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Abstract

The localization of harmonics generated in nonlinear shallow water waves over a ran-
dom seabed is studied. A bathymetry which fluctuates randomly from a constant
mean adds multiple scattering to resonant interactions and harmonic generation. By
the method of multiple scales, nonlinear evolution equations for the harmonic ampli-
tudes are derived. Effects of multiple scattering are shown to be represented by certain
linear damping terms with complex coefficients related to the correlation function of
the seabed disorder. For any finite number of harmonics, an equation governing the
total wave energy variation is derived and used to verify the accuracy of numerical
solutions. The effects of spatial attenuation (localization) on harmonic generation are
studied by numerical solution of the harmonic amplitude equations.

The localization of nonlinear water waves over a random seabed of slowly varying
mean depth is studied. From the Boussinesq equations and by the method of mul-
tiple scales, governing equations and solutions are obtained for different orders of
approximation. The solvability conditions derived from the governing equations yield
a modified Schrodinger equation for the free surface displacement amplitude. An an-
alytical solution for the case of a steady train of attenuated Stokes waves is derived.
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Chapter 1

Introduction

1.1 Background and motivation

Several characteristics of long waves in shallow water are of general interest to wave
physics in many different contexts. The interplay between nonlinearity and disper-
sion has, on one hand, led to impressive advances in soliton dynamics and the inverse
scattering theory [1]. On the other hand independent discoveries in wave-wave inter-
actions ushered the new age of oceanography [29], [30] and nonlinear optics [3]. In
particular the mechanism of harmonic generation, first found in optics, is known to

have a close cousin in shallow-water waves [24], [6].

Anderson localization which was originated in the study of transport in disordered
quantum systems [2], is still an expanding topic in wave propagation in random media
[33], [34]. Many mathematical studies on nonlinear waves in random media have also
appeared. In particular Devillard & Souillard [7] have studied the one-dimensional
nonlinear Schrodinger equation with a random potential. Extensions of this work for
incident solitons and other types of random potentials have been advanced by many
others (e.g. [8], [17], [5], [10], [12]). For extensive reviews, see [14] and [4]. Relevant
to long waves in shallow water, a theory for the KdV equation [18] with a weak ran-
dom potential has also been studied by Garnier [11]. In these mathematical models,

a common feature is that the final differential equation has one or more stochastic
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coefficients.

In coastal oceanography, it is important to understand how the surface wave-spectra
are affected by variations of bathymetry. Existing studies have largely been limited
to classical aspects such as refraction and/or scattering by deterministic depth vari-
ations and by friction-induced attenuation. Since some complex bathymetries can be
best described as a random function of space, it is of practical value to see how mul-
tiple scattering by random bathymetry can cause attenuation by radiation damping.
Only a few papers on the linearized aspects have appeared in the literature ([15],
[9], [27], [25], [26], [28]). For nonlinear long waves in shallow water, the only known
theories are Howe [16] and Rosales & Papanicolaou [32]. For intermediate depth, the
perturbation method of multiple scales, known as the theory of homogenization in
some contexts, has been shown to be an effective tool for analyzing weakly nonlinear
waves in a weakly disordered medium of large spatial extent. The basic ideas were
first explained for the simple case of a taut string imbedded in a nonlinearly elastic
surrounding whose elastic properties contain a random component [23]. It has been
shown that the wave envelope is governed by a cubic Schrodinger equation modified
by a linear term with a complex damping coefficient, which is related to the statistical

correlation function of the random perturbations.

Effects of localization on the evolution of soliton envelopes and side-band instability
have been examined. Similar analysis have been reported for small-amplitude water
waves of intermediate wavelength over a seabed with weak disorder in depth. One-
and two-dimensional nonlinear Schrodinger equations with a linear damping term
have been derived for the envelope of a narrow-banded wavetrain. In one dimension,
complex diffraction is found after a bi-soliton passes over a finite strip of random
seabed [22]. When the random bathymetry is two-dimensional and confined in an
elongated area of large width and length, the envelope of a uniform wave train is

found to turn to a number of dark solitons in the shadow [31].
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1.2 Physics and important assumptions

Water waves over a random medium are studied for constant and slowly varying

bathymetries.

The starting point for the study of the effect of localization on harmonic genera-
tion over a bottom of constant average depth are the Boussinesq equations. One-
dimensional long waves in shallow water are considered. h(z,t) is taken to be the
local depth beneath the still water level, n(x,t) the free surface displacement above
and u(x,t) the depth-averaged horizontal velocity of the water. To the leading order of
accuracy, for dimensional variables and for a varying depth, the modified Boussinesq
equations are found to be.

%+%[(h+n)u] =0 (12.1)

Ou v On h& ([ 0u) h° Fu
ot " "or "9or " 2022 \"0t) 6 ox20n

Two small independent parameters ¢ and p? characterizing nonlinearity and disper-

(1.2.2)

sion respectively are defined to obtain dimensionless governing equations. They are
considered to be of the same order of magnitude and simulations are run for an Ursell
number 1% /e of order 1. The bathymetry is assumed to be slowly varying, the depth
h is defined as the sum of a constant average depth and a fluctuating depth taken to

be a stationary random function of zero mean.

The study of localization of nonlinear water waves over a slowly varying bottom is
based on the boundary value problem defined for the velocity potential ¢ by the
Laplace equation and the no flux conditions at the free surface defined by z = ( and
through the bottom defined by z = —H + ¢€b. ( is the free surface displacement, H is
the slowly varying average bottom depth, b is a random function of zero mean and €

is the small parameter characterizing dispersion.

*¢ %9
— + = = fi —H 1.2.
52 +822 0 for +eb<z<( (1.2.3)

20 _060C
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dp 0¢p | 0b OH B
5 = B [Eax ax] at z=—H +eb (1.2.5)

Once the boundary value problem is solved for ¢, a solution for the free surface

displacement ¢ can be obtained from Bernouilli’s equation at the free surface.

196 1| [(8s)°  [(0¢)® B
“‘5%‘5[(%) *(F)] woene 2

Mathematical tools are used on the governing equations in both problems to simplify

them to specified orders of accuracy.

1.3 Mathematics used for simplification

Tools such as multiple scale expansion or the method of induction are used in this
thesis to simplify equations and to obtain analytical and numerical solutions to the

problems described above.

1.3.1 The method of multiple scales

It is often the case for physical problems to have more than one length or time
scale and it can be important to decompose the problem into multiple scales. As an
example, let us consider the case of water waves: a short time scale of the order of a
few seconds is the wave period, a longer time scale of the order of an hour could be the
tide period and an even longer time scale could be defined in years for the evolution
of the environment itself. All three time scales are relevant to understanding certain
aspects of wave dynamics. Assuming € to be a small parameter characteristic of the
problem solved, a multiple scale expansion consists in creating several ficticious new
independent variables

t, ty =¢t, ty=€t... (1.3.1)

as factors of the original variable (¢) and powers of ¢; and in expanding in powers of
¢ the unknown(s) (for example velocity u, displacement () for which the problem is
being solved:

U=uy + €us+--- (1.3.2)
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The governing equations at every order of € can be obtained and solved either ana-

lytically or numerically.

1.3.2 Taylor expansion around z = z

Surface or bottom boundary conditions are often defined at z = zy (or z = —H + zp)
where zq is small compared to the total depth H. It can therefore be useful to rewrite
the equations at z = 0 (or z = —H). Taylor expansions at z = 2z, are used for this

purpose, where for a function f ¢" at z = zg,

F() = F(z0) + (2 — 20) [ﬁ] et (2= )" [d"f ] (13.3)

dz n! dzm

A function ¢" at z = 2y is a function that is continuous and has n derivatives that

are defined and continuous around z = z.

1.3.3 Green’s identity

Green’s functions are used several times to solve non obvious boundary value prob-
lems, a detailed chapter about them can be found in [21]. Only Green’s identity is
given here: for two twice differentiable functions F' and G over a surface ¥ surrounded

by the closed line /:

//E (¢’ F-Fv’G) dEzé(G?—i—F%) d (1.3.4)

where n is the outgoing normal to /.

1.3.4 The method of induction

In order to prove an n'® equation is true for any integer n, it is useful to understand
the method of induction. Let us consider an assertion A,, dependent on the integer
n. It is usually straightforward to prove A, is satisfied for small values of n such as
0, 1 or 2 but it becomes more complicated for larger numbers. The idea behind this
method is to avoid proving A, directly. If A; is true, proving that A, is satisfied

as long as A, is satisfied, shows that for any given n the assertion A, is true.
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1.3.5 Complex analysis

The complex conjugate Z* of the complex number Z is such that Z + Z* is real. By
definition, any complex number can be separated into a real and an imaginary part
and taking the imaginary part of a real number is zero. The following therefore holds

true and is used many times.
Z+7"eR=>Q(Z+727)=0 (1.3.5)

Another very useful tool is the evaluation of integrals by Cauchy’s residue theorem.
The theorem and details of Jordan’s Lemma are not given here as they can be found
in [21] but the following result is given. If f is analytic in the closed curve C of the

complex plane, then.
?{ F(2)dz =0 (1.3.6)
c
If there are singularities for f within the curve C, the residue theorem may be appli-

cable and the residues at the singularities should be calculated. A detailed example

of this application is given in appendix B.

1.3.6 Leibniz’ rule

It is well known that integration is the inverse operator of differentiation, so that the

following

d T

- (/ f(u)du) — f(2) (1.3.7)
holds true and seems very natural. The integral between 2 constants of an integrand

that depends on x and is differentiable in z is also well known.

But what happens if instead of x, the upper bound is a function g(z) that is differ-
entiable in x and if the integrand is also a differentiable function of x7 This is where

Leibniz’ rule can be used:
7 (/a f(u,x)du> = ——f(u, 9(2)) +/a 5 (0 2)du (1.3.9)
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1.4 Thesis outline

The first part of this thesis focuses on how harmonic generation by nonlinearity is
counteracted by localization. The starting point is the Boussinesq equations [20], they
account for weak nonlinearity and dispersion to the leading order. After normaliza-
tion, they are combined into a single equation governing the free surface displacement.
A multiple scale expansion yields governing equations for each order of accuracy. The
solution for the wave amplitude at the first order is a Fourier expansion of time har-
monics. To avoid resonance, the coefficients of the secular terms in the governing
equations are set equal to zero, this results in coupled evolution equations for each of

an infinite number of harmonics.

The system for an infinite number of interacting harmonics is truncated to a limited
number n of harmonics so that it can be solved numerically. An analytical expression
for the evolution of the wave energy is derived for n harmonics, this is then used to
verify the numerical simulations run for 6 and 10 harmonics. The Fourier expansion
is however not truncated at the first and second harmonic as was done in [24] for a

smooth and horizontal bottom.

In the governing equations, linear damping terms are found analytically by accounting
for multiple scattering by disorder. The complex damping coefficients are ensemble
averages of certain correlations of the random bathymetry, hence the evolution equa-
tions are still deterministic, unlike those with random potentials. Physical implica-

tions are examined through numerical solutions of the systems for 6 and 10 harmonics.

The second part of this thesis is purely analytical and focuses on deriving equations
for the localization of water waves over a random seabed of slowly varying average
depth. It follows very closely the methods used by Lo [19] and Mei & Hancock [22].
The free surface boundary condition and Bernouilli’s equation are first combined into
a single equation for the velocity potential ¢ so that the boundary value problem

is defined for one variable only. After a Taylor expansion of the resulting boundary
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conditions and a multiple scale expansion in the horizontal direction and in time,

governing equations are obtained for every order of accuracy.

Analytical solutions are found for the first two orders of accuracy. These are then
used in the governing equations for the next order to obtain solvability conditions
which can in turn be intepreted as a governing equation for the zeroth harmonic and
a modified Schrodinger equation with nonlinear terms, a linear damping term with a
complex coefficient due to the seabed randomness and a linear term due to the slowly

varying bottom. No simulations have been done so far for this section.
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Chapter 2

Localization of harmonics
generated in nonlinear shallow

water waves

2.1 Boussinesq equations for long water waves

Consider one-dimensional long waves in shallow water. Using primes to distinguish
quantities with physical dimensions, h'(2',¢') denotes the local depth beneath the
still water level, n'(z', ') the free surface displacement above, and u'(2',¢') the depth-
averaged horizontal velocity of the water. It is well known that, to the leading order
of nonlinearity and dispersion, the laws of mass and momentum conservation are
approximated by
on' 0
L K+ d =0 2.1.1
o [ ) o) (21.1)
ou'  ,ou oy K 9 [ 00\ RH? Pu
i e Bl I e B o
ot’ ox’ ox' 2 0x' ot’ 6 Ox"20t'

The accuracy of these equations can be made explicit by employing the following

(2.1.2)

dimensionless variables without primes:

/

r = Ka', t=tK\/gH, 77:%,

h o= (2.1.3)



where K, a and H are respectively the typical wavenumber, wave amplitude, and

mean depth. Equations (2.1.1) and (2.1.2) can then be normalized in the following

form :
an 0 B
E+%[(h+en) u] =0 (2.1.4)
ou ou dn _ p’h 9* [, Ou uih? 93u
ot Tor T 2 02 \"ar) T 6 atan (2.1.5)
where
== <1, p=KH<1 (2.1.6)

H

It is clear that these equations are accurate to the leading order in € and p?, which
are small but independent parameters characterizing respectively nonlinearity and

dispersion.

The sea depth is assumed to deviate only slightly from a constant mean value. In

dimensionless terms, h fluctuates from the constant 1 by /eb(x), i.e.,

h(z) =1 — /eb(z) (2.1.7)
where b is a stationary random function of x with zero mean, (b(xz)) = 0. The

Boussinesq equations can be rewritten as:

on 0
du ou dn L [1—=2/eb+eb® Ou db ?u  1d% du
'§+wa#5;—“[ s oo~V (V) o T 2aman

(2.1.9)
These are, in principle, stochastic differential equations. Assuming that ¢ = O(u?),

(2.1.9) can be truncated to the leading orders in € and 2.

2 93
8u+6u@+@_u 0u

at  dx  dx 3 0220t
Using approximations of the governing equations to the leading order:

on  Ou du  0On
- o Mg T (2.1.11)

a combination of equations (2.1.8) and (2.1.10) yields a single equation for the free

+ h.o.t. (2.1.10)

surface displacement 7.

8277 8277 _ 877 € a2u2 a2u2 82772 MZ 8477
@“&?’V%“‘+§aﬂ+mz+w T3 (2112
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2.2 Asymptotic expansions

Approximations for the propagation of a wavetrain are sought. The wavetrain is a
simple harmonic at some station to the left of the region of disorder. At the leading

order the incident wave is:

(1, u) oc e®r—iwt (2.2.1)

n and u are expanded in ascending powers of /€ using the method of multiple scales:

0=+ e’ + et

u=ug+ €?uy + euy + - - - (2.2.2)

where each unknown function depends on ¢ and the fast and slow variables in space

x and X = ex. For successive orders, perturbation equations are found from (2.1.12):

82770 82770
Sk (2.2.3)
m  ’m d [,
oz o~ or\Uor (2:2:4)
Pna 0y 0 om 9no 1 (Pug  OPui P v d'no
9 O (0, - v 9.9.
o2 o~ e \Par ) P Pavar T3\ T Toe T o ) T3aar 320

where v = ”—: = 0(1) is the Ursell number.

The perturbation problems are now solved sequentially.

2.2.1 Equation and solution at O(€)

Consider the evolution of a train of progressive waves whose harmonics have the

amplitudes A;, the frequencies w,, = mw and the wavenumbers k,,, with m = 1,2,...:

o = %mioo Ap(X)e®  and g = %mioo Byn(X)ein (2.2.6)
such that
0, = kmx — wt, k_p=—k, and w_,, = —wn (2.2.7)
and the amplitudes obey
A, =A, and B_, =B, (2.2.8)
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where A* refers to the complex conjugate of A. In order to have the normalized mean

depth equal to unity, Ag is set equal to zero.

The dispersion relation: w,, = k,, is obtained from the first order equation (2.2.3).
The following normalized wavenumbers and frequencies are implied k,,, = mk = k! /K

and w,, = w! /K\/gH = mw, k and w are both of order unity.

At the leading order in €, mass conservation

o Oug
— = —— 2.2.9
ot ox ( )
leads to B, = ‘Z—:ZAm = A,, for all m non zero. So that
82u0 82u0 82770
= = 2.2.10
0x? ot? ot? ( )
and the forcing terms of equation 2.2.5 can be simplified.
Pny 0%y d (,0m o | 305 | vI'n
— = b——| +2 B 2.2.11
o 02 oz \'or ) oxor 202 " 30n (2.2.11)

2.2.2 Equation and solution at O(¢'/?)

The forcing terms in the governing equation (2.2.4) for 7; can be expanded and

separated into time harmonics

827']1 82771 . 0 8770 o —iwmt
5% a2 = B2 6:5 Z Fe (2.2.12)

m=—0oQ

where the coefficients F,, are random functions of x.

d

e [b(x)e™] (2.2.13)

1
Fou = Gk Au(X)

Let us note that F; = 0 because Aq = 0.
Assuming the solution of (2.2.12) to be of the form:
> pMemient (2.2.14)
where the series does not include m = 0, for every n(™ where m # 0, a governing
equation can be found to be.
d2n™
. — k2™ = Fu() (2.2.15)
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These equations can be solved by using the Green functions

. eikm\x—m’|
Gml(lw = ') = — (2.2.16)
which behave as outgoing waves at infinity with the result :
> . 0 Am X) d ; '
m= 3 eimt / (|2 = 2'|)ikim 2( )F [b(a")e* ] da’ (2.2.17)
m=—00 —0 T
The sum does not include m = 0 as Ag = 0.
Clearly the ensemble average of the O(e'/2) solution vanishes.
2.2.3 Equation at O(e)
The ensemble average of equation (2.2.11) is taken,
0?02 a . o Pny  3m  vdn
== = =y 42 = Z 2.2.18
<8t2 8x2> ) = =5 0%+ 2ox0s T2 ae T3 an (2.2.18)

For more clarity, terms on the right-hand-side of (2.2.18) are calculated separately.

Using the known solution for n;, for each time harmonic, it can be written.

o™ >
ox

_ /°° ikmsgn (z — 2)Gm (|7 — 2'))ikm

(b

A, d

2 da!

_ A, i /°° Sgn(x_x/)leikm(\x—xq)i {,Y(l,_x/)eikm(x’—x)] g
0 4 dx'

. 0o . d .
= — A, etkm® [m isgn(f)e’kmgd—6 [027(@6_”“”5] d¢ (2.2.19)

The assumption was made that b is a stationary random function of x on the fast

scale so that (b(x)b(z')) depends on & = x — z’, where (b(x)b(£)) = o2v(§) can be

[(b(a)b(a"))e™ " da]

defined. 7 is an even function that vanishes at infinity. Note that (2.2.19) is zero for
m = 0, and the result for m < 0 is equal to the complex conjugate of the result for

m > 0 so that.

. { S emiom( g_1x>} =3 ik A (X) B + c.c. (2.2.20)
m=—00 m=1
where the constant f3,, is defined by.
2 oo d .
= Tt [ sente) (d—g - z‘kmv> (k59 g (2221)
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The second right-hand-side term in equation (2.2.18) is straightforward.

82 Mo dAm

o = Zl ik — e 4 c.c. (2.2.22)

Two series are now multiplied together to obtain the third term in equation (2.2.18).

W= ( > “‘) (Z A) —1 3 Ao
Jj=—00 [=—00 j=—00l=—00
| = 5 [2] | oo
= 3 e 123 Ar A + Y g AiA —f-ZZAlAZk—FC.C. (2.2.23)
m=1 =1 =1 =1

[7] is the integer part of & and «; is a coefficient such that it is equal to 1 only for
[ =[], it is equal to 2 for all other values of [. The details are given in the following

subsection. The third forcing term is then obtained.

382773 o0 3 5 0 00 [%}
— = Z ——wmel " ZQA?AHH»Z + ZalAlAm,l + c.c. (2224)
2 ot me1 8 =1 =1
and
v _ i Ukt Aei® 4 c.c (2.2.25)
30t A~ 6" o o

so that equation (2.2.18) can be rewritten.

<8 _ 0 > <772> — Z Z'kmAmﬁmesz + Z Z'km_ezem
el dX

— 3 2 _if — * [%}
— Z —w,,e" " Z 2Al Am—l—l + Z o AjAm—i
m=1 =1 =1
+3 %kanmewm tee (2.2.26)

m=1
2.2.4 Calculating n?

Calculating 72 involves a multiplication of two infinite series and some manipulations
on the indices of the series that are detailed here.
=1 > A S oA = S N A;AC (2.2.27)
Jj=—00 [=—00 j=—0o0l=—00
where 0; + 6, = 0,4, for all j and [. Let us use the new variable m = j + [ in the

series.

= € AA, (2.2.28)

m=—00 [=—o00
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The first sum should be separated into three terms: a sum for m > 0, another for

m < 0 and a term for m = 0.

m positive integer

ZAlml—ZAlml+ZAAml+ZAlml (2.2.29)

|l=—00 |l=—00

Let us replace I = —[ in the first series on the r1ght—hand—81de of (2.2.29) and I' = [—m

in the third series.

m—1
Z AAg = Z Ap A + 30 AA i + Z A Ay (2.2.30)
[=—00 I'= =1 I'=

The first and last series on the right-hand-side of (2.2.30) can be grouped together.
Remembering that A_; = A}, (2.2.30) can be simplified.

00 m—1

S Ay =23 A A+ S A (2.2.31)

l=—o00 =0 =1

The second series in (2.2.31) depends on the parity of m.

® 1 even

If m is even, then it can be written as m = 2p where p is an integer.

2p—1
Z AlA?pfl = A1A2p71 + A2A2p72 +- ApAp + -
I=1

+ Aoy 0 Ag + Agp 1 Ay

m/2
- ZalAlAQP 1= Z A An—i (2.2.32)
1=1
where oy = 1if [ = p =" and a; = 2 otherwise.

e m odd
If m is odd, then it can be written as m = 2p + 1 where p is an integer.
2p
Z A1A2p+1_l - AlAQp + A2A2p_1 + -+ Ap—lAp-i-l + -
=1
+ Aoy 1Ay + Agp Ay

p (m=1)/2
= Z2AIA2p+1—l: Z OquAm_l (2233)
=1 =1

where o; = 2 for every [ here.
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Both formulas can be grouped into one if [m/2] is defined as the integer part of m/2:

it is equal to % if m is even and m74 if m is odd.

(5]

S AAL =2 AT A+ Ay (2.2.34)
=1 1

[=—00 1=

m negative integer

For m negative, the sum over m can be manipulated as.
-1 ) 00 00 ) 00
St S AA, = e N AA L, (2.2.35)
m=—00 [=—00 m=1 |=—00
where the [ series should be expanded.
00 —-m -1 00
Z AA_,_ = Z AlA o+ Z AlA +ZAZA,m,l (2.2.36)
[=— [=—00 l=—m+1 =0
Let us replace I" = [—m in the first series on the right-hand-side of (2.2.36), it becomes
identical to the third series, they can be grouped together. Replacing I’ = —[ in the

second series yields.

00 00 m—1
Z AjA, =2 ZA,m,lAl + Z AGA L (2.2.37)
I=—c0 1=0 =1
Recalling A_; = A} can simplify the equation.
00 00 m—1
Z AjA, =2 ZA;‘TLHAI + Z ATA (2.2.38)
l=—o0 1=0 =1

The result is the complex conjugate of the expression obtained for m positive, there

is no need for further separation into odd and even values of m.

m 1S zero

For m = 0 the exponential term is one, and the [-series in (2.2.28) can be easily

evaluated.
00 —1 00
SNoOAAL = > AAL+ AAL+ D AAL
[=—00 l=—00 =1
= Z 2A1A; (2.2.39)
=1
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because the series over [ negative and over [ positive are identical and Ay = 0. The
total [-series is real, it can easily be written in complex form as

Z AlA_l = Z AlAf + c.c. (2240)

l=—o00 =1
Result

Summing over m negative, zero and positive yields.

(2] o0
AAn 1| + ) AA] + ce (2.2.41)
1

o0 o0
2 0 *
M= € |2) AAL L+
m=1 =1 =1

= =

where [Z] is the integer part of % and a; = 1 if [ =[] or oy = 2 otherwise.

2.2.5 Evolution equations

On the right-hand side of (2.2.26), terms proportional to exp(if),,) for each m'* har-
monic are resonance-forcing and must be removed to ensure solvability. The coeffi-
cients of secular terms are equated to zero and use is made of the dispersion relation

Wi = k-

— 2 B Ay — ik A+ S | D247 A+ > A A, | =0 m=1,2,-- 00
dX 6 8 et et

(2.2.42)
Equations (2.2.42) constitute an infinite number of nonlinear differential equations
describing the slow evolutions of the amplitudes in X. The linear terms with complex
coefficients (3, are the result of multiple scattering by disorder and are related to the
correlation coefficients of b(z). It will be confirmed shortly that 3, > 0 so that
disorder leads to exponential attenuation (localization). These equations are similar

to those in nonlinear optics [3] where damping was briefly mentioned and included in

a generic sense. For (3, = 0, the limiting equations have been derived by [24].

For a limited number of harmonics n, where n can be any positive nonzero integer,
(2.2.42) must be truncated at the n'* harmonic: the amplitudes for harmonics above

n are neglected. The nonlinear differential equation system is therefore composed of
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n equations, and the equation governing each harmonic m is.

dA v 3 n—m [%}

— 2+ B A — ik A4 —iwm | Y 2A7 A+ > i AiAn | =0 m=1,2,---,n
dX 6 8 i i

(2.2.43)

The summation of the infinite series in (2.2.42) is truncated at n —m because all the

harmonics above n = m are neglected, which can be modelled as an infinite number of

harmonics such that the amplitude of any harmonic above n is zero: A,, =0, Vm > n.

The AjA,,; terms can therefore only be summed up tom+1<norl<n-—m.

In the case of smooth and horizontal seabed, b(x) = 0 for all =, hence 3, = 0 for all m.
If n = 2, ie if only 2 harmonics are kept, the exact analytical solution by [3] agrees
with experiments by [13] for small to moderate values of ¢ and p?. Starting from
the Korteweg-de-Vries equation [18], C.C. Mei [20] derived a very similar governing

equation for the amplitude of the m'* harmonic of an infinite number of harmonics.

(3] o0
dAn 2 {Z (may) AiApi + Z2mA2‘Am+z} m=12:

=1 =1
(2.2.44)

where x is the fast varying coordinate, it corresponds to X/e.

2.3 The (5, coefficients

For analytical convenience the correlation function of the random fluctuations is con-

sidered to be Gaussian:

(b(x)b(z)) = 0® exp (-%) = 5% exp (-25—;> (2.3.1)

where (X)) is the root-mean-square and [ is the correlation distance.

2.3.1 Calculating g, analytically

To calculate (3, let us note that

db —o? £2 db

(b(z)=5) = —=€e™” = —(b(a") ) (2.3.2)
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then evaluate the integrals,

oo N 0 2 A 00 2
| st -bag = — [ emimehetag g [T i ag
. . i

0 > o 00 5
= V2 (—/ oW 20V 2kmlu du+/ e ¥ du)
—00 0

0 . .
s (g_ [ eummmzudu) (2.3.3)

and

/o:o Sgn(g)j_geikmﬂﬂ_g)df = l% (/OOO §6_%6_2ikm§ d¢ — /Ooo ge—% d§>
- _ /000 —ue W e 2iV2hmlu g /000 oue du
= /000(2u + Qiﬂkml)e_uz—%ﬁkmlu du

= 203k [ Ooo ikl g

o, .
— 22k, 1V2 / ¢ 2iVhnlu gy (2.3.4)
It follows that

2 1 0 9 o
B = %ikm (—2 — 5iV2hnl — iV 2kl / e~ =20V 2hnlu du) (2.3.5)

where the integral can be further simplified as

/0 6_u2_2i\/§kmlu dé = e—2k$nl2 /0 6_(u+z’\/§kml)2 du:e_%?”p /i\/ikml €_u2 du
— 00 —0o0 — 00
V2kml
= ¢ 2nl (? +i/ e’ du) (2.3.6)
0

The final expression for 3, is therefore.

O’2 272 O'2 k l 2 72 ﬂkml 2
= T2 (1 e ) i Ty 1= Eml o / e du) (237
B = gkt V2 ( ) -5 NG 0 (23.7)

It has now become obvious that for each harmonic m, the real part of the damping
coefficient 3, is positive. For sufficiently high harmonics, the exponential term can
be neglected and the real part becomes proportional to m?. It is therefore expected
that the higher the harmonic, the larger the localization effect. Higher harmonics

will attenuate faster in space. Harmonics are also more localized for either large o
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or small [, i.e., when the depth irregularity is either very large in amplitude or very

random.

Let us note here that (3,,//c? is a function of ¢ and k,,¢ only. For given values of o
and /, it is therefore possible to plot the real and imaginary parts of 3, as functions

of the product k,,¢ = m/t for k; = 1.

2.3.2 Numerical results for real and imaginary parts of 5,

Real and imaginary parts of /3, are plotted here for £y = 1 and o = 0.2 because these
values will be the most frequently used in the rest of the simulations. A parabolic
behavior for the real part and a linear behavior for the imaginary part can be observed

in Figure 2-1.

The integral

6 T T 0
I=2

5 -0.1
al I=1

-0.2

B, 3 1B, 1=0.5

-0.3

ol
1=0.5 I=1 =2 —0.4f

il ]
0 -0.5
1 5 Ik 10 15 5 I k 10 15

Figure 2-1: Real (left) and Imaginary (right) parts of /3, for £ =0.5,1,2, 0 = 0.2 and
ky = 1.

Vekml ikl
z/ e" du:/ e " du (2.3.8)
0 0

is the complex error function. In order to calculate it easily for each value of m, use
has been made of the algorithm discussed by Weideman in [35]. The matlab code

used for this purpose can be found in appendix A
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2.4 Evolution of total wave energy

Energy conservation is an important issue in the localization problem. If wave am-
plitudes are damped, where does the energy go? PJ Bryant [6] had attempted to
answer this question for a smooth bottom, but could only prove energy conservation
for the first two out of three and three out of four harmonics, possibly because of
some missing terms in his governing equations. The equation he gave for the m!"

harmonic seems correct.

P o 4y = —ie | 3 S0iAid i 43 oA A | +0(@) (24)

=1 ll

but the equations he gave for 2, 3 and 4 harmonics had terms missing that did not
make it possible to observe the energy conservation relation. Let us give the example
of three harmonics. Using primes to represent time derivatives, the terms underlined

in the following equations were missing in PJ Bryant’s equations:

2 3., .3,
AL~ Z%Al = i€ Aj Ay —ie A3 Ay (2.4.2)
g 3 3
Ay — it o3 A, = —ieC242jeS241 A, (2.4.3)
6 8 4
1 3
Al — i€33A3 = —ieg3A14, (2.4.4)

The system of n differential equations (2.2.43) can be used to answer the question. A
total of two harmonics is examined to understand the issues and the potential pattern

before tackling n harmonics.

2.4.1 Total wave energy for 2 harmonics

The governing diferential equations for two harmonics are

dA 3

Xm (61 ) Ar+ ik A4z =0 (2.4.5)
dA
dX2 (52 ) Ay + zk2A2 =0 (2.4.6)
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Let us first use the dispersion relation to calculate the group velocity C.

dw
cC =1 2.4.7
Without disorder it is known that:
2 2
> CpAnAl, =" Ay AL =|Ai]” + |As]* = constant (2.4.8)
m=1 m=1

which is called Manley-Rowe relation in nonlinear optics. Multiplying the equation
for the first harmonic (2.4.5) by A} and adding the resulting equation to its complex

conjugate yields:

LA, dA; v R B
PN FE P FUSE N S

This can easily be simplified into.

dA; A 3 o\
S T 2R(B)AA] - /w(A Ay) =0 (2.4.10)

Similarly for the second harmonic,

ddoty

. 3 .
e R(B2) A2 AL — kS (AZ{AZ) =0 (2.4.11)

Adding equations (2.4.10) and (2.4.11), the following energy relation is obtained.

>

m=1

dA, AL 3 3
( + Z%BmAmA;‘n> = kS (A14,) + 2k (A745) (2.4.12)
The right hand side of (2.4.12) is zero because the imaginary part of the sum of two
complex conjugates is zero. For two harmonics, the energy equation shows a damping

term.
d 2 2
3 AL AL =23 R(Ba) AR AL (2.4.13)
dX m=1 m=1

For a smooth bottom, the [3,, are zero and the energy conservation law is proved.
As R(Bn) > 0, it can be observed that for a random bottom, energy is no longer

conserved; it is lost by scattering.
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2.4.2 Total wave energy for n harmonics

As a result of the energy equation obtained for two harmonics, a general equation for
n harmonics is expected to be of the form:
d < * < *
i mz:jl Ap Al = =2 mz:jl R(Bm) Am AL, (2.4.14)
Let us first show that it is true for one harmonic. The governing equation for one
harmonic is simply.
% + (ﬁ - i%k?’) A=0 (2.4.15)
It is trivial to prove that it satisfies (2.4.14) for n = 1. Let us use the method of
induction as follows. Assuming (2.4.14) is valid for n harmonics, proving that it is
also valid for n + 1 harmonics will prove it is valid for any number of harmonics. For

n harmonics (2.2.43) is multiplied by A% | added to its complex conjugate, and all the

equations are summed for m from 1 to n.

5 (ln + 2R3 40

m=1 dX
n_ 3 n—m [m/2]
=20 kS | X A A AL+ T Ay AL (2.4.16)
m=1 =1 =1

In order to prove (2.4.14), the task is to prove that for any n.

n n—m [m/2]
H,=> k.S {Z AT Ay An + >0 alAlAmlA;‘n} =0 (2.4.17)
m=1 =1 =1

Let us first write.

n+1 n+l—m [m/2]
Hovr = D kS| Y AfAL AL+ Y A, AL
m=1 =1 =1

[(n+1)/2]

Z alAlAn-l—l—lA:;Jrl

=1

= H,+(n+1)kS

+ 3 Mk S 2451, An g1 A (2.4.18)
m=1

where oy = 1 for [ = (n+1)/2. It is therefore necessary to make a distinction between

odd and even values of n.
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Odd number of harmonics

If n is odd, it can be written as n = 2p — 1 where p is a positive integer. Recall
that oy = 1 only for [ = p, it is equal to 2 otherwise. Assuming H, = Hj,_; = 0 in

equation (2.4.18), it shall now be proved that the rest of H,, ;1 = Hy, is zero, where,

p—1 2p—1
H2P = I{?lg 2pA;p Z 2A1A2p,l + 2pA;pApAp + 2A2p Z mA;p_mA:n (2419)
=1 m=1
Expanding the sum over m will make it easier to simplify.
2p—1
Z mAgp_mA;‘n = A’{A’gp_l + 2A’§A’§p_2 + -4+ pA;A; 4+
m=1
= 2pA’{A’§p_1 + 2pA§A§p_2 + -+ 2pA;_1A;+1 + pA;A;
p—1
= 2 ALAL L +DPAAY (2.4.20)
m=1
so that
p—1
Hyy = kS 2pA’§p Z 24145, + 2pA’§pApAp
=1
p—1 ]
+ 2pAy, | 2 Z A;Agp_m + A;A; J
m=1

p—1
= kS {4@4;1) > AAgy 4 2pA5 AN A, + c.c.} =0 (2.4.21)
1

=
The last simplification was possible because the term in the brackets is real.

Let us consider an even number of harmonics.

Even number of harmonics

If n is even, it can be written as n = 2p where p is an integer.

v = 2 for every value of [ as (2p + 1)/2 is not an integer:

P 2p
H2p+1 = klg (2p + 1)A;p+1 Z 2A1A2p+1,l + 2A2p+1 Z mA;p_H_mA;‘n (2422)
=1 m=1

Expanding the sum over m will make it easier to simplify.
2p
> mAs, A = ATAS, + 24545, 4 -

m=1
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= (2p+ 1) [A1A5,  + A3A5, o+ + A A

p
= (2p+1) > AL A, (2.4.23)
m=1
so that
P
H2p+1 = klg l(?p + 1)A§p+1 Z 2A1A2p+1_l + C.C.] =0 (2424)
=1

for the same reasons as Hy, = 0 in (2.4.21).

Any number of harmonics

Proving H,, .1 = 0 for n odd or even has proved that for any number of harmonics n,
the amplitudes of the n harmonics obey the energy equation (2.4.14), which becomes
the energy conservation equation for a smooth bottom.

> |An|* = constant (2.4.25)

m=1

2.5 Using the energy relation to verify the numer-
ical results

The energy conservation relation (2.4.25) for a perfectly smooth bottom should be
satisfied by the numerical simulations for 0 = 0. Setting o equal to zero simulates
the case of a perfectly smooth bottom: all the 3, coefficients are equal to zero. The
numerical simulation is run and it evaluates the following quantity expected to be
close to zero.
5 (2.5.1)
dX

m=1

The results in Figure 2-2 show an error of the order of 10~!2. Even if this error is for
the square of an amplitude, it can be neglected if compared to amplitudes of many

orders of magnitude larger.

The equations for a perfectly smooth bottom are the same as those for a random

bottom where the (3, coefficients have been set equal to zero. The error for the
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Figure 2-2: Left: Harmonics 1 to 6 for a perfectly smooth bottom. v =1, 0 =0, and
[ = k; = 1. Right: X-derivative of the energy from equation (2.5.1)

smooth bottom being of the order of 107!2, additional errors from accounting for a
random bottom should be expected. The quantity caculated here is:

26: iIAm|2 + 2R(Bn) | A (2.5.2)
m=1 \dX

Figure 2-3 shows a plot of the 6 first harmonics and the corresponding error for
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Figure 2-3: Left: Harmonics 1 to 6 for a random bottom. ¢ = 0.2, v = 1 and

[ = k; = 1. Right: energy relation from equation (2.5.2)

o = 0.2. The error is at most of the order of 2.5 10~? and dies out as the harmonics are
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damped. It can therefore be considered that the numerical simulations are sufficiently

accurate for the purposes sought here.

2.6 Evolution of the first six harmonics over finite
and semi-infinite regions of disorder

Analytical solutions for 2 harmonics over a perfectly smooth bottom (3, = 0) can
be derived, but for a random bottom, following [3], the analytical solution could be
derived only if 3; = (35 which is impossible from the definition of /3, in (2.3.7). For
numerical solutions, more harmonics can be added. An infinite number cannot be
simulated and a truncation at m harmonics is necessary. n = 6 is chosen for the
following simulations. As a verification, solutions are compared to simulations with

larger values of n. The equations for six harmonics are given here.

dA 3
d—Xl + 81 A — i%ki’Al + Zikl (ATAy + AjAs + ASAL + AGAs + AL Ag) =0 (2.6.1)
S4Bl it kA2+4zk2<AA3+AA4+AA5+AA6+ A) (2.6.2)
ﬁ + B3A3 — ng3A3 + 4lk3 (A A4 + A A5 + A A6 + A Ag) (263)
dA Nz 3. . . 1
d—; + B1As — z6k2A4 + ik <A1A5 + AjAg + A1 As + §A§ =0 (2.6.4)
dA 3
d—; + B5As — i%kS’Ag, + —ik5 (ATAg + A1 Ay + AyA3) =0 (2.6.5)
dAg

S8+ B — ok As + izkﬁ <A As + A Ay + A2> (2.6.6)

dX

Figure 2-4 shows a typical result for a seabed with disorder of uniform root-mean-
square height o = 0.2 on the right X > 0 and no disorder on the left X < 0. For more
clarity, only harmonics 1 to 4 have been included but the result is obtained with a 6-
harmonic simulation. Other parameters are chosen tobe ky =1, v = p?/e =1, [ = 1.
The initial conditions are that A;(0) =1 and A4,,(0) = 0 for m = 2---6 so that the

higher harmonics start from zero at the left edge of disorder X = 0 and quickly grow
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at the expense of the first. Slow attenuation of all harmonics is evident.

For sufficiently large distance from the point of entry X = 0, amplitudes of all har-
monics are reduced enough so that oscillatory exchange of energy no longer occurs,
only exponential attenuation remains. For still larger X the highest harmonics disap-
pear totally; only the first harmonic remains. In all the simulations, the first harmonic
is the largest, followed by the lower harmonics: the higher the harmonic, the smaller

its amplitude.

1

A

m

Figure 2-4: Typical result of harmonic localization over a semi-infinite region of dis-

order. 0 =02, v=1and [ =k = 1.

The problem depends on several parameters. Their effects on the propagation of the
waves on the random seabed are studied. The parameters are the position and size
of the region of disorder (space coordinates), the root mean square o of the Gaus-

sian correlation, the correlation length [ and the ratio of dispersion to nonlinearity
p?/e =v.
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2.6.1 Varying the size and location of the region of disorder

In the governing equations for the amplitudes, the (,, coefficients are constants over
the region of disorder, and have been calculated previously, but over a perfectly
smooth region, these coefficients are set equal to zero. In this section, the following
results are obtained keeping ky, 0 and [ constant but varying the length and position

of the region of randomness.
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Figure 2-5: Incident wave phase effect for the first three harmonics. Full line: the
disorder is in X = [10, 20|, dash-dotted line, the disorder is in X = [12,22]. 0 = 0.2,
v=1landl=Fk =1.

The generation of the higher harmonics has taken place over some distance before
entry into the zone of disorder in figures 2-5 and 2-6. They both compare cases with
the same incident waves for which only the first three harmonics are plotted.

Figure 2-5 compares two regions of randomness of total length equal to 10 where
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for the first case the random bottom extends over X = [10,20] so that the second
harmonic is the largest at the entry point X = 10. In the second case the region
of disorder is X = [12,22]; the first harmoinc is the greatest at the point of entry
X = 12. After the region of randomness, the two results differ in phase but not in

amplitude.
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Figure 2-6: Incident wave phase effect for the first three harmonics. Full line: the
disorder is in X = [5, 30], dash-dotted line, the disorder is in X = [12,37]. 0 = 0.2,
v=1landl=Fk =1.

Figure 2-6 compares two regions of randomness of total length equal to 25 where for
the first case the random bottom extends over X = [5,30] and the second case the
region of disorder is X = [12,37]. The first harmonic is neither greatest nor smallest
at each point of entry in the region of randomness, but there is a phase difference
in the first harmonic between X = 5 and X = 12. After the region of randomness,

the two results also differ in phase but not in amplitude. It has been shown in both
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figures that phase lag has only little effect on localization.

2.6.2 Varying the root mean square o of the Gaussian corre-

lation

One of the most important factors affecting localization is the amplitude of the dis-
order represented by o. As expected from the expressions of f,,, larger o leads to
faster localization. Figure 2-7 compares solutions obtained for different values of o.

Randomness starts at X = 3.75 for which the first harmonic is maximum.
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Figure 2-7: Harmonics 1 to 6 for different values of 0. Case (a) o = 0.2; case (b)
o = 0.5 and case (c) 0 = 1. For all cases, v = 1 and [ = k; = 1. Solid line: odd

harmonics (1,3,5), dash-dotted line: even harmonics (2,4,6).
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2.6.3 Varying [: ratio of correlation length to wavelength

The effects of the ratio [ of the correlation length to the wavelength are examined.

Greater [ means greater randomness, hence localization occurs in a shorter distance

as shown in the comparison of [ = 0.5,1,2 for ¢ = 0.2 in Figure 2-8 and o = 0.5

in Figure 2-9. In both figures, v = k; = 1 and the region of randomness starts at

X = 3.75, the peak of the first harmonic.
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Figure 2-8: Harmonics 1 to 6 for 0 = 0.2 and different values of [. Case (a): [ = 0.5;

case (b):

[ = 1 and case (c):

[ = 2. For all cases v = k; = 1 and randomness

starts at X = 3.75, the peak of the first harmonic. Solid line: odd harmonics (1,3,5),

dash-dotted line: even harmonics (2,4,6).
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Figure 2-9: Harmonics 1 to 6 for 0 = 0.5 and different values of [. Case (a): [ = 0.5;
case (b):
starts at X = 3.75, the peak of the first harmonic. Solid line: odd harmonics (1,3,5),

[ =1 and case (¢): [ = 2. For all cases v = k; = 1 and randomness

dash-dotted line: even harmonics (2,4,6).

2.6.4 Varying the ratio pu?/e = v

o is now set equal to 0.2 and 0.5 and the effect of different ratios of p?/e = v
(dispersion vs. nonlinearity) on the evolution is studied. Figure 2-10 for which o = 0.2

and Figure 2-11 for which o = 0.5 display the results for v = 0.5,1,2, with by =1 = 1.

It is clear that as v increases, the second harmonic amplitude decreases and the
frequency of amplitude oscillations of all the harmonics increases. Physically, greater v
corresponds to weaker nonlinearity and/or shorter waves (stronger dispersion). Either

cause leads to less generation of the higher harmonics even before entry into the region
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Figure 2-10: Harmonics 1 to 6 for ¢ = 0.2 and different values of v. Cases (ay)
harmonics 1 to 3 and (az) harmonics 4 to 6: ¥ = 0.5; case (b): v = 1 and case (c):
v = 2. For all cases [ = k; = 1 and the random region starts at X = 25. Solid line:

odd harmonics (1,3,5), dash-dotted line: even harmonics (2,4,6) except for (as).

of disorder X > 25. In the region of disorder the higher harmonics are attenuated at

comparable rates because of the same values of o and .

In both figures, the case (as) has a full line for harmonics 4 and 6 and a dash-dotted
line for harmonic 5 for more clarity. The results for v = 0.5 are rather striking, the
second harmonic is almost as large as the first. This is a case where nonlinearity

effects are greater than dispersion effects.
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Figure 2-11: Harmonics 1 to 6 for ¢ = 0.5 and different values of v. Cases (ay)
harmonics 1 to 3 and (az) harmonics 4 to 6: ¥ = 0.5; case (b): v = 1 and case (c):
v = 2. For all cases [ = k; = 1 and the random region starts at X = 25. Solid line:

odd harmonics (1,3,5), dash-dotted line: even harmonics (2,4,6) except for (as).

2.7 Comparing the results with a larger number
of harmonics

In order to check the numerical accuracy of the six-harmonic approximation, the

numerical analysis is extended by keeping the first ten harmonics. The ten governing

equations are not stated as they can be obtained from equation (2.2.43). The final

results are recorded below.

It has been observed that the higher harmonics are larger for higher nonlinearity,

47



1 Vi N
N\
/ \
/, .
\
/N Y
E \
y \ / AR
O.8k J \ / \ ; \ -
) \ / \ \
J \ \ i
i \ / \ / \,
N / \ [ \
\ /N | \
< / -
0.6 i RV A s
. W \
7\ y A N\ ! 7\ M
\ / 7} I .
S : ! \ ! &
\ 7 1 / \/ [\ '
|A | /0 ) ! ! NG ! /
m VAR i AN / AN ! /
N / | ] ! [N :
Z, — = o | s \ ] /
0.4F _E ~d_ - g ) K Ry
h ! f (A / \ \ /
A /1 / P
\ N\ . \
\ | / v\ N \ ]
. i
R / / \ /
\ \ ] ; VA i // AN | ) ,
LA i VAL \ N, ) VAR :
N\, /i ! Py o ¥
o 2k \ i \ | A\ \ 1 g \ /|
: AV/AN\RTE AN MY \
N \ ) \ - N\ Ay ~ /\\ A -
N ) | I~ N T~ — / \
N [\ \ \ A\t ~ / L\ (R
A L\ 1/ ) \ - = 7~
=7 S\ AN N Y y \\\'\‘ 4
= | N h\ — T X
N\ W ~ ~ / \
0 | .V\, | h ! \A\/ W

Figure 2-12: Harmonics 1 to 6 for a random bottom simulated for a total of 6 (dash-

dotted line) and 10 harmonics (full line). 0 =0, » = 0.5, and | = k; = 1.

so that accounting for more harmonics should have the most effect for a small value
of v. In addition, accounting for randomness of the seabed damps all the harmonics,
especially the higher harmonics. Figure 2-12 compares the simulations of the 6 (dash-
dotted line) and 10-harmonic problem (full line) for » = 0.5, = k; = 1 and a
perfectly smooth bottom: ¢ = 0. Only the first six harmonics are plotted for more
clarity. There does not seem to be a very important difference in the amplitude of
the harmonics, the main difference is observed in the phase difference. The energy
errors calculated for both simulations are not shown here as they are very similar to

the error found in Figure 2-2: the errors are of the order 102
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Figure 2-13: Harmonics 6 to 10 simulated for a total of 10 harmonics over a perfectly

smooth bottom. c =0, v=05and [ =k =1

Figure 2-13 shows harmonics 6 to 10 for the 10-harmonic simulation in the case of
no randomness for v = 0.5. It is easy to observe the relatively important non-linearity
in this case. The amplitude of harmonic 7 is at most 0.06, and harmonic 10 hardly
reaches 0.02 which is very small compared to the amplitude of the first harmonic,
almost two orders of magnitude larger. The simulations for strong nonlinearity and a
perfectly smooth bottom are a boarder case of the theory studied here as one of the
main assumptions is weak nonlinearity and the interest here is to look at localization.

Let us therefore compare results for larger values of v.
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Figure 2-14: Left: Harmonics 1 to 6 for a random bottom (o = 0.2) simulated for a
total of 6 (dash-dotted line) and 10 harmonics (full line) Right: Energy error for the

10-harmonic simulation. v =1 =Fk; = 1.

Figure 2-14 shows simulations run for 6 (dash-dotted line) and 10 harmonics (full
line) for a case of weaker nonlinearity and stronger dispersion: v = 1. The energy
error in the figure is for the 10-harmonic simulation, but it is very similar to the
6-harmonic simulation which is not reported to avoid redundance. The results for
the harmonic amplitudes are very similar and it is almost impossible to distinguish
the full line from the dash-dotted line. The 6th harmonic seems to be very small: at
least one order of magnitude smaller than the first harmonic, let us look at the higher

harmonics in more detail.
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Figure 2-15: Harmonics 6 to 10 simulated for a total of 10 harmonics. 0 = 0.2, v = 1

and [ =k = 1.

Figure 2-15 shows the amplitude of harmonics 6 to 10 for the 10-harmonic simu-
lation. Harmonics 7 to 10 are between 2 and 3 orders of magnitude smaller than the
first harmonic, they are also all smaller than 0.01 or 1% of the first harmonic. This
explains why these higher harmonics have a very small influence on the simulation
and the simulations for 6 or 10 harmonics are so similar. Results obtained for 6 har-
monics seem accurate enough for weak nonlinearity and a random bathymetry, which

is the purpose of the study.

2.8 Concluding remarks

In showing how harmonic generation and localization affect each other, two major
advances of modern physics are seen to intertwine in a problem of classical origin.

The method of multiple scales, developed primarily for classical problems involving
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periodic media, is also seen to lend itself easily to a medium with a slight disorder.
The same technique can likely be used in other problems on waves through disordered

media.

In deriving the equation for the evolution of the total wave energy, it was possible
to obtain an analytical expression of energy conservation among a finite and infinite
number of harmonics for a perfectly smooth bottom. This represents an extension of

the Manley-Rowe relation obtained in nonlinear optics.
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Chapter 3

Localization of nonlinear waves
over a slowly varying bottom.

Derivation of evolution equations

Nonlinear equations in the general shallow water case where the bottom is random
and slowly varying are derived. The derivation is strongly inspired by previous work

by [19] and [22]

3.1 Governing equations for the flow

The bottom depth is taken as 2 = —H + €b where H is the average bottom depth,
it is slowly varying in the horizontal direction, b is a random function of zero mean,
and € is the small parameter. A function F, = z + H — eb describing the bottom is
defined. The free surface height will be called ¢ so that the free surface is described
by Fy =2 — (.

3.1.1 General nonlinear governing equations

Considering an irrotational flow for an incompressible fluid and using the Boussinesq

approximation, the governing equations are the following.
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The Laplace equation

0?¢ 0%
922 + 92 = 0 (3.1.1)
No flux condition at the bottom z = —H + €b
B 6d) 6d) (% 0H
Bernoulli equation at the surface z = (
2 [(20)", (20Y]
8t+ 9¢+ = [(81‘) +<8z J =0 (3.1.3)

No flux condition through the free surface z = (

OF, _9 . 99 _ 0¢ ¢ L% ¢
ot - © 0z  Oxrox Ot

(3.1.4)

The combination of the free surface and the Bernouilli conditions gives a unique

surface condition involving only the potential ¢.

P 0 106 & 109¢ 0 a6\°  [(96\°|

e 9.t (at+§%%+§%£ o) T\az) |70 B
3.1.2 Taylor expansions at the surface and bottom

The no-flux condition at the bottom (3.1.2), the Bernoulli equation (3.1.3) and the
combined condition (3.1.5) at the surface can be expanded in Taylor series at z = —H,

z =0 and z = 0 respectively.

Taylor expansion of (3.1.2) at z = —H.
0p P9  €,0°

2. T2 t —” R
06 . O%¢ 9P ob  OH
<8_x te b@zax + 2 ('9,228:17) ( “or %) (3.1.6)
Taylor expansion of (3.1.3) at z = 0.
9 0% ¢ 1 [(09\" | (0¢)’]
o T ot C o2 19T [(%) * (%) J
co[(oo)  (00\7] _
212+ (2)] o o
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Taylor expansion of (3.1.5) at z = 0.

2o 0o 2o 0o\ (2 (0% O
(aﬂ“’a>+C_<ﬁ+ga>+§ﬁ<ﬁ“’£>

0 2 1000 106 0 o0\>  (0\°] _
+<6t+<8z8t 537@%&&) [(5) +<&>]—0 (3.18)

3.2 Multiple scale expansion in the horizontal di-

rection and in time

Let us now define the following new variables x,z; = ex, x5 = €?z,--- for the hori-

zontal direction and ¢,t, = et, ty = €%t,

- for time, and use the perturbation method
on the governing equations. ¢ is expanded as ¢ = ep; + €2y + €33 + - - -, and the
equations are separated in orders of €. ¢ will then be separated into two components,
an average component and a fluctuating component corresponding to the movements

induced by the randomness of the bottom: ¢ = (¢) + ¢'.

3.2.1 Governing equations and solution at order ¢

The governing equations for ¢, are:

(

Laplace Prge + P12, =0=F, for —H<2z<0

Surface condition ¢y +gp1, =0=G; at z=0 (3.2.1)
Bottom condition ¢, =0 =1, at 2 = —H

Bernoulli equation —g(; = ¢4 at z =10

\

It can be observed that the equations at this order contain no random or nonlinear
component, so that ¢; will have a zero random component : ¢} = 0. By taking the
leading order solution to be a monochromatic wave train propagating from left to

right, the following solution is obtained.

¢1 = (1) = 10+ (¢116i57iwt + *) (3.2.2)

The above equations give a solution for the first harmonic

. g coshk(z+ H)

o =- % cosh kH

A (3.2.3)
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and
A o it
G=(G)= e + * (3.2.4)
where x denotes the complex conjugate of the preceding expression and S is defined
by:

§=5) = [kl = 612/0 k() du (3.2.5)

Unless otherwise specified, S will be considered a function of x.

The dispersion relation is obtained from the surface condition and the solution for

1.
w? = gktanh kH (3.2.6)

3.2.2 Governing equations and solution at order ¢

The governing equations for ¢, are:

(¢2mm+¢2zz:FQ —H<z<0
—|— y = G Z =
Gout + gPo 2 (3.2.7)
d)gz = IQ Z = —H
[ —9C = Qo + D1y, + Gy + % (1, +91.) 2=0
where
F2 == _2k¢1:1:1$ - <F2> (328)
Gy = 2014, — 1 (D1 + 9912), — (d)ir + Qﬁz)t = (G) (3.2.9)
and
I = (bp,), = 1, (3.2.10)
F,, G5 and I can be calculated from the results obtained at O(e).
gkcoshk(z+ H) [ 0A g i
=" o 3.2.11
2 w coshkH 8:516 o ( )
0A .. . 3w . .
G — T S —iwt -A2 21S —2iwt 3.9.12
2 g(@tle +*> +4sinh2kH (Z ¢ +*) ( )
and
L= 9% [A (be) et 4 ] (3.2.13)
2w cosh kH T
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First a solution is derived for the ensemble average component (¢o) before considering
the fluctuating solution ¢,. In order to solve for (¢,), the ensemble average of the
equations above are taken. They result in the same system of equations in which ¢,
can be replaced by {¢9), except for the bottom boundary condition for which (I5) = 0

because b has a zero mean.
The solution for (¢,) can be decomposed as
(p2) = a0 + (d)zleis_i“’t + *) + (qﬁme%s—?m + *) (3.2.14)

Solving the system is done by solving separately for each harmonic.

The first harmonic ¢,; and the solvability condition

¢21 obeys the following governing equations.

0? ) gk cosh k(z + H) 0A
- _ - 77 2.1
<8z2 K > 921 w coshkH 0Ox; (3:2.15)
0 w? 0A
_ _ - = 2.1
(82 g > ¢21 8t1 at z (3 6)
8;5;1 =0 atz=—-H (3.2.17)
The solution can be found to be
inh & H) 0A
o1 = — 2 (4 B2 (2 + H) (3.2.18)

2k sinhkH Oz

Invoking the solvability condition, or simply using the surface boundary condition

(3.2.16) and defining

o, =MWy, 2k (3.2.19)
9 dk 2k sinh 2k H o
as the group velocity of the propagating wave, the solvability condition is obtained:

0A 0A
g+ Cogyr =0 (3.2.20)
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The second harmonic ¢y

(22 obeys the following governing equations.

(@ — 4k > By = 0 (3.2.21)
0 4? 3w?

- - =———  GA? atz=0 3.2.22

<8z g >¢22 4 sinh? k:HZ vz ( )

8;5222 =0 atz=—-H (3.2.23)

The solution can be found to be
3w cosh 2k(z + H)
= —j— A? 3.2.24
Y2 = T G kH ( )

A solution for (¢,) is obtained by grouping terms together:

)smh k(z+ H) <8A piS—ivt *>

w
($2) = ¢ - ﬂ(z +H sinh kH 0x,

_ 3wcosh2k(z + H)
16  sinh*kH

(iA47e5 72t 4 &) (3.2.25)

The fluctuating part ¢,

In averaging 3.2.7, the fluctuating terms are ommitted. They must be taken into ac-

count in this section when solving for ¢). ¢’2 obeys the following governing equations.

0? 0%\
_ 4+ — = — < z< 2.
<8x2+8z2>¢2 O —H<z<0 (3.2.26)
0? 0\ ,
(@ + ga> ¢2 =0 2=0 (3.2.27)
0y _ gk

0z  2wcoshkH [A (beis)xeim tx| z=-H (3.2.28)

From the right hand side forcing terms of the governing equations, it can be predicted

that the fluctuating part only has first harmonic components, so that:

by = e 4 % (3.2.29)
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The system of equations to be solved reduces to.

_ gkA i _
V. = 2w cosh kH [b(x)e ]rr =-H
w?
Y, — ?@/} =0 z=0 (3.2.30)

Using Green’s theorem to solve the system for the fluctuating part, a solution for
Green’s function G (z,2', 2) is sought.

Goo+G., =0 —H<2<0
G,=0(x—2") z=—-H
G, —2LG=0 =z

Y

(3.2.31)

0

Introducing the exponential Fourier transform on the equations for Green’s function,
G is defined as the Fourier transform of G:

G(a,2',2) = /OO G (z,7',2) e " dx (3.2.32)

The inverse Fourier transform of G is G itself by definition.

1 o - .
G (z,2',2) = Py / G(a,2',2) e da
T J—

(3.2.33)

G must then obey the system of equations:

G,,—a’G=0 —-H<2<0

G, = eio’ z=—H (3.2.34)

G, —LG=0 2=0

9
because the integral of a delta function is calculated as.
/ 6 (z — ') e dy = et (3.2.35)

G is determined as

., coshaz+ “’—; sinh az
G (a,1',2) = ' — R (3.2.36)
“’7 cosh oH — asinh o H

The inverse Fourier transform of G gives G.

1 oo . . coshaz+ “—; sinh a2
G(z,2',2) = —/ glele=a) _ L do (3.2.37)
21 J 0 “’7 coshaH — asinh aH
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But G should be symmetric and should represent an outgoing wave at infinity, so
G(z,2',2) =G (|lz —2'],2) (3.2.38)

Using Green’s identity,

and systems (3.2.30) and (3.2.31), it is possible to obtain a solution for ¢ and then
Py
gkAez’S—z’wt )

J _ !
2wcosh kH J- G v —al,2)

d S
& (x,2) = [b(x')el[s(’” )_S(’”)}] da' + % (3.2.40)

da!
Applying the residue theorem yields the value of

iw? 6ik|:1:7:r’| efkn\:rf:r’\

r—a|,—H)= —— 3.2.41

( h—H) gk <+ sinh® kH nz_:l kn 2 4 sinh” k, H ( )
where ik, are the complex roots of the dispersion relation such that

w? = —gk, tan k, H (3.2.42)

The analytical details of the residue theorem are given in Appendix B.
¢4 can then be calculated at z = —H.
Free surface displacement (

Equations (3.2.25) and (3.2.40) can now be used in the Bernouilli equation to deter-

mine the average free surface displacement.

d1g k|A?|  HtanhkH ( 0A pis—iwt | )

() = - dt,  2sinh 2kH 9 D1

1 0A 1S —iwt
+ ( 8t16 + )

k cosh kH 2 2 2iS2iwt
L e (1+2cosh? kH) (A% + %) (3.2.43)
and the fluctuating free surface displacement.

, gkAezS wt d

o=~y | G =1 =) 5 o) ! (3244)
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3.2.3 Equations at order €

The governing equations for ¢35 are the following.

(

d)3mm+¢3zz:F3 _HSZSO
+ =G =0
O34t + gP3 3 z (3.2.45)
¢z, = I3 z=—H
| —9G = Ls 2= 0
where
F3 = _2¢2:1::1:1 - ¢1:1::1:2 - ¢IIQI - ¢1:1:1:1:1 (3246)
Gs = —2¢u, + 201, + G111, — G (Pou + 9022), — G (D1 + 9912),
2
_% (d)ltt + gd)lz)zz -2 (d)lxqslxl + ¢1x¢2x + ¢1z¢2z)t - (qﬁ%x + d)?z)tl
1 0 0
2 2 2 2
—C1 (¢1x + ¢1z)tz -3 <¢1$£ + ¢1z%> ((15195 + ¢1z) (3.2.47)
b2
I3 = <5¢1$2> + (bd)2$)x + (bd)lm)x + b¢1xx1 - d)lmez (3248)
and

L = b+ oy + 61, + dbuas + G [0+ b + 5 (61, 64)] + b + 3G

(3.2.49)
Calculating (F3)
The ensemble average of (3.2.46) is taken
<F3> - _2<¢2:D:rl> - ¢1:r:rz - ¢1:1:2:1: - ¢1$1$1 (3250)
and each of the four terms is evaluated separately:
sinhk(z + H) [ 0*A ;5 ,
-9 o — H 1S —1wt
(B2) ez, wiz+ H) sinh kH (Z 0z} ‘ T
3wk cosh2k(z +H) [, 0A 45 o
A 245 —2iwt 3.2.51
1 soh'kH ( o, ¢ - *> (3.2:51)
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Let us note here that ¢,,,, is different from ¢y,,, because the wavenumber £ is a

function of x5 through the dispersion relation. They must be calculated separately.

B g O [(kcoshk(z+ H) iS—iwt
raz; = 2w 0 ( cosh kH (Ae + *)
gkcoshk(z+ H) [ 0A g i
- — Rl .2.52
2w coshkH 01 ‘ i (3.2.52)
gk 0 ([coshk(z+ H) S it
. _ I AptS—iw
Praza 2w Oxo < cosh kH ( ¢ + *)
gkcoshk(z+ H) [ 0A g i
_J 13 w ‘2‘
2w coshkH 0o ¢ T (3:2.53)
g coshk(z+H) [ .0*A .o ..,
— = — B .2.54
D1z1z 2w coshkH ! 0r? ¢ T (3:2.54)

The result is:

- 2
(F) = w(z+H)Slnhk(Z+H) (,6 AeiSiwt+*>

sinhkH  \ 027
g 0 (kcoshk(Z+H)> (AeiSfiwt_i_*)

2w 0T+ cosh kH

gk 0 ([coshk(z+ H) it
_ =z A ) 1w
2w 0o ( cosh kH ( ¢ + *)

_ ghkcosh k(z+ H) [ 0A piS—iwt |y
w  coshkH 0o
3wk COSh‘QkEZ + H) A 0A p2iS=2iwt |
4 sinh® kH 0z

(3.2.55)

Calculating (G3)

Similarly, the ensemble average of (3.2.47) is taken

(Gs3) = —=2(P2)uy — 20111, — D1ty — G ({D2)u + 9{(b2)2),
2

—(Co) (Drut + 9612), — % (Pree + g6b12).,,
-2 (¢1:1:¢1:rl - ¢1:1:¢2:r - ¢lz¢2z)t - ( %g‘; + Qﬁz)tl

1 0 0
~Gu (6 +91.),, — 5 (%a—ﬁ - qblz&) (67, +¢1.) (3:2.56)
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and each group of terms is evaluated separately in Appendix C at z = 0, so that.

P | Weosh’ kHOAAT WP QAL
o2 2ksinh?kH Or,  4sinh?kH 0t

w*H 0*A 0A g,
2 YA iS—iwt 1S —iwt
(Bere i) (e o)

(Gs) =

4 k OD10\ (. 1 iS—iwt
k _ AetS—w
9 ( Ory  2wcosh’ kH 0t (Z ‘ * *)
w3k cosh kH

2 2 (A iS—iwt
+1—6m (COSh 4kH + 8 — 2 tanh kH) |A| (er + *)

+ (<G32>€2i5—2z’wt + *) + (<G33>€3i5—3z’wt + *) (3.2.57)
Use has been made of the dispersion relation, the definition of the group velocity C,
and the solvability condition (3.2.20) derived for the previous order.
Let us note that (Gg) is real.
(G32) and (G33) are not expanded here because they are not needed in the following

calculations. They can be obtained from the terms expanded in appendix C.

Calculating (I3)

The ensemble of average of I3 is:

(I3) = (baz)e — P1oHzy = (bD2)ae — (bsP2)e — P1oHa, (3.2.58)

A correlation for the randomness on the bottom must be specified to calculate (I3).

The function v and the new variable £ are defined as:
(b(x)b(2")) = *y(&) and &=z -2 (3.2.59)

where o is the root mean square of the correlation.
L e ,
e 2w cosh kH 022 J oo dz' [(b(x bla))e” ]
G(|lz—2'|,—H) di' + %

)
_gkAo©e 0 /°° d [7(5)5 ]
(

2w cosh kH 0x?
G (|¢], —H) dée™ + x  (3.2.60)

S"— 8 = S(z") — S(x) is approximated by k(z' — x) = —k&:

5= / k(20)dl — / k(éz)dz:/j k(e0)de (3.2.61)
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so that

B gk?)AUQeiS—iwt o

(bb2)asl.e n = S 777 md—f[v(g)e—“ff]a(|g|,_H)dg+* (3.2.62)

Similarly for (by¢s),

) k2A0.26iS—iwt 00 d )
(betVal,_py = _gracer a ld_’ge—mf

e | e Gl —mag s 2oy

A constant [ is defined as

gk?*o? o |[d ’ k€
= —— — — ik G —H)e "™ d 3.2.64
o= () 5| ca-me e 2o
so that (I3) can be simplified
i o, gk OH .o .
L) = — hkHA 1S —iwt o A 1S —iwt 9.
(I3) 26 cOS e + % 2 cosh R 92 e + % (3.2.65)

3.3 Solvability conditions for the O(¢?)

The restrictions of the system of governing equations to the zeroth and first harmonic

lead to solvability conditions.

3.3.1 The zeroth harmonic

The system of governing equations for the zeroth harmonic (¢30) reduces to the fol-

lowing.
owing 62<¢30> o _82¢10 (3 5 1)
922 T ox? o
9{¢30) 1 19%p1y  w?® cosh® kH OAA* w?  0AA*
= -Gy = ———5 — - (3.3.2)
02 |,_, 9 g Otf 29k sinh® kH Ox 4gsinh® kH 0t
Xow) =0 (3.3.3)
02 |,_ 4

The solvability condition for this system is straightforward. By definition, (3.3.1) can

be integrated between —H and zero:

/0 Fdw) 4, lml - (3.3.4)

2
-H 0z 0z |,_
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Replacing with the governing equations above,

0 1
/ FgodZ = —Gg()
—H q

(3.3.5)

and integrating a constant on the left hand side of (3.3.5) yields the solvability con-

dition obtained by Mei [20].

g ?¢ro  w®cosh® kH 0AA* w?  QAA*

o2 9" 9r7 T Yksinh®kH 0z,  dsinh’kH 0t

3.3.2 The first harmonic

In this section, let us define the operator £ such that.

0? 9
E—@—k

The governing equations for the first harmonic are simplified into

L{¢31) = (F31) —H<2<0
<d)31>z - w?f<¢31> = <G31> z=0
(31)> = (I31) z=—H
A new function
_ coshk(z+ H)
S = ok

is defined such that f obeys the following system.

Lf=0 —H<2z2<0
fom2f=0 2=0
f.=0 z2=—H
Using Green’s theorem
0 a a 0
[ treiom) — waen e = | 1200 5,0

—-H

and the equation systems governing f (3.3.10) and (¢3;) (3.3.8),

(G31)

/0 ( 31>cosh k(z+ H)

w2
cosh kH dz = ?<¢31> +

— <¢31>k tanh kH — <[31>
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where the right-hand-side can be simplified further using the dispersion relation.

/0 ( 1>COShk(Z+H)dz _ (G31)

cosh kH — (Is1) (3.3.13)

The integral on the left-hand-side of (3.3.13) must be calculated.
(F3) is obtained from (3.2.55).

<F31> = w(z + H)

sinhk(z+H)Z,82A_i %) (kcoshk(z+H)>A
sinhkH 023 2w 0z cosh kH

gk 0 <coshk(z + H)) g gk cosh k(z + H) 0A

2w 09 cosh kH w coshkH  Ox,

(3.3.14)

All the terms are integrated separately, to do so, the following integrals are needed.

0 h? k H
[ = CrH),, e, (3.3.15)
- cosh"kH gk ¢

/0 (z + H)sinhk(z + H) H cosh2kH 1 (3.3.16)
w sinhkHcoshkH ° 2ksinh2kH  4k2 e
and
/0 0 [(kcoshk(z+ H) k 0 (coshk(z+ H) coshk(z+H)dZ
—Hu | 0xs cosh kH 09 cosh kH cosh kH
B /0 dk (coshk(z+ H) de+ /0 op 0 (coshk(z+ H)\ coshk(e + H)
 Jem da cosh kH _H 0T cosh kH cosh kH
dk Y cosh k(z + H)\”
— 42k / d 3.3.17
d2 k H28x2< cosh kH > ® ( )

Using Leibniz’ rule on the last integral, it is possible to get the % operator ”outside”
2
the integral. An additional term appears because the depth average H is a function

of the variable .

/0 0 (kcoshk(z+ H) Iy 0 (coshk(z+ H) coshk(z+H)dZ
—H |09 cosh kH 0o cosh kH cosh kH

0 2
_ dk Yook %) / (Coshk(z+H)> p _ké’H 1

d—ng_k gt 0y J— cosh kH Oy cosh? kH
dk w 0 w k oH
= ——C,+k—|—-C,| - —————
dzy gk ! + 0o (gk g) cosh? kH 0z,
L s K00 ow( Lyde ko ok
 daa gk 7 gk Ox Yq k2) dry  cosh? kH Oz
w 0C, k OH

= = — 3.3.18
g 0rs  cosh? kH Ox, ( )
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Adding terms, the integral on the left-hand-side of (3.3.13) is

0 coshk(z + H) wHcosh2kH w O, 0?4
Fy))——————2dz =
/—H< ) cosh kH ‘ ( * )

9k sinh2kH  4k?

012
oC 2w OH
—= — A 3.3.19
2 <8x2 sinh 2k H 8x2> ( )
(G31) and (I3;) are easily obtained from equations (3.2.57) and (3.2.65)
2 2
g 9 w*H 8 A 0A 8¢10 k 8¢10 .
G = | =C C — + gk — A
(Gar) (w g k g) Zax% +gat2 t9 0ry  2wcosh?kH 0t ‘
w3k cosh kH 5 5.
? gk oH
I3) = - hkHA — A 3.3.21
(Ls1) QBCOS 2w cosh kH Ox4 ( )
Equation (3.3.13) can now be used to obtain the solvability condition at this order.
wH cosh2kH — w e C 62A _1(oC, 2w OH
ok sinh2kH  4k2 8x1 Oxy  sinh 2kH Ox,
8214 aA a¢10 k a¢10 .
C2 + H tanh kHC ) k - A
< tan or? o Oty * ( dr1  2wcosh’ kH 0t '
Wk2 2 2.
TN (cosh 4kH + 8 — 2tanh® kH ) |A]%iA
i w OH
——PA+ ———=—A .3.22
25 + sinh 2k H Oxo (3.3.22)

The derivative w” of the group velocity:

2 C? HsinkH H cosh? kH
% ity = 2 = o (G o ML WMl HIT)

ok Ok2 W 9coshkH  2sinh2kH

is derived from the definition of the group velocity. After grouping terms, a modified

Schrodinger equation is obtained.

aA 6A w” 8214 8¢10 k aQSIO
ko Jdeel et el ) X _
Oty * Y0z 2 : ox? o ( Oxy  2wcosh’ kH 0t
L WEIAP (cosh 4kH + 8 — 2 tanh® kH) A
16 sinh* k H
1 oC
——BA+-—2A= .3.24
— ,

(1) (2)
where (1) is the only term due to randomness, derived by Mei & Hancock [22] and

(2) is the only term due to the slowly varying bottom, derived by Lo in his PhD
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thesis [19]. The equation for a perfectly smooth bottom of constant average depth
(omitting terms (1) and (2)) was derived by Mei [20].

Equations (3.2.20) and (3.3.24) are combined into a single equation using the defini-

tion of the multiple scales.

8A 8A w” 8214 . 8¢10 k 8¢10 1

LN o B (e iy} - A-LpA

oty +Cy 011 ¢ [ 2! 0x? t ( 0ry  2wcosh?kH 0t 25
Wk?| AP , 1oc, 1

3.4 Solving for the amplitude in the case of a
steady train of attenuated stokes waves

For the particular case of a steady train of attenuated Stokes waves, the dependence
on time and the fast coordinate x; disappears, only the very fast variable x5 remains.
Equation (3.3.25) is therefore simplified into.

dA 1 wk? AP 1dC,

Cy———=ifA+i——— 15— (cosh4kH + 8 — 2tanh® kH ) A A=0 (3.4.26
vy 3 A g (o AR+ anb kH ) A5 (3.4.26)
For clarity purposes, let us define « as the following function of x4
() wh” (cosh 4kH +8 — 2 tanh® kH ) (3.4.27)
a(ry) = ————— — 2tan 4.
? " 16sinh" kH

and note that « is a real function of .

A and B are complex, they can therefore be decomposed into amplitude and phase
or real and imaginary parts: A = ae?’ and 8 = B, + if;. Equation (3.4.26) is then

separated into real and imaginary parts.

da 1dC, 1
! Lo = 42
ngx2+2dx2a+26a 0 (3.4.28)
df , 1
- — B = 4.2
C, i, + a(zz)a QBT 0 (3.4.29)

This is solved for a and # separately by noticing that

a(ay/Cy) 1 (C da +l@a> N (3.4.30)
>

dl‘Q /C’g gd—flig 2 d!IIg

Y

68



The amplitude a is found to be:

Cgo 1 T2
a = Qg F exp —5 /0
9

where ag and C, are the values of the parameters at = 0.

gfg(é)) df] (3.4.31)

The equation for § can now be solved by using the result for a into (3.4.29).

do By 2 0(T9) = Bi(£)
— = -C — ——=d/ 3.4.32
do, 20, ~™7cz P70 (3.4.32)
This first order differential equation is integrated once.
™ fr(m) 2 [ a(m) ™ Bi(f)
0= dm — C - dl| d 3.4.33
o 2C,m)" TP S c2my Pl 0" (3.4.33)

The final amplitude is therefore:

A4,/C, = ayy /Ty exp <_% g;((zg) dg> exp { [ 25(;5?2) dm
— Cya? 012 2‘2((”2) exp (— Om g:((?) dé) dm] } (3.4.34)

An analytical expression for the amplitude in the case of a bottom of constant average

depth was derived by Mei & Hancock [22]. Let us now look at two special cases for

which amplitudes have been previously derived in order to verify this equation.

3.4.1 Special case of a bottom of constant average depth

For a bottom of essentially constant depth, H is independent of the variable o
so the wavenumber k, the random coefficient 3 and the group velocity C, are also
independent of the the horizontal coordinate and the integrals can be calculated easily

for constant integrands. The result had been derived by [22].
. 2 .
A =agexp (— ggj) exp {if—é’g@ + iagia lexp (—%@) — 1] } (3.4.35)

3.4.2 Special case of no randomness

For a perfectly smooth bottom, 8 = 0, so that only the first exponential term in

(3.4.34) remains.

_ ~ 2 [" a(m)
A\/Eg = agy/Cy, exp (—ngoaO o C2(m) dm) (3.4.36)
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Let us not here that by taking the amplitude, a relation is obtained, it can be inter-

preted as energy conservation:
|A]’C, = a;C,, = constant (3.4.37)

For a perfectly smooth bottom of constant depth, the result is a propagating Stokes

wave, as expected.

2
A = agexp <—i%x2> (3.4.38)
Og
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Appendix A

Matlab files

A.1 cef.m

function w = cef(z,N)

h
h
b
h

M
L

Computes the function w(z) = exp(-z~2) erfc(-iz) using a rational

series with N terms. It is assumed that Im(z) > 0 or Im(z) = 0.

Andre Weideman, 1995

2%N; M2 = 2%M; k = [-M+1:1:M-1]7;

sqrt (N/sqrt(2));

theta = k*pi/M; t = Lxtan(theta/2);

f

a

exp(-t."2) .%(L"2+t.~2); £ = [0; f];
real (fft (fftshift(£f)))/M2;
flipud(a(2:N+1));

(L+i*z) ./(L-i*z); p = polyval(a,Z);
2%p./(L-i*z) ."2+(1/sqrt(pi)) ./ (L-i*z);

b
h
h
b
h
h
h
b

M2 = no. of sampling points.
Optimal choice of L.

Define variables theta and t.
Function to be transformed.
Coefficients of transform.
Reorder coefficients.
Polynomial evaluation.

Evaluate w(z).

#The Matlab function cef.m computes the complex error function w(z),

halso known as the plasma dispersion or Fadeeva function. The algorithm
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%his discussed in J.A.C. Weideman, "Computation of the Complex Error

% Function", SIAM J. Numer. Anal., Vol. 31, pp. 1497-1518 (1994).

A.2 plotbeta.m

function[]=plotbeta(sigma,el,m_min,m_step,m_max)
%This function plots beta for different values of the variable

% coefficients.

%INPUTS

%hsigma = magnitude of the randomness

hel=correlation length 1

%m_min, m_max are the minimum and maximum values of m

% m_step is the step chosen for m for the plots

m=m_min:m_step:m_max; %creating vector m
beta=(el*sqrt (2*pi) .*x(m*sigma) ."2./8) .*%(1-4.*i./(sqrt (2*pi) .*m.*el)...

+cef (sqrt(2) .x(m.*el),100)); %calculating beta for every value of m

figure(1l) %plotting the real part of beta vs lm=lk_m

plot(el.*m,real (beta))

figure(2) %plotting the imaginary part of beta vs lm=lk_m

plot(el.*m,imag(beta))

A.3 problemnh.m
function[p]l=problemnh(n,kl,nu,el,xminsig,xmaxsig,sigma,Xmax)

hsolves the system for the n amplitudes a_m

%INPUTS

%n=number of harmonics
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%k1=1 for all simulations

Jnu is the ratio mu~2/epsilon

%el =the length scale for the randomness ’1’

%hxminsig = x-coordinate at which the randomness starts

hxmaxsig= x-coordinate at which the randomness ends

hsigma = amplitude of the randomness, sigma”2 is taken into account

%Xmax = maximum X, slow coordinate

%0UTPUTS

%p is the number of points, or the number of intervals +1

#Creating vectors k, beta, A and B
k=zeros(1,n);

beta=zeros(1,n);

A=zeros(1,n);

B=zeros(1,n);

hlooping to enter values in the vectors.
for m=1:n %looping over the n harmonics
k(m)=mxk1; %defining the n wavenumbers
A(m)=i*nu*(k(m)~3)/6;
B(m)=-3*ixk(m)/4;
beta(m)=-(el*sqrt(2*pi)*(k(m)*sigma)~2/8)...
*(1-4x1i/ (sqrt (2*pi) *k (m) *el) +cef (sqrt (2) * (k(m) *el),100));

end

hcalling the ODE solver
AT=1e-3*ones(1,n); %defining the absolute tolerance for the solver

options = odeset(’RelTol’,1e-3,’AbsTol’,AT, ’MaxStep’,1le-3);

hdefining the initial conditions

Initharm=zeros(1,n); %All the harmonics have a zero amplitude at X=0
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Initharm(1)=1; %except for the first harmonic

%Calling the ODE solver for n harmonics

if n==6 JCalling the solver for 6 harmonics

[X,a] = ode45(Q@equation6h, [0 Xmax],Initharm,options,A,B,beta,...

xminsig,xmaxsig) ;

elseif n==10 J Calling the solver for 10 harmonics

[X,a] = ode45(Q@equationlOh, [0 Xmax],Initharm,options,A,B,beta,...

xminsig,xmaxsig) ;
else % Calling it quits
sprintf (’Simulations can only be run for n=6 or 10, sorry!’)
p=0;
break

end

hcalculating both sides of the energy relation

p=max(size(X));

#RHS is the right hand side of the energy relation,
hinvolving beta terms
RHS=zeros (p,1);
a2=zeros(p,n);
arhs=zeros(p,n);
for m=1:n %looping for all the harmonics
a2(:,m)=abs(a(:,m))."2;
arhs(:,m)=beta(m) .*((xminsig<X(:))&(X(:)<xmaxsig)).*a2(:,m);
end

RHS=2.#*real (transpose (sum(transpose(arhs))));

4LHS is the left hand side of the energy relation
hinvolving derivatives

LHS=zeros(p,1);
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Deriv=zeros(p,n);
for m=1:n
for 1=2:p-1
Deriv(l,m)=(a2(1+1,m)-a2(1-1,m))/(X(1+1)-X(1-1));
end
end
LHS=transpose (sum(transpose(Deriv)));

Error=LHS-RHS;

»To check Energy relation, add the plot for
figure(1)

plot (X,Error)

hplotting the six (or ten) harmonics

aplot=abs(a);

figure(2)
plot(X,aplot(:,1),’-’,X,aplot(:,2),’-?,X,aplot(:,3),’-"...

,X,aplot(:,4),’-’,X,aplot(:,5),’-?,X,aplot(:,8),=") ...

%,X,aplot(:,7),’-’,X,aplot(:,8),’-.",X,aplot(:,9),’-7,...

%X,aplot(:,10),’-.7)

A.4 equation6h

function [dal=equation6h(x,a,A,B,beta,xminsig,xmaxsig)
%0DE solver for 6 harmonics

%hcalled by problemnh(6,..... )

%INPUTS

%A=vector of i nu k(m)~3/6

#B=vector of coefficients for coupled terms
%beta=vector of beta(m)

hxminsig = x-coordinate at which the randomness starts
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hxmaxsig= x-coordinate at which the randommness ends

%0OUTPUTS

%da = solution, in the form of six vector colums da(1l) ... da(6)

%defining differential equations

da = zeros(6,1); % a column vector

da(1) = A(1)*a(1)+beta(1)*a(1)*((xminsig<x)&(x<xmaxsig))...
+B(1)*(conj(a(1))*a(2)+conj(a(2))*a(3)+conj(a(3))*a(4)...
+conj(a(4))*a(5)+conj(a(5))*a(6));

da(2) = A(2)*a(2)+beta(2)*a(2)*((xminsig<x)&(x<xmaxsig))...
+B(2)*(conj(a(1))*a(3)+conj(a(2))*a(4)+conj(a(3))*a(b)...
+conj(a(4))*a(6)+0.5%a(1)"2);

da(3) = A(3)*a(3)+beta(3)*a(3)*((xminsig<x)&(x<xmaxsig))...
+B(3)*(conj(a(1l))*a(4)+conj(a(2))*a(5)+conj(a(3))*a(6)...
+a(1)*a(2));

da(4) = A(4)*a(4)+beta(4)*a(4)*((xminsig<x)&(x<xmaxsig))...
+B(4) *(conj(a(l))*a(b)+conj(a(2))*a(6)+a(1)*a(3)+0.5%a(2)"2);

da(5) = A(5)*a(5)+beta(5)*a(5)*((xminsig<x)&(x<xmaxsig))...
+B(6)*(conj(a(1))*a(6)+a(1)*a(4)+a(2)*a(3));

da(6) = A(6)*a(6)+beta(6)*a(6)*((xminsig<x)&(x<xmaxsig))...
+B(6)*(a(1)*a(5)+a(2)*a(4)+0.5%a(3)*a(3));

A.5 equationl10h.m

function [dal=equationiOh(x,a,A,B,beta,xminsig,xmaxsig)
%0DE solver for 10 harmonics

hcalled by problemnh(10,..... )

%INPUTS
%A=vector of i nu k(m)~3/6

%B=vector of coefficients for coupled terms
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%beta=vector of beta(m)
hxminsig = x-coordinate at which the randomness starts

hxmaxsig= x-coordinate at which the randommness ends

%0UTPUTS

%da = solution, in the form of ten vector colums da(l) ... da(10)

%defining differential equations

da = zeros(10,1); % a column vector

da(1) = A(1)*a(1)+beta(1)*a(1)*((xminsig<x)&(x<xmaxsig))...
+B(1)*(conj(a(1))*a(2)+conj(a(2))*a(3)+conj(a(3))*a(4)...

+conj(a(4))*a(5)+conj(a(s))*a(6)+conj(a(6))*a(7)+conj(a(7))*a(8)...

+conj(a(8))*a(9)+conj(a(9))*a(10));
da(2) = A(2)*a(2)+beta(2)*a(2)*((xminsig<x)&(x<xmaxsig))...
+B(2) *(conj(a(l))*a(3)+conj(a(2))*a(4)+conj(a(3))*a(b)...

+conj(a(4))*a(6)+conj(a(5))*a(7)+conj(a(6))*a(8)+conj(a(7))*a(9)...

+conj(a(8))*a(10)+0.5%a(1)"2);
da(3) = A(3)*a(3)+beta(3)*a(3)*((xminsig<x)&(x<xmaxsig))...
+B(3) *(conj(a(1l))*a(4)+conj(a(2))*a(5)+conj(a(3))*a(6)...

+conj(a(4))*a(7)+conj(a(b))*a(8)+conj(a(6))*a(9)+conj(a(7))*a(10)...

+a(1)*a(2));

da(4) = A(4)*a(4)+beta(4)*a(4)*((xminsig<x)&(x<xmaxsig))...
+B(4)*(conj(a(1))*a(5)+conj(a(2))*a(6)+conj(a(3))*a(7)...
+conj(a(4))*a(8)+conj(a(b))*a(9)+conj(a(6))*a(10)+a(1)*a(3)...
+0.5%a(2)"2);

da(5) = A(5)*a(5)+beta(5)*a(5)*((xminsig<x)&(x<xmaxsig))...
+B(5)*(conj(a(1))*a(6)+conj(a(2))*a(7)+conj(a(3))*a(8)...
+conj(a(4))*a(9)+conj(a(5))*a(10)+a(1)*a(4)+a(2)*a(3));

da(6) = A(6)*a(6)+beta(6)*a(6)*((xminsig<x)&(x<xmaxsig))...
+B(6)*(conj(a(1))*a(7)+conj(a(2))*a(8)+conj(a(3))*a(9)...
+conj(a(4))*a(10)+a(1)*a(5)+a(2)*a(4)+0.5%a(3)*a(3));

da(7) = A(7)*a(7)+beta(7)*a(7)*((xminsig<x)&(x<xmaxsig))...
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+B(7)*(conj(a(1))*a(8)+conj(a(2))*a(9)+conj(a(3))*a(10)...
+a(1)*a(6)+a(2)*a(b)+a(3)*a(4));

da(8) = A(8)*a(8)+beta(8)*a(8)*((xminsig<x)&(x<xmaxsig))...
+B(8)*(conj(a(1))*a(9)+conj(a(2))*a(10)+a(1)*a(7)+a(2)*a(6)...
+a(3)*a(5)+0.5%a(4)*a(4));

da(9) = A(9)*a(9)+beta(9)*a(9)*((xminsig<x)&(x<xmaxsig))...
+B(9)*(conj(a(1))*a(10)+a(1)*a(8)+a(2)*a(7)+a(3)*a(6)+a(4)*a(5));

da(10) = A(10)*a(10)+beta(10)*a(10)*((xminsig<x)&(x<xmaxsig))...
+B(10)*(a(1)*a(9)+a(2)*a(8)+a(3)*a(7)+a(4)*a(6)+0.5%a(5)*a(5));
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Appendix B

Residue theorem to evaluate

Green’s function at the bottom

Green’s identity is used determine Green’s function as

2 .
a cosh az + “’7 sinh az

“’72 cosh aH — arsinh aH)

1 oo . )
G|z —2'],2) = %/m ew—wla( do (B.0.1)

At depth z = —H, G becomes:

2 .
acosh aH — “7 sinh o H

(“72 cosh o H — asinh aH)

1 oo . )
G (ja— /|, ~H) = 5 /W el do  (B.0.2)

The denominator has roots as a = 0, a = +k and a = +ik,, where the k, are the
solutions to the complex dispersion relation w? = —gk, tanh kH. The residue theo-

rem is therefore used to evaluate the integral.

The integral of a function with no singularities over a closed contour is zero, if there
are singularities included within that closed contour, it is necessary to calculate the
residue at each singularity. The integral is then equal to the sum of the residues. The
integral is between —oo and oo, the contour must first be 'closed’ before performing
the integration. There are many possibilities to close the contour requiring an 'imag-

inary link’ between —oo and oo, such as an upper (or lower) semi-circle at infinity.

In the complex plane where the x-axis is real and the y-axis is imaginary, all the
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singularities are located. There are three on the real axis: —k, 0 and +k, and an infi-
nite number on the imaginary axis: - - -, —ik,, —tk, 1, -+, —tky,iky, -, ik, 1,0k, - - .
The contour is closed from —oo to oo with the upper semi-circle because the positive
complex roots are necessary for the solutions to vanish at large values of x. The wave

is an outgoing wave, so that only +£k is included in the semi-circle.

B.1 Singularity around a =0

For clarity purposes, the following function is defined

2 .
acosh aH — “’7 sinh o H

_ ialz—a| .
a)=c¢e ‘ and ¢g(a) = « B.1.3
/@) = cosh aH — asinhoH 9(a) (B-13)
where
dg dg
0 — 0 d =1 = —= B.1.4
JO=0 adgt=1=21 (B.1.4)

can be evaluated. The residue theorem gives a residue of zero at a = 0.

B.2 Residue around o =k

f and g are defined differently here as the singularity is no longer at o = 0, but at

a=k.

2 2
f(a) = elr=7 <c0sh oH — 2 sinh aH) and g(«) = “ coshaH — asinhaH
g

g
(B.2.5)
It is possible to calculate.
2 . / d H
f(k) = gksim ikle=2'l " and % = wg sinh H — sinh H — aH cosh o H
(B.2.6)
The dispersion relation can be used to evaluate the derivative of g at a = k.
dg 1 wH .,
— = — h“kH B.2.7
da| sinh kH ( g +sin > ( )
The residue theorem yields a residue for a = k
_iﬁeik\m—x’\
i k
Residue ,—p = 4 (B.2.8)

“TH +sinh?kH
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B.3 Residue around o = 7k,

f and g are the same as for a = k, but they are evaluated at a = ik,,. Let us note

that cosh 7z = cosz and sinh iz = i sinz.

2 2
fiky) = e~ Fnle=2l [ cos k,, H — “_ sin ko,H | = S —e (B.3.9)
gk, gk, sin k, H

obtained using the complex dispersion relation. And

i
sin k,, H

°H
g'(iky) = [“’g (cos? kn H + sin® k, H ) — sin” an] (B.3.10)

After simplification, the residue theorem yields.

w? e—kn\x—m’\

Residue ,—;z, = ghn ‘ B.3.11
" sin? kH — 2y (B3.11)

B.4 Final result for G(|x — /|, — H)

Adding all the residues together, and summing over the positive integer values of n,

the result for G(|z — 2|, —H) is

iw? 6ik|:zrfx’| 00,2 efkn\xfm’\
G(lr —2'|,-H) = —— P B.4.12
( h=H) gk <M+ sinh® kH n; gkn <1 4 sinh?® ky, H ( )
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Appendix C

Details of (G3)

(G3) had been defined as

<G3> = —2<¢2>tt1 - 2¢1tt2 - ¢1t1t1

—(G) (D1 + 9912), —
-2 (¢1:1:¢1$1 - ¢1:1:¢2$ - ¢lz¢2z) - ( 2

—G (61, +0%.), - (qu + braam ) (6%, + o1.)

2

— G ({D2)u + 9{(b2)-),

Let us calculate each term separately for more clarity.

_2<¢2>tt1 |z:[]

w’H (. PA iS—iwt |
- i e
k 8x18t1
3 ,cosh2kH
2  sinh*kH ot

0A
_2¢1tt2|Z:0 =g (8—752

g 0
— P10ty |, = ¢10t + <

—G ((D2)ue + 9(b2)2),|,—o

4k

§w3k cosh kH
8

sinh? kH

sinh® kH

w31+ cosh? kH (A OA 5is oim

e
81‘1

83

ezsfzwt + *>

* +

2

51 (D11 + 9012),,

+%.),,

(A%e%b’—?iwt 4 *>

0AA*
81‘1

)

A .
8t2 615’71wt 4 *>

(C.0.1)

(C.0.2)

(C.0.3)

(C.0.4)

(1 2sinh? kH) (iA%H573%! 4 iA? A"~ 4 Y C.0.5)



—(C2) (Pru + 9¢1z)Z|Z:0
wk 010 .\ s i
sinh 2k H 0t (1457 + <)
w3k|Al? cosh kH . ) i
O TN (2tanh” kH + 1 + 2 cosh® kH) (iAe +%)

wiH 0A g o 0AA*
A 215 —2iwt _
+2 sinh 2k H ( 0T, ¢ t 01, )
w? 0A o5 o 0AA*
A 215 —2iwt
TSl kH ( ot T )
3 cosh kH (1 + 2cosh? kH .
_|_w16 S(inh5 7 ) (Z'A3632573zwt 4 *) (006)

—5 (P +9012),,

=0 (C.0.7)
2=0
-2 (qslxd)l:vl - d)lmd)mc - ¢12d)2z)t|z:0
WQ 8¢10 o, 2w3H 0A . :
- @ A S —iwt A 21S —2iwt
tanh kH Ox, (l ‘ + *) € T*

"~ tanh kH 0,
3w3k cosh kH (sinh4 kEH

h2kH
Ssinb’ kH \cosh? ki % )

(3Z~A363i5—3iwt + Z-|A|2Aei5—iwt + *) (C.0.8)

2

w 1 9AA*
- - (= + 1)

(%H’lz) s 2 \tanh?’kH ot

t1

2

w 0A . o
o A= 215 —2iwt C.0.9
2 cosh? kH ( o0ty ¢ * *> ( )

G (B + ), |, =0 (C.0.10)

1 0 0
~3 (d)lx@_x + d)lz&) (Qﬁx + d)?z)

2=0
w3k cosh kH . 43 3iS—3iwt
= 5 A +)
+w3k |A|2C(.)Sh kH

c1.2 2 A0S —iwt
3 P (4 sinh® kH — 1) (er + *) (C.0.11)
All the above terms can now be added together to obtain:

G = P | Weosh’ kHOAAT WP QAL
YT 02 T 2ksinh®kH Oz 4sinh?kH 0t
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2 QA ) ) 8A ) )
+ (2092 4 ﬂog) (ia—ZeZS_Wt + *> +g (_ezS—zwt + *>
w

k ox? Oty
1o k OP10\ (. 4 is iwt
_ A A w _|_ *
ok < 0, 2w cosh? kH 0t (Z € )
w3k cosh kH 9 2 (- A iS—iwt
+1—6m (cosh 4kH + 8 — 2 tanh kH) |A| (er + *)

+(G32) + (Gs3) (C.0.12)
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