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Abstract 
 
We developed VoiceLink, a speech interface package for responsive media applications. 
It contains a set of speech interface modules that can interface with various multimedia 
applications written in Isis, a scripting programming language created at the MIT Media 
Laboratory. Specifically, we designed two command-and-control voice interfaces, one for 
iCom, a multi-point audio/video communication system, and another for HyperSoap, a 
hyperlinked TV program. The iCom module enables users to control an iCom station 
using voice commands while the HyperSoap module allows viewers to select objects and 
access related information by saying objects’ names. We also built a speech software 
library for Isis, which allows users to develop speech aware applications in the Isis 
programming environment. 
  
We addressed a number of problems when designing VoiceLink. In the case of the iCom 
module, visual information is used to seamlessly inform users of voice commands and to 
provide them with instant feedback and instructions, making the speech interface 
intuitive, flexible and easy to use for novice users. The major challenge for the 
HyperSoap module is the open vocabulary problem for object selection. In our design, an 
item list is displayed on the screen upon viewers’ request to show them selectable 
objects. We also created an object name index to model how viewers may call objects 
spontaneously. Using a combination of item list and name index in the HyperSoap 
module produced fairly robust performance, making the speech interface a useful 
alternative to traditional pointing devices. The result of user evaluation is encouraging. It 
showed that a speech based interface for responsive media applications is not only useful 
but also practical. 
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Chapter 1 

Introduction 

 

1.1 Motivation 

 

Many responsive media applications have been developed at the MIT Media Lab using 

the Isis programming language [1]. Listed below are two examples: 

• iCom, a multipoint communication portal consisting of several stations that links 

different workspaces of the MIT Media Lab with Media Lab Europe in Dublin. It 

serves several purposes, including acting as an ambient porthole that provides a 

constant sense of awareness, a live interpersonal communication system, and a 

community messaging center [2]. Figure 1.1 shows an iCom station, which is 

composed of a projection screen and a sitting area where users can control the 

iCom station using a trackball (a big mouse). 

• HyperSoap, a hyperlinked video program that resembles television serial dramas 

known as “soap operas”, in which many items on the screen are linked to 

information stored in a database and can be selected by viewers using a device 

with point-and-click capability (i.e., mouse, laser pointer or touch screen) [3]. 

Figure 1.2 shows how HyperSoap viewers can select objects using a laser pointer. 

 

 

Figure 1.1 An iCom station. 
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Figure 1.2 Viewer of HyperSoap clicks on the blue jeans using a laser pointer. 

  

In these examples, an interface based on pointing devices is used to control and interact 

with various media objects. Although very reliable, such an approach has several 

limitations:  

• While it is easy to set up an iCom projection screen in a public place such as the 

hallway of an office building, it is not always possible to find a suitable sitting 

area to place a table for the trackball. This limits the usability of the iCom system.  

• When selecting objects from HyperSoap using a pointing device, it is difficult to 

click on a small or fast-moving object. Also, once an object has disappeared from 

the TV screen, it can no longer be accessed.  

• As the only means for users to control various media objects, the pointing device 

limits the interface experience to mouse clicking. As we integrate more 

responsive media applications into our daily environment, an interface that could 

enable more natural, transparent, and flexible interaction is desired. 

 

The above problems can be avoided if viewers can interact with the iCom system or the 

HyperSoap program through a speech-based interface. For example, a trackball is no 

longer needed if users can control the iCom system reliably using voice commands. With 

a speech interface, HyperSoap viewers can select an object on the screen by simply 

saying its name, no matter how small it is and how fast it is moving. They can even select 
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objects not shown on the screen. More importantly, as an alternative to pointing devices, 

a speech based interface offers a more compelling and enjoyable interaction experience. 

For example, an interface with voice control capability enables users to interact with an 

iCom station in a relaxed and hands-free manner, engaging them in a responsive 

environment rather than making them feel like they are just operating yet another 

computer. 

 

1.2 Goals  

 

In this thesis, we aimed to develop a speech interface package called VoiceLink, which 

can interface with various multimedia applications written in the Isis programming 

language. The major goal was to overcome the limitations of the pointing devices used in 

the iCom system and the HyperSoap program by designing two command-and-control 

speech interface modules, one for iCom and another for HyperSoap. With functionalities 

similar to those of a trackball, the iCom module would enable users to control an iCom 

station using voice commands. As an alternative to a laser pointer, the HyperSoap 

module would allow viewers to select objects and access related information by saying 

objects’ names. A second goal was to build a speech software library for Isis, which 

would allow users to develop speech aware applications in the Isis programming 

environment without having to know the details of the underlying speech recognition 

system, thus lessoning the burden of developers.  

 

Compared with pointing devices, a speech based interface has its own limitations. Speech 

is inherently ambiguous and speech recognition is error prone, making a speech interface 

less reliable than pointing devices under certain circumstances. For example, while a 

manually impaired user with a repetitive stress injury may prefer a speech-based 

interface, a user with heavy accent may find such an interface difficult to use. Therefore, 

although VoiceLink was designed as a stand-alone speech interface, we did not expect it 

to replace traditional pointing devices completely at the current stage. Rather, the goal 

was to develop an alternative that can supplement the pointing devices and enhance their 

functionalities. The speech interface should be able to work interchangeably with a 
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trackball or a laser pointer to offer greater accessibility for diverse users and usage 

context.  

 

1.3 Related work 

 

1.3.1 Speech recognition 

 

Significant progress in speech recognition technology has been made during the last 

several decades. Large vocabulary, speaker-independent, continuous speech recognition 

is now possible.  State of the art systems are generally developed based on statistical 

modeling and data-driven approaches. With lexicon size of more than 50,000 words, they 

can achieve recognition rates of more than 90% for cooperative speakers in benign 

environment. However, recognition of conversational speech involving multiple speakers 

and poor acoustic environment remains a challenge. Listed below are some examples of 

leading commercial speech recognition systems: 

• Dictation software, including ViaVoice developed by IBM Corp., 

NaturallySpeaking by Dragon Systems, and Voice Xpress by Lernout & Hauspie. 

(Lernout & Hauspie acquired Dragon Systems in 2000 and discontinued its own 

speech recognition software: Voice Xpress.) 

• Telephone transaction systems developed by various companies, including AT&T 

Corp., Nuance Communications Inc., SpeechWorks International Inc., TellMe 

Networks Inc., and Philips Electronics NV. 

In addition to the above commercial products, several academic institutions also have 

developed speech recognition systems. Among them are the Sphinx system [4] developed 

at Carnegie Mellon University and the SUMMIT system developed at MIT [5]. 

 

1.3.2 Speech interface  

 

Speech interface is an active research area. State of the art speech recognition and 

understanding systems have made speech aware applications practical. However, 
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designing a good voice interface for a given application remains a challenge. A number 

of approaches for speech interface design have been explored [6], including: 

• Vocabulary-driven command-and-control systems, which constrain what users 

can say and explore the constraint to produce robust performance. 

• Natural language processing based voice interface systems, which accept and 

react to users’ spontaneous speech. 

• Multi-modal interfaces, which combine speech, gesture and other means of 

human communications to make the system more flexible and efficient.  

• User-derived interfaces, which learn and adapt to users’ behavior. 

 

Lee [7] developed IMPROMPTU, an Internet Protocol based audio platform for mobile 

communications and networked audio applications. A command-and-control voice 

interface was implemented on IMPROMPTU client to allow users to switch applications 

and control each application. Other examples of vocabulary-driven command-and-control 

systems include voice control interfaces for cars and many of the dialog-tree based 

telephone transaction systems currently in use. 

 

The Spoken Language Systems Group at MIT Laboratory for Computer Science 

developed GALAXY [8], an architecture for integrating speech technologies to create 

natural language understanding based conversational spoken language systems. With the 

GALAXY architecture they have developed a wide variety of telephone information 

retrieval systems, including: JUPITER - A weather information system; MERCURY - An 

airline flight planning system; PEGASUS - An airline flight status system; VOYAGER - 

A city guide and urban navigation system [9].  

 

Schmandt et al. built “Put That there” [10], one of the first multi-modal systems, which 

combined speech and manual pointing to manipulate objects. Oviatt used a combination 

of speech and pen-based gesture to perform mutual disambiguation [11]. The result 

showed that although speech recognition alone performed poorly for accented English 

speakers, their multi-modal recognition rates did not differ from those of native English 

speakers. 
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The systems described above are interface centered. Even for natural language processing 

based interfaces, a set of predefined rules or grammars are used to parse users’ input. An 

alternative approach is to develop user-derived interfaces. Good et al. [12] built an 

interface to accommodate novice users’ behavior. Through careful observation and 

analysis of the actual behavior of many users, a mail interface unusable by novices 

evolved into one that allows novices to do useful work within minutes. More recently, 

Roy [13] proposed Adaptive Spoken Interfaces, which learn individual user’s speech 

patterns, word choices, and associated semantics.  

 

1.3.3 Industry standards 

 

The SALT (Speech Application Language Tags) Forum [14] released “Speech 

Application Language Tags Specification Version 1.0” in July 2002. It allows developers 

to add speech “tags” to Web applications written in XML (Extensible Markup Language) 

and HTML (Hypertext Markup Language), making it possible to create multi-modal 

programs that can be controlled by both voice and traditional input methods. The SALT 

specification is also designed for applications that don't have a visual user interface, such 

as those accessed by telephone. Founding members of the SALT Forum include 

Microsoft Corp., SpeechWorks International Inc., Cisco Systems Inc., Intel Corp. and 

Philips Electronics NV. 

 

A rival effort is under way to develop a standard for speech interfaces based on a 

technology called VoiceXML [15]. This effort is led by a group of companies including 

IBM Corp., Motorola Inc., AT&T Corp. and Lucent Technologies Inc. First announced in 

early 1999, VoiceXML originally was designed to allow applications to be accessed by 

telephone. Efforts are under way to add the capability to voice-enabled applications that 

are accessed using the Web. 
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1.4 Challenges and approaches  

 

We encountered a number of problems during the development of VoiceLink. In the case 

of the iCom module, the challenge is to make the voice interface intuitive and flexible so 

that novice users in public places could easily understand how it works with minimal 

training. In our design, we utilized the iCom projection screen to inform users of voice 

commands and provide them with instant visual feedback and instructions. Many voice 

commands are seamlessly incorporated into the screen display to eliminate the need for 

users to remember them.  To reduce false alarms, a press-to-talk button was implemented 

to allow users to activate and deactivate the speech interface as needed so that normal 

conversation between users at two locations will not be incorrectly taken as voice 

commands by the speech interface. Users could also toggle the state of the speech 

interface by saying a pair of keywords. 

 

The major challenge for the HyperSoap module is the open vocabulary problem for 

object selection. When watching HyperSoap, people do not know what items on the 

screen are selectable, and in many cases they do not know how to call the items that they 

want to select. Moreover, different viewers may refer to the same item using different 

names, making it very difficult to assign a unique name to each object.  To overcome this 

problem, we used a combination of item list and name index. An item list containing the 

names of selectable items is displayed on the screen upon viewers’ request to show what 

objects are selectable and how to call them. A name index is created to model how 

viewers may call objects spontaneously. It contains a number of synonyms for each 

selectable object, allowing viewers to select items in a more natural and flexible manner. 

Ambiguity is another problem we must address: a viewer may refer to different items 

using a common name and they do not know how to distinguish them when they want to 

select one of them by speaking. We solved this problem using a combination of explicit 

on-screen confirmation and implicit disambiguation based on timelines.  

 

In our system, we used the IBM ViaVoice SDK software [16] for speech recognition. It 

has a large vocabulary, speaker adaptive speech recognition engine. It also provides a 
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Software Developer’s Kit (SDK) that allows users to develop speech aware applications 

using a set of Application Programming Interfaces (APIs), which are designed for use 

with the C programming language. We implemented VoiceLink using a combination of C 

and Isis under the Linux operating system. In our implementation, we installed the IBM 

ViaVoice speech recognition engine on a speech application server and fed recognition 

results to an Isis station running responsive media applications.  
 

1.5 Thesis outline 

 

The rest of the thesis is organized as follows: Chapter 2 and Chapter 3 describe the 

speech interface design for the iCom module and the HyperSoap module respectively; 

Chapter 4 presents user evaluation results; Chapter 5 describes the Isis speech software 

library; Chapter 6 concludes this thesis with discussions on future work.  
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Chapter 2 

Speech interface design for iCom 

 
VoiceLink went through two iterations of design and test. Several changes to the initial 

design were made based on the lessons we learned from user evaluation. This chapter 

presents the final design of the iCom speech interface module. Section 2.1 provides a 

brief description of the iCom system. Major design considerations are discussed in 

Section 2.2. A number of approaches for voice model adaptation are proposed in Section 

2.3. The system architecture is described in Section 2.4. 

 

2.1 Brief description of iCom 

 

The iCom system connects several sites at the MIT Media Lab and Media Lab Europe 24 

hours a day. Its normal mode is background, providing continuous ambient awareness 

among all sites, but at any time it can be transformed into a foreground mode for ad-hoc 

tele-meetings or casual interaction, without the need to dial telephones or wait for 

connections to be established. Echo-canceling speaker/microphones enable full duplex 

speech transmission. iCom also functions as a bulletin board for community messages or 

announcements, sent via email. Message titles are listed in chronological order with 

varying size to reflect the age and popularity of a posting. The screen projections at each 

site are synchronized so that people at different sites see exactly the same projection. 

Figure 2.1 shows an iCom station at the MIT Media Lab and a few screen projections for 

different activities. 

 

Users control an iCom station using a trackball: clicking the windows changes their 

arrangement, allowing the display to be customized for a particular activity. Specifically, 

the left button of the trackball is labeled as “Select” and the right button is labeled as 

“Dismiss”. Left clicking on a window enlarges it while right clicking shrinks it. Left 

clicking on a message title causes its full text to be displayed. Right clicking on the 
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displayed text closes the message display. Audio at each site can be turned on or off by 

left clicking or right clicking on its corresponding indicator box at the bottom of the 

screen. 

 

 
(a) 

 

 
(b) 

 
(c) 

 
(d) 

Figure 2.1 Illustration of iCom screen projections for different activities. 

(a) An iCom station at the MIT Media Lab; (b) A typical iCom screen projection in the background 

mode; (c) iCom in foreground mode: users at two sites are having a chat; (d) An email message is 

being displayed. 

 

2.2 The speech interface 
 

The goal of the design is to make the speech interface as intuitive and as easy to use as 

possible. Although the functionality of the interface is fairly simple, it is still a challenge 
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to design a robust interface that is going to be used by many novice users in a public 

place. 

 

2.2.1 Functionalities of the iCom  speech interface 

 

The speech interface for iCom should allow users to control an iCom station the same 

way they do with the trackball. There are four major functions for voice control of iCom: 

• Window selection: selecting (enlarging/dismissing) a window.  

• Message selection: displaying the text of a selected message, scrolling up/down 

the text page for a long message, and dismissing the message after reading it. 

• Audio selection: turning on/off audio at a selected site. 

• Feedback and instructions: providing users with feedback and instructions when 

necessary. 
 

2.2.2 Design of the iCom  speech interface 

 

We faced three major design considerations for the iCom speech interface: 

• Identifying voice commands. 

• How to inform users of voice commands. 

• How to reduce false alarms.  

 

Identifying voice commands 

The first step to designing a command-and-control speech interface is identifying a set of 

voice commands that best match the requirements and expectations of the users. Two 

questions need be answered when deciding what commands are to be included into the 

vocabulary.  

 

The first question is whether to support a more natural way of saying something instead 

of specifying restrictive commands (for example, “please turn off the microphone” versus 

“microphone off”)? Rather than defining a grammar file to enable the speech interface to 
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accept more natural speech inputs, we specified voice commands as a list of words and 

short phrases for the following reasons: Unlike multi-step transactions that are typical in 

telephone based information retrieval applications, the task of voice control of iCom is 

relatively simple - it is essentially to allow users to select an object, such as a window or 

a message, on the projection screen. A command-and-control voice interface with a 

word/phrase based vocabulary is sufficient for this task and should produce reasonably 

robust performance. Moreover, in our design, we informed users of many voice 

commands using visual information displayed on the iCom screen. So a grammar based 

parsing algorithm will provide very limited additional benefits, while significantly 

increasing the complexity of the system.  

 

The second question is whether to support synonyms, or more than one way of saying a 

command? The vocabulary can be as restrictive or as flexible as the application needs to 

be. A large vocabulary containing many synonyms will make the interface more intuitive. 

But there is a trade-off of recognition speed and accuracy versus the size of the 

vocabulary. In our design, we provided synonyms to a number of frequently used 

commands to make the interface more flexible (for example, users can say “close” or 

“close message” to dismiss the message being displayed on the iCom screen). The 

increase in vocabulary size due to synonyms did not slow down the recognition speed or 

affect the recognition accuracy because the vocabulary is fairly small - there are only 

about 50 commands. 

 

Showing users what to say 

Unlike grammar based voice interfaces that accept more natural user inputs, the iCom 

command-and-control speech interface only accepts a set of predefined voice commands. 

First time users of the interface don’t know these commands beforehand. It is also 

difficult for frequent users to remember a lot of commands. Since the iCom speech 

interface is to be used by a large number of users, including many novices, in an open lab 

environment, its usefulness largely depends on whether it can inform users of voice 

commands during the course of interactions without extensive training. 
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In the case of voice interfaces designed for personal devices such as Personal Digital 

Assistants (PDAs), cell phones or cars, users have to learn and remember voice 

commands through manuals and repeated use, which is a burden for them. In telephone 

based speech portals, a list of menu items is usually recited using a text-to-speech engine 

or a prerecorded message at each step in the dialog tree. Feedback also takes the form of 

speech output. The system response time is slow since speech output takes place over a 

period of time [17]. These problems are avoided in our case because we utilized the iCom 

projection screen to show users what they can say and provide them with instant visual 

feedback and instructions. In our design, we incorporated many voice commands into the 

iCom screen display seamlessly. For example, each window on the screen is labeled with 

a unique name, and each message title is numbered. These window labels and message 

numbers are actually voice commands for window selection and message selection. A 

visual instruction message containing all the voice commands will also be displayed on 

the screen upon users’ request, allowing them to quickly browse through the command 

set. Such a design not only enables users to understand how the interface works with little 

training, but also eliminates the need for them to remember a lot of commands. 

 

Reducing false alarms 

A voice interface should provide proper feedback to help users cope with recognition 

errors.  In our design, if the speech engine fails to recognize a user’s speech input twice, a 

textbox will appear on the screen, prompting users to read instructions for help. (The 

instruction message will be displayed when users say “instruction”.) Since the speech 

engine tries to recognize any input to its microphone, loud noise or users’ normal 

conversation will trigger the feedback message (when the speech engine cannot recognize 

the input) or cause an unintended action by the speech interface (when the speech engine 

recognizes the input and takes it as a voice command). Frequent false alarms like this are 

annoying and confusing to users.  

 

To reduce the chance of false alarm, the speech interface should be able to distinguish 

voice commands and users’ normal conversation automatically. But no existing 

techniques are reliable enough for this task. In our system, we implemented two features 
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that allow users to activate or deactivate the speech interface as needed: one is “press-to-

talk button”; the other is “keyword-trigger”. 

 

The press-to-talk button is a microphone button displayed at the bottom of the iCom 

screen. Users can activate/deactivate the speech interface by clicking on the button using 

the trackball. The speech engine is always running, but the interface responds to users’ 

voice commands only when it is active, and neglects users’ speech after it is deactivated. 

The microphone button also functions as an indicator, showing a label “Mic is on” or 

“Mic is off” depending on the state of the speech interface. When users click on the 

button to activate the interface, a message box appears on the iCom screen briefly, 

prompting them to issue voice commands and reminding them that they can see 

instructions for help. This approach is reliable and can effectively reduce false alarms 

caused by users’ conversation and other noises. (To further reduce interference, the 

volume of the iCom audio output could be turned down while the speech interface is 

active.) The limitation is that users have to use the trackball to toggle the state of the 

speech interface. If we can access the speech interface through a handheld device such as 

a PDA or a cell phone, however, the trackball is no longer needed since the press-to-talk 

button could be implemented on the handheld device. 

 

With keyword-trigger, users could activate/deactivate the speech interface by saying a 

pair of keywords, in our case, “microphone” for activation and “microphone off” for 

deactivation. Keyword-trigger enables users to control an iCom station completely hands-

free, eliminating the need for the trackball. However, the approach itself is prone to false 

alarm (this did not happen in our user testing though). Also, having to know and 

remember the two keywords is an extra burden for users. In our final design, the two 

features can work interchangeably. Users could choose either of them based on their 

preferences. 
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2.2.3 The interaction flow and the command set 

 

Users’ speech  

Actions by the 
speech interface 

Users’ speech  
“Microphone” Other voice commands 

Fails to recognize 

Recognizes 
Is the speech interface active? 

The speech 
interface becomes 
active, prompting 
users to issue 
voice commands. 

Recognizes 

No: 
Ignores 
users’ speech 

Yes: 
Processes 
users’ speech.

Waiting for users’ speech. 

Displays feedback 
message, prompting 
users to see 
instructions. 

Responds to users’ 
voice commands 

Window control; 
Message control; 
Audio control; 
Showing instructions. 

Deactivates the speech 
interface if users say 
“microphone off”. 

Fails to recognize 

 

Figure 2.2 The interaction flow of the iCom speech interface. 
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Figure 2.2 depicts the interaction flow of the iCom speech interface. Voice commands for 

the iCom speech interface are listed in Appendix A. Many commands consist of two or 

three words. A multi-word command can be defined using structured grammar, but we 

simply define it as a phrase since the IBM ViaVoice SDK accepts such a multi-word 

phrase as one entry in a vocabulary. A benefit of using multi-word phrases as commands 

is that it can reduce unintended actions by the speech interface in noisy environment 

without increasing the rejection rate. Commands for window selection such as “garden” 

and “cube” are actually the names of the open workspaces in different parts of the MIT 

Media Lab, where iCom stations are located. Windows showing images of those 

workspaces are labeled with their corresponding names. Commands for message 

selection takes the form “message” + message number, such as “message eleven”.  By 

default, the maximal message number is thirty, because it is very rare that more than 

thirty message titles appear on the iCom screen at the same time. There are about 80 

voice commands (including the 30 message selection commands) for the iCom speech 

interface. The exact number depends on how many stations are connected to the iCom 

system.  

 

2.2.4 The new iCom  screen display 

 

Figure 2.3 shows the modified iCom screen display that is tailored to the speech interface. 

Figure 2.4 shows the modified iCom screen projections in different states. We tried to 

keep the change in the appearance of the original iCom screen projection at a minimum. 

However, the following changes are necessary: 

• A message number, starting from one, is shown in front of each message title.  

• Window labels are always shown. (In the original iCom system, a window label is 

displayed for a few seconds after users click on a window.) 

• A microphone button is displayed at the bottom of the iCom screen. 

• Message boxes for feedback and instructions are displayed when necessary.  

• Two tags, labeled as “page up” and “page down” respectively, are shown when 

long messages are being displayed, allowing users to scroll the message text by 

saying “page up” or “page down”. 
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In Figure 2.3 and Figure 2.4, no images are shown in the windows on the iCom screen 

because we didn’t install the speech interface on a real iCom station.  

 

 

Message number Audio label 

Window label 

Microphone button 

 

Figure 2.3 The modified iCom screen display tailored to the speech interface. 

Several changes are made to the original iCom screen display: Message numbers are shown in front 

of message titles; A microphone button is displayed to indicate the state of the speech interface; Each 

window is labeled with a unique name, which is shown all the time. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 2.4 The modified iCom screen projections in different states. 

(a) When users click on the microphone button to activate the speech interface, a text message in blue 

box appears on the screen briefly, prompting them to issue voice commands; (b) When the speech 

engine fails to recognize users’ speech, a feedback message in blue box is shown briefly, reminding 

users to read instructions for help; (c) An instruction box containing all the voice commands is 

displayed upon users’ request; (d) When a long message is being displayed, two light-blue tags 

labeled as “page up” and “page down” are placed beneath/above  the up/down arrows respectively,  

allowing users to scroll the message text by saying “page up” or “page down”. 
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2.3 Voice model 

 

The IBM ViaVoice speech recognition engine is a speaker adaptive recognizer. With the 

default general voice model, it can produce decent recognition results for users with a 

variety of voice characteristics. But recognition performance can be further improved if 

each user creates his/her own voice model by completing an enrollment program and uses 

this speaker specific model for speech recognition.  

 

In our implementation, we used the general model for all users. Right now, there is no 

good mechanism for the speech interface to switch voice models adaptively. In the future, 

however, several approaches for voice model adaptation can be explored. For example, a 

drop-down user ID list corresponding to different voice models can be displayed on the 

screen, and a new user ID will be added to the list when a new voice model is created. 

Users could select their own voice models from the list when necessary. In a restricted 

environment with a limited number of frequent users, such as the Media Lab, face 

recognition or speaker identification algorithms may be employed to determine a user’s 

ID so that the speech interface could choose the corresponding voice model 

automatically. Another approach is to access the speech interface through a handheld 

device, as already mentioned. In this case, each user ID is associated with a device ID. 

When a device tries to access the speech interface, the speech interface will know which 

voice model to use. 

 

2.4 System architecture 

 

We implemented the speech interface using a combination of Isis and the C programming 

language under the Linux operating system, since iCom is written in Isis while the IBM 

ViaVoice SDK is designed for use with C. A socket is used for communication between 

the iCom process and the ViaVoice SDK process. Each iCom station has a 

speaker/microphone for audio communication, which can be used for the speech 

interface. A separate microphone also could be used to make the system more flexible. 
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Two types of system architectures can be employed for the iCom speech interface: one is 

centralized speech server architecture; the other is localized speech interface architecture. 

In the first approach, a single speech server is used to process voice commands from all 

iCom stations. The speech input is digitized locally at each iCom station and is sent to the 

central speech server for recognition. Obviously, this approach saves computing 

resources since only one speech engine is needed. But its major limitations are 

complexity and slow response time. Because only one speech client can access the speech 

engine at a time, some polling or queuing protocols are needed so that two or more 

clients can share the speech engine. Heavy network traffic will slow down the speech 

interface’s response time, and loss of packets will reduce recognition rates.  

   

We chose the localized speech interface architecture in our implementation for its 

simplicity. In this architecture, each iCom station runs its own speech interface. Users’ 

voice commands are directed to the local speech engine for processing. A problem with 

this approach is that the IBM ViaVoice speech recognition engine cannot be installed on 

the machine running the iCom process, because the Creative Sound Blaster Live PCI 

sound card used in our current system does not work properly if both ALSA (the 

Advanced Linux Sound Architecture used for the Isis audio utilities) and the ViaVoice 

speech engine are present in the system. Therefore, an extra machine is needed at each 

iCom site. This problem can be avoided by using another commercially available sound 

card: the Creative Labs Ensonic Audio PCI card, which works well for both ALSA and 

the ViaVoice speech engine at the same time. 

 

In our experiment, we planed to install the speech interface at only one iCom site, so only 

one microphone button is displayed. If the speech interface were to be installed at several 

iCom sites, extra microphone buttons are needed to indicate the state of the local speech 

interfaces, and they can be placed above the audio indicators of their corresponding sites.   
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Chapter 3  

Speech interface design for HyperSoap 

 
As in the case of the iCom module, we made several improvements to the HyperSoap 

module during the course of user testing. This chapter presents the final design of the 

HyperSoap speech interface. Section 3.1 discusses speech-enabled interactions in 

hyperlinked TV programs. Section 3.2 explains the major problems we must solve. 

Section 3.3 describes the details of the speech interface design.  

 

3.1 Hyperlinked video and speech interface 
 

New techniques in multimedia signal processing have made it possible to produce truly 

interactive TV shows such as HyperSoap, a hyperlinked video program produced by the 

Object-Based Media Group at the MIT Media Lab. In HyperSoap, many objects are made 

selectable through an interface based on pointing devices, and the user's interactions with 

these objects modify the presentation of the video. Using a laser pointer or a mouse, 

HyperSoap viewers can click on clothing, furniture, and other items on the screen to see 

information about how they can be purchased, as shown in Figure 3.1. 

 

Another example of hyperlinked video program is An Interactive Dinner At Julia’s [3], 

which is an interactive cooking show. Starting with a dinner party at Julia's house, 

viewers can click on entrees and decorative items at the dinner table and be shown video 

clips in which Julia creates them. Selecting ingredients and cooking utensils generates 

text boxes with relevant details. Icons are used to indicate the “path” viewers have 

traveled through in the show, allowing them to navigate among the video clips. Figure 

3.2 shows a frame from An Interactive Dinner At Julia’s, in which a textbox of the 

selected item (highlighted with green mask) is displayed. Also, viewers can switch to 

another video clip by clicking on the icon shown at the top-left corner of the screen. 
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(a) 

 
(b) 

Figure 3.1 A pair of frames from HyperSoap. 

(a) A frame during normal playback; (b) When the viewer clicks on the earring, it is highlighted with 

a green mask, and a window pops up, showing its brand, price and retailer. 

 

 

 

 

Figure 3.2 A frame from An Interactive Dinner At Julia’s. 

 

Although very effective, the existing interface for hyperlinked video programs, which is 

based on pointing devices, has several limitations: (1) It is difficult for viewers to click on 

a small or fast-moving object. (2) Rapid change in scene makes it difficult to select 

objects that appear on the screen only for a short period of time. Once they move out of 

the screen, they can no longer be accessed. (3) Object selection is based on position 
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information. This implies that, to produce a show like HyperSoap, we have to identify 

and track selectable regions in every frame, which is a difficult process. 

 

We could overcome the above problems by incorporating a speech interface into 

hyperlinked video programs, which enables viewers to select objects by saying their 

names. With such a speech interface, viewers can easily select any hyperlinked items no 

matter how small they are or how fast they are moving. They can even access items not 

shown on the screen. Moreover, object segmentation and tracking is no longer needed for 

the production of hyperlinked video programs. (The segmentation/tracking process is still 

necessary if highlighting a selected object is a desired feature.) 

 

The concept can be extended to other types of interactive programs as well. For example, 

a speech interface can be embedded in a role-playing computer game, in which players 

can use voice commands to control their corresponding roles’ actions. With a speech 

interface, basketball fans can retrieve a player’s statistics by saying his name when 

watching a game on TV. (In this case, object segmentation and tracking is not only very 

difficult but also unnecessary.) So a speech based interface is well suited for certain types 

of interactive TV programs, and if properly designed, it could not only enhance 

traditional interface experiences but also enable new forms of interactions. However, 

little research has been done in this area in part because truly interactive TV shows do not 

exist until recently. 

 

3.2 The challenge 

 

Although the functionality of the HyperSoap speech interface is very simple: allowing 

viewers to select hyperlinked objects by speaking, it poses two difficulties:  

• The open vocabulary problem for object selection. 

• The ambiguity (or imprecision) problem for object selection. 

 

When watching HyperSoap, people do not know what items on the screen are selectable, 

and in many cases they do not know what names or access terms they can use to select 
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the desired items. Moreover, different viewers may refer to the same item using different 

names, making it hard to assign a unique name to each object.  So identifying a proper 

vocabulary for HyperSoap is extremely difficult. To make the system more accessible to 

untutored users, we must provide a number of access terms (or synonyms) for each 

selectable item. However, many synonyms are shared by two or more items. When users 

try to make object selection using one of those terms, ambiguity arises.  

 

Actually, open vocabulary and ambiguity are two common problems for human-

computer interface design. In many computer applications, users must enter correct 

words for the desired objects or actions. To increase usability and accessibility, the 

system must recognize terms that are chosen spontaneously by untutored users, and 

should be able to resolve ambiguities when necessary. Furnas et al. [18] studied these 

problems extensively and concluded that: “There is no one good access term for most 

objects. … Even the best possible name is not very useful.” In their study, they analyzed 

spontaneous word choice for objects or actions in five application domains and found 

surprisingly large variability in word usage. For example, the probability that two typists 

will use the same verb in describing an editing operation is less than one in fourteen; that 

two cooks will use the same keyword for a recipe is less than one in five. In all five cases, 

the probability that two people favored the same term is less than 0.20.  Their simulations 

show that, the popular approach in which access is via a single word chosen by the 

system designer will result in 80-90 percent failure rates in many common applications. 

To achieve really good performance, many synonyms are needed and should be collected 

from real users.  

 

3.3 Design of the HyperSoap speech interface  

 

To address the open vocabulary problem, we used a combination of item list and name 

index: An item list containing the names of selectable items is displayed on the screen 

upon viewers’ request to show them what to say; A name index containing several 

synonyms for each item is created to model how viewers may call an object 
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spontaneously. We also addressed the problem of ambiguity using a combination of 

explicit on-screen confirmation and implicit disambiguation based on timelines.  

 

3.3.1 Item list 

 

The basic idea is to use visual information to inform users of selectable items. An item 

list may be displayed upon users’ request, or it could be displayed automatically when it 

is appropriate to do so. In either case, it will appear on the screen for a few seconds. The 

item list not only indicates what objects are selectable but also shows users what to say.  

 

Unlike the case of the iCom speech interface, where an instruction box containing all the 

voice commands could be shown to users, it is impractical to display a list of all 

selectable items in HyperSoap, because users simply don’t have enough time to browse a 

long list while the video is constantly playing. Therefore, we grouped selectable items 

into 5 categories, each forming a small item list such as lady’s item, men’s items and 

furnishing.   

 

We implemented the item list in two variations. In the first one, the item list is either 

displayed upon users request (when users say “item list”) or triggered when the speech 

engine fails to recognize users’ speech. In either case, items in the list are automatically 

matched to what are shown on the screen. For example, when the scene contains a man 

standing in front of a desk, men’s items and items on the desk will be displayed in the 

item list, as shown in Figure 3.3. This approach has two limitations. First, in HyperSoap, 

there are always a lot of hyperlinked items shown on the screen, making the item list 

long, and therefore difficult to read for viewers. Second, the item list is triggered by noise 

once in a while, which is distracting and confusing to viewers. (In our initial design, 

when the item list is turned on, the corresponding objects are highlighted to give viewers 

a better sense of what objects are hyperlinked. But some viewers felt that such a feature is 

annoying and unnecessary. So we didn’t incorporate it into our final design.) 
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However, the design described above may work well for shows containing a small 

number of hyperlinked objects, such as An Interactive Dinner At Julia’s. The item list in 

this show will not be difficult to read since it contains only a few items at any time. In 

fact, in this particular case, we could have the item list displayed all the time without 

distracting users because there is no rapid change in scene in the program. Items in the 

list could be updated automatically when viewers switch to another video clip. To help 

viewers better associate item names in the list with objects shown on the screen, we could 

highlight the hyperlinked objects briefly when the item list is updated. An alternative to 

showing the item list is to display a nametag around each selectable object, since the 

position information for each hyperlinked object is available.  

 

 

Figure 3.3 An item list containing Desk items and Men’s items is displayed. 

 

In the second variation, we implemented a two-tier item list. In this mode, a category list 

is always shown at the bottom-left corner of the screen. Users can choose to see items in 

a particular category by saying the category’s name. Also, when the speech engine fails 
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to recognize users’ speech, the system will display a feedback message, prompting users 

to see item list for hyperlinked objects. Most users felt that this design is better than the 

previous one for the HyperSoap program, since users have better control over which item 

list to see. Figure 3.4 shows the two-tier item list. 

 

 

Figure 3.4 A frame containing the two-tier item list. 

A category list is always shown at the bottom-left corner. Viewers can choose to see items in a 

particular category by saying the category’s name, such as “men’s items”. 

 

3.3.2 Name index 

 

To make hyperlinked objects more accessible to viewers, we created a name index to 

model how viewers may call those objects spontaneously. It contains a number of 

synonyms for each hyperlinked object, allowing viewers to select items without having to 

see the item list first. As suggested in [18], a large number of synonyms are needed for a 

really effective name index. However, in the case of HyperSoap, creating an object name 
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index of moderate size is sufficient because, unlike abstract concepts or actions that are 

difficult to describe using common terms, most of the selectable items in HyperSoap are 

ordinary objects in our daily life, such as jacket, shirt and shoes, each having only one or 

two widely used access terms.  

 

We first initialized the name index using the object names shown in the item list. Then 

we collected synonyms for each object name from real users to make the name index 

more “knowledgeable”. In each user testing session, we documented the terms users used 

to select various objects, and added new terms to the index. We also asked users to 

provide extra synonyms if they can. The resulting name index is shown in Appendix B: 

the left column in the table shows the category names; the middle column shows the 

names used in the item list; the right column shows the synonyms for selectable objects.  

 

3.3.3 Resolving ambiguity 

 

It can be seen that several terms in Appendix B are shared by two or more items. For 

example, the word “lamp” is shared by “table lamp” in Desk items and “floor lamp” in 

Furnishing. Ambiguity will arise if viewers say “lamp”. Note that this is not only an 

ambiguity to the system but also an ambiguity to the viewers since viewers may want to 

choose one of the lamps but don’t know how to distinguish the two by speaking. This, 

however, is not a problem for the interface based on pointing devices since users could 

always click on the desired object. 

 

Initially, when ambiguity occurs, we simply displayed information about the item that we 

think users are most likely referring to. This approach didn’t produce consistent results. 

So we addressed the ambiguity problem using a combination of explicit on-screen 

confirmation and implicit disambiguation based on timelines. If the items involved in an 

ambiguity situation appear on the screen simultaneously, we will ask for users’ 

confirmation explicitly by displaying a set of distinguishable names for all the relevant 

items on the screen and prompting users to choose one. Figure 3.5 shows such a situation.  
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Figure 3.5 Explicit disambiguation: on-screen confirmation. 

A viewer says “lamp”, resulting in an ambiguity. The system displays both the “table lamp” and the 

“floor lamp”, asking for the viewer’s confirmation. 

 

If the items involved in an ambiguity situation appear in different parts of the show, we 

can resolve the ambiguity implicitly based on timelines: we simply choose the item that is 

shown on the current screen, assuming users are referring to the visible item. For 

example, the term “photo” is shared by two items: a photo on the table (in Table items) 

that appears in the first half of the show, and a photo on the bookcase (in Bookcase items) 

that appears in the second half of the show. If a viewer says “photo” in the first half of the 

show, information about the photo on the table will be shown. 

 

3.3.4 The interaction flow 

 

Figure 3.6 depicts the interaction flow of the HyperSoap speech interface. Figure 3.7 

shows four frames of the HyperSoap program in different states. 
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Users’ speech  

Actions by the 
speech interface 

Users’ speech  
Category name 
(i.e., Men’s items) 

Item name  
(i.e., Suit) 

Fails to recognize Recognizes Recognizes 

Displays item list 
of the selected 
category. 

Displays feedback 
message, 
prompting users 
to see item list. 

Is there an ambiguity? 

No: 
Highlights the selected 
object and displays the 
information window. 

Yes: 
Displays 
distinguishable 
names for relevant 
items, prompting 
users to choose one.  

Waiting for users’ speech. 

 

Figure 3.6 The interaction flow of the HyperSoap speech interface. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3.7 Four frames of the HyperSoap program in different states. 

(a) A normal frame; (b) The photo is selected; (c) A feedback message box is displayed when the 

speech engine fails to recognize the viewer’s speech, prompting the viewer to see item list; (d) The 

viewer says “picture”, resulting in an ambiguity. The system displays the names for two relevant 

items: “photo” and “painting”, asking the viewe r to select one. 

 

3.3.5 Other issues 

 

In addition to the open vocabulary problem and the ambiguity problem, the following two 

issues also need to be considered.  
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Dynamic vocabulary 

The IBM ViaVoice SDK supports dynamic vocabulary management: it allows multiple 

vocabularies to be active at the same time. This feature is very useful for improving the 

recognition rate, because instead of using a single large vocabulary for an application, we 

can divide it into a set of smaller ones, and activate/deactivate them as needed so that the 

actual vocabulary size is small. We used a single vocabulary for the HyperSoap program 

since the size of the vocabulary is moderate. (The running time for HyperSoap is about 2 

minutes. There are 45 hyperlinked items in the show, and the total number of 

words/phrases in the vocabulary, including the synonyms and the category names, is 

around 90.) For a longer program, say, a 30 minute show, with a large number of 

hyperlinked items, we can create a set of small vocabularies by segmenting the show into 

a series of consecutive intervals, either with equal length (2 minute, for example) or 

corresponding to different shots, each containing a small number of selectable items that 

form a small vocabulary.  

 

Interference of audio 

In a normal TV-watching setting, HyperSoap’s audio will interfere with viewers’ speech. 

This will result in poor recognition performance. A practical approach to solve this 

problem is to use a high quality directional microphone with echo-cancellation capability. 

But a more sophisticated method involving the separation of TV audio from viewers’ 

speech also could be employed in the future.  
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Chapter 4  

User evaluation 

 
This chapter presents user evaluation results for VoiceLink. Section 4.1 describes the 

evaluation procedures. Section 4.2 summarizes the observations we made during user 

evaluation. Section 4.3 discusses the lessons we learned from users’ feedback and several 

improvements we made based on their suggestions.  

 

4.1 Subjects, tasks and procedures. 

 

Fifteen people participated in the user evaluation. They represent a range of different 

voice characteristics, language skills and prior experiences in using speech recognition 

software. Among the subjects are 3 female speakers and 5 non-native but fluent English 

speakers. Two native English speakers have British accents. Several subjects are 

experienced and frequent users of speech recognition systems, while the others have little 

or no experience in using speech recognition software. Thirteen subjects are Media Lab 

students or faculty members who are familiar with the iCom system and the HyperSoap 

program; the other two are students of other departments at MIT, who have never seen 

the demonstrations of iCom and HyperSoap before.    

 

The evaluation consists of two rounds. Seven people performed user testing in the first 

round. We made several improvements to the initial design based on their feedback, and 

tested the system with the remaining subjects in the second round. All the user testing 

sessions were held in an office. The noise level in the office varied from session to 

session: sometimes it was quiet and sometimes it was very noisy due to a busy 

surrounding environment. In a few sessions, background audio/music was also played. 

Both the iCom module and the HyperSoap module are tested on an IBM workstation to 

evaluate their voice control capabilities. In the future, we plan to install VoiceLink on a 
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real iCom station to evaluate its usefulness in real application settings during extended 

periods of use.  

 

The procedures for a testing session are as follows. It takes about 20 to 30 minutes for 

each subject to complete the evaluation. 

• An orientation of the iCom system and the HyperSoap program is given to users 

who have never used them before. After completing the tasks listed below using 

the speech interface, they were also asked to complete the same tasks using 

mouse/trackball for comparison. 

• Test the iCom speech interface module using a general voice model, completing 

the following tasks.  

§ Learn how the interface works and find out valid voice commands by 

using the system. 

§ Select three different windows, enlarging each of them to its maximal size 

and reducing it to its minimal size. 

§ Read at least five messages. 

• Test the HyperSoap speech interface module using the general voice model, 

completing the following tasks 

§ Learn how the interface works by using the system. 

§ Select at least 10 objects while watching HyperSoap. 

• Repeat the above two tests using speaker-specific voice models, and compare the 

results with those obtained using the general voice model. To create a speaker-

specific voice model, a user need to complete the IBM ViaVoice user enrollment 

program, which takes about 10 minutes. (Only two native English speakers and 

two non-native English speakers performed user enrollment, because we found 

that the general voice model worked fairly well for most users.)  

• Data gathering for the name index used in HyperSoap: each subject was asked to 

provide synonyms for object names. 

• Finally, subjects were interviewed briefly about the effectiveness and usefulness 

of VoiceLink, its features, and its overall performance.  
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4.2 Observations 

 

VoiceLink performed very well in quiet environment, and is robust under the presence of 

light noise. All the users were able to learn how to use the system very quickly and 

completed the tasks without difficulties. Using the general voice model, the speech 

engine could accurately recognize valid voice commands for most of the users, although 

it had problems recognizing some of the commands issued by a couple of users with 

heavy accents. In those cases, using speaker-specific voice models resulted in significant 

increase in recognition rates. 

 

The response time of the speech interface is comparable to that of the mouse or the 

trackball. For most voice commands, there is no noticeable delay in system response due 

to the time needed for speech recognition. Only a little delay was observed for message 

selection using voice commands. 

 

There were four types of errors, which are shown below. Some of the errors are identical 

from a user’s point of view. We differentiate them here for clarity.   

• Rejection: The speech engine failed to recognize valid voice commands. This 

happened occasionally to native speakers due to the interference of noise. 

Rejection rates were higher for accented speakers, but they could still interact 

with the system and finish the required tasks smoothly. Using the general voice 

model for all users, the overall recognition rate for valid voice commands is above 

80% in normal office environment. There is no significant difference in 

recognition rate due to gender. 

• Replacement: The speech engine incorrectly recognized a valid voice command 

as another command with similar pronunciation. This happened occasionally to 

users with strong accents. For example, when using the general voice model for 

one user, the speech interface always replaced the word “shirt” with “chair”, both 

of which are selectable items in HyperSoap. 

• Out-of-vocabulary: iCom users used invalid voice commands; HyperSoap users 

tried to pick selectable items using names not included in the object name index, 
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or tried to pick items that are not selectable. Out-of-vocabulary is the major 

source of errors for both the iCom module and the HyperSoap module. It, 

however, didn’t result in serious user frustration or confusion, because after a few 

failed attempts, most users were able to know what to say by reading the 

instruction message for iCom or the item list for HyperSoap. 

• False alarm caused by noise: The feedback message or unintended actions were 

triggered by noise. This happened occasionally under the presence of light noise 

and occurred quite often under loud noise (for example, when loud music was 

being played in the office during user testing).  Frequent false alarms of this kind 

were annoying and confusing to users. 

 

Replacement errors and unintended actions can be reduced by raising the rejection 

threshold, which is a speech engine parameter that can be adjusted using the ViaVoice 

SDK. However, the threshold should not be set too high, otherwise, rejection rate will 

increase. (The rejection threshold is essentially the confidence level for speech 

recognition results. We used the system default value, zero, in our experiment, so that any 

recognition results will be accepted.)  

 

4.3 Feedback 

 

Many users provided insightful comments and suggestions on the design of VoiceLink, 

leading to a number of improvements to the system. The following two sections describe 

user feedbacks on the iCom module and the HyperSoap module respectively.   

  

4.3.1 The case for iCom  

 

Most users felt that the iCom speech interface is intuitive and easy to use, and is effective 

for controlling the iCom station. They said that it is very helpful to incorporate voice 

commands into the iCom screen display and to provide an instruction message containing 

all the voice commands for quick browsing.   
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Many users stated that the speech interface is a useful feature for the iCom system, and 

they would like to use it on a real iCom station for the following two reasons: 

• The speech interface enables hand-free control of iCom, making the system more 

convenient to use under certain circumstances. For example, when several users 

are sitting in front of an iCom station, they can use voice commands to control the 

system when the trackball is out of reach. 

• The speech interface offers users a better interaction experience. It makes them 

feel that they are interacting with a responsive environment in a natural and 

relaxed manner, rather than operating a computer system.      

However, a few users thought that the iCom speech interface is unnecessary because the 

trackball works perfectly well while the speech interface is not robust enough at the 

current stage, especially for accented users. 

 

We learned many valuable lessons through user testing, and made the following 

improvements to our initial design of the iCom speech interface: 

• Supporting synonyms: allowing more than one way of saying a command. 

Initially, we defined a concise command set without providing any redundant 

commands (one command for one function). After several user evaluation 

sessions, we added a number of synonyms frequently mentioned by the users to 

make the interface more intuitive and flexible. This also improved the consistency 

of the command format. For example, we only defined “close” as the command 

for closing message display initially, but after using the “close garden” command 

to close a window, many users tried to close the message display by saying “close 

message”, assuming a “verb + object” command format. So using “close 

message” as a synonym for “close” results in a better match between voice 

commands and users’ expectations.  

• Adding the Keyword-trigger feature. It allows users to activate/deactivate the 

interface by saying a pair of keywords, instead of having to click on the press-to-

talk button using the trackball. This feature enables users to control an iCom 

station completely hands-free.  
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• Improvement on instruction message: we replaced wordy descriptions with simple 

examples to make the instruction message more informative. 

• Reducing the frequency of feedback. Initially, a feedback message is displayed 

each time the speech engine fails to recognize the speech input. However, noise 

often triggers the feedback message, which is confusing and annoying to users. In 

our final design, we cut the feedback frequency in half: the feedback message is 

displayed after the speech engine fails to recognize the speech input twice.    

 

Some users also suggested that we should modify how windows are managed on the 

iCom screen. For example, they said that it would be better if a window could be reduced 

all the way down to its minimal size when users want to close it. We didn’t make any 

change to window management because we want to keep the original iCom system 

design intact.  

 

For a couple of users, visual feedback failed to capture their attention - they kept saying 

invalid commands without noticing the feedback message on the screen. This suggests 

that proper auditory cues might be used in conjunction with visual feedback to better 

assist users to understand the speech interface.    

 

4.3.2 The case for HyperSoap 

 

Most users enjoyed the interaction experience. They felt that the HyperSoap speech 

interface worked fairly well and the item list was very helpful. They were able to select 

the desired objects most of the time. Overall, they thought that the speech interface is a 

useful feature to the HyperSoap program, and it makes the interaction more seamless. 

However, one user in the first round of user testing said that the speech interface was not 

very effective because he followed the item list instead of watching the video. The major 

disadvantage of the speech interface, as some users mentioned, is the ambiguity problem, 

which does not arise at all when pointing devices are used.  
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We made the following changes to the HyperSoap speech interface during the course of 

user evaluation:  

• Implementing the two-tier item list, which is described in detail in Section 3.3.1. 

• Improving the object name index. We collected synonyms for the object name 

index to make it more “knowledgeable”, as described in Section 3.3.2 This 

improved the hit rate for users’ spontaneous speech, making the object selection 

process more natural and flexible.   

• Providing ambiguity resolution. Initially, the speech interface did not have 

disambiguation capability. When users said a name that is shared by more than 

two items, the speech interface picked one of them randomly. But quite often, the 

randomly chosen item was not the intended one. So we added the disambiguation 

capability to the system, as discussed in Section 3.3.3. 

 

Some users suggested that when they selected an item not shown on the screen, a small 

picture of the item should be displayed alongside the information window to give them a 

better sense of what they actually selected. Some users also suggested that we should 

allow them to browse through the video clip (fast forward/reverse or jumping to a 

particular point) using voice commands.  These features could be implemented and tested 

in the future.  
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Chapter 5  

Speech software library for Isis 

 
The goal was to lesson the burden of speech interface developers by allowing users to 

develop Isis based speech aware applications in the Isis programming environment 

without having to know the details of the IBM ViaVoice SDK. The Isis programming 

language and the IBM ViaVoice SDK are briefly introduced in Section 5.1 and Section 

5.2 respectively. The speech software library is described in Section 5.3. 

 

5.1 The Isis programming language 
 

Isis is a programming language created at the MIT Media Lab in 1995 by Stefan 

Agamanolis. It is specially tailored to support the development of demanding multimedia 

applications. Isis is very flexible and can operate on a variety of platforms, from high 

power workstations and servers to set-top boxes and handheld devices. It is designed to 

be accessible to a wide variety of users of different levels of expertise. Its small yet 

complete syntax lessens the burden on programming novices while still allowing 

experienced programmers to take full advantage of their skills. Isis also provides an 

efficient mechanism for extending functionality by accessing software libraries written in 

other languages such as C. Many of the projects being developed at the Media Lab use 

Isis as the development tool because of its flexibility and simplicity. 

 

5.2 IBM ViaVoice SDK and speech aware applications 
 

The IBM ViaVoice Software Developers Kit (SDK) includes a set of application 

programming interfaces (APIs) known as the Speech Manager API, or SMAPI for short, 

which enables an application to access the speech recognition engine. The ViaVoice 

speech recognition engine supports U.S. English, six European, and three Asian 
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languages. Multiple languages can be installed on one system, and ViaVoice allows the 

user to switch between them as needed. The ViaVoice SDK, by default, runs with the 

general office domain in the selected language. This general office domain contains more 

than 20,000 words representative of the office environment. The SMAPI is designed for 

use with the C language, but any language that supports C function calls can access the 

ViaVoice SDK library.  

 

The ViaVoice SDK has several features that are very useful for developing speech aware 

applications: 

• It allows multiple vocabularies to be active at the same time.  

• It allows users to add/remove words to/from a vocabulary dynamically at runtime.  

• It also allows multiple concurrent connections to the speech engine, even from 

within the same application. 

 

There is a starter set of less than 20 SMAPI calls that one can use to develop a full-

function speech aware application, which can handle the following tasks: 

• Establishing a recognition session 

• Defining and enabling vocabularies 

• Directing the engine to process speech 

• Processing recognized commands 

• Disconnecting from the engine 

In addition to the starter set, ViaVoice SDK includes many other SMAPI calls that 

provide more capabilities, such as session sharing and querying system parameters 

(including task ID, user ID, enrollment ID, and rejection threshold). 

 

5.3 The Isis speech software library 

 

To build the speech software library, we wrote a voice interface routine in C using the 

basic ViaVoice SMAPI calls and bind it into Isis. It could handle all the basic tasks 

needed for a command-and-control speech application. Programmers can access this 
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routine (thus the ViaVoice speech engine) in the Isis programming environment. We 

created several Isis functions that allow programmers to change the routine’s behavior as 

needed: 

• Defining a vocabulary. Developers can define an application specific vocabulary 

consisting of a list of words and/or phrases as an Isis list, and pass it to the voice 

interface routine. Currently, we don’t support grammar based speech aware 

applications.  

• Adding/removing words to/from a vocabulary. Developers can add/remove words 

to/from a vocabulary dynamically. This feature is useful when a developer does 

not know all the possible items in the vocabulary at the time of application design. 

For example, in a telephone dialer application, the program can load new dialers’ 

names into the vocabulary at run time. 

• Specifying a user ID. Developers can pass a user ID to the voice interface routine. 

This is essentially to allow the speech engine to use a user specific voice model. 

• Turning on/off the microphone. Developers can pass a flag (a True/False value in 

Isis) to the voice interface routine to turn on /off the microphone as needed. 

• Accepting speech recognition results. When the speech engine recognizes users’ 

speech, it outputs the corresponding string. If it fails to recognize the speech, it 

sends out an empty string. The voice interface routine can write the recognition 

results to a file or send them to an Isis process through a socket, depending on 

which method developers choose to use.  

• Adjusting the rejection threshold. As already mentioned in Section 4.2, the 

rejection threshold is basically the confidence level for speech recognition results. 

Raising the threshold can reduce false alarms caused by noise. 

 

To use the software library, the IBM ViaVoice SDK should be installed on a machine 

running Isis, and at least one ViaVoice user account has to be created. Please refer to the 

Isis website [19] for detailed documentation about the speech software library. 

  

The functions described above allow Isis programmers to build a very basic yet full-

function speech aware application. More features, such as grammar definition, session 
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sharing for multiple speech applications, and dynamic vocabulary management could be 

included into the library to allow users to develop more complex applications.  
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Chapter 6  

Conclusions 

 
This chapter concludes the thesis with a summary of the VoiceLink design in Section 6.1 

and discussions on future work in Section 6.2. 

  

6.1 Summary 

 

In this thesis, we developed VoiceLink, a speech interface package, which can interface 

with various multimedia applications written in the Isis programming language. It 

contains two command-and-control speech interface modules, one for the iCom system 

and another for the HyperSoap program. With functionalities similar to those of a 

trackball, the iCom module enables users to control an iCom station using voice 

commands. As an alternative to a laser pointer, the HyperSoap module allows viewers to 

select objects and access related information by saying objects’ names. We also built a 

speech software library for Isis, which allows users to develop speech aware applications 

in the Isis programming environment without having to know the details of the 

underlying speech recognition system, thus lessoning the burden of developers.  

 

We encountered a number of problems during the development of VoiceLink. In the case 

of the iCom module, the challenge is to build a robust and easy-to-use speech interface 

that could be used by novice users in public places with minimal training. In our design, 

visual information is displayed on the iCom projection screen to show users what to say 

and provide them with instant feedback and instructions. Through such a design, we not 

only inform users of many voice commands seamlessly but also eliminate the need for 

users to remember those commands. To reduce false alarms, a press-to-talk button was 

implemented to allow users to activate and deactivate the speech interface as needed, so 

that normal conversation between users at two locations will not be incorrectly taken as 

voice commands by the speech interface.  
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The major challenge for the HyperSoap module is the open vocabulary problem for 

object selection. We overcame this problem using a combination of item list and name 

index. An item list containing the names of selectable items is displayed on the screen 

upon viewers’ request to show them what objects are hyperlinked and how to call them. 

A name index is created to model how viewers may call objects spontaneously. It 

contains a number of synonyms for each selectable object, allowing viewers to select 

items in a more natural and flexible manner. We also addressed the problem of ambiguity 

using a combination of explicit on-screen confirmation and implicit disambiguation based 

on timelines.  

 

VoiceLink overcomes several limitations of traditional pointing devices and produced 

robust performance. The result of user evaluation showed that a speech based interface 

for responsive media applications is not only useful but also feasible, and has great 

potential to offer better interface experiences than traditional pointing devices. Due to the 

limitations of speech recognition, however, the VoiceLink speech interface is still less 

reliable than pointing devices. Therefore, we should not expect that VoiceLink could 

replace traditional pointing devices completely at the current stage. Rather we should 

allow the two types of interface modals to function interchangeably to offer greater 

accessibility for diverse users and usage context. 

 

6.2 Future work 
 

A number of problems should be addressed in the future to further improve the 

performance of VoiceLink. 

• In addition to visual feedback, auditory cues may be employed to help users better 

understand the system. For example, a sound alert scheme or a text-to-speech 

engine could be used to indicate that the speech engine cannot recognize users’ 

speech and prompt users to read instructions.  

• The HyperSoap module is just one feature of speech interface for interactive TV. 

Other features also could be incorporated into a speech interface for interactive 
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TV programs. Voice enabled channel switching and a TV program 

guide/reminder driven by a text-to-speech engine are two such examples. 

• Currently, the Isis speech software library only supports vocabulary based speech 

aware applications. Extension should be made to allow users to define simple 

grammars. Text-to-speech capability also could be incorporated into the library. 

• While the general voice model produces robust recognition performance for most 

of the users, it does not work very well for heavy accented users. In those cases, 

speech recognition rates may be improved by using speaker specific voice 

models. A number of approaches for voice model adaptation can be explored, 

which are discussed in Section 2.3. 

• Although VoiceLink is designed to function as a stand-alone interface, it can be 

incorporated into a multi-modal architecture. For example, speech recognition 

may be combined with gesture recognition to enable better interaction experiences 

and more robust and flexible control of various responsive media applications. 

• In addition to iCom and HyperSoap, speech interfaces may be developed for other 

responsive media applications. Reflection of Presence [20], for example, is 

another program in which users can control and interact with various media 

objects using speech. We also should explore new approaches for the production 

of interactive TV programs tailored to speech-enabled interactions. 

• Recently, IBM discontinued its offering of the ViaVoice SDK for Linux software. 

A good alternative is the Sphinx speech recognition system [4], which produces 

comparable performance as that of ViaVoice. It also has an API that allows users 

to develop speech aware applications. More importantly, it is open-source 

software. So future development of speech interfaces for Isis applications could 

be based on Sphinx. 

• Currently, users can select objects in HyperSoap only by saying their names as 

isolated words or phrases. In the future, a keyword-spotting algorithm [21] could 

be used to extract object names from users’ casual conversations. For example, 

the system could spot the word “shirt” from a speech input such as “I like the 

shirt”. Such a keyword spotting capability will lead to more transparent and 

engaging interactions. Furthermore, we could incorporate a speech understanding 
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engine into the system so that the speech interface would be able to distinguish 

two different inputs such as “I like the shirt” and “I don’t like the shirt”, and react 

to them differently.      
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Appendices 
 

A. Voice commands for the iCom speech interface 

Functions Commands Behavior 

Window label, or “open” + window label.  

 

Example:  

“garden”, “cube”, “open garden”. 

Enlarges the selected window. 

 

Window control 

“close” + window label. 

 

Example: “close garden”. 

Shrinks the selected window. 

“message” + message number. 

 

Example: “message one”. 

Displays the selected message. 

“page up”,  

“page down”. 

Scrolls up/down message text for long 

messages that have more than one 

page. 

“next”, or “next message”,  

“previous”, or “previous message”. 

Displays the next message or the 

previous message. 

Message control 

“close” or “close message”. Closes the message display. 

Audio label, or “open”+ audio label. 

 

Example:  

“garden audio”, “open garden audio”. 

Turns on the audio at the selected 

location. 

Audio control 

“close” + audio label. 

 

Example: “close garden audio”. 

Turns off the audio. 

“instruction”. Shows instructions on the screen. Instruction 

“close instruction”. Dismisses instructions. 

“microphone”, or “microphone on”. Activates the speech interface. Interface control 

“close microphone” or “microphone off”. Deactivates the speech interface. 

(Users also can toggle the state of the 

speech interface by clicking on the 

microphone button using the trackball.) 



    62

 

 
 
B. Object name index for HyperSoap 

Categories Object names Synonyms 
Blouse Shirt, Blue shirt, Lady’s shirt 
Hair salon Hair, Lady’s hair, Hair style 
Earrings  

Bracelet  
Necklace Pearl necklace 
Lady’s watch Watch, Wristwatch, Swatch 
High Heels  Shoes, Lady’s shoes 
Jacket Skirt 

Ring  

Lady’s items  

Pantyhose Stockings, Leg 
Suit Coat 
Hair cut Hair, Men’s hair 
Yellow shirt Shirt, Men’s shirt 

Men’s watch Watch, Wristwatch 
Shoes Dress shoes, Men’s shoes  
Flannel Shirt Shirt 

Men’s items  

Jeans  
Tissue box Box 

Mug Cup, Coffee mug 
Jewelry box Box 
Clock Desk clock, Table clock 
Tissue Napkin 
Picture Frame Frame 

Digital Image Picture, Photo 
Desk lamp  Lamp, Table lamp 
Sculpture Cat 
Telephone Phone 
Magic Frame Frame 

Table items  

Doll  
Bookcase Bookshelf 
Teddy bear Bear, Teddy 
Globe  
Being digital Book 

Perl 5 Book, Computer programming 
Photo Picture 
Plants  

Bookcase items  

Painting Print, Picture 
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Lamp Floor lamp  
Chair  
Antique Pillar, Column  

Carpet Rug 
Sofa Couch 
Print Painting, Large painting, Picture 
Poster Painting, Print 

Furnishing 

Framed Print Painting, Small painting, Picture, Print 
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