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Abstract

Most microelectronic devices are fabricated on single crystalline silicon substrates that are
grown from the melt by the Czochralski crystal growth method. There is an ever increas-
ing demand for control of size and density of microdefects in the silicon for control of
quality and uniformity of the fabricated microelectronic devices. This thesis is aimed at
developing a fundamental understanding of the mechanisms for formation of such micro-
defects through the development of models, theoretical analysis and large-scale simula-
tion. Two major problems have been addressed. First, following the work of T. Sinno
[150] and T. Mori [108], models have been developed for the transport, reaction and
aggregation of native point defects — self-interstitials (I’s) and vacancies (V’s) — in crys-
talline silicon, so as to explain the dynamics of void formation (aggregation of V’s) and
stacking faults (aggregation of I’s). Second, the model of point defect and cluster dynam-
ics has been extended to include oxygen, the most common impurity in silicon, and to
model oxide precipitation, an important step in silicon wafer preparation and device pro-
cessing.

The models of microdefect formation begin with transport equations for native point
defects that include transport by diffusion and convection (crystal motion), recombination
of I’s and V’s, and the loss of point defects to clusters. Cluster formation is modeled by a
combination of discrete rate equations for small-sized clusters (less than 100) and continu-
ous Fokker-Planck equations for large cluster sizes. Simulation methods are developed for
calculating, in time, space and cluster size, the evolution of point defect and cluster pro-
files, as a function of the temperature distribution in the crystal.

Considerable effort has been devoted to analysis of the critical operating conditions
that divide the crystal into V-rich and I-rich regions. As analyzed by Sinno [151], these
radial regions of a CZ-grown silicon crystal are distinguished by a critical value of V/
G=(V/G)crit, where V is the crystal pull rate and G is a measure of the axial temperature
gradient at the melt/crystal interface. Numerical simulations identify that the evolution of
microdefects at an axial slice of the crystal can be divided into three regions: (1) the region
of rapid point defect dynamics near the melt-crystal interface, (2) a region of intermediate
point defect concentrations where the crystal to too hot for these concentrations to become
super-saturated, and (3) the nucleation and growth of point defect clusters caused by
homogeneous nucleation and super-saturation.

Asymptotic analysis of void formation is carried out in each of these regions and
linked by point defect conservation to give predictions for a number of very important val-



ues, including (V/G)crit, the intermediate vacancy concentration, the void nucleation tem-
perature, the total void concentration in the crystal and the average void size. These results
agree remarkably well with simulations. Moreover, the asymptotic results give the founda-
tion for creating a simple simulation tool for prediction of the dependence of these param-
eters on operating conditions.

The framework for microdefect formation is extended to oxygen precipitation by
including oxygen dynamics and precipitation in the model for point defect dynamics in a
self-consistent manner. The model is complicated by the fact that oxide precipitation cre-
ates elastic stress in crystalline silicon because the density of silicon oxide is roughly half
that of the silicon lattice. The level of this stress is dependent on the morphology (shape)
of the precipitate and is largest with spherical shaped and less for disk-shaped precipitates.
Stress relief during oxide growth is modeled by either allowing V absorption into the pre-
cipitate to create free-volume, or I injection in to the silicon matrix. Hence point defect
dynamics is directly coupled to oxide precipitation. Oxide morphology is modeled by
accounting for the evolution of size distributions of both spherical and disk-shaped oxide
precipitates and allowing the competition between their respective growth rates of these
distributions to determined which morphology will be observed.

Numerical simulations using this self-consistent model show the important coupling
of oxide growth rate and morphology to the point defect dynamics. For example, when
excess V’s are present (as is the case after a high temperature first annealing step and fast
cooling rate after it), spherical oxide precipitates grow fastest because of V absorption.
Without V’s present the growth rate of spherical precipitates slows because of the slow
process of I injection and disk-shaped precipitates, which have lower stress levels and thus
require lower injection levels, dominate. This is the case at lower nucleation temperatures.

Simulations are used to model the oxide densities created during classical High-Low-
High wafer annealing as a function of the nucleation temperature (Tnucl=Tlow) and the
nucleation time and are compared to experimental results from the literature. The simula-
tions demonstrate the peak in oxide density at an intermediate value of Tnucl, in a quantita-
tive agreement with experiment. The only discrepancy is the under-prediction of oxide
densities at very low values of Tnucl. The reason for this difference is not known.

The simulations also successfully predict the large variation in oxide density caused by
using rapid thermal processing (RTP) in the high temperature step, the so-called MDZ or
Magic Denuded Zone process. Here the vacancy distribution implanted in the wafer by the
RTP step supplies the free-volume for very rapid oxide nucleation.

The modeling and analysis demonstrated in this thesis gives a self-consistent frame-
work for further study of the dynamics of microdefect formation in silicon processing and
in other important crystalline semiconductor materials.

Thesis Supervisor: Robert A. Brown
Title: Provost and Warren K. Lewis Professor of Chemical Engineering
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Chapter 1

Introduction
Today the manufacturing of microelectronics is one of the world’s largest industries and

has a critical impact on our society. Most microelectronics devices are manufactured on

substrates or wafers made of single-crystalline silicon. The fabrication of electronic

devices and circuits on silicon wafers entails a complex series of physical and chemical

processes. Two realms, wafer preparation and device fabrication (device processing), can

be used to classify these processes [128]. Wafer preparation includes high purity polysili-

con manufacture, single silicon crystal growth, slicing of the single-crystal ingot into

wafers and wafer annealing. Device processing includes oxidation, epitaxy, etching and

many other processes.

Two trends dominate wafer manufacturing: increasing wafer size and decreasing

defect size and density on the wafer. Because many devices are made on a single wafer

and all devices from a particular wafer are manufactured and processed simultaneously at

each stage in the device manufacturing process, larger size wafers allow for greater yield

from the same semiconductor manufacturing process and allow semiconductor manufac-

turers to spread their fixed costs of production over a larger volume of product. Today’s

silicon wafers are mainly 300 in diameter while the next generation of wafers will be

450 . More powerful electronic device will rely on packing more transistors into the

same space, so each component in the device will be smaller. To do this, the design rule, a

set of rules establishing minimum dimensions of a transistor and minimum spacing

between adjacent components, is being decreased. Today device processing typically uses

a 0.13 micron design rule as the state-of-the-art technique, while 0.1 micron processes will

be possible in the near future. The size of the characteristic design feature sets the tolera-

mm

mm
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ble levels and sizes of defects in the crystal. For example, the 0.13 micron process requires

that defect concentrations are less than 0.12 for defects 0.09 or larger; for the

0.1 micron process wafers should contain areal densities no more than 0.1 of defects

0.05  or larger [75].

The key to increase the quality of silicon wafers is to understand the mechanisms of

defects formation, to link operating conditions of processes to characteristics of the

defects, and to use these relationships to control defects formation. During high tempera-

ture wafer processing, metallic impurities are introduced onto the wafer surface and can

result in harmful near surface defects [25]. Oxygen precipitates and related defects serve

as effective gettering sites for removing metallic contaminants and may be concentrated in

the middle of the wafer, leaving a defect-free surface section or denuded zone (DZ) where

devices can be fabricated [165]. Oxygen in silicon also has other beneficial effects. For

example oxygen enhances resistance of the wafer to warpage [163]. As a result, oxygen is

one of the most important impurities in silicon and in last two decades a great deal of

attention has been devoted to the behavior of oxygen in silicon. However, there is still not

a quantitative model for successfully predicting the distribution of oxygen precipitates and

related defects in silicon.

This thesis is devoted to the understanding of microdefects formation mechanism in

crystalline silicon by both theoretical approach and numerical simulations. The processes

studied in this thesis include crystal growth and wafer annealing, and microdefects include

vacancy, self-interstitial, oxygen and all their clusters. The modeling strategy here is self-

consistent: a single set of physical parameters are used for all the processes; simulations

are from crystal growth through wafer annealing.

cm
2– µm

cm
2–

µm
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1.1 Crystal Growth Techniques
The many technological innovations in melt crystal growth of semiconductor materials

build on the two basic concepts of confined and meniscus defined crystal growth [14].

Figure 1.1a is an example of confined crystal growth systems and Figure 1.1b and Figure

1.1c are two examples of meniscus defined crystal growth systems. Confined melt growth

systems are used primarily for laboratory purposes. The advantage of meniscus defined

crystal growth is that the cooling crystal is free to expand and so is less likely to generate

large thermoelastic stresses that lead to defect and dislocation generation. However, active

control is needed for control of crystal diameter in a meniscus-controlled crystal growth

system.

Figure 1.1: Commonly used systems for melt crystal growth of electronic materials (taken
from[14]).

Although a variety of techniques can be used in crystal growth of semiconductor mate-

rials, only two methods are commonly utilized in industry; these are the Czochralski (CZ)

and floating zone (FZ) meniscus-defined crystal growth systems. Of these two methods,

CZ is most widely used, with over 95% of commercial silicon being grown by this tech-

nique [3].

(a)Vertical Bridgman-Stockbarger
method

(b)Czochralski method (c)Small-scale floating zone
method

(a)Vertical Bridgman-Stockbarger
method

(b)Czochralski method (c)Small-scale floating zone
method
171717



In the CZ process, polycrystalline silicon is melted in a quartz crucible. A seed single

crystal with the required crystallographic orientation is dipped into the pool and then

pulled slowly from the melt to form an ingot. The CZ process is illustrated in Figure 1.2.

The temperature of the melt and the pulling rate govern the diameter of the ingot. These

parameters are related by the heat balance at the melt/crystal interface [94]. Although the

seed crystal is normally dislocation-free, when it is dipped into melt dislocations are

always generated between melt and crystal due to temperature shock. These dislocation

are propagated into the growing crystal particularly if the crystal has large diameter. The

larger the diameter, the more heat is trapped in inner part, therefore the higher radical tem-

perature gradient. And strain which occurs as a result of high radical temperature gradient

is probably the main reason for the dislocation movement [209]. It is the Dash’s necking

process that makes it possible to grow large diameter dislocation-free crystals [26]. In this

process, the strain in the crystal is reduced by lowing the crystal diameter to about 3 .

As a result new dislocations are not generated and movement of existing dislocations is

slower than the crystal growth rate, therefore a dislocation-free silicon crystal is created.

Once formed, the diameter of the crystal is increased to the desired diameter by slowing

the growth rate. In order to prevent new dislocations from forming the thermal environ-

ment of the crystal is controlled with carefully placed heat shields which reduce surface

cooling rates and create a more nearly radially uniform temperature field.

mm
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Figure 1.2: Czochralski single silicon crystal growth (a) Czochralski furnish; (b) poly-
crystalline silicon hold in crucible; (c) seed down; (d) seed pulling; (e) shoulder formation

[60].

In FZ crystal growth, a polycrystalline rod of silicon is converted into a single crystal

by moving a molten zone of silicon from one end of the rod to the other, and the initial

zone is created by contact with a single crystal seed. The advantage of FZ growth lies in

the ability to produce high purity silicon, as a result of the absence of a container contact-

ing the silicon melt. Impurities from the crucible in CZ silicon crystal growth lead to crys-

tals that are seldom grown at resistivity much higher than 25 . Alternatively, FZ

crystals can be grown over a wide range of resistivity up to 200 [128]. The disad-

vantage of FZ growth comes from the difficulty of growing large diameter crystals [86].

Silicon crystals grown by the CZ method contain high oxygen concentrations caused

by contaminating of the melt by the quartz crucible. Improvement of the electrical and

mechanical properties of silicon wafers caused by appropriate oxygen precipitation make

CZ silicon wafers more favorable than FZ silicon wafers in the fabrication of most inte-

grated circuits.

(a)

(b) (c)

(d)(e)(a)

(b) (c)

(d)(e)

Ω cm⋅

Ω cm⋅
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It is also worth emphasizing that besides polished CZ wafers there are also epitaxial

wafer and silicon-on-insulator (SOI) wafers. In epitaxial wafers, on top of a polished CZ

wafer an epitaxial silicon layer is deposed by either chemical vapor deposition (CVD) or

molecular bean epitaxy (MBE) [19,126], therefore epitaxial wafers have much lower

defect density than polished CZ wafers. SOI wafers have an insulator layer such as

underneath a thin surface silicon layer, and can be realized by several processing tech-

niques, such as SIMOX, BESOI and Smart-Cut [93, 118]. These wafers have the advan-

tage of low parasitic capacitance and as a result, high speed circuit [117]. However both

epitaxial wafer and SOI wafers are much more expensive than polished CZ wafers. Unless

the costs of these two special wafers are significantly reduced polished CZ wafers will still

dominate the wafer market.

1.2 Wafer Annealing Process
All microelectronic devices are only fabricated on the thin surface layer of silicon wafer.

In order to have high quality chips and high yield, defects in the surface region have to be

decreased as low as possible. However, defects are not always harmful. Well-controlled

defects could be very useful for device fabrication. For example, oxides or oxygen precip-

itates with appropriate size and density in the middle section of wafer can serve as getter-

ing sites for metallic impurities which are introduced during fabrication processes [161].

Different metals require different minimal density of oxygen precipitates in order to

achieve efficient gettering. For examples, the threshold level of oxygen precipitates for

efficient gettering is as low as , while for it could be [56].

A three-step thermal cycle called Hi-Low-Hi wafer annealing is commonly applied to

form the denuded zone in the near surface region of a wafer and have oxygen precipitates

in the middle of wafer [99,124,148]. The denuded zone and the oxygen precipitates under-

neath it are shown in Figure 1.3. During the first step at high temperature (T>1100°C), the

SiO2

Ni 108cm 3–
Cu 2 109× cm

3–
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denuded zone is formed at the surface of the wafer due to oxygen out-diffusion. There are

two mechanisms for oxygen out-diffusion to the wafer surface [208]. One is the out-diffu-

sion due to evaporation of oxygen in form of volatile silicon monoxide at high tempera-

ture when the silicon wafer is annealed in an inert atmosphere. The other mechanism

occurs under an oxidizing atmosphere in which a very thin surface oxide layer is formed

and serves as sink for oxygen in the bulk. In this case, even though the oxygen concentra-

tion in the wafer is in the order of , the oxygen concentration in the very thin

surface oxide layer could be higher than (see Figure 1.4) because this layer is

oxide rather than silicon.

Figure 1.3: Cross section of wafer with denuded zone (marked by a double arrow) in the
near surface region and oxygen precipitates underneath it [10].

10
18
cm

3–

1021cm 3–
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Figure 1.4: SIMS measurement of oxygen concentration near the wafer surface [83].

The second step is nucleation of oxygen precipitates at a low temperature (600-

750°C). At this low temperature, small nuclei are generated by the high super-saturation

of oxygen in the middle section of the wafer, but it is difficult for nuclei to grow because

the temperature is too low for oxygen diffusion. The last step is growth of the oxygen pre-

cipitates at high temperature (1000-1100°C). At this stage, nuclei generated under the low

temperature grow rapidly [5,120].

The temperature and duration at each step can be controlled to obtain wafers with dif-

ferent oxygen precipitates profiles. Many different ambient environments during wafer

annealing, including , with HCl, , , Ar, have been used. High temperature

treatments in , and Ar ambients produce erosion of the wafer surface [48,124].

Peibst [124] reported that by annealing in with a few percent HCl the denuded zone

was thicker and could be achieved in shorter time compared with annealing in a pure

O2 O2 H2 N2

H2 N2

O2

O2
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atmosphere. Gräf [48] reported that high temperature annealing results in pronounced

oxygen out-diffusion in and Ar ambient but significant lower out diffusion in an oxy-

gen ambient.

Rapid thermal annealing (RTA) has been introduced in the wafer annealing process in

recent years [37,39,116,178]. Only the first high temperature step of conventional Hi-

Low-Hi wafer annealing is replaced by high temperature RTA. Typically the wafer is

heated to 1200 from room temperature at a rate about 50 /s. After 10s at 1200 , it

is cooled to room temperature at a rate about 100 /s. During the RTA cycle, there is no

oxygen out-diffusion since the duration of the cycle is too short for oxygen to diffuse.

There is only time for the small oxygen precipitates generated during crystal growth to

dissolve. After RTA cycle the high vacancy concentration established at high temperature

is maintained in the bulk of wafer while the vacancy concentration is low near the surface.

This is because the cooling rate is so fast that only vacancy near the surface can diffuse

out. With the assistance of vacancy incorporation, nucleation of oxygen precipitates

occurs preferentially in the bulk of wafer, leaving the surface of the wafer essentially free

of oxygen precipitates, although with a high oxygen concentration. However, it is not very

clear how this high oxygen super-saturation in the surface denuded zone will behave dur-

ing device processing.

1.3 Defects in Crystalline Silicon
Types of defects in silicon are shown schematically in Figure 1.5 and listed in Table 1.1.

Point defects can be separated into two categories: native point defects and impurity point

defects [35]. Vacancies and self-interstitials are two fundamental native point defects. A

vacancy is an empty crystal site, and self-interstitial is a silicon atom that resides in one of

the interstices in the silicon lattice. Impurity point defects can occupy either a silicon lat-

tice site (substitutional) or an off-lattice position (interstitial). When present in super-satu-

H2

°C °C °C

°C
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ration, point defects tend to form a variety of larger, more complex defects. Dislocations

which are a kind of one-dimensional defects, impurity precipitates, vacancy clusters and

interstitial clusters are each illustrated in Figure 1.5. Stacking faults are two-dimensional

lattice defects of limited extent, preferentially formed on [111] planes by taking out a

[111] lattice plane or inserting a [111] lattice plane into the crystal [209].

Geometry Defects

Point
(zero dimension)

Intrinsic point defect
Vacancya

Self-interstitialb

Extrinsic point defect
Substitutional impurity atomc

Interstitial impurity atomd

Line
(one dimension)

Dislocation
Edge dislocatione

Screw dislocation
Dislocation loops (extrinsic typef and intrinsic typeg)

Plane
(two dimension)

Stacking fault (extrinsic type and intrinsic type)
Twin
Grain boundary

Volume
(three dimension)

Precipitateh

Voidi

Interstitial agglomeratej

Table 1.1: List of defects in single crystal silicon, classified by their geometry.
Superscripts correspond to the indices in Figure 1.5 [108,145].
24



Figure 1.5: Schematic diagram of defects in single crystal silicon. Indices correspond to
the superscripts in Table 1.1 [108,145].

1.3.1 Native point defects and their related defects
At finite temperature thermodynamics dictates the existence of equilibrium concentrations

of native point defects within the crystal, with concentrations that are determined so that

the free energy of the system is a minimum [47]. The dependence of diffusivity on con-

centration for phosphorus in silicon has the parabolic nature [80]. This is an indication that

there exist charge state native point defects in the extrinsic or doped silicon. Many

research had been done to identify different vacancy charge states and their energy levels

at cryogenic temperature [89,90,157,194,195]. However it is not clear whether these

charge state point defects by irradiation at low temperature are the same point defects ther-

mally created at high temperature. Even if they are the same defects, it is still a question

whether their properties at low temperature and in highly excited nonequilibrium states
25



are the same as these at high temperature [68]. Moreover, at the melt/crystal interface

where native point defects are incorporated, silicon crystal is intrinsic even if it is doped.

This is because the intrinsic carrier concentration at melting temperature is about 1020

[117], and in order for silicon to be extrinsic the doping concentration has to be

greater than 1020 which is not practical for a silicon ingot.

At the melt/crystal interface, vacancies and self-interstitials are incorporated into a sil-

icon crystal with their respective equilibrium concentrations at melt temperature. Vacan-

cies and self-interstitials then diffuse, convect, and react, leaving one specie dominate

beyond a thin boundary layer adjacent to the melt/crystal interface [151]. There exists an

annular ring where the Oxidation-induced Stacking Faults ring (OSF-ring) can form.

Vacancies dominate inside the ring while interstitials dominate outside the ring. Both

experimental analysis and theory [28,151]showed that the radial location of the OSF-ring

( ) correlates as

(1.1)

where is the crystal pull rate and is the estimate for the axial temperature gra-

dient at the melt/crystal interface and at the radial location ( ) of the OSF-ring.

The OSF-ring and will be discussed in detail in section 2.2.

The native point defect that results from this initial dynamics near melt/crystal inter-

face becomes the reservoir for clustering. Voids form by vacancy clustering in the

vacancy-rich core; stacking faults and dislocation loops form in the interstitial-rich outer

region. All commercial CZ crystals are grown today with the OSF-ring at the periphery of

the crystals.

The vacancy clusters inside OSF-ring are called D-defects. It has been reported that D-

defects degrade the Gate Oxide Integrity (GOI) of electronic devices [134,78,201].
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Because of this phenomenon, D-defects also are called GOI defects. The gate oxide integ-

rity of wafer is measured by fabricating many MOS capacitors with a gate oxide layer

(prepared by dry oxidation) and a poly-Si gate layer on a wafer. The GOI yield is

defined as the percentage of the MOS capacitors whose breakdown voltages are larger

than a specific value. Correlations show that the more dense the D-defects, the more likely

that there is GOI failure and therefore low GOI yield [202].

Many measurements have been used to investigate the origin of D-defects and many

names for crystalline defects have evolved from these measurements. Crystal-originated

particles (COP’s) are counted as particles by laser particle counter after repeated cleaning

of the wafer surface using a NH4OH /H2O2 solution (SC-1) [132,105,202]. After the

wafer is preferentially etched with the Secco etchant, wedge-shaped etched patterns

termed flow patterns defects (FPD’s) are revealed. These etchpits are observed at the apex

of the wedge shape. Defects detected by laser scattering tomography are called LSTD’s

[44]. The species COP’s, FPD’s and LSTD’s are all D-defects and are characterized

microscopically as an octahedral void surrounded by SiO2 film [85,172,203,114]. These

voids often occur as twins or triples with total size of 100-300nm and concentration of

, with a 2-nm-thick layer of oxides on the side wall of the void [85,172].

Twin and triple voids are shown in Figure 1.6. The facets of void always are oriented

along the <111> planes of the crystal.
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(a)

(b)

Figure 1.6: TEM image of (a) twin void and (b) triple void [85].

1.3.2 Oxygen and its related defects
One of the important features of CZ silicon is the high oxygen concentration in the crystal,

caused by the dissolution of the quartz ( ) crucible used to hold the melt. Some of theSiO2
28



oxygen in the melt evaporates from the melt surface as volatile SiO, and some is incorpo-

rated into the silicon crystal [12]. The incorporation behavior of oxygen into silicon crys-

tal is the result of complex interplay between the crucible dissolution, surface evaporation,

thermal and forced convection in the melt, and oxygen segregation into the melt/crystal

interface [95]. The strongest influence on the oxygen content in silicon crystal is exerted

by the crystal and crucible rotation rates, which drive different flow patterns in the melt

[209].

Oxygen is typically incorporated in the crystal at concentrations of

and it mainly occupies interstitial positions in the silicon lattice.

When the crystal cools, the oxygen becomes supersaturated and may precipitate. Oxygen

related defects include oxygen precipitates [43,73], dislocations and stacking faults asso-

ciated with the precipitates [141], and thermal donors and new donors [104]. Oxygen in its

usual interstitial configuration in silicon is electrically inactive. But small clusters of oxy-

gen atoms, silicon atoms and point defects result in electrically active donor configura-

tions within the silicon lattice. There are two kinds of thermally activated donors. Thermal

Donors (TD) are formed upon heat treatment in the temperature range 300-500°C and rap-

idly annihilated above 600°C. New Donors (ND) are formed in the temperature range 650-

850°C [104,25]. Although TD and ND have been extensively studied for several decades,

the atomic structures and the formation mechanisms of these defects are not well under-

stood.

The morphology of oxygen precipitates depends on the annealing temperature. Three

temperature regimes may be distinguished [67]. Ribbon-like defects have been observed

below 800°C. If the annealing is in the temperature range 800-1050°C, disk-shaped pre-

cipitates are dominant. Octahedral precipitates are formed above 1050°C. Disk-shaped

precipitates are most likely cristobalite and octahedral precipitates are amorphous

O 10
18( )atoms cm

3⁄

SiO2
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[141]. There may be considerable overlap in these three regimes and all morphologies

may be observed in a single wafer. Bergholz gave a more detail summary with five tem-

perature regimes: ribbon shape below 550 , mixture of ribbon and disk-shaped shapes

between 550 and 700 , disk-shaped shape between 700 and 900 , octahedral shape

between 900 and 1100 , polyhedral or nearly spherical shape above 1100 [10]. Vari-

ous forms of oxygen precipitates are shown in Figure 1.7.

(a)

°C

°C °C

°C °C
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(b)

(c)
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(d)

(e)

Figure 1.7: HRTEM direct lattice images (except c) of (a) a spherical amorphous oxygen
precipitate; (b) a polyhedral amorphous oxygen precipitate; (c) a weak-beam TEM image
of an octahedral amorphous oxygen precipitate; (d) a disk-shaped amorphous oxygen pre-

cipitate; (e) a cross section of a ribbonlike crystalline oxygen precipitate [10].
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Oxygen precipitates were first considered as contaminants in silicon and considerable

research were done to reduce oxygen concentration in CZ silicon. With the development

of intrinsic/internal gettering (IG), oxygen precipitates and some related defects became

considered as an effective means to getter impurity in silicon. In contrast to internal getter-

ing is extrinsic/external gettering (EG), which involves the introduction of gettering sinks

at the back surface region of a silicon wafer. There are at least two disadvantages of exter-

nal gettering [148]. One is that external gettering process can introduce additional contam-

ination. The other is that the diffusion path for the impurity from the front surface to

gettering sinks at the back surface is relatively long.

During high temperature wafer processing, metallic impurities are introduced onto the

wafer surface which can result in harmful near surface defects [25]. Oxygen precipitates

and related defects may be concentrated in the wafer middle section, leaving a defect-free

surface section or denuded zone (DZ) where devices can be fabricated. The volume of a

precipitate is about two times that of Si atom. This expansion leads to strain between

the precipitate and the silicon matrix and to the formation of dislocation loops and stack-

ing faults with oxygen precipitates to release this strain. The dislocation loops and stack-

ing faults associated with oxygen precipitates are shown in Figure 1.8 and Figure 1.9.

These dislocation loops and stacking faults can act as effective sinks for harmful metallic

impurities [165], as can be explained by the Cottrell effect, in which the solubility of a for-

eign atom will be greater in the vicinity of a dislocation [113]. Dangling bonds introduced

by dislocations or stacking faults also are effective gettering sites for impurities [146].

Oxygen precipitates alone also can act as gettering sinks for iron [46]. For example, metal-

lic impurities in silicon preferentially precipitated in the middle of the wafer where oxy-

gen precipitates and related defects serve as low energy nucleation sites, while no metal

precipitates occur in the denuded zone.

SiO2
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Figure 1.8: Regular octahedral precipitate and punched-out dislocations: G1,G2 = genera-
tor dislocation; D1, D2, D3, D4 = punched-out dislocation row [140].
34



Figure 1.9: Oxygen precipitates (P), a stacking fault (SF), and prismatic dislocation loops
(PL) [205].

Dislocations may be saturated with impurities [165], implying that internal gettering

has limited capacity to getter impurities. The more oxygen precipitates, the more impuri-

ties they can getter. However very high concentration of oxygen precipitates can lead to

the disappearance of the denuded zone and to the degradation of mechanical properties of

the wafer [147]. Oxygen precipitation must be well controlled. For charge-coupled device

(CCD), bipolar, dynamic random access memory (DRAM) or complementary metal-

oxide-semiconductor (CMOS) devices the optimum amount of precipitated oxygen and

depth of the denuded zone for the best efficiency of gettering and yield have been reported

[79].

Oxygen in silicon has other beneficial effects. For example, CZ wafers with high oxy-

gen concentration have been shown to have higher resistance to warpage than FZ wafers

during wafer processing [163]. The effect of oxygen on mechanical properties of silicon

wafer can be understood in terms of how oxygen affects dislocation processes [102]. Oxy-

gen effectively suppresses the dislocation generation and retards the dislocation motion,
35



therefore results in high yield strength. But oxygen precipitates can degrade the mechani-

cal properties since dislocations are punched out during precipitation. So if oxygen precip-

itates too much, the yield strength of wafer will be greatly reduced.

1.3.3 Other impurities-B, C, and N
Boron is a widely used p-type dopant. It is mainly substitutional and replaces a silicon

atom in silicon crystal to contribute a hole. Boron concentration in silicon has wide range

which is from to for various application. It was found that when concen-

tration is higher than , boron has significant effect on OSF-ring position and

critical V/G. Specifically OSF-ring is shifted toward center and critical V/G increases with

boron concentration [1]. Some impurity effects on OSF-ring position are illustrated in Fig-

ure 1.10. Quantitative prediction of model developed by Sinno et al. agreed with experi-

ments [29,153]. The free formation energies of different defect complexes in the model

were based on the work by Clancy et al. [98,123]. Small complexes BI and play

important role here. Extra interstitials are stored in BI and with their equilibrium con-

centrations at melt/crystal interface, and then released as the interstitial concentration

decreases due to recombination near the melt/crystal interface. These extra interstitials

shift the balance between vacancy and interstitial more favorable for interstitial, therefore

shrink the vacancy-dominated core region and increase the critical V/G. Voronkov pro-

posed another mechanism for the effect of boron on critical V/G [187,188]. As discussed

in section 1.3.1, a silicon crystal at the melt/crystal interface is intrinsic even with boron

doping. The Fermi level shifted by boron is small, therefore changes of charged native

point defects are relative small compared with neutral native point defects. However criti-

cal V/G is very sensitive to total native point defect which includes neutral point defect

and all charged point defects at melt/crystal interface. Even though the change of total

native point defect due to boron is small, it may still have significant effect on critical V/G.
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If this mechanism is right, we would expect exactly the same critical V/G change for all p-

type silicon with the same doping level, and the same thing is true for all n-type silicon but

in the different direction. In other word, for silicon with different dopants such as B, Ga, P,

and As, as long as the doping levels are the same the critical V/G changes are the same for

B and Ga, and exactly the same but in the other direction for P and As. This kind of exper-

iment is still needed to be done to prove the mechanism above.

Figure 1.10: Schematic impurity effect on the position of OSF-ring [1].

Carbon is a substitutional impurity and has the similar effect on OSF-ring position and

critical V/G as Boron. However the OSF-ring position and the critical value of V/G are

much more sensitive to carbon. A vacancy rich core region could disappears even at car-

bon concentration as low as [1]. Although the carbon concentration in com-

mercial CZ silicon crystal is less than the ion detect limit, which is about , it still

could have non-negligible effects on silicon crystal. It is well known that there exists a

critical V/G. However, as pointed out by Bullis [17], its value still varies from manufac-

turer to manufacturer and is in the range from to . A

very possible explanation is that they actually have different carbon concentrations in sili-
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con crystal, and therefore different critical V/G. Free formation energies of various carbon

defects are needed to prove this. Unfortunately there are only formation enthalpies avail-

able in the literature [171], and there is no too much information about formation entro-

pies. Carbon is known to enhance oxygen precipitation in silicon crystal [144,147]. Lattice

contraction due to the smaller atomic radius of carbon (0.77Å) compared with that of sili-

con (1.18Å) may attract interstitial oxygen atoms.

Recently nitrogen has drawn much attention because of its potential to realize the

increasing demand for ‘defect-free’ or ‘perfect’ silicon in semiconductor industry. The

nitrogen doping can be achieved by adding gas to the growth chamber for FZ crystal

[181], or by putting silicon wafers with film into silicon melt for CZ crystal [4]. It

was found that nitrogen can suppress both vacancy and interstitial related microdefects in

FZ silicon crystal [2]. von Ammon [181] reported that for FZ crystal with diameter of 100

mm and pull rate of 2.5 mm/min, vacancy related D-defects disappear in the center of the

crystal at nitrogen concentration of , and interstitial related A-defects disap-

pear at nitrogen concentration of . This effect is significantly suppressed

in CZ crystal due to high oxygen concentration and reaction between oxygen and nitrogen

[180]. Nitrogen is also known to enhance oxygen precipitation in silicon crystal [4,143].

However, nitrogen is still very helpful for CZ crystal since it can widen the operating win-

dow for ‘perfect’ silicon [72]. Many researchers proposed different mechanisms to

address the effect of nitrogen on FZ and CZ silicon, and there is still no agreement.

Kageshima et al. [82] carried out first-principles calculations and showed that is the

most stable specie. Two reactions, and (i and s represent inter-

stitial and substitutional respectively), were proposed to explain simultaneous suppression

of D-defects and A-defects in FZ crystal [72]. von Ammon et al. [181] further proposed

reactions and for the suppression of D-defects, reactions
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and for the suppression of A-defects without oxygen.

With the present of oxygen as in CZ crystal, an additional reaction is

proposed to take oxygen into account by shifting the formation of . Apparently a lot of

effort is still needed to understand the nitrogen in silicon and take full advantage of nitro-

gen.

1.4 Thesis Objectives and Outline
The goal of this thesis is to develop theoretical analysis which can help us understand the

physics of microdefect formation and computational models which have quantitative pre-

diction. These schemes can reduce number of expensive experiments in research and

development, and eventually help to optimize operating conditions and system design for

single crystal growth and wafer annealing process.

Theoretical analysis on native point defects and their clusters during CZ crystal

growth is discussed in Chapter 2. OSF-ring dynamics and critical V/G are first reviewed.

The asymptotic analysis of critical V/G, intermediate point defect concentration and the

effect of impurity on critical V/G are then performed. Further theoretical analysis on the

governing equations leads to important scalings for void formation and quantitative esti-

mations of essential variables such as void aggregation temperature, total void density, and

average void size.

The role of oxygen in crystalline silicon is discussed in Chapter 3. It includes a

detailed description of the model for oxygen precipitation, enhanced oxygen precipitation

due to grown-in spatial inhomogeneities in oxygen distribution, simulation of perfect sili-

con, and simulation of wafer annealing compared with experimental results.

Some directions of further research are discussed in Chapter 4.

Ns Ni N2V↔+ N2V I N2↔+

2NO N2 2O+↔
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Chapter 2

Theoretical Analysis on Native Point Defects and Point
Defect Clusters

2.1 Overview
Most modern microelectronics devices are manufactured on substrates or wafers made of

single-crystalline silicon which is mainly produced by the Czochralski (CZ) crystal

growth system. The quality of microelectronics devices greatly relies on the defect control

in the single crystal silicon. Understanding of the defect formation in silicon crystal is

therefore very crucial.

The Oxidation-Induced Stacking Fault Ring or OSF-ring has received an enormous

amount of attention as a defect structure in CZ-grown silicon. The ring is detectable by X-

ray tomography of wafers after wet oxidation. It is composed by extrinsic (interstitial-

type) stacking faults that lay in the <111> crystallographic planes and that grow isotropi-

cally from small oxide precipitates [160]. It is thought that the self-interstitials are sup-

plied by injection during the wet oxidation and collected on stacking faults that are already

formed during oxide precipitation during crystal growth [54]. The structure of the OSF-

ring detected by X-ray is shown in Figure 2.1, which is taken from [59]. The ring separates

the vacancy-rich core, which is populated by voids, from the self-interstitial-rich outer

annulus, which contains stacking faults. Interestingly, there is a finer structure. Just out-

side the OSF-ring there is a annular region of almost microdefect-free crystal, as shown in

Figure 2.1. This region has received much attention [185,186] because its existence is an

indication of the crystal growth conditions where almost perfect silicon can be grown.

Simulation of the perfect silicon will be discussed in Section 3.4.
414141



Figure 2.1: X-Ray topograph of radial cross section of CZ crystal showing the vacancy-
rich core (C), the OSF-ring (B), the nearly defect free ring outside the OSF-ring (A), and

the self-interstitial rich outer ring (D).

The linkage between the radius of the OSF-ring and CZ processing conditions (pull

rate and the temperature field in the crystal) have been well established [29,154,183]. The

most important empirical observation of the OSF-Ring was reported by Dornberger et al.

[28] who demonstrated that the radius of the ring could be correlated by the simple expres-

sion

(2.1)

where is the pull rate and is the axial temperature gradient in the crystal mea-

sured at the melt/crystal interface and at the radial location .

Voronkov was the first to connect theoretically point defect dynamics and crystal

growth operating conditions, such as pull rate and temperature field, with observable tran-

sitions in microdefect structures during crystal growth. His landmark paper in 1982 [183]

pioneered comprehensive modeling of point defect dynamics.

Brown et al. [15] and then Sinno et al. [151] put forward the hypothesis that the

approximate location of the OSF-ring could be predicted as the location of the neutral

zone where neither native point defect reached sufficient super-saturation to allow nucle-
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ation and growth of the corresponding aggregates. For temperatures in the crystal much

below the melting point (where the equilibrium point defect concentrations are much

lower than the typical values in the crystal), this condition is expressed in terms of the

excess concentration as

(2.2)

where is the approximate location of the OSF-ring according to this criterion. Here

it is assumed that the axial location is far enough from the solidification interface that the

crystal has cooled sufficiently so that axial diffusion of point defects is no longer impor-

tant. Sinno et al. [151] further assumed that the location can be predicted solely

from point defect dynamics, i.e. by solving the reaction-diffusion equations for native

point defects without accounting for cluster formation. His simulations of the dynamics of

the OSF-Ring with crystal pull rate V and axial temperature gradient G at melt/crystal

interface well agree with experimental results for a wide range of operating conditions

when point defect thermophysical properties (equilibrium concentrations and diffusivities)

are fit to a single set of experimental data.

The separation between the vacancy-rich core and the self-interstitial-rich outer ring is

shown schematically in Figure 2.2. Sinno et al. [151] postulated there is a region near the

melt/crystal interface where the high temperature of the crystal makes the point defects so

mobile that the dynamics is dominated by diffusion, convection, and point defect recombi-

nation. As a result, intermediate, almost axially constant concentrations of point defects

are established with the absolute concentrations depending on a delicate balance of axial

diffusion, convection, and reaction at different radial locations across the crystal. As the

crystal cools, these point defects may become super-saturated and nucleate clusters at

nucleation temperatures that depend on the intermediate point defect concentrations. As is

∆ r z,( ) CI r z,( ) CV r z,( )–≡

∆ ROSF z,( ) 0≅
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experimentally well known, voids and self-interstitial defects nucleate at different temper-

atures. Actually, the nucleation temperatures are not constants, but depend on the interme-

diate point defect concentrations that supply the driving forces for clustering. The radial

dependence of the temperature field and of these vacancy and self-interstitial concentra-

tions cause radial variation of the nucleation region.

Figure 2.2: Schematic diagram of regions for point defect reaction and formation of
vacancy, self-interstitial and oxygen precipitates as a function of axial and radial location

in the crystal.

Finally, at a yet lower temperature, oxide precipitates begin to form from the supersat-

urated oxygen concentration in the crystal. These precipitates preferentially form in a

region of the crystal where the residual vacancy concentration exists to supply the needed

free volume for precipitate growth to relieve strain energy during precipitation. The oxy-

gen precipitation is the subject of Chapter 3, and the details of the model and simulation

results are referred to that chapter.
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Sinno [150,151,152] and Mori [108] had successfully developed a framework for

modeling and numerical simulation of native point defects - vacancies and self-intersti-

tials, and point defect clusters - voids and self-interstitial clusters during the CZ crystal

growth. The model was built on the dynamics of native point defects, growth and dissolu-

tion of point defect clusters. The dynamics of native point defects include diffusion, con-

vection and recombination of vacancies and self-interstitials. Growth and dissolution of

voids and self-interstitial clusters are modeled by a diffusion-limited aggregation process

with a phenomenological model for the Gibbs free energies of cluster formation. Sinno

developed some numerical methods based on the standard Galerkin method with artificial

diffusivities for clusters and CC70 [20,31,32,121,122] finite difference method for cluster

size space. Mori further developed a time-dependent simulator with operating splitting for

time integral, the discontinuous Galerkin (DG) [21,81] method for clusters, and the local

discontinuous Galerkin (LDG) [7,22] method for native point defects. The two-dimen-

sional numerical simulation results of vacancies, interstitials, voids and interstitial clusters

during the CZ crystal growth prove the physical picture shown in Figure 2.2 and provide

physical insight for the theoretical analysis in this Chapter.

Some theoretical analysis also had been done on the native point defects during crystal

growth. Voronkov derived a theoretical expression for critical V/G which separates the

vacancy-rich core from the self-interstitial-rich outer ring [183]. Sinno tried to analyze the

recombination region near the melt/crystal interface and get the expression for critical V/G

rigorously by asymptotic analysis [151]. Even though Sinno’s approach is correct and fol-

lowed in the analysis of recombination region in this Chapter, his result is wrong.

In this Chapter, a comprehensive theoretical analysis will be done on the native point

defects and formation of their clusters during crystal growth. First, rigorous asymptotic

analysis is performed to get the expression for critical V/G which is the same as
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Voronkov’s final result [183]. This analysis is then extended to the intermediate point

defect concentration at arbitrary V/G and the effect of impurity such as Boron on the criti-

cal V/G. The cluster formation is further analyzed by examining discrete and continuous

forms of rate equations to get useful scalings and quantitative prediction of important vari-

ables such as aggregation temperature, total void density, and average size of void. All

these theoretical analysis greatly improve the understanding of physics of defect forma-

tion during the silicon crystal growth.

The details of physical models for native point defects and point defect clusters during

CZ crystal growth are discussed first in Section 2.2. One-dimensional simulation results of

point defects and their clusters during crystal growth are then illustrated to provide physi-

cal insight for this process and introduce some important concepts in Section 2.3. Theoret-

ical analysis on the model described in Section 2.2 is then performed. The recombination

region is analyzed in Section 2.4 and the cluster formation is analyzed in Section 2.5. This

Chapter is concluded by the summary in Section 2.6.

2.2 Physical Models for Native Point Defects and Point Defect Clusters
during CZ Crystal Growth

2.2.1 Governing Equations
The mathematical model for native point defects and point defect clusters during CZ crys-

tal growth developed in this section is the basis for both the numerical simulation and the-

oretical analysis in this chapter. The reactions associated with vacancies, interstitials and

their clusters in crystal growth include

Recombination of vacancies and interstitials:

(2.3)

Growth and dissolution of interstitial clusters:

I V perfect crystal↔+
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(2.4)

Growth and dissolution of voids (vacancy clusters):

(2.5)

where I and V represent self-interstitial and vacancy, and represent interstitial clus-

ter and void of size n. Here the clusters can only grow or dissolve by addition or subtrac-

tion of monomer since generally the clusters are immobile in solid state. However it is

found that small point defect clusters such as dimer may be mobile [11,71,92,125]. Both

molecular dynamics simulations and experimental results give a migration energy of about

1.35eV for vacancy dimer in silicon [71,125]. Pellegrino et al. reported that the maximum

value of pre-exponential factor for the diffusivity of vacancy dimer is about

[125]. So the diffusivity of vacancy calculated from eq. (2.31) is higher

than that of the vacancy dimer in the whole temperature range of the silicon crystal

growth. Fortunately the model based on reactions (2.4) and (2.5) is still valid unless the

diffusivity of dimer is much higher than that of monomer. The explanation for this will be

provided in Section 2.5.4 after the theoretical analysis of cluster formation.

Based on the reactions above, the dynamics of native point defects (vacancies and self-

interstitials) and their clusters (voids and self-interstitial clusters) is described by the fol-

lowing three sets of basic conservation equations [15,108,150,152]. The time-dependent

conservation equations for vacancies and self-interstitials are

(2.6)
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(2.7)

where is crystal pulling rate, ( , , , , , ) are the (diffusivity, concentra-

tion, equilibrium concentration, discrete cluster concentration, continuous cluster concen-

tration, reduced heat of transport for the thermodiffusion) and the subscripts and

represent self-interstitial and vacancy respectively, is the rate coefficient of

recombination, k is Boltzmann constant, T is temperature, and is the size of clusters.

A special case is the steady state when point defects concentrations don’t change with

time and time-dependent terms (A) and (F) vanish. The terms (B) and (G) are the convec-

tion terms due to crystal pulling. The term (C) is the Fick diffusion term.

The term (D) is the thermodiffusion of point defects driven by the temperature gradi-

ent. There is no reliable estimation for the reduced heat of transport for point defects. The

thermodiffusion was assumed to play a small role in the point defect dynamics and the

reduced heat of transport was neglected in Sinno and Mori’s simulations [108,150]. This

assumption was justified by the sensitivity analysis of the reduced heat of transport on the

point defect dynamics in silicon crystal growth [151]. It was also shown asymptotically

that thermodiffusion of point defects is much less than the Fick diffusion given an upper

bound on the magnitude of the reduced heats of transport [151]. In this thesis, the ther-

modiffusion will also be neglected.
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The term (E) is the recombination of vacancy and interstitial with the law of mass

action. The rate coefficient is modeled by diffusion-limited reaction with the activa-

tion energy and is written as [35]

(2.8)

where is the effective capture radius, is the atomic volume of a

silicon atom with lattice constant , is the atomic den-

sity of silicon. The activation energy barrier consists of enthalpic

and entropic contributions. The value of activation energy barrier is given in eq. (2.34).

The last two terms (F) and (G) are the source or sink terms for vacancy and interstitial

due to their clusters. The summation and the integral in the bracket are the total point

defects consumed by point defect clusters. is the matching point between the dis-

crete rate equations and Fokker-Planck equations which will be discussed next. The sum-

mation from 2 to is the point defects consumed by point defect clusters of size

2 to in discrete form. The integral from to infinite is the point defects

consumed by point defect clusters bigger than size in continuous form.

The second set of equations are discrete rate equations for small voids and interstitial

clusters from dimer to cluster of size which has monomers in it.

(2.9)

(2.10)
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where fluxes and are defined as

(2.11)

and are the concentration of interstitial cluster and void of size n, is the

growth rate, and is the dissolution rate. The growth rate and dissolution rate will be

discussed in Section 2.2.2. The terms (A) and (B) in eqs. (2.9) and (2.10) are concentration

changes of clusters of size n with time and position, and the right side (C)-(D) is the net

flux of clusters of size n. All clusters are assumed to be immobile so diffusion of clusters

is ignored. It is already discussed in the description of reactions (2.4) and (2.5) that they

are still valid even if the mobility of small cluster is considered. Therefore the net flux (C)-

(D) on the right side of eqs. (2.9) and (2.10) also is valid even if small clusters are mobile.

However there should be a diffusion term in eqs. (2.9) and (2.10) for small clusters if their

mobilities are considered. Fortunately eqs. (2.9) and (2.10) are still good approximates for

small clusters in this case because their diffusivities are small. For example, estimation of

diffusivity of vacancy dimer at , which is about the void aggregation temper-

ature where significant voids can form, gives based on [125].

This corresponds to with length scale and a typical

pull rate . High Pe indicates that diffusion is not important compared

with convection which is represented by term (B) in eqs. (2.9) and (2.10). is the net

flux from size n-1 cluster to size n cluster, so the net reaction rate to form the cluster of

size n is the difference between and based on reactions (2.4) and (2.5).

The last set of equations are Fokker-Planck equations for clusters bigger than .

(2.12)
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(2.13)

where and are continuous form of interstitial cluster and void concentrations, and the

coefficients A and B are defined as

(2.14)

(2.15)

Fokker-Planck equation is basically a kind of Taylor expansion of the discrete rate equa-

tion, and is employed here because the maximum cluster size could be as big as and

if discrete rate equations are extended to maximum cluster size we would end up with

solving equations with order of unknowns which is a extremely difficult job. The

detail of the derivation of Fokker-Planck equation from the discrete rate equation will be

discussed in Section 2.2.3. At both the cluster concentration and the nucleation

flux are matched to the discrete rate equations. is chosen as 10 to get size distribu-

tion with enough accuracy [108,150].

The computational domain is shown in Figure 2.3. The boundary conditions for

vacancy and interstitial are their equilibrium concentrations at melt temperature for melt/

crystal interface, and no-flux boundary conditions on other three boundaries. The bound-

ary conditions for point defect clusters are zero concentration for all the clusters at melt/

crystal interface.
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Figure 2.3: Computational domain for CZ crystal growth.

2.2.2 Growth and Dissolution Rates
The growth rate and dissolution rate are two important variables in the mathemati-

cal model developed in the previous section. This section is devoted to the calculation of

these two variables.

Vacancy clusters in silicon crystal are characterized microscopically as octahedral

voids which are shown in Figure 1.6 [85,172]. The octahedral shape in the anisotropic sil-

icon crystal is equivalent to the spherical shape in an isotropic environment. So for the

simplicity morphology of void in this thesis is taken as sphere, and it is validated by the

r

z

center line

melt/crystal interface

pulling direction

crystal
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pulling direction

crystal

gX dX
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fact that both void aggregation temperature and void size distribution predicted by model

based on spherical void well agree with experimental observation [108,182]. The intersti-

tial clusters are assumed to be spherical, and it may need further improvement because of

the existence of non-spherical interstitial clusters such as stacking-faults and dislocation

loops. This work hasn’t been done because the only experimental data available to com-

pare with simulation results for interstitial clusters is the aggregation temperature of inter-

stitial clusters and there is no enough information about interstitial cluster size distribution

and their density during the crystal growth in the literature.

The Gibbs free energy of formation for void and interstitial cluster is expressed as

(2.16)

and

(2.17)

where X represents self-interstitial (I) and vacancy (V), and are concentration and

equilibrium concentration of point defects, and r is the radius of the cluster of size n. The

free energy of formation includes configurational part and non-

configurational part which is consist of surface ( ) and volume

( ) contributions. is surface energy per surface area, and is the vol-

ume contribution per volume for Gibbs free energy. The volume contribution is

related to stress energy, and it is reasonable to assume that for void because

any stress can be easily released through the free volume provided by void. Mori did sen-

sitivity analysis of the aggregation temperature of spherical interstitial cluster on the vol-

ume contribution, and found out that zero volume contribution gives the best

estimation for interstitial cluster aggregation temperature [108]. This is consistent with the
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low stress energy associated with the spherical interstitial clusters, which can not be

observed by transmission electron microscopy (TEM). The surface energy for point defect

clusters are chosen as

(2.18)

(2.19)

The growth rate and dissolution rate for cluster of size n are

[108,138,150,152]

(2.20)

(2.21)

where is the point defect equilibrium concentration for cluster of size n. is

related to bulk point defect equilibrium concentration as

(2.22)

where is the difference of the non-configurational part of free formation

energy between point defect cluster of size n and n+1. The cluster surface reaction rate

is given as [138]

(2.23)

where is the diffusivity of point defect, is the lattice spacing or 0.235 nm in silicon,

is the difference of the free formation energy between point defect cluster of

size n and n+1. is the point defect concentration at the surface of point defect clus-

ter of size n, and is determined by mass balance at the surface.
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(2.24)

The point defect diffusion flux at the surface of point defect cluster is obtained by solving

the following differential equation for point defect

(2.25)

with the boundary conditions

(2.26)

(2.27)

where is the bulk point defect concentration. The solution of eqs. (2.25)-(2.27) in the

spherical coordinate together with eq. (2.24) give

(2.28)

where

(2.29)

There has been enormous work on the thermophysical properties of point defect and

there is still significant discrepancy on their values [155]. The values of these parameters

used in this chapter are taken from [150] and they were obtained by molecular dynamics

and then fitting some parameters with experimental data on the dependence of the OSF-

Ring radius on growth rate and temperature gradient. This yielded

(2.30)

(2.31)
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(2.32)

(2.33)

(2.34)

2.2.3 Fokker-Planck Equation and Zeldovich Equation
As mentioned in section 2.2.1, the Fokker-Planck equation is a Taylor expansion of the

discrete rate equation. The details of derivation from discrete rate equation to continuous

form of rate equation such as Fokker-Planck equation and Zeldovich equation are dis-

cussed in this section. The Zeldovich and Fokker-Planck equations are also the basis for

the theoretical analysis of the rate equations in Section 2.5.

The discrete rate equation can be written as

(2.35)

where

(2.36)

(2.37)

For steady-state CZ crystal growth at pull rate V, the axial position and time t are related

by . The physics of discrete rate equations is illustrated in Figure 2.4. The change

of cluster of size n is equal to the difference between net flux from cluster of size n-1 to

cluster of size n and net flux from cluster of size n to cluster of size n+1. The net

flux also is the difference in the growth and dissolution rates between cluster of size n-

1 and cluster of size n. Equation (2.37) gives a similar relationship for the net flux .

In the discrete rate equations, clusters of size n are always coupled with clusters of size n-
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1 and size n+1. If only discrete rate equations are employed for the nucleation and aggre-

gation of clusters with maximum size , the size of the matrix need to be solved would

be as big as which is extremely difficult. The way to overcome this problem is to

transform eq. (2.35) to a continuous form by truncating Taylor expansion at n. Different

expansions could lead to different continuous approximations. Fokker-Planck equation

and Zeldovich equation are two of them [84].

Figure 2.4: Physics of discrete rate equations.
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is used to represent continuous cluster concentration, and eq. (2.40) can be written in

another form

(2.41)

where

(2.42)

(2.43)

Eq. (2.41) is the so called Fokker-Planck equation [84]. is drift velocity, is diffusion

coefficient, and is the net flux.

Zeldovich equation can be obtained by introducing quasi-equilibrium cluster concen-

trations and eliminating dissolution rates in the discrete rate equations [84]. Quasi-equilib-

rium cluster concentrations are defined as

(2.44)

and

(2.45)

For any give monomer concentration , the whole quasi-equilibrium cluster distribution

can be determined by the definition above. It is called quasi because in eq. (2.45) mono-

mer concentration can be any value and not necessarily the equilibrium monomer concen-

tration. It is called equilibrium because eq. (2.44) means zero flux between any adjacent

clusters. Substituting the definition above into eq. (2.35) to eliminate dissolution rates
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(2.46)

Truncate Taylor expansion to the first order in the first bracket at , and in the second

bracket at ,

(2.47)

Truncate Taylor expansion to the first order again at

(2.48)

Again is used to represent continuous cluster concentration, and eq. (2.48) can be rewrit-

ten as

(2.49)

where

(2.50)

where is Boltzmann constant and is temperature. Eqs. (2.48) and (2.49) are two forms

of so called Zeldovich equation [84]. is drift velocity, is diffusion coefficient, and

is the net flux. By comparing eqs. (2.41) and (2.49), it is very clear that Zeldov-

ich equation and Fokker-Planck equation are different. Essentially they are two different

approximations of the same rigorous discrete rate equations since different truncation

schemes are used to obtain them. Among growth rate , dissolution rate and the quasi-

equilibrium concentration , only two of them are independent. For the Fokker-Planck

equation (2.41), g and d are chosen as independent variables. While for the Zeldovich
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equation (2.49), g and are chosen as independent variables. In Section 2.5, both Fok-

ker-Planck equation and Zeldovich equation are analyzed. Fokker-Planck equation is ana-

lyzed in order to compare with simulation results and verify the theoretical analysis since

Fokker-Planck equation is the equation employed in simulation. The model for g and d is

also consistent between theoretical analysis and simulation for Fokker-Planck equation.

Zeldovich equation is analyzed because of its neat form. Even though Fokker-Planck

equation and Zeldovich equation are not same, they lead to the same scalings which will

be proved in section 2.5.2.

2.3 One Dimensional Simulation Results for Native Point Defects and
Point Defect Clusters during CZ Crystal Growth
The model described in Section 2.2 is too complex to have analytical solutions. Numerical

simulation is the only way to get the solutions. Sinno and Mori [108,150] already success-

fully developed hybrid numerical methods to solve the model for native point defects and

point defect clusters during the crystal growth. In this section, one-dimensional simulation

results are illustrated to draw some important concepts and verify the strategy for theoreti-

cal analysis of defect formation in the following sections.

The typical one-dimensional steady-state results of point defects and point defect clus-

ters in vacancy dominated region are shown in Figure 2.5. The domain of this one-dimen-

sional simulation corresponds to the axial direction at a certain radial position inside the

OSF-Ring shown in Figure 2.2. Pulling rate is . The profiles of vacancy,

interstitial, temperature, and total void concentration are shown in Figure 2.5a. The void

size distribution on the top of the crystal is shown in Figure 2.5b. The total void concentra-

tion is nothing but the total concentration of voids bigger than 5nm in diameter. It is basi-

cally the integral of void size distribution from 5nm in diameter to infinite. In vacancy

concentration profile, apparently there are three regions. In the first region near melt/crys-

C
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tal interface, vacancy concentration decreases dramatically due to rapid recombination

near melt/crystal interface. Under this particular operating condition, self-interstitial is

depleted after recombination while there is some residual vacancy left. The second region

is the plateau region where the vacancy concentration is the residual vacancy concentra-

tion after the recombination. This residual vacancy concentration, which is the reservoir

for void formation, is also called intermediate vacancy concentration. Void nucleation

occurs in this region, but the total vacancies consumed by voids are too small to have sig-

nificant effect on intermediate vacancy concentration. In the last region, vacancy concen-

tration decreases significantly due to the growth of the voids. The temperature at the

turning point between the last two regions is called void aggregation temperature. Around

aggregation temperature, total void concentration increases dramatically. And then it

becomes flat in the whole last region. This is an indication that in the last region, there is

no more nucleation of voids and there is only growth of voids already formed. Simulation

result only for point defects and without any clustering is also shown for comparison.

Before aggregation temperature which is much lower than melt temperature, point defect

clustering essentially has no effect on point defect concentrations because point defects

consumed by their clusters are very small compared with point defect concentration. The

physical explanation is that only at lower temperature super-saturation of point defect is

high enough to drive significant clustering. This validates the ‘two phases’ approach in

this chapter. In the first phase, intermediate vacancy concentration is determined by ana-

lyzing point defects balance in the boundary layer near melt/crystal interface without any

clustering. In the second phase, void nucleation is then analyzed based on the intermediate

vacancy concentration and temperature field around aggregation temperature. These two

phases are the objectives of Section 2.4 and 2.5 respectively.
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(b)

Figure 2.5: One-dimension steady-state results in vacancy rich region: (a) profiles of
vacancy, interstitial, temperature and total void concentration; (b) void size distribution at

top of the crystal.

2.4 Asymptotic Analysis on Recombination Region
As discussed in the previous section, the very first step to analyze the point defects and

their clusters during crystal growth is the asymptotic analysis of point defects without any

clusterings on the recombination region near the melt/crystal interface. The intermediate

point defect concentration obtained from this analysis can then be used in the analysis of

point defect cluster formation afterward.

Voronkov derived a theoretical expression for critical V/G which separates the

vacancy-rich core from the self-interstitial-rich outer ring [183]. Sinno tried to analyze the

recombination region near the melt/crystal interface and get the expression for critical V/G
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rigorously by asymptotic analysis [150,151]. Even though Sinno’s approach is correct and

followed in this section, his result is wrong because of mistakes on some scales.

In this section rigorous asymptotic analysis is first performed to get the expression for

critical V/G which is the same as Voronkov’s final result [183]. This analysis is then

extended to the intermediate point defect concentration at arbitrary V/G and the effect of

impurity such as Boron on the critical V/G

2.4.1 Critical V/G
A series of one-dimensional results of vacancies and interstitials without any clusterings

during the CZ crystal growth for varying V/G are shown in Figure 2.6. Vacancies domi-

nate after the recombination for high V/G, and interstitials dominate after the recombina-

tion for low V/G. These results are also consistent with the physical picture shown in

Figure 2.2 where V/G has highest value at the center and lowest at the periphery of the

crystal. The V/G corresponding the transition point between vacancy-rich region and inter-

stitial-rich region is the critical V/G. Therefore under the critical V/G, vacancies and inter-

stitials recombine exactly with each other and neither of them survives beyond the

recombination region.
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(b)

Figure 2.6: Profiles of vacancy and self-interstitial in the crystal growth for different V/G
(a) vacancy profiles, (b) interstitial profiles.

The dynamics of point defects in the recombination region near melt/crystal interface

includes convection, diffusion, recombination, but no clustering. So the governing equa-

tions are the similar as eqs. (2.6) and (2.7) except that there are no source or sink terms due

to clusterings and there are no time-dependent terms since it is steady-state.

(2.51)

(2.52)

In cylindrical coordination the governing equations above are written as
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(2.53)

(2.54)

These equations are transformed to dimensionless form by introducing a couple

dimensionless variables and scales. The length scale used in radical direction is R, the

radius of crystal, and the length scale in axial direction L is determined as part of the anal-

ysis. And the ratio of these two scales is defined as , or

(2.55)

The temperature is scaled with the melting temperature of silicon so that

(2.56)

Many variables such as equilibrium concentration and diffusivity are exponential function

of temperature. The high activation energy (for example, based on eq. (2.32) the formation

enthalpy of interstitial is about 3.5eV compared with ) leads to very fast

decrease of these variables even with small temperature drop. This characteristic together

with very high recombination rate near the melting temperature make the recombina-

tion region a thin boundary layer near the melt/crystal interface. Therefore only the tem-

perature field near the melt/crystal interface matters for analysis of the recombination

region, and it is approximately linear in axial direction.

(2.57)

where is the scale of temperature gradient and is the dimensionless radial-depen-

dence temperature gradient. Based on the scales above, the dimensionless temperature

field is written as
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(2.58)

For a typical physical parameter Q in the analysis temperature dependence is written in

Arrhenius form as

(2.59)

where and are constants. The dimensionless activation energy in eq. (2.59) is

defined as

(2.60)

From eq. (2.58), is the order of the dimensionless temperature drop in the length

scale L for the recombination region. With high activation energy , Q decrease dramati-

cally within small temperature drop. Q is rewritten with the scales above and by taking the

limit

(2.61)

The axial length scale L is defined as the length scale for the axial temperature gradient

reduced by a high dimensionless activation energy

(2.62)

so that the temperature dependent variable Q in eq. (2.61) can be written as

(2.63)

is chosen to be the formation enthalpy of interstitial which is about 3.5eV based on
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 
 
 

expexp≈exp= =

L
Tm

γ*G*
------------=
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eq. (2.32). For a typical Czochralski crystal growth conditions, and

[150]. Therefore and the ratio of axial length scale to radial

length scale is

(2.64)

This confirms that the recombination region is only confined in a thin layer near the melt/

crystal interface, and the axial length scale L defined by high activation energy is much

smaller than the radial length scale R. Therefore one limit in the asymptotic analysis

below is valid.

The concentrations and diffusivities are scaled with equilibrium concentration and dif-

fusivity of interstitial at melting temperature respectively. The scale of recombination rate

is the recombination rate at melting temperature.

(2.65)

(2.66)

(2.67)

Two important dimensionless groups, the Peclet number and Damkohler number, are

defined as

(2.68)

(2.69)
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For the thermophysical properties given by eqs. (2.30) - (2.34) these parameters are

(2.70)

The definition of the Peclet number in eq. (2.68) is rewritten as

(2.71)

Therefore the Peclet number is a dimensionless form of V/G.

With these scales and dimensionless groups, the governing equations (2.53) and (2.54)

are rewritten in dimensionless form as

(2.72)

(2.73)

Equations (2.72) and (2.73) are complicate non-linear differential equations and there

are no analytical solutions available. However due to two important characteristics (large

Da and small which are estimated in eqs. (2.64) and (2.70)) about the CZ silicon crystal

growth, the asymptotic solutions for and are constructed by expanding

and as Taylor series in both parameters as

(2.74)

(2.75)

where . Substituting eqs. (2.74) and (2.75) into eqs. (2.72) and (2.73) gives
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(2.76)

(2.77)

At O(1) in the expansions (2.74) and (2.75), subtracting eq. (2.76) from (2.77) leads to

(2.78)

Two important points arise from eq. (2.78). First, at leading order the radial contribution

of the diffusion is negligible, this feature is a direct result of . Second, eq. (2.78) is

valid for any value at leading order. Therefore the boundary conditions for leading order

are

(2.79)

and

(2.80)

Equation (2.78) also can be written as
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Because diffusion is negligible for , eq. (2.81) reduces to
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where and .

At leading order both eqs. (2.76) and (2.77) reduce to

(2.83)

Equations. (2.82) and (2.83) together with boundary condition (2.79) are the dimension-

less governing equations that define and . Generally analytical solu-

tions for and are not available for any arbitrary Peclet number. However, there are

analytical solutions for critical value of Pe which corresponds to .

Approximate solutions are constructed for values of Pe close to critical Pe.

The equilibrium concentrations and diffusivities are expanded in the same manner as

outlined for the temperature dependent variable Q in eq. (2.61).
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where , , , and are defined as

(2.86)

(2.87)

(2.88)

(2.89)

a00
∞

a00 r̂ ∞,( )≡ b00
∞

b00 r̂ ∞,( )≡

a00b00 a
eq
b
eq

– 0=
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where and are the dimensionless enthalpies of formation for interstitial and

vacancy, and are the dimensionless migration energies for interstitial and

vacancy. Based on thermophysical properties given by eqs. (2.30) to (2.34),

; hence and are O(1), but and

can be assumed to be O(10-1). Therefore in the recombination region or

, and , and eq. (2.82) can be rewritten as

(2.90)

For , , and and must have exponential forms

which satisfy the boundary conditions (2.79)
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(2.92)

Substituting eqs. (2.91) and (2.92) into eqs. (2.83) and (2.90) to determine , and
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(2.96)

The fact that there are solutions for eqs. (2.93) and (2.94) verifies that the supposed expo-

nential forms (2.91) and (2.92) with and determined by eq. (2.95) is the real solution

for which is determined by eq. (2.96).

Equation (2.96) is the dimensionless expression for the critical V/G. Transforming eq.

(2.96) back to dimensional form to get the expression for the critical V/G

(2.97)

With the point defects properties given by eqs. (2.30) to (2.33), theoretical prediction of

critical V/G by expression above is which is in excellent

agreement with the experimental value of [28]. Voronkov

already gave this theoretical expression for critical V/G in 1982 [183]. However, it is

derived more rigorously from the governing equations here. And it will also be extended

to the intermediate vacancy and interstitial concentrations in next section.

2.4.2 Intermediate Vacancy Concentration
Most silicon crystals are grown under the condition of or .

So after the recombination near the melt/crystal interface there are some residual vacan-

cies or intermediate vacancies left which play an important role in the void formation or

oxygen precipitation at lower temperature. Therefore it is very crucial to understand the

relationship between the intermediate vacancy concentration and operating condition. The

approach is the same as that used to obtain or in the previous section.
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Generally there are no analytical solutions for eqs. (2.83) and (2.90) for value of Pe

other than . However, there are approximate solutions for and for

. For the case which corresponds to the vacancy-rich region

of the crystal,

(2.98)

(2.99)

Assuming and have the forms
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Equation (2.104) is identical to eq. (2.96). Combining eqs. (2.103) and (2.104) gives the

expression for the dimensionless intermediate vacancy concentration

(2.105)

The second term in the denominator on the right side of eq. (2.105) is negligible since

(2.106)

Therefore eq. (2.105) reduces to a simple express for the dimensionless intermediate

vacancy concentration

(2.107)

Transforming eqs. (2.105) and (2.107) back to dimensional forms to get expression for

intermediate vacancy concentration as

(2.108)

Or simply

(2.109)
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The correlations of and Pe are plotted in Figure 2.7. The predictions of intermedi-

ate vacancy concentration in vacancy-rich region by eqs. (2.108) and (2.109) agree well

with the simulation results of point defects dynamics described by eqs. (2.51) and (2.52).

Figure 2.7: Intermediate vacancy concentrations under different Pe.

The same derivation can be applied to intermediate interstitial concentration in inter-

stitial-rich region. In interstitial-rich region which corresponds ,

(2.110)

(2.111)
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(2.112)

(2.113)

where

(2.114)

Substituting eqs. (2.112) and (2.113) into eq. (2.90) gives the relationship between Pe and

(2.115)

Combining eqs. (2.104) and (2.115) gives the expression for the dimensionless intermedi-

ate interstitial concentration

(2.116)

Unlike the intermediate vacancy concentration described by eq. (2.105), neglecting the

second term in the denominator on the right side of equation above introduces errors of

more than 20% because

(2.117)

Transforming eq. (2.116) to dimensional form gives an expression for the intermediate
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α̂ β̂ δ̂ φ̂+( )
2

-----------------= =

a
int

Pe
CV
eq
Tm( )

CI
eq
Tm( )

-------------------- β̂
DV Tm( )
DI Tm( )
-------------------

CV
eq
Tm( )

CI
eq
Tm( )

--------------------

ˆ

+ Pe 1 a
int–( ) α̂ 1 a

int–( )+=

a
int

CV
eq
Tm( )

CI
eq
Tm( )

-------------------- 1–
 
 
  Pecrit

Pe
------------- 1– 
 

1
α̂
Pe
------+

----------------------------------------------------------------=

α̂
Pe
------

α̂
Pecrit
-------------> 0.25≈

CI
int

f Pe Pecrit,( )
CV
eq
Tm( ) CI

eq
Tm( )–[ ] Pecrit Pe⁄ 1–[ ]

γIf
* γVf

*+( )g
-------------------------------------------------------------------------------------------= =
78

1
2γ*Pe

---------------------------+



(2.118)

The correlations of and Pe are plotted in Figure 2.8. Again the predictions of

intermediate interstitial concentration in the interstitial-rich region by eq. (2.118) agree

well with the simulation results of point defects dynamics described by eqs. (2.51) and

(2.52).

Figure 2.8: Intermediate interstitial concentrations under different Pe.
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this latter limit, the intermediate vacancy concentration becomes the equilibrium vacancy

concentration which is the vacancy concentration at melt/crystal interface.

While the prediction of eq. (2.108) is the difference between equilibrium concentrations of

vacancy and interstitial at melt temperature. Fortunately the operating conditions for nor-

mal silicon crystals are not near either of these two extremes. Figure 2.7 and Figure 2.8

show that eqs. (2.108) and (2.118) are valid at least for the range between and

which covers the normal operating conditions. In other words, predictions by

eqs. (2.108) and (2.118) are good enough to understand the point defects behavior under

normal operating conditions. It is not surprising because for high quality silicon crystal the

intermediate point defect concentration has to be controlled to a relative low level com-

pared with equilibrium interstitial concentration at silicon melting temperature to ensure

less point defects available for the point defect clustering. This is just the condition under

which the asymptotic analysis for the intermediate point defect is hold.

2.4.3 Effect of Impurity on Critical V/G
Even though the single crystal silicon is the purest material in the world, there are still

impurities in it: some are intentional such as boron, a widely used p-type dopant; some are

unintentional such as carbon. The effects of different impurities on OSF-ring position are

illustrated in Figure 1.10 [1]. Both carbon and boron can increase the critical V/G, there-

fore shift OSF-ring position inward. These effects must relate to the point defect balance

modified by the impurities.

The OSF-ring position and critical V/G are very sensitive to carbon. Vacancy rich core

region could disappears even at carbon concentration as low as [1].

Although carbon concentration in commercial CZ silicon crystal is less than detecting

limit which is about , it still could have non-negligible effects on silicon crystal.

It is well known that there exists a critical V/G, but its value still varies from manufacturer

CV
eq
Tm( )

0.5Pecrit

15Pecrit

5 1016× cm
3–

1015cm 3–
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to manufacturer [17]. A very possible explanation is that even though under the detecting

limit they actually have different carbon concentrations in silicon crystal, and therefore

different critical V/G. The free formation energies of various carbon defects are needed to

prove this. Unfortunately there are only formation enthalpies available in the literature

[171], and there is no too much information about formation entropies.

For boron, both systematic experimental data on the effect of boron on the critical V/G

and reliable physical parameters on various boron defects are available [29,98,123]. This

section is devoted to the asymptotic analysis on the recombination region to take the boron

effect on the critical V/G into account.

Dornberger et al. did systematic experiment to investigate the effect of boron on the

location of OSF-Ring [29]. Three different crystal growth systems - 125, 150, and 200 mm

diameter crystal - were investigated with the boron concentrations in the range of

. The critical V/G was measured at the location of OSF-Ring under

different growth conditions and with different boron concentrations. The critical V/G as a

function of boron concentration are shown in Figure 2.9 for three different crystal growth

systems. The overlap of the data between three growth systems indicates that the critical

V/G is only a function of boron concentration and it is independent on the other operating

condition. A linear fit of these experimental data gives

(2.119)

where is the critical V/G with boron concentration .
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3––
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Figure 2.9: Dependence of the critical V/G on boron concentration, (a) linear, (b) logarith-
mic representation [29].

Sinno et al. [153,164] tried to explain the experimental results above by numerical

simulation. They developed a model based on the following reactions

(2.120)

(2.121)

(2.122)

(2.123)

(2.124)

(2.125)

where B represent a substitutional boron atom. The governing equations for the species (I,

I V perfect crystal↔+

B B B2↔+

B I BI↔+

B V BV↔+

BI V B↔+

B2 I B2I↔+
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V, B, B2, BI, BV, B2I) are therefore written as

(2.126)

where

(2.127)

(2.128)

(2.129)

where i and j range over the species (I, V, B, B2, BI, BV, B2I). The are the stochio-

metric coefficients for each reaction among eqs. (2.120) - (2.125). The reaction rate con-

stant is modeled by diffusion-limited reaction with the activation energy , and its

physics is already described in eq. (2.8). The native point defects properties are already

listed in eqs. (2.30) - (2.34). Several literature sources [36,103,119,174,200] are used to

estimate the average diffusivity of different boron defect complexes.

(2.130)

(2.131)

(2.132)

B2 and B2I are assumed to be immobile. In the equilibrium constant , is the orien-

tational degeneracy, and are binding entropy and binding enthalpy. , and

based on the atomistic simulation results are listed in Table 2.1 for different boron defect
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complexes [98,123]. The enthalpy calculations using an empirical tight-binding method

have uncertainties about , while the entropy calculations using the empirical Still-

inger-Weber potential contain much larger uncertainties. For this reason, the binding

entropies of BI and B2I were considered as adjustable parameters to fit experimental data.

Sinno et al. [153,164] were able to numerically solve the model above, and their simula-

tion results of normalized OSF-Ring position as function of boron concentration are

shown in Figure 2.10 and well agree with the experimental results. The crystal growth sys-

tems HS1/6, HS2/6, and HS3/5 Figure 2.10 correspond the three systems with 125, 150,

and 200mm diameter crystal in Figure 2.9. Two parameters - binding entropies of BI and

B2I - are fitted to the set of experimental data for growth system HS1/6. The predictions of

OSF-Ring position with boron concentration based on these adjusted parameters are

excellent for the other two growth systems.

Property Original value
Adjusted value in
simulations by
Sinno et al.

Adjusted value in
asymptotic analysis

in this thesis

2.75k 2.75k 2.75k

0.8eV 0.8eV 0.8eV

2 2 2

-5.98k 0.31k 0.09k

0.88eV 0.88eV 0.88eV

4 4 4

-6.33k -3.00k -6.33k

1.18eV 1.18eV 1.18eV

Table 2.1: Binding entropy, binding enthalpy, and orientational degeneracy for B2, BI, B2I,
BV: original values are based on the atomistic simulation results [98,123]; Sinno et al.
[153,164] adjusted two parameters - SBI

b and SB2I
b- to fit the experimental results; one

parameter - SBI
b - is adjusted to fit the experimental observations in this thesis.

0.2eV±

SB2
b

EB2
b

θB2
SBI
b

EBI
b

θBI
SB2I
b

EB2I
b
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Figure 2.10: Experimental and simulation results for different crystal growth systems
HS1/6, HS2/6 and HS3/5. “•” represents experimental results, and “-” represents simula-

tion results [153].

The boundary conditions for I, V, B, B2, BI, BV, B2I at the melt/crystal interface in the

simulations above by Sinno et al. are

(2.133)

(2.134)

4 4 4

1.05k 1.05k 1.05k

0.57eV 0.57eV 0.57eV

4 4

Property Original value
Adjusted value in
simulations by
Sinno et al.

Adjusted value in
asymptotic analysis

in this thesis

Table 2.1: Binding entropy, binding enthalpy, and orientational degeneracy for B2, BI, B2I,
BV: original values are based on the atomistic simulation results [98,123]; Sinno et al.
[153,164] adjusted two parameters - SBI

b and SB2I
b- to fit the experimental results; one

parameter - SBI
b - is adjusted to fit the experimental observations in this thesis.
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EBV
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θBV
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(2.135)

(2.136)

(2.137)

(2.138)

where is the total concentration of p-type dopant boron which exists in forms of B

and B2, is the equilibrium constant of reaction at . However at

melt/crystal interface, with the present of boron and equilibrium concentrations of I and V,

more appropriate boundary conditions for BI, BV and B2I are their equilibrium concentra-

tions for given .
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(2.140)
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Strictly speaking the boundary condition (2.141) should be replaced by

(2.145)
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2.1) and their consumption of boron is negligible, so the boundary condition (2.141) is still

valid. The boundary conditions (2.133) - (2.138) have different impact on the modification

of point defect balance by boron compared with boundary conditions (2.139) - (2.144)

which are used in this thesis. This is because the equilibrium concentration of BI at

could be in the order of and the I stored in BI is comparable with

. The situation for boundary conditions of boron defect

complexes is different from that for point defect clusters. As discussed in Section 2.2.1, in

the model for native point defects and their clusters, zero concentration for all the clusters

are imposed at melt/crystal interface. Zero concentration is valid boundary condition for

all point defect clusters because at melt/crystal interface vacancy and interstitial are not

supersaturated and the concentrations of all clusters are very small. The binding entropy of

BI in the following theoretical analysis is fitted to the experimental observation described

by eq. (2.119). Other parameters keep their original values [98,123]. All these parameters

are listed in Table 2.1. The original binding entropy of BI is -5.98k, the adjusted value in

the work of Sinno et al. is 0.31k, and the adjusted value in this thesis is 0.09k.

The physical mechanism for the boron effect on point defect balance is different

between the boundary conditions (2.133) - (2.138) and (2.139) - (2.144). For boundary

conditions (2.139) - (2.144), the extra vacancies and interstitials needed to modify the

point defect balance are mainly from the convection of BI, B2I, and BV at melt/crystal

interface due to their equilibrium concentrations at . Extra interstitials are stored in BI

and with their equilibrium concentrations at melt/crystal interface, and then released

as the interstitial concentration decreases due to recombination near the melt/crystal inter-

face. The similar physics is true for vacancies and BV. But the concentration of the extra

interstitials in BI and B2I is higher than that of the extra vacancies in BV. These extra net

interstitials shift the balance between vacancy and interstitial more favorable for intersti-

Tm

1014cm 3–

CV
eq
Tm( ) CI

eq
Tm( ) 2 14×10 cm

3–≈–

Tm

B2I
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tial, therefore shrink the vacancy-dominated core region and increase the critical V/G. For

boundary conditions (2.133) - (2.138), the convection has no contribution to the extra

vacancies and interstitials since the concentrations of BI, B2I, and BV at melt/crystal inter-

face are zeros. In a very thin layer near the melt/crystal interface, the concentrations of BI,

B2I, and BV quickly increase to their equilibrium concentrations. More interstitial related

boron defect complexes (BI and B2I) are formed than vacancy related boron defect com-

plex (BV). The net effect is the higher increase in the gradient of interstitial near the melt/

crystal interface due to more consumption of interstitials by BI and B2I. This leads to more

diffusion of interstitials at the melt/crystal interface, and therefore shifts the balance

between vacancy and interstitial more favorable for interstitial.

Among BI, B2I, and BV, only BI and BV are important. This can be proved by the com-

parison of equilibrium concentrations of BI, B2I, and BV at melting temperature. Based on

the parameters used for the asymptotic analysis in Table 2.1, at ,

, , and

. The equilibrium concentration of B2I at melting temperature

is about two order-of magnitude lower than these of BI and BV, so BI and BV are the dom-

inate species to modify the point defects balance. From eq. (2.131),

which is about five order-of-magnitude lower than that of

self-interstitial. This corresponds to with length scale

and a typical pull rate . The high Pe with respect to

justifies the ignorance of the diffusion of BI in the following analysis. For the

same reason, the diffusion of B and BV can be also ignored since

and .
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Since only BI and BV are important among the boron complexes, the governing equa-

tions in the following asymptotic analysis for the boron effect on the critical V/G are based

on reactions (2.120) - (2.123).

(2.146)

(2.147)

(2.148)

(2.149)

(2.150)

(2.151)

where ( , ), ( , ), and ( , ) are reaction rate and equilibrium constant

of reactions , , and . The diffusivities of B, B2, BI,

and BV are so small that their diffusions are not included in the conservation equations

above. The boundary conditions at melt/crystal interface are eqs. (2.139) - (2.143). The

governing equations (2.146) - (2.151) can be transformed to the dimensionless form in

cylindrical coordination by introducing a couple dimensionless variables and scales in the

same way as the asymptotic analysis in Section 2.4.1.
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(2.152)

(2.153)

(2.154)

(2.155)

(2.156)

(2.157)

(2.158)

(2.159)

(2.160)

(2.161)

where ( ) are dimensionless concentrations of B, B2, BI, and BV.

and ( ) are dimensionless reaction rates and equilibrium constants

of reactions (2.120) - (2.123). ( ) are Damkohler numbers based

on these reactions. The detail description of other dimensionless variables and scales are

referred to Section 2.4.1. For the physical properties given in eqs. (2.30) - (2.34) and Table
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(2.162)

(2.163)

With these scales and dimensionless groups, the governing equations are rewritten in

dimensionless form in cylindrical coordination as

(2.164)

(2.165)

(2.166)

(2.167)

(2.168)

(2.169)

Equations (2.164) - (2.165) - (2.168) + (2.169) gives

(2.170)

Pe O 1( )=

Da
IV

O 10
6( ) DaBB, O 10

1–( ) Da
BI, O 10

6( ) DaBV, O 10
6( )= = = =

1

Da
IV

------------ Pe
∂a
∂ẑ
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Because of large ( ) and small in the system, asymptotic solu-

tion for ( ) and are constructed as

(2.171)

(2.172)

(2.173)

(2.174)

(2.175)

(2.176)

where ( ). At O(1) in the expansions above, substituting

eqs (2.171) - (2.176) into (2.165) - (2.170) gives the governing equations at leading order

(2.177)
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∂ẑ
---------------- Da

BBψBB ρB
2
00

ρB2 00
ΨBB
------------–

 
 
 

=

Pe
∂ a00 ρBI 00+( )

∂ẑ
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∂ẑ
------------------------------------

∂
∂ẑ
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(2.183)

where , , , and

.

, , , and are defined in eqs. (2.84) - (2.89). , ,

and are defined as

(2.184)

(2.185)

(2.186)

and

(2.187)

(2.188)

(2.189)

where ( ) are the binding enthalpies of B2, BI, and BV. Since

based on ther-

mophysical properties given in eqs (2.30) to (2.34) and Table 2.1, and are O(1), and

, and ( ) are all O(10-1). Therefore in the region or

, , and ( ).

Boron can only have significant effect on at level higher than O(1018) cm-3,

while the concentrations of I,V, BI and BV are less than O(1015) cm-3. So the effect of
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interaction between boron and point defects on boron concentration is negligible. In the

region or , equilibrium constant of reaction

. Therefore the constant concentrations of B and B2,

and , are the solution of eqs. (2.177) and (2.178) in the region

or . and are determined by equations

and which are the dimen-

sionless form of eq. (2.141).

For critical Peclet number which corresponds to ,

substituting eqs. (2.181) and (2.182) into eq. (2.183) gives

(2.190)

Equation (2.190) together with eq. (2.180) are the governing equations for and .

and are assumed to have the exponential forms

(2.191)
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Substituting eqs. (2.191) and (2.192) into governing equations and (2.190) gives , and
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CV
eq 1( )

CI
eq
1( )

---------------- β̂ẑ–( )exp=
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Equation (2.194) is the expression for critical Pe with the present of boron. Combining

eq. (2.194) with eq. (2.96) gives the relationship between the critical Pe with and without

boron as

(2.195)

where and

(2.196)

Transforming eq. (2.194) back to dimensional form gives the expression for critical V/

G with boron concentration

(2.197)

where and .

The physical mechanism for the modification of the location of the OSF-Ring caused

by adding boron is clear from eq. (2.197). The complex BI forms at high temperature near

the melt/crystal interface but dissociates into B and I at lower temperature as the self-inter-

stitial concentration is depleted because of recombination of vacancies and interstitials.

Near the melt/crystal interface, the number of self-interstitial convected into the crystal is

effectively given by the sum of the equilibrium concentration of I and BI at ;

therefore, the term in the denominator of eq. (2.97) should be replaced by

to take into account boron effect due to boron complex BI. For the

same reason, term in the denominator of eq. (2.97) should be replaced by
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Transforming eqs. (2.195) and (2.196) back to dimensional form gives the relationship

between the critical V/G with and without boron as

(2.198)

where and

(2.199)

At melt/crystal interface significant boron exists in the form of B2 which does not con-

tribute to x in eq. (2.196). The experimentally measured boron concentration is the total

boron concentration which includes concentration of both B and B2. The actual boron con-

centration at melt/crystal interface are determined by eq. (2.141) as

(2.200)

is then applied in eqs. (2.198) and (2.199) to predict critical V/G. The critical V/G as

function of total boron concentration predicted by eqs. (2.198) - (2.200) is plotted in Fig-

ure 2.11. The binding entropy of BI, , is fitted to get the same linear fit as the experi-

mental results described in (2.119). The curve is approximately linear and the best linear

fit across the , which is , is

(2.201)

in eq. (2.201) is the same thing as in eq. (2.119). The fitted binding entropy of

BI is . The dependence of the critical V/G is sensitive to . For the value of

, the best linear fit for the critical V/G as function of total boron concentra-
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(2.202)

Figure 2.11: Dependence of critical V/G on boron concentration.

It should be pointed out that Voronkov proposed another mechanism for the effect of

boron on critical V/G [187,188]. As discussed in section 1.3.1, silicon crystal at melt/crys-

tal interface is intrinsic even with boron doped. The Fermi level shifted by boron is small,

therefore changes of charged native point defects are relative small compared with neutral

native point defects. However critical V/G is very sensitive to total native point defect

which includes neutral point defect and all charged point defects at melt/crystal interface.

Even though the change of total native point defect due to boron is small, it may still have

significant effect on critical V/G. If this mechanism is right, we would expect exactly the

same critical V/G change for all p-type silicon with the same doping level, and the same
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thing is true for all n-type silicon but in the different direction. In other word, for silicon

with different dopants such as B, Ga, P, and As, as long as the doping levels are the same

the critical V/G changes are the same for B and Ga, and exactly the same but in the other

direction for P and As. This kind of experiment is still needed to be done to prove the

mechanism above proposed by Voronkov.

2.5 Theoretical Analysis on Void Formation
As discussed in Section 2.3, near the melt/crystal interface vacancies and self-interstitial

convect, diffuse, and recombine with each other, leaving residual vacancies when V/G is

higher than critical V/G. There is essentially no void formation in the recombination region

near the melt/crystal interface since there is no enough super-saturation for the driving

force. So the residual vacancy concentration can be determined by the asymptotic analysis

of vacancies and self-interstitials without any clustering in the recombination region. The

asymptotic results for the residual vacancy or intermediate vacancy concentration are

described in eqs. (2.105) - (2.109). This is the first step in the comprehensive theoretical

analysis on the point defects and point defect clusters during the CZ crystal growth. The

intermediate vacancies are the reservoir for void formation at lower temperature. So the

next step is to analyze the void formation using the intermediate vacancy concentration

and temperature field around aggregation temperature as inputs. The void formation is

governed by the rate equations (either discrete or continuous) and constrained by the con-

servation of vacancy. In this section, the continuous form of rate equation is first analyzed

to give physical insight for the void formation in silicon crystal growth. Specifically the

size space of the rate equation can be divided into two regions; small clusters are governed

by ‘inner equation’ and big clusters are governed by ‘outer equation’. The analytical solu-

tion of the outer equation leads to two important scalings for void formation. The analyti-

cal solutions of discrete inner equation and continuous outer equation together with the
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vacancy conservation equation give accurate predictions of important variables such as

void aggregation temperature, total void density, and average void size.

2.5.1 Inner Equation and Outer Equation
The Zeldovich equation derived in Section 2.2.3 is a continuous rate equation and can be

written in dimensionless form by introducing a couple scaled variables. The temperature

field near the aggregation temperature is approximate

(2.203)

where is approximately the nucleation temperature, is temperature gradient in

this region of the crystal, and is the crystal pull rate. The typical values for and

are 20 K/cm and respectively. A characteristic value of . Using

these scales a characteristic time scale for the residence of the crystal in this temperature

range is

(2.204)

The cluster size is scaled by the value

(2.205)

and scales for and are taken as their values at or

(2.206)

(2.207)

Based on eqs. (2.204) - (2.207) dimensionless variables are defined as

(2.208)

and dimensionless Zeldovich equation is written as
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(2.209)

where

(2.210)

(2.211)

In this form P scales the importance of the diffusion-like term on the evolution of the

size distribution. The magnitude of P can be evaluated with the aid of eq. (2.50) in which

quasi-equilibrium cluster concentration must be calculated first. As described in [84],

is related to monomer concentration by the following expression.

(2.212)

where G is Gibbs free formation energy. For void formation, the free energy of formation

is given by eq. as

(2.213)

where and are radius and surface energy of the void respectively. The first term in eq.

(2.213) is the contribution from the monomer super-saturation and the second term is the

surface energy of a spherical void. Substituting eq. (2.213) into eq. (2.212) gives

(2.214)
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η∂
∂F

 
 +=

Q
n
*

t
*
v
*

---------≡

P
n
*
v
*

g
*

----------≡

Cn
*

Cn
*

Cn
*

C1
G n( ) G 1( )–( )–

kT
--------------------------------------- 
 exp=

G nkT
C1

C1
eq

--------
 
 
 

ln– 4πr2σ+=

r σ

Cn
*

C1 n 1–( )
C1

C1
eq

--------
 
 
 

ln
aσ
kT
------ n

2
3
---

1–
 
 
 

–
 
 
 
 

exp=
100



(2.215)

and is the volume of the monomer. Substituting eq. (2.214) into eq. (2.50) gives an

expression for the drift velocity as

(2.216)

Near the aggregation temperature , the monomer concentration is always highly

supersaturated, or two to three orders-of-magnitude higher than the equilibrium concentra-

tion at . The typical values of parameters in eq. (2.216) are ,

, and , and lead to the coefficient value

. Hence, for large , the second term in eq. (2.216) is small com-

pared with the first term, so the drift velocity is simply

(2.217)

and the parameter P is

(2.218)

Because , the diffusion term in the Zeldovich equation (2.209) can be ignored so that

eq. (2.209) reduces to
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Equation (2.219) is referred to as ‘outer equation’ in this thesis, where ‘outer’ implies

it is valid for . Because the Zeldovich equation is a second order differential equation

for and the outer equation is first order in , eq. (2.219) can not be valid through the
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whole domain . There must be at least one more region where a differ-

ent approximation is needed and the second order term is retained. In order to retain the

second order term, or its dimensionless variable has to be rescaled. Consider the scal-

ing

(2.220)

With this new variable, equation (2.209) becomes

(2.221)

From eqs. (2.210) and (2.211)

(2.222)

For diffusion-limited growth, the growth rate g is written as [84]

(2.223)

This is nothing but the monomer diffusion flux to a spherical cluster with radius r under

the bulk monomer concentration . It can be obtained by solving differential equation

in the spherical coordination. Since the cluster size n is related to radius r by

, g is rewritten as

(2.224)

where

(2.225)

Near the nucleation temperature , and the mono-

mer concentration is typically between and . The constant can

be evaluated from eqs. (2.217) and (2.224) as
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(2.226)

Because , the left side in eq. (2.221) can be ignored and the dimensionless Zel-

dovich reduces to

(2.227)

Because , eq. (2.220) implies that eq. (2.227) is only valid for very small or

. Hence eq. (2.227) is referred to as the ‘inner equation’ in this thesis. A station-

ary solution is defined as the solution which satisfies in the discrete form (see

eq. (2.35)) and in continuous form (see eq. (2.49)). Hence, the

inner equation is stationary.

To summarize, the cluster size distribution modeled by the Zeldovich equation

can be divided into two regions. In the region of small , the time-dependent term can be

ignored, and the distribution can be described by inner equation eq. (2.227), and the result

is the stationary solution. In the region of , the diffusion term in eq. (2.209)

can be ignored and the size distribution can be described by the outer equation eq. (2.219).

There is a matching point between the inner and outer equation.

The Zeldovich equation is one representation of the evolution of void size distribution.

So the characteristics of the Zeldovich equation in the two regions reveal the basic physics

of the void formation. For void formation, the time scale to reach the stationary size distri-

bution for small n is much smaller than the system time scale , and the time-dependent

term is negligible. While for , the cluster size distribution propagate with a drift

velocity, and the diffusion in size space is negligible.
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Since the Fokker-Planck equation derived in Section 2.2.3 is just another representa-

tion for the void formation. Due to the nature of the void formation just discussed, in the

Fokker-Planck equation for void formation, the time-dependent term can be ignored for

small n, and the diffusion term in n can be ignored for big n. Therefore the dimensional

outer equation for Fokker-Planck equation is

(2.228)

where

(2.229)

In the following sections, dimensional inner and outer equations are used instead to save

the conversion back to dimensional results.

Sample steady-state simulation results for void size distributions at different axial

positions are shown in Figure 2.12. The governing equations used in these simulation are

eqs. (2.6) - (2.15). The axial position is interchangeable with the pulling time (z=Vt)

which is defined as the time needed to pull crystal from melt/crystal interface to a certain

axial position. The evolution of the void size distribution is clearly shown. Void aggrega-

tion temperature under these particular operating conditions occurs at about .

When the temperature is higher than the aggregation temperature or , the size dis-

tribution void concentration decreases dramatically when is small, and then decrease

more gradually for . The transition point between these two regions occurs approxi-

mately between n=20 to n=100 in Figure 2.12. The size distribution for is the sta-

tionary solution, as will be discussed in Section 2.4.3. In the region for , the void

concentration is proportional to which is the scaling of the solution of the outer

equation, as will be proved in Section 2.4.2. Near the aggregation temperature, the total
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number vacancies consumed by all voids become significant compared with the interme-

diate vacancy concentration which is the finite reservoir for void formation. Therefore, the

vacancy concentration begins to decrease significantly at . This leads to the

decrease in the concentration of void in the region for small , while large voids continue

to grow. This mechanism leaves a peak at large in the size distribution. Hence the finite

reservoir of monomer is the real reason why there is a peak in the final void size distribu-

tion. Below the aggregation temperature the total void concentration no longer changes

(see Figure 2.5) because there is essentially no further nucleation and only the growth of

large clusters which are already formed.

Figure 2.12: Void size distribution at different axial positions (Pe=1.75Pecrit).

2.5.2 Scalings for Void Formation
Voronkov used a classical nucleation model to get two scalings for void formation [185].

Total void concentration is proportional to and the average void size is
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proportional to where is the temperature gradient around void aggre-

gation temperature and is the vacancy concentration at the onset of void formation.

Mori et al. confirmed these scalings by the numerical simulations of point defects and

their clusters during the CZ crystal growth [107]. In this section, these two scalings are

rigorously derived from the governing equations for void formation.

The concentration of the total vacancies consumed in the voids is

(2.230)

The void concentration decreases dramatically with n when . While for , both

n and dn are big. So only in the outer region is the void size distribution significant in eq.

(2.230). Therefore only the outer equation is used in this section to derive the scalings for

void formation, particularly the dependence of total void concentration and aver-

age void size on the intermediate concentration and temperature gradient near the

aggregation temperature . From eqs. (2.217) and (2.224), the drift velocity v for

and diffusion-limited void growth is written as

(2.231)

where the subscript Z represents Zeldovich and the constant is

(2.232)

and is the intermediate vacancy concentration which is the reservoir for void forma-

tion. The constant and are vacancy diffusivity and equilibrium concentration

respectively. Using the expression for drift velocity in eq. (2.231), the dimensional outer

equation, boundary condition, and initial condition are described as
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(2.233)

with boundary condition

(2.234)

and initial condition

(2.235)

where is the matching point between the inner equation and the outer equation, and

. Equation (2.233) is a first-order partial differential equation and can be

solved by the method of characteristics [206]. The solution is

(2.236)

The result above indicates that in the outer region, the void concentration is propor-

tional to , as observed in the numerical simulations.

We can proceeded further to get some useful scalings for void formation. A reasonable

assumption for void formation is that at the aggregation temperature the concen-

tration of the total vacancies consumed by the voids is equal to the intermediate vacancy

concentration. As discussed at the beginning of this section, only the outer region plays an

important role in determining the total vacancy stored in the voids. This assumption is

restated as

(2.237)

substituting eq. (2.236) into eq. (2.237) gives
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(2.238)

where , and it is the residence time of a void near the aggregation temperature

where significant vacancies are consumed by voids. Accordingly and in eq.

(2.232) are evaluated at void aggregation temperature. Assuming that , which is match-

ing point between inner and outer equation, is very small compared with the maximum

non-zero void size at and also is an extreme small contribu-

tion to the maximum non-zero void size. Therefore eq. (2.238) is simplified to

(2.239)

The total void concentration is defined as the summation of all voids larger than or

(2.240)

This integral is actually insensitive to the lower bound because the contribution around

lower limit to the integral is not significant. The average void size is defined as the ratio of

total vacancies consumed by voids to the total voids concentration. Using eqs. (2.237),

(2.239), and (2.240), the average void size is written as

(2.241)

This expression can be simplified by examining the dependence of eq. (2.232) on

. Hence . The residence time of clusters near is inverse propor-

tional to the temperature gradient , or as given in eq. (2.204). Use these two

scalings, the average void size can be approximated as.
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(2.242)

The scaling of total voids concentration is obtained by combining eqs. (2.241) and

(2.242).

(2.243)

The scalings above are direct results of dependence of void concentration on the

void size in the outer region. The simulation results of void size distribution in the outer

region are shown in Figure 2.13. In the log plot, the curve is linear except for very large n

and for the matching point for small n. The scaling also is very accurate.

Figure 2.13: Outer region of void size distribution at different axial positions.
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As discussed in Section 2.2.1, the Fokker-Planck equations (2.12) and (2.13), and the

model for g and d (eqs. (2.20) and (2.21)) are used in the simulation. A similar theoretical

analysis on the Fokker-Planck equation with g and d from eqs. (2.20) and (2.21) also leads

to the same scalings above. The void drift velocity of the outer equation (2.228) for Fok-

ker-Planck equation is . g is determined by eqs. (2.20) as

(2.244)

d is determined by eq. (2.21) as

(2.245)

where b is the volume of monomer as used in eq. (2.215). Near the aggregation tempera-

ture and for ( )

(2.246)

Therefore with the relationship between cluster size n and radius r, , the void

drift velocity for Fokker-Planck equation is written as

(2.247)

where is the radius of monomer, and it is the same order with which is

the lattice spacing in silicon crystal. For , eq. (2.247) reduces to

(2.248)

where the subscript FP represents Fokker-Planck equation and the constant is
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(2.249)

Hence, the drift velocity for the outer equation of the Fokker-Planck equation has the

same dependence as that for Zeldovich equation, and is proportional to . So

with exactly the same analysis for the outer equation of Zeldovich equation, the Fokker-

Planck equation used in simulation also leads to the same scalings described by eqs.

(2.242) and (2.243).

The scalings for total voids concentration and average void size provide their impor-

tant dependences on and which is related to operating conditions by eq. (2.109).

However, the aggregation temperature, the absolute values of total void concentration and

average void size must still be determined. In the following section, the outer equation

(2.228) with the drift velocity defined by eq. (2.248) will be used in order to quantitatively

compare theoretical estimations with simulation results.

2.5.3 Estimations of Aggregation Temperature, Total Void Concentration and Aver-
age Void Size
In the previous section, only the solution of the outer equation was considered, and was

enough to obtain the scalings because the void concentration at matching point

does not influence these results. However, in order to get absolute values for the

total void concentration and the average void size instead of just scalings, has to be

determined. Therefore, the inner equation must be analyzed.

As discussed in section 2.3, continuous equations such as Fokker-Planck equation and

Zeldovich equation are only approximations of the rigorous discrete rate equation. Unfor-

tunately they are only good for big clusters, and they introduce significant error for small

clusters. The steady-state simulation results of void size distributions with different

matching points are shown in Figure 2.14. They are the results of the same governing

equations under the same operating conditions but with different matching points between
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discrete rate equations and Fokker-Planck equations. Three curves correspond to matching

points at 3, 10 and 100 respectively. The curves for and

almost overlap with each other and the connections at are very smooth for both

curves. However, the results for over predict the cluster density, and the con-

nection at is very abrupt. This is an indication that discrete rate equations at small

can not be replaced by their continuous approximations. The reason is that void concen-

trations decrease dramatically at small and are far from linear so that the second order

Taylor expansions which are used to get continuous forms do not hold. The

between discrete rate equations and Fokker-Planck equations in void formation can be set

as 10 to yield reasonable results.

Figure 2.14: Void size distributions with different matching points between discrete rate
equations and Fokker-Planck equations.
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In the inner region for small , the discrete rate equations have to be used instead of

the continuous inner equation eq. (2.227). However the conclusion in section 2.4.1 that the

time-dependent term can be ignored in the inner region is still valid. In other words, the

concentration of small voids can be determined by the discrete form of inner equation or

stationary solution. The stationary discrete rate equations are

(2.250)

where

(2.251)

(2.252)

A special case is the quasi-equilibrium void concentration when for all . The

quasi-equilibrium cluster concentrations are defined in eqs. (2.44) and (2.45), and are

written in the following form.

(2.253)

The discrete form of the inner equation or stationary solution with boundary condi-

tions can be written as

(2.254)

where

(2.255)

with the boundary conditions
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(2.256)

(2.257)

The equations above have M-2 equations and M-2 unknowns (from to ), so this

problem is well imposed. In order to solve these equations, another unknown - the station-

ary flux - is introduced and the eqs. (2.254) and (2.255) are rearranged as

(2.258)

with the same boundary conditions (2.256) and (2.257). This new form of stationary solu-

tion has M-1 equations and M-1 unknowns ( , ). With the help of

quasi-equilibrium void concentrations defined by eq. (2.44), eq. (2.258) is rearranged as

[84]

(2.259)

Note that the monomer concentration appears only in the equation for . The

summation of the M-1 equations represented by eq. (2.259) gives

(2.260)

The summation of some equations (from n+1 to M) gives

(2.261)

Combining eqs (2.260) and (2.261) to remove the stationary flux gives
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(2.262)

which is the general solution to the discrete rate equation. A special solution when

is

(2.263)

The stationary solutions described by eq. (2.263) with different values of are plotted in

Figure 2.15 to compare with the simulation result of void size distribution. The stationary

solutions match the simulation result except in the small tail around . This compar-

ison verifies that the discrete form of the inner equation or stationary solution is a good

approximation to the dynamics void calculation for small .

The void concentration at the matching point between the inner and outer

regions of cluster size is determined by matching the flux between the two regions. Set

in eq. (2.260) and consider as the unknown to be determined. At the

matching point , the discrete form of the stationary flux in the inner region is

equal to the continuous form of the flux in the outer region at ; hence,

(2.264)

from eq. (2.260) or

(2.265)

The value of the cluster size at , , is found by solving eqs. (2.264) and (2.265).

The selection of the matching point is arbitrary as long as is large enough to
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be in the outer region. Interestingly, the outer equation eq. (2.236) automatically satisfies

the condition that derivative of net flux is zero, which is the continuous form of stationary

solution. The simulation results shown in Figure 2.15 also exhibit this property. Our expe-

rience indicated that when , the void size distribution is in the outer region, where

the cluster concentration is proportional to .

When the temperature is higher than the aggregation temperature ( ) the void

size distribution still agrees with the stationary solution with a moving ‘front’ (maximum

cluster size with non-zero concentration). However the outer equation is still essential for

two reasons. First, the quasi-equilibrium cluster concentration increase exponentially

for large , so the stationary solution (2.262) can not be used for larger than 103. Sec-

ondly, the velocity of the moving ‘front’ at large n must be determined from the outer

equation. The general solution for is described below.
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Figure 2.15: Stationary solutions for different maximum cluster size with non-zero con-
centration.

A general outer equation (2.233) with time varying boundary condition is

(2.266)

with the boundary condition

(2.267)

and initial condition

(2.268)

The problem (2.266) - (2.268) is solved by the method of characteristics to give

(2.269)

where is determined by

(2.270)

The matching condition is applied between the inner equation (2.262) and outer equation

(2.269) -(2.270). The value of the stationary flux is equal to the continuous form of the

flux in the outer region at

(2.271)

where is determined from eq. (2.260) as
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(2.272)

When , is large enough so that the second term in the first bracket can be

ignored because the quasi-equilibrium cluster concentration increases exponentially

with . Therefore is explicitly calculated as

(2.273)

The total concentration of vacancies consumed by voids under a fix intermediate

vacancy concentration is obtained from eqs. (2.269) - (2.273) as the integral

(2.274)

Again for steady-state crystal growth, time is related to the axial position and pull rate

by . Hence monotonically increases with (or ) and can be explicitly

computed. The aggregation temperature is determined by the intersection of (under

a fix intermediate vacancy concentration ) and the intermediate vacancy concentra-

tion, or . We assume that the temperature at is the aggrega-

tion temperature. The total void concentration is evaluated at as

(2.275)

and the average void size is calculated as

(2.276)

JS t( ) 1
f
0
t( )

C
n
0
*

-----------–
 
 
  1

gmCm
*

--------------

m 1=

n
0

1–

∑
1–

=

n
0 100> C

n0
*

Cn
*

n JS t( )

JS t( ) 1

gmCm
*

--------------

m 1=

n
0

1–

∑
1–

=

CV
int

CV
Total

t( ) nf nd
n0
∞
∫ n

JS t' n t,( )( )

LFP t' n t,( )( )n1 3⁄----------------------------------------- nd
n0

n0( )
2 3⁄ 2

3
--- LFP t( ) td

t
0

t

∫+ 
 

3 2⁄

∫= =

t z

z Vt= CV
Total

t( ) t z

CV
Total

CV
int

CV
Total

t
a( ) CV

int= t
a

z
a
V⁄=

t t
a=

NTotal f nd
n0
∞
∫

JS t' n t,( )( )

LFP t' n t,( )( )n1 3⁄----------------------------------------- nd
n0

n0( )
2 3⁄ 2

3
--- LFP t( ) td

t
0
t
a

∫+ 
 

3 2⁄

∫= =

navg
CV
int

Ntotal
-------------=
118



Under the operating conditions used in the simulation shown in Figure 2.5,

. Since vacancies are only consumed significantly by void forma-

tion in a narrow temperature range near the aggregation temperature, the value of

described by eq. (2.249) doesn’t change significantly near the aggregation temperature. In

this case, the vacancy diffusivity is evaluated at temperature ,

and . With this constant , eqs. (2.274) and (2.275) are simplified to

(2.277)

(2.278)

It should be pointed out that the simplification above based on constant is not neces-

sary, it just makes the calculation much simple. The calculations using eqs. (2.277) and

(2.278) under the fix vacancy concentration are listed in Table 2.2 and shown in Fig-

ure 2.16. At , is approximately equal to , therefore the aggregation

temperature is around which agrees with the simulation results shown in Figure

2.5a and Figure 2.17. However, at is which is about one

order-of-magnitude higher than the value of from the simulation.

This difference is explained by the actual change of the vacancy concentration. The

stationary flux increases with monomer concentration, and near the aggregation tem-

perature the vacancy concentration already decreases significantly by void formation.

While in the calculation above the fix vacancy concentration is used, therefore it will over-

estimate total void concentration . The way to overcome this problem is to impose

conservation of vacancy instead of the fix vacancy concentration.
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Under the fix vacancy concentration , we only need to calculate the cluster con-

centration from eq. (2.269). With the conservation of vacancy, we must also cal-

culate vacancy concentration from

(2.279)

where is determined by eq. (2.269). The conservation equation (2.279) can be

also written as

(2.280)

where

(2.281)

The results with the conservation of vacancy are listed in Table 2.2 and shown in Fig-

ure 2.17. The aggregation temperature is approximately and the total vacancy

concentration is . These results agree with the simulation results shown in

Figure 2.5a and Figure 2.17. The average void size is estimated by eq. (2.276), as

which corresponds to a void of 164 nm in diameter. The theo-

retical prediction and simulation result of void size distribution also show reasonable

agreement as shown in Figure 2.18. The evolution of void size distribution from

to predicted by the theoretical analysis almost matches that from to

predicted by the numerical simulations.
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results under fix vacancy
concentration

results with the conservation
of vacancy

( )

z

1.66 4.65E12 4.04E5 4.65E12 4.04E5

1.68 9.64E12 8.05E5 8.71E12 5.48E5

1.70 1.95E13 1.57E6 1.44E13 6.57E5

1.72 3.85E13 2.98E6 2.15E13 7.07E5

1.74 7.46E13 5.54E6 2.98E13 7.21E5

1.76 1.41E14 1.01E7 3.92E13 7.22E5

1.78 2.62E14 1.81E7 4.95E13 7.22E5

1.80 4.78E14 3.17E7 6.06E13 7.22E5

Table 2.2: Theoretical results of CV
Total and NTotal with axial position z.
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Figure 2.16: Theoretical results using fix vacancy concentration CV
int.

Figure 2.17: Theoretical results with the conservation of vacancy (CV+CV
Total=CV

int)
compared with simulation results (expansion from Figure 2.5a).
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Figure 2.18: Theoretical prediction and simulation result of void size distribution.

2.5.4 Mobility of Vacancy dimer
As mentioned in the model description in Section 2.2.1, the physical model employed in

this chapter is based on one important assumption that the clusters can only grow or dis-

solve by the addition or subtraction of monomer, and the mobility of any cluster is negligi-

ble. However it is found that small point defect clusters such as dimer may be mobile

[11,71,92,125]. Both molecular dynamics simulations and experimental results give a

migration energy of about 1.35eV for vacancy dimer in silicon [71,125]. Pellegrino et al.

reported that the maximum value of pre-exponential factor for the diffusivity of vacancy

dimer is about [125]. All these demonstrate that vacancy dimer is mobile

but with diffusivity smaller than vacancy diffusivity in the whole temperature range of the

silicon crystal growth. Fortunately unless diffusivity of vacancy dimer is much higher than
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vacancy diffusivity, the mobility of vacancy dimer essentially has no effect on the void

formation and all the theoretical and simulation results in this Chapter are valid.

The theoretical analysis in section 2.5.1 shows that for small n it is in the region of

inner equation where time dependent terms can be ignored. The solution is stationary solu-

tion which depends on equilibrium solution. Or put it precisely, the time needed to reach

stationary state is very small (in order of second). So in the region for small n, it is really

equilibrium or stationary state that matters, dynamics doesn't matter.

Considering mobility of vacancy dimers will only change the dynamics, but not equi-

librium or stationary state. This can be proved by considering the concept of independent

reactions. If the mobility of clusters is negligible, the cluster can only grow or dissolve by

addition or subtraction of monomer. Therefore for the void formation, the first three reac-

tions are

(2.282)

(2.283)

(2.284)

where V2, V3, and V4 represent vacancy clusters with 2, 3, and 4 vacancies in it. Given the

vacancy concentration and temperature, the stationary solutions of V2, V3, and V4 can be

determined. Another reaction has to be added in order to take the mobility of vacancy

dimers into account. It is

(2.285)

But this reaction is not an independent reaction of the first three reactions. In other words,

reaction (2.285) = reaction (2.283) + reaction (2.284) - reaction (2.282). This means that

considering reaction (2.285) will not change equilibrium or stationary state at all, it will

only decrease the time needed to reach equilibrium or stationary state which is already so

V V V2↔+

V2 V V3↔+

V3 V V4↔+

V2 V2 V4↔+
124



small that only equilibrium or stationary state matters. Therefore the mobility of vacancy

dimer will not change results for small n, and the boundary for the outer equation.

For big cluster, concentration of cluster size n-1 has the same order of magnitude or

almost same with that of cluster size n because change of cluster concentration is at most

five order of magnitude over big size change which is much more than 103. But concentra-

tion of vacancy is several order of magnitude higher than that of vacancy dimer. The

growth rate is proportional to the concentration of cluster, the diffusivity and concentra-

tion of mobile species. So among the three reactions

(2.286)

(2.287)

(2.288)

the first reaction definitely dominates and the effect of mobility of vacancy dimer is negli-

gible unless the diffusivity of vacancy dimer is several order of magnitude higher than that

of vacancy which is apparently not the case.

2.6 Conclusion
The void formation in Czochralski crystal growth is an extremely complex process. And

the model for this process is also too complex to have analytical solutions. Numerical sim-

ulation is the only way to get the solutions. These numerical simulations can be considered

as virtual experiments. Verified relations between operating conditions and model predic-

tions can be used to reduce number of expensive experiments, and optimize operating con-

ditions and system design. Another important aspect of numerical simulation is that it can

help to get physical insight of the process, valid the appropriate assumptions and further

develop theoretical analysis and useful scalings. This is the strategy of theoretical analysis

in this chapter.

Vn V Vn 1+↔+

Vn V2 Vn 2+↔+

Vn 1– V2 Vn 1+↔+
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The asymptotic analysis on critical V/G, intermediate vacancy concentration, interme-

diate interstitial concentration, and effect of boron on critical V/G are performed first in

the region close to the melt/crystal interface. The asymptotic analysis is based on two

important characteristics - large Da and small - about the CZ silicon crystal growth.

The large Da is due to the high recombination rate near the melt/crystal interface and leads

to mass law for vacancies and interstitials. The small is due to the high activation

energy for the equilibrium concentrations of native point defects and leads to a thin recom-

bination layer near the melt/crystal interface and negligible radial contribution of diffu-

sion.

At lower temperature or the region away from the melt/crystal interface, void forma-

tion is modeled by combination of discrete rate equation for small n and its continuous

representation for big n with matching between them. The discrete rate equation can not

be used alone because of computational difficulty. And its continuous representation can

not be used alone because it is not accurate for small n. Fokker-Planck equation and Zel-

dovich equation are two different continuous approximations of the same rigorous discrete

rate equation.

The analysis on various scales shows that for small n, the time-dependent term in the

governing equation can be ignored and the corresponding equation is called inner equa-

tion. While for big n, the second order terms for n can be ignored and the corresponding

equation is called outer equation. The discrete form of inner equation is employed since

continuous form is not valid for small n. The inner equation is also called stationary solu-

tion because there is no time-dependent term. The outer equation has continuous form and

it is basically a first order partial derivative equation. At matching point, both concentra-

tion and flux are matched. Interestingly, as long as matching point is in the outer region,

the choice of matching point is arbitrary. The reason is the unique property of the outer

ω

ω
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equation. The outer equation automatically satisfies the continuous form of inner equation

or stationary solution. Actually the void size distribution is approximately stationary solu-

tion with a moving ‘front’ (maximum cluster size with non-zero concentration). However

outer equation is still essential because of two reasons. First, the quasi-equilibrium cluster

concentration used in the results of inner equation increases exponentially for big , so

practically the results of stationary solution can not be used for more than a couple hun-

dred. Second, the drift velocity of the moving ‘front’ is still needed to be determined by

the outer equation.

Based on the analysis of the inner and outer equations with the appropriate model for

growth rate and dissolution rate, two important scalings for total void concentration and

average void size are obtained. Total void concentration is proportional to

and the average void size is proportional to . The quan-

titative theoretical estimations of void aggregation temperature, total void concentration,

and average void size also reasonably agree with the simulation results. Some important

physical insights are also obtained. As discussed in section 2.4.1, for a homogenous nucle-

ation without initial seeds, the real reason for the peak in the size distribution is the finite

source of monomer.

It is worth to point out that the theoretical approach and the results in this chapter are

rather general and relatively insensitive to the physical parameters chosen for the system.

The same kind of results can be easily extended to the formation of interstitial cluster. It

can be also extended to other system with different growth mechanism. For example, two

important scalings in this chapter are direct results of dependence of drift velocity on

cluster size which corresponds to the diffusion limited growth. For a system with surface

reaction limited growth, the drift velocity is proportional to . With the same deriva-
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tion in this chapter, total cluster concentration is proportional to and the average

cluster size is proportional to .

G〈 〉2 C1⁄

C1 G〈 〉⁄( )2
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Chapter 3

The Role of Oxygen

3.1 Overview
One important characteristic of CZ silicon is the high oxygen concentration in the crystal,

which typically reaches concentrations of O(1018) atoms/cm3 compared to the solubility

of oxygen in silicon at 650 of atoms/cm3. This super-saturation is the

source of oxygen precipitation during crystal growth and subsequent processing of the

wafer. The source of this oxygen is the dissolution of the quartz (SiO2) crucible used to

hold the melt in the CZ method. As described by the modeling of Kinney and Brown [91]

and Lipchin and Brown [96,97] this oxygen is convected to the gas in the CZ chamber as

SiO or incorporated into the crystal at the solidification interface. At the interface, oxygen

typically is incorporated into the crystal as an interstitial impurity.

The history of the understanding of oxygen in silicon has been reviewed by Hu [68].

The interest in oxygen in silicon first appeared in the mid-1950’s, and then almost disap-

peared by the end of the 1960’s. Around 1970, it was found that the integrated circuits

made out of the seed-end of CZ silicon crystals tended to have higher yield than those

from tail-end of the crystal. It turned out that differences in oxygen concentration mainly

contributed to this phenomena; it was known that oxygen had the highest concentration in

the seed-end and lowest in the tail-end of the crystals of that day. The benefit of oxygen

has two fold: oxygen atoms effectively suppressed dislocation generation and retarded dis-

location motion, therefore resulting in high mechanical strength [163]. Also oxygen pre-

cipitates and associated stacking faults and dislocation loops, if confined well below the

wafer surface region, could serve as effective gettering sites for metallic contaminants

introduced during device fabrication [165]. Unfortunately oxygen precipitates also can

°C 3.6 1015×
129129129



degrade the mechanical properties of the wafer since the dislocations are created during

precipitation. Too much oxygen precipitates greatly reduces the strength of the wafer.

As a result the oxygen and oxygen precipitates in silicon wafers have to be well con-

trolled both in space within the wafer and in total concentration. The density of oxygen

precipitates has to be high enough to enhance gettering, while being not too high, in order

to avoid degradation of the mechanical properties of the wafer. Oxygen precipitates also

have to be confined to the middle of the wafer leaving a low defect surface region where

devices can be fabricated.

One important feature of oxygen precipitates is the dependence of morphology of the

precipitates on annealing temperature. Hu [67] gave a rough classification of the morphol-

ogy in three temperature regimes. These precipitates are ribbon shaped below 800 , disk

shaped between 800 and 1050 , and octahedral shape above 1050 . There may be

considerable overlap in these three regimes. Bergholz [10] gave a more detail classifica-

tion with five temperature regimes: ribbon shaped below 550 , a mixture of ribbon and

disk shaped between 550 and 700 , disk shaped between 700 and 900 , octahedral

shape between 900 and 1100 , polyhedral or nearly spherical shaped precipitates above

1100 . It should be emphasized that there is controversy on the identification of ribbon-

shaped or rod-shaped oxygen precipitates. Bourret [13] identified these ribbon-shaped

precipitates as hexagonal silicon. Roughly oxygen precipitates may take the shape of disk

up to 900 , and be octahedral or spherically shaped above 900 . See Figure 3.1 for a

pictorial representation of this data.
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Figure 3.1:Morphology of oxygen precipitates under different nucleation temperature
taken from [10].

The volume of solid SiO2 is about two times that of silicon. This volume difference

results in stress in the lattice and stress energy for oxygen precipitates. It was well known

that stress energy or elastic energy is the largest for sphere and the smallest for disk [112]

while surface energy is the smallest for sphere. The stress energy, surface energy, and total

free energy of a spheroidal precipitate with a given volume as a function of the ratio

between equatorial and polar diameters are schematically illustrated in Figure 3.2. Sin

[149] formulated free boundary problem for the equilibrium shape of an individual misfit-

ting precipitate. The shape of the precipitate is described by a Gibbs Thomson boundary

condition that describes the relative contributions of elastic energy and surface energy in

determining the equilibrium morphology of the precipitate. When elastic energy is the

main contribution and the precipitate is elastically softer than the matrix, the equilibrium

shape or energy minimizing shape is either a rod or a disk.
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Figure 3.2: Elastic energy, surface energy, and total free energy of a spheroidal precipitate
(elastic energy curve is taken from Nabarro [112]).

The free volume needed to release the stress energy of oxygen precipitates could be

provided by either vacancy absorption into the precipitate or interstitial ejection. However,

unless there exists a pre-existing high vacancy concentration in the silicon, vacancy

absorption is not an option simply because there are not enough vacancies. As will be dis-

cussed in details in Section 3.5.3, because of the low self-diffusion (the product of diffu-

sivity and equilibrium concentration, ) of interstitials at low temperature, both

diffusion of interstitials to the wafer surface and removal of interstitials by the formation

of stacking faults or dislocation loops are ineffective to remove the interstitials ejected by

oxygen precipitates. In a word, the stress energy of oxygen precipitates normally can not

be released through interactions with native point defects at low temperature. Therefore
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during low temperature annealing the stress energy plays an important role and the oxygen

precipitates are likely to take shapes that have low stress energy, or disk shaped with neg-

ligible emission of interstitials. This explanation is supported by experimental observa-

tions of strain contrast surrounding disk-shaped oxygen precipitates at low temperature

[68]. Only during high temperature annealing can the stress energy be released through

interactions with native point defects, and oxygen precipitates may take low surface

energy shape - polyhedral or spherical shape. A high-resolution lattice image (Figure 1.7b)

of a polyhedral oxygen precipitate produced after annealing for 64 hours at 1175

shows no visible strain contrast.

For some special wafer annealing processes such as MDZ (Magic Denuded Zone) dis-

cussed in Section 1.2, the concentration of vacancies established after the first rapid ther-

mal treatment is so high that the stress energy of oxide nuclei created at low temperatures

can be released by vacancy incorporation. Oxide nucleation through vacancy absorption

occurs quickly because it has lower energy barrier. The stress energy is low because of

free volume provided by vacancies, and the configurational free energy also is low

because of high super-saturation of vacancies. The details of the free energy of formation

for oxygen precipitates with different morphology will be discussed in Section 3.5.

3.2 Literature Review on Modeling of Oxygen Precipitation
Oxygen and oxygen precipitates in silicon crystal are so technologically important that

much effort have been devoted to their understanding. Kashchiew [84] wrote an excellent

book on the nucleation theory in general which is already referred several times in Chapter

2. Schrems [138] summarized a variety of physical models applied in the simulation of

oxygen precipitation. All phenomenological models fall into four categories which are

listed in Table 3.1.

°C
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In the so-called classical nucleation model, only the stationary rate of nucleation is cal-

culated. The exact form of stationary rate of nucleation is already described in Section

2.5.3. A simpler and physically more revealing form with reasonable approximation can

be written as [84]

(3.1)

where is frequency of monomer attachment for cluster of critical size, is the equi-

librium concentration for cluster of critical size , and Z is the Zeldovich factor. The crit-

ical size is defined as the size which satisfies where is the Gibbs

Models Researchers Capabilities Limitations

I: Classical nucle-
ation model

Kashchiev [84],
Freeland [43],
Inoue [74],

Voronkov [185].

nucleation flux and
total oxide density

no conservation for
oxygen and no size

information

II: Growth law Ham [52,53], Hu
[66,67], Wada

[189,190], Sueoka
[159], Vanhellem-

ont [176].

growth rate of indi-
vidual oxide parti-

cles

no conservation for
oxygen and no total
density information

III: Combination of
model I and model

II

Usami [173], Yang
[204], Isomae [76].

nucleation flux,
growth rate of

oxide, and conser-
vation for oxygen

no dissolution of
oxides and no evo-
lution of size distri-

bution

IV: Model based on
rate equations

Schrems
[135,136,137,138],
Esfandyari [33,34],
Kelton [87], Wei
[196], Sueoka

[162].

evolution of size
distribution

much more compu-
tational time

Table 3.1: Four types of phenomenological models for oxygen precipitation.
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free energy of formation for cluster size n. The Zeldovich factor is given by [84]

(3.2)

where captures the curvature of the at

(3.3)

Even though the Zeldovich factor can be theoretically determined, it was treated as a fit-

ting parameter by many researchers [74,76,173,204]. Inoue et al. obtained by fit-

ting experimental nucleation rate [74].

Under the conditions of constant temperature and super-saturation in the system, the

total cluster density may be determined by eq. (3.1) with reasonable accuracy. However,

the stationary rate of nucleation is very sensitive to monomer concentration or super-satu-

ration, and with eq. (3.1) alone mass balance can not be done to calculate the monomer

change. Therefore eq. (3.1) can not be used alone to get total cluster concentration for the

system with changing super-saturations.

One important assumption for stationary nucleation flux described in eq. (3.1) is that

the stationary size distribution is already established beyond the critical size . However

a considerable time maybe needed to reach this state, especially for oxygen precipitation

because of low diffusivity of oxygen. Practically this effect on the nucleation rate can be

modeled by introducing an exponential term in nucleation time [74]

(3.4)

where J is the nucleation rate, is the stationary nucleation rate determined by eq. (3.1),

t is the nucleation time, and the induction time is a constant which is given by

Z
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(3.5)

The value of the induction time experimentally obtained by fitting oxygen nucleation rate

is about two orders-of-magnitude higher than the prediction by eq. (3.5) [74]. This is

another indication that the classical nucleation model is not a rigorous approach to model

oxygen precipitation.

Another model is the deterministic growth model which is also called the growth law.

The growth law is obtained by solving diffusion equation for a single precipitate within

the surrounding media. Ham’s theory of diffusion-limited precipitation belongs to this cat-

egory [52,53]. Wada et al. reported that the growth rate of platelet oxygen precipitate fol-

lowed a 3/4 power law in time [189] and later provided a rigorous calculation for

diffusion-limited growth of a disk with constant thickness to verify their experimental

observation [190]. The experimental results by Sueoka et al. [159] showed a 1/2 power

law for the growth of disk-shaped oxide. Sueoka et al. [159] and Vanhellemont [176] the-

oretically proved that diffusion-limited growth of a disk with constant aspect ratio follows

a 1/2 power law. The growth law for disk-shaped oxide greatly depends on the growth

conditions. Hu [66,67] derived a 2/3 power law for a disk with changing thickness and

changing aspect ratio which is determined by minimizing total energy. Vanhellemont

[176] summarized the experimental results by many researchers on the growth rate of

oxide. However, as Sin [149] pointed out, an unambiguous growth law for oxide is impos-

sible due to the scatter in the experimental data.

With the knowledge of monomer concentration, the growth law can provide the infor-

mation about the change of precipitate size with time. However the total cluster density

can not be determined by this growth law. And like the classical nucleation model, the

growth law alone can not be used to calculate monomer change by mass balance.

τ n
*( )
2

g
*

------------=
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Fortunately the two models above have deficiencies which complement each other. A

combination of the classical nucleation model and the growth law together with mass bal-

ances can provide the change of the total cluster density, cluster size and monomer con-

centration with time. Many researchers [76,173,204] employed this approach and gave

reasonable predictions for certain set of experimental data. However the dissolution of

cluster is not taken into account in this combined model. Therefore this description can not

explain the Ostwald ripening where large clusters grow at the expense of the dissolution of

smaller clusters [6].

A major deficiency of the models discussed above is the lack of the evolution of size

distribution of oxygen precipitates. Therefore some important factors such as the ramping

process, especially between the nucleation step and the growth step, can not be captured

by these models. A much more rigorous approach is to solve the rate equations (for exam-

ple, discrete rate equations for small clusters and Fokker-Planck equations for big clusters)

together with conservations of monomers, which are discussed in Section 2.4.1 and 3.3.1

[108,150,152]. This kind of models are capable to simulate the evolution of the oxide size

distribution.

Schrems, Esfandyari, and their coworkers applied this framework to spherical oxygen

precipitation together with formation of stacking faults as sinks for interstitials ejected by

spherical oxygen precipitates to release stress energy [33,34,135,136,137,138]. However,

no stacking faults were formed in their simulation especially during the low temperature

annealing [33], which implies that any interstitial ejected by spherical oxygen precipitates

could not be removed. The configurational free energy due to interstitial ejection for the

growth of oxygen precipitates is where and are concentration and

equilibrium concentration of interstitial (for example, ).

This means that unless the ejected interstitials could be removed to maintain low intersti-

kT CI CI
eq⁄( )ln CI CI

eq

CI
eq 650°C( ) 1. 105cm 3–×=
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tial super-saturation in the bulk, interstitial ejection is not energetically favorable. There-

fore in these simulations the high stress energy of spherical oxygen precipitates could not

be released efficiently through the interactions with native point defects and it would be

very difficult for spherical oxides to nuclear during low temperature annealing.

Kelton et al. [87,196] used the similar approach to spherical oxygen precipitation. In

their model, discrete rate equations are used for small clusters and a growth model is used

for big clusters, the matching point is about two or three times critical size. They also

introduced a couple-flux model for nucleation that links the interfacial and long-range dif-

fusive fluxes. However, there is no interaction between oxide formation and point defects,

and the stress energy is assumed to be fully released at no expense.

Sueoka et al. [162] also applied the rate equations to the formation of oblate spheroidal

oxides. They assumed equilibrium size distribution for oxides smaller than the critical

size, and used Fokker-Planck equations for clusters bigger than the critical size. However,

as discussed in Section 2.5, the size distribution for small clusters is stationary rather than

equilibrium. And the stationary size distribution is different from the equilibrium size dis-

tribution [84]. Moreover, a complicate temperature dependent parameter (different expo-

nential functions of temperature in four temperature ranges) was introduced to fit

experimental data. And the physics of this fitting parameter was not discussed.

In this Chapter, a basic comprehensive framework for modeling of oxygen precipita-

tion is proposed. This framework is self-consistent and the key elements include vacancy

absorption, interstitial ejection, diffusion-limited reaction and free energy of formation for

different morphologies of the oxygen precipitates. The model captures the right physics

and simulation results reasonably agree with a variety of experimental data.
138



3.3 Governing Equations and Boundary Conditions

3.3.1 Governing Equations
The stress energy associated with oxygen precipitations could be released by either

vacancy absorption or interstitial ejection. A general model for oxygen precipitation in sil-

icon should include vacancies, interstitials, oxygen and the dynamics to form their clus-

ters. Like the governing equations for native point defects and their clusters in Section

2.4.1, the first set of equations are equations for vacancy, interstitial and oxygen concen-

tration, respectively. These are written as

(3.6)

(3.7)

(3.8)

where is crystal pulling rate when applied to crystal growth and equal to zero when

applied to wafer annealing, ( , , , ) are the (diffusivity, concentration, equilibrium

concentration, cluster concentration), subscripts ( , , ) represent (self-interstitial,

vacancy, oxygen), is the recombination rate, and is the size of the clusters. A special

case in this model is the steady-state analysis for crystal growth where point defects con-

centrations don’t change with time. The third term describes Fick diffusion term. The

fourth term in eqs. (3.6) and (3.7) describes the recombination of vacancies and intersti-

tials. The last two terms are the source or sink terms for vacancy, interstitial and oxygen

due to cluster formations. The coefficients and are for interstitials ejected and
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vacancies absorbed by oxygen precipitates. The calculation of and is discussed in

Section 3.5.

The second set of equations are the discrete rate equations for small voids, interstitial

clusters and oxygen precipitates from dimer to cluster of size . These equations

are

(3.9)

(3.10)

(3.11)

where the fluxes , and are defined as

(3.12)

where is the concentration of size n cluster, g is the growth rate, and d is the dissolu-

tion rate. The first two terms in eqs. (3.9) - (3.11) describe changes in cluster concentra-

tion, and the other terms are net reaction rates to form the clusters. All clusters are

assumed to be immobile so that cluster diffusion is neglected. The net flux from cluster of

size n-1 to size n is , so the net reaction rate to form the cluster is the difference between

and . The discrete cluster concentration describes cluster of size 2 to

. The term is used to replace continuous cluster concentration in the inte-

grals in eqs. (3.6) - (3.8).

The last set of equations are Fokker-Planck equations for clusters of . These

equations are
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(3.13)

(3.14)

(3.15)

where A and B are the drift velocity and diffusion coefficient respectively [84], and are

defined as

(3.16)

(3.17)

The Fokker-Planck equation is a Taylor expansion of the discrete rate equation. The

details about why the Fokker-Planck equations are used for large clusters and how to get

the Fokker-Planck equation from the discrete rate equation are discussed in Sections 2.2.1

and 2.2.3.

The growth rate and dissolution rate for voids and interstitial clusters are already

discussed in Section 2.4.1. The growth rate and dissolution rate for oxygen precipitates

will be discussed in Section 3.4 and 3.5.

The parameters for interstitial, vacancy and their clusters are listed from eqs. (2.30)

through (2.34). The oxygen equilibrium concentration in silicon crystal is taken from

[167].

(3.18)

The oxygen diffusivity at high temperatures ( ) is taken from [24] as
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(3.19)

However it is commonly believed [115] that the effective oxygen diffusivity at low tem-

perature is much higher than the values predicted by eq. (3.19). Many aspects of oxygen

diffusion have been discussed in a general review paper by Newman et al. [115]. The

enhancement of oxygen diffusion at low temperature could involve interactions of oxygen

atom with other species which may be point defects, metallic impurity such as copper and

iron, nonmetallic impurity such as carbon and nitrogen, and even a second oxygen atom.

Although the mechanism of the faster oxygen diffusion at low temperature is still not

clear, it has been established by various experiments that the effective activation energy of

oxygen diffusion for is 1.55 eV versus the value of 2.56 eV in eq. (3.19) [139].

The oxygen diffusivity for is taken from [139] as

(3.20)

The oxygen diffusivity as a function of temperature is shown in Figure 3.3. The solid line

with a kink around 750 represents the effective oxygen diffusivity employed in this

Chapter.
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Figure 3.3: The oxygen diffusivity as a function of temperature.

Theoretically the temperature dependence of the surface energy is a direct result of the

excess interfacial entropy [158]. For the melt/crystal interface, the surface energy

increases with temperature for both mercury and gallium [158]. Fitting oxygen precipita-

tion data in silicon to the model for classical homogeneous nucleation also has predicted

the temperature dependence of surface energy [34,196]. In this Chapter, the surface

energy of oxygen precipitates is chosen as

(3.21)

which gaves for .
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3.3.2 Boundary Conditions for CZ Crystal Growth
For one-dimensional simulations along the pulling direction of CZ crystal growth in

this Chapter, Dirichlet boundary conditions are used at the melt/crystal interface for all

point defects, oxygen, and clusters, and no-flux boundary conditions are used on the top of

crystal for all point defects and oxygen. The concentrations of vacancies and interstitials at

the melt/crystal interface are set to equilibrium concentrations at the melt temperature

while the oxygen concentration at the melt/crystal interface is a constant which is depen-

dent on oxygen transport in the melt. At the melt/crystal interface, the concentrations of all

clusters are set to zero.

3.3.3 Boundary Conditions for Wafer Annealing
The governing equations (3.6) - (3.17) are rather general and they also can be used for

wafer annealing simply by setting . The one-dimensional simulations for wafer

annealing in this Chapter is from the surface to the centerline and along the axial direction

of the wafer. No-flux boundary conditions are used for all point defects and oxygen at the

center of the wafer due to symmetry.

Dirichlet boundary condition with equilibrium oxygen concentration at the annealing

temperature is used for oxygen on the wafer surface. As discussed in Section 1.2, there are

two mechanisms for oxygen out-diffusion to the wafer surface. One is the out-diffusion

due to evaporation of oxygen at the wafer surface and the other is a very thin surface oxide

layer serving as sink for oxygen in the bulk. Dirichlet boundary condition for oxygen at

the wafer surface is valid for both cases.

A silicon dioxide layer is so easy to form on the wafer surface that even at room tem-

perature a very thin (about 25 ) layer of oxide called native oxide layer can formed on

the wafer surface when it is exposed to oxidative environment [18]. Because of this thin

oxide layer and also the finite surface recombination rate at the annealing temperature

V 0=

A
°
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which is much lower than the melting temperature, Robin boundary conditions are appro-

priate for vacancies and interstitials on the wafer surface. Many researchers

[51,129,130,168] experimentally investigate the surface recombination rate and gave dif-

ferent values for where k and D are surface reaction rate and diffusivity of point

defect. Robin boundary conditions for vacancies and interstitials on the wafer surface in

this Chapter are

(3.22)

where

(3.23)

the value of here is within the range of values in the literature [51,129,130,168].

Generally the initial conditions for wafer annealing are taken from the results of CZ

crystal growth. However if we only focus on the oxygen precipitates during wafer anneal-

ing and there is no significant oxygen precipitates formed during crystal growth, we may

choose zero concentrations for oxygen precipitates as initial conditions.

All the numerical methods used to solve the governing equations above will be dis-

cussed in Section 3.6.

3.4 Mesoscopic Growth Models

3.4.1 General Framework for Mesoscopic Growth Model
The diffusion-limited growth rate and dissolution rate are two important factors in the

governing equations (3.9) - (3.17). These factors are determined by mass balances around

an individual microdefect. Consider a microdefect of arbitrary shape that grows by diffu-

sion of a monomer from bulk silicon to the precipitate, as shown in Figure 3.4. Monomer

maybe vacancies, interstitials, and oxygen.
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Figure 3.4: Coordinate system for arbitrary shape particle.

The monomer concentration in the bulk is governed by the species conservation

equation

(3.24)

where is a position vector measured from the center of the precipitate. Equation (3.24) is

solved with the boundary conditions

(3.25)

(3.26)

where is the bulk monomer concentration, and defines the surface of the precipi-

tate where the concentration is . The surface monomer concentration is determined

by a mass balance at the surface of the precipitate as

(3.27)

where is the monomer diffusion flux which is obtained by solving eq. (3.24)
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with the boundary conditions (3.25) and (3.26). The growth rate and dissolution rate

are

(3.28)

(3.29)

where is defect surface reaction rate and is the monomer equilibrium con-

centration for the precipitate of size n. The equilibrium concentration is related to

bulk monomer equilibrium concentration by [138]

(3.30)

where is the non-configurational part of the free energy of formation for a microdefect.

This free energy includes surface energy and stress energy. The physical picture for the

surface reaction rate is clear by examining the growth of a precipitate. Precipitate is

assumed to grow through the ‘jump’ of monomer within the interfacial layer into the pre-

cipitate. Therefore the surface reaction rate is proportional to the number of jump

attempts. And the reaction rate is determined by jump rate theory as [138].

(3.31)

where is the volume of the interfacial layer, is the attachment frequency, D is the

monomer diffusivity, is the thickness of the interfacial layer which is in the order of the

lattice spacing (approximately 0.235 nm), and G is the total free energy of formation for a

microdefect.

The formulations above for the growth rate and dissolution rate are general for any

defect shape. As already discussed in Section 3.1, a critical feature of oxygen precipitates

is the dependence of morphology on the annealing temperature. The effect of precipitate
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morphology is investigated by modeling the evolution of spherical and disk-shaped pre-

cipitates. The elastic energy is the lowest for the disk-shaped and the highest for the spher-

ical precipitate. While the spherical precipitate has the lowest surface energy. The growth

models for spherical and disk-shaped precipitates are discussed in the following two sec-

tions.

3.4.2 Growth Model for Spherical Precipitate
For spherical defects, eq. (3.24) and the boundary conditions become

(3.32)

with boundary conditions

(3.33)

(3.34)

The solution of eqs. (3.32) - (3.34) is

(3.35)

The monomer diffusion flux at the surface of this spherical defect is therefore

(3.36)

Substituting eqs. (3.28), (3.29) and (3.36) into eq. (3.27) gives

(3.37)

where

(3.38)
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With eq. (3.37) the growth rate and dissolution rate for spherical defect can be determined

by eqs. (3.28) and (3.29). The volume of the interfacial layer in eq. (3.31) for spherical

defect is .

3.4.3 Growth Model for Disk-shaped Precipitate
For a disk-shaped defect, oblate spheroidal coordinates have to be employed to solve

eq. (3.24) with boundary conditions (3.25) and (3.26) [110]. The oblate spheroidal coordi-

nates are shown in Figure 3.4.

Figure 3.5: Oblate spheroidal coordinates (three surfaces for constant ξ, η, and φare
shown).

The relationships between rectangular (x, y, z) and oblate spheroidal ( , , ) coordi-

nates are [110]

V
i

4πrn
2δ

ξ η φ
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(3.39)

(3.40)

(3.41)

where and . The surface is a oblate disk of radius . In

oblate spheroidal coordinates

(3.42)

The solution of eq. (3.24) with boundary conditions (3.25) and (3.26) for a disk-

shaped defect in oblate spheroidal coordinates is simply.

(3.43)

The monomer diffusion flux at the surface of a disk-shaped defect with radius is

(3.44)

Because ,

(3.45)

Using eqs. (3.43), (3.40), and (3.41) yields

(3.46)
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(3.47)

(3.48)

From eq. (3.39)

(3.49)

Combining eqs. (3.48) and (3.49) gives

(3.50)

The concentration gradient is computed from eqs. (3.45), (3.46), and (3.50) as

(3.51)

Substituting eq. (3.51) into (3.44) gives

(3.52)

Substituting eqs. (3.28), (3.29) and (3.52) into (3.27) gives

(3.53)

The monomer concentration at the surface of disk has the same form as that for a spherical

defect as described by eq. (3.37), but with different definitions for and . For the disk-

shaped precipitate

(3.54)

The volume of interfacial layer in eq. (3.31) for the disk-shaped defect is . The

growth rate and dissolution rate for disk defect are determined from eqs. (3.53), (3.28) and
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(3.29).

3.5 Free Energy of Formation for Oxygen Precipitates

3.5.1 General Framework for Free Energy of Formation for Oxygen Precipitates
Oxygen precipitation in silicon can be expressed mechanistically by the formula

(3.55)

where is an oxygen precipitate of size n which forms by aggregating oxygen (O), sili-

con (Si), ejecting interstitials (I) and absorbing vacancies (V). The stoichiometic coeffi-

cients and give the number of interstitials ejected and vacancies absorbed,

respectively, during the reaction. A general free energy of formation for oxygen precipita-

tion is described as

(3.56)

where the first three terms are configurational contributions from the super-saturations of

oxygen, vacancies and interstitials. The term represents the contribution to the free

energy from the stress field created by the density mismatch of the particle and matrix, as

shown in Figure 3.6. is the volume of the unconstrained cavity created by the precipi-

tate in the matrix including the additional volume created by vacancy absorption and inter-

stitial ejection. The volume of the unconstrained precipitate is . For a silicon oxide

precipitate and stress is generated in the precipitate and matrix to create the final

precipitate volume with compressive stress in the precipitate. is the surface energy

of the precipitate/matrix interface. and are determined by minimizing the free

energy of formation of the individual precipitate [169,170]. The stress energy and surface

energy all depend on the shape of the precipitate. The free energy of formation for spheri-

cal and disk-shaped precipitates are discussed in the following sections.
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Figure 3.6: Stress energy due to the density mismatch of the particle and matrix.

3.5.2 Free Energy of Formation for Spherical Oxygen Precipitate
The stress energy can be determined by the linear elasticity theory. Consider a spheri-

cal oxygen precipitate with unconstrained volume embedded into the spherical matrix

cavity with volume to create a final spherical precipitate with volume . The corre-

sponding radii , and are shown in Figure 3.7. The linear misfit is defined as

[111]

(3.57)

where

(3.58)

where and are the volumes of SiO2 and Si respectively. The volume is

approximately equal to two times or

(3.59)

Rearranging eqs. (3.57) and (3.58) gives the expression for and

(3.60)

The constrained strain is defined as [111]

Vm +
Vp

Vf

Vp

Vm Vf

rp rm rf eT

Vp
Vm
------- 1 eT+( )3=

Vp
Vm
-------

VSiO2

VSi 1 2γI 2γV++( )---------------------------------------------=

VSiO2
VSi VSiO2

VSi

VSiO2
2VSi≈

γI γV

γI γV+
1
2
--- 1 eT+( ) 3–

VSiO2

VSi
------------- 1–

 
 
 

=

eC
153



(3.61)

Figure 3.7: Spherical precipitate in the spherical coordinates.

Due to the spherical symmetry, the governing equation for the displacement u(r) of the

matrix due to the inclusion of the precipitate is reduced to [156]

(3.62)

with boundary conditions

(3.63)

(3.64)

The solution for is

(3.65)

In the matrix the radial and tangential strains are [156]

(3.66)
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(3.67)

These strains are related to the stress as [156]

(3.68)

(3.69)

where and are the Young’s modulus and Poisson’s ratio of the matrix. The dilatation

in the precipitate is a uniform hydrostatic compression , and the pressure is

therefore [111]

(3.70)

where is the bulk modulus of the precipitate. At the boundary ,

(3.71)

Substituting eqs. (3.66), (3.67), (3.70), and (3.71) into eqs. (3.68) and (3.69) at ,

and cancelling gives

(3.72)

where the constant is defined as

(3.73)

Young’s modulus , Poisson’s ratio , and shear modulus of the matrix are related by

[156]

(3.74)

Therefore the constant is rewritten as
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(3.75)

The shear modulus of (the matrix) is chosen as , and the bulk modu-

lus of (the precipitate) is chosen as [205].

Nabarro [112] further proved that the elastic energy of the inclusion of the spherical

precipitate into the matrix was given by

(3.76)

Therefore the free energy of formation for a spherical oxygen precipitate is described as

(3.77)

The free energy of formation of a spherical oxygen precipitate is rewritten based on

eqs. (3.57), (3.61) and (3.72) as

(3.78)

where the non-configurational part is

(3.79)

and the unconstrained precipitate radius is related to SiO2 volume as

(3.80)

The coefficients and are determined by minimizing described by eq. (3.77) or

(3.78). The equations for and are therefore and or

(3.81)
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(3.82)

From eqs. (3.57), (3.58), and (3.72)

(3.83)

In order to satisfy both eq. (3.81) and (3.82), the following relationship must hold

(3.84)

Generally the concentrations of vacancy and interstitial do not necessarily satisfy eq.

(3.84). This implies that the minimum free formation energy of a spherical oxygen precip-

itate with respect to and are on the domain boundary of ( , ). In other words,

either or has to be zero. Physically this means that the stress energy associated with

a spherical oxygen precipitate is released by either interstitial ejection or vacancy absorp-

tion, but not both. When , is determined by minimizing Gibbs free formation

energy with respect to . When , is determined by minimizing Gibbs free for-

mation energy with respect to . If the free formation energy at is lower than

that at , the stress is released through vacancy absorption. Otherwise the

stress is released through interstitial ejection.

For vacancy absorption mechanism, and

(3.85)

where is determined from eq. (3.79)

(3.86)
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and is determined from eq. (3.60)

(3.87)

The maximum value for is determined as 0.075 from eqs. (3.60) and (3.72) by setting

. Substituting eqs. (3.86) and (3.87) into eq. (3.85) and removing high order

terms for taking the limit of gives

(3.88)

Therefore and for a spherical oxygen precipitate through vacancy absorption can

be determined as

(3.89)

(3.90)

For interstitial ejection mechanism, the same procedure can be

applied. The free energy of formation for a spherical oxygen precipitate through intersti-

tial ejection can be calculated by the following three equations:
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These two regimes for spherical precipitate growth occur at very different rates. When

there is a pre-existing high vacancy concentration, as is installed during the MDZ process,

precipitate growth occurs at high rates due to stress relief for the spherical precipitate by

vacancy absorption. For the growth by the interstitial ejection mechanism to proceed, the

ejected interstitials must diffuse from the matrix. Otherwise, a super-saturation of self-

interstitials is created leading to high free energies and very low growth rates. When stress

relief is only possible by interstitial ejection, low rates for spherical precipitate growth

cause disk-shaped precipitates to dominate at low annealing temperatures.

3.5.3 Dominate Shape of Oxygen Precipitate at Low Nucleation Temperature
As shown in Figure 3.2, the stress energy is the largest for sphere. This high stress energy

associated with the spherical oxygen precipitate could be released by interstitial ejection at

the expense of according to eq. (3.56). However, unless the ejected

interstitials can be quickly captured by other sinks, the super-saturation of interstitials

could build up instantly and make the growth of spherical oxide energetically unfavorable.

The sinks for ejected interstitials may include possible interstitial sink near oxygen precip-

itate, wafer surface, and interstitial clusters in the bulk. In the following analysis, it will be

shown that none of these sinks is rapid enough to significantly decrease the super-satura-

tion of interstitials because of low self-diffusion of interstitials at low temperature.

A model problem is examined to illustrate the difficulty for ejected interstitials to be

captured by a sink near oxygen precipitate at low annealing temperature. Consider a

spherical oxygen precipitate nucleus of size 102 shown in Figure 3.8. The interstitial con-

centration around the oxygen precipitate is governed by the species conservation equation

(3.94)

The boundary condition for at the surface of the precipitate is

γIkT CI CI
eq⁄( )ln

DICI
eq

∇ 2
CI 0=

CI r r0=
159



(3.95)

where T is the annealing temperature. Due to a sink for interstitials at the bound-

ary condition for at the sink is

(3.96)

where the constant k is a indicator of the difficulty to remove ejected interstitials by a sink

near the oxygen precipitate. The higher k, the easier to diffuse interstitials to the sink.

When k is approaching 1, the sink has to be very close to the precipitate surface, therefore

it implies that the removal of the interstitials by the sink is difficult.

Figure 3.8: Spherical oxygen precipitate of size 102 (r=r0) with the sink for interstitials at
r=kr0.

The constant k is determined by the mass balance of the interstitials

(3.97)

The left side of the eq. (3.97) is the diffusion flux determined by solving eq. (3.94) with

boundary conditions (3.95) and (3.96). In order for oxide of size 102 to form during 30

hours wafer annealing at low temperature , about 50 interstitials have to be
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eq
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------------------------=
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ejected to release the high stress energy. The right side of the eq. (3.97) is calculated based

on the ejection of 50 interstitials during 30 hours. At ,

and based on eqs. (2.30)

and (2.32). Solving eq. (3.97) gives which indicates that the removal of the

interstitials by the sink around the oxygen precipitate is difficult due to low self-diffusion

of interstitials at low temperature.

The interstitials ejected by oxygen precipitates also could diffuse to the wafer surface

during the wafer annealing. A simple calculation is performed to investigate this possibil-

ity. A cross-section of the wafer is shown in Figure 3.9 with the half thickness of the wafer

and typical thickness of the surface denuded zone . The ejected

interstitials diffuse to the wafer surface through the diffusion layer in the denuded zone.

Suppose the surface recombination rate for interstitials is infinite fast so that the interstitial

concentration at the wafer surface is equilibrium interstitial concentration at the

annealing temperature. The mass balance for the interstitials is used to determine the bulk

interstitial concentration which need to be maintained to diffuse ejected interstitials.

The higher , the higher super-saturation of the interstitials, and therefore the more diffi-

cult for spherical oxygen precipitate to form according to eq. (3.56).
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Figure 3.9: Cross-section of the wafer.

In order to form spherical oxide nucleus of size 102 with typical density of

in 30 hours, interstitials have to ejected and diffuse to the

wafer surface. So the mass balance of the interstitials gives

(3.98)

Solving eq. (3.98) at gives which is more than three

orders-of-magnitude higher than the equilibrium interstitial concentration at .

This high super-saturation of interstitials makes it impossible to form spherical oxygen

precipitates with high density through interstitial ejection at low temperature.

One more possible destiny for the ejected interstitials are the interstitial clusters in the

crystal. Interstitial clusters form when the interstitials are supersaturated. The simulation

results of oxide size distributions after 32 hours annealing at 650 for oxygen level of

are shown in Figure 3.10 for spherical oxides under different con-

ditions and disk-shaped oxide whose free energy of formation is the subject of the next

Section. As discussed in Section 2.2.2, the surface energy of interstitial cluster
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gives good estimations for interstitial cluster aggregation temperature.

With this surface energy, the density of the spherical oxygen precipitates is far below that

of the disk-shaped oxygen precipitates which has good agreement with the experiments.

The detail comparison between these experiments and the simulations of disk-shaped oxy-

gen precipitate are referred to Section 3.9.2. The lower , the easier to form interstitial

clusters, therefore the easier to remove ejected interstitials and form spherical oxygen pre-

cipitates. However, even with much lower surface energy , the density of

the spherical oxides is still more than three orders-of-magnitude lower than the experi-

mental results. The simulation results shown in Figure 3.10 demonstrate that the formation

of interstitial clusters is still not fast enough at low temperature to form enough spherical

oxygen precipitates. To make this point, the size distribution also is shown for a hypothet-

ical model in which the bulk interstitial concentration is held fixed at , cor-

responding to a system where interstitials ejected from precipitates are instantly absorbed

into an undefined defect structure. In this case, the density of spherical precipitates is

slightly higher than the density for disk-shaped particles

σI 1.2 J m
2⁄=

σI

σI 0.4 J m
2⁄=

CI CI
eq
T( )=
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Figure 3.10: Size distributions of spherical oxides and disk-shaped oxides after 32 hours
annealing at 650°C for CO=8.0×1017cm-3.

Fortunately, even without interstitial ejection the stress energy could still be consider-

ately reduced by taking different shapes such as disk. As shown in Figure 3.2, the stress

energy is lowest for disk-shaped precipitate. The expense for shapes other than sphere is

the increased surface energy. But overall the disk-shaped oxygen precipitates are still

energetically favorable over spherical precipitates. This may explains why oxygen precip-

itates always have ribbon or disk shapes during regular low temperature annealing [68].

However there is an exception for this. When there exists a pre-established high vacancy

concentration, like in the MDZ process discussed in section 1.2, the oxygen precipitate

can keep its minimum surface energy shape - sphere, while the high stress energy of the

spherical oxygen precipitate can be efficiently released through vacancy absorption.
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3.5.4 Free Energy of Formation for Disk-Shaped Oxygen Precipitate
Hu [62] found that the stress energy of a disk-shaped oxygen precipitate can be treated

as a circular dislocation loop with a giant Burgers vector which corresponds to the lattice

displacement perpendicular to the disk. By minimizing the free energy including the stress

energy and surface energy, Hu [67] reasonably predicted the aspect ratio of disk-shaped

oxygen precipitate compared with experimental measurements. Based on Hu’s [67]

expression of the stress energy for the disk-shaped oxygen precipitate, a general free

energy of formation for a disk-shaped oxygen precipitate is expressed as

(3.99)

where is the Poisson’s ratio, and are the radius and thickness of the disk-shaped

oxide shown in Figure 3.11. The fourth term in eq. (3.99) is the energy of the dislocation

loop with the giant Burgers vector . is the lattice displacement per unit thickness per-

pendicular to the disk. The last term is the surface energy for the two circular surfaces of

the disk.

Figure 3.11: Disk-shaped oxygen precipitate.

Because the stress energy of the disk-shaped precipitate is low, there is little need to

release stress by vacancy absorption and interstitial ejection. This point is made clear by

the plot of the free energy G(n=100) as a function of for disk-shaped oxide with aspect

ratio at and in Figure 3.12. The is determined by
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minimizing the free energy. So in this case is very small compared with

corresponding minimum free energy for spherical oxide under the same condi-

tions

Figure 3.12: Free energy G(n=100) as a function of γI for disk-shaped oxide with aspect
ratio 2r/h=6 at 650°C and CI/CI

eq=102 (compared with γI=0.37 corresponding minimum
free energy for spherical oxide under the same conditions).

Accordingly, it is assumed that . The free energy of formation for a disk-

shaped oxygen precipitate is expressed simply as

(3.100)

Because neither interstitials are ejected nor vacancies are absorbed, the linear misfit

can be calculated from eq. (3.60) as
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(3.101)

The constrained strain is therefore given by eq. (3.72) as

(3.102)

The radius and thickness of the disk-shaped precipitate are related as

(3.103)

and s, the lattice displacement per unit thickness, is related to and by

(3.104)

The aspect ratio of the disk is determined by minimizing the free formation energy

described by eq. (3.100) under the constrain of specific volume eq. (3.103) [67]. This

leads to

(3.105)

where the constant is

(3.106)

The radius and thickness of the plate are obtained by solving eqs. (3.103) and (3.105). The

aspect ratio as a function of size n is shown in Figure 3.13. When , the

aspect ratio and is not physically meaningful. The minimum aspect ratio here is

set as and corresponds to the horizontal line in Figure 3.13.
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Figure 3.13: The aspect ratio of the disk-shape as a function of size of the oxygen precip-
itate.

The free energy of formation for disk-shaped oxygen precipitates and spherical oxy-

gen precipitates with different super-saturation of interstitials and vacancies at 650 are

shown in Figure 3.14. Clearly, spherical precipitates have the lowest free energy when a

super-saturation of vacancies exists. The free energy is always higher when the mecha-

nism shifts to interstitial ejection and . The disk-shaped precipitate has a lower

free energy than all spherical precipitates except those with pre-existing super-saturations

of vacancies.
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Figure 3.14: The free energy of formation for the disk-shaped oxygen precipitates and the
spherical oxygen precipitates with different super-saturation of interstitials and vacancies

at 650°C.

3.6 Numerical Methods
Sinno [150,151,152,154] and Mori [107,108] had successfully developed a framework

with hybrid numerical methods to solve the dynamic of native point defects and their clus-

terings. Sinno developed some numerical methods based on the standard Galerkin method

with artificial diffusivities for clusters and CC70 [20] finite difference method to simulate

dynamics of vacancies, interstitials and their clusters during steady state crystal growth.

Mori further developed a time-dependent simulator to account for dynamics of native

point defects and their clusters not only for the steady state but also for the transit state. In

Mori’s work, the discontinuous Galerkin (DG) method was used in stead of the standard

Galerkin method for clusters to avoid artificial diffusivities, maintain the stability of the
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solutions, and make the algorithm parallellizable. The local discontinuous Galerkin

(LDG) method was used for native point defects and the operating splitting method was

used for time integral. For the numerical simulations of vacancies, interstitials, oxygens

and all their clusters in this chapter, CC70 is used for the size space of all FPEs, DG is

used for the spatial variables of all DREs and FPEs, LDG is used for the spatial variables

of governing equations for all point defects including oxygen, time integration involves an

operating splitting method and implicit Eular integration in time. The accuracy and effi-

ciency of the simulations are improved by using iteration and adaptive time steps for each

operating splitting step. All the numerical methods are only discussed briefly here, some

further details can be referred to [108].

3.6.1 CC70 Finite Difference Method
The size components of the Fokker-Planck equations for clusters are discretized by CC70.

CC70 is a kind of finite difference scheme which has properties of non-negative solution

and particle conserving and may significantly reduce the number of mesh points required

with no loss of accuracy [20,31,32,121,122].

(3.107)
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(3.112)

(3.113)

(3.114)

. This scheme becomes centered and forward differencing when is equal

to 1/2 and 0 respectively. If is fixed, positivity and particle conserving can not be guar-

anteed. The main idea of CC70 is adjusting so that the numerical solution is the same

as the exact solution.

(3.115)

The equilibrium solution is

(3.116)

(3.117)

The exact equilibrium solution is

(3.118)

(3.119)

(3.120)

can be solved by comparing eqs (3.117) and (3.120)
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(3.122)

substituting eq. (3.121) into eq. (3.115)

(3.123)

where

(3.124)

Therefore the Fokker-Planck equations can be written in a tri-diagonal form

(3.125)

where

(3.126)

(3.127)

(3.128)

The finite difference mesh for the FPEs is set as

(3.129)

where is the adjustable parameter to control the mesh refinement in size space.

3.6.2 Discontinuous Galerkin (DG) Method and Local Discontinuous Galerkin
(LDG) Method
The governing equations for all the clusters (both DREs and FPEs) are hyperbolic in spa-

tial space. The traditional methods used to solve hyperbolic equation have numerical diffi-
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culties in either stability or accuracy. The discontinuous Galerkin method which draw a lot

of attention recently has high order accuracy and good stability at the same time

[21,23,81]. The numerical results by different methods compared with exact solution are

shown in Figure 3.15 [81]. The difference between the standard Galerkin method and the

discontinuous Galerkin method in terms of elements and nodes is illustrated in Figure

3.16.

Figure 3.15: The numerical results by different methods compared with exact solution
(taken from [81]).
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Figure 3.16: The difference between the standard Galerkin method and the discontinuous
Galerkin method.

Only a simple example is illustrated here to show how the discontinuous Galerkin

method works. Consider a hyperbolic differential equation

(3.130)

with boundary condition

(3.131)

where V is a positive constant, u is the unknown and g(z,u) is a function of z and u.

Eq. (3.130) may be solved element-by-element. As shown in Figure 3.17, for a given

element Ij, the value is known and what is needed to be solved is unknown u which

satisfies eq. (3.130) in the element Ij.
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Figure 3.17: The scheme of the discontinuous Galerkin method.

Assuming in the element Ij, the unknown u can be approximated as

(3.132)

where is an integer, is the unknown coefficient and is basis function in Ij. Taking

inner product on eq. (3.130) with gives

(3.133)

(3.134)

(3.135)

where represents the inflow boundary of the element , and is the dirac delta

function. Compared with the standard Galerkin method, the first term in eq. (3.135) is an

extra term which is the direct result of discontinuity at the element boundary. Because of
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the discontinuity, or is equal to at . Therefore the inte-

gral of at is equal to . Differentiating eq. (3.132) and

substituting it into eq. (3.135) gives

(3.136)

can be solved from a set of linear equations described by (3.136), and u in Ij can be

assembled by using eq. (3.132). In this thesis is set as 2, and local basis functions

and are therefore linear and shown in Figure 3.17.

For a function with discontinuity at the element boundary, the first order derivative can

be defined at the discontinuous element boundary and it is nothing but the dirac delta

function, but the second order derivative can not be defined at the discontinuous element

boundary. Therefore the discontinuous Galerkin method can not be directly applied to the

governing equations for native point defects and oxygen which have diffusion terms. The

way to get around this is to introduce the auxiliary vector. For example, the original gov-

erning equation for oxygen is

(3.137)

By introducing the auxiliary vector , the eq. (3.137) above becomes

(3.138)

(3.139)

Eqs. (3.138) and (3.139) are a set of first order differential equations for and ,

therefore the discontinuous Galerkin method can be applied to both and . The

method of applying the discontinuous Galerkin method to the second order differential
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equation by introducing the auxiliary vector is called the local discontinuous Galerkin

method (LDG) [7,22]. The details of the implementation of the discontinuous Galerkin

method and the local discontinuous Galerkin method into the point defects and their clus-

ters can be referred to [108].

3.6.3 Time Integration
An operator splitting method is used to decouple the point defect equations and clusters

equations at each time step [108]. The time integration scheme is shown in Figure 3.18. At

time , keep the values of concentrations of point defects ( ) at

time and the implicit Eular method is used to solve concentrations of clusters

and first. Then the implicit Eular method is used to solve concen-

trations of point defects at time by using the and

just solved in the previous step.

Figure 3.18: The time integration scheme: the operating splitting method.

This time integration method is a kind of semi-implicit method. It may be iterated at

each time step to get more accurate solutions. Every time when and

to be solved, the newest values of are used. Every time when to be

solved, the newest values of and are used.

tm 1+ CX tm( ) X I V O, ,=

tm

CnX tm 1+( ) fX tm 1+( )

CX tm 1+( ) tm 1+ CnX tm 1+( ) fX tm 1+( )

mt t
1mt +

( )nX mC t 1( )nX mC t +

( )X mf t 1( )X mf t +

( )X mC t 1( )X mC t +monomer ( )X mC t 1( )X mC t +monomer

cluster

CnX tm 1+( ) fX tm 1+( )

CX tm 1+( ) CX tm 1+( )

CnX tm 1+( ) fX tm 1+( )
177



Adaptive time step control can be used to make the numerical simulation more effi-

cient [42]. Let denotes computed with one time step of size

, for computed with two time steps of size

, and for with zero local error. Since the Eular method used here has

the first order accuracy,

(3.140)

(3.141)

where is constant. Combining eqs. (3.140) and (3.141), and eliminating the second

order terms for gives

(3.142)

Eq. (3.142) indicates that extrapolation from and by expression

has higher order accuracy than the Eular method.

Subtracting eq. (3.140) from eq. (3.141) gives

(3.143)

Based on eq. (3.143), the next time step is taken as

(3.144)

where is the error limit, and X represents native point defects and oxygen. The 2 is to

avoid large increases in time step size.

3.7 Enhanced Oxygen Precipitation due to Grown-in Spatial Inhomoge-
neities in the Oxygen Distribution

3.7.1 Nonuniform Oxygen Distribution in Silicon Crystal
As discussed in Section 3.2, models based on diffusion-limited homogeneous nucleation
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have been used extensively in attempts to predict observed oxide precipitate nucleation

and growth rates. There are several significant outstanding problems with current models

of oxide precipitation. The most notable problem is the apparently anomalous nucleation

rate seen experimentally at low temperatures (below about 600 ). Simulations predict

oxide precipitation kinetics reasonably well across a wide temperature range, but fail dra-

matically at temperatures below 600 . Many factors could contribute this phenomena.

For example, the migration energy for oxygen at low temperature could be 1.5 eV instead

of 2.5 eV at high temperature as discussed in Section 3.3.1. That means the oxygen diffu-

sivity at low temperature extrapolated from high temperature oxygen diffusivity is much

lower than that predicted from lower migration energy. This anomalous oxygen diffusivity

at low temperature together with ramping process could explain anomalous nucleation

rate for oxygen precipitates at low temperature.

The role of an inhomogeneous oxygen monomer distribution within the silicon bulk as

a potentially important factor in setting the observed nucleation and growth rates during

wafer annealing and crystal growth is considered here. The non-uniform incorporation of

oxygen into Czochralski silicon is well known [55,199] because of microscopic fluctua-

tions in the solidification rate at the crystal-melt interface, as caused by imperfections in

the crystal growth system [197,198] and turbulent fluctuations in the melt. An example of

such grown-in spatial inhomogeneities in the oxygen distribution is shown in Figure 3.19.

The magnitude of these fluctuations depends on the segregation of oxygen at the melt/

solid interface and on the size of the fluctuations in the solidification rate. Marioton and

Gosele [101] have postulated this mechanism for enhanced oxygen precipitation, but did

not explore it further. The effect of the resulting inhomogeneity in the oxygen concentra-

tion is quantitatively investigated through two separate calculations. The first is the analy-

sis of a simple model that shows how a spatially inhomogeneous oxygen concentration,

°C

°C
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coupled with the nonlinear kinetics for the nucleation of precipitates, can lead to substan-

tial increases in the apparent nucleation rates. The second calculation is based on a

detailed simulation of oxygen precipitation using a self-consistent model of point defect

dynamics and oxygen precipitation.

Figure 3.19: Grown-in spatial inhomogeneities in the oxygen distribution (taken from
[55]).

3.7.2 Model Problem
In the simple model we consider the evolution in time ( ) of the one-dimensional profile

(x) of a species that is governed by the simple nonlinear reaction-diffusion equa-

tion that models transport of a dilute species, such as oxygen, and consumption of the spe-

cies into aggregates according to a p-th order reaction:

(3.145)

where Da is the dimensionless reaction rate, or Damkohler number, which scales reaction

rate with diffusion. The magnitude of the reaction rate, p, depends on whether nucleation

or growth of the precipitates is being considered.

In eq. (3.145) the appropriate length scale describes the initial inhomogeniety in the

dimensionless monomer concentration:

(3.146)
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where sets the amplitude of the fluctuation; corresponds to a uniform initial oxy-

gen concentration. The initial-value problem, eqs. (3.145) and (3.146), is solved with no

flux boundary conditions at x=0 and x=1. When , the concentration is always uni-

form in space and is expressed as . The governing equation for is

therefore reduced to ordinary differential equation

(3.147)

The solution is

(3.148)

A reaction enhancement factor is defined based on the reference state , so that

(3.149)

where stands for averaging the concentration over . Then measures the

consumption of single oxygen atoms based on homogeneous nucleus formation and

growth; for , . The form of is inspired by the availability of FTIR mea-

surements for the concentration of interstitial single oxygen atoms within bulk silicon [].

The effects of changing Da and p were probed by analytical ( ) and numerical

solution of eqs. (3.145) and (3.146); the results are depicted in Figure 3.20 in terms of the

evolution of for . Time is scaled as because is only a function

of for as shown in eq. (3.148). For , the diffusion term in eq. (3.145)

can be ignored and the time has to be rescaled,

(3.150)

Therefore the analytical solution for is
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(3.151)

And the for is

(3.152)

Figure 3.20: Enhancement factor predicted with model described by eq. (3.145) with
ε=0.5.
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the initial fluctuation in the oxygen concentration. For slow reaction rates ( ), diffu-

sion effectively levels the peaks in oxygen concentration before significant reaction can

take place. The value of at relatively long times is primarily a function of the reac-

tion order, p. As p increases, also increases for a given , while for

for any value of . When , eq. (3.145) becomes

(3.153)

Integrating from to

(3.154)

Rewriting the first term on the right-hand side

(3.155)

Employing the no-flux boundary conditions on both ends

(3.156)

The equation about for is the same as equation for when , which implies

for . This fact is easily understood by noting that for eq. (3.145)

is linear and the regions of higher reaction rate caused by increased initial values of

are exactly balanced by lower reaction rates in regions with lower concentrations.

The apparent value of the reaction order can be connected to the processes of nucleation

and growth. For precipitate growth, the reaction rate is first-order in the oxygen concentra-

tion, , . For the nucleation process, the reaction rate scales as a power of C

roughly equal to the number of oxygen atoms in a critically sized precipitate at a given
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temperature.

The results of the simple model, eq. (3.145), suggest that an initially nonhomogeneous

oxygen concentration will lead to an enhanced nucleation rate of oxide clusters. The

extent of the enhancement is a function of the amplitude and frequency of the initial oxy-

gen fluctuations. Increasing the fluctuation frequency is equivalent to decreasing or to

decreasing Da and thus leads to enhanced oxygen diffusion and to decreasing . The

effect of increasing is shown in Figure 3.21 and is dramatic. Enhancements range from

O(101) for to O(102) for .

Figure 3.21: Enhancement factor predicted with model described by eq. (3.145) for vary-
ing amplitude ε; Da=100 and p=30.

3.7.3 Simulation Results of Enhanced Oxygen Precipitation
Prediction of the effect of spatial fluctuations in the oxygen concentration on the precipi-

tate size distribution has been made by direct time-dependent simulation of a Low-Hi
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wafer annealing using a defect dynamics model for disk-shaped oxygen precipitates which

is discussed in Section 3.3 - 3.5. The Low-Hi wafer annealing procedure includes 450

anneal for 32 hours (the nucleation phase) followed by 800 anneal for 4 hours and

then 1000 anneal for 16 hours (the precipitate growth phase). The ramping rate is

5 /min which is an industry standard. There is no pre-anneal at very high temperature,

so there is no enough pre-established vacancy to release high stress energy associated with

spherical oxygen precipitates, therefore disk-shaped oxygen precipitates dominate. It is

assumed that the oxygen concentration in the wafer is non-uniform with a spatial fre-

quency given by eq. (3.146) with spatial wavelength and that there are ini-

tially no precipitates in the wafer. The average oxygen concentration is taken to be

. A no-flux boundary condition for oxygen is assumed in order to separate

the effects of the nonhomogeneous oxygen concentration from the effects of the surface

denuded zone. The results of the wafer annealing simulations with varying are pre-

sented in terms of the average oxide precipitate size distribution over the wavelength and

the enhancement factor . The enhancement factor is computed using eq. (3.149) by aver-

aging the total loss of oxygen monomer over the wavelength.

The resulting size distribution of oxide is shown in Figure 3.22 for different values of

. The unit for size of oxygen precipitate is the amount of oxygen in the precipitate. The

case of a uniform oxygen distribution, , produced the smallest number of precipi-

tates and results in a size distribution with the smallest precipitates. When , the

number of clusters is approximately two orders-of-magnitude larger and larger clusters are

grown. The total concentration of oxide clusters bigger than 5nm and the total number of

oxygen atoms in these clusters are listed in Table 3.2. The enhancement factors relative to

the base case are estimated by computing the total number of oxygen atoms represented
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by each of the size distributions; for and for

.

Figure 3.22: Average size distribution of oxygen precipitates predicted with simulations
of Low-Hi wafer annealing for values of ε of 0, 0.2, and 0.5.

Oxygen Field
Oxide Density

(cm-3)
Total Oxygen in
the Oxide (cm-3)

Enhancement
Factor

Uniform 1

Nonuniform

Nonuniform

Table 3.2: Results for annealing simulations after Low-Hi wafer annealing: total
concentration of oxide clusters larger than 5nm, total oxygen atoms in these clusters, and

the enhancement factor.
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These results demonstrate that the microscopic fluctuations in the oxygen concentra-

tion profile that are typically seen in silicon grown by the Czochralski method can have a

significant effect on the number and size distribution of oxide precipitates in annealed

wafers. In particular, the non-homogeneous oxygen distributions lead to faster nucleation

rates at low temperatures because of the impact of the highly nonlinear kinetics during this

phase. The effect of this spatial inhomogeneities could be very general. For any non-linear

system with the spatial fluctuation, the enhancement of apparent kinetic could be

observed.

3.8 Perfect Silicon

3.8.1 Concept of Perfect Silicon
As discussed in section 2.1, roughly the OSF-ring separates the vacancy-rich core, which

is populated by voids, from the self-interstitial-rich outer annulus, which contains stacking

faults. However, strictly speaking OSF-ring is close to but inside the radial position where

interstitial and vacancy recombine exactly with each other. This spatial pattern is dis-

played in Figure 3.23 for an as-grown crystal wafer. A very interesting region of the crys-

tal lies just outside the OSF-ring. The silicon in this region is almost defect-free except

some small oxide precipitates which are created during crystal growth and can be dis-

solved by a high temperature annealing afterward. The existence of this region is an indi-

cation of the crystal growth conditions where almost perfect silicon can be grown. The

detail of this structure also can be described as , where R is radius,

and subscripts OSF, free and correspond to OSF-ring, defect-free region, and the

region where interstitial and vacancy recombine exactly with each other. Others have rec-

ognized the quality of this material [41] and silicon wafer suppliers have begun producing

this “perfect silicon” [40].

ROSF Rfree R∆ 0=< <

∆ 0=
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Figure 3.23: Qualitative picture of the asymmetric defect dynamics in the CZ crystal
growth. The temperature profile and vacancy distribution are shown throughout the crystal

for growth conditions with the OSF-ring inside the crystal. The distribution of point
defects and aggregates in a wafer from this crystal are shown in the bottom graph.

Just inside , there is no significant interstitials and their clusters since it is in

vacancy-rich region. The intermediate vacancy concentration is relative low and therefore

the void aggregation temperature is relative low. Without other impurity such as oxygen

involved, significant voids can still form but at lower temperature. However with appro-
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priate oxygen present, vacancy can be consumed by small oxygen precipitates before the

low void aggregation temperature leaving no driving force for void formation. These

small oxygen precipitates can be then dissolved by a high temperature anneal. So the oxy-

gen with appropriate concentration in silicon widens the operating windows for defect-

free or perfect silicon.

3.8.2 Simulation Results
The simulation results of CZ-crystal growth with and without oxygen are compared in this

section to illustrate the effect of oxygen and ‘prefect’ silicon. One-dimensional (neglect-

ing radial diffusion) simulations of point defect dynamics and microdefect formation in

crystal growth without oxygen are shown in Figure 3.24 for several growth rates. The

axial temperature profile used in the calculations also is shown in Figure 3.24(a). The

vacancy profile in Figure 3.24(a) is typical for growth of a vacancy-rich crystal. After

rapid recombination, the intermediate vacancy concentration is established and per-

sists until the temperature decreases to the void aggregation temperature for .

The density of voids rapidly rises and vacancy concentration begins to decrease as the

vacancies are absorbed into the voids. The void aggregation temperature is not a constant,

but dependent on the intermediate vacancy concentration. For lower intermediate concen-

tration only at lower temperature the super-saturation of vacancy can be high enough to

drive the void formation. Lowering the pull rate so that decreases , as

predicted by eq. (2.109) and shifts void aggregation to lower temperatures. The size distri-

bution of voids predicted for these values of Pe are shown in Figure 3.24(b). For much

bigger than the voids are large, as is characteristic of CZ-silicon. The profile for

corresponds to a average void diameter of 145 nm and a total density of

voids larger than 50 nm of .
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(b)

Figure 3.24: One-dimensional simulation results of CZ-crystal without oxygen: (a)
Vacancy profiles during crystal growth under the same temperature field but different Pe.
Total void density is shown for Pe=1.76Pecrit. (b) Void size distributions for different Pe.

The presence of oxygen in CZ silicon improves the quality of the as-grown material.

As the temperature decreases in the crystal the super-saturation of oxygen causes small

clusters of oxide to form that consume a portion of the intermediate vacancy concentration

and make these vacancies unavailable for aggregation into voids. This effect is enhanced

by the delay of the nucleation of voids; as a result, the final voids become smaller as

. This effect is demonstrated in the simulations shown from Figure 3.25 to

Figure 3.28 for and for crystals without oxygen and

with an oxygen concentration of introduced at melt/crystal inter-

face.
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For the presence of oxygen has no effect on the vacancy concentra-

tion until a temperature much lower than the void aggregation temperature under this

growth condition, as shown in Figure 3.25. At where most of the intermediate

vacancies are already depleted by void formation, the vacancy concentration with oxygen

present is lower than that without oxygen because these residual vacancies are consumed

by oxygen precipitates at low temperature. The final size distributions of voids and oxy-

gen precipitates at the top of the crystal are shown in Figure 3.26. There is essentially no

effect of the oxygen on the void distribution and only very small oxygen precipitates are

predicted to be present.

Figure 3.25: Vacancy profiles for Pe=1.76Pecrit with and without oxygen.
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Figure 3.26: Void size distributions with and without oxygen, and oxygen precipitate size
distribution for Pe=1.76Pecrit.

For , the profiles of vacancy are shown in Figure 3.27, and the size

distributions of voids and oxygen precipitates are shown in Figure 3.28. The predictions

are drastically different for . Under this growth condition, the interme-

diate vacancy concentration is relative low compared with that under high Pe. Therefore

the void aggregation temperature is also low. The vacancy profiles with and without oxy-

gen in Figure 3.27 clearly show that vacancies are already consumed by oxygen precipi-

tates significantly before they can be consumed by voids. The delay in the aggregation of

voids to a lower temperature caused by the decrease in the intermediate vacancy concen-

tration leads to much more growth of small oxide precipitates and to substantial depletion

of the already smaller reservoir of vacancies. As a result, void density is significantly
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decreased with oxygen present, as shown in Figure 3.28. Slightly larger oxygen precipi-

tates are predicted but are only barely visible; essentially there is no oxygen precipitate

bigger than 50 nm in diameter which is roughly the detection limit. The density of oxygen

precipitates above the 5 nm is only . Fortunately these small oxygen pre-

cipitates could be dissolved during a high temperature annealing which is normally the

first step of traditional Hi-Low-Hi wafer annealing. It should be also noted that oxygen

concentration barely changes during the crystal growth. Only a very small faction of oxy-

gen exists in the form of oxygen precipitates. The silicon crystal grown under this condi-

tion is essentially defect-free or prefect: there is no interstitials and their clusters since it is

in vacancy-rich region; there is no significant voids since the void formation is suppressed

by oxygen precipitation; there is only some small oxygen precipitates which can be dis-

solved by a high temperature anneal afterward.
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Figure 3.27: Vacancy profiles for Pe=1.007Pecrit with and without oxygen.

Figure 3.28: Void size distributions with and without oxygen, and oxygen precipitate size
distribution for Pe=1.007Pecrit.

The simulations of point defect dynamics and aggregation described here demonstrate

theoretically that almost defect-free or perfect silicon can be produced by melt crystal

growth at the precise conditions where the intermediate point defect concentrations caused

by rapid point defect recombination at high temperatures are approximately equal. The

presence of oxygen reduces the sensitivity of this operating window to the exact value of

pull rate (or temperature gradient) and essentially opens the operating window making

growth of this material more feasible. Control of the final oxide precipitate distribution in

the material is still achieved using conventional annealing cycles.
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3.9 Wafer Annealing

3.9.1 Typical Hi-Low-Hi Wafer Annealing
Oxides or oxygen precipitates with appropriate size and density can serve as gettering

sites for metallic impurities which are introduced during fabrication processes, and they

may be only concentrated in the middle of the wafer, leaving a defect-free surface section

or denuded zone (DZ) where devices can be fabricated. This spatially nonuniform distri-

bution of oxygen precipitates within wafer can be achieved by a traditional Hi-Low-Hi

wafer annealing process.

The physics of Hi-Low-Hi wafer annealing can be illustrated by one-dimensional sim-

ulation along axial direction. The computational domain is shown in Figure 3.29. The

wafer thickness is 725 which is typical for 8-inch wafer. Because of symmetry the

computational domain is the half thickness of the wafer. The dimensionless axial position

(length scale is chosen as 100 ) corresponds to wafer surface and

corresponds to centerline of the wafer thickness. The initial oxygen concentration of Hi-

Low-Hi wafer annealing is set to uniformly distributed across the wafer.

The boundary conditions for oxygen are equilibrium oxygen concentration at annealing

temperature at and no-flux boundary conditions at . Some small oxygen

precipitates formed during crystal growth can be dissolved quickly (within seconds) dur-

ing the first high temperature and this dissolution process is called the removal of the

‘thermal history’. So it is reasonable to set zero concentration for all oxygen precipitates

as initial condition of Hi-Low-Hi wafer annealing. Unless the temperature of the first step

is very high (for example, higher than 1200 ) and the cooling rate after this step is very

fast (for example, about 100 ), the vacancy established after the first high tempera-

ture anneal is not high enough to form significant spherical oxygen precipitates through

vacancy absorption mechanism. As already discussed in Section 3.5.3, the spherical oxy-
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gen precipitation through interstitial injection is also slow due to the inefficient removal of

interstitials ejected by spherical oxygen precipitates. So the majority of oxygen precipi-

tates are disk-shaped oxygen precipitates for a typical Hi-Low-Hi wafer annealing. The

wafer annealing processes simulated here is 1100 anneal for 16 hours followed by 650

anneal for 16 hours and then 1000 anneal for 16 hours.

Figure 3.29:Wafer cross-section and computational domain.

The oxygen profile after the first high temperature anneal at 1100 for 16 hours is

shown in Figure 3.30. Oxygen concentration near the wafer surface is significantly

reduced due to out-diffusion of oxygen, however the oxygen concentration in the bulk of

wafer barely changes because of low diffusivity of oxygen with respect to length scale of
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wafer thickness, for example at 1100 . This spatially non-

uniform oxygen pattern is the root cause of the low density of oxygen precipitates near

wafer surface and the high density of oxygen precipitates in the middle section of the

wafer. During the second low temperature anneal at 650 for 16 hours, the super-satura-

tion of oxygen is not high enough near the wafer surface to drive the oxygen precipitation.

However, small oxide nuclei are generated by the high super-saturation of oxygen in the

bulk of the wafer, but it is difficult for these nuclei to grow bigger because the temperature

is too low for oxygen diffusion even in short range. The last step is the growth of the oxy-

gen precipitates in the bulk of the wafer at 1000 for 16 hours. At this stage, nuclei gen-

erated during the second low temperature anneal grow rapidly due to the relative high

oxygen diffusivity at high temperature. The nucleation and growth of oxygen precipitates

in the bulk of the wafer are clearly illustrated in the simulation results of the size distribu-

tions of oxygen precipitates at the center of the wafer after each annealing step shown in

Figure 3.31. The final distribution of total oxide density across the wafer is shown in Fig-

ure 3.32. The oxide density in the bulk is about 1010 cm-3 and they can serve as effective

gettering sites for metallic impurities which are introduced during the device fabrication.

The near surface region with low density of oxygen precipitates is called denuded zone

where devices are fabricated.
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Figure 3.30: Oxygen profile after the first high temperature anneal at 1100 °C for 16
hours.
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Figure 3.31: Size distributions of oxygen precipitates at the center of the wafer after each
annealing step.
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Figure 3.32: Final distribution of oxide density across the wafer.

3.9.2 Simulation of Traditional Wafer Annealing Compared with Experimental Data
The experimental results of oxygen precipitation during wafer annealing done by MEMC

and referred in several papers by Kelton et al. [87,196] are the most systematic results

published so far. The simulation results of oxygen precipitation based on the model

described in Section 3.3 - 3.5 are compared with these experimental results. The experi-

ment procedure is shown in Figure 3.33. The silicon wafers with three different oxygen

concentration - , and - were studied. The

purpose of the first step is to dissolve the grown-in oxide or erase the ‘thermal history’ of

the silicon wafer so that the initial oxide distribution in the wafer can be normalized and

scatter of experimental data due to grown-in oxide can be prevented. The second step is

the nucleation of oxygen precipitates at different nucleation temperature for differ-
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ent annealing time . The last step is the growth of some small oxygen precipitates

formed during the nucleation stage. The higher growth temperature, the higher oxygen

diffusivity, and therefore the faster growth of oxygen precipitates. However the higher

growth temperature, the bigger critical size of oxygen precipitates, and therefore the fewer

oxide nucleus can grow and the lower final oxide density. The high temperature growth

with an intermediate temperature pre-growth can generate high final oxide density in

shorter time. During the annealing at 800 for 4 hours, the oxides between critical sizes

at 800 and 1000 can grow to bigger oxides to survive the anneal at 1000 .

These oxides will dissolve during the annealing at 1000 otherwise.

Figure 3.33: Annealing procedure (taken from [87]).

Since the first annealing step at 1000 is only 15 minute, there is essentially no oxy-

gen out-diffusion and oxygen is uniformly distributed across the wafer. The temperature

of the first annealing step is only 1000 and not high enough to establish high vacancy

concentration needed for the formation of spherical oxygen precipitates, so the majority of

oxygen precipitates formed during the second low temperature anneal are disk-shaped

oxides and there is essentially no interaction between these disk-shaped oxides and native

point defects. Therefore the simulation of oxygen precipitates under this annealing circle

is zero dimensional in spatial space and the initial oxide distribution can be taken as zero

concentrations for all oxides. In the experimental procedure described in Kelton’s paper

[87], ramping rate between different annealing steps, especially the ramping rate between
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nucleation step and growth step, was not reported. The sensitivity of final oxide density on

the ramping rate is studied in the following simulations.

The simulation results of oxygen precipitates for different nucleation temperatures and

different initial oxygen concentrations are shown in Figure 3.34 (for

), Figure 3.35 (for ), and Figure 3.36 (for

). The experiment procedure is 1000 anneal for 15 minutes fol-

lowed by 32 hours anneal at different nucleation temperatures, and then 800 anneal for

4 hours and 1000 anneal for 16 hours. The industry standard ramping rate is 5 /

min. In the Figure 3.34, simulation results of the final oxide density vs. different nucle-

ation temperatures for initial oxygen concentration of are shown for three

different ramping rate - infinite ramping rate, 5 /min and 3 /min. All the simulation

results show the same trend as the experimental data - there is a peak around 600 .

When nucleation temperature is higher than this, the super-saturation of oxygen at nucle-

ation temperature is lower and therefore the oxide density is lower. This is an equilibrium

limitation. When nucleation temperature is lower than this, the oxygen diffusivity is too

low to generate enough nuclei for a given time which can grow during the following

growth steps. This is a dynamics limitation. Because of this, the results of oxide density at

low nucleation temperatures are sensitive to the ramping rate. During the ramping process

between low temperature nucleation step and growth step, some small oxide nuclei, which

will dissolve during the growth step otherwise, can grow bigger and survive the growth

step. The slower ramping process, the more time for small nuclei to grow, and therefore

the higher oxide density. For standard ramping rate which is 5 /min, the simulation

results reasonably agree with the experimental results. For the rest of simulations in this

section, the ramping rate is chosen as 5 /min. The simulations results of oxide density
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as a function of nucleation temperature for other oxygen levels in Figure 3.35 and Figure

3.36 also show reasonable agreement with the experimental data.

Figure 3.34: Oxide density as a function of nucleation temperature for CO=8.0×1017cm-3.
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Figure 3.35: Oxide density as a function of nucleation temperature for CO=7.0×1017cm-3.
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Figure 3.36: Oxide density as a function of nucleation temperature for CO=6.0×1017cm-3.

The simulation results of oxide density for different nucleation time are shown in Fig-

ure 3.37. The experimental procedure is 1000 anneal for 15 minutes followed by 650

anneal for different nucleation time, and then 800 anneal for 4 hours and 1000

anneal for 16 hours. The initial oxygen concentration is . The simulation

results reasonably agree with experimental data and some important concepts can be

inferred from this figure. The oxide density is approximately linear to nucleation time with

an intercept on the time axial. The slope of the linear part is called nucleation rate and the

interception on the time axial is called induction time [87]. In this case the induction time

is the time needed for oxide size distribution to establish beyond the critical size for 800

. After that the nucleation of oxide bigger than the critical size for 800 is at a con-

stant rate. Generally this induction time is dependent on both the nucleation temperature
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and the growth temperature. The lower nucleation temperature, the lower oxygen diffusiv-

ity, and the longer time for oxide size distribution to reach certain critical size and there-

fore the longer induction time. The higher growth temperature, the bigger critical size, and

the longer time for oxide size distribution to reach that critical size and therefore the

longer induction time.
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(b)

Figure 3.37: Oxide density as a function of nucleation time at 650 °C for
CO=7.0×1017cm-3 plotted on linear (a) and logarithmic (b) scales.

The dependence of oxide density on the nucleation time and nucleation temperature

predicted by the model together with a single set of physical parameters described in Sec-

tion 3.3 - 3.5 reasonably agree with the experimental results. This is an indication that the

model may capture the right physics of the oxygen precipitation. It should be emphasized

that spherical oxygen precipitates coexist with disk-shaped oxygen precipitates and they

are competing species. However disk-shaped oxygen precipitates dominate during the low

temperature annealing without a pre-anneal at very high temperature. The size distribu-

tions of spherical oxides and disk-shaped oxides after 32 hours annealing at 650 for

are compared in Figure 3.38. The density of disk-shaped oxides is
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more than four orders-of-magnitude higher than that of spherical oxides. The spherical

oxide distribution under the condition of (corresponding a system where all

self-interstitials ejected by spherical oxides are instantly consumed by some undefined

sinks) is also shown for comparison. The density of the spherical oxide distribution under

the condition of is slightly higher than that of disk-shaped oxide. These

three oxide distributions are consistent with the free energy curves shown in Figure 3.14.

Figure 3.38: Size distributions of spherical oxides and disk-shaped oxides after 32 hours
annealing at 650°C for CO=8.0×1017cm-3.

3.9.3 Vacancy Assisted Oxygen Precipitation
One important characteristic of the typical Hi-Low-Hi wafer annealing is the high thermal

budget. Since the surface denuded zone is formed by oxygen out-diffusion during the first
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layer thick enough. Without the assistant of enough vacancy, nucleation rate of oxygen

precipitation at the second low temperature anneal is low and there also is considerable

induction time. So the annealing time for the first two steps must be long enough, nor-

mally at least more than a dozen hours.

Modern VLSI fabrication requires less and less thermal budget, and a technology

called the ‘Magic Denuded Zone’ (MDZ) and developed by MEMC [39] can be used to

make a wafer with oxygen precipitates in the middle section and a surface denuded zone,

but with low thermal budget. The mechanism to achieve the spatially nonuniform oxide

distribution is totally different between the traditional Hi-Low-Hi wafer annealing and

MDZ. The MDZ also has three steps: the first step is rapid thermal anneal at very high

temperature; the second step is low temperature anneal but with very short annealing time;

the last step is basically the same as that of the traditional Hi-Low-Hi wafer anneal. Typi-

cally in MDZ process, the wafer is first heated rapidly (with a ramp rate of ) from

room temperature to and held there for 10 seconds before being cooled to room

temperature at a cooling rate of approximately . No out-diffusion of oxygen

occurs during the very short first step; however, very small oxygen precipitates that may

have existed in the crystal are dissolved. More importantly, the equilibrium vacancy con-

centration corresponding to is created during this step, and diffuses to the

surface only in a thin surface layer because of fast cooling after this step. As a result, there

is a high vacancy concentration in the bulk of the wafer. With the assistance of vacancy,

nucleation of oxygen precipitates during the second low temperature anneal occurs prefer-

entially in the bulk of wafer, leaving the surface of wafer essentially free of oxygen precip-

itates, although with high oxygen concentration. It should be emphasized that the

annealing time for the second low temperature anneal in MDZ process has to be short,

normally only a couple hours. The nucleation rate of oxygen precipitation at low tempera-
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ture anneal is very fast with the assistance of vacancy due to low free energy described in

eq. (3.77), so in short anneal time oxygen can only precipitate in the middle section of

wafer where vacancy concentration is very high. However if the annealing time of the sec-

ond low temperature is as long as that of traditional Hi-Low-Hi wafer anneal, oxygen can

also precipitate near the surface of the wafer and there is no surface denuded zone any-

more because of high oxygen concentration even in the surface area for MDZ process.

Apparently the annealing time for the first two steps in MDZ process are much shorter

than these in traditional Hi-Low-Hi wafer annealing, so the thermal budget of the MDZ

process is greatly reduced.

The predictions for precipitate density as a function of , with and without vacancy

assistance, are shown in Figure 3.39 and Figure 3.40 and compared with experimental

measurements for . Results are shown for the traditional Hi-Low-Hi

process and for the MDZ annealing cycle with for 10 seconds. In both

cases, and for 16 hours. The thermal ramp-rate

between and was not reported in the experiments and is crucial for pre-

diction of the results. The sensitivity of the final oxide density to the ramp rate is shown in

Figure 3.39 for classical Hi-Low-Hi annealing. The experimental results are best matched

with a ramp rate of , which has been used in the remainder of the calculations.

The match between experiments and simulations is reasonable, considering that the detec-

tion limit for measuring the oxide density is approximately . The effect of the

MDZ treatment on the oxide density in both experiments and simulations is shown in Fig-

ure 3.40. The impact of the implanted vacancy distribution on the higher nucleation rate of

spherical precipitates is clearly seen. Also the agreement between experiments and simu-

lations is excellent.
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Figure 3.39: Sensitivity of oxide density on the ramping rate for traditional annealing pro-
cess without vacancy assistance.
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Figure 3.40: Oxide density as a function of the nucleation time with and without vacancy
assistance.

3.10 Conclusion
The oxygen concentration that is inherent to CZ-grown silicon wafers is crucial to the

mechanical and electrical properties of silicon wafers. The oxide precipitates that form

from the oxygen super-saturation and their associated stacking faults and dislocation loops

serve as getting sites for metallic impurities. An internally consistent model for quantita-

tive prediction of oxygen precipitation is presented. The model includes the dynamics of

oxygen precipitation and the influence of point defects on this precipitation. Most impor-

tantly, the effect of precipitate morphology is included by modeling the evolution of

spherical and disk-shaped precipitates.
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Point defect dynamics plays a critical role in oxide precipitation. Because the density

of the precipitate is approximately half that of the matrix, elastic stress energy is created

that can be dissipated by vacancy absorption into the precipitate or self-interstitial ejection

into the matrix. At low annealing temperature spherical precipitates which have the lowest

surface energy grow preferentially when there is ample vacancy concentration in the crys-

tal to supply the free volume required to release the high elastic stress. The removal of the

ejected interstitials is not fast enough to release the high stress energy associated with the

spherical oxides because of low self-diffusion of the interstitials at low temperature.

Therefore disk-shaped precipitates which has the lowest stress energy are favor at low

nucleation temperature when stress relief is only possible by interstitial ejection.

The imperfections in the crystal growth system and turbulent fluctuations in the melt

may lead to non-uniform incorporation of oxygen into CZ silicon. The role of an inhomo-

geneous oxygen distribution was quantitatively investigated as a potential factor through

two separate calculations. The first is the analysis of a simple model that shows how a spa-

tially inhomogeneous oxygen concentration, coupled with the nonlinear kinetics for the

nucleation of precipitates, can lead to substantial increases in the apparent nucleation

rates. The second calculation is based on a detailed simulation of oxygen precipitation

using a self-consistent model of oxygen precipitation. The simulation results show that for

a non-uniform oxygen distribution with wavelength of 100 and fluctuation magnitude

of 0.2, average oxide density could be one order-of-magnitude higher than that for uni-

form oxygen distribution.

The self-consistent model can be used to explore a variety of processes including CZ

crystal growth and different annealing strategies such as traditional Hi-Low-Hi and MDZ

wafer annealing. The simulations of point defects dynamics and oxygen precipitation dur-

ing CZ crystal growth reveal dramatically different effect of oxygen on the microdefects

µm
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dynamics under different Pe. At high Pe, the void aggregation temperature is high and the

intermediate vacancies are already depleted by void formation before they can be signifi-

cantly consumed by oxygen precipitates. In this case, there is essentially no effect of the

oxygen on the void distribution and only very small oxygen precipitates are predicted to

be present. When , the delay in the aggregation of voids to a lower tempera-

ture caused by the decrease in the intermediate vacancy concentration leads to much more

growth of small oxide precipitates and to substantial depletion of the already smaller res-

ervoir of vacancies. As a result, void density is significantly decreased with oxygen

present and slightly larger oxygen precipitates which could be dissolved during a high

temperature anneal afterward are predicted. The ‘perfect silicon’ can be produced at the

conditions around where interstitials and vacancies almost completely recombine

with each other. The present of oxygen widens this operating window making growth of

this material more feasible.

The physics of wafer annealing is clearly demonstrated by the simulations of oxygen

precipitation in this Chapter. The ramping rate between different annealing steps, espe-

cially the ramping rate between the nucleation step and growth step, was not reported in

the experimental data. The simulation results show that ramping rate is an important factor

especially for annealing at very low temperature or for short annealing time. This is

because during the ramping process between the nucleation step and growth step, some

small oxide nuclei, which will dissolve during the growth step otherwise, can grow bigger

and survive the growth step. The sensitivity of final oxide density on the ramping rate is

studied. It should be emphasized that the effect of the ramping process could not be mod-

eled without accounting for the oxide size distribution. With a reasonable ramping rate,

simulation results successfully predict oxide densities and the effects of nucleation tem-

perature and time during traditionally Hi-Low-Hi annealing. The simulation results show

Pe Pecrit→

Pecrit
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a peak in oxide density as a function of nucleation temperatures. This maximum repre-

sents a balance between the driving force of the oxygen super-saturation and inhibition of

oxygen diffusion at low temperature where too few nuclei are formed in the set time. The

same self-consistent model also captures the vacancy-assisted oxygen precipitation in the

MDZ annealing process whose mechanism is different from that of the traditional Hi-

Low-Hi wafer annealing. The agreement between simulation results and experimental

data is excellent.
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Chapter 4

Conclusions
Most microelectronic devices are fabricated on substrates made of single crystal silicon. In

order to make more powerful microelectronic devices with high quality and yield, the

microdefects in single silicon crystal must be well controlled. Therefore the understanding

of microdefects formation in silicon crystal is crucial and this thesis is devoted to it. The

mechanisms of microdefects formation are investigated by both theoretical and computa-

tional approaches. This thesis provides deeper physical insight into the defect formation in

silicon crystal from crystal growth through wafer annealing, and a comprehensive frame-

work to model the defect formation in single crystal silicon. Both theoretical and computa-

tional results agree with experimental data.

The theoretical analysis of the native point defects and formation of their clusters in

CZ crystal growth is performed from the melt/crystal interface through the clusters forma-

tion at lower temperature. A rigorous asymptotic analysis is carried out first to get the

expression for the critical value of V/G which separates the vacancies-rich core and inter-

stitials-rich annular regions. The critical value of V/G is a function of physical properties

of native point defects at silicon melting temperature only. This analysis is then extended

to the intermediate point defect concentration at arbitrary V/G and the effect of impurity

such as Boron on the critical V/G. The cluster formation is further analyzed by examining

discrete and continuous forms of rate equations to get useful scalings and quantitative pre-

diction of important variables such as aggregation temperature, total void density, and

average size of void.

A framework is presented for modeling oxygen precipitation in silicon by including

the details of the growth of oxygen precipitates and the important roles of self-interstitials
217217217



and vacancies in this process. The framework also includes the role of precipitate mor-

phology by including micro-mechanical models for both spherical and disk-shaped pre-

cipitates. Spherical shaped precipitates grow preferentially when there is ample vacancy

concentration in the crystal to supply the free volume required to release elastic stress.

Disk-shaped precipitates are favor at low nucleation temperature when stress relief is only

possible by interstitial ejection. The model successfully predicts a variety of annealing

strategies including traditional Hi-Low-Hi wafer annealing and MDZ annealing process.

4.1 Summary

4.1.1 Theoretical Analysis on Native Point Defects and Point Defect Clusters
The theoretical analysis on native point defects and point defect clusters includes two

steps. In the first step, intermediate point defect concentration is determined by analyzing

point defects balance in the boundary layer near melt/crystal interface without any cluster-

ing since super-saturation of point defect is not high enough to drive significant clustering

in this thin boundary layer. Then in the second step, nucleation of point defect clusters is

analyzed based on the intermediate point defect concentration obtained in the first step

and temperature field around aggregation temperature.

The asymptotic analysis on critical V/G, intermediate vacancy concentration, interme-

diate interstitial concentration, and effect of boron on critical V/G are performed in the

region close to the melt/crystal interface. The asymptotic analysis is based on two impor-

tant characteristics - large Damkohler number Da and small (ratio of axial and radial

length scales) - about the CZ silicon crystal growth. The large Da is due to the high recom-

bination rate near the melt/crystal interface and leads to mass law for vacancies and inter-

stitials. The small is due to the high activation energy for the equilibrium

concentrations of native point defects and leads to a thin recombination layer near the

melt/crystal interface and negligible radial contribution of diffusion.

ω
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Point defect clusters formation is modeled by combination of discrete rate equation for

small n and its continuous representation for large n with matching between them. The

analysis on various scales shows that for small n, the time-dependent term in the govern-

ing equation can be ignored and the corresponding equation is called inner equation. The

discrete form of inner equation is employed since continuous form is not valid for small n.

The inner equation is also called stationary solution because there is no time-dependent

term. The reason why the time-dependent term is negligible for small n is that the time

scale to reach the stationary size distribution for small n is much smaller than the system

time scale. For large n, the second order terms for n can be ignored and the corresponding

equation is called outer equation. The outer equation has continuous form and it is a first

order partial derivative equation. For large n, the cluster size distribution propagate with a

drift velocity. At matching point between the inner and outer equations, both concentration

and flux are matched.

Based on the analysis of the inner and outer equations with the appropriate model for

growth rate and dissolution rate, two important scalings for total void concentration and

average void size are obtained. Total void concentration is proportional to

and the average void size is proportional to . The quan-

titative theoretical estimations of void aggregation temperature, total void concentration,

and average void size also reasonably agree with the simulation results.

4.1.2 Modeling of Oxygen Precipitation
The oxygen precipitates and their associated stacking faults and dislocation loops, if con-

fined in the middle of the wafer and with appropriate size and density, can serve as getting

sites for metallic impurities introduced during device fabrication. An internally consistent

model for quantitative prediction of oxygen precipitation is presented. The model includes

the dynamics of oxygen precipitation and the influence of point defects on this precipita-

G〈 〉3 2⁄
CV
int( )

1 2⁄–
CV
int

G〈 〉⁄( )
3 2⁄
219



tion. Most importantly, the effect of precipitate morphology is included by modeling the

evolution of spherical and disk-shaped precipitates.

Point defect dynamics plays a critical role in oxide precipitation. Because the density

of the precipitate is approximately half that of the matrix, elastic stress energy is created

that can be dissipated by vacancy absorption into the precipitate or self-interstitial ejection

into the matrix. At low annealing temperature spherical precipitates which have the lowest

surface energy grow preferentially when there is ample vacancy concentration in the crys-

tal to supply the free volume required to release the high elastic stress. The removal of the

ejected interstitials is not fast enough to release the high stress energy associated with the

spherical oxides because of low self-diffusion of the interstitials at low temperature.

Therefore disk-shaped precipitates which has the lowest stress energy are favor at low

nucleation temperature when stress relief is only possible by interstitial ejection.

The model is used to explore a variety of processes including CZ crystal growth and

different annealing strategies such as traditional Hi-Low-Hi and MDZ wafer annealing.

The substantial increase in the apparent nucleation rates due to an inhomogeneous oxygen

distribution is quantitatively investigated. The simulations of point defects dynamics and

oxygen precipitation during CZ crystal growth reveal the operating conditions under

which the ‘perfect silicon’ can be produced.

The physics of wafer annealing is clearly demonstrated by the simulations of oxygen

precipitation. The sensitivity of final oxide density on the ramping rate is studied. With a

reasonable ramping rate, simulation results successfully predict oxide densities and the

effects of nucleation temperature and time during traditionally Hi-Low-Hi annealing. The

simulation results show a peak in oxide density as a function of nucleation temperatures.

This maximum represents a balance between the driving force of the oxygen super-satura-

tion and inhibition of oxygen diffusion at low temperature where too few nuclei are
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formed in the set time. The same self-consistent model also captures the vacancy-assisted

oxygen precipitation in the MDZ annealing process whose mechanism is different from

that of the traditional Hi-Low-Hi wafer annealing.

4.2 Directions for Future Work

4.2.3 Application of the Theoretical Analysis to the Simulation of Native Point
Defects and Point Defect Clusters
The two-dimensional (both axial and radial directions) profiles of native point defects and

point defect clusters during crystal growth can be approximated by a series of one-dimen-

sional simulation results along axial direction but at different radial positions. However a

more rigorous approach is to run two-dimensional simulations. Currently one-dimensional

simulation of native point defects and point defect clusters takes hours to finish while two-

dimensional simulation takes weeks. Mori [108] was able to run two-dimensional simula-

tions on a parallel computer clusters with 8 nodes and finish in days. In order to make two-

dimensional simulator for native point defects and their clusters deliverable to industry,

we need to speed up the simulator so that it can be done in days on a single node.

Currently the discrete rate equations are solved for small clusters and the Fokker-

Planck equations are solved for big clusters. About 90% of the computational time is spent

on the calculation of the clusters. The CC70 finite difference method used to solve the

Fokker-Planck equations involves many exponential calculations which are very computa-

tionally intensive. The theoretical analysis in Section 2.5 provides the formula for both

small clusters (the solution of the inner equation) and large clusters (the solution of the

outer equation). Therefore there is no need to numerically solve the discrete rate equations

and Fokker-Planck equations. If the solutions of the discrete rate equations and Fokker-

Planck equations are replaced by the formula based on the theoretical analysis, most of the

computational time will be spent on the monomer calculations which account less than
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10% of the computational time in the current simulator. So the simulator for native point

defects and point defect clusters during the CZ crystal growth could be a factor of 10

faster. Two-dimensional simulations could be routinely performed.

4.2.4 Oxygen Precipitation at Very Low Temperatures
In the simulations of the traditional Hi-Low-Hi wafer annealing in Section 3.9.2, the sim-

ulation results of disk-shaped oxide densities at could be one or two order-

of-magnitude lower than experimental data. This discrepancy could be addressed in three

aspects: thermodynamics, transport, and the assistance of some small defect complexes.

As discussed in Section 3.1, experimental observation showed that rod-shaped oxygen

precipitates dominate at . However as shown in Figure 3.2, in isotropic

environment the stress energy of a rod-shaped precipitate is at least three quarter of that of

a spherical precipitate with the same volume, and it could be much higher than that of a

disk-shaped precipitate. So rod-shaped particle is not thermodynamically favorable com-

pared with disk-shaped particle in isotropic sense. The fact that the rod-shaped oxide ori-

entates along <110> direction [10] implies the stress energy and surface energy of rod-

shaped oxide need to be addressed anisotropically. The rod-shaped oxide may be thermo-

dynamically favorable in anisotropic sense.

Another factor could be transport or oxygen diffusion to the oxide. Ham [53] showed

that in the limit of high aspect ratio, the diffusion flux to a rod-shaped particle at entire

surface is in the order of where L and r are the length and radius

of the rod, and the diffusion flux to a rod-shaped particle only at two ends is in the order of

. The flux to a rod-shaped particle only at two ends is smaller than that for a

disk-shaped particle described by eq. (3.52). Even for the flux to a rod at entire surface, it

is not significantly higher than that for a disk-shaped particle unless the aspect ratio of the

rod is very high. So the normal transport of oxygen to the oxide can not explain why the
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simulation results underpredict oxide densities at very low nucleation temperature. How-

ever the oxygen concentration in the region close to the oxide could be higher than the

bulk oxygen concentration because this region is the transit between silicon matrix and

oxide where the oxygen concentration is in the order of 1021cm-3. The higher oxygen con-

centration near the oxide leads to higher oxygen transport to oxide. This effect may only

work for oxygen precipitation at very low temperature because the high oxygen concen-

tration close to the oxide may not be sustained with relatively high oxygen diffusivity at

medium nucleation temperature.

Thermal donors, which are small clusters of oxygen atoms, silicon atoms and point

defects and electrically active, are formed in the temperate range 300-500 and rapidly

annihilated above 600 [104]. The temperature range for the formation of thermal

donors is the same as the temperature range where discrepancy between experimental and

simulation results for oxide density occurs. This indicates that some small oxygen com-

plexes such as thermal donors which are only formed at very low temperature may play an

important role in oxygen precipitation.
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