonances at 153.8 and 83.7 ppm are adjacent to an ether oxygen atom 

(HMBC cross-peaks can occur even if a heteroatom links two carbon atoms).  

Assembling all of this spectral information, we were able to construct the structural 

fragment shown in Scheme 80. 
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With this basic framework in place, we were able to assign the remaining carbons 

in the molecule (all of which are sp2-hybridized) and their attached hydrogens in a similar 

manner based on the 2-D NMR spectra and coupling patterns observed in the 1H NMR 

spectrum. 

 The formation of the anomalous byproduct 294 was quite intriguing.  We 

envisaged a number of possible mechanisms by which this product might be formed.  As 
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depicted in Scheme 81, direct [4 + 2] cycloaddition of 286 was expected to give the 

cyclic allene 295.  The isolation of the “normal” tandem cycloaddition-rearrangement 

product 287, presumably formed from 295 via our proposed mechanism (see Chapter 2), 

suggests that this cyclic allene is indeed generated in the thermolysis of substrate 286.  
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In order for the cyclic allene 295 to be an intermediate in the formation of 

benzoisochromene 294, a series of hydrogen atom or proton transfers, including one 

which results in deconjugation of the enone, are required.  The isomerization of this 

cyclic allene to the aromatic benzoisochromene product could involve a hydrogen atom 

or proton transfer process similar to that which occurs in the enyne cycloaddition (vide 

supra).   

Scheme 82 depicts the conversion of cyclic allene 295 to enol 296 via a 

[1,5]-sigmatropic rearrangement.  The resultant cyclic allene could undergo further 

isomerizations (vide infra) to ultimately furnish the benzoisochromene 294.  However, 

we believe this mechanism for the formation of 294 is not likely since the [1,5]-shift does 

not relieve the significant strain associated with the cyclic allene. 
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Scheme 83 illustrates two isomerization pathways involving hydrogen atom 

transfers available to the biradical 297 which might be generated from cyclic allene 295.  

Because the vinylic radical is the higher energy radical, both pathways involve initial 

hydrogen atom abstraction of Hc from the terpinene additive, the solvent, or from other 

intermediates by this radical, to then afford intermediate 298.  Pathway a, involving 

initial loss of Ha, would lead to 299, a product not observed in the reaction.  

Alternatively, intramolecular hydrogen atom transfer of Hb onto the ketone oxygen would 

afford enol 300 as shown in pathway b.  Subsequent hydrogen atom abstraction of Ha and 

tautomerization would then provide the observed benzoisochromene 294.  We believe 

that this intramolecular hydrogen atom transfer mechanism is most likely operating in the 

reaction. 
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 As discussed in Chapter 1, calculations suggest that heterocyclic allenes are close 

in energy to the corresponding zwitterionic species, which are much lower in energy than 

the corresponding biradicals.  Scheme 84 shows two isomerization pathways available to 

zwitterion 301 corresponding to cyclic allene 295.  The first step in this case involves 

protonation of the vinylic anion of 301 to provide the pyrylium cation 302.  

Deprotonation at the more acidic site (Hb) then affords the carbonyl ylide 303, and 

subsequent elimination of Ha leads to enolate 304, protonation of which affords the 

observed product 294.   
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Other possible pathways for formation of 294 involve not an initial cycloaddition 

to a cyclic allene, but rather the isomerization of one or both benzylic alkynes to allenes 

via prototropic propargylic rearrangement (vide supra).  Isomerization of both alkynes in 

286 would generate the bis-allenone 305.  As shown in Scheme 85, [4 + 2] cycloaddition 

of 305 could provide benzoisochromene 294 directly.  Alternately, two sequential six-

electron electrocyclizations could form the same product via orthoquinodimethane 306. 
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•
O

•
O

305
294

O

O

[4 + 2] cycloaddition

•
O

•
O

305 306

O

O

6 e- electrocyclization

6 e- electrocyclization

 

 

Alternatively, isomerization of only one of the benzylic alkynes in 286 would 

generate the mono-allene 307 shown in Scheme 86.  Two possible [4 + 2] cycloaddition 

pathways are available to this intermediate, leading to 308 or 299.  Cyclic allene 308 

resembles the cyclic allene 295 above, differing only by the position of a double bond, 

and could further react by hydrogen atom transfer or protonation pathways similar to 

those described above to generate the observed benzoisochromene 294.  Pyran 299 is not 

observed in the reaction. 
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Scheme 86 
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To investigate the prototropic propargylic rearrangement of benzylic alkyne 286 

(Scheme 87), we treated 286 with potassium tert-butoxide in DMSO, conditions which 

are known to convert alkynes such as 286 to allenes.165  Surprisingly, this very fast 

reaction afforded pyran 299, a product different from 294, the benzoisochromene isolated 

from the thermal reaction of 286!  As shown in Scheme 87, 299 likely arises from a 

hetero Diels-Alder cycloaddition of the mono-allene 307 discussed above.  An alternative 

mechanism involves [4 + 2] cycloaddition of bis-allene 305 to form 294 followed by 

base-promoted isomerization to the observed product (299).  This alternative is ruled out 

by the finding that 294 is recovered unchanged upon exposure to potassium tert-butoxide 

under the conditions in Scheme 87. 

 

                                                           
165 For an example, see:  Van Dongen, J. P. C. M.; De Jong, A. J.; Selling, H. A.; Montijn, P. P.; Van 
Boom, J. H.; Brandsma, L. Recl. Trav. Chim. Pays-Bas 1967, 86, 1077.  
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The spectral data of the product of the reaction is consistent with the structure 

299.  Diagnostic data was obtained from the DEPT spectrum, which indicated the 

presence of an sp3-hybridized methylene carbon.  In addition, the infrared spectrum 

exhibits a stretch at 1668 cm-1 indicative of an unsaturated ketone, and the 1H NMR 

spectrum includes signals resulting from two uncoupled vinyl protons appearing as 

singlets at 6.59 and 6.45 ppm. 

We next examined the interconversion of benzoisochromene 294, the product of 

the thermal reaction, with pyran 299, the product of the base-catalyzed reaction, believing 

that this might shed light on the mechanism of formation of these products.  These 

experiments also would indicate if 299 is an intermediate in the formation of 294, or vice 

versa. 

Heating 299 under the reaction conditions used for the cycloaddition did not 

provide 294, and 299 was recovered.  Though this result provides support against the 

intermediacy of 299 in the pathway leading to 294, the experiment did not rule out the 

possibility that radical intermediates in the thermal cycloaddition could promote the 

isomerization of 299 to 294.  Therefore, we subjected 299 to hydrogen atom transfer 

conditions (tributyltin hydride and AIBN), but again 299 was recovered unchanged.  
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Scheme 88 
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Although there are many potential pathways for the formation of the observed 

product 294, we believe the most likely mechanistic pathway involves intramolecular 

hydrogen atom transfer as shown in Scheme 83, pathway b.  Considering all of the 

pathways presented above involving removal of Hb from cyclic allene 295, this is the 

only one in which the removal of Hb appears to provide a lower energy intermediate, as 

the resulting radical 300 is further stabilized by conjugation with the phenyl ring. 

We considered several experiments involving deuterium labeling of the alkynyl 

ketone 286 in an attempt to probe the mechanism further.  However, we believe that none 

of the labeling experiments we imagined would provide conclusive evidence for any one 

of these mechanisms to the exclusion of the others. 

 

Experiments Probing the Reactivity of Alkynyl Esters as Heteroenynes 

 Our next investigation involved oxaenynes in which the carbonyl of the 4π 

component was incorporated as an ester.  Dr. Wills had examined the cycloaddition of 

one compound of this type, the unsymmetrical keto ester 218 (Scheme 89; see also 

Chapter 2, Table 3).   
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Scheme 89 
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In the reaction of 218, it was predicted that the alkynyl ketone would be the more 

reactive heteroenyne, and thus no cycloadduct 220 resulting from reaction of the alkynyl 

ester as the 4π component was expected to form.  Although alkynyl esters are less 

reactive than alkynyl ketones as heteroenynes due to resonance effects of the ester 

oxygen atom, we wished to determine if an alkynyl ester could function as the 4π 

component in the cycloaddition in a situation where there was no alternative 

cycloaddition pathway. 

 The first substrate we selected for this study was the alkynyl ester 309.  

Preparation of the compound was straightforward, starting with the bis-lithiation of 

1,6-heptadiyne followed by quenching with methyl chloroformate.  However, under our 

typical cycloaddition conditions, no cycloadduct was observed, even at 220 °C (Scheme 

90), and the starting material was recovered.   
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Scheme 90 
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Our previous studies suggested that the replacement of a carbon atom of the tether 

with a substituted nitrogen atom would lower the activation energy of the reaction (vide 

supra).  We therefore investigated the cycloaddition of ester 311 that incorporates a 

sulfonamide in the tether.  The synthesis of 311 was carried out in an analogous manner 

to that of ester 309, in this case beginning with N,N-dipropargylsulfonamide 261 (see 

Scheme 57).  To our dismay, this compound did not undergo cycloaddition, even after 

thermolysis for 45 hours at 180 °C (Scheme 91), and again the ester was recovered. 
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 Due to the resonance delocalization of the electrons in the ester system, enoate 

esters are poor substrates for hetero Diels-Alder reactions, requiring harsh conditions to 

effect cycloaddition.166  Therefore is not surprising that alkynyl esters are similarly 

unsuitable as heteroenynes in the heteroenyne cycloaddition. 

 

Cycloadditions of Compounds with the Activating Group Contained in the Tether  

We next investigated the cycloaddition of compounds of type 316 that incorporate 

an electron-withdrawing activating group within the tether.  Analogous enyne substrates 

of this type had previously been shown to undergo the enyne cycloaddition (see Chapter 

1).  The synthesis of the ester 316 (Scheme 92) began with the propargyl alcohol THP 

derivative 313, prepared according to the procedure of Larock.167  Acylation with acetic 

anhydride provided the ketone 314.  Removal of the tetrahydropyranyl group with 

pyridinium p-toluenesulfonate in ethanol afforded the unstable alcohol 315, and 

immediate esterification with propiolic acid afforded heteroenyne 316 in 46% yield over 

the two steps. 

 

                                                           
166 Boger, D. L.; Weinreb, S. M. Hetero Diels-Alder Methodology in Organic Synthesis; Academic Press:  
New York, 1987; p 169. 
167 Larock, R.; Liu, C. L. J. Org. Chem. 1983, 48, 2151.  
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Scheme 92 
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The cycloaddition of heteroenyne 316 was expected to afford lactone 317.  

Unfortunately, reaction at 210 °C for 4 h led to complete decomposition of the starting 

material and provided none of the desired product (Scheme 93).  Only a small amount of 

an uncharacterizable byproduct was isolated from the black tar. 
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 Later attempts at cycloadditions of this type involved 320 which could be 

prepared in fewer steps.  As shown in Scheme 94, esterification of hexynediol 318 with 

propiolic acid, followed by oxidation, afforded the heteroenyne 320. 

 

Scheme 94 
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We expected that the addition of the methyl group on the tether might have a 

steric or conformational effect (vide supra) and lower the activation energy required for 

cycloaddition.  Unfortunately, cycloaddition of 320 was again unsuccessful (Scheme 95).  

Thermolysis of 320 for 90 h in refluxing toluene afforded none of the desired cycloadduct 

321 although all of the starting material was consumed. 

 

Scheme 95 
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One possible reason for the failure of 316 and 320 to undergo the desired 

transformation might involve the preferred s-cis conformation of the ester, a result of 



 132

opposing dipoles in the molecule.  Although one might suppose that this conformational 

effect could inhibit the reaction, cycloadditions of enynes incorporating tethers of this 

type have been successful.  Therefore, we believe that this conformational effect should 

not hinder the cycloaddition. 

A second potential reason for the failure of the cycloaddition is the requirement 

that a terminal alkyne function as a heteroenynophile.  Although terminal alkynes 

function as enynophiles in the enyne cycloaddition, it is possible that they are not suitable 

heteroenynophile partners in cycloadditions with oxaenynes.  Another possibility is that 

the desired product and/or cyclic allene intermediate is unstable due to the increased 

strain or electronic effects caused by the carbonyl functionality in the six membered ring. 

 

Synthetic Utility of the Dihydroisobenzofuran Products of the Heteroenyne 
Cycloaddition 
 

Isobenzofurans168 are important molecules and their dihydro and tetrahydro 

derivatives are common systems incorporated in a wide variety of natural products of 

biological importance.  Previous routes to 3,4-fused polycyclic furans include 

Kanematsu’s furan ring transfer strategy.169,170   

We were very interested in demonstrating the utility of our cycloaddition for the 

synthesis of complex molecules.  The reactive furan moiety incorporated in our 

cycloadducts allows them to undergo transformations to generate other functionalized 

                                                           
168 For a review of isobenzofurans and their applications in synthesis, see:  Rodrigo, R. Tetrahedron 1988, 
44, 2093. 
169 (a) Yamaguchi, Y.; Yamada, H.; Hayakawa, K.; Kanematsu, K. J. Org. Chem. 1987, 52, 2040.  (b) 
Baba, Y.; Sakamoto, T.; Kanematsu, K. Tetrahedron Lett. 1994, 35, 5677.  (c) Wu, H.-J.; Lin, S.-H.; Lin, 
C.-C. Heterocycles 1994, 38, 1507. 



 133

systems which could be useful intermediates in the total synthesis of natural products.  

Scheme 96 outlines two such transformations based on initial Diels-Alder reaction of 

tetrahydroisobenzofuran 322.  Cleavage of the either the ring junction C=C bond or a 

C-O bond then provides access to important types of polycyclic systems.  A number of 

elimination or deoxygenation methods exist for cleaving the oxygen bridge, thus creating 

aromatic or dihydroaromatic products.  The overall transformation in this case is an 

example of an aromatic annulation.  Substitution patterns on the polycyclic product could 

be tailored to suit a variety of targets by variation in the heteroenyne cycloaddition 

substrate used to make 322 and the dienophile for the furan Diels-Alder reaction.  

Alternatively, cleavage of the carbon-carbon double bond via oxidation would lead to 

cyclic ethers of the type 325. 
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170 Other approaches are discussed in a recent review on the synthesis of substituted furans.  See:  Hou, X. 
L.; Cheung, H. Y.; Hon, T. Y.; Kwan, P. L.; Lo, T. H.; Tong, S. Y.; Wong, H. N. C. Tetrahedron 1998, 54, 
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It is worth noting that the oxabicyclo[6.2.1]undecane ring system formed from the 

approach involving cleavage of the carbon bridge is the core ring system found in the 

tubulin polymerizing agents171 eleutherobin (326) and the sarcodictyins.172  The 

cycloaddition of a suitably substituted oxaenyne and subsequent transformation 

according to the carbon bridge cleavage plan outlined above could provide rapid access 

to this family of natural products as well as approaches to analogs. 

O

O

O

N

N

OMe

Eleutherobin (326)

OR

 

A demonstration of a transformation involving the cleavage of the oxygen bridge 

is shown in Scheme 97.  The tetrahydroisobenzofuran 327 is easily prepared by 

hydrogenation of 219 under standard conditions with hydrogen and palladium on carbon.  

This reaction proceeded quite efficiently to give 327 in 92% yield.  Exposure of 327 to 

benzyne generated from 328 by the method of Kitamura173 afforded the 1,4-endoxide 329 

in 89% yield.  Deoxygenation with low-valent titanium according to Wong’s protocol174 

                                                           
1955.   
171 For reviews of the tubulin polymerizing agents and their use as anticancer treatments, see:  (a) von 
Angerer, E. Curr. Opin. Drug Disc. Dev. 2000, 3, 575.  (b) Nicolaou, K. C.; Hepworth, D.; King, N. P.; 
Finlay, M. R. V. Pure Appl. Chem. 1999, 71, 989. 
172 For a review of the biological activity and total syntheses of eleutherobin and the sarcodictyins, see:  
Nicolaou, K. C.; Pfefferkorn, J.; Xu, J.; Winssinger, N.; Oshima, T.; Kim, S.; Hosokawa, S.; Vourloumis, 
D.; van Delft, F.; Li, T. Chem. Pharm. Bull. 1999, 47, 1199. 
173 Kitamura, T.; Yamane, M.; Inoue, K.; Todaka, M.; Fukatsu, N.; Meng, Z.; Fujiwara, Y. J. Am. Chem. 
Soc. 1999, 121, 11674. 
174 For a review, see:  Wong, H. N. C. Acc. Chem. Res. 1989, 22, 145. 
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afforded tetrahydroanthracene 330.  The tetrahydroanthracene product is the result of a 

two-step formal benzannulation sequence.   

 

Scheme 97 
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An approach involving the cleavage of the carbon bridge is shown in Scheme 98.  

Hydrogenation of dihydroisobenzofuran 200 affords the corresponding 

tetrahydroisobenzofuran, which is not purified but immediately subjected to the action of 

maleic anhydride in benzene for 44 h, to afford cycloadduct 331 as a mixture of 

diastereomers.  In this step, the silylfuran is protodesilylated, probably via acid formed by 

the hydrolysis of maleic anhydride by adventitious water.  Unfortunately, under 

conditions which rigorously exclude water from the reaction, the Diels-Alder 
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cycloaddition does not take place.  This indicates that the silyl moiety attached to the 

furan prevents cycloaddition, possibly because of steric hindrance.  It was found that in 

an analogous compound incorporating the diphenylmethylsilyl group in place of the 

trimethylsilyl group, the bulkier silyl group is also cleaved, but the Diels-Alder 

cycloaddition requires 96 hours for completion.  This is consistent with our hypothesis 

that the silyl group is cleaved before the cycloaddition, as the diphenylmethylsilyl group 

should be cleaved more slowly than the trimethylsilyl group. 

The oxidative cleavage of the oxabicyclo[2.2.1]heptene moiety in 331 with 

ozone175 and reductive workup with dimethyl sulfide affords anhydride 332.  For 

isolation and characterization purposes, the anhydride was transformed to the 

corresponding diester 333 by sequential treatment with methanol and diazomethane.  The 

diester 333 is produced in 37% overall yield (from 200).  The relative stereochemistry of 

the single diastereomer isolated from the reaction was assigned based on 1H NMR 

coupling constants.  The coupling constant between the bridgehead proton and the 

adjacent proton is 7.6 Hz, indicative of a trans relationship.  The two protons α to the 

esters show a coupling constant of 7.9 Hz, again indicative of a trans relationship. 

 

                                                           
175 For related approaches, see Donohoe, T. J.; Raoof, A.; Linney, A. D.; Helliwell, M. Org. Lett. 2001, 3, 
861 and references therein. 
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Scheme 98 
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 This five-step sequence demonstrates the feasibility of an approach involving 

cleavage of the carbon bridge in the Diels-Alder adducts of tetrahydroisobenzofurans for 

the synthesis of compounds containing the oxabicyclo[6.2.1]undecane ring system.  

 

Mechanism of the [4 + 2] Cycloaddition of Conjugated Oxaenynes 

Previous studies by Dr. Wills and one of the experiments presented in this chapter 

provide substantial evidence for our proposed mechanism for the transformation of the 

cyclic allene intermediate to the observed furan product. 

However, a key question that remains unanswered is the mechanism of the first 

stage of the transformation, in which the oxaenyne substrate 179 forms the six-membered 

heterocyclic allene intermediate 180.  Analogous to the enyne and arenyne cycloadditions 
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discussed in Chapter 1 (Scheme 6), there are two potential pathways for the formation of 

the heterocyclic allene intermediate 180, involving a concerted [4 + 2] cycloaddition, or a 

cyclization pathway via biradical intermediate 334.  As discussed earlier (Chapter 1), the 

current evidence favors the concerted pathway for [4 + 2] cycloadditions of conjugated 

enynes, and the stepwise mechanism for the related cycloadditions of arenynes.  At 

present, either pathway appears consistent with our results for the [4 + 2] cycloadditions 

of conjugated oxaenynes. 
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In evaluating the stepwise pathway for the enyne, arenyne, and oxaenyne 

cycloadditions, an important consideration is the stability of the intermediate biradical 

that is taking form in the transition state for the cyclization.  The bond dissociation 



 139

energy176 (relative to methane) for a benzylic hydrogen atom is 17 kcal/mol, while for an 

allylic hydrogen atom the value is 19 kcal/mol.  For a hydrogen atom α to a carbonyl, the 

value is 11 kcal/mol.  Thus we conclude that the biradical intermediate 334 is reasonable 

but not as stabilized as the biradical intermediates in the arenyne cycloaddition.  In 

contrast, experimental evidence and theoretical studies suggest such a pathway does not 

occur in the enyne cycloaddition.   

With regard to the comparison of concerted pathways for the three classes of 

cycloadditions, important considerations include the nature of the bonds broken and 

formed in the concerted process, and the relative strain associated with the resultant 

cyclic allenes.  With regard to changes in bond strengths, the oxaenyne cycloaddition 

should be less favorable by ca. 30 kcal/mol as compared to the enyne cycloaddition.  This 

is primarily due to the fact that a C=O bond is lost in the former process where a weaker 

C=C bond is sacrificed in the latter cycloaddition.  This would appear to make the 

concerted pathway less favorable for heteroenynes as compared to enynes.  However, one 

must take into account that this deficiency may be offset by the additional stabilization of 

heterocyclic allenes due to the contribution of the aromatic zwitterionic structures, which 

are not possible in the case of the carbocyclic allenes (see Chapter 1).  In addition, we 

believe the concerted pathway is higher in energy for the arenyne cycloaddition due to 

the disruption of aromaticity in the benzene ring, while this would not be the case for the 

heteroenyne cycloaddition. 

As discussed in Chapter 2, the hetero Diels-Alder reactions of enones typically 

proceed most efficiently as inverse electron demand cycloadditions incorporating 

                                                           
176 (a) Bordwell, F. G.; Zhang, X.-M.; Alnajjar, M. S. J. Am. Chem. Soc. 1992, 114, 7623.  (b) Bordwell, F. 
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electron-rich dienophiles.  In contrast, the oxaenyne cycloaddition proceeds most readily 

when the heteroenynophile is substituted with an electron-withdrawing group, and at a 

slower rate when the heteroenynophile is substituted with an electron-donating group, a 

situation which facilitates inverse electron demand cycloadditions.   

Although we cannot prove that the oxaenyne cycloaddition proceeds through a 

concerted pathway, as opposed to a mechanism involving a biradical cyclization, we 

believe that the experimental evidence suggests that [4 + 2] cycloadditions of conjugated 

oxaenynes probably occurs as a normal electron demand concerted cycloaddition, 

reminiscent of the thermal dimerization of α,β-unsaturated carbonyl compounds. 

An accurate comparison of the relative energies of these two potential pathways 

would likely require a high-level theoretical treatment.  Further studies are required in 

order to shed light on this step of the mechanism.  

 

Summary 

 Many of the questions about the heteroenyne cycloaddition of oxaenynes we set 

out to investigate have been answered.  Most notably, we extended the scope of the 

heteroenyne cycloaddition to include the use of alkynyl aldehydes as heteroenynes, which 

provide dihydroisobenzofuran products lacking a substituent on a carbon of the furan 

moiety.  In addition, we determined that substrates incorporating substituted nitrogens or 

disubstituted carbons as atoms in the tether proceed more efficiently to produce the 

expected cycloadducts at faster rates and/or at lower temperatures.  We have also gained 

additional experimental evidence for the intermediacy of a carbene in the cycloaddition, 

                                                           
G.; Zhang, X.-M. Acc. Chem. Res. 1993, 26, 570. 
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as well as discovering an interesting transformation of benzylic heteroenynes.  Finally, 

we have also demonstrated the synthetic utility of the heteroenyne cycloaddition by the 

transformation of two cycloadducts to complex carbocyclic compounds. 
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Chapter 1 

Background and Significance 

 

Heterodera glycines: The Soybean Cyst Nematode 

 Nematodes are roundworms of the phylum Nematoda and are found in the soil 

and water.177  Nematodes are the most abundant animals on earth – it is estimated that 

there are five billion of them in the upper three inches of an acre of soil.  These 

organisms are parasitic to a number of plants and animals.  Nematodes infect many of the 

plants and animals on which humans depend for food, and therefore they are a serious 

contributing factor in the global problem of starvation and food shortage. 

 Nematodes of the genus Heterodera have been particularly serious pests because 

they feed on a number of economically important crops.  In addition, their larvae are 

covered by a cyst, which provides protection from adverse environmental conditions, and 

allows them to remain viable in the soil for a number of seasons.178  The cyst nematodes 

generally have a limited number of host plants.  This specificity is thought to be due to 

the fact that hatching of larvae is dependent upon key stimulants from the host plant.  

This insight into the nematode life cycle was first realized in 1922 when Baunacke found 

that extracts from potatoes could stimulate the emergence of larvae from the cysts of the 

potato cyst nematode.179 

                                                           
177 (a) Perry, R. N., Wright, D. J., Eds. The Physiology and Biochemistry of Free-living and Plant-parasitic 
Nematodes; CAB International: New York, 1998.  (b) Chitwood, B. G.; Chitwood, M. B. Introduction to 
Nematology; University Park Press: Baltimore, 1974.  (c) Decker, H. Plant Nematodes and Their Control 
(Phytonematology) (translated from Russian); Amerind: New Delhi, 1980; p 128. 
178 Whitehead, A. G. In Cyst Nematodes; NATO ASI, Series A, Vol 121; Lamberti, F. and Taylor, C. E., 
Eds.; Plenum: New York, 1985; p 413. 
179 Baunacke, W. E. Arb. Biol. Bund Anst. Land-u. Forstw. 1922, 11, 185. 
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 The soybean cyst nematode (Heterodera glycines) has attracted considerable 

attention because it parasitizes a number of economically important plants, such as 

soybeans, kidney beans, and adzuki beans.  This nematode causes daizu iwo byo (“yellow 

dwarf disease”) in soybean plants which leads to severe inhibition in plant growth.  The 

infected plants produce very few flowers and seeds, and their leaves lack pigments and 

drop early.  The nematode not only attacks the plant’s cells and blocks its vital transport 

channels, but it also renders the plants susceptible to viruses, bacteria, and fungi.  

H. glycines is widespread in Japan, the United States, Canada, and South America, and 

accounts for most of the $2.5 billion in crops lost each year to nematodes.180   

 The application of traditional toxic pesticides is standard practice in the 

agricultural industry to control and kill many types of agricultural pests.178,181  However, 

the chemicals used are broad spectrum pesticides and typically are employed in high 

concentrations, which has caused these substances to bioaccumulate in the environment.  

Furthermore, as pests develop resistance to these chemicals, their effectiveness is 

diminishing.  These factors have created a need for new strategies to control agricultural 

pests. 

 Currently, the main strategy employed to combat the soybean cyst nematode 

involves the use of crop rotation and nematode-resistant varieties of soybean.181b  

Unfortunately, strains of soybean cyst nematodes exist which are not affected by the 

                                                           
180 (a) Sasser, J. N.; Frackman, D. W. In Vistas on Nematology; Veech, J.A.; Dickson, D. W., Eds.; Society 
of Nematologists, Inc.:  Hyattsville, 1987. (b) Noel, G. R. In Biology and Management of the Soybean Cyst 
Nematode; Riggs, R.D.; Wrather, J. A.; APS Press: St. Paul, MN, 1992. 
181 (a) Atkinson, H. J.; Lilley, C. J.; Urwin, P. E.; McPherson, M. J. Engineering Resistance to Plant-
parasitic Nematodes.  In The Physiology and Biochemistry of Free-living and Plant-parasitic Nematodes; 
Perry, R. N., Wright, D. J., Eds. CAB International: New York, 1998; pp 381-413.  (b) Illinois SCN 
Coalition.  http://www.ilscncoalition.org/manage7.ace (Accessed June 2002). 
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nematode-resistant soybeans, and over time these nematodes will become more 

predominant. 

 

Alternative Approaches to Pest Control 

 The application of a combination of different approaches to the problem of pest 

control, commonly referred to as integrated pest management (IPM), has gained favor as 

an alternative to the large-scale use of toxic pesticides.182  Among the strategies 

employed in IPM are the use of pest predators such as parasites, bacteria, and viruses in 

concert with limited applications of pesticides.  This latter category involves the use of 

rationally designed synthetic pest control agents as well as behavior-modifying 

substances, known as semiochemicals. 

 Semiochemicals are usually highly selective and highly active substances.183  

They can be divided into two classes: pheromones and allelochemicals.  Pheromones are 

substances used by members of a species to communicate with each other.  A common 

use of these compounds in pest control is the employment of sex pheromones to attract 

insects to traps containing insecticides.  Allelochemicals are substances produced by one 

species with an effect on a different species.  There are two classes of allelochemicals: 

allomones and kairomones.  With allomones, the result is favorable to the emitter, but not 

to the receiving species (e.g., plant defense agents such as azadirachtin184).  Kairomones, 

however, produce a result that is favorable to the receiving species, but not to the emitter.  

Semiochemicals typically exhibit high levels of activity in the environment, and are 

                                                           
182 For example, see: Bellus, D. Chimia 1991, 45, 154. 
183 For an overview, see: Semiochemicals, Their Role in Pest Control; Nordlung, D. A.; Jones, R. L.; Lewis, 
W. J., Eds.; John Wiley & Sons: New York, 1981. 
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usually species-specific.  Since both pheromones and kairomones are generally not toxic 

to pests, they are more likely to not be toxic towards the ecosystem as compared to 

classical pesticides.  This makes semiochemicals attractive candidates as pest control 

agents. 

 In the battle against the soybean cyst nematode, a strategy involving kairomones 

or pheromones could be extremely effective.  The high selectivity and high activity could 

allow for the elimination of this pest using a minimal amount of the compound and 

without harmful effects to the environment.  

 

Isolation and Biological Activity of Glycinoeclepin A 

The biological activity of glycinoeclepin A and its potential use as a pest control 

agent can best be understood by looking at the life cycle of H. glycines.  The life of cyst 

nematodes begins when the eggs hatch into larvae and proceed to invade the host plant.185 

The host plant provides the nourishment for the developing nematode during its four-

week life cycle.  Following fertilization, the female fills with eggs and dies.  Her body 

becomes a cyst which protects the eggs until the optimal conditions for hatching are 

present.  These cysts are resistant to adverse seasonal conditions and can remain viable 

for three or more years. 

In 1966, Tsutsumi and Sakurai showed that, as is the case with the potato cyst 

nematode, host plant extracts are potent stimulants for the hatching of the larvae of the 

                                                           
184 Azadirachtin is a natural product found in the seeds of the neem tree and used in India to control insects.  
Scientists believe the neem tree produces azadirachtin as a deterrent to insect attacks. 
185 Opperman, C. H.; Dong, K.; Chang, S. In Advances in Molecular Plant Nematology; NATO ASI, Series 
A, Vol 268; Lamberti, F.; De Giorgi, C. and Bird, D. M., Eds.; Plenum: New York, 1985; p 65. 
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soybean cyst nematode.186  This exciting discovery offered the potential ability to control 

the hatching of this pest, and prompted the search for the exact nature of the stimulant.  In 

1967, Tadashi Masamune undertook the monumental task of isolating and identifying this 

important compound.187 

 Fifteen years later, in 1982, Masamune reported the first breakthrough in this 

heroic effort: the isolation of 50 µg of the p-bromophenacyl ester (p-BPE) of a substance 

that stimulated the hatching of the soybean cyst nematode.188  The source of the 

compound was a 113-kg sample of dried and powdered kidney bean roots collected from 

a 1-hectare field.  This material was extracted and purified numerous times to give 

fractions that were tested for activity by bioassay.  When the 50 µg sample189 isolated by 

Masamune and co-workers was tested, it was found to stimulate hatching of the cyst 

nematode eggs, in vitro, at a level of 10-11 to 10-12 g/mL!  Unfortunately, the small 

amount of isolated compound was only adequate for preliminary analyses.  Mass 

spectrometry established the molecular formula, and 1H NMR revealed the types of 

oxygen functionality in the sample.  To complete the structural assignment of this 

fascinating compound, designated as glycinoeclepin A, a larger amount of sample was 

required, and the isolation process had to be repeated on a larger scale. 

 The structure of glycinoeclepin A (335) was finally established in 1987.  Over 

1,000 kg of dried and powdered kidney bean roots were harvested from a 10-hectare field 

and purified to give 1.25 mg of glycinoeclepin A as its p-bromophenacyl ester (p-BPE) 

                                                           
186 Tsutsumi, M.; Sakura, K. Japn. J. Appl. Ent. Zool. 1966, 10, 129. 
187 Masamune, T. In Natural Products and Biological Activities; A Naito Foundation Symposium; 
University of Tokyo Press; Elsevier: New York, 1986; p 25. 
188  Masamune, T.; Anetai, M.; Takasugi, M.; Katsui, N. Nature 1982, 297, 495. 
189 Sample is isolated as its p-BPE and hydrolyzed before testing. 
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(336).190  This sample was characterized using several spectroscopic methods (including 

mass spectrometry and various NMR techniques) and was assigned the structure shown 

below.190a,191  The assignment was confirmed by X-ray analysis of a single crystal of 

glycinoeclepin A p-BPE.17  The hydrolysis of glycinoeclepin A p-BPE (336) afforded the 

natural product (335) which was found to be active,  in vitro, at the 10-12 g/mL level. 
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Potential Use of Glycinoeclepin A as a Pest-Control Agent 

 Researchers found that exposure of the cysts to a solution of glycinoeclepin A 

stimulated the hatching of the larvae from the cysts.  It was observed from bioassays that 

the larvae which emerge from cysts treated with glycinoeclepin A are active, whereas the 

larvae from untreated cysts are less active and appeared in smaller numbers.   

 The ability of glycinoeclepin A to stimulate the hatching of the soybean cyst 

nematode has led to great interest in its potential use as a pest control agent.  It could be 

envisioned that application of glycinoeclepin A on the fields in the spring, before the 

                                                           
190 (a) Fukuzawa, A.; Furusaki, A.; Ikura, M; Masamune, T. J. Chem. Soc., Chem. Commun. 1985, 222.  (b) 
Masamune, T.; Anetai, M.; Fukuzawa, A.; Takasugi, M.; Matsue, H.; Kobayashi, K.; Ueno, S.; Katsui, N. 
Bull Chem. Soc. Jpn. 1987, 60, 981. 
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soybeans are planted, should cause the larvae to hatch from the cysts.  Since no host plant 

would be present, the nematodes would have no food source, and would then die.  Thus 

the possibility exists that glycinoeclepin A could be used as an environmentally benign 

nematode control agent. 

 A major obstacle to implementing this strategy that needs to be addressed is the 

lack of a suitable source of glycinoeclepin A.  Nature does not appear to be a feasible 

source of material, but chemical synthesis could provide the quantities necessary for 

testing and, eventually, application of glycinoeclepin A.  Therefore, it comes as no 

surprise that the combination of the potential utility of this molecule as a pest control 

agent and its challenging chemical structure have made it an interesting target for total 

synthesis.  Work in this area has resulted in three total syntheses (see Chapter 2), a 

biomimetic synthesis of a close derivative, and several papers on synthetic approaches192 

and structure-activity relationships of analogs.   

 

Summary 

Glycinoeclepin A is a potential environmentally-benign pest control agent for the 

management of soybean cyst nematodes.  Though three total syntheses of this important 

molecule have been completed to date, all of them are rather lengthy and not particularly 

efficient.  Part II of this thesis focuses on the total synthesis of a section of this important 

molecule.  Chapter 2 outlines previous routes to glycinoeclepin A, and introduces our 

convergent strategy, which should provide an effective route to this significant 

                                                           
191 (a) Masamune, T.; Fukuzawa, A.; Furuzaki, A.; Ikura, M.; Matsue, H.; Kaneko, T.; Abiko, A.; 
Sakamoto, N.; Tanimoto, N.; Murai, A. Bull. Chem. Soc. Jpn. 1987, 60, 1001.  (b) Takasugi, M.; 
Fukuzawa, A.; Masamune, T. J. Synth. Org. Chem. Jpn. 1988, 46, 416. 
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compound.  The development and deployment of a new, concise route to the A-ring 

enyne section of glycinoeclepin A will be detailed in Chapter 3. 

                                                           
192 For synthetic approaches to the D-ring side chain, see: Okawara, H.; Nii, Y.;Miwa, A.; Sakakibara, M. 
Tetrahedron Lett. 1987, 28, 2597. 
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Chapter 2 

The “A-Ring” of Glycinoeclepin A 

 

 The objective of our research in this area has been the development of an efficient 

and practical synthesis of glycinoeclepin A.  While three previous total syntheses of this 

molecule have been reported to date,190,191,192 we believe that none of them are truly 

practical (that is, able to provide useful quantities of the material in an efficient manner).  

Further biological studies on the feasibility of glycinoeclepin A as a pest control agent 

would require tens or hundreds of milligrams of glycinoeclepin A, and the 

commercialization of the compound or an analog would require much more.  The goal of 

our research has been to develop a synthesis consisting of 20 or fewer steps in the longest 

linear sequence. 

 

Retrosynthetic Analysis 

 Our retrosynthetic plan is outlined in Scheme 100.  As convergent strategies are 

the most efficient synthetic strategies, we chose to divide the molecule into two roughly 

equal-sized fragments, CD-ring precursor 339 and A-ring enyne 340.  The crucial 

transformation in our strategy involves a tandem propargylic rearrangement-asymmetric 

inverse electron-demand intramolecular vinylallene [4 + 2] cycloaddition.193  This key 

step was developed by retrosynthetically disconnecting the hydrindane skeleton into a 

                                                           
190 Murai, A.; Tanimoto, N.; Sakamoto, N.; Masamune, T. J. Am. Chem. Soc. 1988, 110, 1985.     
191 Mori, K.; Watanabe, H. Pure Appl. Chem. 1989, 61, 543. 
192 Corey, E. J.; Houpis, I. N. J. Am. Chem. Soc. 1990, 112, 8997.     
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molecule (338) containing a latent vinylallene (in the form of a propargylic alcohol) 

tethered to an enol ether.   
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This part of the thesis will be devoted to the discussion of our group’s efforts to 

synthesize the requisite oxabicyclo[2.2.1]heptane A-ring enyne intermediate 340.  The 

aldehyde 339, precursor to the CD-ring system, has already been synthesized in a 

stereoselective manner via a ten-step route developed by Dr. Matthew W. Martin.194   

                                                           
193 For a discussion of this key transformation and studies on this phase of the synthesis, see:  Martin, M. 
W. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, February 2000. 
194 For a full account of the synthesis of the CD-ring precursor aldehyde 341, see:  Martin, M. W. Ph.D. 
Thesis, Massachusetts Institute of Technology, Cambridge, MA, February 2000. 
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7-Oxabicyclo[2.2.1]heptanes 

Derivatives of 7-oxabicyclo[2.2.1]heptane are widespread in nature, and a number 

of synthetic methods have been developed to access this core structure.195  In addition, 

because these molecules and their unsaturated derivatives undergo a variety of interesting 

reactions, they are useful synthetic intermediates for the organic chemist.  Furthermore, a 

number of methods have been developed for the production of enantiomerically pure 

7-oxabicycloheptanes, making them useful chirons. 

Perhaps the oldest example of a natural product incorporating this key skeletal 

unit is cantharidin (341).  First isolated in crystalline form by Robiquet in 1810, 

cantharidin is found in cantharide beetles and at one time was thought to be an 

aphrodisiac.  A number of related compounds, including palasonin (342), are inhibitors of 

protein phosphatases PP1, PP2A, and PP2B.  The natural herbicide 1,4-cineole (343), 

first described by Wallach in 1907, is formed by acid-promoted elimination of water and 

cyclization of 1,8-terpin (p-menthane-1,8-diol, 344). 
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195 For recent reviews, see:  (a) Lautens, M.; Chiu, P. Topics. Curr. Chem. 1997, 190, 1.  (b) Vogel, P.; 
Cossy, J.; Plumet, J.; Arjona, O. Tetrahedron 1999, 55, 12521.  
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7-Oxabicycloheptanes via Cycloaddition Approaches 

As discussed in Part I of this thesis, cycloaddition reactions are powerful 

transformations that allow for the design of highly convergent synthetic strategies.  Thus, 

it is not surprising that some of the most expeditious and frequently employed routes to 

the oxabicycloheptane skeleton involve the use of cycloadditions.  Two common 

cycloaddition approaches to the oxabicycloheptane system involve the retrosynthetic 

disconnections shown in Scheme 101. 

 

Scheme 101 
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Disconnection of 7-oxabicycloheptane 345 gives rise to carbonyl ylide 346 as the 

partner for a 1,3-dipolar cycloaddition with an alkene.  Retrosynthetic analysis of the 

7-oxabicycloheptene 347, itself a useful intermediate and easily transformed into 345, 

leads to a [4 + 2] cycloaddition of furan with an alkene.  Both of these approaches have 

been used for the construction of oxabicycloheptane derivatives.195 



 155

 The reaction between furan and maleic anhydride was first investigated by Diels 

and Alder in 1929.196  At room temperature the reaction gives rise to the exo adduct 350, 

the structure of which was first demonstrated by Woodward and Baer in 1948.197  In 

1962, Anet and coworkers determined that the endo adduct 351 forms concurrently at low 

temperatures, but after a period of time, only the exo adduct is observed.198  As shown in 

Scheme 102, kinetic data on the cycloaddition of furan with maleic anhydride indicate 

that the endo adduct 351 is formed faster than the exo adduct 350, but also undergoes 

cycloreversion faster.199  
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 Due to the aromaticity of furan, its cycloadducts are thermally sensitive and often 

revert to the starting materials.  Through the use of very reactive dienophiles, respectable 

                                                           
196 Diels, O.; Alder, K. Chem. Ber. 1929, 62, 554. 
197 Woodward, R. B.; Baer, H. J. Am. Chem. Soc. 1948, 70, 1161.  
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yields of cycloadducts can be formed.  Application of high-pressure techniques200 and the 

use of Lewis acid promoters201 that activate the dienophile can facilitate the cycloaddition 

of furans.  In some cases even unactivated dienophiles add to furan.202 

Padwa has developed an approach to oxabicycloheptanes in which carbonyl ylides 

undergo 1,3-dipolar cycloadditions with a variety of dipolarophiles.  Scheme 103 depicts 

an example of this methodology as applied to the synthesis of the pterosin family of 

sesquiterpenes.203  This methodology has also been extended to generate fused 

7-oxabicycloheptanes via intramolecular carbonyl ylide cycloadditions with pendant 

alkenes. 
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198 Anet, F. A. L. Tetrahedron Lett. 1962, 3, 1219.  
199 Lee, M. W.; Herndon, W. C. J. Org. Chem. 1978, 43, 518. 
200 (a) Dauben, W. G.; Krabbenhoft, H. O. J. Am. Chem. Soc. 1976, 98, 1992.  (b) Butz, T.; Sauer, J. 
Tetrahedron: Asymmetry 1997, 8, 703.  
201 (a) Grieco, P. A.; Nunes, J. J.; Gaul, M. D. J. Am. Chem. Soc. 1990, 112, 4595.  (b) Waldmann, H. 
Angew. Chem., Int. Ed. Engl. 1991, 30, 1306. 
202 (a) Newman, M. S.; Addor, R. W. J. Am. Chem. Soc. 1955, 77, 3789.  (b) Matsumoto, K.; Ikemi, Y.; 
Hashimoto, S.; Lee, H. S. Okamoto, Y. J. Org. Chem. 1986, 51, 3729. 
203 Curtis, E. A.; Sandananyaka, V. P.; Padwa, A. Tetrahedron Lett. 1995, 36, 1989.  
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7-Oxabicycloheptanes via Cyclization Approaches 

 A number of general methods exist for the formation of the 7-oxabicycloheptane 

system that do not involve a cycloaddition reaction.  Most of these approaches take 

advantage of the nucleophilicity of an oxygen atom for the cyclization step.  Scheme 104 

depicts the retrosynthetic analysis of the SN1-type approach, which involves the 

formation and cyclization of a 4-hydroxycyclohexyl cation 355, and the SN2-type 

approach, which involves a cyclohexanol 356 with a leaving group at the 4-position.  An 

example of each of these approaches will be discussed below. 
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Retrosynthetic pathway a involves the intermediacy of a 4-hydroxycyclohexyl 

cation 355.  Two examples of this approach, shown in Scheme 105, involve the 

ionization of a leaving group from 356, in these cases via acid-catalyzed ring-opening of 

epoxides.  Alkenes 360 and 363 are epoxidized to oxiranes 361 and 364 respectively, 
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which can then be treated with acid catalysts to induce ring-opening with concomitant 

cyclization to afford the oxabicyclic products 362 and 365. 
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A similar approach included in this category involves the acid-catalyzed 

rearrangement of cyclopropyl epoxides shown in Scheme 106.  Cyclopropyl epoxide 366 

can rearrange to cation 367, ultimately providing allylic alcohol 368.  This approach was 

employed by Corey in his biomimetic synthesis of 12-deoxyglycinoeclepin.204 
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An alternative approach for the formation of the 4-hydroxycyclohexyl cation 355 

involves addition of an electrophile to a 4-alkylidenecyclohexanol 358.  There are 

numerous examples of this approach involving primarily iodoetherification and 

oxymercuration processes.  Several examples will be discussed later in conjunction with 

the review of previous strategies for the synthesis of glycinoeclepin A. 

Cationic cyclization of butenyl-substituted epoxide 357 has also been employed to 

generate the 4-hydroxycyclohexyl cation 355.  Scheme 107 outlines an example of this 

approach.   
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The acid-promoted ring-opening of epoxide 369 generates carbocationic 

intermediate 370 which undergoes cation-π cyclization, generating a 

4-hydroxycyclohexyl cation 371.  This cation then is trapped by the internal hydroxyl 

group to form the oxabicycloheptane ring system 372.   

Retrosynthetic pathway b involves nucleophilic displacement of a leaving group 

on 356 by the nucleophilic oxygen atom.  An example of this approach involves a rather 

                                                           
204 Corey, E. J.; Hong, B.-C. J. Am. Chem. Soc. 1994, 116, 3149.  
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unusual oxidative cyclization reaction.205  As shown in Scheme 108, thallium 

tris(perchlorate) adds to the terminal double bond of geraniol (373) and triggers a 

cation-π cyclization (374→375); trapping of the resultant cation by water then gives 

intermediate 376.  The hydroxyl group then intramolecularly displaces the thallium 

species bound to the 4-position of the ring to afford the oxabicyclic compound 377. 
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Previous Strategies for the Construction of the Glycinoeclepin A-Ring 

 As mentioned above, three previous total syntheses of glycinoeclepin A have been 

reported to date.  This section will outline, for each total synthesis, the retrosynthetic 

disconnection leading to A-ring and CD-ring fragments, the approach employed for the 

                                                           
205 (a) Yamada, Y.; Sanjoh, H.; Iguchi, K. J. Chem. Soc., Chem. Commun. 1976, 997.  (b) Aziz, M.; 
Rouessac, F. Bull. Chim. Soc. Fr. 1988, 555. 
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construction of the A-ring component, and the reaction sequence employed to attach it to 

the CD-ring building block. 

 

(a) Murai Strategy 

 The first total synthesis of glycinoeclepin A, published by Murai and 

coworkers,190 employed an alkylation strategy to attach the A-ring iodide 378 to the CD-

ring partner 379 (Scheme 109). 

 

Scheme 109 

O

OR
CO2R

OR

I
O

OR

+

378 379

Glycinoeclepin A (335)

OH

CO2R

CO2R

O

OA

C D

 

 

 The A-ring iodide 378 incorporates the easily-identifiable retron for an 

iodoetherification reaction.  Thus, the synthesis of 378 was a fairly straightforward 

process, as outlined in Scheme 110.  The chiral hydroxy ketone 381206 is clearly a key 

intermediate in this route.  Enantioselective reduction of 2,2-dimethyl-1,3-

cyclohexanedione (380)207 using Baker’s yeast afforded 381 in 67% yield with a reported 

94.3% enantiomeric excess.  Protection of the alcohol and α-methylenation gave enone 

                                                           
206 Mori, K.; Mori, H. Organic Syntheses; Wiley & Sons:  New York, 1993; Collect. Vol. VIII, 312. 
207 Jacobson, B. M.; Soteropoulos, P.; Bahadori, S. J. Org. Chem. 1988, 53, 3247. 
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382.  Reduction of the ketone with sodium trimethoxyborohydride followed by acid 

hydrolysis of the ethoxyethyl ether afforded diol 383 in 86% yield over two steps.  The 

diol 383 was treated with N-iodosuccinimide to effect the intramolecular 

iodoetherification, providing iodide 384 in 79% yield. 
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 All attempts at alkylation of the ketone 385 with primary iodide 378 met with 

failure (Scheme 111).  Quite possibly, the neopentylic iodide is too sterically congested 

to undergo intermolecular displacement. 
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Scheme 111 
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Because this intermolecular alkylation strategy failed, the authors decided to 

attempt an intramolecular alkylation as depicted in Scheme 112.  Ester 387 was 

synthesized and, upon treatment with potassium fluoride and 18-crown-6, the desired 

lactone 388 was formed.208 
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(b) Mori Strategy 

 In 1989, Mori and Watanabe published the second total synthesis of 

glycinoeclepin A.191  In an approach similar to that of Murai, Mori’s A-ring strategy 

(Scheme 113) employed Baker’s yeast reduction of 380.  Protection of the alcohol and 

aldol condensation with acetaldehyde afforded enone 389.  Reduction of the ketone and 

                                                           
208 The configuration of the A-ring alcohol in 387 is opposite to that in 378.  All attempts at alkylation with 
the ester derived from 378 met with failure.  The isomeric alcohol precursor to 387 was obtained by an 
oxidation and then reduction of 378. 
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protection of the resultant alcohol set the stage for the key NIS-promoted 

iodoetherification, which afforded the oxabicyclic iodide 390.  Further elaboration of this 

compound to 392 was to set the stage for its use as an aldol partner in a coupling to a 

CD-ring precursor. 
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(c) Corey Strategy 

 The third total synthesis of glycinoeclepin A was completed by Corey and Houpis 

in 1990.192  Corey’s plan for coupling A-ring and CD-ring intermediates relied upon a 

Stille reaction involving vinyl triflate 396 (Scheme 114).  The A-ring synthesis again 

began with dione 380, but in this instance Corey chose a catalytic enantioselective 

reduction of the ketone with catecholborane and the oxazaborolidine catalyst 393.209  

Protection of the resultant alcohol 381 furnished ketone 394, which was then formylated 
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by treatment with sodium hydride and ethyl formate to generate 395.  Conversion of this 

formyl derivative to the vinyl triflate 396 required for the Stille reaction was 

accomplished with sodium hydride and N-phenyltriflimide.   
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Stille coupling of vinyl triflate 396 with stannane 397 provided 398 with the 

complete A-C-D carbocyclic system in place.  However, the A-ring still required a 

further elaboration to form the oxabicyclic system.  As shown in Scheme 115, a series of 

functional group manipulations afforded alcohol 399, which was cyclized by 

oxymercuration with mercury(II) oxide/mercury(II) trifluoroacetate.  The subsequent 

demercuration of the organomercurial species was accomplished with dibutyltin hydride.  

                                                           
209 Corey, E. J.; Bakshi, R. K. Tetrahedron Lett. 1990, 31, 611.  
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Deprotection and oxidation of the A-ring alcohol then afforded 400, complete with the 

oxabicyclic A-ring fully elaborated. 
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Our First-Generation Synthesis of the A-Ring Enyne 

 As mentioned earlier, synthesis of a key CD-ring intermediate was completed in 

our laboratory by Dr. Matthew Martin, and studies on the key rearrangement-

cycloaddition step required access to an A-ring enyne intermediate.  At that stage in our 

research, the priority was to synthesize the A-ring enyne by any route adequate at 

providing reasonable quantities of an A-ring building block.   
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Dr. Christophe Mellon developed the retrosynthetic analysis shown in Scheme 

116 which led to our “first-generation” synthesis of the A-ring enyne 340.  The actual 

target molecule for this synthetic strategy was the protected alcohol 401.  It was planned 

that deprotection of the alcohol and oxidation to the ketone would take place after the 

rearrangement-cycloaddition step, concurrent with other functional group transformations 

required for completion of the synthesis.   

Two key transformations dictated most of the strategy developed for this route.  

First was the desire to create the oxabicyclic system in 401 via an 

oxymercuration/demercuration protocol similar to the one used by Corey in his synthesis 

of glycinoeclepin A.192  Second was the insight that the enyne moiety could be created 

from the methyl ketone 402 by vinyl triflate formation and Sonogashira coupling with 

trimethylsilylacetylene. 

The 4-alkylidenecyclohexanol 404 would be the substrate for the oxymercuration 

reaction.  The synthesis of 404 was based on an aldol strategy, in which the aldehyde 

partner would incorporate a latent ketone at the α position which could be unmasked to 

provide ketone in 402 after the oxymercuration.  The known β-alkoxy aldehyde 406 was 

selected because it could be easily prepared from commercially available ethyl lactate. 
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Scheme 116 
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 Aldehyde 406 was prepared from ethyl lactate via a three-step procedure 

according to the protocol of Heathcock (Scheme 117).210  Protection of the alcohol in 407 

as the benzyl ether using silver (II) oxide-promoted etherification with benzyl bromide, 

followed by reduction of the ester to the alcohol with lithium aluminum hydride, afforded 

408 in 42% yield over two steps.  Swern oxidation proceeded in excellent yield afford the 

aldehyde 406 necessary for the aldol reaction. 

 

                                                           
210 Takai, K.; Heathcock, C. H. J. Org. Chem. 1985, 50, 3247. 
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Scheme 117 
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The aldol reaction between aldehyde 406 and ketone 405 and in situ elimination 

of the intermediate alcohol 409 provided a mixture of compounds from which enone 410 

could be isolated in 36% yield.  Optimization of this sequence by Dr. Yoshinori Ikeura 

revealed that the yield could be greatly improved if the aldol reaction and elimination 

were performed as two separate steps.  As illustrated in Scheme 118, treatment of ketone 

405 with LDA followed by addition of aldehyde 406 at -60 °C and warming of the 

reaction mixture to -45 °C provided 409.  Formation of the mesylate with 

methanesulfonyl chloride and triethylamine followed by elimination with DBU afforded 

the desired enone 410 in 76% overall yield from 405.  Under these optimized conditions, 

enone 410 was formed exclusively as the E-isomer as determined by analysis of the 1H 

NMR spectrum.211 

 

                                                           
211 In preliminary experiments, a mixture of E- and Z-isomers was obtained.  1H NMR analysis of the two 
isomers revealed that the C-7 vinyl protons appear at 6.4 ppm and 5.6 ppm for the major and minor 
isomers, respectively.  The downfield shift for the vinyl proton in the major isomer results from its 
orientation in the deshielding region of the adjacent carbonyl group.  The major isomer was therefore 
assigned the E-configuration.   
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Scheme 118 
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 Enone 410 was next converted to alcohol 412 by a three step sequence (Scheme 

119).  Reduction of the ketone carbonyl was accomplished following the Luche protocol 

to yield the expected allyl alcohol.  Protection of the alcohol by esterification with 

pivaloyl chloride afforded 411 in 96% yield over two steps.  Cleavage of the silyl ether 

with TBAF and acetic acid in refluxing THF then gave the 4-alkylidenecyclohexanol 

412. 

 

Scheme 119 

OSiMe2t-Bu

OCOt-Bu

BnO

411

OH

OCOt-Bu

BnO

2) 1.5 equiv t-BuCOCl     
3.15 equiv pyridine

0.1 equiv DMAP
 toluene, reflux, 17 h

96%
(two steps)

4.7 equiv TBAF
1.4 equiv  AcOH
THF, reflux, 2.5 h

85%

412
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 As outlined in Scheme 120, intramolecular oxymercuration with mercury (II) 

oxide and mercury (II) trifluoroacetate, followed by in situ demercuration of the 
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organomercurial intermediate with sodium borohydride, provided the desired oxabicyclic 

compound 413 in 83% yield. 

 

Scheme 120 
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Debenzylation and Dess-Martin oxidation of the resultant alcohol provided ketone 

414.  Formation of vinyl triflate 415 and Sonogashira coupling with 

(trimethylsilyl)acetylene then afforded the desired silylenyne 416 (Scheme 121). 
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Scheme 121 
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The alkynylsilane 417 was desilylated under standard conditions with TBAF in 

THF to afford enyne 418 (Scheme 122).  This compound, with the ring ketone protected 

as the pivalate ester of the corresponding alcohol, was used in initial studies of the 

tandem propargylic rearrangement – intramolecular vinylallene Diels-Alder reaction.   
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Summary 

 The three published routes and our first-generation synthetic strategy for the 

synthesis of the A-ring portion of glycinoeclepin A have been described.  As discussed in 

this chapter, there are a number of useful strategies for the synthesis of 

7-oxabicycloheptane derivatives.  The three published routes to the A-ring of 

glycinoeclepin A all involve electrophilic cyclization strategies for the cyclization of the 

bicyclic system.  Dr. Christophe Mellon and Dr. Yoshinori Ikeura in our group have 

employed an oxymercuration strategy for their synthesis of the A-ring enyne intermediate 

418 via a 12-step route.   

The next chapter will detail my unsuccessful attempts at streamlining this route 

utilizing similar electrophilic cyclization tactics, and the development and optimization of 

a novel acid-catalyzed cyclization route which has provided the A-ring enyne 340 in only 

six steps from the alcohol 381. 
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Chapter 3 

New Approaches to the Synthesis of an 
A-Ring Enyne Intermediate 

 

 As discussed in the previous chapter, Drs. Mellon and Ikeura developed a 12-step 

sequence for the production of the A-ring enyne intermediate 418.  This accomplishment 

was important because it provided sufficient quantities of material for initial studies of 

the tandem propargylic rearrangement – intramolecular vinylallene Diels-Alder reaction, 

the key step in our total synthesis.   

However, the lengthy 12-step route to A-ring enyne 418 detracts from the overall 

efficiency of our total synthesis of glycinoeclepin A, especially in comparison to the 

10-step route to the more complex CD-ring precursor.  The development of a shorter 

route to the A-ring intermediate 340 was desirable.   

We envisioned a number of alternative strategies for construction of the A-ring 

enyne intermediate, including streamlined versions of our first-generation route which 

incorporate changes to the protecting group strategies.  This chapter will detail my work 

on the modification of our first-generation route, and the development of a new 

cyclization strategy which provides the enyne 340 from the hydroxy ketone 381 in only 

six steps.  

 

A Modified Rearrangement-Cycloaddition Strategy 

The A-ring enyne 418 used in the initial cycloaddition studies contains a protected 

form of the A-ring ketone which would therefore require eventual unmasking.  It was 

envisioned that the deprotection of the pivalate ester and oxidation to the ketone would 
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take place after the key cycloaddition step, concurrent with other reductive and oxidative 

functional group transformations required for elaboration of functionality on the CD-ring 

portion of the molecule.   

Optimization studies (Scheme 123) by Dr. Yoshinori Ikeura on the key 

rearrangement-cycloaddition reaction led to the discovery that the reaction proceeds more 

efficiently when the propargylic mesylate 421 is used instead of the carbonate 419.  

Critical to the success of this reaction is the use of the A-ring ketone in place of the more 

sterically demanding protected alcohol.212 

 

Scheme 123 
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212 Although the reaction of 423→424 provided the undesired diastereomer, the cycloaddition proceeded 
quite well in the presence of the A-ring ketone.  Dr. Hiroshi Shinokubo later developed improved 
conditions for this reaction which gives the desired diastereomer as the major (60:40) product. 
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The mesylate 421 was derived from propargylic alcohol 424, which was obtained 

with excellent diastereoselectivity from the reaction of the lithium acetylide derived from 

340 with aldehyde 423 (Scheme 124).  Importantly, the lithium acetylide is a stable 

species which does not undergo self-condensation under the reaction conditions. 

 

Scheme 124 
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The ketone 340 was obtained from the Mellon-Ikeura A-ring intermediate 418 

(Scheme 125) by a two-step deprotection-oxidation sequence.  With these two additional 

steps, the route to the A-ring enyne intermediate 340 totals 14 steps in the longest linear 

sequence.  Clearly a shorter route was required. 

 

Scheme 125 
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Streamlined Approaches to the A-Ring Enyne via Electrophilic Cyclization 

As summarized in Scheme 126, our first-generation route to the A-ring enyne 429 

incorporated a reduction-protection sequence prior to the cyclization, and a deprotection-

oxidation sequence afterward. 

 

Scheme 126 
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If we could eliminate these potentially unnecessary functional group 

manipulations of the ring ketone, we could potentially access the A-ring enyne 429 in 10 

steps, four fewer than the first-generation route.  Initially, we wished to retain from our 

first-generation route oxymercuration of the 4-alkylidenecyclohexanol (vide supra) as the 

key cyclization step.  However, we noted that successful implementation of this new 
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strategy would require the oxymercuration reaction to be carried out on the double bond 

of an enone (instead of the double bond of a protected allylic alcohol). 

We were concerned that the electron-deficient double bond of the enone would be 

unreactive toward electrophilic reagents such as mercury (II) salts.  We noted that 

Corey’s total synthesis of glycinoeclepin A involves an oxymercuration on a dienoate 

ester as the key cyclization step (see Chapter 2, Scheme 115).  In addition to Corey’s 

oxymercuration of unsaturated esters, a few scattered reports of oxymercuration of enoate 

esters can be found in the literature.213  However, a thorough review of the literature 

revealed no examples of oxymercuration of enones. 

 Our initial exploration focused on electrophilic cyclizations because these 

reactions were straightforward.  The required 4-alkylidenecyclohexanol 431 was prepared 

from 430 by desilylation with TBAF in THF.  Subjecting 431 to the same 

oxymercuration conditions successfully employed by Dr. Mellon led only to recovery of 

unchanged starting material (Scheme 127).   

 

Scheme 127 
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213 (a) Anelli, P. L.; Beltrami, A.; Lolli, M.; Uggeri, F. Synth. Comm. 1993, 23, 2639.  (b) Gouzoules, F. H.; 
Whitney, R. A. J. Org. Chem. 1986, 51, 2024. 
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Not surprisingly, examination of the reactivity of enone 431 toward other 

electrophilic reagents led to the same disappointing results.  Electrophiles such as Br2, I2, 

NIS, and ICl and did not promote the desired reactions, and starting material was 

recovered in each case (Scheme 128).  

  

Scheme 128 
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The known examples of oxymercuration of enoates afford products that result 

from formal 1,4-addition of the hydroxyl group to the enoate, via an intermediate 

α-mercurial ester.  The formation of the desired oxabicyclo[2.2.1]heptane would require 

the reaction of the hydroxyl group at the α carbon of the enone, although this 

regiochemistry may be disfavored if the transition state involves significant cationic 

character at that carbon.  The electronically-favored addition of the hydroxyl group at the 

β carbon should provide oxabicyclo[2.2.2]octane 434, although we observe none of this 

alternative product from the reaction of 431 with various electrophiles.  We conclude that 

433 is disfavored electronically, while 434 is disfavored geometrically. 

 After our plan to shorten the first-generation route by elimination of functional 

group manipulations met with failure, we considered several related similar alternative 
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strategies.  We imagined that the lack of reactivity of the enone toward electrophiles 

might be overcome by converting the carbonyl to an unprotected alcohol, as in Murai’s 

approach (See Chapter 2, Scheme 110).  Though this plan would result in a savings of 

two synthetic steps, the synthesis of the enyne 340 would still require 12 steps.  We 

considered this number too high, and so turned our attention to alternative strategies. 

 Concurrent with my work on electrophilic cyclizations of enone 431, Dr. Hiroshi 

Shinokubo studied the oxymercuration of dienone 435, which should afford 436 (Scheme 

129).  We envisaged that a two-step sequence involving demercuration and Sonogashira 

coupling with trimethylsilylacetylene would then furnish the desired enyne. 

 

Scheme 129 
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 As with enone 431, the dienone 435 failed to undergo oxymercuration.  Although 

the desired transformation was unsuccessful, Dr. Shinokubo made an important discovery 

during the synthesis of 435 (Scheme 130).  His synthesis involved the aldol reaction of 

2-bromoacrolein with ketone 381 incorporating an unprotected hydroxyl group.  

Importantly this reaction provided the desired aldol product 437 in 68% yield; no ring-

opened product (438) resulting from retro-aldol reaction was observed.  This important 
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observation allowed us to eliminate protection and deprotection involving the hydroxyl 

group on 381 in future strategies. 

 

Scheme 130 
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 Further contemplation of cyclization approaches to the oxabicyclic A-ring 

intermediate led us to consider the cyclization of enedione 439 (Scheme 131).  In contrast 

to the electrophilic cyclization approaches investigated previously, this cyclization 

strategy utilizes a nucleophilic conjugate addition of the hydroxyl oxygen.   

 The 1,4-additions of heteroatom nucleophiles to α,β-unsaturated carbonyl 

compounds are well documented in the literature.214   Many examples have been reported 

for the addition of an oxygen nucleophile to α,β-unsaturated enones,215 most of which 

involve catalytic base to deprotonate the hydroxyl group.  Examples of the acid-catalyzed 

version of the reaction typically involve the use of Lewis acids.  In addition, the 

conjugate addition of heteroatom nucleophiles to quinones and related species has been 

                                                           
214 For an overview of 1,4-additions of oxygen nucleophiles, see:  (a) Perlmutter, P. Conjugate Addition 
Reactions in Organic Synthesis; Pergamon:  New York, 1992.  (b) Little, R. D.; Masjedizadeh, M. R.; 
Wallquist, O.; McLoughlin, J. I. Org. React. 1995, 47, 315. 
215 For recent examples, see:  Berkessel, A. In Methoden der Organischen Chemie (Houben-Weyl), 4th ed.; 
Helmchen, G.; Hoffmann, R. W.; Mulzer, J.; Schaumann, E., Eds.; Thieme:  New York, 1995; Vol. E21e, 
pp 4818-4856. 
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well-documented.216 Several examples in the literature demonstrate the feasibility of 1,4-

additions of alcohols to enediones.217   

We imagined this approach might overcome the difficulties encountered 

previously with electrophilic cyclizations involving enones.  Cyclization of alcohol 439 

should furnish the oxabicyclic ketone 440.  We planned to elaborate this methyl ketone to 

enyne 340 in a manner analogous to that used by Dr. Mellon on a related substrate (see 

Chapter 2, Scheme 121). 
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Our strategy for the synthesis of enedione 439 paralleled the route used by Dr. 

Shinokubo for the production of aldol condensation product 435 above.  For all of the 

investigations described below, we used racemic hydroxy ketone 381 which is 

considerably easier to prepare than the enantiopure version.  Aldol reaction of 381 with 

methacrolein furnished 441 as a mixture of diastereomers.  No attempt was made to 

assign stereochemistry of these isomers since the stereogenic centers would become 

                                                           
216 Ulrich, H.; Richter, R. In Methoden der Organischen Chemie (Houben-Weyl), 4th ed.; Müller, E., Ed.; 
Verlag:  Stuttgart, 1977; Vol. VII/3a, pp 660-674. 
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sp2-hybridized in a subsequent step.  Ozonolysis of 441 provided the diol 442.  The yield 

of the aldol reaction was typically in the 80-90% range; however, the ozonolysis step 

proceeded in fair yield.  This is likely due to the intermediate ozonide or molozonide 

beng intercepted by an intramolecular hydroxyl group instead of methanol.  Because 441 

was difficult to separate from unreacted starting material, we conducted the two-step 

sequence without purification of the intermediate 441, and in this manner we isolated diol 

442 in 42% yield over two steps (Scheme 132). 
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 The elimination to afford the desired enedione was first attempted with dilute 

sulfuric acid in ethanol.  Under these conditions, the reaction affords only the enol ether 

443 (Scheme 133).  The formation of 443 likely results from ketalization of the methyl 

ketone followed by elimination of ethanol.  This ketalization-elimination sequence could 

occur before or after elimination of the hydroxyl group. 

                                                           
217 (a) Burke, S. D.; Letourneau, J. J.; Matulenko, M. A. Tetrahedron Lett. 1999, 40, 9.  (b) Smith, A. B.; 
Fukui, M. J. Am. Chem. Soc. 1987, 109, 1269.  (c) Sachchar, S. P.; Tripathi, N. N.; Singh, A. K. Indian J. 
Chem., Sect. B.1987, 26, 493. 
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 The spectral data obtained for the product of this reaction is consistent with the 

structure of 443.  In particular, three vinylic proton resonances in the 1H NMR spectrum 

in conjunction with the single unsaturated ketone stretch in the IR spectrum provide 

strong evidence for the assigned structure. 

 

Scheme 133 
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A Serendipitous Discovery   

 To avoid formation of the enol ether, we turned our attention to the use of non-

alcoholic solvents for the acid-catalyzed elimination of 442.  We selected benzene as a 

non-polar solvent and camphorsulfonic acid as an acid commonly used for elimination 

reactions which is soluble in benzene.  Reaction of 442 with 0.25 equiv of CSA in 

benzene for 24 h at rt provided not the expected enedione 439, but rather the bicyclic 

compound 440!  The spectral data for the product of the reaction is consistent with the 

oxabicyclic structure 440, based on comparison to spectral data of many other similar 

compounds previously prepared in our group in conjunction with this project.  

Particularly diagnostic in the 1H NMR spectrum is the bridgehead proton resonance at 

4.30 ppm, and the resonances of the diastereotopic methylene protons on the sidechain at 
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3.04 and 2.90 ppm which show a distinctive splitting pattern.  In addition, the IR 

spectrum displays a broad carbonyl stretch at 1733 cm-1, corresponding to both non-

conjugated ketone carbonyl groups.  It should be noted that at this stage we have no 

evidence for the stereochemical relationship of 442 and 440, and we are assuming that 

the configuration at C3 is retained in the bicyclic product. 

 

Scheme 134 
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Optimization of the Cyclization and Mechanistic Studies 

In subsequent experiments we found that the yield of this cyclization ranged from 

20% to 40% when carried out under near-identical conditions.  We conducted an 

extensive study to optimize the reaction, investigating the effect of different solvents, 

reaction concentrations, acid catalysts, amounts of acid catalyst, and temperature.  From 

these studies, we were able to conclude that the reaction suffers from a number of serious 
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problems which together result in the low and variable yields observed for the 

transformation. 

The optimized conditions are shown in Scheme 135.  The use of 1.0 equiv of 

PPTS in refluxing benzene gave the desired oxabicyclic ketone 440 in 31-37% yield.  

Alternately, 1.0 equiv of quinolinium camphorsulfonate (QCS) in benzene at 40 °C for 

48 h gave the desired product in similar yield (35-37%), but resulted in a cleaner reaction 

with easier purification.  These results were promising and could be adequate for the 

production of sufficient quantities of the A-ring enyne component. 

 

Scheme 135 
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Under these optimal conditions the main byproduct we observe in the reaction is 

the endocyclic enone 444.  The structure of this compound was determined based on 

NMR and IR spectral data.  The enone 444 exhibits two ketone IR absorptions, at 1669 

and 1712 cm-1, indicating one saturated ketone and one unsaturated ketone, as well as the 

expected OH stretch at 3449 cm-1.  This byproduct was isolated in up to 24% yield from 

reactions run under the optimal conditions shown above.  The endocyclic enone 444 was 

observed in all reactions in varying amounts based on TLC analysis. 
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O

OH

O

444  

In the case of cyclizations run at temperatures above 50 °C, a second byproduct is 

observed in the reaction, identified as benzofuran 445 by NMR and IR spectral data.  

This compound exhibits no carbonyl IR stretches, but 1H NMR shows three methyl 

groups and three aromatic hydrogens.  The 13C NMR spectrum is similar to the spectrum 

of many known benzofurans of this type, displaying eight aromatic carbon resonances.  

Three additional aliphatic carbon resonances are observed, corresponding to the three 

methyl groups.  This byproduct could be isolated in up to 30% yield from reactions run 

under the PPTS conditions shown in Scheme 135.   

O

445  

Our attempts to optimize the key cyclization led us to explore a variety of acids as 

promoters of the reaction.  We investigated camphorsulfonic acid (CSA), pyridinium 

p-toluenesulfonate (PPTS), p-toluenesulfonic acid (TsOH), and quinolinium 

camphorsulfonate (QCS).  All of these acids are soluble in benzene; however, the time 

for complete dissolution can be lengthy.  All four of these acids were found to promote 

the reaction.  The fastest reaction rates were observed with CSA.  The use of quinolinium 
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camphorsulfonate gave good yields of the cycloadduct with no formation of benzofuran 

in reactions run at 40 °C.   

Many of our initial runs were done under heterogeneous conditions, such that the 

acid never completely dissolved in the solvent.  In these reactions, dark brown 

decomposition material was observed on the surface of the acid shortly after the reaction 

began.  Later reactions were run with the acid pre-dissolved in the solvent before the 

substrate was added.  In these reactions, the bulk solution turned a darker color than in 

the heterogeneous reactions, but there were no brown solids present in the reaction 

mixture.  However, we have concluded that this variation in reaction conditions does not 

have a significant effect on the yield of the reaction. 

We determined the optimal concentration of substrate and acid catalyst in the 

reaction to be 0.02 M.  At lower concentrations (0.005 M in substrate) the reaction 

becomes very sluggish, while at higher concentrations (0.1 M in acid), insolubility of the 

acid becomes a problem unless higher temperatures are used.  It appears that reaction 

concentration only affects the rate of the reaction. 

We also varied the amount of the catalyst used.  Increasing the amount of acid 

from 0.1 equiv to 5.0 equiv led only to the expected increase in the rate of the reaction, 

but no effect on the outcome of the reaction or distribution of products was observed. 

With the goal of further improving the efficiency of the key cyclization, we have 

undertaken studies aimed at obtaining a better understanding of the mechanism of 

formation of the bicyclic diketone 440 as well as the key byproducts of the reaction.  This 

section summarizes our preliminary findings to date; further work in this area is being 

continued by Charnsak Thongsornkleeb in our laboratory.   
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Table 4 presents our findings with regard to the interconversion of various 

intermediates and products of the reaction.  Important points include: 

• Endocyclic enone 444 is formed irreversibly.  Under conditions similar to the 

normal reaction it does not produce either bicyclic diketone or benzofuran. 

• The benzofuran 445 forms irreversibly.  Under conditions similar to the normal 

reaction it does not produce either bicyclic diketone or endocyclic enone. 

• Bicyclic diketone 440 forms the endocyclic enone under the conditions similar to 

the normal reaction. 

 

Table 4.  Interconversion Experimentsa  

O

445

O

OH

O

444

O
O

O

440

OH

O

O

442

OH

 

Entry Starting 
Material Conditions 440 444 445 

1 442 QCS, 40 °C, 48 h YES YES -- 

2 442 PPTS, 80 °C, 45 min YES YES YES 

3 440 PPTS, 111 °C, 2 h, 100+ eq H2O -- YES -- 

4 444 PPTS, 111 °C, 2 h no reaction  

5 444 PPTS, 111 ºC, 2 h, 100+ eq H2O no reaction  

6 445 PPTS, 111 ºC, 2 h no reaction  
aAll reactions were run in benzene or toluene at a concentration of 0.02M using 1.0 equiv of the indicated 
acid.  The formation of 440, 444, and 445 was monitored by TLC analysis. 
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It should be noted that the effect of water in these interconversion experiments 

has not been fully examined at this time.  Certain reactions run with excess water present 

may not accurately simulate the normal reaction conditions.  Further studies of the effect 

of water are currently underway.   

Based on the preliminary results presented in Table 4, the following scheme 

outlines our current thoughts with regard to the mechanism of formation of the desired 

bicyclic diketone and the two principal byproducts of the reaction.  Elimination of water 

can form the exocyclic enone 439 which can cyclize to produce the desired bicyclic 

diketone 440.  In competition with this process, isomerization to the endocyclic enone 

can take place, for example, via the dienol.  In addition, the bicyclic product 440 can 

undergo ring-opening after protonation to also afford the endocyclic enone 444. 
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A more complicated question involves the mechanism for formation of the 

benzofuran byproduct.  We believe that this compound is generated via a 1,2-methyl shift 

involving an intermediate such as 446; methyl migration then produces a highly 

stabilized carbocation and elimination furnishes the aromatic benzofuran. 

Routes to this intermediate (446) can be envisioned beginning with either the 

bicyclic product 440, or the endocyclic enone 444; however, preliminary experiments 

(Table 4) indicate that these compounds do not afford benzofuran upon exposure to 

PPTS.  As noted earlier, these preliminary experiments were not carried out under 

conditions which accurately simulate the normal reaction, and so we cannot rule out the 

possibility that 440 or 444 give rise to benzofuran 445 under the normal reaction 

conditions. 

 Further studies on the mechanism will focus on the proposed exocyclic enone 

intermediate 439.  When the reaction of diol 442 is carried out with 1.0 equiv of PPTS in 

benzene at reflux in the presence of 4Å MS, a mixture of the desired bicyclic product 

440, endocyclic enone 444, and a new enone was isolated.  This latter compound appears 

to be the exocyclic enone 439 (stereochemical assignment tentative). 

 Surprisingly, exposure of this enone to PPTS in refluxing toluene led to 

isomerization to the endocyclic enone 444, and none of the expected bicyclic diketone 

was observed to form.  Further studies are needed to examine the role of water in this 

cyclization. 
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Scheme 137 
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Further work by Charnsak Thongsornkleeb is underway to answer a number of 

remaining questions concerning this complex reaction.  The remainder of this chapter 

describes our progress with the remaining steps of this approach to the synthesis of the 

A-ring enyne intermediate. 

 

Construction of the Enyne 

After a number of optimization reactions, we accumulated a sufficient quantity of 

the bicyclic ketone 440 to begin exploring the conversion of this compound to the key 

A-ring building block 340.  Our plan involved conversion of the methyl ketone to the 

vinyl triflate and cross-coupling, a strategy similar to one employed by Dr. Mellon on a 
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related substrate (see Chapter 2).  However, exposure of the ketone 440 to LDA and 

PhNTf2 led to an intramolecular aldol reaction producing tricyclic compound 448 

(Scheme 138).  Although this aldol reaction should be reversible, no vinyl triflate 449 

was observed. 
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Concurrent with our studies of routes based on bicyclic ketone 440, we also 

investigated alternative strategies involving other precursors to the desired enyne.  For 

example, we hypothesized that the use of amide 451 instead of the methyl ketone 440 

(Scheme 139) could eliminate the need to form vinyl triflate 449, as addition of lithium 

acetylide to the amide 451 would provide ynone 452, which could then be olefinated218 

under a variety of conditions. 

 

 

                                                           
218 For an example of the construction of an enyne via olefination of an ynone, see:  Hoffmann, H. M. R.; 
Krumwiede, D.; Mucha, B.; Oehlerking, H. H.; Prahst, G. W. Tetrahedron 1993, 49, 8999.  
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Scheme 139 
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The study of this amide strategy was carried out by Charnsak Thongsornkleeb and 

focused on the use of the glyoxylic amide 455 (Scheme 140),219 which was expected to 

function similarly to a Weinreb amide220 for acetylide addition.  Production of the 

hemiacetal 454 was carried out in a two-step procedure beginning with fumaroyl 

chloride, as shown in Scheme 140.  Addition of fumaroyl chloride to excess morpholine 

provided the bis-amide, ozonolysis of which provided the hemiacetal 454 in 83% overall 

yield. 221  We were unable to prepare the glyoxylic amide 455 either from the hemiacetal 

or via any other means.   

 

                                                           
219 For a recent example of the use of glyoxylic amide derivatives as electrophiles, see:  Kiegiel, K.; 
Jurczak, J. Tetrahedron Lett. 1999, 40, 2009. 
220 Nahm, S.; Weinreb, S. M. Tetrahedron Lett. 1981, 22, 3815. 
221 For a recent example of the synthesis of the hemiacetal of a glyoxylic amide derivative, see:  Bauer, T.; 
Jezewski, A.; Chapuis, C.; Jurczak, J. Tetrahedron:  Asymmetry 1996, 7, 1385. 
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Scheme 140 
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However, an acid-catalyzed aldol reaction utilizing hemiacetal 454 directly 

looked promising.  A model reaction using ketone 456 afforded the aldol condensation 

product 457 in 42% yield (Scheme 141).   
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In fact, we hoped that immediately following the acid-catalyzed aldol 

condensation with hydroxyl ketone 381, acid-catalyzed cyclization would occur to 

furnish bicyclic amide 451 in one pot.   
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Scheme 142 
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 In the event, aldol condensation proceeded in low yield to afford 458 (Scheme 

142).  No cyclization product 451 was observed, and subsequent attempts to effect the 

cyclization to afford bicyclic amide 451 met with failure.  Apparently the amide 

functionality, which is not as electron-withdrawing as the ketone, cannot facilitate the 

conjugate addition as the ketone does.  Forced to abandon this promising alternative, we 

turned our attention back to the methyl ketone 440.  We focused on methods for the 

conversion of the methyl ketone to the desired A-ring enyne 340. 

 As vinyl triflate formation was not possible under kinetic conditions (vide supra), 

we also explored thermodynamic conditions, utilizing triflic anhydride and various amine 

bases.  It was our hope that the formation of the internal vinyl triflate would be 

disfavored by steric congestion and the desired regioisomer would be produced.  

Unfortunately, no vinyl triflate was formed from these reactions and the ketone 440 was 

recovered unchanged.   

We next envisioned an addition-elimination strategy as shown in Scheme 143.  

The addition of lithium acetylide to the ketone, followed by a regioselective elimination, 

could provide a two-step route to the enyne 340.   
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Scheme 143 
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For ease of operation during small-scale reactions, we elected examine the 

feasibility of this route using trimethylsilylacetylide, expecting that on larger scale, 

lithium acetylide could be employed in an analogous fashion.  To our delight, the 

acetylide addition afforded propargylic alcohol 460 in 80% yield (Scheme 144).  In some 

cases, addition of lithium acetylides to methyl ketone proceeds in poor yield due to 

competing enolization.  In these instances cerium acetylides are often used.222  However, 

in this case we recovered no starting material from the reaction. 
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222 Imamoto, T.; Takiyama, N.; Nakamura, K.; Hatajima, T.; Kamiya, Y. J. Am. Chem. Soc. 1989, 111, 
4392. 
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 We expected that our regioselective elimination strategy might be somewhat 

problematic.  It is known that, under conditions that favor E1 pathways, the more 

substituted (Zaitsef) product is typically the major product.  Our desired product, the less 

substituted (Hofmann) product, is formed by E1 pathways only under exotic 

conditions.223  We expected that E2 pathways could favor the Hofmann product due to 

steric hindrance of removal of the neopentyl-like methylene protons.   

 Elimination of mesylates is a strategy that has been used in our group for the 

production of enynes for studies of the enyne cycloaddition (See Part I, Chapter 1).  

Although elimination of the mesylate would likely favor the Zaitsef product, it was a 

straightforward beginning for our elimination studies.  However, attempts at formation of 

the mesylate and in situ elimination with a variety of amine bases including triethylamine 

and DBU led to imcomplete reactions.  As determined by 1H NMR analysis of the crude 

reaction mixtures, these reactions yielded mixtures of the Zaitsef and Hofmann products. 

 Attempts to synthesize the tosylate and phenyl carbonate derivatives of the 

alcohol were unsuccessful.  We had hoped that these leaving groups, having less ionic 

character than the mesylate, would favor an E2 pathway. 

Success was finally achieved by utilizing the Burgess reagent (Scheme 145).224  

Addition of 1.1 equiv of the reagent to a THF solution of the tertiary alcohol at rt effected 

clean conversion to a mixture of enynes in 15 min.  A statistical mixture of enynes (ca. 

60:40 based on analysis of the 1H NMR spectrum of the crude material) was formed in 

                                                           
223 For an overview of elimination reactions, see:  March, J. Advanced Organic Chemistry, 4th ed.; Wiley:  
New York, 1992; pp 982-1010. 
224 Burgess, E. M.; Penton, H. R., Jr.; Taylor, E. A.; Williams, W. M. Org. Synth. 1977, 56, 40. 
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which 461 was the major isomer.  The desired enyne 461 could be separated from the 

minor isomer via preparative HPLC, and was isolated in 40% yield. 
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 A simple desilylation reaction was all that remained for the synthesis of the enyne 

340.  This reaction was carried out with catalytic potassium carbonate in methanol, and 

provided the enyne 340 in 54% yield.   

 

Summary 

 A novel acid-catalyzed cyclization strategy was developed for the synthesis of the 

enyne 340 in only 6 steps from the hydroxy ketone 381.  This route, though it has 

drawbacks, is a significant improvement over the first-generation route for the synthesis 

of enyne 340 which required 14 steps.  Further studies are ongoing for the development 

of even more efficient routes and the final completion of the total synthesis of 

glycinoeclepin A. 
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Part III 

 

Experimental Section 
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General Procedures 

All reactions were performed in flame-dried or oven-dried glassware under a 

positive pressure of argon unless otherwise indicated.  Reaction mixtures, with the 

exception of sealed-tube reactions, were stirred magnetically unless otherwise indicated.  

Air- and moisture-sensitive liquids and solutions were transferred via syringe or cannula 

and were introduced into reaction vessels through rubber septa.  Reaction product 

solutions and chromatography fractions were concentrated using a Büchi rotary 

evaporator at ca. 20 mmHg and then at ca. 0.1 mmHg (vacuum pump) unless otherwise 

indicated.   

 

Materials 

Commercial grade reagents and solvents were used without further purification 

except as indicated below.   

Tetrahydrofuran and diethyl ether were distilled from sodium benzophenone ketyl 

or dianion or purified by pressure filtration through activated alumina.   

Methylene chloride and toluene were distilled from calcium hydride or purified 

by pressure filtration through activated alumina.   

Dimethyl sulfoxide and dimethylformamide were EM Dri-Solv grade and used as 

received.   

Diethylamine, diisopropylamine, trimethylsilyl chloride, and pyridine were 

distilled from calcium hydride.   

Acetic anhydride was distilled from quinoline.   
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Acetaldehyde, methyl chloroformate, γ-terpinene, propargyl chloride, 

1-butyn-3-ol, and methacrolein were distilled under an argon atmosphere.   

Copper (I) iodide was continuously extracted with tetrahydrofuran for 18 h.225 

α,α'-Dibromo-o-xylene was recrystallized from chloroform.   

Paraformaldehyde was dried under vacuum over phosphorum pentoxide for 48 h.   

Alkyllithium reagents were titrated in tetrahydrofuran or hexane at 0 °C with sec-

butanol or menthol using 1,10-phenanthroline as an indicator.226   

Ozone was generated using a Welsbach ozone generator. 

Diazomethane was generated from N-nitroso-N-methylurea according to the 

procedure of Arndt.227 

 

Chromatography 

Analytical and preparative thin layer chromatography was performed on Merck 

precoated glass-backed silica gel 60 F-254 0.25 mm plates.  Visualization was effected 

by one or more of the following techniques: (a) ultraviolet illumination, (b) exposure to 

iodine vapor, (c) immersion of the plate in an ethanolic solution of 3% p-anisaldehyde 

containing 0.5% concentrated sulfuric acid followed by heating to ca. 200 °C, (d) 

immersion of the plate in an ethanolic solution of 3% p-vanillin containing 0.5% 

concentrated sulfuric acid followed by heating to ca. 200 °C, (e) immersion of the plate in 

a 10% solution of phosphomolybdic acid in ethanol followed by heating to ca. 200 °C, (f) 

immersion of the plate in an aqueous solution of 6% ammonium molybdate and 1% 

                                                           
225 Taylor, R. J. K. Organocopper Reagents:  A Practical Approach; Oxford University Press:  Oxford, 
1994; pp 39-40. 
226 Watson, S. C.; Eastham, J. F. J. Organomet. Chem. 1967, 9, 165. 
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cerium(IV) sulfate containing 12% concentrated sulfuric acid followed by heating to ca. 

200 °C. 

Column chromatography was performed on EM Science silica gel 60 (35-75 um) 

or Silicycle silica gel 60 (230-400 mesh). 

 

Instrumentation 

Melting points were determined with a Fisher-Johns melting point apparatus and 

are uncorrected.  

1H NMR spectra were measured with Varian XL-300 (300 MHz), Unity-300 (300 

MHz), and Inova-500 (500MHz) spectrometers with CDCl3 as solvent unless otherwise 

indicated.  1H NMR chemical shifts are expressed in parts per million (δ) relative to 

tetramethylsilane, with the CHCl3 peak at 7.26 ppm used as reference.   

13C NMR spectra were measured with Varian XL-300 (75 MHz), Unity-300 (75 

MHz), and Inova-500 (125MHz) spectrometers with CDCl3 as solvent unless otherwise 

indicated.  13C NMR chemical shifts are expressed in parts per million (δ) relative to 

tetramethylsilane, with the central peak of CDCl3 at 77.23 ppm used as reference.   

Infrared spectra were obtained on a Perkin-Elmer 1320 grating 

spectrophotometer, a Perkin-Elmer 1600 Fourier Transform spectrophotometer, or a 

Perkin-Elmer 2000 Fourier Transform spectrophotometer.   

High-resolution mass spectra were obtained on a Finnegan MATT-8200 

spectrometer or a Bruker Daltonics APEX 3 Tesla Fourier Transform spectrometer.   

                                                           
227 Arndt, F. Organic Syntheses; Wiley & Sons:  New York, 1943; Collect. Vol. 2, p 165. 
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Low-resolution mass spectra were obtained on an HP 5890 Series II Gas 

Chromatograph with an HP 5971 Mass Selective Detector.   

Elemental analyses were performed by Complete Analysis Laboratories, Inc. of 

Parsippany, New Jersey. 

 

Note on Compounds Previously Prepared in Our Group 

 Compounds 199 and 200 were previously prepared by Dr. Melanie S. B. Wills228 

and are reported here with modified experimental details and updated spectral and 

analytical data. 

 Methyl 1-methyl-4,5-dihydroisobenzofuran-3-carboxylate (219) was prepared in 

six steps according to procedures described by Dr. Wills.228  

 

 

 

 

 

 

 

 

 

                                                           
228 Wills, M. S. B. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, June 1998. 
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EtO2C

EtO2C
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OSit-BuMe2EtO2C

EtO2C
OSit-BuMe2

255  

 

Diethyl 2,2-bis(4-t-butyldimethylsilyloxypent-2-ynyl)malonate (255).   

A 100-mL three-necked, round-bottomed flask equipped with a rubber septum, 

glass stopper, and argon inlet adapter, was charged with diethyl malonate (0.688 g, 0.652 

mL, 4.30 mmol) and 40 mL of tetrahydrofuran.  Sodium hydride (60% dispersion in 

mineral oil, 0.360 g, 9.01 mmol) was added slowly over 3 min.  

4-t-Butyldimethylsilyloxy-1-chloro-2-pentyne229 (2.00 g, 8.59 mmol) was added via 

syringe over 3 min and the reaction mixture was heated at reflux for 5 h.  The resulting 

solution was cooled and additional sodium hydride (60% dispersion in mineral oil, 

0.180 g, 4.50 mmol) and sodium iodide (0.064 g, 0.43 mmol) were added, and the 

reaction mixture was heated at reflux for an additional 19 h.  The resulting solution was 

then cooled to rt, saturated aqueous NH4Cl (10 mL) was added, and the aqueous layer 

was washed with three 10-mL portions of ether, and the combined organic layers were 

washed with 10 mL of brine, dried over MgSO4, filtered, and concentrated to afford 

1.68 g of a yellow oil which was purified by column chromatography on 40 g of silica gel 

(gradient elution with 0-10% MTBE-hexane) to afford 0.940 g (40%) of 255 as a 

colorless oil.   

 

                                                           
229 Chen, C.-C.; Fan, J.-S.; Shieh, S.-J.; Lee, G.-H.; Peng, S.-M.; Wang, S.-L.; Liu, R.-S.  J. Am. Chem. Soc. 
1996, 118, 9279. 
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IR (film): 2930, 2857, 2238, 1741, 1207, 1102 cm-1.   
 
1H NMR (500 MHz, CDCl3): δ 4.44 (qt, J = 6.5 Hz, 1.7 Hz, 2H), 4.18 (qd, J = 7.1 

Hz, 1.8 Hz, 4H), 2.94 (d, J = 1.5 Hz, 4H), 1.33 (d, J 
= 6.4 Hz, 6H), 1.24 (t, J = 7.2 Hz, 6H), 0.87 (s, 
18H), 0.09 (s, 6H), 0.08 (s, 6H).   

 
13C NMR (125 MHz, CDCl3): δ 169.0, 86.2, 77.8, 62.0, 59.19, 56.8, 26.0, 25.8, 

22.9, 18.4, 14.3, -4.4, -4.8.   
 
MS (m/z): 552 (M+).   
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OSit-BuMe2EtO2C

EtO2C
OSit-BuMe2
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Diethyl 2,2-bis(4-hydroxypent-2-ynyl)malonate (256).   

A 25-mL, round-bottomed flask equipped with a rubber septum with argon inlet 

needle was charged with 15 mL of tetrahydrofuran and diethyl 

2,2-bis(4-t-butyldimethylsilyloxypent-2-ynyl)malonate (255) (0.823 g, 1.56 mmol) and 

then cooled to 0 °C.  Tetra-n-butylammonium fluoride (1.0 M solution in tetrahydrofuran, 

3.44 mL, 3.44 mmol) was added via syringe over 2 min, and the reaction mixture stirred 

5 h at 0 °C.  Saturated aqueous NH4Cl (10 mL) was added, and the aqueous layer was 

separated and washed with three 10-mL portions of ether, and the combined organic 

layers were washed with 10 mL of brine, dried over MgSO4, filtered, and concentrated to 

afford 0.573 g of a yellow oil which was purified by column chromatography on 25 g of 

silica gel (gradient elution with 40-70% MTBE-hexane) to afford 0.440 g (87%) of 256 

as a colorless oil.   

 

IR (film): 3484, 2988, 2251, 1718, 1197, 1156 cm-1.   
 
1H NMR (500 MHz, CDCl3): δ 4.42 (q, J = 6.5 Hz, 2H), 4.18 (q, J = 7.1 Hz, 4H), 

3.05 (s, 2H), 2.92 (d, J = 1.5 Hz, 4H), 1.35 (d, J = 
6.7 Hz, 6H), 1.22 (t, J = 7.1 Hz, 6H).   

 
13C NMR (125 MHz, CDCl3): δ 169.2, 86.0, 78.3, 62.2, 58.2, 56.8, 24.5, 22.9, 

14.2.   
 
MS (m/z):  324 (M+).   
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Diethyl 2,2-bis(4-oxopent-2-ynyl)malonate (249).   

A 50-mL, round-bottomed flask equipped with a rubber septum with argon inlet 

needle was charged with diethyl 2,2-bis(4-hydroxypent-2-ynyl)malonate (256) (0.440 g, 

1.36 mmol), 30 mL of dichloromethane, and Dess-Martin periodinane (1.27 g, 2.98 

mmol).  The solution was stirred at 25 °C for 1 h and then concentrated by rotary 

evaporation.  The residue was diluted with 20 mL of diethyl ether and 20 mL of saturated 

NaHCO3 solution, and the aqueous layer was separated and extracted with two 30-mL 

portions of diethyl ether.  The combined organic phases were washed with two 30-mL 

portions of a 1:1 mixture of saturated NaHCO3 and saturated Na2S2O3 solution, 30 mL of 

saturated NaCl solution, dried over MgSO4, filtered, and concentrated to afford 0.400 g 

of a yellow oil.  Column chromatography on 20 g of silica gel (gradient elution with 

20-50% MTBE-hexane) afforded 0.381 g (88%) of 249 as a colorless oil.  

 

IR (film): 2984, 2213, 1737, 1679, 1206, 1195 cm-1.   
 
1H NMR (500 MHz, CDCl3): δ 4.24 (q, J = 7.1 Hz, 4H), 3.13 (s, 4H), 2.30 (s, 

6H), 1.26 (t, J = 7.1 Hz, 6H).   
 
13C NMR (125 MHz, CDCl3): δ 184.1, 167.9, 86.5, 83.9, 62.8, 56.0, 33.0, 23.5, 

14.2.   
 
MS (m/z):  320 (M+).   
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Diethyl 3-acetyl-1-methyl-4H-isobenzofuran-5,5-dicarboxylate (250).   

An oven-dried threaded Pyrex tube (ca. 10 mL capacity) equipped with a rubber 

septum and argon inlet needle was charged with diyne 249 (0.153 g, 0.478 mmol), 

2.5 mL of toluene, and γ-terpinene (0.092 mL, 0.078 g, 0.525 mmol).  The solution was 

degassed by four freeze-pump-thaw cycles, and the tube was then sealed with a Teflon 

cap.  The sealed tube was placed in a preheated oil bath at 180 °C for 24 h, and then 

allowed to cool to rt.  Concentration gave 0.276 g of a brown oil, which was purified by 

column chromatography on 10 g of silica gel (gradient elution with 0-50% MTBE-

hexane) to afford 0.136 g (89%) of 250 as a colorless oil. 

 

IR (film): 3000, 2926, 1734, 1670, 1594, 1561, 1255, 1235 
cm-1.   

 
1H NMR (500MHz, CDCl3): δ 6.52 (d, J = 9.8 Hz, 1H), 6.04 (d, J = 9.8 Hz, 1H), 

4.18 (q, J = 7.0 Hz, 2H), 3.54 (s, 2H), 2.44 (s, 3H), 
2.33 (s, 3H), 1.24 (t, J = 7.0 Hz, 6H).  

 
13C NMR (125 MHz, CDCl3): δ 188.0, 170.0, 150.3, 146.1, 126.9, 123.8, 120.2, 

118.3, 62.1, 55.0, 27.1, 27.0, 14.2, 12.4.   
 
Anal. Calcd. for C17H20O6:   C, 63.74; H, 6.29.   
Found:   C, 63.82; H, 6.41. 



 213

 

O
Et
O
2C

Et
O
2C

O

25
0



 214

TsN
TsN

OH

261 262  

 

N-(4-hydroxypent-2-ynyl)-N-prop-2-ynyl-p-toluenesulfonamide (262).   

A 50-mL, three-necked, round-bottomed flask equipped with a rubber septum, 

glass stopper, and argon inlet adapter, was charged with 17 mL of tetrahydrofuran and 

N,N-dipropargylsulfonamide230 (0.547 g, 2.21 mmol), and cooled to -78 °C.  

n-Butyllithium (2.30 M solution in hexanes, 0.960 mL, 2.21 mmol) was added dropwise 

via syringe over 3 min and the resulting solution was allowed to warm to 10 °C over 1.5 

h.  Acetaldehyde (0.487 g, 0.618 mL, 11.1 mmol) was added in one portion via syringe 

and the reaction mixture was allowed to warm to rt over 14 h.  Saturated aqueous NH4Cl 

(10 mL) was then added, and the aqueous layer was separated and washed with three 

10-mL portions of ether.  The combined organic layers were washed with 10 mL of brine, 

dried over MgSO4, filtered, and concentrated to give 0.938 g of an orange oil which was 

purified by column chromatography on 30 g of silica gel (gradient elution with 40-80 % 

MTBE-hexane) to give 0.429 g (70%) of 262 as a colorless oil.   

 

IR (neat): 3420, 3275, 3040, 2975, 2920, 2110, 1590, 1350, 
1160 cm-1.   

 
1H NMR (500 MHz, CDCl3): δ 7.71 (d, J = 8.5 Hz, 2H), 7.31 (d, J = 8.2 Hz, 2H), 

4.34 (m, 1H), 4.19 (d, J = 1.5 Hz, 2H), 4.14 (d, J = 
2.4 Hz, 2H), 2.43 (s, 3H), 2.17 (t, J = 2.4 Hz, 1H), 
1.28 (d, J = 6.7 Hz, 3H).   

                                                           
230 Oppolzer, W.; Pimm, A.; Stammen, B.; Hume, W. E. Helv. Chim. Acta 1997, 80, 623. 



 215

13C NMR (125 MHz, CDCl3): δ 144.2, 135.4, 129.7, 128.1, 88.0, 75.5, 76.4, 74.2, 
58.2, 36.6, 36.5, 24.1, 21.7.   

 
MS (m/z): 291 (M+). 
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N-(4-hydroxybut-2-ynyl)-N-(4-hydroxypent-2-ynyl)-p-toluenesulfonamide (263).   

A 50-mL, three-necked, round-bottomed flask equipped with a rubber septum, 

glass stopper, and argon inlet adapter, was charged with 15 mL of tetrahydrofuran and 

N-(4-hydroxypent-2-ynyl)-N-prop-2-ynyl-p-toluenesulfonamide (262) (0.350 g, 1.26 

mmol), and cooled to -78 °C.  n-Butyllithium (2.30 M solution in hexanes, 1.26 mL, 2.90 

mmol) was added dropwise via syringe over 4 min and the solution was stirred for 30 

min.  Paraformaldehyde (0.303 g, 10.1 mmol) was added in one portion and the reaction 

mixture was allowed to warm to rt over 5 h.  Saturated aqueous NH4Cl (10 mL) was 

added, and the aqueous layer was washed with three 10-mL portions of ether, then the 

combined organic layers were washed with 10 mL of brine, dried over MgSO4, filtered, 

and concentrated to give 0.315 g of an orange oil which was purified by column 

chromatography on 25 g of silica gel (gradient elution with 60-80 % MTBE-hexane) to 

give 0.127 g (31%) of 263 as a colorless oil.   

 

IR (film): 3386, 2979, 2930, 2361, 2335, 1348, 1162 cm-1.   
 
1H NMR (500 MHz, CDCl3): δ 7.74 (d, J = 8.2 Hz, 2H), 7.31 (d, J = 7.9 Hz, 2H), 

4.33 (qt, J = 6.7, 1.7 Hz, 1H), 4.17 (d, J = 1.8 Hz, 
2H), 4.16 (t, J = 1.8 Hz, 2H), 4.09 (t, J = 1.8 Hz, 
2H), 2.42 (s, 3H), 2.40 (br s, 2H), 1.27 (d, J = 6.7 
Hz, 3H).   
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13C NMR (125 MHz, CDCl3): δ 144.3, 135.6, 129.7, 128.3, 87.9, 84.3, 78.6, 76.8, 
58.2, 58.2, 50.9, 37.3, 24.1, 21.7.   

 
MS (m/z):  303 (M-H2O+).   
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N-(4-oxobut-2-ynyl)-N-(4-oxopent-2-ynyl)-p-toluenesulfonamide (257).   

A 50-mL, round-bottomed flask equipped with a rubber septum with argon inlet 

needle was charged with N-(4-hydroxybut-2-ynyl)-N-(4-hydroxypent-2-ynyl)-p-

toluenesulfonamide (263) (0.105 g, 0.327 mmol), 10 mL of dichloromethane, and Dess-

Martin periodinane (0.305 g, 0.719 mmol).  The solution was stirred at 25 °C for 1 h and 

then concentrated and diluted with 10 mL of diethyl ether and 10 mL of saturated 

NaHCO3 solution.  The aqueous layer was separated and extracted with two 20-mL 

portions of diethyl ether.  The combined organic phases were washed with two 20-mL 

portions of a 1:1 mixture of saturated NaHCO3 and saturated Na2S2O3 solution, 30 mL of 

saturated NaCl solution, dried over MgSO4, filtered, and concentrated to afford 0.093 g 

of a yellow oil.  Column chromatography on 10 g of silica gel (gradient elution with 20-

50% MTBE-hexane) afforded 0.085 g (81%) of 257 as a pale yellow oil.  

 

 IR (film): 3030, 2968, 2923, 2873, 2251, 2211, 1676, 1597, 
1352, 1162 cm-1.   

 

1H NMR (300 MHz, CDCl3): δ 9.01 (s, 1H), 7.72 (d, J = 8.5 Hz, 2H), 7.33 (d, J = 
8.0 Hz, 2H), 4.35 (d, J = 2.5 Hz, 2H), 4.31 (d, J = 
3.0 Hz, 2H), 2.42 (s, 3H), 2.20 (s, 3H).   

 
13C NMR (125 MHz, CDCl3): δ 183.4, 175.8, 145.1, 134.5, 130.0, 128.0, 88.0, 

85.3, 84.9, 83.0, 37.2, 37.2, 32.5, 21.7.   
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3-Formyl-1-methyl-5-(p-toluenesulfonyl)-4,5-dihydrofuro[3,4-c]pyridine (258) and  

3-Acetyl-5-(p-toluenesulfonyl)-4,5-dihydrofuro[3,4-c]pyridine (259).   

A 10-mL, one-necked, round-bottomed flask equipped with a rubber septum and argon 

inlet needle was charged with the diyne 257 (0.086 g, 0.27 mmol), 3 mL of toluene, and 

γ-terpinene (0.053 mL, 0.045 g, 0.30 mmol).  The solution was degassed with a stream of 

argon for 1 h, and the septum was then replaced with a water-jacketed condenser and 

argon inlet adapter.  The reaction mixture was heated at reflux (111 °C) for 24 h, and then 

allowed to cool to rt.  Concentration gave 0.122 g of an orange oil which was purified by 

column chromatography on 8 g of silica gel (gradient elution with 30% diethyl ether-

pentane) to give 0.058 g (68%) of an inseparable mixture of 258 and 259 as a yellow oil 

(87:13 by gas chromatographic analysis).   

 

For the mixture:  
 
IR (film): 3055, 2986, 1673, 1646, 1594, 1565, 1358, 1169 

cm-1.   
 
HRMS(EI) Calcd. for C16H15NO4S:  317.0722.   
Found: 317.0718.   
 
Anal. Calcd. for C16H15NO4S:   C, 60.55; H, 4.76; N, 4.41.   
Found:   C, 60.05; H, 4.22; N, 4.10.   
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For 258:   
 
1H NMR (500 MHz, CDCl3):   δ 9.57 (s, 1H), 7.72 (d, J = 8.2 Hz, 2H), 7.32 (d, J = 

7.9 Hz, 2H), 6.76 (d, J = 8.2 Hz, 1H), 5.57 (d, J = 
7.9 Hz, 1H), 4.81 (s, 2H), 2.42 (s, 3H), 2.29 (s, 3H).   

 
13C NMR (125 MHz, CDCl3) :   δ 188.8, 144.7, 137.1, 134.2, 130.2, 127.5, 125.5, 

119.8, 116.3, 110.3, 97.6, 41.5, 21.8, 12.5.   
 
For 259 (partial): 
  
1H NMR:   δ 7.17 (s, 1H), 2.37 (s, 3H), 2.26 (s, 3H).  
 
13C NMR:   δ 42.2, 26.6. 
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N,N-bis(4-hydroxybut-2-ynyl)-p-toluenesulfonamide231 (271).   

A 50-mL, round-bottomed flask equipped with a water-jacketed condenser fitted 

with an argon inlet adapter was charged with 30 mL of acetone, p-toluenesulfonamide 

(260) (0.786 g, 4.59 mmol), 4-chlorobut-2-yn-1-ol232 (1.20 g, 11.5 mmol), and potassium 

carbonate (1.59 g, 11.5 mmol), and then heated at reflux for 72 h.  The resulting brown 

mixture was concentrated in vacuo and the residue partitioned between 25 mL of H2O 

and 25 mL of MTBE.  The aqueous layer was extracted with three 10-mL portions of 

MTBE, and the combined organic layers were washed with 10 mL of brine, dried over 

MgSO4, filtered, and concentrated to give 1.95 g of a brown oil which was purified by 

column chromatography on 25 g of silica gel (gradient elution with 50-100 % MTBE-

hexane) to give 271 as an off-white solid which was recrystallized from CHCl3 to afford 

1.015 g (72%) of a white solid, mp 93.0-94.0 °C.   

 

IR (CH2Cl2): 3404, 3000, 2926, 2359, 2342, 1716, 1346, 1161 
cm-1.   

 
1H NMR (500 MHz, CDCl3): δ 7.75 (d, J = 8.2 Hz, 2H), 7.33 (d, J = 8.2 Hz, 2H), 

4.18 (s, 4H), 4.10 (s, 4H), 2.44 (s, 3H), 2.06 (s, 2H).   
 
13C NMR (125 MHz, CDCl3): δ 144.3, 135.6, 129.6, 128.4, 84.3, 78.6, 51.0, 37.4, 

21.8.   
                                                           
231 This compound has previously been prepared using 4-bromobut-2-yn-1-ol.  See Gleiter, R; Ritter, J.; 
Irngartinger, H.; Lichtenthaeler, J. Tetrahedron Lett. 1991, 32, 2883. 
232 Brandsma, L.; Verkruijsse, H. D. Synthesis of Acetylenes, Allenes, and Cumulenes; Elsevier: 
Amsterdam, 1981; p 65. 
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MS (m/z):  289 (M-H2O+).   
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N,N-bis(4-oxobut-2-ynyl)-p-toluenesulfonamide (269).   

A 50-mL, round-bottomed flask equipped with a rubber septum with argon inlet 

needle was charged with N,N-bis(4-hydroxybut-2-ynyl)-p-toluenesulfonamide (271) 

(0.401 g, 1.30 mmol), 30 mL of dichloromethane, and Dess-Martin periodinane (1.22 g, 

2.87 mmol).  The solution was stirred at 25 °C for 1 h and then concentrated and diluted 

with 20 mL of diethyl ether and 20 mL of saturated NaHCO3 solution.  The aqueous layer 

was separated and extracted with two 30-mL portions of diethyl ether.  The combined 

organic phases were washed with two 30-mL portions of a 1:1 mixture of saturated 

NaHCO3 and saturated Na2S2O3 solution, 30 mL of saturated NaCl solution, dried over 

MgSO4, filtered, and concentrated to afford 0.456 g of a yellow oil.  Column 

chromatography on 20 g of silica gel (gradient elution with 20-50% MTBE-hexane) 

afforded 0.370 g (94%) of 269 as a pale yellow oil.   

 

IR (film): 3055, 2973, 2871, 2743, 2254, 2200, 1673, 1352, 
1164 cm-1.   

 
1H NMR (500 MHz, CDCl3): δ 9.01 (s, 2H), 7.71 (d, J = 8.2 Hz, 2H), 7.33 (d, J = 

8.2 Hz, 2H), 4.36 (s, 4H), 2.42 (s, 3H).   
 
13C NMR (125 MHz, CDCl3): δ 175.7, 145.3, 134.3, 130.1, 128.0, 87.8, 85.0, 37.3, 

21.7.   
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3-Formyl-5-(p-toluenesulfonyl)-4,5-dihydrofuro[3,4-c]pyridine (270).   

A 10-mL, one-necked, round-bottomed flask equipped with a rubber septum and 

argon inlet needle was charged with the diyne 269 (0.176 g, 0.581 mmol), 5 mL of 

toluene, and γ-terpinene (0.095 g, 0.112 mL, 0.639 mmol).  The solution was degassed 

with a stream of argon for 1 h, and the septum was then replaced with a water-jacketed 

condenser and argon inlet adapter.  The reaction mixture was heated at reflux (111 °C) 

for 24 h, and then allowed to cool to rt.  Concentration gave 0.212 mg of a brown oil, 

which was purified by column chromatography on 15 g of silica gel (gradient elution 

with 10-40% MTBE-hexane) to give 0.132 g (75%) of 270 as a white solid, mp 130.0-

131.0 °C.   

 

IR (film): 3054, 2986, 1681, 1594, 1548, 1359, 1171 cm-1.   
 
1H NMR (500 MHz, CDCl3): δ 9.64 (d, J = 0.6 Hz, 1H), 7.69 (d, J = 8.2 Hz, 2H), 

7.29 (d, J = 7.9 Hz, 2H), 7.22 (d, J = 0.6 Hz, 1H), 
6.79 (d, J = 7.9 Hz, 1H), 5.61 (d, J = 8.2 Hz, 1H), 
4.82 (s, 2H), 2.38 (s, 3H).   

 
13C NMR (125 MHz, CDCl3): δ 179.6, 146.5, 144.8, 139.3, 134.2, 130.3, 127.5, 

126.9, 120.2, 97.1, 41.5, 21.8.   
 
Anal. Calcd. for C15H13NO4S:   C, 59.39; H, 4.32; N, 4.62.   
Found:   C, 59.28; H, 4.34; N, 4.54. 
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2-(Trimethylsilylethynyl)-2-(4-phenylbut-3-ynyl)-1,3-dithiane (285).   

A 100-mL, three-necked, round-bottomed flask equipped with a rubber septum, 

glass stopper, and argon inlet adapter, was charged with 25 mL of tetrahydrofuran and 

2-(trimethylsilylethynyl)-1,3-dithiane233 (0.147 g, 0.679 mmol) and cooled to -78 °C.  

n-Butyllithium (2.60 M solution in hexanes, 0.287 mL, 0.747 mmol) was added dropwise 

via syringe over 2 min, and the resulting yellow solution was allowed to warm to -50 °C 

over 1 h.  The reaction mixture was cooled to -78 °C and 4-iodo-1-phenyl-1-butyne234 

(0.191 g, 0.747 mmol) was added via syringe over 1 min.  The reaction mixture was 

allowed to warm to rt over 2.5 h, and then quenched by the addition of saturated aqueous 

NH4Cl (10 mL).  The aqueous layer was separated and extracted with three 10-mL 

portions of diethyl ether, and the combined organic phases were washed with 30 mL of 

saturated NaCl solution, dried over MgSO4, filtered, and concentrated to afford 0.243 g 

of a yellow oil which was purified by column chromatography on 20 g of silica gel 

(gradient elution with 0-10% MTBE-hexane) to afford 0.232 g (99%) of 285 as a yellow 

oil.   

 

IR (film): 2955, 2905, 2234, 2156 cm-1.   
 

                                                           
233 Andersen, N.H.; Denniston, A. D.; McCrae, D. A. J. Org. Chem. 1982, 47, 1146. 
234 Ozaki, S.; Mitoh, S.; Ohmori, H. Chem. Pharm. Bull. 1995, 43, 1435. 
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1H NMR (500 MHz, CDCl3): δ 7.40-7.42 (m, 2H), 7.28-7.30 (m, 3H), 3.33 (t, J = 
12.5 Hz, 2H), 2.81-2.85 (m, 4H), 2.32 (t, J = 8.5 
Hz, 2H), 2.17 (d, J = 14.0 Hz, 1H), 1.86 (q, J = 14.0 
Hz, 1H), 0.24 (s, 9H).   

 
13C NMR (125 MHz, CDCl3): δ 131.7, 128.4, 127.9, 123.8, 103.1, 92.5, 88.9, 81.4, 

46.1, 40.5, 28.9, 25.8, 15.5, 0.3.  
 
MS (m/z):  344 (M+).   
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2-Ethynyl-2-(4-phenylbut-3-ynyl)-1,3-dithiane (286).   

A 50-mL, round-bottomed flask equipped with a Teflon stir bar was charged with 

2-(trimethylsilylethynyl)-2-(4-phenylbut-3-ynyl)-1,3-dithiane (285) (0.745 g, 2.73 

mmol), 15 mL of methanol, 5 mL of CH2Cl2, and K2CO3 (0.100 g, 0.72 mmol), and 

stirred at rt for 2 h.  The reaction mixture was concentrated, and the residue was 

suspended in 10 mL of CH2Cl2, washed with two 5-mL portions of saturated aqueous 

NH4Cl and 5 mL of brine, dried over MgSO4, filtered, and concentrated to afford 0.600 g 

of a yellow oil which was purified by column chromatography on 20 g of silica gel 

(gradient elution with 0-20% MTBE-hexane) to afford 0.502 g (85%) of 286 as a pale 

yellow oil.   

 

IR (film): 3286, 3054, 2906, 2359, 2233 cm-1.   
 
1H NMR (500 MHz, CDCl3): δ 7.39-7.41 (m, 2H), 7.27-7.29 (m, 3H), 3.39-3.33 

(m, 2H), 2.91 (s, 1H), 2.81-2.86 (m, 4H), 2.36-2.33 
(m, 2H), 2.16-2.20 (m, 1H), 1.83-1.91 (m, 1H).   

 
13C NMR (125 MHz, CDCl3): δ 131.8, 128.4, 127.9, 123.8, 88.7, 82.5, 81.5, 75.3, 

45.2, 40.6, 28.8, 25.7, 15.5.   
 
MS (m/z):  272 (M+).   
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2-(3-Oxobut-1-ynyl)-2-(4-phenylbut-3-ynyl)-1,3-dithiane (272).   

A 50-mL, three-necked, round-bottomed flask equipped with an argon inlet 

adapter, glass stopper, and rubber septum, was charged with 2-ethynyl-2-(4-phenylbut-3-

ynyl)-1,3-dithiane (286) (0.486 g, 1.78 mmol) and 20 mL of tetrahydrofuran, and cooled 

at -78 °C with a dry ice-acetone bath.  n-Butyllithium (2.60 M in hexanes, 0.750 mL, 

1.95 mmol) was added dropwise via syringe over 3 min and the resulting mixture was 

stirred at -78 °C for 1 h.  A 50-L, three-necked, round-bottomed flask equipped with an 

argon inlet adapter, rubber septum, and glass stopper was charged with acetic anhydride 

(1.82 g, 1.68 mL, 17.8 mmol) and 10 mL of tetrahydrofuran, and the resulting solution 

was cooled at -78 °C with a dry ice-acetone bath.  The lithium acetylide solution was 

transferred into this solution dropwise via cannula over 30 min, and the resulting mixture 

was then stirred at -78 °C for 3 h.  The reaction mixture was diluted with 10 mL of a 10:1 

mixture of saturated aqueous NH4Cl and concentrated NH4OH, and then allowed to warm 

to rt.  The aqueous layer was separated and extracted with two 10-mL portions of diethyl 

ether.  The combined organic phases were washed with 20 mL of saturated NaCl 

solution, dried over MgSO4, filtered, and concentrated to afford 0.360 g of a yellow oil.  

Column chromatography on 20 g of silica gel (gradient elution with 0-10% MTBE-

hexanes) afforded 0.202 g (36%) of 272 as a yellow oil.   
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IR (film): 3054, 2907, 2200, 2158, 1674 cm-1.   
 
1H NMR (500 MHz, CDCl3): δ 7.37-7.41 (m, 2H), 7.27-7.31 (m, 3H), 3.28-3.34 

(m, 2H), 2.79-2.85 (m, 4H), 2.39 (s, 3H), 2.33-2.36 
(m, 2H), 2.17-2.22 (m, 1H), 1.83-1.92 (m, 1H).   

 
13C NMR (125 MHz, CDCl3): δ 184.3, 131.7, 128.4, 128.0, 123.6, 89.0, 88.2, 86.2, 

81.8, 44.4, 40.1, 33.2, 28.8, 25.3, 15.5.   
 
MS (m/z):  314 (M+).   
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10-Methyl-8-phenyl-3,4,6,7-tetrahydro-2H-[1,4]dithiepino[2,3-e]isobenzofuran 

(275).   

A 10-mL, one-necked, round-bottomed flask equipped with a rubber septum and 

argon inlet needle was charged with the diyne 272 (0.155 g, 0.493 mmol), 5 mL of 

toluene, and γ-terpinene (0.095 mL, 0.080 g, 0.542 mmol).  The solution was degassed 

with a stream of argon for 1 h, and the septum was then replaced with a water-jacketed 

condenser and argon inlet adapter.  The reaction mixture was heated at reflux (111 °C) 

for 24 h, and then allowed to cool to rt.  Concentration gave 0.148 g of a brown oil, 

which was purified by column chromatography on 20 g of silica gel (gradient 0-30% 

diethyl ether-pentane) to afford 0.091 g (59%) of 275 as a yellow oil.   

 

IR (film): 3054, 2986, 1600, 1544, 1266 cm-1.   
 
1H NMR (500MHz, CDCl3): δ 7.54-7.56 (m, 2H), 7.36-7.40 (m, 2H), 7.21-7.25 

(m, 1H), 3.21 (app quintet, J = 6.0 Hz, 4H), 2.80 (t, 
J = 7.0 Hz, 2H), 2.62 (s, 3H), 2.48 (t, J = 7.0 Hz, 
2H), 2.20 (app quintet, J = 5.8 Hz, 2H).   

 
13C NMR (125 MHz, CDCl3): δ 145.9, 143.8, 133.0, 131.5, 128.7, 126.7, 124.9, 

123.5, 121.5, 117.6, 35.5, 32.5, 32.2, 31.2, 21.0, 
14.7. 

 
Anal. Calcd. for C18H18OS2:   C, 68.75; H, 5.77; S, 20.39.   
Found:   C, 68.59; H, 5.84; S, 20.69. 
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1,2-Bis(4-methylpent-4-en-2-ynyl)benzene (293).   

A 100-mL, three-necked, round-bottomed flask equipped with a rubber septum, 

argon inlet adapter, and glass stopper, was charged with 30 mL of tetrahydrofuran and 

CuBr•SMe2 (0.117 g, 0.57 mmol).  A 50-mL, two-necked, pear flask equipped with a 

rubber septum, and argon inlet adapter, was charged with 20 mL of tetrahydrofuran and 

2-methyl-1-buten-3-yne (1.26 mL, 0.876 g, 13.3 mmol) and cooled to 0 °C.  EtMgBr (3.1 

M in Et2O, 4.28 mL, 13.3 mmol) was added dropwise via syringe over 5 min, and the 

gray solution was stirred for 15 min at 0 °C.  The cooling bath was removed and the gray 

solution was stirred for 1 h at rt.  This solution was then transferred via cannula over 5 

min into the rapidly stirred mixture of CuBr•SMe2 in THF.  A 25-mL, two-necked, pear 

flask equipped with a rubber septum, and argon inlet adapter, was charged with 10 mL of 

tetrahydrofuran and α,α'-dibromo-o-xylene (288) (1.00 g, 3.79 mmol) and the mixture 

was stirred for 5 min to dissolve the solid.  This solution was then transferred via cannula 

over 5 min into the solution of copper acetylide, with the aid of two 1-mL rinses of 

tetrahydrofuran.  The glass stopper was replaced with a water-jacketed condenser and the 

reaction mixture was heated at reflux for 24 h.  The reaction mixture was then allowed to 

cool to rt and poured into a separatory funnel containing saturated aqueous NH4Cl (20 

mL).  The aqueous phase was separated and extracted with two 20-mL portions of ether.  
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The combined organic phases were washed with 20 mL of brine, and dried over MgSO4, 

filtered, and concentrated to give 0.700 g of a brown oil.  Column chromatography on 50 

g of silica gel (elution with hexane) provided 0.424 g (48%) of the diyne 293 as a 

colorless oil.   

 

IR (film): 3095, 3022, 2955, 2922, 2227, 1615, 895 cm-1.   
 
1H NMR (500 MHz, CDCl3): δ 7.46-7.49 (m, 2H), 7.26-7.29 (m, 2H), 5.27-5.29 

(m, 2H), 5.19-5.21 (m, 2H), 3.75 (s, 4H), 1.91-1.93 
(m, 6H).   

 
13C NMR (125 MHz, CDCl3): δ 134.7, 128.9, 127.4, 127.2, 121.2, 85.9, 84.5, 23.9, 

23.5.   
 
MS (m/z):  234 (M+).   
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1,2-Bis(4-oxo-2-pentynyl)benzene (286).   

A 100-mL, round-bottomed flask was charged with 27 mL of CH2Cl2, 3 mL of 

MeOH, and the bis-enyne 293 (0.377 g, 1.61 mmol).  Sudan Red indicator was added 

until the solution became bright red, and the flask was then cooled to -78 °C.  A stream of 

ozone was bubbled through the solution via pipet with stirring until the red color 

disappeared (a pale purple color was visible).  The solution was degassed with a stream 

of argon for 15 min at -78 °C, then Me2S (0.508 g, 0.600 mL) was added via syringe.  

The pale yellow solution was allowed to warm to rt over 14 h, and then concentrated to 

afford 0.347 g of a yellow oil which was purified by column chromatography on 30 g of 

silica gel (gradient elution with 20-40% MTBE-hexane) to afford 0.267 g (67%) of bis-

ynone 286 as a very pale yellow oil.   

 

IR (film): 3002, 2917, 2212, 1673 cm-1.   
 
1H NMR (300 MHz, CDCl3): δ 7.37-7.41 (m, 2H), 7.29-7.33 (m, 2H), 3.79 (s, 

4H), 2.36 (s, 6H).   
 
13C NMR (75 MHz, CDCl3): δ 184.5, 132.5, 129.5, 128.3, 89.3, 83.3, 33.0, 23.4.   
 
MS (m/z): 238 (M+).   
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1-Acetyl-3-methyl-1H-benzo[g]isochromene (294) and 

3-Acetyl-1-methyl-4H-benzo[4,5]cyclohepta[1,2-c]furan (287). 

An oven-dried, threaded, Pyrex tube (ca. 20 mL capacity) equipped with a rubber 

septum and argon inlet needle was charged with diyne 286 (0.257 g, 1.08 mmol), 11 mL 

of toluene, and γ-terpinene (0.209 mL, 0.178 g, 1.19 mmol).  The solution was degassed 

by four freeze-pump-thaw cycles, and the tube was then sealed with a Teflon cap.  The 

sealed tube was placed in a preheated oil bath at 150 °C for 48 h, then allowed to cool to 

rt.  Concentration gave a brown oil which was purified on 25 g of silica gel (gradient 

elution with 0-20% MTBE-hexane) to give 0.206 g (80%) of an inseparable mixture of 

294 and 287 as an off-white solid, mp 98.0-101.0 °C (76:24 ratio by gas chromatographic 

analysis).   

 

For the mixture: 
 
IR (film): 3054, 2986, 1726, 1655, 1097, 1072 cm-1.   
 
Anal. Calcd. for C16H14O2:   C, 80.65; H, 5.92.   
Found:   C, 80.78; H, 5.91.   
 
 
For 294:   
 
1H NMR (500 MHz, CDCl3): δ 7.75 (d, J = 7.9 Hz, 1H), 7.71 (d, J = 8.2 Hz, 1H), 

7.57 (s, 1H), 7.42 (td, J = 7.9, 1.2 Hz, 1H), 7.37 (td, 
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J = 8.2, 1.2 Hz, 1H), 7.29 (s, 1H), 5.75 (s, 1H), 5.63 
(s, 1H), 2.29 (s, 3H), 2.08 (s, 3H).   

13C NMR (125 MHz, CDCl3): δ 205.8, 153.9, 134.2, 132.4, 128.4, 128.1, 127.5, 
126.8, 125.4, 125.0, 124.7, 120.6, 101.2, 83.8, 26.1, 
20.2.   

 
 
For 287:   
 
1H NMR (500 MHz, CDCl3): δ 7.34-7.37 (m, 1H), 7.23-7.27 (m, 1H), 7.20-7.23 

(m, 2H), 6.77 (d, J = 11.6 Hz, 1H), 6.60 (d, J = 11.6 
Hz, 1H), 4.21 (s, 2H), 2.48 (s, 3H), 2.35 (s, 3H).   
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1-Acetyl-3-methyl-10H-benzo[g]isochromene (299).   

A 10-mL, oven-dried, round-bottomed flask equipped with an argon inlet adapter 

was charged with diyne 286 (0.091 g, 0.284 mmol), and 5 mL of dimethyl sulfoxide.  

Potassium t-butoxide (0.003 g, 0.028 mmol) was added, and the solution immediately 

turned deep red.  The reaction mixture was stirred for 5 min at rt, and then poured into a 

separatory funnel containing saturated aqueous NH4Cl (5 mL) and 20 mL of diethyl 

ether.  The aqueous layer was separated and extracted with two 15-mL portions of diethyl 

ether.  The combined organic phases were washed with 10 mL of saturated NaCl 

solution, dried over MgSO4, filtered, and concentrated to afford 0.052 g of a brown oil, 

which was purified by column chromatography on 10 g of silica gel (gradient elution 

with 0-50% MTBE-hexane) to give 0.048 g (53%) of 299 as a yellow solid, mp 

96.0-98.0 °C.   

 

IR (CH2Cl2): 2054, 2987, 2924, 1720, 1668 cm-1.   
 
1H NMR (500 MHz, CDCl3): δ 7.81 (d, J = 7.6 Hz, 1H), 7.56 (d, J = 7.9 Hz, 1H), 

7.40 (td, J = 7.3, 0.9 Hz, 1H), 7.23 (td, J = 7.3, 0.9 
Hz, 1H), 6.59 (s, 1H), 6.45 (s, 1H), 4.17 (s, 1H), 
2.35 (s, 3H), 2.26 (s, 3H).   

 
13C NMR (125 MHz, CDCl3): δ 202.4, 150.7, 148.9, 144.9, 131.2, 128.4, 127.3, 

122.0, 121.7, 120.4, 120.2, 106.7, 104.8, 48.0, 29.6, 
19.8.   
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Anal. Calcd. for C16H14O2:   C, 80.65; H, 5.92.   
Found:   C, 80.46; H, 5.95. 
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Methyl 1-methyl-4,5,6,7-tetrahydroisobenzofuran-3-carboxylate (327).   

A 25-mL, round-bottomed flask was charged with dihydroisobenzofuran 219 

(0.201 g, 1.05 mmol), 15 mL of ethyl acetate, and 0.040 g of 10% palladium on carbon.  

The flask was fitted with a three-way stopcock and a balloon filled with hydrogen gas 

was attached.  The flask was purged twice with hydrogen and stirred under an 

atmosphere of hydrogen for 30 min.  The reaction mixture was filtered through a pad of 

celite and concentrated to give 0.190 g of a colorless oil which was purified on 25 g of 

silica gel (gradient elution with 0-30% MTBE-hexane) to give 0.187 g (92%) of 327 as a 

white solid.  An analytical sample was obtained by recrystallization from hexane to give 

a white solid, mp 52.0-53.0 °C.   

 

IR (CH2Cl2): 3054, 2987, 1709, 1422, 1267, 1157 cm-1.   
 
1H NMR (500 MHz, CDCl3): δ 3.85 (s, 3H), 2.78 (br s, 2H), 2.40 (br s, 2H), 2.24 

(s, 3H), 1.68-1.71 (m, 4H).  
 
13C NMR (125 MHz, CDCl3): δ 160.1, 151.0, 136.7, 134.3, 119.5, 51.5, 22.9, 22.7, 

22.6, 20.3, 12.3.   
 
Anal. Calcd. for C11H14O3:   C, 68.02; H, 7.27.   
Found:   C, 68.13; H, 7.25. 
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Methyl 10-methyl-1,3,4,10-tetrahydro-9,10-epoxyanthracene-9(2H)-carboxylate 

(329). 

A 50-mL, round-bottomed flask equipped with an argon inlet adapter was charged 

with tetrahydroisobenzofuran 327 (0.159 g, 0.819 mmol), 

(phenyl)[o-(trimethylsilyl)phenyl]iodonium triflate (0.493 g, 0.982 mmol), and 15 mL of 

methylene chloride and cooled to 0 °C in an ice bath.  Tetra-n-butylammonium fluoride 

(1.0 M in THF, 1.18 mL, 1.18 mmol) was then added dropwise via syringe over 3 min.  

The ice bath was removed and the reaction mixture was allowed to warm to rt, and stirred 

for 30 min.  The reaction mixture was quenched by the addition of 5 mL of water.  The 

aqueous layer was separated and extracted with three 10-mL portions of methylene 

chloride.  The combined organic phases were washed with 20 mL of saturated NaCl 

solution, dried over Na2SO4, filtered, and concentrated to give 0.220 g of a pale yellow 

oil.  Column chromatography on 25 g of silica gel (gradient elution with 0-40% MTBE-

hexane) provided 0.199 g (90%) of endoxide 329 as a colorless oil.   

 

IR (CH2Cl2): 3054, 2986, 1720, 1422, 1267, 896, 747 cm-1.   
 
1H NMR (500 MHz, CDCl3): δ 7.36-7.38 (m, 1H), 7.12-7.14 (m, 1H), 6.97-7.03 

(m, 2H), 3.95 (s, 3H), 2.20-2.33 (m, 2H), 1.97-2.06 
(m, 1H), 1.85 (s, 3H), 1.70-1.79 (m, 1H), 1.55-1.66 
(m, 2H), 1.34-1.44 (m, 2H).   
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13C NMR (125 MHz, CDCl3): δ 168.4, 150.8, 149.7, 148.6, 148.6, 125.6, 125.0, 
119.0, 118.1, 90.0, 52.6, 22.3, 22.3, 22.2, 21.7, 13.4, 
4.0.   

 
MS (m/z):  270 (M+). 
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Methyl 10-methyl-1,2,3,4-tetrahydro-anthracene-9-carboxylate (330).   

A 100-mL, three-necked, round-bottomed flask equipped with an argon inlet 

adapter, glass stopper, and rubber septum, was charged with titanium tetrachloride bis-

tetrahydrofuran complex (1.47 g, 4.43 mmol) under a blanket of argon provided through 

an inverted funnel.  The flask was cooled to 0 °C in an ice bath, and 15 mL of 

tetrahydrofuran was added slowly via syringe over 10 min.  A suspension of lithium 

aluminum hydride (0.60 g, 1.58 mmol) in 7 mL of tetrahydrofuran was prepared in a 

25-mL pear flask was then transferred dropwise via cannula over 3 min into the reaction 

mixture with the aid of three 3-mL THF rinses.  A solution of triethylamine (0.64 g, 0.88 

mL, 0.633 mmol) in 5 mL of THF was then added dropwise via cannula over 3 min with 

the aid of a 2-mL tetrahydrofuran rinse.  The reaction mixture was heated at reflux for 30 

min, and then cooled to rt.  The 1,4-endoxide (329) was added via cannula as a solution 

in 10 mL of THF, followed by a 2-mL THF rinse.  The resulting black solution was 

stirred at rt for 24 h.  The reaction mixture was then poured into a 250-mL Erlenmeyer 

flask containing 100 mL of 20% (w/w) aqueous potassium carbonate and stirred for 15 

min.  The mixture was then filtered, and extracted with three 30-mL portions of diethyl 

ether.  The combined organic phases were washed with 20 mL of saturated NaCl 

solution, dried over MgSO4, filtered, and concentrated to afford 0.192 g of a yellow oil.  
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Column chromatography on 25 g of silica gel (gradient elution with 0-20% MTBE-

hexane) provided 0.143 g (89%) of 330 as a white solid, mp 133.0-134.0 °C.   

 

IR (neat): 2933, 2861, 1718, 1559, 1505, 1437, 1250, 1212, 
1169 cm-1.   

 
1H NMR (500 MHz, CDCl3): δ 8.04-8.06 (m, 1H), 7.65-7.67 (m, 1H), 7.42-7.47 

(m, 2H), 4.03 (s, 3H), 2.91-2.94 (m, 4H), 2.59 (s, 
3H), 1.88-1.93 (m, 2H), 1.81-1.86 (m, 2H).   

 
13C NMR (125 MHz, CDCl3): δ 171.2, 133.7, 133.4, 133.1, 131.1, 129.1, 128.3, 

125.9, 125.5, 124.9, 124.1, 52.4, 28.6, 28.4, 23.5, 
22.7, 14.6.   

 
Anal. Calcd. for C17H18O2:  C, 80.28; H, 7.13.   
Found:   C, 80.47; H, 7.02. 
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9-(Trimethylsilyl)-nona-3,8-diyn-2-one (199).   

A 1-L, three-necked, round-bottomed flask equipped with rubber septum, glass 

stopper, and argon inlet adapter, was charged with 1,6-heptadiyne (239) (3.99 g, 43.4 

mmol) and 600 mL of tetrahydrofuran, and the resulting solution was cooled at 0 °C 

using an ice-water bath.  EtMgBr (3.04 M in diethyl ether, 28.5 mL, 86.7 mmol) was 

added dropwise via syringe over 5 min.  The resulting mixture was stirred at 0 °C for 90 

min and then trimethylsilyl chloride (5.50 mL, 4.71 g, 43.4 mmol) was added via syringe 

dropwise over 5 min.  The reaction mixture was stirred at 0 °C for 1 h and then allowed 

to warm to rt and stirred at rt for 1 h.  The resulting solution was diluted with saturated 

aqueous NH4Cl (100 mL) and the aqueous layer was separated and extracted with three 

50-mL portions of diethyl ether.  The combined organic phases were washed with two 

50-mL portions of saturated NaCl solution, dried over MgSO4, filtered, and concentrated 

to afford 4.62 g of a colorless oil.  Column chromatography on 100 g of silica gel 

(gradient elution with 0-4% diethyl ether-pentane) provided 6.35 g of a colorless oil 

which was shown by 1H NMR analysis to be a mixture of the desired 1-(trimethylsilyl)-

1,6-heptadiyne and 1,9-bis(trimethylsilyl)-1,6-heptadiyne.  This material was used in the 

next step without further purification. 

A 1-L, three-necked, round-bottomed flask equipped with an argon inlet adapter 

and rubber septum was charged with diyne prepared above and 550 mL of 
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tetrahydrofuran, and cooled at -78 °C in a dry ice-acetone bath.  n-Butyllithium (2.49 M 

in hexanes, 15.9 mL, 39.7 mmol) was added dropwise via syringe over 3 min and the 

resulting mixture was stirred at -78 °C for 1 h.  A 1-L, three-necked, round-bottomed 

flask equipped with an argon inlet adapter, rubber septum, and glass stopper was charged 

with acetic anhydride (16.0 mL, 17.3 g, 170 mmol) and 100 mL of tetrahydrofuran, and 

the resulting solution was cooled at -78 °C with a dry ice-acetone bath.  The lithium 

acetylide solution was transferred into this solution dropwise via cannula over 30 min, 

and the resulting mixture was then stirred at -78 °C for 3 h.  The reaction mixture was 

diluted with 50 mL of a 10:1 mixture of saturated aqueous NH4Cl and concentrated 

NH4OH, and then allowed to warm to rt.  The aqueous layer was separated and extracted 

with two 100-mL portions of diethyl ether.  The combined organic phases were washed 

with 20 mL of saturated NaCl solution, dried over MgSO4, filtered, and concentrated to 

afford a yellow oil.  Column chromatography on 100 g of silica gel (gradient elution with 

0-4% MTBE-hexane) provided 2.25 g (25% overall for two steps) of ketone 199 as a 

colorless oil.   

 

IR (film): 2940, 2890, 2200, 2160, 1650 cm-1.   
 
1H NMR (500 MHz, CDCl3): δ 2.49 (t, J = 7.0 Hz, 2H), 2.36 (t, J = 7.0 Hz, 2H), 

2.33 (s, 3H), 1.79 (quintet, J = 7.0 Hz, 2H) 0.15 (s, 
9H).   

 
13C NMR (125 MHz, CDCl3): δ 185.5, 105.5, 93.0, 86.1, 81.9, 33.0, 26.9, 19.3, 

18.2, 0.3.   
 
MS (m/z):  191 (M-CH3+). 
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1-Methyl-3-trimethylsilyl-4,5-dihydroisobenzofuran (200).   

An oven-dried threaded Pyrex tube (ca. 160 mL capacity) equipped with a rubber 

septum and argon inlet needle was charged with diyne 199 (1.60 g, 7.76 mmol), 78 mL of 

toluene, and γ-terpinene (1.37 mL, 1.16 g, 8.54 mmol).  The solution was degassed by 

four freeze-pump-thaw cycles, and the tube was then sealed with a Teflon cap.  The 

sealed tube was placed in a preheated oil bath at 220 °C for 60 h, and then allowed to 

cool to rt.  Concentration gave 2.89 g of a brown oil, which was purified by column 

chromatography on 50 g of silica gel (gradient elution with 0-10% MTBE-hexane) to 

afford 1.40 g (87%) of 200 as a colorless oil.   

 

IR (film): 3030, 2950, 1640, 1540 cm-1.   
 
1H NMR (500 MHz, CDCl3): δ 6.36 (dt, J = 9.5, 1.2 Hz, 1H), 5.75 (dt, J = 9.7, 4.3 

Hz, 1H),  2.67 (t, J = 7.5 Hz, 2H), 2.26-2.33 (m, 
2H), 2.27 (s, 3H), 0.27 (s, 9H).   

 
13C NMR (75 MHz, CDCl3): δ 150.0, 149.1, 131.3, 124.7, 118.9, 116.9, 23.8, 

19.4, 11.8, -1.2.   
 
Anal. Calcd. for C12H18OSi:   C, 69.84; H, 8.79.   
Found:   C, 69.64; H, 8.94. 
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Dimethyl 1-methyl-2,7-dioxo-11-oxa-bicyclo[6.2.1]undecane-9,10-dicarboxylate  

(333).   

A 50-mL, round-bottomed flask equipped with a Teflon stir bar was charged with 

dihydroisobenzofuran 200 (1.02 g, 4.93 mmol), 25 mL of ethyl acetate, and 0.100 g of 

10% palladium on carbon.  The flask was fitted with a three-way stopcock and a balloon 

filled with hydrogen gas was attached.  The flask was purged twice with hydrogen and 

stirred under an atmosphere of hydrogen for 3 h.  The reaction mixture was filtered 

through a pad of celite and concentrated to give 0.536 g of a colorless oil which was 

taken on to the next step without further purification. 

A 25-mL, round-bottomed flask was charged with the furan prepared above 

(0.205 g, 0.983 mmol) and 10 mL of benzene.  Maleic anhydride (0.116 g, 1.18 mmol) 

was added, and the solution was stirred at 25 °C for 24 h.  Additional maleic anhydride 

(0.232 g, 2.36 mmol) was added, and the reaction mixture stirred at 25 °C for an 

additional 20 h.  The resulting solution was concentrated to a brown oil which solidified 

upon refrigeration.  The brown solid was dissolved in a mixture 54 mL of MeOH and 6 

mL of CH2Cl2, and the flask was then cooled to -78 °C.  A stream of ozone was bubbled 

through the solution via pipet with stirring until a pale blue color persisted.  The solution 

was degassed with a stream of argon for 15 min at -78 °C, and then Me2S (0.339 g, 0.400 
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mL) was added via syringe.  The colorless solution was allowed to warm to rt over 3 h, 

and then concentrated to a pale yellow oil.  This oil was dissolved in 20 mL of MeOH 

and stirred at 25 °C for 24 h.  The solution was then transferred to a brand new 125-mL 

Erlenmeyer flask and 25 mL of diethyl ether was added.  The flask was cooled to 0 °C, 

and a solution of diazomethane in diethyl ether was added via flame-polished pipet 

dropwise until a yellow color persisted.  The yellow solution was stirred at 0 °C for 20 

min, and then glacial acetic acid was added dropwise until the solution was 

approximately pH 6.  The solution was then concentrated to give 0.246 g of a yellow oil 

which was purified by column chromatography on 40 g of silica gel (gradient elution 

with 40-80% MTBE-hexane) to afford 0.206 g (37% over five steps) of 333 as a white 

solid, mp 88.0-89.0 °C.   

 

IR (CH2Cl2): 3054, 2987, 1751, 1717, 1437, 1422, 1264 cm-1.   
 
1H NMR (500 MHz, CDCl3): δ 4.99 (d, J = 7.6 Hz, 1H), 4.03 (d, J = 7.9 Hz, 1H), 

3.72 (s, 3H), 3.68 (s, 3H), 3.47 (app t, J = 7.6 Hz, 
1H), 3.36-3.41 (m, 1H), 3.11-3.16 (m, 1H), 
2.21-2.26 (m, 1H), 2.13-2.18 (m, 1H), 2.01-2.09 (m, 
1H), 1.75-1.89 (m, 2H), 1.51-1.59 (m, 1H), 1.36 (s, 
3H).   

 
13C NMR (125 MHz, CDCl3): δ 212.6, 212.3, 171.6, 170.4, 92.0, 85.2, 52.8, 52.3, 

51.9, 48.3, 35.1, 34.2, 24.8, 23.5, 19.4.   
 
Anal. Calcd. for C15H20O7:   C, 57.69; H, 6.45.   
Found:   C, 57.53; H, 6.43.   
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3-Hydroxy-6-(1-hydroxy-2-oxopropyl)-2,2-dimethylcyclohexanone (442). 

A 100-mL, three-necked, round-bottomed flask equipped with a rubber septum, 

glass stopper, and argon inlet adapter, was charged with 20 mL of tetrahydrofuran and 

diisopropylamine (1.07 g, 1.48 mL, 10.5 mmol), and cooled to 0 °C.  n-Butyllithium 

(2.52 M solution in hexanes, 3.86 mL, 9.72 mmol) was added dropwise via syringe over 

5 min, and the resulting yellow solution was stirred at 0 °C for 30 min.   

A 10-mL, two-necked, pear flask was charged with 5 mL of tetrahydrofuran and 

3-hydroxy-2,2-dimethylcyclohexanone (381) (0.576 g, 4.05 mmol) and cooled to -78 °C.  

This solution was added to the solution of LDA via cannula over 8 min, and the flask was 

then rinsed with 1 mL of tetrahydrofuran.  The resulting yellow solution was stirred at 

-78 °C for 30 min.   

A 10-mL, two-necked, pear flask was charged with 5 mL of tetrahydrofuran and 

methacrolein (0.341 g, 0.402 mL, 4.86 mmol) and cooled to -78 °C.  This solution was 

then added to the reaction flask via cannula over 3 min, and the resulting colorless 

solution (containing a white precipitate) was stirred at -78 °C for 2 h.  The reaction 

mixture was quenched by the addition of saturated aqueous NH4Cl (10 mL).  The 

aqueous layer was separated and extracted with three 10-mL portions of MTBE, and the 

combined organic phases were washed with 30 mL of saturated NaCl solution, dried over 
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MgSO4, filtered, filtered, and concentrated to afford 0.807 g of a yellow oil which was 

used in the next step without further purification. 

A 100-mL, pear flask was charged with 36 mL of CH2Cl2, 4 mL of MeOH and the 

yellow oil prepared above.  A solution of Sudan Red in 1 mL of CH2Cl2 was added until 

the solution in the reaction flask was deep red.  The flask was cooled to -78 °C and a 

stream of ozone was bubbled through the solution via pipet with stirring until the red 

color disappeared.  The solution was degassed with a stream of argon for 15 min at 

-78 °C, and then Me2S (1.35 g, 1.60 mL, 21.8 mmol) was added via syringe.  The pale 

yellow solution was allowed to warm to rt over 14 h, and then concentrated to afford 

0.842 g of a yellow oil which was purified by column chromatography on 40 g of silica 

gel (gradient elution with 80-100% MTBE-hexane) to afford 0.568 g (65%) of diol 442 

(mixture of diastereomers) as a colorless oil. 

 

IR (film): 3423, 2972, 2938, 1702, 1252, 1134, 1066 cm-1.   
 
1H NMR (500 MHz, CDCl3): δ 3.86-3.90 (m, 2H), 3.83 (dd, J = 8.2, 3.1 Hz), 

3.50-3.60 (m, 3H), 3.41 (dq, 13.3, 3.1 Hz), 3.33 (dq, 
12.8, 3.1 Hz), 2.30 (s, 3H), 2.28 (s, 3H),   2.25-2.34 
(m, 2H), 1.91-2.09 (m, 4H), 1.72-1.83 (m, 2H), 
1.90-1.96 (m, 2H), 1.22 (s, 3H), 1.15 (s, 3H), 1.13 
(s, 3H), 1.11 (s, 3H). 

 
13C NMR (125 MHz, CDCl3): δ 216.2, 214.7, 210.9, 210.1, 78.8, 78.1, 77.9, 76.6, 

52.0, 50.8, 49.6, 48.8, 29.5, 27.9, 26.3, 25.9, 25.0, 
23.7, 24.2, 21.0, 20.7, 18.8. 
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3,3-Dimethyl-1-(2-oxopropyl)-7-oxabicyclo[2.2.1]heptan-2-one (440). 

 A 250-mL, one-necked, round-bottomed flask equipped with a reflux condenser 

fitted with an argon inlet adapter was charged with 100 mL of benzene and quinolinium 

camphorsulfonate (1.13 g, 3.13 mmol).  The mixture was heated at reflux until the solid 

dissolved (ca. 15 min), and then was allowed to cool to rt.  A solution of 3-hydroxy-6-

(1-hydroxy-2-oxopropyl)-2,2-dimethylcyclohexanone (442) (0.672 g, 3.13 mmol) in 57 

mL of benzene was added via pipet over 1 min, and the reaction mixture was heated at 

40 °C for 48 h.  The reaction mixture was allowed to cool to rt and the solid was filtered 

and washed with three 10-mL portions of MTBE.  The filtrate was washed with three 

25-mL portions of saturated NaHCO3 solution, three 25-mL portions of 0.1 M aqueous 

HCl, and 25 mL of brine, dried over MgSO4, filtered, and concentrated to give 0.518 g of 

a brown oil.  Column chromatography on 30 g of silica gel (gradient elution with 10-30% 

MTBE-hexane) gave impure product, which was further purified by column 

chromatography on 30 g of silica gel (isocratic elution with 20% MTBE-hexane) to 

afford 0.230 g (37%) of 440 as a pale yellow oil. 

 

IR (CH2Cl2): 2986, 1733, 1267, 1046 cm-1.   
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1H NMR (500 MHz, CDCl3): δ 4.30 (d, J = 4.9 Hz, 1H), 3.04 (d, J = 16.8 Hz, 
1H), 2.90 (d, J = 16.5 Hz, 1H), 2.18 (s, 3H), 1.82-
1.94 (m, 2H), 1.72-1.78 (m, 1H), 1.56-1.61 (m, 1H), 
1.27 (s, 3H), 1.02 (s, 3H).   

 
13C NMR (125 MHz, CDCl3): δ 217.0, 204.1, 85.7, 84.4, 49.4, 43.1, 31.1, 30.0, 

25.0, 23.3, 23.1.   
 
MS (m/z):  196 (M+).   
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1-(2-Hydroxy-2-methyl-4-trimethylsilylbut-3-ynyl)-3,3-dimethyl-7-oxa-

bicyclo[2.2.1]heptan-2-one (460). 

 A 25-mL, two-necked, pear flask was charged with 5 mL of tetrahydrofuran and 

trimethylsilylacetylene (0.089 g, 0.127 mL, 0.902 mmol) and cooled to -78 °C.  To this 

solution was added a solution of n-BuLi (2.40M in hexanes, 0.351 mL, 0.842 mmol) via 

syringe over 1 min, and the resulting solution was stirred for 10 min at -78 °C.  A 

100-mL, three-necked, round-bottomed flask equipped with an argon inlet adapter, 

rubber septum, and glass stopper, was charged with the oxabicyclic ketone 440 (0.118 g, 

0.601 mmol) and 15 mL of tetrahydrofuran, and cooled to -78 °C.  The lithium acetylide 

solution was then transferred via cannula into the reaction mixture over 3 min.  The 

reaction mixture was stirred for 15 min at -78 °C and then quenched by the addition of 

saturated aqueous NH4Cl (5 mL).  The resulting mixture was allowed to warm to rt over 

30 min, and the aqueous layer was separated and extracted with three 10-mL portions of 

MTBE.  The combined organic phases were washed with 20 mL of saturated NaCl 

solution, dried over MgSO4, filtered, and concentrated to afford a 0.166 g of a colorless 

oil.  Purification by column chromatography on 30 g of silica gel (gradient elution with 

10-20% MTBE-hexane) afforded 0.142 g (80%) of 460 as a colorless oil. 
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IR (film): 3528, 2967, 2168, 1763, 1464, 1385, 1251, 1140, 
1018 cm-1.   

 
1H NMR (500 MHz, CDCl3): δ 4.38 (d, J = 4.5 Hz, 1H), 4.10 (s, 1H), 2.54-2.62 

(m, 1H), 2.32 (d, J = 15.0 Hz, 1H), 2.26 (d, J = 15.0 
Hz, 1H), 1.85-1.97 (m, 2H), 1.49-1.54 (m, 1H), 1.51 
(s, 3H), 1.21 (s, 3H), 1.05 (s, 3H), 0.14 (s, 9H). 

 
13C NMR (125 MHz, CDCl3): δ 217.4, 109.7, 87.8, 84.9, 84.7, 66.6, 49.0, 40.5, 

31.6, 29.1, 25.1, 23.4, 20.3, 0.0.   
 
HRMS(ESI) Calcd. for C16H26O3Si: 317.1543 (M+Na).   
Found:  317.1540.   
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3,3-Dimethyl-1-(2-methylene-4-trimethylsilylbut-3-ynyl)-7-oxa-bicyclo[2.2.1]heptan-

2-one (461) 

 A 25-mL, one-necked, round-bottomed flask equipped with an argon inlet adapter 

was charged with alcohol 460 (0.069 g, 0.234 mmol) and 3 mL of tetrahydrofuran and 

cooled to 0 °C.  A 10-mL, pear flask equipped with a rubber septum with argon inlet 

needle was charged with the Burgess reagent (0.072 g, 0.304 mmol) and 3 mL of 

tetrahydrofuran and this solution was then transferred via cannula to the solution of the 

alcohol over 2 min.  The reaction mixture was stirred for 12 h at rt, and then quenched by 

addition of 5 mL of water.  The aqueous layer was separated and extracted with three 

5-mL portions of MTBE, and the combined organic phases were washed with 10 mL of 

saturated NaCl solution, dried over MgSO4, filtered, and concentrated to afford a 0.101 g 

of a colorless oil.  Purification by preparative HPLC on a Waters Prep Nova Pak HR 

column, 6 µ silica, 19 mm x 30 cm (isocratic elution with 4% EtOAc-hexane) afforded 

0.026 g (40%) of 461 as a colorless oil. 

 

IR (CH2Cl2): 2966, 2870, 2146, 1761, 1463, 1384, 1250, 1018 
cm-1.   

 
1H NMR (500 MHz, CDCl3): δ 5.55 (d, J = 1.8 Hz, 1H), 5.43 (dd, J = 1.8 Hz, 0.9 

Hz, 1H), 4.29 (d, J = 4.9 Hz, 1H), 2.77 (d, J = 15.0 
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Hz, 1H), 2.67 (dd, J = 15.0, 0.9 Hz, 1H), 1.99-2.05 
(m, 1H), 1.85-1.97 (m, 2H), 1.48-1.54 (m, 1H), 1.21 
(s, 3H), 1.04 (s, 3H), 0.17 (s, 9H). 

 
13C NMR (125 MHz, CDCl3): δ 217.2, 126.5, 126.3, 106.1, 87.9, 87.8, 83.9, 49.5, 

36.1, 29.1, 25.5, 23.2, 20.3, 0.1. 
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3,3-Dimethyl-1-(2-methylenebut-3-ynyl)-7-oxabicyclo[2.2.1]heptan-2-one (340). 

 A 25-mL, round-bottomed flask equipped with an aron inlet adapter was charged 

with the alkynylsilane 461 (0.084 g, 0.304 mmol) and 10 mL of methanol.  Potassium 

carbonate (0.011 g, 0.080 mmol) was added and the reaction mixture was stirred for 3 h 

at rt.  The resulting solution was concentrated to afford 0.102 g of an orange oil and 

purified by column chromatography on 20 g of silica gel (isocratic elution with 5% Et2O-

pentane) to afford 0.35 g (54%) of enyne 340 as a colorless oil. 

 

IR (CH2Cl2): 3273, 2973, 2870, 1760, 1610, 1463, 2130, 1071, 
1018, 854 cm-1.   

 
1H NMR (500 MHz, CDCl3): δ 5.60 (d, J = 1.8 Hz, 1H), 5.47 (d, J = 1.2 Hz, 1H), 

4.31-4.33 (m, 1H), 2.93 (s, 1H), 2.82 (d, J = 14.4 
Hz, 1H), 2.66 (d, J = 14.6 Hz, 1H), 1.89-1.95 (m, 
3H), 1.50-1.54 (m, 1H), 1.21 (s, 3H), 1.05 (s, 3H).   

 
13C NMR (125 MHz, CDCl3): δ 217.3, 127.4, 125.4, 88.1, 84.7, 84.0, 77.6, 49.4, 

36.0, 29.4, 25.3, 22.9, 20.1.   
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