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Abstract

Field experiments were performed in Gakona, Alaska in August and November 2002.
The ionospheric conductivity was periodically perturbed using amplitude-modulated
radiation from the HAARP HF transmitter (1 MW power, 14 dB gain, 3.3–5.8 MHz
carrier, 0.1–40 kHz modulation). The conductivity perturbations lead to perturba-
tions to the natural flow of electrojet current in the lower ionosphere, resulting in
ELF/VLF radiation at the modulation frequency. Measurements of the radiation,
along with analytic and numerical models, suggest that a vertical loop with a scale
size of 10 km is the dominant current structure excited during the experiments.
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Chapter 1

Introduction

1.1 Thesis overview

This thesis investigates the structure of ionospheric currents excited during heating

experiments in the high-latitude ionosphere. Heating of the ionosphere is accom-

plished using a ground-based radio transmitter in the low HF (3–10 MHz) range of

frequencies. A significant amount of heating occurs in the C and D regions of the

ionosphere (50–90 km altitude), resulting in the modification of the electron conduc-

tivity within a volume with a linear scale of 10–20 km. The resulting discontinuity in

the conductivity perturbs the natural flow of horizontal electron current in the polar

region. If the transmitted HF power is periodically modulated, then the pattern of

perturbed current radiates at the modulation frequency. Due to the large scale size of

the perturbed current, this scheme offers an effective way to generate electromagnetic

radiation at frequencies in the ELF/VLF range (below 30 kHz). This scheme is shown

pictorially in Figure 1-1.

ELF/VLF radiation is essential for communication with receiving stations located

deep underground or underwater. For example, shown in Figure 1-2 is the attenuation

of an electromagnetic wave in sea water versus the depth of the receiving station

and frequency. From the figure, it is clear that one needs to operate below 10 kHz

to remain in contact with the receiving station. However, massive ground-based

ELF/VLF transmitters suffer from economic and geopolitical barriers. An ionosphere-

17
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station in salt water.

18



based system is much more flexible in that it can be excited with a comparatively

small ground-based HF transmitter, and it does not need to be retuned for operation

at different ELF/VLF frequencies.

However, the tradeoff is that the operator has limited knowledge of the struc-

ture of the antenna currents generated during HF heating. Specifically, the pattern

of perturbed current cannot be determined directly due to a lack of in situ instru-

ments. Thus one must be content with observing the radiation on the ground and

extrapolating backwards to the source region. In this thesis, the author attempts to

deduce the structure of the currents based on measurements of polarization, mag-

nitude, and phase of ELF/VLF radiation during an ionospheric heating experiment

using the HAARP facility in eastern Alaska. Two simple theories of antenna current

are considered [Stubbe and Kopka, 1977, and Stubbe et al., 1982] and are found to

be insufficient to explain the observed radiation. The theories are extended by the

author to explain the experimental data.

The introductory chapter briefly discusses the ionospheric environment and out-

lines ionospheric heating. Chapter 2 reviews the kinetics of plasma heating. The

Boltzmann equation is analyzed assuming elastic binary collisions and stationary

molecules. This approach is carried until it becomes obviously necessary to include

molecular motion and inelastic collisions. Effects such as molecular recoil and rota-

tional excitation of molecules are considered. The formulation is continued until we

arrive at expressions for the distribution function in terms of the power of the injected

HF radiation.

Chapter 3 solves for the distribution function of the heated plasma and then

determines the bulk parameters of temperature, conductivity, and current. Two

distinct limits for the distribution function are considered. The first limit assumes

the modulation is slow compared to the thermal response time of the ionosphere,

and thus the ionosphere is in thermal steady state. The other limit is the opposite

case, where the modulation frequency is fast compared to the response time and the

electron distribution function exhibits small perturbations around an average value.

The current is described in several levels of the theoretical detail. The first level

19



describes the theory of Stubbe et al. [1982], where the polarization of the modified

plasma volume is ignored. The second level is the theory of Stubbe and Kopka [1977],

which gives a two-dimensional analytic model for static polarization. The third level

is the author’s extension of the second level to three dimensions. The fourth level

describes the author’s numerical solution to Maxwell’s equations.

Chapter 4 presents data from heating experiments in Alaska. Measurements of

the radiation polarization ellipse and magnitude/phase are used to test predictions of

the theory. It is found that the author’s third- and fourth-level theories are necessary

to explain the observed characteristics of the radiation.

Chapter 5 summarizes the thesis and assesses the results of the experiments. Some

suggestions for future work are provided.

1.2 The plasma environment

The solar wind consists of hot, fully-ionized hydrogen and helium (n ≈ 107 m−3, Te ≈
10 eV) expanding outward from the sun at approximately 400 km/s. The magnetic

diffusion time τm = σµ0L
2 is thousands of years, which is long compared to the

4 days it takes for the solar wind to travel from the sun to the earth. Thus the

sun’s magnetic field is “frozen in” to the expanding plasma. A top view of the sun’s

magnetic field is shown in Figure 1-3. The magnetic field spirals outward with the

velocity of the solar wind, and rotates with the 27-day period of the sun, resulting

in the spiral pattern shown in the figure. There is also vertical structure. As the

solar wind expands, the magnetic field is stretched into a thin disc. Field lines above

and below the ecliptic plane are oppositely directed, and therefore separated by a

current sheet. This current sheet, as shown in Figure 1-4, undulates with the 27-day

rotational period of the sun, since the magnetic and geographic poles of the sun do

not coincide. The inset in Figure 1-4 shows the field structure in a vertical plane. As

the current sheet undulates, the sun’s magnetic field alternates upward and downward

with respect to the ecliptic at the location of the earth.

Let us consider the case of downward-directed field lines at the location of the

20
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earth. Shown in Figure 1-5 is the earth’s magnetosphere in such a case, where

downward-directed magnetic field lines from the sun approach the earth. The sun’s

field connects with the earth’s field on the sunward side of the earth, and the whole

structure is dragged away from the sun until reconnection occurs in the earth’s mag-

netotail. The magnetotail is a distorted dipole field, and so ∇×B is nonzero there.

A current must exist coming out of the plane of the figure, and thus a J × B force

will drive plasma flow back towards the earth. Of particular interest here is the effect

of plasma flow across the earth’s magnetic field lines in the magnetosphere, as shown

in Figure 1-6. The closed dipolar field lines around the side of the earth experience

a transverse flow in the sunward direction, resulting in an outward-directed (evening

sector) or inward-directed (morning sector) electric field, according to the ideal MHD

“Ohm’s law” E ≈ −v × B. However, the conductivity along the field lines is high,

so field-aligned currents J‖ transport this electric field downward to the ionosphere

where it is directed in a general northern direction (evening sector), or southern direc-

tion (morning sector). These electric fields drive plasma flow in the polar F region of

the ionosphere (above 150 km), again according to Ohm’s law. Since the electric fields

change sign between the evening and morning sectors, the resulting plasma convection

pattern has a two-cell structure. An example of a two-cell structure deduced from
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satellite magnetic measurements is shown in Figure 1-7 (from the CEDAR/TIMED

database). The electric fields also map down to the lower regions of the ionosphere

(below 150 km). In the lower layers, collisions are more frequent, leading to indepen-

dent behaviour of the electrons and ions, and hence allowing electric current. In the

E region (90-150 km), the crossfield (Pedersen) electron conductivity is quite high in

a rather small altitude range (see Figure 1-8), leading to a narrow layer of current

referred to as the polar electrojet. It should be noted that this electrojet mechanism

is quite distinct from the equatorial electrojet, which relies on neutral F region wind

as a drive rather than magnetospheric solar wind dynamo action.

While the polar electrojet is centered in the E region, small amounts of current

also flow in the C and D regions (50-90 km). It is at these altitudes where the conduc-

tivity perturbation due to ionospheric heating can significantly disturb the natural

electric current. However, our ability to understand what happens in the C and D

regions during the heating experiments is limited by our knowledge of the electron

density profile. The C and D region electron densities cannot be investigated using

standard reflectometry or Thomson scattering methods, due to low density. Rocket
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Figure 1-7: Two-cell pattern of auroral F region plasma convection.
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Figure 1-8: Crossfield (Pedersen) electron conductivity.
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Figure 1-9: Riometer data.

or satellite measurements are possible, but are not continuous. Thus one usually set-

tles for a height-integrated measurement technique, such as riometry. A riometer is a

ground-based zenith-pointing receiver which monitors the level of galactic noise near

a frequency of 30 MHz. The noise originates from various extra-terrestrial sources,

and varies from one hour to another as the Earth rotates. If there was no ionospheric

absorption, then the level of noise over a period of one day would be a repeatable

function of the time of day. After many observations, one can develop a “quiet day”

curve which represents the maximum level of noise that is received at a given hour of

the day. By comparing the current noise level to the quiet day curve, the current level

of ionospheric absorption can be determined. Generally speaking, if the signal level is

large, then the height-integrated D region plasma density is low, whereas if the signal

is small, then the height-integrated density is large. Thus the riometer gives some

idea of the lower ionospheric density. An example is shown in Figure 1-9 (from the

HAARP instrument suite). The top curve is the quiet-day curve, the middle curve is

the measured 30 MHz signal level and the bottom curve is the deduced absorption.

There have been attempts to associate electron density profiles with different levels

of galactic noise absorption. Rocket-based instruments have been flown through the
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Figure 1-10: Left panel, nighttime electron density profiles for (left to right) 0.1, 0.6,
and 1.8 dB of absorption. Right panel, daytime profiles for (left to right) 0.1, 0.8,
and 3.2 dB of absorption.

C/D region of the high-latitude ionosphere at different times of day and during differ-

ent galactic noise absorption conditions [Jespersen, 1966] in an attempt to produce a

“catalog” of profiles indexed by time of day and absorption level. A simple catalog of

this sort was presented by Barr and Stubbe [1984], displayed in Figure 1-10. Shown

are six electron density profiles representing typical nighttime and daytime profiles

in conditions of low, medium, and high absorption of 30 MHz galactic noise. These

profiles will be adopted when we discuss modification of the lower ionosphere. In this

study we will not use the often-cited mid-latitude profiles given by Gurevich [1978].

For completeness, we mention the neutral profile, as it plays an important role in

the loss processes. In the 30–100 km range of altitudes, the neutral density gently

rolls off with increasing altitude, maintaining the familiar 4:1 nitrogen-to-oxygen ratio.

The profile is plotted in Figure 1-11 [Johnson, 1961].
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Figure 1-11: Neutral density profile.

1.3 HF modification

Powerful HF waves launched from ground-based transmitting stations (referred to

as “heaters”) can significantly modify the lower ionosphere. The electron temper-

ature increases, affecting elastic and inelastic electron-neutral collision frequencies,

which results in a change to the plasma conductivity. Local changes to the plasma

conductivity in the presence of solar wind dynamo-produced electric fields will lead

to perturbed electric currents. In particular, amplitude-modulated HF transmissions

will lead to “antenna” radiation at the modulation frequency by the perturbed cur-

rents.

The mechanism was first demonstrated at Gor’kii in the USSR [Getmantsev et

al., 1974] using two carrier frequencies, resulting in beat-wave modulation of the con-

ductivity. The effect was confirmed in the polar region at Monchegorsk [Kapustin et

al., 1977]. Later experiments in the 1980s with the EISCAT transmitter at Tromsø,

Norway [Stubbe et al., 1981 and 1982, Rietveld et al., 1986 and 1987], are the most

comprehensive to date, having produced much frequency and time domain analysis

of the radiating characteristics. However, it soon became clear that the major limi-
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tation to achieving large temperature (and hence conductivity) changes in the lower

ionosphere was due to a process known as self-absorption.

As the ionosphere heats up during the heater pulse, the effective electron-neutral

collision rate increases, leading to increased attenuation of the injected HF wave.

Thus the process of ionospheric heating is self-reinforcing such that lower ionospheric

regions quickly run away to high temperatures while higher altitudes do not get

significantly heated. This problem of self-absorption has the obvious consequence

that only low altitudes can be heated to high temperatures [Kotik and Itkina, 1998].

Unfortunately, conductivity modulation is a much more effective process at higher

altitudes, as it scales with plasma density, and thus the full potential of ionospheric

heating cannot be realized.

Some failed approaches at a solution include heating the ionosphere for short pe-

riods of time, such that the lower layers do not have sufficient time to heat up, and

also launching waves from the topside of the ionosphere to access higher altitudes

directly. More practical recent approaches have looked at rapidly scanning the trans-

mitter beam angle to heat a larger horizontal extent of plasma [Papadopoulos et al.,

1990], or to excite Cerenkov radiation [Papadopoulos et al., 1994]. In addition, scan-

ning allows one to use the ELF/VLF source as a probe for underground tomography

applications, and thus demands good control of the polarization of the radiation [Mi-

likh et al., 1999]. Realizing these endeavors requires a fundamental understanding

of the nature of the current structure which is excited during an ionospheric heating

experiment, and thus the motivation for pursuing the current work.
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Chapter 2

The Kinetics of Ionospheric

Modification

The theory presented in this chapter is the author’s interpretation of the kinetics

described by Allis [1956], Shkarofsky et al. [1966], and Gurevich [1978]. The aim is to

provide a concise, but meaningful motivation for Equation (3.1), which is the point

of departure for the author’s own calculations in Chapters 3 and 4.

In the ionospheric C and D regions (50–90 km), the frequency of an HF wave (3–10

MHz) is much larger than the typical electron plasma frequency (100 kHz). Thus we

can safely ignore the dynamics of ions. Furthermore, inhomogeneity can be ignored

because the mean free path (1–10 cm, for plasma at Te = 180 K and N = 1021 m−3) is

short compared to the smallest inhomogeneity scale length, the HF wavelength (100

m). In other words, electrons will make many collisions before moving a significant

fraction of an HF wavelength. Thus we investigate the homogeneous Boltzmann

equation for the electrons:

∂f

∂t
− e

m
(E+ v ×B) · ∂f

∂v
+ S = 0. (2.1)

Here, f is the electron distribution function, and S is the Boltzmann collision integral,

which describes the change in f due to collisions. The collisions are dominantly

electron-neutral. The interaction forces are short range, and therefore we consider
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only binary collisions.

The distribution f is a function of three velocity variables and one time variable.

In spherical coordinates one can write f(v, t) = f(v, θ, φ, t). A procedure for handling

such dependencies is to expand f in a series of orthogonal basis functions of one or

more of the independent variables. In our case, we will expand two dimensions of

velocity space (the polar and azimuthal angles) in spherical harmonics, and the one

dimension of time in Fourier series.

2.1 Spherical harmonic expansion

2.1.1 Expansion to first order

In view of the spherical geometry of the collision integral, we consider an expansion

of f in spherical harmonics:

f(v, θ, φ) =
∑
lms

flms(v)Ylms(θ, φ) (2.2)

=
∞∑
l=0

l∑
m=0

1∑
s=0

flms(v)Ylms(θ, φ). (2.3)

For notational simplicity, we do not denote the time dependence of f . The spherical

harmonic Ylms is defined by

Ylms(θ, φ) = Pm
l (cos θ)(δ0s cosmφ+ δ1s sinmφ). (2.4)

Here, θ is the angle between v and B, φ is the azimuthal coordinate, and the Legendre

polynomials Pm
l (cos θ) are defined by

Pm
l (cos θ) =

(2l)! sinm θ

2ll!(l −m)!

[
cosl−m θ − (l −m)(l −m− 1)

2(2l − 1)
cosl−m−2 θ + ...

]
. (2.5)

To start, we will expand f to order l = 1. This confines the current treatment to

cases where f is only weakly anisotropic. The requirements for weak anisotropy are

not easily established at the beginning, but the validity of the approximation can be
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verified a posteriori (see Section 3.1.1). We proceed by expanding:

f(v, θ, φ) ≈
1∑
l=0

l∑
m=0

1∑
s=0

flms(v)Ylms(θ, φ) (2.6)

= f000Y000 + f110Y110 + f111Y111 + f100Y100 (2.7)

= f000 + f110 sin θ cosφ+ f111 sin θ sinφ+ f100 cos θ. (2.8)

Here we have written out the l = 0 and l = 1 spherical harmonics explicitly. These

harmonics have a useful physical interpretation. The Y000 harmonic is isotropic,

whereas the other three are the directional cosines of a vector in three-dimensional

velocity space. By adopting the following definitions:

f0 = f000 (2.9)

f1 = f110x̂+ f111ŷ + f100ẑ, (2.10)

we can interpret Equation (2.8) as the sum of isotropic and directional components:

f(v) ≈ f0(v) + f1(v) · (v/v). (2.11)

We now insert the first order expansion (2.11) into the Boltzmann equation (2.1).

The procedure is written out here term by term. The time derivative term is

∂

∂t

(
f0 + f1 · v

v

)
=

∂f0

∂t
+
v

v
· ∂f1
∂t

. (2.12)

The electric field term is

E · ∂

∂v

(
f0 + f1 · v

v

)
= E ·

[
v

v

∂f0

∂v
+

∂

∂v

(
f1 · v

v

)]
(2.13)

= E ·
[
v

v

∂f0

∂v
+
f1
v
· ∂v
∂v

+
∂

∂v

(
f1
v

)
· v

]
(2.14)

= E ·
[
v

v

∂f0

∂v
+
f1
v
+
v

v

∂

∂v

(
f1
v

)
· v

]
. (2.15)
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The magnetic field term follows along similar lines:

(v ×B) · ∂

∂v

(
f0 + f1 · v

v

)
= (v×B) ·

[
v

v

∂f0

∂v
+
f1
v
+
v

v

∂

∂v

(
f1
v

)
· v

]
(2.16)

= (B× f1) · v
v
. (2.17)

Finally, we consider the collision term. Looking at the Boltzmann equation as a

continuity condition, S can be viewed as the outflow of electrons from a volume dv

due to collisions:

S dv =
∫
ρc dΩ. (2.18)

Here, ρc is the net electron velocity flux directed radially outward from dv due to

collisions, and the integral is taken over all solid angles. The contributions to ρc

consist of electrons scattering in and out of the volume dv:

ρc = ρout − ρin. (2.19)

Concerning scattering out of dv, we can write the number of electrons scattered into

an angle (θ′, φ′) per unit time, per unit volume, as

ρout = vf(v) dv
∑
j

NjIj(v, θ
′). (2.20)

The factor vf(v) dv is the flux of electrons in configuration space, and the summation

is the scattering cross section per unit volume, with Nj being the jth molecular species

density, and Ij being the jth differential cross section, assumed to be azimuthally

symmetric. We approximate the molecular scatterers as being infinitely massive, and

therefore their dynamics do not play a role.

In a similar manner, electrons enter dv by scattering from some other location dv′

through a scattering angle of (θ′, φ′):

ρin = v′f(v′) dv′ ∑
j

NjIj(v
′, θ′). (2.21)
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We insert Equations (2.20) and (2.21) into (2.18) to arrive at the following collision

integral:

S dv =
∑
j

Nj

∫
[vf(v)Ij(v, θ

′) dv − v′f(v′)Ij(v′, θ′) dv′] dΩ′. (2.22)

If the collisions are completely elastic, then v = v′. This condition implies that the

differential volumes dv and dv′ are the same size. We can write

S =
∑
j

Njv
∫
[f(v, θ, φ)− f(v, θ′, φ′)]Ij(v, θ′) dΩ′. (2.23)

Expanding f to first order yields:

S =
∑
j

Njv
∫ [

f0(v) + f1(v) · v
v
− f0(v)− f1(v) · v

′

v

]
Ij(v, θ

′) dΩ′ (2.24)

= f1 ·
∑
j

Njv
∫ (

v

v
− v′

v

)
Ij(v, θ

′) dΩ′. (2.25)

Since both v/v = ẑ and Ij are azimuthally symmetric in the primed coordinates, only

the azimuthally symmetric part of v′ survives the integration, and we find

S =
v

v
· f1


∑

j

Njv
∫
(1− cos θ′)Ij(v, θ′) dΩ′


 . (2.26)

The quantity in brackets will be defined as ν:

S =
v

v
· f1ν. (2.27)

We now combine Equations (2.12), (2.15), (2.17), and (2.27), to arrive at the Boltz-

mann equation accurate to first order in the spherical harmonic expansion of f :

∂f0

∂t
− e

m
E ·

[
f1
v
+
v

v

∂

∂v

(
f1
v

)
· v

]
(2.28)

+
v

v
·
[
∂f1
∂t
− e

m

(
E
∂f0

∂v
+B× f1

)
+ f1ν

]
= 0. (2.29)
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This is a scalar equation with four unknowns, namely the amplitudes (f000, f110, f111,

f100) of the spherical harmonics to first order (Y000, Y110, Y111, Y100). The orthogonality

property of the spherical harmonics will let us decompose Equation (2.29) into four

scalar equations for the harmonic amplitudes.

2.1.2 Solution of the harmonic amplitudes

To solve for (f000, f110, f111, f100), we multiply Equation (2.29) by one of (Y000, Y110,

Y111, Y100) and integrate over all angles. The outcomes of this process are moments

of Equation (2.29), often referred to as the spherical harmonic moment equations, or

more succinctly, the moment equations.

Beginning with the Y000 moment, we multiply Equation (2.29) by 1 and integrate

over angle. The (v/v) · [ ] term on the second line of Equation (2.29) is of the form

(Y110x̂+ Y111ŷ + Y100ẑ) · [ ] and vanishes in the angle integration. Therefore we need

only deal with the first line:

∫ {
∂f0

∂t
− e

m
E ·

[
f1
v
+
v

v

∂

∂v

(
f1
v

)
· v

]}
dΩ = 0. (2.30)

The first two terms are trivial. We remove a factor of 4π and write the third term as

a double contraction:

∂f0

∂t
− e

m

[
E · f1

v
+

vE

4π

∂

∂v

(
f1
v

)
:
∫
vv

v2
dΩ

]
= 0. (2.31)

The off-diagonal terms in the dyadic vv/v2 involve odd powers of cosφ or sinφ and

integrate to zero over the azimuthal coordinate. The diagonal terms integrate to

4π/3. The double contraction of a tensor A with the identity tensor is the trace of

A, thus
∂f0

∂t
− eE

m
·
[
f1
v
+

v

3

∂

∂v

(
f1
v

)]
= 0, (2.32)

which can be written
∂f0

∂t
− e

3mv2
E · ∂

∂v
v2f1 = 0. (2.33)
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This is the Y000 moment equation.

We now calculate the anisotropic Y110, Y111, and Y100 moments of Equation (2.29).

Isotropic terms of Equation (2.29) will integrate to zero. This is the case for the first

time derivative term. Recalling Equation (2.31), the E · [ ] term of Equation (2.29)

involves an isotropic part E · f1, and an anisotropic part of the form

∫
Y110

vv

v2
dΩ. (2.34)

After writing out Y110 as sin θ cosφ and likewise for the six distinct entries in the

dyadic, one will find that all integrals over the sphere are zero. This same result

holds for Y111 and Y100. Therefore we need only consider the second line of Equation

(2.29) for the three anisotropic moments. We start with Y110 and compute

∫
sin θ cosφ

v

v
·
[
∂f1
∂t
− e

m

(
E
∂f0

∂v
+B× f1

)
+ f1ν

]
dΩ = 0. (2.35)

Y110 is orthogonal to the ŷ and ẑ components of v, thus we have

[
∂f1
∂t
− e

m

(
E
∂f0

∂v
+B× f1

)
+ f1ν

]
x

∫
sin3 θ cos2 φ dθdφ = 0, (2.36)

where [ ]x denotes the x̂ component, and the integral evaluates to 4π/3. The Y111

and Y100 moments yield similar results for the ŷ and ẑ components. Rewriting these

three scalar moment equations in vector form leaves us with

∂f1
∂t
− e

m

(
E
∂f0

∂v
+B× f1

)
+ f1ν = 0. (2.37)

This vector equation, along with the scalar equation (2.33) are a system of four

scalar moment equations which can be used to solve for the variables (f000, f100, f110,

f111). Henceforth we will refer to Equation (2.33) as the scalar moment equation, and

Equation (2.37) as the vector moment equation.
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2.1.3 Interpretation

We now look at the useful physical information contained in f0 and f1 concerning

bulk parameters such as density, current, and energy.

The first quantity of interest is the electron density:

n =
∫
f(v) dv (2.38)

=
∑
lms

∫
flms(v)v

2 dv
∫
Ylms(θ, φ) dΩ. (2.39)

All harmonics except Y000 will integrate to zero over angle, thus

n =
∫
f000(v)v

2 dv
∫
Y000 dΩ (2.40)

= 4π
∫
f0v

2 dv. (2.41)

Therefore electron number density can be recovered from f0 alone by integrating over

v, with the factor of 4πv2 to account for the size of the velocity volume element as

one moves outward from the origin.

This result suggests that a conservation equation for the density can be derived

from the scalar moment equation (2.33) by integrating over v:

4π
∫ (

∂f0

∂t
− e

3mv2
E · ∂

∂v
v2f1

)
v2 dv = 0. (2.42)

Since E does not depend on v, we can pull it out of the integral:

∂n

∂t
+

4πe

3m
E ·

∫
∂

∂v
v2f1 dv = 0. (2.43)

The quantity v2f1 vanishes at both limits, so we have simply

∂n

∂t
= 0. (2.44)

This result should not be surprising—it is the fluid equation of continuity for an

assumed homogeneous plasma. While this example is somewhat trivial, it does begin
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to illustrate the connection between the moment equations and the familiar fluid

equations.

The next quantity to be investigated is the bulk electron motion v.

v =
1

n

∫
vf(v) dv (2.45)

=
1

n

∑
lms

∫
flms(v)v

2 dv
∫
vYlms(θ, φ) dΩ (2.46)

=
4π

3n

∫
f1v

3 dv. (2.47)

Therefore the bulk electron motion is determined entirely by f1. Because we are

ignoring ion dynamics, the electric current is simply

J = −env (2.48)

= −4πe

3

∫
f1v

3 dv. (2.49)

In the same manner as for the density, a conservation equation arises from integrating

the vector moment equation (2.37) over v:

4π

3

∫ [
∂f1
∂t
− e

m

(
E
∂f0

∂v
+B× f1

)
+ f1ν

]
v3 dv = 0. (2.50)

The velocity derivative is integrated by parts, and we multiply by m to put this in a

recognizable form:

∂

∂t
(nmv) = −en(E + v ×B)− nmνev, (2.51)

where νe is an effective collision frequency assumed to be given by

vνe = vν (2.52)

= −4π

3n

∫
f1νv

3 dv. (2.53)

Equation (2.51) is the fluid equation for conservation of momentum density. Thus
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the vector moment equation (2.37) can be thought of as the v-dependent counterpart

of the fluid momentum conservation equation.

Had we expanded f to second order, and derived a moment equation for f2, we

might expect that it would give rise to a pressure tensor relation. Alas this analogy is

not entirely correct as one will find that f2 corresponds to the (vv− 1
3
v2I2)-moment of

the Boltzmann equation, or in other words, the anisotropic component of vv [Shkarof-

sky et al., 1966]. The isotropic part of vv, namely the trace v · v, is contained in f0.

By multiplying v · v by m/2, we can interpret this quantity as the average electron

energy. The energy is a convenient scalar measure of the width of the distribution f0

and some use of it will be made in later chapters. The moment can be calculated as

follows:

v · v =
1

n

∫
v2f(v) dv (2.54)

=
1

n

∑
lms

∫
flms(v)v

4 dv
∫
Ylms(θ, φ) dΩ (2.55)

=
4π

n

∫
f0v

4 dv. (2.56)

Thus the average electron energy arises from f0 alone. A conservation equation for

electron energy density arises from integrating the scalar moment equation (2.33) over

v:

4π
m

2

∫ (
∂f0

∂t
− e

3mv2
E · ∂

∂v
v2f1

)
v4 dv = 0. (2.57)

We remove the electric field from the integral and integrate by parts:

∂

∂t

(
n
mv · v

2

)
= −eE · 4π

3

∫
f1v

3 dv. (2.58)

The quantity mv · v/2 is the average electron energy ε. Thus

∂

∂t
(nε) = E · J. (2.59)

This is the conservation equation for the total electron energy density. It is useful to
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separate the energy into ordered and thermal components as follows:

v · v = v · v − (v − v) · (v − v). (2.60)

The ordered v · v component is computed by magnitude-squaring v found earlier.

The thermal component is then the difference of v · v and v · v.

The ordered and thermal components of the energy density have corresponding

conservation equations. To arrive at a conservation equation for the ordered electron

kinetic energy density, we take the dot product of v and the momentum conservation

equation (2.51):

v · ∂
∂t

(nmv) = v · [−en(E + v ×B)− nmνev] (2.61)

∂

∂t

(
nm

2
v · v

)
= E · J− nmνev · v. (2.62)

As suggested by Equation (2.60), a conservation equation for the internal heat kinetic

energy density nεi is obtained by subtracting Equation (2.62) from (2.59):

∂

∂t
(nεi) = nmνev · v. (2.63)

This is a key result. According to our model, what is happening is that the electric

field accelerates electrons in an ordered manner, but the electron direction of travel is

quickly randomized through collisions with molecules. This random motion is what

we characterize as internal heat kinetic energy. Equation (2.63) describes how this

heat energy evolves with time: the electron population will continue to get hotter so

long as the collision frequency and the electron velocity v remain finite. This will

be the case until the electric field is removed and v goes to zero, at which point our

simple model predicts that the electrons stay heated indefinitely. In practice this is

unlikely, as we would expect loss processes to eventually cool the electron population.

Energy loss channels at low electron energies include molecular recoil during elastic

collisions, and excitation of rotational quantum levels of molecules.
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2.2 Energy loss processes

Energy loss processes were neglected in the earlier treatment of the Boltzmann colli-

sion integral when it was approximated that the electron energy was unchanged during

a collision with a molecular scatterer [Eq. (2.23)]. We now relax this approximation

and treat the integral in a more rigorous fashion.

2.2.1 Molecular recoil

The first loss channel is the effect of molecular recoil during an electron-molecule

elastic collision. In other words, some of the electron energy is transfered to the

molecule, and the electron slows down. We recall the collision integral [Eq. (2.22)]:

S dv =
∑
j

Nj

∫
[vf(v)Ij(v, θ

′) dv − v′f(v′)Ij(v′, θ′) dv′] dΩ′. (2.64)

Here, the first term represents the quantity of electrons scattered out of dv at an

angle θ′. It does not matter how much energy they lose upon leaving dv, but only

that they have indeed departed.

The second term is quite different. In this term v′ denotes the velocity-space

location of electrons before they are scattered into the element dv. Thus v′ will be

larger than v by the amount which the electron is slowed down when scattered at

angle θ′. In order to establish a connection between v and v′ we need to know how

much electron energy is lost during an electron-molecule collision.

In analyzing energy loss, some notational confusion is possible. Equation (2.64)

gives the number of particles scattered out of, and in to, element dv. In the first

term, the primed coordinates give the location of the electron after the collision, or

in other words, the velocity after the collision is v′. In the second term, the primed

coordinates give the location of the electron before the collision, so the velocity after

the collision is v. Since v′ appears only in the second term, it is logical to use v′

to denote velocity before the collision in the following discussion of particle collision

laws.
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We consider the energy conservation relation for an electron-molecule collision

with the molecule initially at rest:

1

2
mv′2 =

1

2
MV 2 +

1

2
mv2. (2.65)

The lower case script refers to electrons and the upper case script refers to molecules.

Solving for the velocity difference v′ − v, we find the following approximate relation-

ship:

v′ − v ≈ M

2vm
V ·V. (2.66)

Using momentum conservation, we can eliminate V:

v′ − v =
m

2vM
(v′ − v) · (v′ − v) (2.67)

≈ m

vM
(v′2 − vv′ cos θ′) (2.68)

≈ mv′

M
(1− cos θ′). (2.69)

Thus the change in velocity scales with the pre-collision velocity and depends strongly

on the scattering angle θ′. The angular dependence is as one might expect—the

amount of energy exchanged with the molecule increases monotonically with scatter-

ing angle.

We are now in a position to attack the collision integral. The first order of business

is to relate the dv and dv′ factors. We have

dv′ = v′2 dv′ dΩ′ (2.70)

= v′2
dv′

dv
dv dΩ (2.71)

=
v′2

v2

dv′

dv
dv. (2.72)

Thus we need dv′/dv. From Equation (2.69) we find that

dv′ =
v′

v
dv. (2.73)
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Combining Equations (2.72) and (2.73) yields

dv′ =
v′3

v3
dv. (2.74)

The volume element can now be removed from the collision integral, leaving us with

S =
∑
j

Njv
∫ [

f(v)Ij(v, θ
′)− v′4

v4
f(v′)Ij(v′, θ′)

]
dΩ′. (2.75)

The second term in brackets in Equation (2.64) can be expanded in Taylor series

around v since |v′ − v| � v, v′:

S =
∑
j

Njv

{∫
[f(v, θ)− f(v, θ′)]Ij(v, θ′) dΩ′ −

∫ v′ − v

v4

∂

∂v
[v4f(v, θ′)Ij(v, θ′)] dΩ′

}
.

(2.76)

The first integral was treated in Equation (2.23) and it was shown to contribute to the

vector moment equation for f1. We are interested, however, in modifications to the

scalar moment equation, thus we ignore the first term and consider only the isotropic

part of the second term (with f ≈ f0), which we will denote as S0:

S0 = −∑
j

Nj

v3

∫
(v′ − v)

∂

∂v
[v4f0(v)Ij(v, θ

′)] dΩ′. (2.77)

We insert Equation (2.69), and move the sum and integrals into the derivative:

S0e ≈ − m

Mv2

∂

∂v


v3f0


∑

j

Njv
∫
(1− cos θ′)Ij(v, θ′) dΩ′




 (2.78)

= − m

Mv2

∂

∂v

(
v3f0ν

)
(2.79)

= −mN

Mv2

∂

∂v

(
v4f0σt

)
(2.80)

The 0e subscript denotes the elastic part of S0. Here we have used the definition of

ν from Equation (2.27), and converted to total cross section using ν = Nσtv. N and

σt are density and cross section averaged over molecular species, in this case a 4:1

nitrogen/oxygen ratio, which we will denote as “air”. We recall that ν was associated
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Figure 2-1: Cross section σt for electron-air molecular collisions.

with momentum relaxation [Eq. (2.37)], and thus σt is referred to as the cross section

for “momentum transfer”. However, we have shown here that when molecular recoil

is considered, this cross section is also relevant to energy loss associated with f0. The

momentum transfer cross section σt is calculated [Gurevich, 1978] using experimental

data [Crompton and Sutton, 1952, Engelhardt et al., 1964, Hake and Phelps, 1967]

and is given in Figure 2-1. In the figure, the dashed curve

σt = Cv2/3, (2.81)

where C = 1.6× 10−23 m4/3s2/3, is a good approximation to σt for electron velocities

less than 8 × 105 m/s. The large peak near 8 × 105 m/s is due to the influence of

inelastic nitrogen vibrational excitation on the momentum transfer cross section.

2.2.2 Rotational excitation

We now consider inelastic collisions of electrons with molecules. Elastic collisions

tend to dominate σt (at least in the range v < 8× 105 m/s), so the effect of inelastic
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collisions on f1 will be ignored. Conversely, we can ignore the effect of f1 on the

inelastic collision theory given below if we assume weak anisotropy (|f1| � |f0|).
In a rotational excitation, the molecule gains or loses angular momentum via

the exchange of energy quanta with the electrons. This energy exchange is different

from the elastic case because the electrons can either lose or gain energy. Collisions

resulting in electron energy loss are referred to as “collisions of the first kind”, whereas

those resulting in energy gain are “collisions of the second kind”.

As before, we evaluate the contributions to ρc, the net electron velocity flux out

of dv. The first outgoing contribution concerns electrons which begin with energy

ε = (m/2)v2, excite the molecule from state k to the more energetic state k + j, and

finish with energy ε− εkj = (m/2)v′2:

ρout,1 = vf0(v) dv
∑
k,j

NkIkj(v, θ
′). (2.82)

The “1” subscript denotes a collision of the first kind. Nk is the density of molecules

in the kth state. To simplify the notation, we enumerate the k (rotational energy)

states of a single molecular species and omit the summation over species. The final

loss rates should be averaged over the molecular composition of air, as was done for

molecular recoil.

In a manner similar to the above, a collision of the second kind would involve the

electron encountering a molecule which de-excites from state k to the less energetic

state k − j, leaving the electron with an energy ε+ εk,−j = (m/2)v′2:

ρout,2 = vf0(v) dv
∑
k,j

NkIk,−j(v, θ′). (2.83)

The arrival of electrons follows in the same manner. In a collision of the first kind,

electrons begin with energy ε+ εkj = (m/2)v′2 and finish with ε = (m/2)v2:

ρin,1 = v′f0(v
′) dv′ ∑

k,j

NkIkj(v
′, θ′). (2.84)

The last case involves electrons beginning with energy ε − εk,−j = (m/2)v′2 and
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increasing to energy ε = (m/2)v2:

ρin,2 = v′f0(v
′) dv′∑

k,j

NkIk,−j(v′, θ′). (2.85)

The net outgoing electron flux is thus:

ρc = ρout,1 + ρout,2 − ρin,1 − ρin,2. (2.86)

Before we attempt to combine these expressions, a little simplification is in order.

The dv′ factor can be related to dv by examining the energy relation:

m

2
v′2 =

m

2
v2 ± εk,±j. (2.87)

Differentiating, we find that

dv′ =
v

v′
dv. (2.88)

Note that this is the reciprocal of the relation for elastic collisions [Eq. (2.73)]. From

Equation (2.72) it follows that

dv′ =
v′

v
dv. (2.89)

We insert this volume element into Equations (2.82) through (2.85), and integrate

over angle:

S0 =
∑
k,j

Nk

[
vf0(v)σkj(v) + vf0(v)σk,−j(v) (2.90)

−v
′2

v
f0(v

′)σkj(v′)
∣∣∣
v′=
√

2(ε+εkj)/m
− v′2

v
f0(v

′)σk,−j(v′)
∣∣∣
v′=
√

2(ε−εk,−j)/m

]
. (2.91)

Here, σ(v) is the angle-integrated (total) cross section. At this point, it is useful to

move to energy variables. Equation (2.91) is:

S0 =
2

mv

∑
k,j

Nk

[
εf0(ε)σkj(ε) + εf0(ε)σk,−j(ε) (2.92)

−ε′f0(ε
′)σkj(ε′)

∣∣∣
ε′=ε+εkj

− ε′f0(ε
′)σk,−j(ε′)

∣∣∣
ε′=ε−εk,−j

]
. (2.93)
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We expand to first order in Taylor series, and the zero-order term drops out:

S0 = − 2

mv

∑
k,j

Nk
∂

∂ε
[εf0(εkjσkj − εk,−jσk,−j)] . (2.94)

To evaluate this expression, we will borrow the cross sections from the published

literature [Gerjouy and Stein, 1955]:

σk,k+2(ε) = σr
(k + 2)(k + 1)

(2k + 3)(2k + 1)

[
1− 2(2k + 3)B0

ε

]1/2

(2.95)

σk,k−2(ε) = σr
k(k − 1)

(2k − 1)(2k + 1)

[
1 +

2(2k − 1)B0

ε

]1/2

(2.96)

σr =
8πQ2a2

0

15
. (2.97)

The cross sections are nonzero for state changes of k to k±2, and otherwise zero. B0

and Q are constants, which for nitrogen and oxygen are given by [Herzberg, 1950]:

B0(N2) = 2.48 · 10−4 eV (2.98)

B0(O2) = 1.79 · 10−4 eV (2.99)

Q(N2) = 1.04 (2.100)

Q(O2) = 1.8. (2.101)

a0 is the Bohr radius

a0 = 5.29× 10−11 m, (2.102)

and the energy levels are given by

εk = B0k(k + 1), (2.103)

so that

εk,k+2 = εk+2 − εk (2.104)

= (4k + 6)B0 (2.105)
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εk,k−2 = εk − εk−2 (2.106)

= (4k − 2)B0. (2.107)

In view of the fact thatB0 is tiny compared to typical electron energies ε in the plasma,

we can ignore the bracketed factors in the rotational cross section expressions [Eqs.

(2.95) and (2.96)], and insert the above results into Equation (2.94):

S0 = − 2

mv

∑
k

Nk
∂

∂ε

{
εf0B0σr

[
(4k + 6)(k + 2)(k + 1)

(2k + 3)(2k + 1)
− (4k − 2)k(k − 1)

(2k − 1)(2k + 1)

]}

= −8B0σr
mv

∂

∂ε
(εf0)

∑
k

Nk. (2.108)

The summation over states is just the molecular density N . Going back to velocities,

we find that

S0r = −4B0σrN

mv2

∂

∂v
(v2f0), (2.109)

where 0r denotes S0 due to rotational excitation.

2.2.3 Interpretation

The collision integral S0 due to molecular recoil and rotational excitation has the

compact form

S0 = S0e + S0r (2.110)

= − 1

2v2

∂

∂v
(Rv3f0), (2.111)

where R is a sum of loss rates for the two processes:

R = Re +Rr (2.112)

Re =
2mNvσt

M
(2.113)

Rr =
8B0σrN

mv
. (2.114)
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The rationale for defining an effective loss rate R in Equation (2.111) is clear when

we add a loss term S0 to the scalar moment equation (2.33). Ignoring the electric

field, it is:
∂f0

∂t
− 1

2v2

∂

∂v
(Rv3f0) = 0. (2.115)

If we assume, for illustrative example, that R is constant over the region of interest,

then we can easily calculate an energy density conservation relation [see Eq. (2.57)]

by taking the 2πmv4-moment of Equation (2.115):

∂

∂t
(nε)− πmR

∫
v2 ∂

∂v
(v3f0) dv = 0, (2.116)

where nε is the total electron energy density (equal to the internal heat kinetic energy

density since there is no electric field to drive ordered motion). After integrating the

second term by parts, we find that

∂

∂t
(nε) +Rnε = 0. (2.117)

Therefore the energy relaxation is exactly that of a first order system, decaying ex-

ponentially with a time constant τ = 1/R, hence the rationale for defining R as a

“loss rate”. In the general case, of course, R has velocity dependence. However, the

essential character of the energy relation is the same.

2.2.4 Effect of molecular motion

We have so far assumed that the molecules are stationary at the onset of a collision.

This does not appear to be a problem since the ratio of velocities of electrons and

molecules is on the order of
√
M/m ≈ 230. Nevertheless, the molecular motion is

important as we would expect the electrons to relax to a Maxwellian distribution

with the temperature T of the molecules, as opposed to zero energy as predicted by

Equation (2.117).

The loss rate defined in Equation (2.111) needs to be modified to account for the

molecular velocity distribution. The main effect of the molecular velocity spread will
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be to provide a small perturbation to the precollision electron velocity relative to the

molecule:

v = v|T=0 + δv, (2.118)

which produces a perturbation to the distribution function:

f0(v) = f0(v)|T=0 + δv
∂f0

∂v
. (2.119)

We enter this correction into Equation (2.111):

S0 = − 1

2v2

∂

∂v

[
Rv3

(
f0 + δv

∂f0

∂v

)]
. (2.120)

We need to determine δv such that this expression produces the correct loss rate.

The simplest route is the case of equilibrium, with no fields, such that ∂f0
∂t
, S0 = 0,

and the electrons are Maxwell-distributed at the molecular temperature T . In this

case, Equation (2.120) implies

0 = − 1

2v2

∂

∂v

[
Rv3

(
1 + δv

∂

∂v

)
n
(

m

2πκT

)3/2

exp

(
−mv2

2κT

)]
. (2.121)

Thus we must have

δv =
κT

mv
. (2.122)

The corrected form of the collision integral is then [Shkarofsky et al., 1966]:

S0 = − 1

2v2

∂

∂v

[
Rv3

(
f0 +

κT

mv

∂f0

∂v

)]
. (2.123)

We hereby add it to the scalar moment equation (2.33) so that it now reads

∂f0

∂t
− e

3mv2
E · ∂

∂v
v2f1 − 1

2v2

∂

∂v

[
Rv3

(
f0 +

κT

mv

∂f0

∂v

)]
= 0. (2.124)
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2.3 Fourier series expansion

2.3.1 Expansion to first order

We now expand all quantities in Fourier series of the harmonics of an applied HF

heater wave field, and retain zero- and first-harmonic terms. The first quantity to

expand is the electric field itself. We need to account for two sources—an applied

heater wave field E1 at a carrier frequency ω, and the constant electric field E0 due

to the solar wind dynamo:

E(t) = E0 + E1e−iωt. (2.125)

The superscripts represent temporal harmonics, and the subscripts will continue to

represent spherical harmonics. As per convention, we take the real part of the complex

electric field to represent the physical electric field.

The next quantity to expand is the distribution function. All spherical harmonics

will respond at all temporal harmonics of ω:

flms(t) =
∞∑
q=0

f qlmse
−iqωt. (2.126)

Of course, we have been focusing our attention on f0 = f000 and f1 = f110x̂+ f111ŷ+

f100ẑ in our development of the scalar and vector moment equations. These equa-

tions are coupled, nonlinear relations which lead to various feedback channels for the

excitation of f0 and f1. The analysis can be greatly simplified by identifying which

channels are dominant. We start by considering the nonlinearities of the scalar and

vector moment equations, respectively:

f0 ∼ E · f1 (2.127)

f1 ∼ Ef0. (2.128)

Therefore f 0
0 , the zeroth harmonic of f0, could be excited by the beating of E1 and

f11 . Alternatively, it could be excited by the beating of E0 and f01 . Either way, once

f 0
0 is excited, it can then beat with E1 to feed back into f11 or beat with E0 to feed
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back into f01 . These channels can be illustrated as follows:

f 0
0

E0←→ f01

E1 � E1 �
f11

E0←→ f 1
0

E1 � E1 �
f 2

0
E0←→ f21

...
...

We now determine the dominant channels. First, E0 is on the order of millivolts,

whereas E1 is on the order of volts, so we expect that the two vertical paths are

essentially decoupled. Second, for most interactions we expect the ordering f 0
0 �

f 1
0 � f 2

0 . Thus the feedback between f 0
0 and f11 is almost certainly the dominant

channel during plasma heating.

The component f01 is also of interest, as it will be shown shortly that it describes

the antenna current in the ELF/VLF generation experiments. It has been shown in

experiments [Kasputin, 1977] that this antenna current is linearly proportional to E0,

which suggests that it arises from f 0
0 rather than via feedback between f 1

0 and f01 .

Thus the dominant channels are:

f11
E1←→ f 0

0
E0−→ f01

With this picture in mind, we expand f according to

f = f 0
0 + (f01 + f11 e

−iωt) · (v/v). (2.129)

Inserting these expansions into the moment equations yields

∂f 0
0

∂t
− e

3mv2

(
E0 + E1e−iωt

)
· ∂
∂v

[
v2(f01 + f11 e

−iωt)
]

− 1

2v2

∂

∂v

[
Rv3

(
f 0

0 +
κT

mv

∂f 0
0

∂v

)]
= 0 (2.130)
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∂

∂t
(f01 + f11 e

−iωt)− e

m

[(
E0 + E1e−iωt

) ∂f 0
0

∂v
+B× (f01 + f11 e

−iωt)

]

+ν(f01 + f11 e
−iωt) = 0. (2.131)

2.3.2 Solution of the harmonic amplitudes

We now determine the harmonic amplitudes f 0
0 , f

0
1 , and f

1
1 by separating the tempo-

rally orthogonal parts of Equations (2.130) and (2.131). The formal process for doing

so is to multiply the equations by eiqωt (q = 0, 1, ...), integrate over 0 < t < 2π/ω, and

divide by 2π/ω. We need to be careful in multiplying complex quantities, since we

desire to represent the product of their real parts, rather than the real part of their

products. For example, the real (desired) part of the zeroth harmonic beat of E1 and

f11 is given by 〈
�(E1e−iωt) · �(f11 e−iωt)

〉
=

1

2
�(E1∗ · f11 ). (2.132)

We integrate Equation (2.130) over a period with q = 0 and obtain for f 0
0 :

∂f 0
0

∂t
− e

6mv2

∂

∂v

[
v2�(E1∗ · f11 )

]
− 1

2v2

∂

∂v

[
Rv3

(
f 0

0 +
κT

mv

∂f 0
0

∂v

)]
= 0. (2.133)

Here we have ignored the product of E0 and f01 , and have moved E1 inside the deriva-

tive. Similarly, to get equations for f10 and f11 , we integrate Equation (2.131) with

q = 0, 1:

f q1 = −uq ∂f
0
0

∂v
, (2.134)

where uq satisfies
duq

dt
+ νuq = − e

m
(Eq + uq ×B). (2.135)

Thus f1 follows the trajectory of an electron in the fields E and B. If we assume that

B is a constant field in the z-direction, and all quantities in Equation (2.135) vary

with e−iqωt, q = 0, 1, then

(ν − iqω)uq + ωcu
q × ẑ = − e

m
Eq. (2.136)

52



Solving for uq and inserting into Equation (2.134) gives us the well-known results

[Shkarofsky et al., 1966]:

f01 = −




ν
ω2
c + ν2 − ωc

ω2
c + ν2 0

ωc
ω2
c + ν2

ν
ω2
c + ν2 0

0 0 1
ν



(
eE0

m

∂f 0
0

∂v

)
(2.137)

f11 = −




ν − iω
ω2
c + (ν − iω)2

− ωc
ω2
c + (ν − iω)2

0

ωc
ω2
c + (ν − iω)2

ν − iω
ω2
c + (ν − iω)2

0

0 0 1
ν − iω



(
eE1

m

∂f 0
0

∂v

)
. (2.138)

Equations (2.133), (2.137), and (2.138) are the equations for the harmonic amplitudes

f 0
0 , f

0
1 , and f

1
1 .

2.3.3 Interpretation

The physically useful information contained in the above equations are the energy

(associated with f 0
0 ) and the electric current (associated with f q1 ). To properly inter-

pret the energy, we need to choose a particular form for E1 in Equation (2.133). We

consider the case of injection into the plasma along the magnetic field lines. In the

lower ionosphere, in particular, the field polarization is not significantly affected by

the plasma, so the field can be written:

E1e−iωt =
E1

√
2
a(t)(x̂± iŷ)e−iωt, (2.139)

where ± denotes the R- and L-mode cases, and a(t) is a slowly varying (compared to

e−iωt) amplitude modulation of the carrier. The coordinate system here has ẑ pointing

vertically downward (along the earth’s magnetic field B), x̂ pointing north, and ŷ

pointing east. The factor of
√
2 ensures that the vertical power flux is (E1)2p(t)/2η,

where p(t) = |a(t)|2 is a slowly-varying power modulation function and η is the

impedance of free space (since the HF frequency is far above the electron plasma
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frequency). We combine Equations (2.133), (2.138) and (2.139) to arrive at:

∂f 0
0

∂t
=

e2(E1)2p(t)

6m2v2

∂

∂v

[
v2ν

(ω ∓ ωc)2 + ν2

∂f 0
0

∂v

]
+

1

2v2

∂

∂v

[
Rv3

(
f 0

0 +
κT

mv

∂f 0
0

∂v

)]
,

(2.140)

By taking the second moment of this relation [see Eqs. (2.56) and (2.117)] we arrive

at an equation for the electron energy:

∂ε

∂t
= Q− L. (2.141)

Thus the Boltzmann equation for f 0
0 [Eq. (2.140)] has the basic structure of a first-

order heat equation, where the change in electron energy is the difference of heating

and cooling terms. We will keep this basic structure in mind in later chapters.

With regards to f01 and f11 , they can be interpreted as related to current:

J0 = −4πe

3

∫
f01 v

3 dv (2.142)

J1 = −4πe

3

∫
f11 v

3 dv. (2.143)

J0 is a current which varies slowly in response to the power modulation p(t). It is the

“antenna current” which produces ELF/VLF radiation, and is of great importance

in Chapters 3 and 4. J1 is the quiver current, which is the simple oscillatory motion

of electrons in the HF heater electric field, and is of lesser importance. Henceforth

we will use the unsubscripted symbol J to denote the antenna current J0.

As a final point, it should be noted that E0 is not known a priori and it is therefore

useful to talk about the ionospheric conductivity rather than the actual current J. To

recast the problem in terms of conductivity we insert Equation (2.137) into (2.142):

J = σE0, (2.144)
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where the conductivity tensor is given by:

σ =




σP −σH 0

σH σP 0

0 0 σ0


 , (2.145)

with

σP = −4πe2

3m

∫
v3 ν

ω2
c + ν2

∂f 0
0

∂v
dv (2.146)

σH = −4πe2

3m

∫
v3 ωc
ω2
c + ν2

∂f 0
0

∂v
dv (2.147)

σ0 = −4πe2

3m

∫
v3 1

ν

∂f 0
0

∂v
dv. (2.148)

The three conductivities are referred to as Pedersen, Hall, and specific. This is the

low-frequency, homogeneous version of the conductivity tensor given by Allis [1956].

The conductivity tensor plays a central role in the antenna current models presented

in Chapter 3.
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Chapter 3

The Electrojet Antenna

The purpose of this chapter is to solve Equation (2.140),

∂f 0
0

∂t
=

e2(E1)2p(t)

6m2v2

∂

∂v

[
v2ν

(ω ∓ ωc)2 + ν2

∂f 0
0

∂v

]
+

1

2v2

∂

∂v

[
Rv3

(
f 0

0 +
κT

mv

∂f 0
0

∂v

)]
, (3.1)

and from it determine the ELF/VLF antenna current.

3.1 The distribution function

Equation (3.1) will be solved in the limits where p(t) varies either slowly or quickly

compared to the characteristic thermal response time τ of f 0
0 .

3.1.1 Slow modulation limit

The first case is where p(t) varies slowly compared to τ such that we can assume

∂f0
0

∂t
= 0. With the time derivative of Equation (3.1) set to zero, we have

0 =
∂

∂v

{
e2(E1)2p(t)v2ν

3m2[(ω ∓ ωc)2 + ν2]

∂f 0
0

∂v
+ v2R

κT

m

∂f 0
0

∂v
+ v3Rf 0

0

}
. (3.2)

The expression in braces must be a constant. To determine this constant, we consider

the limit as v approaches zero and see that this constant is zero. Therefore we can
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Figure 3-1: Distribution functions for various field amplitudes (0, 0.5, 1 V/m), 3.3
MHz, R-mode, neutral density of 1021 m−3.

solve for
∂f0

0

∂v
/f 0

0 , and integrate as follows:

f 0
0 (v, t) = A exp

{
−

∫ v

0

mv

κT + e2(E1)2p(t)ν/3mR[(ω ∓ ωc)2 + ν2]
dv

}
. (3.3)

The constant A is chosen such that the distribution function integrates to n. The

distribution function is essentially a Maxwellian f 0
0 = A exp[− ∫ v

0 (mv/κT ) dv] with

a second term in the denominator which modifies the temperature, or width, of the

distribution. The term in question goes to zero as v → 0 due to the factor of ν. Thus

the shape is roughly a Maxwellian, with a spreading in the mid-velocity range. The

spreading becomes more pronounced with increasing electric field.

To visually confirm this interpretation, in Figure 3-1 we numerically evaluate

Equation (3.3) for a range of heater electric fields E1, a carrier frequency ω/2π = 3.3

MHz, R-mode polarization, a neutral density N = 1021 m−3 and neutral temperature

T = 180 K. The assumption is slow modulation, so p(t) is taken to be 1. The

distribution functions can be used to verify the condition of weak anisotropy assumed

in Chapter 2 [Eq. (2.8)]. Gurevich [1978] derives the second spherical harmonic for
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Figure 3-2: Left side (solid) and right side (dashed) of Equation (3.4).

the case of an unmagnetized plasma. It is found to negligible under the condition

that ∣∣∣∣∣∂f0

∂v

∣∣∣∣∣�
∣∣∣∣∣ 4

15v3

∂

∂v

{
eEv4

m(−iω + ν)

∂

∂v

[
eE

m(−iω + ν)v

∂f0

∂v

]}∣∣∣∣∣ . (3.4)

We ignore the magnetic field here, and substitute the 1 V/m solution from Figure 3-1

into each side of Equation (3.4). Each side is plotted in Figure 3-2 (normalized to

electron density, and indicated as X). We conclude that Equation (3.4) is well-satisfied

at all velocities.

3.1.2 Approximate time constants

We now examine the range of time scales for which the slow modulation solution

presented above is valid. The determination will be made on the basis of energy time

constants. These are the initial rates of change of the energy in response to a step

in p(t), as shown in Figure 3-3. The heating and cooling rates from Equation (2.141)
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Figure 3-3: Definition of time constants.

are:

∂ε

∂t
= Q− L (3.5)

Q = −2πe2(E1)2p(t)

3mn

∫
v3ν

(ω ∓ ωc)2 + ν2

∂f 0
0

∂v
dv (3.6)

L =
2πm

n

∫
Rv4

(
f 0

0 +
κT

mv

∂f 0
0

∂v

)
dv. (3.7)

In the case of heating, we assume the distribution is initially in equilibrium such that

L = 0 [see Eq. (2.121)], and therefore the initial slope ∂ε
∂t

is simply Q, with p(t) = 1,

and f 0
0 is Maxwell-distributed at the temperature of the molecules. Thus,

τh =
∆ε

Q
, (3.8)

with ∆ε given by the difference in energy of the final and initial distributions:

∆ε =
2πm

n

∫
[f 0

0 (t =∞)− f 0
0 (t = 0)]v4 dv. (3.9)
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Figure 3-4: Heating, cooling time constants versus heater electric field, 3.3 MHz
(solid), 10 MHz (dashed), R-mode polarization, neutral density of 1021 m−3.

For cooling rates, we begin with a heated ionosphere in steady state and apply a

falling step function p(t). Immediately after the step, p(t) = 0 and the initial slope

∂ε
∂t

is just −L, with f 0
0 given by Equation (3.3). Thus,

τc =
∆ε

L
, (3.10)

with ∆ε again given by Equation (3.9). The above time constants are a function of

heater electric field, neutral density, and carrier frequency. As an example, in Figure

3-4 we numerically evaluate τh and τc versus electric field for two different carrier

frequencies (3.3 and 10 MHz), R-mode polarization, and a neutral density of 1021

m−3. In all cases, the low field limit is 59 µs, and increases with field to about 130

µs at 1 V/m. The reason for the increase is that the rotational losses decrease with

velocity, leading to a runaway effect. The runaway effect causes the temperature

modification to increase rapidly with little additional heater power. In other words,

the numerators of Equations (3.8) and (3.10) increase faster than the denominators.

However, the elastic losses eventually catch up and limit the runaway effect. This
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limit is seen in the levelling off of the heating time constant of 3.3 MHz heating near

1 V/m.

Thus in conclusion, the slow modulation limit is good up to 1–2 kHz for electric

fields in the range 0.1–1 V/m.

3.1.3 Fast modulation limit

We now consider the limit where p(t) varies much faster than τ (but still much slower

than the HF carrier) such that f 0
0 can be characterized by small perturbations δf 0

0

around an average value f 0
0 , where |δf 0

0 | � |f 0
0 |. In other words, the plasma does not

have sufficient time to respond to temporal changes in heater power. In this limit, the

product of p(t) and f 0
0 in the Boltzmann equation (3.1) linearizes and the solution

assumes a simple form.

To proceed, we expand the other time-varying quantity p(t) in perturbation δp(t)

about a mean value p(t). However, the perturbation to p(t) need not be small, that

is |δp(t)| ≈ |p(t)|. Writing Equation (3.1) for the perturbed quantities gives us:

∂

∂t
(f 0

0 + δf 0
0 ) =

e2(E1)2[p(t) + δp(t)]

6m2v2

∂

∂v

[
v2ν

(ω ∓ ωc)2 + ν2

∂

∂v
(f 0

0 + δf 0
0 )

]

+
1

2v2

∂

∂v

[
Rv3

(
1 +

κT

mv

∂

∂v

)]
(f 0

0 + δf 0
0 ). (3.11)

We break this expression into equations for the steady and perturbed quantities. For

the steady quantities, we simply get the slow modulation limit [Eq. (3.3)] with f 0
0

replaced by f 0
0 , and (E1)2p(t) replaced by (E1)2p(t). For the fluctuating quantities,

we recognize the ordering δp(t)f 0
0 � p(t)δf 0

0 ≈ δp(t)δf 0
0 , and arrive at

∂

∂t
δf 0

0 =
e2(E1)2δp(t)

6m2v2

∂

∂v

[
v2ν

(ω ∓ ωc)2 + ν2

∂f 0
0

∂v

]
+

1

2v2

∂

∂v

[
Rv3

(
1 +

κT

mv

∂

∂v

)]
δf 0

0 .

(3.12)

Further simplification is possible by noticing that in the limit of rapidly fluctuating

δp(t), δf 0
0 goes to zero, and thus the loss term becomes negligible compared to the

time derivative and heating terms. In this limit, we consider the response to 100%
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Figure 3-5: The fluctuating distributions for 0.5 V/m (solid) and 1 V/m (dashed),
3.3 MHz, R-mode, neutral density of 1021 m−3.

sinusoidal power modulation δp(t) = e−iωmt/2, where ωm is the modulation frequency.

In this case:

δf 0
0 =

ie2(E1)2

12ωmm2v2

∂

∂v

[
v2ν

(ω ∓ ωc)2 + ν2

∂f 0
0

∂v

]
. (3.13)

Thus the response to fast monochromatic power excitation is a distribution entirely

determined by the average power (E1)2p(t), which varies in time at a phase lag of

π/2 with respect to the excitation. By extrapolation to a spectrum of frequencies, we

conclude that the system integrates the fluctuating input power function in the fast

modulation limit.

The fluctuating distribution functions δf 0
0 (v) are quite different than the steady-

state distribution functions f 0
0 found previously in that they are populated in areas

where the first and second derivatives of the steady state solutions are nonzero. We

plot them in Figure 3-5 for the same parameters as the steady-state case.
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3.1.4 Variation with altitude

The solutions presented previously were for a single point in space with a neutral

density of 1021 m−3. However, the model needs to be expanded to allow for variations

in neutral density with altitude. In particular, the neutral density falls off with

increasing altitude, resulting in lower losses and more electron heating at higher

altitudes. However, at the same time the electric field available for heating is less

due to the inverse-square spreading and attenuation of the upgoing wave. These

competing influences result in the heating maximum being located in the mid-range

of altitudes.

The attenuation of the upward-going heater wave is nonlinear in the sense that it

depends on the amplitude of the heater wave. Interpreted physically, the mechanism

of plasma heating is self-reinforcing: the wave heats the plasma as it passes through,

increasing the imaginary refractive index, leading to increased absorption and heating.

In our case, the main consequence is that the heating becomes localized in a narrow

range of altitudes, limiting the spatial extent of the antenna current.

In the ionosphere, R/L heater wave behaviour is determined by the parallel index

of refraction:

n2
‖ = 1− ω2

p

ω(ω + iνe ∓ ωc)
. (3.14)

Here νe is an effective collision frequency [Eq. (2.53)] appearing in the momentum

conservation fluid equation [Eq. (2.51)]. The refractive index arises from the high-

frequency dielectric response of the plasma associated with f11 and thus we calculate

an effective collision frequency as follows

v1νe = −4π

3n

∫
f11 νv

3 dv. (3.15)

The replacement of v1ν by v1νe is possible when ν is isotropic in velocity space.

In view of Equation (2.138) this approximation basically equates the effective and
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averaged mobility tensor elements as follows:

νe − iω

ω2
c + (νe − iω)2

νe = −4π

3n

∫
ν − iω

ω2
c + (ν − iω)2

∂f 0
0

∂v
νv3 dv (3.16)

ωc
ω2
c + (νe − iω)2

νe = −4π

3n

∫
ωc

ω2
c + (ν − iω)2

∂f 0
0

∂v
νv3 dv (3.17)

1

νe − iω
νe = −4π

3n

∫
1

ν − iω

∂f 0
0

∂v
νv3 dv. (3.18)

With ω and ωc known, νe can be found either by dividing Equations (3.16) and (3.17),

or by dividing the real and imaginary parts of Equation (3.18). These two methods

are thus:

νe − iω

ωc
=

[∫
(ν − iω)νv3

ω2
c + (ν − iω)2

∂f 0
0

∂v
dv

] [∫
ωcνv

3

ω2
c + (ν − iω)2

∂f 0
0

∂v
dv

]−1

(3.19)

νe
ω

=

[∫
ν2v3

ν2 + ω2

∂f 0
0

∂v
dv

] [∫
νωv3

ν2 + ω2

∂f 0
0

∂v
dv

]−1

. (3.20)

Numerical calculations will show that these two formulas produce almost identical

results. The two methods (denoted as methods “one” and “two”, respectively) are

compared in Figure 3-6. To illustrate the character of νe, in Figure 3-7 we have plotted

νe versus heater electric field for two different carrier frequencies (3.3 and 10 MHz),

R-mode polarization, at a neutral density of 1021 m−3, using the slow modulation

approximation for f 0
0 .

Returning to the discussion of refractive index, we note that in the lower iono-

sphere, HF transmissions are above the right-hand cutoff of the plasma, and therefore

both modes are propagating. In fact, ω � ωp, so the real part of the refractive index

is close to one. Therefore we can expand the square on the left side of Equation (3.14)

to give the imaginary part:

�(n‖) =
ω2
pνe

2ω[(ω ∓ ωc)2 + ν2
e ]
. (3.21)

Clearly, the imaginary refractive index will be large where ω2
p and νe are numerically

of comparable size. With the index in hand, we can compute the heater power density
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Figure 3-6: Comparison of methods to determine νe, method one (solid), method two
(dashed).
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Figure 3-7: Effective collision frequency versus heater electric field, 3.3 MHz (solid),
10 MHz (dashed), R-mode, neutral density 1021 m−3.
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at the heating location:

(E1)2

2η
=

PtG

4πz2
exp

[
−2ω

c

∫ z

0
�(n‖) dz

]
. (3.22)

Here, PtG is the transmitter power-gain product, often referred to as effective radi-

ated power (ERP). To solve Equation (3.22) with a self-consistent electric field, the

ionosphere is discretized into horizontal slabs. Equation (3.22) is used to calculate

the field in the (n+1)th slab by considering attenuation in the first n slabs. We write

this operation as follows:

(E1
n+1)

2

2η
=

PtG

4πz2
exp

[
−∆z

c

n∑
k=1

ω2
pνe

(ω ∓ ωc)2 + ν2
e

]
. (3.23)

where ∆z is the slab thickness, and ωp and νe vary with k. Solutions for E1 as a

function of altitude will depend on the electron density profile, the amount of power

transmitted from the ground, and the chosen carrier frequency and polarization, as

well as the particular limiting form of the distribution function [Equation (3.3) or

(3.13)]. As an example, we will solve Equation (3.23) for the case of nighttime and

daytime electron density profiles, assuming 20 MW ERP, a 3.3 MHz carrier in R-

mode, and using the slow modulation approximation for f 0
0 . The electron density

profiles to be used represent normal levels of riometer absorption (see Chapter 1).

As a second example, we choose a nighttime profile, 20 MW ERP, 3.3 and 10 MHz

R-mode carrier, and again, slow modulation. These two examples are shown in Figure

3-8. Note that the daytime profile absorbs the heater electric field about 10 km lower

than the nighttime profile due to the higher plasma density. In the second example,

the 10 MHz field penetrates through to 100 km, whereas the 3.3 MHz field is absorbed

at an altitude of about 70 km.

The heater electric field alone will not tell us the state of ionospheric modifi-

cation. To determine modification, it is representative to plot temperature change

∆Te(z) = 2∆ε/3κ, where ∆ε, the change in energy between on and off states of the

heater, is given by Equation (3.9). Two plots have been prepared (Figures 3-9 and
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Figure 3-8: Heater electric field versus altitude. Left panel, daytime (solid), nighttime
(dashed), 20 MW ERP, 3.3 MHz, R-mode. Right panel, daytime, 20 MW ERP, 3.3
MHz (solid), 10 MHz (dashed), R-Mode.

3-10) to show the variation with time of day and carrier frequency. Figure 3-9 shows

the temperature for normal daytime and nighttime electron density profiles (mod-

erate riometer absorption). The weaker nighttime profile results in less attenuation

of the upgoing wave, so the heating is spread over a much broader altitude range,

resulting in more modification. Thus the nighttime conditions are favored for heating

experiments, particularly for modification of the plasma above 70 km altitude.

The variation with carrier frequency is given in Figure 3-10. The higher car-

rier frequencies suffer less attenuation, spreading the temperature excitation over a

broader altitude range. However, the amount of heating near the peak is considerably

less. Thus there is a tradeoff between penetration and heating efficiency which can

be taken advantage of during the unfavorable daytime conditions. The details of the

tradeoff will be made precise in the discussion of conductivity in the next section.
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Figure 3-9: Temperature change profiles in daytime (solid), nighttime (dashed), 20
MW ERP, 3.3 MHz, R-mode, slow modulation limit.
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Figure 3-10: Temperature change profiles in daytime, 20 MW ERP, 3.3 MHz (solid),
10 MHz (dashed), R-mode, slow modulation limit.
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3.2 Conductivity

The ionospheric conductivity follows directly from the distribution function via Equa-

tion (2.145):

σ =




σP −σH 0

σH σP 0

0 0 σ0


 (3.24)

σP = −4πe2

3m

∫
v3 ν

ω2
c + ν2

∂f 0
0

∂v
dv (3.25)

σH = −4πe2

3m

∫
v3 ωc
ω2
c + ν2

∂f 0
0

∂v
dv (3.26)

σ0 = −4πe2

3m

∫
v3 1

ν

∂f 0
0

∂v
dv. (3.27)

The conductivity σ can be broken into two parts—a background conductivity σ

due to a Maxwellian f 0
0 with a temperature of the molecules, and a modulation (or

conductivity change) ∆σ due to the effect of the heater. The background electron

conductivity is shown in Figure 3-11. The specific conductivity dominates over most

of the altitude range. This supports the intuition that the field lines act as equipo-

tentials.

As for the modulated conductivities, we note that the solar wind dynamo field E0

is applied perpendicular to the magnetic field (to the extent that the field lines can be

regarded as equipotentials), and thus changes in σ0 are unfelt. Our attention will be

focused on ∆σP and ∆σH , beginning with the slow modulation limit for f 0
0 . Figures

3-12 and 3-13 show the conductivity changes for the cases presented in Figures 3-9

and 3-10. The left panel of each plot is the Pedersen conductivity change, and the

right panel is the Hall conductivity change.

Figure 3-12 compares the daytime and nighttime cases. The trend is that the

increased plasma density of the daytime case shifts the conductivity modulation down

about 10 km, although the gross structure is preserved.

The Pedersen conductivity depends on ν/(ω2
c + ν2), and thus the conductivity
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Figure 3-11: Background electron conductivity: Pedersen (solid), Hall (dashed), and
specific (dot-dashed). Left panel is daytime, right panel is nighttime.
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Figure 3-12: Conductivity change profiles in daytime (solid), nighttime (dashed), 20
MW ERP, 3.3 MHz, R-mode, slow modulation limit. Left panel is Pedersen and right
panel is Hall.
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Figure 3-13: Conductivity change profiles in daytime, 20 MW ERP, 3.3 MHz (solid),
10 MHz (dashed), R-mode, slow modulation limit. Left panel is Pedersen and right
panel is Hall.

change can be understood as follows. At high altitudes, the second term in the

denominator can be ignored, and the conductivity depends directly on ν. In contrast,

the first term in the denominator is disposable at low altitudes, resulting in a 1/ν

dependence. The sign reversal in the conductivity change occurs where the ωc and ν

denominator terms have comparable influence.

As for the Hall conductivity, the dominant feature is a negative conductivity

change at all altitudes, since the dependence is ωc/(ω
2
c + ν2). However, at high alti-

tudes, the Hall conductivity modulation is rather inefficient compared to the Pedersen

modulation due to the dominance of the ω2
c term in the denominator. Thus one can

conclude generally that the Hall modulation is dominant at low altitudes and the

Pedersen modulation is dominant at higher altitudes.

Figure 3-13 compares the conductivity changes for two different HF carrier fre-

quencies: 3.3 and 10 MHz. The results suggest that the efficient Pedersen conductiv-

ity at higher altitudes can be accessed during the daytime conditions by increasing

the carrier frequency. This becomes the dominant trend at higher heating powers
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Figure 3-14: Fluctuating conductivity change profiles in daytime (solid), nighttime
(dashed), 20 MW ERP, 3.3 MHz, R-mode, 10 kHz modulation frequency. Left panel
is Pedersen and right panel is Hall.

(above 20 MW ERP), although the self-absorption effect eventually limits what can

be achieved. Extrapolation to higher powers will not be discussed here as it is not

directly verifiable by the author’s experiments, and various projections have already

been published [Milikh et al., 1994, Kuo et al., 2002].

In the case of fast modulation, the distribution function is no longer in steady

state, and thus we think of the modulation as time-varying fluctuations around a

mean modulation: ∆σP,H = ∆σP,H + δσP,H . The ∆σP,H term is associated with

f 0
0 − f 0

0 [p(t) = 0], and is given by Figures 3-12 and 3-13. However, the δσP,H term is

associated with the fluctuating distribution function δf 0
0 [Eq. (3.13)] and needs to be

evaluated by replacing f 0
0 with δf 0

0 in Equation (3.24). In Figures 3-14 and 3-15 we

plot δσP,H for the same cases as Figures 3-12 and 3-13.

Evidently, the conclusions from the slow modulation limit do not carry over to fast

modulation. The difference between day and night is now more pronounced. While

the profile still moves upward about 10 km, the conductivity modulation is much

smaller in the nighttime case. The primary reason is that at higher altitudes, the
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Figure 3-15: Fluctuating conductivity change profiles in daytime, 20 MW ERP, 3.3
MHz (solid), 10 MHz (dashed), R-mode, 10 kHz modulation frequency. Left panel is
Pedersen and right panel is Hall.

neutral density decreases, causing the energy gain and loss rates to slow down, and

thus lengthening the time constant τ . This time constant corresponds to the location

of a pole in the response curve of conductivity change versus modulation frequency.

As the pole moves to lower frequency, the conductivity response above the location

of the pole gets pushed down.

Changing the carrier frequency is not helpful in this case for the same reason. As

can be seen in Figure 3-15 the conductivity modulation, particularly the Pedersen

conductivity, does not move to higher altitudes in any significant way. We conclude

that operating at higher carrier frequencies is only helpful when the modulation fre-

quency ωm lies below 1/τ at the altitudes being modulated. Viewed another way, the

temporal response of the conductivity modulation process tends to localize effects at

altitudes where ωm ≈ 1/τ .
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3.3 Current

The current will be described in several levels of theoretical detail. The first level

(Section 3.3.1) describes the theory of Stubbe et al. [1982], where the polarization of

the modified plasma volume is ignored. The second level (Section 3.3.2) is the theory

of Stubbe and Kopka [1977], which gives a two-dimensional analytic model for static

polarization. The third level (Section 3.3.3) is the author’s extension of the second

level to three dimensions. The fourth level (Section 3.3.4) describes the author’s

numerical solution to Maxwell’s equations.

3.3.1 Case of no polarization

The modification of the ionospheric conductivity perturbs the natural flow of electro-

jet current in the ionosphere. The very simplest model of the perturbation considers

the heated plasma to be homogeneous and infinite in extent. The current flowing in

the plasma is given by

J = σE0. (3.28)

If the conductivity is varied by an amount ∆σ around an average value of σ, then

the current will similarly vary around an average value according to:

J+∆J = (σ +∆σ)E0. (3.29)

We are concerned with the varying current ∆J as it is what will give rise to radiation.

We now choose a system of coordinates. Without loss of generality, the solar

wind dynamo electric field E0 will point in the x̂ direction. To be consistent with

the literature, x̂ will point east, ŷ will point north, and ẑ will point up (opposite the

Earth’s magnetic field). In this choice of coordinates, the conductivity tensor is given
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by

σ =




σP σH 0

−σH σP 0

0 0 σ0


 . (3.30)

(3.31)

The difference from Equation (3.24) lies in the sign of the Hall conductivity. The

current ∆J is given by

∆J = (∆σP x̂−∆σH ŷ)E
0 (3.32)

In this case, the perturbation current is oriented at an angle

α = − arctan
(
∆σH
∆σP

)
(3.33)

counterclockwise (when viewed from above) with respect to E0.

At higher modulation frequencies, the conductivity change ∆σ takes the form of

small perturbations δσ around an average conductivity change ∆σ. The steady and

time-varying components are given by

J+∆J = (σ +∆σ)E0 (3.34)

δJ = δσE0. (3.35)

If E0 is again assumed to be eastward, then

δJ = (δσP x̂− δσH ŷ)E
0. (3.36)

In this case, the perturbation current is oriented at an angle

α = − arctan

(
δσH
δσP

)
(3.37)

counterclockwise (when viewed from above) with respect to E0.
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Figure 3-16: Variation of current direction with altitude, according to Stubbe et al.
[1982].

These results can be simply extended to three dimensions by letting the conduc-

tivities become a function of space. This is the approach of Stubbe et al. [1982]. A

qualitative view of the variation of current direction with altitude is given in Figure

3-16.

3.3.2 Two-dimensional polarization

The infinite, homogeneous model given above is only valid to the extent which the

boundary of the heated volume can be ignored. In practice the heated volume is finite

in extent, and develops polarization charge at its boundary in response to the need

to keep current continuous across the conductivity discontinuity. This polarization

charge is associated with a polarization electric field ∆E which can drive additional

current both inside and outside the heated volume. If |∆σ| � |σ|, then the steady
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and time-varying currents are given by

J = σE0 (3.38)

∆J ≈ ∆σE0 + σ∆E. (3.39)

For rapidly fluctuating conductivity, the steady and time-varying components are

given by

J+∆J ≈ (σ +∆σ)E0 + σ∆E (3.40)

δJ ≈ δσE0 + σ δE. (3.41)

Notice that while Equations (3.39) and (3.41) have essentially the same form, they

involve perturbations around different equilibria [Equations (3.38) and (3.40), respec-

tively], and therefore need to be treated distinctly. However, if both |∆σ| � |σ| and
|∆E| � |E0|, then |∆J| � |J| and the equilibria can be considered the same. Thus

δJ can be determined from δσ using the same procedure that determines ∆J from

∆σ.

We now proceed to determine ∆E, following the theory of Stubbe and Kopka

[1977]. We consider the heated volume to be a vertical cylinder above the transmitter,

aligned with the nearly-vertical magnetic field, as shown in Figure 3-17. The size of

the cylinder is determined by the transmitter beam width. Because the solar dynamo

field is applied horizontally, it is possible to integrate all quantities over height and

reduce the three-dimensional cylinder model to a two-dimensional disc. In the height-

integrated picture, the plasma has a height-integrated conductivity Σ =
∫

σ dz, which

is associated with a height-integrated current density K =
∫
J dz. The conductivity

inside the disc is Σ′, and outside is Σ. The geometry is shown in Figure 3-18. A

vertical plasma column of conductivity different than the surroundings gives rise to

a polarization electric field ∆E. We assume that the polarization is static and is

associated with a potential U :

∆E = −∇U. (3.42)
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79



In the polar coordinates of the disc, the total electric field is

Er = E0 cosφ− ∂U

∂r
(3.43)

Eφ = −E0 sin φ− 1

r

∂U

∂φ
. (3.44)

In view of the conductivity tensor, we write the polar components of the current as

Kr = ΣPEr + ΣHEφ (3.45)

Kφ = ΣPEφ − ΣHEr, (3.46)

where ΣP and ΣH are the Pedersen and Hall components of the height-integrated

conductivity tensor.

We assume ∇ · K = 0 (for static fields), which means that U obeys Laplace’s

equation inside and outside the disc:

∂2U

∂r2
+

1

r

∂U

∂r
+

1

r2

∂2U

∂φ2
= 0. (3.47)

The most general solution is

U(r, φ) = A0 +
∞∑
n=1

(Anr
n +Bnr

−n) cos(nφ− αn). (3.48)

We match boundary conditions to solve for the coefficients. Outside the disc (r ≥ R),

we need the potential to tend to zero at∞, thus An = 0 for all n. Inside the disc, the

solution must stay bounded, so Bn = 0 for all n. Furthermore, since the conductivities

are rotationally invariant and the imposed field is antisymmetric upon a rotation by π,

we expect that the current patterns will have similar π-rotation symmetry. Therefore

only the A1 and B1 terms are nonzero. Since U must be continuous at the boundary of

the region, A1=B1/R
2 ≡ D. Using a primed/unprimed notation to denote quantities

inside/outside the modified region, we have:

U ′(r, φ) = Dr cos(φ− α) (3.49)
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U(r, φ) = D
R2

r
cos(φ− α). (3.50)

This can be thought of as the potential due to surface charge on the boundary of the

modified disc. The polarization charge is rotated by an azimuthal angle α with respect

to E0. The potential effectively steers the current such that it remains divergenceless.

The final boundary condition we will apply to the solution is that the current

normal to the boundary Kr must be continuous. From Equation (3.45), we have

Σ′
PE

′
r + Σ′

HE
′
φ = ΣPEr + ΣHEφ. (3.51)

Upon taking the appropriate derivatives of the potential functions and substituting

them, we arrive at the following expressions for the parameters:

D = E0

[
∆Σ2

P +∆Σ2
H

(Σ′
P + ΣP )2 +∆Σ2

H

]1/2

(3.52)

α = − arctan
(Σ′

P + ΣP )∆ΣH −∆ΣP∆ΣH

(Σ′
P + ΣP )∆ΣP +∆Σ2

H

, (3.53)

where ∆ΣP,H = Σ′
P,H − ΣP,H . In the limit of weak modification (|∆ΣP,H | � ΣP,H)

these expressions simplify:

D =
E0

2ΣP

(
∆Σ2

P +∆Σ2
H

)1/2
(3.54)

α = − arctan
∆ΣH

∆ΣP
. (3.55)

Therefore the currents inside and outside the cylinder are given by

K ′
r = E0(Σ′

P cosφ− Σ′
H sinφ)−D[Σ′

P cos(φ− α)− Σ′
H sin(φ− α)] (3.56)

K ′
φ =−E0(Σ′

P sin φ+ Σ′
H cosφ) +D[Σ′

P sin(φ− α) + Σ′
H cos(φ− α)] (3.57)

Kr = E0(ΣP cosφ− ΣH sinφ) +D
R2

r2
[ΣP cos(φ− α) + ΣH sin(φ− α)] (3.58)

Kφ =−E0(ΣP sin φ+ ΣH cosφ) +D
R2

r2
[ΣP sin(φ− α)− ΣH cos(φ− α)]. (3.59)
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We separate these quantities into background currents Kr = E0(ΣP cos φ−ΣH sinφ),

Kφ = −E0(ΣP sinφ + ΣH cos φ), and modulation currents ∆Kr = Kr −Kr, ∆Kφ =

Kφ − Kφ due to the presence of the modified plasma column. After expanding the

(φ− α) arguments, the modulation currents are

∆K ′
r = DΣcos(φ− φ0) (3.60)

∆K ′
φ = −DΣ sin(φ− φ0) (3.61)

∆Kr = DΣ
R2

r2
cos(φ− φ0) (3.62)

∆Kφ = DΣ
R2

r2
sin(φ− φ0), (3.63)

with

φ0 = arctan
ΣH

ΣP
+ α (3.64)

Σ =
√
Σ2
P + Σ2

H . (3.65)

The above expressions simplify if we write them in a coordinate system (u, v) rotated

from (x, y) by the angle φ0. The cartesian vectors in (u, v) are:

∆K ′
u = DΣ (3.66)

∆K ′
v = 0 (3.67)

∆Ku = D
R2

r2
Σcos 2φ (3.68)

∆Kv = D
R2

r2
Σ sin 2φ. (3.69)

Thus the modulation current is uniform in the disc and dipolar outside, as shown in

Figure 3-19.

3.3.3 Extension to three dimensions

The previous formulation ignored vertical variations, allowing the use of height-

integrated conductivities. However, this model ionosphere confines the resulting cur-
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Figure 3-19: Modulation current pattern.

rent structure to a horizontal plane. In the real ionosphere, the specific conductivity is

large, so currents can flow easily in the vertical direction. Furthermore, the Pedersen

and Hall conductivities increase exponentially with altitude. Thus it is reasonable to

hypothesize that the closure currents may in fact flow up and over the heated volume,

rather than around the sides as in the previous analysis.

The model in the previous section needs to be reinterpreted in terms of the pos-

sibility of vertical current structure. As a first step, let us rewrite Equation (3.51),

recognizing two distinct regions in altitude. The first region, at the level of the heated

volume, has a conductivity discontinuity in the horizontal plane, as demarcated by

the boundary between the primed (heated) and unprimed (unheated) areas. The

second region consists of the unmodified plasma above the heated volume, where the

conductivity is uniform in the horizontal plane. We will denote this region by using a

double-primed notation. Assuming that current can flow easily along the field lines,

Equation (3.51) can be written as:

(Σ′
P + Σ′′

P )E
′
r + (Σ′

H + Σ′′
H)E

′
φ = (ΣP + Σ′′

P )Er + (ΣH + Σ′′
H)Eφ. (3.70)

The origin of this expression is shown in Figure 3-20.
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Figure 3-20: Currents forming the continuity relation [Eq. (3.70)].

After substituting Equations (3.43), (3.44), (3.49), and (3.50), we find that the

amplitude and angle of the potential is given by:

D = E0

[
∆Σ2

P +∆Σ2
H

(Σ′
P + ΣP + 2Σ′′

P )
2 +∆Σ2

H

]1/2

(3.71)

α = − arctan
(Σ′

P + ΣP + 2Σ′′
P )∆ΣH −∆ΣP∆ΣH

(Σ′
P + ΣP + 2Σ′′

P )∆ΣP +∆Σ2
H

, (3.72)

where ∆ΣP,H = Σ′
P,H − ΣP,H . In the limit of weak modification (|∆ΣP,H | � ΣP,H),

and large conductivity gradient (Σ′′
P � ΣP , see Figure 3-11), the previous expressions

simplify:

D =
E0

2Σ′′
P

(
∆Σ2

P +∆Σ2
H

)1/2
(3.73)

α = − arctan
∆ΣH

∆ΣP
. (3.74)

Carrying out the same process as before to find the modulation currents, and contin-
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uing to assume Σ′′
P � ΣP , we find that at the altitude of the heated volume:

∆K ′
r = 2DΣ′′

P cos(φ− α) (3.75)

∆K ′
φ = −2DΣ′′

P sin(φ− α) (3.76)

∆Kr = DΣ
R2

r2
cos(φ− φ0) (3.77)

∆Kφ = DΣ
R2

r2
sin(φ− φ0). (3.78)

where Σ and φ0 are as defined by Equations (3.64) and (3.65). Since φ0 �= α and Σ �=
2Σ′′

P , the radial currents are no longer continuous at the boundary. The discontinuity

in the radial current must be equal to the vertical-flowing current in order to ensure

∇ · J = 0. Furthermore, since 2Σ′′
P � Σ, the currents inside the heated volume

dominate the currents outside, and thus almost all the interior current is sent up the

field lines upon reaching the boundary of the heated volume. For most purposes we

can then ignore the exterior currents, and rewrite the system in cartesian coordinates

(u, v) rotated from (x, y) by angle α:

∆K ′
u = 2DΣ′′

P (3.79)

∆K ′
v = 0 (3.80)

∆Ku = 0 (3.81)

∆Kv = 0. (3.82)

In the region above the heated volume, the modulation current solutions can be

written as

∆K ′
r = DΣ′′ cos(φ− φ0)− 2DΣ′′

P cos(φ− α) (3.83)

∆K ′
φ = −DΣ′′ sin(φ− φ0) + 2DΣ′′

P sin(φ− α) (3.84)

∆Kr = DΣ′′R
2

r2
cos(φ− φ0) (3.85)

∆Kφ = DΣ′′R
2

r2
sin(φ− φ0). (3.86)
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with φ0 as before, and Σ′′ =
√
Σ′′2
P + Σ′′2

H . The terms containing φ0 are essentially

the modulation currents of Equations (3.60)–(3.63), which describe a divergenceless

horizontal current structure angled at φ0 with respect to E0. The terms containing

α can be written in cartesian coordinates (u, v) rotated from (x, y) by angle α:

∆K ′
u = −2DΣ′′

P (3.87)

∆K ′
v = 0 (3.88)

∆Ku = 0 (3.89)

∆Kv = 0. (3.90)

These are just the negatives of Equations (3.79)–(3.82). Continuity of these two

systems require that 2DΣ′′
P be the current flowing vertically along the field lines. The

combined systems of current (3.79)–(3.82) and (3.83)–(3.86) are shown pictorially in

Figure 3-21.

Although Figure 3-21 suggests a vertical loop of current, determining the actual

size of the loop is nontrivial, since the Pedersen conductivity increases exponentially

with altitude (see Figure 3-11). The higher altitudes tend to “short out” the current

flowing at lower altitudes. One solution is to invoke magnetic induction, which can

effectively truncate the vertical extent of the potential U driving the return current
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Figure 3-22: Circuit model of vertical loop.

in the region above the heated volume. The approach will be described qualitatively

here, with quantitative details given in Appendix A.

The basic intuition is that the vertical loop grows until the impedance due to the

loop inductance is equal to the crossfield conduction impedance. A simple circuit

model is provided in Figure 3-22. The voltage source driving the loop is simply the

charge due to the conductivity discontinuity Q =
∫
∆I dt divided by the capacitance

of the heated volume. The loop inductance L is the permeability µ0 times a vertical

scale size Lv. The resistance of the return path R is approximately the reciprocal of

the product of the Pedersen conductivity σP and a horizontal scale size Lh. These

two impedances will be equal when the modulation time scale 1/ωm is equal to a

magnetic diffusion time given by:

1/ωm = τmv = µ0σPLhLv, (3.91)

which we will denote as the “vertical” magnetic time constant. If σP increases ex-

ponentially with altitude, then the vertical loop size will depend on the logarithm of

ωm.

An expanded lumped circuit model is given by Figure 3-23. Here we have added

loops in the horizontal direction at both the heated altitude and above the heated

altitude, with associated “horizontal” magnetic time constants τ ′mh and τmh, respec-

tively. Whether they form at all will depend on the size of 1/ωm compared with
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Figure 3-23: Circuit model of modified ionosphere.

τ ′mh and τmh. For completeness, an electric time constant τe is also considered in

the vertical direction, to allow for a finite amount of time for charge to relax in the

vertical direction. The electrojet current is modelled by current sources, and some of

the dominant conductivities have been suggested in the circuit diagram. This circuit

interpretation lays the framework for understanding the results of the next section.

3.3.4 Three-dimensional numerical model

The ideas presented in the previous section can be made concrete by a numerical

solution to Maxwell’s equations:

∇× E = −µ0
∂H

∂t
(3.92)

∇×H = J+ ε0
∂E

∂t
. (3.93)

We can write the electric field as the sum of the solar dynamo field E0 and the

polarization field ∆E arising from the conductivity perturbation:

E = E0 +∆E. (3.94)
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The magnetic field consists of the steady magnetic field H due to the steady current

J and a perturbation field ∆H associated with the current perturbation ∆J:

H = H+∆H. (3.95)

The earth’s magnetic field does not enter the formulation because it is divergenceless,

irrotational, time-constant, and is already accounted for in σ. The current J is the

combination of steady and perturbed currents given by Equations (3.38) and (3.39),

such that

J = σE0 + (∆σE0 + σ∆E). (3.96)

Since Maxwell’s equations are linear, the steady quantities E0, H, and σE0 form a

solution to Maxwell’s equations which is steady in time. That solution can be removed

from the equations, and we can re-solve the equations for the perturbed quantities

∇×∆E = −µ0
∂

∂t
∆H (3.97)

∇×∆H = ∆σE0 + σ∆E+ ε0
∂

∂t
∆E. (3.98)

This system can be solved in time domain as follows. The system can be written as

six scalar equations

−µ0
∂∆Hx

∂t
=

∂∆Ez

∂y
− ∂∆Ey

∂z
(3.99)

−µ0
∂∆Hy

∂t
=

∂∆Ex

∂z
− ∂∆Ez

∂x
(3.100)

−µ0
∂∆Hz

∂t
=

∂∆Ey

∂x
− ∂∆Ex

∂y
(3.101)

ε0
∂∆Ex

∂t
=

∂∆Hz

∂y
− ∂∆Hy

∂z
−∆σPE

0 − σP∆Ex − σH∆Ey (3.102)

ε0
∂∆Ey

∂t
=

∂∆Hx

∂z
− ∂∆Hz

∂x
+∆σHE

0 + σH∆Ex − σP∆Ey (3.103)

ε0
∂∆Ez

∂t
=

∂∆Hy

∂x
− ∂∆Hx

∂y
− σ0∆Ez. (3.104)
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The fields are given an initial condition ∆E(t = 0) and ∆H(t = 0) and the fields

for t > 0 are determined by finite-differencing the space and time derivatives and

iterating the equations. If the conductivity is zero, then the method is stable when

the time discretization ∆t and space discretizations (∆x,∆y,∆z) satisfy the relation

[Yee, 1966]:
∆t√
ε0µ0

<
√
(∆x)2 + (∆y)2 + (∆z)2. (3.105)

When the conductivity is inhomogeneous (and anisotropic, as in this case) a rigorous

stability criterion is difficult to establish.

The initial conditions are taken to be zero everywhere, with the drive being ap-

plied via the conductivity change ∆σP,H . To simulate the experimental conditions,

one would ideally apply a temporally sinusoidal conductivity drive at a given modu-

lation frequency, and let the system evolve until it reaches the sinusoidal steady state.

The simulation would then be repeated for a whole range of modulation frequencies

covering the band of interest (say, 1–30 kHz). The frequency response at every point

in space would then be known. In practice this procedure requires much computer

time. For the purpose of understanding the experiments, sufficient knowledge of the

ionospheric behaviour can be obtained by determining the high and low frequency

limits of the frequency response. This information can be gleaned from the step re-

sponse of the system. For example, if g(t) is the system step response, h(t) is the

impulse response, and g̃(ω) and h̃(ω) are their Laplace transforms, then the initial

and final value theorems state that

lim
ω→∞ h̃(ω) = lim

t→0
g(t) (3.106)

lim
ω→0

h̃(ω) = lim
t→∞ g(t). (3.107)

Thus the fast and slow scale behaviour of the step response will give us the high and

low frequency behaviour of the system function.

Accordingly, we apply a conductivity profile δσP,H at time zero, and find the

transient response of the fields ∆E and ∆H with their initial state being zero. We

choose the profile δσP,H rather than ∆σP,H because we want to capture the ionospheric
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response to a conductivity change at time scales faster than the thermal response time

τ of the ionosphere.

The simulations were run in two and three dimensions. The two dimensional

code attempts to verify the two-dimensional predictions of the direction of the per-

turbed current inside the heated volume for the case of no polarization electric fields

[Eqs. (3.33) and (3.37)] and fully-developed polarization fields [Eq. (3.64)]. Two-

dimensional simulations were run for daytime density/conductivity profiles in a 50×50
km plane, discretized into 1-km squares. The temporal discretization was taken as

2 µs. The boundary conditions for the simulation volume are periodic, which is ad-

equate so long as the solution does not impinge on the boundaries of the box. The

code was run for the conductivity parameters

σP = 1× 10−6 S/m (3.108)

σH = 2× 10−6 S/m (3.109)

δσP = 1× 10−8 S/m (3.110)

δσH = −2× 10−8 S/m. (3.111)

The background conductivities are the levels at 68 km during the day, and the mod-

ified conductivities are arbitrary examples. The heated volume was assumed to be of

a Gaussian-distributed shape with a scale size of 20 km at the center of the simulation

box.

The output of the simulation is the transient response of the ionosphere. The

character of the current system is very different at short and long time scales. The

short time scale behaviour (at 2 µs) is given in Figure 3-24. At short time scales,

the current direction resolves to the angle prediction in the absence of polarization

electric field [Eq. (3.37)]:

α = − arctan

(
δΣH

δΣP

)
. (3.112)

For our choice of parameters, α is 63.4 degrees. This angle is reflected in the direction

of the current inside the heated disc with respect to the x̂ direction. There is no
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Figure 3-24: Current pattern at 2 µs.

current in the region outside the disc, thus there exists no significant polarization

electric field. All of the perturbed current is due to the conductivity modification

alone:

δJ ≈ δσE0. (3.113)

We interpret this result to indicate that circulating polarization current outside the

heated volume takes a finite amount of time to develop. The reason lies in the finite

amount of time required for the magnetic field to diffuse in the horizontal direction

into the region enclosed by the circulating currents. This is τmh, the horizontal

magnetic time constant.

We would expect at time scales much longer than τmh that horizontal loops could

form as predicted by the analytic theory of Section 3.3.2. In Figure 3-25 is plotted

the perturbed current pattern at 2 ms. Here there is clear evidence of polarization

fields driving external current. The system has resolved to steady state such that the

current flows in response to an electrostatic polarization field ∆E. In such a field,
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Figure 3-25: Current pattern at 2 ms.

the current follows the prediction of Equation (3.64):

φ0 = arctan
(
ΣH

ΣP

)
+ α. (3.114)

For our choice of parameters, φ0 is 126.8 degrees, as is reflected in the direction of the

current inside the heated disc. Thus on the long time scale, the perturbed current

has contributions from both the non-polarization and polarization components:

δJ = δσE0 + σ δE. (3.115)

In between the two limits, the angle continuously evolves between α and φ0. The

direction of the current in the heated volume as a function of time is given in Figure

3-26. Evidently, the angle evolution includes additional 360-degree rotations between

the limits. No attempt will be made to interpret the transient response as it does not

necessarily reflect the frequency response. However, it does suggest the value of the

magnetic diffusion time in the horizontal direction as around 100 µs for this choice of

daytime background parameters, which is comparable to the thermal response time
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Figure 3-26: Current direction inside heated volume as a function of time.

τ of the plasma. Thus, we do not expect that horizontal loop structure will develop

for modulation frequencies much higher than 1/τ .

Simulation results have also been obtained in three dimensions. The three di-

mensional runs are an attempt to reconcile the effects of vertical inhomogeneity and

horizontal anisotropy which could be accounted for only crudely in the analytic the-

ory. Again, we consider the fast and slow time scale behaviour, and the location of

the transition between them. The simulation was run for a box with dimensions 30

km on a side, discretized into 1-km cubic elements. The daytime conductivity pro-

files of Figure 3-11 and the 3.3 MHz daytime profiles of fluctuating conductivity from

Figure 3-14 were used in the simulation. The response was calculated to a step in

the conductivity, with initial fields ∆E and ∆H assumed to be zero. The time step

was chosen to be 20 ns, which was found to be the minimum time step which would

allow stability.

The fast time scale behaviour is shown in Figures 3-27 and 3-28. In Figure 3-27

is the Jx and Jz components of the current in the x-z plane, and in Figure 3-28 is the

Jy and Jz components of the current in the y-z plane. These are the currents at 100

94



−15 −10 −5 0 5 10 15
50

55

60

65

70

75

80

X coordinate (km)

Z
 c

oo
rd

in
at

e 
(k

m
)

Figure 3-27: Jx and Jz in the x-z plane at 100 ns.
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Figure 3-28: Jy and Jz in the y-z plane at 100 ns.
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Figure 3-29: Jx and Jz in the x-z plane at 40 µs.

ns of simulation—vastly insufficient time for the development of polarization electric

fields.

The perturbation current in this case results entirely from the conductivity mod-

ification. Figure 3-27 shows the current Jx = δσP (x, z)E
0 and Figure 3-28 shows

the current Jy = −δσH(y, z)E0. For example, in Figure 3-27 the positively x-directed

current at 72 km and negatively x-directed current at 63 km represents the qualitative

features of the Pedersen conductivity modification (Figure 3-14).

On slow time scales, we expect the formation of current loops in the horizontal

and vertical directions. The three-dimensional simulation settles into steady state

after about 40 µs as opposed to 100 µs in the two-dimensional simulation. The

vertical loops evidently form faster than the horizontal loops. Figures 3-29 and 3-30

are the same views as Figures 3-27 and 3-28 except that 40 µs has elapsed since the

conductivity step change.

We note the vertical loop structure of the current in both Figures 3-29 and 3-30.

The loop is flattened in the vertical direction, suggesting it has a smaller inductance

than the horizontal loops above the heated volume (illustrated in Figure 3-21) and
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Figure 3-30: Jy and Jz in the y-z plane at 40 µs.

thus is able to form faster. Furthermore, the vertical loop tends to short out the

horizontal loops at the altitude of the heated volume (associated with time constant

τ ′mh in Figure 3-23). Thus the vertical loop dominates all horizontal loops.

In addition, we note that the vertical loop bears none of the structure of the con-

ductivity modification curve. This is the result of the fact that the electric charge

relaxation time τe in the vertical direction is much faster than the magnetic time

constants. Thus the formation of the loops depends on the height-integrated conduc-

tivity change rather than the height-dependent conductivity change. Justification for

this interpretation can be made by comparing the electric time constant τe = ε0/σo

and the vertical magnetic time constant τmv = σ0µ0LhLv, where we assign scale sizes

Lh = 20 km, Lv = 10 km. τe � τmv requires that σ0 be larger than 1×10−7 S/m,

which is the case in the region of interest (above 60 km) during the daytime conditions

under consideration.

A more graphic justification for the dependence on height-integrated conductivity

change can be made by considering the variation of the current profiles Jx or Jy with

time after the step. For example, Jx is plotted as a function of altitude and time after
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Figure 3-31: Jx (grayscale) versus time and altitude.

the step turn-on in Figure 3-31. All structure associated with the height-dependent

conductivity change is lost during the first 5 µs, which represents the time τe required

for charge to relax in the vertical direction. This occurs long before the development

of the vertical loop starting at τmv = 15 µs.

The last point to be made with the three-dimensional simulation is the orientation

of the current within the horizontal plane. For simplicity, we consider only the current

direction at a location x = y = 0 km, with z allowed to vary. The vector [Jx(z), Jy(z)]

can be plotted in the horizontal plane (Figure 3-32) as z varies between 50 and 80 km.

Here we show the set [Jx(z), Jy(z)] at various time scales. At short time scales (100

ns), the pattern of currents follows the direction of the conductivity modification.

The vector rotates clockwise as the Pedersen conductivity modification changes from

negative at low altitudes to positive at higher altitudes. At longer time scales, the

pattern evolves into a linear structure, rotated about 20 degrees counterclockwise

from its initial direction. Some comparison can be made with the predictions of the

analytic theory. The height-integrated conductivities for the normal daytime profile
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Figure 3-32: Current vector [Jx(z), Jy(z)], z varying between 50 and 80 km.

are

ΣP = 3.7× 10−2 S (3.116)

ΣH = 2.4× 10−1 S (3.117)

δΣP = −2.3× 10−5 S (3.118)

δΣH = −1.6× 10−4 S. (3.119)

With these parameters, we expect the fast time scale current pattern to be rotated

an average (height-integrated) angle of

α = − arctan

(
δΣH

δΣP

)
(3.120)

= 98 deg (3.121)

with respect to the x̂ direction, a value which is well-reflected by the first panel of

Figure 3-32. At longer time scales, we would expect according to the two-dimensional
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theory of Section 3.3.2 that the polarization electric field would rotate the structure

so that it is at an angle

φ0 = arctan
(
ΣH

ΣP

)
+ arctan

(
δΣH

δΣP

)
(3.122)

= 179 deg (3.123)

with respect to the x̂ direction. However, if currents circulating above the heated

volume are the dominant structure, then the author’s three-dimensional extension

(Section 3.3.3) is more applicable, and we expect the current loop to be rotated at an

angle close to α = 98 deg. The simulation suggests a compromise between these two

extremes, with behaviour somewhat closer to the three-dimensional theory. Therefore

the suggestion from the simulation is that the horizontal loop structure is weak in

comparison to the vertical loop structure after the simulation has settled to steady

state. This interpretation can be confirmed by looking at the horizontal current

structure in the lower and upper layers of the vertical loop. This is shown in Figures

3-33 and 3-34. These plots are of the horizontal current structure in the lower part

of the loop (65 km) and the upper part (75 km) after 40 µs. The plots show that

the horizontal loop structure is indeed relatively undeveloped in comparison to the

vertical loop structure.
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Figure 3-33: Horizontal current structure at base of vertical loop (65 km, 40 µs).
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Figure 3-34: Horizontal current structure at top of vertical loop (75 km, 40 µs).
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Chapter 4

Experiments

Experiments were performed with the HAARP ionospheric heater located at Gakona,

Alaska. Reported here are measurements of radiation during ionospheric modification

experiments, along with interpretation in terms of the theory presented in Chapter 3.

4.1 Description of the hardware

The HAARP ionospheric heater consists of a CW transmitter and a large antenna

array. A photograph of the HAARP antenna array is provided in Figure 4-1. The

transmitter produces a maximum power of 960 kW and can be amplitude-modulated

in any manner up to 200 kHz. The antenna array consists of 48 crossed-dipole anten-

nas, centered at co-ordinates 62◦23’33” N 145◦08’48” W. The antennas have tuning

gear for the range 2.8–10 MHz, although in practice only a couple small bands within

this range are available due to the federal regulation of the radio spectrum. The gain

of the array is 14 dB at 3 MHz, increasing to 20 dB at 10 MHz. In addition, the

elements can be phased to allow beam steering up to 30 degrees from zenith with

a response time of 5 µs, although all experiments described hereafter use a zenith

beam.

HF and VLF receiver systems were designed, built and deployed in Alaska by

the author. The receiver systems consist of antennas, low-noise amplifiers, filters,

and laptop computer-based data acquisition. The HF equipment resided in a trailer
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Figure 4-1: The HAARP antenna array.

approximately 50 m from the edge of the HF transmitting array. Its purpose was to

record the modulation of the heater during transmission. The VLF receiver system

was placed in a trailer at coordinates 62◦21’34” N, 145◦21’16” W, which translates to

approximately 11.4 km from the transmitting array, in an approximate west-southwest

direction. The separation from the transmitting array was necessary to ensure that

HF signals do not enter the VLF receiver and self-demodulate. The HF and VLF

receiver systems were synchronized using the 1 pulse-per-second output of a pair of

commercial GPS receivers, which are generally accurate to within 1µs.

A block diagram of the HF receiver system is shown in Figure 4-2. In the HF re-

ceiver system, fields are sensed with an electric dipole antenna and fed into a trailer by

coaxial cable. The electronics in the trailer are shown in Figure 4-3. The antenna sig-

nal is sent straight into a crystal power detector. The fields are sufficiently strong next

to the transmitting array such that no amplification is necessary. The power detector

outputs a signal which is essentially p(t) as defined by Equation (2.140). Superim-

posed on the data are 20 ms-long pulse-per-second GPS timing pulses. Therefore 980

ms of data are available every second. The combined data and timing pulse signal is

sampled continuously at 200 kHz with a 12-bit A/D card in a laptop computer. The
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Figure 4-2: HF receiver system block diagram.

Figure 4-3: HF receiving equipment.
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Figure 4-4: VLF receiver system block diagram.

hard disk has a capacity of 36 GB, allowing for 25 hours of data before backup.

A block diagram of the VLF receiver system is given in Figure 4-4. In the VLF

receiver system, H-fields are picked up with two orthogonal loop antennas (aligned

magnetic north-south and east-west), as shown in Figure 4-5. The loops are 5.5 m

high with a base of 7.3 m, giving an area of 20 m2. They are constructed from

6 turns of 14 AWG wire, with a DC resistance of 1.0 Ω and an inductance of 1.0

mH. The receiver is located at the base of the loops and has two input channels,

one for each loop. The channels have an input impedance of 50 Ω and a gain of 50

dB. The input coupling is through a step-up transformer into a differential common-

emitter pair. The transformer step-up is standard practice to ensure adequate noise

performance in the presence of a low-source impedance loop antenna. The voltage

divider combination of the loop impedance and the amplifier input impedance results

in a receiver signal proportional to dH
dt

below 8 kHz, and proportional to H above

8 kHz. The placement of this pole in the receiver response is to de-emphasize 60
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Figure 4-5: VLF loop antennas (with author).
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Figure 4-6: VLF electronics.

Hz power line harmonics below 8 kHz which would otherwise saturate the limited

dynamic range of the 12-bit digitizers. The outputs of the receiver are fed into

electronics located in the trailer, shown in Figure 4-6. The signals are lowpass-filtered

at 50 kHz, amplified by 20 dB, and fed into a multiplexer. The filter phase response

amounts to a 10-µs time delay over the entire band. At 50 kHz, this time delay

amounts to a phase of 180 degrees, as one would expect of a four-pole low pass filter.

Since only one digitizer channel is available with the data acquisition card, the two

antenna signals are alternated every second using the GPS pulse-per-second signal.

There is a 20-ms long pulse at every intersignal boundary to provide a precise rising

edge for synchronization. The polarity of this pulse is alternated every second so that

one will know which antenna signal is being displayed in the 980 ms of data following

the pulse.

4.2 Experimental procedure

The experiment consisted of recording the ELF/VLF radiation produced by a modu-

lation frequency sweep of the heater. The modulation frequency sweep was repeated
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Date Time Carrier Mod
080602 040000 3.3 90-7170
080602 042000 3.3 90-7170
080602 044000 3.3 90-7170
080702 060000 3.3 90-7170
080702 062030 3.3 90-7170
080702 064100 3.3 90-7170
110902 040000 3.3 85-8365
110902 043000 5.8 85-8365
110902 060000 3.3 85-8365
110902 063000 5.8 85-8365
110902 080000 3.3 85-8365
110902 083000 5.8 85-8365
111002 040000 3.3 85-8365
111002 043000 5.8 85-8365
111002 060000 3.3 85-8365
111002 063000 5.8 85-8365
111002 080000 3.3 85-8365
111002 083000 5.8 85-8365

Table 4.1: Experiment summary.

a total of 18 times. In the first 6 trials (performed 6–7 August 2002), the sweep was

between 90 and 7170 Hz in 120 Hz steps (a total of 60 frequencies), with a 10-second

dwell on each frequency. After each 10-second dwell, a 10-second “calibration” pulse

at 7290 Hz was transmitted. Thus it took 20 minutes to run the entire sweep. In

the latter 12 trials (performed 9–10 November 2002), the sweep was between 85 Hz

and 8365 Hz in 120 Hz steps (a total of 70 frequencies), with 50-second dwells on

frequencies in the range 85 Hz to 1165 Hz and 10-second dwells on frequencies in the

range 1285 to 8365 Hz. 10-second calibrations at 7285 Hz were made after each dwell.

Thus each sweep was 30 minutes long. The reason for extending the dwell times be-

low 1165 Hz was to improve the detection of signals in that range. The experimental

runs are summarized in Table 4.1. Listed are the dates, times, carrier frequencies,

and modulation frequencies. The dates and times are given in universal time, which

is 8 hours ahead of local time in the first 6 trials, and 9 hours ahead in the remaining

12 trials. The carrier frequency is in MHz, and the modulation frequency in Hz.
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4.3 Data processing

The experimental data collected during the trials consist of two time series sE(t) and

sN(t) corresponding to fluctuations in the east-west and north-south magnetic fields.

These directions are determined by the physical orientation of the loop antennas,

which stay fixed during the duration of the experiments. These will be the same

directions as the theoretical x̂ and ŷ axes of Chapter 3 if E0 points eastward. However,

E0 in general can point in any direction, thus the physical axes and the theoretical

axes differ by an azimuthal rotation around the origin.

We now consider the signal of interest, namely the magnetic field fluctuations

at the HF heater modulation frequency. The signal is narrowband, and as such is

modelled as a sine wave with a slowly varying magnitude and phase. Thus there are

four observables: the magnitudes (AE, AN ) and phases (ψE , ψN) of the east-west and

north-south magnetic field fluctuations at the modulation frequency.

The phase reference for the ELF/VLF signals is the time series s0(t) of the mod-

ulation leaving the HF transmitter. The total measured phase at the ELF/VLF

recording site will therefore consist of phase accrued during propagation from the

ground to the ionosphere, during the excitation of radiation in the ionosphere, and

during the return to the ground location of the VLF receiver. Any additional phase

due to the receiver input impedance and lowpass filter response is removed from the

data during the analysis.

If we continue to assume an e−iωt dependence of all signals, then a negative phase

will correspond to a leading signal and a positive phase will correspond to a lagging

signal. With this convention, the signals s0(t), sE(t), and sN (t) have the form

s0(t) = �
(
e−iωt

)
= cos(ωt) (4.1)

sE(t) = �
(
AEe

iψEe−iωt
)
= AE cos(ωt− ψE) (4.2)

sN (t) = �
(
ANe

iψN e−iωt
)
= AN cos(ωt− ψN ). (4.3)

If x̂ points east and ŷ points north, then the complex amplitudes of the magnetic
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field components are given by

HE = x̂AEe
iψE (4.4)

HN = ŷANe
iψN . (4.5)

For some of the analysis, it is useful to recast the fields in terms of rotating coordinates:

HR = (x̂− iŷ)ARe
iψR (4.6)

HL = (x̂+ iŷ)ALe
iψL . (4.7)

Since the direction of propagation is downward, when viewed from above, the HR

fields rotate clockwise and theHL fields rotate counterclockwise. The transformations

between coordinate systems is the usual one:

ARe
iψR =

AEe
iψE + iANe

iψN

2
(4.8)

ALe
iψL =

AEe
iψE − iANe

iψN

2
. (4.9)

The polarization ellipse shown in Figure 4-7 can be expressed easily in terms of

the rotating amplitudes and phases. The ellipse parameters are the ellipticity ε,

orientation angle β, size A, and phase ψ. The ellipticity will be defined as the ratio

ε = a/b of the semiminor and semimajor axes, such that ε = 1 is right-hand, and

ε = −1 left-hand circular polarization. The orientation angle β generally takes on

values in the range −π/2 < β < π/2, due to the π-rotational symmetry of the ellipse.

The ellipse size A will be taken to be the absolute length of the semimajor axis b.

The phase ψ is the value of ωt at the time when the magnetic field is aligned with

the semimajor axis b as shown in Figure 4-7. These ellipse parameters are expressed

in terms of the rotating amplitudes and phases as follows:

ε =
AR −AL

AR + AL

(4.10)

β =
ψR − ψL

2
(4.11)
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Figure 4-7: Polarization ellipse.

A = AR + AL (4.12)

ψ =
ψR + ψL

2
. (4.13)

These parameters provide a complete description of the horizontal magnetic field at

the ground. In fact, the sets (ε, β, A, ψ), (AR, AL, ψR, ψL), and (AE, AN , ψE, ψN ) all

contain the same information. The choice of which to use is a matter of convenience.

In order to draw a connection between the current systems described in Chapter

3 and the measured radiation on the ground, we consider the magnetic field to arise

from a vector potential:

H = ∇×
∫
J(r′)eik|r−r′|

4π|r− r′| dr′. (4.14)

If the size of the source region is small compared to the distance to the observer, then

H = ∇× eikr

4πr

∫
J(r′)e−ik·r

′
dr′. (4.15)
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If we further assume that the observer is in the far field (the near/far field transi-

tion occurs at 650 Hz, at 70 km range), and ignore phase effects from non-zenith

contributions to the radiation, then

H =
ikAeikz

4πz
×

∫
J(z)e−ikz dz. (4.16)

In particular, the current outside the heated volume is dominantly dipolar, so its

contribution to the vector potential vanishes in the azimuthal integration of Equation

(4.15). Thus the area A of Equation (4.16) refers to the cross-sectional area of the

heated volume alone. In the fast modulation limit (modulation frequency above

approximately 1–2 kHz), the current is proportional to the integral of the heating

function p(t) [Eq. (3.13)]. Thus in frequency domain, the fast modulation conductivity

profiles and currents are the values given in Chapter 3 [such as Figure 3-14 and

Equation (3.36)], multiplied by the imaginary unit i. J in Equation (4.16) above can

be written iJc where Jc is any calculated current profile from Chapter 3 in the fast

modulation limit. If we break Jc into components, then we have that

H =
kAeikz

4πz

[
−x̂J̃cy(k) + ŷJ̃cx(k)

]
, (4.17)

where the tilde notation refers to a Fourier transform. Thus we have the immediate

conclusion that the k-spectrum of the radiation is the Fourier transform of the fluc-

tuating current profile in the fast modulation limit. For example, an impulse-shaped

current profile δ(z) would give rise to a flat radiation spectrum, with zero phase.

However, a doublet-shaped distribution δ̇(z), would also give a flat spectrum, but

with 90 degrees of leading (negative) phase.

Furthermore, since the quantities Jcx and Jcy are themselves real, we would also

expect from Equation (4.17) that the radiation be linearly polarized, rotated 90 de-

grees clockwise (as viewed from above) to the direction of the fluctuating current.

With this framework in mind, we can examine the radiation. We will start with

ellipticity and ellipse orientation, and then move to the magnitude and phase. The

latter two quantities will be inverse Fourier-transformed to yield an experimentally
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determined current profile along the lines of Equation (4.17).

4.3.1 Measurements of ellipticity

As just discussed, we expect the radiated fields to be linearly polarized, at some angle

with respect to E0. However, the lower ionospheric plasma supports only right-handed

propagation. Thus we might expect that the L-component of a wave attenuates rela-

tive to the R-component, resulting in right-hand elliptical polarization at the ground.

Let us consider the parallel refractive index [Eq. (3.14)] for ELF/VLF radiation at

the modulation frequency ωm, with ωm � νe, ωc:

n2
‖ = 1± ω2

p(ωc ± iνe)

ωm(ω2
c + ν2

e )
. (4.18)

If propagation effects (such as L-mode attenuation) actually occur, they will generally

manifest themselves at altitudes high enough that we can take ωc � νe. Furthermore,

we consider the case where ωm is small enough such that we can drop the +1 term.

What remains is the helicon relation:

n2
‖ = ±

ω2
p

ωmωc
. (4.19)

The size of the L-mode relative to the R-mode is given by the integration of the

imaginary refractive index over the propagation path:

AL/AR = exp
[
−ωm

c

∫
�

(
n‖L

)
dz

]
. (4.20)

AL/AR is related to the Faraday rotation ψF since �
(
n‖L

)
= �

(
n‖R

)
for helicons:

ψF =
ωm
c

∫
�

(
n‖R − n‖L

)
dz, (4.21)

= − log
AL

AR
(4.22)

= log
1 + ε

1− ε
. (4.23)
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Ellipticities for the 18 experimental runs are plotted versus modulation frequency in

Figure 4-8. On the whole, the ellipticities are close to zero, implying linear polariza-

tion and little Faraday rotation effect. The interpretation of these results is that the

radiation source is at a low enough altitude that the propagation effects described

above can be ignored. For our purposes, we will consider the radiation to occur in

free space. In a few cases the ellipticity is significant and negative (L-polarized) and

therefore a different propagation model than the above (such as a waveguide model)

would be required to properly interpret the data.

4.3.2 Ellipse orientation

We wish to compare the theoretical ellipse orientation angle (where the axes are

determined by E0 pointing along x̂) with the physically measured ellipse angle (where

the axes are determined by the antenna placement). The connection between the two

sets of axes lies in determining the direction of E0 during the experiments.

Thus we will first determine E0. Second, we will estimate the expected theoretical

polarization angle α for the currents in the heated volume. Third, we will plot the

theory alongside the experimental measurements of the radiated fields.

To determine the direction of E0, we consult convection maps of the high-altitude

auroral plasma flow, similar to the one shown in Figure 1-7. These maps are available

through the CEDAR/TIMED Space Weather initiative, and are compiled from a

variety of satellite, radar, and modelling sources. From these maps, the electric field

vectors can be obtained by rotating the flow vectors clockwise by 90 degress, in

accordance with the ideal MHD “Ohm’s law” relation E ≈ −v×B in the collisionless

upper ionosphere. An example of a convection map (0600 UT, 10 Nov 2002) is shown

in Figure 4-9.

In the map, there are contours showing the flow trajectories, as deduced from satel-

lite measurements and modelling, as well as clusters of individual vectors consisting

of HF backscatter radar measurements of the flows (note that no radar measurements

appear in Figure 1-7). Since the electric field is normal to the flow vectors, the flow

trajectories can be thought of as equipotential lines. The contour voltages are labelled
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Figure 4-8: Ellipticity ε versus modulation frequency (Hz).
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Figure 4-9: CEDAR/TIMED convection map.
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in the diagram, in increments of 3 kV. The HAARP facility is located at approxi-

mately the 8 o’clock position in this diagram (denoted by a circle), and the magnetic

pole is located at the intersection of the 15 kV contour and the horizontal mid-axis

(denoted by another circle). Rotating the velocity vectors over HAARP by 90 degrees

yields an electric field direction about 8 degrees clockwise of magnetic north.

A check for the convection map is provided by the magnetometer measurements.

The magnetometer senses the three components of the DC magnetic field on the

ground due to electrojet current driven by E0. To deduce E0 from these DC magnetic

fields, some assumption has to be made about the DC conductivity in the overhead

plasma. In most cases the Hall conductivity is dominant, and thus the DC mag-

netic field points in the general direction of E0. Some caution needs to be exercised

as the measured DC magnetic field involves contributions from all currents in the

environment, not just the overhead ones. However, the overhead contribution often

dominates, and so the magnetometer measurements may be viewed as a confirmation

of the direction of E0 as determined from the convection maps. A magnetometer plot

(from the HAARP instrument suite) for 10 Nov 2002 is shown in Figure 4-10. The

strong northward component in the magnetometer trace (bottom panel) at 0600 UT

suggests an eastward electrojet current, and thus a generally northward electric field

E0, confirming the conclusion from Figure 4-9. Thus we can determine the direction

of E0 for the 18 experimental runs in this manner. This is straightforward for all

cases, except for experiment runs 1–3. These three data sets were taken during the

daytime, and the convection map pattern was shifted away from the Alaska region

during these trials. Therefore the direction of E0 was taken from magnetometer mea-

surements alone in these cases, and as a result they should not be taken too seriously.

Having determined E0, the next step is to form the theoretical estimate of the

polarization angle. We estimate an angle α = − arctan(δΣH/δΣP ). To find α, we

need to height-integrate the profiles of fluctuating conductivity (such as Figure 3-14).

In calculating the conductivity, we have to choose an HF carrier frequency and plasma

density profile which matches the experiment. The HF carrier frequency is known

because it is specified by the operator. However, the plasma density profile will have
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Figure 4-10: Magnetometer data. Top trace is magnetic east component, bottom
trace is magnetic north component.
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Date Time D/N Carrier Rio Density
080602 040000 Day 3.3 0.1 Low
080602 042000 Day 3.3 0.2 Low
080602 044000 Day 3.3 0.4 Low
080702 060000 Night 3.3 0.1 Low
080702 062030 Night 3.3 0.1 Low
080702 064100 Night 3.3 0.1 Low
110902 040000 Night 3.3 0.4 Medium
110902 043000 Night 5.8 0.4 Medium
110902 060000 Night 3.3 0.6 Medium
110902 063000 Night 5.8 0.4 Medium
110902 080000 Night 3.3 0.4 Medium
110902 083000 Night 5.8 0.3 Medium
111002 040000 Night 3.3 0.7 Medium
111002 043000 Night 5.8 0.8 Medium
111002 060000 Night 3.3 2.0 High
111002 063000 Night 5.8 1.5 High
111002 080000 Night 3.3 1.3 High
111002 083000 Night 5.8 1.0 High

Table 4.2: Experimental conditions.

to be chosen from the six profiles presented in Chapter 1 (Figure 1-10).

The 18 data sets of Table 4.1 can be classified according to night/day condition,

carrier frequency, and lower ionosphere plasma density (ascertained from the riometer

absorption). These conditions are used to calculate conductivity profiles for each

experimental trial, along with an associated δΣP , δΣH , and α. Furthermore, each

trial features an estimate for the direction of E0 during the 20- or 30-minute period

of the trial. This information is summarized in Tables 4.2 and 4.3. The riometer

measurements are in dB and the density characterization corresponds to the profiles

from the catalog (Figure 1-10). The height-integrated conductivities are given in units

of µS. The angle α is measured in degrees counterclockwise from E0 and the angle

of E0 is in degrees counterclockwise from magnetic east. The predicted polarization

ellipse orientation angle � H for the radiation is simply α+90 degrees, sinceH radiates

at 90 degrees to J in the far field. Note that around 0800 UT the location of HAARP

shifts from the evening cell (northward E0) to the morning cell (southward E0), and

hence we observe a large change in the angle of E0 at that time.
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Date Time δΣP δΣH α � E0 � H
080602 040000 27.5 -339 85 22 -163
080602 042000 27.5 -339 85 27 -158
080602 044000 27.5 -339 85 30 -155
080702 060000 11.6 -27.1 67 87 -116
080702 062030 11.6 -27.1 67 90 -113
080702 064100 11.6 -27.1 67 92 -111
110902 040000 50.9 -126 68 83 -119
110902 043000 25.4 -38.2 56 70 -144
110902 060000 50.9 -126 68 81 -121
110902 063000 25.4 -38.2 56 78 -136
110902 080000 50.9 -126 68 79 -123
110902 083000 25.4 -38.2 56 30 176
111002 040000 50.9 -126 68 84 -118
111002 043000 25.4 -38.2 56 90 -124
111002 060000 51.0 -362 82 82 -106
111002 063000 42.3 -123 71 71 -128
111002 080000 51.0 -362 82 -102 70
111002 083000 42.3 -123 71 -95 66

Table 4.3: Determinations of α and E0.

With the determination of E0 and α completed, we turn to the experiments.

The ellipse orientation as defined in Equation (4.11) takes on values in the range

−π/2 < β < π/2. However, to compare the observations of the magnetic field vector

with the theory we need to know the four-quadrant position of the vector.

To illustrate a four-quadrant determination, let us consider the polarization to be

linear. This is nearly always the case, as shown by the ellipticity measurements. Thus

the polarization ellipse is a line through the origin at some angle to the east-west axis.

As the received ELF/VLF signal oscillates in time, the magnetic field vector jumps

between two opposite quadrants of the horizontal plane. For example, in Figure 4-11,

the vector would jump between the first and third quadrant every half wave period.

If one does not care about the phase of the signal, then it does not matter which of

the two quadrants the vector is in at any particular time. However, we are concerned

with the phase in this study, so it is necessary to know in which of the two quadrants

the vector is located at any point in time.

The simplest way to make this determination is to observe the magnetic field
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Figure 4-11: Four quadrants of observation plane.

vector as the modulation frequency is lowered towards zero. In the limit of low

frequency, the magnetic field direction is given simply by the right-hand rule for DC

current. For example, if the magnetic field vector appears in the first quadrant in the

low frequency limit, as shown in Figure 4-11, then the overhead current vector would

be located in the fourth quadrant. Furthermore, if we were to look at the computed

phase of the signals HE and HN , both of them would approach zero degrees in the

low frequency limit.

As a second example, let us say the current was in the first quadrant, producing a

magnetic field in the second quadrant. In this case, the phase of HE would approach

180 degrees at low frequency, whereas the HN phase would approach 0 degrees. A

third and fourth case would consist of the low-frequency magnetic field being located

in the third and fourth quadrants, respectively.

Assuming that the linear phase factor eikz dominates the phase of the measured

field [Eq. (4.17)], then anticipated phase functions for the four possible cases are

shown in Figure 4-12.

We now examine the experimental data. Plotted in Figure 4-13 is the measured
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Figure 4-12: Expected measured phase for the HE and HN components for the cases
of the magnetic field vector in each of the four quadrants, HE component (solid), HN

component (dashed).

phase of the HE and HN components during the 18 experimental runs. Of the data

sets, six of them (11,14,15,16,17,18) occur during periods when E0 is observable, and

furthermore these six also exhibit phase relations which clearly fit one of the four

cases of Figure 4-12 (all of them being the 4th quadrant case). For these six sets,

we can determine the four-quadrant ellipse orientation, and make a comparison with

the theory. Of the remaining sets, (1,2) are classifiable as first quadrant, but do not

have convection map measurements of E0. For these sets, we know the four-quadrant

ellipse orientation, but have no basis for comparison with the theory. The remaining

sets only produce two-quadrant orientation readings, and cannot as such be compared

with the theory.

We merge the predictions from Table 4.3 with the experimental measurements of

ellipse orientation. Please refer to Figure 4-14. The plots show the orientation angle

of the ellipse as a function of modulation frequency. The angular coordinate is the

orientation angle, with magnetic north at 12 o’clock and magnetic east at 3 o’clock
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Figure 4-13: Measured phase of the HE component (solid), and HN component
(dashed).
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Figure 4-14: Ellipse orientation angle versus modulation frequency, with predictions.
Solid line is the predicted angle of H if current was directed at angle α with respect
to E0. Dots are experimental measurements.
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(labels have been left off of the diagrams to avoid clutter). The orientation angle has

been unwrapped as best possible to allow variation over a range of 2π and to facilitate

comparison with the theory. The radial coordinate is the modulation frequency, with

the origin at zero frequency and the outside of the circle at the maximum modulation

frequency. In general, the dependence of orientation angle on modulation frequency is

weak, although some plots are scattered and show no pattern at all for the orientation

angle, which can be attributed to low signal levels. In plots (11,14,15,16,17,18), the

straight line shows the expected direction of the H field if the current is oriented

at an angle α with respect to E0. The data of plots (11,14,15,16) show that the

actual current is rotated about 30-50 degrees counterclockwise with respect to the

calculated α. Plots (17,18) show a clockwise rotation of 130-150 degrees. What is

probably happening here is that the satellite/modelling algorithm has prematurely

predicted the 180-degree shift in the direction of E0 which occurs when a location

moves from the evening to morning sector. The consistency of the measured radiation

in sets (15,16,17,18) suggests the convection map is likely wrong for sets (17,18).

The basic conclusion that will be drawn here is that the magnetic field measure-

ments are rotated approximately 30-50 degrees from α. A similar discrepancy was

observed by Rietveld [1987], who was searching for evidence supporting the theory of

Stubbe et al. [1982] (Section 3.3.1). In contrast, if the theory of Stubbe and Kopka

[1977] is used, the additional rotation of arctan(ΣH/ΣP ) [Eq. (3.64)] is nearly 90 de-

grees, and thus φ0 would tend to overestimate the rotation of the polarization. With

the assumed density profiles, neither theory explains the data. There are at least

three possibilities:

1. The assumed density profiles are too weak. A stronger density profile (such as a

daytime profile) can give rise to δΣP < 0 (see Figure 3-14). This would increase

α beyond 90 degrees and could provide the additional rotation such that Stubbe

et al. [1982] (Section 3.3.1) can explain the data.

2. The theory of Stubbe et al. [1982] (Section 3.3.1) is inadequate and the three-

dimensional extension of Sections 3.3.3 and 3.3.4 is required. The simulation of
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Section 3.3.4 provides additional rotation of the currents beyond α.

3. A combination of the above.

We conclude here that the polarization is ambiguous and cannot alone adequately

assess the validity of the theories. Thus we turn to the magnitude and phase to

provide further information.

4.3.3 Magnitude and phase

The magnitude and phase of the radiation is controlled by two influences. The first

influence is the vertical distribution of current [Eq. (4.17)]. The radiation is the

Fourier transform of the vertical profile of the antenna current, multiplied by a linear

phase factor eikz.

The second influence is the resonance of the earth-ionosphere cavity. During

modulated electrojet heating, the downward-propagating ELF/VLF wave reflects at

the ground, travels back to the ionosphere, and then reflects again in the ionosphere to

make a second downward-propagating wave. As a result, there is strong constructive

interference when the distance between the ground and the reflection altitude is a

multiple of half an ELF/VLF wavelength. This occurs at harmonics of approximately

2 kHz. To put this in quantitative terms, ifH0 is the primary wave, REI is the product

of the earth and ionosphere reflection coefficients, zR is the reflection height, and we

ignore subsequent reflections (REI � 1), then the downward-going wave is of the

form

H = (1 +REIe
2ikzR)H0. (4.24)

A nonzero reflection coefficient REI causes periodic bumps in the measured magnitude

and phase spectrum of H. The peak-to-peak size of the magnitude and phase bumps

is given by:

∆A

A
= 2REI (4.25)

∆ψ = 2 arcsinREI . (4.26)
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With the above influences in mind, we plot the magnitude of the polarization

ellipse A and its phase ψ. These are shown in Figures 4-15 and 4-16, respectively.

The amplitude spectra have been normalized to the level of the 7285 or 7290 Hz

calibration pulse transmitted every 10 seconds (see Section 4.2). The normalizing

removes the dependence of the amplitude on the variation of E0 during the 20 or

30 minutes required for the modulation frequency sweep. The amplitude spectra are

on the whole rather flat except for the resonance peaks at multiples of 2 kHz due to

the cavity resonance, and a small rolloff at each end. The peak-to-peak amplitude

of the bumps is about 2 or 3 times smaller than the total amplitude, which puts the

reflection coefficient REI in the range 1/6 to 1/4. The flat spectrum is interpreted

as due to the cancellation of the factor k in Equation (4.17) with the factor of 1/ωm

in Equation (3.13). The rolloff below 2 kHz is interpreted as due to the transition

from the fast modulation limit [Eq. (3.13)] to the slow modulation limit [Eq. (3.3)].

The rolloff above 6 kHz is interpreted as due to the phase mixing of radiation from

different altitudes.

The phase spectra are dominated by the linear phase term eikz due to the sepa-

ration of the radiation source and the observer. More accurately speaking, since we

are taking the phase of the modulation at the HAARP transmitter to be the phase

reference, the phase results from the trip up and down to the heated layer, and is

therefore of the form e2ikz. The slope of the phase:

∂

∂ω
(2kz) =

2z

c
(4.27)

gives the “apparent altitude” z of the source region, which is the assumption that

the propagation in both directions occurs at c. z is computed by fitting the phase

data between 2 and 8 kHz to a line of the form kz+ψ0 via linear least-squares. This

calculation results in an estimate for z (the slope). The result for z is inset on the

plots in Figure 4-16.

Some authors [Stubbe et al., 1981] choose to differentiate the phase data directly

and get an apparent altitude as a function of modulation frequency. However, dif-
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Figure 4-15: Normalized magnitude response versus modulation frequency (Hz).
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Figure 4-16: Phase ψ (degrees) versus modulation frequency (Hz). Apparent radiation
source altitude indicated.
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ferentiating data is problematic due to noise, and even in circumstances where the

derivative can be made, the presence of undulations in the phase ∆ψ due to the cavity

resonance render the results difficult to interpret. Figure 4-17 shows the outcome of

such a differentiation. Indeed the results are quite variable, although in a few cases

the altitude is readable, with peaks at 2 kHz harmonics due to ∆ψ.

A futher point here is that the differentiation disregards the constant phase ψ0

across the band. To illustrate this point, in Figure 4-18 we subtract the fitted linear

phase kz from the data and plot the remaining phase. Almost half of the valid

data sets show a significant component of constant negative phase, in some cases

approaching -90 degrees. This observation has not been previously reported in the

literature. The interpretation of this result is that there can exist a current profile

with a significant doublet component.

A more exact statement concerning the implications of this phase can be made

by actually inverse-transforming the experimental data to obtain the current profile,

following Equation (4.17). Unfortunately, these particular experiments were not ac-

tually designed with this operation in mind, and thus there is a severe limitation to

the spatial resolution, since the frequency spectra only extend out to 8 kHz (corre-

sponding to k = 1.6 × 10−4 m−1). Generally speaking, features of size smaller than

half a wavelength at 8 kHz cannot be resolved. In other words, a structure in the

current profile smaller than 20 km in size cannot be determined with the inverse

Fourier transform. However, we can take advantage of the very good experimental

conditions during the overhead current jet (shown in Figure 4-10) when ELF/VLF

radiation was measurable at higher harmonics of the modulation frequency.

During these conditions, one can exploit the fact that the square wave heater

modulation function p(t) contains third and fifth harmonics at power levels 1/3 and

1/5 of the fundamental, respectively. In the fast modulation limit, the heating pro-

cess is essentially linear [Eq. (3.13)], so radiation at the third and fifth harmonic of

the modulation frequency is produced independently of the fundamental. Therefore

one has essentially additional experiments at all the harmonics of the modulation

frequency, and measurements of the harmonic radiation can be interpreted in exactly
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Figure 4-17: Apparent altitude (km) of radiation as a function of modulation fre-
quency (Hz), obtained by differentiation of the phase.
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Figure 4-18: Departure from linear phase (degrees) versus modulation frequency (Hz).
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Figure 4-19: Normalized magnitude of third harmonic magnetic field versus modula-
tion frequency (kHz).

the same way as the fundamental. While third and fifth harmonic radiation would

extend the spectrum to 24 and 40 kHz, respectively, the downside is that the power

levels are low, and the radiation is observable in but a few of the data sets.

We consider data sets (15,16,17,18). The magnitude A and phase ψ of these data

sets at the third and fifth harmonics are given in Figures 4-19 through 4-22.

The first, third, and fifth harmonics of the east-west and north-south magnetic

field components of data sets (15,16,17,18) are inverse Fourier-transformed to produce

the experimentally determined profiles given in Figures 4-23 through 4-25. The left

column in each is the x-directed current, and the right column is the y-directed

current. In performing the inverse transforms on the experimental data, the linear

phase factor is lumped into J̃cx and J̃cy [see Equation (4.17)]. This inclusion causes

the deduced current structures to appear at the “apparent altitude” when the inverse

transform is carried out.

The deduced structure is double-layered, with two oppositely directed current

layers approximately 10 km apart. Both the Jx and Jy components show almost
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Figure 4-20: Phase of third harmonic magnetic field (degrees) versus modulation
frequency (kHz).
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Figure 4-21: Normalized magnitude of fifth harmonic magnetic field versus modula-
tion frequency (kHz).
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Figure 4-22: Phase of fifth harmonic magnetic field (degrees) versus modulation fre-
quency (kHz).

identical structure, with the lower layer considerably wider than the upper layer. The

currents are directed such that both Jx and Jy are negative in the lower layer and

both are positive in the upper layer. This implies that the lower currents are in the

physical southwest direction, and the upper currents are in the northeast direction.

A different view of the current profiles is given in Figure 4-26. Here the two

components of the deduced current are plotted together as a function of altitude.

Note the rapid counterclockwise reversal of the current direction near the altitude of

68 km. The direction reverses within about 3 or 4 km.

We are now in a position to compare the observations with the theory. The

structure of the current in the vertical dimension is obviously not predicted by the

two-dimensional theory of Stubbe and Kopka [1977] (Section 3.3.2) and thus we can

immediately regard this theory as inadequate. Next we ask, what can be said of

the theory of Stubbe et al. [1982] (Section 3.3.1)? To compare the theory to the

experiment, we need to rotate the theory counterclockwise by about 90 degrees to

account for the fact that E0 is presumed physically northward during the time of
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Figure 4-23: Current profile deduced via inverse Fourier transform of first harmonic
data (note poor resolution compared to 3rd, 5th harmonics).
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Figure 4-24: Current profile deduced via inverse Fourier transform of third harmonic
data.
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Figure 4-25: Current profile deduced via inverse Fourier transform of fifth harmonic
data.
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Figure 4-26: Current vector versus altitude (from third harmonic data).
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Figure 4-27: Stubbe et al. [1982] theory compared to experimentally determined
current vector.

these measurements (see Section 4.3.2) rather than eastward, as in the theory. In

Figure 4-27 we compare the theoretical profiles of Section 3.3.1 with data set 16.

The theory of Section 3.3.1 basically says that the x-component of the current will be

proportional to the Pedersen conductivity change and the y-component of the current

will be proportional to the negative of the Hall conductivity change. Since we are

interested in fast modulation, we use the profiles represented in Figure 3-14.

Neither the daytime nor nighttime fluctuating conductivity profiles give rise to a

current profile which has any resemblance to the measured profile. In the theory, the

current rotates very slowly in the x-y plane compared to the sudden direction change

of the experimental data. Thus the theory of Stubbe et al. [1982] (Section 3.3.1)

cannot explain the experimental results. Extensions to the theory, as suggested in

Sections 3.3.3 and 3.3.4, are therefore required.
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Figure 4-28: Numerical solution compared to experimentally determined current vec-
tor.

While the third level theory (Section 3.3.3) predicts vertical structure, it does so

only crudely as it is height-integrated in two layers. A more satisfactory comparison

can be made between the data and the numerical calculations (Section 3.3.4). We

note that the experiment conditions are nominally nighttime, while the simulation

is nominally daytime. Nevertheless, the strong riometer absorption, low apparent

altitude (64–68 km), and the appearance of visible aurora during experimental runs

(15,16,17,18) all suggest an unusually strong density profile more akin to the daytime

conditions. This issue notwithstanding, a comparison between the calculations and

the data is done in Figure 4-28. Here we see that there is now reasonable qualita-

tive agreement between theory and experiment with regards to the altitude of the

current reversal, the azimuthal direction of the current, the spatial rate at which

the current vector rotates, and the sense of the current rotation. The chosen 15 µs
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snapshot captures the current structure at a time scale which is representative of

the midpoint of the frequency range (10 kHz) over which the third harmonic of the

modulation frequency is swept. Snapshots at longer times will produce even sharper

current rotations near 68 km. The issue is not that important, however, as the in-

verse transform-deduced current profile is essentially a frequency integrated quantity

and thus represents the average character of the current structure over the entire

frequency band. Frequency integrated theory will not be pursued here as the vertical

loop-like average character has already been clearly established in Section 3.3.4.
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Chapter 5

Conclusion

A comprehensive description of lower ionospheric heating in the presence of solar

dynamo electric fields has been presented in Chapters 2 and 3. Theories concerning

the generation of ELF/VLF antenna current by modulated heating (Sections 3.3.1–

3.3.4) have been examined. It has been shown that two often-used theories [Stubbe et

al., 1982, Stubbe and Kopka, 1977] (Sections 3.3.1, 3.3.2) cannot explain the two-layer

vertical structure of antenna current deduced from the author’s HAARP experimental

results (Chapter 4). The author has proposed analytic and numerical extensions to

the theories (Sections 3.3.3, 3.3.4) which can explain the qualitative features of the

deduced vertical current structure. Specifically, the extensions predict the observed

rapid directional change with altitude of the current associated with the deduced

vertical loop structure.

The major limitation of this work is the need for good natural conditions (strong

electrojet current and a low-altitude ionospheric profile) in order to produce the wide

frequency spectrum necessary to resolve the current structure. Thus the results in

this work are for unusually good conditions, and not for the more mundane conditions

to be encountered in the everyday circumstances of ELF/VLF communication work.

However, the qualitative predictions of the theory hold for small, height-integrated

perturbations to the background conductivity, and thus should hold for weak electro-

jet current and weak ionospheric density conditions.

A good direction for future work would be to run the simulations under a large
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variety of natural conditions to verify the assertion of the previous sentence. However,

to get experimental results under ordinary conditions, a different experimental setup

would be required. One possibility is to deploy a number of VLF receivers underneath

the heated volume and get phase information by measuring the radiation at different

points in space rather than at different radiation frequencies. The current struc-

ture could then be deduced at a single modulation frequency rather than frequency

integrated as was done in this thesis. Such a multiple-receiver system is currently

being deployed at HAARP, and in principle will allow the real-time measurement of

three-dimensional current structure during even modest ionospheric conditions.
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Appendix A

Magnetic Induction Analytic

Model

Here we consider the problem of the vertical loop height in detail (refer to Section

3.3.3). To facilitate a simple solution to this problem, we employ rectangular geometry

as per the following assumptions (refer to Figure A-1):

1. The heated volume is a box with linear dimensions l, w and h.

2. The conductivity modulation causes the plasma in the box to polarize at an

angle α = − arctan(∆ΣH/∆ΣP ) with respect to E0.

3. The box is rotated at an angle α with respect to E0, such that the conductivity

modulation causes a uniform layer of polarization charge to appear at each end

of the box.

4. The potential difference across the box is U0.

In the context of the above geometry, we now determine the potential variation U(z)

in the region above the box. If we consider the modulation current leaving one end

of the box to be I0 = 2wDΣ′′
P , then the variation in vertical current I(z) will depend

on the vertical distribution of return current above the box. The change in vertical
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Figure A-1: Box geometry.

current with altitude is given by

∂I

∂z
= −GzU, (A.1)

where Gz is the horizontal conductance per unit height. Similarly, the loop self-

inductance will cause a back-EMF which will result in U decaying with height. The

variation is given by
∂U

∂z
= −Lz

∂I

∂t
, (A.2)

where Lz is the self-inductance of the current loop per unit height. Combining these

equations gives us the relation

∂2U

∂z2
− LzGz

∂U

∂z
= 0, (A.3)

with U = U0 at the top of the heated volume, taken as z = 0. If we ignore fringing

currents, then the crossfield conductance per unit height is

Gz =
σpw

l
. (A.4)
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and the loop inductance per unit height is

Lz =
µ0l

w
. (A.5)

Taking σP = σP0e
z/d (see Figure 3-11), where d is the scale height of the conductivity,

and letting ∂
∂t
→ −iωm, we have

∂2U

∂z2
+ iωmµ0σP0e

z/dU = 0. (A.6)

The general solution to this homogeneous differential equation is

U = C1J0

(
2d ez/2d

√
iωmµ0σP0

)
+ C2Y0

(
2d ez/2d

√
iωmµ0σP0

)
, (A.7)

where J0 and Y0 are zero-order Bessel functions of the first and second kind, and C1

and C2 are arbitrary constants used to match the boundary conditions. We need U

to remain bounded as z →∞. Considering the limiting forms of the Bessel functions

for large arguments:

J0(z) =

√
2

πz
cos

(
z − π

4

)
(A.8)

Y0(z) =

√
2

πz
sin

(
z − π

4

)
, (A.9)

we need C1 = −iC2 for U to remain bounded. Thus U can be written as a Hankel

function of the first kind with a single constant:

U = CH
(1)
0

(
2d ez/2d

√
iωmµ0σP0

)
. (A.10)

To find C, we apply current conservation at the boundary of the heated volume. The

current flowing out of the heated volume is just I0 = I(z = 0). From Equation (A.2)

we have

I0 =
1

iωmLz

∂U

∂z

∣∣∣∣∣
z=0

(A.11)
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= C

√
i3σP0

ωmµ0

H
(1)
1

(
2d

√
iωmµ0σP0

)
. (A.12)

In most cases, the Hankel function argument is less than one and can be expanded

as H
(1)
1 (z) ≈ −2i/πz:

I0 =
C

πωmµ0d
. (A.13)

This current has to be equal to the modulation current impinging on the side of the

rectangular heated volume:

I0 = 2wDΣ′′
P . (A.14)

Comparing this expression with Equation (A.13) gives us

C = 2πωmµ0wdDΣ′′
P . (A.15)

Therefore the return modulation current per unit height Iz above the heated volume

is given by

Iz = UGz (A.16)

=
σP0w

l
ez/dCH

(1)
0

(
2d ez/2d

√
iωmµ0σP0

)
. (A.17)

This is a complex amplitude which needs to be separated into real and imaginary

parts. This decomposition is facilitated by invoking the Kelvin functions

ker x + i ker x = −iπ
2
H

(1)
0

(
x
√
i
)
. (A.18)

These functions are shown in Figure A-2. We can express the time-varying current

per unit height above the heated volume in terms of these functions as follows

Iz =
2σP0wCez/d

πl

[
ker

(
2dez/2d

√
ωmµ0σP0

)
sinωmt (A.19)

−kei
(
2dez/2d

√
ωmµ0σP0

)
cosωmt

]
. (A.20)
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Figure A-2: Kelvin functions.
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