
VoiceLink: A Speech Interface For Responsive Media

by

Yi Li

M.A.Sc. in Electrical Engineering, University of Toronto, Canada, 1999
B.Eng. in Electronics Engineering, Tsinghua University, China, 1997

SUBMITTED TO THE PROGRAM IN MEDIA ARTS AND SCIENCES,

SCHOOL OF ARCHITECTURE AND PLANNING,
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE IN MEDIA TECHNOLOGY

AT THE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

SEPTEMBER 2002

© 2002 Massachusetts Institute of Technology. All rights reserved.

Signature of Author

Program in Media Arts and Sciences
August 9, 2002

Certified by

V. Michael Bove Jr.
Principal Research Scientist

Object-Based Media Group, MIT Media Laboratory
Thesis Supervisor

Accepted by

Andrew B. Lippman
Chairman, Departmental Committee on Graduate Students

Program in Media Arts and Sciences

 2

 3

VoiceLink: A Speech Interface For Responsive Media

by

Yi Li

Submitted to the Program in Media Arts and Sciences,
School of Architecture and Planning,

on August 9, 2002 in partial fulfillment of the
requirements for the degree of

Master of Science in Media Technology

Abstract

We developed VoiceLink, a speech interface package for responsive media applications.
It contains a set of speech interface modules that can interface with various multimedia
applications written in Isis, a scripting programming language created at the MIT Media
Laboratory. Specifically, we designed two command-and-control voice interfaces, one for
iCom, a multi-point audio/video communication system, and another for HyperSoap, a
hyperlinked TV program. The iCom module enables users to control an iCom station
using voice commands while the HyperSoap module allows viewers to select objects and
access related information by saying objects’ names. We also built a speech software
library for Isis, which allows users to develop speech aware applications in the Isis
programming environment.

We addressed a number of problems when designing VoiceLink. In the case of the iCom
module, visual information is used to seamlessly inform users of voice commands and to
provide them with instant feedback and instructions, making the speech interface
intuitive, flexible and easy to use for novice users. The major challenge for the
HyperSoap module is the open vocabulary problem for object selection. In our design, an
item list is displayed on the screen upon viewers’ request to show them selectable
objects. We also created an object name index to model how viewers may call objects
spontaneously. Using a combination of item list and name index in the HyperSoap
module produced fairly robust performance, making the speech interface a useful
alternative to traditional pointing devices. The result of user evaluation is encouraging. It
showed that a speech based interface for responsive media applications is not only useful
but also practical.

Thesis Supervisor: V. Michael Bove Jr.

Title: Principal Research Scientist, MIT Media Laboratory

 4

 5

Thesis Committee

Thesis Supervisor
V. Michael Bove Jr.

Principal Research Scientist
MIT Media Laboratory

Thesis Reader

Christopher Schmandt
Principal Research Scientist

MIT Media Laboratory

Thesis Reader

Deb Kumar Roy
 Assistant Professor

MIT Program in Media Arts and Sciences

 6

 7

Acknowledgments

As always, there are many people to thank. Foremost among them is V. Michael Bove Jr.,
my advisor, whom I thank not only for his wise supervision, continuous encouragement
and ready accessibility, but also for affording me the freedom to develop my own
research project and pursue the directions that intrigued me most.

I would like to thank my committee members, Christopher Schmandt and Deb Kumar
Roy, for teaching me a lot about speech interface design, and for carefully reviewing my
thesis and providing useful suggestions.

A number of colleagues and friends at the Media Lab provided me with assistance and
encouragement during the course of the development of VoiceLink. I cannot help but
thank: Stefan Agamanolis for answering me numerous questions about Isis and iCom;
Surj Patel for helping me get the HyperSoap program up and running; Jim McBride and
Jacky Mallett for helping me solve many Linux configuration problems; Kwan Hong Lee
and Jang Kim for helping me set up the IBM ViaVoice SDK. Also, I would like to thank
all the members of the Object-Based Media Group and the Speech Interface Group at the
Media Lab for participating in the user evaluation and providing insightful comments and
suggestions.

Special thanks go to Michael Rosenblatt, my officemate and a bicycle guru, for bringing
so many fun toys (including two cool bikes) to the office.

My gratitude extends to Linda Peterson and Pat Solakoff for reminding me every
deadline during my stay at the Media Lab, and to Pat Turner for taking care of ordering
all the equipments I needed.

Finally, none of the work I did would have been possible without the unfailing love and
continuous encouragement I received from my parents and sister throughout my life.

 8

 9

Contents

Chapter 1

Introduction..13

1.1 Motivation... 13

1.2 Goals ... 15

1.3 Related work ... 16

1.3.1 Speech recognition ... 16

1.3.2 Speech interface ... 16

1.3.3 Industry standards ... 18

1.4 Challenges and approaches ... 19

1.5 Thesis outline .. 20

Chapter 2

Speech interface design for iCom ..21

2.1 Brief description of iCom.. 21

2.2 The speech interface.. 22

2.2.1 Functionalities of the iCom speech interface... 23

2.2.2 Design of the iCom speech interface ... 23

2.2.3 The interaction flow and the command set .. 27

2.2.4 The new iCom screen display .. 28

2.3 Voice model.. 31

2.4 System architecture ... 31

Chapter 3

Speech interface design for HyperSoap ...33

3.1 Hyperlinked video and speech interface ... 33

3.2 The challenge .. 35

3.3 Design of the HyperSoap speech interface ... 36

3.3.1 Item list... 37

 10

3.3.2 Name index... 39

3.3.3 Resolving ambiguity... 40

3.3.4 The interaction flow ... 41

3.3.5 Other issues.. 43

Chapter 4

User evaluation...45

4.1 Subjects, tasks and procedures.. 45

4.2 Observations .. 47

4.3 Feedback ... 48

4.3.1 The case for iCom .. 48

4.3.2 The case for HyperSoap ... 50

Chapter 5

Speech software library for Isis ..53

5.1 The Isis programming language .. 53

5.2 IBM ViaVoice SDK and speech aware applications .. 53

5.3 The Isis speech software library.. 54

Chapter 6

Conclusions...57

6.1 Summary... 57

6.2 Future work ... 58

Appendices..61

A. Voice commands for the iCom speech interface.. 61

B. Object name index for HyperSoap ... 62

Bibliography ...65

 11

List of Figures

Figure 1.1 An iCom station. .. 13

Figure 1.2 Viewer of HyperSoap clicks on the blue jeans using a laser pointer. 14

Figure 2.1 Illustration of iCom screen projections for different activities........................ 22

Figure 2.2 The interaction flow of the iCom speech interface.. 27

Figure 2.3 The modified iCom screen display tailored to the speech interface. 29

Figure 2.4 The modified iCom screen projections in different states. 30

Figure 3.1 A pair of frames from HyperSoap. .. 34

Figure 3.2 A frame from An Interactive Dinner At Julia’s... 34

Figure 3.3 An item list containing Desk items and Men’s items is displayed. 38

Figure 3.4 A frame containing the two-tier item list. ... 39

Figure 3.5 Explicit disambiguation: on-screen confirmation. .. 41

Figure 3.6 The interaction flow of the HyperSoap speech interface. 42

Figure 3.7 Four frames of the HyperSoap program in different states. 43

 12

 13

Chapter 1

Introduction

1.1 Motivation

Many responsive media applications have been developed at the MIT Media Lab using

the Isis programming language [1]. Listed below are two examples:

• iCom, a multipoint communication portal consisting of several stations that links

different workspaces of the MIT Media Lab with Media Lab Europe in Dublin. It

serves several purposes, including acting as an ambient porthole that provides a

constant sense of awareness, a live interpersonal communication system, and a

community messaging center [2]. Figure 1.1 shows an iCom station, which is

composed of a projection screen and a sitting area where users can control the

iCom station using a trackball (a big mouse).

• HyperSoap, a hyperlinked video program that resembles television serial dramas

known as “soap operas”, in which many items on the screen are linked to

information stored in a database and can be selected by viewers using a device

with point-and-click capability (i.e., mouse, laser pointer or touch screen) [3].

Figure 1.2 shows how HyperSoap viewers can select objects using a laser pointer.

Figure 1.1 An iCom station.

 14

Figure 1.2 Viewer of HyperSoap clicks on the blue jeans using a laser pointer.

In these examples, an interface based on pointing devices is used to control and interact

with various media objects. Although very reliable, such an approach has several

limitations:

• While it is easy to set up an iCom projection screen in a public place such as the

hallway of an office building, it is not always possible to find a suitable sitting

area to place a table for the trackball. This limits the usability of the iCom system.

• When selecting objects from HyperSoap using a pointing device, it is difficult to

click on a small or fast-moving object. Also, once an object has disappeared from

the TV screen, it can no longer be accessed.

• As the only means for users to control various media objects, the pointing device

limits the interface experience to mouse clicking. As we integrate more

responsive media applications into our daily environment, an interface that could

enable more natural, transparent, and flexible interaction is desired.

The above problems can be avoided if viewers can interact with the iCom system or the

HyperSoap program through a speech-based interface. For example, a trackball is no

longer needed if users can control the iCom system reliably using voice commands. With

a speech interface, HyperSoap viewers can select an object on the screen by simply

saying its name, no matter how small it is and how fast it is moving. They can even select

 15

objects not shown on the screen. More importantly, as an alternative to pointing devices,

a speech based interface offers a more compelling and enjoyable interaction experience.

For example, an interface with voice control capability enables users to interact with an

iCom station in a relaxed and hands-free manner, engaging them in a responsive

environment rather than making them feel like they are just operating yet another

computer.

1.2 Goals

In this thesis, we aimed to develop a speech interface package called VoiceLink, which

can interface with various multimedia applications written in the Isis programming

language. The major goal was to overcome the limitations of the pointing devices used in

the iCom system and the HyperSoap program by designing two command-and-control

speech interface modules, one for iCom and another for HyperSoap. With functionalities

similar to those of a trackball, the iCom module would enable users to control an iCom

station using voice commands. As an alternative to a laser pointer, the HyperSoap

module would allow viewers to select objects and access related information by saying

objects’ names. A second goal was to build a speech software library for Isis, which

would allow users to develop speech aware applications in the Isis programming

environment without having to know the details of the underlying speech recognition

system, thus lessoning the burden of developers.

Compared with pointing devices, a speech based interface has its own limitations. Speech

is inherently ambiguous and speech recognition is error prone, making a speech interface

less reliable than pointing devices under certain circumstances. For example, while a

manually impaired user with a repetitive stress injury may prefer a speech-based

interface, a user with heavy accent may find such an interface difficult to use. Therefore,

although VoiceLink was designed as a stand-alone speech interface, we did not expect it

to replace traditional pointing devices completely at the current stage. Rather, the goal

was to develop an alternative that can supplement the pointing devices and enhance their

functionalities. The speech interface should be able to work interchangeably with a

 16

trackball or a laser pointer to offer greater accessibility for diverse users and usage

context.

1.3 Related work

1.3.1 Speech recognition

Significant progress in speech recognition technology has been made during the last

several decades. Large vocabulary, speaker-independent, continuous speech recognition

is now possible. State of the art systems are generally developed based on statistical

modeling and data-driven approaches. With lexicon size of more than 50,000 words, they

can achieve recognition rates of more than 90% for cooperative speakers in benign

environment. However, recognition of conversational speech involving multiple speakers

and poor acoustic environment remains a challenge. Listed below are some examples of

leading commercial speech recognition systems:

• Dictation software, including ViaVoice developed by IBM Corp.,

NaturallySpeaking by Dragon Systems, and Voice Xpress by Lernout & Hauspie.

(Lernout & Hauspie acquired Dragon Systems in 2000 and discontinued its own

speech recognition software: Voice Xpress.)

• Telephone transaction systems developed by various companies, including AT&T

Corp., Nuance Communications Inc., SpeechWorks International Inc., TellMe

Networks Inc., and Philips Electronics NV.

In addition to the above commercial products, several academic institutions also have

developed speech recognition systems. Among them are the Sphinx system [4] developed

at Carnegie Mellon University and the SUMMIT system developed at MIT [5].

1.3.2 Speech interface

Speech interface is an active research area. State of the art speech recognition and

understanding systems have made speech aware applications practical. However,

 17

designing a good voice interface for a given application remains a challenge. A number

of approaches for speech interface design have been explored [6], including:

• Vocabulary-driven command-and-control systems, which constrain what users

can say and explore the constraint to produce robust performance.

• Natural language processing based voice interface systems, which accept and

react to users’ spontaneous speech.

• Multi-modal interfaces, which combine speech, gesture and other means of

human communications to make the system more flexible and efficient.

• User-derived interfaces, which learn and adapt to users’ behavior.

Lee [7] developed IMPROMPTU, an Internet Protocol based audio platform for mobile

communications and networked audio applications. A command-and-control voice

interface was implemented on IMPROMPTU client to allow users to switch applications

and control each application. Other examples of vocabulary-driven command-and-control

systems include voice control interfaces for cars and many of the dialog-tree based

telephone transaction systems currently in use.

The Spoken Language Systems Group at MIT Laboratory for Computer Science

developed GALAXY [8], an architecture for integrating speech technologies to create

natural language understanding based conversational spoken language systems. With the

GALAXY architecture they have developed a wide variety of telephone information

retrieval systems, including: JUPITER - A weather information system; MERCURY - An

airline flight planning system; PEGASUS - An airline flight status system; VOYAGER -

A city guide and urban navigation system [9].

Schmandt et al. built “Put That there” [10], one of the first multi-modal systems, which

combined speech and manual pointing to manipulate objects. Oviatt used a combination

of speech and pen-based gesture to perform mutual disambiguation [11]. The result

showed that although speech recognition alone performed poorly for accented English

speakers, their multi-modal recognition rates did not differ from those of native English

speakers.

 18

The systems described above are interface centered. Even for natural language processing

based interfaces, a set of predefined rules or grammars are used to parse users’ input. An

alternative approach is to develop user-derived interfaces. Good et al. [12] built an

interface to accommodate novice users’ behavior. Through careful observation and

analysis of the actual behavior of many users, a mail interface unusable by novices

evolved into one that allows novices to do useful work within minutes. More recently,

Roy [13] proposed Adaptive Spoken Interfaces, which learn individual user’s speech

patterns, word choices, and associated semantics.

1.3.3 Industry standards

The SALT (Speech Application Language Tags) Forum [14] released “Speech

Application Language Tags Specification Version 1.0” in July 2002. It allows developers

to add speech “tags” to Web applications written in XML (Extensible Markup Language)

and HTML (Hypertext Markup Language), making it possible to create multi-modal

programs that can be controlled by both voice and traditional input methods. The SALT

specification is also designed for applications that don't have a visual user interface, such

as those accessed by telephone. Founding members of the SALT Forum include

Microsoft Corp., SpeechWorks International Inc., Cisco Systems Inc., Intel Corp. and

Philips Electronics NV.

A rival effort is under way to develop a standard for speech interfaces based on a

technology called VoiceXML [15]. This effort is led by a group of companies including

IBM Corp., Motorola Inc., AT&T Corp. and Lucent Technologies Inc. First announced in

early 1999, VoiceXML originally was designed to allow applications to be accessed by

telephone. Efforts are under way to add the capability to voice-enabled applications that

are accessed using the Web.

 19

1.4 Challenges and approaches

We encountered a number of problems during the development of VoiceLink. In the case

of the iCom module, the challenge is to make the voice interface intuitive and flexible so

that novice users in public places could easily understand how it works with minimal

training. In our design, we utilized the iCom projection screen to inform users of voice

commands and provide them with instant visual feedback and instructions. Many voice

commands are seamlessly incorporated into the screen display to eliminate the need for

users to remember them. To reduce false alarms, a press-to-talk button was implemented

to allow users to activate and deactivate the speech interface as needed so that normal

conversation between users at two locations will not be incorrectly taken as voice

commands by the speech interface. Users could also toggle the state of the speech

interface by saying a pair of keywords.

The major challenge for the HyperSoap module is the open vocabulary problem for

object selection. When watching HyperSoap, people do not know what items on the

screen are selectable, and in many cases they do not know how to call the items that they

want to select. Moreover, different viewers may refer to the same item using different

names, making it very difficult to assign a unique name to each object. To overcome this

problem, we used a combination of item list and name index. An item list containing the

names of selectable items is displayed on the screen upon viewers’ request to show what

objects are selectable and how to call them. A name index is created to model how

viewers may call objects spontaneously. It contains a number of synonyms for each

selectable object, allowing viewers to select items in a more natural and flexible manner.

Ambiguity is another problem we must address: a viewer may refer to different items

using a common name and they do not know how to distinguish them when they want to

select one of them by speaking. We solved this problem using a combination of explicit

on-screen confirmation and implicit disambiguation based on timelines.

In our system, we used the IBM ViaVoice SDK software [16] for speech recognition. It

has a large vocabulary, speaker adaptive speech recognition engine. It also provides a

 20

Software Developer’s Kit (SDK) that allows users to develop speech aware applications

using a set of Application Programming Interfaces (APIs), which are designed for use

with the C programming language. We implemented VoiceLink using a combination of C

and Isis under the Linux operating system. In our implementation, we installed the IBM

ViaVoice speech recognition engine on a speech application server and fed recognition

results to an Isis station running responsive media applications.

1.5 Thesis outline

The rest of the thesis is organized as follows: Chapter 2 and Chapter 3 describe the

speech interface design for the iCom module and the HyperSoap module respectively;

Chapter 4 presents user evaluation results; Chapter 5 describes the Isis speech software

library; Chapter 6 concludes this thesis with discussions on future work.

 21

Chapter 2

Speech interface design for iCom

VoiceLink went through two iterations of design and test. Several changes to the initial

design were made based on the lessons we learned from user evaluation. This chapter

presents the final design of the iCom speech interface module. Section 2.1 provides a

brief description of the iCom system. Major design considerations are discussed in

Section 2.2. A number of approaches for voice model adaptation are proposed in Section

2.3. The system architecture is described in Section 2.4.

2.1 Brief description of iCom

The iCom system connects several sites at the MIT Media Lab and Media Lab Europe 24

hours a day. Its normal mode is background, providing continuous ambient awareness

among all sites, but at any time it can be transformed into a foreground mode for ad-hoc

tele-meetings or casual interaction, without the need to dial telephones or wait for

connections to be established. Echo-canceling speaker/microphones enable full duplex

speech transmission. iCom also functions as a bulletin board for community messages or

announcements, sent via email. Message titles are listed in chronological order with

varying size to reflect the age and popularity of a posting. The screen projections at each

site are synchronized so that people at different sites see exactly the same projection.

Figure 2.1 shows an iCom station at the MIT Media Lab and a few screen projections for

different activities.

Users control an iCom station using a trackball: clicking the windows changes their

arrangement, allowing the display to be customized for a particular activity. Specifically,

the left button of the trackball is labeled as “Select” and the right button is labeled as

“Dismiss”. Left clicking on a window enlarges it while right clicking shrinks it. Left

clicking on a message title causes its full text to be displayed. Right clicking on the

 22

displayed text closes the message display. Audio at each site can be turned on or off by

left clicking or right clicking on its corresponding indicator box at the bottom of the

screen.

(a)

(b)

(c)

(d)

Figure 2.1 Illustration of iCom screen projections for different activities.

(a) An iCom station at the MIT Media Lab; (b) A typical iCom screen projection in the background

mode; (c) iCom in foreground mode: users at two sites are having a chat; (d) An email message is

being displayed.

2.2 The speech interface

The goal of the design is to make the speech interface as intuitive and as easy to use as

possible. Although the functionality of the interface is fairly simple, it is still a challenge

 23

to design a robust interface that is going to be used by many novice users in a public

place.

2.2.1 Functionalities of the iCom speech interface

The speech interface for iCom should allow users to control an iCom station the same

way they do with the trackball. There are four major functions for voice control of iCom:

• Window selection: selecting (enlarging/dismissing) a window.

• Message selection: displaying the text of a selected message, scrolling up/down

the text page for a long message, and dismissing the message after reading it.

• Audio selection: turning on/off audio at a selected site.

• Feedback and instructions: providing users with feedback and instructions when

necessary.

2.2.2 Design of the iCom speech interface

We faced three major design considerations for the iCom speech interface:

• Identifying voice commands.

• How to inform users of voice commands.

• How to reduce false alarms.

Identifying voice commands

The first step to designing a command-and-control speech interface is identifying a set of

voice commands that best match the requirements and expectations of the users. Two

questions need be answered when deciding what commands are to be included into the

vocabulary.

The first question is whether to support a more natural way of saying something instead

of specifying restrictive commands (for example, “please turn off the microphone” versus

“microphone off”)? Rather than defining a grammar file to enable the speech interface to

 24

accept more natural speech inputs, we specified voice commands as a list of words and

short phrases for the following reasons: Unlike multi-step transactions that are typical in

telephone based information retrieval applications, the task of voice control of iCom is

relatively simple - it is essentially to allow users to select an object, such as a window or

a message, on the projection screen. A command-and-control voice interface with a

word/phrase based vocabulary is sufficient for this task and should produce reasonably

robust performance. Moreover, in our design, we informed users of many voice

commands using visual information displayed on the iCom screen. So a grammar based

parsing algorithm will provide very limited additional benefits, while significantly

increasing the complexity of the system.

The second question is whether to support synonyms, or more than one way of saying a

command? The vocabulary can be as restrictive or as flexible as the application needs to

be. A large vocabulary containing many synonyms will make the interface more intuitive.

But there is a trade-off of recognition speed and accuracy versus the size of the

vocabulary. In our design, we provided synonyms to a number of frequently used

commands to make the interface more flexible (for example, users can say “close” or

“close message” to dismiss the message being displayed on the iCom screen). The

increase in vocabulary size due to synonyms did not slow down the recognition speed or

affect the recognition accuracy because the vocabulary is fairly small - there are only

about 50 commands.

Showing users what to say

Unlike grammar based voice interfaces that accept more natural user inputs, the iCom

command-and-control speech interface only accepts a set of predefined voice commands.

First time users of the interface don’t know these commands beforehand. It is also

difficult for frequent users to remember a lot of commands. Since the iCom speech

interface is to be used by a large number of users, including many novices, in an open lab

environment, its usefulness largely depends on whether it can inform users of voice

commands during the course of interactions without extensive training.

 25

In the case of voice interfaces designed for personal devices such as Personal Digital

Assistants (PDAs), cell phones or cars, users have to learn and remember voice

commands through manuals and repeated use, which is a burden for them. In telephone

based speech portals, a list of menu items is usually recited using a text-to-speech engine

or a prerecorded message at each step in the dialog tree. Feedback also takes the form of

speech output. The system response time is slow since speech output takes place over a

period of time [17]. These problems are avoided in our case because we utilized the iCom

projection screen to show users what they can say and provide them with instant visual

feedback and instructions. In our design, we incorporated many voice commands into the

iCom screen display seamlessly. For example, each window on the screen is labeled with

a unique name, and each message title is numbered. These window labels and message

numbers are actually voice commands for window selection and message selection. A

visual instruction message containing all the voice commands will also be displayed on

the screen upon users’ request, allowing them to quickly browse through the command

set. Such a design not only enables users to understand how the interface works with little

training, but also eliminates the need for them to remember a lot of commands.

Reducing false alarms

A voice interface should provide proper feedback to help users cope with recognition

errors. In our design, if the speech engine fails to recognize a user’s speech input twice, a

textbox will appear on the screen, prompting users to read instructions for help. (The

instruction message will be displayed when users say “instruction”.) Since the speech

engine tries to recognize any input to its microphone, loud noise or users’ normal

conversation will trigger the feedback message (when the speech engine cannot recognize

the input) or cause an unintended action by the speech interface (when the speech engine

recognizes the input and takes it as a voice command). Frequent false alarms like this are

annoying and confusing to users.

To reduce the chance of false alarm, the speech interface should be able to distinguish

voice commands and users’ normal conversation automatically. But no existing

techniques are reliable enough for this task. In our system, we implemented two features

 26

that allow users to activate or deactivate the speech interface as needed: one is “press-to-

talk button”; the other is “keyword-trigger”.

The press-to-talk button is a microphone button displayed at the bottom of the iCom

screen. Users can activate/deactivate the speech interface by clicking on the button using

the trackball. The speech engine is always running, but the interface responds to users’

voice commands only when it is active, and neglects users’ speech after it is deactivated.

The microphone button also functions as an indicator, showing a label “Mic is on” or

“Mic is off” depending on the state of the speech interface. When users click on the

button to activate the interface, a message box appears on the iCom screen briefly,

prompting them to issue voice commands and reminding them that they can see

instructions for help. This approach is reliable and can effectively reduce false alarms

caused by users’ conversation and other noises. (To further reduce interference, the

volume of the iCom audio output could be turned down while the speech interface is

active.) The limitation is that users have to use the trackball to toggle the state of the

speech interface. If we can access the speech interface through a handheld device such as

a PDA or a cell phone, however, the trackball is no longer needed since the press-to-talk

button could be implemented on the handheld device.

With keyword-trigger, users could activate/deactivate the speech interface by saying a

pair of keywords, in our case, “microphone” for activation and “microphone off” for

deactivation. Keyword-trigger enables users to control an iCom station completely hands-

free, eliminating the need for the trackball. However, the approach itself is prone to false

alarm (this did not happen in our user testing though). Also, having to know and

remember the two keywords is an extra burden for users. In our final design, the two

features can work interchangeably. Users could choose either of them based on their

preferences.

 27

2.2.3 The interaction flow and the command set

Users’ speech

Actions by the
speech interface

Users’ speech
“Microphone” Other voice commands

Fails to recognize

Recognizes
Is the speech interface active?

The speech
interface becomes
active, prompting
users to issue
voice commands.

Recognizes

No:
Ignores
users’ speech

Yes:
Processes
users’ speech.

Waiting for users’ speech.

Displays feedback
message, prompting
users to see
instructions.

Responds to users’
voice commands

Window control;
Message control;
Audio control;
Showing instructions.

Deactivates the speech
interface if users say
“microphone off”.

Fails to recognize

Figure 2.2 The interaction flow of the iCom speech interface.

 28

Figure 2.2 depicts the interaction flow of the iCom speech interface. Voice commands for

the iCom speech interface are listed in Appendix A. Many commands consist of two or

three words. A multi-word command can be defined using structured grammar, but we

simply define it as a phrase since the IBM ViaVoice SDK accepts such a multi-word

phrase as one entry in a vocabulary. A benefit of using multi-word phrases as commands

is that it can reduce unintended actions by the speech interface in noisy environment

without increasing the rejection rate. Commands for window selection such as “garden”

and “cube” are actually the names of the open workspaces in different parts of the MIT

Media Lab, where iCom stations are located. Windows showing images of those

workspaces are labeled with their corresponding names. Commands for message

selection takes the form “message” + message number, such as “message eleven”. By

default, the maximal message number is thirty, because it is very rare that more than

thirty message titles appear on the iCom screen at the same time. There are about 80

voice commands (including the 30 message selection commands) for the iCom speech

interface. The exact number depends on how many stations are connected to the iCom

system.

2.2.4 The new iCom screen display

Figure 2.3 shows the modified iCom screen display that is tailored to the speech interface.

Figure 2.4 shows the modified iCom screen projections in different states. We tried to

keep the change in the appearance of the original iCom screen projection at a minimum.

However, the following changes are necessary:

• A message number, starting from one, is shown in front of each message title.

• Window labels are always shown. (In the original iCom system, a window label is

displayed for a few seconds after users click on a window.)

• A microphone button is displayed at the bottom of the iCom screen.

• Message boxes for feedback and instructions are displayed when necessary.

• Two tags, labeled as “page up” and “page down” respectively, are shown when

long messages are being displayed, allowing users to scroll the message text by

saying “page up” or “page down”.

 29

In Figure 2.3 and Figure 2.4, no images are shown in the windows on the iCom screen

because we didn’t install the speech interface on a real iCom station.

Message number Audio label

Window label

Microphone button

Figure 2.3 The modified iCom screen display tailored to the speech interface.

Several changes are made to the original iCom screen display: Message numbers are shown in front

of message titles; A microphone button is displayed to indicate the state of the speech interface; Each

window is labeled with a unique name, which is shown all the time.

 30

(a)

(b)

(c)

(d)

Figure 2.4 The modified iCom screen projections in different states.

(a) When users click on the microphone button to activate the speech interface, a text message in blue

box appears on the screen briefly, prompting them to issue voice commands; (b) When the speech

engine fails to recognize users’ speech, a feedback message in blue box is shown briefly, reminding

users to read instructions for help; (c) An instruction box containing all the voice commands is

displayed upon users’ request; (d) When a long message is being displayed, two light-blue tags

labeled as “page up” and “page down” are placed beneath/above the up/down arrows respectively,

allowing users to scroll the message text by saying “page up” or “page down”.

 31

2.3 Voice model

The IBM ViaVoice speech recognition engine is a speaker adaptive recognizer. With the

default general voice model, it can produce decent recognition results for users with a

variety of voice characteristics. But recognition performance can be further improved if

each user creates his/her own voice model by completing an enrollment program and uses

this speaker specific model for speech recognition.

In our implementation, we used the general model for all users. Right now, there is no

good mechanism for the speech interface to switch voice models adaptively. In the future,

however, several approaches for voice model adaptation can be explored. For example, a

drop-down user ID list corresponding to different voice models can be displayed on the

screen, and a new user ID will be added to the list when a new voice model is created.

Users could select their own voice models from the list when necessary. In a restricted

environment with a limited number of frequent users, such as the Media Lab, face

recognition or speaker identification algorithms may be employed to determine a user’s

ID so that the speech interface could choose the corresponding voice model

automatically. Another approach is to access the speech interface through a handheld

device, as already mentioned. In this case, each user ID is associated with a device ID.

When a device tries to access the speech interface, the speech interface will know which

voice model to use.

2.4 System architecture

We implemented the speech interface using a combination of Isis and the C programming

language under the Linux operating system, since iCom is written in Isis while the IBM

ViaVoice SDK is designed for use with C. A socket is used for communication between

the iCom process and the ViaVoice SDK process. Each iCom station has a

speaker/microphone for audio communication, which can be used for the speech

interface. A separate microphone also could be used to make the system more flexible.

 32

Two types of system architectures can be employed for the iCom speech interface: one is

centralized speech server architecture; the other is localized speech interface architecture.

In the first approach, a single speech server is used to process voice commands from all

iCom stations. The speech input is digitized locally at each iCom station and is sent to the

central speech server for recognition. Obviously, this approach saves computing

resources since only one speech engine is needed. But its major limitations are

complexity and slow response time. Because only one speech client can access the speech

engine at a time, some polling or queuing protocols are needed so that two or more

clients can share the speech engine. Heavy network traffic will slow down the speech

interface’s response time, and loss of packets will reduce recognition rates.

We chose the localized speech interface architecture in our implementation for its

simplicity. In this architecture, each iCom station runs its own speech interface. Users’

voice commands are directed to the local speech engine for processing. A problem with

this approach is that the IBM ViaVoice speech recognition engine cannot be installed on

the machine running the iCom process, because the Creative Sound Blaster Live PCI

sound card used in our current system does not work properly if both ALSA (the

Advanced Linux Sound Architecture used for the Isis audio utilities) and the ViaVoice

speech engine are present in the system. Therefore, an extra machine is needed at each

iCom site. This problem can be avoided by using another commercially available sound

card: the Creative Labs Ensonic Audio PCI card, which works well for both ALSA and

the ViaVoice speech engine at the same time.

In our experiment, we planed to install the speech interface at only one iCom site, so only

one microphone button is displayed. If the speech interface were to be installed at several

iCom sites, extra microphone buttons are needed to indicate the state of the local speech

interfaces, and they can be placed above the audio indicators of their corresponding sites.

 33

Chapter 3

Speech interface design for HyperSoap

As in the case of the iCom module, we made several improvements to the HyperSoap

module during the course of user testing. This chapter presents the final design of the

HyperSoap speech interface. Section 3.1 discusses speech-enabled interactions in

hyperlinked TV programs. Section 3.2 explains the major problems we must solve.

Section 3.3 describes the details of the speech interface design.

3.1 Hyperlinked video and speech interface

New techniques in multimedia signal processing have made it possible to produce truly

interactive TV shows such as HyperSoap, a hyperlinked video program produced by the

Object-Based Media Group at the MIT Media Lab. In HyperSoap, many objects are made

selectable through an interface based on pointing devices, and the user's interactions with

these objects modify the presentation of the video. Using a laser pointer or a mouse,

HyperSoap viewers can click on clothing, furniture, and other items on the screen to see

information about how they can be purchased, as shown in Figure 3.1.

Another example of hyperlinked video program is An Interactive Dinner At Julia’s [3],

which is an interactive cooking show. Starting with a dinner party at Julia's house,

viewers can click on entrees and decorative items at the dinner table and be shown video

clips in which Julia creates them. Selecting ingredients and cooking utensils generates

text boxes with relevant details. Icons are used to indicate the “path” viewers have

traveled through in the show, allowing them to navigate among the video clips. Figure

3.2 shows a frame from An Interactive Dinner At Julia’s, in which a textbox of the

selected item (highlighted with green mask) is displayed. Also, viewers can switch to

another video clip by clicking on the icon shown at the top-left corner of the screen.

 34

(a)

(b)

Figure 3.1 A pair of frames from HyperSoap.

(a) A frame during normal playback; (b) When the viewer clicks on the earring, it is highlighted with

a green mask, and a window pops up, showing its brand, price and retailer.

Figure 3.2 A frame from An Interactive Dinner At Julia’s.

Although very effective, the existing interface for hyperlinked video programs, which is

based on pointing devices, has several limitations: (1) It is difficult for viewers to click on

a small or fast-moving object. (2) Rapid change in scene makes it difficult to select

objects that appear on the screen only for a short period of time. Once they move out of

the screen, they can no longer be accessed. (3) Object selection is based on position

 35

information. This implies that, to produce a show like HyperSoap, we have to identify

and track selectable regions in every frame, which is a difficult process.

We could overcome the above problems by incorporating a speech interface into

hyperlinked video programs, which enables viewers to select objects by saying their

names. With such a speech interface, viewers can easily select any hyperlinked items no

matter how small they are or how fast they are moving. They can even access items not

shown on the screen. Moreover, object segmentation and tracking is no longer needed for

the production of hyperlinked video programs. (The segmentation/tracking process is still

necessary if highlighting a selected object is a desired feature.)

The concept can be extended to other types of interactive programs as well. For example,

a speech interface can be embedded in a role-playing computer game, in which players

can use voice commands to control their corresponding roles’ actions. With a speech

interface, basketball fans can retrieve a player’s statistics by saying his name when

watching a game on TV. (In this case, object segmentation and tracking is not only very

difficult but also unnecessary.) So a speech based interface is well suited for certain types

of interactive TV programs, and if properly designed, it could not only enhance

traditional interface experiences but also enable new forms of interactions. However,

little research has been done in this area in part because truly interactive TV shows do not

exist until recently.

3.2 The challenge

Although the functionality of the HyperSoap speech interface is very simple: allowing

viewers to select hyperlinked objects by speaking, it poses two difficulties:

• The open vocabulary problem for object selection.

• The ambiguity (or imprecision) problem for object selection.

When watching HyperSoap, people do not know what items on the screen are selectable,

and in many cases they do not know what names or access terms they can use to select

 36

the desired items. Moreover, different viewers may refer to the same item using different

names, making it hard to assign a unique name to each object. So identifying a proper

vocabulary for HyperSoap is extremely difficult. To make the system more accessible to

untutored users, we must provide a number of access terms (or synonyms) for each

selectable item. However, many synonyms are shared by two or more items. When users

try to make object selection using one of those terms, ambiguity arises.

Actually, open vocabulary and ambiguity are two common problems for human-

computer interface design. In many computer applications, users must enter correct

words for the desired objects or actions. To increase usability and accessibility, the

system must recognize terms that are chosen spontaneously by untutored users, and

should be able to resolve ambiguities when necessary. Furnas et al. [18] studied these

problems extensively and concluded that: “There is no one good access term for most

objects. … Even the best possible name is not very useful.” In their study, they analyzed

spontaneous word choice for objects or actions in five application domains and found

surprisingly large variability in word usage. For example, the probability that two typists

will use the same verb in describing an editing operation is less than one in fourteen; that

two cooks will use the same keyword for a recipe is less than one in five. In all five cases,

the probability that two people favored the same term is less than 0.20. Their simulations

show that, the popular approach in which access is via a single word chosen by the

system designer will result in 80-90 percent failure rates in many common applications.

To achieve really good performance, many synonyms are needed and should be collected

from real users.

3.3 Design of the HyperSoap speech interface

To address the open vocabulary problem, we used a combination of item list and name

index: An item list containing the names of selectable items is displayed on the screen

upon viewers’ request to show them what to say; A name index containing several

synonyms for each item is created to model how viewers may call an object

 37

spontaneously. We also addressed the problem of ambiguity using a combination of

explicit on-screen confirmation and implicit disambiguation based on timelines.

3.3.1 Item list

The basic idea is to use visual information to inform users of selectable items. An item

list may be displayed upon users’ request, or it could be displayed automatically when it

is appropriate to do so. In either case, it will appear on the screen for a few seconds. The

item list not only indicates what objects are selectable but also shows users what to say.

Unlike the case of the iCom speech interface, where an instruction box containing all the

voice commands could be shown to users, it is impractical to display a list of all

selectable items in HyperSoap, because users simply don’t have enough time to browse a

long list while the video is constantly playing. Therefore, we grouped selectable items

into 5 categories, each forming a small item list such as lady’s item, men’s items and

furnishing.

We implemented the item list in two variations. In the first one, the item list is either

displayed upon users request (when users say “item list”) or triggered when the speech

engine fails to recognize users’ speech. In either case, items in the list are automatically

matched to what are shown on the screen. For example, when the scene contains a man

standing in front of a desk, men’s items and items on the desk will be displayed in the

item list, as shown in Figure 3.3. This approach has two limitations. First, in HyperSoap,

there are always a lot of hyperlinked items shown on the screen, making the item list

long, and therefore difficult to read for viewers. Second, the item list is triggered by noise

once in a while, which is distracting and confusing to viewers. (In our initial design,

when the item list is turned on, the corresponding objects are highlighted to give viewers

a better sense of what objects are hyperlinked. But some viewers felt that such a feature is

annoying and unnecessary. So we didn’t incorporate it into our final design.)

 38

However, the design described above may work well for shows containing a small

number of hyperlinked objects, such as An Interactive Dinner At Julia’s. The item list in

this show will not be difficult to read since it contains only a few items at any time. In

fact, in this particular case, we could have the item list displayed all the time without

distracting users because there is no rapid change in scene in the program. Items in the

list could be updated automatically when viewers switch to another video clip. To help

viewers better associate item names in the list with objects shown on the screen, we could

highlight the hyperlinked objects briefly when the item list is updated. An alternative to

showing the item list is to display a nametag around each selectable object, since the

position information for each hyperlinked object is available.

Figure 3.3 An item list containing Desk items and Men’s items is displayed.

In the second variation, we implemented a two-tier item list. In this mode, a category list

is always shown at the bottom-left corner of the screen. Users can choose to see items in

a particular category by saying the category’s name. Also, when the speech engine fails

 39

to recognize users’ speech, the system will display a feedback message, prompting users

to see item list for hyperlinked objects. Most users felt that this design is better than the

previous one for the HyperSoap program, since users have better control over which item

list to see. Figure 3.4 shows the two-tier item list.

Figure 3.4 A frame containing the two-tier item list.

A category list is always shown at the bottom-left corner. Viewers can choose to see items in a

particular category by saying the category’s name, such as “men’s items”.

3.3.2 Name index

To make hyperlinked objects more accessible to viewers, we created a name index to

model how viewers may call those objects spontaneously. It contains a number of

synonyms for each hyperlinked object, allowing viewers to select items without having to

see the item list first. As suggested in [18], a large number of synonyms are needed for a

really effective name index. However, in the case of HyperSoap, creating an object name

 40

index of moderate size is sufficient because, unlike abstract concepts or actions that are

difficult to describe using common terms, most of the selectable items in HyperSoap are

ordinary objects in our daily life, such as jacket, shirt and shoes, each having only one or

two widely used access terms.

We first initialized the name index using the object names shown in the item list. Then

we collected synonyms for each object name from real users to make the name index

more “knowledgeable”. In each user testing session, we documented the terms users used

to select various objects, and added new terms to the index. We also asked users to

provide extra synonyms if they can. The resulting name index is shown in Appendix B:

the left column in the table shows the category names; the middle column shows the

names used in the item list; the right column shows the synonyms for selectable objects.

3.3.3 Resolving ambiguity

It can be seen that several terms in Appendix B are shared by two or more items. For

example, the word “lamp” is shared by “table lamp” in Desk items and “floor lamp” in

Furnishing. Ambiguity will arise if viewers say “lamp”. Note that this is not only an

ambiguity to the system but also an ambiguity to the viewers since viewers may want to

choose one of the lamps but don’t know how to distinguish the two by speaking. This,

however, is not a problem for the interface based on pointing devices since users could

always click on the desired object.

Initially, when ambiguity occurs, we simply displayed information about the item that we

think users are most likely referring to. This approach didn’t produce consistent results.

So we addressed the ambiguity problem using a combination of explicit on-screen

confirmation and implicit disambiguation based on timelines. If the items involved in an

ambiguity situation appear on the screen simultaneously, we will ask for users’

confirmation explicitly by displaying a set of distinguishable names for all the relevant

items on the screen and prompting users to choose one. Figure 3.5 shows such a situation.

 41

Figure 3.5 Explicit disambiguation: on-screen confirmation.

A viewer says “lamp”, resulting in an ambiguity. The system displays both the “table lamp” and the

“floor lamp”, asking for the viewer’s confirmation.

If the items involved in an ambiguity situation appear in different parts of the show, we

can resolve the ambiguity implicitly based on timelines: we simply choose the item that is

shown on the current screen, assuming users are referring to the visible item. For

example, the term “photo” is shared by two items: a photo on the table (in Table items)

that appears in the first half of the show, and a photo on the bookcase (in Bookcase items)

that appears in the second half of the show. If a viewer says “photo” in the first half of the

show, information about the photo on the table will be shown.

3.3.4 The interaction flow

Figure 3.6 depicts the interaction flow of the HyperSoap speech interface. Figure 3.7

shows four frames of the HyperSoap program in different states.

 42

Users’ speech

Actions by the
speech interface

Users’ speech
Category name
(i.e., Men’s items)

Item name
(i.e., Suit)

Fails to recognize Recognizes Recognizes

Displays item list
of the selected
category.

Displays feedback
message,
prompting users
to see item list.

Is there an ambiguity?

No:
Highlights the selected
object and displays the
information window.

Yes:
Displays
distinguishable
names for relevant
items, prompting
users to choose one.

Waiting for users’ speech.

Figure 3.6 The interaction flow of the HyperSoap speech interface.

 43

(a)

(b)

(c)

(d)

Figure 3.7 Four frames of the HyperSoap program in different states.

(a) A normal frame; (b) The photo is selected; (c) A feedback message box is displayed when the

speech engine fails to recognize the viewer’s speech, prompting the viewer to see item list; (d) The

viewer says “picture”, resulting in an ambiguity. The system displays the names for two relevant

items: “photo” and “painting”, asking the viewe r to select one.

3.3.5 Other issues

In addition to the open vocabulary problem and the ambiguity problem, the following two

issues also need to be considered.

 44

Dynamic vocabulary

The IBM ViaVoice SDK supports dynamic vocabulary management: it allows multiple

vocabularies to be active at the same time. This feature is very useful for improving the

recognition rate, because instead of using a single large vocabulary for an application, we

can divide it into a set of smaller ones, and activate/deactivate them as needed so that the

actual vocabulary size is small. We used a single vocabulary for the HyperSoap program

since the size of the vocabulary is moderate. (The running time for HyperSoap is about 2

minutes. There are 45 hyperlinked items in the show, and the total number of

words/phrases in the vocabulary, including the synonyms and the category names, is

around 90.) For a longer program, say, a 30 minute show, with a large number of

hyperlinked items, we can create a set of small vocabularies by segmenting the show into

a series of consecutive intervals, either with equal length (2 minute, for example) or

corresponding to different shots, each containing a small number of selectable items that

form a small vocabulary.

Interference of audio

In a normal TV-watching setting, HyperSoap’s audio will interfere with viewers’ speech.

This will result in poor recognition performance. A practical approach to solve this

problem is to use a high quality directional microphone with echo-cancellation capability.

But a more sophisticated method involving the separation of TV audio from viewers’

speech also could be employed in the future.

 45

Chapter 4

User evaluation

This chapter presents user evaluation results for VoiceLink. Section 4.1 describes the

evaluation procedures. Section 4.2 summarizes the observations we made during user

evaluation. Section 4.3 discusses the lessons we learned from users’ feedback and several

improvements we made based on their suggestions.

4.1 Subjects, tasks and procedures.

Fifteen people participated in the user evaluation. They represent a range of different

voice characteristics, language skills and prior experiences in using speech recognition

software. Among the subjects are 3 female speakers and 5 non-native but fluent English

speakers. Two native English speakers have British accents. Several subjects are

experienced and frequent users of speech recognition systems, while the others have little

or no experience in using speech recognition software. Thirteen subjects are Media Lab

students or faculty members who are familiar with the iCom system and the HyperSoap

program; the other two are students of other departments at MIT, who have never seen

the demonstrations of iCom and HyperSoap before.

The evaluation consists of two rounds. Seven people performed user testing in the first

round. We made several improvements to the initial design based on their feedback, and

tested the system with the remaining subjects in the second round. All the user testing

sessions were held in an office. The noise level in the office varied from session to

session: sometimes it was quiet and sometimes it was very noisy due to a busy

surrounding environment. In a few sessions, background audio/music was also played.

Both the iCom module and the HyperSoap module are tested on an IBM workstation to

evaluate their voice control capabilities. In the future, we plan to install VoiceLink on a

 46

real iCom station to evaluate its usefulness in real application settings during extended

periods of use.

The procedures for a testing session are as follows. It takes about 20 to 30 minutes for

each subject to complete the evaluation.

• An orientation of the iCom system and the HyperSoap program is given to users

who have never used them before. After completing the tasks listed below using

the speech interface, they were also asked to complete the same tasks using

mouse/trackball for comparison.

• Test the iCom speech interface module using a general voice model, completing

the following tasks.

§ Learn how the interface works and find out valid voice commands by

using the system.

§ Select three different windows, enlarging each of them to its maximal size

and reducing it to its minimal size.

§ Read at least five messages.

• Test the HyperSoap speech interface module using the general voice model,

completing the following tasks

§ Learn how the interface works by using the system.

§ Select at least 10 objects while watching HyperSoap.

• Repeat the above two tests using speaker-specific voice models, and compare the

results with those obtained using the general voice model. To create a speaker-

specific voice model, a user need to complete the IBM ViaVoice user enrollment

program, which takes about 10 minutes. (Only two native English speakers and

two non-native English speakers performed user enrollment, because we found

that the general voice model worked fairly well for most users.)

• Data gathering for the name index used in HyperSoap: each subject was asked to

provide synonyms for object names.

• Finally, subjects were interviewed briefly about the effectiveness and usefulness

of VoiceLink, its features, and its overall performance.

 47

4.2 Observations

VoiceLink performed very well in quiet environment, and is robust under the presence of

light noise. All the users were able to learn how to use the system very quickly and

completed the tasks without difficulties. Using the general voice model, the speech

engine could accurately recognize valid voice commands for most of the users, although

it had problems recognizing some of the commands issued by a couple of users with

heavy accents. In those cases, using speaker-specific voice models resulted in significant

increase in recognition rates.

The response time of the speech interface is comparable to that of the mouse or the

trackball. For most voice commands, there is no noticeable delay in system response due

to the time needed for speech recognition. Only a little delay was observed for message

selection using voice commands.

There were four types of errors, which are shown below. Some of the errors are identical

from a user’s point of view. We differentiate them here for clarity.

• Rejection: The speech engine failed to recognize valid voice commands. This

happened occasionally to native speakers due to the interference of noise.

Rejection rates were higher for accented speakers, but they could still interact

with the system and finish the required tasks smoothly. Using the general voice

model for all users, the overall recognition rate for valid voice commands is above

80% in normal office environment. There is no significant difference in

recognition rate due to gender.

• Replacement: The speech engine incorrectly recognized a valid voice command

as another command with similar pronunciation. This happened occasionally to

users with strong accents. For example, when using the general voice model for

one user, the speech interface always replaced the word “shirt” with “chair”, both

of which are selectable items in HyperSoap.

• Out-of-vocabulary: iCom users used invalid voice commands; HyperSoap users

tried to pick selectable items using names not included in the object name index,

 48

or tried to pick items that are not selectable. Out-of-vocabulary is the major

source of errors for both the iCom module and the HyperSoap module. It,

however, didn’t result in serious user frustration or confusion, because after a few

failed attempts, most users were able to know what to say by reading the

instruction message for iCom or the item list for HyperSoap.

• False alarm caused by noise: The feedback message or unintended actions were

triggered by noise. This happened occasionally under the presence of light noise

and occurred quite often under loud noise (for example, when loud music was

being played in the office during user testing). Frequent false alarms of this kind

were annoying and confusing to users.

Replacement errors and unintended actions can be reduced by raising the rejection

threshold, which is a speech engine parameter that can be adjusted using the ViaVoice

SDK. However, the threshold should not be set too high, otherwise, rejection rate will

increase. (The rejection threshold is essentially the confidence level for speech

recognition results. We used the system default value, zero, in our experiment, so that any

recognition results will be accepted.)

4.3 Feedback

Many users provided insightful comments and suggestions on the design of VoiceLink,

leading to a number of improvements to the system. The following two sections describe

user feedbacks on the iCom module and the HyperSoap module respectively.

4.3.1 The case for iCom

Most users felt that the iCom speech interface is intuitive and easy to use, and is effective

for controlling the iCom station. They said that it is very helpful to incorporate voice

commands into the iCom screen display and to provide an instruction message containing

all the voice commands for quick browsing.

 49

Many users stated that the speech interface is a useful feature for the iCom system, and

they would like to use it on a real iCom station for the following two reasons:

• The speech interface enables hand-free control of iCom, making the system more

convenient to use under certain circumstances. For example, when several users

are sitting in front of an iCom station, they can use voice commands to control the

system when the trackball is out of reach.

• The speech interface offers users a better interaction experience. It makes them

feel that they are interacting with a responsive environment in a natural and

relaxed manner, rather than operating a computer system.

However, a few users thought that the iCom speech interface is unnecessary because the

trackball works perfectly well while the speech interface is not robust enough at the

current stage, especially for accented users.

We learned many valuable lessons through user testing, and made the following

improvements to our initial design of the iCom speech interface:

• Supporting synonyms: allowing more than one way of saying a command.

Initially, we defined a concise command set without providing any redundant

commands (one command for one function). After several user evaluation

sessions, we added a number of synonyms frequently mentioned by the users to

make the interface more intuitive and flexible. This also improved the consistency

of the command format. For example, we only defined “close” as the command

for closing message display initially, but after using the “close garden” command

to close a window, many users tried to close the message display by saying “close

message”, assuming a “verb + object” command format. So using “close

message” as a synonym for “close” results in a better match between voice

commands and users’ expectations.

• Adding the Keyword-trigger feature. It allows users to activate/deactivate the

interface by saying a pair of keywords, instead of having to click on the press-to-

talk button using the trackball. This feature enables users to control an iCom

station completely hands-free.

 50

• Improvement on instruction message: we replaced wordy descriptions with simple

examples to make the instruction message more informative.

• Reducing the frequency of feedback. Initially, a feedback message is displayed

each time the speech engine fails to recognize the speech input. However, noise

often triggers the feedback message, which is confusing and annoying to users. In

our final design, we cut the feedback frequency in half: the feedback message is

displayed after the speech engine fails to recognize the speech input twice.

Some users also suggested that we should modify how windows are managed on the

iCom screen. For example, they said that it would be better if a window could be reduced

all the way down to its minimal size when users want to close it. We didn’t make any

change to window management because we want to keep the original iCom system

design intact.

For a couple of users, visual feedback failed to capture their attention - they kept saying

invalid commands without noticing the feedback message on the screen. This suggests

that proper auditory cues might be used in conjunction with visual feedback to better

assist users to understand the speech interface.

4.3.2 The case for HyperSoap

Most users enjoyed the interaction experience. They felt that the HyperSoap speech

interface worked fairly well and the item list was very helpful. They were able to select

the desired objects most of the time. Overall, they thought that the speech interface is a

useful feature to the HyperSoap program, and it makes the interaction more seamless.

However, one user in the first round of user testing said that the speech interface was not

very effective because he followed the item list instead of watching the video. The major

disadvantage of the speech interface, as some users mentioned, is the ambiguity problem,

which does not arise at all when pointing devices are used.

 51

We made the following changes to the HyperSoap speech interface during the course of

user evaluation:

• Implementing the two-tier item list, which is described in detail in Section 3.3.1.

• Improving the object name index. We collected synonyms for the object name

index to make it more “knowledgeable”, as described in Section 3.3.2 This

improved the hit rate for users’ spontaneous speech, making the object selection

process more natural and flexible.

• Providing ambiguity resolution. Initially, the speech interface did not have

disambiguation capability. When users said a name that is shared by more than

two items, the speech interface picked one of them randomly. But quite often, the

randomly chosen item was not the intended one. So we added the disambiguation

capability to the system, as discussed in Section 3.3.3.

Some users suggested that when they selected an item not shown on the screen, a small

picture of the item should be displayed alongside the information window to give them a

better sense of what they actually selected. Some users also suggested that we should

allow them to browse through the video clip (fast forward/reverse or jumping to a

particular point) using voice commands. These features could be implemented and tested

in the future.

 52

 53

Chapter 5

Speech software library for Isis

The goal was to lesson the burden of speech interface developers by allowing users to

develop Isis based speech aware applications in the Isis programming environment

without having to know the details of the IBM ViaVoice SDK. The Isis programming

language and the IBM ViaVoice SDK are briefly introduced in Section 5.1 and Section

5.2 respectively. The speech software library is described in Section 5.3.

5.1 The Isis programming language

Isis is a programming language created at the MIT Media Lab in 1995 by Stefan

Agamanolis. It is specially tailored to support the development of demanding multimedia

applications. Isis is very flexible and can operate on a variety of platforms, from high

power workstations and servers to set-top boxes and handheld devices. It is designed to

be accessible to a wide variety of users of different levels of expertise. Its small yet

complete syntax lessens the burden on programming novices while still allowing

experienced programmers to take full advantage of their skills. Isis also provides an

efficient mechanism for extending functionality by accessing software libraries written in

other languages such as C. Many of the projects being developed at the Media Lab use

Isis as the development tool because of its flexibility and simplicity.

5.2 IBM ViaVoice SDK and speech aware applications

The IBM ViaVoice Software Developers Kit (SDK) includes a set of application

programming interfaces (APIs) known as the Speech Manager API, or SMAPI for short,

which enables an application to access the speech recognition engine. The ViaVoice

speech recognition engine supports U.S. English, six European, and three Asian

 54

languages. Multiple languages can be installed on one system, and ViaVoice allows the

user to switch between them as needed. The ViaVoice SDK, by default, runs with the

general office domain in the selected language. This general office domain contains more

than 20,000 words representative of the office environment. The SMAPI is designed for

use with the C language, but any language that supports C function calls can access the

ViaVoice SDK library.

The ViaVoice SDK has several features that are very useful for developing speech aware

applications:

• It allows multiple vocabularies to be active at the same time.

• It allows users to add/remove words to/from a vocabulary dynamically at runtime.

• It also allows multiple concurrent connections to the speech engine, even from

within the same application.

There is a starter set of less than 20 SMAPI calls that one can use to develop a full-

function speech aware application, which can handle the following tasks:

• Establishing a recognition session

• Defining and enabling vocabularies

• Directing the engine to process speech

• Processing recognized commands

• Disconnecting from the engine

In addition to the starter set, ViaVoice SDK includes many other SMAPI calls that

provide more capabilities, such as session sharing and querying system parameters

(including task ID, user ID, enrollment ID, and rejection threshold).

5.3 The Isis speech software library

To build the speech software library, we wrote a voice interface routine in C using the

basic ViaVoice SMAPI calls and bind it into Isis. It could handle all the basic tasks

needed for a command-and-control speech application. Programmers can access this

 55

routine (thus the ViaVoice speech engine) in the Isis programming environment. We

created several Isis functions that allow programmers to change the routine’s behavior as

needed:

• Defining a vocabulary. Developers can define an application specific vocabulary

consisting of a list of words and/or phrases as an Isis list, and pass it to the voice

interface routine. Currently, we don’t support grammar based speech aware

applications.

• Adding/removing words to/from a vocabulary. Developers can add/remove words

to/from a vocabulary dynamically. This feature is useful when a developer does

not know all the possible items in the vocabulary at the time of application design.

For example, in a telephone dialer application, the program can load new dialers’

names into the vocabulary at run time.

• Specifying a user ID. Developers can pass a user ID to the voice interface routine.

This is essentially to allow the speech engine to use a user specific voice model.

• Turning on/off the microphone. Developers can pass a flag (a True/False value in

Isis) to the voice interface routine to turn on /off the microphone as needed.

• Accepting speech recognition results. When the speech engine recognizes users’

speech, it outputs the corresponding string. If it fails to recognize the speech, it

sends out an empty string. The voice interface routine can write the recognition

results to a file or send them to an Isis process through a socket, depending on

which method developers choose to use.

• Adjusting the rejection threshold. As already mentioned in Section 4.2, the

rejection threshold is basically the confidence level for speech recognition results.

Raising the threshold can reduce false alarms caused by noise.

To use the software library, the IBM ViaVoice SDK should be installed on a machine

running Isis, and at least one ViaVoice user account has to be created. Please refer to the

Isis website [19] for detailed documentation about the speech software library.

The functions described above allow Isis programmers to build a very basic yet full-

function speech aware application. More features, such as grammar definition, session

 56

sharing for multiple speech applications, and dynamic vocabulary management could be

included into the library to allow users to develop more complex applications.

 57

Chapter 6

Conclusions

This chapter concludes the thesis with a summary of the VoiceLink design in Section 6.1

and discussions on future work in Section 6.2.

6.1 Summary

In this thesis, we developed VoiceLink, a speech interface package, which can interface

with various multimedia applications written in the Isis programming language. It

contains two command-and-control speech interface modules, one for the iCom system

and another for the HyperSoap program. With functionalities similar to those of a

trackball, the iCom module enables users to control an iCom station using voice

commands. As an alternative to a laser pointer, the HyperSoap module allows viewers to

select objects and access related information by saying objects’ names. We also built a

speech software library for Isis, which allows users to develop speech aware applications

in the Isis programming environment without having to know the details of the

underlying speech recognition system, thus lessoning the burden of developers.

We encountered a number of problems during the development of VoiceLink. In the case

of the iCom module, the challenge is to build a robust and easy-to-use speech interface

that could be used by novice users in public places with minimal training. In our design,

visual information is displayed on the iCom projection screen to show users what to say

and provide them with instant feedback and instructions. Through such a design, we not

only inform users of many voice commands seamlessly but also eliminate the need for

users to remember those commands. To reduce false alarms, a press-to-talk button was

implemented to allow users to activate and deactivate the speech interface as needed, so

that normal conversation between users at two locations will not be incorrectly taken as

voice commands by the speech interface.

 58

The major challenge for the HyperSoap module is the open vocabulary problem for

object selection. We overcame this problem using a combination of item list and name

index. An item list containing the names of selectable items is displayed on the screen

upon viewers’ request to show them what objects are hyperlinked and how to call them.

A name index is created to model how viewers may call objects spontaneously. It

contains a number of synonyms for each selectable object, allowing viewers to select

items in a more natural and flexible manner. We also addressed the problem of ambiguity

using a combination of explicit on-screen confirmation and implicit disambiguation based

on timelines.

VoiceLink overcomes several limitations of traditional pointing devices and produced

robust performance. The result of user evaluation showed that a speech based interface

for responsive media applications is not only useful but also feasible, and has great

potential to offer better interface experiences than traditional pointing devices. Due to the

limitations of speech recognition, however, the VoiceLink speech interface is still less

reliable than pointing devices. Therefore, we should not expect that VoiceLink could

replace traditional pointing devices completely at the current stage. Rather we should

allow the two types of interface modals to function interchangeably to offer greater

accessibility for diverse users and usage context.

6.2 Future work

A number of problems should be addressed in the future to further improve the

performance of VoiceLink.

• In addition to visual feedback, auditory cues may be employed to help users better

understand the system. For example, a sound alert scheme or a text-to-speech

engine could be used to indicate that the speech engine cannot recognize users’

speech and prompt users to read instructions.

• The HyperSoap module is just one feature of speech interface for interactive TV.

Other features also could be incorporated into a speech interface for interactive

 59

TV programs. Voice enabled channel switching and a TV program

guide/reminder driven by a text-to-speech engine are two such examples.

• Currently, the Isis speech software library only supports vocabulary based speech

aware applications. Extension should be made to allow users to define simple

grammars. Text-to-speech capability also could be incorporated into the library.

• While the general voice model produces robust recognition performance for most

of the users, it does not work very well for heavy accented users. In those cases,

speech recognition rates may be improved by using speaker specific voice

models. A number of approaches for voice model adaptation can be explored,

which are discussed in Section 2.3.

• Although VoiceLink is designed to function as a stand-alone interface, it can be

incorporated into a multi-modal architecture. For example, speech recognition

may be combined with gesture recognition to enable better interaction experiences

and more robust and flexible control of various responsive media applications.

• In addition to iCom and HyperSoap, speech interfaces may be developed for other

responsive media applications. Reflection of Presence [20], for example, is

another program in which users can control and interact with various media

objects using speech. We also should explore new approaches for the production

of interactive TV programs tailored to speech-enabled interactions.

• Recently, IBM discontinued its offering of the ViaVoice SDK for Linux software.

A good alternative is the Sphinx speech recognition system [4], which produces

comparable performance as that of ViaVoice. It also has an API that allows users

to develop speech aware applications. More importantly, it is open-source

software. So future development of speech interfaces for Isis applications could

be based on Sphinx.

• Currently, users can select objects in HyperSoap only by saying their names as

isolated words or phrases. In the future, a keyword-spotting algorithm [21] could

be used to extract object names from users’ casual conversations. For example,

the system could spot the word “shirt” from a speech input such as “I like the

shirt”. Such a keyword spotting capability will lead to more transparent and

engaging interactions. Furthermore, we could incorporate a speech understanding

 60

engine into the system so that the speech interface would be able to distinguish

two different inputs such as “I like the shirt” and “I don’t like the shirt”, and react

to them differently.

 61

Appendices

A. Voice commands for the iCom speech interface

Functions Commands Behavior

Window label, or “open” + window label.

Example:

“garden”, “cube”, “open garden”.

Enlarges the selected window.

Window control

“close” + window label.

Example: “close garden”.

Shrinks the selected window.

“message” + message number.

Example: “message one”.

Displays the selected message.

“page up”,

“page down”.

Scrolls up/down message text for long

messages that have more than one

page.

“next”, or “next message”,

“previous”, or “previous message”.

Displays the next message or the

previous message.

Message control

“close” or “close message”. Closes the message display.

Audio label, or “open”+ audio label.

Example:

“garden audio”, “open garden audio”.

Turns on the audio at the selected

location.

Audio control

“close” + audio label.

Example: “close garden audio”.

Turns off the audio.

“instruction”. Shows instructions on the screen. Instruction

“close instruction”. Dismisses instructions.

“microphone”, or “microphone on”. Activates the speech interface. Interface control

“close microphone” or “microphone off”. Deactivates the speech interface.

(Users also can toggle the state of the

speech interface by clicking on the

microphone button using the trackball.)

 62

B. Object name index for HyperSoap

Categories Object names Synonyms
Blouse Shirt, Blue shirt, Lady’s shirt
Hair salon Hair, Lady’s hair, Hair style
Earrings

Bracelet
Necklace Pearl necklace
Lady’s watch Watch, Wristwatch, Swatch
High Heels Shoes, Lady’s shoes
Jacket Skirt

Ring

Lady’s items

Pantyhose Stockings, Leg
Suit Coat
Hair cut Hair, Men’s hair
Yellow shirt Shirt, Men’s shirt

Men’s watch Watch, Wristwatch
Shoes Dress shoes, Men’s shoes
Flannel Shirt Shirt

Men’s items

Jeans
Tissue box Box

Mug Cup, Coffee mug
Jewelry box Box
Clock Desk clock, Table clock
Tissue Napkin
Picture Frame Frame

Digital Image Picture, Photo
Desk lamp Lamp, Table lamp
Sculpture Cat
Telephone Phone
Magic Frame Frame

Table items

Doll
Bookcase Bookshelf
Teddy bear Bear, Teddy
Globe
Being digital Book

Perl 5 Book, Computer programming
Photo Picture
Plants

Bookcase items

Painting Print, Picture

 63

Lamp Floor lamp
Chair
Antique Pillar, Column

Carpet Rug
Sofa Couch
Print Painting, Large painting, Picture
Poster Painting, Print

Furnishing

Framed Print Painting, Small painting, Picture, Print

 64

 65

Bibliography

[1] S. Agamanolis, “Isis, Cabbage, and Viper: New Tools and Strategies for Designing
Responsive Media”, PhD Thesis, MIT Media Lab, June 2001.

[2] The iCom website. http://www.medialabeurope.org/hc/projects/iCom/

[3] V. M. Bove, Jr., J. Dakss, E. Chalom, and S. Agamanolis, “Hyperlinked television
research at the MIT Media Laboratory,” IBM Systems Journal, Vol. 39, No. 3-4, 2000.

[4] The Sphinx speech recognition system. http://www.speech.cs.cmu.edu/sphinx/

[5] J. Glass, J. Chang, and M. McCandless, “A Probabilistic Framework for Feature-
Based Speech Recognition”, Proc. ICSLP 96, pp. 2277-2280, Philadelphia, PA, October
1996.

[6] R. Rosenfeld, X. Zhu, et al, “Towards a universal speech interface”, Proceedings of
the International Conference on Spoken Language Processing, Beijing, China, 2000.

[7] K. H. Lee, “IMPROMPTU: Audio Applications for Mobile IP”, Master of Science
Thesis, MIT Media Lab, September 2001.

 [8] S. Seneff, E. Hurley, R. Lau, C. Pao, P. Schmid, and V. Zue, “GALAXY-II: A
Reference Architecture for Conversational System Development”, Proc. ICSLP 98,
Sydney, Australia, November 1998.

[9] The MIT Spoken Language Systems Group. http://www.sls.lcs.mit.edu/sls/research/

[10] C. Schmandt and E. A. Hulteen, “The Intelligent Voice Interactive Interface”,
Proceedings, Human Factors in Computer Systems, National Bureau of Standards/ACM,
Gaithersburg, MD, 1982.

[11] S. Oviatt, “Mutual disambiguation of recognition errors in a multimodal
architecture”, Proceedings of the ACM CHI 99, Pittsburgh, USA, pp. 576-583.

[12] M. D. Good, J. A. Whiteside, D. R. Wixon, and S. J. Jones, “Building a user-derived
interface”, Communications of the ACM, October 1984, Vol. 27, No. 10. pp. 1032-1043.

[13] D. K. Roy, “Learning from Sights and Sounds: A Computational Model”, Ph.D.
Thesis, MIT Media Laboratory, September 1999.

[14] The SALT Forum. http://www.saltforum.org.

[15] VoiceXML. http://www.voicexml.org/.

[16] The IBM ViaVoice SDK. http://www-3.ibm.com/software/speech/dev/

 66

[17] C. Schmandt, Voice Communication with Computers Conversational Systems, Van
Nostrand Reinhold, 1994.

[18] G.W. Furnas, T.K. Landauer, L.M. Gomez, and S.T. Dumais, “The vocabulary
problem in human-system communications”, Communications of the Association for
Computing Machinery, 30(11): 964-972, 1987.

[19] The Isis web site. http://web.media.mit.edu/~stefan/isis/

[20] S. Agamanolis, A. Westner, and V. M. Bove, Jr., “Reflection of Presence: Toward
More Natural and Responsive Telecollaboration”, Proc. SPIE Multimedia Networks,
3228A, 1997.

[21] T. Burianek, “Building a Speech Understanding System Using Word Spotting
Techniques”, Master of Engineering Thesis, MIT Department of Electrical Engineering
and Computer Science, July 2000.

