
Providing Quality of Service over High Speed Electronic and

Optical Switches

by

Can Emre Koksal

B.S., Electrical Engineering
Middle East Technical University (1996)

M.S., Electrical Engineering and Computer Science
Massachusetts Institute of Technology (1998)

Submitted to the Department of Electrical Engineering and Computer Science
in partial ful�llment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2003

c
 Massachusetts Institute of Technology 2003. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

September 3, 2002

Certi�ed by. .
Robert G. Gallager

Professor of Electrical Engineering
Thesis Supervisor

Certi�ed by. .
Charles E. Rohrs

Research Scientist, Lab. for Information and Decision Systems
Thesis Supervisor

Accepted by .
Arthur C. Smith

Chairman, Department Committee on Graduate Students

Providing Quality of Service over High Speed Electronic and Optical Switches

by

Can Emre Koksal

Submitted to the Department of Electrical Engineering and Computer Science
on September 3, 2002, in partial ful�llment of the

requirements for the degree of
Doctor of Philosophy

Abstract

In a network, multiple links are interconnected by means of switches. A switch is a device with
multiple input and output links, and its job is to move data from the input links to the output links.
In this thesis, we focus on a number of fundamental issues concerning the quality of service provided
by electronic and optical switches. We discuss various mechanisms that enable the support of quality
of service requirements. In particular, we explore fundamental limitations of current high speed
packet switches and develop new techniques and architectures that make possible the provision of
certain service guarantees. We then study optical wavelength switches and illustrate how similar
ideas can be applied in a manner consistent with the current state of optical switching technology.

First, we focus on providing rate guarantees over packet switches. We develop a method called
rate quantization which converts the set of desired rates into a certain discrete set such that the
quality of service guarantees can be greatly improved with a small resource speedup. Moreover,
quantization simpli�es rate provisioning for dynamically changing tra�c demands since it allows
service opportunities for di�erent input output link pairs to be scheduled with minimal dependence.
We illustrate an isomorphism between packet switch schedulers and Clos networks to develop such
schedulers.

Next, we evaluate the amount of resource speedup necessary for single stage switches to support
multicast rates. This speedup limits the scalability of a single stage multicast switch a great deal.
We present an in depth study of multistage switches and propose a number of architectures, along
with associated routing and scheduling algorithms. We illustrate how the presence of multiple
paths between input output pairs can be exploited to improve the performance of a switch and
simplify the scheduling algorithms. Some of our architectures are capable of providing multicast
rate guarantees without a need for a resource speedup.

We extend our results on switch schedulers and use them for providing service guarantees
over optical wavelength switches. We will take the limitations of the optical crossconnects and
unavailability of optical memory technology into account, and modify the procedure we developed
for electronic switches to make them suitable for various optical wavelength switches. These results
will provide understanding of when to move optical switching closer to the end users for an e�cient
utilization of resources in networks with both optical and electronic technologies.

Thesis Supervisor: Robert G. Gallager
Title: Professor of Electrical Engineering

Thesis Supervisor: Charles E. Rohrs
Title: Research Scientist, Lab. for Information and Decision Systems

2

Acknowledgments

I wish to thank my thesis advisors Prof. Robert Gallager and Dr. Charles Rohrs for their guidance

and support throughout my graduate education at MIT.

Professor Gallager taught me how to do engineering research and provided me with the opportu-

nity to pursue my own ideas. His fundamental and creative thinking, and clarity of communicating

his ideas were truly inspiring. He always �nds a simple way to look at any given problem which

seems almost magical to me. I enjoyed every moment of our discussions. His perfectionism gave

me the motivation to challenge myself more than I would have otherwise. I feel very lucky to have

been a student of his.

I have been inspired by the fundamental understanding that Dr. Rohrs posesses on all concep-

tual and practical problems in the area of networking. His insights in
uenced me every stage of this

thesis. I also enjoyed our non-research discussions and I would like to thank him for his friendship

outside the school, as well as inside.

I would like to thank Professor Hari Balakrishnan for his enthusiasm and showing a genuine

interest in my work. Our discussions, both on my thesis and on other areas were very fruitful to

me. I am very thankful to Professor Eytan Modiano for showing an interest in my work and being

in my thesis committee.

I am grateful to Professor Vincent Chan and Dr. Rick Barry for their advice, encouragements

and support. They both were major �gures during my studies.

Many other people have contributed to this thesis in various ways. Among them, I would like

to thank Professor Vahid Tarokh and the members of Networks and Mobile Systems Group at the

Laboratory for Computer Science.

The social and intellectual atmosphere of the Laboratory for Information and Decision Systems

was ideal for me. Many thanks to my friends, Ibrahim Abou-Faycal, Erik Anderson, Randy Berry,

Aaron Cohen, Diana Dabby, Anand Ganti, Angelia Geary, Shane Haas, Shan-Yuan Ho, Chung-

Yao Kao, George Kotsalis, Julius Kusuma, Mike Neely, Alex Wang, Edmund Yeh, Won Yoon

and Murtaza Zafer. But especially I would like to thank Thierry Klein, Hisham Kassab and

Masha Ishutkina for their invaluable fellowship. In addition I wish to thank Doris Inslee, Kathleen

O'Sullivan and Marilyn Pierce for making my life easier at MIT by taking care of the administrative

issues that came across my path.

I would like to thank Asu for her warmth, support and encouragement. I am also thankful

3

to my best friends in Boston, Oguz, Erdem, Alp, Cagri Etemoglu, Cagri Savran, Onur, Volkan,

Goksel, Tarkan, Murat and my cousin Baris with whom I shared a lot of fun.

Most importantly, I want to express my gratitude to my parents for their unconditional love

and always being there for me. They always believed in me and supported me with devotion to

pursue my dreams. This thesis is dedicated to them.

This research was partially sponsored by Lockheed Sanders under Grant QK9932, by DARPA

under Grants BX-7036 and BX-7276 and by NSF under Grant NCR-9702015.

4

Contents

1 Introduction 9

1.1 Network Architecture . 10

1.2 Electronic Packet Switching . 13

1.2.1 Basics . 13

1.2.2 Past Work and Our Contribution . 16

1.3 Optical Switches . 28

1.3.1 Wavelength Switch and OADM . 29

1.3.2 Our Contribution . 34

1.4 Summary of the Thesis . 35

2 Providing Service Guarantees over Single Crossbar Packet Switches 39

2.1 Problem Model . 40

2.1.1 De�nitions and Assumptions . 40

2.1.2 Fundamentals of Rate Reservation Based Scheduling 42

2.2 Rate Quantization . 45

2.2.1 Service Guarantees with the Plain Birkho�-von Neumann Approach 46

2.2.2 Rate Quantization . 53

2.3 Performance with Rate Quantization . 65

2.3.1 Performance Analysis with Speedup . 67

2.3.2 Implications . 75

2.3.3 Performance Analysis without Speedup . 81

2.4 Probabilistic Scheduling . 85

2.5 Conclusions and Future Work . 88

5

3 Isomorphism Between Crossbar Switch Schedulers and Clos Networks 91

3.1 Motivation . 91

3.2 Space Switching vs. Time Switching, Clos Network Analogy 92

3.3 Non-blocking Scheduling for Crossbar Switches . 98

3.3.1 Slepian Duguid Theorem and Non-blocking Scheduling for Crossbar Switches 99

3.3.2 Strictly Non-blocking Scheduling for Single Crossbar Switches 104

3.4 Conclusions . 105

4 Multicast Support over a Single Crossbar Switch 107

4.1 Introduction . 107

4.2 Model and Fundamentals . 108

4.3 Multicast Support is not Possible without Speedup 110

4.4 Strictly Non-blocking Scheduling for Multicast Rates 112

4.5 Conclusions . 113

5 Multistage Switch Architectures with Quality of Service and Multicast Support115

5.1 Introduction and Motivation . 115

5.2 De�nitions and Model . 118

5.2.1 An Algebra for Multistage Interconnections without Internal Queueing 118

5.2.2 Tra�c Contracts . 125

5.3 Internal Bu�ers and Supportable Rates . 128

5.3.1 An Example . 129

5.3.2 In�nitely Divisible Tra�c Model . 132

5.4 Routing and Scheduling of Flows . 138

5.4.1 The Two Stage Cyclic Shift Architecture and Supportable Rates 138

5.4.2 Multicast Support . 139

5.4.3 Benes Architecture . 142

5.4.4 Cascaded Banyan Networks . 146

5.5 Routing Cells on Multiple Paths - Full Division . 150

5.5.1 Cascaded Cyclic Shift Interconnections . 150

5.5.2 Cascaded Banyan Networks . 169

5.6 Routing Cells on Multiple Paths - Partial Division 172

6

5.6.1 The Algorithm . 173

5.6.2 Performance . 179

5.7 Summary and Conclusions . 182

6 Providing Service Guarantees over Optical Switches 185

6.1 Introduction . 185

6.1.1 Wavelength Switches . 185

6.1.2 Problem Statement . 187

6.2 Rate Guarantees over Optical Switches - An Example 188

6.3 Rate Guarantees over Non-blocking Wavelength Switches 193

6.3.1 Wavelength Assignment and E�ciency . 194

6.3.2 Strictly Non-blocking Wavelength Assignment 195

6.3.3 Moving Optical Switching Closer to the End Users 197

6.4 Rate Guarantees over Blocking Wavelength Switches 199

6.5 Summary and Future Extensions . 207

7 Conclusions 211

7.1 Summary . 211

7.2 Further Directions . 214

A Theory of Majorization: De�nitions 219

A.1 Majorization . 219

A.2 Order Symmetry . 220

A.3 Alternate De�nition for Majorization . 220

B Theorems on Majorization 221

B.1 Kemperman's Theorem . 221

B.2 Day's Theorem . 221

B.3 Fulkerson and Ryser's Lemma . 222

C Rate Quantization Algorithm with Random Processing Order 223

Bibliography 235

7

Chapter 1

Introduction

While the Internet has served as a vehicle for research and education for more than a decade,

recent years have witnessed its tremendous growth and great potential to provide a wide variety of

services. By any measure, this growth is remarkable on all fronts: the number of hosts, the number

of users, the amount of tra�c, the number of links, or the growth rates of Internet Service Provider

(ISP) networks. It is predicted that Internet tra�c will continue to grow at high rates, although

probably not as high as predicted one or two years ago. There had been some overestimation for

the need for high rate applications, and this induced a sudden and unorganized growth. Hence, we

may not experience further growth in the short term due to the slowdown in the economy caused

by this overexpansion, but we expect recovery in the long run. Regardless of the condition of

�nancial markets ([1]), the Internet is widely considered as the most reachable platform for the

next-generation information infrastructure.

One challenge to the success of the Internet lies in the deployment of very high speed packet

switches (IP, ATM, Gigabit Ethernet or Frame Relay) to meet the growth of multimedia and data

tra�c. Coupled with these high rates, there is a great demand for the Internet to provide quality

of service (QoS) guarantees for a wide variety of applications that will be part of our lives in this

century. Hence, there is an urgent need for the design of scalable and high speed switches/routers

that can provide QoS guarantees, e.g., bounded delay.

Similarly, networks that multiplex thousands of sessions and provide transport to them at

the backbone transport networks have steadily grown more complex as a consequence of more

sophisticated customer needs, the rate of tra�c growth and the conditions imposed by external

markets. Traditionally, transport has been viewed just as a data carrier. Tied with the emergence

9

of QoS tra�c, there is a need for availability and automated provisioning within the backbone

network.

In most current networks, the dominant technology in the backbone network is optical technol-

ogy. Even though the optical layer has the potential to provide very high bandwidths, it is not as

agile as the electronic layer. That is, resource assignments/reservations must be made for longer

durations of time and larger chunks of data, and it is not possible to make updates as frequently as

in electronic networks. Given this limitation, an important challenge is to have the optical network

provide the services desired by the users sharing the resources, and at the same time harness the

bandwidth in an e�cient manner. How quickly these services can be provided and how e�ciently

those services can be supported will be key di�erentiators for future optical networks. This chal-

lenge is not just technological. It also involves consideration of network architecture and algorithm

design issues.

Also, with increasing rates, bringing optical transport services closer to the high end customer

appears to be economically attractive; as optical transport gets closer to the customer, the value

of providing optical services that better match the customer application increases.

In this thesis, we focus on a number of fundamental issues concerning the quality of service

provided by electronic and optical switches. We discuss various mechanisms that enable the support

of quality of service requirements: In particular, we explore fundamental limitations of current high

speed packet switches and we develop new techniques and architectures that make possible the

provision of certain service guarantees. We, then study optical wavelength switches and illustrate

how similar ideas can be applied in a manner consistent with the current state of optical switching

technology.

The rest of this chapter is organized as follows. First, we give an overview of the architecture of

current networks. Next, we present an introduction to electronic and optical switching technology.

In the sections following that, we discuss the issues to be treated later in the thesis. We wrap up

with a summary of this thesis.

1.1 Network Architecture

The architecture of a typical wide area network is as illustrated in Fig. 1-1. There are multiple levels

of aggregation and switching. The end users lie at the periphery, where the �rst level of tra�c

aggregation and routing is performed. That is, the tra�c generated by end users is collected,

10

combined and transferred over the links toward its destination. Closer to the backbone, speeds and

the level of aggregation grow. The second level of aggregation and transport of massive amounts

of data is performed at the backbone, where most of the switching is in optical domain. Thus, the

optical network can be considered as a functional layer providing certain services to the electronic

network, which lies above it hierarchically.

Actually, this illustration of the network architecture is rather simplistic. In general, there is no

sharp transition between these layers and technologies. Almost all of the optical switches have some

electronic processing. Namely, some portion of the optical signal is dropped by means of add drop

multiplexers, processed electronically, and added back to optical �bers. Also, most of the routers

have some optical processing. Therefore, in practice it is very hard to make the separation between

an optical and an electronic switch. There are two reasons why we make this distinction. First,

we will treat electronic switching and optical switching separately. Second, the optical switches we

consider will be all-optical , i.e., no opto-electronic conversion and electronic processing.

The �rst level of aggregation is done at the edge. Data and real-time tra�c generated by the

end users injected into the core is very bursty and hence its dynamics vary in short time scales (e.g.,

few milliseconds). For a more detailed treatment of the characterization of multiscale multimedia

and data tra�c, see [42] and [43] respectively.

A router is of critical importance since it forms a bridge between the end users and the optical

network. It provides quality of service that end user applications desire, and it multiplexes incoming

tra�c into optical channels to be transferred to the optical network. We assume electronic switching

at the router level, but the rates go up to optical channel rates (i.e., transmission may be optical)

and the switch sizes need to be large. There are many technical issues to be considered in such high

speed routers. We will discuss the technological limitations of these routers and study di�erent

ways of providing service guarantees.

Transfer between routers are made either over a direct link, if one exists, or through optical

switches. Optical switches can handle multiple optical channels simultaneously by Wavelength

Division Multiplexing (WDM) technology. The principle of WDM is as follows. Since the rates at

the router level go as high as optical channels, the signal at each output link of a router can be

associated with a speci�c optical wavelength. Then these links are multiplexed on to the same �ber,

and they are routed through the optical network by means of their wavelengths, without necessarily

being opto-electronically converted, demultiplexed, and electronically routed. This concept allows

11

multiplexer

multiplexer

multiplexer

CORE

BACKBONE

LAN/ISP

optical

optical

optical

switch

switch

switch

voice

LAN

LAN

multiplexer

USERS
END

USERS
END

USERS
END

cache
disk /

router
router

router

router

router

router

router

Figure 1-1: Structure of the entire network is illustrated. At the high order backbone lie the
optical switches; the tra�c generated by di�erent applications are multiplexed and transferred to
their ultimate destinations through a network of routers and optical switches in the core.

12

the realization of all-optical routers, which can handle manyWDM channels simultaneously without

the need for very high-speed electronics.

Having an all-optical WDM layer will enable a huge amount of \through" tra�c to be switched

in the optical domain. As a result, this layer can not only eliminate electronic bottlenecks, but also

create high speed communication pipes that are transparent to bit rate and signal format. Namely,

end to end optical paths with no electronic conversion are set up between sources and destinations

(e.g., routers) via optical wavelength switches. Such paths are also known as lightpaths. As viewed

by routers, lightpaths act as dedicated links that connect them with other routers. They want

these lightpaths to be set up, and resource assignments to be updated in an on-demand basis as

the tra�c requirements of the end users change. Therefore, within the backbone there is a need

for automated provisioning, a feature which current optical switches lack. The structure of optical

switches and how rate guarantees can be provided by them will be studied later in this thesis.

1.2 Electronic Packet Switching

In this section, we present an introduction to packet switching. We give a basic model for packet

switches, and then we brie
y discuss what we will be studying in this thesis. We also provide a

literature survey.

1.2.1 Basics

Consider a link with a constant transmission capacity that is shared by a number of users to

transmit data. In old telephone networks, data at each input link was broken into frames of equal

size. If transmission capacity is shared according to a prespeci�ed format which repeats in each

frame, the system is called Time Division Multiplexed (TDM) and the (�xed) capacity assigned to

a user is called a circuit.

In a network, multiple links are interconnected by means of switches. A switch is a device with

a number of input and output links, and its job is to move data from the input links to the output

links. A set of connections between input-output pairs of a switch at a speci�c point in time is

called a con�guration. In all the switches we will consider, input and output links have identical

capacity. If the link capacities are shared in a TDM manner, the switch is called a circuit switch.

The position of a circuit in a frame determines the output link to which this circuit is transferred;

hence, no extra overhead containing routing information is necessary. Note that TDM is not the

13

21

3

2

1

3
Figure 1-2: A 3 � 3 crossbar fabric. Crosspoints are set to connect the lines to enable end to
end connections. For instance, input 1 and output 2 are connected through the corresponding
crosspoint.

only alternative for circuit switching. For instance, in a wavelength switch, the output port and

the output wavelength to which an incoming signal is routed at any given time is determined solely

based on the input wavelength and input port carrying the signal. Accordingly, wavelength routing

can be considered as a form of circuit switching.

Circuit switching is ideal for voice tra�c since voice requires constant rate and a typical con-

nection lasts for a long time. On the other hand, since the circuits are held �xed for long time

periods, circuit switching may not be appropriate for data and multimedia applications due to their

bursty nature. The long lasting rate assignment of circuit switching can be avoided by labeling each

segment of data with routing information using a header. These segments are known as packets.

Since each packet has routing information included, there is no need for a prior circuit assignment.

Since resources are not necessarily reserved beforehand as in circuit switching, there is the necessity

for queueing to avoid loss of data. Interconnection of packet multiplexed links is done by packet

switches.

The core of a packet switch is composed of a switch fabric and memory elements. The function

of the fabric is to set up connections between the input and the output links. A very important

class of fabrics is the non-blocking class. A fabric is non-blocking if a connection can always be set

up between any free input link and any free output link. A link is free if it is not a part of any

existing connection. The most popular non-blocking fabric is the crossbar. A crossbar fabric can

be thought of as a set of lines, and crosspoints that connect these lines. In general, connections

14

between inputs and outputs are made synchronously in a crossbar as illustrated in Fig. 1-2. Hence,

packets are fragmented at the input of crossbar switches into equal size cells that are transferred

to the output side synchronously. The most important limitation of a crossbar is the so called

\crossbar constraint:" At any point in time, only one input can be matched with a given output,

and only one output can be matched with a given input1. For example, in Fig. 1-2, the �rst input

is connected to the second output and hence no other connection can be made from the �rst input

or to the second output. Note that the condition for non-blocking is more general in that it allows

more than one input to be matched with an output and more than one output to match with an

input.

In a packet switch, packets that are destined for the same output link may arrive simultaneously

at various input links. Some switches (e.g., crossbar switches) may only be able to immediately

transfer one of these contending packets to the destined output link; the others must be enqueued

for later transmissions. This form of congestion is unavoidable in a packet switch and dealing with

it often represents the greatest source of complexity in the switch architecture.

There are di�erent queueing schemes which provide ways to bu�er the incoming packets. De-

pending on the physical location of the queues, switches can be classi�ed as output queued (OQ),

input queued (IQ) or combined input and output queued (CIOQ). Today, most of the deployed

commercial switches and routers employ output queueing, i.e., all of the queueing is done at the

output side of the fabric and no storage is present at the input. Thus, every packet must be placed

directly into its desired output queue upon arrival. Since packets destined for the same output link

may arrive simultaneously from many input ports, each output bu�er needs to enqueue tra�c at

a higher rate than the line rate. In particular, the rate required inside the fabric is proportional

to both the number of ports and the line rate. Output bu�ering has long been considered an ideal

way of constructing packet switched devices because of its theoretical performance: Output queued

switches can send out packets in any order after they arrive at the inputs, so that OQ switch can

provide the QoS of a multiplexer. Hence, an ideal OQ switch equipped with in�nite bu�er space

can be work conserving under any tra�c pattern (arrival process). For a switch, work conserving

means that, at any point in time, if there exists a packet destined to an output link, then that

output link is busy transmitting some packet at that time. However, with ever increasing link rates,

it is simply no longer possible to �nd random access memories (RAMs) with su�ciently fast access

1Note that this constraint assumes that a crossbar does not have broadcast capability. We will also deal with
crossbars with broadcast capability later in this thesis.

15

times to build OQ switches. Hence, an OQ switch gets more and more unfeasible as the switch

sizes increase, i.e., it is not scalable.

Input queueing does not have the scaling limitations of output queueing. In the input queueing

architecture, the fabric can run at a single line rate with one read and one write operation per

incoming packet. However, an input bu�ered architecture also presents some technical di�culties

due to the limitations of the fabrics, such as the crossbar constraint. Input bu�ered architectures

are employed in many high speed applications, e.g., [5]-[9].

Combined Input and Output Queueing is a good compromise between the performance and

scalability of both output and input queued switches. For input queued switches, at most one

packet need be delivered to an output port in one unit of time, and for an output queued switch,

up to N packets need to be delivered to an output in the same amount of time. Using CIOQ,

instead of choosing one of these two extreme choices, we can choose a reasonable value in between

1 and N . This can be achieved by having bu�ers at both the input and output ports.

1.2.2 Past Work and Our Contribution

In this section, we discuss the following topics: Providing service guarantees over single crossbar

packet switches, isomorphism between crossbar switch schedulers and Clos networks, multicast

support, and multistage switches. For each of these sections we �rst give an introduction to the

topic, then the previous literature, and then an outline of our contributions.

Providing Service Guarantees over Single Crossbar Packet Switches

In high speed switches and routers, to achieve high performance, an incoming packet is usually

fragmented into equal size cells. We de�ne a time slot as the time it takes for one cell to be

transmitted over an input or an output link (it is also referred to as the cell slot in the literature),

i.e., each input receives at most one cell and each output transmits at most one cell in a time

slot. These cells are dispatched to the outputs in a manner synchronous across input lines. Let

us de�ne service slot as the time it takes one cell to be transferred from an input to an output of

the crossbar. We view the time over which a crossbar switches from one con�guration to another

as included in the service slot. Note that a service slot is not necessarily identical to a time slot.

For instance, the crossbar may transfer S; S > 1 cells per time slot. The factor, S, represents the

16

amount of resource speedup where S is not constrained to be an integer. Hence,

service slot =
time slot

speedup
(1.1)

Since more than one cell can be forwarded to the same output port, switches with speedup must

have bu�ers at the output. If the crossbar operates with a speedup of S, all the memory elements

must be able to operate S times as fast as the links. Note that all of the results we present will be

for a switch of size N �N but we believe that generalization to an asymmetric (N �M;N 6= M)

switch is straightforward.

With the above de�nitions, the crossbar constraint translates into the following: In a service

slot, each output can receive data from only one input and each input can send data to only one

output. This constraint makes it very di�cult to provide rate guarantees. Indeed, Karol et.al.

[10] showed that when there is a single FIFO queue at each input, the throughput2 of a switch

for large N is limited to 58.6% for uniform random arrivals3 of input tra�c. This degradation of

throughput is due to head-of-the-line (HOL) blocking. HOL blocking is caused by the situation

in which multiple inputs each containing a cell at the head of its queue are destined to the same

output. Since only one of them can use the crossbar in a time slot, all the others have to wait even

if they have cells in their queues that are destined to idle outputs.

One brute force approach to battle HOL blocking is to introduce some speedup. There have

been a number of studies (see e.g., [11]) that show that the performance of a crossbar switch can

be improved remarkably with some constant speedup. However, all these studies assume a certain

(simplistic) statistic for the arrival processes in order to deal with average delay and throughput

guarantees. Thus, they lack generality.

Another way of eliminating HOL blocking is to change the queueing structure at the input.

Instead of keeping all the packets in a FIFO queue, a separate queue can be maintained for each

source-destination pair as illustrated in Fig. 1-3. This eliminates HOL blocking. This scheme

is known as virtual output queueing (VOQ). This queueing scheme overcomes the HOL blocking

associated with FIFO input queueing while keeping its scalability advantage.

One key factor in achieving high performance using VOQ switches is the scheduling algorithm

2Throughput is de�ned to be the average fraction of time that any given output is busy sending packets down the
output line.

3Arrivals at each input are independent identically distributed (IID) and the destination of each packet is uniformly
distributed over all outputs.

17

...

...

Q1,1

Q1,N

QN,1

N,NQ

A1,1
A1

.

.

.
AN

Crossbar

N x N

.

.

.

...
.

.

.

D1

DN

Figure 1-3: The switch keeps a per-output queue at each of its inputs. Service opportunities are
provided to a packet at the head of any one of the per-output queues.

that is responsible for the selection of packets to be transmitted from the input links to the output

links in each service slot. The VOQ switch architecture is receiving much attention from the research

community, and many commercial and experimental switches based on this technique have already

been built.

There have been two fundamentally di�erent approaches to this scheduling problem depending

on the level at which the scheduling is done: cell scheduling and rate reservation based scheduling.

Before we study these approaches, we believe that it is important to discuss the two major alterna-

tives for the service agreement between users and a switch: connection oriented or connectionless,

since each one of these approaches to the scheduling problem is suitable for only one type of service

agreement. Note that we are dealing with switches that handle multiple (e.g., thousands at the

router level) end to end sessions between each input output pair. We study service guarantees

between input output pairs in a switch, and we call these agreements between the switch and a

group of users that share the same input output pair, a contract . Basically, a contract is de�ned

as a set of unicast rates as given in the following two paragraphs.

A connection oriented contract has a duration (in number of time slots) associated with it.

Also, the number of cells to be transferred within the lifetime of the contract is speci�ed. If a

18

1 1

 3

1
2
3

1

3

2

1

Request Graph

Figure 1-4: A typical request graph is illustrated. Edges are assigned priorities (possibly identical)
that are functions of the state of the system. Then a connect graph is found according to these
priorities subject to the crossbar constraint.

switch is dealing exclusively with connection oriented contracts, a rate, Rij , can be associated with

the input-output pair (i; j) as the ratio of the number of cells to be transferred between the pair

to the lifetime of the contract. Hence, Rij takes on values from the set [0; 1]. Note that it is only

with connection oriented service that rate reservation based scheduling algorithms can be developed

since, as shall be discussed, such algorithms require the prior knowledge of the desired rates between

I-O pairs. In connection oriented contracts, an admission controller makes sure that no input or

output link is oversubscribed, i.e.,
P

iRij 6 1 for all j and
P

j Rij 6 1 for all i. Succinctly, we can

represent each Rij as the (i; j) entry of a matrix, R. The two admission control inequalities imply

that R is a doubly sub-stochastic matrix.

In connectionless service, no rates are speci�ed by the users. Congestion avoidance and control

mechanisms are necessary to prevent bu�ers inside the network from over
owing. As shall be

apparent, cell scheduling is an appropriate alternative for connectionless service.

In the approaches based on cell scheduling ([5]-[8], [18]-[22]), the problem of �nding the appro-

priate connections between the inputs and the outputs of a crossbar is posed as a matching problem

in a bipartite graph. Every service slot, a request graph is generated as illustrated in Fig. 1-4.

A request graph is composed of the edges, one for each non-empty VOQ. A scheduling algorithm

chooses which edges shall be used for transmission of cells in the service slot. Edges are assigned

priorities (possibly identical) that are functions of the state of the system. They are updated every

time slot and the new matching which maximizes some objective function is found subject to the

19

crossbar constraint. The objective may be achieving a stable marriage match ([5], [18]), achieving

a maximal match ([19], [22]) or maximizing the sum of edge weights which are in the connect graph

([6], [7]). The edge weights (for a VOQ) are usually chosen to be the queue size ([5]-[7]), the delay

experienced by the packet at the head of the queue ([5], [7]) or even identical edge weights.

Cell scheduling algorithms tend to be aggressive in the sense that they look for some useful

matching at each slot. Therefore, they adapt to some extent to dynamically varying tra�c patterns.

They rely on congestion avoidance and control to avoid bu�er over
ow, and most of them depend

on the use of tra�c shapers for fairness4. Other than for admission control purposes, they do

not require any apriori information about the arrival processes. It was shown ([7]) that 100%

throughput can be achieved with VOQ switches for all possible cell arrival processes in which all

the input links are fully utilized, and no output link is oversubscribed. It has also been shown that

when a VOQ crossbar has a speedup of 2, certain QoS guarantees can be achieved ([18], [19], [5]).

There are two di�erent types of delay at the input of a packet switch. The �rst is due to the

randomness in the packet arrival process. This kind of delay is unavoidable and queue sizes depend

on how bursty the arrival processes are. The second is due to the imperfections of the schedulers

used in the switches. For instance, a switch that provides connection oriented service is responsible

for providing the desired number of service opportunities speci�ed in the contract between each

I-O pair. If the lifetime of the contract is T , then the switch will go through ST con�gurations

and at least TRij of them should connect input i to output j for the terms of the contract to be

met. We call such a schedule of con�gurations, a switch schedule. Switch schedules for connection

oriented services are generated by rate reservation (RR) based scheduling algorithms. Suppose, for

some switch schedule, the switch goes through con�gurations such that input i and output j are

connected for Dij(t) time slots, by time t 6 T . We call the di�erence, tRij �Dij(t), the service lag

for I-O pair (i; j) at time t.

Note that service lag is directly tied with delay. Indeed, for an I-O pair

maximum cell delay =
maximum service lag

rate
(1.2)

This can be shown as follows. Suppose the maximum service lag for I-O pair (i; j) is L, i.e.,

tRij�Dij(t) 6 L for all t. If there is a rate controller at the input of the switch, then Aij(t) 6 tRij

for all t where Aij(t) is the number of (i; j) cell arrivals. This implies that Aij(t) � Dij(t) 6 L

4In almost all of cell scheduling algorithms, bursty
ows hurt non-bursty
ows without tra�c shaping.

20

for all t. Hence, the number of (i; j) cells in the switch does not exceed L. Therefore, the delay

experienced by a cell cannot exceed L=Rij ; otherwise more than L (i; j) cells accumulate in the

switch.

Rate reservation based algorithms were originally proposed for circuit switches in traditional

voice networks to provide constant bit rate (CBR) guarantees for voice tra�c that is rather static

in nature. In that case, rate is reserved for very long durations. This kind of switching is also

known as multirate circuit switching if desired rates between input output pairs (I-O pairs) are

picked from a set of possible rates (e.g., certain fractions of link capacity rather than f0; 1g as in

full circuit switching).

Several statistics and forecasts have already been reported in the literature comparing the

evolution of data tra�c to that of traditional telephone tra�c. As usual, such predictions can

fail in the details; however, it is clear that data tra�c will play a dominant role in the future of

telecommunications. Thus, the challenge here is that to provide service guarantees not only over

the long term but also for the much shorter time scales of more dynamic and bursty data and

multimedia tra�c since the service requirements change fairly quickly with such sources.

Another reason why it may be desirable to keep a contract short is that the quality of service

is better with shorter contracts. Let us clarify this statement. Consider a contract with in�nite

duration. For a switch to meet the terms of the contract, it is su�cient that the service lag remains

bounded: If tRij �Dij(t) is bounded over all t and all (i; j), then

lim
t!1

Dij(t)

t
= Rij

and the rates desired between all the pairs are met successfully even if tRij �Dij(t) may be very

large. For instance, the switch may provide no service opportunities to some I-O pair for a long

time, and provide a bunch of opportunities in a burst and still be able to meet the rate requirement

for that pair. On the other hand, for contracts with short durations, it is not su�cient that the

service lag be bounded for all I-O pairs. It is also necessary that the bound be small for satisfactory

service quality. The switch cannot wait for a long time to start providing service opportunities since

the contract duration is short. The opportunities need to be provided smoothly (i.e., small service

lag) for satisfactory quality of service with short contracts. For this reason, even for voice tra�c,

for which the QoS requirements do not change rapidly, shorter contracts are desirable since voice

applications are delay sensitive.

21

A number of RR based scheduling algorithms have been proposed to provide guaranteed perfor-

mance over shorter time scales. An early approach which is called the parallel iterative matching

(PIM) algorithm was presented in [12]. The algorithm is complicated, and limited in its application.

Later, weighted probabilistic iterative matching (WPIM) was proposed in [13]. This is simpler than

PIM and allows
exible allocation of rate among di�erent links. However, both PIM and WPIM

can provide probabilistic guarantees only. Indeed, the service lag is not necessarily upper bounded

with these algorithms.

The BATCH-TSA algorithm proposed in [14] is a RR based scheduling algorithm that guar-

antees bounded service lag. The algorithm treats the switch as a time division multiple access

(TDMA) network and the problem of providing rate guarantees is translated into the time slot

assignment problem. Each
ow is �rst stored in a queue for a period, say T time slots. If at

most T packets arrive at each input and at most T packets are destined to each output in the �rst

time period, it was shown that all these packets can be transmitted in the next period. The idling

weighted round robin (WRR) algorithm [14] is fundamentally the same as BATCH-TSA but the

method in which the packets are scheduled within a frame is di�erent. In both of these approaches,

the frame size is initially chosen by the algorithm. A large frame size implies a large service lag,

while a small frame size implies the set of rates for which the switch can provide bounded service

lag is very limited. As a result, these algorithms fail to provide uniform service guarantees for all

non-uniform tra�c.

A more general approach to RR based scheduling is the Birkho�-von Neumann decomposition

([15], [16]). We will consider some of the details of this approach later in this thesis. This approach

eliminates the problem of choosing the frame size and provides uniform service guarantees for all

admissible tra�c. However, bounds on the service lag can be very high, and as we shall show, these

bounds are tight. Therefore, a higher (possibly much higher) rate than the long term average rate

of a bursty, delay sensitive tra�c stream must be allocated in order to satisfy its delay requirement.

As a result, for variable bit rate data and multimedia sources, the Birkho�-von Neumann approach

may not be satisfactory.

In Chapter 2, we study the fundamental properties of reservation based scheduling. We present

some examples to show that the bounds given in [15] for the service lag are indeed tight. Then we

discuss how to use speedup to improve the quality of rate guarantees for them to be suitable for

variable bit rate sources. We introduce rate quantization, and propose an algorithm for e�cient rate

22

quantization. Basically, rate quantization converts the set of desired rates into a certain discrete

set which can then be used as an input to a RR based scheduling algorithm. We will show that for

an N �N switch, along with some (small) speedup, rate quantization improves the service lag by

a factor of order O(N) even with simple schedulers.

Rate quantization also guarantees the presence of certain points in time where the service

lag is non-positive for all I-O pairs simultaneously. Such events occur frequently enough to enable

synchronous short term service provisioning (rate updates occur simultaneously), which is of critical

importance for multimedia and other data sources. We also show that, rate quantization makes

it possible to update rates asynchronously without rerunning the entire decomposition algorithm.

Without rate quantization, the scheduler must generate the entire schedule before the switch can

con�gure the �rst connection.

We will also show that the complexity of the scheduler is signi�cantly reduced by rate quanti-

zation. Moreover, our scheduler and the switch can operate simultaneously; thus the complexity is

spread over a long time period, rather than being incurred as a one time cost.

As an insight into rate quantization, consider the following simple example. Suppose a link

is shared by three users, U1; U2 and U3, each of which has packets to be transmitted. Let every

packet have identical size, and the link capacity be 1 packet/second. Users also specify weights,

wi; i 6 3, which signify the fraction of the link capacity needed for user i. Consider the case where

w1 = 0:53; w2 = 0:17; w3 = 0:3. The link can transmit only one packet a second, starting at time

t = 0. Let Di(t) be the number of (full) packets served for user i by time t. Since

3X
i=1

Di(t) = btc

regardless of the scheduler used, there will always be some user, i, for which Di(t) < wit for all

t < 100. That is, there exists a user for which the service lag (wit�Di(t)) is positive for all t < 100.

Now, suppose we expand the link capacity so that 11 packets can be transmitted every 10

seconds. If in the �rst 10 seconds, U1; U2 and U3 are given 6, 2 and 3 service opportunities

respectively, then at the end of 10th second, Di(10) > 10wi, for all i. We can repeat the schedule

to have this property once every 10 seconds. In the �rst scenario, if the users made a contract

for some period of time less than 100 seconds, the link would not be able to meet the terms of at

least one contract. With rate expansion, this period is cut down to 10 seconds. This enables the

users to update the terms (e.g., the rate) of their contracts more frequently, and thus a larger set

23

of sources (e.g., bursty sources whose statistics vary in shorter time scales) can be accommodated.

In the case of a crossbar switch, we will show how to divide some given extra capacity (speedup)

among the I-O pairs to achieve a similar improvement.

In the switches we consider, we assume that there are rate controllers at the input of the switch

for tra�c policing (the rate controllers can be present either explicitly as a separate unit, just like

admission controllers, or the schedulers may inherently function as rate controllers without the

need for separate units). This con�nes the variations of the tra�c at the input queues of the switch

so that the impact of these variations does not propagate to the output. In that sense these rate

controllers act as a tra�c shaper in a switching network.

Isomorphism between Crossbar Switch Schedulers and Clos Networks

As described in the previous section, chapter 2 discusses service guarantees for connection based

service contracts. There a contract is de�ned as a set of unicast rates and a duration that represents

the lifetime of the contract. Once a contract matures, i.e., at the end of its lifetime, another one

with a new duration and set of rates are negotiated. The switch has to calculate a new schedule,

and crossbar con�gurations are set according to the new schedule.

In chapter 3, we �rst show that there is a one to one correspondence between the service provided

by a crossbar that alternates over a number of con�gurations in a time division multiplexed (TDM)

manner and that by a three stage Clos network composed of crossbars that have �xed con�gurations.

We study the Slepian-Duguid algorithm originally developed for Clos networks (see [37] for an

in depth treatment). With this algorithm rate updates can be made with minimal modi�cation to

the existing schedule in a simple and e�cient way. We show that rate quantization is necessary

for this approach to be successfully implemented, and discuss certain trade-o�s. Then, we evaluate

the necessary speedup that enables single crossbar switches to schedule contracts independently

of each other. Our purpose is to accommodate rate updates of an I-O pair without changing the

existing schedule of con�gurations. The main motivation for such an e�ort can be given as follows.

For a switch of size N �N , there are N2 input output (I-O) pairs. In practice, the desired rates

between di�erent I-O pairs may change independently of each other. Suppose each I-O pair updates

its rate every T units of time on the average independently of other I-O pairs. This corresponds to

N2=T changes per unit time. This has a signi�cant impact on the implementation complexity of

the scheduling algorithms. Indeed, if rates are updated one at a time, even with rate quantization,

24

a given set of rates must be kept for about N time slots for satisfactory service quality with the

type of schedulers we introduce. This corresponds to O(N3) time slots for maturity of an individual

contract.

Multicast Support over a Single Crossbar Switch

In chapter 4, we study multicast support over crossbar switches. Many applications and tra�c

sources may ask for the same information to be sent to multiple points in the network, a situation

called multicast. An increasing proportion of tra�c on the Internet is multicast. Instead of packets

being duplicated with a separate copy sent to each destination, the source should send a single

packet to a multicast address. The network, then should form a multicast tree so that the packet

can be sent to its appropriate destination in a more e�cient manner. This requires the switches and

the routers in the network to have the capability of copying a packet in an input link onto multiple

output links. While multicast is not supported by many of the routers in the Internet, wide area

multicast is made available via the Multicast backbone (Mbone), [32], [33]. The Mbone is a logical

internet layered over the top of the current Internet. It consists of multicast-enabled routers that

tunnel to each other through the existing Internet. Regular routers between two multicast enabled

routers process only unicast headers and never have to worry about multicast addresses.

One trivial solution to multicast support is implemented by duplicating multicast packets upon

arrival to a switch and treating each one as a separate unicast packet. However, higher throughput

can be attained if we take advantage of the natural multicast properties of switching fabrics. For

instance, the crossbar can easily copy one input cell to any number of outputs for which there is no

con
ict in a single cell time5. In Fig. 1-5, crosspoints (1,1) and (1,2) are connected. This enables

the crossbar to copy the same cell at the �rst input link onto outputs 1 and 2 simultaneously rather

than being sent at di�erent times.

A number of di�erent architectures and implementations have been proposed for multicast

switches (see e.g., [4], [34]). Algorithms used in all of these implementations are based on cell

scheduling rather than rate reservation. Due to the complicated nature of the multicast tra�c,

it is very hard to quantify the quality of service provided. All of these past papers focus on

speci�c examples and present simulations that illustrate the performance for these examples. To

our knowledge, there are no rate reservation based scheduling algorithms developed in the context

5Earlier, we stated the crossbar constraint such that a crossbar was incapable of making broadcast connections.
In this part, we will get rid of that condition and adapt a broadcast enabled version of the crossbar constraint.

25

321

3

1

2

Figure 1-5: Crosspoints (1,1) and (1,2) are connected. This enables the crossbar to copy the same
packet at the �rst input link onto outputs 1 and 2 simultaneously.

of multicast.

In this chapter, we assume a crossbar is capable of connecting an input to multiple outputs

simultaneously. We call such crossbars to be broadcast enabled . We will show that, even with

broadcast enabled crossbars, support of multicast rates is not possible without speedup. That is,

even if the crossbar is capable of sending a copy of a cell to multiple outputs simultaneously, in the

presence of multicast multirate connection requirements, the switch may be unable to provide the

desired rates between its inputs and outputs. Indeed, we will show that, to support all admissible

multicast tra�c, some speedup is necessary, We then derive this necessary speedup. We then

present other switch architectures that are capable of providing rate guarantees for all admissible

multicast rates.

Multistage Switches

Despite the di�erence in their approaches to the problem of providing quality of service, the switch

model considered in a majority of papers in the literature is almost identical: A single crossbar

fabric and input and output bu�ers running as fast as the fabric6. This model is common to almost

all the papers published in this literature.

The main limitation of the schedulers in the classical architecture is the crossbar constraint.

Due to this constraint, at the input of a crossbar switch, a packet competes not only with other

packets that are destined to the same output, but also with those sharing the same input. Given

6Even with no speedup, bu�ers at the output is desired in general since one may want to control the delay jitter
of a
ow at an output link rather than possibly sending its packets in bursts.

26

that the connection fabric is a single crossbar, there is no way to avoid this constraint. In Chapters

2 and 3, we study such algorithms and associated complexities.

There are a number of studies on di�erent architectural choices as well. In a recent work by

Iyer et.al. [35], it is shown how to simply modify the classical architecture to make use of the extra

capacity of the links when the memories run slower than the line rate. The basic idea is to divide

each pipe into multiple, say k, pipes by means of demultiplexers and use k switches in the middle

stage before multiplexing packets into a single link again.

Another interesting modi�cation to the classical architecture is proposed by Stephens et.al.

[36] to overcome the contention between the cells sharing the same input. Instead of keeping the

virtual output queues at the input, they are pushed inside the crossbar next to their corresponding

crosspoints as illustrated in Fig. 1-6. For instance, the queue at input i that holds the packets

destined to output j is moved to the crosspoint, (i; j). When a packet arrives with an input-

output pair, it is directly forwarded inside the crossbar fabric, placed into the bu�er located at the

corresponding crosspoint. This way, multiple crosspoints in the same input (e.g., (i; j1); (i; j2); : : :)

can be connected simultaneously and an input can send packets simultaneously to di�erent outputs

since the queues are physically separate. Hence, packets with di�erent destinations do not contend

at the input for the crossbar, even though contention between packets destined to the same output

is still not eliminated. Each output can separately apply round robin scheduling between the

queues located at the crosspoints which connect the inputs to this output. The disadvantage of this

architecture is that it is drastically di�erent from the traditional crossbar and hard to manufacture.

Also, since the N2 bu�ers in an N �N crossbar are physically separate, the advantages associated

with statistical multiplexing are lost. Note that, in the regular VOQ scheme, we do not need to

keep a separate queue at each input to implement virtual output queueing. We view the queues

as linked lists, i.e., we can store all the cells arriving at an input in a single bu�er, and assign a

pointer to each cell to keep track of the output it is destined to.

Turner ([38]) considered the Benes architecture for packet switching, and showed that 100%

throughput can be achieved over a Benes architecture, given that the packets between an input-

output pair do not necessarily follow the same path. However, Turner did not focus on performance

issues, such as packet delay and queue sizing.

In Chapter 5, we present an in depth study of multistage switches. In the �rst section, we

develop the required mathematical tools, and using the intuition developed for the general structure

27

1

1

2

3

incoming
packets

2
packets

3

round
robin

outgoing

Figure 1-6: Virtual output queues are moved inside the fabric next to the corresponding crosspoints.
Incoming packets are placed into these queues upon arrival. Each output link can then indepen-
dently implement a round robin schedule among the those queues which have packets destined to
itself.

of multistage switches, we propose a number of architectures along with associated routing and

scheduling algorithms. In the second section, we will analyze the quality of service provided by

these algorithms. Our algorithms and architectures illustrate how the presence of multiple paths

between input output pairs can be exploited to improve the performance of a switch and simplify

the scheduling algorithms. Also, we show that some of our architectures are capable of providing

rate guarantees for all admissible multicast rates which would not be possible with a single stage

broadcast enabled crossbar switch.

1.3 Optical Switches

In Chapter 6, we study a number of issues concerning service guarantees over optical networks.

Most of our results are extensions of the results for electronic switches, but we need to account

for di�erent kinds of technological constraints in optical networking. To have a better grasp of

the challenges involved in the problem of QoS over optical networks, we need an understanding of

the current technologies and the structure of networks and internetworks. In the �rst part of this

28

added
channel

dropped
channel

OADM

Figure 1-7: An add drop multiplexer can selectively add or drop a speci�c wavelength without
opto-electronic conversion.

section, we present a brief introduction to wavelength switches and optical add-drop multiplexers

(OADMs).

1.3.1 Wavelength Switch and OADM

Recall that WDM is based on wavelength routing. High-speed data
ows, which consist of many

time-division multiplexed channels, are associated with speci�c optical wavelengths. These
ows

are routed through the optical network by means of their wavelengths, without necessarily being

opto-electronically converted, demultiplexed, and electronically routed.

One main feature of this kind of optical network lies in the possibility of performing these

operations directly in the optical domain without requiring costly high-speed electronic equipment.

Another feature is transparency, i.e., performing those functions independently of signal format.

Optical add-drop multiplexers (OADMs) and wavelength (selective) switches represent the key

elements that make all-optical networking possible.

A general scheme of an OADM is depicted in Fig. 1-7. It can selectively drop or add a speci�c

wavelength on a �ber to which it is connected. The other wavelengths are passed through, optically.

This optical node is characterized by several functionalities. For example, it could be rigid or
exible

in adding/dropping one or more �xed wavelengths.

Packets are transferred to the next router on the way to their destination either over a direct link,

if there exists one, or through optical switches. The transfer at the interface between wavelength

switch and electronic router is handled by means of optical add-drop multiplexers as illustrated in

Fig. 1-8.

A wavelength switch provides the possibility of routing individual channels coming from any of

29

wavelength
switch

wavelength
switch

wavelength
switch

router

dλOADMλ a

Figure 1-8: The transfer between the wavelength switches and the routers are taken care of by
optical add drop multiplexers.

its input ports to any output port according to their wavelengths. There are several architectures,

depending on whether the switch is rigid, rearrangable, or strictly non-blocking. The basic schemes

are shown in Figs. 1-9-1-12.

The simplest con�guration (Fig. 1-9) does not give any possibility of rearrangement, i.e., once

a con�guration is set, it cannot be changed unless the connections are modi�ed physically. A

rearrangable wavelength switch is depicted in Fig. 1-10, where a space division switching function

has been introduced using optical crossconnects (OXCs). An OXC is functionally identical to a

crossbar. The only di�erence is that an OXC is mainly based on opto-mechanical, acousto-optic,

thermo-optic, or micro-electro-mechanical (MEMs) technologies, which are currently too slow for

e�cient packet switching. In this second architecture (Fig. 1-10), a separate OXC is used for each

wavelength. Each wavelength of each input �ber can be routed to any output �ber not already using

that wavelength through one of the OXCs. On the other hand, if the wavelength is already being

used at the output �ber, the input cannot use it to set up a new connection. Thus, if an input and

an output do not have a common unused wavelength, even if they are not fully utilized (i.e., if they

are not carrying M wavelengths), a connection request cannot be met if the current wavelength

assignments and the crossconnect con�gurations are not rearranged. If they can be rearranged, it

30

.

.

.

.

.

.

λ1

λ2

λ1

λM-1

λ3

λ1

λMλM

λ2

D
em

ux M
ux1 1

D
em

ux M
ux

D
em

ux M
uxN N

2 2

Figure 1-9: The static wavelength switch. Con�guration cannot be rearranged.

can be shown that the switch given in Fig. 1-10 can meet a connection request between an input

and an output that are not fully utilized. This architecture is thus called rearrangably non-blocking.

Rearrangement of the wavelength assignments is not desirable since rearrangement in one wave-

length switch in a network induces a change in wavelength assignments of the others. To overcome

this, we can use wavelength translators in conjunction with a large OXC inside the optical node,

as shown in Fig. 1-11. This con�guration eliminates the constraint that the input output pair

must have a common unused wavelength to set up a connection. This architecture is strictly non-

blocking if M > N , i.e., a connection request between an input and an output pair can be met if

and only if both of them are not fully utilized. Therefore, it permits better wavelength reuse, but

adds signi�cant complexity to the routing node structure.

The wavelength switch given in Fig. 1-10 involves M OXCs each of which has a size of N �N .

To avoid large OXC which may be impractical, we can introduce blocking to a certain degree. An

example is illustrated in Fig. 1-12 for four nodes and 3 � 3 OXCs. The number of OXCs in this

scheme is larger than the number of wavelengths generated at each link. On the other hand, the

31

.

.

.

.

.

.
M

ux
M

ux 1

N

.

.

.

λ1 λ1

λ1 λ1optical
xconnect

M

optical
xconnect

1D
em

ux
D

em
ux

1

N

λ M

λ M λ M

λ M

Figure 1-10: The rearrangable wavelength switch architecture.

.

.

.

λ - converter

λ - converter

λ - converter

.

.

.

M
ux

M
ux 1

N

optical
xconnect

λ - converter

D
em

ux
D

em
ux

1

N
λ Mλ M

λ1

λ M

λ1 λ1

λ M

λ1

Figure 1-11: The strict sense non-blocking architecture employs an NM � NM OXC and NM
wavelength converters.

32

D
em

ux M
ux

D
em

ux

1

2

3

D
em

ux
D

em
ux M

ux
M

ux

1

2

3

M
ux

λ1

λ2

λ3

λ4

λ5

λ6

44

Figure 1-12: A blocking wavelength switch architecture. The size of the OXCs are smaller compared
to the rearrangable version.

complexity of each OXC is cut signi�cantly, and so is the overall crosspoint complexity. Crosspoint

complexity is an important metric since the price of an OXC is roughly proportional to this metric.

We will elaborate more on this architecture in this chapter.

Sone research has been carried out on the topic of photonic packet switching with the aim

of fully exploiting the optical technology characteristics and the advantages of packet switching.

Unfortunately, the technology for optical memory seems not yet mature enough to consider this

viable, at least in the short/medium term. Solutions based on optical packet switching cannot be

provided soon. One of the advantages of wavelength routing is that no optical bu�er (or opto-

electronic conversion of data) is needed at intermediate nodes.

33

1.3.2 Our Contribution

In Chapter 4, we consider two problems:

1. The �rst is how to support quality of service in the next generation optical Internet. Given

that most of the current networks provide only best e�ort service, but at the same time some

real-time applications require QoS support, it becomes apparent that for the optical Internet

to be truly ubiquitous, one must address, among other important issues, how the WDM layer

can provide basic QoS support. Even though a considerable amount of e�ort has been and is

still devoted to developing QoS schemes for packet switches not many people have taken into

account the properties of the WDM layer. Speci�cally, existing scheduling algorithms which

are based on packet switching mandate bu�ering to achieve service guarantees.

In Chapter 6, we will extend our previous results on rate reservation based scheduling algo-

rithms for the optical wavelength switches. We will take the limitations of the OXCs and

unavailability of optical memory technology into account, and modify the procedure we de-

veloped for crossbar switches to make them suitable for optical wavelength switches. First,

we consider a rearrangably non-blocking wavelength switch architecture, and evaluate the

number of OXCs and wavelengths necessary and show how to con�gure these OXCs to ac-

commodate certain tra�c requirements. Next, we will show that with an expansion in the

number of wavelengths (and hence the number of OXCs), the architecture given in 1-10 can

be made strictly non-blocking. That is, any change in the connection requirement between

input output (I-O) pairs can be accommodated without a need for the rearrangement of the

existing connections.

A promising direction for network evolution lies in the migration of most of the switching bur-

den into the optical domain from the electronics in order to exploit the huge �ber bandwidth.

It is becoming more and more attractive since the cost of optical switching is decreasing

with better technology and algorithms which enable more e�cient resource utilization. The

important question is how to manage the transformation from one technology to another.

We use the insights we gained from our study of non-blocking switches and consider the

following scenario. Suppose the rate of tra�c generated by some set of end users approach

optical wavelengths. We discuss how e�ciently these end users can bypass routers as il-

lustrated in Fig. 1-13, after deriving a relation between the the following parameters: the

34

amount of tra�c injected by end users, the number of routers connected to an optical switch

and e�ciency which we de�ne in this chapter.

2. Next, we consider the blocking architecture given in Fig. 1-12. We will study the rates

supportable by this architecture and illustrate certain trade-o�s involved. In particular, we

will study the relation between the number of wavelengths, number of OXCs and the region

of rates (between I-O pairs) that are supportable over this architecture: We will illustrate a

system, at the center of which is the blocking wavelength switch, and �nd the region of rates

that this system can support as a function of the number of OXCs in the switch.

1.4 Summary of the Thesis

In Chapter 2, we focus on service guarantees over a single crossbar switch. First, we give the

problem model, de�nitions and some properties of Birkho�'s decomposition. We show that the

bounds given in [15] for the delay and the delay jitter are indeed tight. Next, we discuss rate

quantization. We give the algorithm, our main theorem on rate quantization and its proof. Then,

we explain how to use rate quantization along with some speedup to improve the quality of rate

guarantees so as to be suitable for variable bit rate sources. Then, we present a performance analysis

for the single stage crossbar switch with rate quantization. We also give a probabilistic scheduling

scheme and talk about the associated performance issues. Finally, we give the conclusions and

possible future extensions.

In Chapter 3, we study scheduling for dynamically changing tra�c in single crossbar switches.

After giving some de�nitions, we �rst show that there is a one to one correspondence between the

service provided by a crossbar that alternates over a number of con�gurations in a time division

multiplexed (TDM) manner and that by a three stage Clos network composed of crossbars that

have �xed con�gurations. We, then use some well known properties of Clos networks to develop a

simple algorithm by which incremental scheduling updates can be made. Using the same model,

we evaluate the necessary speedup for independent scheduling of I-O pairs.

In Chapter 4, we show that a single crossbar switch cannot support multicast rates without

speedup even if it is capable of making multicast connections. Then, we derive the necessary

speedup for the support of multicast rates and independent scheduling of I-O pairs.

In Chapter 5, we present an in depth study of multistage switches. In the �rst part, we

develop some required mathematical tools. Using the intuition developed for the general structure

35

Router

Multiplexer

Data/Application

Wavelength
Switch

Figure 1-13: With increasing application rates, it becomes more and more feasible to move �bers
closer to the end users. If the amount of tra�c at some point in the edge grows to optical channel
rates, it starts to make sense to bypass routers.

36

of multistage switches, we propose a number of architectures along with associated routing and

scheduling algorithms. In the second part, we analyze the quality of service provided by these

algorithms. Our algorithms and architectures illustrate how the presence of multiple paths between

input output pairs can be exploited to improve the performance of a switch and simplify the

scheduling algorithms. We show that satisfactory performance can be achieved with very simple

multistage architectures; and even support of multicast rates is possible with one of them without

a need for speedup.

In Chapter 6, we study service guarantees over certain non-blocking and blocking wavelength

switch architectures. First we focus on the non-blocking switch, and show how to apply rate quan-

tization to provide rate guarantees. After introducing strictly non-blocking wavelength assignment ,

we consider the blocking architecture given in Fig. 1-12. We specify the region of rates supportable

by this architecture and illustrate certain trade-o�s involved.

In Chapter 7 we summarize the results developed in this thesis and give further directions for

future research.

The appendices contain some basic de�nitions in the theory of majorization, a number of the-

orems that are used in our proofs and the alternate version of rate quantization algorithm with its

proof of correctness.

37

Chapter 2

Providing Service Guarantees over

Single Crossbar Packet Switches

In this chapter, we study rate quantization: what it is, how it is implemented and its impacts on

the performance of scheduling algorithms for single crossbar switches. Basically, rate quantization

converts a set of rates into another discrete set of rates, which is then used as an input to a

scheduling algorithm. First, we motivate the idea and illustrate some fundamental limitations of

schedulers for rates which are picked from a continuous set. We will show that for an N�N switch,

along with some (small) speedup, rate quantization improves the delay and delay jitter by a factor

of order O(N) even with simple schedulers. We also discuss complexities of schedulers with and

without rate quantization. We show that quantization greatly simpli�es scheduling algorithms.

The rest of the chapter is organized as follows. In the next section, we give the problem model,

de�nitions and some properties of Birkho�'s decomposition. We show that the bounds given in

[15] for the delay and delay jitter are indeed tight. Next, we discuss rate quantization. We give the

algorithm, our main theorem on rate quantization and its proof. Then, we explain how to use rate

quantization along with some speedup to improve the quality of rate guarantees so as to be suitable

for variable bit rate sources. In Section 3, we present the relation between the performance and the

speedup and other implications of our results. Then, we illustrate that the same performance can

be achieved without speedup by putting a limit on the amount of load that each link supports. In

the fourth section, we give a probabilistic scheduling scheme and talk about associated performance

issues. Finally, we give the conclusions and possible future extensions in Section 5.

39

2.1 Problem Model

In this section, we introduce notation and present a mathematical model for crossbar switches. The

general structure of a crossbar switch was given in the �rst chapter. Our model is built on that

structure.

2.1.1 De�nitions and Assumptions

We assume that each link has an identical capacity, and de�ne a time slot as the time it takes for

one cell to be transmitted over a link (This is also referred to as a cell slot in the literature). We

also de�ne a service slot as the time it takes one cell to be transferred from an input to an output

of the crossbar. We assume that cell transfers are made synchronously over all the inputs, and a

crossbar can switch from one con�guration to another in negligible time. For the time being, we

assume no speedup, i.e., a service slot is identical to a time slot. All of the results we present will be

for a switch of size N�N but we believe that the generalization to an asymmetric (N�M;N 6=M)

switch is straightforward.

We assume connection oriented contracts for which durations (in number of time slots) and the

number of cells to be transferred between every I-O pair within the lifetime of the contract are

speci�ed. Thus, a rate, Rij, can be associated with the input-output pair (i; j) as the ratio of the

number of cells to be transferred between the pair to the lifetime of the contract. Hence, Rij takes

on values from the set [0; 1]. An admission controller makes sure that no input or output link is

oversubscribed, i.e.,
P

iRij 6 1 for all j and
P

j Rij 6 1 for all i. Succinctly, we can represent

each Rij as the (i; j) entry of a matrix, R. The two admission control inequalities imply that R

is a doubly sub-stochastic matrix. It was shown by von Neumann ([24]) that for every doubly

sub-stochastic matrix, R, there exists a doubly stochastic matrix, Q such that Qij > Rij; 8i; j. An

algorithm that generates such a doubly stochastic matrix is also given in [24]. In this paper, we

assume that the rate request matrix, R, is doubly stochastic. Recall that it is only with connection

oriented service that rate reservation based scheduling algorithms can be developed since such

algorithms require the prior knowledge of the desired rates between I-O pairs.

In this chapter, we assume that contracts between all I-O pairs are made simultaneously. There-

fore, we de�ne a contract with a rate matrix R and an associated duration T . At the maturity of

a contract, a new contract (i.e., a new rate matrix and a new duration) is negotiated for all I-O

pairs simultaneously. In reality, the desired rate between di�erent I-O pairs generally change at

40

0

0

0 1

10

1 0 0

21

3

2

3

1

Figure 2-1: There is a one to one correspondence between permutation matrices and crossbar
con�gurations.

di�erent times, and thus at the end of a contract only a small number of I-O pairs need a rate

update. Therefore, it makes more sense to de�ne a separate duration for each I-O pair. However,

in this chapter, we assume that the rate updates are made simultaneously and there is only one

duration associated with a contract. We will deal with individual rate updates and independent

contracts in the next chapter. In this chapter, we assume that the maturity of the rate contract

between each pair is the same.

The switch is responsible for providing the desired number of service opportunities between each

I-O pair. If the lifetime of the contract is T , then the switch will go through T con�gurations and

at least TRij of them should connect input i to output j for the terms of the contract to be met.

Suppose, for some switch schedule, the switch goes through con�gurations such that input i and

output j are connected for Dij(t) time slots, by time t 6 T . We call the di�erence, tRij �Dij(t),

the service lag for I-O pair (i; j) at time t.

Let us restate the crossbar constraint without broadcast: In a single time slot, no input can be

connected to more than one output, and no output can be connected to more than one input. Thus,

there corresponds a distinct permutation matrix for every feasible con�guration in which no input

and no output remains unmatched. Such a pairing of switch con�guration and permutation matrix

is illustrated for a 3� 3 crossbar in Fig. 2-1. There is a 1 in every position of the matrix where the

crosspoint in the corresponding location of the crossbar is connected. Suppose P (1); : : : ; P (t) are

the corresponding permutation matrices for the the con�gurations that the crossbar goes through

41

in (0; t]. Then

D(t) =

tX
l=1

P (l) (2.1)

Next, we give a couple of theorems that provide some fundamental insight about our algorithms.

2.1.2 Fundamentals of Rate Reservation Based Scheduling

First, let us focus on contracts with in�nite durations and then study the algorithm developed in

[15].

Long Term Contracts

For a contract with rate matrix, duration pair, (R;T), let us de�ne the corresponding in�nite

duration contract as the one with the same rate matrix and T !1

De�nition 2.1 A contract is supportable if there exists a schedule of permutation matrices that

produce a service history, D(t), for which the service lag remains upper bounded for all I-O pairs

and for all t > 0.

If there exists a schedule for which there exists a certain point, t, in time such that tRij�Dij(t) 6

0 for all pairs (i; j), then we say the rate matrix R is perfectly supportable at time t.

If R is perfectly supportable at time t, then it is also perfectly supportable at times kt 8k 2 ZZ
+

since the switch can implement a periodic schedule which repeats itself every t seconds. Note

that, by de�nition supportability is relevant only for in�nite duration contracts, thus, instead of

saying \the in�nite duration contract with rate matrix R is supportable," we simply say, \R is

supportable." Given that R is supportable with the schedule D(t); t > 0,

lim
t!1

Dij(t)

t
= Rij

In a crossbar switch, perfect support may not be possible for some supportable tra�c.

Theorem 2.1 A contract with the rate matrix R is supportable if and only if R can be written as

a convex combination of permutation matrices.

42

Proof: First, let us prove the only if part. Suppose R is supportable; then, there exists a scheduler

and some B <1 such that tRij �Dij(t) 6 B for all pairs (i; j) and for all t. Hence,

lim
t!1

[tR�D(t)] 6 B~e~eT (2.2)

where ~e is the N dimensional vector all of whose entries are 1, and ~eT is its transpose. Note also

that the inequality is entrywise. Since D(t) is a sum of t permutation matrices as given in Eq. (2.1)

and B is not a function of t, (2.2) can be written as,

R = lim
t!1

1

t

tX
�=1

P (�) (2.3)

We complete the proof by noting that the right side of the above equation (2.3) is a convex com-

bination of �nitely many permutation matrices.

Conversely, if there exists a set of non-negative coe�cients, f�1; : : : ; �Mg such that

R =

MX
l=1

�lPl (2.4)

then it was shown in [15] that the service lag remains upper bounded at all times using a packetized

processor sharing schedule of the con�gurations with non-zero coe�cients in the decomposition.

We will discuss this in the following section.

Birkho�'s Decomposition and RR Based Scheduling

The main idea in [15] is the use of a decomposition algorithm based on Birkho�'s theorem ([25]).

Theorem 2.2 (Birkho�) The permutation matrices constitute the extreme points of the set of

doubly stochastic matrices. Moreover, the set of doubly stochastic matrices is the convex hull of the

permutation matrices.

Birkho�'s theorem is illustrated in Fig. (2-2) (for simplicity, the illustration is made in two di-

mensional space). Thus, every doubly stochastic matrix can be written as a convex combination

of permutation matrices. The set of all N � N doubly stochastic matrices can be regarded as a

convex polytope in (N � 1)2 dimensions1. Hence, the number of permutation matrices su�cient to

1The intuition behind this is as follows. There are N2 entries in the matrix and 2N conditions (every row and
every column sums to 1). But these conditions are not linearly independent; indeed, one of them is redundant. Hence,

43

permutation
matrices

doubly
stochastic
matrices

Figure 2-2: The set of doubly stochastic matrices is the convex hull of the permutation matrices.

represent an N �N doubly stochastic matrix is 1+(N �1)2. This follows from the Caratheodory's

theorem ([26]):

Theorem 2.3 (Caratheodory) If A is a convex subset of <d, then each point in A is expressible

as a convex combination of no more than d+ 1 extreme points.

Thus, for any rate request matrix, the following decomposition can be made:

R =

(N�1)2+1X
i=1

�iPi (2.5)

1 =
X

�i

In view of (2.5), the fraction of time that the crossbar has to spend con�gured to the permuta-

tion matrix Pk is equal to �k. Since only one permutation matrix can be set each time slot, a

schedule of the corresponding con�gurations must be constructed according to the weights in the

decomposition. In [15], the use of Packetized Generalized Processor Sharing (PGPS) is proposed.

Each permutation matrix is treated as a user in PGPS, and the weight of a matrix represents the

desired rate of that user. Users are assumed to be backlogged all the time and the �nishing times

of the next unserved token for each user in the corresponding Generalized Processor Sharing (GPS)

N
2
� 2N + 1 points in the polytope can be chosen independently.

44

system is calculated starting at time 0. Indeed, the following iterative relation can be written for

the �nishing times of the tokens for user k:

FT l
k = FT l�1

k +
1

�k

If user k has the unserved token with the smallest �nishing time, it is given service in the next

time slot, i.e., the crossbar con�guration corresponding to the permutation matrix, Pk is set. Note

that the described algorithm is actually a special case of the PGPS algorithm where each user is

backlogged in�nitely. This approach does not necessarily lead to a work conserving service, and in

fact, at the time a crossbar con�guration is set, all the VOQs which are supposed to take advantage

of the connection to send a cell through the crossbar may be empty. Despite this, the con�guration

is still set. This fact re
ects the fundamental di�erence between RR based scheduling and cell

scheduling. A cell scheduling algorithm would look for a better con�guration where a certain

objective function is maximized such as the number of transferred packets. RR based scheduling

algorithms are not aggressive all the time but perform well on the average, i.e., as we shall see in

the next section, the algorithm presented in [15] manages to support the set of all admissible rates

in the long run, but may perform unsatisfactorily in the short run.

Computationally, running Birkho�'s decomposition along with von Neumann's algorithm (to

make R doubly stochastic) is fairly complex. Indeed, for an N � N switch, von Neumann's al-

gorithm and Birkho�'s decomposition have a computational complexity2 of O(N2) and O(N4:5)

respectively. Also, it is not possible to run the decomposition and set con�gurations simultaneously;

the �rst crossbar con�guration can be set only after the decomposition algorithm terminates. If

the input tra�c changes frequently, or contracts have short durations, PGPS with a plain Birkho�

decomposition approach may be infeasible.

2.2 Rate Quantization

In this section, we will study the performance of the plain Birkho�-von Neumann algorithm along

with PGPS scheduling, and discuss the cases where it performs poorly. Then, we present our

approach to improving the performance.

2The complexity analysis of von Neumann's algorithm can be found in [24]. For Birkho�'s decomposition, it takes
(N � 1)2 + 1 iterations each of which involve a complexity of O(N2:5)

45

2.2.1 Service Guarantees with the Plain Birkho�-von Neumann Approach

In this section, we will discuss why the Birkho�-von Neumann algorithm along with PGPS may

fail in the short term. We mentioned that there are two possible mechanisms for the delay that a

packet experiences at a switch between its arrival and departure. The �rst is the randomness of

the arrival process and the second is the jitter in the service provided by the switch. Even if the

provided service perfectly matches that desired between an I-O pair, the former is not eliminated.

We are mainly interested in the delay caused by the latter, since we are interested in whether the

switch is successful in meeting the desired rate. For instance, for perfect service between any two

points in time, s < t, the number of service opportunities3, Dij(t), provided for the I-O pair (i; j)

by time t needs to satisfy,

Dij(t)�Dij(s) > (t� s)Rij

However, in [15], it was shown that, for all (i; j),

Dij(t)�Dij(s) > (t� s)Rij �
�
(N � 1)2 + 1

�
(2.6)

with PGPS scheduling. Eq. (2.6) implies that the number of service opportunities provided for

an I-O pair cannot be behind its desired amount by more than (N � 1)2 + 1 units, which is the

service lag for the I-O pair. The service lag is a metric to measure the jitter in the service, and

it gives us the increase in the queue size due to the imperfect service. Namely, even if packets

arrive deterministically, the number of packets that accumulate in the queue can be as high as the

maximum service lag4.

Since the maximum service lag given in (2.6) is constant (not a function of time), it is clear that

all admissible rates are supportable using PGPS with Birkho�'s decomposition. However, we shall

argue in this section that the bound in (2.6) is indeed tight, i.e., for some set of Rij 's, there exist

certain points in time for which the service lag is indeed close to (N � 1)2 + 1 for some I-O pairs.

Hence, in the short term (within time periods comparable to (N�1)2+1), the rate guarantees may

3We de�ne a service opportunity for an I-O pair to be the number of time slots that the pair is connected.
4In some sense, the service lag is the natural metric for CBR service. If, service lag is identical for two
ows

with di�erent rates, then the delay they experience will be inversely proportional to their rates. In fact, any G/G/1
queueing system has the same property that if the service and arrival rates are scaled by a factor, the (steady state)
expected un�nished work is cut by the same factor.

46

τττ
φjφk

1 1

k φk

+1 time0
φ

1

Figure 2-3: Finishing times of �rst t cells of user k and the �rst cell of user j in the corresponding
GPS system.

be unsatisfactory. For instance, at the end of a short contract (e.g., O(N) time slots), an I-O pair

may end up with 0 service opportunities, even if its VOQ is not empty. In fact, as shall be shown,

what happens in such short periods of time is quite random with the plain Birkho� approach.

First, we will talk about PGPS service since the algorithm under consideration is based on it.

Suppose, K users share a single link and the rate desired by the kth user is �k. It was shown in

[27] that the number, Dk, of cells served with the PGPS algorithm for user k by time t is close to

the desired amount, �kt:

t�k � 1 6 Dk(t) 6 (t+K � 1)�k (2.7)

Claim 2.1 The upper and the lower bound given in (2.7) are tight.

Proof: We prove the claim by showing an example where the bounds will be tight at some point

in time. Suppose there exists a user, k, with �k � �l; 8l 6= k. Initially, user k will dominate all

the others and get many services before the �rst service opportunity is given to any other user. As

illustrated in Fig. 2-3, the �nishing time of the �rst � cells of user k is earlier than that of the �rst

cell of any other user in the corresponding GPS system. Thus, in the �rst � time slots, user k will

get service. At the end of �th time slot, the number of service opportunities given to user k is,

Dk(�) = �

= �k� + (1� �k)� (2.8)

Since,

X
j 6=k

�j = 1� �k

47

there exists a user, j 6= k with rate,

�j >
1� �k
K � 1

(2.9)

Since user k is served � times before any other user is served (shown in Fig. (2-3)),

�

�k
6

1

�j
(2.10)

Substituting (2.9) in (2.10), we get

� 6 �k
K � 1

1� �k
(2.11)

Finally, plugging (2.11) in (2.8), we get

Dk(�) 6 �k� + (1� �k)
K � 1

1� �k
�k (2.12)

= �k(� +K � 1) (2.13)

Note that (2.12) is satis�ed with equality at time � = �k
�j

if �j =
1��k
K�1 . Thus, the upper bound

given in (2.7) is indeed tight. Also, since user j is served for the �rst time before user k's (� +1)st

service,

�j(� + 1) > �k (2.14)

Since, until the end of time slot � + 1, the number of cells served for user j is 0,

Dj [(� + 1)�] = 0

6 (� + 1)�j � �k (2.15)

We have equality in (2.15) if (2.14) is satis�ed with equality. Since �k can be arbitrarily close to 1,

the lower bound given in (2.7) is also tight (replace k with j and � with � + 1).

Claim 2.2 The lower bound given in (2.6) is tight. For some I-O pairs, the cell delay can be

O(N3).

Proof: Similarly, we prove the claim by showing an example where the service lag is O(N2) in

48

the worst case for an I-O pair with a rate N�1 (as shown in the �rst chapter, for a given I-O pair,

delay = service lag/rate). Consider the following N �N rate request matrix:

R =

2
66666666666666666666664

N�1
N

1
N 0 � � � 0

�21
N�1
N �23 � � � �2N

�31 0 N�1
N + �33 � � � �3N

...
...

. . .

�N1 0 �N3 � � � N�1
N + �NN

3
77777777777777777777775

(2.16)

where we choose f�ijg such that R is a doubly stochastic matrix. Now, let us look at the (N � 1)�

(N � 1) matrix whose entries are the elements of the set f�ijg which are placed with the identical

relative ordering as in R. Each row and column of this matrix sums up to 1
N . Hence it is 1

N

times a doubly stochastic matrix. As we mentioned before, (N � 2)2 + 1 permutation matrices is

su�cient to represent any (N �1)� (N �1) permutation matrix ([25]). It is also shown in [25] that

this number cannot be replaced with a smaller number. Namely, for some set of f�ijg Birkho�'s

algorithm will not terminate in less than (N � 2)2 + 1 steps for our imaginary (N � 1) � (N � 1)

matrix. It is not hard to realize that R has a diagonal with large entries all of which are not less

than N�1
N . Thus, one possible Birkho� decomposition includes the N � N identity matrix with a

weight of N�1
N . The sum of the coe�cients of the other permutation matrices is 1

N , and hence they

all must have a 1 in their �rst row, second column. The rest of the decomposition is actually almost

identical to the decomposition of the (N � 1) � (N � 1) matrix of f�ijg we just described, except

that the permutation matrices are all N � N since they are all augmented with a 1 in location

(1; 2) and zeros elsewhere in the �rst row and second column. Thus, for some selection of f�ijg we

can make the algorithm last for 1 +
�
(N � 1)2 + 1

�
steps. Note that, instead of choosing the set of

f�ijg directly, we can choose (N � 1)2 +1 coe�cients and permutation matrices. Let us choose the

jth coe�cient to be 1
N3 + �j where �j = o

�
N�3

�
. Thus Birkho�'s algorithm can end up with the

49

following decomposition:

R =
N � 1

N
P1 +

�
1

N3
+ �2

�
P2 + � � �+

�
1

N3
+ �N2�2N+3

�
PN2�2N+3 (2.17)

where P1 is the N �N identity matrix, P2(1; 2) = � � � = PN2�2N+3(1; 2) = 1. The schedule for each

permutation matrix is determined according to the PGPS algorithm. Thus, we end up in the same

situation as we described in the proof of Claim 1. The �rst permutation matrix, P1 will be served
5

for a long time before any other permutation can be served, i.e., it will be served until (integer)

time � where,

N

N � 1
� 6 min

j6(N2�2N+3)

1
1
N3 + �j

Since �j = o
�
N�3

�
; 8j,

� = �N2(N � 1) (2.18)

where � � 1. Thus, until time � , only P1 will be served and D2(�) = � � � = DN2�2N+3(�) = 0

where Dj(t) is the number of times that a permutation is served by time t. Hence,

Dj(t) = 0

=

�
1

N3
+ �j

�
� �

�
1

N3
+ �j

�
� (2.19)

for all j 6= 1. One can realize that I-O pair (1,2) gets connected when any one of the permutation

matrices other than the �rst one is served. Indeed,

D12(�) =
N2�2N+3X

l=2

Dl(�) (2.20)

5\Serving a permutation matrix" means making the crossbar connection corresponding to that permutation matrix.

50

Plugging Eq. (2.18) and (2.19) in Eq. (2.20),

D12(t) =

N2�2N+3X
j=2

�
1

N3
+ �j

�
� �

�
�N2(N � 1)

�N2�2N+3X
j=2

�
1

N3
+ �j

�
(2.21)

=
1

N
� � �

1

N
(N � 1)3 + o(N2) (2.22)

=
1

N
� � �

�
N2 � 3N + 3

�
+ o(N2) (2.23)

where (2.22) follows since the �rst summation in (2.21) is 1
N t.

We just showed that there exists a set of admissible rates, in which Birkho�'s decomposition

can end up with a decomposition where the service lag for a
ow with PGPS scheduling can be

O(N2). The example gives us a sense about when such a worst case can happen. The decomposition

may terminate with O(N2) permutation matrices and thus, there exists certain entries which are

non-zero in multiple permutation matrices (in our example, Pj(1; 2) is non-zero in (N � 2)2 + 1

permutation matrices.). But, the PGPS algorithm takes the �nishing time of every permutation

matrix into consideration rather than every single I-O pair and this leads to the higher service

lag. For instance, in the example we presented, I-O pair (1,2) is asking for a rate of 1
N and it

gets service when the scheduler gives a service opportunity to the last (N � 2)2 + 1 permutation

matrices. However, each of these permutation matrices has a weight of � 1
N3 and they all have to

wait for a long time (O(N3)) before they get the �rst service. This results in high delay jitter (no

service for a long time and then a burst of service opportunities after) and hence a high service lag.

At this point, we can argue that there may exist packet scheduling algorithms other than PGPS

for scheduling crossbar permutation matrices and they may enhance the performance. One such

algorithm is worst case fair weighted fair queueing6, WF2Q ([23]). The main di�erence between

PGPS and WF2Q can be stated as follows. In the former, every user is eligible to be scheduled

at any point in time and the scheduled user has the smallest �nishing time in the corresponding

GPS system. In WF2Q however, if a user did not begin taking service in the corresponding GPS

scheduler, it is not eligible to be scheduled even if it has the smallest �nishing time. For a user

to get its mth service, it must be the case that, in the corresponding GPS system, the (m � 1)st

service for that user is complete and mth one is currently in progress (or already complete). It

turns out that this simple modi�cation to PGPS improves the upper bound given in (2.7) to �kt+1

6PGPS is also known as (vanilla) weighted fair queueing (WFQ).

51

and hence the provided service is always within 1 unit of the desired.

In our example, if we used a WF2Q scheduler, the �rst permutation matrix (the one with weight

N�1
N) would not be scheduled more than N time slots in a row. Thus, the delay for the �rst service

of the user, F12, whose weight is
1
N is improved by a factor of N2 (from O(N3) to O(N)).

Motivated with the above fact, we want to �nd out if WF2Q improves the bound on the service

lag for the switch scenario. The answer is negative which can be seen considering the following R,

which is quite similar to the one given in (2.16):

R =

2
66666666666666666666664

N�1
N

1
2N + ! 1

2N � ! 0 � � � 0

�21
N�1
N 0 0 � � � �2N

�31 0 N�1
N �34 � � � �3N

...
...

. . .

�N1 0 0 �N4 � � � N�1
N + �NN

3
77777777777777777777775

(2.24)

In this new matrix, the user with weight 1
N is split into two users with one user slightly of higher

weight (by ! =o(N�1)). Similarly, we select f�ijg (there are (N � 2)2 of them) such that the

Birkho�'s decomposition ends up with 1 +
�
(N � 2)2 + 1

�
permutation matrices each of which has

a weight of O
�
N�3

�
. Other than the identity matrix, almost half of these matrices will have a 1 in

location (1; 2) and the others in (1; 3). If we use a scheduler that operates using only the coe�cients

of the permutations and treat every permutation matrix equally, the delay experienced by a user

can still be O(N3). For instance with WF2Q scheduler, if the coe�cients of all of the permutation

matrices which serves user (1; 2) are greater than those of user (1; 3), then there exists a set, f�ijg,

such that user (1; 3) experiences a delay of 1
2�N

2(N�1) where � � 1 before getting the �rst service

opportunity. Thus, the service lag is O(N2).

We believe that this is true for a general class of scheduling algorithms, and thus state the

following conjecture.

Conjecture 2.1 For the set of scheduling algorithms in which the crossbar con�gurations are sched-

uled using only the coe�cients of Birkho�'s algorithm, disregarding the individual rates between I-O

52

pairs, the bound given in (2.6) is tight.

2.2.2 Rate Quantization

There are a number of problems with the approaches using processor sharing with Birkho�'s de-

composition. First of all, the complexity of the Birkho� algorithm is huge and more importantly,

it is a one time complexity. Namely, it cannot be run simultaneously as the permutations are

scheduled. The decomposition must be complete before the �rst con�guration can be scheduled.

The service lag of (N2) may correspond to a delay of tens to hundreds of milliseconds for typical

commercial packet switches, which is very undesirable. For instance, for a 256 � 256 ATM switch

with lines of rate 155.5 Mbps, a cell delay of up to � 179 msecs can be experienced for some of

the I-O pairs due to imperfections in provided service. With such delays, service contracts cannot

be made for short time periods. For example, for the 256 � 256 switch, rate contracts need to be

held for periods of order seconds for the service contract to be met reasonably closely. This rules

out the algorithm as described for current multimedia applications whose tra�c dynamics vary in

time scales from microseconds to a few milliseconds. In this section, we will show how to use even

a small speedup to cut the service lag to O(N) and make the algorithms simpler at the same time.

In the above analysis, there was no speedup, i.e., only one cell can be transferred between an I-O

pair per time slot. In this section, we will loosen this constraint and allow S cells to be transferred

per time slot. Thus, a service slot is S times as small as a time slot. The factor, S, represents the

amount of resource speedup7. Since more than one cell can be forwarded to the same output port,

the switches are combined input and output queued.

Since the crossbar can set up to S con�gurations per time slot, we are no longer limited to

the convex combination of permutation matrices. In fact, the region of the set of rates over which

the switch can transfer cells from input side to the output side is no longer the convex hull of

permutation matrices, but a linear combination. The set of transfer rates, T , has the following

form:

T =
X

�iPi

S =
X

�i (2.25)

7We assume that S can also be a non-integer number.

53

S
1

permutation
matrices

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

doubly

matrices
stochastic

Figure 2-4: The extreme points are expanded by a factor of S. Hence, their convex combination is
a superset of the set of doubly stochastic matrices which constitude the set of admissible rates and
it is unchanged.

Note, however, that the region of the rates for the admissible
ows is still the convex hull of

permutation matrices since the capacities of the input and output links are unchanged (1 cell per

time slot). The support set is, thus, a superset of the set of admissible rates (i.e., doubly stochastic

matrices) as illustraetd in Fig. 2-4. Therefore, we may transfer cells through the crossbar at a

higher rate than they actually arrive. In this section we show how to divide this extra rate over

the I-O pairs of a switch.

If we distribute the extra resource uniformly over each pair, i.e., if we choose T = SR, the worst

case service lag and thus the worst case delay decreases proportional to S. Hence, the service lag

would still be O(N2), even though an improvement is observed for all the I-O pairs. But, the worst

case service lag is not uniform over all the
ows, and therefore, we do not want the improvement to

be uniform. Thus, we should not assign the extra resource uniformly. The following fact, presented

in [28] and [15], gives us insight on what is a good way of distributing the extra resource.

If there exists an integer f such that the matrix fR contains all integer-valued elements, then

Birkho�'s decomposition terminates in at most f steps. This is illustrated for f = 2 in the following

54

example:

2
6664

1=2 0 1=2

0 1=2 1=2

1=2 1=2 0

3
7775 =

1

2

2
6664

0 0 1

0 1 0

1 0 0

3
7775+

1

2

2
6664

1 0 0

0 0 1

0 1 0

3
7775

We will talk about the performance implications of this fact later. Next, we present the main

theorem of this chapter and its proof. We also give the rate quantization algorithm which will be

used extensively in this thesis.

Theorem 2.4 (Main) Let R be an N � N doubly stochastic matrix and s be a rational number

which can be written as 1
f where f is an integer. There exists a (doubly super-stochastic) matrix,

Q = R0 + U , where R0 is a doubly stochastic matrix with all the entries integer multiples of s,

Uij = s and Qij > Rij ; 81 6 i; j 6 N . Thus, all rows and columns of Q sum up to S = 1 + sN .

To prove this theorem, we will introduce an algorithm which constructs the doubly stochastic

matrix, R0, (and thus the matrix Q) for a given R and prove its correctness. Before we give the

algorithm, we give an example which illustrates the theorem, and at the same time gives us an

intuition on how to build our algorithm. Consider the following 3� 3 doubly stochastic matrix.

Example 2.1

R =

2
6664

0:48 0:35 0:17

0:29 0:49 0:22

0:23 0:16 0:61

3
7775

s=0:1
�!

2
6664

0:5 0:4 0:2

0:3 0:5 0:3

0:3 0:2 0:7

3
7775

| {z }
quantized

! 1:1

! 1:1

! 1:2

(2.26)

�!

2
6664

0:5 0:4 0:1

0:2 0:5 0:3

0:3 0:1 0:6

3
7775

| {z }
doubly stochastic

+

2
6664

0:1 0:1 0:1

0:1 0:1 0:1

0:1 0:1 0:1

3
7775

| {z }
uniform

(2.27)

Our algorithm generates R0 in two steps; in the �rst step, a matrix ~R whose entries are integer

55

multiples of s is constructed and in the second step ~R is modi�ed to get R0. In the �rst step (2.26),

every entry of the original matrix is increased by some non-zero amount, so that they all become

integer multiples of s. Matrix ~R is not necessarily some multiple of a doubly stochastic matrix. In

the second step, some of the entries of ~R are chosen and increased by another s in order to end

up with a scaled doubly stochastic matrix. Equivalently, what we do is, increase every entry by s

(Uij = s for all i and j) and choose the ones to be reduced by s. Indeed R0 is a modi�cation of ~R,

where enough entries are reduced by s to make R0 doubly stochastic. The challenging part of the

algorithm is choosing which entries to reduce. To illustrate that this indeed is not a straightforward

task, consider the above example and suppose we construct R0 from ~R starting with the �rst entry

of the �rst row. Proceed with that row going through all the columns from left to right, reducing

each entry by s if the sum of the entries of that column is greater than 1, until the �rst row sum

becomes 1. Once the �rst row entries sum to 1, proceed with the second row and repeat the process.

After completing the second row, we end up with the following matrix, whose third row is yet to

be processed:

2
6664

0:4 0:4 0:2

0:3 0:4 0:3

0:3 0:2 0:7

3
7775

! 1

! 1

! 1:2

#

1 1 1:2

As we proceed with the third row, the only entry that can be reduced is the �nal one, 0.7, since all

the other column sums are already 1. However, it has to be reduced by 0.2 for the resulting matrix

to be doubly stochastic. If we do so, we end up with Q33 = 0:6 < R33. Hence, we cannot choose

the entries to be processed arbitrarily, and must be more careful in constructing Q.

Before we get to the algorithm, we will state a lemma that is fundamental to our algorithm.

Lemma 2.1 Let x and y be two real numbers. Then 9� 2 <; 0 < � 6 y such that x + � is an

integer multiple of y.

Proof: Noting that

� = y

�
x

y

�
+ y � x

56

’ ’

~
R1N

~

RNN

~

.
.

.

RN1

~
kN s1+

k1 s1+

R =
~

. . .

. . .

. . .

. . .
col N

row 1

row N

col 1 . . .
. . .

1+
1 s 1+k

N
sk

11R

Figure 2-5: The N �N matrix ~R is illustrated. Each row i and and column j sum to 1 + kis and
1 + k0js respectively where ki snd k0j are non-negative integers.

is in (0; y] and x+ � is an integer multiple of y, completes the proof.

Algorithm:

Step 1 : Given any s, we know from Lemma 2.1 that there exists a �ij ; 0 < �ij 6 s such that

Rij + �ij is an integer multiple of s for all 1 6 i; j 6 N . Let � be the matrix whose (i; j) entry is

�ij. De�ne ~R = R + �. All rows and columns of ~R sum to integer multiples of s. By de�nition,

1 is also an integer multiple of s, and thus, as illustrated in Fig. 2-5, we can represent the sum of

the entries of the ith row and the jth columnas 1 + kis and 1 + k0js respectively where ki and k0j

are positive integers.

Step 2 : In the second step, the algorithm scans ~R row by row, starting with the row with maximum

row sum kmax, and determines whether the entry will remain unchanged or reduced by s before it

is copied as the corresponding entry of the output matrix, R0. Each row is scanned starting from

the entry with the largest column sum and continuing with entries of decreasing column sums. If

both ki and k0j are positive for the current (i; j), that entry is reduced by s and otherwise it is

copied directly as the corresponding entry of R0. A step by step description of the second part of

the algorithm is as follows:

Initial Values: Let i = argmax16l6N kl and R0 = ~R; let km and k0n be such that, 1 + skm and

1 + sk0n are the mth row and nth column sum respectively, as illustrated in Fig. (2-5).

57

1 3

2

1

2

3

1

0

l

lk’

Figure 2-6: Vector ~k0 = [2 1 1]T , thus ~n0 = [3 1 0]T .

Repeat (1)-(2) until ki = 0 for all i 6 N .

1. Set E = f1; : : : ; Ng. Repeat (a)-(c) until ki = 0.

(a) j = argmaxj2E k
0
j

(b) R0
ij =

~Rij � s; ki ! ki � 1; k0j ! k0j � 1; E ! E � fjg.

2. i = argmax16l6N kl

The described algorithm reduces the elements of ~R in the order of decreasing row sums. One

might also randomize the procedure and work on a row randomly picked at every iteration as the

processing order is unimportant. We give this modi�ed algorithm and the proof of correctness for

the modi�ed algorithm in Appendix C.

Lemma 2.2 The algorithm successfully terminates with a matrix R0 which is doubly stochastic.

Before we give the proof of the lemma, let us introduce some notation. Let

ki =
1

s

0
@ NX

j=1

(R0
ij)� 1

1
A

k0j =
1

s

NX
i=1

(R0
ij)� 1

!

We can represent ki and k0j as an entry of the vectors ~k and ~k0 respectively. Let n0i; i > 1 be

the number of columns j, for which k0j > i. For example, if ~k0 = [2 1 1]T , then ~n0 = [3 1 0]T as

illustrated in Fig. 2-6.

58

Proof: By induction. We shall �rst show that initially

n01 > ki (2.28)

for all i; 1 6 i 6 N , Thus, for any ~k and for i = argmax16l6N kl which is the �rst row to be

processed, the algorithm will always be able to �nd su�cient entries to reduce (by s) to make the

row sum equal to 1. We will prove a more general version of (2.28):

~k � ~n0 (2.29)

namely, the vector ~k is majorized by the vector ~n0. For the de�nition and some examples about

majorization, see Appendix A.1.

First we prove that (2.29) holds at the beginning of the algorithm. Recall that � = ~R � R.

Hence,

1

s
�ij 6 1

8i; j. Let the lth column vector of � be ~vl and thus vl;j = �jl and h~vl; ~ei = k0ls, where ~e = [1 � � � 1]T .

From Kemperman's theorem (Appendix B.1), ~vl is majorized by any vector for which k0l entries are

s, and the other N � k0l entries are 0. Hence,

~vl � [s � � � s| {z }
k0l

0 � � � 0| {z }
N�k0l

]T � ~vmax
l (2.30)

Thus, the vector on the right side of (2.30) is the maximal vector (in the sense of majorization) of

the set of vectors whose entries are between 0 and s and h~v; ~ei = k0ls. Let us denote the maximal

vector of the lth column vector by ~vmax
l .

Now, let us de�ne a new matrix, 1
s [~v

max
1 � � �~vmax

N], where each column is the maximal vector

of the corresponding column of 1
s�. Note that the vector of column sums for this new matrix is

~k0, and thus the corresponding distribution will be ~n0; however, the row sums are not ~k. Let the

vector of row sums for our matrix be ~knew. Thus, knew;1 is the number of columns with k0j > 1,

i.e., n01; knew;2 is the number of columns with k0j > 2, i.e., n02, and so on. More precisely, knew;i is

59

partial
sums

k

’n

2 3 4 5 6 71

3

6

9

12

Figure 2-7: Sample Lorentz curves for ~n0 and ~k are illustrated. Since ~n0 � ~k initially, the partial
sum curve of ~n0, is above that of ~k.

the number of columns j, for which k0j > i. Thus,

knew;i = n0i (2.31)

But the vectors, ~vmax
l ; l 2 f1; : : : ; Ng are order symmetric (see Appendix A.2 for the de�nition).

Hence we get the desired result using Day's theorem (Appendix B.2):

~knew = ~n0 =
1

s

NX
l=1

~vmax
l (2.32)

�
1

s

NX
l=1

~vl (2.33)

= ~k (2.34)

We just showed that at the beginning of the algorithm, ~n0 � ~k, and thus, n1 > ki, for all i 6 N .

That is, the �rst step of the algorithm can be executed successfully to make the �rst row sum to 1.

The partial sums8 of the two sequences are illustrated in Fig. 2-7. Such curves are called Lorentz

8The mth partial sum of a vector, ~v, is de�ned to be
Pm

j=1 vj . Recall that ~v
I
� ~v

II if every partial sum of ~vII is

60

curves and if, for two vectors, ~vI � ~vII , then the partial sum curve for ~vII will always be above

that of ~vI .

Next, we will prove that a similar majorization relation holds at the beginning of every step of

the algorithm. We will use induction as follows. We have shown that ~k � ~n0 at the beginning of

the �rst step. We now assume that it holds at the beginning of the ith step, 1 6 i 6 N � 1 and

show that it still holds at the end of the ith step. As a byproduct, we also show that the algorithm

can successfully complete each step.

Suppose, the algorithm successfully constructed the �rst i rows of R0. We will show that (2.29)

still holds at the beginning of the (i + 1)st step, and the corresponding row of R0 can be formed

successfully.

First, let us focus on the two vectors, ~n0 and ~k at the beginning of step i. At this point,

kM(1); : : : ; kM(i�1) = 0 where M(q) is the qth entry in decreasing order from the largest in ~k at the

beginning of tha algorithm (before any row is processed). The sum of the entries of the row that is

currently being processed is kM(i). By the induction hypothesis, we assume ~k � ~n0; therefore, there

should be as many 0s in vector ~n0 as there are in ~k (veri�ed in Appendix A.3). Since there are at

least i� 1 0s in ~k, we have n0N�i+2; : : : ; n
0
N = 0. At the beginning of the ith step, the entries of ~n0

and ~k# (de�ned in Appendix A.1 as the decreasing rearrangement of the entries of ~k) can be listed

as follows:

n01 � � � n0r�1 n0r n0r+1 � � �

i�1z }| {
0 � � � 0

kM(i) � � � kM(i+r�2) kM(i+r�1) kM(i+r) � � � 0 � � � 0| {z }
i�1

Since ~k � ~n0, there exists at least one entry in ~n0 which is greater than or equal to kM(i). Let the

smallest such entry be n0r.

Lemma 2.3 At the end of ith step, the only change in ~n0 is that the entries n0r and n0r+1 will be

replaced with
�
n0r+1 +

�
n0r � kM(i)

��
and a 0.

Proof: These two changes can be explained as follows. The algorithm will look into the current R0

for the column with an entry which has not yet been reduced in step i and which has the maximum

column sum, and reduce it by s. Suppose this maximum column sum is ms for some m 2 ZZ
+. This

at least as great as that of ~vI

61

k’l

1 2 3 4 5 6 7

1

2

4

3

l

Figure 2-8: If ki = 5, the entries of the ith row that are decreased are illustrated above.

operation will reduce the number of columns, j, such that k0j = m by 1. Thus, the only change in

~n0 will be in the smallest non-zero entry, n0m, which will decrease by 1. If that entry is greater than

1, then there were multiple entries with the maximum column sum. The algorithm continues with

these other entries. Hence, if the original value of kM(i) is greater than n0m, then after processing

n0m entries, n0m will become 0 and kM(i)�n
0
m entries will be left to be decreased at the row currently

being processed. The algorithm will go on with the entries that have not been reduced before and

with highest possible column sums. At this stage, the new value, n̂0m, of n
0
m is 0 and the new value,

k̂M(i) of kM(i) is kM(i) � n0m. Note that n0m potential entries have already been processed, and if

kM(i) is greater than the second largest entry, n0m�1, of
~n0 then n0m�1 will be reduced to n̂0m�1 = n0m

but no further beyond that, since n0m potential entries have already been processed. Similarly, each

entry of ~n0, which is smaller than kM(i) will be replaced with the next entry in order. Finally, the

�rst entry, n0r, in
~n0 that is greater than kM(i) will be reduced by only n0r � kM(i). Hence, after

the ith row is processed, ~n0 will have a 0 replacing n0r, and a
�
n0r+1 +

�
n0r � kM(i)

��
replacing n0r+1.

Note that at the end of the ith step, ~k# will be the same except kM(i) will be replaced with a 0.

This process is illustrated in Fig. 2-8 assuming ~k0 = [1 2 4 3 4 4 2], i.e., ~n0 = [7 6 4 3 0 0 0] at

the beginning of step i. If kM(i) = 5, then at the end of step i, ~n0 = [7 5 3 0 0 0 0]. Notice that

6 is the smallest entry in ~n0 greater than or equal to kM(i) = 5. Hence, 6 and 4 are changed to

6 + (4� 5) = 5 and 0 respectively.

Now, we show that, ~k � ~n0 at the end of the ith step of the algorithm. But before that we

62

n3< kM(i)

n2> kM(i)

partial
sums

 th stepiafter the

 th stepibefore the

2 3 4 5 6 71

Figure 2-9: In the ith step, kM(i) is removed (replaced with a 0) and the smallest entry of ~n0 greater
than or equal to kM(i) is reduced by kM(i)�n

0
r+1, and the following entry, n

0
r+1 is removed (replaced

with a 0). The dashed curve is the initial curve, and the solid one is the one at the end of the ith
step. The bold segment is the one which do not change. The distance between the two curves does
not decrease at all.

63

present a graphical illustration of what happens in the ith step. The Lorentz curves of ~k and ~n0

are illustrated in Figures 2-9. The entry, kM(i) is removed from ~k. The new Lorentz curve for

~k can be sketched from the old one by just removing the �rst segment segment of the curve and

attaching the rest of the curve to the origin as illustrated in the �gure. The new Lorentz curve

for ~n can similarly be sketched with some modi�cation to the old one. The algorithm will �nd

the segment with the smallest increment greater than kM(i). Then, it will reduce this increment

by kM(i) � n0r, remove n0r, and attach the two separate parts. The two Lorentz curves intersect at

0 and at
P

l n
0
l =

P
l kl. Initially, these are the only two points they intersect, and the curve for

~n0 is always above the curve for ~k, otherwise. We need to show that this is the case after the ith

step. This can be easily observed from Fig. 2-9. Since the removed segment in ~k is to the left

of the reduced segment of ~n0, the distance between the two curves will only increase in between

these modi�ed segments, and remain the same outside this region at the end of the ith step. We

can prove this statement as follows. There are two regions we need to consider as shown in the

following table:

n01 � � � n0r n0r+1

kM(i) � � � kM(i+r�1) kM(i+r)

���������
n0r+2 n0r+3 � � �

i�1z }| {
0 � � � 0

kM(i+r+1) kM(i+r+2) � � � 0 � � � 0| {z }
i�1

I II

At the end of the ith step, the partial sums of the two sequences are as follows. In region I, at

the end of the ith step, kM(i) will be replaced with a 0 and it will no longer be in the second

region. All the entries of ~n0 will be unchanged up to n0r. Thus, the partial sums will change in favor

of ~n0 by an extra kM(i) from the beginning all the way down to n0r. This entry is replaced with�
n0r+1 +

�
n0r � kM(i)

��
, and the next entry, n0r+1 will be replaced with a 0 and removed from the

second region. The total decrease in the partial sums of ~n0 in the �rst region is kM(i). The extra

kM(i) gained in favor of ~n0 earlier by the removal of kM(i) from vector ~k is good enough to make up

for this loss of ~n0. The second region for both ~n0 and ~k are expanded similarly, with the addition

of a 0. This will not a�ect the partial sums, and hence the majorization is preserved.

Thus, we proved that at the beginning of each step, (2.29) holds and n01 > kM(i), for all i 6 N .

Therefore, the algorithm will always be able to �nd the desired number of entries to reduce, and

64

at the end of the algorithm, ki = 0, for all i 6 N . But, since

0 =
NX
i=1

ki =
NX
j=1

k0j (2.35)

and k0j > 0, for all j 6 N , it is also true that k0j = 0, for all j 6 N completing the proof.

Lemma 2.4 Every entry of R0 is an integer multiple of s.

Proof: The input matrix, ~R, of the algorithm already has all the entries integer multiples of s.

We complete the proof noting that the change in each entry from ~R ro R0 is an integer multiple of

s (either reduced by s or left unchanged).

Lemma 2.5 Every entry of R0 is at least as great as its counter part in R decreased by s:

R0
ij > Rij � s; 1 6 i; j 6 N (2.36)

Proof: Note that

~Rij > Rij ; 1 6 i; j 6 N (2.37)

Since the algorithm reduces every entry by at most s,

R0
ij >

~Rij � s; 1 6 i; j 6 N (2.38)

Inequality (2.36) is immediate by (2.37) and (2.38).

Putting all three Lemmas 2.2, 2.4 and 2.5, together, we completed the proof of correctness for

the rate quantization algorithm, and thus our main theorem is also proved. In Appendix C we

prove Lemma 2.2 holds even if the algorithm processes the rows of matrix ~R in an arbitrary order,

rather than processing the one with the maximum row sum in each step.

2.3 Performance with Rate Quantization

In the previous section, we presented the rate quantization algorithm. Like quantization in the

context of data compression, regions are speci�ed in some intial set, and a representation point is

assigned to each region. The initial set in our problem is the set of doubly stochastic matrices.

65

representation
points

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

Regions

1
S

Figure 2-10: Regions and representation points are illustrated. Representation points are outside
the set of doubly stochastic matrices.

Unlike the typical practice in data compression, the representation point of a region is outside the

region, and even outside of the initial set, since we increase every entry of a matrix to �nd its

representation point. Rate quantization is thus a mapping of the contiuum of rates into a discrete

set of points. A set of regions and representation points is illustrated in Fig. 2-10. Note that this

picture is by no means an exact description of what happens; it is an illustration of some of the

ideas.

In this section, we study the impacts of rate quantization on the performance of an input queued

switch. We show that rate quantization cuts the service lag by a factor of O(N) and we illustrate

that satisfactory performance can be attained even with small speedup. For a given speedup,

there exists a certain time period, T , for which a contract, (R;T) is perfectly supportable for any

admissible rate matrix, R. We also explore the complexity of the entire process, from quantization

to decomposition, and show that it can be reduced signi�cantly with deterministic scheduling.

66

2.3.1 Performance Analysis with Speedup

Recall that, given a doubly stochastic matrix, R, and the parameter s, our algorithm generates a

doubly super-stochastic matrix Q such that Qij > Rij 8i; j. Suppose R is the rate matrix for a

contract for which the switch is to provide service. Supporting the matrix Q would be su�cient for

supporting R. However, if we write Q as a positive linear combination of permutation matrices, the

coe�cients sum to 1+sN where N�N is the size of Q. Since each permutation matrix corresponds

to a crossbar con�guration, the crossbar must serve 1+sN permutations per time slot, i.e., it must

transfer 1+sN cells per time slot9. Hence, a service slot is (1+sN)�1 of a time slot. We show that

a speedup (for the crossbar and the bu�ers) of 1 + sN is su�cient for supporting any admissible

rate.

Let us examine the decomposition for Q. We showed in the last section that Q can be written as

a sum of a doubly stochastic matrix, R0, with entries that are integer multiples of s, and a constant

matrix, U . As shown in [15], if a doubly stochastic matrix is composed of entries all of which are

integer multiples of s, then the decomposition terminates with at most

1
s permutation matrices. Also, if we de�ne E to be the constant matrix with all 1's, then,

U = sN
1

N
E

Note that 1
NE is a doubly stochastic matrix and it can be written as a convex combination of N

permutation matrices. As a result, Q can be written as a linear combination of at most 1
s + N

permutation matrices:

Q =

1
s
+NX
i=1

�iPi;
X

�i = 1 + sN (2.39)

Corollary 2.1 All the coe�cients, f�ig of the decomposition, (2.39) are integer multiples of s.

Proof: When all the entries of Q are integer multiples of s, the �rst permutation matrix found

by the algorithm has a coe�cient which is also an exact multiple of s. To begin the second step,

some the entries of the matrix either remain the same or are decreased by the coe�cient of the �rst

permutation matrix. In particular, those entries, (i; j) for which P1;ij = 1 are decreased. Hence, at

9Note, however that 1 + sN does not need to be an integer, it is just a factor by which the switch operates faster
than line rates. Namely, a service slot is (1 + sN)�1 of a time slot. For instance, if 1 + sN = 1:5, then three cells
every two time slots can be transferred from the input to the output of the switch.

67

the beginning of the second step all entries are still integer multiples of s. Similarly, if the matrix

has entries all of which are integer multiples of s at the beginning of any step, the coe�cient of

the permutation matrix found at that step is also an exact multiple of s. Thus, by induction, the

algorithm shall terminate with coe�cients all of which are exact multiples of s.

Suppose at this point that the permutations are scheduled using a regular PGPS scheduler.

Note that the scheduler will operate similarly, but it will schedule 1+sN permutation matrices per

time slot. Since this number is not necessarily an integer, it is easier to visualize the scheduler as

scheduling a frame of 1
s +N permutation matrices in a time period of length 1

s slots. The PGPS

scheduler will similarly give a service opportunity to the permutation matrix with the smallest

�nishing time in the corresponding GPS system.

Theorem 2.5 If the weight of each permutation in a PGPS scheduler is an integer multiple of s

where s is the reciprocal of an integer, then the schedule is periodic with 1
s time slots and for all

t = k
s ; k 2 ZZ

+,

Di(t) = �it; 8i; j (2.40)

where Di and �i are, respectively, the service opportunities given to, and the weight of, permutation

i.

Proof: At time t = 0, (2.40) holds. Suppose it holds at t = k
s for some k 2 ZZ. If we show that it

holds at t = k+1
s , then, by induction the proof will be complete. For a permutation i, the induction

hypothesis is:

Di

�
k

s

�
= �i

k

s
(2.41)

We will show that Eq. (2.41) also holds when k is replaced with k + 1 by contradiction. Suppose

Di

�
k + 1

s

�
>

k + 1

s
�i

Since

X
m

�m = 1 + sN

68

and

X
m

Dm

�
k + 1

s

�
=

k + 1

s
(1 + sN)

there exists a permutation, j for which

Dj

�
k + 1

s

�
<

k + 1

s
�j

But, the GPS �nishing time for the
�
k+1
s �i

�
th service opportunity of permutation i and the �nishing

time for the
�
k+1
s �j

�
th service opportunity of permutation j are identical:

FT
(k+1)

�i
s

i = FT
(k+1)

�j
s

i =
k + 1

s

Thus, the PGPS server cannot schedule the
h
(k + 1)�is + 1

i
st service opportunity for permutation

i before the
h
(k + 1)

�j
s

i
th service opportunity of permutation j, hence the contradiction. Similarly,

a contradiction can be reached in the reverse case, i.e.,

Di

�
k + 1

s

�
<

k + 1

s
�i

and the proof is complete.

Next, consider a simpler scheduler which schedules crossbar con�gurations simultaneously as

the decomposition is run as follows. As soon as the �rst permutation matrix, P1 and its coe�cient

, �1 are found by the algorithm, the corresponding crossbar con�guration is set and kept for �1
s

service slots. Then, the second permutation matrix, P2 is found and the corresponding crossbar

con�guration is kept for �2
s service slots, and so on. Since the permutations are scheduled according

to the order they are generated by the decomposition, rather than being scheduled according to an

order determined by their coe�cients, and the pemutations can be generated in any order, we will

call the scheduler a arbitrary order scheduler (AOS).

First of all, the schedule generated by an AOS is also periodic with period 1
s +N permutation

matrices (1s time slots) just like PGPS. It was shown in the proof of Theorem 2.5 that within a

typical frame of a PGPS schedule, Pi is scheduled
�i
s times. By de�nition, with AOS, the number

of times Pi is in e�ect within the same frame is �i
s as well. Thus, the frequency of each permutation

in a frame is exactly the same as that with PGPS, and (2.40) holds for all t = k
s ; k 2 Z+ with

69

AOS.

Next, unlike PGPS, the decomposition process need not be complete before the switch starts

being con�gured. Indeed, the two processes can be run simultaneously and no extra delay is

experienced for the decomposition.

We showed that the number of service opportunities provided to an I-O pair at times k
s ; k 2 ZZ

is identical to the desired service by each user. Next, we analyze what happens in between these

points and derive an upper bound on the service lag for AOS. Because of the periodic nature of

the services, it su�ces to look at the �rst period,
�
0; 1s
�
. Recall that 1

s + N crossbar connections

are scheduled every 1
s time slots. Since,

service slot =
time slot

speedup
(2.42)

the provided service is periodic with a period 1
s + N service slots. Let us de�ne the number of

service opportunities, Dij(t) for an I-O pair (i; j) as the number of service opportunities given to

the permutation matrices whose (i; j) entry is 1 by time t. In the following theorem, we derive an

upper and a lower bound on the service lag experienced by an I-O pair.

Theorem 2.6 Let Rij be the desired rate and Dij(t) be the number of service opportunities for the

I-O pair (i; j) by time t. The following holds for the service lag with rate quantization along with a

speedup of 1 + sN over the AOS:

�L(s) 6 Dij(t)�Rijt 6 U(s) (2.43)

where t is in time slots and

L(s) =

8>>><
>>>:

1
4s +

N
4 ; s 6 1

N

N
1+sN ; s > 1

N

(2.44)

and

U(s) =

8>>><
>>>:

�
1
4s

� h (1+s(N+2))2

1+sN

i
; s 6 1

N�2

N
1+sN (1 + 2s) ; s > 1

N�2

(2.45)

70

τ τ+0 1
s

2
s

1
s

time

Figure 2-11: A schedule for the I-O pair (i; j). The pair gets a service opportunity at the end of
each frame.

In fact, the upper and the lower bounds we derive are essentially the same phenomenon. Consider

the schedule given in Fig. 2-11 for some I-O pair, (i; j). Suppose this pair gets service opportunities

in the regions as shown in the �gure. If we de�ne Dij [0; t) to be the number of service opportunities

given to I-O pair (i; j) in the period [0; t), then

Dij(0; �] = 0

= Rij� �Rij�

On the other hand,

Dij(�;
1

s
] =

�
1

s
� �

�
(1 + sN)

= Rij

�
1

s
� �

�
+ (1 + sN �Rij)

�
1

s
� �

�

Hence, service lag and service lead are dual, and a service lag may turn into a service lead depending

on what point is taken as the origin.

Proof of Theorem 2.6: Recall that, given the quantization parameter, s, the rate quantization

algorithm generates the Q matrix for every doubly stochastic matrix R such that the corresponding

entries of R and Q are within 2s of each other:

Rij < Qij 6 Rij + 2s; 8i; j (2.46)

since each entry is not increased more than 2s in the quantization process.

1. Lower bound : Cells with the I-O pair (i; j) can be served through multiple permutation

matrices and in the worst case it can get no service in the �rst (1�Qij)
1
s +N service slots

and given service in all of the �nal Qij
1
s service slots of a frame as illustrated in Fig. 2-12.

This happens with AOS if the �nal Qij
1
s permutation matrices have P�;ij = 1 and all the

others have a 0 in this location. The desired and provided service curves are illustrated in

71

1
s

Rij

1+sN
1
s

1-
. . .

0 1
. . .

2

no service service

time

Figure 2-12: In the worst case scenario, the I-O pair (i; j) can be served through Rij
1
s permutation

matrices, each of which has a weight of s and can be delayed by as many as
�
1�

Rij

1+sN

�
1
s time slots

before getting the �rst service opportunity. This corresponds to (1 + sN �Rij)
1
s service slots.

Fig. 2-13 for this scenario. Thus, user (i; j) can possibly delayed by no more than

�
(1�Qij)

1

s
+N

� 1
s

1
s +N

=
1

s

�
1�

Qij

1 + sN

�

<
1

s

�
1�

Rij

1 + sN

�

time slots, since Qij > Rij . Therefore,

Dij(t) > Rijt�
1

s

�
1�

Rij

1 + sN

�
Rij (2.47)

Hence, the bound on the service lag varies with the desired rate. If we solve the constrained

optimization problem to minimize the lower bound over all possible rates:

max
Rij2[0;1]

1

s

�
1�

Rij

1 + sN

�
Rij

we get,

R�
ij = min

�
1;
1 + sN

2

�

and when we substitute this into our objective function, we get the lower bound, L(s), of

(2.44).

2. Upper bound : Similarly, at certain points in time, the number of provided service opportunities

can exceed the desired amount. For instance, I-O pair (i; j) can get all its service opportunities

in the �rst Rij
1
s +2 service slots of a frame, as illustrated in Fig. 2-14. The extra 2 time slots

of service are due to (2.46). The desired and provided service curves are illustrated in Fig.

72

-{

t

()

t()

t

t

t t }max

s

D

ijR

1

ij

Qij

ijR

ij

D

1
1-

1+sN

Rij0

s

Figure 2-13: The service curves for the case illustrated in Fig. 2-12.

2-15 for this scenario. This delay can be converted into time slots using Eq. (2.42) as

�
Rij

1

s
+ 2

� 1
s

1
s +N

=

�
1

s

��
R+ 2s

1 + sN

�

and since I-O pair (i; j) gets Rij
1
s + 2 service opportunities in this time, the \service lead"

can be bounded as,

Dij(t) 6 Rijt+

�
1

s

��
R+ 2s

1 + sN

�
(1 + sN �Rij) (2.48)

Similarly, solving the constrained optimization problem to maximize the upper bound over

all possible rates:

max
Rij2[0;1]

�
1

s

��
R+ 2s

1 + sN

�
(1 + sN �Rij)

we get,

R�
ij = min

�
1 + s(N � 2)

2
; 1

�

Substituting this in our objective function, we get the upper bound of (2.43) completing the

proof.

73

1
s

1
s

Rij 1+sN
1

+2

no serviceservice

0 1 time.

Figure 2-14: I-O pair (i; j) can be given service opportunities at the beginning of every period for
1
s

�
Rij+2s
1+sN

�
time slots. This corresponds to 1

s (Rij + 2s) service slots.

()

t

t()

t

t}-max t t{

1+sN
1

Rij

2+
s

D

1
R

ij
Q

ij

ij

ijR

D

ij

10

s

Figure 2-15: The service curves for the case illustrated in Fig. 2-14.

74

Note that the lower and upper bounds derived for AOS are also tight for the PGPS scheduler.

Consider some input output pair, (i; j). Suppose, after rate quantization, Qij � Rij and all the

permutation matrices that have P�;ij = 1 have a coe�cient s in the decomposition. Since s is the

minimum possible coe�cient for a permutation matrix in a decomposition, it is indeed possible for

all the matrices with P�;ij = 1 to get scheduled at the end of a frame of a PGPS schedule, and thus,

the lower bound for the service lag is tight. Similarly, the I-O pair (i; j) may get all its service

opportunities in the �rst Rij
1
s +2 service slots of a frame, and hence, the upper bound is also tight.

2.3.2 Implications

Improved Service

For su�ciently large values of N , the upper bound given in (2.48) and the lower bound given in

(2.47) are approximately the same and they increase linearly with N . The normalized maximum

upper and the minimum lower bounds are sketched as a function of speedup in Fig. 2-16 for large

values of N (there is only one curve since they converge eachother for large N). We will call these

bounds the quality of service bounds. The actual upper and lower bounds are also given in Fig.

2-17 as a function of the pair, (speedup,rate). All the curves illustrate the bounds normalized with

respect to the switch size, N . The ordinate should be multiplied by N for the actual service bound.

Note that speedup improves the provided service a great deal in the sense that the provided

service follows the rate request much more closely when compared to the no speedup case. Indeed,

for su�ciently large speedup, the service lag does not exceed N=speedup whereas it can go as high

as O(N2) without speedup. For example with a speedup of 2, the deviation is no more than N
2

time slots. For a switch of size 256 � 256, this bound is 128 time slots; without speedup it can be

as high as 65,000 time slots!

We can approximate the speedup necessary to support a given maximum delay as given in the

following relation:

speedup �
N � packet size

link data rate� delay
(2.49)

Note that the link data rate is in terms of bits/sec.

Example 2.2 Suppose we have a 128� 128 ATM switch whose links have a maximum capacity of

622 Mbps. The switch supports delay sensitive tra�c and with a maximum delay of no more than

75

Quality of Service Bounds (per port)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

bound

1.5 2 2.5 3
speedup

Figure 2-16: Illustration of the quality of worst case service bounds over all possible rates (given
in (2.43)) as a function of the speedup for large N . Note that the origin corresponds to speedup
= 1, hence no speedup. The ordinate should be multiplied by N for the actual service bound.

76

Upper and Lower Bound (per port)

1.2
1.4

1.6
1.8

2
2.2

2.4
2.6

2.8
3

speedup

0.2

0.4

0.6

0.8

1

rate

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 2-17: Illustration of the upper and the lower bound on the di�erence between provided and
desired service (given in (2.47)) for large N as a function of the speedup and the desired rate.

77

50 �sec. Then, with rate quantization and AOS, the crossbar fabric should run with a speedup of,

speedup =
128 � 53 bytes/packet � 8 bits/byte

622 Mbps� 50 �sec

= 1:745

Contract Durations

Recall that contracts between all I-O pairs are made simultaneously. Therefore, we de�ne a contract

with a rate matrix, R and an associated duration T . Consider the contract, (R; T), where R is

doubly stochastic. Since any doubly stochastic matrix is supportable with the algorithm based on

the plain Birkho� decomposition with no speedup,

lim
T!1

Dij(T)

RijT
= 1 (2.50)

However, unlike traditional voice tra�c, many applications today ask for more than constant bit

rate guarantees. Hence, the packet switches should also o�er satisfactory guarantees for �nite

contract durations. The following can be written for the provided service with the plain Birkho�

decomposition,

1�
N2

T
6

Dij(T)

RijT
6 1 +

N2

T

for all pairs (i; j). Thus, contracts with durations, T , comparable to or less than N2 may not get

satisfactory service quality. For example, for a 512� 512 ATM switch with link rates of 155 Mbps,

contract durations must be of order 700 msecs for desirable operation.

On the other hand with rate quantization,

Dij(T)

RijT
6 1 +

N=speedup

T

In this scenario, to get satisfactory performance, contract durations must be of order (N=speedup).

This is much better than the plain Birkho� approach. For instance, contracts with durations � 1

msec would get satisfactory service guarantees in our previous example with a speedup of 1.5.

Thus, the set of supported applications and tra�c sources is much larger with rate quantization

than without rate quantization.

As mentioned before, with rate quantization, certain contract durations exist for which all

78

1 1.5 2 2.5 3 3.5 4
0

1

2

3

4

5

6

7

8

9

10

speedup

se
rv

ic
e

pe
rio

d
/ N

Figure 2-18: Contract durations, for which perfect support is possible with rate quantization are
illustrated as a function of the speedup.

doubly stochastic matrices are perfectly supportable. Indeed, once every N=(speedup � 1) time

slots,

Dij(t) > Rijt

for all i; j as illustrated in Fig. 2-18. These instants are perfect for renegotiations and initiating

connections. Note that for the set of doubly stochastic rate matrices, there are no such points using

the plain Birkho� decomposition approach with no speedup. In fact, at any point in time there

exists an I-O pair (i; j) such that

Dij(t) < Rijt

Thus, it is not trivial to �nd times of renegotiation and regardless of when a new service is renego-

tiated it will be unfair for at least one I-O pair.

79

In reality, the rates between di�erent I-O pairs can change at di�erent times. In the next

chapter, we will present an algorithm by which the schedule updates for di�erent I-O pairs can

be made without a signi�cant change in the currently existing schedle. We also show that with

an extra speedup factor of 2, the schedule updates for an I-O pair can be made without a need

to rearrange the existing schedule at all. With both of these algorithms, we do not need to be

concerned about the existence of points in time at which the service lag is 0 over all I-O pairs since

they enable the switch to set up individual contracts (separate contract between each I-O pair).

As shall be shown, rate quantization is essential for both of these to be possible.

Complexity

The complexity of Birkho�'s decomposition is O(N4:5) since it takes O(N2) iterations of maximum

matches each of which is O(N2:5). With the plain Birkho� approach, the decomposition should

be complete before scheduling the �rst crossbar connection. Before �nding all the permutation

matrices and their coe�cients, the PGPS scheduler cannot determine which permutation matrix to

schedule �rst. Once the decomposition is complete, it takes O(logN) complexity to run the PGPS.

The most important di�erence arising from the use of rate quantization and AOS is that the

decomposition need not be complete before the �rst crossbar con�guration can be set up. In fact,

after generating the �rst permutation matrix of the decomposition, it can be scheduled at once,

and as the corresponding cells are being transferred, the decomposition can continue.

The rate quantization algorithm has a computational complexity of O(N2). It has to be com-

plete before the scheduling process can start, and thus its complexity is \one time." Complexity of

AOS is O(N2:5) per service slot, which is identical to that of a maximum match based algorithm.

Comparison of the plain Birkho� approach and rate quantization with AOS is not straight-

forward since the nature of complexity for the two are quite di�erent. In the �rst algorithm, a

huge one time cost is paid every time contracts are renewed. In the rate quantization algorithm, a

smaller cost is paid and it is not a one time cost but spread in time.

As mentioned at the end of the previous section (2.3.2), in our model, we assumed that each time

the rate matrix changes (even if a small fraction of entries change), the decomposition algorithm

is rerun. We will show in the next chapter that with rate quantization this is not necessary. We

will present an algorithm by which the schedule update for a rate update can be made using an

O(N) algorithm, as opposed to O(N2:5) for rerunning the decomposition. We also show that with

80

an extra speedup factor of 2, the schedule updates for an I-O pair can be made without a need to

rearrange the existing schedule, i.e., with O(1) complexity.

2.3.3 Performance Analysis without Speedup

Motivation and Description

In some cases it may be undesirable for the crossbar and the bu�ers to run faster than the link

speed. For example, the link rates may be very high and it may be infeasible for the crossbar to

schedule packets at rates exceeding those of the links. Besides, if the fabric runs faster than the

link speed, some output queueing is necessary. In this section, we present a number of conditions

under which a pure input queued (no speedup) switch performs as well as the switch with speedup

and show that identical performance can be achieved without speedup.

Our main motivation is the fact that in reality, links of packet switches are not fully utilized

almost all the time. In fact, recent measurements show that the average utilization of a typical

link at the core router level is no more than 50%. This motivates us to redesign our algorithm

to work for a utilization of less than 100%. This time, we assume that our admission controller

keeps the tra�c at each link below some certain level, (1 + sN)�1. Hence the rate request matrix

is a doubly sub-stochastic matrix whose rows and columns sum10 to (1 + sN)�1. Next, we state a

slightly modi�ed version of our main theorem for this case and its proof. It is clear that we achieve

identical performance to the scenario with speedup, however, we will carry out the details carefully

in what follows.

Theorem 2.7 Let R be a N �N doubly sub-stochastic matrix with row and column sums identical

to (1 + sN)�1 where s is a rational number which can be written as 1
z where z is an integer. There

exists a (doubly stochastic) matrix, Q = R0 + U , where R0 is a doubly sub-stochastic matrix with

all the entries integer multiples of s(1 + sN)�1 and row and column sums identical to (1 + sN)�1,

Uij = s(1 + sN)�1 and Qij > Rij ; 81 6 i; j 6 N .

Notice that the di�erence of this theorem from the main theorem is that, here we construct a

doubly stochastic matrix rather than a doubly super-stochastic matrix and everything is an integer

multiple of s(1 + sN)�1 instead of s.

10Note that each row and column of the matrix actually sums to something less than (1 + sN)�1. However, von
Neumann's theorem guarantees the existence of a matrix whose entries are at least as large as the corresponding
entries of the original matrix and whose rows and columns sum up to (1 + sN)�1.

81

Proof: If we put the matrix, R(1+sN) (which is doubly stochastic) as the input to our algorithm,

we get a doubly super-stochastic matrix, Q, whose rows and columns sum to 1 + sN and whose

entries are integer multiples of s as proved in the main theorem. We complete the proof noting

that Q(1 + sN)�1 has the desired form.

Performance without Speedup

As can be seen from the above proof, we can write the matrix we constructed as a sum of 1
s +N

permutation matrices each of which has a coe�cient that is an integer multiple of s(1 + sN)�1. In

the algorithm without speedup, a service slot is identical to an time slot. The periodic nature of

services is still the case and the period is again 1
s +N service slots, but this time this corresponds

to 1
s + N rather than 1

s time slots. Next, we analyze the performance bounds with the modi�ed

algorithm.

Theorem 2.8 Let Rij be the desired rate and Dij(t) be the number of service opportunities given

for the cells with I-O pair (i; j) by time t (in time slots). The following holds for the modi�ed rate

quantization algorithm over the AOS:

�L0(s) 6 Dij(t)�Rijt 6 U 0(s) (2.51)

where

L0(s) =

8>>><
>>>:

1
4s(1 + sN) ; s 6 1

N

N
1+sN ; s > 1

N

(2.52)

and

U 0(s) =

8>>><
>>>:

�
1
s +N

� �
1
2 +

s
1+sN

�2
; s 6 1

N�2

�
N

1+sN

�
(1 + 2s) ; s > 1

N�2

(2.53)

Proof: Recall that, given the quantization parameter, s, the rate quantization algorithm generates

the Q matrix for every doubly stochastic matrix, R such that the corresponding entries of R and

82

1
s

+N1
s

+N Rij1-
0 1

. . .
2

no service service

time. . .

Figure 2-19: In the worst case scenario, I-O pair (i; j) can be served through Rij

�
1
s +N

�
per-

mutation matrices each of which has a weight of s(1 + sN)�1 and can be delayed by as many as
(1�Rij)

�
1
s +N

�
time slots before getting the �rst service opportunity.

Q are within 2s(1 + sN)�1 of each other:

Rij < Qij 6 Rij +
2s

1 + sN
; 8i; j (2.54)

1. Lower bound : The I-O pair, (i; j), can be served through multiple permutation matrices and

in the worst case it can get no service in the �rst (1�Qij)
1
s + N service slots and given

service all of the �nal Qij
1
s service slots of a frame as illustrated in Fig. 2-19. This happens

with AOS if the �nal Qij
1
s permutation matrices have P�;ij = 1 and all the others have a 0 in

this location. Thus, user (i; j) can possibly delayed by no more than

(1�Qij)

�
1

s
+N

�
6 (1�Rij)

�
1

s
+N

�

time slots. Therefore,

Dij(t) > Rijt� (1�Rij)

�
1

s
+N

�
Rij (2.55)

Hence, the bound on the service lag varies with the rate asked. If we solve the constrained

optimization problem to minimize the lower bound over all possible rates:

max
Rij2[0;1]

(1�Rij)

�
1

s
+N

�
Rij

we get,

R�
ij = min

�
1

2
;

1

1 + sN

�

and when we plug this in our objective function, we get the lower bound, L(s), given in (2.51).

83

1
s

+N
1
s

+N Rij+ 1+sN
s

no serviceservice

0 1 time.

Figure 2-20: I-O pair (i; j) can be given service opportunities at the beginning of every period for�
1
s +N

� �
Rij +

2s
1+sN

�
time slots.

2. Upper bound : Similarly, the number of provided service opportunities can exceed the re-

quested amount. For instance, i-O pair (i; j) can get all his service in the �rst Rij

�
1
s +N

�
+2

time slots as illustrated in Fig. 2-20. The extra 2 time slots of service are due to (2.54). Thus,

the \service lead" can be bounded as,

Dij(t) 6 Rijt+

�
Rij

�
1

s
+N

�
+ 2

�
Rij

= Rijt+

�
1

s
+N

��
Rij +

2s

1 + sN

�
(1�Rij) (2.56)

Similarly, solving the constrained optimization problem to maximize the upper bound over

all possible rates:

max
Rij2[0;1]

�
1

s
+N

��
Rij +

2s

1 + sN

�
(1�Rij)

we get,

R�
ij = min

�
1

2
�

s

1 + sN
;

1

1 + sN

�

Plugging this in our objective function, we get the upper bound given in (2.51) completing

the proof.

Note that the lower and upper bounds derived for AOS are also tight for the PGPS scheduler.

Consider some input output pair, (i; j). Suppose, after rate quantization, Qij � Rij and all the

permutation matrices that have P�;ij = 1 have a coe�cient, s(1 + sN)�1 in the decomposition.

Since s(1+sN)�1 is the minimum possible coe�cient for a permutation matrix in a decomposition,

it is indeed possible for all the matrices with P�;ij = 1 get scheduled at the end of a frame of a

84

PGPS schedule, and thus, the lower bound for the service lag is tight. Similarly, I-O pair (i; j) may

get all its service opportunities in the �rst Rij
1
s + 2 service slots of a frame, and hence, the upper

bound is also tight.

Even though, the lower bound derived in (2.55) and the upper bound derived in (2.55) are

di�erent from their counterparts with speedup, the minimum lower bound and maximum upper

bound given in (2.51) are identical to those with speedup. The reason for this is even if the bounds

(with and without speedup) are di�erent, the solutions to the constrained optimization problems

are identical in both cases; however, the rates that maximizes the objective functions are di�erent.

Indeed these rates without speedup are the scaled versions of their counterparts with speedup with

a factor of 1 + sN , which is not surprising. For large values of N , the upper bound and the lower

bound are approximately the same and they scale linearly with N . The quality of service bounds

with speedup (and hence the no speedup) for large N are illustrated in Fig. 2-21. The actual upper

and lower bounds are illustrated in Fig. 2-22 as a function of the pair, (S,rate) where S = 1 + sN

is the speedup. The bounds in the curves are given per port and should be scaled with the number

of ports, N . Notice that feasible rate region is Rij 6
1

1+sN and outside of this region is clipped out

in the graph.

2.4 Probabilistic Scheduling

So far, we have talked about deterministic schedulers and performance guarantees. After the

decomposition step, a deterministic schedule was generated and it remained �xed. In this section,

we will introduce a very simple probabilistic scheduler and talk about its performance on average.

Suppose we have the Birkho� decomposition for the rate matrix. It does not matter whether

this matrix is quantized or not in this part. Let us consider the decomposition for a matrix which

is not quantized. There is a weight, �i associated with every permutation matrix, Pi. The sum of

weights for all the permutation matrices with P�;ij = 1 gives the total rate, Rij, between I-O pair

(i; j).

Consider a scheduler that sets up the crossbar con�guration corresponding to Pi with probability

�i every time slot, independent of everything else. With this scheduler, in each time slot, the I-O

pair, (i; j), gets a service opportunity with probability Rij. Thus, the service opportunities provided

85

Quality of Service Bounds (per port)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

bound

0.5 1 1.5 2
sN

Figure 2-21: Illustration of the quality of service curves without speedup (given in (2.51)) as a
function of S � 1 for large N , where S = 1 + sN is the speedup.

86

Upper and Lower Bound (per port)

0.2
0.4

0.6
0.8

1
1.2

1.4
1.6

1.8
2

sN

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

rate

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 2-22: Illustration of the upper bound (given in (given in (2.56)) as a function of S � 1 and
the desired rate where S = 1 + sN is the speedup. The clipped region is Rij >

1
S ; 8i; j and it is

infeasible.

87

to this pair is a geometric random process with parameter, Rij . By the strong law of large numbers,

lim
t!1

Dij(t)

t
= Rij (2.57)

with probability 1. Next, let us focus on the service lag. Let t and t0 be two points in time, such

that t < t0. De�ne Dij(t; t
0] as the number of service opportunities given to the pair in period (t; t0].

Then,

Pr
��
Dij(t; t

0]�Rij(t
0 � t)

�
> L

�
=

t0�tX
l=L+bRij(t0�t)c+1

0
@ t0 � t

l

1
ARl

ij (1�Rij)
t0�t0�l

6 (1�Rij +Rije
r)(t

0�t) e�r(Rij(t0�t)+1)e�rL (2.58)

for all r > 0, where (2.58) follows from the Cherno� bound (see e.g., [51]). The bound is a convex

function of the parameter r. It can be minimized over r > 0 to evaluate the value for which the

bound is the tightest. We will not do that, but, note that (2.58) is exponentially tight, i.e., the

probability that the service lag exceeds some L > 0 decays to 0 exponentially fast in L.

Even though deterministic guarantees cannot be given by this randomized scheduling algorithm,

the probabilistic guarantees are very impressive given the simplicity of the algorithm. For instance,

recall that the upper bound on the service lag with plain Birkho� approach is (N2). The probability

that the service lag exceeds N2 has a dominant term of exp(�rN2), which approaches 0 more than

exponentially fast as N . We conclude this section noting that probabilistic schedulers can be very

compelling in both their simplicity and performance.

2.5 Conclusions and Future Work

We presented a rate quantization algorithm which, along with some speedup, signi�cantly improves

the performance and practicality of reservation based scheduling algorithms. We showed that the

service bounds for Birkho�-von Neumann switches derived in [15] are tight. Besides, there is

a high complexity associated with the decomposition algorithm and it is not possible to run it

simultaneously as the crossbar connections are made. Thus, the quality of service provided over

such switches may not be satisfactory for a large set of applications and tra�c sources.

Rate quantization improves the bounds by a factor O(N), and there are certain points in

time where the service lag is 0 simultaneously for all I-O pairs. Also, the decomposition can run

88

simultaneously as the crossbar con�gurations are set up; the complexity of decomposition is thus

spread over a larger time period. We illustrated that even with a small speedup, rate quantization

with AOS expands the set of contracts for which satisfactory service guarantees can be provided a

great deal.

In some cases, speedup may be undesirable. If there are not long periods of time where links

are fully utilized, we showed that rate quantization performs well without speedup. It does so by

utilizing the unused resources to smooth the service and improve the quality of service bounds.

In what follows, we give directions for future research.

� The schedulers we considered take only the decomposition coe�cients into consideration, and

disregard individual service parameters completely. Instead, we can de�ne a matrix of costs

(one for every I-O pair) that increases proportional to the desired rate and decreases each time

the corresponding pair is given a service opportunity. Then, an algorithm based on stable

marriage match or maximum weight match can be used to schedule crossbar connections. We

believe that such an algorithm will improve the quality of service bounds a great deal.

� Throughout this chapter, we assumed that contracts between all I-O pairs are made simul-

taneously and rate updates are made synchronously over all I-O pairs. In reality, the rates

between di�erent I-O pairs can change at di�erent times. In our model, we assumed that each

time the rate matrix changes (even if a small fraction of entries change), the decomposition

algorithm is rerun. We will show in the next chapter that, this is not necessary. We will

present an algorithm by which the schedule update for a rate update can be made using an

O(N) algorithm, as opposed to O(N2:5) for rerunning the decomposition. We also show that

with an extra speedup factor of 2, the schedule updates for an I-O pair can be made without

a need to rearrange the existing schedule. As shall be shown, rate quantization is essential

for both of these results to be possible.

� The crossbar fabric is attractive since it is non-blocking and easy to manufacture. However

as the size of a switch gets larger, coordination among all the ports becomes increasingly

di�cult and thus, many algorithms get very complex as the switch size grows. This compels

us to look into distributed architectures with less coordination among di�erent units of the

architecture. An in depth study of multistage architecures can be found later in this thesis.

89

Chapter 3

Isomorphism Between Crossbar

Switch Schedulers and Clos Networks

3.1 Motivation

In the previous chapter, we studied service guarantees for connection based contracts. We de�ned

a contract as a doubly stochastic rate matrix and a duration that represents the \lifetime" of the

contract. According to that model, at the end of the contract lifetime, another contract with a new

duration and set of rates is negotiated. The switch has to calculate a new schedule, and crossbar

con�gurations are set according to the new schedule. In this chapter, we study contracts where the

duration of contracts is not necessarily the same for all input output pairs. The main motivation

for such an e�ort can be given as follows.

For a switch of size N � N , there are N2 input output (I-O) pairs. In practice, the desired

rates between di�erent I-O pairs may change independently of each other. Suppose each I-O pair

updates its rate every T units of time on the average. This corresponds to N2=T changes per unit

time. This has a signi�cant impact on the implementation complexity of the scheduling algorithms.

Indeed, if rates are updated one at a time, even with rate quantization, a given set of rates must be

kept for about N time slots for satisfactory service quality with the type of scedulers we introduce.

This corresponds to O(N3) time slots for maturity of an individual contract.

First we show that there is a one to one correspondence between the service provided by a

crossbar that alternates over a number of con�gurations in a time division multiplexed (TDM)

manner and the service provided by a three stage Clos network composed of crossbars that have

91

�xed con�gurations.

Then, we study the Slepian-Duguid algorithm (originally developed for Clos networks; see [37]

for an in depth treatment) with which rate updates can be made with minimal modi�cation to the

existing schedule in a simple and e�cient way. We show that rate quantization is necessary for

this approach to be successfully implemented, and discuss certain trade-o�s. Then we will evaluate

the necessary speedup that enables a single crossbar switch to schedule contracts independently of

each other subject to feasibility constraints. Our purpose is to accommodate rate updates of an

I-O pair without changing the existing schedule of con�gurations.

3.2 Space Switching vs. Time Switching, Clos Network Analogy

After giving some de�nitions, we show that there is a one to one correspondence between the

service provided by a crossbar that alternates over a number of con�gurations in a time division

multiplexed (TDM) manner and the service provided by a three stage Clos network composed of

crossbars that have �xed con�gurations. For an extensive treatment of Clos networks, see [37], [56].

We consider the single crossbar switch model developed in the �rst two chapters. Suppose

we have a rate matrix R, whose entries are integer multiples of ��1, for some � 2 ZZ
+. We call

such matrices � -periodic since they can be supported with a schedule of � crossbar con�gurations.

Matrix �R has integer entries and the (i; j) entry represents the number of times input i should be

connected to output j within � time slots. In this chapter, we assume R to be doubly stochastic.

Suppose we want to construct a schedule for the support of R.

We convert this problem into a dual problem as follows:

1. We de�ned a time slot as the period of time it takes for a typical link to transmit one cell.

Let a frame be the time it takes for a link to transmit � cells. Thus, one frame contains �

time slots, and a link can transmit up to � cells in a frame. We use t and t0 to identify time

slots and frames respectively, e.g., (t0 � 1; t0) is the t0th frame. A frame is illustrated in Fig.

3-1. Suppose, within a frame, (t0�1; t0); � 0 service opportunities are given. Hence, the switch

operates at a speedup of � 0=� , and a service slot is a fraction �=� 0 of a time slot.

2. Instead of having the crossbar schedule � 0 con�gurations in a frame and repeating it every

frame, let us use � 0 parallel crossbars each of which have a �xed con�guration. Namely, each

crossbar is con�gured to only one permutation matrix. Let the kth crossbar be set to the

92

one cell
arrival

τ

1

t+

t’+

.

a frame

.

t’

.t t+1

time slot

Figure 3-1: A frame is de�ned as the time it takes for a link to transmit � cells.

con�guration corresponding to the permutation matrix implemented by the original crossbar

in the kth service slot of a frame. The, � 0 crossbars perform the function of the single fast

crossbar; but instead of con�guring � 0 permutation matrices one each service slot, in this

scenario they are con�gured simultaneously one each crossbar use. These N � N crossbars

are illustrated in the middle of the system on the right side of Fig. 3-2.

At this point, we completed the �rst part of the analogy. Before we go on, let us describe the

time division multiplexers and demultiplexers (time division switches) shown in Fig. 3-2. Up

to � cells arrive at each time division demultiplexer within a frame. These cells are reordered

in the frame for each one to be sent to the appropriate middle crossbar. Similarly, in a frame,

each time division multiplexer gets cells from � of � 0 middle crossbars and reorders them

before transmission. The reordering at a time division switch can be performed by a device

called a time slot interchanger (TSI), as shown in Fig. 3-3. Conceptually, a � � � TSI can be

viewed as a bu�er which reads from a single input and writes to a single output. The three

stage system is illustrated in Fig. 3-4. This three-stage switching system is also known as a

time-space-time (TST) switching network (see e.g., [37]).

To summarize, there is a one to one correspondence between the con�gurations that the

single (fast) crossbar switch (left side of Fig. 3-2) goes through within a frame time and the

con�gurations of the middle crossbars of the three stage system (right side of Fig. 3-2).

Next, we get to the second part of the analogy.

93

demux
time division

crossbar

time division
mux

τ

τ

.

.

.

.

.

..

.

.

...

...

...

.

.

.

.

.

...

...

.

.

.

.

.

.

.

.

.

.

 ’
crossbar

.

.

.

.

 ’

.

configurations

.

2

1
crossbar

1

2
1

N

2
1

1

2

N

NN

per frame

Figure 3-2: Instead of a crossbar which provides � 0 service opportunities per frame, consider using
� 0 crossbars in parallel with static con�guration.

.

.

.

��
��
��
��

. . .
��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

12

1

τ

3

13

. . .

time time
ττ

Figure 3-3: A � � � time slot interchanger

94

τ

1

.

.

.
demuxTSI

TSI. mux.

.

input

switch
time-division

output
time-division

switchi

j.

.

.

network
 ’

network

Figure 3-4: A detailed illustration of the input and output stage crossbars shown in Fig. 3-2. They
have TDM switches which make use of TSIs for switching (swapping time slots). This network is
also called a TST switching network.

3. If we view the inputs of the system given in Fig. 3-4 as � cells arriving in parallel rather than

in series, then the time division switches become crossbars. More precisely, suppose we divide

each input and output link into � links that are slower by a factor � compared to the original

links. Hence, instead of � serial cell arrivals on a single input, there is one arrival on each of

� parallel inputs. The time division switches are thus replaced with crossbars of size � � � 0.

Similarly, the output switches are replaced by � 0�� crossbars. These crossbars are functionally

equivalent to the time division switches as illustrated in Fig. 3-5, and the overall system is

thus analogous to the network illustrated in Fig. 3-6. It is called a three stage Clos network

and is the space-space-space (SSS) equivalent of the TST switching network given in Fig. 3-2.

We will represent the Clos network given in this �gure with three parameters, the number

of input links per input crossbar, the number of input (output) crossbars and the number of

middle crossbars: C(�;N; � 0). Note that, since the tra�c is � -periodic, the destination of the

cells arriving at one of the � input links on an input crossbar remains unchanged. Namely,

each input link in the Clos network has to be connected to the same output link at all times.

Hence all the crossbars in the new system will have �xed con�gurations.

We have just established an analogy between the end to end con�gurations of an N��N� three

95

... ...

.

..

.

.

..

.

.

.

.

. . .
mux

��

��

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�1

2

τ

2
3

1

1

3
2

12 13

. . .
2

1
2
3

1
2
3

demux

τ τ

time time
ττ

τ

τ

Figure 3-5: The time division switch consisting of a multiplexer, a TSI and a demultiplexer in
cascade is identical to a non-blocking space division switch.

96

τ

τ

crossbars
input

crossbars
output

ττ

τ

τ

middle
crossbars

τ

.

.

.

.

.

.

..

...

.

.

.

.

.

.

 ’

.. ..1
1

.

.

.

.2
1

.
... .

1
.

N

.

..

...

...

...

...

...

.

..

.

.

1

1

1

...
crossbar

1

Ncrossbar

2

1

Figure 3-6: A typical Clos network. It is also the SSS equivalent of the network given in Fig. 3-2.

97

stage Clos network, C(�;N; � 0), composed of crossbars with �xed con�gurations and the schedule

of con�gurations of an N �N crossbar under � -periodic tra�c. Indeed, any � -periodic schedule for

the original crossbar corresponds to a �xed circuit assignment (see e.g., [37]) in the Clos network,

C(�;N; � 0). The con�guration held by the original crossbar in the kth service slot of each frame

corresponds to that of the kth middle crossbar in the Clos architecture.

Next, we will talk about a number of properties for the non-blocking three stage Clos networks,

and comment about their signi�cance in the context of the single crossbar.

3.3 Non-blocking Scheduling for Crossbar Switches

Blocking is the failure to satisfy certain connection requirements because of the absence of non-

con
icting paths between inputs and outputs for those requirements. In this case a connection

may not be established even if the I-O pair asking for the connection is not busy handling other

connections. An interconnection network is non-blocking if a connection can always be set up

between any idle input and any idle output. This version of non-blocking behavior is also known

as non-blocking in the classical sense. There are multiple degrees of non-blocking in the classical

sense:

1. A network is strictly non-blocking if a connection between an idle input and output can always

be established without rearranging the existing connections between other I-O pairs.

2. If a connection between an idle I-O pair cannot necessarily be established without rearranging

the existing connections, the network is called rearrangably non-blocking.

3. If the necessity of rearranging the existing connections to accommodate new ones can be

avoided using some algorithm to set up new connections, the network is called wide sense non

blocking.

For example a crossbar is strictly non blocking in the classical sense. Note that every strictly

non-blocking network is also wide sense non-blocking and every wide sense non-blocking network

is also rearrangable, but the reverse of these are not necessarily true. The necessary and su�cient

number of middle crossbars for rearrangably non-blocking Clos networks is given by the following

theorem.

Theorem 3.1 C(�;N; � 0) is rearrangably non-blocking if and only if � 0 > � .

98

This result is attributed to Slepian ([53]). He presents an algorithm for rearrangements to acco-

modate a new connection in C(�;N; � 0). We use a simpli�ed version of Slepian's rearrangement

algorithm in our schedulers.

In general, to upgrade a network from one degree of non-blocking to another, resource speedup

is introduced. Resource speedup can be provided in various ways. For instance, a crossbar may

transfer cells faster than the links transmit, or the number of middle crossbars in the three stage

Clos network may be increased. The speedup necessary and su�cient for C(�;N; � 0) to be strictly

non-blocking is 2� 1
� :

Theorem 3.2 C(�;N; � 0) is strictly non-blocking if and only if � 0 > 2� � 1.

This result was shown by Clos himself in his 1953 paper ([52]) and can be found in standard texts

on switching (e.g., [37]).

3.3.1 Slepian Duguid Theorem and Non-blocking Scheduling for Crossbar Switches

In this section, we illustrate how a new connection request can be handled in a Clos network with

minimal modi�cation to the existing connections using the Slepian Duguid algorithm. Then, we

discuss its implications on single crossbar switch scheduling.

Consider �xed connections between the N� input links and the N� output links of the Clos

network C(�;N; � 0). Let RM be an N �N matrix of integers where the entry (i; j) represents the

total number of connections between the ith input crossbar and the jth output crossbar. Thus,

RM is � times a � -periodic rate matrix. The problem of �nding the con�gurations of � middle

crossbars is known as the �xed circuit assignment problem.

Birkho�'s decomposition can be used to �nd the middle crossbar con�guration. Due to the

special form of RM , the coe�cient of each permutation matrix in the decomposition is an integer

and these integers sum to � . A permutation matrix with coe�cient k is assigned to k middle

crossbars. Thus, the necessary number of crossbars is � 0 = � since the decomposition algorithm

terminates with that many permutation matrices (which need not be distinct).

A Clos network is said to be fully connected if each input link is matched with an output link.

A fully connected Clos network and the corresponding rate matrix are illustrated in Fig. 3-7.

Now suppose we have a Clos network which is not fully connected, and a new connection between

an idle input link at input crossbar i and an idle output link at output crossbar j is to be set up.

Since input crossbar i has an idle input link, it must also have an idle output link. Since an input

99

1 2 0

0 0 3

2 1 0

R =
M

Figure 3-7: A fully connected Clos network, and the corresponding RM .

crossbar has a link to all the middle crossbars, there exists a middle crossbar, x, which has an

idle input and thus an idle output link. Similarly, since output crossbar j has an idle output link,

there exists a middle crossbar, y, that has an idle input link and an idle output link. If the middle

crossbars x is the same crossbar as y, then input crossbar i can be connected to output crossbar

j through that middle crossbar without a need for any rearrangement of the existing connections.

Otherwise, a rearrangement is necessary. In fact, the rearrangement process involves only the two

crossbars, x and y. We present the following approach for the rearrangement process.

First, we construct a reduced rate matrix, Rxy
M , as follows. Let the con�guration matrices of x

and y be Px and Py respectively. Let

Rxy
M = Px + Py + Iij

where (i; j) entry of Iij is 1 and all others are 0. One can see that Rxy
M has all integer entries and

1
2R

xy
M is a doubly substochastic matrix. Thus, one can �nd two permutation matrices, P 0

x and P 0
y

such that

P 0
x + P 0

y > Rxy
M

where the inequality is entrywise. There are simple ways to �nd the two connection matrices, P 0
x

and P 0
y due to the special form of Rxy

M . We present one of them, which is slightly modi�ed version

of the Slepian Duguid algorithm.

100

Let us de�ne the matrix �xyM = xPx+ yPy. Note that the middle crossbar IDs, x and y are used

as symbols only. Namely, each entry of �xyM is an element of the set f0; x; y; x + yg. We emphasize

that x + y is not a sum of two numbers, but rather represents a connection between an input

crossbar output crossbar pair through both middle crossbars x and y. Each row and column of

matrix �xyM contains x and y at most once (a row contains symbol x if there is an x or an x + y

entry at that row). If the (l;m) entry of matrix �xyM is x, then the lth input and the mth output of

crossbar x are connected. If that entry is x+ y, then I-O pair (l;m) is connected in both crossbar

x and crossbar y. Matrix �xyM is a reduced version of Paull's connection matrix (see e.g., [37] for a

de�nition) for our three stage Clos network.

Recall that a connection between input crossbar i and the output crossbar j is requested. Since

there is a need for a rearrangement, the ith row of �xyM contains either symbol x or symbol y, but

not both, and the jth column contains the other symbol. Without loss of generality, let us assume

row i contains symbol x and column j contains symbol y. The algorithm has two steps, the search

and the rearrangement.

The search process is illustrated in Fig. 3-8. First, we search matrix �xyM for an x or an x + y

in the row of the entry which contains the y in column j. If such an x can be found, we then look

for a y in that column. If such a y can be found, we search for an x in its row. The alternating

search process terminates if the symbol in consideration (either x or y) cannot be found. The search

process takes at most 2N � 2 steps since there are a total of 2N � 2 rows and columns combined,

other than row i and column j.

Once the search process terminates, the rearrangements can be made as shown in Fig. 3-9. All

the entries on the path from the �rst y to the last entry that the search process �nds are
ipped:

Each x is replaced with a y and each y is replaced with an x. The y in column j is thus changed into

an x, and a y can be inserted in position (i; j) since neither the ith row nor the jth column contains

a y any more. Thus, we can accomodate the new connection request between input crossbar i and

output crossbar j through middle crossbar y after the rearrangement. By inspection, one can see

that after this process, each row and each column of the modi�ed Paull's matrix still has no more

than one x and one y.

We started the search process with the row that contains the y. We could as well start it with

the column that contains the x, and the procedure would still work. Indeed, Paull ([54]) proposed

a slight modi�cation to the Slepian Duguid algorithm: Instead of constructing one chain starting

101

.

.

.

.

.

.

no
y

no
y

1

N

N

i

j

y

1

x

x

yx

Figure 3-8: The alternating search process terminates when a y in the column of an x or an x in
the column of a y cannot be found in matrix �xyM . The process takes at most 2N � 2 steps.

.

.

.

.

.

.

.

.

.

.

.

.

1

N

N

i

j

y

1

x

x

yx

1

N

N

i

j1

x

y

y

x y

x

Figure 3-9: Each symbol found by the search process, starting with the �rst y is
ipped, i.e., each
y is replaced with an x and each x is replaced with a y. At the end, an extra y can be inserted as
the (i; j) entry of the matrix.

102

with one of the symbols, x or y, construct two chains, one for each symbol, and run the two search

processes in parallel. Since the sum of the length of the two chains can at most be 2N (since there

are that many entries that contains an x or a y), one of these chains has a length no more than N .

Once the shorter chain is constructed, the rearrangement procedure can be applied on this chain.

This cuts the maximum number or rearrangements down to a half of that of the original procedure,

hence we need at most N � 1 rearrangements.

The described rearrangement algorithm enabled the connection between input crossbar i and

output crossbar j to be made through middle crossbar y. Note that, even though up to N � 1

rearrangements is necessary for a connection request to be ful�lled, these rearrangements involve

only two middle crossbars. Hence, after the rearrangement process � �2 middle crossbars will keep

their con�gurations.

In the light of the above, let us focus on the scheduling problem for the single crossbar switch.

Suppose we have a � -periodic rate matrix, and a number of entries are updated. For the I-O pairs

which decrease their rates, we can simply vacate that pair from su�ciently many con�gurations.

Since the coe�cient of each permutation matrix is ��1, one such pair should be vacated per ��1

decrement. For the I-O pairs which increase their rates we can use the Slepian Duguid rearrange-

ment procedure exactly the same way it is used to establish a new connection in a Clos network. To

accommodate each ��1 increment, we need to modify only two permutation matrices among a total

of � . The complexity of the rearrangement procedure is O(N), which is an ON1:5 improvement over

rerunning the decomposition, each time an entry is changed. Only two permutation matrices are

modi�ed and the rearrangement process implies a schedule change for no more than N�1 I-O pairs

other than the one which asks for the rate increase. Similarly, this is a factor O(N) improvement

since, if we ran the decomposition after each schedule change, it might be the case that the entire

schedule needs to be changed.

For the rearrangement algorithm to be applied to the single crossbar switch schedule, our main

assumption is that the tra�c can be made � -periodic, i.e., all the entries of the rate matrix are

integer multiples of ��1, for some � 2 ZZ
+. If we do not have a � -periodic rate matrix, rates must be

quantized as described in Chapter 2. There are some trade-o�s we need to take into consideration

to choose the quantization parameter, � . The necessary speedup for quantization is 1 + N
� , which

increases as � decreases. On the other hand, in a system where desired rate changes are small1,

1For instance, suppose the rates are updated according to the state of the VOQs. As the number of cells start to

103

the frequency of rate updates will increase as � increases. Also, if the change in the desired rate

is high compared to ��1, the number of users that may be a�ected by the update will increase.

Indeed, with each ��1 increase in the rate, the number of users that possibly need a schedule update

increases by N .

3.3.2 Strictly Non-blocking Scheduling for Single Crossbar Switches

Recall that Theorem 3.2 gives the number of middle crossbars necessary for strictly non-blocking

Clos networks. Using that result, we derive the necessary speedup to enable independent scheduling

in the crossbar switch.

Theorem 3.2 implies that if the number of middle crossbars is doubled, a new connection (a

request for a �xed circuit) can be accommodated without rearranging the currently existing middle

crossbar con�gurations.

An equivalent statement for the N �N crossbar switch is the following. Any admissible unicast

� -periodic tra�c can be supported over a crossbar with a speedup S = � 0

� = 2 � 1
� . Moreover,

if multiple entries are changed in the original rate matrix, the new rates can be accommodated

without a need for rearranging the schedule of the I-O pairs with unchanged rates. The I-O pair

for which a decrease in rate occurred can vacate su�ciently many con�guration entries. The I-O

pairs with increased rates can search the 2� � 1 con�guration matrices for the one that has a 0 in

the corresponding location. The existence of such a matrix is guaranteed by Theorem 3.2. We will

call such schedules for the crossbar strictly non-blocking .

Strictly non-blocking scheduling requires � -periodic tra�c to generate the schedule of 2� � 1

con�guration matrices. Since � can be picked arbitrarily large, for any rate matrix with real entries,

a � can be found for which every entry is arbitrarily close to an integer multiple of 1
� . However, the

length of the schedule is also proportional to � , and hence, it is not desirable to pick � very large.

Instead, suppose we pick a predetermined value for � , so that the schedule length is no longer than

2� � 1 permutation matrices. If the rate matrix is not � -periodic, we can use the rate quantization

procedure described in chapter 2. We can generate a Q matrix whose rows and columns sum to

increase, the rates are increased accordingly, and vice versa. In such a system, the rate updates may be desired quite
frequently and consequently, the amount of change may be small.

104

1 + 1
�N , and for strictly non-blocking scheduling, an overall speedup of

S =

�
1 +

N

�

��
2�

1

�

�
= 2 +

2N � 1

�
+ o

�
��1
�

would be necessary. Thus, rate quantization requires an extra speedup of 2N�1
� . As shown earlier,

the service lag and the corresponding cell delay is proportional to � , whereas the necessary speedup

is inversely related to this parameter, which is, in fact, the fundamental trade-o� for all rate

quantized systems.

3.4 Conclusions

Multimedia sources and data sources require service guarantees which can be dynamically updated

in the short term as well as the long term. We introduced two di�erent methods for making

schedule updates for changing rate requirements between I-O pairs with only minimal changes in

the existing schedule. The �rst one is based on Slepian Duguid theorem for circuit rearrangements

in Clos networks. It does not require any speedup beyond that necessary for rate quantization.

The second one completely decouples the schedule updates of di�erent I-O pairs, i.e., any change in

the rate of an I-O pair can be accommodated, without any need for rearrangement of the existing

schedule of other I-O pairs. Using an analogy between single crossbar switch schedules and three

stage Clos networks, we showed that a speedup of 2 is su�cient for strictly non-blocking switch

schedules for unicast tra�c over single crossbar switches.

In this chapter, we did not talk about wide sense non-blocking scheduling for single crossbar

switch. If we follow a certain wide sense non-blocking algorithm (see e.g., [56]), scheduling of rate

updates could be achieved without a need for rearrangements with a speedup lower than 2. For a

detailed treatment of such algorithms and corresponding speedups, see e.g., [56].

In the next chapter, we study the support of multicast rates over crossbar switches. We show

that, unlike unicast, such rates are not supportable over single crossbar switches without speedup.

Then, we will use the Clos network analogy again to show that a speedup of O(logN) is necessary

for multicast support with strict sense non-blocking scheduling. We will also use the insights we

gained in this chapter to study rate guarantees over wavelength switches.

105

Chapter 4

Multicast Support over a Single

Crossbar Switch

4.1 Introduction

In this chapter, we will study multicast support over crossbar switches. Many applications and

tra�c sources may request that the same information be sent to multiple points in the network, a

situation called multicast. An increasing proportion of tra�c on the Internet is multicast. Instead

of sending a separate packet to each of the destinations, the source might send a single packet to

a multicast address. The network then delivers a copy of that packet to each of the destinations

in the network. While multicast is not supported by many of the routers in the Internet, wide

area multicast is made available via the Multicast backbone (Mbone), [32], [33]. The Mbone is

a logical internet layered over the top of the current Internet. That is, multicast-enabled routers

tunnel to each other through the existing Internet. Any regular routers between two multicast

enabled routers process only their own (unicast) headers and never have to worry about multicast

addresses.

The trivial solution to multicast support is to duplicate multicast packets upon arrival to a

switch and to treat each one as a separate unicast packet. However, higher throughput can be

attained if we take advantage of the natural multicast properties of switching fabrics. For instance,

the crossbar can copy one input cell to any number of outputs for which there is no con
ict in

a single cell time1. In Fig. 4-1, crosspoints (1,1) and (1,2) are shorted which assumes that the

1In the second chapter, we assumed that a crossbar is incapable of making broadcast connections. In the second

107

321

3

1

2

Figure 4-1: Crosspoints (1,1) and (1,2) are connected which enables the crossbar to copy the same
packet at the �rst input link onto outputs 1 and 2 simultaneously.

crossbar can copy the same cell at the �rst input link onto outputs 1 and 2 simultaneously rather

than having to send them at di�erent times.

A number of di�erent architectures and implementations have been proposed for multicast

switches (see e.g., [4], [34]). The algorithms used in all of these implementations are based on

cell scheduling rather than bandwidth reservation. Due to the complicated nature of multicast

tra�c, it is very hard to quantify the quality of service provided. This past work focuses on

speci�c examples and presents simulations that illustrate the performance for these examples. To

our knowledge, there are no bandwidth reservation based scheduling algorithms developed in the

context of multicast.

The rest of this chapter is organized as follows. First, we give the problem model. Next, we will

show that not all feasible multicast rates can be supported over such a switch without speedup,

even if the crossbar constraint is relaxed to allow broadcast connections. Finally, we will evaluate

the necessary speedup for strictly non-blocking scheduling for multicast support.

4.2 Model and Fundamentals

First, let us introduce some notation. In the unicast scenario, each cell at an input link has a single

destination and cells that share the same I-O pair are placed in the same VOQ. In multicast, a cell

does not necessarily have a single destination. We de�ne a class of cells as those that share the

same input and the same set of outputs. Without multicast, there would be N classes per input

part of this chapter, we will remove that condition and adapt a broadcast enabled version of the crossbar constraint.

108

link, and each class of cells would be stored in the same VOQ. In multicast, we assume that each

class is kept in a separate per-class queue.

Let kij be the number of classes of cells which arrive at input i and have output j as one of

the destinations. Let the �rst one of these be the unicast class2 and the other kij � 1 be multicast

classes. Also let the number of destinations and the rate for the lth such class be nij(l) and Rij(l)

respectively. The rate matrix, R, can be broken into a sum of matrices, one for the unicast and a

number of others for the multicast classes. For instance, consider the following 3� 3 system:

R =

2
6664

0 0:2 0:5

0:6 0:4 0

0:1 0:1 0:4

3
7775

| {z }
1

+

2
6664

0:2 0:2 0

0 0 0

0 0 0

3
7775

| {z }
2

+

2
6664

0 0 0

0 0 0

0:1 0:1 0:1

3
7775

| {z }
3

where the �rst matrix represents the rates of the unicast class and matrices 2 and 3 represent the

rates for the two multicast classes. The multicast class cells whose rate is represented in the second

matrix arrive at the �rst input link and are duplicated inside the crossbar. One copy is then sent

to each one of the destinations, 1 and 2. The last multicast class has a rate of 0.1 and its cells are

destined to all three output links. Hence, k12 = 2 and n12(2) = 2. Note that for each multicast

class, the rate matrix, R, has multiple entries increased by an amount identical to the rate of the

class. For instance if a class has I-O pairs (1,2) and (1,3), its rate is added to both R12 and R13.

Hence, it may be the case that, for some i,

NX
j=1

kijX
l=1

Rij(l) > 1 (4.1)

That is, R is not necessarily doubly stochastic. If (4.1) holds for some i, then the cells of a multicast

class arriving at input link i cannot be duplicated in the per-class queues at the input; otherwise,

these queues will over
ow. But the actual rate of cells at the ith input link is not the sum of the

entries over the ith row. In the presence of admission control, the following holds:

NX
j=1

kijX
l=1

Rij(l)

nij(l)
6 1 (4.2)

2By de�nition, there can be only one unicast class with the same input and output pair.

109

for all i. The summation on the left side of (4.2) is, indeed the actual rate of all the classes arriving

at input link i. The rate of each class is divided by the number of destinations (fanout) of that

class since they are represented that many times in the same row of the rate matrix. The admission

control inequality for the jth output link is as follows,

NX
i=1

kijX
l=1

Rij(l) 6 1 (4.3)

Thus, the columns of R must sum to no more than 1. Note that this time we did not divide the

rate of each
ow by the fanout of the class since each
ow is duplicated inside the crossbar and

each copy of a cell must be counted separately. In fact, there are as many as

NX
i=1

kij

classes where the set of destinations includes j, whereas there are

NX
j=1

kijX
l=1

1

nij(l)

classes at the ith input link. If we compare the total number of classes at all of the input links to

that at all the output links, we observe that the former is never greater than the latter:

NX
i=1

NX
j=1

kijX
l=1

1

nij(l)
6

NX
j=1

NX
i=1

kij

This is plausible since cells are duplicated inside the crossbar.

4.3 Multicast Support is not Possible without Speedup

Suppose we have an N � N crossbar with broadcast capability, i.e., one input can be connected

to multiple outputs at the same time, and a cell can be duplicated inside the crossbar and sent

to multiple outputs simultaneously. With this assumption, the set of con�gurations is a superset

of permutation matrices. A con�guration can have multiple 1s in a row, but only a single 1 in

each column. Even with this expanded set of con�guration matrices, the set of all admissible rates

110

output 1, 2
free

simultaneously

output 1

output 2
input 1

0 11/2

0 11/2

output 1, 2
free

simultaneously

output 1

output 2
input 1

0 11/2

0 11/2

Figure 4-2: No matter where the multicast
ow is served, both outputs 1 and 2 will be idle
simultaneously.

cannot be supported by a crossbar in the presence of multicast. Consider the following rate matrix:

R =

2
6664

0 0 0:5

0:5 0:5 0

0 0 0:5

3
7775+

2
6664

0:5 0:5 0

0 0 0

0 0 0

3
7775 (4.4)

It can be easily seen that no input or output link is oversubscribed under this tra�c. There is

only one multicast class and it is at the �rst input link. The second input link is fully utilized since

the sum of the second row entries, all of which are unicast rates, is 1. Therefore, at any point in

time, input 2 must be connected to either output 1 or output 2, but not both since all the cells are

unicast at the second input. On the other hand, input 1 needs to be connected to these two outputs

simultaneously half the time to transfer multicast cells. This implies that these two outputs can be

freed by the �rst input only half of the time as shown in Fig. 4-2, where the time period illustrated

can be arbitrarily long. Thus, whenever the �rst input serves a multicast cell, input 2 must remain

idle. However, since input 2 is fully utilized, it cannot remain idle.

The other alternative is that the multicast cells get duplicated at the input and transferred

to outputs 1 and 2 separately. But, if the multicast cells are duplicated at the input, queues at

this input will over
ow since the total rate of cell arrivals exceeds 1. We conclude that R is not

supportable, even though it is admissible.

This example illustrates that supporting multicast rates is in fact much more complicated than

supporting unicast rates. If R were a unicast rate matrix, it would supportable if and only if it

could be written as a convex combination of con�guration matrices (i.e., permutation matrices for

the crossbar without broadcast). If R is a multicast rate matrix, then this no longer holds. In the

111

example we just considered,

R = 0:5

2
6664

1 1 1

0 0 0

0 0 0

3
7775

| {z }
1

+0:5

2
6664

0 0 0

1 1 0

0 0 1

3
7775

| {z }
2

both 1 and 2 are valid con�gurations in the crossbar with broadcast capability. However, even if

we decomposed the rate matrix as a convex combination of con�gurations of the crossbar, it is not

supportable by the crossbar as shown in the above example. Next, we will evaluate the necessary

speedup for strictly non-blocking scheduling for all admissible multicast rates over the crossbar

with broadcast capability.

4.4 Strictly Non-blocking Scheduling for Multicast Rates

In Chapter 3, we illustrated an analogy between the end to end con�gurations of an N� � N�

three stage Clos network and the schedule of con�gurations to support � -periodic unicast tra�c

over a single crossbar. Now, we will construct a similar analogy for � -periodic multicast tra�c

over a broadcast enabled crossbar. Thus, we assume that the crossbar con�gurations for the

single crossbar switch can have inputs connected to multiple outputs. Since there is a one to one

correspondence between the con�gurations of the single crossbar switch and the con�gurations of

the middle crossbars in the Clos network, they must also have the same property that an input to

a middle crossbar can be connected to multiple outputs for the analogy to be valid. We represent

such a Clos network as CM (�;N; � 0) where the subscript, M , represents the multicast capability.

The following theorem is the version of Theorem 2 for Clos networks with multicast.

Theorem 4.1 Network CM (�;N; � 0) cannot be strictly non-blocking for all multicast connections

between N� output links of the input crossbars and N� input links of the output crossbars unless

� 0 >
�
� logN
log logN

�
.

Note that in network CM(�;N; � 0), only the middle crossbars are broadcast enabled. The following

result is shown in a recent paper by Yang, et.al. ([55]). In a three stage Clos network with broadcast

enabled input and output crossbars as well as middle crossbars, the number of middle crossbars

must be no less than � logN
log logN for a new multicast connection request between an idle input link and

112

a set of idle output links to be accommodated without a need to rearrange the existing (multicast)

connections between other inputs and outputs. Theorem 4.1 does not make any assumptions for

the input or output crossbars since it is only concerned with possible connections between the input

crossbars and output crossbars through the middle crossbars, rather than between all the input

links and the output links. However, it can be observed from the proof presented in [55] that this

restriction makes no di�erence, and for any multicast connection between N� output links of the

input crossbars and N� input links of the output crossbars to be possible, the necessary number

of middle crossbars is no less than c logN
log logN . Indeed, if all multicast connections between the input

and the output crossbars can be made, it can be shown that any multicast connection between N�

input and N� output links of the Clos network can be made as well. Hence, c logN
log logN is a necessary

speedup in our scenario.

For a strictly non-blocking schedule to be possible for all admissible multicast tra�c over a single

crossbar, a speedup of O
�

logN
log logN

�
is necessary. Unfortunately, to our knowledge, the version of

Theorem 4.1 for rearrangable non-blocking networks is yet to be derived.

4.5 Conclusions

In this chapter, we studied the support of multicast rates over crossbar switches. We showed that,

unlike unicast, multicast rates are not supportable over single crossbar switches without speedup.

Then, we used the analogy between connections in a Clos network and crossbar switch schedules to

show that a speedup of approximately O(logN) is necessary for multicast support. This speedup

is a limiting factor on the scalability of single crossbar switches with multicast support. In the

next chapter, we will discuss a number of di�erent architectures and algorithms by which multicast

support is possible without a need for the speedup.

113

Chapter 5

Multistage Switch Architectures with

Quality of Service and Multicast

Support

5.1 Introduction and Motivation

The core of a packet switch is composed of a switch fabric and memory elements. The function of

the fabric is to set up connections between the input and the output links. A very important class

of fabrics is the non-blocking class. A fabric is non-blocking if a connection between an input and

an output link, both of which are not already a part of other connections, can be set up. The most

popular non-blocking fabric is the crossbar. It can be thought of as a set of lines, and crosspoints

that connect these lines as illustrated in Fig. 5-1. The most important limitation of a crossbar is

the so called \crossbar constraint:" At any point in time, only one input can be matched with an

output, and only one output can be matched with an input1. For example, in Fig. 5-1, the �rst

input is connected to the second output and hence no other connection can be made by the second

output.

Despite the di�erence in their approaches to the problem of providing quality of service, the

switch model considered in a majority of papers published in this literature is almost identical:

Input bu�ers that are running at least at line speed (possibly faster depending on the speedup), a

1Note that, in this chapter, we assume a crossbar does not have broadcast capability.

115

21

3

2

1

3

Figure 5-1: A 3 � 3 crossbar fabric. Crosspoints are set to connect the lines to enable end to
end connections. For instance, input 1 and output 2 are connected through the corresponding
crosspoint.

single crossbar fabric as the interconnect, output bu�ers which should run as fast as the fabric2.

This model is common to almost all the papers published in this literature.

The main limitation of the schedulers in the classical architecture is the crossbar constraint.

Due to this constraint, at the input of a crossbar switch, a packet competes not only with other

packets that are destined to the same output, but also with those sharing the same input. Given

that the connection fabric is a single crossbar, there is no way to avoid this constraint, which is the

main di�culty in designing high performance scheduling algorithms. In the �rst two parts of this

thesis, we studied such algorithms and associated complexities.

There are a number of studies on di�erent architectural choices as well. In a recent work by

Iyer et.al. [35], it is shown how to simply modify the classical architecture to make use of the extra

capacity of the links when the memories run slower than the line rate. The basic idea is to divide

each pipe into multiple, say k, pipes by means of demultiplexers and use k switches in the middle

stage before multiplexing packets into a single link again.

Another interesting modi�cation to the classical architecture is proposed by Stephens et.al.

[36] to overcome the contention between the cells sharing the same input. Instead of keeping the

virtual output queues at the input, they are pushed inside the crossbar next to their corresponding

crosspoints as illustrated in Fig. 5-2. For instance, the queue at input i that holds the packets

destined to output j is moved to the crosspoint, (i; j). When a packet arrives with an input-

2Even with no speedup, bu�ers at the output is desired in general since one may want to control the delay jitter
of a
ow at an output link rather than possibly sending its packets in bursts.

116

1

1

2

3

incoming
packets

2
packets

3

round
robin

outgoing

Figure 5-2: Virtual output queues are moved inside the fabric next to the corresponding cross-
points. Incoming packets are placed into these queues upon arrival. Each output link can then
independently implement a round robin schedule among those queues which have packets destined
to itself.

output pair, it is directly forwarded inside the crossbar fabric, placed into the bu�er located at the

corresponding crosspoint. This way, multiple crosspoints in the same input (e.g., (i; j1); (i; j2); : : :)

can be connected simultaneously and an input can send packets simultaneously to di�erent outputs

since the queues are physically separate. Hence, packets with di�erent destinations do not contend

at the input for the crossbar, even though contention between packets destined to the same output

is still not eliminated. Each output can separately apply round robin scheduling between the

queues located at the crosspoints which connect the inputs to this output. The disadvantage of this

architecture is that it is drastically di�erent from the traditional crossbar and hard to manufacture.

Also, since the N2 bu�ers in an N �N crossbar are physically separate, the advantages associated

with statistical multiplexing are lost. Note that, in the regular VOQ scheme, we do not need to

keep a separate queue at each input to implement virtual output queueing. We implement VOQs

by linked lists, i.e., we can store all the cells arriving at an input in a single bu�er, and assign a

pointer to each cell to keep track of the output it is destined to.

Turner ([38]) considered the Benes architecture for packet switching, and showed that 100%

throughput can be achieved over a Benes architecture, given that the packets between an input-

117

output pair do not necessarily follow the same path. However, Turner did not focus much on the

performance issues, such as packet delay and queue sizing.

In this chapter, we will present an in depth study of multistage switches. In the �rst part, we

will develop the mathematical tools that we will use, build some intuition for the general structure

of multistage switches and then propose a number of architectures along with associated routing

and scheduling algorithms. In the second part, we analyze the quality of service provided by

these algorithms. Our algorithms and architectures illustrate how the presence of multiple paths

between input-output pairs can be exploited to improve the performance of a switch and simplify

the scheduling algorithms. Also, we show that some of our architectures are capable of providing

rate guarantees for all admissible multicast rates without speedup, which would not be possible

with a single stage broadcast enabled crossbar switch as shown in Chapter 4.

5.2 De�nitions and Model

We de�ne an interconnection to be a structure which can provide a set of connection con�gurations

or matchings between its input links and output links. In this section, we give some fundamental

properties of interconnections connected in cascade. Each interconnection is also known as a stage

and the system is called a multistage switch or a network . First we develop a model for intercon-

nections and multistage switches, and give a brief introduction to
uid techniques. Then, we show

how to use these tools to identify how the load is divided over intermediate stages as
ows are

routed through the set of interconnections.

5.2.1 An Algebra for Multistage Interconnections without Internal Queueing

We view a multistage switching system as a set of interconnections which are cascaded as follows.

Let the mth interconnection, Nm have a size Im �Om, and the total number of stages be M . The

number of output links from a stage is equal to the number of input links to the following stage,

i.e., Im+1 = Om for m 6M�1. The input and the output links of each network are numbered such

that ith input of Nm+1 is connected to the ith output of Nm. In all but one of the architectures we

deal with in this chapter, Im = Om for m 6M . However, most of the results can be generalized to

non-symmetric interconnections.

Every interconnection, Nm, is modeled by a set of con�gurations, Cm. The elements of these sets

are matchings between the inputs and the outputs of the interconnection. Each such con�guration

118

can be represented by a permutation matrix; indeed, the permutation matrix corresponding to a

con�guration has a one in each location for which an input-output pair is connected. We assume

an interconnection is subject to the crossbar constraint, i.e., an input can be connected to only one

output and an output can be connected to only one input at a time.

At any point in time, Nm can con�gured to only one element of Cm, independent of the con�g-

urations of the other stages. In fact, the independent con�gurabililty is the de�ning property of a

stage. When Nm is set to a c 2 Cm and if cij = 1 for some i and j, input i and output j of Nm are

connected.

Now, let us examine the system of two fabrics in cascade. Let N1 and N2 be con�gured to c1

and c2 respectively. If the system from the input of N1 to the output of N2 is visualized as a single

combined interconnection, N1!2, then the current con�guration, c1!2, of this interconnection will

be the permutation matrix,

c1!2 = c1c2

If c1;il and c2;lj are 1 simultaneously, then c1!2;ij will also be 1. This can be justi�ed physically as

follows. If the �rst stage connects input link i to its output link l, and stage 2 connects its input link l

to output link j, then input link i will be connected to output link j in the combined interconnection.

This assumes no queueing between stages, so the output from one stage immediately gets in the

input to the next.

The set of con�gurations for the combined interconnection is,

C1!2 = fcjc = c1c2; c1 2 C1; c2 2 C2g

Let j � j represent the cardinality of a set. Note that,

max fjC1j ; jC2jg 6 jC1!2j 6 jC1j jC2j (5.1)

where the lower bound follows since, if the con�guration of one of the interconnections is kept �xed,

jC1!2j will be equal to the cardinality of the set of con�gurations for the other interconnection,

and the upper bound follows since a pair of con�gurations, (c1; c2), de�nes a unique end to end

con�guration (although a single end to end con�guration might be generated by many pairs).

Thus, we showed that the total number of end to end con�gurations may or may not increase

119

Ν1 Ν2

1

2

4

3

1

2

4

3

xbar
1

2

4

3

Figure 5-3: The two stage Banyan architecture composed of 2� 2 crossbars is illustrated.

by cascading interconnections. If it does, it can increase at most exponentially with the number of

stages. There are di�erent implications of either case. It may even be desirable that the number of

end to end con�gurations remain constant as interconnections are cascaded. We will discuss these

issues after illustrating the de�nitions in the following examples.

Example 5.1 Consider the 4� 4 Banyan switch given in Fig. 5-3. Each 2� 2 unit shown in the

�gure is a crossbar. For this network,

C1 =

8>>>>>><
>>>>>>:

2
6666664

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

3
7777775 ;
2
6666664

0 0 1 0

1 0 0 0

0 1 0 0

0 0 0 1

3
7777775 ;
2
6666664

0 0 1 0

1 0 0 0

0 0 0 1

0 1 0 0

3
7777775 ;
2
6666664

1 0 0 0

0 0 1 0

0 0 0 1

0 1 0 0

3
7777775

9>>>>>>=
>>>>>>;

C2 =

8>>>>>><
>>>>>>:

2
6666664

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

3
7777775 ;
2
6666664

0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

3
7777775 ;
2
6666664

0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

3
7777775 ;
2
6666664

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

3
7777775

9>>>>>>=
>>>>>>;

For any pair of con�gurations, c1; c
0
1 2 C1 and c2; c

0
2 2 C2 the inequality, c1c2 6= c01c

0
2 holds whenever

120

1

2

N

1

2

N

Stage 1 Stage 2

1

2

N

Figure 5-4: The two stage system consists of two cascaded switches each of which supports only the
identity connection and N � 1 cyclic shifts of it.

c1 6= c01 or c2 6= c02. Thus, the upper bound given in (5.1) is satis�ed with equality:

jC1!2j = jC1j jC2j

Example 5.2 Consider the two stage cyclic shift system given in Fig. 5-4. Each stage is identical

and can support only N con�gurations, one of which is the identity con�guration (the connection

matrix is the identity) and the other N � 1 are the cyclic shifts of it. Hence C1 � C2.

For any two con�gurations, c1 2 C1 and c2 2 C2,

c1c2 2 C1

Thus, the lower bound given in (5.1) is satis�ed with equality:

jC1!2j = max fjC1j ; jC2jg

= jC1j

= N

The presence of multiple paths between the same input-output (I-O) pair is a property that mul-

tistage switches posess, but single stage switches do not. This property gives the switch some

freedom on how to route incoming packets between a given I-O pair. For instance, the second stage

in the previous example (Example (5.2)) does not increase the number of end to end con�gurations,

121

and therefore it may seem redundant. However, as will be shown, it increases the number of paths

between every I-O pair by a factor N and this property will be used extensively in our routing

algorithms.

Now, we evaluate the number of paths between input-output (I-O) pairs in a multistage switch.

Suppose we have anM stage system,N1; : : : ;NM . The number of paths between input i and output

j is identical to the number of distinct M -tuples, (c1; : : : ; cM), where c1!M;ij =
�QM

�=1 c�

�
ij
= 1.

Instead of searching over all possible M -tuples, we can evaluate the number of paths between all

input-output pairs using matrix algebra as follows.

For any two permutation matrices, c; c0, let us de�ne _ to be the entry-wise \logical OR"

operation. That is, (c _ c0)ij = 1 if cij = 1 or c0ij = 1. The number of paths between input i and

output j of the M stage system is the corresponding entry of the matrix,

L(M) =

MY
m=1

_
c2Cm

c (5.2)

This can be proved by induction. For a single stage system, Lij is 1 if input i and output j can

be connected; otherwise it is 0 (hence Lij is the number of paths between i and j). Suppose Eq.

(5.2) holds for an M � 1 stage system and the number of paths between I-O pair (i; l) of the M � 1

stage system is the corresponding entry of,

L(M�1) =

M�1Y
m=1

_
c2Cm

c

Let us put another interconnection in cascade at the end of these M � 1 stages, so that it is the

Mth interconnection in the overall system. For the M stage system, the number of paths between

input link i and output link j is equal to the number of paths between the I-O pairs of the form

(i; �) of the M � 1 stage system that can be extended to the jth output of the M stage system.

Namely, it is the sum of the each entry of the ith row of L(M�1), for which there is a possible path

122

to the jth output of the system through the corresponding input of the Mth stage. Hence,

L(M) = L(M�1)

0
@ _

c2CM

c

1
A

=

M�1Y
m=1

_
c2Cm

c

!0@ _
c2CM

c

1
A

=
MY
m=1

_
c2Cm

c

and the proof is complete.

Using (5.2), for the Banyan network given in Example 5.1, the number of end to end paths can

be found to be,

LBanyan =

0
@_

c2C1

c

1
A
0
@_

c2C2

c

1
A

=

2
6666664

1 0 1 0

1 0 1 0

0 1 0 1

0 1 0 1

3
7777775

2
6666664

1 1 0 0

1 1 0 0

0 0 1 1

0 0 1 1

3
7777775

=

2
6666664

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

3
7777775

Hence, there is exactly one path between any input-output pair. Next, consider a Benes network:

Example 5.3 One way to build a Benes network is by cascading two Banyan networks which share

one common stage. A 4 � 4 Benes network is illustrated in Fig. 5-5. The two Banyan networks

share one common stage as shown in this �gure. The number of paths between input and output

123

Ν1

1

2

4

3

1

2

4

3

Ν2 Ν3

1

2

4

3

1

2

4

3

First Banyan

Second Banyan

Figure 5-5: The two Banyan networks, (N1;N2) and (N2;N3) share N2 and form a Benes network.

links can be found similarly:

LBenes = LBanyan

0
@_

c2C3

c

1
A

LBenes = LBanyan

2
6666664

1 1 0 0

1 1 0 0

0 0 1 1

0 0 1 1

3
7777775

=

2
6666664

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

3
7777775

In general, for an N �N Benes network,

LBenes =
1

2
N~e~eT

where the T in the exponent represents matrix transpose and ~eT = [1 � � � 1]1�N . That is, there are

N
2 paths between each I-O pair in an N �N Benes network.

124

Finally, consider Example 5.2. The L matrix for the architecture given in Fig. 5-4 can be found

to be

L =

2
6664

1 � � � 1
...

. . .
...

1 � � � 1

3
7775
2

N�N

= N~e~eT

It may seem surprising that this architecture supports only N con�gurations as opposed to NN=2 of

the Banyan network (which is composed of 2� 2 crossbars), but it has N paths between any input

and output link pair whereas a Banyan network has only 1. In fact, this is plausible: The second

interconnection does not increase the number of end to end con�gurations, but it does increase the

number of paths between any input-output pair since an input can reach any output through any

input of the second interconnection. We will exploit the property that the number of end to end

paths of this architecture scales with N in quite a few of our switch designs later.

Similarly, each added stage to a Banyan network increases the number of end to end con�gu-

rations at a high rate until it reaches the number of N �N permutation matrices, N !. This point

is reached at stage 2 logN � 1 (i.e., Benes network), and the number of end to end con�gurations

cannot increase any further. After this, with each additional stage, the number of end to end paths

increases geometrically, doubling at each stage.

5.2.2 Tra�c Contracts

So far, we have considered interconnections and multistage switches. Next, we introduce the tra�c

model and the main ideas of the routing and scheduling algorithms.

First, let us incorporate the time dimension. We assume that end users generate packet tra�c at

each input. At the input of a switch, these packets are partitioned into equal size cells. We assume

that the interconnections are capable of changing their con�gurations and operate synchronously.

Recall that we de�ned a service time slot as the period in which a cell can be transferred through

an interconnection. Without internal queueing, a cell can be moved through the entire multistage

switch within a time slot. Even though it is assumed that an interconnection can switch from one

con�guration to another in zero time, once set, a con�guration remains for the period of time until

a cell is transferred before it can be changed. Cell transfers are done synchronously over all the

125

inputs. In this chapter, we simply use a time slot instead of a service time slot. Unless mentioned

otherwise, we assume no speedup, and hence, it takes a time slot to transmit a cell over a typical

link.

There are two major alternatives for the service agreement between users and a network: con-

nection oriented or connectionless. A connection oriented contract has a duration (in number of

time slots) associated with it. Also, the number of cells that can be transferred between every I-O

pair within the lifetime of the contract is speci�ed. Thus, a rate, Rij , can be associated with the

input-output pair (i; j) as the ratio of the number of cells to be transferred between the pair to

the lifetime of the contract. Thus, the rate, Rij takes on values from the set [0; 1]. An admission

controller makes sure that no input or output link is oversubscribed, i.e.,
P

iRij 6 1 for all j andP
j Rij 6 1 for all i. Succinctly, we can represent Rij as the (i; j) entry of a matrix R. The two

admission control inequalities imply that R is a doubly sub-stochastic matrix. It was shown by von

Neumann ([24]) that for every doubly sub-stochastic matrix, R, there exists a doubly stochastic

matrix, Q such that Qij > Rij; 8i; j. An algorithm that generates the doubly stochastic matrix is

also given in [24]. In this chapter, we assume that the rate request matrix, R, is doubly stochastic.

In connectionless service, no rates are speci�ed by the users. Congestion avoidance and control

mechanisms are necessary to prevent bu�ers inside the network from over
owing. The service

provided by the switches is best e�ort and only very limited quality of service guarantees (mostly

probabilistic) can be given. We assume connection oriented service agreements throughout this

chapter. It is only with connection oriented service that rate reservation based scheduling algorithms

can be developed since such algorithms require the prior knowledge of the desired rates between

I-O pairs.

Tra�c Contracts without Internal Bu�ering

A switch is responsible for providing the desired number of service opportunities between each I-O

pair. If the lifetime of a contract is T , then the switch will go through T con�gurations and at least

TRij of them should connect input i to output j for the terms of the contract to be met. Suppose,

for some switch schedule, the switch goes through con�gurations such that input i and output j

are connected for Dij(t) time slots, by time t 6 T . We call the di�erence, tRij �Dij(t), the service

lag for I-O pair (i; j) at time t. In many cases, some of the I-O pairs have positive service lag at

the maturity (t = T) of a contract. It may even be impossible to have all non-positive service lags.

126

In such cases, it is desirable that at least the service lag is upper bounded, i.e., does not increase

with the duration, T .

The above arguments translate into our setting of multistage switches without internal bu�ers as

follows. Suppose at some point in time, input i is connected to output j in an M -stage multistage

switch. This will provide a service opportunity for a cell that lies at the corresponding virtual

output queue (VOQ) to be transferred. Thus, for an agreement with a rate matrix R and a

contract duration T to be ful�lled, the con�gurations of the interconnections, c1(t); : : : ; cM (t), in

period (0; T] must satisfy the following:

TR 6

TX
t=1

MY
m=1

cm(t)

=
TX
t=1

c1!M (t) (5.3)

where 6 is entrywise.

Long Term Contracts

De�nition 5.1 A contract, (R;T), is called supportable if there exists a schedule of multistage

switch con�gurations for the corresponding in�nite duration contract, (R;1) for which the service

lag remains upper bounded for all I-O pairs and for all t.

If a schedule and a time t exist such that tRij �Dij(t) 6 0 for all pairs (i; j), then we say that

the rate matrix R is perfectly supportable at time t.

If R is perfectly supportable at time t, then it is also perfectly supportable at times kt; 8k 2

ZZ
+ since the switch can implement a periodic schedule which repeats itself every t seconds. By

de�nition, supportability is relevant only for in�nite duration contracts. Thus, instead of saying \the

in�nite duration contract with rate matrix R is supportable," we simply use, \R is supportable."

Given R is supportable with the schedule D(t); t > 0,

lim
t!1

Dij(t)

Rijt
= 1

In an M -stage switch, for (5.3) to hold, R must be perfectly supportable at time T . Perfect

127

support may not be possible, even for admissible tra�c. Let

D(t) =

tX
�=1

c1!M (�) (5.4)

For a multistage switch with no internal bu�ers, the set of rates R is supportable if there exists a

set of con�gurations, c1(t); : : : ; cM (t) such that tRij �Dij(t) is upper bounded for all t.

Theorem 5.1 A contract with the rate matrix R is supportable by a multistage switch with no

internal bu�ers if and only if R can be written as a convex combination of c1!M 2 C1!M .

Proof: If there exists a set of non-negative coe�cients,
�
�1; : : : ; �jC1!M j

	
such that

R =

jC1!M jX
l=1

�lcl (5.5)

then, it was shown in [15] that the service lag remains upper bounded at all times using a packetized

processor sharing schedule of the con�gurations with non-zero coe�cients in the decomposition.

Conversely, suppose R is supportable. Then, there exists a scheduler and some B < 1 such

that tRij �Dij(t) 6 B for all pairs (i; j) and for all t. Hence,

lim
t!1

[tR�D(t)] 6 B~e~eT (5.6)

Since D(t) is a sum of t permutation matrices as given in Eq. (5.4) and B is not a function of t,

(5.6) can be written as,

R = lim
t!1

1

t

tX
�=1

c1!M (�) (5.7)

The right side of the above equation (5.7) is a convex combination of at most jC1!M j permutation

matrices, completing the proof.

5.3 Internal Bu�ers and Supportable Rates

Note that the formulation presented in the previous sections has the inherent assumption that a cell

is transferred from an input to an output through the fabric without being kept in the intermediate

stages. That is, no bu�ers are present inside the multistage switch between interconnections. The

128

converse (only if) part of Theorem 5.1 is only valid if there are no bu�ers inside. Indeed, Theorem

5.1 speci�es the necessary and su�cient conditions for a given set of rates to be supportable by a

multistage switch that has no bu�ers between its interconnections. Next, we raise the question of

what happens if there are bu�ers between interconnections. We will present an example in which

bu�ers inside a multistage switch expand the set of supportable rates.

5.3.1 An Example

Let N = 3. The following rate matrix with service duration, T = 3 is to be supported over the two

stage cyclic shift architecture.

1

3

2
6664

2 1 0

1 1 1

0 1 2

3
7775

Each switch supports only the following 3 con�gurations:

c1 =

2
6664

1 0 0

0 1 0

0 0 1

3
7775 ; c2 =

2
6664

0 1 0

0 0 1

1 0 0

3
7775 ; c3 =

2
6664

0 0 1

1 0 0

0 1 0

3
7775

Note that, without bu�ers, one of the switches is redundant from circular symmetry. Obviously,

R is not supportable in this scenario since it cannot be written as convex combination of c1; c2

and c3.

If there are bu�ers at the input of the second stage, we have more freedom on which cell to

schedule through the �rst stage since they do not have to leave the system within the same time slot.

We can exploit this freedom to serve matrix R as illustrated in Fig. 5-6. In this �gure, a schedule

of switch con�gurations with which the set of rates can be supported is shown. The same schedule

is also described in the following paragraph in detail. The important thing to note is that two cells

with the same destination arriving at the input of the second switch at di�erent times must be

placed in a queue for a later transfer. For instance, in the second time slot, two cells both of which

are destined to output 1 are transferred to the second interconnection. The one at the second input

of this interconnection is queued for later trasfer. Also in the same time slot, no cells are transferred

from the second input of the second stage to the output. Thus, it may seem that the given rates

129

t = 0

�
�
�
�

�
�
�
�

�
�
�
� �
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

VOQs
stage 1 stage 2

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

��
��
��
��

stage 1 stage 2
t = 1

�
�
�
�

�
�
�
�

stage 1 stage 2
t = 2

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

stage 1 stage 2
t = 3

Figure 5-6: The evolution of the system in period [0,3] is illustrated. We assume that a cell can be
transferred from the input queues to the output link in a time slot. In the second time slot, no cells
are transferred from the second input of the second stage to the output, but if the same schedule
of con�gurations is repeated all over, all the output links will be fully utilized.

130

cannot be supported due to cell accumulation if the same schedule of con�gurations is repeated.

However, in the second time slot of the second cycle, there will be a cell to be transferred from

the second input of the second stage to the output. Hence, all the output links will be fully utilized.

Description of the Schedule: In the �rst time slot, let c1 be in e�ect in the �rst interconnection.

Suppose, a service opportunity is given to the cells with I-O (ultimate destination) pairs, (1,1), (2,2)

and (3,3) to be transferred to the input of the second interconnection. Let the same matrix, c1, be

kept in the second time slot; but this time let a cell with I-O pair, (2,1), be transferred from input

2 to output 2 of the �rst switch instead of that with (2,2), along with those cells with I-O pairs

(1,1) and (3,3). At the end of the second time slot, either the cell with the I-O pair (2,1) , or that

with the I-O pair (1,1) must be enqueued at the input of the second switch, since both cannot be

transferred to their ultimate destinations simultaneously. In the third time slot, let c3 be in e�ect

to complete a cycle. In this time slot, let cells with I-O pairs (1,2), (2,3) and (3,2) be awarded

with a service opportunity. These cells will get to the inputs 3, 1 and 2 respectively according to

c3. The time slots that service opportunities are awarded by the �rst switch are illustrated in the

following matrix, T (1).

O1 O2 O3

I1

I2

I3

2
6664

(1; 2) (3) (�)

(2) (1) (3)

(�) (3) (1; 2)

3
7775

where the (i; j) entry represents the slots during which i to j transfer is made on the �rst switch.

For instance, if the (i; j) entry is (1,2), then cells with I-O pairs, (i; j) get scheduled in time slots 1

and 2. We call such matrices, schedule matrices. Entries with `-' require no service opportunities.

Given that the �rst stage goes through the sequence of con�gurations c1; c1; c3 with the schedule,

the load at the input of the second stage can be computed as follows.

Input 1 Two of the cells are destined to output 1 and the other is destined to output 3.

Input 2 Two of the cells are destined to output 2 and the other is destined to output 1.

Input 3 Two of the cells are destined to output 3 and the other is destined to output 2.

131

The set of rates that the second interconnection is loaded with is thus,

R(2) =
1

3

2
6664

2 0 1

1 2 0

0 1 2

3
7775

which can be supported using c1 and c3 only. Therefore, if the second switch keeps c1 in e�ect in the

�rst two time slots and c3 in e�ect in the third and repeats this periodically, R can be supported.

Notice that there is always a cell in a bu�er, either at input 1 or input 2 at the bu�ers of the second

stage interconnection. Hence the service lag for one of the I-O pairs will be 1, while the others are

0.

This example illustrates that, in multistage switches, there exist sets of rates that are sup-

portable in the presence of internal bu�ers, but not supportable without them. In particular, in

this 2-stage example, without bu�ers at the input of the second interconnection, one of the cells

must be dropped3. Bu�ers give us freedom to transfer two cells from the �rst stage to the second

simultaneously, even if their ultimate destinations are the same. Finally note that, in the above

example, each
ow followed a unique path and thus no reordering of cells was necessary at the

output of the switch.

5.3.2 In�nitely Divisible Tra�c Model

In this section, we study a number of routing and scheduling algorithms for multistage switches.

We will use \in�nitely divisible
uids" to model the tra�c. Fluid
ows are extremely helpful in

this work since they can be modeled by only one parameter, their rate, and as shall be shown, we

can perfectly specify the tra�c at each stage of a multistage switch using the input rate matrix and

the set of con�gurations that each interconnection goes through. The
uid model eliminates the

need to worry about queueing and cell scheduling which could complicate things highly as shown

in the previous section.

The framework of
uid models has been used extensively in the literature (e.g., [48],[49]),

mostly to obtain stability regions (set of supportable rates) of stochastic networks with very mild

assumptions on input tra�c. Similarly, we will use them to �nd the region of supportable rates

3In fact, it can be shown that a speedup of 3 is necessary to support all admissible tra�c for this system without
bu�ers.

132

1

2

3

1 2 3 4

1

2

3

1 2 3 4

1 2 3 4

1
2

(2t)A ij

(t)A ij (2t)A ij

5 6 t t

5 6

3
5/2
2

3/2
1

1/2

t

Figure 5-7: The graph on the top left is a typical (rate controlled) arrival process. In the top right
graph, time axis is scaled with a factor of 2, i.e., t0 = 2t. In the bottom one, both time and the
magnitude is scaled with the same factor, � = 2. As � is increased, the broken line starts to look
like a tilted straight line.

of the multistage switches with the routing and scheduling algorithms we design. First, we give

an introduction to
uid models, and study how such
ows behave as they propagate through the

interconnections of a multistage switch.

Tra�c Flows

Let Aij(t) denote the cumulative number of cells that have arrived at VOQ (i; j) by time t. We

assume that Aij(0) = 0 and suppose the cell arrival processes, fAij(�); 1 6 i; j 6 Ng satisfy the

following for all pairs, (i; j),

lim
t!1

Aij(t)

t
= Rij (5.8)

We already de�ned Dij(t) to be the number of con�gurations for which input i is connected to

output j by time t. Given that (5.8) holds, we can adopt the
uid model by scaling time and space

133

simultaneously as follows4.

Suppose, we scale the size of a time slot and the cell size down by a factor, �, keeping everything

else the same. Recall that a service time slot is the time it takes a cell to be transferred through

an interconnection. In the new system, if we examine the number of arrivals, we can observe that

it goes through the same sequence as before, except that the changes occur � times as fast as

the original system as illustrated in the second graph given in Fig. 5-7. Hence, a set of rates

is supportable in the original system if and only if it is supportable in the scaled version. Next,

suppose we scale the ordinate by the same factor, �. As the scaling parameter, � is increased to very

large values, the arrivals occur almost \continuously" and each arrival will cause an in�nitesimal

change in the state of the system, and in the limit,

lim
�!1

1

�
Aij(�t) = Rijt (5.9)

This limiting case is called the
uid limit . In this scenario, the tra�c between each I-O pair will

be called a
ow, and each
ow can be modeled only with its rate. For instance, let Aij(t) be the

accumulated amount of
ow between I-O pair (i; j) at time t. Then,

Aij(t) = Rijt (5.10)

for all t > 0. We will be dealing with
ows in the rest of this section. A crucial assumption that we

make is that the
ows are in�nitely divisible. A
ow can be divided into arbitrarily many sub
ows,

the sum of whose rates is that of the initial
ow.

The interconnections also operate in the
uid limit; thusDij(t) takes on values from a continuous

set. For instance, a switch which is composed of an interconnection can continuously alternate

among arbitrarily many con�gurations for all t > 0, and the matrix, D(t), will be the weighted sum

of the corresponding permutation matrices. Hence, 1
tD(t) can be any convex combination of the

con�gurations of the switch, for all t > 0. As the cell size gets reduced by some factor, service lag

is also cut proportionally5. Therefore, in the
uid limit, for a supportable rate matrix, the service

lag is 0 for all I-O pairs and for all t. In that sense, the service lag can be viewed as a metric for

4See [50] for a more detailed treatment of the transformation. It was shown that it can be generalized to all
random arrival processes that satisfy the strong law of large numbers. In that case, Eq. (5.8) holds with probability
1.

5If the cell size is reduced by some factor, the service lag remains the same in number of cells. However, it gets
reduced by that factor in number of bits.

134

the di�erence between the service provided by a certain scheduler and that of the corresponding

(same set of rates)
ow scheduler.

The above paragraphs lead to the following. Suppose a given rate matrix, R is supportable by

a packet switch. Then, the following holds for the matrix, D(t), of service opportunities provided

by time t:

[tR�D(t)] 6 B~e~eT

for some B <1 and all t > 0. Scaling the size of a time slot and the cell size down by a factor, �,

we get

1

�
[�tR �D(�t)] = tR�

1

�
D(�t)

6
1

�
B~e~eT

Hence, in the
uid limit, for all t > 0,

1

t
D(t) = R (5.11)

We just showed that a packet switch cannot support a contract with a rate matrix R, unless

the
ow tra�c with the matrix of rates R is supportable in the corresponding
ow switch. This

will be our main motivation for looking into
ow switches and developing routing algorithms for

ow tra�c. Then, we will transform these algorithms to the packet switching world.

Eq. (5.10) and (5.11) imply that at any point in time A(t) = D(t). Thus, the required bu�er

size approaches to 0 in the
uid limit. This may mislead us to an incorrect conclusion that the set of

supportable rates with internal bu�ering is identical to that without internal bu�ering. However, as

illustrated by an example in the previous section, internal bu�ering expands the set of supportable

rates. The critical point here is the following. Let � be the size of internal bu�ers and � be the

scaling parameter. The following can be written for �(�; �), the region of rates supportable by a

multistage switch, for a given (�; �) pair:

lim
�!0

lim
�!0

�(�; �) 6= lim
�!0

lim
�!0

�(�; �) (5.12)

We dealt with the left side of (5.12) when we studied the case without internal bu�ering. We

135

.

.

.

..
.

.

.

Ν1 Νm Νm+1 ΝM

m()R

R(1)

m+1()R

Figure 5-8: The mth multistage rate matrix is de�ned to be from the input of the mth stage to the
output.

showed that the supportable rates lie the in the convex hull of the supportable con�gurations by

the switch. On the other hand, in this section we studied the
uid approximation, � ! 0. As

shown in (5.11), necessary bu�er size approaches 0 in the
uid limit as a by-product of the
ow

approximation. The region of rates depends on which limit is taken �rst.

Flows over Multistage Switches

In this section, we will evaluate the rates of the
ows inside a multistage switch as a function of

the rates at the input, and the set of con�guations that the interconnections go through. We start

by de�ning multistage rate matrices. Conventionally, entries of a rate matrix are de�ned to be end

to end, i.e., from the input links to the output links of the system. For an M -stage switch, we will

de�ne M rate matrices -one per stage- and talk about their relation.

Let the entries of the mth matrix, R(m) represent the fraction of time that the input links of the

mth interconnection need to be connected to the output links of the �nal interconnection (hence

the system) as illustrated in Fig. 5-8. For instance, R(1) is the conventional (end to end) rate

matrix, i.e., R
(1)
ij is the fraction of the time that input i should be connected to output j.

136

Suppose the �rst interconnection is con�gured to some c1 2 C1. Then, R
(2) can be found as,

R(2) = cT1 R
(1) (5.13)

Eq. 5.13 can actually veri�ed by inspection. Suppose, the interconnection connects the kth input

to the lth output, i.e., c1;kl = 1. When multiplied with R(1) from the left, the lth row of the

product, R(2), will be identical to the kth row of the original matrix, R(1). This is plausible, since

whatever is in the kth input link of the �rst interconnection will now be at the lth input link of

the second interconnection. Thus, the subsystem which is composed of stages 2; : : : ;M will have

the rate matrix, R(2), at its input. We conclude that, R(m) is a function of the con�gurations of

the �rst m interconnections and R(1).

Another interpretation of the above arguments is the following. Let us de�ne R(1) as the rates

of the (
uid)
ows at the input of the multistage switch. For instance, R
(1)
ij is the rate of the
ow

arriving at the ith input and destined to the jth output of the multistage switch. Then, if the

�rst interconnection is set to a constant con�guration, c1, the rates of the
ows at the input of the

second interconnection, R(2) can be found using Eq. 5.13.

With this interpretation, we can extend Eq. 5.13 to the case where interconnections alternate

among di�erent con�gurations rather than remaining �xed. Suppose the mth interconnection in

a multistage switch is con�gured to spend a fraction, �k, of time in c
(k)
m , for 1 6 k 6 K. As the

con�guration of the interconnect alternates, the
ows at the input are scheduled such that those

arriving at input i are divided into K sub
ows and the kth sub
ow is sent to the jth output link

of the fabric whenever c
(k)
ij = 1. The rate of the kth sub
ow is �k of the total rate of the
ow. In

the
uid limit, the interconnection can provide this convex combination in any time span. With

this described
ow routing and scheduling, there is a relation between R(m) and R(m+1), similar to

the single con�guration scenario, i.e., Eq. 5.13:

R(m+1) =
KX
k=1

�
�kc

(k)T
�
R(m) (5.14)

Suppose at stage m, the rate matrix (from the input of m to the end) is R(m). In this setting, a set

of rates is supportable if and only if R(m) can be written as a convex combination of the elements of

fcjc 2 Cm!Mg. Thus, rate matrices that are in the convex hull of Cm!M can be supported. Hence,

stages 1; : : : ;m� 1 must be con�gured so that R(m) has the desired form for it to be supportable

137

by the following stages.

5.4 Routing and Scheduling of Flows

In many multistage architectures, there are multiple paths between I-O pairs. In this section, we

employ the in�nitely divisible
uid model and discuss the impacts of routing
ows over multiple

paths. In particular, we specify supportable rate regions associated with di�erent routing algo-

rithms, with a focus on full division of
ows. Indeed, we show that the two stage cyclic shift

can support all admissible
ow tra�c, and even multicast can be made possible over the same

architecture with full division.

5.4.1 The Two Stage Cyclic Shift Architecture and Supportable Rates

Let us consider the two stage cyclic shift system given in Example 5.2. Suppose the rates of the

ows at the input constitute the entries of the matrix,

R(1) = [~r1 ~r2 � � � ~rN]
T

and hence the entries of ~ri represent the rates of the
ows at input i.

1. Let the �rst fabric in the two stage cyclic shift architecture be con�gured to the �rst shift of

the identity matrix, i.e.,

c1 =

2
6666666664

0 1 0 � � � 0

0 0 1 � � � 0
...

. . .
. . .

...

0 0 � � � 0 1

1 0 0 � � � 0

3
7777777775

Then,

R(2) = cT1 R
(1)

= [~rN ~r1 ~r2 � � � ~rN � 1]T

Hence, all the
ows are shifted by one link with the given con�guration.

138

2. Let the �rst fabric in the two stage cyclic shift architecture go through all the possible (N)

cyclic con�gurations, and let the fraction of time spent in each one be /identical: �1 = � � � =

�N = 1
N . With this sequence of con�gurations, each
ow is divided into K = N sub
ows and

the rate of each sub
ow is identical and equal to 1
N of that of the original
ow. In a multistage

switch, if each
ow is divided identically over all possible end to end paths between its I-O

pair, we say full
ow division is implemented by the switch. A two stage cyclic architecture

is su�cient, but not necessary for full
ow division. We talk about other alternatives for full

division later in this chapter. Applying (5.14),

R(2) =
1

N
~e~eTR(1)

=
1

N
~e~eT (5.15)

where (5.15) follows since ~eT is a left eigenvector of every stochastic matrix. This implies that

with full division of
ows at a certain stage, the loading in the following stage is uniform.

One can observe that, R(2) = 1
N~e~e

T is in the convex hull of C2!2. Indeed, if N2 spends equal time

in all of its con�gurations just like N1, it can support R(2) regardless of the end to end rate matrix,

R(1).

We just showed that the network given in Fig. 5-4 can support all admissible tra�c given that

each
ow is divided equally over the inputs of the second stage. In implementing this idea in a

packet switching system, queueing at the input of both interconnections is necessary. We will talk

about issues on transforming the problem to the domain of discrete cells from the domain of
ows,

(e.g., queue sizing and the packet delay) associated with this scheme later in this chapter. We

analyze the service lag and end to end cell delay in the two stage cyclic shift system for the case

where cells between any given I-O pair is routed over all the possible paths between the pair for all

admissible rates.

5.4.2 Multicast Support

Recall that we gave a detailed treatment of multicast support in Chapter 4. We showed that a

speedup of � logN is necessary to support all admissible multicast rates over a single crossbar.

In this section, we review the model, and make some modi�cations for
uid
ows. Then, we show

that the two stage cyclic shift architecture can support all admissible multicast
ows.

139

In the previous section, we showed that with full
ow division at one stage, load can be uni-

formized for the following stage. With uniform load, this stage can follow a simple schedule and

support point to point tra�c. In this section, we will show that the same approach also works in the

presence of multicast
ows. Indeed, it turns out that all admissible multicast
ows are supportable

by our two stage switch without speedup. It is a surprising result, since as will be shown, a single

stage crossbar switch cannot support all admissible multicast
ows without speedup, even when

one input can be connected to multiple outputs simultaneously.

First, let us introduce some notation. A point to point tra�c
ow has a single destination,

and there is only one
ow between each I-O pair. In multicast, we re�ne this and assume that

more than one
ow may share the same I-O pair. Each
ow does not necessarily have a single

destination and two such
ows need to be treated separately even if they may have some common

destinations. For two
ows to be counted as one, they should share the same input and the same

set of destinations.

Let there be kij
ows which arrive at input i and have output j as one of their destinations.

Let the �rst one of these
ows be unicast6 and all the other kij � 1 be multicast
ows. Also let the

number of destinations and the rate for the lth such
ow be nij(l) and R
(1)
ij (l) respectively. The

rate matrix, R(1), can be broken into multiple pieces, one for the unicast tra�c and a number of

others for the multicast
ows. For instance, consider the following 3� 3 system:

R(1) =

2
6664

0 0:2 0:5

0:6 0:4 0

0:1 0:1 0:4

3
7775

| {z }
1

+

2
6664

0:2 0:2 0

0 0 0

0 0 0

3
7775

| {z }
2

+

2
6664

0 0 0

0 0 0

0:1 0:1 0:1

3
7775

| {z }
3

where the �rst matrix represents the unicast
ows, and matrix 2 and 3 represent the rates for the

two multicast
ows. The multicast
ow with rate given in the second matrix arrives at the �rst

input link and it must be duplicated at some point inside the multistage switch and sent to both

of the destinations, 1 and 2. The last multicast
ow has a rate of 0.1 and it is destined to all the

output links. Hence, k12 = 2 and n12(2) = 2 for example. Constructing the rate matrix, R(1), in

the presence of multicast
ows, multiple entries of the matrix are increased by an amount identical

to the rate of the multicast
ow. For instance if a
ow arrives at input 1 and has destinations 2

6There can be only one unicast
ow with the same input and output pair.

140

and 3, both R
(1)
12 and R

(1)
13 are increased by the rate of the
ow. Hence, it may be the case that, for

some i,

NX
j=1

kijX
l=1

R
(1)
ij (l) > 1 (5.16)

That is, the rate matrix is no longer doubly stochastic. If (5.16) holds for some i, then multicast

ows arriving at input link i cannot be duplicated at the input. Otherwise, the ith input link would

be oversubscribed. But the actual rate of
ows at the ith input link is not the sum of the entries

over the ith row. In the presence of admission control, the following holds:

NX
j=1

kijX
l=1

R
(1)
ij (l)

nij(l)
6 1 (5.17)

for all i. The summation on the left side of Ineq. (5.17) is, indeed the actual rate of
ows at input

link i. The rate of each
ow is divided by the number of destinations (fanout) of that
ow since

each
ow is represented that many times in the same row of the rate matrix. The admission control

inequality for the jth output link is as follows,

NX
i=1

kijX
l=1

R
(1)
ij (l) 6 1 (5.18)

This time, we did not divide the rate of each
ow by the fanout of the
ow since each
ow is already

duplicated before arriving at the output links and each copy of a
ow can be treated as a separate

unicast
ow.

Next, suppose we have a multicast rate matrix, R(1) to be supported over the two stage ar-

chitecture given in Fig. 5-4. Flows have to be duplicated at some point in the switch since the

interconnections are not capable of sending a cell to multiple output links simultaneously. In fact,

this duplication process is the only di�erence between support of multicast
ows and unicast
ows.

The operation of the two stages can be described as follows.

Stage 1: In this stage each
ow is divided into N sub
ows. No duplication takes place. The

function of the �rst stage is exactly the same as it was in the unicast case. Hence, all
ows

are treated the same. The service that the interconnection provides is uniform (1
N ~e~e

T) as in

the case where all the
ows are unicast.

141

Stage 2: Each
ow is classi�ed according to its destination set. It is then duplicated as many

times as the fanout and one copy is sent to each of the destinations.

Claim 5.1 After all duplication, no input link at the second stage is oversubscribed. Moreover,

loading at these input links is uniform, i.e.,

R(2) =
1

N
~e~eT

Note that every
ow, after duplication, is destined to a unique output link, and we can talk about

a unicast rate matrix, R(2), since all the tra�c is indeed unicast at this point.

Proof: Since every
ow is divided equally over the output links of the �rst stage, after duplication,

R
(2)
ij =

NX
m=1

kmjX
l=1

1

N

R
(1)
mj(l)

nmj(l)
nmj(l) (5.19)

=
1

N
(5.20)

where the factor nij(l) in (5.19) is the number of copies of a
ow after duplication and Eq. (5.20)

follows since each column of R(1) sums to 1. Hence, we complete the proof by noting that the total

rate of sub
ows at the ith input of the second switch is

NX
i=1

R
(2)
ij = 1

and no input link of the second switch is oversubscribed.

We just showed that with full division in the �rst stage, the loading of the second stage is

uniform after duplication. Thus, the architecture given in Fig. 5-4 supports multicast
ows as

well. Recall that, as shown in Chapter 4, all admissible multicast
ows cannot be supported by a

single crossbar switch. Next, we study switch architectures other than the two stage cyclic shift

architecture. We present the implementation issues and the performance analysis in the presence

of multicast
ows later in this chapter.

5.4.3 Benes Architecture

An N �N switch can be constructed recursively, using b� b crossbars, where logbN is an integer

as illustrated in Fig. 5-9. We call the b � b crossbars at the input the input stage crossbars, and

142

N

b

N

b
x

N

b

N

b
x

.

.

.

...

...

...

.

.

.

...

...

...

.

.

.

bxb

bxb

bxb

bxb

bxb

bxb

1

1

b

1

b

1

bb

bBenes

Benes 1

Figure 5-9: A Benes network can be constructed iteratively using smaller crossbars. There are N
b

input and output stage crossbars of size b� b. There are b N
b �

N
b Benes networks in the middle.

those at the output, the output stage crossbars. Together, input stage crossbars constitute an

interconnection, and so do the output stage crossbars. Each N
b � N

b unit at the center is also a

Benes network. Each such network has b� b input stage crossbars, b� b output stage crossbars and

N
b2
� N

b2
Benes networks at the center. Notice that, ultimately the described network is composed

of b� b crossbars only.

Suppose there are
ows with rates, R(1). First assume they are all unicast
ows, and thus, R(1)

is doubly stochastic.

Claim 5.2 Any doubly stochastic
ow matrix is supportable over an N �N Benes switch which is

composed of b� b crossbars, where logbN is an integer.

Proof: By induction. For N = b (logbN = 1), the network is composed of a single crossbar,

and hence any b� b doubly stochastic matrix is supportable. Suppose the claim holds for N = b0

(logbN = logb b
0). We will show that it also holds for N = bb0 (logbN = logb b

0 + 1). A bb0 � bb0

Benes network can be recursively constructed using b b0 � b0 Benes networks as illustrated in Fig.

5-9. Let the input stage b � b crossbars divide each
ow into b identical (rate) sub
ows and send

each sub
ow to a di�erent output link. The set of b0 � b0 middle stage Benes networks each has

the same tra�c matrix, although these matrices are not necessarily uniform. That is, it may be

143

the case that R(2) 6= 1
N~e~e

T . The total rate, q
(in)
i , of tra�c at the ith input of each b0 � b0 Benes

network is

q
(in)
i =

NX
l=1

ibX
m=(i�1)b+1

1

b
Rml

=

ibX
m=(i�1)b+1

1

b

= 1 (5.21)

Similarly, the rate, q
(out)
j , of tra�c which is destined to the jth output stage crossbar is,

q
(out)
j =

NX
m=1

jbX
m=(j�1)b+1

1

b
Rml

=

jbX
m=(j�1)b+1

1

b

= 1 (5.22)

Equations (5.21) and (5.22) show that with full division at the input stage, the input links and the

output links of the middle b0 � b0 Benes networks are not oversubscribed. Indeed, the b0 � b0 rate

matrix for these networks are doubly stochastic and hence the proof is complete.

Examining the algorithm described in the proof carefully, one can realize that it is su�cient

that the b � b input and the output stage crossbars go through b equally weighted con�gurations

each of which connects each input to a distinct output. The identity con�guration and its b � 1

cyclic shifts is an example for such sets of b con�gurations.

Combining all these facts together, we see that all the b � b crossbars in the network except

the ones located in the center (stage logbN) follow the N -connection full division switch schedule

regardless of the end to end rate matrix (see Fig. 5-10 for an illustration with b = 2; N = 8). The

crossbars at the center stage have to alter the con�gurations according to the changes in the rate

matrix. They all go through the same con�gurations since they are identically loaded. We will

analyze the performance of this switch under unicast packet tra�c later.

Suppose, there are multicast
ows as well as unicasts. Similar to the procedure described in

Section 5.4.2, let us postpone duplication until the center stage and distribute multicast
ows just

like the unicasts prior to the center stage. Each one of the N=b middle stage b � b crossbars will

144

follow the same
connection pattern

schedule changes
with rate changes

uniform
load

distribute

Figure 5-10: An 8�8 Benes network. Only the middle stage 2�2 units have non-trivial scheduling.

145

be identically loaded. At this point, those
ows with multiple destinations must be duplicated. If

we postponed the duplication further, the system would not be able to route some of the
ows as

desired since there is a single path between each output link and each center stage switch. Indeed,

when l 6 logbN , there are Nb�l paths between each input link of the lth stage interconnection and

each output link of the system. For l > logbN , each b� b crossbar is connected to only a fraction

Nb�l < 1 of the output stage (stage 2 logbN � 1) crossbars, i.e., there are no paths to the other

output links. Thus, the center stage crossbars must be able to provide multicast support for the

Benes network to support all multicast rate matrices. It was shown earlier in this thesis that, for

a crossbar to support all admissible multicast rate matrices, some speedup is necessary. Hence,

b� b crossbars without speedup in the middle is not su�cient for the Benes network to support all

multicast rate matrices. We will consider two alternatives for multicast support with or without

speedup.

The �rst alternative is to put output queued b� b crossbars with a speedup of b in the center

stage. In this setting, an input can be connected to all the outputs of the b � b crossbar simul-

taneously, regardless of the connections between other I-O pairs. Therefore, it can support all

admissible multicast and unicast
ows. There are certain practical issues with this architecture.

While, a speedup proportional to the size of a crossbar may not be feasible for small b (e.g., 2)

this speedup may be practical. A key advantage of this architecture is simple switch scheduling:

Recall that each crossbar follows the uniform division schedule, i.e., 1
tD(t) = 1

b~e~e
T for all t > 0.

In the center interconnection, the crossbars have each input connected to all of its outputs at all

times, independent of the set of rates. This middle stage has another advantage in that, in the

corresponding packet switch, the delay experienced at the center stage is 0.

The second alternative is using the two stage cyclic shift systems of size b�b. With this selection,

the Benes network will become two Banyan networks in cascade. We study this architecture in the

following section extensively.

5.4.4 Cascaded Banyan Networks

We showed in Section 5.4.2 that the two stage cyclic shift architecture supports all admissible

multicast rate matrices. We can replace each stage logbN crossbar with the two interconnection

architecture given in Fig. 5-4 and the Benes network will be able to support all multicast rate

matrices without speedup. With this expansion of number of stages by one, the system is no longer

146

route
(uniform load)

distribute

Figure 5-11: As marked in dashed boxes, each crossbar in the center is replaced with the two stage
cyclic shift system. Overall, the system is composed of two Banyan networks put in cascade. The
second one is an inverted Banyan which is isomorphic to a regular Banyan.

a Benes network but two Banyans put in cascade as illustrated in Fig. 5-11. Note that the ordering

of the stages is inverted in the second Banyan; this is isomorphic to a regular Banyan network.

There are two key advantages of this system. First, no speedup is necessary for multicast

support. Given that the duplication process is handled at the input of the second Banyan network

(stage logbN � 1), the load at every b � b switch is uniform. Also, the �rst Banyan network is

responsible for division of
ows only. This leads to the second advantage of the system, that the

switch scheduling is trivial. Each b� b crossbar will be con�gured to the full division schedule, i.e.,

1
tD(t) = 1

b~e~e
T regardless of the set of rates and this will be su�cient to accommodate all admissible

unicast and multicast tra�c.

On the other hand, compared to the system with speedup, the maximum end to end delay for

this system is worse in the corresponding packet switch. We discuss the packet performance of this

architecture later in this chapter.

Discussion: A cyclic shift fabric connects inputs to outputs in such a way that each input spends

equal amount of time connected to each output. As mentioned before, a cyclic shift fabric is not

necessary to achieve the full division property. Next, we show that a Banyan network can provide

full division, and illustrate a schedule of con�gurations by which this can be achieved. This is also

147

1

2

4

3

1

2

4

3

stage 1 stage 2

Figure 5-12: The 4� 4 Banyan network

the place where we start discussing packet switching. We assume that a switch con�guration is

kept for a time slot.

Example 5.4 Consider the 4 � 4 Banyan network given in Fig. 5-12. It can be seen that this

network cannot support the identity con�guration; e.g., if input link 1 is connected to output link

1, input link 2 cannot be connected to output link 2. In fact, if any two input links share the same

local switch in the �rst stage, they cannot in the second stage.

However, being able to con�gure the identity matrix and its cyclic shifts is not necessary for

full division property. Any set of N con�gurations is su�cient if each input is connected to each

output exactly once in these con�gurations. Let us represent each N �N permutation matrix with

the corresponding permutation of [12 � � �N]. Then the N �N matrix whose columns (or rows) are

(permutations corresponding to) the N con�gurations must form a Latin square. For instance, for

the 4� 4 Banyan network, consider the following con�gurations:

2
6666664

1

3

2

4

3
7777775 ;

2
6666664

3

1

4

2

3
7777775 ;

2
6666664

2

4

1

3

3
7777775 ;

2
6666664

4

2

3

1

3
7777775

where in the �rst con�guration, inputs 1, 2, 3, 4 are connected to outputs 1, 3, 2, 4 respectively.

148

We can see that,

2
6666664

1 3 2 4

3 1 4 2

2 4 1 3

4 2 3 1

3
7777775

is a Latin square. Each permutation given above is con�gurable by the Banyan network, and the

switch can alternate among these con�gurations for the desired operation.

In general, consider b� b fabrics that are connected to form of an N �N Banyan network as shown

in Fig. 5-3 for N = 4 and b = 2. These b � b fabrics can also be Banyan networks by themselves,

or any fabric with a set of b con�gurations which form a Latin square would su�ce (e.g., the cyclic

shift fabric). The N con�gurations by which every input is connected to every output exactly once

can be provided as follows. Suppose the N � N Banyan network is con�gured to c1 initially. In

the next b time slots, the �nal stage (i.e., stage logbN) fabrics go through a set of b con�gurations

that form a Latin square. After one such cycle, stage logbN � 1 fabrics alter their con�gurations

and �nal stage fabrics repeat their cycle once again. This goes on until each stage logbN � 1 fabric

completes one cycle going through b con�gurations which form a Latin square. Then, fabrics at

stage logbN�2 change their con�gurations and the cycle for the �nal two stages repeat again. This

whole process continues until the �rst stage fabrics go through a complete cycle. The procedure

can be summarized as follows:

Algorithm: Stage m fabrics change their con�guration every blogbN�m time slots. The con�g-

urations that each fabric goes through forms a Latin square. Upon completion of a cycle, it is

repeated. One complete cycle lasts for blogbN = N time slots as expected.

The set of con�gurations that the algorithm goes through has the desired property, namely, no

input is connected to an output more than once. Indeed, every input is connected to every output

exactly once. This can be proved as follows. As shown earlier, there is only one path between each

I-O pair in a Banyan network. Within one cycle of period N , there exists no two time slots in in

which the states of all b� b fabrics are identical along any end to end path. At least one b� b fabric

alters its con�guration along each path. If it were true that an input output pair of the N � N

Banyan network is connected in two di�erent time slots within a period of N time slots, it would

mean that there actually are two paths between the pair, a contradiction. Thus, every I-O pair is

149

connected exactly once in a period of N time slots.

We just showed how to implement a full division schedule using a Banyan network. Thus, a

network composed of two cascaded Banyan networks can be used to support all admissible unicast

and multicast rate matrices instead of the two stage cyclic shift architecture. Bu�ering is necessary

only at the input and output of each Banyan network. No bu�ering is needed inside of each Banyan

network.

5.5 Routing Cells on Multiple Paths - Full Division

In this section, we will use the ideas and insights we have for the
ow switching scenario and show

how to apply them in multistage packet switches. We will present di�erent ways of routing cells

which share the same I-O pair over multiple paths. In particular, we will focus on full division, in

which all possible end to end paths are used equally between any I-O pair to transfer cells from

the input to the output. The architectures that will be analyzed are the cascaded cyclic shift (Fig.

5-4), and the cascaded Banyans (Fig. 5-11). We assume the presence of VOQs at the inputs of

interconnections.

For a given contract, (R;T) we will study how di�erent schedulers perform in each architecture.

Our performance metric is the service lag and the corresponding cell delay. Indeed, for all admissible

sets of rates, we will evaluate an upper bound for the maximum service lag and the corresponding

delay. As shown earlier, in the
uid limit, the service lag for all supportable rates is 0 for all input-

output pairs at any point in time since 1
tD(t) can be any convex combination of con�guration

matrices for all t > 0. In that sense, the service lag can be viewed as a metric for the di�erence

between the service provided by a certain scheduler and that of the corresponding
ow scheduler

with the same set of rates.

Since di�erent cells that belong to the same I-O pair follow di�erent paths, they may get out of

order. We assume that there are queues at the output of the switches to reorder cells and reassemble

packets. We will evaluate the necessary bu�er sizes both at the input of the interconnections and

at the output for each architecture and the corresponding scheduler.

5.5.1 Cascaded Cyclic Shift Interconnections

First we consider the two stage cyclic shift architecture. We had proved that in the
uid limit,

if each
ow is broken into N identical sub
ows, each of which is routed on a di�erent path, all

150

...
...

m

VOQs

j

1

N

queues for
reordering

...
...

i

VOQs

1

N

interconnection 1 interconnection 2

(i,j)
I-O pair

Figure 5-13: Cells with common I-O pairs are placed in multiple VOQs in the �rst stage so that
they follow N di�erent paths to get to their destinations. Connections shown with dashed lines are
con�gured once every N time slots.

admissible
ow tra�c can be supported. In a packet switch, each packet is sliced into equal sized

cells, and these cells cannot be further broken into multiple subcells since cells are not (in�nitely)

divisible like
ows.

There are N VOQs at each input of an interconnection, and the lth VOQ at each link carries

cells destined to the lth output link of the interconnection. To utilize every path between I-O

pairs, we place consecutive cells of each I-O pair to consecutive VOQs at the input of the �rst

interconnection. Namely, if a cell is placed in the lth VOQ, then the next cell with the same I-O

pair is placed in VOQ (l+1) mod N . At the input of the second interconnection, each cell is placed

in the VOQ through which it can be routed to its ultimate destination. Cells are reordered and

packets are reassembled at queues at the output of the system. The whole process is summarized

in Fig. 5-13. Regardless of how cells are scheduled at each VOQ, some service lag is experienced

due to the discrete nature of cell switching. For each scheduler, we will �nd upper bounds on the

maximum service lag and the corresponding cell delay between all the I-O pairs for all admissible

rates. This will also justify that all admissible rates are supportable. We will treat multicast

separately, and unless mentioned otherwise, we deal with unicast rates and thus, doubly stochastic

matrices.

As a warm-up exercise for the performance analyses, consider an in�nite duration contract with

the rate matrix, R(1). Let Rij(m) be the rate of (i; j) tra�c going through the mth intermediate

link. Since (i; j) tra�c is divided equally over all intermediate links,

Rij(m) =
1

N
R

(1)
ij

151

where the factor, 1
N is due to the fact that the contract is of in�nite duration and the ratio of the

number of cells served through each VOQ to the total number of cells approaches 1
N . Thus, the

total rate of the tra�c at intermediate link m coming from input link i is

NX
j=1

Rij(m) =

NX
j=1

1

N
R

(1)
ij

=
1

N

Similarly, the total rate of output j tra�c at the mth intermediate link is

R
(2)
mj =

NX
i=1

Rij(m)

=
NX
i=1

1

N
R

(1)
ij

=
1

N

Thus, at the input and output of both the �rst and the second interconnection, there are cells with

N di�erent I-O pairs of total rate N�1 competing for each output link.

Both interconnections have a uniform schedule of con�gurations. Within one schedule period

of N time slots, each input gets connected to each output for one time slot. This process continues

regardless of the set of rates desired between I-O pairs. We will evaluate the service lag in what

follows for di�erent cell schedulers. We will consider two such schedulers, worst case fair weighted

fair queueing (WF2Q) and the simple �rst in �rst out (FIFO).

WF2Q Scheme

The �rst alternative we consider is worst case fair weighted fair queueing (WF2Q) which is proposed

in [23]. If in a packetized processor sharing system, a constant rate resource is shared by a number

of users, each of which ask for a certain fraction of that resource, WF2Q scheduler generates a

schedule for the order that these users get served. Consider the system given in Fig. 5-14. It was

shown in [23] that the number of service opportunities, Dm(t), given to the mth user by some given

time, t, satis�es the following:

���Dm(t
0)�Dm(t)

�
� (t0 � t)�m

�� < 1 (5.23)

152

...

φ1
φ2

φN

D(t) = t

Figure 5-14: A constant bit rate service is shared by N users. One cell is served every time slot.

where �m is the weight of the mth user. We call this inequality, the WF2Q service inequality. This

means, within any two points in time, the number of service opportunities provided to a user is

within 1 of what it asks for.

The entire system with WF2Q is illustrated in Fig. 5-15. In the �rst stage, cells with the

same I-O pair are divided among the N VOQs at that link as described before. Each VOQ can

be viewed as a combination of N subqueues. Cells with the same ultimate destination share the

same subqueue. The WF2Q schedule is generated for each VOQ where the weights assigned to each

subqueue are identical to the rates speci�ed in the rate matrix7. For instance, the jth subqueue of

the mth VOQ at input link i carries the (i; j) cells which are routed through the mth intermediate

link. The weight assigned to this subqueue is R
(1)
ij . Service opportunities are awarded to each

subqueue whenever the appropriate switch con�guration is set up, i.e., once every N time slots.

The division process is illustrated in Fig. 5-16 and the mth VOQ at input i along with its scheduler

is illustrated in Fig. 5-17. To repeat, we visualize each VOQ to be formed of N separate subqueues,

the jth of which carries the cells with ultimate destination j. We will use this model in the rest of

this section.

Let us de�ne D[t; t0] to be the service opportunities provided in the period [t; t0]. Applying the

WF2Q service inequality (5.23) to the jth subqueue of the mth scheduler at the ith input link in

the the �rst stage, we get:

D
(1)
ij;m[t; t

0] > (t0 � t)
Rij

N
� 1 (5.24)

Suppose a cell arrives at the head of this subqueue at time t and it gets scheduled to leave at time

t0. The following relation can be written between the delay, (t0� t), experienced at the head of the

7One can realize that the schedule is identical for each VOQ.

153

2

... 1

2
.
.
.

N time slots

1 jconnection
once every

F ij
1

F ij
N

...
.
.
.

...

N time slots

connection i 1
once every

...

.

.

.

1

2

1
F.j

WF Q2

WF Q2

...

1

j

i

1
Fi.

F ij

()
1

F..

interconnection 1 interconnection 2

I-O pairs
2

N

Figure 5-15: Cells of each I-O pair are placed in N VOQs and those sharing the same queue
are scheduled with a WF2Q scheduler. In the second stage, sub
ows are grouped according to
their ultimate destinations and those sharing the same destination are again scheduled by a WF2Q
scheduler. A total of N schedulers per link is necessary.

.

.

.

.

.

.

serve every scheduler
once every time slotsN

.

.

.

WF Q
2

1

jWF Q
2

NWF Q
2

1

i

fabric 1

,N)i

,j)i

,1)i

I-O pair (

I-O pair (

I-O pair (

Figure 5-16: For the division process, N WF2Q schedulers are used per link. If a cell with I-O pair
(i; j) is placed into the queue to be scheduled by the mth WF2Q scheduler, the next incoming cell
with the same I-O pair will be served by scheduler (m+ 1) mod N .

154

...

.

.

.

Rij

N
λ ij,m =

Ri1

N
λ i1,m =

RiN

N
iN,mλ =

t
N

Dm (t) =

Figure 5-17: The mth VOQ at the ith input link and its scheduler are illustrated. Each VOQ
is composed of N subqueues. The scheduler uses the entries of the ith row of the matrix as the
weights; �ij;m is the weight used by the scheduler to construct the schedule for providing service
opportunities to the cells with I-O pair (i; j).

queue by this cell:

1 = D
(1)
ij;m[t; t

0]

> (t0 � t)
Rij

N
� 1

hence,

t0 � t <
2N

Rij
(5.25)

In fact, the delay experienced by a cell at the head of its subqueue is the relevant parameter for

measuring the delay of a cell at the input stage. This can be clari�ed as follows. If we sum (5.24)

over all VOQs for I-O pair (i; j), we get:

NX
m=1

D
(1)
ij;m[t; t

0] >
NX

m=1

(t0 � t)
Rij

N
� 1

D
(1)
ij [t; t0] > (t0 � t)Rij �N (5.26)

155

Hence for t = 0,

D
(1)
ij (t0) > t0Rij �N (5.27)

Thus, at any point in time, the number of service opportunities provided for the cells of an I-O

pair cannot be more than N � 1 behind that desired by that pair in that period. Suppose a cell

with I-O pair (i; j) arrives at its subqueue, m, at time t and another cell arrives at the same queue

at some t0 > t when the �rst one is still in the queue. Then, the following relation can be written

between the number of arrivals and service opportunities provided for the cells with I-O pair (i; j)

at the mth VOQ in period [t; t0].

A
(1)
ij;m[t; t

0]�D
(1)
ij;m[t; t

0] > 2 (5.28)

Thus,

A
(1)
ij;m[t; t

0] > 2 +D
(1)
ij;m[t; t

0]

> 1 + (t0 � t)
Rij

N
(5.29)

where (5.29) follows from (5.24). Since the cells for an I-O pair are placed at VOQs in an alternating

fashion (covering all queues with every N arrivals), the following can be written for any 1 6 m;m0 6

N such that m 6= m0:

���A(1)
ij;m[t; t

0]�A
(1)
ij;m0 [t; t

0]
��� 6 1 (5.30)

Hence,

A
(1)
ij [t; t

0] =

NX
l=1

A
(1)
ij;l[t; t

0]

= A
(1)
ij;m[t; t

0] +
X
l 6=m

A
(1)
ij;l[t; t

0]

> A
(1)
ij;m[t; t

0] + (N � 1)
�
A
(1)
ij;m[t; t

0]� 1
�

(5.31)

> 1 + (t0 � t)Rij (5.32)

> d(t0 � t)Rije

156

where A
(1)
ij [t; t

0] is the number of cells that arrive in time period [t; t0] with I-O pair (i; j); Ineq.

(5.31) follows from (5.30) and Ineq. (5.32) follows from (5.29).

This result can be interpreted as follows. If a cell that arrives at time t0 observes a non-empty

subqueue at the input of the �rst stage, then there exists some t < t0 such that the number of

arrivals of cells with the same I-O pair in [t; t0] is greater than what the switch is contracted to

support. In other words, within that period, more cells are inserted into the switch than it is

supposed to serve, and the extra delay experienced in the subqueues other than at the head of

it, is not due to the service lag of the service provisioned by the switch. Thus, in the �rst stage,

the portion of the delay which is relevant for measuring the quality of service provided is that

experienced at the head of the subqueues at each VOQ.

Next, we study the second stage where cells are routed to their ultimate destinations. For

each output link, a WF2Q scheduler decides which subqueue of each VOQ to provide a service

opportunity with, when the corresponding con�gurations are set. The process is illustrated in Fig.

5-18. Each scheduler provides an opportunity once every N time slots to a subqueue following the

schedule which is a function of the rates of the I-O pairs sharing the VOQ. The jth scheduler for

the mth input link of the second interconnection is illustrated in Fig. 5-19. Each VOQ is composed

of subqueues, one for the cells coming from each input.

Applying the WF2Q service inequality (5.23) to the jth scheduler at intermediate link m, we

get:

D
(2)
ij;m[t; t

0] > (t0 � t)
Rij

N
� 1 (5.33)

for all i and m. One can also see that the number of cell arrivals at the ith per
ow queue of

the jth scheduler at link m is upper bounded by the number of service opportunities given to the

corresponding subqueue in the �rst stage:

A
(2)
ij;m[t; t

0] 6 D
(1)
ij;m[t; t

0]

< 1 + (t0 � t)
Rij

N
(5.34)

where Ineq. (5.34) follows from the WF2Q service inequality. Combining (5.33) and (5.34), we get:

A
(2)
ij;m[t; t

0]�D
(1)
ij;m[t; t

0] < 2 (5.35)

157

WF Q
2

1

jWF Q
2

NWF Q
2

.

.

.

serve every scheduler
once every time slotsN

.

.

.

.

.

.

.

.

.

VOQ1

VOQj

VOQN

destination N

1 1

m m

,1).

,j).

),N.

I-O pair (

I-O pair (

I-O pair (

all cells with

interconnection 1 interconnection 2

Figure 5-18: For the routing process, N WF2Q schedulers are used per link. Cells are grouped
according to their ultimate destinations and a cell destined for output j is scheduled by WF2Qj.

...

.

.

.

t
N

Dj

=λ 1j,m

=λ ij,m

=λ Nj,m

N

R1j

N

R

N

RNj

ij
(t) =

Figure 5-19: The jth scheduler at the mth input link of the second switch is illustrated. Schedulers
are not necessarily symmetric; �ij;m is the weight assigned to the jth subqueue where cells with
I-O pair (i; j) arrive.

158

where the di�erence on the left side of Ineq. (5.35), gives us the accumulation, Q
(2)
ij;m[t; t

0], of cells

in the subqueue in the time period. Assuming all queues initially empty, the size of a subqueue at

the input of the second interconnection never exceeds 1 cell. It may be the case, though, that a

cell leaves its queue just before a new cell arrives there.

We can also calculate the worst case delay similar to the �rst stage. Suppose a cell arrives at its

second stage subqueue at time t. We just showed that it is placed to the head of the queue upon

arrival. Suppose it gets transferred to the output of the system at time t0. Then,

1 = D
(2)
ij;m[t; t

0]

> (t0 � t)
Rij

N
� 1

and hence,

t0 � t < 2
N

Rij
(5.36)

is the bound on the maximum delay in the intermediate links.

Finally, we will talk about the delay and the maximum possible size of reordering queues8 at

the output of the multistage switch. We showed that the maximum delay that a cell with the I-O

pair (i; j) experiences from the input to the output queues of the switch is 2
�

2N
Rij

�
= 4N

Rij
which is

a function of the rate, Rij .

Note that if a cell experiences maximum delay at the �rst stage and the input of the second

stage, it does not need to be delayed at the output queues for reordering at all. Even if the cells that

are ahead of our cell experience the maximum delay, our cell cannot get ahead of them. Therefore,

the maximum end to end delay is the sum of the maximum delays experienced in the �rst stage

and the input of the second:

Maximum Total Delay =
4N

Rij

Suppose a cell with the I-O pair (i; j) experiences maximum delay and a number of following

cells do not experience as high a delay. They must be kept at the reordering queues and cannot

be put onto the output links until our cell gets transferred there. The accumulation at the output

8The reordering queues must be push in push out (PIPO), which enables cells to be inserted and read from
arbitrary locations of the bu�er, not necessarily the two ends.

159

queues can be as high as

Q
(out)
ij [t; t0] 6

4N

Rij
Rij + 1

= 4N + 1 (5.37)

where the extra 1 is for our cell itself. Note that there are, in fact, N subqueues per VOQ and

a cell which shares the same subqueue (and hence the same route) as our cell cannot get to the

output queues ahead of our cell if it arrived at the switch later. Thus, the above bound can be

improved as follows:

Q
(out)
ij [t; t0] 6 4N

N � 1

N
+ 1

= 4N � 3 (5.38)

To summarize, with WF2Q scheduling in every VOQ, the total amount of queueing per link and

the maximum delay experienced by a cell of an I-O pair with rate r are given in the following table.

Input Intermediate Output Total

Queue Size (per link) N2 N2 (4N � 3)N � 6N2

Maximum Delay 2N=r 2N=r - 4N=r

Using the result about the maximum delay, the service lag can be found to be 4N :

Dij [t; t
0] >

�
t0 � t�

4N

Rij

�
Rij

= (t0 � t)Rij � 4N (5.39)

We �nally talk about the delay and service lag in the presence of multicast. Recall that when we

talked about
ow switches, we assumed that there may be multiple
ows with the same I-O pair.

Similarly, in the packet switch, we assume that there may be more than one class of cells with the

same I-O pair. If two cells arrive at the same input and have an identical set of outputs, they are

de�ned to be of the same class. Namely, a class of tra�c is the tra�c de�ned by an input and

either a single output or a set of multicast destinations. A subqueue is kept in each VOQ for each

class present at the link. The structure of the rate matrix is as described earlier in the context of

160

ows.

Each class of cells follow N di�erent paths, and therefore if a cell of a certain class is placed

in a VOQ, the next cell of the same class is placed in the next VOQ. The delay bounds developed

for the �rst stage are still valid in the multicast scenario. Since cells are not duplicated in the �rst

stage, the division process is no di�erent from the unicast case, i.e., (5.25) is still valid.

Recall that we de�ned kij to be the number of
ows between input i and output j and nij(l)

to be the fanout of the lth such class. We de�ne them similarly in the packet switch, i.e., kij is the

number of classes with I-O pair (i; j) and nij(l) is the fanout of the lth such
ow. At the input

of the second stage, each cell is duplicated and the number of copies is equal to the fanout of its

class. Each copy is placed in a di�erent subqueue. Thus, there are

K =
X
i6N

X
j6N

kij

> N2

subqueues at each input link of the second stage. The duplication process is illustrated in Fig.

5-20.

During the duplication process, each cell coming from mth subqueue, of the lth class with I-O

pair (i; j) is replicated nij(l) times. There will still be N WF2Q schedulers, but this time each will

handle more than N subqueues. In fact, the number of subqueues that a scheduler operates with

di�ers for di�erent outputs. After duplication, the number of subqueues per scheduler is

K

N
=

1

N

X
i6N

X
j6N

kij

> N

The WF2Q service inequality (5.23) is independent of the number of
ows that share the pipe.

Therefore, the bounds derived for the cell delay at the input of the second stage hold in the multicast

scenario as well. However, bounds on the bu�er size necessary for this process scale with the sum of

the fanouts. For instance, if there is one multicast class per input output pair (along with unicast)

with an average fanout of 2, the queueing requirement will scale with a factor of 3. Besides, each

scheduler will have to deal with 3N subqueues, compared to N with all unicast.

Similarly, bounds on the size of the reordering queues at the output need to be expanded

161

.

.

.

nij (l) qj

nij (l)(i ; j
nij (l)j

WF Q
2

j
1

(i ; j)q

(i ; j)
1

.

.

.

.

.

.

m m(l) 1 2
(i ; j , j ,..., j) WF Q

2

WF Q
2

)

1

class

interconnection 1

Figure 5-20: After duplication, cells at the mth subqueue, m(l), of the lth class of cells with I-O
pair (i; j) is replicated nij(l) times.

proportional to the number of
ows. Hence, there should be a total of 4N
P

i

P
j kij queues at

the output of the system which corresponds to an average of 4
P

i

P
j kij per link. The bu�ering

requirement at each output link is a function of the fanouts. Hence, there is no way of knowing the

exact queueing requirement without knowing the rate matrix. Conservatively, one can use a bu�er

of size much larger than 4
P

i

P
j kij per link. Also, the admission controller can impose a limit on

the number of classes per output link and/or fanout of each
ow as well as making sure that no

link is oversubscribed.

Similar to the delay, the service lag is unchanged in the presence of multicast in our model.

Note that the service lag is constant (independent of the rates). On the other hand, the delay

experienced by a cell is inversely proportional to its rate. These two properties are natural in some

sense. For example, a G/G/1 queueing system has the same property that if the service and arrival

rates are scaled by a factor, the (steady state) expected un�nished work is cut by the same factor.

We just completed the analysis of the two stage cyclic shift architecture with WF2Q schedulers.

We showed that with WF2Q scheduling over the two stage cyclic shift architecture a service lag of

� 4N is experienced by all I-O pairs. This value is a factor O(N) improvement over the service

162

2

1

2
.
.
.

N time slots

1 jconnection
once every

F ij
1

F ij
N

...
.
.
. N time slots

connection i 1
once every

.

.

.

1

2

1
F.j

...

...

2
N

1

j

i

1
Fi.

F ij

()
1

F..
I-O pairs

interconnection 1 interconnection 2

Figure 5-21: Each VOQ is served in a �rst in �rst out manner.

lag of single stage plain Birkho� switch. Next, we derive bounds on the service lag and queue sizes

with �rst in �rst out schedulers for the same architecture under both unicast and multicast tra�c.

First in First out Scheme

The complete system with FIFO scheduling is illustrated in Fig. 5-21. In the �rst stage, each
ow

is divided into N sub
ows and those which are destined to the same intermediate link are grouped.

Each group share the same FIFO VOQ and a service opportunity is awarded to the cell that is at

the head of the queue whenever the appropriate switch connection is con�gured. Note that since

there is no separation of cells with di�erent I-O pairs, we assume the presence of a rate controller

along with admission control to avoid domination by a user exceeding its rate and hurting others

speci�ed in the contract. A rate controller can be a simple leaky bucket controller whose parameters

are customized for each I-O pair: The token rate is assumed to be identical to the rate speci�ed in

the contract for the I-O pair, and the bucket size is speci�ed according to the requirements of the

I-O pair. For the time being, we assume that the bucket sizes are 0 and hence the rate controllers

are simple single server queues. The rate controller for the pair (i; j) should transfer a cell every

R�1
ij slots, but reciprocals of the rates are not necessarily integers. Let the controller provide a

service opportunity at times dlR�1
ij e; l 2 ZZ

+. It can be shown that, for any two points, t; t0 in

time, the number of cells, A
(1)
ij [t; t

0], with I-O pair (i; j) emitted by the controller satis�es,

���A(1)
ij [t; t

0]� (t0 � t)Rij

��� < 1 (5.40)

163

m th VOQ

.

.

.

.

.

.

rate
control

R

rate
control

R

rate
control

R

serve every scheduler
once every time slotsN

.

.

.

i1

ij

iN

1

i

,1)i

,j)i

,N)i

I-O pair (

I-O pair (

I-O pair (

interconnection 1

Figure 5-22: For the division process, N FIFO queues are used per link. If a cell with I-O pair
(i; j) is placed into the mth VOQ, the next incoming cell of the same I-O pair will be placed in the
(m+ 1)st VOQ.

Since consecutive cells are sent to consecutive schedulers as illustrated in Fig. 5-22, for any pair,

m;m0 such that m 6= m0,

���A(1)
ij;m[t; t

0]�A
(1)
ij;m0 [t; t

0]
��� 6 1 (5.41)

Thus,

(t0 � t)Rij + 1 > A
(1)
ij [t; t

0] (5.42)

=

NX
l=1

A
(1)
ij;l[t; t

0]

= A
(1)
ij;m[t; t

0] +
X
l 6=m

A
(1)
ij;l[t; t

0]

> A
(1)
ij;m[t; t

0] + (N � 1)
�
A
(1)
ij;m[t; t

0]� 1
�

(5.43)

164

where (5.42) follows from (5.40) and (5.43) follows from (5.41). Combining (5.42) and (5.43), we

get:

A
(1)
ij;m[t; t

0] < (t0 � t)
Rij

N
+ 1 (5.44)

The following holds for A
(1)
i;m[t; t

0], the number of arrivals into the mth VOQ of the ith input link

in [t; t0]:

A
(1)
i;m[t; t

0] =

NX
j=1

A
(1)
ij;m[t; t

0]

<
NX
j=1

�
(t0 � t)

Rij

N
+ 1

�
(5.45)

= (t0 � t)
1

N
+N (5.46)

where (5.45) follows from (5.44). The �rst interconnection transfers a cell from the head of each

VOQ to any given input of the second interconnection once every N time slots. Thus,

D
(1)
i;m[t; t

0] > (t0 � t)
1

N
� 1 (5.47)

where D
(1)
i;m is the number of service opportunities given to the mth VOQ of the ith input link.

Combining (5.46) and (5.47), we get:

Q
(1)
i;m[t; t

0] = A
(1)
i;m[t; t

0]�D
(1)
i;m[t; t

0]

< N + 1 (5.48)

where Q
(1)
i;m[t; t

0] is the number of cells accumulated in the mth VOQ of the ith input link in period

[t; t0]. Assuming all queues empty initially, the number of cells in each does not exceed N at any

point in time. Suppose a cell arrives at the mth VOQ of the ith input of the �rst stage at time t0

and leaves the �rst stage at time t00. Then,

N > D
(1)
i;m[t

0; t00]

> (t00 � t0)
1

N
� 1

165

.

.

.

.

.

.

.

.

.

destination N

.

.

.

m

all cells with

1

m

1

serve every queue
once every time slotsN

,1).

,j).

),N.

I-O pair (

I-O pair (

I-O pair (

interconnection 2interconnection 1

Figure 5-23: For the routing process at the input of the second stage, N FIFO queues are used per
link. Cells that share the same destination share a queue.

and therefore,

(t00 � t0) < N2 +N

which implies that the delay experienced by a cell in the �rst stage is no more than N2 +N � 1

time slots.

Next, we talk about the second stage through which cells are transferred to their ultimate

destinations. The input of the second stage is illustrated in Fig. 5-23.

From some given t0, let t be the last time the system was empty. The number of cell arrivals

into the jth queue at link m from the ith input of the �rst interconnection is upper bounded by

the number of service opportunities given to such cells by the �rst interconnection:

A
(2)
ij;m[t; t

0] 6 D
(1)
ij;m[t; t

0]

6 A
(1)
ij;m[t; t

0]

< (t0 � t)
Rij

N
+ 1 (5.49)

166

where t0 > t. Hence, the total number of arrivals into the jth queue can be bounded as follows.

A
(2)
j;m[t; t

0] =
NX
i=1

A
(2)
ij;m[t; t

0] (5.50)

< (t0 � t)
1

N
+N (5.51)

The number of cells served, D
(2)
j;m[t; t

0], in that queue in the same period satis�es:

D
(2)
j;m[t; t

0] > (t0 � t)
1

N
� 1 (5.52)

Combining (5.51) and (5.52),

Q
(2)
j;m[t; t

0] = A
(2)
j;m[t; t

0]�D
(2)
j;m[t; t

0]

< N + 1 (5.53)

Note that Q
(2)
j;m[t; t

0] is, in fact, the accumulation in period [t; t0]. But, since we assumed that the

system is empty at time t, Ineq. (5.53) also gives us the upper bound on the queue size for all

t0 > 0. Suppose a cell arrives at the jth queue of the mth input of the second interconnection at

time t0 and transfers to the output at time t00. Then,

N > D
(2)
j;m[t

0; t00]

> (t00 � t0)
1

N
� 1

and therefore,

t00 � t0 < N2 +N

which implies that the delay experienced by a cell at the input of the second stage is no more than

N2 +N � 1 time slots.

Finally, we talk about the delay, in the presence of multicast. Similar to WF2Q scheduling, the

delay performance with FIFO queueing is the same with multicast as in unicast: Bounds derived

for the �rst stage are still valid for the multicast scenario. Since cells are not duplicated in the �rst

stage, the scheduler is no di�erent from that with all unicast cells, i.e., (5.48) is still valid.

167

Even though more than one cell arrival can happen at a time at an input of the second intercon-

nection because of duplication, at most one arrival can occur for each VOQ. When a multicast cell

arrives, the content of each VOQ increases by at most 1 cell, even though a number (the fanout of

the cell) of di�erent VOQs are incremented simultaneously. Thus, the equality in (5.50) still holds

and the queue sizes do not exceed N cells.

In summary, we see that with FIFO scheduling, the delay is constant over all I-O pairs and

it is upper bounded by 2
�
N2 +N � 1

�
time slots. This is an O(N) improvement over the delay

experienced with a plain Birkho� switch. As explained earlier, if a cell experiences maximum delay

in the �rst two stages, it is not delayed at the output queues to be reordered. This time, the

service lag for a cell is a function of the rate of the corresponding I-O pair. For a cell with pair

(i; j), the service lag can be found as follows. The number of service opportunities provided to this

input-output pair between times t and t0 satisfy

Dij [t; t
0] >

�
(t0 � t)� 2

�
N2 +N � 1

��
Rij

= (t0 � t)Rij � 2Rij

�
N2 +N � 1

�

and hence the maximum service lag for this pair is 2Rij

�
N2 +N � 1

�
. The size of the reordering

queues must be at least

Q
(out)
j [t; t0] 6

NX
i=1

2Rij

�
N2 +N � 1

�
= 2

�
N2 +N � 1

�

for the jth output link.

Note that with WF2Q scheduling, the service lag is constant, whereas with FIFO scheduling,

the delay is constant over all I-O pairs. A careful reader may realize that there is a factor of

2 di�erence between the bounds on delay between the two schedulers we studied when they are

averaged over all input-output pairs. That is, for a pair with rate 1=N , the maximum delay with

FIFO scheduling is half of that with WF2Q scheduling. This can be explained as follows. Let us

rewrite the WF2Q service inequality:

(t0 � t)�m � 1 < Dm(t
0)�Dm(t) < (t0 � t)�m + 1

168

for any t; t0 such that t 6 t0. For any given user m, even if one of the two bounds given above

for provided service with WF2Q may be tight individually, the other one is not. In fact, for some

given t, if we sketch the graph of [Dm(t
0)�Dm(t)]� (t0� t)�m as a function of t0, we would observe

a di�erence of � 1 between the peaks. We use both inequalities to derive the delay bounds for

the two stage cyclic shift system with WF2Q schedulers. This implies that we overestimate the

individual service lags by a factor of � 2, which is the factor 2 di�erence between the delay bounds

with FIFO and WF2Q schedulers.

5.5.2 Cascaded Banyan Networks

In this section, we present the performance analysis for the architecture composed of two Banyan

networks in cascade as illustrated in Fig. (5-11). We assume that the network is composed of b� b

crossbars. Each b � b crossbar has input bu�ers and there is no coordination between di�erent

crossbars. We also assume that each crossbar goes through b con�gurations, the identity and its

circular shifts (or any other equivalent set of b con�gurations). The purpose of this analysis is

to see whether the performance can be improved if the full division and reassembly process is

implemented over multiple stages with smaller (b� b) fabrics instead of using the two stage cyclic

shift architecture.

We use WF2Q schedulers in each of b VOQs at the input of each crossbar. Therefore, our

analysis consists of several applications of the delay bounds we derived when we analyzed full

division with WF2Q over the two stage cyclic shift system (5.25, 5.36 and 5.39). We show that

the delay performance of the cascaded bu�ered Banyan architecture is worse than that of the two

stage cyclic architecture. We will not give the analysis of the delay with FIFO schedulers for

this architecture, but a similar degradation in the delay performance is experienced with FIFO

schedulers also.

As described in the
ow switching scenario, in each crossbar of the �rst Banyan network, cells

are scheduled in such a way that those with the same I-O pair are divided over all the outputs of

the crossbar and ultimately over all the output links of the �rst Banyan. If a cell with a given I-O

pair is placed in a VOQ, the next one with the same I-O pair will be placed in the next. This

process was illustrated in Fig. 5-16 for the two stage cyclic shift architecture. The di�erence here

is that the number of subqueues scales with the number of stages. The �rst Banyan network (�rst

logbN stages) is illustrated in Fig. 5-24.

169

i / b

1

N / b

m / b

log bN()
,j)i(sub

l

log
b

N

1

N / b

stage

WF Q
2

1

mWF Q
2

1

N / b

stage 1 stage 2

First Banyan Network

,j)i

subqueues

VOQ

I-O (

bWF Q
2

Figure 5-24: If a cell with an I-O pair is placed in a VOQ, the next one with the same pair will be
placed in the next VOQ, so that cells are routed to their ultimate destinations over all the possible
paths. There are b VOQs and thus, b WF2Q schedulers per input link at each stage. The number
of subqueues follow a geometric sequence with the number of stages.

170

At the lth stage of the �rst Banyan, each I-O pair, already split bl�1 ways is further split extra

b ways. Hence, there are Nbl�1 subqueues in each VOQ at stage l, i.e., the number of subqueues

follow a geometric sequence in the number of stages. Using the bound, (5.25), we found for the cell

delay in the �rst stage of the two stage cyclic shift architecture, the following can be written for the

delay at the mth subqueue that carries cells with I-O pair (i; j) at qth crossbar of stage l 6 logbN :

�
(l;q)
ij;m <

2bl

Rij

by just replacing the N in inequality (5.25) with bl. Thus, the total delay in the �rst Banyan

network can be found by summing the delays in each stage on the way:

�Banyan I

ij;tot =

logbNX
l=1

�
(l;q)
ij;m

<
2b(N � 1)

Rij(b� 1)

In the second Banyan network, cells that share the same I-O pair are recombined back together

as they are placed in the same subqueue in the appropriate VOQ. Note, however, that reordering

is postponed until the output of the multistage switch, i.e., stage 2 logbN . This time the number

of subqueues in each stage scale down by a factor b in each stage. Similarly, with the appropriate

modi�cations, the delay in the second Banyan can be found using the bound we found for the cell

delay in the second stage of the two stage cyclic shift architecture (5.36). The delay experienced by

a cell of with I-O pair (i; j) in the qth crossbar of stage l > logbN +1 is upper bounded as follows:

�
(l;q)
ij;m <

2N2b�l+1

Rij

Thus, the following can be written for the total delay experienced in the second Banyan:

�Banyan II

ij;tot =

2 logbNX
l=logb N+1

�
(l;q)
ij;m

<
2b(N � 1)

Rij(b� 1)

Similar to the two stage cyclic shift architecture, if maximum delay is experienced earlier, a cell is

no further delayed at the reordering queues of the output of the switch. The total delay experienced

171

by a cell with the pair (i; j) is, hence,

�ij;tot <
4b(N � 1)

Rij(b� 1)
(5.54)

The corresponding service lag can be found as,

Dij[t; t
0] >

�
(t0 � t)�

4b(N � 1)

Rij(b� 1)

�
Rij

= (t0 � t)Rij �
4b(N � 1)

b� 1
(5.55)

and the bu�ers at the output of the switch must be of size 4b(N�1)
b�1 per I-O pair, i.e., � 4N2b

b�1 per

link.

As mentioned earlier, the two stage architecture we analyzed is a special case of the cascaded

Banyan architecture where b = N . Indeed, the bound derived for the service lag in the two stage

cyclic shift architecture (5.39) can be found if the b in (5.55) is substituted with an N .

The delay experienced in this architecture depends on the size of the crossbars, i.e., choice of b.

Indeed, it is proportional to b
b�1 for a given N . For b = 2, the delay bound is doubled compared to

the two stage architecture (b = N); on the other hand, for small b, the crosspoint complexity (see

e.g., [37]) of the switch decreases.

5.6 Routing Cells on Multiple Paths - Partial Division

In the previous section, cells with an I-O pair are transferred to their ultimate destination over all

the possible paths between the pair. In this section, we will present a method by which cells are

routed over a subset of the paths between I-O pairs rather than over all the paths. We will use the

the two stage cyclic shift architecture (or any other architecture with N con�gurations that form a

Latin square). Cell scheduling will not be as simple as in the full division scenario, since schedules

need to be changed as a function of the rates, unlike the full division. We will show that the delay

performance is improved as the number of paths decrease. However, support of multicast rates is

no longer possible.

172

5.6.1 The Algorithm

First, let us explain what we mean by partial division. We assume that rates take on values from

the discrete set9 of rational numbers which are integer multiples of 0 < s 6 1. For a given s, we

show that R
(1)
ij =s is an upper bound on the maximum number of paths over which cells with I-O

pair (i; j) are routed within the algorithm.

Let us study the two stage cyclic system closely. Let us represent the ith intermediate link

(ith input of the second interconnection) by mi, as illustrated in Fig. 5-4. Every time slot, mi is

connected to an input of the multistage switch through the �rst interconnection, and to an output

of the switch through the second interconnection. In a cycle of N time slots, it gets connected

to each input and output for exactly one time slot. Hence, within a cycle it has the opportunity

to get one cell from each input and send one cell to each output. Also, a cell can be kept in a

queue at an intermediate link until the desired output is connected. For instance, cells coming

from input 1 can be kept until mi is connected to output 3 through the second switch and then

transmitted at that time, cells coming from input 2 can be kept until mi gets connected to output

N � 1 and so on. Hence, with some delay, any input link can transfer one cell to any output

link via any given intermediate link within a con�guration cycle of N time slots. However, within

such a con�guration cycle, at most one cell can be transferred to an output link from any given

intermediate link. Similarly, within a cycle, each intermediate link can receive at most one cell

from any given input link. That is, at most one cell can be transferred from an input link to an

output link through a given intermediate link within a cycle. A sample connection pattern for link

mi during a span of N time slots is given in the following table and illustrated in Fig. 5-25.

inputs: 1 2 3 � � � N

#

outputs: 3 N � 1 6 � � � 2

We see that this set of connections made through the intermediate link mi can be represented with

a permutation matrix, Pi. If the (l; k) entry is 1, then input l is connected to output k of the system

through intermediate link mi. Hence, the total service provided through all the intermediate links

within a con�guration cycle can be represented as the sum of N permutation matrices, fPig
N
i=1.

Next, suppose we have a rate matrix, R(1), whose entries are all integer multiples of s = 1=N .

9We will relax this assumption as we describe another architecture in the next section.

173

P1

PN

P i.

.

.

N -1

..

.

1

2

1

2

N

fabric 1 fabric 2

3

N

Figure 5-25: Within a cycle of interconnection con�gurations, the service provided by the second
stage through its ith input link is Pi.

Then, we can write R(1) as a convex combination of N permutation matrices. Moreover, the

coe�cient of each permutation matrix in the decomposition is N�1, i.e.,

NX
l=1

Pl = NR(1) (5.56)

To support R(1), link mi can be assigned the task of providing the set of connections represented

by Pi, for all i 6 N . By intermediate queueing, the two stage cyclic shift architecture can represent

N permutation matrices, one each link, within a con�guration cycle. This procedure is illustrated

in the following example.

174

Example 5.5 Suppose the switch of size 4� 4 is to serve the set of rates given by:

R =
1

4

2
6666664

1 0 2 1

2 2 0 0

0 2 1 1

1 0 1 2

3
7777775

=
1

4

8>>>>>>>>>>><
>>>>>>>>>>>:
2

2
6666664

0 0 1 0

1 0 0 0

0 1 0 0

0 0 0 1

3
7777775

| {z }
P1;P2

+

2
6666664

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

3
7777775

| {z }
P3

+

2
6666664

0 0 0 1

0 1 0 0

0 0 1 0

1 0 0 0

3
7777775

| {z }
P4

9>>>>>>>>>>>=
>>>>>>>>>>>;

According to this decomposition, we assign link m1 �m4 the task of making the connections rep-

resented by P1 � P4. That is, m1 and m2 enqueue cells coming from input 1 to be released when

switch 2 connects these links to output 3, and so on.

We can represent the intermediate links through which cells are routed as the entries of a routing

matrix, �. The (i; j) entry �ij is a list of intermediate links through which cells with I-O pair (i; j)

are transferred. For instance, if I-O pair (1,1) uses link mj, i.e., P11;j = 1, then the list in �11

includes mj. Let us use the link numbers instead of link IDs for convenience, i.e., use i directly

instead of mi. In Example 5.5, � can be formed as:

� =

O1 O2 O3 O4

I1

I2

I3

I4

2
6666664

(3) (�) (1; 2) (4)

(1; 2) (3; 4) (�) (�)

(�) (1; 2) (4) (3)

(4) (�) (3) (1; 2)

3
7777775

Note that, cells between I-O pair (i; j) follow NR
(1)
ij paths, e.g., cells between pair (1; 3) are trans-

ferred over m1 and m2. The entries which has a `(-)' correspond to 0 entries of matrix R(1).

Next we discuss some details. We know that the �rst interconnection periodically goes through

N con�gurations starting with the identity con�guration. We can generate a schedule matrix,

T (1), whose entries signify the times when to schedule a service opportunity for an I-O pair within

175

a connection cycle for it to be routed to the appropriate intermediate link. Suppose the �rst

interconnection is set up to have the identity connection initially, i.e., time slot 1. It connects input

link i to intermediate link mj at time 1 + [(j � i) mod N] once every cycle, and thus the entries of

the schedule matrix can be found using the following operation:

T
(1)
ij = 1 + [�ij � i (mod N)] (5.57)

In example 5.5, the schedule matrix can be found to be,

T (1) =

2
6666664

(3) (�) (1; 2) (4)

(4; 1) (2; 3) (�) (�)

(�) (3; 4) (2) (1)

(1) (�) (4) (2; 3)

3
7777775

The �rst interconnection can meet this schedule since every number between 1 and N is present in

each row exactly once. Within a con�guration cycle of the �rst interconnection, each intermediate

link receives exactly one cell for each output link. Thus, the second interconnection is also able to

handle the load at the intermediate links by going through the N con�gurations cyclically, starting

with the identity con�guration. We will give a more detailed explanation of these when we present

the proof of the correctness of the algorithm. Before that, we would like to generalize the algorithm

for some set of values of s other than 1
N .

The algorithm can easily be modi�ed to support the set of admissible rates which are integer

multiples of s = 1
kN where k is an integer. Similarly, we can decompose R(1) as follows,

kNR(1) =
kNX
l=1

Pi

This time, we assign k permutations to each intermediate link, rather than just one. For instance,

link mi will handle matrices Pk�(i�1)+1 through Pk�i; i 6 N . Therefore, both interconnections need

to complete k con�guration cycles to meet the rate requests. Hence, we de�ne a period of kN time

slots as a schedule cycle.

Also, note that, the cells with I-O pair (i; j) follow at most kNR
(1)
ij paths. Thus, each interme-

176

diate link carries no more than

1

N

X
i;j

kNR
(1)
ij =

1

N
kN2 = kN

�
=

1

s

�

I-O pairs.

Next, we present the algorithm formally and give a proof of correctness. The steps of the

algorithm are as follows. Recall that the desired rates are all integer multiples of some 0 < s 6 1

where k = 1
sN is an integer.

1. The rate matrix, R(1) is written as a convex combination of permutation matrices and the

coe�cients of each permutation matrix is s:

R(1) = s

kNX
l=1

Pl (5.58)

Note that in Eq. (5.58), it is possible that Pl = Pl0 ; l 6= l0.

2. Generate the matrix, �, where l 2 �ij if Pl;ij = 1. Hence, each entry can be either empty or

a list of numbers which take on integer values in [1; kN]. There will be kN elements at each

row and column of �.

3. Generate the schedule matrix, T (1), whose entries give the time slots that the input-output

pairs are served within a schedule cycle as follows: If Pq;ij = 1, then, pair (i; j) should be

granted a service opportunity when input i of the �rst interconnection is connected to input

1 + [q � 1(mod N)] of the second, once every k switch cycles (kN time slots). Given that the

�rst switch starts at the identity connection,

~T
(1)
ij = 1~e+

h
~�ij � i~e (mod k)

i
(5.59)

where ~e is the vector with all unit entries. This schedule repeats every kN time slots. Note

that the number of paths that the cells with each I-O pair is routed on is identical to the

size of the list that is located at the corresponding position in the � matrix. The list of

intermediate links, Oij that cells with I-O pair (i; j) is routed on can be found as follows.

~Oij = 1 +
h
~�ij � 1~e (mod N)

i
(5.60)

177

Before we get to the correctness, let us illustrate this general form of the algorithm. Let

R(1) =
1

6

2
6664

1 2 3

3 0 3

2 4 0

3
7775

=
1

6

2
6664

1 0 0

0 0 1

0 1 0

3
7775+

2

6

2
6664

0 1 0

0 0 1

1 0 0

3
7775+

3

6

2
6664

0 0 1

1 0 0

0 1 0

3
7775

Then,

� =

2
6664

(1) (2; 3) (4; 5; 6)

(4; 5; 6) (�) (1; 2; 3)

(2; 3) (1; 4; 5; 6) (�)

3
7775

and

T (1) =

2
6664

(1) (2; 3) (4; 5; 6)

(3; 4; 5) (�) (6; 1; 2)

(6; 1) (5; 2; 3; 4) (�)

3
7775

O =

2
6664

(1) (2; 3) (1; 2; 3)

(1; 2; 3) (�) (1; 2; 3)

(2; 3) (1; 1; 2; 3) (�)

3
7775

Theorem 5.2 The partial division algorithm supports any doubly stochastic rate matrix, R(1) with

entries, each of which is an integer multiple of 1
kN ; k 2 ZZ

+ over the two stage cyclic shift switch.

We will prove the statement in two steps. In the �rst step, we prove that the N con�gurations

that the �rst interconnection goes through is su�cient to meet the schedule, T (1) generated by

the algorithm. In the second part, we show that the partial division algorithm guarantees uniform

loading for the second stage interconnection, whose N con�gurations is su�cient to support the

uniform load.

Proof: Step 1: Since a permutation matrix has a single 1 in every row and column, every integer,

q 2 [1; kN], can be found exactly once in each row and column of the matrix �. Thus, every row of

178

matrix O contains each link, mq; q 6 N exactly k times. Hence, each input must be connected to

each output exactly k times in a schedule cycle. Since a schedule cycle is kN time slots long and

each con�guration is kept 1=N of a cycle, the �rst switch will be able to meet the schedule.

Step 2: As mentioned, every row and column of the matrix, O, contains each link, mq; q 6 N

exactly k times. Hence, the cells destined to a particular output, say j, are divided equally over

the inputs of the second stage switch, since, as we just proved, the �rst switch is successful in

supporting the
ows according to the schedule, T (1). Thus, each input in the second stage is

scheduled to receive exactly one cell every N time slots destined to a particular output, completing

the proof.

5.6.2 Performance

In this part, we analyze the quality of service provided by the algorithm described in the previous

section. In particular we will �nd bounds on the maximum service lag, end to end cell delay and

the queue size necessary to prevent cell losses.

The most important observation is that the number of paths followed by the cells for a given

I-O pair is no more than min
�
N; rs

	
, where r is the rate speci�ed between the pair, whereas each

I-O pair used all the (N) paths apriori with full division. This is the main di�erence between the

two cases and we will show that the performance is enhanced due to the decrease in the number of

paths used. In fact, there is an inverse linear relation between the number of paths used and the

bounds on the end to end switch delay for a given pair.

Delay in the First Stage

Cells with an I-O pair (i; j) are divided into at most minfN;R
(1)
ij =sg VOQs. Let us de�ne the

service opportunities provided to cells with pair (i; j) by the �rst stage interconnection within the

time period (t; t0) to be D
(1)
ij (t; t0). We know that

D
(1)
ij ((m� 1)kN;mkN] = R

(1)
ij kN (5.61)

for all m 2 ZZ
+. Hence, every kN time slots, the number of service opportunities provided to

each I-O pair is identical to the number desired in that period. However, it may be the case

that the service opportunities are provided in a burst rather than smoothly, which contributes to

the service lag. To begin the analysis, we will assume that initially VOQs are empty; however,

179

service opportunities are given, regardless of whether VOQs are empty or not. Thus, some of the

service opportunities provided in the �rst kN time slots may be wasted, simply because of the

unavailability of cells in the VOQs. Within the �rst schedule cycle, at most
R
(1)
ij

s cells with I-O

pair (i; j) can accumulate in the �rst stage. This is, in fact, the worst case since it happens if all

the service opportunities are wasted within the scheduling period. Therefore, in this scenario, the

delay experienced by a cell may be as high as kN time slots in the �rst schedule cycle.

If all the service opportunities are wasted by (i; j) cells in the �rst schedule cycle, no service

opportunities is wasted in the next cycle since its VOQs are full. There are cells in minfN;R
(1)
ij =sg

VOQs with I-O pair (i; j). If R
(1)
ij =s = n and n > 1, then the �rst service opportunity is given to

a cell with this I-O pair before time 2kN . Indeed, one of the cells is served within 2kN � n time

slots. The worst case delay for a cell only in the second cycle by itself is thus, kN�minfN;R
(1)
ij =sg.

Combining this with the worst case delay experienced in the �rst cycle, the total �rst stage delay

is upper bounded by 2kN � 1 using the fact that minfN;Rij=sg > 1.

Delay in the Second Stage

Let us de�ne an interconnection cycle as the time in which an interconnection goes through all

of its con�gurations, spending 1 time slot in each, i.e., an interconnection cycle is N time slots.

Within an interconnection cycle, up to N cells arrive at each intermediate link from the �rst stage.

If k = 1, then for any given intermediate link there is exactly one arrival at each VOQ by the

end of �rst interconnection cycle. Each cell can be transferred to its output link within the next

interconnection cycle, if not already transferred in the �rst. If k > 1, there will be k cell arrivals at

each VOQ of a given link within a schedule cycle. There are still N cell arrivals at each intermediate

link per interconnection cycle; however, these N cells are not necessarily uniform over the VOQs of

the link, i.e., some VOQs may receive more than one cell and some of them may receive none. As

illustrated in Fig. 5-26, all the k cells that a VOQ is supposed to receive in a schedule cycle may

arrive within one interconnection cycle.

We showed that at certain points in time, the number of cells in a VOQ can be as high as k

cells. It can easily be seen that this number cannot exceed k: Each VOQ in an intermediate link

cannot receive more than k cells within any given period of kN time slots. On the other hand, the

second interconnection transfers one cell from a VOQ once every N time slots. Thus, if there are

k cells in a VOQ of an intermediate link, no new cell arrival can occur until all these k cells are

180

k = 3

= 4 cellsN

VOQs

Figure 5-26: Each VOQ can receive up to 3 out of 4 cells arriving in an interconnection cycle.

transferred to the output. Therefore, the delay experienced by a cell at a VOQ in an intermediate

link is upper bounded by kN time slots, and this bound is tight.

Reordering Queues and End to End Delay

The delay experienced by di�erent cells may be di�erent even if they arrive at the switch close to

each other since they may be routed over di�erent paths. They must be reordered at the output of

the switch for packet reassembly. We just showed that the end to end delay is upper bounded by

3kN �1. It may be the case that a cell with I-O pair (i; j) may experience the worst case delay and

a number of others with the same pair go through without any delay. The latter group of cells must

be enqueued at the output of the switch for as many as 3kN � 1 time slots. In this period of time,

as many as max
n�

R
(1)
ij � s

�
; 0
o
� (3kN � 1) cell arrivals with the pair (i; j) may occur and all of

them must be kept until the cell with the largest delay arrives. The term, R
(1)
ij � s represents the

total rate of the cells with I-O pair (i; j) that follow a di�erent path from the cell with maximum

delay. Hence the bu�er at output j must be able to store

(3kN � 1)
NX
i=1

max
n�

R
(1)
ij � s

�
; 0
o

6 3kN � 1(1� s)

� 3kN � 1 (5.62)

cells.

To summarize, the maximum end to end cell delay with partial division algorithm over the two

181

stage cyclic shift architecture is 3kN � 1 time slots and the bu�er sizes at the input of the �rst

interconnection, at the input of the second interconnection and at the output of the switch are

2kN � 1; kN and 3kN � 1 cells respectively. Note that the worst case delay is not a�ected by the

possible wait it the reordering queues since, if a cell is queued there, then there is at least one cell

with the same I-O pair that is ahead of that cell in arrival order which experienced more delay.

That is, if a cell experiences the maximum delay of 3kN � 1 time slots in the switch, it avoids

output queueing.

5.7 Summary and Conclusions

In this chapter, we studied a number of multistage packet switch architectures, and presented

di�erent ways of providing service guarantees over them. We gave some fundamental properties

of interconnections connected in cascade and developed an algebra which helped us understand

how in�nitely divisible
uid
ows behave as they are routed inside the switch. Then, we studied

relations between
ow switches and packet switches, and showed that a certain set of rates cannot

be supported by a packet switch unless it can be supported by the corresponding
ow switch.

Motivated by this, we developed routing algorithms for
ows over a number of architectures,

including the two stage cyclic shift architecture and the cascaded Banyans. We applied the same

ideas to packet switches and calculated bounds on the service lag and cell delay for two di�erent

cell scheduling schemes, WF2Q and FIFO. With WF2Q, the service lag is constant, while with

FIFO, the delay is constant over all I-O pairs. The bounds on the maximum service lag and cell

delay are lower by a factor O(N), compared to those with the single stage Birkho� switch. Besides,

unlike single stage crossbar, the architectures we proposed are capable of supporting multicast

rates without a signi�cant modi�cation. We worked on a number of di�erent extensions including

a routing and scheduling scheme by which the cells with an I-O pair follow only a subset of the

paths between the pair and showed that the delay bounds are improved further by another ON .

A summary of the performance results is given in the following table, where r is the rate be-

tween the I-O pair under consideration, b is the size of the crossbars in the Banyan network and

k = 1
sN where s is the quantization parameter.

182

Queue Size (per link) Maximum Delay

2 St. Cyc. - Full Div. (WF2Q) 6N2 4N=r

2 St. Cyc. - Full Div. (FIFO) 6N2 2N2

Cascaded Banyan (WF2Q) 6N2b=(b� 1) 4Nb=r(b� 1)

2 St. Cyc. - Par. Div. 6kN 3kN

In this section we considered architectures composed of interconnections put in cascade. As

an extension, one can consider switch architectures composed of parallel interconnections. Indeed,

some preliminary results we have illustrate that, with full division, the delay performance of certain

switches with parallel fabrics are superior to those over cascaded fabrics with only a minimal increase

in complexity.

As another extension, we can consider a slightly di�erent version of the two stage cyclic shift

switch. Suppose the interconnections are capable of switching their con�gurations only once every

 time slots (time it takes to transfer
 cells in a typical link), i.e., the link rate to con�guration

switch rate ratio is
. Note, however, that they are slower only in switching con�gurations, but

still capable of transferring a cell every time slot. Our preliminary results show that, the service

lag and the cell delay scale up with
 as expected.

Finally, note that the two stage cyclic shift architecture with FIFO scheduling at the VOQs can

be used along with connectionless service agreements. Other than the rate controllers, this scheme

does not use the rates. Hence, without the rate controllers, this scheme works under best e�ort

tra�c and can be compared to the other algorithms designed for best e�ort tra�c (e.g., [5]-[8]),

all of which are based on the input queued single crossbar architecture. Ours is superior to them

in the sense that, it, not only provides \100% throughput" like them, but also supports multicast

tra�c. However, the problem with not using rate controllers is that the presence of bursty and

non-responsive
ows degrades the performance of the switch. Thus, some sort of tra�c policing is

necessary for this idea to be practical.

183

Chapter 6

Providing Service Guarantees over

Optical Switches

6.1 Introduction

Even though the optical layer has the potential to provide very high bandwidths, it is not as

\agile" as the electronic layer. That is, resource assignments/reservations can be made for longer

durations of time and bigger chunks of data, and it is not possible to make updates as frequently

as in electronic networks. Given this limitation, an important challenge is to have the optical

network provide the services desired by the users sharing the resources, and at the same time

harness the bandwidth in an e�cient manner. How quickly these services can be provided, and

e�ciency in supporting these services are challenges that are not just technological. They also

involve consideration of network architecture and algorithm design issues.

We will study wavelength switches and provision of QoS over wavelength switches. We will

mainly focus on two of the architectures given in Chapter 1. We review these architectures in the

following section.

6.1.1 Wavelength Switches

A wavelength switch provides the possibility of routing individual channels coming from any of its

input port to any output port according to the channel wavelengths. There are several architectures,

depending on whether the switch is rigid, rearrangable, or strictly non-blocking. In this chapter,

we will focus on two wavelength switch architectures.

185

.

.

.

.

.

.

M
ux

M
ux 1

N

.

.

.

λ1 λ1

λ1 λ1

optical
xconnect

1

optical
xconnect

D
em

ux
D

em
ux

1

N

λ

λ λ

λ

τ

τ

τ

τ

τ

1

N

1

N

1

N

1

N

Figure 6-1: The rearrangable wavelength switch architecture.

A rearrangable wavelength switch is depicted in Fig. 6-1, where a space division switching func-

tion has been introduced using optical crossconnects (OXCs). An OXC is functionally identical

to a crossbar. The only di�erence is that it is mainly based on opto-mechanical, acousto-optic,

thermo-optic, or micro-electro-mechanical (MEMs) technologies, which are currently too slow for

e�cient packet switching. In this architecture (Fig. 6-1), a separate OXC is used for each wave-

length. Each wavelength of any input �ber can be routed to any output �ber not already using

that wavelength through one of the OXCs. On the other hand, if the wavelength is already being

used at the output �ber, the input cannot use it to set up a new connection. Thus, if an input

and output do not have a common unused wavelength, even if they are not fully utilized (i.e., if

they are not carryingM wavelengths), a connection request cannot be met without rearranging the

current wavelength assignments and crossconnect con�gurations. If they can be rearranged, it can

be shown that the switch given in Fig. 6-1 can meet any connection request between an input and

an output that are not fully utilized. This architecture is thus called rearrangably non-blocking.

To make it strictly non-blocking, we can simply increase the number of OXCs inside, i.e., expand

the number of wavelengths used in the system just like a Clos network.

The wavelength switch given in Fig. 6-1 involves � OXCs each of which has a size of N � N .

To avoid large OXCs which may be impractical, we can introduce blocking to a certain degree. An

example is illustrated in Fig. 6-2 for four nodes and 3 � 3 OXCs. The number of OXCs in this

scheme is larger than the number of wavelengths generated at each link. On the other hand, the

186

D
em

ux M
ux

D
em

ux

1

2

3

D
em

ux
D

em
ux M

ux
M

ux

1

2

3

M
ux

λ1

λ2

λ3

λ4

λ5

λ6

44

Figure 6-2: A blocking wavelength switch architecture. The size of the OXCs are smaller compared
to the rearrangable version.

complexity of each OXC is cut signi�cantly, and so is the overall crosspoint complexity. Crosspoint

complexity is an important metric since the price of an OXC is roughly proportional to this metric.

6.1.2 Problem Statement

In this chapter, we consider two problems:

1. The �rst issue is how to support quality of service over optical networks. In particular, we will

extend our previous results on rate reservation based scheduling algorithms for the optical

wavelength switches. We will take the limitations of the OXCs and unavailability of optical

187

memory technology into account, and modify the procedure we developed for crossbar switches

to make it suitable for optical wavelength switches. First, we consider a rearrangably non-

blocking wavelength switch architecture. We evaluate the number of OXCs and wavelengths

necessary and show how to con�gure these OXCs to accommodate certain tra�c requirements.

Next, we show that with an expansion in the number of wavelengths (and hence the number

of OXCs), the architecture given in Fig. 6-1 can be made strictly non-blocking. That is, any

change in the connection requirement between input output (I-O) pairs can be accommodated

without a need for the rearrangement of the existing connections.

We use these insights and consider the following scenario. Suppose the rate of tra�c generated

by some set of end users approach optical wavelengths. We discuss how e�ciently these end

users can bypass routers as illustrated in Fig. 6-3, after deriving a relation between the the

following parameters: the amount of tra�c injected by end users, the number of routers

connected to an optical switch and e�ciency which we de�ne in this chapter.

2. We consider the blocking architecture given in Fig. 6-2. We study the rates supportable by

this architecture and illustrate certain trade-o�s involved. In particular, we derive a relation

between the number of wavelengths, number of OXCs and the region of rates (between I-O

pairs) that are supportable over this architecture. We illustrate a system, at the center of

which is the blocking wavelength switch, and �nd the region of rates that this system can

support as a function of the number of OXCs in the switch.

6.2 Rate Guarantees over Optical Switches - An Example

First we start with an example in which we consider a packet switch. Then we focus on non-blocking

and blocking switches separately.

The crosspoint complexity of an N� � N� crossbar fabric, which is the most popular choice

for packet switches, is O
�
(N�)2

�
. This makes the crossbar very hard to manufacture for larger

switches. Instead, we can use smaller crossbars and achieve the same functionality of a crossbar

over multiple stages. An example is the three stage Clos network, given in Fig. 6-4. Recall that

in an N� �N� Clos network, input and output links are divided into groups of � and each group

is connected to a separate crossbar. Connections between these crossbars are made through the

middle stage crossbars. Thus, the parameters are the number of links, � per input/output crossbar,

188

Router

Multiplexer

Data/Application

Wavelength
Switch

Figure 6-3: With increasing application rates, it becomes more and more feasible to move �bers
closer to the end users. If the amount of tra�c at some point in the edge grows to optical channel
rates, routers can be bypassed.

189

τ

τ

crossbars
input

crossbars
output

ττ

τ

τ

middle
crossbars

τ

.

.

.

.

.

.

..

...

.

.

.

.

.

.

 ’

.. ..1
1

.

.

.

.2
1

.
... .

1

.

N

.

..

...

...

...

...

...

.

..

.

.

1

1

1

...
crossbar

1

Ncrossbar

2

1

Figure 6-4: A typical three stage Clos network. The parameters are the number of links, � per
input/output crossbar, number, N , of input/output crossbars and the number, � 0, of middle stage
crossbars. We denote such a network by C(�;N; � 0).

number, N , of input/output crossbars and the number, � 0, of middle stage crossbars. We denote

such a network by C(�;N; � 0). As shown in Chapter 3, C(�;N; �) is non-blocking. The crosspoint

complexity of this network is O
�
N�2 + �N2

�
.

Consider an in�nite duration contract with an N� � N� doubly stochastic rate matrix, R.

Suppose we want to �nd a sequence of con�gurations that each crossbar in an N� � N� Clos

network has to go through to support R. In particular, we will focus on the con�gurations of the

middle stage crossbars. Let us group the entries of R as shown in Fig. 6-5, so that each group

consists of �2 entries each of which share the same input crossbar and the same output crossbar.

For instance, the � � � sub-matrix labeled as (1; N) consists of the entries at input links connected

to the �rst input crossbar and the output links of the Nth output crossbar. The total rates between

each input output crossbar pair can be found by adding up the entries of the corresponding group

of entries. Let the matrix of this aggregate rates be RS . It is an N �N doubly stochastic matrix

multiplied by a factor � , since every row and column sums to � . Let us apply the rate quantization

190

1 ,N

, 1N

.

.

.
.

.

.

.

.

.

xτ τ

xτ τ xτ τ

xτ τ

1 , 1

N , N

. . .

. . .

R =

N x Nτ τ

Figure 6-5: Each group of entries represents rates desired between an input and an output crossbar.

algorithm studied in the second chapter to matrix RS with the quantization parameter s = 1. The

algorithm will generate the matrix,

QS = R0
S + US (6.1)

where R0
S is a doubly stochastic matrix scaled with a factor � . All the entries of R0

S are integers.

Matrix US is the constant matrix whose entries are all 1s. Thus, all the rows and columns of QS

sum to � 00 = � +N . One can write QS as a sum of � 00 permutation matrices:

QS =

� 00X
i=1

Pi (6.2)

where possibly Pl = Pm for some l 6= m. Equation (6.2) implies that, to support R, it is su�cient

that the middle crossbars provide the service equivalent to the sum of N + � permutation matrices

on the right side of the equation. Thus, if we pick the number of the middle stage crossbars to be

� 0 = � 00, and con�gure the ith crossbar to Pi as illustrated in Fig. 6-6, this would be su�cient to

support any doubly stochastic matix, R. Note that the middle crossbars do not need to change

their con�gurations, or time share among a number of con�gurations to support a given R.

We owe this special form of decomposition to rate quantization. Indeed, without rate quan-

tization, the number of permutation matrices required in general is O(N2) and the coe�cient of

each of them is not necessarily an integer. Thus, the described one to one correspondence between

permutations and crossbars would not be possible.

191

τ

τ

1

 +NP
τ

1

τ

1

τ

1 P

P.
.
.

.

.

.

.
.

.

.

.. ..

.

.

.

.

..

.

..

.

1

.

i

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

1

NN

1

.

.

.

.

.

Figure 6-6: With rate quantization, the number of middle crossbars necessary to support any
doubly stochastic rate matrix is � + N , and the ith one is con�gured to Pi of the decomposition
given in Eq. 6.2.

192

τOXC

router

router

N

2

1

system of
crossconnects packet

switching
packet

switching

’
router 1

τ

1

τ

1

τ τ

1

τ

1

τ

1
..

...

.

.

..

..

.

.

.

.

.

.

.

.

.

.

.

.

...

...

...

...

...

...

.

.

..

.

.

.

..
..

..
OXC 1.

. .

Figure 6-7: Suppose the middle stage is composed of OXCs and the surrounding (input and output
stage) crossbars represent the routers we talked about in our main network architecture (Fig. 1-1).

6.3 Rate Guarantees over Non-blocking Wavelength Switches

We have just illustrated a three stage switch where end to end rate guarantees are provided over

a �xed con�guration middle stage. The insight we gained from this example leads to an analogy

between the Clos switch and the system illustrated in Fig. 6-7. In this system, the middle stage

crossbars of the Clos architecture are replaced with OXCs, and the input and the output crossbars

are replaced with routers. Packet switches use the system of OXCs for transport between other

routers. In a sense, this was our ultimate purpose: providing end to end rate guarantees at the router

level through a backbone composed of crossconnects, whose con�gurations cannot be switched in

short time scales (e.g., packet transmission time).

193

wavelength
switch

1

1

’ τλ

λ

λ λ

λ

input
nodes

output
nodes

λ 1

λ 1

λ 1 λ 1

λ

’

λ ,...,τ’

τ’

τ

λ,...,

,...,

τ’

τ’

,...,

,...,

,...,
node 2

node 1node 1

node 2

node N

.

node N

.

.

.

.

.

Figure 6-8: Each one of the N nodes generate � wavelength channels worth of tra�c. After rate
quantization, the number of wavelengths at the input of each �ber is � 0.

6.3.1 Wavelength Assignment and E�ciency

One can realize that the structure of the non-blocking wavelength switch given in Fig. 6-1 is

identical to that of the Clos network. With this in mind, we redraw the system given in Fig. 6-7

as shown in Fig. 6-8. We replace the middle stage with a single wavelength switch and the routers

are shown as nodes that generate � wavelength channels worth of tra�c which is multiplexed1 onto

the same �ber. Note that a node can also be viewed as another wavelength switch. The output

links of the wavelength switch can be connected back to these nodes, but for the analogy to be

observed better, we illustrated output nodes separate from input nodes. Each input node generates

� wavelength channels of tra�c. Let the rates desired between the input and output nodes be given

as the entries of the matrix R. We assume the presence of a centralized admission controller to

make sure that no (output) node is oversubscribed.

Applying the rate quantization algorithm exactly the same way as we did for the Clos network

1In fact, if we assume each link to carry one wavelength channel of tra�c, � links of one or more routers are
multiplexed.

194

. . .

.
.

.

.
.

.
.

.
.

. . .

. . .

P =i . . .

0 1 0
1 0 0
0 0 0

0 0 0 1 0

0 1
0 0
0 0

.
.

. λi : {1 2, 2 1, 3 N, }

Figure 6-9: If Pi;lm = 1, then the ith OXC is con�gured to connect lth input node to the mth
output node (through the ith wavelength).

example, we end up with the decomposition given in (6.2). Therefore, we use the non-blocking

wavelength switch given in Fig. 6-1, with � 0 OXCs. The wavelengths are assigned and the OXC

con�gurations are set according to this decomposition QS =
P

i Pi as follows. Matrix Pi denotes

the input/output permutation matrix for frequency �i. Thus, Pi;lm = 1 means that lth input node

is connected to mth output node through wavelength i as illustrated in Fig. 6-9. Hence, the lth

input of the ith OXC is connected to its mth output.

At this point let us de�ne wavelength e�ciency. Wavelength e�ciency is the ratio of the

amount of tra�c generated in a node to the number of wavelengths (OXCs) that the switch uses.

The wavelength e�ciency of our system is:

e�ciency =
�

� 00
=

�

� +N

The number of wavelengths is identical to the number of transceivers2 at each node. As the amount

of tra�c injected by a node is increased relative to the number of nodes, our system becomes more

and more e�cient. We discuss e�ciency further in the rest of this section.

6.3.2 Strictly Non-blocking Wavelength Assignment

We gave the conditions for strictly and rearrangably non-blocking Clos networks in Chapter 3.

The rearrangably non-blocking Clos network C(�;N; �) can also support any doubly stochastic

rate matrix. However, to support a rate matrix, all of the crossbars that network C(�;N; �) is

composed of must switch their con�gurations from one time slot to another. This is undesirable

2A transceiver is a transmitter, receiver pair. For a detailed treatment of optical transmitters and receivers, see
[41].

195

in our system since the OXCs in the wavelength switch are not capable of switching at such high

rates. We showed in the previous section that rate quantization with parameter s = 1 eliminates

the necessity for the OXCs to switch their con�gurations every time slot. To achieve this, � 0 = � 00

wavelengths is needed.

Recall that we de�ned a contract as a doubly stochastic rate matrix and a duration that rep-

resents the \lifetime" of the contract. At the end of the lifetime of a contract, another one with a

new duration and set of rates is negotiated. A wavelength switch with � 0 = � +N wavelengths is

rearrangably non-blocking, i.e., the switch has to �nd a new set of con�gurations, and wavelength

assignments are rearranged at each input node after each rate update. In practice, the desired rates

between di�erent input and output nodes may change independently of each other. With each such

change, the rate matrix changes, thus, the wavelength assignments and OXC con�gurations change

completely. Suppose each I-O node pair updates its rate every T time slots on the average. This

corresponds to an expected change of rate matrix per T=N2 time slots. This has a signi�cant im-

pact on the implementation complexity of the rearrangably non-blocking system since a centralized

controller is necessary. It is highly desirable that each node runs wavelength assignment algorithms

independently of each other, and thus the changes in the tra�c in some input nodes imply new

wavelength assignment only for that set of nodes.

The quantized matrix QS has a row and column sum of � 00 = � +N . As shown in Chapter 3,

C(�;N; 2� �1) is strictly non-blocking. Thus, our wavelength switch becomes strictly non-blocking

with � 0 > 2� 00 � 1 OXCs. That is, if some of the entries of the rate matrix change, the new set of

rates can be accommodated without changing the middle crossbar connections for the input and the

output crossbars that keep their link rates unchanged. Thus, 2(� +N)� 1 wavelengths is su�cient

for strictly non-blocking wavelength assignment . With strictly non-blocking wavelength assignment,

a change in rate requirements can be accommodated without a need for any rearrangement of

the assignment for the other nodes. Hence the wavelength assignment need not be implemented

centrally.

So far, we focused on a single wavelength switch and showed how to use rate quantization to

provide rate guarantees over a single switch. As we mentioned before, a node connected to a switch

is not necessarily a router. It can also be another wavelength switch. Hence, the algorithm can be

generalized from a single wavelength switch to a network of wavelength switches. We will not talk

about the details of this generalization in this paper, but make the following remarks about the

196

network scenario.

� We showed that the expansion in the number of wavelengths simpli�es the wavelength assign-

ment algorithms a great deal. After rate quantization, any sub-wavelength tra�c initiated at

a node is quantized to a full wavelength. Thus, a wavelength originated at a node does not

need to be dropped at another node before its destination for further aggregation. We be-

lieve that this reduces the need for OADMs signi�cantly. However, we may need wavelength

changers in most of the nodes as shall be discussed brie
y at the end of this chapter. One can

notice that routing is a major issue in a system of multiple switches. There is a rich literature

where the two issues, routing and wavelength assignment are considered jointly.

� For high wavelength e�ciency, �
�+N must be large. If this is not the case, we can improve

e�ciency by grouping nodes together and treating each group of nodes as one \supernode."

Then the wavelength assignment can be implemented at the supernode level. The e�ciency

can be signi�cantly increased with this slight change. For instance, if n nodes are grouped as

a supernode, then

e�ciency =
n�

n� +N=n

since the number of wavelengths initiated at each supernode is n times as many as that in an

ordinary node, and the number of supernodes is 1=n of the number of nodes.

6.3.3 Moving Optical Switching Closer to the End Users

In the network picture we presented in the �rst chapter, most of the end users are connected to

optical switches through routers in the core. As the rates that applications desire increase and rate

of tra�c generated by end users approach optical wavelengths, the function of routers as tra�c

multiplexers start to diminish. At these rates, it starts to make more sense that end users bypass

routers with a �ber link that connects them directly to the optical switches. However, it is essential

that the most of the functionality of routers be transferred to the optical switches for the success

of this task. In the light of the non-blocking wavelength switch example, we will discuss when this

move makes sense in terms of e�ciency.

Consider the system illustrated in Fig. 6-10. Suppose a set of M end users share the same

optical switch through a number of routers. Let the rate of tra�c generated by the ith user be

197

electronic
switching

1τ 2τ

optical
switch

. .
1 M

2 .

τM

end users

Figure 6-10: A simplistic illustration of the network architecture given in Fig. 1-1. There are M
nodes connected to possibly di�erent routers ultimately share the same optical switch.

�i. Now, suppose we group these end users in one optical node, and aggregate their tra�c into

multiple optical channels. Let the total rate of end user tra�c be,

� =
MX
i=1

�i

Suppose we multiplex the end user tra�c onto a �ber and feed it directly into an optical switch as

shown in Fig. 6-11. The set of M end users forms an optical node, and the wavelength e�ciency at

this new node is �
�+N . If this quantity is close to 1, we say that the new node can bypass electronic

switching e�ciently. Note that the only parameter we considered here is the wavelength e�ciency.

There are many functions of the electronic layer other than multiplexing, and hence one must also

think about how they can be replicated in optics.

198

2

other
nodes

M

1

switch

new optical node

optical

2

1

N

.

.

.

Figure 6-11: If �=N � 1, then the set of nodes can bypass electronic switching and get connected
to the optical switch in an e�cient manner.

6.4 Rate Guarantees over Blocking Wavelength Switches

The non-blocking wavelength switch given in Fig. 6-8 consists of � 0 OXCs, each with a size N �N .

Each node has � 0 transceivers, tuned to di�erent wavelengths. This switch is non-blocking, since

each node generates � wavelengths of tra�c and it can divide this tra�c arbitrarily among other

nodes. Namely, it can send as much tra�c to another node as it desires, given that the total amount

of tra�c generated and terminated at each node does not exceed � wavelengths.

In this section, we study service guarantees over blocking wavelength switch architectures such

as the one given in Fig. 6-2. In this architecture, the size of an OXC is x� x; x < N . Thus, each

input and output node can be connected to only a subset of the OXCs and vice versa. There are

a number of motivations for studying this blocking architecture.

1. Crosspoint complexity is an important metric since the price of an OXC is roughly propor-

tional to this metric. As the number of nodes increases, the non-blocking switch architecture

becomes more and more complex: Each N �N OXC must be non-blocking, i.e., a connection

can be made between any idle input and idle output. A non-blocking OXC can be built using

smaller non-blocking OXCs. For instance, if the Clos architecture is used to build N � N

OXCs, the crosspoint complexity of each N �N OXC is no less than O
�
N3=2

�
(see [37]).

2. Non-blocking behavior gives tremendous
exibility to a node in dividing the available rate

among the other nodes. Indeed, as mentioned, a node can divide a total of � wavelengths

199

.

.

.

...
1

x

...
1

x

...

...

1

x

...

1

x

...

1

x

.

.

.

D
em

ux .
.

.

D
em

ux

1

N

1

.

.

.

τ’

τ’

1

.

.

.

M
ux

.

.

.1

τ’

.

.

.1

τ’

M
ux 1

N

OXC 1

OXC 2

OXC L
1

x

Figure 6-12: The blocking switch architecture in consideration. Each node is connected to � 0 of L
middle OXCs. These connections will be shown later in this section.

arbitrarily, given the admission control inequalities are not violated. However, this is not

always necessarily desirable. It many optical networks, the amount of tra�c between any

given two nodes is no more than a few wavelengths, and it hardly comes close to the maximum

capacity of � wavelengths. A non-blocking switch may not be necessary in such scenarios.

The blocking architecture we consider has four parameters: the number of nodes, N , the number

of wavelengths carried at each link, � 0, the number of OXCs, L, and the size of each OXC, x. As

mentioned, L > x, thus each input and output node can be connected to only a subset of the OXCs

and vice versa. These parameters are illustrated in Fig. 6-12. The connections between nodes and

the OXCs will be studied in what follows.

In this section, we analyze the rates that can be supported between an input node and the

output nodes through this blocking architecture. We assume that rate quantization is applied to

the set of input rates, i.e., initially � wavelengths of tra�c is generated at each node and after

quantization a total of � 00 = � + N have to be used as shown earlier. We choose � 0 = � 00 as

the number of wavelengths per link like the rearrangably non-blocking switch for fair comparisons

200

between the blocking and non-blocking switches.

First, let us focus on the crosspoint complexity of the blocking architecture. Each input node is

connected to � 0 OXCs. Each OXC has a size N� 0

L � N� 0

L . For example if L is k� 0 for some k 2 ZZ
+,

then each OXC has a size N
k � N

k . Hence the size of each OXC is 1=k the size of an OXC used in

an N �N non-blocking wavelength switch. On the other hand, there is a need for k times as many

OXCs. If the Clos architecture is used to build these N �N OXCs using smaller OXCs, the overall

complexity of the switch is cut by k3=2 compared to the corresponding non-blocking switch.

Next, we specify the region of supportable rates between I-O pairs for a set of blocking switches

as a function of the three parameters of the switch. From this analysis how to set the connections

between nodes and the OXCs \optimally" will be apparent. We de�ne a rate for a node as the

vector whose i entry is the number of wavelengths that the node uses to send data to node i. Since

there are a total of � 0 wavelengths available at each node, entries of the rate vector, ~rn of a given

node n satis�es,

X
i6N

rn;i = � 0

for all n 6 N . In this section our main tool will be the theory of majorization.

First let us describe how a region can be speci�ed using majorization. Basic de�nitions and

some properties of majorization are given in Appendix A. Now, we state a theorem which was

developed by Schur ([25]):

Theorem 6.1 (Schur (1923)) Suppose ~z; ~y 2 I�RN , for some N 2 ZZ
+. Then, ~z � ~y if and only if

there exists a doubly stochastic matrix, R such that

~z = ~yR

Since any doubly stochastic matrix can be written as a convex combination of permutation matrices,

~z = ~y
�X

�iPi

�
(6.3)

=
X

�i (~yPi) (6.4)

where Pi is a permutation matrix, and the summation in Eq. 6.3 is a convex combination. This

201

2u

1u

2
y

1
y,()

1
y

2
y,()

1
y

2
y,(, 3

y)

1u 2u

3u

| y}
z z| y}

{z z

{

Figure 6-13: If ~z � ~y, then ~z lies in the region whose extreme points are the vectors that are formed
by permuting the entries of ~y.

means, all vectors f~zj~z � ~yg lie in the convex hull of ~y and N ! � 1 other vectors that are formed

by permuting the entries of ~y as illustrated in Fig. 6-13.

We design the switch in such a way that the rates supportable by a node are independent of the

node number, i.e., if a given rate vector, ~r, is supportable at a node, then ~rP is also supportable,

for any permutation matrix, P . Hence, we only need to specify a maximal vector, ~w, i.e., if ~r is

a point in the set of rates supportable by a node, then ~r � ~w. Conversely, any rate vector ~r is

supportable by a node, if ~r � ~w. To illustrate how we choose the triplet, (N; � 0; L) and arrange

connections between the nodes and the OXCs, we give the following theorem.

Theorem 6.2 Let N;L and x be integers such that L =

0
@ N

x

1
A. There exists N subsets of the

set f1; : : : ; Lg, such that they all have a cardinality of

0
@ N � 1

x� 1

1
A, and the intersection of any

m; 2 6 m 6 x of these sets have a cardinality of

0
@ N �m

x�m

1
A.

For a proof see [55]. Following is an example. Suppose N = 4; x = 2 and L =

0
@ N

x

1
A = 6. The

following table illustrates how to construct these 4 subsets of f1; 2; : : : ; 6g. If there is a cross in the

202

(i; j) entry of this table, then the ith subset consists of a j from the set.

1 2 3 4 5 6

1 � � �

2 � � �

3 � � �

4 � � �

Each element of f1; : : : ; 6g is assigned to every possible 2-combination (x = 2) of N = 4 sets. Each

pair (m = 2) of sets has (

0
@ 4

0

1
A) = 1 element in common. By construction, every pair of sets has

a distinct common element in f1; : : : ; 6g. The intersection of every triple is an empty set.

Now, suppose we have a system of N = 4 nodes each with � 0 = 3 transceivers tuned to three of

L = 6 wavelengths as shown in the above table. Namely, let the numbers in the �rst row represent

the wavelengths, the numbers in the �rst column represent the nodes and the crosses represent

dropped wavelengths at each node. This blocking switch is, in fact, the one illustrated in Fig. 6-2.

Since each pair of nodes share exactly one wavelength, each node can send up to one wavelength

of tra�c to any other given node. Any point in the region of rates that are supportable by node n

satis�es the following:

~rn � [1 1 1 0]

Let us go over this construction for OXCs of size x � x. Since x nodes can be connected to each

OXC, each column of the table consists of x crosses. Every x combination of the nodes will be

matched with exactly one of the L OXCs and one of the L wavelengths is assigned to that OXC.

Hence, for the wavelengths dropped at a given node, all the x� 1 combinations of the other N � 1

nodes are covered, i.e., there are

0
@ N � 1

x� 1

1
A wavelengths dropped at each node (thus, each node is

connected to

0
@ N � 1

x� 1

1
A OXCs). Similarly, to �nd the number of wavelengths shared by any given

two nodes, we count the number of columns where both of these nodes have a cross. For such

columns, all the x� 2 combinations of the other N � 2 nodes are covered, i.e., any given two nodes

have

0
@ N � 2

x� 2

1
A common wavelengths. Similarly, any m; 2 6 m 6 x nodes have

0
@ N �m

x�m

1
A common

wavelengths.

Next, we �nd the rate region supported by each node over the switch built using the construction

203

we just described. Let fi1; i2; : : : img be a set of distinct indices in [1; N]. We de�ne L(n;nij) as

the set of wavelengths that are common to nodes n and nij . Let us de�ne

L(n;ni1 ; ni2 ; : : : ; nim) =
m[
j=1

L(n;nij) (6.5)

Thus, from basic set theory

jL(n;ni1 ; ni2 ; : : : ; nim)j =
mX
j=1

��L(n;nij)��� mX
j=1

jX
k=1

��L(n;nij ; nik)��

+
mX
j=1

jX
k=1

kX
l=1

��L(n;nij ; nik ; nil)��� � � �

For the architecture under consideration, for m < x� 1,

jL(n;ni1 ; ni2 ; : : : ; nim)j =

0
@ m

1

1
A
0
@ N � 2

x� 2

1
A�

0
@ m

2

1
A
0
@ N � 3

x� 3

1
A+

0
@ m

3

1
A
0
@ N � 4

x� 4

1
A

� � � �

0
@ m

m

1
A
0
@ N �m� 1

x�m� 1

1
A (6.6)

and for m > x� 1,

jL(n;ni1 ; ni2 ; : : : ; nim)j =

0
@ m

1

1
A
0
@ N � 2

x� 2

1
A�

0
@ m

2

1
A
0
@ N � 3

x� 3

1
A

+ � � �

0
@ m

x� 1

1
A
0
@ N � x

0

1
A (6.7)

Recall that ~r# =
�
r[1]; r[2]; : : : ; r[N]

�
denotes the decreasing rearrangement of the entries of ~r. Since,��L(n;ni1 ; ni2 ; : : : ; nim�1)�� is the maximum number of full wavelength connections that could be set

up between m nodes (independent of which nodes), we can write the following set of inequalities

204

for any given node n:

r[1] 6 jL(n;ni1)j

r[1] + r[2] 6 jL(n;ni1 ; ni2)j

...
NX
j=1

rj 6 jL(n;ni1 ; ni2 ; : : : ; niN)j

We have just found upper bounds on the set of rates that a node supports. Next, we show that

these set of N relations can be satis�ed with equality. For a node, n, let us de�ne ~vn as a wavelength

assignment. The ith entry, ~vn;i, represents the set of wavelengths through which node n is connected

to node i.

Nodes n and ni1 can be connected by no more than

0
@ N � 2

x� 2

1
A wavelengths, which are the

elements of L(n;ni1). Let these two nodes use all these wavelengths to set up

0
@ N � 2

x� 2

1
A connections,

i.e., vi1 = L(n;ni1) and thus the �rst relation is satis�ed with equality. Next, choose

vim = L(n;ni1 ; ni2 ; : : : ; nim)n
m�1[
j=1

vij

= L(n;ni1 ; ni2 ; : : : ; nim)nL(n;ni1 ; ni2 ; : : : ; nim�1) (6.8)

for m 6 N , starting with m = 2. This is a valid assignment since

1. The same wavelength is not used for two distinct nodes, i.e., for j 6= k,

vij \ vik = ;

2. The link connected to input node n is not oversubscribed, i.e.,

X��nij �� = � 0 =

0
@ N � 1

x� 1

1
A

Thus, all the relations can be satis�ed with equality. The maximal rate vector for node n; n 6 N

205

can be found as,

~wn = [jvi1 j jvi2 j � � � jviN j] (6.9)

Since this vector is independent of n, we use ~w instead of ~wn. The set of rates, ~rn supported by

node n is majorized by ~w. Since L(n;ni1 ; ni2 ; : : : ; nim�1) � L(n;ni1 ; ni2 ; : : : ; nim),

jvim j = jL(n;ni1 ; ni2 ; : : : ; nim)j �
��L(n;ni1 ; ni2 ; : : : ; nim�1)�� (6.10)

The values of the two parameters on the right side of Eq. (6.10) can be found using Eq. (6.6) and

(6.7) as follows:

w1 =

0
@ N � 2

x� 2

1
A

w2 =

0
@ N � 2

x� 2

1
A�

0
@ N � 3

x� 3

1
A

w3 =

0
@ N � 2

x� 2

1
A� 2

0
@ N � 3

x� 3

1
A+

0
@ N � 4

x� 4

1
A

w4 =

0
@ N � 2

x� 2

1
A� 3

0
@ N � 3

x� 3

1
A+ 3

0
@ N � 4

x� 4

1
A�

0
@ N � 5

x� 5

1
A

and so on3.

We just found the region of rates that are supportable by any given node each of which originates

� 0 =

0
@ N � 1

x� 1

1
A wavelengths of tra�c to be distributed by the blocking switch given in Fig. 6-12.

The set of rates, ~rn supported by any given node n; n 6 N satis�es ~rn � ~w where ~w is given in Eq.

6.9. Note that ~w majorizes the vector of rates not only from an input node but also to an output

node. Hence if we denote the number of wavelength connections between input node i and output

node j as the (i; j) entry of a rate matrix R, then each row and each column of R is majorized by

~w. Moreover, any rate matrix whose rows and columns are majorized by ~w can be supported by

the blocking switch.

In this section, we presented a method to construct a blocking N �N wavelength switch using

3The coe�cients of the above combinatorial terms follow a pattern which is called the Pascal triangle. The
coe�cients of the terms of wk are identical to the coe�cients of the polynomial (x� 1)k�1.

206

x � x OXCs. While the crosspoint complexity of this switch is �
�
x
N

�2
of a non-blocking switch,

the maximum number of connections that could be made between any two nodes is reduced by a

factor x�1
N�1 . One can introduce a speedup of N�1

x�1 by expanding the number of transceivers at each

node so that the system supports the set of rates that a non-blocking switch supports. Note that

the crosspoint complexity of the blocking switch with this speedup will still be smaller than that of

the non-blocking switch. The ideas we developed this section can be used for other architectures

as well. An example is given in the �nal section of this chapter.

6.5 Summary and Future Extensions

In this chapter we illustrated how to use the rate quantization procedure and provide rate guarantees

over wavelength switches. The procedure is an extension of the rate quantization algorithm we used

for electronic switches. Thus, we showed that rate quantization can be used in multiple layers, and

we can integrate the optical and the electronic layers in an interoperable and compatible manner.

Rate quantization also cuts the need for OADMs since it eliminates the need for subwavelength

processing in an optical switch.

First, we illustrated how to provide service guarantees over non-blocking optical switches. Then,

we focused on a certain blocking switch, and studied the supportable rate region for this switch.

It is useful in understanding the relation between degree of blocking and the region of rates that

could be supported by a certain set of blocking switches. Then, we discussed how \e�cient" it is

to move an initially electronically switched node to the input of an optical switch.

We considered the wavelength assignment problem in an optical switch independent of those of

other optical switches. In a network of multiple switches, if a new wavelength needs to be assigned

to a lightpath, it needs to be done in all the switches on the path. Thus, unless a wavelength

changer is used, the wavelength assignment could not be done independently in di�erent switches.

We need to consider the problem over the entire network. This problem is regarded as the routing

and wavelength assignment problem, which could be a very important future extension for this

work.

We can extend the result we have on blocking wavelength switches for other architectures. One

example is the ring, which is one of the most popular architectures for optical networks. Today,

most of the physical layer infrastructure is built around rings. If a single wavelength is used in

207

a unidirectional4 ring, only one node can achieve full duplex communication with another node

at a time while multiple wavelengths enable many nodes to communicate simultaneously. Using

wavelength multiplexers, multiple rings can be supported over the same infrastructure. For any

two users to communicate, they must be able to add and drop a common wavelength. Hence, they

both need an ADM tuned to the same wavelength.

Suppose we have a constraint that each node can have no more than L ADMs. We believe

that an important problem is how to tune these L ADMs at each node to achieve certain tra�c

requirements. For instance, if a node can send up to L wavelengths of tra�c to another node at a

time, then the ADMs at each node must be tuned to same set of L wavelengths. In that case only

a total of L wavelengths of tra�c can be supported by the ring network. However, if there is a

bound on the amount of tra�c between each pair of nodes, we may use the following modi�cation.

Let us use a total of M; M > L wavelengths, and tune each one of L ADMs in such a way that

tra�c requirements can be met. This division can be made similar to that described in Section

6.4 for blocking wavelength switches. By doing this modi�cation, we increased the total amount

of tra�c (in the number of wavelengths) supportable by the ring from L to M , without changing

the cost of the network (no increase in number of ADMs or number of transceivers used at each

node). For instance in a 3-node ring network, if L = 2 and if at most 1 wavelength of tra�c is

required between each pair of nodes, we can tune the ADMs as illustrated in Fig. 6-14 so that a

total of 3 wavelengths of tra�c can be supported by the ring network. Each node can add and drop

a di�erent pair of wavelengths so that each pair of nodes shares a distinct common wavelength.

4Data
ows in one direction only, i.e., clockwise or counter clockwise.

208

λ1 λ2 λ3, ,

λ1 λ3,

λ2λ1 ,
λ2 λ3,

unidirectional
ring

1

2 3

Figure 6-14: A three user unilateral optical ring which supports three wavelengths. Each node can
add and drop a di�erent pair of wavelengths so that each pair of nodes has a distinct common
wavelength.

209

Chapter 7

Conclusions

7.1 Summary

In this thesis, we considered several issues related to providing quality of service over electronic

and optical switches. In this section, we present a summary of some of the results.

First, let us focus on packet switches. We give a comparison of some of the architectures and

algorithms we developed and those given in [15].

1. Quality of Rate and Delay Guarantees

� Single Stage Crossbar Switch with Birkho�'s Algorithm: Service lag is upper bounded

by N2. We showed that there exist certain rate matrices for which this is tight for some

I-O pairs. We also showed that the cell delay can be as high as O(N3).

� Single Stage Crossbar Switch with Rate Quantization: Rate quantization improves the

service lag to approximately N=speedup with very simple schedulers (e.g., AOS). We

showed that this bound can be tight for some I-O pairs. We believe it can be further

improved with more sophisticated schedulers.

� Two Stage Cyclic Shift Architecture: Two main methods to implement full division over

the two stage cyclic shift architecture are WF2Q and FIFO queueing.

With WF2Q, the service lag is constant over all I-O pairs and it is upper bounded by

approximately 4N which is a factor O(N) improvement compared to the single stage

plain Birkho� switch. This bound is not necessarily tight, and we argued that it is

approximately a factor 2 greater than the actual �gure. This implies that the cell delay

211

is upper bounded by 4N=r for an I-O pair with rate r.

With FIFO, the end to end cell delay is constant over all the I-O pairs and it is upper

bounded by approximately 2N2 time slots. This bound is tight. It is an O(N) improve-

ment over the delay with a plain Birkho� switch. The corresponding service lag is 2N2r

for an I-O pair with rate r.

We also showed that, with the help of rate quantization, the partial division algorithm

improves the delay bound to 3kN where k = 1
sN is the rate quantization parameter.

� Cascaded Banyans with Internal Bu�ering : We used WF2Q scheduling to implement

full division over the cascaded Banyan architecture. The service lag is constant over all

I-O pairs and it is upper bounded by 4N b
b�1 where b is the size of the crossbars each

Banyan is composed of. This is a factor b
b�1 worse than the service lag with the two

stage cyclic shift system.

2. Algorithm Complexity1

� Single Stage Crossbar Switch with Birkho�'s Algorithm: Birkho�'s decomposition algo-

rithm has an O(N4:5) computational complexity. The decomposition algorithm cannot

be run simultaneously as the crossbar is con�gured. It needs to be complete before the

�rst con�guration can be set.

� Single Stage Crossbar Switch with Rate Quantization: Service is periodic. In the �rst pe-

riod, computational complexity is O(N2:5) per time slot. The same schedule is repeated

each period for the contract duration.

� Two Stage Cyclic Shift Architecture: For this architecture, switch scheduling is trivial.

Both fabrics go through the same set of con�gurations regardless of the set of rates. The

complexity associated with the calculation of WF2Q schedules for full division is o(N)

per scheduler (see [23]). There are N schedulers per link, but since they have the same

set of weights, no more than one schedule needs to be generated at each link. Hence the

complexity is o(N) per link.

On the other hand, FIFO scheduling is trivial. The two stage cyclic shift system with

FIFO schedulers only needs to keep track of which intermediate link each incoming cell

is to be forwarded to, and no further calculation is necessary.

1Here, we deal with time complexity. The time complexity of an algorithm is the number of serial

steps that the algorithm goes through.

212

The complexity associated with partial division for cell scheduling is identical to the

scheduling complexity of the single stage crossbar switch with rate quantization, i.e.,

O(N2:5) per time slot in the �rst schedule cycle which is repeated afterwards.

� Cascaded Banyans with Internal Bu�ering : Switch scheduling is trivial for this architec-

ture too. All b� b fabrics go through the same set of con�gurations regardless of the set

of rates. There are b WF2Q schedulers at each link, and the complexity associated with

the calculation of WF2Q schedules varies from one stage to another. At each stage, it is

o(N) per link.

3. Adaptation to Changing Tra�c

� Single Stage Crossbar Switch with Birkho�'s Algorithm: Each time the rate matrix

changes, the decomposition must be rerun. There is no saving in complexity even if the

change in the rate matrix is small.

� Single Stage Crossbar Switch with Rate Quantization: We showed that with each single

change, schedule rearrangements can be made with an O(N) algorithm based on the

Slepian Duguid theorem for circuit rearrangements in Clos networks. No speedup is

required beyond that necessary for rate quantization. With an extra speedup of 2,

we showed that strictly non-blocking switch scheduling is possible. With strictly non-

blocking scheduling, updates can be completely independent for all the I-O pairs.

� Two Stage Cyclic Shift Architecture and Cascaded Banyans with Internal Bu�ering :

Since switch schedules are constant; they do not need to be changed with changing

rates. With full division, rate updates do not incur an extra cost over o(N).

With partial division, the same rearrangement algorithm that is used for the single stage

crossbar switch with rate quantization can be used, i.e., the complexity associated with

schedule updates is O(N).

4. Multicast Support

� Single Stage Crossbar Switch: Unlike unicast, multicast rates are not supportable over

single crossbar switches without speedup. Using the Clos network analogy we showed

that a speedup of approximately O(logN) is necessary for multicast support.

� Two Stage Cyclic Shift Architecture and Cascaded Banyans with Internal Bu�ering :

213

With full division, support of multicast rates is possible without degrading the perfor-

mance.

Next, let us recapitulate some results regarding optical switches. We illustrated how to use the

rate quantization procedure to provide rate guarantees over optical switches. The algorithms were

extensions of those we used for electronic switches. Thus, we showed that rate quantization can be

used in multiple layers, and the optical and the electronic layers can be integrated in an interoperable

and compatible manner: If rate quantization is used in both the electronic and the optical switches,

with the appropriate choice of the quantization parameters, end to end rate guarantees can be given

over an optical switch with �xed con�guration OXCs. For quantization, a factor 1+N=� expansion

in the number of wavelengths is necessary, where N is the number of optical nodes and � is the rate

of tra�c generated at each node in number of wavelengths. Then we studied a certain blocking

optical switch architecture. We showed that the complexity of a wavelength switch can be reduced

by a factor x=N , at the expense of a factor x=N decrease in the number of wavelength connections

that could be set up between any given two nodes.

7.2 Further Directions

In most of the previous chapters, we showed several directions for future extensions. We will not

repeat them here, but rather discuss some broader issues.

In the context of providing quality of service, two di�erent issues are considered in most of the

literature. The �rst issue deals with tra�c variations. A number of users are multiplexed at each

input link of a switch which is assumed to act as a constant rate pipe. Two major questions are,

what kind of probabilistic or deterministic service guarantees can be given to each user, and how

can the available rate be divided among users so as to satisfy certain quality of service requirements

for each user?

The second issue deals with how a switch can provide the constant rate service that the group

of users desire. Switch constraints, such as the crossbar constraint, are taken into consideration

and di�erent algorithms are developed subject to these constraints.

These two problems are considered separately in most of the literature. We have considered

the second issue in this thesis, but we believe that we have some results which may be a good

starting point for the joint consideration of these two issues. For instance, with the algorithms

we presented in Chapter 3, the variations in a tra�c source a�ect the scheduling for other sources

214

R i

R f

Figure 7-1: With increased quantization parameter, the representation regions whose boundaries
are shown by small pentagons expand. The boundary of a new representatation region is illustrated
with dashed lines.

only minimally. Still, the two issues can be combined further. We could choose the quantization

parameter in such a way that takes the variations of tra�c sources into consideration. Following is

an example for this.

Suppose, at some point, it is desired that the contract durations be increased. However, the

source variations are rapid, i.e., they occur in short time scales and sources need short contracts.

In this scenario the contract durations can be increased by increasing the quantization parameter

as illustrated in Fig. 7-1. A rate update (and hence a new contract) is needed every time the rate

point moves from one representation region into another. By increasing the quantization parameter,

the regions are enlarged and the frequency of region changes are reduced as illustrated. As the

rate point moves from Ri to Rf , three changes occur in the region with the smaller quantization

parameter and no change occurs with the larger parameter. The tradeo� is lower switch throughput

(or equivalently a need for higher speedup). Naturally the switch performance is tied to source

characteristics.

In most of this thesis, we focused on the problem of providing service guarantees by a single

switch. A natural and important extension is providing service guarantees over a network of

switches. In the network scenario, resource assignments or updates at di�erent switches must be

considered jointly. Also, routing is a major issue. Resource assignments and updates and routing in

networks are generally dependent. Thus, consideration of routing and resource assignment jointly

lead to better performance. An example is the routing and wavelength assignment problem in

optical networks (see e.g., [41]). We believe that Chapters 5 provides insight into how certain

routing and scheduling algorithms perform in networks of switches.

215

A �nal issue that can be considered as an extension is blocking switching fabrics. In general,

blocking in switching fabrics is de�ned as the failure to satisfy a connection requirement because all

paths for that connection con
ict with paths inside the fabric for some set of connections between

di�erent I-O pairs. For instance, a fabric for which I-O pairs (i; j) and (i0; j0); i 6= i0; j 6= j0

cannot be made simultaneously connected is called blocking. An N � N fabric is said to be

blocking if there exists a set of distinct inputs fi1; : : : ; iNg and a set of distinct outputs fj1; : : : ; jNg

such that connections (i1; j1); : : : ; (iN ; jN) cannot be made simultaneously. There is a one to one

correspondence between such sets ofN I-O pairs and permutation matrices; indeed, the permutation

matrix corresponding to such a set is the one where there is a 1 in locations corresponding to each

pair in the set. Hence, a fabric is blocking if the number of distinct feasible matchings between I-O

pairs is less than N !.

Non-blocking fabrics may become increasingly complex as the size of switches grow. For in-

stance, the crosspoint complexity of a crossbar is O(N2), and it gets harder to manufacture a

crossbar for larger switches and high speed applications. There are many architectures such as

the ring, the bus or some multistage switches (e.g., Banyan) that are blocking when run without

speedup. In many cases some resource speedup is introduced to achieve the non-blocking property

in these networks. For instance in an optical ring network, more than a single wavelength is used

so that multiple nodes can communicate simultaneously. Another example is a wavelength switch

which was studied in Chapter 6.

While the problem of providing guaranteed quality of service has been explored for non-blocking

fabrics under unicast tra�c extensively, it has not been considered for switches with blocking fabrics

in general. We can examine the relation between the degree of blocking and the amount of resource

speedup necessary for such fabrics to possess the capabilities of non-blocking and multicast enabled

fabrics. Namely, we can specify the amount of extra speedup necessary for a blocking fabric to

exactly mimic the behavior of a non-blocking fabric. To illustrate what we mean by this, we present

the following example. For a 4� 4 fabric, assume the con�guration corresponding to

P1 =

2
6666664

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

3
7777775

216

is not physically possible, but

P2 =

2
6666664

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

3
7777775 ; P3 =

2
6666664

0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

3
7777775

are. Then, P2 and P3 can cover for P1 if they can be in e�ect simultaneously (in the same time slot),

since I-O pairs (1; 1) and (2; 2) can be connected through P2, and I-O pairs (3; 3) and (4; 4) through

P3. There is a need for a speedup of 2 so that the absence of P1 does not a�ect the non-blocking

behavior of the fabric. Conversely, for a given speedup of 2 and given P2 and P3 are feasible, P1

need not be feasible for the fabric to be non-blocking.

Our preliminary results show that the number of con�gurations necessary for non-blocking

networks decays at a very high rate (more than exponentially fast) with increasing speedup.

To our knowledge, there is no previous literature on this problem. We believe there is motivation

to work on blocking fabrics for a number of reasons. First of all, as mentioned before, there are

many blocking architectures currently used, and non-blocking architectures may be very complex,

whereas, the blocking architectures may be simpler and more feasible for certain applications.

Besides, speedup may be supported more easily over a blocking fabric than over a non-blocking

fabric due to this simplicity.

We also believe that there exist systematic ways to design very simple fabrics (in terms of

the number of con�gurations supported) which, when put in cascade with others, increase the

number of possible end to end con�gurations geometrically with the number of stages. Such an

architecture may enable us to build non-blocking fabrics in a distributed manner that have a

signi�cant advantage in terms of simplicity over single stage non-blocking fabrics.

217

Appendix A

Theory of Majorization: De�nitions

A.1 Majorization

For any ~x = (x1; : : : ; xN) 2 <N , let

x[1] > � � � > x[N]

denote the components of ~x in decreasing order, and let

~x# =
�
x[1]; : : : ; x[N]

�

De�nition A.1 For ~x; ~y 2 <N ; ~x � ~y if the following two conditions hold:

kX
i=1

x[i] 6

kX
i=1

y[i]; k = 1; : : : ; N � 1 (A.1)

NX
i=1

x[i] =

NX
i=1

y[i] (A.2)

When ~x � ~y; ~x is said to be majorized by ~y (or ~x majorizes ~y). This terminology was introduced

by Hardy, Littlewood and Polya. The following is a trivial example of majorization.

�
1

N
; : : : ;

1

N

�
�

�
1

N � 1
; : : : ;

1

N � 1
; 0

�
� � � �

�

�
1

2
;
1

2
; 0; : : : ; 0

�
� (1; 0; : : : ; 0)

219

For a complete treatment of the theory of majorization, see [25].

A.2 Order Symmetry

Vectors ~x and ~y are said to be similarly ordered if there is a permutation � such that x[i] = x�(i)

and y[i] = y�(i); i 2 f1; : : : ; Ng. Equivalently, ~x and ~y are similarly ordered if (xi�xj)(yi�yj) > 0

for all i; j.

A.3 Alternate De�nition for Majorization

For ~x; ~y 2 <N ; ~x � ~y if Conditions (A.1) and (A.2) hold simultaneously. Suppose

NX
i=1

x[i] =
NX
i=1

y[i] = S

Subtracting both sides of (A.1), we get

SX
i=k+1

x[i] >

SX
i=k+1

y[i]; k = 1; : : : ; N � 1 (A.3)

which is equivalent to (A.1). Hence, if ~x and ~y both have non-negative entries, there are at least

as many 0s in ~y as in ~x.

220

Appendix B

Theorems on Majorization

B.1 Kemperman's Theorem

Theorem B.1 ([30]) Let ~x 2 <N . Suppose that m 6 xi 6 M; i 2 f1; : : : ; Ng. Then there exists

a unique m 6 � < M and a unique integer, k 2 f1; : : : ; Ng such that

X
xi =Mk + � +m(N � k � 1)

With k and � so determined,

~x � [M � � �M| {z }
k

� m � � �m| {z }
N�k�1

]T � ~xmax

For example, if 0 6 xi 6 s; i 2 f1; : : : ; Ng and

X
xi = sk

then � = 0 and

~xmax = [s � � � s| {z }
k

0 � � � 0| {z }
N�k

]T

B.2 Day's Theorem

Lemma B.1 ([25]) If ~a � ~b; ~u � ~v and if ~b and ~v are similarly ordered (see Appendix A.2), then

~a+ ~u � ~b+ ~v

221

Day's theorem is the generalization of the lemma to the case of sum of m vectors. Let
�
~vl
	m
l=1

bem real N -dimensional vectors and vli be the i
th entry of lth vector. De�ne partial sum sequences:

�i =

mX
l=1

vli; �i =

mX
l=1

vl[i]

Theorem B.2 ([29]) ~� � ~�, i.e.,

mX
l=1

~vl �
mX
l=1

~vl#

Since the set of vectors ~vl# are ordered symmetric, Day's theorem is nothing more than a gen-

eralization of the above lemma. For a detailed treatment of rearrangements and majorization, see

[25].

B.3 Fulkerson and Ryser's Lemma

Theorem B.3 ([31]) Let x1 > � � � > xN and y1 > � � � > yN be integers. If ~x � ~y and i 6 j, then

~x� ~ui � ~y � ~uj

where ~ui is the unit vector whose ith entry is 1 and all the others are 0.

222

Appendix C

Rate Quantization Algorithm with

Random Processing Order

Algorithm:

Step 1 : Given any s, we know from Lemma 2.1 that there exists a �ij ; 0 < �ij 6 s such that

Rij + �ij is an integer multiple of s for all 1 6 i; j 6 N . Let � be the matrix whose entries are

�ijs. De�ne ~R = R + �. All rows and columns of ~R sum to integer multiples of s. By de�nition,

1 is also an integer multiple of s, and thus, as illustrated in Fig. 2-5, we can represent the sum of

the entries of the ith row and the jth column as 1 + kis and 1 + k0js respectively where ki and k0j

are positive integers.

Step 2 : In the second step, the algorithm scans ~R row by row, starting from the �rst row, and

determines whether the entry will remain unchanged or reduced by s before it is copied as the

corresponding entry of the output matrix, R0. Each row is scanned starting from the entry with

the largest column sum and continuing with entries of decreasing column sums. If both ki and k0j

are positive for the current (i; j), that entry is reduced by s and otherwise it is copied directly as

the corresponding entry of R0. A step by step description of the second part of the algorithm is as

follows:

Initial Values: Let i = 1 and R0 = ~R; let km and k0n be such that, 1+ skm and 1+ sk0n are the mth

row and nth column sum respectively, as illustrated in Fig. (2-5).

Repeat (1)-(2) until i = N + 1.

1. Set E = f1; : : : ; Ng. Repeat (a)-(c) until ki = 0.

223

’ ’

~
R1N

~

RNN

~

.
.

.

RN1

~
kN s1+

k1 s1+

R =
~

. . .

. . .

. . .

. . .
col N

row 1

row N

col 1 . . .
. . .

1+
1 s 1+k

N
sk

11R

Figure C-1: The N �N matrix ~R is illustrated. Each row i and and column j sum to 1 + kis and
1 + k0js respectively where ki snd k0j are non-negative integers.

(a) j = argmaxj2E k
0
j

(b) R0
ij =

~Rij � s; ki ! ki � 1; k0j ! k0j � 1; E ! E � fjg.

2. i! i+ 1

The described algorithm reduces the elements of ~R with lower row indices earlier. One might also

randomize the procedure and work on a row randomly picked at every iteration.

Lemma C.1 The algorithm successfully terminates with a matrix, R0 which is doubly stochastic.

Before we give the proof of the lemma, let us introduce some notation. Let

ki =
1

s

0
@ NX

j=1

(R0
ij)� 1

1
A

k0j =
1

s

NX
i=1

(R0
ij)� 1

!

In other words, ki and k
0
j are initially reduced as stated in the algorithm and then normalized as R0

is produced. Succinctly, we can represent ki and k
0
j as an entry of the vectors ~k and ~k0 respectively.

Let n0i; i > 1 be the number of columns j, for which k0j > i. For example, if ~k0 = [2 1 1]T , then

~n0 = [3 1 0]T as illustrated in Fig. C-2.

224

1 3

2

1

2

3

1

0

l

lk’

Figure C-2: Vector ~k0 = [2 1 1]T , thus ~n0 = [3 1 0]T .

Proof: By induction. We shall �rst show that initially

n01 > ki (C.1)

for all i; 1 6 i 6 N , Thus, for any ~k and any i selected to be the �rst to be the �rst row to be

processed, the algorithm will always be able to �nd su�cient entries to reduce (by s) to make the

row sum equal to 1. We will prove a more general version of (C.1):

~k � ~n0 (C.2)

namely, the vector ~k is majorized by the vector ~n0. The de�nition and some examples about

majorization were given in Appendix A.1.

First we prove that (C.2) holds at the beginning of the algorithm. Recall that � = ~R � R.

Hence,

1

s
�ij 6 1

8i; j. Let the lth column vector of � be ~vl and thus vl;j = �jl and h~vl; ~ei = k0ls, where ~e = [1 � � � 1]T .

From Kemperman's theorem (Appendix B.1), ~vl is majorized by any vector for which k0l entries are

225

s, and the other N � k0l entries are 0. Hence,

~vl � [s � � � s| {z }
k0
l

0 � � � 0| {z }
N�k0

l

]T � ~vmax
l (C.3)

Thus, the vector on the right side of (C.3) is the maximal vector (in the sense of majorization) of

the set of vectors whose entries are between 0 and s and h~v; ~ei = k0ls. Let us denote the maximal

vector of the lth column vector by ~vmax
l .

Now, let us de�ne a new matrix, 1
s [~v

max
1 � � �~vmax

N], where each column is the maximal vector

of the corresponding column of 1
s�. Note that the vector of column sums for this new matrix is

~k0, and thus the corresponding distribution will be ~n0; however, the row sums are not ~k. Let the

vector of row sums for our matrix be ~knew. Thus, knew;1 is the number of columns with k0j > 1,

i.e., n01; knew;2 is the number of columns with k0j > 2, i.e., n02, and so on. More precisely, knew;i is

the number of columns j, for which k0j > i. Thus,

knew;i = n0i (C.4)

But the vectors, ~vmax
l ; l 2 f1; : : : ; Ng are order symmetric (see Appendix A.2 for the de�nition).

Hence we get the desired result using Day's theorem (Appendix B.2):

~knew = ~n0 =
1

s

NX
l=1

~vmax
l (C.5)

�
1

s

NX
l=1

~vl (C.6)

= ~k (C.7)

We just showed that at the beginning of the algorithm, ~n0 � ~k, and thus, n1 > ki, for all i 6 N .

That is, the �rst step of the algorithm can be executed successfully to make the �rst row sum to 1.

The partial sums1 of the two sequences are illustrated in Fig. C-3. Such curves are called Lorentz

curves and if, for two vectors, ~vI � ~vII , then the partial sum curve for ~vII will always be above

that of ~vI .

Next, we will prove that a similar majorization relation holds at the beginning of every step of

1The mth partial sum of a vector, ~v, is de�ned to be
Pm

j=1 vj . Recall that ~v
I
� ~v

II if every partial sum of ~vII is

at least as great as that of ~vI

226

partial
sums

k

’n

2 3 4 5 6 71

3

6

9

12

Figure C-3: Sample Lorentz curves for ~n0 and ~k are illustrated. Since ~n0 � ~k initially, the partial
sum curve of ~n0, is above that of ~k.

the algorithm. We will use induction as follows. We have shown that ~k � ~n0 at the beginning of

the �rst step. We now assume that it holds at the beginning of the ith step, 1 6 i 6 N � 1 and

show that it still holds at the end of the ith step. As a byproduct, we also show that the algorithm

can successfully complete each step.

Suppose, the algorithm successfully constructed the �rst i rows of R0. We will show that (C.2)

still holds at the beginning of the i + 1st step, and the corresponding row of R0 can be formed

successfully.

First, let us focus on the two vectors, ~n0 and ~k at the beginning of step i. At this point,

k1; : : : ; ki�1 = 0. The sum of the entries of the row that is currently being processed is ki. By the

induction hypothesis, we assume ~k � ~n0; therefore, there should be as many 0s in vector ~n0 as there

are in k (veri�ed in Appendix A.3). Since there are at least i�1 0s in ~k, we have n0N�i+2; : : : ; n
0
N = 0.

The entries of ~n0 and ~k# (de�ned in Appendix A.1 as the decreasing rearrangement of the entries

of ~k) can be listed as follows:

n01 � � � n0r�1 n0r n0r+1 � � �

i�1z }| {
0 � � � 0

kC(1) � � � kC(r�1) ki kC(r+1) � � � 0 � � � 0| {z }
i�1

227

k’l

1 2 3 4 5 6 7

1

2

4

3

l

Figure C-4: If ki = 5, the entries of the ith row that are decreased are illustrated above.

where C(q) is the qth entry in decreasing order from the largest in ~k. Let the current position of

ki in this ordered list be r as shown above, i.e., i = C(r). Since ~k � ~n0, there exists at least one

entry in ~n0 which is greater than or equal to ki. Let the smallest such entry be n0r�r0 .

Lemma C.2 At the end of ith step, the only change in ~n0 is that the entries n0r�r0 and n0r�r0+1

will be replaced with
�
n0r�r0+1 +

�
n0r�r0 � ki

��
and a 0.

Proof: These two changes can be explained as follows. The algorithm will look into the current R0

for the column with an entry which has not yet been reduced in step i and which has the maximum

column sum, and reduce it by s. Suppose this maximum column sum is ms for some m 2 ZZ
+.

This operation will reduce the number of columns, i, such that ki = m by 1. Thus, the only change

in ~n0 will be in the smallest non-zero entry, n0m, which will decrease by 1. If that entry is greater

than 1, then there were multiple entries with the maximum column sum. The algorithm continues

with these other entries. Hence, if the original value of ki is greater than n0m, then after processing

n0m entries, n0m will become 0 and ki � n0m entries will be left at the ith row to be decreased. The

algorithm will go on with the entries that have not been reduced before and with highest possible

column sums. At this stage, the new value, n̂0m, of n
0
m is 0 and the new value, k̂i of ki is ki � n0m.

Note that n0m potential entries have already been processed, and if ki is greater than the second

largest entry, n0m�1, of
~n0 then n0m�1 will be reduced to n̂0m�1 = n0m but no further beyond that,

since n0m potential entries have already been processed. Similarly, each entry of ~n0, which is smaller

228

 th stepiafter the

 th stepi
partial
sums

ik

ik

before the

2 3 4 5 6 71

Figure C-5: In the ith step, ki is removed (replaced with a 0) and the smallest entry of ~n0 greater
than or equal to ki is reduced by ki�n0r�r0+1, and the following entry, n0r�r0+1 is removed (replaced
with a 0). The dashed curve is the initial curve, and the solid one is the one at the end of the ith
step. The bold segments are the ones which do not change. The distance between the two curves
does not decrease at all.

than ki will be replaced with the next entry in order. Finally, the �rst entry, n0r�r0 , in
~n0 that is

greater than ki will be reduced by only n0r�r0 � ki. Hence, after the ith row is processed, ~n0 will

have a 0 replacing n0r�r0 , and a
�
n0r�r0+1 +

�
n0r�r0 � ki

��
replacing n0r�r0+1. Note that at the end of

the ith step, ~k# will be the same except ki will be replaced with a 0.

This process is illustrated in Fig. C-4 assuming ~k0 = [1 2 4 3 4 4 2], i.e., ~n0 = [7 6 4 3 0 0 0] at

the beginning of step i. If ki = 5, then at the end of step i, ~n0 = [7 5 3 0 0 0 0]. Notice that 6 is the

smallest entry in ~n0 greater than or equal to ki = 5. Hence, 6 and 4 are changed to 6 + (4� 5) = 5

and 0 respectively.

We will consider the two possible scenarios, r0 < 0 or r0 > 0 and show that in either case, ~k � ~n0

at the end of the ith step of the algorithm. But before that we present a graphical illustration of

what follows. Suppose the algorithm has just processed the ith row. The Lorentz curves of ~k and

~n0 are illustrated in Figures C-5 and C-6. The entry, ki will be removed from ~k. The new Lorentz

curve for ~k can be sketched from the old one by just removing the appropriate segment of the curve

and attaching the two separate parts together as illustrated in these �gures. The new Lorentz

229

partial
sums th stepibefore the

 th stepiafter the
i =2k

n’r-r’ =5

2 3 4 5 6 71

Figure C-6: In the ith step, ki is removed (replaced with a 0) and the smallest entry of ~n0 greater
than or equal to ki is reduced by ki�n0r�r0+1, and the following entry, n0r�r0+1 is removed (replaced
with a 0).The dashed curve is the initial curve, and the solid one is the one at the end of the ith
step. The bold segments are the ones which do not change. The distance between the two curves
decreases, but the curve for ~n0 is still above that of ~k.

230

curve for ~n can similarly be sketched with some modi�cation to the old one. The algorithm will

�nd the segment with the smallest increment greater than ki. Then, it will reduce this increment by

ki � n0r�r0, remove n0r�r0, and attach the two separate parts. There are two alternatives according

to the relative places of these changed segments. The erased segment of ~k may be to the left of the

modi�ed segments of ~n0 (i.e., r0 < 0) as shown in Fig. C-5, or it may be to the right (r0 > 0) as

shown in Fig. C-6.

In both scenarios, the two Lorentz curves intersect at 0 and at
P

l n
0
l =

P
l kl. Initially, these are

the only two points they intersect, and the curve for ~n0 is always above the curve for ~k, otherwise.

We need to show that this is the case after the ith step. In the �rst scenario, this can be easily

observed from Fig. C-5. Since the removed segment in ~k is to the left of the reduced segment of ~n0,

the distance between the two curves will only increase in between these segments, and remain the

same outside this region. The second scenario is more complicated. The decrease in the curve of ~n0

occurs earlier than that of ~k. Thus, the distance between the two curves decrease in between these

two segments. This scenario requires a more careful treatment. We focus on these two scenarios in

the following two items to prove the desired result.

1. If r0 < 0, the statement is rather straightforward. It is nothing more than an application of

Fulkerson and Ryser's Lemma (Appendix B.3). However, to develop intuition for the second

case, we will elaborate a little more on this scenario. There are three regions we need to

consider as shown in the following table:

n01 � � � n0r�1

kC(1) � � � kC(r�1)

������
n0r n0r+1 � � � n0r�r0

ki kC(r+1) � � � kC(r�r0)

������
n0r�r0+1 � � �

i�1z }| {
0 � � � 0

kC(r�r0+1) � � � 0 � � � 0| {z }
i�1

I II III

At the end of the ith step, the partial sums of the two sequences are as follows. In region

I, no entry is changed in either one of the vectors, hence we are OK. In region II, at the end

of the ith step, ki will be replaced with a 0 and it will no longer be in the second region.

All the entries of ~n0 will be unchanged up to n0r�r0. Thus, the partial sums will change in

favor of ~n0 by an extra ki from n0r all the way down to n0r�r. This entry is replaced with�
n0r�r0+1 +

�
n0r�r0 � ki

��
, and the next entry, n0r�r0+1, will be replaced with a 0 and removed

from the second region. The total decrease in the partial sums of ~n0 in this region is ki. The

231

n’r-r’ =3

partial
sums

partial
sums

i +1=2

after the
 th stepi

2 3 4 5 6 71

6

9

4 i =2k

2 3 4 5 6 71

6

9

4

11
12

=1i

Figure C-7: Sample Lorentz curves for ~n0 and ~k before and after the ith step are illustrated for
the �rst case. The smallest entry in ~n0 which is greater than or equal to ki is 3. In this example
r0 = �1, i.e., the entry of ~n0 being processed is just on the right of ki.

extra ki gained in favor of ~n0 earlier by the removal of ki from vector ~k is good enough to

make up for this loss of ~n0. The third region of both ~n0 and ~k are expanded similarly, with

the addition of a 0, which will not a�ect the partial sums, and hence the majorization is

preserved. The initial and �nal Lorentz curves for this case are illustrated in Fig. C-7.

2. If r0 > 0 we have to be more careful. Again, there are still three regions we need to consider:

n01 � � � n0r�r0�1

kC(1) � � � kC(r�r0�1)

������
n0r�r0 n0r�r0+1 � � � n0r

kC(r�r0) kC(r�r0+1) � � � ki

������
n0r+1 � � �

i�1z }| {
0 � � � 0

kC(r+1) � � � 0 � � � 0| {z }
i�1

I II III

Before the ith step, let

r�r0�1X
j=1

�
n0j � kC(j)

� def
= d > 0

Thus,

NX
j=r�r0

�
kC(j) � n0j

�
= d

232

Since,
PN

j=r+1 kC(j) >
PN

j=r+1 n
0
j,

rX
j=r�r0

�
kC(j) � n0j

�
6 d (C.8)

At the end of the ith step, the partial sums are unchanged in the �rst region. The �rst

element, n0r�r0 , of ~n
0 in the second region will be replaced with n0r�r0 � ki + n0r�r0+1. Since

n0r�r0 is the smallest entry of ~n0 which is greater than or equal to ki,

kC(r�r0) > kC(r�r0+1) > � � � > ki > n0r�r0+1 > � � � > n0r (C.9)

Combining (C.9) with (C.8), we get the following set of inequalities. First, (C.8) can be

rewritten as:

�
n0r�r0 � ki + n0r�r0+1

�
+ n0r�r0+2 + � � �+ n0r + d > kC(r�r0) + � � �+ kC(r�1) (C.10)

Combining (C.10) with (C.9),

�
n0r�r0 � ki + n0r�r0+1

�
+ n0r�r0+2 + � � � + n0r�1 + d > kC(r�r0) + � � �+ kC(r�2) (C.11)

...

n0r�r0 � ki + n0r�r0+1 + n0r�r0+2 + d > kC(r�r0) + kC(r�r0+1) (C.12)

n0r�r0 � ki + n0r�r0+1 + d > kC(r�r0) (C.13)

Replacing d =
Pr�r0�1

j=1

�
n0j � kC(j)

�
, we get the desired partial sum inequalities for region

II. The third region of both ~n0 and ~k are expanded similarly, with the addition of a 0, which

will not a�ect the partial sums, and hence the majorization. The initial and �nal Lorentz

curves for this case are illustrated in Fig. C-8.

Thus, we proved that at the beginning of each step, (C.2) holds and n01 > ki, for all i 6 N .

Therefore, no matter which row is being processed, the algorithm will always be able to �nd the

desired number of entries to reduce, and at the end of the algorithm, ki = 0, for all i 6 N . But,

233

partial
sums

partial
sums

i +1=2

after the
 th stepi

i =2k

n’r-r’ =5

2 3 4 5 6 71

6

9

4

2 3 4 5 6 71

6

9

4

11
12

=1i

Figure C-8: Sample Lorentz curves for ~n0 and ~k before and after the ith step are illustrated for the
second case. The smallest entry in ~n0 which is greater than or equal to ki is 5. In this example
r0 = 2, i.e., the entry of ~n0 being processed is two entries to the left of ki.

since

0 =
NX
i=1

ki =
NX
j=1

k0j (C.14)

and k0j > 0, for all j 6 N , it is also true that k0j = 0, for all j 6 N completing the proof.

234

Bibliography

[1] DWDM, SONET, and Photonics: \The Emerging All-Optical Network 2001-2006," in Insight

Research, 2001/05/02.

[2] Keshav S. and Sharma R., \Issues and Trends in Router Design," in IEEE Communications

Magazine, vol. 36, No. 5, pp. 144-151, May 1998.

[3] Awdeh R. Y. and Mouftah H. T., \Survey of ATM Switch Architectures," in Computer Net-

works and ISDN Systems, vol. 27, pp. 1567-1613, 1995.

[4] Turner J. and Yamanaka N., \Architectural Choices in Large Scale ATM Switches," in Tech-

nical Report, Department of Computer Science, Washington University, WUCS 97-21, 1997.

[5] Kam A. and Siu K. Y., \Linear Complexity Algorithms for QoS Support in Input-Queued

Switches with No Speedup", in IEEE Journal on Selected Areas of Communications, vol. 17,

No. 6, p. 1040-1056, June 1999.

[6] McKeown N., Anantharam V. and Walrand J., \Achieving 100% Throughput in an Input

Queued Switch", in Proceedings of INFOCOM 96, p. 296-302, 1996.

[7] McKeown N., Mekittikul A., Anantharam V. and Walrand J., \Achieving 100% Throughput

in an Input Queued Switch", in IEEE Transactions on Communications, vol. 47, No. 8, pp.

1260-1267, August 1999.

[8] McKeown N., \The iSLIP Scheduling Algorithm for Input Queued Switches", in IEEE/ACM

Transactions on Networking, vol. 7, No. 2, p. 188-201, April 1999.

[9] Partridge C., et.al., \A 50 Gb/s Router", in IEEE/ACM Transactions on Networking, vol. 6,

No. 3, p. 237-247, June 1998.

235

[10] Karol M., Hluchyi M. and Morgan S., \Input Versus Output Queueing on a Space Division

Switch", in IEEE Transactions on Communications, vol. 35, 1987.

[11] Oie Y., Murata M., Kubota K. and Miyahara H., \E�ect of Speedup in Non-Blocking Packet

Switch", in Proc. ICC '89, Boston, MA, p. 410-414.

[12] Anderson T. E., et.al., \High Speed Switch Scheduling for Local Area Networks", in ACM

Transactions on Computer Systems, vol. 11, No. 4, pp. 319-352, November 1993.

[13] Stiliadis D. and Varma A., \Providing Bandwidth Guarantees in an Input-bu�ered Crossbar

Switch", in Proceedings of INFOCOM 1995, vol.3, pp. 960-968.

[14] Weller T. and Hajek B., \Scheduling Nonuniform Tra�c in a Packet Switching System with

Small Propagation Delay", in IEEE/ACM Transactions on Networking, vol. 5, No. 6, pp.

813-823, December 1997.

[15] Chang C. S., Chen W. J. and Huang H. Y., \On Service Guarantees for Input Bu�ered

Crossbar Switches: A Capacity Decomposition Approach by Birkho� and von Neumann", in

IEEE IWQoS '99, pp. 79-86, London, U.K., 1999.

[16] Chang C. S., Chen W. J. and Huang H. Y., \Birkho�-von Neumann Input Bu�ered Crossbar

Switches", in Proceedings of INFOCOM 2000.

[17] Hung A., Kesidis G., McKeown N., \ATM Input Bu�ered Switches with Guaranteed Rate

Property", in Proceedings of IEEE ISCC '98, pp. 331-335, Athens, 1998.

[18] Chuang S. T., Goel A., McKeown N. and Prabhakar B., \Matching Output Queueing with a

Combined Input/Output-Queued Switch", in IEEE Journal on Selected Areas of Communi-

cations, vol. 17, No. 6, p. 1030-1039, June 1999.

[19] Krishna P., Patel N., Charny A. and Simcoe J., \On the Speedup Required for Work-

Conserving Crossbar Switches", in IEEE Journal on Selected Areas of Communications, vol.

17, No. 6, p. 1057-1066, June 1999.

[20] Prabhakar B. and McKeown N., \On the Speedup Required for Combined Input and Output

Switch", in Proceedings of INFOCOM 1999.

236

[21] Charny A., Krishna P., Patel N. and Simcoe R., \Algorithms for Providing Bandwidth and

Delay Guarantees in Input Bu�ered Crossbars with Speedup", in Proceedings of INFOCOM

1998.

[22] Charny A., \Providing QoS Guarantees in Input Bu�ered Crossbar Switches with Speedup",

in PhD Dissertation, MIT, Cambridge, MA, 1998.

[23] Bennett J., Zhang H., \WF2Q: Worst Case Fair Weighted Fair Queueing Algorithms", in

Proceedings of INFOCOM 1996.

[24] von Neumann J., \A certain zero-sum two-person game equivalent to the optimal assignment

problem," in Contributions to the Theory of Games, vol. 2, pp.5-12, Princeton University

Press, Princeton, New Jersey, 1953.

[25] Marshall A. W. and Olkin I., \Inequalities: Theory of Majorization and Its Applications,"

Academic Press, New York, NY, 1979.

[26] Bertsekas D. P., \Nonlinear Programming," Athena Scienti�c, Belmont, MA, 1995.

[27] Parekh A. K. and Gallager R. G., \A Generalized Processor Sharing Approach to Flow Con-

trol in Integrated Service Networks: the Single Node Case", in IEEE/ACM Transactions on

Networking, vol. 1, pp. 344-357, 1993.

[28] Hall M., \Combinatorial Theory," Blaisdell Publishing Company, 1967.

[29] Day P. W., \Rearrangement Inequalities", in Canad. J. Math., vol. 24, pp. 930-943, 1972.

[30] Kemperman J. H. B., \Moment Problems for Sampling Without Replacement, I, II, III", in

Nederl. Akad. Wetensch. Proc. Ser., vol. 76, pp. 149-188, 1973.

[31] Fulkerson D. R. and Ryser H. J., \Multiplicities and Minimal Widths for (0-1) Matrices," in

Canad. J. Math., vol. 14, pp. 11-17, 1962.

[32] Paxson V., \Growth Trends in wide-area TCP connections," in IEEE Network, vol. 8, pp.

8-17, Jul.-Aug. 1994.

[33] Eriksson H., \MBone: The Multicast Backbone," in Commun. ACM, vol. 37, pp. 54-60, Aug.

1994.

237

[34] Prabhakar B., McKeown N. and Ahuja R., \Multicast Scheduling for Input-Queued Switches",

in IEEE Journal on Selected Areas of Communications, vol. 15, no. 5, June 1997.

[35] Iyer S., Awadallah A. and McKeown N., \Analysis of a Packet Switch with Memories Running

Slower Than the Line Rate", in Proceedings of INFOCOM 2000.

[36] Stephens J. and Zhang H., \Implementing Distributed Packet Fair Queueing in a Scalable

Switch Architecture", in Proceedings of INFOCOM 1998.

[37] Hui J. Y., \Switching and Tra�c Theory for Integrated Broadband Circuits," in Kluwer Aca-

demic Publishers, Boston, MA, 1990.

[38] Turner J., \An Optimal Non-blocking Multicast Virtual Circuit Switch", in Technical Report,

Washington University Computer Science Department, WUCS-93-30, 1993.

[39] Pretzel O., \Error Correcting Codes and Finite Fields," in Clarendon Press, Oxford, 1992.

[40] Berlekamp E. R., \Algebraic Coding Theory," in McGraw-Hill, New York, NY, 1968.

[41] Ramaswami R. and Sivarjan K. N., \Optical Networks," in Morgan Kaufman, 1998.

[42] Tse D., Gallager R. and Tsitsiklis J., \Statistical Multiplexing of Multiple Time-Scale Markov

Streams", in IEEE Journal on Selected Areas of Communications, August 1995.

[43] Feldman A., Gilbert A. C. and Willinger W., \Data Networks as Cascades: Investigating the

Multifractal Nature of Internet WAN Tra�c", in Proceedings of the ACM/SIGCOMM 98, pp.

42-55, 1998.

[44] Qiao C. and Yoo M., \Optical Burst Switching - A New Paradigm for an Optical Internet," in

Journal of High Speed Networks, Special Issue on Optical Networking, vol. 8, no. 1, pp.69-84,

1999.

[45] Awduche D., et. al., \Multi-Protocol Lambda Switching: Combining MPLS Tra�c Engineering

Control with Optical Crossconnects," in IEEE Communication Magazine, pp. 111-116, March

2001.

[46] Guillemot C., et.al., \Transparent Optical Packet Switching: The European ACTS KEOPS

Project Approach," in IEEE Journal of Lightwave Technology, vol. 16, no. 12, Dec. 1998.

238

[47] Kam A., Siu K.Y., Barry R., Swanson E., \A Cell Switching WDM Broadcast LAN with

Bandwidth Guarantee and Fair Access," in IEEE Journal of Lightwave Technology, vol. 16, p.

2265-2280, 1998.

[48] Chen H., \Fluid Approximations and stability of Multiclass Queueing Networks I," in Technical

Paper, Electrical Engineering Department, Stanford university, 2000.

[49] Dai J. G., \The Throughput of Data Switches with and without Speedup," in Annals of Applied

Probability, vol. 5, pp. 637-665, 1995.

[50] Kesidis G, Walrand J. and Chang C. S., \E�ective Bandwidths for Multiclass Markov Fluids

and Other ATM Sources," in IEEE Transactions on Networking,vol. 1, no. 4, pp. 424-428,

Aug. 1993.

[51] Gallager R. G., \Discrete Stochastic Processes," in Kluwer Academic Publishers, 1995.

[52] Clos C., \A Study of Non-blocking Switching Networks," in The Bell System Technical Journal,

32, 406-424, 1953.

[53] Slepian D., \Two Problems on a Particular Crossbar Switching Network," in Unpublished

Manuscript, 1952.

[54] Paull M. C., \Reswitching of Connection Networks," in Bell Syst. Tech. J., vol. 41, pp. 833-855,

1962.

[55] Yang Y., Masson G. M., \The Necessary Conditions for Clos Type Non-blocking Multicast

Networks", in IEEE Transactions on Computers, vol. 48, No. 11, p. 1214-1227, November

1999.

[56] Lin G. H., \Nonblocking Routing Properties of Clos Networks," in Advances in Switching

Networks , Kluwer Academic Publishers, Boston, MA, 2000.

[57] Laywine C. F. and Mullen G. L., \Discrete Mathematics Using Latin Squares," in Wiley-

Interscience Series in Discrete Mathematics and Optimization, 1998.

239

